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Preface: General Chair

Welcome to ACL 2017 in Vancouver, Canada! This is the 55th annual meeting of the Association for
Computational Linguistics. A tremendous amount of knowledge has been presented at more than half
a century’s worth of our conferences. Hopefully, some of it is still relevant now that deep learning has
solved language. We are anticipating one of the largest ACL conferences ever. We had a record number
of papers submitted to the conference, and a record number of industry partners joining us as sponsors of
the conference. We are on track to be one of the best attended ACL conferences to date. I hope that this
year’s conference is intellectually stimulating and that you take home many new ideas and techniques
that will help extend your own research.

Each year, the ACL conference is organized by a dedicated team of volunteers. Please thank this year’s
organizers for their service to the community when you see them at the conference. Without these peo-
ple, this conference would not happen: Regina Barzilay and Min-Yen Kan (Program Co-Chairs), Priscilla
Rasmussen and Anoop Sarkar (Local Organizing Committee), Wei Xu and Jonathan Berant (Workshop
Chairs), Maja Popovi¢ and Jordan Boyd-Graber (Tutorial Chairs), Wei Lu, Sameer Singh and Mar-
garet Mitchell (Publication Chairs), Heng Ji and Mohit Bansal (Demonstration Chairs), Spandana Gella,
Allyson Ettinger, and Matthieu Labeau (Student Research Workshop Organizers), Cecilia Ovesdotter
Alm, Mark Dredze, and Marine Carpuat (Faculty Advisors to the Student Research Workshop), Charley
Chan (Publicity Chair), Christian Federmann (Conference Handbook Chair), Maryam Siahbani (Student
Volunteer Coordinator), and Nitin Madnani (Webmaster and Appmaster).

The organizers have been working for more than a year to put together the conference. Far more than
a year in advance, the ACL 2017 Coordinating Committee helped to select the venue and to pick the
General Chair and the Program Co-Chairs. This consisted of members from NAACL and ACL executive
boards. Representing NAACL we had Hal Daumé 111, Michael White, Joel Tetreault, and Emily Bender.
Representing ACL we had Pushpak Bhattacharyya, Dragomir Radev, Graeme Hirst, Yejin Choi, and
Priscilla Rasmussen. I would like to extend a personal thanks to Graeme and Priscilla who often serve
as the ACL’s institutional memory, and who have helped fill in many details along the way.

I would like to extend a special thanks to our Program Co-Chairs, Regina Barzilay and Min-Yen Kan.
They documented their work creating the program by running a blog. They used their blog as a plat-
form for engaging the ACL community in many of the decision making processes including soliciting
suggestions for the conference’s area chairs and invited speakers. They hosted discussions with Marti
Hearst and Joakim Nivre about the value of publishing pre-prints of submitted paper on arXiv and how
they relate to double blind reviewing. They even invited several prominent members of our community
to provide last-minute writing advice. If you weren’t following the blog in the lead-up to the conference,
I highly recommend taking a look through it now. You can find it linked from the ACL 2017 web page.

This year’s program looks like it will be excellent! We owe a huge thank you to Regina Barzilay and Min-
Yen Kan. They selected this year’s papers from 1,318 submissions with the help of 44 area chairs and
more than 1,200 reviewers. Thanks to Regina, Min, the area chairs, the reviewers and the authors. Be-
yond the papers, we have talks by luminaries in the field of NLP, including ACL President Joakim Nivre,
invited speakers Mirella Lapata and Noah Smith, and the recipient of this year’s Lifetime Achievement
Award. We also have an excellent set of workshops and tutorials. On the tutorial day, there will also be a
special workshop on Women and Underrepresented Minorities in Natural Language Processing. Thank
you to our workshop organizers and tutorial presenters.

This year’s conference features two outreach activities that I would like to highlight. First, on Sunday,
July 30, 2017, there will be a workshop on Women and Underrepresented Minorities in Natural Lan-
guage Processing organized by Libby Barak, Isabelle Augenstein, Chloé Braud, He He, and Margaret
Mitchell. The goals of the workshop are to increase awareness of the work women and underrepresented
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groups do, support women and underrepresented groups in continuing to pursue their research, and mo-
tivate long-term resources for underrepresented groups within ACL. Second, for the first time ever, ACL
is offering subsidized on-site childcare at the conference hotel. The goal of this is to allow ACL partic-
ipants with children to more readily be able to attend the conference. Since childcare duties often fall
disproportionately on women, our hope is that by having professional childcare on-site that we will allow
more women to participate, and therefore to help promote their careers. My hope is that the childcare
will be continued in future conferences.

I would like to thank our many sponsors for their generous contributions. Our platinum sponsors are Al-
ibaba, Amazon, Apple, Baidu, Bloomberg, Facebook, Google, Samsung and Tencent. Our gold sponsors
are eBay, Elsevier, IBM Research, KPMG, Maluuba, Microsoft, Naver Line, NEC, Recruit Institute of
Technology, and SAP. Our silver sponsors are Adobe, Bosch, CVTE, Duolingo, Huawei, Nuance, Oracle,
and Sogou. Our bronze sponsors are Grammarly, Toutiao, and Yandex. Our supporters include Newsela
and four professional master’s degree programs from Brandeis, Columbia, NYU and the University of
Washington. We would like to acknowledge the generous support of the National Science Foundation
which has awarded a $15,000 grant to the ACL Student Research Workshop. Finally, NVIDIA donated
several Titan X GPU cards for us to raffle off during the conference.

Lastly, I would like to thank everyone else who helped to make this conference a success. Thank you
to our area chairs, our army of reviewers, our workshop organizers, our tutorial presenters, our invited
speakers, and our authors. Best regards to all of you.

Welcome to ACL 2017!

Chris Callison-Burch
General Chair
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Preface: Program Committee Co-Chairs

Welcome to the 55th Annual Meeting of the Association for Computational Linguistics! This year,
ACL received 751 long paper submissions and 567 short paper submissions'. Of the long papers, 195
were accepted for presentation at ACL — 117 as oral presentations and 78 as poster presentations (25%
acceptance rate). 107 short papers were accepted — 34 as oral and 73 as poster presentations (acceptance
rate of 18%). In addition, ACL will also feature 21 presentations of papers accepted in the Transactions
of the Association for Computational Linguistics (TACL). Including the student research workshop and
software demonstrations, the ACL program swells to a massive total of 367 paper presentations on the
scientific program, representing the largest ACL program to date.

ACL 2017 will have two distinguished invited speakers: Noah A. Smith (Associate Professor of Com-
puter Science and Engineering at the University of Washington) and Mirella Lapata (Professor in the
School of Informatics at the University of Edinburgh). Both are well-renowned for their contributions to
the field of computational linguistics and are excellent orators. We are honored that they have accepted
our invitation to address the membership at this exciting juncture in our field’s history, addressing key
issues in representation learning and multimodal machine translation.

To manage the tremendous growth of our field, we introduced some changes to the conference. With the
rotation of the annual meeting to the Americas, we anticipated a heavy load of submissions and early
on we decided to have both the long and short paper deadlines merged to reduce reviewing load and to
force authors to take a stand on their submissions’ format. The joint deadline allowed us to only load
our reviewers once, and also enabled us to have an extended period for more lengthy dialogue among
authors, reviewers and area chairs.

In addition, oral presentations were shortened to fourteen (twelve) minutes for long (short) papers, plus
time for questions. While this places a greater demand on speakers to be concise, we believe it is worth
the effort, allowing far more work to be presented orally. We also took advantage of the many halls
available and expanded the number of parallel talks to five during most of the conference sessions.

In keeping with changes introduced in the ACL community from last year, we continued the practice of
recognizing outstanding papers at ACL. The 22 outstanding papers (15 long, 7 short, 1.6% of submis-
sions) represent a broad spectrum of exciting contributions and have been specially placed on the final
day of the main conference where the program is focused into two parallel sessions of these outstanding
contributions. From these, a best paper and a best short paper those will be announced in the awards
session on Wednesday afternoon.

Chris has already mentioned our introduction of the chairs’ blog?, where we strove to make the selec-
tion process of the internal workings of the scientific committee more transparent. We have publicly
documented our calls for area chairs, reviewers and accepted papers selection process. Via the blog,
we communicated several innovations in the conference organization workflow, of which we would call
attention to two key ones here.

In the review process, we pioneered the use of the Toronto Paper Matching System, a topic model based
approach to the assignment of reviewers to papers. We hope this decision will spur other program
chairs to adopt the system, as increased coverage will better the reviewer/submission matching process,
ultimately leading to a higher quality program.

For posterity, we also introduced the usage of hyperlinks in the bibliography reference sections of papers,

!'These numbers exclude papers that were not reviewed due to formatting, anonymity, or double submission violations or
that were withdrawn prior to review, which was unfortunately a substantial number.
2https://chairs—-blog.acl2017.0rg/
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and have worked with the ACL Anthology to ensure that digital object identifiers (DOIs) appear in the
footer of each paper. These steps will help broaden the long-term impact of the work that our community
has on the scientific world at large.

There are many individuals we wish to thank for their contributions to ACL 2017, some multiple times:

e The 61 area chairs who volunteered for our extra duty. They recruited reviewers, led discussions
on each paper, replied to authors’ direct comments to them and carefully assessed each submission.
Their input was instrumental in guiding the final decisions on papers and selecting the outstanding
papers.

e Our full program committee of BUG hard-working individuals who reviewed the conference’s
1,318 submissions (including secondary reviewers).

e TACL editors-in-chief Mark Johnson, Lillian Lee, and Kristina Toutanova, for coordinating with
us on TACL presentations at ACL.

e Noah Smith and Katrin Erk, program co-chairs of ACL 2016 and Ani Nenkova and Owen Rambow,
program co-chairs of NAACL 2016, who we consulted several times on short order for help and
advice.

e Wei Lu and Sameer Singh, our well-organized publication chairs, with direction and oversight
from publication chair mentor Meg Mitchell. Also, Christian Federmann who helped with the
local handbook.

e The responsive team at Softconf led by Rich Gerber, who worked quickly to resolve problems and
who strove to integrate the use of the Toronto Paper Matching System (TPMS) for our use.

e Priscilla Rasmussen and Anoop Sarkar and the local organization team, especially webmaster Nitin
Madnani.

e Christopher Calliston-Burch, our general chair, who kept us coordinated with the rest of the ACL
2017 team and helped us free our time to concentrate on the key duty of organizing the scientific
program.

e Key-Sun Choi, Jing Jiang, Graham Neubig, Emily Pitler, and Bonnie Webber who carefully re-
viewed papers under consideration for best paper recognition.

e Our senior correspondents for the blog, who contributed guest posts and advice for writing and
reviewing: Waleed Ammar, Yoav Artzi, Tim Baldwin, Marco Baroni, Claire Cardie, Xavier Car-
reras, Hal Daumé, Kevin Duh, Chris Dyer, Marti Hearst, Mirella Lapata, Emily M. Bender, Au-
rélien Max, Kathy McKeown, Ray Mooney, Ani Nenkova, Joakim Nivre, Philip Resnik, and Joel
Tetreault. Without them, the participation of the community through the productive comments, and
without you the readership, our blog for disseminating information about the decision processes
would not have been possible and a success.

We hope that you enjoy ACL 2017 in Vancouver!

ACL 2017 program co-chairs
Regina Barzilay, Massachusetts Institute of Technology
Min-Yen Kan, National University of Singapore
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Outstanding Papers

With twin upward trends in the interest in computational linguistics and natural language processing
and the size of our annual meeting, ACL has begun the practice of recognizing outstanding papers that
represent a select cross-section of the entire field, as nominated by reviewers and vetted by the area chairs
and program co-chairs. These papers have been centrally located in the program, on the last day of our
meeting, in a more focused two parallel tracks format.

This year, we have nominated 15 long papers and 7 short papers, representing 1.8% of all submissions
and approximately 5% of the accepted ACL program. Congratulations, authors!

(in alphabetical order by first author surname)

Long Papers

e Jan Buys and Phil Blunsom. Robust Incremental Neural Semantic Graph Parsing.

e Xinchi Chen, Zhan Shi, Xipeng Qiu and Xuanjing Huang. Adversarial Multi-Criteria Learn-
ing for Chinese Word Segmentation.

e Ryan Cotterell and Jason Eisner. Probabilistic Typology: Deep Generative Models of Vowel
Inventories.

e Yanzhuo Ding, Yang Liu, Huanbo Luan and Maosong Sun. Visualizing and Understanding
Neural Machine Translation.

e Milan Gritta, Mohammad Taher Pilehvar, Nut Limsopatham and Nigel Collier. Vancouver
Welcomes You! Minimalist Location Metonymy Resolution.

e Daniel Hershcovich, Omri Abend and Ari Rappoport. A Transition-Based Directed Acyclic
Graph Parser for UCCA.

e Shuhei Kurita, Daisuke Kawahara and Sadao Kurohashi. Neural Joint Model for Transition-
based Chinese Syntactic Analysis.

e Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua
Bengio and Joelle Pineau. Towards an Automatic Turing Test: Learning to Evaluate Dialogue
Responses.

e Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi and Tomoko Ohkuma. Unifying Text,
Metadata, and User Network Representations with a Neural Network for Geolocation Pre-
diction.

e Ramakanth Pasunuru and Mohit Bansal. Multi-Task Video Captioning with Visual and En-
tailment Generation.

e Maxim Rabinovich, Mitchell Stern and Dan Klein. Abstract Syntax Networks for Code Gen-
eration and Semantic Parsing.

e Ines Rehbein and Josef Ruppenhofer. Detecting annotation noise in automatically labelled
data.

e Jiwei Tan, Xiaojun Wan and Jianguo Xiao. Abstractive Document Summarization with a
Graph-Based Attentional Neural Model.

e Mingbin Xu, Hui Jiang and Sedtawut Watcharawittayakul. A Local Detection Approach for
Named Entity Recognition and Mention Detection.

e Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou and Bo Xu. Joint
Extraction of Entities and Relations Based on a Novel Tagging Scheme.
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Short Papers

e Xinyu Hua and Lu Wang. Understanding and Detecting Diverse Supporting Arguments on
Controversial Issues.

e Jindfich Libovicky and Jindfich Helcl. Attention Strategies for Multi-Source Sequence-to-
Sequence Learning.

e Bogdan Ludusan, Reiko Mazuka, Mathieu Bernard, Alejandrina Cristia and Emmanuel Dupoux.
The Role of Prosody and Speech Register in Word Segmentation: A Computational Modelling
Perspective.

e Afshin Rahimi, Trevor Cohn and Timothy Baldwin. A Neural Model for User Geolocation
and Lexical Dialectology.

o Keisuke Sakaguchi, Matt Post and Benjamin Van Durme. Error-repair Dependency Parsing
for Ungrammatical Texts.

e Alane Suhr, Mike Lewis, James Yeh and Yoav Artzi. A Corpus of Compositional Language
for Visual Reasoning.

e Yizhong Wang, Sujian Li and Houfeng Wang. A Two-stage Parsing Method for Text-level
Discourse Analysis.
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Invited Talk: Squashing Computational Linguistics
Noah A. Smith

Paul G. Allen School of Computer Science and Engineering, University of Washington

Abstract

The computational linguistics and natural language processing community is experiencing an
episode of deep fascination with representation learning. Like many other presenters at this con-
ference, I will describe new ways to use representation learning in models of natural language.
Noting that a data-driven model always assumes a theory (not necessarily a good one), I will argue
for the benefits of language-appropriate inductive bias for representation-learning-infused models
of language. Such bias often comes in the form of assumptions baked into a model, constraints on
an inference algorithm, or linguistic analysis applied to data. Indeed, many decades of research in
linguistics (including computational linguistics) put our community in a strong position to iden-
tify promising inductive biases. The new models, in turn, may allow us to explore previously
unavailable forms of bias, and to produce findings of interest to linguistics. I will focus on new
models of documents and of sentential semantic structures, and I will emphasize abstract, reusable
components and their assumptions rather than applications.

Biography

Noah Smith is an Associate Professor in the Paul G. Allen School of Computer Science and Engi-
neering at the University of Washington. Previously, he was an Associate Professor in the School
of Computer Science at Carnegie Mellon University. He received his Ph.D. in Computer Science
from Johns Hopkins University and his B.S. in Computer Science and B.A. in Linguistics from the
University of Maryland. His research spans many topics in natural language processing, machine
learning, and computational social science. He has served on the editorial boards of CL, JAIR,
and TACL, as the secretary-treasurer of SIGDAT (2012-2015), and as program co-chair of ACL
2016. Alumni of his research group, Noah’s ARK, are international leaders in NLP in academia
and industry. Smith’s work has been recognized with a UW Innovation award, a Finmeccanica
career development chair at CMU, an NSF CAREER award, a Hertz Foundation graduate fellow-
ship, numerous best paper nominations and awards, and coverage by NPR, BBC, CBC, the New
York Times, the Washington Post, and Time.
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Invited Talk: Translating from Multiple Modalities to Text and Back
Mirella Lapata

Professor, School of Informatics, University of Edinburgh

Abstract

Recent years have witnessed the development of a wide range of computational tools that process
and generate natural language text. Many of these have become familiar to mainstream computer
users in the from of web search, question answering, sentiment analysis, and notably machine
translation. The accessibility of the web could be further enhanced with applications that not only
translate between different languages (e.g., from English to French) but also within the same lan-
guage, between different modalities, or different data formats. The web is rife with non-linguistic
data (e.g., video, images, source code) that cannot be indexed or searched since most retrieval tools
operate over textual data.

In this talk I will argue that in order to render electronic data more accessible to individuals and
computers alike, new types of translation models need to be developed. I will focus on three
examples, text simplification, source code generation, and movie summarization. I will illustrate
how recent advances in deep learning can be extended in order to induce general representations
for different modalities and learn how to translate between these and natural language.

Biography

Mirella Lapata is professor of natural language processing in the School of Informatics at the
University of Edinburgh. Her research focuses on getting computers to understand, reason with,
and generate. She is as an associate editor of the Journal of Artificial Intelligence Research and has
served on the editorial boards of Transactions of the ACL and Computational Linguistics. She was
the first recipient of the Karen Sparck Jones award of the British Computer Society, recognizing
key contributions to NLP and information retrieval. She received two EMNLP best paper awards
and currently holds a prestigious Consolidator Grant from the European Research Council.
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Shizhu He, Cao Liu, Kang Liu and Jun Zhao

Coarse-to-Fine Question Answering for Long Documents
Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia Polosukhin, Alexandre Lacoste
and Jonathan Berant

An End-to-End Model for Question Answering over Knowledge Base with Cross-
Attention Combining Global Knowledge

Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu and Jun
Zhao

XXXIX



Monday, July 31st

13:40-14:55

Session 2B: Vision 1

13:40-13:58  Translating Neuralese
Jacob Andreas, Anca Dragan and Dan Klein

13:59-14:17  Obtaining referential word meanings from visual and distributional information:
Experiments on object naming
Sina Zarrie3 and David Schlangen

14:18-14:36  FOIL it! Find One mismatch between Image and Language caption
Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Aurélie Herbelot, Moin Nabi,
Enver Sangineto and Raffaella Bernardi

14:37-14:55  Verb Physics: Relative Physical Knowledge of Actions and Objects
Maxwell Forbes and Yejin Choi

Monday, July 31st

13:40-14:36

13:40-13:58

13:59-14:17

14:18-14:36

Session 2C: Syntax 1

A* CCG Parsing with a Supertag and Dependency Factored Model
Masashi Yoshikawa, Hiroshi Noji and Yuji Matsumoto

A Full Non-Monotonic Transition System for Unrestricted Non-Projective Parsing
Daniel Fernandez-Gonzélez and Carlos Gomez-Rodriguez

Aggregating and Predicting Sequence Labels from Crowd Annotations
An Thanh Nguyen, Byron Wallace, Junyi Jessy Li, Ani Nenkova and Matthew Lease

x1



Monday, July 31st

13:40-15:14

Session 2D: Machine Learning 1 (NN)

13:40-13:58  Multi-space Variational Encoder-Decoders for Semi-supervised Labeled Sequence
Transduction
Chunting Zhou and Graham Neubig

13:59-14:17  Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan, Chunyuan Li, Changyou Chen, Yunchen Pu, Qinliang Su and Lawrence
Carin

14:18-14:36  Learning attention for historical text normalization by learning to pronounce
Marcel Bollmann, Joachim Bingel and Anders Sggaard

14:37-14:55  Deep Learning in Semantic Kernel Spaces
Danilo Croce, Simone Filice, Giuseppe Castellucci and Roberto Basili

14:56-15:14  Topically Driven Neural Language Model
Jey Han Lau, Timothy Baldwin and Trevor Cohn

Monday, July 31st

13:40-14:55

13:40-13:58

13:59-14:17

14:18-14:36

14:37-14:55

Session 2E: Sentiment 1 (NN)

Handling Cold-Start Problem in Review Spam Detection by Jointly Embedding Texts
and Behaviors
Xuepeng Wang, Kang Liu and Jun Zhao

Learning Cognitive Features from Gaze Data for Sentiment and Sarcasm Classifi-
cation using Convolutional Neural Network
Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya

An Unsupervised Neural Attention Model for Aspect Extraction
Ruidan He, Wee Sun Lee, Hwee Tou Ng and Daniel Dahlmeier

Other Topics You May Also Agree or Disagree: Modeling Inter-Topic Preferences

using Tweets and Matrix Factorization
Akira Sasaki, Kazuaki Hanawa, Naoaki Okazaki and Kentaro Inui

xli



Monday, July 31st

15:45-16:41

15:45-16:03

16:04-16:22

16:23-16:41

Session 3A: Information Extraction 2 / Biomedical 1

Automatically Labeled Data Generation for Large Scale Event Extraction
Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu and Jun Zhao

Time Expression Analysis and Recognition Using Syntactic Token Types and Gen-
eral Heuristic Rules
Xiaoshi Zhong, Aixin Sun and Erik Cambria

Learning with Noise: Enhance Distantly Supervised Relation Extraction with Dy-
namic Transition Matrix
Bingfeng Luo, Yansong Feng, Zheng Wang, Zhanxing Zhu, Songfang Huang, Rui
Yan and Dongyan Zhao

Monday, July 31st

15:45-17:00

15:45-16:03

16:04-16:22

16:23-16:41

16:42-17:00

Session 3B: Semantics 2 (NN)

A Syntactic Neural Model for General-Purpose Code Generation
Pengcheng Yin and Graham Neubig

Learning bilingual word embeddings with (almost) no bilingual data
Mikel Artetxe, Gorka Labaka and Eneko Agirre

Abstract Meaning Representation Parsing using LSTM Recurrent Neural Networks
William Foland and James H. Martin

Deep Semantic Role Labeling: What Works and What’s Next
Luheng He, Kenton Lee, Mike Lewis and Luke Zettlemoyer

xlii



Monday, July 31st

15:45-17:00

15:45-16:03

16:04-16:22

16:23-16:41

16:42-17:00

Session 3C: Speech 1/ Dialogue 1

Towards End-to-End Reinforcement Learning of Dialogue Agents for Information
Access

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal
Ahmed and Li Deng

Sequential Matching Network: A New Architecture for Multi-turn Response Selec-
tion in Retrieval-Based Chatbots
Yu Wu, Wei Wu, Chen Xing, Ming Zhou and Zhoujun Li

Learning Word-Like Units from Joint Audio-Visual Analysis
David Harwath and James Glass

Joint CTC/attention decoding for end-to-end speech recognition
Takaaki Hori, Shinji Watanabe and John Hershey

Monday, July 31st

15:45-16:22

15:45-16:03

16:04-16:22

Session 3D: Multilingual 1
Found in Translation: Reconstructing Phylogenetic Language Trees from Transla-
tions

Ella Rabinovich, Noam Ordan and Shuly Wintner

Predicting Native Language from Gaze
Yevgeni Berzak, Chie Nakamura, Suzanne Flynn and Boris Katz

xliii



Monday, July 31st

15:45-16:03

Session 3E: Phonology 1

15:45-16:03 MORSE: Semantic-ally Drive-n MORpheme SEgment-er
Tarek Sakakini, Suma Bhat and Pramod Viswanath
Tuesday, August 1st

10:30-11:45

10:30-10:48

10:49-11:07

11:08-11:26

11:27-11:45

Session 4A: Information Extraction 3 (NN)

Deep Pyramid Convolutional Neural Networks for Text Categorization
Rie Johnson and Tong Zhang

Improved Neural Relation Detection for Knowledge Base Question Answering
Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos Santos, Bing Xiang and
Bowen Zhou

Deep Keyphrase Generation
Rui Meng, Sangiang Zhao, Shuguang Han, Daqing He, Peter Brusilovsky and Yu
Chi

Attention-over-Attention Neural Networks for Reading Comprehension
Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu and Guoping Hu

xliv



Tuesday, August 1st

10:30-11:26

10:30-10:48

10:49-11:07

11:08-11:26

Session 4B: Cognitive Modelling 1 / Vision 2

Alignment at Work: Using Language to Distinguish the Internalization and Self-
Regulation Components of Cultural Fit in Organizations
Gabriel Doyle, Amir Goldberg, Sameer Srivastava and Michael Frank

Representations of language in a model of visually grounded speech signal
Grzegorz Chrupata, Lieke Gelderloos and Afra Alishahi

Spectral Analysis of Information Density in Dialogue Predicts Collaborative Task
Performance
Yang Xu and David Reitter

Tuesday, August 1st

10:30-12:04

10:30-10:48

10:49-11:07

11:08-11:26

11:27-11:45

11:46-12:04

Session 4C: Dialogue 2

Affect-LM: A Neural Language Model for Customizable Affective Text Generation
Sayan Ghosh, Mathieu Chollet, Eugene Laksana, Louis-Philippe Morency and Ste-
fan Scherer

Domain Attention with an Ensemble of Experts
Young-Bum Kim, Karl Stratos and Dongchan Kim

Learning Discourse-level Diversity for Neural Dialog Models using Conditional
Variational Autoencoders
Tiancheng Zhao, Ran Zhao and Maxine Eskenazi

Hybrid Code Networks: practical and efficient end-to-end dialog control with su-
pervised and reinforcement learning

Jason D Williams, Kavosh Asadi and Geoffrey Zweig

Generating Contrastive Referring Expressions
Martin Villalba, Christoph Teichmann and Alexander Koller

xlv



Tuesday, August 1st

10:30-11:07

Session 4D: Machine Translation 2

10:30-10:48  Modeling Source Syntax for Neural Machine Translation

Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min Zhang and Guodong Zhou
10:49-11:07  Sequence-to-Dependency Neural Machine Translation

Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li and Ming Zhou
Tuesday, August 1st

10:30-11:45

10:30-10:48

10:49-11:07

11:08-11:26

11:27-11:45

Session 4E: Social Media 1

Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learn-

ing
Jing Ma, Wei Gao and Kam-Fai Wong

EmoNet: Fine-Grained Emotion Detection with Gated Recurrent Neural Networks
Muhammad Abdul-Mageed and Lyle Ungar

Beyond Binary Labels: Political Ideology Prediction of Twitter Users
Daniel Preotiuc-Pietro, Ye Liu, Daniel Hopkins and Lyle Ungar

Leveraging Behavioral and Social Information for Weakly Supervised Collective

Classification of Political Discourse on Twitter
Kristen Johnson, Di Jin and Dan Goldwasser

x1lvi



Tuesday, August 1st

13:49-14:39

Session SA: Multidisciplinary 1

13:49-14:07 A Nested Attention Neural Hybrid Model for Grammatical Error Correction
Jianshu Ji, Qinlong Wang, Kristina Toutanova, Yongen Gong, Steven Truong and
Jianfeng Gao

14:08-14:26  TextFlow: A Text Similarity Measure based on Continuous Sequences
Yassine Mrabet, Halil Kilicoglu and Dina Demner-Fushman

14:27-14:39  Friendships, Rivalries, and Trysts: Characterizing Relations between Ideas in Texts
Chenhao Tan, Dallas Card and Noah A. Smith

Tuesday, August 1st

13:30-14:26

13:30-13:48

13:49-14:07

14:08-14:26

Session 5B: Language and Resources 1

Polish evaluation dataset for compositional distributional semantics models
Alina Wréblewska and Katarzyna Krasnowska-Kieras

Automatic Annotation and Evaluation of Error Types for Grammatical Error Cor-
rection
Christopher Bryant, Mariano Felice and Ted Briscoe

Evaluation Metrics for Machine Reading Comprehension: Prerequisite Skills and

Readability
Saku Sugawara, Yusuke Kido, Hikaru Yokono and Akiko Aizawa

x1Ivii



Tuesday, August 1st

13:30-14:26  Session SC: Syntax 2 (NN)

13:30-13:48 A Minimal Span-Based Neural Constituency Parser
Mitchell Stern, Jacob Andreas and Dan Klein

13:49-14:07  Semantic Dependency Parsing via Book Embedding
Weiwei Sun, Junjie Cao and Xiaojun Wan

14:08-14:26  Neural Word Segmentation with Rich Pretraining
Jie Yang, Yue Zhang and Fei Dong

Tuesday, August 1st

13:30-14:07 Session 5D: Machine Translation 3 (NN)
13:30-13:48  Neural Machine Translation via Binary Code Prediction
Yusuke Oda, Philip Arthur, Graham Neubig, Koichiro Yoshino and Satoshi Naka-

mura

13:49-14:07 What do Neural Machine Translation Models Learn about Morphology?
Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad and James Glass

x1Iviii



Tuesday, August 1st

13:30-14:07 Session SE: Sentiment 2

13:30-13:48  Context-Dependent Sentiment Analysis in User-Generated Videos
Soujanya Poria, Erik Cambria, Devamanyu Hazarika, Navonil Majumder, Amir
Zadeh and Louis-Philippe Morency

13:49-14:07 A Multidimensional Lexicon for Interpersonal Stancetaking
Umashanthi Pavalanathan, Jim Fitzpatrick, Scott Kiesling and Jacob Eisenstein

Tuesday, August 1st

15:25-16:21 Session 6A: Information Extraction 4

15:25-15:43  Tandem Anchoring: a Multiword Anchor Approach for Interactive Topic Modeling
Jeffrey Lund, Connor Cook, Kevin Seppi and Jordan Boyd-Graber

15:44-16:02  Apples to Apples: Learning Semantics of Common Entities Through a Novel Com-
prehension Task
Omid Bakhshandeh and James Allen

16:03-16:21  Going out on a limb: Joint Extraction of Entity Mentions and Relations without

Dependency Trees
Arzoo Katiyar and Claire Cardie

xlix



Tuesday, August 1st

15:25-16:40

Session 6B: Semantics 2 (NN)

15:25-15:43  Naturalizing a Programming Language via Interactive Learning
Sida I. Wang, Samuel Ginn, Percy Liang and Christopher D. Manning
15:44-16:02  Semantic Word Clusters Using Signed Spectral Clustering
Joao Sedoc, Jean Gallier, Dean Foster and Lyle Ungar
16:03-16:21  An Interpretable Knowledge Transfer Model for Knowledge Base Completion
Qizhe Xie, Xuezhe Ma, Zihang Dai and Eduard Hovy
16:22-16:40  Learning a Neural Semantic Parser from User Feedback
Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy and Luke
Zettlemoyer
Tuesday, August 1st

15:25-17:00

15:25-15:43

15:44-16:02

16:03-16:21

16:22-16:40

16:41-17:00

Session 6C: Discourse 2 / Dialogue 3

Joint Modeling of Content and Discourse Relations in Dialogues
Kechen Qin, Lu Wang and Joseph Kim

Argument Mining with Structured SVMs and RNNs
Vlad Niculae, Joonsuk Park and Claire Cardie

Neural Discourse Structure for Text Categorization
Yangfeng Ji and Noah A. Smith

Adversarial Connective-exploiting Networks for Implicit Discourse Relation Clas-
sification
Lianhui Qin, Zhisong Zhang, Hai Zhao, Zhiting Hu and Eric Xing

Don’t understand a measure? Learn it: Structured Prediction for Coreference Res-
olution optimizing its measures
Iryna Haponchyk and Alessandro Moschitti



Tuesday, August 1st

15:25-16:21

Session 6D: Machine Learning 2

15:25-15:43  Bayesian Modeling of Lexical Resources for Low-Resource Settings
Nicholas Andrews, Mark Dredze, Benjamin Van Durme and Jason Eisner
15:44-16:02  Semi-Supervised QA with Generative Domain-Adaptive Nets
Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov and William Cohen
16:03-16:21  From Language to Programs: Bridging Reinforcement Learning and Maximum
Marginal Likelihood
Kelvin Guu, Panupong Pasupat, Evan Liu and Percy Liang
Tuesday, August 1st

15:25-17:00

15:25-15:43

15:44-16:02

16:03-16:21

16:22-16:40

16:41-17:00

Session 6E: Summarization 1

Diversity driven attention model for query-based abstractive summarization
Preksha Nema, Mitesh M. Khapra, Anirban Laha and Balaraman Ravindran

Get To The Point: Summarization with Pointer-Generator Networks
Abigail See, Peter J. Liu and Christopher D. Manning

Supervised Learning of Automatic Pyramid for Optimization-Based Multi-
Document Summarization
Maxime Peyrard and Judith Eckle-Kohler

Selective Encoding for Abstractive Sentence Summarization
Qingyu Zhou, Nan Yang, Furu Wei and Ming Zhou

PositionRank: An Unsupervised Approach to Keyphrase Extraction from Scholarly

Documents
Corina Florescu and Cornelia Caragea

li



Wednesday, August 2nd

10:40-11:36  Session 7A: Outstanding Papers 1
10:40-10:58  Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses
Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier,

Yoshua Bengio and Joelle Pineau

10:59-11:17 A Transition-Based Directed Acyclic Graph Parser for UCCA
Daniel Hershcovich, Omri Abend and Ari Rappoport

11:18-11:36  Abstract Syntax Networks for Code Generation and Semantic Parsing
Maxim Rabinovich, Mitchell Stern and Dan Klein

Wednesday, August 2nd

10:40-11:17 Session 7B: Outstanding Papers 2

10:40-10:58  Visualizing and Understanding Neural Machine Translation
Yanzhuo Ding, Yang Liu, Huanbo Luan and Maosong Sun

10:59-11:17  Detecting annotation noise in automatically labelled data
Ines Rehbein and Josef Ruppenhofer

lii



Wednesday, August 2nd

15:00-16:34

Session 8A: Outstanding Papers 3

15:00-15:18  Abstractive Document Summarization with a Graph-Based Attentional Neural
Model
Jiwei Tan, Xiaojun Wan and Jianguo Xiao

15:19-15:37  Probabilistic Typology: Deep Generative Models of Vowel Inventories
Ryan Cotterell and Jason Eisner

15:38-15:56  Adversarial Multi-Criteria Learning for Chinese Word Segmentation
Xinchi Chen, Zhan Shi, Xipeng Qiu and Xuanjing Huang

15:57-16:15  Neural Joint Model for Transition-based Chinese Syntactic Analysis
Shuhei Kurita, Daisuke Kawahara and Sadao Kurohashi

16:16-16:34  Robust Incremental Neural Semantic Graph Parsing
Jan Buys and Phil Blunsom

Wednesday, August 2nd

15:00-16:34

15:00-15:18

15:19-15:37

15:38-15:56

15:57-16:15

16:16-16:34

Session 8B: Outstanding Papers 4

Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme
Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou and Bo Xu

A Local Detection Approach for Named Entity Recognition and Mention Detection
Mingbin Xu, Hui Jiang and Sedtawut Watcharawittayakul

Vancouver Welcomes You! Minimalist Location Metonymy Resolution
Milan Gritta, Mohammad Taher Pilehvar, Nut Limsopatham and Nigel Collier

Unifying Text, Metadata, and User Network Representations with a Neural Network
for Geolocation Prediction

Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi and Tomoko Ohkuma

Multi-Task Video Captioning with Video and Entailment Generation
Ramakanth Pasunuru and Mohit Bansal
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Monday, July 31st

18:00-21:30 Session P1: Poster Session 1

Enriching Complex Networks with Word Embeddings for Detecting Mild Cognitive
Impairment from Speech Transcripts

Leandro Santos, Edilson Anselmo Corréa Junior, Osvaldo Oliveira Jr, Diego Aman-
cio, Leticia Mansur and Sandra Aluisio

Adversarial Adaptation of Synthetic or Stale Data
Young-Bum Kim, Karl Stratos and Dongchan Kim

Chat Detection in an Intelligent Assistant: Combining Task-oriented and Non-task-

oriented Spoken Dialogue Systems
Satoshi Akasaki and Nobuhiro Kaji

A Neural Local Coherence Model
Dat Tien Nguyen and Shafiq Joty

Data-Driven Broad-Coverage Grammars for Opinionated Natural Language Gen-
eration (ONLG)
Tomer Cagan, Stefan L. Frank and Reut Tsarfaty

Learning to Ask: Neural Question Generation for Reading Comprehension
Xinya Du, Junru Shao and Claire Cardie

Joint Optimization of User-desired Content in Multi-document Summaries by
Learning from User Feedback
Avinesh PVS and Christian M. Meyer

Flexible and Creative Chinese Poetry Generation Using Neural Memory
Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang, Andrew Abel, Shiyue Zhang
and Andi Zhang

Learning to Generate Market Comments from Stock Prices

Soichiro Murakami, Akihiko Watanabe, Akira Miyazawa, Keiichi Goshima, Toshi-
hiko Yanase, Hiroya Takamura and Yusuke Miyao

liv



Monday, July 31st (continued)

Can Syntax Help? Improving an LSTM-based Sentence Compression Model for
New Domains

Liangguo Wang, Jing Jiang, Hai Leong Chieu, Chen Hui Ong, Dandan Song and
Lejian Liao

Transductive Non-linear Learning for Chinese Hypernym Prediction
Chengyu Wang, Junchi Yan, Aoying Zhou and Xiaofeng He

A Constituent-Centric Neural Architecture for Reading Comprehension
Pengtao Xie and Eric Xing

Cross-lingual Distillation for Text Classification
Ruochen Xu and Yiming Yang

Understanding and Predicting Empathic Behavior in Counseling Therapy
Verénica Pérez-Rosas, Rada Mihalcea, Kenneth Resnicow, Satinder Singh and
Lawrence An

Leveraging Knowledge Bases in LSTMs for Improving Machine Reading
Bishan Yang and Tom Mitchell

Prerequisite Relation Learning for Concepts in MOOCs
Liangming Pan, Chengjiang Li, Juanzi Li and Jie Tang

Unsupervised Text Segmentation Based on Native Language Characteristics
Shervin Malmasi, Mark Dras, Mark Johnson, Lan Du and Magdalena Wolska

Weakly Supervised Cross-Lingual Named Entity Recognition via Effective Annota-
tion and Representation Projection
Jian Ni, Georgiana Dinu and Radu Florian

Context Sensitive Lemmatization Using Two Successive Bidirectional Gated Recur-
rent Networks
Abhisek Chakrabarty, Onkar Arun Pandit and Utpal Garain

Learning to Create and Reuse Words in Open-Vocabulary Neural Language Model-
ing
Kazuya Kawakami, Chris Dyer and Phil Blunsom

Bandit Structured Prediction for Neural Sequence-to-Sequence Learning
Julia Kreutzer, Artem Sokolov and Stefan Riezler

Iv



Monday, July 31st (continued)

Prior Knowledge Integration for Neural Machine Translation using Posterior Reg-
ularization
Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu and Maosong Sun

Incorporating Word Reordering Knowledge into Attention-based Neural Machine
Translation
Jinchao Zhang, Mingxuan Wang, Qun Liu and Jie Zhou

Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search
Chris Hokamp and Qun Liu

Combating Human Trafficking with Multimodal Deep Models
Edmund Tong, Amir Zadeh, Cara Jones and Louis-Philippe Morency

MalwareTextDB: A Database for Annotated Malware Articles
Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu and Chen Hui Ong

A Corpus of Annotated Revisions for Studying Argumentative Writing
Fan Zhang, Homa B. Hashemi, Rebecca Hwa and Diane Litman

Automatic Induction of Synsets from a Graph of Synonyms
Dmitry Ustalov, Alexander Panchenko and Chris Biemann

Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument
Structure Analysis
Hiroki Ouchi, Hiroyuki Shindo and Yuji Matsumoto

TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Com-
prehension
Mandar Joshi, Eunsol Choi, Daniel Weld and Luke Zettlemoyer

Learning Semantic Correspondences in Technical Documentation
Kyle Richardson and Jonas Kuhn

Bridge Text and Knowledge by Learning Multi-Prototype Entity Mention Embed-
ding
Yixin Cao, Lifu Huang, Heng Ji, Xu Chen and Juanzi Li

Interactive Learning of Grounded Verb Semantics towards Human-Robot Commu-

nication
Lanbo She and Joyce Chai

Ivi



Monday, July 31st (continued)

Multimodal Word Distributions
Ben Athiwaratkun and Andrew Wilson

Enhanced LSTM for Natural Language Inference
Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang and Diana Inkpen

Linguistic analysis of differences in portrayal of movie characters
Anil Ramakrishna, Victor R. Martinez, Nikolaos Malandrakis, Karan Singla and
Shrikanth Narayanan

Linguistically Regularized LSTM for Sentiment Classification
Qiao Qian, Minlie Huang, Jinhao Lei and Xiaoyan Zhu

Sarcasm SIGN: Interpreting Sarcasm with Sentiment Based Monolingual Machine
Translation
Lotem Peled and Roi Reichart

Active Sentiment Domain Adaptation
Fangzhao Wu, Yongfeng Huang and Jun Yan

Volatility Prediction using Financial Disclosures Sentiments with Word Embedding-
based IR Models

Navid Rekabsaz, Mihai Lupu, Artem Baklanov, Alexander Diir, Linda Andersson
and Allan Hanbury

CANE: Context-Aware Network Embedding for Relation Modeling
Cunchao Tu, Han Liu, Zhiyuan Liu and Maosong Sun

Universal Dependencies Parsing for Colloguial Singaporean English
Hongmin Wang, Yue Zhang, GuangYong Leonard Chan, Jie Yang and Hai Leong
Chieu

Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing
Anssi Yli-Jyrd and Carlos Gémez-Rodriguez

Semi-supervised sequence tagging with bidirectional language models
Matthew Peters, Waleed Ammar, Chandra Bhagavatula and Russell Power

Ivii



Tuesday, August 1st

19:00-22:00 Session P2: Poster Session 2

Learning Symmetric Collaborative Dialogue Agents with Dynamic Knowledge
Graph Embeddings
He He, Anusha Balakrishnan, Mihail Eric and Percy Liang

Neural Belief Tracker: Data-Driven Dialogue State Tracking
Nikola Mrkgi¢, Diarmuid O Séaghdha, Tsung-Hsien Wen, Blaise Thomson and
Steve Young

Exploiting Argument Information to Improve Event Detection via Supervised Atten-
tion Mechanisms
Shulin Liu, Yubo Chen, Kang Liu and Jun Zhao

Topical Coherence in LDA-based Models through Induced Segmentation
Hesam Amoualian, Wei Lu, Eric Gaussier, Georgios Balikas, Massih R Amini and
Marianne Clausel

Jointly Extracting Relations with Class Ties via Effective Deep Ranking
Hai Ye, Wenhan Chao, Zhunchen Luo and Zhoujun Li

Search-based Neural Structured Learning for Sequential Question Answering
Mohit Iyyer, Wen-tau Yih and Ming-Wei Chang

Gated-Attention Readers for Text Comprehension
Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William Cohen and Ruslan Salakhut-
dinov

Determining Gains Acquired from Word Embedding Quantitatively Using Discrete
Distribution Clustering
Jianbo Ye, Yanran Li, Zhaohui Wu, James Z. Wang, Wenjie Li and Jia Li

Towards a Seamless Integration of Word Senses into Downstream NLP Applications
Mohammad Taher Pilehvar, Jose Camacho-Collados, Roberto Navigli and Nigel
Collier

Reading Wikipedia to Answer Open-Domain Questions
Dangi Chen, Adam Fisch, Jason Weston and Antoine Bordes

Iviii



Tuesday, August 1st (continued)

Learning to Skim Text
Adams Wei Yu, Hongrae Lee and Quoc Le

An Algebra for Feature Extraction
Vivek Srikumar

Chunk-based Decoder for Neural Machine Translation
Shonosuke Ishiwatari, Jingtao Yao, Shujie Liu, Mu Li, Ming Zhou, Naoki Yoshi-
naga, Masaru Kitsuregawa and Weijia Jia

Doubly-Attentive Decoder for Multi-modal Neural Machine Translation
lacer Calixto, Qun Liu and Nick Campbell

A Teacher-Student Framework for Zero-Resource Neural Machine Translation
Yun Chen, Yang Liu, Yong Cheng and Victor O.K. Li

Improved Neural Machine Translation with a Syntax-Aware Encoder and Decoder
Huadong Chen, Shujian Huang, David Chiang and Jiajun Chen

Cross-lingual Name Tagging and Linking for 282 Languages
Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight and
Heng Ji

Adversarial Training for Unsupervised Bilingual Lexicon Induction
Meng Zhang, Yang Liu, Huanbo Luan and Maosong Sun

Estimating Code-Switching on Twitter with a Novel Generalized Word-Level Lan-
guage Detection Technique

Shruti Rijhwani, Royal Sequiera, Monojit Choudhury, Kalika Bali and Chandra
Shekhar Maddila

Using Global Constraints and Reranking to Improve Cognates Detection
Michael Bloodgood and Benjamin Strauss

One-Shot Neural Cross-Lingual Transfer for Paradigm Completion
Katharina Kann, Ryan Cotterell and Hinrich Schiitze

Morphological Inflection Generation with Hard Monotonic Attention
Roee Aharoni and Yoav Goldberg

lix



Tuesday, August 1st (continued)

From Characters to Words to in Between: Do We Capture Morphology?
Clara Vania and Adam Lopez

Riemannian Optimization for Skip-Gram Negative Sampling
Alexander Fonarev, Oleksii Grinchuk, Gleb Gusev, Pavel Serdyukov and Ivan Os-
eledets

Deep Multitask Learning for Semantic Dependency Parsing
Hao Peng, Sam Thomson and Noah A. Smith

Improved Word Representation Learning with Sememes
Yilin Niu, Ruobing Xie, Zhiyuan Liu and Maosong Sun
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Abstract

Neural network models have shown their
promising opportunities for multi-task
learning, which focus on learning the
shared layers to extract the common and
task-invariant features. However, in most
existing approaches, the extracted shared
features are prone to be contaminated by
task-specific features or the noise brought
by other tasks. In this paper, we propose
an adversarial multi-task learning frame-
work, alleviating the shared and private la-
tent feature spaces from interfering with
each other. We conduct extensive exper-
iments on 16 different text classification
tasks, which demonstrates the benefits of
our approach. Besides, we show that the
shared knowledge learned by our proposed
model can be regarded as off-the-shelf
knowledge and easily transferred to new
tasks. The datasets of all 16 tasks are pub-
licly available at http://nlp. fudan.
edu.cn/data/

1 Introduction

Multi-task learning is an effective approach to
improve the performance of a single task with
the help of other related tasks. Recently, neural-
based models for multi-task learning have be-
come very popular, ranging from computer vision
(Misra et al., 2016; Zhang et al., 2014) to natural
language processing (Collobert and Weston, 2008;
Luong et al., 2015), since they provide a conve-
nient way of combining information from multiple
tasks.

However, most existing work on multi-task
learning (Liu et al., 2016c,b) attempts to divide the
features of different tasks into private and shared
spaces, merely based on whether parameters of

1

oOofoeo\aA
Oooy\oe o/AaA

(a) Shared-Private Model ~ (b) Adversarial Shared-Private Model

Figure 1: Two sharing schemes for task A and task
B. The overlap between two black circles denotes
shared space. The blue triangles and boxes repre-
sent the task-specific features while the red circles
denote the features which can be shared.

some components should be shared. As shown in
Figure 1-(a), the general shared-private model in-
troduces two feature spaces for any task: one is
used to store task-dependent features, the other is
used to capture shared features. The major lim-
itation of this framework is that the shared fea-
ture space could contain some unnecessary task-
specific features, while some sharable features
could also be mixed in private space, suffering
from feature redundancy.

Taking the following two sentences as exam-
ples, which are extracted from two different senti-
ment classification tasks: Movie reviews and Baby
products reviews.

The infantile cart is simple and easy to use.
This kind of humour is infantile and boring.

The word “infantile” indicates negative senti-
ment in Movie task while it is neutral in Baby task.
However, the general shared-private model could
place the task-specific word “infantile” in a
shared space, leaving potential hazards for other
tasks. Additionally, the capacity of shared space
could also be wasted by some unnecessary fea-
tures.

To address this problem, in this paper we
propose an adversarial multi-task framework, in
which the shared and private feature spaces are in-

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1-10
Vancouver, Canada, July 30 - August 4, 2017. (©)2017 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17-1001


https://doi.org/10.18653/v1/P17-1001

herently disjoint by introducing orthogonality con-
straints. Specifically, we design a generic shared-
private learning framework to model the text se-
quence. To prevent the shared and private latent
feature spaces from interfering with each other, we
introduce two strategies: adversarial training and
orthogonality constraints. The adversarial training
is used to ensure that the shared feature space sim-
ply contains common and task-invariant informa-
tion, while the orthogonality constraint is used to
eliminate redundant features from the private and
shared spaces.

The contributions of this paper can be summa-
rized as follows.

1. Proposed model divides the task-specific and
shared space in a more precise way, rather
than roughly sharing parameters.

2. We extend the original binary adversarial
training to multi-class, which not only en-
ables multiple tasks to be jointly trained, but
allows us to utilize unlabeled data.

3. We can condense the shared knowledge
among multiple tasks into an off-the-shelf
neural layer, which can be easily transferred
to new tasks.

2 Recurrent Models for Text
Classification

There are many neural sentence models, which
can be used for text modelling, involving recurrent
neural networks (Sutskever et al., 2014; Chung
et al., 2014; Liu et al., 2015a), convolutional neu-
ral networks (Collobert et al., 2011; Kalchbren-
ner et al., 2014), and recursive neural networks
(Socher et al., 2013). Here we adopt recurrent neu-
ral network with long short-term memory (LSTM)
due to their superior performance in various NLP
tasks (Liu et al., 2016a; Lin et al., 2017).

Long Short-term Memory Long short-term
memory network (LSTM) (Hochreiter and
Schmidhuber, 1997) is a type of recurrent neural
network (RNN) (Elman, 1990), and specifically
addresses the issue of learning long-term de-
pendencies. While there are numerous LSTM
variants, here we use the LSTM architecture used
by (Jozefowicz et al., 2015), which is similar to
the architecture of (Graves, 2013) but without
peep-hole connections.

We define the LSTM units at each time step ¢ to
be a collection of vectors in R?: an input gate i;, a

forget gate f;, an output gate oy, a memory cell c;
and a hidden state h;. d is the number of the LSTM
units. The elements of the gating vectors i, f; and
o; are in [0, 1].

The LSTM is precisely specified as follows.

ét tanh
O . g
-7 g ) o
ft g
Ct=COit+c1Of (2)
ht =0+ ©® tanh (Ct) s (3)

where x; € R¢ is the input at the current time step;
W, ¢ RAdx(d+e) and b, € R* are parameters of
affine transformation; o denotes the logistic sig-
moid function and ® denotes elementwise multi-
plication.

The update of each LSTM unit can be written
precisely as follows:

ht = LSTM(ht_l, Xt, Hp) (4)

Here, the function LSTM(-, -, -, -) is a shorthand
for Eq. (1-3), and 6, represents all the parameters
of LSTM.

Text Classification with LSTM Given a text
sequence * = {x1,x9, -+ ,x7}, we first use a
lookup layer to get the vector representation (em-
beddings) x; of the each word x;. The output at
the last moment hy can be regarded as the repre-
sentation of the whole sequence, which has a fully
connected layer followed by a softmax non-linear
layer that predicts the probability distribution over
classes.

y = softmax(Why + b) (5

where y is prediction probabilities, W is the
weight which needs to be learned, b is a bias term.

Given a corpus with N training samples
(x4, yi), the parameters of the network are trained
to minimise the cross-entropy of the predicted and
true distributions.

L(3, Z Zyj log (7 6)

i=1 j=1

where yf is the ground-truth label; QZ is prediction
probabilities, and C' is the class number.



m
task

LSTM

\ n
Liask

(a) Fully Shared Model (FS-MTL)

zm

" —

m m
x LSTM @—» task
L, |
LSTM
z™ LSTM @—» L ok

(b) Shared-Private Model (SP-MTL)

Figure 2: Two architectures for learning multiple
tasks. Yellow and gray boxes represent shared and
private LSTM layers respectively.

3 Multi-task Learning for Text
Classification

The goal of multi-task learning is to utilizes the
correlation among these related tasks to improve
classification by learning tasks in parallel. To facil-
itate this, we give some explanation for notations
used in this paper. Formally, we refer to Dy, as a
dataset with /Ny samples for task k. Specifically,

Dy = {(aF, yf Ny (7)

where ¥ and yF denote a sentence and corre-
sponding label for task k.

3.1 Two Sharing Schemes for Sentence
Modeling

The key factor of multi-task learning is the sharing
scheme in latent feature space. In neural network
based model, the latent features can be regarded as
the states of hidden neurons. Specific to text clas-
sification, the latent features are the hidden states
of LSTM at the end of a sentence. Therefore, the
sharing schemes are different in how to group the
shared features. Here, we first introduce two shar-
ing schemes with multi-task learning: fully-shared
scheme and shared-private scheme.

Fully-Shared Model (FS-MTL) In fully-shared
model, we use a single shared LSTM layer to ex-
tract features for all the tasks. For example, given
two tasks m and n, it takes the view that the fea-
tures of task m can be totally shared by task n and
vice versa. This model ignores the fact that some
features are task-dependent. Figure 2a illustrates
the fully-shared model.

Shared-Private Model (SP-MTL) As shown in
Figure 2b, the shared-private model introduces
two feature spaces for each task: one is used to
store task-dependent features, the other is used
to capture task-invariant features. Accordingly, we
can see each task is assigned a private LSTM layer
and shared LSTM layer. Formally, for any sen-
tence in task k, we can compute its shared rep-
resentation s} and task-specific representation hf
as follows:

sf = LSTM(zy,sf ,,0,), (8)
hf = LSTM (x4, h)" , 6;) ©)

where LSTM(., 0) is defined as Eq. (4).
The final features are concatenation of the fea-
tures from private space and shared space.

3.2 Task-Specific Output Layer

For a sentence in task k, its feature h(*), emitted
by the deep muti-task architectures, is ultimately
fed into the corresponding task-specific softmax
layer for classification or other tasks.

The parameters of the network are trained to
minimise the cross-entropy of the predicted and
true distributions on all the tasks. The loss Lyqsk
can be computed as:

K

LTask = Z ak’L(g(k) ) y(k))
k=1

(10)

where «ay, is the weights for each task k respec-
tively. L(7,y) is defined as Eq. 6.

4 Incorporating Adversarial Training

Although the shared-private model separates the
feature space into the shared and private spaces,
there is no guarantee that sharable features can not
exist in private feature space, or vice versa. Thus,
some useful sharable features could be ignored in
shared-private model, and the shared feature space
is also vulnerable to contamination by some task-
specific information.

Therefore, a simple principle can be applied
into multi-task learning that a good shared feature
space should contain more common information
and no task-specific information. To address this
problem, we introduce adversarial training into
multi-task framework as shown in Figure 3 (ASP-
MTL).
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Figure 3: Adversarial shared-private model. Yel-
low and gray boxes represent shared and private
LSTM layers respectively.

4.1 Adversarial Network

Adversarial networks have recently surfaced and
are first used for generative model (Goodfellow
et al., 2014). The goal is to learn a generative dis-
tribution pg(x) that matches the real data distri-
bution Py, (z) Specifically, GAN learns a gen-
erative network G and discriminative model D,
in which G generates samples from the genera-
tor distribution pg(x). and D learns to determine
whether a sample is from pg(z) or Pyatq(2). This
min-max game can be optimized by the following
risk:

O = mén max (Emwpdam [log D(x)]

+ Beopollog(1 = D(G()]) (D)
While originally proposed for generating random
samples, adversarial network can be used as a gen-
eral tool to measure equivalence between distri-
butions (Taigman et al., 2016). Formally, (Ajakan
et al., 2014) linked the adversarial loss to the
H-divergence between two distributions and suc-
cessfully achieve unsupervised domain adaptation
with adversarial network. Motivated by theory on
domain adaptation (Ben-David et al., 2010, 2007;
Bousmalis et al., 2016) that a transferable feature
is one for which an algorithm cannot learn to iden-
tify the domain of origin of the input observation.

4.2 Task Adversarial Loss for MTL

Inspired by adversarial networks (Goodfellow
et al., 2014), we proposed an adversarial shared-
private model for multi-task learning, in which a
shared recurrent neural layer is working adversar-
ially towards a learnable multi-layer perceptron,
preventing it from making an accurate prediction
about the types of tasks. This adversarial training
encourages shared space to be more pure and en-
sure the shared representation not be contaminated
by task-specific features.

Task Discriminator Discriminator is used to
map the shared representation of sentences into a
probability distribution, estimating what kinds of
tasks the encoded sentence comes from.

D(s%.,0p) = softmax(b + Usk) (12)

where U € R%*? is a learnable parameter and b €
R? is a bias.

Adpversarial Loss Different with most existing
multi-task learning algorithm, we add an extra task
adversarial loss L 44, to prevent task-specific fea-
ture from creeping in to shared space. The task
adversarial loss is used to train a model to pro-
duce shared features such that a classifier cannot
reliably predict the task based on these features.
The original loss of adversarial network is limited
since it can only be used in binary situation. To
overcome this, we extend it to multi-class form,
which allow our model can be trained together
with multiple tasks:

. asg k k

Laay = min (Anelgx(; ;di log[ D(E(x ))])) (13)
where d¥ denotes the ground-truth label indicating
the type of the current task. Here, there is a min-
max optimization and the basic idea is that, given
a sentence, the shared LSTM generates a repre-
sentation to mislead the task discriminator. At the
same time, the discriminator tries its best to make
a correct classification on the type of task. After
the training phase, the shared feature extractor and
task discriminator reach a point at which both can-
not improve and the discriminator is unable to dif-
ferentiate among all the tasks.

Semi-supervised Learning Multi-task Learning
We notice that the L 44, requires only the input
sentence z and does not require the correspond-
ing label y, which makes it possible to combine
our model with semi-supervised learning. Finally,
in this semi-supervised multi-task learning frame-
work, our model can not only utilize the data from
related tasks, but can employ abundant unlabeled
corpora.

4.3 Orthogonality Constraints

We notice that there is a potential drawback of the
above model. That is, the task-invariant features
can appear both in shared space and private space.

Motivated by recently work(Jia et al., 2010;
Salzmann et al., 2010; Bousmalis et al., 2016)



Dataset Train Dev. Test Unlab. Avg.L  Vocab.

Books 1400 200 400
Elec. 1398 200 400
DVD 1400 200 400
Kitchen 1400 200 400
Apparel 1400 200 400
Camera 1397 200 400
Health 1400 200 400
Music 1400 200 400
Toys 1400 200 400
Video 1400 200 400
Baby 1300 200 400 2000 104 26K
Mag. 1370 200 400 2000 117 30K
Soft. 1315 200 400 475 129 26K
Sports 1400 200 400 2000 94 30K
IMDB 1400 200 400 2000 269 44K
MR 1400 200 400 2000 21 12K

2000 159 62K
2000 101 30K
2000 173 69K
2000 89 28K
2000 57 21K
2000 130 26K
2000 81 26K
2000 136 60K
2000 90 28K
2000 156 57K

Table 1: Statistics of the 16 datasets. The columns
2-5 denote the number of samples in training, de-
velopment, test and unlabeled sets. The last two
columns represent the average length and vocabu-
lary size of corresponding dataset.

on shared-private latent space analysis, we intro-
duce orthogonality constraints, which penalize re-
dundant latent representations and encourages the
shared and private extractors to encode different
aspects of the inputs.

After exploring many optional methods, we find
below loss is optimal, which is used by Bousmalis
et al. (2016) and achieve a better performance:

K
T2
L = Hs’f H’fH , 14
diff kg . (14)

where || - ||% is the squared Frobenius norm. S¥
and H* are two matrics, whose rows are the out-
put of shared extractor F(, ;0s) and task-specific
extrator F(,; 0) of a input sentence.

4.4 Put It All Together

The final loss function of our model can be written
as:

L = Lygsi, + AL aay + YLpifys (15)

where A and ~ are hyper-parameter.
The networks are trained with backpropagation
and this minimax optimization becomes possible

via the use of a gradient reversal layer (Ganin and
Lempitsky, 2015).

5 Experiment

5.1 Dataset

To make an extensive evaluation, we collect 16
different datasets from several popular review cor-
pora.

The first 14 datasets are product reviews, which
contain Amazon product reviews from different
domains, such as Books, DVDs, Electronics, ect.
The goal is to classify a product review as either
positive or negative. These datasets are collected
based on the raw data ! provided by (Blitzer et al.,
2007). Specifically, we extract the sentences and
corresponding labels from the unprocessed orig-
inal data 2. The only preprocessing operation of
these sentences is tokenized using the Stanford to-
kenizer 3.

The remaining two datasets are about movie re-
views. The IMDB dataset* consists of movie re-
views with binary classes (Maas et al., 2011). One
key aspect of this dataset is that each movie review
has several sentences. The MR dataset also con-
sists of movie reviews from rotten tomato website
with two classes 5(Pang and Lee, 2005).

All the datasets in each task are partitioned ran-
domly into training set, development set and test-
ing set with the proportion of 70%, 20% and 10%
respectively. The detailed statistics about all the
datasets are listed in Table 1.

5.2 Competitor Methods for Multi-task
Learning

The multi-task frameworks proposed by previous
works are various while not all can be applied to
the tasks we focused. Nevertheless, we chose two
most related neural models for multi-task learning
and implement them as competitor methods.

e MT-CNN: This model is proposed by Col-
lobert and Weston (2008) with convolutional
layer, in which lookup-tables are shared par-
tially while other layers are task-specific.

'https://www.cs.jhu.edu/~mdredze/
datasets/sentiment/

Blitzer et al. (2007) also provides two extra processed
datasets with the format of Bag-of-Words, which are not
proper for neural-based models.

*http://nlp.stanford.edu/software/
tokenizer.shtml

*nttps://www.cs.jhu.edu/~mdredze/
datasets/sentiment/unprocessed.tar.gz

Shttps://www.cs.cornell.edu/people/
pabo/movie-review—-data/.



Task Single Task Multiple Tasks

LSTM BiLSTM sLSTM Avg. MT-DNN MT-CNN FS-MTL SP-MTL  ASP-MTL
Books 20.5 19.0 180 192 17814 15537 175 1m 18804 16052
Electronics ~ 19.5 215 233 214 183(_z1) 168(ag 14371 15361 1320 sy
DVD 18.3 19.5 220 199 158(_41) 16050 16554 160350, 145 5.4
Kitchen 22,0 18.8 195 200 193(os) 168( 33 14061y 148 53 13.8 g3
Apparel 16.8 14.0 163 157 150(_07 163(10e 15502 13522 13027
Camera 14.8 14.0 150 146 13805 14006 13511 12026 10835
Health 15.5 21.3 165 178 143(_s5 12850 12058 128 50, 11.8( g0
Music 23.3 22.8 23.0 23.0 15.3(_77) 16.3(_67) 18.8(_42) 17-0(—640) 17.5(_5,5)
Toys 16.8 15.3 168 163 12340 10855 15508 14815 12043
Video 18.5 16.3 163 170 15020 1850415 1630 16802 155 15
Baby 15.3 16.5 158 159 12030 123(_s6) 12050 13326 11841
Magazines 10.8 8.5 12.3 10.5 10.5(4’_0'0) 12-3(+1.8) 7.5(_&0) 8.0(_25) 7.8(_2‘7)
Software 15.3 14.3 145 147 143 g4 13512 13800 13017 128 19
Sports 18.3 16.0 175 173 168(_05 16013 14525 12845 143350
IMDB 18.3 15.0 185 173 168(_ 05 13.8(_s5 1750102 153(_20) 145 28
MR 27.3 253 280 269 24554 255(14) 25314 24029 233( s
AVG 18.2 17.4 18.3 18.0 15722y 15525 15327 14931 1394

Table 2: Error rates of our models on 16 datasets against typical baselines. The numbers in brackets
represent the improvements relative to the average performance (Avg.) of three single task baselines.

e MT-DNN: The model is proposed by Liu
et al. (2015b) with bag-of-words input and
multi-layer perceptrons, in which a hidden
layer is shared.

5.3 Hyperparameters

The word embeddings for all of the models are ini-
tialized with the 200d GloVe vectors ((Pennington
et al., 2014)). The other parameters are initialized
by randomly sampling from uniform distribution
in [—0.1, 0.1]. The mini-batch size is set to 16.

For each task, we take the hyperparameters
which achieve the best performance on the devel-
opment set via an small grid search over com-
binations of the initial learning rate [0.1,0.01],
A € [0.01,0.1], and v € [0.01,0.1]. Finally, we
chose the learning rate as 0.01, A as 0.05 and v as
0.01.

5.4 Performance Evaluation

Table 2 shows the error rates on 16 text clas-
sification tasks. The column of “Single Task”
shows the results of vanilla LSTM, bidirectional
LSTM (BiLSTM), stacked LSTM (sLSTM) and
the average error rates of previous three models.
The column of “Multiple Tasks” shows the re-
sults achieved by corresponding multi-task mod-
els. From this table, we can see that the perfor-
mance of most tasks can be improved with a large
margin with the help of multi-task learning, in
which our model achieves the lowest error rates.
More concretely, compared with SP-MTL, ASP-

MTL achieves 4.1% average improvement sur-
passing SP-MTL with 1.0%, which indicates the
importance of adversarial learning. It is notewor-
thy that for FS-MTL, the performances of some
tasks are degraded, since this model puts all pri-
vate and shared information into a unified space.

5.5 Shared Knowledge Transfer

With the help of adversarial learning, the shared
feature extractor E; can generate more pure task-
invariant representations, which can be considered
as off-the-shelf knowledge and then be used for
unseen new tasks.

To test the transferability of our learned shared
extractor, we also design an experiment, in which
we take turns choosing 15 tasks to train our model
Mg with multi-task learning, then the learned
shared layer are transferred to a second network
M that is used for the remaining one task. The
parameters of transferred layer are kept frozen,
and the rest of parameters of the network M7 are
randomly initialized.

More formally, we investigate two mechanisms
towards the transferred shared extractor. As shown
in Figure 4. The first one Single Channel (SC)
model consists of one shared feature extractor Fg
from Mg, then the extracted representation will
be sent to an output layer. By contrast, the Bi-
Channel (BC) model introduces an extra LSTM
layer to encode more task-specific information. To
evaluate the effectiveness of our introduced adver-
sarial training framework, we also make a compar-



Source Tasks Single Task

Transfer Models

LSTM BiLSTM sLSTM Avg. SP-MTL-SC SP-MTL-BC ASP-MTL-SC ASP-MTL-BC
 (Books) 205 19.0 180 192 17814 16.3(_2.0) 16.8(_2.4) 16.3(_2.0)
¢ (Electronics) 195 21.5 233 214 1531  148(_cs) 17.8(_5.6) 16.8(_4.6)
6 (DVD) 18.3 19.5 20 199 1485, 15.5(_a.4) 14.5(_5.4) 14.3(_s5.0)
¢ (Kitchen) 20 188 195 2001 15051  163(_sg) 16.3(_s.8) 15.0(_5.1)
¢ (Apparel) 16.8 14.0 163 157 14809 12.0_3.7) 12.5(_3.2) 13.8_1.0)
¢ (Camera) 148 140 150 146 13313 125001 11.8(_2.) 10.3(_4.3)
& (Health) 15.5 213 165 178 145 55 14.3(_3.5) 12.3(_5.5) 13.5_4.3)
¢ (Music) 233 228 230 230 20050  178(_52 17.5(_5.5) 18.3(_417)
¢ (Toys) 168 153 168 163 138(_05 125 58 13.0(_3.3) 11.8(_45)
¢ (Video) 185 163 163 170 14327 1500 20 14.8(_5.) 14.8(_s.5)
¢ (Baby) 153 165 158 159 16506 1680400 13.5(_2.4) 12.0(_3.9)
¢ (Magazines) ~ 10.8 8.5 123 105 10500  103( g2 8.8( 17 9.5(-1.0)
¢ (Software) 153 143 145 147 13017 12810 14.5_0.2) 11.8_s.0)
qb (Sports) 18.3 16.0 17.5 17.3 16.3(,1_0) 16.3(,10) 13.3(,4_0) 13-5(73.8)
# (IMDB) 18.3 15.0 185 173 12845 12.8( 45 12.5_48) 133(_1.0)
¢ (MR) 273 253 280 269 260_p9 26504  24.8(_a1) 235 5.4,
AVG 182 174 183 180  156( o4  152(_as 147 _s.3) 143 _s.m

Table 3: Error rates of our models on 16 datasets against vanilla multi-task learning. ¢ (Books) means
that we transfer the knowledge of the other 15 tasks to the target task Books.
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Figure 4: Two transfer strategies using a pre-
trained shared LSTM layer. Yellow box denotes
shared feature extractor F trained by 15 tasks.

ison with vanilla multi-task learning method.

Results and Analysis As shown in Table 3, we
can see the shared layer from ASP-MTL achieves
a better performance compared with SP-MTL. Be-
sides, for the two kinds of transfer strategies, the
Bi-Channel model performs better. The reason is
that the task-specific layer introduced in the Bi-
Channel model can store some private features.
Overall, the results indicate that we can save the
existing knowledge into a shared recurrent layer
using adversarial multi-task learning, which is
quite useful for a new task.

5.6 Visualization

To get an intuitive understanding of how the intro-
duced orthogonality constraints worked compared
with vanilla shared-private model, we design an
experiment to examine the behaviors of neurons
from private layer and shared layer. More con-
cretely, we refer to hy; as the activation of the j-
neuron at time step ¢, where ¢t € {1,...,n} and

j € {1,...,d}. By visualizing the hidden state
h; and analyzing the maximum activation, we can
find what kinds of patterns the current neuron fo-
cuses on.

Figure 5 illustrates this phenomenon. Here, we
randomly sample a sentence from the validation
set of Baby task and analyze the changes of the
predicted sentiment score at different time steps,
which are obtained by SP-MTL and our proposed
model. Additionally, to get more insights into
how neurons in shared layer behave diversely
towards different input word, we visualize the
activation of two typical neurons. For the positive
sentence my baby can
fall asleep soon in the stroller”,
both models capture the informative pattern
“Five stars” °. However, SP-MTL makes a
wrong prediction due to misunderstanding of the
word “asleep”.

“Five stars,

By contrast, our model makes a correct predic-
tion and the reason can be inferred from the acti-
vation of Figure 5-(b), where the shared layer of
SP-MTL is so sensitive that many features related
to other tasks are included, such as "asleep”,
which misleads the final prediction. This indicates
the importance of introducing adversarial learning
to prevent the shared layer from being contami-
nated by task-specific features.

We also list some typical patterns captured by

SFor this case, the vanilla LSTM also give a wrong answer
due to ignoring the feature “Five stars”.
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(b) Behaviours of Neuron h{g and h3,

Figure 5: (a) The change of the predicted sentiment score at different time steps. Y-axis represents the
sentiment score, while X-axis represents the input words in chronological order. The darker grey horizon-
tal line gives a border between the positive and negative sentiments. (b) The purple heat map describes the
behaviour of neuron hfg from shared layer of SP-MTL, while the blue one is used to show the behaviour
of neuron h3;, which belongs to the shared layer of our model.

Model Shared Layer  Task-Movie Task-Baby
%ggdio}’;r :at good, great, love, bad,
SP-MTL sim, le Cl,,lt well-directed, cute, safety,
510\5 c’hea > pointless, cut,  mild, broken
infar;tile P, cheap, infantile simple
good, great,  well-directed, cute, safety,
ASP-MTL love, bad pointless, cut,  mild, broken
poor cheap, infantile simple

Table 4: Typical patterns captured by shared layer
and task-specific layer of SP-MTL and ASP-MTL
models on Movie and Baby tasks.

neurons from shared layer and task-specific layer
in Table 4, and we have observed that: 1) for
SP-MTL, if some patterns are captured by task-
specific layer, they are likely to be placed into
shared space. Clearly, suppose we have many tasks
to be trained jointly, the shared layer bear much
pressure and must sacrifice substantial amount
of capacity to capture the patterns they actu-
ally do not need. Furthermore, some typical task-
invariant features also go into task-specific layer.
2) for ASP-MTL, we find the features captured by
shared and task-specific layer have a small amount
of intersection, which allows these two kinds of
layers can work effectively.

6 Related Work

There are two threads of related work. One thread
is multi-task learning with neural network. Neu-
ral networks based multi-task learning has been
proven effective in many NLP problems (Col-
lobert and Weston, 2008; Glorot et al., 2011).

Liu et al. (2016c¢) first utilizes different LSTM
layers to construct multi-task learning framwork

for text classification. Liu et al. (2016b) proposes
a generic multi-task framework, in which different
tasks can share information by an external mem-
ory and communicate by a reading/writing mech-
anism. These work has potential limitation of just
learning a shared space solely on sharing param-
eters, while our model introduce two strategies to
learn the clear and non-redundant shared-private
space.

Another thread of work is adversarial network.
Adversarial networks have recently surfaced as a
general tool measure equivalence between distri-
butions and it has proven to be effective in a va-
riety of tasks. Ajakan et al. (2014); Bousmalis
et al. (2016) applied adverarial training to domain
adaptation, aiming at transferring the knowledge
of one source domain to target domain. Park and
Im (2016) proposed a novel approach for multi-
modal representation learning which uses adver-
sarial back-propagation concept.

Different from these models, our model aims to
find task-invariant sharable information for mul-
tiple related tasks using adversarial training strat-
egy. Moreover, we extend binary adversarial train-
ing to multi-class, which enable multiple tasks to
be jointly trained.

7 Conclusion

In this paper, we have proposed an adversarial
multi-task learning framework, in which the task-
specific and task-invariant features are learned
non-redundantly, therefore capturing the shared-
private separation of different tasks. We have
demonstrated the effectiveness of our approach by
applying our model to 16 different text classifica-
tion tasks. We also perform extensive qualitative



analysis, deriving insights and indirectly explain-
ing the quantitative improvements in the overall
performance.
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Abstract

We investigate neural techniques for end-
to-end computational argumentation min-
ing (AM). We frame AM both as a token-
based dependency parsing and as a token-
based sequence tagging problem, includ-
ing a multi-task learning setup. Contrary
to models that operate on the argument
component level, we find that framing AM
as dependency parsing leads to subpar per-
formance results. In contrast, less com-
plex (local) tagging models based on BiL-
STMs perform robustly across classifica-
tion scenarios, being able to catch long-
range dependencies inherent to the AM
problem. Moreover, we find that jointly
learning ‘natural’ subtasks, in a multi-task
learning setup, improves performance.

1 Introduction

Computational argumentation mining (AM) deals
with finding argumentation structures in text. This
involves several subtasks, such as: (a) separating
argumentative units from non-argumentative units,
also called ‘component segmentation’; (b) classi-
fying argument components into classes such as
“Premise” or “Claim”; (c) finding relations be-
tween argument components; (d) classifying rela-
tions into classes such as “Support” or “Attack”
(Persing and Ng, 2016; Stab and Gurevych, 2017).

Thus, AM would have to detect claims and
premises (reasons) in texts such as the following,
where premise P supports claim C:

Since it killed many marine livesp
tourism has threatened naturec .

Argument structures in real texts are typically
much more complex, cf. Figure 1.

11

While different research has addressed different
subsets of the AM problem (see below), the ul-
timate goal is to solve all of them, starting from
unannotated plain text. Two recent approaches to
this end-to-end learning scenario are Persing and
Ng (2016) and Stab and Gurevych (2017). Both
solve the end-to-end task by first training indepen-
dent models for each subtask and then defining an
integer linear programming (ILP) model that en-
codes global constraints such as that each premise
has a parent, etc. Besides their pipeline architec-
ture the approaches also have in common that they
heavily rely on hand-crafted features.

Hand-crafted features pose a problem because
AM is to some degree an “arbitrary” problem in
that the notion of “argument” critically relies on
the underlying argumentation theory (Reed et al.,
2008; Biran and Rambow, 2011; Habernal and
Gurevych, 2015; Stab and Gurevych, 2017). Ac-
cordingly, datasets typically differ with respect to
their annotation of (often rather complex) argu-
ment structure. Thus, feature sets would have to
be manually adapted to and designed for each new
sample of data, a challenging task. The same cri-
tique applies to the designing of ILP constraints.
Moreover, from a machine learning perspective,
pipeline approaches are problematic because they
solve subtasks independently and thus lead to er-
ror propagation rather than exploiting interrela-
tionships between variables. In contrast to this, we
investigate neural techniques for end-to-end learn-
ing in computational AM, which do not require
the hand-crafting of features or constraints. The
models we survey also all capture some notion of
“joint”—rather than “pipeline”—Ilearning. We in-
vestigate several approaches.

First, we frame the end-to-end AM problem
as a dependency parsing problem. Dependency
parsing may be considered a natural choice for
AM, because argument structures often form trees,

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 11-22
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or closely resemble them (see §3). Hence, it
is not surprising that ‘discourse parsing’ (Muller
et al., 2012) has been suggested for AM (Peld-
szus and Stede, 2015). What distinguishes our
approach from these previous ones is that we op-
erate on the token level, rather than on the level
of components, because we address the end-to-
end framework and, thus, do not assume that non-
argumentative units have already been sorted out
and/or that the boundaries of argumentative units
are given.

Second, we frame the problem as a sequence
tagging problem. This is a natural choice espe-
cially for component identification (segmentation
and classification), which is a typical entity recog-
nition problem for which BIO tagging is a stan-
dard approach, pursued in AM, e.g., by Haber-
nal and Gurevych (2016). The challenge in the
end-to-end setting is to also include relations into
the tagging scheme, which we realize by coding
the distances between linked components into the
tag label. Since related entities in AM are often-
times several dozens of tokens apart from each
other, neural sequence tagging models are in prin-
ciple ideal candidates for such a framing because
they can take into account long-range dependen-
cies—something that is inherently difficult to cap-
ture with traditional feature-based tagging models
such as conditional random fields (CRFs).

Third, we frame AM as a multi-task (tagging)
problem (Caruana, 1997; Collobert and Weston,
2008). We experiment with subtasks of AM—e.g.,
component identification—as auxiliary tasks and
investigate whether this improves performance on
the AM problem. Adding such subtasks can be
seen as analogous to de-coupling, e.g., component
identification from the full AM problem.

Fourth, we evaluate the model of Miwa and
Bansal (2016) that combines sequential (entity)
and tree structure (relation) information and is in
principle applicable to any problem where the aim
18 to extract entities and their relations. As such,
this model makes fewer assumptions than our de-
pendency parsing and tagging approaches.

The contributions of this paper are as follows.
(1) We present the first neural end-to-end solu-
tions to computational AM. (2) We show that sev-
eral of them perform better than the state-of-the-
art joint ILP model. (3) We show that a framing
of AM as a token-based dependency parsing prob-
lem is ineffective—in contrast to what has been

proposed for systems that operate on the coarser
component level and that (4) a standard neural se-
quence tagging model that encodes distance in-
formation between components performs robustly
in different environments. Finally, (5) we show
that a multi-task learning setup where natural sub-
tasks of the full AM problem are added as auxil-
iary tasks improves performance.!

2 Related Work

AM has applications in legal decision making
(Palau and Moens, 2009; Moens et al., 2007), doc-
ument summarization, and the analysis of scien-
tific papers (Kirschner et al., 2015). Its importance
for the educational domain has been highlighted
by recent work on writing assistance (Zhang and
Litman, 2016) and essay scoring (Persing and Ng,
2015; Somasundaran et al., 2016).

Most works on AM address subtasks of AM
such as locating/classifying components (Florou
et al., 2013; Moens et al., 2007; Rooney et al.,
2012; Knight et al., 2003; Levy et al., 2014; Rinott
etal., 2015). Relatively few works address the full
AM problem of component and relation identifi-
cation. Peldszus and Stede (2016) present a cor-
pus of microtexts containing only argumentatively
relevant text of controlled complexity. To our best
knowledge, Stab and Gurevych (2017) created the
only corpus of attested high quality which anno-
tates the AM problem in its entire complexity: it
contains token-level annotations of components,
their types, as well as relations and their types.

3 Data

We use the dataset of persuasive essays (PE) from
Stab and Gurevych (2017), which contains student
essays written in response to controversial top-
ics such as “competition or cooperation—which is
better?”

|  Train Test
Essays 322 80
Paragraphs 1786 449
Tokens 118648 29538

Table 1: Corpus statistics

As Table 1 details, the corpus consists of 402 es-
says, 80 of which are reserved for testing. The an-

'Scripts that document how we ran our experiments
are available from https://github.com/UKPLab/
acl201l7-neural_end2end_AM.
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Bottom: Linear argumentation structure in a student essay. The essay is comprised of non-

argumentative units (square) and argumentative units of different types: Premises (P), claims (C) and
major claims (MC). Top: Relationsships between argumentative units. Solid arrows are support (for),

dashed arrows are attack (against).

notation distinguishes between major claims (the
central position of an author with respect to the es-
say’s topic), claims (controversial statements that
are either for or against the major claims), and
premises, which give reasons for claims or other
premises and either support or attack them. Over-
all, there are 751 major claims, 1506 claims, and
3832 premises. There are 5338 relations, most of
which are supporting relations (>90%).

The corpus has a special structure, illustrated in
Figure 1. First, major claims relate to no other
components. Second, claims always relate to all
other major claims.? Third, each premise relates to
exactly one claim or premise. Thus, the argument
structure in each essay is—almost—a tree. Since
there may be several major claims, each claim po-
tentially connects to multiple targets, violating the
tree structure. This poses no problem, however,
since we can “loss-lessly” re-link the claims to one
of the major claims (e.g., the last major claim in a
document) and create a special root node to which
the major claims link. From this tree, the actual
graph can be uniquely reconstructed.

There is another peculiarity of this data. Each
essay is divided into paragraphs, of which there
are 2235 in total. The argumentation structure is
completely contained within a paragraph, except,
possibly, for the relation from claims to major
claims. Paragraphs have an average length of 66
tokens and are therefore much shorter than essays,
which have an average length of 368 tokens. Thus,
prediction on the paragraph level is easier than

2All MCs are considered as equivalent in meaning.

13

prediction on the essay level, because there are
fewer components in a paragraph and hence fewer
possibilities of source and target components in
argument relations. The same is true for compo-
nent classification: a paragraph can never contain
premises only, for example, since premises link to
other components.

4 Models

This section describes our neural network fram-
ings for end-to-end AM.

Sequence Tagging is the problem of assign-
ing each element in a stream of input tokens a
label. In a neural context, the natural choice
for tagging problems are recurrent neural nets
(RNNs5) in which a hidden vector representation
h; at time point ¢ depends on the previous hid-
den vector representation h;_; and the input x;.
In this way, an infinite window (“long-range de-
pendencies”) around the current input token x;
can be taken into account when making an out-
put prediction y;. We choose particular RNNs,
namely, LSTMs (Hochreiter and Schmidhuber,
1997), which are popular for being able to address
vanishing/exploding gradients problems. In addi-
tion to considering a left-to-right flow of informa-
tion, bidirectional LSTMs (BL) also capture infor-
mation to the right of the current input token.

The most recent generation of neural tagging
models add label dependencies to BLs, so that
successive output decisions are not made indepen-
dently. This class of models is called BiLSTM-



CRF (BLC) (Huang et al., 2015). The model of
Ma and Hovy (2016) adds convolutional neural
nets (CNNs) on the character-level to BiLSTM-
CREFs, leading to BiLSTM-CRF-CNN (BLCC)
models. The character-level CNN may address
problems of out-of-vocabulary words, that is,
words not seen during training.

AM as Sequence Tagging: We frame AM as
the following sequence tagging problem. Each in-
put token has an associated label from )/, where

Y ={(b,t,d,s)|be {B,1,0},t € {P,C,MC, L},
def{...,—2,-1,1,2,..., 1},
s € {Supp, Att, For, Ag, 1 }}.

6]

In other words, ) consists of all four-tuples
(b,t,d,s) where b is a BIO encoding indicating
whether the current token is non-argumentative
(O) or begins (B) or continues (I) a component;
t indicates the fype of the component (claim C,
premise P, or major claim MC for our data). More-
over, d encodes the distance—measured in num-
ber of components—between the current compo-
nent and the component it relates to. We encode
the same d value for each token in a given compo-
nent. Finally, s is the relation type (“stance’) be-
tween two components and its value may be Sup-
port (Supp), Attack (Att), or For or Against (Ag).
We also have a special symbol | that indicates
when a particular slot is not filled: e.g., a non-
argumentative unit (b = O) has neither compo-
nent type, nor relation, nor relation type. We refer
to this framing as STagy (for “Simple Tagging”),
where T refers to the tagger used. For the example
from §1, our coding would hence be:

Since it killed many
©O,L,1,1) @B,P1,Supp) (LP1,Supp) (LP1,Supp)
marine lives s tourism
(LP,1,Supp) (1,P,1,Supp) (O,L,1,1) (B,C,L,For)
has threatened nature .
(I,C,L,For) (I,C,L For) I,C,L,For) (O,L,1,1)

While the size of the label set ) is potentially
infinite, we would expect it to be finite even in
a potentially infinitely large data set, because hu-
mans also have only finite memory and are there-
fore expected to keep related components close in
textual space. Indeed, as Figure 2 shows, in our
PE essay data set about 30% of all relations be-
tween components have distance —1, that is, they
follow the claim or premise that they attach to.
Overall, around 2/3 of all relation distances d lie
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in {—2,—1,1}. However, the figure also illus-
trates that there are indeed long-range dependen-
cies: distance values between —11 and +10 are
observed in the data.

30
25 /
20

15

%

10

10

Figure 2: Distribution of distances d between
components in PE dataset.

Multi-Task Learning Recently, there has been
a lot of interest in so-called multi-task learning
(MTL) scenarios, where several tasks are learned
jointly (Sggaard and Goldberg, 2016; Peng and
Dredze, 2016; Yang et al., 2016; Rusu et al., 2016;
Héctor and Plank, 2017). It has been argued that
such learning scenarios are closer to human learn-
ing because humans often transfer knowledge be-
tween several domains/tasks. In a neural context,
MTL is typically implemented via weight sharing:
several tasks are trained in the same network ar-
chitecture, thereby sharing a substantial portion of
network’s parameters. This forces the network to
learn generalized representations.

In the MTL framework of S¢gaard and Gold-
berg (2016) the underlying model is a BiLSTM
with several hidden layers. Then, given differ-
ent tasks, each task k ‘feeds’ from one of the
hidden layers in the network. In particular, the
hidden states encoded in a specific layer are fed
into a multiclass classifier fi. The same work has
demonstrated that this MTL protocol may be suc-
cessful when there is a hierarchy between tasks
and ‘lower’ tasks feed from lower layers.

AM as MTL: We use the same framework
STagr for modeling AM as MTL. However, we
in addition train auxiliary tasks in the network—
each with a distinct label set ).

Dependency Parsing methods can be classified
into graph-based and transition-based approaches
(Kiperwasser and Goldberg, 2016). Transition-
based parsers encode the parsing problem as a
sequence of configurations which may be modi-
fied by application of actions such as shift, reduce,



etc. The system starts with an initial configuration
in which sentence elements are on a buffer and a
stack, and a classifier successively decides which
action to take next, leading to different configura-
tions. The system terminates after a finite number
of actions, and the parse tree is read off the ter-
minal configuration. Graph-based parsers solve a
structured prediction problem in which the goal is
learning a scoring function over dependency trees
such that correct trees are scored above all others.

Traditional dependency parsers used hand-
crafted feature functions that look at “core” ele-
ments such as “word on top of the stack”, “POS
of word on top of the stack”, and conjunctions of
core features such as “word is X and POS is Y”
(see McDonald et al. (2005)). Most neural parsers
have not entirely abandoned feature engineering.
Instead, they rely, for example, on encoding the
core features of parsers as low-dimensional em-
bedding vectors (Chen and Manning, 2014) but ig-
nore feature combinations. Kiperwasser and Gold-
berg (2016) design a neural parser that uses only
four features: the BiILSTM vector representations
of the top 3 items on the stack and the first item on
the buffer. In contrast, Dyer et al. (2015)’s neural
parser associates each stack with a “stack LSTM”
that encodes their contents. Actions are chosen
based on the stack LSTM representations of the
stacks, and no more feature engineering is neces-
sary. Moreover, their parser has thus access to any
part of the input, its history and stack contents.

AM as Dependency Parsing: To frame a prob-
lem as a dependency parsing problem, each in-
stance of the problem must be encoded as a di-
rected tree, where tokens have heads, which in
turn are labeled. For end-to-end AM, we propose
the framing illustrated in Figure 3. We highlight
two design decisions, the remaining are analogous
and/or can be read off the figure.

e The head of each non-argumentative text to-
ken is the document terminating token END,
which is a punctuation mark in all our cases.
The label of this link is O, the symbol for
non-argumentative units.

e The head of each token in a premise is the
first token of the claim or premise that it
links to. The label of each of these links
is (b,P,Supp) or (b,P,Att) depending on
whether a premise “supports” or “attacks” a
claim or premise; b € {B,I}.

15

———

(I,P,Supp)
(B,P,Supp)

Figure 3: Dependency representation of sample
sentence from §1. Links and selected labels.

LSTM-ER Miwa and Bansal (2016) present a
neural end-to-end system for identifying both enti-
ties as well as relations between them. Their entity
detection system is a BLC-type tagger and their re-
lation detection system is a neural net that predicts
a relation for each pair of detected entities. This
relation module is a TreeLSTM model that makes
use of dependency tree information. In addition
to de-coupling entity and relation detection but
jointly modeling them,? pretraining on entities and
scheduled sampling (Bengio et al., 2015) is ap-
plied to prevent low performance at early training
stages of entity detection and relation classifica-
tion. To adapt LSTM-ER for the argument struc-
ture encoded in the PE dataset, we model three
types of entities (premise, claim, major claim) and
four types of relations (for, against, support, at-
tack).

We use the feature-based ILP model from
Stab and Gurevych (2017) as a comparison
system. This system solves the subtasks of
AM—component segmentation, component clas-
sification, relation detection and classification—
independently.  Afterwards, it defines an ILP
model with various constraints to enforce valid ar-
gumentation structure. As features it uses struc-
tural, lexical, syntactic and context features, cf.
Stab and Gurevych (2017) and Persing and Ng
(2016).

Summarizing, we distinguish our framings in
terms of modularity and in terms of their con-
straints. Modularity: Our dependency parsing
framing and LSTM-ER are more modular than
STagr because they de-couple relation informa-
tion from entity information. However, (part of)

3By ‘de-coupling’, we mean that both tasks are treated
separately rather than merging entity and relation information
in the same tag label (output space). Still, a joint model like
that of Miwa and Bansal (2016) de-couples the two tasks in
such a way that many model parameters are shared across the
tasks, similarly as in MTL.



this modularity can be regained by using STagr
in an MTL setting. Moreover, since entity and re-
lation information are considerably different, such
a de-coupling may be advantageous. Constraints:
LSTM-ER can, in principle, model any kind of—
even many-to-many—relationships between de-
tected entities. Thus, it is not guaranteed to pro-
duce trees, as we observe in AM datasets. STagr
also does not need to produce trees, but it more
severely restricts search space than does LSTM-
ER: each token/component can only relate to one
(and not several) other tokens/components. The
same constraint is enforced by the dependency
parsing framing. All of the tagging modelings, in-
cluding LSTM-ER, are local models whereas our
parsing framing is a global model: it globally en-
forces a tree structure on the token-level.

Further remarks: (1) part of the TreeLSTM
modeling inherent to LSTM-ER is ineffective
for our data because this modeling exploits de-
pendency tree structures on the sentence level,
while relationships between components are al-
most never on the sentence level. In our data,
roughly 92% of all relationships are between com-
ponents that appear in different sentences. Sec-
ondly, (2) that a model enforces a constraint does
not necessarily mean that it is more suitable for a
respective task. It has frequently been observed
that models tend to produce output consistent with
constraints in their training data in such situations
(Zhang et al., 2017; Héctor and Plank, 2017); thus,
they have learned the constraints.

S Experiments

This section presents and discusses the empirical
results for the AM framings outlined in §4. We
relegate issues of pre-trained word embeddings,
hyperparameter optimization and further practi-
cal issues to the supplementary material. Links
to software used as well as some additional error
analysis can also be found there.

Evaluation Metric We adopt the evaluation
metric suggested in Persing and Ng (2016). This
computes true positives TP, false positives FP, and
false negatives FN, and from these calculates com-
ponent and relation F} scores as F; = %.
For space reasons, we refer to Persing and Ng
(2016) for specifics, but to illustrate, for compo-
nents, true positives are defined as the set of com-
ponents in the gold standard for which there ex-

ists a predicted component with the same type that
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‘matches’. Persing and Ng (2016) define a notion
of what we may term ‘level o matching’: for ex-
ample, at the 100% level (exact match) predicted
and gold components must have exactly the same
spans, whereas at the 50% level they must only
share at least 50% of their tokens (approximate
match). We refer to these scores as C-F1 (100%)
and C-F1 (50%), respectively. For relations, an
analogous F1 score is determined, which we de-
note by R-F1 (100%) and R-F1 (50%). We note
that R-F1 scores depend on C-F1 scores because
correct relations must have correct arguments. We
also define a ‘global’ F1 score, which is the F1-
score of C-F1 and R-F1.
Most of our results are shown in Table 2.

(a) Dependency Parsing We show results for
the two feature-based parsers MST (McDonald
et al., 2005), Mate (Bohnet and Nivre, 2012) as
well as the neural parsers by Dyer et al. (2015)
(LSTM-Parser) and Kiperwasser and Goldberg
(2016) (Kiperwasser). We train and test all parsers
on the paragraph level, because training them on
essay level was typically too memory-exhaustive.

MST mostly labels only non-argumentative
units correctly, except for recognizing individ-
uval major claims, but never finds their exact
spans (e.g., “tourism can create negative impacts
on” while the gold major claim is “international
tourism can create negative impacts on the des-
tination countries”). Mate is slightly better and
in particular recognizes several major claims cor-
rectly. Kiperwasser performs decently on the ap-
proximate match level, but not on exact level.
Upon inspection, we find that the parser often pre-
dicts ‘too large’ component spans, e.g., by includ-
ing following punctuation. The best parser by far
is the LSTM-Parser. It is over 100% better than
Kiperwasser on exact spans and still several per-
centage points on approximate spans.

How does performance change when we switch
to the essay level? For the LSTM-Parser, the best
performance on essay level is 32.84%/47.44% C-
F1 (100%/50% level), and 9.11%/14.45% on R-
F1, but performance result varied drastically be-
tween different parametrizations. Thus, the per-
formance drop between paragraph and essay level
is in any case immense.

Since the employed features of modern feature-
based parsers are rather general—such as distance
between words or word identities—we had ex-
pected them to perform much better. The mini-



| Paragraph level Il Essay level
Acc. C-F1 R-F1 F1 Acc. C-Fl1 R-F1 F1

100% 50% ‘ 100% 50% ‘ 100% 50% H 100% 50% ‘ 100% 50% ‘ 100% 50%
MST-Parser 31.23 0 6.90 0 1.29 0 2.17
Mate 22.71 272 12.34 2.03 4.59 2.32 6.69
Klperwasser 52.80 26.65 61.57 15.57 34.25 19.65 44.01
LSTM-Parser 55.68 58.86 68.20 35.63 40.87 44.38 51.11
STagssce | 5934 | 6669 7408 | 39.83 4402 | 4987 5522 || 60.46 | 6323 6949 | 34.82 39.68 | 4490  50.51
LSTM-ER ‘ 61.67 ‘ 70.83 77.19 ‘ 45.52 50.05 ‘ 55.42 60.72 H 54.17 ‘ 66.21 73.02 ‘ 29.56 32.72 ‘ 40.87 45.19
ILP | 6032 | 6261 7335 | 3474 4429 | 4468 5523 || \ \ \

Table 2: Performance of dependency parsers, STaggrcc, LSTM-ER and ILP (from top to bottom). The
ILP model operates on both levels. Best scores in each column in bold (signific. at p < 0.01; Two-sided
Wilcoxon signed rank test, pairing F1 scores for documents). We also report token level accuracy.

mal feature set employed by Kiperwasser is appar-
ently not sufficient for accurate AM but still a lot
more powerful than the hand-crafted feature ap-
proaches. We hypothesize that the LSTM-Parser’s
good performance, relative to the other parsers, is
due to its encoding of the whole stack history—
rather than just the top elements on the stack as
in Kiperwasser— which makes it aware of much
larger ‘contexts’. While the drop in performance
from paragraph to essay level is expected, the
LSTM-Parser’s deterioration is much more severe
than the other models’ surveyed below. We believe
that this is due to a mixture of the following: (1)
‘capacity’, i.e., model complexity, of the parsers—
that is, risk of overfitting; and (2) few, but very
long sequences on essay level—that is, little train-
ing data (trees), paired with a huge search space
on each train/test instance, namely, the number of
possible trees on n tokens. See also our discus-
sions below, particularly, our stability analysis.

(b) Sequence Tagging For these experiments,
we use the BLCC tagger from Ma and Hovy
(2016) and refer to the resulting system as
STagprcc. Again, we observe that paragraph
level is considerably easier than essay level; e.g.,
for relations, there is ~5% points increase from
essay to paragraph level. Overall, STaggicc i
~13% better than the best parser for C-F1 and
~11% better for R-F1 on the paragraph level. Our
explanation is that taggers are simpler local mod-
els, and thus need less training data and are less
prone to overfitting. Moreover, they can much bet-
ter deal with the long sequences because they are
largely invariant to length: e.g., it does in princi-
ple not matter, from a parameter estimation per-
spective, whether we train our taggers on two se-
quences of lengths n and m, respectively, or on
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one long sequence of length n 4+ m.

(c) MTL As indicated, we use the MTL tagging
framework from Sggaard and Goldberg (2016) for
multi-task experiments. The underlying tagging
framework is weaker than that of BLCC: there is
no CNN which can take subword information into
account and there are no dependencies between
output labels: each tagging prediction is made in-
dependently of the other predictions. We refer to
this system as STaggr.

Accordingly, as Table 3 shows for the essay
level (paragraph level omitted for space reasons),
results are generally weaker: For exact match,
C-F1 values are about ~10% points below those
of STaggrcc, while approximate match perfor-
mances are much closer. Hence, the independence
assumptions of the BL tagger apparently lead to
more ‘local’ errors such as exact argument span
identification (cf. error analysis). An analogous
trend holds for argument relations.

Additional Tasks: We find that when we train
STaggr with only its main task—with label set
Y as in Eq. (1)—the overall result is worst. In
contrast, when we include the ‘natural subtasks’
“C” (label set Yo consists of the projection on
the coordinates (b, ) in )) and/or “R” (label set
Yr consists of the projection on the coordinates
(d, s)), performance increases typically by a few
percentage points. This indicates that complex se-
quence tagging may benefit when we train a “sub-
labeler” in the same neural architecture, a find-
ing that may be particularly relevant for morpho-
logical POS tagging (Miiller et al., 2013). Un-
like Sggaard and Goldberg (2016), we do not find
that the optimal architecture is the one in which
“lower” tasks (such as C or R) feed from lower
layers. In fact, in one of the best parametrizations



the C task and the full task feed from the same
layer in the deep BiLSTM. Moreover, we find that
the C task is consistently more helpful as an aux-
iliary task than the R task.

C-Fl R-F1 Fl1

100%  50% | 100%  50% | 100%  50%
-3 | 49.59 6537 | 2628 37.00 | 3435 47.25
Y-3:Yc-1 5471 66.84 | 2844 3735 | 3740 4792
V-3:Vr-1 51.32 6649 | 2692 37.18 | 3531 47.69
V-3:Yc-3 54.58 67.66 | 30.22 40.30 | 38.90 50.51
YV-3:Yr-3 5331 66.71 | 26.65 3586 | 35.53 46.64
YV-3:Yc-1:Yr-2 | 5295 67.84 | 2790 39.71 | 36.54 50.09
V-3:Yc-3:Yr-3 | 5455 67.60 | 2830 38.26 | 37.26 48.86

Table 3: Performance of MTL sequence tagging
approaches, essay level. Tasks separated by “:”.
Layers from which tasks feed are indicated by re-
spective numbers.

On essay level, (d) LSTM-ER performs very
well on component identification (+5% C-F1 com-
pared to STagsicc), but rather poor on relation
identification (-18% R-F1). Hence, its overall
F1 on essay level is considerably below that of
STaggrce. In contrast, LSTM-ER trained and
tested on paragraph level substantially outper-
forms all other systems discussed, both for com-
ponent as well as for relation identification.

We think that its generally excellent perfor-
mance on components is due to LSTM-ER’s
de-coupling of component and relation tasks.
Our findings indicate that a similar result can
be achieved for STagr via MTL when com-
ponents and relations are included as auxiliary
tasks, cf. Table 3. For example, the improve-
ment of LSTM-ER over STaggrcc, for C-F1,
roughly matches the increase for STagg;, when
including components and relations separately
(V-3:Yc-3:Yg-3) over not including them as aux-
iliary tasks ()-3). Lastly, the better performance
of LSTM-ER over STaggrcc for relations on
paragraph level appears to be a consequence of
its better performance on components. E.g., when
both arguments are correctly predicted, STaggrcc
has even higher chance of getting their relation
correct than LSTM-ER (95.34% vs. 94.17%).

Why does LSTM-ER degrade so much on essay
level for R-F1? As said, text sequences are much
longer on essay level than on paragraph level—
hence, there are on average many more entities on
essay level. Thus, there are also many more pos-
sible relations between all entities discovered in a
text—namely, there are O(2™") possible relations
between m discovered components. Due to its
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Figure 4: Probability of correct relation identifica-
tion given true distance is |d|.

generality, LSTM-ER considers all these relations
as plausible, while STagr does not (for any of
choice of T'): e.g., our coding explicitly constrains
each premise to link to exactly one other compo-
nent, rather than to 0, . . . , m possible components,
as LSTM-ER allows. In addition, our explicit cod-
ing of distance values d biases the learner 7" to re-
flect the distribution of distance values found in
real essays—namely, that related components are
typically close in terms of the number of com-
ponents between them. In contrast, LSTM-ER
only mildly prefers short-range dependencies over
long-range dependencies, cf. Figure 4.

The (e) ILP has access to both paragraph and
essay level information and thus has always more
information than all neural systems compared to.
Thus, it also knows in which paragraph in an essay
it is. This is useful particularly for major claims,
which always occur in first or last paragraphs in
our data. Still, its performance is equal to or lower
than that of LSTM-ER and STaggr,cc when both
are evaluated on paragraph level.

Stability Analysis

Table 4 shows averages and standard deviations of
two selected models, namely, the STagprcc tag-
ging framework as well as the LSTM-Parser over
several different runs (different random initializa-
tions as well as different hyperparameters as dis-
cussed in the supplementary material). These re-
sults detail that the taggers have lower standard de-
viations than the parsers. The difference is partic-
ularly striking on the essay level where the parsers
often completely fail to learn, that is, their perfor-
mance scores are close to 0%. As discussed above,
we attribute this to the parsers’ increased model
capacity relative to the taggers, which makes them
more prone to overfitting. Data scarcity is another
very likely source of error in this context, as the
parsers only observe 322 (though very rich) trees



in the training data, while the taggers are always
roughly trained on 120K tokens. On paragraph
level, they do observe more trees, namely, 1786.

| STageree LSTM-Parser
Essay 60.62+3.54  9.40+13.57
Paragraph | 64.74+1.97 56.244+2.87

Table 4: C-F1 (100%) in % for the two indicated
systems; essay vs. paragraph level. Note that the
mean performances are lower than the majority
performances over the runs given in Table 2.

Error analysis

A systematic source of errors for all systems is de-
tecting exact argument spans (segmentation). For
instance, the ILP system predicts the following
premise: “As a practical epitome , students should
be prepared to present in society after their grad-
uation”, while the gold premise omits the pre-
ceding discourse marker, and hence reads: “stu-
dents should be prepared to present in society af-
ter their graduation”. On the one hand, it has
been observed that even humans have problems
exactly identifying such entity boundaries (Pers-
ing and Ng, 2016; Yang and Cardie, 2013). On
the other hand, our results in Table 2 indicate that
the neural taggers BLCC and BLC (in the LSTM-
ER model) are much better at such exact identi-
fication than either the ILP model or the neural
parsers. While the parsers’ problems are most
likely due to model complexity, we hypothesize
that the ILP model’s increased error rates stem
from a weaker underlying tagging model (feature-
based CRF vs. BiLSTM) and/or its features.* In
fact, as Table 5 shows, the macro-F1 scores’ on
only the component segmentation tasks (BIO la-
beling) are substantially higher for both LSTM-
ER and STaggrcc than for the ILP model. Note-
worthy, the two neural systems even outperform
the human upper bound (HUB) in this context, re-
ported as 88.6% in Stab and Gurevych (2017).

6 Conclusion

We present the first study on neural end-to-end
AM. We experimented with different framings,

*The BIO tagging task is independent and thus not af-
fected by the ILP constraints in the model of Stab and
Gurevych (2017). The same holds true for the model of Pers-
ing and Ng (2016).

SDenoted Fscorens in Sokolova and Lapalme (2009).
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| STagprcc LSTM-ER  ILP | HUB
Essay 90.04 90.57
Paragraph 88.32 90.84 86.67 | 88.60

Table 5: F1 scores in % on BIO tagging task.

such as encoding AM as a dependency parsing
problem, as a sequence tagging problem with par-
ticular label set, as a multi-task sequence tagging
problem, and as a problem with both sequential
and tree structure information. We show that (1)
neural computational AM is as good or (substan-
tially) better than a competing feature-based ILP
formulation, while eliminating the need for man-
ual feature engineering and costly ILP constraint
designing. (2) BILSTM taggers perform very well
for component identification, as demonstrated for
our STagy frameworks, for 7' = BLCC and T' =
BL, as well as for LSTM-ER (BLC tagger). (3)
(Naively) coupling component and relation identi-
fication is not optimal, but both tasks should be
treated separately, but modeled jointly. (4) Re-
lation identification is more difficult: when there
are few entities in a text (“short documents”), a
more general framework such as that provided in
LSTM-ER performs reasonably well. When there
are many entities (“long documents”), a more re-
strained modeling is preferable. These are also
our policy recommendations. Our work yields new
state-of-the-art results in end-to-end AM on the PE
dataset from Stab and Gurevych (2017).

Another possible framing, not considered here,
is to frame AM as an encoder-decoder problem
(Bahdanau et al., 2015; Vinyals et al., 2015). This
is an even more general modeling than LSTM-ER.
Its suitability for the end-to-end learning task is
scope for future work, but its adequacy for com-
ponent classification and relation identification has
been investigated in Potash et al. (2016).
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Abstract

Harnessing the statistical power of neu-
ral networks to perform language under-
standing and symbolic reasoning is dif-
ficult, when it requires executing effi-
cient discrete operations against a large
knowledge-base. In this work, we intro-
duce a Neural Symbolic Machine (NSM),
which contains (a) a neural “program-
mer”, i.e., a sequence-to-sequence model
that maps language utterances to programs
and utilizes a key-variable memory to han-
dle compositionality (b) a symbolic “com-
puter”, i.e., a Lisp interpreter that performs
program execution, and helps find good
programs by pruning the search space.
We apply REINFORCE to directly opti-
mize the task reward of this structured
prediction problem. To train with weak
supervision and improve the stability of
REINFORCE we augment it with an it-
erative maximum-likelihood training pro-
cess. NSM outperforms the state-of-the-
art on the WEBQUESTIONSSP dataset
when trained from question-answer pairs
only, without requiring any feature engi-
neering or domain-specific knowledge.

1 Introduction

Deep neural networks have achieved impressive
performance in supervised classification and struc-
tured prediction tasks such as speech recognition
(Hinton et al., 2012), machine translation (Bah-
danau et al., 2014; Wu et al., 2016) and more.
However, training neural networks for semantic
parsing (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005; Liang et al., 2011) or program
induction, where language is mapped to a sym-

*Work done while the author was interning at Google
T Work done while the author was visiting Google
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x: Largest city in the US = y: NYC
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Figure 1: The main challenges of training a semantic parser
from weak supervision: (a) compositionality: we use vari-
ables (vo,v1,v2) to store execution results of intermediate
generated programs. (b) search: we prune the search space
and augment REINFORCE with pseudo-gold programs.

bolic representation that is executed by an execu-
tor, through weak supervision remains challeng-
ing. This is because the model must interact with a
symbolic executor through non-differentiable op-
erations to search over a large program space.

In semantic parsing, recent work handled this
(Dong and Lapata, 2016; Jia and Liang, 2016)
by training from manually annotated programs
and avoiding program execution at training time.
However, annotating programs is known to be ex-
pensive and scales poorly. In program induc-
tion, attempts to address this problem (Graves
et al., 2014; Reed and de Freitas, 2016; Kaiser
and Sutskever, 2015; Graves et al., 2016b; An-
dreas et al., 2016) either utilized low-level mem-
ory (Zaremba and Sutskever, 2015), or required
memory to be differentiable (Neelakantan et al.,
2015; Yin et al., 2015) so that the model can be
trained with backpropagation. This makes it dif-
ficult to use the efficient discrete operations and
memory of a traditional computer, and limited the
application to synthetic or small knowledge bases.

In this paper, we propose to utilize the mem-
ory and discrete operations of a traditional com-
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puter in a novel Manager-Programmer-Computer
(MPC) framework for neural program induction,
which integrates three components:

1. A “manager” that provides weak supervi-
sion (e.g., ‘NYC’ in Figure 1) through a re-
ward indicating how well a task is accom-
plished. Unlike full supervision, weak super-

vision is easy to obtain at scale (Section 3.1).

A “programmer” that takes natural lan-

guage as input and generates a program that

is a sequence of tokens (Figure 2). The pro-
grammer learns from the reward and must
overcome the hard search problem of finding

correct programs (Section 2.2).

. A “computer” that executes programs in a
high level programming language. Its non-
differentiable memory enables abstract, scal-
able and precise operations, but makes train-
ing more challenging (Section 2.3). To help
the “programmer” prune the search space,
it provides a friendly neural computer in-
terface, which detects and eliminates invalid
choices (Section 2.1).

Within this framework, we introduce the Neu-
ral Symbolic Machine (NSM) and apply it to se-
mantic parsing. NSM contains a neural sequence-
to-sequence (seq2seq) “programmer’” (Sutskever
et al., 2014) and a symbolic non-differentiable
Lisp interpreter (‘“computer”) that executes pro-
grams against a large knowledge-base (KB).

Our technical contribution in this work is three-
fold. First, to support language compositionality,
we augment the standard seq2seq model with a
key-variable memory to save and reuse intermedi-
ate execution results (Figure 1). This is a novel ap-
plication of pointer networks (Vinyals et al., 2015)
to compositional semantics.

Second, to alleviate the search problem of find-
ing correct programs when training from question-
answer pairs,we use the computer to execute par-
tial programs and prune the programmer’s search
space by checking the syntax and semantics of
generated programs. This generalizes the weakly
supervised semantic parsing framework (Liang
et al., 2011; Berant et al., 2013) by leveraging se-
mantic denotations during structural search.

Third, to train from weak supervision and di-
rectly maximize the expected reward we turn
to the REINFORCE (Williams, 1992) algorithm.
Since learning from scratch is difficult for RE-
INFORCE, we combine it with an iterative max-
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imum likelihood (ML) training process, where
beam search is used to find pseudo-gold programs,
which are then used to augment the objective of
REINFORCE.

On the WEBQUESTIONSSP dataset (Yih et al.,
2016), NSM achieves new state-of-the-art results
with weak supervision, significantly closing the
gap between weak and full supervision for this
task. Unlike prior works, it is trained end-to-
end, and does not require feature engineering or
domain-specific knowledge.

2 Neural Symbolic Machines

We now introduce NSM by first describing the
“computer”, a non-differentiable Lisp interpreter
that executes programs against a large KB and pro-
vides code assistance (Section 2.1). We then pro-
pose a seq2seq model (“programmer”) that sup-
ports compositionality using a key-variable mem-
ory to save and reuse intermediate results (Sec-
tion 2.2). Finally, we describe a training procedure
that is based on REINFORCE, but is augmented
with pseudo-gold programs found by an iterative
ML training procedure (Section 2.3).

Before diving into details, we define the seman-
tic parsing task: given a knowledge base K, and
a question x = (w1, wa, ..., wy,), produce a pro-
gram or logical form z that when executed against
K generates the right answer y. Let £ denote a
set of entities (e.g., ABELINCOLN),! and let P de-
note a set of properties (e.g., PLACEOFBIRTH). A
knowledge base K is a set of assertions or triples
(e1,p,e2) € € X P x &, such as (ABELINCOLN,
PLACEOFBIRTH, HODGENVILLE).

2.1 Computer: Lisp Interpreter with Code
Assistance

Semantic parsing typically requires using a set of
operations to query the knowledge base and pro-
cess the results. Operations learned with neural
networks such as addition and sorting do not per-
fectly generalize to inputs that are larger than the
ones observed in the training data (Graves et al.,
2014; Reed and de Freitas, 2016). In contrast, op-
erations implemented in high level programming
languages are abstract, scalable, and precise, thus
generalizes perfectly to inputs of arbitrary size.
Based on this observation, we implement opera-
tions necessary for semantic parsing with an or-

"We also consider numbers (e.g., “1.33”) and date-times
(e.g., “1999-1-17) as entities.



dinary programming language instead of trying to
learn them with a neural network.

We adopt a Lisp interpreter as the “com-
puter”. A program C is a list of expressions
(c1...cn), where each expression is either a spe-
cial token “Return” indicating the end of the pro-
gram, or a list of tokens enclosed by parentheses
“(FAy...Ag)”. F is a function, which takes as
input K arguments of specific types. Table 1 de-
fines the semantics of each function and the types
of its arguments (either a property p or a variable
r). When a function is executed, it returns an en-
tity list that is the expression’s denotation in K,
and save it to a new variable.

By introducing variables that save the interme-
diate results of execution, the program naturally
models language compositionality and describes
from left to right a bottom-up derivation of the full
meaning of the natural language input, which is
convenient in a seq2seq model (Figure 1). This
is reminiscent of the floating parser (Wang et al.,
2015; Pasupat and Liang, 2015), where a deriva-
tion tree that is not grounded in the input is incre-
mentally constructed.

The set of programs defined by our functions is
equivalent to the subset of A-calculus presented in
(Yih et al., 2015). We did not use full Lisp pro-
gramming language here, because constructs like
control flow and loops are unnecessary for most
current semantic parsing tasks, and it is simple to
add more functions to the model when necessary.

To create a friendly neural computer interface,
the interpreter provides code assistance to the pro-
grammer by producing a list of valid tokens at each
step. First, a valid token should not cause a syntax
error: e.g., if the previous token is “(”, the next to-
ken must be a function name, and if the previous
token is “Hop”, the next token must be a variable.
More importantly, a valid token should not cause
a semantic (run-time) error: this is detected using
the denotation saved in the variables. For example,
if the previously generated tokens were “( Hop 17,
the next available token is restricted to properties
{p| Je,e’ : e € r,(e,p,€') € K} that are reach-
able from entities in  in the KB. These checks are
enabled by the variables and can be derived from
the definition of the functions in Table 1. The in-
terpreter prunes the “programmer’’s search space
by orders of magnitude, and enables learning from
weak supervision on a large KB.
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2.2 Programmer: Seq2seq Model with
Key-Variable Memory

Given the “computer”, the “programmer” needs to
map natural language into a program, which is a
sequence of tokens that reference operations and
values in the “computer”. We base our program-
mer on a standard seq2seq model with attention,
but extend it with a key-variable memory that al-
lows the model to learn to represent and refer to
program variables (Figure 2).

Sequence-to-sequence models consist of two
RNNs, an encoder and a decoder. We used a
1-layer GRU (Cho et al., 2014) for both the en-
coder and decoder. Given a sequence of words
w1, Wa... Wy, each word w; is mapped to an em-
bedding ¢; (embedding details are in Section 3).
Then, the encoder reads these embeddings and up-
dates its hidden state step by step using hy;y1 =
GRU(ht7 qt, eEncoder)s where aEncoder are the
GRU parameters. The decoder updates its hid-
den states ug by w1 = GRU (ug, ¢t—1, O pecoder )
where c;_1 is the embedding of last step’s output
token a;—1, and Opecoder are the GRU parame-
ters. The last hidden state of the encoder hrp is
used as the decoder’s initial state. We also adopt a
dot-product attention similar to Dong and Lapata
(2016). The tokens of the program ay, as...a, are
generated one by one using a softmax over the vo-
cabulary of valid tokens at each step, as provided
by the “computer” (Section 2.1).

To achieve compositionality, the decoder must
learn to represent and refer to intermediate vari-
ables whose value was saved in the “computer”
after execution. Therefore, we augment the model
with a key-variable memory, where each entry
has two components: a continuous embedding key
v;, and a corresponding variable token R; refer-
encing the value in the “computer” (see Figure 2).
During encoding, we use an entity linker to link
text spans (e.g., “US”) to KB entities. For each
linked entity we add a memory entry where the key
is the average of GRU hidden states over the entity
span, and the variable token (R;) is the name of a
variable in the computer holding the linked entity
(m.USA) as its value. During decoding, when a
full expression is generated (i.e., the decoder gen-
erates “)”), it gets executed, and the result is stored
as the value of a new variable in the “computer”.
This variable is keyed by the GRU hidden state at
that step. When a new variable R; with key em-
bedding v; is added into the key-variable memory,



(HOpr) = {62|€1 e, (61’p’ 62) € K}
(ArgMaxrp) = {eile; € r,3es € £ : (e1,p,e2) € K, Ve : (e1,p,e) € K ea > e}
(ArgMinrp) = {eile1 € r,dea € £ : (e1,p,e2) € K, Ve : (e1,p,e) € K,ea < e}
( Filterryrap ) = {e1ler € r1,3e2 € ra: (e1,p,e2) € K}

Table 1: Interpreter functions. r represents a variable, p a property in Freebase. > and < are defined on numbers and dates.
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Figure 2: Semantic Parsing with NSM. The key embeddings of the key-variable memory are the output of the sequence model
at certain encoding or decoding steps. For illustration purposes, we also show the values of the variables in parentheses, but the
sequence model never sees these values, and only references them with the name of the variable (“R;”). A special token “GO”
indicates the start of decoding, and “Rerurn” indicates the end of decoding.

the token R; is added into the decoder vocabu-
lary with v; as its embedding. The final answer
returned by the “programmer” is the value of the
last computed variable.

Similar to pointer networks (Vinyals et al.,
2015), the key embeddings for variables are dy-
namically generated for each example. During
training, the model learns to represent variables by
backpropagating gradients from a time step where
a variable is selected by the decoder, through the
key-variable memory, to an earlier time step when
the key embedding was computed. Thus, the en-
coder/decoder learns to generate representations
for variables such that they can be used at the right
time to construct the correct program.

While the key embeddings are differentiable,
the values referenced by the variables (lists of
entities), stored in the “computer”, are symbolic
and non-differentiable. This distinguishes the key-
variable memory from other memory-augmented
neural networks that use continuous differentiable
embeddings as the values of memory entries (We-
ston et al., 2014; Graves et al., 2016a).

2.3 Training NSM with Weak Supervision

NSM executes non-differentiable operations
against a KB, and thus end-to-end backpropa-
gation is not possible. Therefore, we base our
training procedure on REINFORCE (Williams,
1992; Norouzi et al., 2016). When the reward
signal is sparse and the search space is large,
it is common to utilize some full supervision
to pre-train REINFORCE (Silver et al., 2016).
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To train from weak supervision, we suggest an
iterative ML procedure for finding pseudo-gold
programs that will bootstrap REINFORCE.

REINFORCE We can formulate training as a
reinforcement learning problem: given a question
x, the state, action and reward at each time step ¢ €
{0,1,..., T} are (s¢, at, ¢). Since the environment
is deterministic, the state is defined by the question
x and the action sequence: s; = (x, agp.;—1), where
agpt—1 = (ag, ..., a;—1) is the history of actions at
time ¢. A valid action at time ¢ is a; € A(sy),
where A(s;) is the set of valid tokens given by the
“computer”. Since each action corresponds to a
token, the full history ag.7 corresponds to a pro-
gram. The reward r, = I[t = T] - Fi(x,ao.1)
is non-zero only at the last step of decoding, and
is the F score computed comparing the gold an-
swer and the answer generated by executing the
program ag.7. Thus, the cumulative reward of a
program ag.7 is

R(x,a0.7) = ZTt = Fi(z,ao.7).
t

The agent’s decision making procedure at each
time is defined by a policy, mg(s,a) = Py(a; =
alx,apt—1), where 0 are the model parameters.
Since the environment is deterministic, the prob-
ability of generating a program ag.r is

Py(ao.r|z) = Hpe(at |z, a0:¢—1).
t

We can define our objective to be the expected
cumulative reward and use policy gradient meth-



ods such as REINFORCE for training. The objec-
tive and gradient are:

JRL(H) = Z EPG(GO:T|4U) [R(z, ao.7)];

Vo " (0) =Y ) Pylaor | ) - [R(w, agr)—

T ag.T

B(x)] . V@ log Pg(ao;T ‘ x),

where B(z) = >, Pplaor | )R(x, ap.r) is
a baseline that reduces the variance of the gradi-
ent estimation without introducing bias. Having a
separate network to predict the baseline is an in-
teresting future direction.

While REINFORCE assumes a stochastic pol-
icy, we use beam search for gradient estimation.
Thus, in contrast with common practice of ap-
proximating the gradient by sampling from the
model, we use the top-k action sequences (pro-
grams) in the beam with normalized probabilities.
This allows training to focus on sequences with
high probability, which are on the decision bound-
aries, and reduces the variance of the gradient.

Empirically (and in line with prior work), RE-
INFORCE converged slowly and often got stuck
in local optima (see Section 3). The difficulty of
training resulted from the sparse reward signal in
the large search space, which caused model prob-
abilities for programs with non-zero reward to be
very small at the beginning. If the beam size k is
small, good programs fall off the beam, leading to
zero gradients for all programs in the beam. If the
beam size k is large, training is very slow, and the
normalized probabilities of good programs when
the model is untrained are still very small, leading
to (1) near zero baselines, thus near zero gradients
on “bad” programs (2) near zero gradients on good
programs due to the low probability Py(ag.r | x).
To combat this, we present an alternative training
strategy based on maximum-likelihood.

Iterative ML If we had gold programs, we
could directly optimize their likelihood. Since we
do not have gold programs, we can perform an
iterative procedure (similar to hard Expectation-
Maximization (EM)), where we search for good
programs given fixed parameters, and then opti-
mize the probability of the best program found so
far. We do decoding on an example with a large
beam size and declare ab%? () to be the pseudo-
gold program, which achieved highest reward with
shortest length among the programs decoded on x
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in all previous iterations. Then, we can optimize
the ML objective:
(z) | =)

TME9) = "log Py(afes! (1)

A question z is not included if we did not find any
program with positive reward.

Training with iterative ML is fast because there
is at most one program per example and the gra-
dient is not weighted by model probability. while
decoding with a large beam size is slow, we could
train for multiple epochs after each decoding. This
iterative process has a bootstrapping effect that a

better model leads to a better program a’%s(z)
()

through decoding, and a better program agf%t
leads to a better model through training.

Even with a large beam size, some programs are
hard to find because of the large search space. A
common solution to this problem is to use curricu-
lum learning (Zaremba and Sutskever, 2015; Reed
and de Freitas, 2016). The size of the search space
is controlled by both the set of functions used in
the program and the program length. We apply
curriculum learning by gradually increasing both
these quantities (see details in Section 3) when
performing iterative ML.

Nevertheless, iterative ML uses only pseudo-
gold programs and does not directly optimize
the objective we truly care about. This has two
adverse effects: (1) The best program a%s! ()
could be a spurious program that accidentally pro-
duces the correct answer (e.g., using the prop-
erty PLACEOFBIRTH instead of PLACEOFDEATH
when the two places are the same), and thus does
not generalize to other questions. (2) Because
training does not observe full negative programs,
the model often fails to distinguish between to-
kens that are related to one another. For exam-
ple, differentiating PARENTSOF vs. SIBLINGSOF
vs. CHILDRENOF can be challenging. We now
present learning where we combine iterative ML
with REINFORCE.

Augmented REINFORCE To bootstrap REIN-
FORCE, we can use iterative ML to find pseudo-
gold programs, and then add these programs to the
beam with a reasonably large probability. This is
similar to methods from imitation learning (Ross
et al., 2011; Jiang et al., 2012) that define a
proposal distribution by linearly interpolating the
model distribution and an oracle.



Algorithm 1 IML-REINFORCE

Input: question-answer pairs D = {(z;, y;)}, mix ratio
a, reward function R(-), training iterations Nasr., Nrr,
and beam sizes Barr, Brr.
Procedure:
Initialize C;
Initialize model 6 randomly
for n = 1to Ny do
for (z,y)in D do
C < Decode By, programs given x
for jin1...|C| do
if Ry,y(C;) > Ra,y(C;) then C; < C;
0 < ML training with Dpr, = {(z,C5)}
> REINFORCE

() the best program so far for =
> Iterative ML

Initialize model 6 randomly
for n =1to Ngyr, do
Dgr < () is the RL training set
for (z,y)in D do
C < Decode Bry, programs from x
for jin1...C|do
if Rw,y(C]) > Rr,y(C;) then C; — Cj
C«+ Ccu{Cc;}
for jin1...C|do

pi + (1-a) <2

5 Wherep; = Py (Cj | x)
i’ Pyl

if Cj :C; thenﬁj <—ﬁj+a

DRL — DRL @] {(l’, Cj7ﬁj)}
0 < REINFORCE training with Dr,

Algorithm 1 describes our overall training pro-
cedure. We first run iterative ML for N, itera-
tions and record the best program found for every
example x;. Then, we run REINFORCE, where
we normalize the probabilities of the programs in
beam to sum to (1—«) and add « to the probability
of the best found program C*(z;). Consequently,
the model always puts a reasonable amount of
probability on a program with high reward during
training. Note that we randomly initialized the pa-
rameters for REINFORCE, since initializing from
the final ML parameters seems to get stuck in a
local optimum and produced worse results.

On top of imitation learning, our approach is
related to the common practice in reinforcement
learning (Schaul et al., 2016) to replay rare suc-
cessful experiences to reduce the training variance
and improve training efficiency. This is also simi-
lar to recent developments (Wu et al., 2016) in ma-
chine translation, where ML and RL objectives are
linearly combined, because anchoring the model
to some high-reward outputs stabilizes training.

3 Experiments and Analysis

We now empirically show that NSM can learn
a semantic parser from weak supervision over a
large KB. We evaluate on WEBQUESTIONSSP, a
challenging semantic parsing dataset with strong
baselines. Experiments show that NSM achieves
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new state-of-the-art performance on WEBQUES-
TIONSSP with weak supervision, and significantly
closes the gap between weak and full supervisions
for this task.

3.1 The WEBQUESTIONSSP dataset

The WEBQUESTIONSSP dataset (Yih et al., 2016)
contains full semantic parses for a subset of the
questions from WEBQUESTIONS (Berant et al.,
2013), because 18.5% of the original dataset were
found to be “not answerable”. It consists of 3,098
question-answer pairs for training and 1,639 for
testing, which were collected using Google Sug-
gest API, and the answers were originally obtained
using Amazon Mechanical Turk workers. They
were updated in (Yih et al., 2016) by annotators
who were familiar with the design of Freebase and
added semantic parses. We further separated out
620 questions from the training set as a validation
set. For query pre-processing we used an in-house
named entity linking system to find the entities in a
question. The quality of the entity linker is similar
to that of (Yih et al., 2015) at 94% of the gold root
entities being included. Similar to Dong and Lap-
ata (2016), we replaced named entity tokens with
a special token “ENT”. For example, the question
“who plays meg in family guy” is changed to “who
plays ENT in ENT ENT”. This helps reduce over-
fitting, because instead of memorizing the correct
program for a specific entity, the model has to fo-
cus on other context words in the sentence, which
improves generalization.

Following (Yih et al., 2015) we used the last
publicly available snapshot of Freebase (Bollacker
et al., 2008). Since NSM training requires ran-
dom access to Freebase during decoding, we pre-
processed Freebase by removing predicates that
are not related to world knowledge (starting with
“/common/”, “/type/”, “/freebase/”),> and remov-
ing all text valued predicates, which are rarely the
answer. Out of all 27K relations, 434 relations are
removed during preprocessing. This results in a
graph that fits in memory with 23K relations, 82M
nodes, and 417M edges.

3.2 Model Details

For pre-trained word embeddings, we used the
300 dimension GloVe word embeddings trained
on 840B tokens (Pennington et al., 2014). On
the encoder side, we added a projection matrix to

>We kept “/common/topic/notable_types”.



transform the embeddings into 50 dimensions. On
the decoder side, we used the same GloVe embed-
dings to construct an embedding for each property
using its Freebase id, and also added a projection
matrix to transform this embedding to 50 dimen-
sions. A Freebase id contains three parts: domain,
type, and property. For example, the Freebase
id for PARENTSOF is “/people/person/parents”.
“people” is the domain, “person” is the type
and “parents” is the property. The embedding
is constructed by concatenating the average of
word embeddings in the domain and type name
to the average of word embeddings in the prop-
erty name. For example, if the embedding dimen-
sion is 300, the embedding dimension for “/peo-
ple/person/parents” will be 600. The first 300 di-
mensions will be the average of the embeddings
for “people” and “person”, and the second 300
dimensions will be the embedding for “parents”.

The dimension of encoder hidden state, decoder
hidden state and key embeddings are all 50. The
embeddings for the functions and special tokens
(e.g., “UNK”, “GO”) are randomly initialized by a
truncated normal distribution with mean=0.0 and
stddev=0.1. All the weight matrices are initialized
with a uniform distribution in [—@, ?] where d
is the input dimension. Dropout rate is set to 0.5,
and we see a clear tendency for larger dropout rate
to produce better performance, indicating overfit-
ting is a major problem for learning.

3.3 Training Details

In iterative ML training, the decoder uses a beam
of size £ = 100 to update the pseudo-gold pro-
grams and the model is trained for 20 epochs after
each decoding step. We use the Adam optimizer
(Kingma and Ba, 2014) with initial learning rate
0.001. In our experiment, this process usually con-
verges after a few (5-8) iterations.

For REINFORCE training, the best hyperpa-
rameters are chosen using the validation set. We
use a beam of size k¥ = 5 for decoding, and « is
set to 0.1. Because the dataset is small and some
relations are only used once in the whole training
set, we train the model on the entire training set
for 200 iterations with the best hyperparameters.
Then we train the model with learning rate de-
cay until convergence. Learning rate is decayed as
9 = go x 875 where go = 0.001, 8 = 0.5
m = 1000, and ¢, is the number of training steps
at the end of iteration 200.
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Since decoding needs to query the knowledge
base (KB) constantly, the speed bottleneck for
training is decoding. We address this problem
in our implementation by partitioning the dataset,
and using multiple decoders in parallel to han-
dle each partition. We use 100 decoders, which
queries 50 KG servers, and one trainer. The neu-
ral network model is implemented in TensorFlow.
Since the model is small, we didn’t see a signif-
icant speedup by using GPU, so all the decoders
and the trainer are using CPU only.

Inspired by the staged generation process in Yih
et al. (2015), curriculum learning includes two
steps. We first run iterative ML for 10 iterations
with programs constrained to only use the “Hop”
function and the maximum number of expressions
is 2. Then, we run iterative ML again, but use both
“Hop” and “Filter”. The maximum number of ex-
pressions is 3, and the relations used by “Hop” are
restricted to those that appeared in a2 (g) in the
first step.

3.4 Results and discussion

We evaluate performance using the offical evalu-
ation script for WEBQUESTIONSSP. Because the
answer to a question may contain multiple enti-
ties or values, precision, recall and F1 are com-
puted based on the output of each individual ques-
tion, and average F1 is reported as the main eval-
uation metric. Accuracy measures the proportion
of questions that are answered exactly.

A comparison to STAGG, the previous state-of-
the-art model (Yih et al., 2016, 2015), is shown
in Table 2. Our model beats STAGG with weak
supervision by a significant margin on all metrics,
while relying on no feature engineering or hand-
crafted rules. When STAGG is trained with strong
supervision it obtains an F1 of 71.7, and thus NSM
closes half the gap between training with weak and
full supervision.

Model \ Prec. \ Rec. \ F1 \ Acc.

STAGG | 673 | 73.1 | 66.8 | 58.8
NSM 70.8 | 76.0 | 69.0 | 59.5

Table 2: Results on the test set. Average F1 is the main evalu-
ation metric and NSM outperforms STAGG with no domain-
specific knowledge or feature engineering.

Four key ingredients lead to the final perfor-
mance of NSM. The first one is the neural com-
puter interface that provides code assistance by
checking for syntax and semantic errors. We find



that semantic checks are very effective for open-
domain KBs with a large number of properties.
For our task, the average number of choices is re-
duced from 23K per step (all properties) to less
than 100 (the average number of properties con-
nected to an entity).

The second ingredient is augmented REIN-
FORCE training. Table 3 compares augmented
REINFORCE, REINFORCE, and iterative ML on
the validation set. REINFORCE gets stuck in lo-
cal optimum and performs poorly. Iterative ML
training is not directly optimizing the F1 measure,
and achieves sub-optimal results. In contrast, aug-
mented REINFORCE is able to bootstrap using
pseudo-gold programs found by iterative ML and
achieves the best performance on both the training
and validation set.

Settings Train F1 | Valid F1
Iterative ML 68.6 60.1
REINFORCE 55.1 47.8
Augmented REINFORCE 83.0 67.2

Table 3: Average F1 on the validation set for augmented RE-
INFORCE, REINFORCE, and iterative ML.

The third ingredient is curriculum learning dur-
ing iterative ML. We compare the performance of
the best programs found with and without curricu-
lum learning in Table 4. We find that the best pro-
grams found with curriculum learning are substan-
tially better than those found without curriculum
learning by a large margin on every metric.

Settings ‘ Prec. ‘ Rec. ‘ F1 ‘ Acc.
No curriculum | 79.1 | 91.1 | 78.5 | 67.2
Curriculum 88.6 | 96.1 | 89.5 | 79.8

Table 4: Evaluation of the programs with the highest F1 score
besty with and without curriculum learning.

in the beam (ag';
The last important ingredient is reducing over-
fitting. Given the small size of the dataset, over-
fitting is a major problem for training neural net-
work models. We show the contributions of dif-
ferent techniques for controlling overfitting in Ta-
ble 5. Note that after all the techniques have been
applied, the model is still overfitting with training
F1@1=83.0% and validation F1@1=67.2%.
Among the programs generated by the model,
a significant portion (36.7%) uses more than one
expression. From Table 6, we can see that the per-
formance doesn’t decrease much as the composi-
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Settings | AF1@I
—Pretrained word embeddings —5.5
—Pretrained property embeddings —2.7
—Dropout on GRU input and output —24
—Dropout on softmax —1.1
—Anonymize entity tokens —-2.0

Table 5: Contributions of different overfitting techniques on
the validation set.

#Expressions ‘ 0 ‘ 1 ‘ 2 ‘ 3
Percentage 04% | 62.9% | 29.8% | 6.9%
Fl 0.0 73.5 59.9 | 70.3

Table 6: Percentage and performance of model generated
programs with different complexity (number of expressions).

tional depth increases, indicating that the model
is effective at capturing compositionality. We ob-
serve that programs with three expressions use a
more limited set of properties, mainly focusing on
answering a few types of questions such as “who
plays meg in family guy”, “what college did jeff
corwin go to” and “which countries does russia
border”. In contrast, programs with two expres-
sions use a more diverse set of properties, which
could explain the lower performance compared to

programs with three expressions.

Error analysis Error analysis on the validation

set shows two main sources of errors:
1. Search failure: Programs with high reward
are not found during search for pseudo-gold
programs, either because the beam size is not
large enough, or because the set of functions
implemented by the interpreter is insufficient.
The 89.5% F1 score in Table 4 indicates that
at least 10% of the questions are of this kind.

. Ranking failure: Programs with high reward
exist in the beam, but are not ranked at the
top during decoding. Because the training er-
ror is low, this is largely due to overfitting or
spurious programs. The 67.2% F1 score in
Table 3 indicates that about 20% of the ques-
tions are of this kind.

4 Related work

Among deep learning models for program in-
duction, Reinforcement Learning Neural Turing
Machines (RL-NTMs) (Zaremba and Sutskever,
2015) are the most similar to NSM, as a non-
differentiable machine is controlled by a sequence



model. Therefore, both models rely on REIN-
FORCEE for training. The main difference between
the two is the abstraction level of the programming
language. RL-NTM uses lower level operations
such as memory address manipulation and byte
reading/writing, while NSM uses a high level pro-
gramming language over a large knowledge base
that includes operations such as following proper-
ties from entities, or sorting based on a property,
which is more suitable for representing semantics.
Earlier works such as OOPS (Schmidhuber, 2004)
has desirable characteristics, for example, the abil-
ity to define new functions. These remain to be
future improvements for NSM.

We formulate NSM training as an instance of
reinforcement learning (Sutton and Barto, 1998)
in order to directly optimize the task reward of
the structured prediction problem (Norouzi et al.,
2016; Li et al., 2016; Yu et al., 2017). Compared
to imitation learning methods (Daume et al., 2009;
Ross et al., 2011) that interpolate a model dis-
tribution with an oracle, NSM needs to solve a
challenging search problem of training from weak
supervisions in a large search space. Our solu-
tion employs two techniques (a) a symbolic “com-
puter” helps find good programs by pruning the
search space (b) an iterative ML training pro-
cess, where beam search is used to find pseudo-
gold programs. Wiseman and Rush (Wiseman
and Rush, 2016) proposed a max-margin approach
to train a sequence-to-sequence scorer. However,
their training procedure is more involved, and we
did not implement it in this work. MIXER (Ran-
zato et al., 2015) also proposed to combine ML
training and REINFORCE, but they only con-
sidered tasks with full supervisions. Berant and
Liang (Berant and Liang, 2015) applied imita-
tion learning to semantic parsing, but still requires
hand crafted grammars and features.

NSM is similar to Neural Programmer (Nee-
lakantan et al., 2015) and Dynamic Neural Mod-
ule Network (Andreas et al., 2016) in that they
all solve the problem of semantic parsing from
structured data, and generate programs using sim-
ilar semantics. The main difference between these
approaches is how an intermediate result (the
memory) is represented. Neural Programmer and
Dynamic-NMN chose to represent results as vec-
tors of weights (row selectors and attention vec-
tors), which enables backpropagation and search
through all possible programs in parallel. How-
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ever, their strategy is not applicable to a large
KB such as Freebase, which contains about 100M
entities, and more than 20k properties. Instead,
NSM chooses a more scalable approach, where
the “computer” saves intermediate results, and the
neural network only refers to them with variable
names (e.g., “R;” for all cities in the US).

NSM is similar to the Path Ranking Algorithm
(PRA) (Lao et al., 2011) in that semantics is en-
coded as a sequence of actions, and denotations
are used to prune the search space during learning.
NSM is more powerful than PRA by 1) allowing
more complex semantics to be composed through
the use of a key-variable memory; 2) controlling
the search procedure with a trained neural net-
work, while PRA only samples actions uniformly;
3) allowing input questions to express complex re-
lations, and then dynamically generating action
sequences. PRA can combine multiple seman-
tic representations to produce the final prediction,
which remains to be future work for NSM.

5 Conclusion

We propose the Manager-Programmer-Computer
framework for neural program induction. It in-
tegrates neural networks with a symbolic non-
differentiable computer to support abstract, scal-
able and precise operations through a friendly
neural computer interface. Within this frame-
work, we introduce the Neural Symbolic Machine,
which integrates a neural sequence-to-sequence
“programmer” with key-variable memory, and a
symbolic Lisp interpreter with code assistance.
Because the interpreter is non-differentiable and to
directly optimize the task reward, we apply REIN-
FORCE and use pseudo-gold programs found by
an iterative ML training process to bootstrap train-
ing. NSM achieves new state-of-the-art results on
a challenging semantic parsing dataset with weak
supervision, and significantly closes the gap be-
tween weak and full supervision. It is trained end-
to-end, and does not require any feature engineer-
ing or domain-specific knowledge.
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Abstract

Relation extraction has been widely used
for finding unknown relational facts from
the plain text. Most existing methods fo-
cus on exploiting mono-lingual data for
relation extraction, ignoring massive in-
formation from the texts in various lan-
guages. To address this issue, we intro-
duce a multi-lingual neural relation ex-
traction framework, which employs mono-
lingual attention to utilize the information
within mono-lingual texts and further pro-
poses cross-lingual attention to consider
the information consistency and comple-
mentarity among cross-lingual texts. Ex-
perimental results on real-world datasets
show that our model can take advan-
tage of multi-lingual texts and consistently
achieve significant improvements on re-
lation extraction as compared with base-
lines. The source code of this paper can
be obtained from https://github.
com/thunlp/MNRE

1 Introduction

People build many large-scale knowledge bases
(KBs) to store structured knowledge about the real
world, such as Wikidata! and DBpedia’>. KBs
are playing an important role in many Al and
NLP applications such as information retrieval
and question answering. The facts in KBs are
typically organized in the form of triplets, e.g.,
(New York, CityOf, United States). Since ex-
isting KBs are far from complete and new facts
are growing infinitely, meanwhile manual anno-
tation of these knowledge is time-consuming and
Liu  (li-
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human-intensive, many works have been devoted
to automated extraction of novel facts from vari-
ous Web resources, where relation extraction (RE)
from plain texts is one the most important knowl-
edge sources.

Among various methods for relation extraction,
distant supervision is the most promising approach
(Mintz et al., 2009; Riedel et al., 2010; Hoffmann
et al., 2011; Surdeanu et al., 2012), which can au-
tomatically generate training instances via aligning
KBs and texts to address the issue of lacking super-
vised data. As the development of deep learning,
Zeng et al. (2015) introduce neural networks to ex-
tract relations with automatically learned features
from training instances. To address the wrong
labelling issue of distant supervision data, Lin
et al. (2016) further employ sentence-level atten-
tion mechanism in neural relation extraction, and
achieves the state-of-the-art performance.

However, most RE systems concentrate on ex-
tracting relational facts from mono-lingual data. In
fact, people describe knowledge about the world
using various languages. And people speaking
different languages also share similar knowledge
about the world due to the similarities of human
experiences and human cognitive systems. For in-
stance, though New York and United States are ex-
pressed as 2229 and % [ respectively in Chinese,
both Americans and Chinese share the fact that
“New York is a city of USA.”

It is straightforward to build mono-lingual RE
systems separately for each single language. But
if so, it won’t be able to take full advantage of di-
verse information hidden in the data of various lan-
guages. Multi-lingual data will benefit relation ex-
traction for the following two reasons: 1. Consis-
tency. According to the distant supervision data in
our experiments?, we find that over half of Chinese

3The data is generated by aligning Wikidata with Chinese
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Relation | City in

English | 1. New York is a city in the northeastern
United States.

Chinese | 1. AAHLETERAHMNE A KB F

LR, REBRE—RRTAF — KB
(New York is in the United States New York
and on the Atlantic coast of the southeast At-
lantic, is the largest city and largest port in
the United States.)

2. AAHREBAD KL EBMT. (New
York is the most populous city in the
United States)

Table 1: Anexample of Chinese sentences and En-
glish sentence about the same relational fact (New
York,CityOf£, United States). Important parts are
highlighted with bold face.

and English sentences are longer than 20 words,
in which only several words are related to the re-
lational facts. Take Table 1 for example. The
first Chinese sentence has over 20 words, in which
only “#2%” (New York) and “& % E % — K
7 (is the biggest city in the United States) ac-
tually directly reflect the relational fact CityOf.
It is thus non-trivial to locate and learn these rela-
tional patterns from complicated sentences for re-
lation extraction. Fortunately, a relational fact is
usually expressed with certain patterns in various
languages, and the correspondence of these pat-
terns among languages is substantially consistent.
The pattern consistency among languages provides
us augmented clues to enhance relational pattern
learning for relation extraction.

2. Complementarity. From our experiment
data, we also find that 42.2% relational facts in
English data and 41.6% ones in Chinese data are
unique. Moreover, for nearly half of relations, the
number of sentences expressing relational facts of
these relations varies a lot in different languages.
It is thus straightforward that the texts in differ-
ent languages can be complementary to each other,
especially from those resource-rich languages to
resource-poor languages, and improve the overall
performance of relation extraction.

To take full consideration of these issues,
we propose Multi-lingual Attention-based Neural
Relation Extraction (MNRE). We first employ a
convolutional neural network (CNN) to embed the
relational patterns in sentences into real-valued
vectors. Afterwards, to consider the complemen-
tarity of all informative sentences in various lan-

Baidu Baike and English Wikipedia articles, which will be
introduced in details in the section of experiments.
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guages and capture the consistency of relational
patterns, we apply mono-lingual attention to select
the informative sentences within each language
and propose cross-lingual attention to take advan-
tages of pattern consistency and complementarity
among languages. Finally, we classify relations
according to the global vector aggregated from all
sentence vectors weighted by mono-lingual atten-
tion and cross-lingual attention.

In experiments, we build training instances via
distant supervision by aligning Wikidata with Chi-
nese Baidu Baike and English Wikipedia articles,
and evaluate the performance of relation extraction
in both English and Chinese. The experimental
results show that our framework achieves signif-
icant improvement for relation extraction as com-
pared to all baseline methods including both mono-
lingual and multi-lingual ones. It indicates that our
framework can take full advantages of sentences
in different languages and better capture sophisti-
cated patterns expressing relations.

2 Related Work

Recent years KBs have been widely used on var-
ious Al and NLP applications. As an impor-
tant approach to enrich KBs, relation extraction
from plain text has attracted many research in-
terests. Relation extraction typically classifies
each entity pair into various relation types ac-
cording to supporting sentences that the both enti-
ties appear, which needs human-labelled relation-
specific training instances. Many works have been
invested to relation extraction including kernel-
based model (Zelenko et al., 2003), embedding-
based model (Gormley et al., 2015), CNN-based
models (Zeng et al., 2014; dos Santos et al., 2015),
and RNN-based model (Socher et al., 2012).
Nevertheless, these RE systems are insuffi-
cient due to the lack of training data. To ad-
dress this issue, Mintz et al. (2009) align plain
text with Freebase to automatically generate train-
ing instances following the distant supervision
assumption. To further alleviate the wrong la-
belling problem, Riedel et al. (2010) model dis-
tant supervision for relation extraction as a multi-
instance single-label learning problem, and Hoff-
mann et al. (2011); Surdeanu et al. (2012) regard it
as a multi-instance multi-label learning problem.
Recently, Zeng et al. (2015) attempt to connect
neural networks with distant supervision follow-
ing the expressed-at-least-once assumption. Lin
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Figure 1: Overall architecture of our multi-lingual attention which contains two languages including
English and Chinese. The solid lines indicates mono-lingual attention and the dashed lines indicates

cross-lingual attention.

etal. (2016) further utilize sentence-level attention
mechanism to consider all informative sentences
jointly.

Most existing RE systems are absorbed in ex-
tracting relations from mono-lingual data, ignor-
ing massive information lying in texts from mul-
tiple languages. In this area, Faruqui and Kumar
(2015) present a language independent open do-
main relation extraction system, and Verga et al.
(2015) further employ Universal Schema to com-
bine OpenlE and link-prediction perspective for
multi-lingual relation extraction. Both the works
focus on multi-lingual transfer learning and learn
a predictive model on a new language for existing
KBs, by leveraging unified representation learn-
ing for cross-lingual entities. Different from these
works, our framework aims to jointly model the
texts in multiple languages to enhance relation ex-
traction with distant supervision. To the best of our
knowledge, this is the first effort to multi-lingual
neural relation extraction.

The scope of multi-lingual analysis has been
widely considered in many tasks besides relation
extraction, such as sentiment analysis (Boiy and
Moens, 2009), cross-lingual document summa-
rization (Boudin et al.,2011), information retrieval
in Web search (Dong et al., 2014) and so on.

3 Methodology

In this section, we describe our proposed MNRE
framework in detail. The key motivation of MNRE
is that, for each relational fact, the relation pat-
terns in sentences of different languages should be
substantially consistent, and MNRE can utilize the
pattern consistency and complementarity among
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languages to achieve better results for relation ex-
traction.

Formally, given two entities, their correspond-
ing sentences in m different languages are de-
fined as T = {S1,5,...,5n}, where §; =
{z},23,... ,:c?j } corresponds to the sentence set
in the jth language with n; sentences. Our model
measures a score f (T, r) for each relation r, which
is expected to be high when 7 is the valid one, oth-
erwise low. The MNRE framework contains two
main components:

1. Sentence Encoder. Given a sentence x and
two target entities, we employ CNN to encode re-
lation patterns in x into a distributed representation
x. The sentence encoder can also be implemented
with GRU (Cho et al., 2014) or LSTM (Hochre-
iter and Schmidhuber, 1997). In experiments, we
find CNN can achieve a better trade-off between
computational efficiency and performance effec-
tiveness. Thus, in this paper, we focus on CNN
as the sentence encoder.

2. Multi-lingual Attention. With all sentences
in various languages encoded into distributed vec-
tor representations, we apply mono-lingual and
cross-lingual attentions to capture those infor-
mative sentences with accurate relation patterns.
MNRE further aggregates these sentence vectors
with weighted attentions into global representa-
tions for relation prediction.

We introduce the two components in detail as
follows.

3.1 Sentence Encoder

The sentence encoder aims to transform a sentence
x into its distributed representation x via CNN.
First, it embeds the words in the input sentence



into dense real-valued vectors. Next, it employs
convolutional, max-pooling and non-linear trans-
formation layers to construct the distributed repre-
sentation of the sentence, i.e., X.

3.1.1 Input Representation

Following (Zeng et al., 2014), we transform each
input word into the concatenation of two kinds of
representations: (1) a word embedding which cap-
tures syntactic and semantic meanings of the word,
and (2) a position embedding which specifies the
position information of this word with respect to
two target entities. In this way, we can repre-
sent the input sentence as a vector sequence w =
{w1, W, ...} withw; € R? whered = d®+d’x2.
(d* and d° are the dimensions of word embeddings
and position embeddings respectively)

3.1.2 Convolution, Max-pooling and
Non-linear Layers

After encoding the input sentence, we use a con-
volutional layer to extract the local features, max-
pooling, and non-linear layers to merge all local
features into a global representation.

First, the convolutional layer extracts local fea-
tures by sliding a window of length [ over the sen-
tence and perform a convolution within each slid-
ing window. Formally, the output of convolutional
layer for the ith sliding window is computed as:

pi =Ww,_; 1. +b, (1

where w;_;11.; indicates the concatenation of [
word embeddings within the i-th window, W €
R4 *(1xd) 5 the convolution matrix and b € R%
is the bias vector. ( d¢ is the dimension of output
embeddings of the convolution layer)

After that, we combines all local features via a
max-pooling operation and apply a hyperbolic tan-
gent function to obtain a fixed-sized sentence vec-
tor for the input sentence. Formally, the ith ele-
ment of the output vector x € R%" is calculated as:

[x]; = tanh (mzax(pij)). )

The final vector x is expected to efficiently en-
code relation patterns about target entities from the
input sentence.

Here, instead of max pooling operation, we can
use piecewise max pooling operation adopted by
PCNN (Zeng et al., 2015) which is a variation of
CNN to better capture the relation patterns in the
input sentence.
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3.2 Multi-lingual Attention

To exploit the information of the sentences from
all languages, our model adopts two kinds of at-
tention mechanisms for multi-lingual relation ex-
traction, including: (1) the mono-lingual atten-
tion which selects the informative sentences within
one language and (2) the cross-lingual attention
which measures the pattern consistency among
languages.

3.2.1

To address the wrong-labelling issue in distant su-
pervision, we follow the idea of sentence-level at-
tention (Lin et al., 2016) and set mono-lingual at-
tention for MNRE. It is intuitive that each hu-
man language has its own characteristics. Hence
we adopt different mono-lingual attentions to de-
emphasize those noisy sentences within each lan-
guage.

More specifically, for the j-th language and the
sentence set .S;, we aim to aggregate all sentence
vectors into a real-valued vector S; for relation pre-
diction. The mono-lingual vector S; is computed
as a weighted sum of those sentence vectors x}:

S] — O[J'Xj7
7

where a;- is the attention score of each sentence

vector xé», defined as:

Mono-lingual Attention

3

exp(e})

Yoexp(ef)’

is referred as a query-based function

4

where e;-

which scores how well the input sentence :1:3 re-
flects its labelled relation r. There are many ways
to obtain ¢}, and here we simply compute e; as the

inner product:

&)

Here r; is the query vector of the relation r with
respect to the j-th language.

3.2.2 Cross-lingual Attention

Besides mono-lingual attention, we propose cross-
lingual attention for neural relation extraction to
better take advantages of multi-lingual data.

The key idea of cross-lingual attention is to em-
phasize those sentences which have strong con-
sistency among different languages. On the basis
of mono-lingual attention, cross-lingual attention



is capable of further removing unlikely sentences
and resulting in more concentrated and informa-
tive sentences, with the factor of consistent cor-
respondence of relation patterns among different
languages.

Cross-lingual attention works similar to mono-
lingual attention. Suppose j indicates a language
and k is a another language (k # j). Formally,
the cross-lingual representation Sy, is defined as a
weighted sum of those sentence vectors X} in the
jth language:

(6)

_ )
Sik =D ahxi,
7

where aék is the cross-lingual attention score of
each sentence vector x’; with respect to the kth lan-
guage. The cross-lingual attention a;-k is defined
as: '
exp(ejy.)
>k exp(e?k) ’

where eék is referred as a query-based function
which scores the consistency between the input
sentence x; in the jth language and the relation
patterns in the kth language for expressing the se-
mantic meanings of the labelled relation . Similar
to the mono-lingual attention, we compute eé. L, as

follows:

)

®)

where ry; is the query vector of the relation r with
respect to the kth language.

Note that, for convenience, we denote those
mono-lingual attention vectors S; as S;; in the re-
mainder of this paper.

TGt
ejk—Xj’rk7

3.3 Prediction

For each entity pair and its corresponding sentence
set T' in m languages, we can obtain m X m vec-
tors {S;x|j, k € {1,...,m}} from the neural net-
works with multi-lingual attention. Those vectors
with j = k are mono-lingual attention vectors, and
those with j ## k are cross-lingual attention vec-
tors.

We take all vectors {8 } together and define the
overall score function f (7, ) as follows:

D

jke{l,...m}

f(T,r) = log p(r[S;k,0), (9

where p(7|S;x,6) is the probability of predicting
the relation r conditional on S, computed using
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a softmax layer as follows:

p(r|S;jk, 0) = softmax(MS;;, + d), (10)

where d € R™" is a bias vector, n,. is the number of
relation types and M € R" > is a global relation
matrix initialized randomly.

To better consider the characteristics of each hu-
man language, we further introduce Ry, as the spe-
cific relation matrix of the kth language. Here we
simply define Ry as composed by ry in Eq. (8).
Hence, Eq. (10) can be extended to:

p(r|S;jk, 0) = softmax[(R;, + M)S;;, +d], (11)

where M encodes global patterns for predicting
relations and Ry, encodes those language-specific
characteristics.

Note that, in the training phase, the vectors
{S;} are constructed using Eq. (3) and (6) using
the labelled relation. In the testing phase, since the
relation is not known in advance, we will construct
different vectors {S;,} for each possible relation r
to compute f (7', r) for relation prediction.

3.4 Optimization

Here we introduce the learning and optimization
details of our MNRE framework. We define the
objective function as follows:

S
J(0)=>_ f(Tir), (12)
i=1
where s indicates the number of all entity pairs
with each corresponding to a sentence set in dif-
ferent languages, and 6 indicates all parameters of
our framework.

To solve the optimization problem, we adopt
mini-batch stochastic gradient descent (SGD) to
minimize the objective function. For learning, we
iterate by randomly selecting a mini-batch from the
training set until converge.

4 Experiments

We first introduce the datasets and evaluation met-
rics used in the experiments. Next, we use a vali-
dation set to determine the best model parameters
and choose the best model via early stopping. Af-
terwards, we show the effectiveness of our frame-
work of considering pattern complementarity and
consistency for multi-lingual relation extraction by
quantitative and qualitative analysis. Finally, we
compare the effect of two kinds of relation matri-
ces in Eq. (11) used for prediction.



4.1 Datasets and Evaluation Metrics

We generate a new multi-lingual relation extrac-
tion dataset to evaluate our MNRE framework.
Without loss of generality, the experiments fo-
cus on relation extraction from two languages in-
cluding English and Chinese. In this dataset,
the Chinese instances are generated by aligning
Chinese Baidu Baike with Wikidata, and the En-
glish instances are generated by aligning English
Wikipedia articles with Wikidata. The relational
facts of Wikidata in this dataset are divided into
three parts for training, validation and testing re-
spectively. There are 176 relations including a spe-
cial relation NA indicating there is no relation be-
tween entities. And we set both validation and test-
ing sets for Chinese and English parts contain the
same facts. We list the statistics about the dataset
in Table 2.

Dataset #Rel #Sent #Fact
Train 1,022,239 47,638
English  Valid 176 80,191 2,192
Test 162,018 4,326
Train 940,595 42,536
Chinese  Valid 176 82,699 2,192
Test 167,224 4326

Table 2: Statistics of the dataset.

We follow previous works (Mintz et al., 2009)
and investigate the performance of RE systems us-
ing the held-out evaluation, by comparing the re-
lational facts discovered by RE systems from the
testing set with those facts in KB. The evaluation
method assumes that if a RE system accurately
finds more relational facts in KBs from the test-
ing set, it will achieve better performance for rela-
tion extraction. The held-out evaluation provides
an approximate measure of RE performance with-
out time-consuming human evaluation. In experi-
ments, we report the precision/recall curves as the
evaluation metric.

4.2 Experimental Settings

We tune the parameters of our MNRE framework
by grid searching using validation set. For train-
ing, we set the iteration number over all the train-
ing data as 15. The best models were selected by
early stopping using the evaluation results on the
validation set. In Table 3 we show the best setting
of all parameters used in our experiments.
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Hyper-parameter value
Window size w 3
Sentence embedding size d° 230
Word dimension d* 50
Position dimension d® 5
Batch size B 160
Learning rate A 0.001
Dropout probability p 0.5

Table 3: Parameter settings.

4.3 Effectiveness of Consistency

To demonstrate the effectiveness of considering
pattern consistency among languages, we empir-
ically compare different methods through held-out
evaluation. We select CNN proposed in (Zeng
et al., 2014) as our sentence encoder and imple-
ment it by ourselves which achieves comparable
results as the authors reported on their experimen-
tal dataset NYT10*. And we compare the perfor-
mance of our framework with the [PJCNN model
trained with only English data ([PJCNN-En),
only Chinese data ([PJCNN-Zh), a joint model
([PICNN+joint) which predicts using [PJCNN-En
and [P]JCNN-Zh jointly, and another joint model
with shared embeddings ([P]CNN-+share) which
trains [PJCNN-En and [P]JCNN-Zh with common
relation embedding matrices.

From Fig. 2, we have the following observa-
tions:

(1) Both [P]JCNN+joint and [P]JCNN+share
achieve better performances as compared to
[PICNN-En and [P]JCNN-Zh. It indicates that uti-
lizing Chinese and English sentences jointly is
beneficial to extracting novel relational facts. The
reason is that those relational facts that are discov-
ered from multiple languages are more reliable to
be true.

(2) CNN+share only has similar performance
as compared to CNN+joint, even through a bit
worse when recall ranges from 0.1 to 0.2. Besides,
PCNN+share performs worse than PCNN+joint
nearly over the entire range of recall. It demon-
strates that a simple combination of multiple lan-
guages by sharing relation embedding matrices
cannot further capture more implicit correlations
among various languages.

(3) Our MNRE model achieves the highest pre-
cision over the entire range of recall as com-
pared to other methods including [PJCNN+joint
and [P]JCNN+share models. By grid searching of

*nttp://iesl.cs.umass.edu/riedel/ecml/



CNN+Zh | CNN+En | MNRE | Sentence
— Medium Low 1. Barzun is a commune in the Pyrénées-Atlantiques department in the Nouvelle-
Aquitaine region of south-western France.
— Medium High 2. Barzun was born in Créteil , France
Medium — Low |3 ANZFEBRIZERAGMR AR T, ERFEXTAR - HFE
e, BT A RBAFA—E, AARNRRBLE LRGN LR L
7& ...(As atop intellectual immigrating from France to the United States, Barzun,
together with Lionel Trilling and Dwight Macdonald, actively participated in public
knowledge life in the United States during the cold war ...)
Medium — High | 4. ERET 1907 FHETFE—AN4R45TEE, 1920 FAE. (Barzun
was born in a French intellectual family in 1907 and went to America in 1920.)

Table 4: An example of our multi-lingual attention. Low, medium and high indicate the attention weights.
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Figure 2: Top: Aggregated precision/recall curves
of CNN-En, CNN-Zh, CNN+joint, CNN+share,
and MNRE(CNN). Bottom: Aggregated pre-
cision/recall curves of PCNN-En, PCNN-Zh,

PCNN+joint, PCNN+share, and MNRE(PCNN)

parameters for these baseline models, we can ob-
serve that both [PJCNN+joint and [PJCNN+share
cannot achieve competitive results compared to
MNRE even when increasing the size of the output
layer. This indicates that no more useful informa-
tion can be captured by simply increasing model
size. On the contrary, our proposed MNRE model
can successfully improve multi-lingual relation ex-
traction by considering pattern consistency among
languages.

We further give an example of cross-lingual at-
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tention in Table 4. It shows four sentences hav-
ing the highest and lowest Chinese-to-English and
English-to-Chinese attention weights respectively
with respect to the relation PlaceOfBirth in
MNRE. We highlight the entity pairs in bold
face. For comparison, we also show their attention
weights from CNN+Zh and CNN+En. From the
table we find that, although all of the four sentences
actually express the fact that Barzun was born in
France, the first and third sentences contain much
more noisy information that may confuse RE sys-
tems. By considering pattern consistency between
sentences in two languages with cross-lingual at-
tention, MNRE can identify the second and fourth
sentences that unambiguously express the relation
PlaceOfBirth with higher attention as com-
pared to CNN+Zh and CNN+En.

4.4 Effectiveness of Complementarity

To demonstrate the effectiveness of consider-
ing pattern complementarity among languages,
we empirically compare the following methods
through held-out evaluation: MNRE for English
(MNRE-En) and MNRE for Chinese (MNRE-Zh)
which only use the mono-lingual vectors to predict
relations, and [PJCNN-En and [PJCNN-Zh mod-
els.

Fig. 3 shows the aggregated precision/recall
curves of the four models for both CNN and
PCNN. From the figure, we find that:

(1) MNRE-En and MNRE-Zh outperform
[PICNN-En and [P]JCNN-Zh almost in entire
range of recall. It indicates that by jointly training
with multi-lingual attention, both Chinese and
English relation extractors are beneficial from
those sentences from the other language.

(2) Although [P]JCNN-En underperforms as
compared to [PJCNN-Zh, MNRE-En is compara-
ble to MNRE-Zh by jointly training through multi-
lingual attention. It demonstrates that both Chi-



Relation #Sent-En  #Sent-Zh CNN-En CNN-Zh MNRE-En MNRE-Zh
Contains 993 6984 17.95 69.87 73.72 75.00
HeadquartersLocation 1949 210 43.04 0.00 41.77 50.63
Father 1833 983 64.71 77.12 86.27 83.01
CountryOfCitizenship 25322 15805 95.22 93.23 98.41 98.21

Table 5: Detailed results (precision@1) of some specific relations. #Sent-En and #Sent-Zh indicate the
numbers of English/Chinese sentences which are labelled with the relations.
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Figure 3: Top: Aggregate precision/recall curves
of CNN-En, CNN-Zh, MNRE(CNN)-En and
MNRE(CNN)-Zh.  Bottom: Aggregate pre-
cision/recall curves of PCNN-En, PCNN-Zh,

MNRE(PCNN)-En and MNRE(PCNN)-Zh.

nese and English relation extractors can take full
advantages of texts in both languages via our pro-
pose multi-lingual attention scheme.

Table 5 shows the detailed results (in preci-
sion@1) of some specific relations of which the
training instances are un-balanced on English and
Chinese sides. From the table, we can see that:

(1) For the relation Contains of which the
number of English training instances is only 1/7
of Chinese ones, CNN-En gets much worse per-
formance as compared to CNN-Zh due to the lack
of training data. Nevertheless, by jointly training
through multi-lingual attention, MNRE(CNN)-
En is comparable to and slightly better than
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MNRE(CNN)-Zh.

(2) For the relation HeadquartersLoca-
tion of which the number of Chinese training in-
stances is only 1/9 of English ones, CNN-Zh even
cannot predict any correct results. The reason is
perhaps that, CNN-Zh of the relation is not suf-
ficiently trained because there are only 210 Chi-
nese training instances for this relation. Simi-
larly, by jointly training through multi-lingual at-
tention, MNRE(CNN)-En and MNRE(CNN)-Zh
both achieve promising results.

(3) For the relations Father and Country-
OfCitizenship of which the sentence number
in English and Chinese are not so un-balanced, our
MNRE can still improve the performance of rela-
tion extraction on both English and Chinese sides.

4.5 Comparison of Relation Matrix

For relation prediction, we use two kinds of re-
lation matrices including: M that considers the
global consistency of relations, and R that consid-
ers the specific characteristics of relations for each
language. To measure the effect of the two relation
matrices, we compare the performance of MNRE
using the both matrices with those only using M
(MNRE-M) and only using R (MNRE-R).

Fig. 4 shows the precision-recall curves for each
method. From the figure, we observe that:t

(1) The performance of MNRE-M is much
worse than both MNRE-R and MNRE. It indicates
that we cannot just use global relation matrix for
relation prediction. The reason is that each lan-
guage has its own specific characteristics to ex-
press relation patterns, which cannot be well in-
tegrated into a single relation matrix.

(2) MNRE(CNN)-R has similar performance as
compared to MNRE(CNN) when the recall is low.
However, it has a sharp decline when the recall
reaches 0.25. It suggests there also exists global
consistency of relation patterns among languages
which cannot be neglected. Hence, we should
combine both M and R together for multi-lingual
relation extraction, as proposed in our MNRE
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framework.

5 Conclusion

In this paper, we introduce a neural relation extrac-
tion framework with multi-lingual attention to take
pattern consistency and complementarity among
multiple languages into consideration. We evalu-
ate our framework on multi-lingual relation extrac-
tion task, and the results show that our framework
can effectively model relation patterns among lan-
guages and achieve state-of-the-art results.

We will explore the following directions as fu-
ture work: (1) In this paper, we only consider
sentence-level multi-lingual attention for relation
extraction. In fact, we find that the word alignment
information may be also helpful for capturing rela-
tion patterns. Hence, the word-level multi-lingual
attention, which may discover implicit alignments
between words in multiple languages, will fur-
ther improve multi-lingual relation extraction. We
will explore the effectiveness of word-level multi-
lingual attention for relation extraction as our fu-
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ture work. (2) MNRE can be flexibly implemented
in the scenario of multiple languages, and this pa-
per focuses on two languages of English and Chi-
nese. In future, we will extend MNRE to more lan-
guages and explore its significance.
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Learning Structured Natural Language Representations
for Semantic Parsing

Jianpeng Cheng' Siva Reddy’

Abstract

We introduce a neural semantic parser
which is interpretable and scalable. Our
model converts natural language utter-
ances to intermediate, domain-general nat-
ural language representations in the form
of predicate-argument structures, which
are induced with a transition system and
subsequently mapped to target domains.
The semantic parser is trained end-to-end
using annotated logical forms or their de-
notations. We achieve the state of the
art on SPADES and GRAPHQUESTIONS
and obtain competitive results on GEO-
QUERY and WEBQUESTIONS. The in-
duced predicate-argument structures shed
light on the types of representations useful
for semantic parsing and how these are dif-
ferent from linguistically motivated ones.'

1 Introduction

Semantic parsing is the task of mapping natu-
ral language utterances to machine interpretable
meaning representations. Despite differences in
the choice of meaning representation and model
structure, most existing work conceptualizes se-
mantic parsing following two main approaches.
Under the first approach, an utterance is parsed
and grounded to a meaning representation directly
via learning a task-specific grammar (Zelle and
Mooney, 1996; Zettlemoyer and Collins, 2005;
Wong and Mooney, 2006; Kwiatkowksi et al.,
2010; Liang et al., 2011; Berant et al., 2013;
Flanigan et al., 2014; Pasupat and Liang, 2015;
Groschwitz et al., 2015). Under the second ap-
proach, the utterance is first parsed to an inter-
mediate task-independent representation tied to a
syntactic parser and then mapped to a grounded

'0ur code is available at https://github.com/
cheng6076/scanner.

Vijay Saraswat’ and Mirella Lapata’
fSchool of Informatics, University of Edinburgh
*IBM T.J. Watson Research
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representation (Kwiatkowski et al., 2013; Reddy
et al., 2016, 2014; Krishnamurthy and Mitchell,
2015; Gardner and Krishnamurthy, 2017). A merit
of the two-stage approach is that it creates reusable
intermediate interpretations, which potentially en-
ables the handling of unseen words and knowledge
transfer across domains (Bender et al., 2015).

The successful application of encoder-decoder
models (Bahdanau et al., 2015; Sutskever et al.,
2014) to a variety of NLP tasks has provided
strong impetus to treat semantic parsing as a se-
quence transduction problem where an utterance
is mapped to a target meaning representation in
string format (Dong and Lapata, 2016; Jia and
Liang, 2016; Kocisky et al., 2016). Such models
still fall under the first approach, however, in con-
trast to previous work (Zelle and Mooney, 1996;
Zettlemoyer and Collins, 2005; Liang et al., 2011)
they reduce the need for domain-specific assump-
tions, grammar learning, and more generally ex-
tensive feature engineering. But this modeling
flexibility comes at a cost since it is no longer pos-
sible to interpret how meaning composition is per-
formed. Such knowledge plays a critical role in
understand modeling limitations so as to build bet-
ter semantic parsers. Moreover, without any task-
specific prior knowledge, the learning problem is
fairly unconstrained, both in terms of the possible
derivations to consider and in terms of the target
output which can be ill-formed (e.g., with extra or
missing brackets).

In this work, we propose a neural semantic
parser that alleviates the aforementioned prob-
lems. Our model falls under the second class of
approaches where utterances are first mapped to
an intermediate representation containing natural
language predicates. However, rather than using
an external parser (Reddy et al., 2014, 2016) or
manually specified CCG grammars (Kwiatkowski
et al., 2013), we induce intermediate representa-
tions in the form of predicate-argument structures
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from data. This is achieved with a transition-based
approach which by design yields recursive seman-
tic structures, avoiding the problem of generating
ill-formed meaning representations. Compared to
most existing semantic parsers which employ a
CKY style bottom-up parsing strategy (Krishna-
murthy and Mitchell, 2012; Cai and Yates, 2013;
Berant et al., 2013; Berant and Liang, 2014), the
transition-based approach we proposed does not
require feature decomposition over structures and
thereby enables the exploration of rich, non-local
features. The output of the transition system is
then grounded (e.g., to a knowledge base) with a
neural mapping model under the assumption that
grounded and ungrounded structures are isomor-
phic.? As a result, we obtain a neural model that
jointly learns to parse natural language semantics
and induce a lexicon that helps grounding.

The whole network is trained end-to-end on
natural language utterances paired with anno-
tated logical forms or their denotations. We
conduct experiments on four datasets, including
GEOQUERY (which has logical forms; Zelle and
Mooney 1996), SPADES (Bisk et al., 2016), WEB-
QUESTIONS (Berant et al., 2013), and GRAPH-
QUESTIONS (Su et al., 2016) (which have deno-
tations). Our semantic parser achieves the state of
the art on SPADES and GRAPHQUESTIONS, while
obtaining competitive results on GEOQUERY and
WEBQUESTIONS. A side-product of our mod-
eling framework is that the induced intermedi-
ate representations can contribute to rationalizing
neural predictions (Lei et al., 2016). Specifically,
they can shed light on the kinds of representations
(especially predicates) useful for semantic pars-
ing. Evaluation of the induced predicate-argument
relations against syntax-based ones reveals that
they are interpretable and meaningful compared
to heuristic baselines, but they sometimes deviate
from linguistic conventions.

2 Preliminaries

Problem Formulation Let I denote a knowl-
edge base or more generally a reasoning system,
and z an utterance paired with a grounded mean-
ing representation (G or its denotation y. Our prob-
lem is to learn a semantic parser that maps x to G
via an intermediate ungrounded representation U.
When G is executed against /C, it outputs denota-

2We discuss the merits and limitations of this assumption
in Section 5
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Predicate Usage Sub-categories
answer denotation wrapper —

. . stateid, cityid,
type entity type checking viverid, ete.

querying for an entire
set of entities
one-argument meta
predicates for sets
two-argument meta
predicates for sets

all

count, largest,
smallest, etc.
intersect,
union, exclude

aggregation

logical
connectors

Table 1: List of domain-general predicates.

tion y.

Grounded Meaning Representation We repre-
sent grounded meaning representations in FunQL
(Kate et al., 2005) amongst many other alterna-
tives such as lambda calculus (Zettlemoyer and
Collins, 2005), A-DCS (Liang, 2013) or graph
queries (Holzschuher and Peinl, 2013; Harris
et al., 2013). FunQL is a variable-free query lan-
guage, where each predicate is treated as a func-
tion symbol that modifies an argument list. For
example, the FunQL representation for the utter-
ance which states do not border texas is:

answer(exclude(state(all), next_to(texas)))

where next_to is a domain-specific binary predi-
cate that takes one argument (i.e., the entity texas)
and returns a set of entities (e.g., the states border-
ing Texas) as its denotation. all is a special predi-
cate that returns a collection of entities. exclude is
a predicate that returns the difference between two
input sets.

An advantage of FunQL is that the resulting
s-expression encodes semantic compositionality
and derivation of the logical forms. This prop-
erty makes FunQL logical forms convenient to be
predicted with recurrent neural networks (Vinyals
etal., 2015; Choe and Charniak, 2016; Dyer et al.,
2016). However, FunQL is less expressive than
lambda calculus, partially due to the elimination
of variables. A more compact logical formulation
which our method also applies to is A-DCS (Liang,
2013). In the absence of anaphora and composite
binary predicates, conversion algorithms exist be-
tween FunQL and \-DCS. However, we leave this
to future work.

Ungrounded Meaning Representation We
also use FunQL to express ungrounded meaning
representations. The latter consist primarily of
natural language predicates and domain-general
predicates. Assuming for simplicity that domain-
general predicates share the same vocabulary



in ungrounded and grounded representations,
the ungrounded representation for the example
utterance is:

answer(exclude(states(all), border(texas)))

where states and border are natural language pred-
icates. In this work we consider five types of
domain-general predicates illustrated in Table 1.
Notice that domain-general predicates are often
implicit, or represent extra-sentential knowledge.
For example, the predicate all in the above utter-
ance represents all states in the domain which are
not mentioned in the utterance but are critical for
working out the utterance denotation. Finally, note
that for certain domain-general predicates, it also
makes sense to extract natural language rationales
(e.g., not is indicative for exclude). But we do not
find this helpful in experiments.

In this work we constrain ungrounded represen-
tations to be structurally isomorphic to grounded
ones. In order to derive the target logical forms,
all we have to do is replacing predicates in the
ungrounded representations with symbols in the
knowledge base.

3 Modeling

In this section, we discuss our neural model which
maps utterances to target logical forms. The se-
mantic parsing task is decomposed in two stages:
we first explain how an utterance is converted to
an intermediate representation (Section 3.1), and
then describe how it is grounded to a knowledge
base (Section 3.2).

3.1 Generating Ungrounded Representations

At this stage, utterances are mapped to interme-
diate representations with a transition-based algo-
rithm. In general, the transition system generates
the representation by following a derivation tree
(which contains a set of applied rules) and some
canonical generation order (e.g., depth-first). For
FunQL, a simple solution exists since the repre-
sentation itself encodes the derivation. Consider
again answer(exclude(states(all), border(texas)))
which is tree structured. Each predicate (e.g., bor-
der) can be visualized as a non-terminal node of
the tree and each entity (e.g., texas) as a terminal.
The predicate all is a special case which acts as
a terminal directly. We can generate the tree with
a top-down, depth first transition system reminis-
cent of recurrent neural network grammars (RN-
NGs; Dyer et al. 2016). Similar to RNNG, our
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algorithm uses a buffer to store input tokens in
the utterance and a stack to store partially com-
pleted trees. A major difference in our semantic
parsing scenario is that tokens in the buffer are not
fetched in a sequential order or removed from the
buffer. This is because the lexical alignment be-
tween an utterance and its semantic representation
is hidden. Moreover, some predicates cannot be
clearly anchored to a token span. Therefore, we
allow the generation algorithm to pick tokens and
combine logical forms in arbitrary orders, condi-
tioning on the entire set of sentential features. Al-
ternative solutions in the traditional semantic pars-
ing literature include a floating chart parser (Pa-
supat and Liang, 2015) which allows to construct
logical predicates out of thin air.

Our transition system defines three actions,
namely NT, TER, and RED, explained below.

NT(X) generates a Non-Terminal predicate. This
predicate is either a natural language expression
such as border, or one of the domain-general
predicates exemplified in Table 1 (e.g., exclude).
The type of predicate is determined by the place-
holder X and once generated, it is pushed onto the
stack and represented as a non-terminal followed
by an open bracket (e.g., ‘border(’). The open
bracket will be closed by a reduce operation.

TER(X) generates a TERminal entity or the spe-
cial predicate all. Note that the terminal choice
does not include variable (e.g., $0, $1), since
FunQL is a variable-free language which suffi-
ciently captures the semantics of the datasets we
work with. The framework could be extended
to generate directly acyclic graphs by incorporat-
ing variables with additional transition actions for
handling variable mentions and co-reference.

RED stands for REDuce and is used for subtree
completion. It recursively pops elements from the
stack until an open non-terminal node is encoun-
tered. The non-terminal is popped as well, af-
ter which a composite term representing the entire
subtree, e.g., border(texas), is pushed back to the
stack. If a RED action results in having no more
open non-terminals left on the stack, the transition
system terminates. Table 2 shows the transition
actions used to generate our running example.
The model generates the ungrounded represen-
tation U conditioned on utterance x by recursively
calling one of the above three actions. Note that
U is defined by a sequence of actions (denoted



Sentence: which states do not border texas

Non-terminal symbols in buffer: which, states, do, not, border

Terminal symbols in buffer: rexas

Stack Action | NT choice | TER choice
NT answer

answer ( NT exclude

answer ( exclude ( NT states

answer ( exclude ( states ( TER all

answer ( exclude ( states ( all RED

answer ( exclude ( states (all) NT border

answer ( exclude ( states (all ) , border ( TER texas

answer ( exclude ( states (all ) , border ( texas RED

answer ( exclude ( states (all) , border ( texas) RED

answer ( exclude ( states (all ) , border ( texas ) ) RED

answer ( exclude ( states (all ) , border (texas)) )

Table 2: Actions taken by the transition system for generating the ungrounded meaning representation
of the example utterance. Symbols in red indicate domain-general predicates.

by a) and a sequence of term choices (denoted
by u) as shown in Table 2. The conditional proba-
bility p(U|x) is factorized over time steps as:

p(Ulz) = pla, ulz)
T

(1)

p(at‘a<t, .%')p(ut’a<t, x)ﬂ(at;éRED)

1

~+

where [ is an indicator function.

To predict the actions of the transition system,
we encode the input buffer with a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) and
the output stack with a stack-LSTM (Dyer et al.,
2015). At each time step, the model uses the rep-
resentation of the transition system e; to predict an
action:

2)

where e; is the concatenation of the buffer repre-
sentation b; and the stack representation s;. While
the stack representation s; is easy to retrieve as
the top state of the stack-LSTM, obtaining the
buffer representation b; is more involved. This is
because we do not have an explicit buffer repre-
sentation due to the non-projectivity of semantic
parsing. We therefore compute at each time step
an adaptively weighted representation of b, (Bah-
danau et al., 2015) conditioned on the stack rep-
resentation s;. This buffer representation is then
concatenated with the stack representation to form
the system representation e;.

When the predicted action is either NT or TER,
an ungrounded term w; (either a predicate or an

plaglacs, x) oc exp(W, - e)
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entity) needs to be chosen from the candidate list
depending on the specific placeholder X. To se-
lect a domain-general term, we use the same rep-
resentation of the transition system e; to compute
a probability distribution over candidate terms:

GENERAL
ut |Cl<t,

p( xz) xexp(Wp-er) (3)
To choose a natural language term, we directly
compute a probability distribution of all natural
language terms (in the buffer) conditioned on the
stack representation s; and select the most relevant
term (Jia and Liang, 2016):

“)

plup lace, ) o exp(s;)

When the predicted action is RED, the com-
pleted subtree is composed into a single represen-
tation on the stack. For the choice of composition
function, we use a single-layer neural network as
in Dyer et al. (2015), which takes as input the con-
catenated representation of the predicate and argu-
ment of the subtree.

3.2 Generating Grounded Representations

Since we constrain the network to learn un-
grounded structures that are isomorphic to the
target meaning representation, converting un-
grounded representations to grounded ones be-
comes a simple lexical mapping problem. For sim-
plicity, hereafter we do not differentiate natural
language and domain-general predicates.

To map an ungrounded term u; to a grounded
term g;, we compute the conditional probability



of g¢ given u; with a bi-linear neural network:

T

P(ge|ur) o< exp g - Wyg - gt (5)

where ; is the contextual representation of the un-
grounded term given by the bidirectional LSTM,
gt is the grounded term embedding, and W, is
the weight matrix.

The above grounding step can be interpreted
as learning a lexicon: the model exclusively re-
lies on the intermediate representation U to pre-
dict the target meaning representation G without
taking into account any additional features based
on the utterance. In practice, U may provide suf-
ficient contextual background for closed domain
semantic parsing where an ungrounded predicate
often maps to a single grounded predicate, but is
a relatively impoverished representation for pars-
ing large open-domain knowledge bases like Free-
base. In this case, we additionally rely on a dis-
criminative reranker which ranks the grounded
representations derived from ungrounded repre-
sentations (see Section 3.4).

3.3 Training Objective

When the target meaning representation is avail-
able, we directly compare it against our predic-
tions and back-propagate. When only denotations
are available, we compare surrogate meaning rep-
resentations against our predictions (Reddy et al.,
2014). Surrogate representations are those with
the correct denotations. When there exist multi-
ple surrogate representations,” we select one ran-
domly and back-propagate. The global effect of
the above update rule is close to maximizing the
marginal likelihood of denotations, which differs
from recent work on weakly-supervised seman-
tic parsing based on reinforcement learning (Nee-
lakantan et al., 2017).

Consider utterance x with ungrounded mean-
ing representation U, and grounded meaning rep-
resentation G. Both U and G are defined with
a sequence of transition actions (same for U
and () and a sequence of terms (different for U
and G). Recall that a [a1,- - ,a,] denotes
the transition action sequence defining U and G;
let u [ui,--- ,ur] denote the ungrounded
terms (e.g., predicates), and g [91, -, 9K]
the grounded terms. We aim to maximize the
likelihood of the grounded meaning representa-
tion p(G|x) over all training examples. This

3The average Freebase surrogate representations obtained
with highest denotation match (F1) is 1.4.
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likelihood can be decomposed into the likelihood
of the grounded action sequence p(a|z) and the
grounded term sequence p(g|x), which we opti-
mize separately.

For the grounded action sequence (which by
design is the same as the ungrounded action se-
quence and therefore the output of the transition
system), we can directly maximize the log likeli-
hood log p(a|z) for all examples:

L, = Z logp(al|z) = Z Zlogp atz) (6)

€T z€T t=1

where 7 denotes examples in the training data.

For the grounded term sequence g, since the
intermediate ungrounded terms are latent, we
maximize the expected log likelihood of the
grounded terms ), [p(u|z)log p(g|u, x)] for all
examples, which is a lower bound of the log like-
lihood log p(g|x):

L= 2 b

(u|z)log p(glu, )]

€T u
k 7
=Y > |plul) > log p(gilur)
€T u t=1

The final objective is the combination of L,
and Lg, denoted as Lo = L, + L, We opti-
mize this objective with the method described in
Lei et al. (2016).

3.4 Reranker

As discussed above, for open domain semantic
parsing, solely relying on the ungrounded repre-
sentation would result in an impoverished model
lacking sentential context useful for disambigua-
tion decisions. For all Freebase experiments, we
followed previous work (Berant et al., 2013; Be-
rant and Liang, 2014; Reddy et al., 2014) in addi-
tionally training a discriminative ranker to re-rank
grounded representations globally.

The discriminative ranker is a maximum-
entropy model (Berant et al., 2013). The objective
is to maximize the log likelihood of the correct an-
swer y given x by summing over all grounded can-
didates G with denotation y (i.e.,[G]x = v):

L,= Y log Y pGlr)  ®
@weT  [Gle=y
p(Glz) o< exp{f(G,z)} ©)

where f(G,x) is a feature function that maps
pair (G, ) into a feature vector. We give details
on the features we used in Section 4.2.



4 Experiments

In this section, we verify empirically that our se-
mantic parser derives useful meaning representa-
tions. We give details on the evaluation datasets
and baselines used for comparison. We also
describe implementation details and the features
used in the discriminative ranker.

4.1 Datasets

We evaluated our model on the following datasets
which cover different domains, and use differ-
ent types of training data, i.e., pairs of natural
language utterances and grounded meanings or
question-answer pairs.

GEOQUERY (Zelle and Mooney, 1996) con-
tains 880 questions and database queries about US
geography. The utterances are compositional, but
the language is simple and vocabulary size small.
The majority of questions include at most one en-
tity. SPADES (Bisk et al., 2016) contains 93,319
questions derived from CLUEWEBQ9 (Gabrilovich
et al., 2013) sentences. Specifically, the questions
were created by randomly removing an entity, thus
producing sentence-denotation pairs (Reddy et al.,
2014). The sentences include two or more entities
and although they are not very compositional, they
constitute a large-scale dataset for neural network
training. WEBQUESTIONS (Berant et al., 2013)
contains 5,810 question-answer pairs. Similar to
SPADES, it is based on Freebase and the questions
are not very compositional. However, they are
real questions asked by people on the Web. Fi-
nally, GRAPHQUESTIONS (Su et al., 2016) con-
tains 5,166 question-answer pairs which were cre-
ated by showing 500 Freebase graph queries to
Amazon Mechanical Turk workers and asking
them to paraphrase them into natural language.

4.2 Implementation Details

Amongst the four datasets described above, GEO-
QUERY has annotated logical forms which we di-
rectly use for training. For the other three datasets,
we treat surrogate meaning representations which
lead to the correct answer as gold standard. The
surrogates were selected from a subset of candi-
date Freebase graphs, which were obtained by en-
tity linking. Entity mentions in SPADES have been
automatically annotated with Freebase entities
(Gabrilovich et al., 2013). For WEBQUESTIONS
and GRAPHQUESTIONS, we follow the procedure
described in Reddy et al. (2016). We identify po-
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tential entity spans using seven handcrafted part-
of-speech patterns and associate them with Free-
base entities obtained from the Freebase/KG APL*
We use a structured perceptron trained on the enti-
ties found in WEBQUESTIONS and GRAPHQUES-
TIONS to select the top 10 non-overlapping entity
disambiguation possibilities. We treat each possi-
bility as a candidate input utterance, and use the
perceptron score as a feature in the discriminative
reranker, thus leaving the final disambiguation to
the semantic parser.

Apart from the entity score, the discriminative
ranker uses the following basic features. The first
feature is the likelihood score of a grounded rep-
resentation aggregating all intermediate represen-
tations. The second set of features include the em-
bedding similarity between the relation and the ut-
terance, as well as the similarity between the rela-
tion and the question words. The last set of fea-
tures includes the answer type as indicated by the
last word in the Freebase relation (Xu et al., 2016).

We used the Adam optimizer for training with
an initial learning rate of 0.001, two momentum
parameters [0.99, 0.999], and batch size 1. The di-
mensions of the word embeddings, LSTM states,
entity embeddings and relation embeddings are
[50, 100, 100, 100]. The word embeddings were
initialized with Glove embeddings (Pennington
etal., 2014). All other embeddings were randomly
initialized.

4.3 Results

Experimental results on the four datasets are sum-
marized in Tables 3—6. We present comparisons of
our system which we call SCANNER (as a short-
hand for SymboliC meANiNg rEpResentation)
against a variety of models previously described
in the literature.

GEOQUERY results are shown in Table 5. The
first block contains symbolic systems, whereas
neural models are presented in the second block.
We report accuracy which is defined as the pro-
portion of the utterance that are correctly parsed
to their gold standard logical forms. All previ-
ous neural systems (Dong and Lapata, 2016; Jia
and Liang, 2016) treat semantic parsing as a se-
quence transduction problem and use LSTMs to
directly map utterances to logical forms. SCAN-
NER yields performance improvements over these

*nttp://developers.google.com/
freebase/



[ Models F1 |
Berant et al. (2013) 35.7
Yao and Van Durme (2014) 33.0
Berant and Liang (2014) 39.9
Bast and Haussmann (2015) 49.4
Berant and Liang (2015) 49.7
Reddy et al. (2016) 50.3
Bordes et al. (2014) 39.2
Dong et al. (2015) 40.8
Yih et al. (2015) 52.5
Xu et al. (2016) 53.3
Neural Baseline 48.3
SCANNER 49.4

Table 3: WEBQUESTIONS results.

[ Models F1 ]
SEMPRE (Berant et al., 2013) 10.80
PARASEMPRE (Berant and Liang, 2014)  12.79
JACANA (Yao and Van Durme, 2014) 5.08
Neural Baseline 16.24
SCANNER 17.02

Table 4: GRAPHQUESTIONS results. Numbers for
comparison systems are from Su et al. (2016).

systems when using comparable data sources for
training. Jia and Liang (2016) achieve better
results with synthetic data that expands GEO-
QUERY; we could adopt their approach to improve
model performance, however, we leave this to fu-
ture work.

Table 6 reports SCANNER’s performance on
SPADES. For all Freebase related datasets we use
average F1 (Berant et al., 2013) as our evalua-
tion metric. Previous work on this dataset has
used a semantic parsing framework similar to ours
where natural language is converted to an interme-
diate syntactic representation and then grounded
to Freebase. Specifically, Bisk et al. (2016) evalu-
ate the effectiveness of four different CCG parsers
on the semantic parsing task when varying the
amount of supervision required. As can be seen,
SCANNER outperforms all CCG variants (from
unsupervised to fully supervised) without having
access to any manually annotated derivations or
lexicons. For fair comparison, we also built a neu-
ral baseline that encodes an utterance with a recur-
rent neural network and then predicts a grounded
meaning representation directly (Ture and Jojic,
2016; Yih et al., 2016). Again, we observe that
SCANNER outperforms this baseline.

Results on WEBQUESTIONS are summarized
in Table 3. SCANNER obtains performance on
par with the best symbolic systems (see the first
block in the table). It is important to note that
Bast and Haussmann (2015) develop a question
answering system, which contrary to ours can-
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[ Models Accuracy |
Zettlemoyer and Collins (2005) 79.3
Zettlemoyer and Collins (2007) 86.1
Kwiatkowksi et al. (2010) 87.9
Kwiatkowski et al. (2011) 88.6
Kwiatkowski et al. (2013) 88.0
Zhao and Huang (2015) 88.9
Liang et al. (2011) 91.1
Dong and Lapata (2016) 84.6
Jia and Liang (2016) 85.0
Jia and Liang (2016) with extra data 89.1
SCANNER 86.7

Table 5: GEOQUERY results.

[ Models F1 |
Unsupervised CCG (Bisk et al., 2016) 24.8
Semi-supervised CCG (Bisk et al., 2016) 28.4
Neural baseline 28.6
Supervised CCG (Bisk et al., 2016) 30.9
Rule-based system (Bisk et al., 2016) 314
SCANNER 31.5

Table 6: SPADES results.

not produce meaning representations whereas Be-
rant and Liang (2015) propose a sophisticated
agenda-based parser which is trained borrowing
ideas from imitation learning. SCANNER is con-
ceptually similar to Reddy et al. (2016) who also
learn a semantic parser via intermediate repre-
sentations which they generate based on the out-
put of a dependency parser. SCANNER performs
competitively despite not having access to any
linguistically-informed syntactic structures. The
second block in Table 3 reports the results of sev-
eral neural systems. Xu et al. (2016) represent the
state of the art on WEBQUESTIONS. Their sys-
tem uses Wikipedia to prune out erroneous candi-
date answers extracted from Freebase. Our model
would also benefit from a similar post-processing
step. As in previous experiments, SCANNER out-
performs the neural baseline, too.

Finally, Table 4 presents our results on
GRAPHQUESTIONS. We report F1 for SCANNER,
the neural baseline model, and three symbolic sys-
tems presented in Su et al. (2016). SCANNER
achieves a new state of the art on this dataset with
a gain of 4.23 F1 points over the best previously
reported model.

4.4 Analysis of Intermediate Representations

Since a central feature of our parser is that it learns
intermediate representations with natural language
predicates, we conducted additional experiments
in order to inspect their quality. For GEOQUERY



[ Metrics Accuracy |
Exact match 79.3
Structure match 89.6
Token match 96.5

Table 7: GEOQUERY evaluation of ungrounded
meaning representations. We report accuracy
against a manually created gold standard.

which contains only 280 test examples, we manu-
ally annotated intermediate representations for the
test instances and evaluated the learned represen-
tations against them. The experimental setup aims
to shows how humans can participate in improving
the semantic parser with feedback at the interme-
diate stage. In terms of evaluation, we use three
metrics shown in Table 7. The first row shows the
percentage of exact matches between the predicted
representations and the human annotations. The
second row refers to the percentage of structure
matches, where the predicted representations have
the same structure as the human annotations, but
may not use the same lexical terms. Among struc-
turally correct predictions, we additionally com-
pute how many tokens are correct, as shown in the
third row. As can be seen, the induced meaning
representations overlap to a large extent with the
human gold standard.

We also evaluated the intermediate represen-
tations created by SCANNER on the other three
(Freebase) datasets. Since creating a man-
ual gold standard for these large datasets is
time-consuming, we compared the induced rep-
resentations against the output of a syntactic
parser.  Specifically, we converted the ques-
tions to event-argument structures with EASY-
CCG (Lewis and Steedman, 2014), a high cover-
age and high accuracy CCG parser. EASYCCG
extracts predicate-argument structures with a la-
beled F-score of 83.37%. For further comparison,
we built a simple baseline which identifies pred-
icates based on the output of the Stanford POS-
tagger (Manning et al., 2014) following the order-
ing VBD > VBN > VB > VBP > VBZ >> MD.

As shown in Table 8, on SPADES and WE-
BQUESTIONS, the predicates learned by our
model match the output of EASYCCG more
closely than the heuristic baseline. But for
GRAPHQUESTIONS which contains more compo-
sitional questions, the mismatch is higher. How-
ever, since the key idea of our model is to cap-
ture salient meaning for the task at hand rather
than strictly obey syntax, we would not expect the
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[ Dataset SCANNER  Baseline |
SPADES 51.2 45.5
—conj (1422) 56.1 66.4
—control (132) 28.3 40.5
—pp (3489) 46.2 23.1
—subord (76) 379 52.9
WEBQUESTIONS 42.1 25.5
GRAPHQUESTIONS 11.9 15.3

Table 8: Evaluation of predicates induced by
SCANNER against EASYCCG. We report F1(%)
across datasets. For SPADES, we also provide a
breakdown for various utterance types.

predicates induced by our system to entirely agree
with those produced by the syntactic parser. To
further analyze how the learned predicates differ
from syntax-based ones, we grouped utterances in
SPADES into four types of linguistic constructions:
coordination (conj), control and raising (control),
prepositional phrase attachment (pp), and subor-
dinate clauses (subord). Table 8 also shows the
breakdown of matching scores per linguistic con-
struction, with the number of utterances in each
type. In Table 9, we provide examples of predi-
cates identified by SCANNER, indicating whether
they agree or not with the output of EASYCCG.
As areminder, the task in SPADES is to predict the
entity masked by a blank symbol (__).

As can be seen in Table 8, the match-
ing score is relatively high for utterances in-
volving coordination and prepositional phrase
attachments.  The model will often identify
informative predicates (e.g., nouns) which do
not necessarily agree with linguistic intuition.
For example, in the utterance wilhelm_maybach
and his son __ started maybach in 1909 (see
Table 9), SCANNER identifies the predicate-
argument structure son(wilhelm_maybach) rather
than started(wilhelm_maybach). We also observed
that the model struggles with control and subor-
dinate constructions. It has difficulty distinguish-
ing control from raising predicates as exemplified
in the utterance ceo john_thain agreed to leave __
from Table 9, where it identifies the raising predi-
cate agreed. For subordinate clauses, SCANNER
tends to take shortcuts identifying as predicates
words closest to the blank symbol.

5 Discussion

We presented a neural semantic parser which
converts natural language utterances to grounded
meaning  representations  via  intermediate
predicate-argument structures. Our model



the boeing_company was founded in 1916 and is __ was incorporated in 1947 and is based in
headquartered in __, illinois . new_york_city .
nstar was founded in 1886 and is based in boston, __. the ifbb was formed in 1946 by president ben_weider
conj  the __is owned and operated by zuffa_, lic, and his brother __.
headquarted in las_vegas , nevada . wilhelm_maybach and his son __ started maybach in
hugh attended __ and then shifted to uppingham_school 1909 .
in england . __was founded in 1996 and is headquartered in chicago .
— threatened to Jaighigg russ . agreed to purchase wachovia_co
__has also been confirmed to play captain_haddock . — 45 P ~OrP -
i ceo john_thain agreed to leave __ .
hoffenberg decided to leave __. ick decided
control __js reportedly trying to get impregnated by djimon so nic < SR to MR - -
ITOW P ytymgtog preg ya salva later went on to make the non clown-based horror
fﬁ;tnght now , __ are inclined to trust obama to do just eddic [NER debbic to [ __ when carric was 2 .
__1is the home of the university_of_tennessee . jobs will retire from __ .
chu is currently a physics professor at __ . the nab is a strong advocacy group in __ .
pp youtube is based in __, near san_francisco , california . this one starred robert_reed , known mostly as __ .
mathematica is a product of __. __is positively frightening as detective bud_white .
. . . . . founded the __, which is now also a designated terrorist
the__ is a national testing board that is based in toronto . group .
__is a corporation that is wholly owned by the __is an online bank that ebay owns .
c1ty,of,§dmont0n o zoya_akhtar is a director , who has directed the
subord unborn is a scary movie that stars __ . . .
) ; ; . . upcoming movie __ .
__’s third wife was actress melina_mercouri , who died . . :
i 1994 imelda_staunton , who plays __, is genius .
sure , there were __ who B8l the shah . __1s thf: 1mp0rtant.pr681dent that american ever had .
plus mitt_romney is the worst governor that __ has had .

Table 9: Informative predicates identified by SCANNER in various types of utterances. Yellow predi-
cates were identified by both SCANNER and EASYCCG, red predicates by SCANNER alone, and green

predicates by EASYCCG alone.

essentially jointly learns how to parse natural
language semantics and the lexicons that help
grounding. Compared to previous neural semantic
parsers, our model is more interpretable as the
intermediate structures are useful for inspecting
what the model has learned and whether it
matches linguistic intuition.

An assumption our model imposes is that un-
grounded and grounded representations are struc-
turally isomorphic. An advantage of this assump-
tion is that tokens in the ungrounded and grounded
representations are strictly aligned. This allows
the neural network to focus on parsing and lexi-
cal mapping, sidestepping the challenging struc-
ture mapping problem which would result in a
larger search space and higher variance. On the
negative side, the structural isomorphism assump-
tion restricts the expressiveness of the model, es-
pecially since one of the main benefits of adopt-
ing a two-stage parser is the potential of captur-
ing domain-independent semantic information via
the intermediate representation. While it would be
challenging to handle drastically non-isomorphic
structures in the current model, it is possible to
perform local structure matching, i.e., when the
mapping between natural language and domain-
specific predicates is many-to-one or one-to-many.
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For instance, Freebase does not contain a rela-
tion representing daughter, using instead two rela-
tions representing female and child. Previous work
(Kwiatkowski et al., 2013) models such cases
by introducing collapsing (for many-to-one map-
ping) and expansion (for one-to-many mapping)
operators. Within our current framework, these
two types of structural mismatches can be han-
dled with semi-Markov assumptions (Sarawagi
and Cohen, 2005; Kong et al., 2016) in the pars-
ing (i.e., predicate selection) and the grounding
steps, respectively. Aside from relaxing strict iso-
morphism, we would also like to perform cross-
domain semantic parsing where the first stage of
the semantic parser is shared across domains.
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Abstract

Morphologically rich languages accentu-
ate two properties of distributional vec-
tor space models: 1) the difficulty of in-
ducing accurate representations for low-
frequency word forms; and 2) insensitivity
to distinct lexical relations that have simi-
lar distributional signatures. These effects
are detrimental for language understanding
systems, which may infer that inexpensive
is a rephrasing for expensive or may not as-
sociate acquire with acquires. In this work,
we propose a novel morph-fitting procedure
which moves past the use of curated seman-
tic lexicons for improving distributional
vector spaces. Instead, our method injects
morphological constraints generated using
simple language-specific rules, pulling in-
flectional forms of the same word close to-
gether and pushing derivational antonyms
far apart. In intrinsic evaluation over four
languages, we show that our approach: 1)
improves low-frequency word estimates;
and 2) boosts the semantic quality of the
entire word vector collection. Finally, we
show that morph-fitted vectors yield large
gains in the downstream task of dialogue
state tracking, highlighting the importance
of morphology for tackling long-tail phe-
nomena in language understanding tasks.

1 Introduction

Word representation learning has become a re-
search area of central importance in natural lan-
guage processing (NLP), with its usefulness demon-
strated across many application areas such as pars-
ing (Chen and Manning, 2014; Johannsen et al.,
2015), machine translation (Zou et al., 2013), and
many others (Turian et al., 2010; Collobert et al.,
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2011). Most prominent word representation tech-
niques are grounded in the distributional hypothe-
sis (Harris, 1954), relying on word co-occurrence
information in large textual corpora (Curran, 2004;
Turney and Pantel, 2010; Mikolov et al., 2013;
Mnih and Kavukcuoglu, 2013; Levy and Goldberg,
2014; Schwartz et al., 2015, i.a.).

Morphologically rich languages, in which “sub-
stantial grammatical information. . .is expressed at
word level” (Tsarfaty et al., 2010), pose specific
challenges for NLP. This is not always considered
when techniques are evaluated on languages such
as English or Chinese, which do not have rich mor-
phology. In the case of distributional vector space
models, morphological complexity brings two chal-
lenges to the fore:

1. Estimating Rare Words: A single lemma
can have many different surface realisations.
Naively treating each realisation as a separate word
leads to sparsity problems and a failure to exploit
their shared semantics. On the other hand, lemma-
tising the entire corpus can obfuscate the differ-
ences that exist between different word forms even
though they share some aspects of meaning.

2. Embedded Semantics: Morphology can en-
code semantic relations such as antonymy (e.g. liz-
erate and illiterate, expensive and inexpensive) or
(near-)synonymy (north, northern, northerly).

In this work, we tackle the two challenges jointly
by introducing a resource-light vector space fine-
tuning procedure termed morph-fitting. The pro-
posed method does not require curated knowledge
bases or gold lexicons. Instead, it makes use of the
observation that morphology implicitly encodes
semantic signals pertaining to synonymy (e.g.,
German word inflections katalanisch, katalanis-
chem, katalanischer denote the same semantic con-
cept in different grammatical roles), and antonymy
(e.g., mature vs. immature), capitalising on the
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en_expensive de_teure it_costoso en_slow de_langsam it_lento en_book de_buch it_libro
costly teuren dispendioso fast allmihlich lentissimo books sachbuch romanzo
costlier kostspielige remunerativo | slowness rasch lenta memoir buches racconto
cheaper aufwindige redditizio slower gemichlich inesorabile novel romandebiit  volumetto
prohibitively  kostenintensive rischioso slowed schnell rapidissimo | storybooks biichlein saggio
pricey aufwendige costosa slowing  explosionsartig graduale blurb pamphlet ecclesiaste
expensiveness teures costosa slowing langsamer lenti booked biicher libri
costly teuren costose slowed langsames lente rebook biich libra
costlier teurem costosi slowness langsame lenta booking biiche librare
ruinously teurer dispendioso slows langsamem veloce rebooked biiches libre
unaffordable teurerer dispendiose idle langsamen rapido books biichen librano

Table 1: The nearest neighbours of three example words (expensive, slow and book) in English, German
and Italian before (top) and after (bottom) morph-fitting.

proliferation of word forms in morphologically
rich languages. Formalised as an instance of the
post-processing semantic specialisation paradigm
(Faruqui et al., 2015; Mrk3i¢€ et al., 2016), morph-
fitting is steered by a set of linguistic constraints
derived from simple language-specific rules which
describe (a subset of) morphological processes in
a language. The constraints emphasise similarity
on one side (e.g., by extracting morphological syn-
onyms), and antonymy on the other (by extracting
morphological antonyms), see Fig. 1 and Tab. 2.

The key idea of the fine-tuning process is to pull
synonymous examples described by the constraints
closer together in the transformed vector space,
while at the same time pushing antonymous exam-
ples away from each other. The explicit post-hoc
injection of morphological constraints enables: a)
the estimation of more accurate vectors for low-
frequency words which are linked to their high-
frequency forms by the constructed constraints;'
this tackles the data sparsity problem; and b) spe-
cialising the distributional space to distinguish be-
tween similarity and relatedness (Kiela et al., 2015),
thus supporting language understanding applica-
tions such as dialogue state tracking (DST).?

As a post-processor, morph-fitting allows the
integration of morphological rules with any distri-
butional vector space in any language: it treats an
input distributional word vector space as a black
box and fine-tunes it so that the transformed space
reflects the knowledge coded in the input morpho-
logical constraints (e.g., Italian words rispettoso
and irrispetosa should be far apart in the trans-

"For instance, the vector for the word katalanischem which
occurs only 9 times in the German Wikipedia will be pulled
closer to the more reliable vectors for katalanisch and kata-
lanischer, with frequencies of 2097 and 1383 respectively.

Representation models that do not distinguish between
synonyms and antonyms may have grave implications in down-
stream language understanding applications such as spoken
dialogue systems: a user looking for ‘an affordable Chinese
restaurant in west Cambridge’ does not want a recommenda-
tion for ‘an expensive Thai place in east Oxford’.
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rispettosa
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Figure 1: Morph-fitting in Italian. Representations
for rispettoso, rispettosa, rispettosi (EN: respectful),
are pulled closer together in the vector space (solid
lines; ATTRACT constraints). At the same time,
the model pushes them away from their antonyms
(dashed lines; REPEL constraints) irrispettoso, ir-
rispettosa, irrispettosi (EN: disrespectful), obtained
through morphological affix transformation cap-
tured by language-specific rules (e.g., adding the
prefix ir- typically negates the base word in Italian)

formed vector space, see Fig. 1). Tab. 1 illustrates
the effects of morph-fitting by qualitative exam-
ples in three languages: the vast majority of nearest
neighbours are “morphological” synonyms.

We demonstrate the efficacy of morph-fitting
in four languages (English, German, Italian, Rus-
sian), yielding large and consistent improvements
on benchmarking word similarity evaluation sets
such as SimLex-999 (Hill et al., 2015), its multilin-
gual extension (Leviant and Reichart, 2015), and
SimVerb-3500 (Gerz et al., 2016). The improve-
ments are reported for all four languages, and with
a variety of input distributional spaces, verifying
the robustness of the approach.

We then show that incorporating morph-fitted
vectors into a state-of-the-art neural-network DST
model results in improved tracking performance,
especially for morphologically rich languages. We
report an improvement of 4% on Italian, and 6% on
German when using morph-fitted vectors instead of
the distributional ones, setting a new state-of-the-
art DST performance for the two datasets.’

3There are no readily available DST datasets for Russian.



2 Morph-fitting: Methodology

Preliminaries In this work, we focus on four lan-
guages with varying levels of morphological com-
plexity: English (EN), German (DE), Italian (IT),
and Russian (RU). These correspond to languages
in the Multilingual SimLex-999 dataset. Vocabu-
laries Wep, Wye, Wit, Wy, are compiled by retain-
ing all word forms from the four Wikipedias with
word frequency over 10, see Tab. 3. We then extract
sets of linguistic constraints from these (large) vo-
cabularies using a set of simple language-specific
if-then-else rules, see Tab. 2.4 These constraints
(Sect. 2.2) are used as input for the vector space
post-processing ATTRACT-REPEL algorithm (out-
lined in Sect. 2.1).

2.1 The ATTRACT-REPEL Model

The ATTRACT-REPEL model, proposed by Mrksié
et al. (2017b), is an extension of the PARAGRAM
procedure proposed by Wieting et al. (2015). It
provides a generic framework for incorporating
similarity (e.g. successful and accomplished) and
antonymy constraints (e.g. nimble and clumsy) into
pre-trained word vectors. Given the initial vector
space and collections of ATTRACT and REPEL con-
straints A and R, the model gradually modifies the
space to bring the designated word vectors closer
together or further apart. The method’s cost func-
tion consists of three terms. The first term pulls the
ATTRACT examples (x;,x,) € A closer together.
If B4 denotes the current mini-batch of ATTRACT
examples, this term can be expressed as:

>

(zy,zr)EBA

+ RQLU (6att + X’V‘t’l‘ - XZXT))

A(Ba) (ReLU (8qtt + xit1 — x1%r)

where §44+ is the similarity margin which de-
termines how much closer synonymous vectors
should be to each other than to each of their respec-
tive negative examples. Re LU (z) = max(0, x) is
the standard rectified linear unit (Nair and Hinton,
2010). The ‘negative’ example t; for each word
x; in any ATTRACT pair is the word vector clos-
est to x; among the examples in the current mini-
batch (distinct from its target synonym and x; it-
self). This means that this term forces synonymous

*A native speaker can easily come up with these sets of
morphological rules (or at least with a reasonable subset of
them) without any linguistic training. What is more, the rules
for DE, IT, and RU were created by non-native, non-fluent

speakers with a limited knowledge of the three languages,
exemplifying the simplicity and portability of the approach.
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English German Italian

(discuss, discussed)
(laugh, laughing)
(pacifist, pacifists)
(evacuate, evacuated)
(evaluate, evaluates)

(schottisch, schottischem)
(damalige, damaligen)
(kombiniere, kombinierte)
(schweigt, schweigst)
(hacken, gehackt)

(golfo, golfi)
(minato, minata)
(mettere, metto)
(crescono, cresci)
(crediti, credite)

(abitata, inabitato)
(realta, irrealta)
(attuato, inattuato)

(dressed, undressed)
(similar, dissimilar)
(formality, informality)

(stabil, unstabil)
(geformtes, ungeformt)
(relevant, irrelevant)

Table 2: Example synonymous (inflectional; top)
and antonymous (derivational; bottom) constraints.

words from the in-batch ATTRACT constraints to
be closer to one another than to any other word in
the current mini-batch.

The second term pushes antonyms away from
each other. If (x;,z,) € Bp is the current mini-
batch of REPEL constraints, this term can be ex-
pressed as follows:

R(Br)

>

(z1,z)EBR

—+ ReLU (57‘pl + XX, —

(ReLU (6Tpl + XX, — Xltr)
xrtr))

In this case, each word’s ‘negative’ example is the
(in-batch) word vector furthest away from it (and
distinct from the word’s target antonym). The intu-
ition is that we want antonymous words from the
input REPEL constraints to be further away from
each other than from any other word in the current
mini-batch; d,,; is now the repel margin.

The final term of the cost function serves to
retain the abundance of semantic information en-
coded in the starting distributional space. If x:"* is
the initial distributional vector and V'(B) is the set
of all vectors present in the given mini-batch, this

term (per mini-batch) is expressed as follows:

>

x; EV(BAUBR)

R(Ba,Br) = Areg ||x2

— X;
2

where )4 is the L2 regularisation constant.” This
term effectively pulls word vectors towards their
initial (distributional) values, ensuring that rela-
tions encoded in initial vectors persist as long as
they do not contradict the newly injected ones.

2.2 Language-Specific Rules and Constraints

Semantic Specialisation with Constraints The
fine-tuning ATTRACT-REPEL procedure is entirely
driven by the input ATTRACT and REPEL sets of

SWe use hyperparameter values dqit = 0.6, 67p1 = 0.0,
Areg = 1079 from prior work without fine-tuning. We train
all models for 10 epochs with AdaGrad (Duchi et al., 2011).



W1 LAl IR
English 1,368,891 231,448 45,964
German 1,216,161 648,344 54,644
Italian 541,779 278,974 21,400
Russian 950,783 408,400 32,174

Table 3: Vocabulary sizes and counts of ATTRACT
(A) and REPEL (R) constraints.

constraints. These can be extracted from a variety
of semantic databases such as WordNet (Fellbaum,
1998), the Paraphrase Database (Ganitkevitch et al.,
2013; Pavlick et al., 2015), or BabelNet (Navigli
and Ponzetto, 2012; Ehrmann et al., 2014) as done
in prior work (Faruqui et al., 2015; Wieting et al.,
2015; Mrksié et al., 2016, i.a.). In this work, we
investigate another option: extracting constraints
without curated knowledge bases in a spectrum of
languages by exploiting inherent language-specific
properties related to linguistic morphology. This
relaxation ensures a wider portability of ATTRACT-
REPEL to languages and domains without readily
available or adequate resources.

Extracting ATTRACT Pairs The core difference
between inflectional and derivational morphology
can be summarised in a few lines as follows: the for-
mer refers to a set of processes through which the
word form expresses meaningful syntactic infor-
mation, e.g., verb tense, without any change to the
semantics of the word. On the other hand, the latter
refers to the formation of new words with seman-
tic shifts in meaning (Schone and Jurafsky, 2001;
Haspelmath and Sims, 2013; Lazaridou et al., 2013;
Zeller et al., 2013; Cotterell and Schiitze, 2017).

For the ATTRACT constraints, we focus on in-
flectional rather than on derivational morphology
rules as the former preserve the full meaning of a
word, modifying it only to reflect grammatical roles
such as verb tense or case markers (e.g., (en_read,
en_reads) or (de_katalanisch, de_katalanischer)).
This choice is guided by our intent to fine-tune
the original vector space in order to improve the
embedded semantic relations.

We define two rules for English, widely recog-
nised as morphologically simple (Avramidis and
Koehn, 2008; Cotterell et al., 2016b). These are:
R1) if wy,we € Wy, where wo = wy + ing/ed/s,
then add (wy,w9) and (wy,w1) to the set of AT-
TRACT constraints A. This rule yields pairs such as
(look, looks), (look, looking), (look, looked).

If w[: —1] is a function which strips the last
character from word w, the second rule is: (R2)
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if wy ends with the letter e and wy; € W, and
wy € Wep, where wo = wi[: —1] + ing/ed, then
add (w1, ws) and (w2, w1) to A. This creates pairs
such as (create, creating) and (create, created). Nat-
urally, introducing more sophisticated rules is pos-
sible in order to cover for other special cases and
morphological irregularities (e.g., sweep / swept),
but in all our EN experiments, A is based on the
two simple EN rules R1 and R2.

The other three languages, with more compli-
cated morphology, yield a larger number of rules.
In Italian, we rely on the sets of rules spanning:
(1) regular formation of plural (libro / libri); (2)
regular verb conjugation (aspettare / aspettiamo);
(3) regular formation of past participle (aspettare
/ aspettato); and (4) rules regarding grammatical
gender (bianco / bianca). Besides these, another
set of rules is used for German and Russian: (5)
regular declension (e.g., asiatisch / asiatischem).

Extracting REPEL Pairs As another source of
implicit semantic signals, W also contains words
which represent derivational antonyms: e.g., two
words that denote concepts with opposite meanings,
generated through a derivational process. We use a
standard set of EN “antonymy” prefixes: AP,,, =
{dis, il, un, in, im, ir, mis, non, anti} (Fromkin et al.,
2013). If wy,we € W, where wy is generated
by adding a prefix from AP, to wy, then (w1, ws)
and (w9, w;) are added to the set of REPEL con-
straints R. This rule generates pairs such as (ad-
vantage, disadvantage) and (regular, irregular). An
additional rule replaces the suffix -ful with -less,
extracting antonyms such as (careful, careless).

Following the same principle, we use APy,
{un, nicht, anti, ir, in, miss}, APy = {in, ir, im,
anti}, and AP,, = {ue, antuj}. For instance, this
generates an IT pair (rispettoso, irrispettoso) (see
Fig. 1). For DE, we use another rule targeting suffix
replacement: -voll is replaced by -los.

We further expand the set of REPEL constraints
by transitively combining antonymy pairs from
the previous step with inflectional ATTRACT pairs.
This step yields additional constraints such as
(rispettosa, irrispettosi) (see Fig. 1). The final A
and R constraint counts are given in Tab. 3. The full
sets of rules are available as supplemental material.

3 Experimental Setup

Training Data and Setup For each of the four
languages we train the skip-gram with negative
sampling (SGNS) model (Mikolov et al., 2013)



on the latest Wikipedia dump of each language.
We induce 300-dimensional word vectors, with the
frequency cut-off set to 10. The vocabulary sizes
|W| for each language are provided in Tab. 3. We
label these collections of vectors SGNS-LARGE.

Other Starting Distributional Vectors We also
analyse the impact of morph-fitting on other col-
lections of well-known EN word vectors. These
vectors have varying vocabulary coverage and are
trained with different architectures. We test stan-
dard distributional models: Common-Crawl GloVe
(Pennington et al., 2014), SGNS vectors (Mikolov
et al., 2013) with various contexts (BOW = bag-of-
words; DEPS = dependency contexts), and train-
ing data (PW = Polyglot Wikipedia from Al-Rfou
et al. (2013); 8B = 8 billion token word2vec cor-
pus), following (Levy and Goldberg, 2014) and
(Schwartz et al., 2015). We also test the symmetric-
pattern based vectors of Schwartz et al. (2016)
(SymPat-Emb), count-based PMI-weighted vectors
reduced by SVD (Baroni et al., 2014) (Count-SVD),
a model which replaces the context modelling func-
tion from CBOW with bidirectional LSTMs (Mela-
mud et al., 2016) (Context2Vec), and two sets of
EN vectors trained by injecting multilingual infor-
mation: BiSkip (Luong et al., 2015) and MultiCCA
(Faruqui and Dyer, 2014).

We also experiment with standard well-known
distributional spaces in other languages (IT and
DE), available from prior work (Dinu et al., 2015;
Luong et al., 2015; Vuli¢ and Korhonen, 2016a).

Morph-fixed Vectors A baseline which utilises
an equal amount of knowledge as morph-fitting,
termed morph-fixing, fixes the vector of each word
to the distributional vector of its most frequent
inflectional synonym, tying the vectors of low-
frequency words to their more frequent inflections.
For each word w;, we construct a set of M + 1
words Wy, = {w,w],...,w),} consisting of
the word wy itself and all M words which co-
occur with wy in the ATTRACT constraints. We
then choose the word w,,, from the set W, with
the maximum frequency in the training data, and
fix all other word vectors in Wy, to its word vec-
tor. The morph-fixed vectors (MFIX) serve as our
primary baseline, as they outperformed another
straightforward baseline based on stemming across

0Other SGNS parameters were set to standard values (Ba-
roni et al., 2014; Vuli¢ and Korhonen, 2016b): 15 epochs, 15
negative samples, global learning rate: .025, subsampling rate:
le — 4. Similar trends in results persist with d = 100, 500.
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all of our intrinsic and extrinsic experiments.

Morph-fitting Variants We analyse two vari-
ants of morph-fitting: (1) using ATTRACT con-
straints only (MFIT-A), and (2) using both AT-
TRACT and REPEL constraints (MFIT-AR).

4 Intrinsic Evaluation: Word Similarity

Evaluation Setup and Datasets The first set of
experiments intrinsically evaluates morph-fitted
vector spaces on word similarity benchmarks, using
Spearman’s rank correlation as the evaluation met-
ric. First, we use the SimLex-999 dataset, as well
as SimVerb-3500, a recent EN verb pair similarity
dataset providing similarity ratings for 3,500 verb
pairs.7 SimLex-999 was translated to DE, IT, and
RU by Leviant and Reichart (2015), and they crowd-
sourced similarity scores from native speakers. We
use this dataset for our multilingual evaluation.®

Morph-fitting EN Word Vectors As the first ex-
periment, we morph-fit a wide spectrum of EN dis-
tributional vectors induced by various architectures
(see Sect. 3). The results on SimLex and SimVerb
are summarised in Tab. 4. The results with EN
SGNS-LARGE vectors are shown in Fig. 3a. Morph-
fitted vectors bring consistent improvement across
all experiments, regardless of the quality of the ini-
tial distributional space. This finding confirms that
the method is robust: its effectiveness does not de-
pend on the architecture used to construct the initial
space. To illustrate the improvements, note that the
best score on SimVerb for a model trained on run-
ning text is achieved by Context2vec (p = 0.388);
injecting morphological constraints into this vector
space results in a gain of 7.1 p points.

Experiments on Other Languages We next ex-
tend our experiments to other languages, testing
both morph-fitting variants. The results are sum-
marised in Tab. 5, while Fig. 3a-3d show results
for the morph-fitted SGNS-LARGE vectors. These
scores confirm the effectiveness and robustness of
morph-fitting across languages, suggesting that the
idea of fitting to morphological constraints is in-
deed language-agnostic, given the set of language-
specific rule-based constraints. Fig. 3 also demon-

"Unlike other gold standard resources such as WordSim-
353 (Finkelstein et al., 2002) or MEN (Bruni et al., 2014),
SimLex and SimVerb provided explicit guidelines to discern
between semantic similarity and association, so that related
but non-similar words (e.g. cup and coffee) have a low rating.

8Since Leviant and Reichart (2015) re-scored the original
EN SimLex, we use their EN SimLex version for consistency.



Evaluation

Vectors SimLex-999  SimVerb-3500
1. SG-BOW2-PW (300)

(Mikolov et al., 2013) 339 — 439 277 — 381
2. GloVe-6B (300)

(Pennington et al., 2014) 324 — 438 286 — 405
3. Count-SVD (500)

(Baroni et al., 2014) 267 — 360 199 — .301
4. SG-DEPS-PW (300)

(Levy and Goldberg, 2014) 376 — .434 313 — 418
5. SG-DEPS-8B (500)

(Bansal et al., 2014) 373 — .441 356 — 473
6. MultiCCA-EN (512)

(Faruqui and Dyer, 2014) 314 — 391 296 — .354
7. BiSkip-EN (256)

(Luong et al., 2015) 276 — 356 260 — .333
8. SG-BOW2-8B (500)

(Schwartz et al., 2015) 373 — .440 348 — 441
9. SymPat-Emb (500)

(Schwartz et al., 2016) 381 — .442 284 — 373
10. Context2Vec (600)

(Melamud et al., 2016) 371 — 440 388 — .459

Table 4: The impact of morph-fitting (MFIT-AR
used) on a representative set of EN vector space
models. All results show the Spearman’s p corre-
lation before and after morph-fitting. The numbers
in parentheses refer to the vector dimensionality.

Vectors Distrib. MFIT-A  MFIT-AR
EN: GloVe-6B (300) 324 .376 438
EN: SG-BOW2-PW (300) .339 .385 439
DE: SG-DEPS-PW (300)

(Vuli¢ and Korhonen, 2016a) 267 318 325
DE: BiSkip-DE (256)

(Luong et al., 2015) 354 414 421
IT: SG-DEPS-PW (300)

(Vuli¢ and Korhonen, 2016a) 237 351 391
IT: CBOWS5-Wacky (300)

(Dinu et al., 2015) .363 417 446

Table 5: Results on multilingual SimLex-999 (EN,
DE, and IT) with two morph-fitting variants.

strates that the morph-fitted vector spaces consis-
tently outperform the morph-fixed ones.

The comparison between MFIT-A and MFIT-
AR indicates that both sets of constraints are im-
portant for the fine-tuning process. MFIT-A yields
consistent gains over the initial spaces, and (con-
sistent) further improvements are achieved by also
incorporating the antonymous REPEL constraints.
This demonstrates that both types of constraints are
useful for semantic specialisation.

Comparison to Other Specialisation Methods
We also tried using other post-processing spe-
cialisation models from the literature in lieu of
ATTRACT-REPEL using the same set of “morpho-
logical” synonymy and antonymy constraints. We
compare ATTRACT-REPEL to the retrofitting model
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Figure 2: A comparison of morph-fitting (the MFIT-
AR variant) with two other standard specialisation
approaches using the same set of morphological
constraints: Retrofitting (RF) (Faruqui et al., 2015)
and Counter-fitting (CF) (Mrksi¢ et al., 2016).
Spearman’s p correlation scores on the multilingual
SimLex-999 dataset for the same six distributional
spaces from Tab. 5.

of (Faruqui et al., 2015) and counter-fitting (Mrksi¢
et al., 2017a). The two baselines were trained for
20 iterations using suggested settings. The results
for EN, DE, and IT are summarised in Fig. 2. They
clearly indicate that MFIT- AR outperforms the two
other post-processors for each language. We hy-
pothesise that the difference in performance mainly
stems from context-sensitive vector space updates
performed by ATTRACT-REPEL. Conversely, the
other two models perform pairwise updates which
do not consider what effect each update has on the
example pair’s relation to other word vectors (for a
detailed comparison, see (Mrksic et al., 2017b)).

Besides their lower performance, the two other
specialisation models have additional disadvan-
tages compared to the proposed morph-fitting
model. First, retrofitting is able to incorporate
only synonymy/ATTRACT pairs, while our re-
sults demonstrate the usefulness of both types of
constraints, both for intrinsic evaluation (Tab. 5)
and downstream tasks (see later Fig. 3). Second,
counter-fitting is computationally intractable with
SGNS-LARGE vectors, as its regularisation term in-
volves the computation of all pairwise distances
between words in the vocabulary.

Further Discussion The simplicity of the used
language-specific rules does come at a cost of occa-
sionally generating incorrect linguistic constraints
such as (tent, intent), (prove, improve) or (press,
impress). In future work, we will study how to fur-



ther refine extracted sets of constraints. We also
plan to conduct experiments with gold standard
morphological lexicons on languages for which
such resources exist (Sylak-Glassman et al., 2015;
Cotterell et al., 2016b), and investigate approaches
which learn morphological inflections and deriva-
tions in different languages automatically as an-
other potential source of morphological constraints
(Soricut and Och, 2015; Cotterell et al., 2016a;
Faruqui et al., 2016; Kann et al., 2017; Aharoni
and Goldberg, 2017, i.a.).

S Downstream Task: Dialogue State
Tracking (DST)

Goal-oriented dialogue systems provide conversa-
tional interfaces for tasks such as booking flights
or finding restaurants. In slot-based systems, ap-
plication domains are specified using ontologies
that define the search constraints which users can
express. An ontology consists of a number of slots
and their assorted slot values. In a restaurant search
domain, sets of slot-values could include PRICE =
[cheap, expensive] or FOOD = [Thai, Indian, ...].

The DST model is the first component of mod-
ern dialogue pipelines (Young, 2010). It serves to
capture the intents expressed by the user at each
dialogue turn and update the belief state. This prob-
ability distribution over the possible dialogue states
(defined by the domain ontology) is the system’s
internal estimate of the user’s goals. It is used by
the downstream dialogue manager component to
choose the subsequent system response (Su et al.,
2016). The following example shows the true dia-
logue state in a multi-turn dialogue:

User: What’s good in the southern part of town?
inform(area=south)

System: Vedanta is the top-rated Indian place.

User: How about something cheaper?
inform(area=south, price=cheap)

System: Seven Days is very popular. Great hot pot.
User: What’s the address?
inform(area=south, price=cheap);
request (address)

System: Seven Days is at 66 Regent Street.

The Dialogue State Tracking Challenge (DSTC)
shared task series formalised the evaluation and
provided labelled DST datasets (Henderson et al.,
2014a,b; Williams et al., 2016). While a plethora
of DST models are available based on, e.g., hand-
crafted rules (Wang et al., 2014) or conditional
random fields (Lee and Eskenazi, 2013), the recent
DST methodology has seen a shift towards neural-
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network architectures (Henderson et al., 2014c,d;
Zilka and Jurcicek, 2015; Mrksi¢ et al., 2015; Perez
and Liu, 2017; Liu and Perez, 2017; Vodolan et al.,
2017; Mrksic¢ et al., 2017a, i.a.).

Model: Neural Belief Tracker To detect intents
in user utterances, most existing models rely on ei-
ther (or both): 1) Spoken Language Understanding
models which require large amounts of annotated
training data; or 2) hand-crafted, domain-specific
lexicons which try to capture lexical and morpho-
logical variation. The Neural Belief Tracker (NBT)
is a novel DST model which overcomes both issues
by reasoning purely over pre-trained word vectors
(Mrksié et al., 2017a). The NBT learns to compose
these vectors into intermediate utterance and con-
text representations. These are then used to decide
which of the ontology-defined intents (goals) have
been expressed by the user. The NBT model keeps
word vectors fixed during training, so that unseen,
yet related words can be mapped to the right intent
at test time (e.g. northern to north).

Data: Multilingual WOZ 2.0 Dataset Our DST
evaluation is based on the WOZ dataset, released
by Wen et al. (2017). In this Wizard-of-Oz setup,
two Amazon Mechanical Turk workers assumed
the role of the user and the system asking/providing
information about restaurants in Cambridge (oper-
ating over the same ontology and database used
for DSTC2 (Henderson et al., 2014a)). Users typed
instead of speaking, removing the need to deal with
noisy speech recognition. In DSTC datasets, users
would quickly adapt to the system’s inability to
deal with complex queries. Conversely, the WOZ
setup allowed them to use sophisticated language.
The WOZ 2.0 release expanded the dataset to 1,200
dialogues (Mrksic€ et al., 2017a). In this work, we
use translations of this dataset to Italian and Ger-
man, released by Mrksi¢ et al. (2017b).

Evaluation Setup The principal metric we use
to measure DST performance is the joint goal ac-
curacy, which represents the proportion of test set
dialogue turns where all user goals expressed up to
that point of the dialogue were decoded correctly
(Henderson et al., 2014a). The NBT models for
EN, DE and IT are trained using four variants of the
SGNS-LARGE vectors: 1) the initial distributional
vectors; 2) morph-fixed vectors; 3) and 4) the two
variants of morph-fitted vectors (see Sect. 3).

As shown by Mrksi¢ et al. (2017b), semantic
specialisation of the employed word vectors ben-
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Figure 3: An overview of the results (Spearman’s p correlation) for four languages on SimLex-999 (grey
bars, left y axis) and the downstream DST performance (dark bars, right y axis) using SGNS-LARGE vectors
(d = 300), see Tab. 3 and Sect. 3. The left y axis measures the intrinsic word similarity performance,
while the right y axis provides the scale for the DST performance (there are no DST datasets for Russian).

efits DST performance across all three languages.
However, large gains on SimLex-999 do not al-
ways induce correspondingly large gains in down-
stream performance. In our experiments, we inves-
tigate the extent to which morph-fitting improves
DST performance, and whether these gains exhibit
stronger correlation with intrinsic performance.

Results and Discussion The dark bars (against
the right axes) in Fig. 3 show the DST perfor-
mance of NBT models making use of the four
vector collections. IT and DE benefit from both
kinds of morph-fitting: 1T performance increases
from 74.1 — 78.1 (MFIT-A) and DE performance
rises even more: 60.6 — 66.3 (MFIT-AR), setting
a new state-of-the-art score for both datasets. The
morph-fixed vectors do not enhance DST perfor-
mance, probably because fixing word vectors to
their highest frequency inflectional form eliminates
useful semantic content encoded in the original
vectors. On the other hand, morph-fitting makes
use of this information, supplementing it with se-
mantic relations between different morphological
forms. These conclusions are in line with the Sim-
Lex gains, where morph-fitting outperforms both
distributional and morph-fixed vectors.
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English performance shows little variation
across the four word vector collections investigated
here. This corroborates our intuition that, as a mor-
phologically simpler language, English stands to
gain less from fine-tuning the morphological varia-
tion for downstream applications. This result again
points at the discrepancy between intrinsic and ex-
trinsic evaluation: the considerable gains in Sim-
Lex performance do not necessarily induce similar
gains in downstream performance. Additional dis-
crepancies between SimLex and downstream DST
performance are detected for German and Italian.
While we observe a slight drop in SimLex perfor-
mance with the DE MFIT-AR vectors compared
to the MFIT-A ones, their relative performance is
reversed in the DST task. On the other hand, we
see the opposite trend in Italian, where the MFIT-
A vectors score lower than the MFIT-AR vectors
on SimLex, but higher on the DST task. In sum-
mary, we believe these results show that SimLex is
not a perfect proxy for downstream performance
in language understanding tasks. Regardless, its
performance does correlate with downstream per-
formance to a large extent, providing a useful in-
dicator for the usefulness of specific word vector



spaces for extrinsic tasks such as DST.

6 Related Work

Semantic Specialisation A standard approach
to incorporating external information into vector
spaces is to pull the representations of similar
words closer together. Some models integrate such
constraints into the training procedure, modify-
ing the prior or the regularisation (Yu and Dredze,
2014; Xu et al., 2014; Bian et al., 2014; Kiela et al.,
2015), or using a variant of the SGNS-style objec-
tive (Liu et al., 2015; Osborne et al., 2016). Another
class of models, popularly termed retrofitting, in-
jects lexical knowledge from available semantic
databases (e.g., WordNet, PPDB) into pre-trained
word vectors (Faruqui et al., 2015; Jauhar et al.,
2015; Wieting et al., 2015; Nguyen et al., 2016;
Mrksic et al., 2016). Morph-fitting falls into the
latter category. However, instead of resorting to cu-
rated knowledge bases, and experimenting solely
with English, we show that the morphological rich-
ness of any language can be exploited as a source
of inexpensive supervision for fine-tuning vector
spaces, at the same time specialising them to better
reflect true semantic similarity, and learning more
accurate representations for low-frequency words.

Word Vectors and Morphology The use of mor-
phological resources to improve the representations
of morphemes and words is an active area of re-
search. The majority of proposed architectures en-
code morphological information, provided either
as gold standard morphological resources (Sylak-
Glassman et al., 2015) such as CELEX (Baayen
et al., 1995) or as an external analyser such as
Morfessor (Creutz and Lagus, 2007), along with
distributional information jointly at fraining time
in the language modelling (LM) objective (Luong
et al., 2013; Botha and Blunsom, 2014; Qiu et al.,
2014; Cotterell and Schiitze, 2015; Bhatia et al.,
2016, i.a.). The key idea is to learn a morphologi-
cal composition function (Lazaridou et al., 2013;
Cotterell and Schiitze, 2017) which synthesises the
representation of a word given the representations
of its constituent morphemes. Contrary to our work,
these models typically coalesce all lexical relations.

Another class of models, operating at the charac-
ter level, shares a similar methodology: such mod-
els compose token-level representations from sub-
component embeddings (subwords, morphemes, or
characters) (dos Santos and Zadrozny, 2014; Ling
et al., 2015; Cao and Rei, 2016; Kim et al., 2016;
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Wieting et al., 2016; Verwimp et al., 2017, i.a.).

In contrast to prior work, our model decouples
the use of morphological information, now pro-
vided in the form of inflectional and derivational
rules transformed into constraints, from the actual
training. This pipelined approach results in a sim-
pler, more portable model. In spirit, our work is sim-
ilar to Cotterell et al. (2016b), who formulate the
idea of post-training specialisation in a generative
Bayesian framework. Their work uses gold mor-
phological lexicons; we show that competitive per-
formance can be achieved using a non-exhaustive
set of simple rules. Our framework facilitates the
inclusion of antonyms at no extra cost and natu-
rally extends to constraints from other sources (e.g.,
WordNet) in future work. Another practical differ-
ence is that we focus on similarity and evaluate
morph-fitting in a well-defined downstream task
where the artefacts of the distributional hypothesis
are known to prompt statistical system failures.

7 Conclusion and Future Work

We have presented a novel morph-fitting method
which injects morphological knowledge in the form
of linguistic constraints into word vector spaces.
The method makes use of implicit semantic signals
encoded in inflectional and derivational rules which
describe the morphological processes in a language.
The results in intrinsic word similarity tasks show
that morph-fitting improves vector spaces induced
by distributional models across four languages. Fi-
nally, we have shown that the use of morph-fitted
vectors boosts the performance of downstream lan-
guage understanding models which rely on word
representations as features, especially for morpho-
logically rich languages such as German.

Future work will focus on other potential sources
of morphological knowledge, porting the frame-
work to other morphologically rich languages and
downstream tasks, and on further refinements of
the post-processing specialisation algorithm and
the constraint selection.
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Abstract

In recent years word-embedding models
have gained great popularity due to their
remarkable performance on several tasks,
including word analogy questions and cap-
tion generation. An unexpected ‘“‘side-
effect” of such models is that their vectors
often exhibit compositionality, i.e., adding
two word-vectors results in a vector that is
only a small angle away from the vector
of a word representing the semantic com-
posite of the original words, e.g., “man” +
“royal” = “king”.

This work provides a theoretical justifica-
tion for the presence of additive composi-
tionality in word vectors learned using the
Skip-Gram model. In particular, it shows
that additive compositionality holds in an
even stricter sense (small distance rather
than small angle) under certain assump-
tions on the process generating the corpus.
As a corollary, it explains the success of
vector calculus in solving word analogies.
When these assumptions do not hold, this
work describes the correct non-linear com-
position operator.

Finally, this work establishes a con-
nection between the Skip-Gram model
and the Sufficient Dimensionality Reduc-
tion (SDR) framework of Globerson and
Tishby: the parameters of SDR models
can be obtained from those of Skip-Gram
models simply by adding information on
symbol frequencies. This shows that Skip-
Gram embeddings are optimal in the sense
of Globerson and Tishby and, further, im-
plies that the heuristics commonly used to
approximately fit Skip-Gram models can
be used to fit SDR models.
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1 Introduction

The strategy of representing words as vectors has
a long history in computational linguistics and
machine learning. The general idea is to find
a map from words to vectors such that word-
similarity and vector-similarity are in correspon-
dence. Whilst vector-similarity can be readily
quantified in terms of distances and angles, quan-
tifying word-similarity is a more ambiguous task.
A key insight in that regard is to posit that the
meaning of a word is captured by “the company it
keeps” (Firth, 1957) and, therefore, that two words
that keep company with similar words are likely to
be similar themselves.

In the simplest case, one seeks vectors whose
inner products approximate the co-occurrence fre-
quencies. In more sophisticated methods co-
occurrences are reweighed to suppress the effect
of more frequent words (Rohde et al., 2006) and/or
to emphasize pairs of words whose co-occurrence
frequency maximally deviates from the indepen-
dence assumption (Church and Hanks, 1990).

An alternative to seeking word-embeddings that
reflect co-occurrence statistics is to extract the
vectorial representation of words from non-linear
statistical language models, specifically neural
networks. (Bengio et al., 2003) already proposed
(1) associating with each vocabulary word a fea-
ture vector, (ii) expressing the probability func-
tion of word sequences in terms of the feature vec-
tors of the words in the sequence, and (iii) learn-
ing simultaneously the vectors and the parame-
ters of the probability function. This approach
came into prominence recently through works of
Mikolov et al. (see below) whose main departure
from (Bengio et al., 2003) was to follow the sug-
gestion of (Mnih and Hinton, 2007) and trade-
away the expressive capacity of general neural-
network models for the scalability (to very large
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corpora) afforded by (the more restricted class of)
log-linear models.

An unexpected side effect of deriving word-
embeddings via neural networks is that the word-
vectors produced appear to enjoy (approximate)
additive compositionality: adding two word-
vectors often results in a vector whose nearest
word-vector belongs to the word capturing the
composition of the added words, e.g., “man” +
“royal” = “king” (Mikolov et al., 2013c). This un-
expected property allows one to use these vectors
to answer word-analogy questions algebraically,
e.g., answering the question “Man is to king as
woman is to __” by returning the word whose
word-vector is nearest to the vector

v(king) - v(man) + v(woman).

In this work we focus on explaining the source
of this phenomenon for the most prominent such
model, namely the Skip-Gram model introduced
in (Mikolov et al., 2013a). The Skip-Gram model
learns vector representations of words based on
their patterns of co-occurrence in the training cor-
pus as follows: it assigns to each word c in the
vocabulary V, a “context” and a “target” vector,
respectively u. and v, which are to be used in or-
der to predict the words that appear around each
occurrence of ¢ within a window of A tokens.
Specifically, the log probability of any target word
w to occur at any position within distance A of
a context word c is taken to be proportional to
the inner product between u. and v,,, i.e., letting
n=1V|,

RIS

p(wle) = - ()
Dl eteVi

Further, Skip-Gram assumes that the conditional
probability of each possible set of words in a win-
dow around a context word c factorizes as the

product of the respective conditional probabilities:

A
p(w—Av"'awA’C) = H p(w5|c) (2)
a0

(Mikolov et al., 2013a) proposed learning the
Skip-Gram parameters on a training corpus by us-
ing maximum likelihood estimation under (1) and
(2). Thus, if w; denotes the ¢-th word in the train-
ing corpus and 7" the length of the corpus, we seek
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the word vectors that maximize

1 T A
72 > logp(wirslwi) .

i=1 6=—A
540

3)

As mentioned, the normalized context vectors
obtained from maximizing (3) under (1) and (2)
exhibit additive compositionality. For example,
the cosine distance between the sum of the context
vectors of the words “Vietnam” and “capital” and
the context vector of the word “Hanoi” is small.

While there has been much interest in using
algebraic operations on word vectors to carry
out semantic operations like composition, and
mathematically-flavored explanations have been
offered (e.g., in the recent work (Paperno and Ba-
roni, 2016)), the only published work which at-
tempts a rigorous theoretical understanding of this
phenomenon is (Arora et al., 2016). This work
guarantees that word vectors can be recovered by
factorizing the so-called PMI matrix, and that al-
gebraic operations on these word vectors can be
used to solve analogies, under certain conditions
on the process that generated the training corpus.
Specifically, the word vectors must be known a
priori, before their recovery, and to have been
generated by randomly scaling uniformly sampled
vectors from the unit sphere' . Further, the ith word
in the corpus must have been selected with proba-
bility proportional to e%u®i where the “discourse”
vector c¢; governs the topic of the corpus at the
1th word. Finally, the discourse vector is assumed
to evolve according to a random walk on the unit
sphere that has a uniform stationary distribution.

By way of contrast, our results assume nothing
a priori about the properties of the word vectors.
In fact, the connection we establish between the
Skip-Gram and the Sufficient Dimensionality Re-
duction model of (Globerson and Tishby, 2003)
shows that the word vectors learned by Skip-Gram
are information-theoretically optimal. Further, the
context word ¢ in the Skip-Gram model essentially
serves the role that the discourse vector does in
the PMI model of (Arora et al., 2016): the words
neighboring c are selected with probability propor-
tional to e% Y. We find the exact non-linear com-
position operator when no assumptions are made
on the context word. When an analogous assump-
tion to that of (Arora et al., 2016) is made, that the

"More generally, it suffices that the word vectors have cer-
tain properties consistent with this sampling process.



context words are uniformly distributed, we prove
that the composition operator reduces to vector ad-
dition.

While our primary motivation has been to pro-
vide a better theoretical understanding of word
compositionality in the popular Skip-Gram model,
our connection with the SDR method illuminates
a much more general point about the practical ap-
plicability of the Skip-Gram model. In particular,
it addresses the question of whether, for a given
corpus, fitting a Skip-Gram model will give good
embeddings. Even if we are making reasonable
linguistic assumptions about how to model words
and the interdependencies of words in a corpus,
it’s not clear that these have to hold universally
on all corpuses to which we apply Skip-Gram.
However, the fact that when we fit a Skip-Gram
model we are fitting an SDR model (up to fre-
quency information), and the fact that SDR mod-
els are information-theoretically optimal in a cer-
tain sense, argues that regardless of whether the
Skip-Gram assumptions hold, Skip-Gram always
gives us optimal features in the following sense:
the learned context embeddings and target embed-
dings preserve the maximal amount of mutual in-
formation between any pair of random variables X
and Y consistent with the observed co-occurence
matrix, where Y is the target word and X is the
predictor word (in a min-max sense, since there
are many ways of coupling X and Y, each of
which may have different amounts of mutual in-
formation). Importantly, this statement requires no
assumptions on the distribution P(X,Y).

2 Compositionality of Skip-Gram

In this section, we first give a mathematical formu-
lation of the intuitive notion of compositionality of
words. We then prove that the composition oper-
ator for the Skip-Gram model in full generality is
a non-linear function of the vectors of the words
being composed. Under a single simplifying as-
sumption, the operator linearizes and reduces to
the addition of the word vectors. Finally, we ex-
plain how linear compositionality allows for solv-
ing word analogies with vector algebra.

A natural way of capturing the compositional-
ity of words is to say that the set of context words
c1,-..,Cyn has the same meaning as the single
word c if for every other word w,
= p(wlc) .

p(wler, ... cm)
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Although this is an intuitively satisfying defini-
tion, we never expect it to hold exactly; instead,
we replace exact equality with the minimization
of KL-divergence. That is, we state that the best
candidate for having the same meaning as the set
of context words C' is the word

arg min Dy, (p(-|C) [ p(-[¢)) -
ceV

“4)

We refer to any vector that minimizes (4) as a
paraphrase of the set of words C.

There are two natural concerns with (4). The
first is that, in general, it is not clear how to define
p(-|C). The second is that KL-divergence min-
imization is a hard problem, as it involves opti-
mization over many high dimensional probability
distributions. Our main result shows that both of
these problems go away for any language model
that satisfies the following two assumptions:

Al. For every word c, there exists Z, such that for
every word w,
p(wle) = )

T
7 exp(u, vy) -
A2. For every set of words C' = {c1,¢2,...,cm},
there exists Z¢ such that for every word w,

1mm

Hp w|cz

Clearly, the Skip-Gram model satisfies Al by
definition. We prove that it also satisfies A2 when
m < A (Lemma 1). Next, we state a theorem
that holds for any model satisfying assumptions
Al and A2, including the Skip-Gram model when
m < A.

Theorem 1. In every word model that satisfies Al

p(w|C) = (6)

and A2, for every set of words C = {c1,...,cm},
any paraphase c of C satisfies
Z p(w|c)vy = Z p(w|C) vy, (7)

weV weV

Theorem 1 characterizes the composition opera-
tor for any language model which satisfies our two
assumptions; in general, this operator is not addi-
tion. Instead, a paraphrase c is a vector such that
the average word vector under p(-|c) matches that
under p(:|C). When the expectations in (7) can
be computed, the composition operator can be im-
plemented by solving a non-linear system of equa-
tions to find a vector u for which the left-hand side
of (7) equals the right-hand side.



Our next result proves that although the compo-
sition operator is nontrivial in the general case, to
recover vector addition as the composition opera-
tor, it suffices to assume that the word frequency
is uniform.

Theorem 2. In every word model that satisfies Al,
A2, and where p(w) = 1/|V| for every w € V, the
paraphrase of C = {c1,...,cm} is

u +...+uy .

As word frequencies are typically much closer
to a Zipf distribution (Piantadosi, 2014), the uni-
formity assumption of Theorem 2 is not realistic.
That said, we feel it is important to point out that,
as reported in (Mikolov et al., 2013b), additivity
captures compositionality more accurately when
the training set is manipulated so that the prior dis-
tribution of the words is made closer to uniform.

Using composition to solve analogies. It has
been observed that word vectors trained using non-
linear models like Skip-Gram tend to encode se-
mantic relationships between words as linear re-
lationships between the word vectors (Mikolov
et al., 2013b; Pennington et al., 2014; Levy and
Goldberg, 2014). In particular, analogies of the
form “man:woman::king:?” can often be solved
by taking ? to be the word in the vocabulary
whose context vector has the smallest angle with
Uwoman + (Uking — Uman). Theorems 1 and 2 offer
insight into the solution such analogy questions.
We first consider solving an analogy of the form
“m:iw::k:?”” in the case where the composition
operator is nonlinear. The fact that m and w share
a relationship means m is a paraphrase of the set
of words {w, R}, where R is a set of words encod-
ing the relationship between m and w. Similarly,
the fact that k and 7 share the same relationship
means k is a paraphrase of the set of words {7, R}.
By Theorem 1, we have that R and ? must satisfy

Zp(@]m)w = Zp(ﬁ\w, R)v, and
ev Lev

> p(llkyoe = p(]?, R)v

tev tev

We see that solving analogies when the compo-
sition operator is nonlinear requires the solution
of two highly nonlinear systems of equations. In
sharp contrast, when the composition operator is
linear, the solution of analogies delightfully re-
duces to elementary vector algebra. To see this,
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we again begin with the assertion that the fact that
m and w share a relationship means m is a para-
phrase of the set of words {w, R}; Similarly, & is
a paraphrase of {7, R}. By Theorem 2,

u,;, = Uy, +u, and

u, = uy +uy,
which gives the expected relationship
u? = ug + (Uy — Up).

Note that because this expression for us is in terms
of k, w, and m, there is actually no need to assume
that R is a set of actual words in V.

2.1 Proofs
Proof of Theorem 1. Note that p(w|C) equals
1-m ™
p(w
W T ptuwlen
¢ i
w)i—-m m m
= p(Z) exp Zung — Zlog Z,
¢ i=1 i=1
1
= p(w) " exp(ubva)

where Z = Z¢ [[i%, Zi,andue = > | ;.
Minimizing the KL-divergence

DKL(]?("CD R ,Cm)Hp(-’C))

as a function of c is equivalent to maximizing the
negative cross-entropy as a function of u,, i.e., as
maximizing

ZZ exp ucvw (ul'v, —log Z.) .

Since () is concave, the maximizers occur where
its gradient vanishes. As Vy, (@) equals

7 Z exp uch |:Vw B

py eXp(uZVg)Vg:|
ZZ:l exp(ul'vy)

_ Z€=1 eXp(“c VOVE ;5 P(uc) vy
> k-1 exp(ud v) — p(w)™!
= Z p(wle) vy — Z p(wler, ..., cm)Vw
weV weV
we see that (7) follows. 0

Proof of Theorem 2. Recall that uc = Y ;" u;.
When p(w) = 1/|V| for all w € V, the negative
cross-entropy simplifies to

Qu.) =272 Z exp (ung) (uCTVw —logZ.) ,

w



and its gradient V@ to

i exp(ulve)ve
7Y exp(uctvy) |:V — == -
2 eplnetve) Vo = S )

=7 Z exp(uchw)Vw — Z exp(uchw)vw
w w

|

Thus, VQ(uc) = 0 and since ) is concave, uc is
its unique maximizer. O

Lemma 1. The Skip-Gram model satisfies as-
sumption A2 when m < A.

Proof of Lemma 1. First, assume that m = A. In
the Skip-Gram model target words are condition-
ally independent given a context word, i.e.,

m

pler, ..., emlw) = Hp(ci|w).

i=1
Applying Baye’s rule,

plct, - - s emlw)p(w)
p(c1y. -y cm)

p(wler, ... em) =

Sp L) 1 cilw
ey § GG

__ pw)

pler, ...,

1-m ™

[Ipwle) . @
=1

p(w

_ p(w)

Zc
where Z¢ = 1/ ([T~ p(c;)). This establishes the
result when m = A. The cases m < A follow
by marginalizing out A — m context words in the
equality (8). O

Projection of paraphrases onto the vocabulary
Theorem 2 states that if there is a word c in the vo-
cabulary V whose context vector equals the sum of
the context vectors of the words c1, ..., ¢y, then
c has the same “meaning”, in the sense of (4), as
the composition of the words ¢y, . . ., ¢,,. For any
given set of words C' = {ci1,...,cpn}, it is un-
likely that there exists a word ¢ € V' whose con-
text vector is exactly equal to the sum of the con-
text vectors of the words cy, ..., ¢;,. Similarly, in
Theorem 1, the solution(s) to (7) will most likely
not equal the context vector of any word in V. In
both cases, we thus need to project the vector(s)
onto words in our vocabulary in some manner.
Since Theorem 1 holds for any prior over V,
in theory, we could enumerate all words in V' and

1 p(w]ci)p(c:)
Cm) }_Il p(w)
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find the word(s) that minimize the difference of
the left hand side of (7) from the right hand side.
In practice, it turns out that the angle between the
context vector of a word w &€ V and solution-
vector(s) is a good proxy and one gets very good
experimental results by selecting as the paraphrase
of a collection of words, the word that minimizes
the angle to the paraphrase vector.

Minimizing the angle has been empirically suc-
cessful at capturing composition in multiple log-
linear word models. One way to understand the
success of this approach is to recall that each word
cis characterized by a categorical distribution over
all other words w, as stated in (1). The peaks
of this categorical distribution are precisely the
words with which ¢ co-occurs most often. These
words characterize ¢ more than all the other words
in the vocabulary, so it is reasonable to expect that
a word ¢’ whose categorical distribution has simi-
lar peaks as the categorical distribution of c is sim-
ilar in meaning to c¢. Note that the location of the
peaks of p(-|c) are immune to the scaling of u,
(athough the values of p(-|c) may change); thus,
the words w which best characterize c are those for
which vy, has a high inner product with u. /|| uc||2.

Since

T uT T

et dovel ol - R,
[ucllz  [Jugll2 [ucll2]lucl2

it is clear that if the angle between the context
representations of ¢ and ¢’ is small, the distribu-
tions p(w|c) and p(w|c’) will tend to have similar
peaks.

3 Skip-Gram learns a Sufficient
Dimensionality Reduction Model

The Skip-Gram model assumes that the distribu-
tion of the neighbors of a word follows a specific
exponential parametrization of a categorical distri-
bution. There is empirical evidence that this model
generates features that are useful for NLP tasks,
but there is no a priori guarantee that the training
corpus was generated in this manner. In this sec-
tion, we provide theoretical support for the useful-
ness of the features learned even when the Skip-
Gram model is misspecified.

To do so, we draw a connection between Skip-
Gram and the Sufficient Dimensionality Reduc-
tion (SDR) factorization of Globerson and Tishby
(Globerson and Tishby, 2003). The SDR model



learns optimal®> embeddings for discrete random
variables X and Y without assuming any para-
metric form on the distributions of X and Y, and
it is useful in a variety of applications, includ-
ing information retrieval, document classification,
and association analysis (Globerson and Tishby,
2003). As it turns out, these embeddings, like
Skip-Gram, are obtained by learning the param-
eters of an exponentially parameterized distribu-
tion. In Theorem 3 below, we show that if a Skip-
Gram model is fit to the cooccurence statistics of
X and Y, then the output can be trivially modified
(by adding readily-available information on word
frequencies) to obtain the parameters of an SDR
model.

This connection is significant for two reasons:
first, the original algorithm of (Globerson and
Tishby, 2003) for learning SDR embeddings is
expensive, as it involves information projections.
Theorem 3 shows that if one can efficiently fit
a Skip-Gram model, then one can efficiently fit
an SDR model. This implies that Skip-Gram
specific approximation heuristics like negative-
sampling, hierarchical softmax, and Glove, which
are believed to return high-quality approxima-
tions to Skip-Gram parameters (Mikolov et al.,
2013b; Pennington et al., 2014), can be used to
efficiently approximate SDR model parameters.
Second, (Globerson and Tishby, 2003) argues for
the optimality of the SDR embedding in any do-
main where the training information on X and Y
consists of their coocurrence statistics; this op-
timality and the Skip-Gram/SDR connection ar-
gues for the use of Skip-Gram approximations in
such domains, and supports the positive experi-
mental results that have been observed in appli-
cations in network science (Grover and Leskovec,
2016), proteinomics (Asgari and Mofrad, 2015),
and other fields.

As stated above, the SDR factorization solves
the problem of finding information-theoretically
optimal features, given co-occurrence statistics
for a pair of discrete random variables X and
Y. Associate a vector w; to the ith state of
X, a vector h; to the jth state of Y, and let
W =[wl... w‘q;(']T and H be defined similarly.
Globerson and Tishby show that such optimal fea-
tures can be obtained from a low-rank factoriza-

2Optimal in an information-theoretic sense: they preserve
the maximal mutual information between any pair of random
variables with the observed coocurrence statistics, without re-
gard to the underlying joint distribution.
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tion of the matrix G of co-occurence measure-
ments: G;; counts the number of times state 7 of
X has been observed to co-occur with state j of
Y. The loss of this factorization is measured using
the KL-divergence, and so the optimal features are
obtained from solving the problem

G
el
Here, Zg = Zij G;j normalizes G into an esti-

mate of the joint pmf of X and Y, and similarly
. . T .
Zw H 1s the constant that normalizes eWH" into

1 T
eVVH

arg min Dxkr, 7
W.H

W.H

a joint pmf. The expression eWH denotes entry-
wise exponentiation of WHT .

Now we revisit the Skip-Gram training objec-
tive, and show that it differs from the SDR ob-
jective only slightly. Whereas the SDR objective
measures the distance between the pmfs given by
(normalized versions of) G and eWHT, the Skip-
Gram objective measures the distance between the
pmfs given by (normalized versions of) the rows
of G and eWH" . That is, SDR emphasizes fitting
the entire pmfs, while Skip-Gram emphasizes fit-
ting conditional distributions.

Before presenting our main result, we state and
prove the following lemma, which is of indepen-
dent interest and is used in the proof of our main
theorem. Recall that Skip-Gram represents each
word c as a multinomial distribution over all other
words w, and it learns the parameters for these
distributions by a maximum likelihood estima-
tion. It is known that learning model parameters
by maximum likelihood estimation is equivalent
to minimizing the KL-divergence of the learned
model from the empirical distribution; the fol-
lowing lemma establishes the KL-divergence that
Skip-Gram minimizes.

Lemma 2. Let G be the word co-occurrence ma-
trix constructed from the corpus on which a Skip-
Gram model is trained, in which case G, is the
number of times word w occurs as a neighboring
word of c in the corpus. For each word c, let g.
denote the empirical frequency of the word in the
corpus, so that

Ge = Z Gcw/ Z Gt,w-
w t,w

Given a positive vector x, let X x/[|x|1-
Then, the Skip-Gram model parameters U

[w " and Vv = [v

T
| ]



minimize the objective
el TV
> geDiw(ge || e VT,
C

where g€ is the cth row of G.

Proof. Recall that Skip-Gram chooses U and V
to maximize

Z Z log p(wisswi)

=1 6=—C
6#£0

where

RIS

p(wle) = S

This objective can be rewritten using the pairwise
cooccurence statistics as

= % ; Gcw Ing(w|c)
Y| (T x g%
Z g; Gi, > Ztcw log p(u| >]
= ch > (g9, 10gp(w!C)>
—ch gellp(-le)) — H(g®)),
where H (-) denotes the entropy of a distribution.

It follows that since Skip-Gram maximizes ), it
minimizes

ZgCDKL (gl p(-

Ty, °
eus vi

logp (w] )]

—Dxr(

ZQCDKL (g° | eve WIVT )-

O]

We now prove our main theorem of this section,
which states that SDR parameters can be obtained
by augmenting the Skip-Gram embeddings to ac-
count for word frequencies.

Theorem 3. Let U,V be the results of fitting a

Skip-Gram model to G, and consider the aug-
mented matrices

U=[U|a]and V = [V]|1],
where
gC Z GC w
=1lo ___Jc and .= =
& <Zw eue Vw ) g Zt,w Gt

Then, the features (U, V) constitute a sufficient
dimensionality reduction of .
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Proof. For convenience, let G denote the joint
pdf matrix G/Zg, and let G denote the matrix
obtained by normalizing each row of G to be a
probability distribution. Then, it suffices to show
that Dk 1,(G || gw m) is minimized over the set of

probability distributions
(eWHT) } ’
cw
when W = Uand H = V.

To establish this result, we use a chain rule for
the KL-divergence. Recall that if we denote the
expected KL-divergence between two marginal

p(wlc)

pmfs by
q(w6)>> ’

Drr(p(-le)llq(-[e))
then the KL-divergence satisfies the chain rule:

=S <2p<w|c> g
Drr(p(w,c)lq(w,c))
= Di(p(c)llq(c)) + Drr(p(wle)lg(w|c)).

Using this chain rule, we get

1

{CIW,H ‘ QW,H(UJ, C) = E

Dir(G | gwu(w,c)) ©)
=D (g |l qwn(c))+Dx1(Gllgw m(wlc)).

Note that the second term in this sum is, in the
notation of Lemma 2,

Dir(Gllawm(wle)) = > geDkr(g° | e HY),
4

so the matrices U and V that are returned by fit-
ting the Skip-Gram model minimize the second
term in this sum. We now show that the augmented
matrices W = U and H = V also minimize this
second term, and in addition they make the first
term vanish.

To see that the first of these claims holds, i.e.,
that the augmented matrices make the second term
in (9) vanish, note that
al' vy

u Vuwtaoe

qg v (wlc) oce =e x qu,v(wlc),

and the constant of proportionality is independent
of w. It follows that qg v (w|c) = qu,v(w|c) and

Dk1(G |l gg.y(wle)) = Dkr(G || qu v (w]e)).

Thus, the choice W = U and H = V minimizes
the second term in (9).



To see that the augmented matrices make the
first term in (9) vanish, observe that when W = U
and H = V, we have that qg v (c) = g by con-
struction. This can be verified by calculation:

 Satopled ¥, evtvete

- T
u; Vo
Zw,te ¢

Zw,t qu,\?(“’, t)
e
> (Zw eutva> et

o]

a 17 [(eUVTl) ® ea} .

9g,v ()

Here, the notation x ©® y denotes entry-wise mul-
tiplication of vectors.

Since a. = log(g.) — log <<eUVT1> ), we
C
have

{(QUVTU © ea} . ge

17 {(eUVTl) @ea} - >t 0t -

g v (c) = e

The choice W = U and H = V makes the
first term in (9) vanish, and it also minimizes the
second term in (9). Thus, it follows that the fea-
tures (U, V) constitute a sufficient dimensionality
reduction of G. O
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Abstract

Semantic representation is receiving grow-
ing attention in NLP in the past few years,
and many proposals for semantic schemes
(e.g., AMR, UCCA, GMB, UDS) have
been put forth. Yet, little has been done to
assess the achievements and the shortcom-
ings of these new contenders, compare
them with syntactic schemes, and clarify
the general goals of research on semantic
representation. We address these gaps by
critically surveying the state of the art in
the field.

1 Introduction

Schemes for Semantic Representation of Text
(SRT) aim to reflect the meaning of sentences and
texts in a transparent way. There has recently been
an influx of proposals for semantic representa-
tions and corpora, e.g. GMB (Basile et al., 2012),
AMR (Banarescu et al., 2013), UCCA (Abend
and Rappoport, 2013b) and Universal Decomposi-
tional Semantics (UDS; White et al., 2016). Nev-
ertheless, no detailed assessment of the relative
merits of the different schemes has been carried
out, nor their comparison to previous sentential
analysis schemes, notably syntactic ones. An un-
derstanding of the achievements and gaps of se-
mantic analysis in NLP is crucial to its future
prospects.

In this paper we begin to chart the various pro-
posals for semantic schemes according to the con-
tent they support. As not many semantic queries
on texts can at present be answered with near
human-like reliability without using manual sym-
bolic annotation, we will mostly focus on schemes
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that represent semantic distinctions explicitly.!

We begin by discussing the goals of SRT in Sec-
tion 2. Section 3 surveys major represented mean-
ing components, including predicate-argument re-
lations, discourse relations and logical structure.
Section 4 details the various concrete proposals for
SRT schemes and annotated resources, while Sec-
tions 5 and 6 discuss criteria for their evaluation
and their relation to syntax, respectively.

We find that despite the major differences in
terms of formalism and interface with syntax, in
terms of their content there is a great deal of con-
vergence of SRT schemes. Principal differences
between schemes are mostly related to their ability
to abstract away from formal and syntactic vari-
ation, namely to assign similar structures to dif-
ferent constructions that have a similar meaning,
and to assign different structures to constructions
that have different meanings, despite their surface
similarity. Other important differences are in the
level of training they require from their annota-
tors (e.g., expert annotators vs. crowd-sourcing)
and in their cross-linguistic generality. We discuss
the complementary strengths of different schemes,
and suggest paths for future integration.

2 Defining Semantic Representation

The term semantics is used differently in different
contexts. For the purposes of this paper we define
a semantic representation as one that reflects the
meaning of the text as it is understood by a lan-
guage speaker. A semantic representation should
thus be paired with a method for extracting infor-
mation from it that can be directly evaluated by
humans. The extraction process should be reliable
and computationally efficient.

"Note that even a string representation of text can be re-
garded as semantic given a reliable enough parser.
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We stipulate that a fundamental component of
the content conveyed by SRTs is argument struc-
ture — who did what to whom, where, when and
why, i.e., events, their participants and the rela-
tions between them. Indeed, the fundamental sta-
tus of argument structure has been recognized by
essentially all approaches to semantics both in the-
oretical linguistics (Levin and Hovav, 2005) and in
NLP, through approaches such as Semantic Role
Labeling (SRL; Gildea and Jurafsky, 2002), for-
mal semantic analysis (e.g., Bos, 2008), and Ab-
stract Meaning Representation (AMR; Banarescu
et al., 2013). Many other useful meaning compo-
nents have been proposed, and are discussed at a
greater depth in Section 3.

Another approach to defining an SRT is through
external (extra-textual) criteria or applications.
For instance, a semantic representation can be de-
fined to support inference, as in textual entailment
(Dagan et al., 2006) or natural logic (Angeli and
Manning, 2014). Other examples include defin-
ing a semantic representation in terms of support-
ing knowledge base querying (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005), or defin-
ing semantics through a different modality, for in-
stance interpreting text in terms of images that cor-
respond to it (Kiros et al., 2014), or in terms of em-
bodied motor and perceptual schemas (Feldman
etal., 2010).

A different approach to SRT is taken by Vector
Space Models (VSM), which eschew the use of
symbolic structures, instead modeling all linguis-
tic elements as vectors, from the level of words
to phrases and sentences. Proponents of this ap-
proach generally invoke neural network methods,
obtaining impressive results on a variety of tasks
including lexical tasks such as cross-linguistic
word similarity (Ammar et al., 2016), machine
translation (Bahdanau et al., 2015), and depen-
dency parsing (Andor et al., 2016). VSMs are
also attractive in being flexible enough to model
non-local and gradient phenomena (e.g., Socher
et al., 2013). However, more research is needed to
clarify the scope of semantic phenomena that such
models are able to reliably capture. We therefore
only lightly touch on VSMs in this survey.

Finally, a major consideration in semantic anal-
ysis, and one of its great potential advantages, is
its cross-linguistic universality. While languages
differ in terms of their form (e.g., in their phonol-
ogy, lexicon, and syntax), they have often been as-
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sumed to be much closer in terms of their semantic
content (Bar-Hillel, 1960; Fodor, 1975). See Sec-
tion 5 for further discussion.

A terminological note: within formal linguis-
tics, semantics is often the study of the relation
between symbols (e.g., words, syntactic construc-
tions) and what they signify. In this sense, seman-
tics is the study of the aspects of meaning that are
overtly expressed by the lexicon and grammar of
a language, and is thus tightly associated with a
theory of the syntax-semantics interface. We note
that this definition of semantics is somewhat dif-
ferent from the one intended here, which defines
semantic schemes as theories of meaning.

3 Semantic Content

We turn to discussing the main content types en-
coded by semantic representation schemes. Due
to space limitations, we focus only on text seman-
tics, which studies the meaning relationships be-
tween lexical items, rather than the meaning of the
lexical items themselves.” We also defer discus-
sion of more targeted semantic distinctions, such
as sentiment, to future work.

We will use the following as a running example:

(1) Although Ann was leaving, she gave the
present to John.

Events. Events (sometimes called frames,
propositions or scenes) are the basic building
blocks of argument structure representations.
An event includes a predicate (main relation,
frame-evoking element), which is the main
determinant of what the event is about. It also
includes arguments (participants, core elements)
and secondary relations (modifiers, non-core
elements). Example 1 is usually viewed as having
two events, evoked by “leaving” and “gave”.
Schemes commonly provide an ontology or a
lexicon of event types (also a predicate lexicon),
which categorizes semantically similar events
evoked by different lexical items. For instance,
FrameNet defines frames as schematized story
fragments evoked by a set of conceptually simi-
lar predicates. In (1), the frames evoked by “leav-
ing” and “gave” are DEPARTING and GIVING, but
DEPARTING may also be evoked by “depart” and
“exit”, and GIVING by “donate” and “gift”.

2 We use the term “Text Semantics”, rather than the com-
monly used “Sentence Semantics” to include inter-sentence
semantic relations as well.



The events discussed here should not be con-
fused with events as defined in Information Ex-
traction and related tasks such as event co-
reference (Humphreys et al., 1997), which corre-
spond more closely to the everyday notion of an
event, such as a political or financial event, and
generally consist of multiple events in the sense
discussed here. The representation of such events
is recently receiving considerable interest within
NLP, e.g. the Richer Event Descriptions frame-
work (RED; Ikuta et al., 2014).

Predicates and Arguments. While predicate-
argument relations are universally recognized as
fundamental to semantic representation, the inter-
pretation of the terms varies across schemes. Most
SRL schemes cover a wide variety of verbal pred-
icates, but differ in which nominal and adjecti-
val predicates are covered. For example, Prop-
Bank (Palmer et al., 2005), one of the major re-
sources for SRL, covers verbs, and in its recent
versions also eventive nouns and multi-argument
adjectives. FrameNet (Ruppenhofer et al., 2016)
covers all these, but also covers relational nouns
that do not evoke an event, such as “president”.
Other lines of work address semantic arguments
that appear outside sentence boundaries, or that do
not explicitly appear anywhere in the text (Gerber
and Chai, 2010; Roth and Frank, 2015).

Core and Non-core Arguments. Perhaps the
most common distinction between argument types
is between core and non-core arguments (Dowty,
2003). While it is possible to define the dis-
tinction distributionally as one between obligatory
and optional arguments, here we focus on the se-
mantic dimension, which distinguishes arguments
whose meaning is predicate-specific and are nec-
essary components of the described event (core),
and those which are predicate-general (non-core).
For example, FrameNet defines core arguments
as conceptually necessary components of a frame,
that make the frame unique and different from
other frames, and peripheral arguments as those
that introduce additional, independent or distinct
relations from that of the frame such as time,
place, manner, means and degree (Ruppenhofer
et al., 2016, pp. 23-24).

Semantic Roles. Semantic roles are categories
of arguments. Many different semantic role inven-
tories have been proposed and used in NLP over
the years, the most prominent being FrameNet
(where roles are shared across predicates that
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evoke the same frame type, such as “leave” and
“depart”), and PropBank (where roles are verb-
specific). PropBank’s role sets were extended by
subsequent projects such as AMR. Another promi-
nent semantic role inventory is VerbNet (Kip-
per et al., 2008) and subsequent projects (Bonial
et al., 2011; Schneider et al., 2015), which define
a closed set of abstract semantic roles (such as
AGENT, PATIENT and INSTRUMENT) that apply
to all predicate arguments.

Co-reference and Anaphora. Co-reference al-
lows to abstract away from the different ways to
refer to the same entity, and is commonly included
in semantic resources. Coreference interacts with
argument structure annotation, as in its absence
each argument is arbitrarily linked to one of its
textual instances. Most SRL schemes would mark
“Ann” in (1) as an argument of “leaving” and
“she” as an argument of “gave”, although on se-
mantic grounds “Ann” is an argument of both.

Some SRTs distinguish between the cases of ar-
gument sharing which is encoded by the syntax
and is thus explicit (e.g., in “John went home and
took a shower”, “John” is both an argument of
“went home” and of “took a shower”), and cases
where the sharing of arguments is inferred (as in
(1)). This distinction may be important for text un-
derstanding, as the inferred cases tend to be more
ambiguous (“she” in (1) might not refer to “Ann”).
Other schemes, such as AMR, eschew this distinc-
tion and use the same terms to represent all cases
of coreference.

Temporal Relations. Most temporal semantic
work in NLP has focused on temporal relations
between events, either by timestamping them ac-
cording to time expressions found in the text, or
by predicting their relative order in time. Im-
portant resources include TimeML, a specification
language for temporal relations (Pustejovsky et al.,
2003), and the TempEval series of shared tasks
and annotated corpora (Verhagen et al., 2009,
2010; UzZaman et al., 2013). A different line of
work explores scripts: schematic, temporally or-
dered sequences of events associated with a cer-
tain scenario (Chambers and Jurafsky, 2008, 2009;
Regneri et al., 2010). For instance, going to a
restaurant includes sitting at a table, ordering, eat-
ing and paying, generally in this order.

Related to temporal relations, are causal rela-
tions between events, which are ubiquitous in lan-
guage, and central for a variety of applications,



including planning and entailment. See (Mirza
etal., 2014) and (Dunietz et al., 2015) for recently
proposed annotation schemes for causality and its
sub-types. Mostafazadeh et al. (2016) integrated
causal and TimeML-style temporal relations into
a unified representation.

The internal temporal structure of events has
been less frequently tackled. Moens and Steed-
man (1988) defined an ontology for the tempo-
ral components of an event, such as its prepara-
tory process (e.g., “climbing a mountain”), or
its culmination (“reaching its top”). Statistical
work on this topic is unfortunately scarce, and
mostly focuses on lexical categories such as aspec-
tual classes (Siegel and McKeown, 2000; Palmer
et al., 2007; Friedrich et al., 2016; White et al.,
2016), and tense distinctions (Elson and McKe-
own, 2010). Still, casting events in terms of their
temporal components, characterizing an annota-
tion scheme for doing so and rooting it in theo-
retical foundations, is an open challenge for NLP.

Spatial Relations. The representation of spatial
relations is pivotal in cognitive theories of mean-
ing (e.g., Langacker, 2008), and in application
domains such as geographical information sys-
tems or robotic navigation. Important tasks in this
field include Spatial Role Labeling (Kordjamshidi
etal., 2012) and the more recent SpaceEval (Puste-
jovsky et al., 2015). The tasks include the identi-
fication and classification of spatial elements and
relations, such as places, paths, directions and mo-
tions, and their relative configuration.

Discourse Relations encompass any semantic
relation between events or larger semantic units.
For example, in (1) the leaving and the giving
events are sometimes related through a discourse
relation of type CONCESSION, evoked by “al-
though”. Such information is useful, often essen-
tial for a variety of NLP tasks such as summariza-
tion, machine translation and information extrac-
tion, but is commonly overlooked in the develop-
ment of such systems (Webber and Joshi, 2012).
The Penn Discourse Treebank (PeDT;, Milt-
sakaki et al., 2004) annotates discourse units, and
classifies the relations between them into a hier-
archical, closed category set, including high-level
relation types like TEMPORAL, COMPARISON and
CONTINGENCY and finer-grained ones such as
JUSTIFICATION and EXCEPTION. Another com-
monly used resource is the RST Discourse Tree-
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bank (Carlson et al., 2003), which places more fo-
cus on higher-order discourse structures, resulting
in deeper hierarchical structures than the PeDT’s,
which focuses on local discourse structure.

Another discourse information type explored in
NLP is discourse segmentation, where texts are
partitioned into shallow structures of discourse
units categorized either according to their topic or
according to their function within the text. An ex-
ample is the segmentation of scientific papers into
functional segments and their labeling with cate-
gories such as BACKGROUND and DISCUSSION
(Liakata et al., 2010). See (Webber et al., 2011)
for a survey of discourse structure in NLP.

Discourse relations beyond the scope of a single
sentence are often represented by specialized se-
mantic resources and not by general ones, despite
the absence of a clear boundary line between them.
This, however, is beginning to change with some
schemes, e.g., GMB and UCCA, already support-
ing cross-sentence semantic relations.’

Logical Structure. Logical structure, including
quantification, negation, coordination and their as-
sociated scope distinctions, is the cornerstone of
semantic analysis in much of theoretical linguis-
tics, and has attracted much attention in NLP as
well. Common representations are often based
on variants of predicate calculus, and are use-
ful for applications that require mapping text into
an external, often executable, formal language,
such as a querying language (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005) or robot in-
structions (Artzi and Zettlemoyer, 2013). Logi-
cal structures are also useful for recognizing en-
tailment relations between sentences, as some en-
tailments can be computed from the text’s logi-
cal structure by formal provers (Bos and Markert,
2005; Lewis and Steedman, 2013).

Inference and Entailment. A primary motiva-
tion for many semantic schemes is their abil-
ity to support inference and entailment. Indeed,
means for predicting logical entailment are built
into many forms of semantic representations. A
different approach was taken in the tasks of Rec-
ognizing Textual Entailment (Dagan et al., 2013),
and Natural Logic (van Eijck, 2005), which con-
siders an inference valid if a reasonable annota-
tor would find the hypothesis likely to hold given

3AMR will also support discourse structure in its future
versions (N. Schneider; personal communication).



the premise, even if it cannot be deduced from it.
See (Manning, 2006) for a discussion of this point.
Such inference relations are usually not included
in semantic treebanks, but annotated in specialized
resources (e.g., Dagan et al., 2006; Bowman et al.,
2019).

4 Semantic Schemes and Resources

This section briefly surveys the different schemes
and resources for SRT. We focus on design princi-
ples rather than specific features, as the latter are
likely to change as the schemes undergo continu-
ous development. In general, schemes discussed
in Section 3 are not repeated here.

Semantic Role Labeling. SRL schemes diverge
in their event types, the type of predicates they
cover, their granularity, their cross-linguistic ap-
plicability, their organizing principles and their
relation with syntax. Most SRL schemes define
their annotation relative to some syntactic struc-
ture, such as parse trees of the PTB in the case of
PropBank, or specialized syntactic categories de-
fined for SRL purposes in the case of FrameNet.
Other than PropBank, FrameNet and VerbNet
discussed above, other notable resources include
Semlink (Loper et al., 2007) that links correspond-
ing entries in different resources such as Prop-
Bank, FrameNet, VerbNet and WordNet, and the
Preposition Supersenses project (Schneider et al.,
2015), which focuses on roles evoked by preposi-
tions. See (Palmer et al., 2010, 2013) for a review
of SRL schemes and resources. SRL schemes
are often termed “‘shallow semantic analysis” due
to their focus on argument structure, leaving out
other relations such as discourse events, or how
predicates and arguments are internally structured.

AMR. AMR covers predicate-argument rela-
tions, including semantic roles (adapted from
PropBank) that apply to a wide variety of pred-
icates (including verbal, nominal and adjectival
predicates), modifiers, co-reference, named enti-
ties and some time expressions.

AMR does not currently support relations above
the sentence level, and is admittedly English-
centric, which results in an occasional conflation
of semantic phenomena that happen to be sim-
ilarly realized in English, into a single seman-
tic category. AMR thus faces difficulties when
assessing the invariance of its structures across
translations (Xue et al., 2014). As an example,
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consider the sentences “I happened to meet Jack
in the office”, and “I asked to meet Jack in the
office”. While the two have similar syntactic
forms, the first describes a single “meeting” event,
where “happened” is a modifier, while the second
describes two distinct events: asking and meet-
ing. AMR annotates both in similar terms, which
may be suitable for English, where aspectual rela-
tions are predominantly expressed as subordinat-
ing verbs (e.g., “begin”, “want”), and are syntac-
tically similar to primary verbs that take an infini-
tival complement (such as “ask to meet” or “learn
to swim”). However, this approach is less suitable
cross-linguistically. For instance, when translating
the sentences to German, the divergence between
the semantics of the two sentences is clear: in the
first “happened” is translated to an adverb: “Ich
habe Jack im Biiro zufillig getroffen” (lit. “I have
Jack in-the office by-chance met”), and in the sec-
ond “asked” is translated to a verb: “Ich habe ge-
beten, Jack im Biiro zu treffen” (lit. “I have asked,
Jack in-the office to meet”).

UCCA. UCCA (Universal Conceptual Cogni-
tive Annotation) (Abend and Rappoport, 2013a,b)
is a cross-linguistically applicable scheme for se-
mantic annotation, building on typological the-
ory, primarily on Basic Linguistic Theory (Dixon,
2010). UCCA’s foundational layer of categories
focuses on argument structures of various types
and relations between them. In its current state,
UCCA is considerably more coarse-grained than
the above mentioned schemes (e.g., it does not
include semantic role information). However, its
distinctions tend to generalize well across lan-
guages (Sulem et al., 2015). For example, unlike
AMR, it distinguishes between primary and aspec-
tual verbs, so cases such as “happened to meet”
are annotated similarly to cases such as “met by
chance”, and differently from “asked to meet”.
Another design principle UCCA evokes is sup-
port for annotation by non-experts. To do so
the scheme reformulates some of the harder dis-
tinctions into more intuitive ones. For instance,
the core/non-core distinction is replaced in UCCA
with the distinction between pure relations (Ad-
verbials) and those evoking an object (Partici-
pants), which has been found easier for annotators
to apply.
UDS. Universal Decompositional Semantics

(White et al., 2016) is a multi-layered scheme,
which currently includes semantic role anno-



tation, word senses and aspectual classes (e.g.,
realis/irrealis). UDS emphasizes accessible
distinctions, which can be collected through
crowd-sourcing. However, the skeletal structure
of UDS representations is derived from syntactic
dependencies, and only includes verbal argument
structures that can be so extracted. Notably,
many of the distinctions in UDS are defined using
feature bundles, rather than mutually exclusive
categories. For instance, a semantic role may be
represented as having the features +VOLITION
and +AWARENESS, rather than as having the
category AGENT.

The Prague Dependency Treebank (PDT) Tec-
togrammatical Layer (PDT-TL) (Sgall, 1992;
Bohmova et al., 2003) covers a rich variety of
functional and semantic distinctions, such as argu-
ment structure (including semantic roles), tense,
ellipsis, topic/focus, co-reference, word sense dis-
ambiguation and local discourse information. The
PDT-TL results from an abstraction over PDT’s
syntactic layers, and its close relation with syntax
is apparent. For instance, the PDT-TL encodes the
distinction between a governing clause and a de-
pendent clause, which is primarily syntactic in na-
ture, so in the clauses “John came just as we were
leaving” and “We were leaving just as John came”
the governing and dependent clause are swapped,
despite their semantic similarity.

CCG-based Schemes. CCG (Steedman, 2000)
is a lexicalized grammar (i.e., nearly all semantic
content is encoded in the lexicon), which defines
a theory of how lexical information is composed
to form the meaning of phrases and sentences (see
Section 6.2), and has proven effective in a vari-
ety of semantic tasks (Zettlemoyer and Collins,
2005, 2007; Kwiatkowski et al., 2010; Artzi and
Zettlemoyer, 2013, inter alia). Several projects
have constructed logical representations by asso-
ciating CCG with semantic forms (by assigning
logical forms to the leaves). For example, Boxer
(Bos, 2008) and GMB, which builds on Boxer, use
Discourse Representation Structures (Kamp and
Reyle, 1993), while Lewis and Steedman (2013)
used Davidsonian-style A-expressions, accompa-
nied by lexical categorization of the predicates.
These schemes encode events with their argument
structures, and include an elaborate logical struc-
ture, as well as lexical and discourse information.

HPSG-based Schemes. Related to CCG-based
schemes are SRTs based on Head-driven Phrase

82

Structure Grammar (HPSG; Pollard and Sag,
1994), where syntactic and semantic features are
represented as feature bundles, which are it-
eratively composed through unification rules to
form composite units. HPSG-based SRT schemes
commonly use the Minimal Recursion Semantics
(Copestake et al., 2005) formalism. Annotated
corpora and manually crafted grammars exist for
multiple languages (Flickinger, 2002; Oepen et al.,
2004; Bender and Flickinger, 2005, inter alia),
and generally focus on argument structural and
logical semantic phenomena. The Broad-coverage
Semantic Dependency Parsing shared task and
corpora (Oepen et al., 2014, 2015) include corpora
annotated with the PDT-TL, and dependencies ex-
tracted from the HPSG grammars Enju (Miyao,
2006) and the LinGO English Reference Grammar
(ERG:; Flickinger, 2002).

Like the PDT-TL, projects based on CCG,
HPSG, and other expressive grammars such as
LTAG (Joshi and Vijay-Shanker, 1999) and LFG
(Kaplan and Bresnan, 1982) (e.g., GlueTag (Frank
and van Genabith, 2001)), yield semantic repre-
sentations that are coupled with syntactic ones.
While this approach provides powerful tools for
inference, type checking, and mapping into exter-
nal formal languages, it also often results in dif-
ficulties in abstracting away from some syntactic
details. For instance, the dependencies derived
from ERG in the SDP corpus use the same label
for different senses of the English possessive con-
struction, regardless of whether they correspond
to ownership (e.g., “John’s dog”) or to a different
meaning, such as marking an argument of a nomi-
nal predicate (e.g., “John’s kick™). See Section 6.

OntoNotes is a useful resource with multiple
inter-linked layers of annotation, borrowed from
different schemes. The layers include syntactic,
SRL, co-reference and word sense disambiguation
content. Some properties of the predicate, such as
which nouns are eventive, are encoded as well.

To summarize, while SRT schemes differ in the
types of content they support, schemes evolve to
continuously add new content types, making these
differences less consequential. The fundamental
difference between the schemes is the extent that
they abstract away from syntax. For instance,
AMR and UCCA abstract away from syntax as
part of their design, while in most other schemes
syntax and semantics are more tightly coupled.



Schemes also differ in other aspects discussed in
Sections 5 and 6.

5 Evaluation

Human evaluation is the ultimate criterion for val-
idating an SRT scheme given our definition of se-
mantics as meaning as it is understood by a lan-
guage speaker. Determining how well an SRT
scheme corresponds to human interpretation of
a text is ideally carried out by asking annota-
tors to make some semantic prediction or anno-
tation according to pre-specified guidelines, and
to compare this to the information extracted from
the SRT. Question Answering SRL (QASRL; He
et al., 2015) is an SRL scheme which solicits non-
experts to answer mostly wh-questions, convert-
ing their output to an SRL annotation. Hartshorne
etal. (2013) and Reisinger et al. (2015) use crowd-
sourcing to elicit semantic role features, such as
whether the argument was volitional in the de-
scribed event, in order to evaluate proposals for
semantic role sets.

Another evaluation approach is task-based eval-
uation. Many semantic representations in NLP are
defined with an application in mind, making this
type of evaluation natural. For instance, a major
motivation for AMR is its applicability to machine
translation, making MT a natural (albeit hitherto
unexplored) testbed for AMR evaluation. Another
example is using question answering to evaluate
semantic parsing into knowledge-base queries.

Another common criterion for evaluating a se-
mantic scheme is invariance, where semantic
analysis should be similar across paraphrases or
translation pairs (Xue et al., 2014; Sulem et al.,
2015). For instance, most SRL schemes abstract
away from the syntactic divergence between the
sentences (1) “He gave a present to John” and (2)
“It was John who was given a present” (although
a complete analysis would reflect the difference of
focus between them).

Importantly, these evaluation criteria also ap-
ply in cases where the representation is automat-
ically induced, rather than manually defined. For
instance, vector space representations are gener-
ally evaluated either through task-based evalua-
tion, or in terms of semantic features computed
from them, whose validity is established by human
annotators (e.g., Agirre et al., 2013, 2014).

Finally, where semantic schemes are induced
through manual annotation (and not through au-
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tomated procedures), a common criterion for de-
termining whether the guidelines are sufficiently
clear, and whether the categories are well-defined
is to measure agreement between annotators, by
assigning them the same texts and measuring the
similarity of the resulting structures. Measures
include the SMATCH measure for AMR (Cai
and Knight, 2013), and the PARSEVAL F-score
(Black et al., 1991) adapted for DAGs for UCCA.

SRT schemes diverge in the background and
training they require from their annotators. Some
schemes require extensive training (e.g., AMR),
while others can be (at least partially) collected
by crowdsourcing (e.g., UDS). Other examples in-
clude FrameNet, which requires expert annotators
for creating new frames, but employs less trained
in-house annotators for applying existing frames
to texts; QASRL, which employs non-expert an-
notators remotely; and UCCA, which uses in-
house non-experts, demonstrating no advantage to
expert over non-expert annotators after an initial
training period. Another approach is taken by
GMB, which uses online collaboration where ex-
pert collaborators participate in manually correct-
ing automatically created representations. They
further employ gamification strategies for collect-
ing some aspects of the annotation.

Universality. One of the great promises of se-
mantic analysis (over more surface forms of anal-
ysis) is its cross-linguistic potential. However,
while the theoretical and applicative importance of
universality in semantics has long been recognized
(Goddard, 2011), the nature of universal seman-
tics remains unknown. Recently, projects such as
BabelNet (Ehrmann et al., 2014), UBY (Gurevych
et al., 2012) and Open Multilingual Wordnet*,
constructed huge multi-lingual semantic nets, by
linking resources such as Wikipedia and WordNet
and processing them using modern NLP. However,
such projects currently focus on lexical semantic
and encyclopedic information rather than on text
semantics.

Symbolic SRT schemes such as SRL schemes
and AMR have also been studied for their cross-
linguistic applicability (Pad6 and Lapata, 2009;
Sun et al., 2010; Xue et al., 2014), indicating par-
tial portability across languages. Translated ver-
sions of PropBank and FrameNet have been con-
structed for multiple languages (e.g., Akbik et al.,
2016; Hartmann and Gurevych, 2013). How-

*nttp://compling.hss.ntu.edu.sg/omw/



ever, as both PropBank and FrameNet are lexi-
calized schemes, and as lexicons diverge wildly
across languages, these schemes require consid-
erable adaptation when ported across languages
(Kozhevnikov and Titov, 2013). Ongoing research
tackles the generalization of VerbNet’s unlexical-
ized roles to a universally applicable set (e.g.,
Schneider et al., 2015). Few SRT schemes place
cross-linguistically applicability as one of their
main criteria, examples include UCCA, and the
LinGO Grammar Matrix (Bender and Flickinger,
2005), both of which draw on typological theory.

Vector space models, which embed words and
sentences in a vector space, have also been applied
to induce a shared cross-linguistic space (Klemen-
tiev et al., 2012; Rajendran et al., 2015; Wu et al.,
2016). However, further evaluation is required in
order to determine what aspects of meaning these
representations reflect reliably.

6 Syntax and Semantics

6.1 Syntactic and Semantic Generalization

Syntactic distinctions are generally guided by
a combination of semantic and distributional
considerations, where emphasis varies across
schemes.

Consider phrase-based syntactic structures,
common examples of which, such as the Penn
Treebank for English (Marcus et al., 1993) and
the Penn Chinese Treebank (Xue et al., 2005), are
adaptations of X-bar theory. Constituents are com-
monly defined in terms of distributional criteria,
such as whether they can serve as conjuncts, be
passivized, elided or fronted (Carnie, 2002, pp.
50-53). Moreover, phrase categories are defined
according to the POS category of their headword,
such as Noun Phrase, Verb Phrase or Preposition
Phrase, which are also at least partly distributional,
motivated by their similar morphological and syn-
tactic distribution. In contrast, SRT schemes tend
to abstract away from these realizational differ-
ences and directly reflect the argument structure of
the sentence using the same set of categories, irre-
spective of the POS of the predicate, or the case
marking of its arguments.

Distributional considerations are also apparent
with functional syntactic schemes (the most com-
monly used form of which in NLP are lexicalist
dependency structures), albeit to a lesser extent.
A prominent example is Universal Dependencies
(UD; Nivre et al., 2016), which aims at produc-
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ing a cross-linguistically consistent dependency-
based annotation, and whose categories are moti-
vated by a combination of distributional and se-
mantic considerations. For example, UD would
distinguish between the dependency type between
“John” and “brother” in “John, my brother, ar-
rived” and “John, who is my brother, arrived”, de-
spite their similar semantics. This is due to the
former invoking an apposition, and the latter a rel-
ative clause, which are different in their distribu-
tion.

As an example of the different categorization
employed by UD and by purely semantic schemes
such as AMR and UCCA consider (1) “founding
of the school”, (2) “president of the United States”
and (3) “United States president”. UD is faithful
to the syntactic structure and represents (1) and (2)
similarly, while assigning a different structure to
(3). In contrast, AMR and UCCA perform a se-
mantic generalization and represents examples (2)
and (3) similarly and differently from (1).

6.2 The Syntax-Semantics Interface

A common assumption on the interface between
syntax and semantics is that semantics of phrases
and sentences is compositional — it is determined
recursively by the meaning of its immediate con-
stituents and their syntactic relationships, which
are generally assumed to form a closed set (Mon-
tague, 1970, and much subsequent work). Thus,
the interpretation of a sentence can be computed
bottom-up, by establishing the meaning of indi-
vidual words, and recursively composing them, to
obtain the full sentential semantics. The order and
type of these compositions are determined by the
syntactic structure.

Compositionality is employed by linguistically
expressive grammars, such as those based on
CCG and HPSG, and has proven to be a power-
ful method for various applications. See (Ben-
der et al., 2015) for a recent discussion of the ad-
vantages of compositional SRTs. Nevertheless,
a compositional account meets difficulties when
faced with multi-word expressions and in account-
ing for cases like “he sneezed the napkin off the
table”, where it is difficult to determine whether
“sneezed” or “off” account for the constructional
meaning. Construction Grammar (Fillmore et al.,
1988; Goldberg, 1995) answers these issues by
using an open set of construction-specific com-
positional operators, and supporting lexical en-



tries of varying lengths. Several ongoing projects
address the implementation of the principles of
Construction Grammar into explicit grammars, in-
cluding Sign-based Construction Grammar (Fill-
more et al., 2012), Embodied Construction Gram-
mar (Feldman et al., 2010) and Fluid Construction
Grammar (Steels and de Beules, 2006).

The achievements of machine learning methods
in many areas, and optimism as to its prospects,
have enabled the approaches to semantics dis-
cussed in this paper. Machine learning allows
to define semantic structures on purely semantic
grounds and to let algorithms identify how these
distinctions are mapped to surface/distributional
forms. Some of the schemes discussed in this pa-
per take this approach in its pure form (e.g., AMR
and UCCA).

7 Conclusion

Semantic representation in NLP is undergoing
rapid changes. Traditional semantic work has ei-
ther used shallow methods that focus on specific
semantic phenomena, or adopted formal seman-
tic theories which are coupled with a syntactic
scheme through a theory of the syntax-semantics
interface. Recent years have seen increasing inter-
est in an alternative approach that defines semantic
structures independently from any syntactic or dis-
tributional criteria, much due to the availability of
semantic treebanks that implement this approach.

Semantic schemes diverge in whether they are
anchored in the words and phrases of the text (e.g.,
all types of semantic dependencies and UCCA) or
not (e.g., AMR and logic-based representations).
We do not view this as a major difference, be-
cause most unanchored representations (including
AMR) retain their close affinity with the words
of the sentence, possibly because of the absence
of a workable scheme for lexical decomposition,
while dependency structures can be converted into
logic-based representations (Reddy et al., 2016).
In practice, anchoring facilitates parsing, while
unanchored representations are more flexible to
use where words and semantic components are not
in a one-to-one correspondence.

Our survey concludes that the main distinguish-
ing factors between schemes are their relation to
syntax, their degree of universality, and the exper-
tise and training they require from annotators, an
important factor in addressing the annotation bot-
tleneck. We hope this survey of the state of the
art in semantic representation will promote discus-
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sion, expose more researchers to the most press-
ing questions in semantic representation, and lead
to the wide adoption of the best components from
each scheme.
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Abstract

While joint models have been developed
for many NLP tasks, the vast majority of
event coreference resolvers, including the
top-performing resolvers competing in the
recent TAC KBP 2016 Event Nugget De-
tection and Coreference task, are pipeline-
based, where the propagation of errors
from the trigger detection component to
the event coreference component is a ma-
jor performance limiting factor. To ad-
dress this problem, we propose a model
for jointly learning event coreference, trig-
ger detection, and event anaphoricity. Our
joint model is novel in its choice of tasks
and its features for capturing cross-task
interactions. To our knowledge, this is
the first attempt to train a mention-ranking
model and employ event anaphoricity for
event coreference. Our model achieves the
best results to date on the KBP 2016 En-
glish and Chinese datasets.

1 Introduction

Within-document event coreference resolution is
the task of determining which event mentions in a
text refer to the same real-world event. Compared
to entity coreference resolution, event coreference
resolution is not only much less studied, but it is
arguably more challenging. The challenge stems
in part from the fact that an event coreference re-
solver typically lies towards the end of the stan-
dard information extraction pipeline, assuming as
input the noisy outputs of its upstream compo-
nents. One such component is the trigger detection
system, which is responsible for identifying event
triggers and determining their event subtypes.

As is commonly known, trigger detection is
another challenging task that is far from being
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solved. In fact, in the recent TAC KBP 2016 Event
Nugget Detection and Coreference task, trigger
detection (a.k.a. event nugget detection in KBP)
is deliberately made more challenging by focus-
ing only on detecting the 18 subtypes of triggers
on which the KBP 2015 participating systems’
performances were the poorest (Mitamura et al.,
2016). The best-performing KBP 2016 system on
English trigger detection achieved only an F-score
of 47 (Lu and Ng, 2016).!

Given the difficulty of trigger detection, it is
conceivable that many errors will propagate from
the trigger detection component to the event coref-
erence component in any pipeline architecture
where trigger detection precedes event corefer-
ence resolution. These trigger detection errors
could severely harm event coreference perfor-
mance. For instance, two event mentions could
be wrongly posited as coreferent if the underlying
triggers were wrongly predicted to have the same
subtype. Nevertheless, the top-performing sys-
tems in the KBP 2016 event coreference task all
adopted the aforementioned pipeline architecture
(Liu et al., 2016; Lu and Ng, 2016; Nguyen et al.,
2016). Their performances are not particularly im-
pressive, however: the best English event corefer-
ence F-score (averaged over four scoring metrics)
is only around 30%.

To address this error propagation problem, we
describe a joint model of trigger detection, event
coreference, and event anaphoricity in this pa-
per. Our choice of these three tasks is moti-
vated in part by their inter-dependencies. As men-
tioned above, it is well-known that trigger de-
tection performance has a huge impact on event
coreference performance. Though largely under-
investigated, event coreference could also improve

!"This is the best English nugget type result in KBP 2016.
In this paper, we will not be concerned with realis classifica-
tion, as it does not play any role in event coreference.

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 90-101
Vancouver, Canada, July 30 - August 4, 2017. (©)2017 Association for Computational Linguistics
https://doi.org/10.18653/v1/P17-1009


https://doi.org/10.18653/v1/P17-1009

trigger detection. For instance, if two event men-
tions are posited as coreferent, then the under-
lying triggers must have the same event sub-
type. While the use of anaphoricity information
for entity coreference has been extensively stud-
ied (see Ng (2010)), to our knowledge there has
thus far been no attempt to explicitly model event
anaphoricity for event coreference.” Although
the mention-ranking model we employ for event
coreference also allows an event mention to be
posited as non-anaphoric (by resolving it to a null
candidate antecedent), our decision to train a sep-
arate anaphoricity model and integrate it into our
joint model is motivated in part by the recent suc-
cesses of Wiseman et al. (2015), who showed that
there are benefits in jointly training a noun phrase
anaphoricity model and a mention-ranking model
for entity coreference resolution. Finally, event
anaphoricity and trigger detection can also mu-
tually benefit each other. For instance, any verb
posited as a non-trigger cannot be anaphoric, and
any verb posited as anaphoric must be a trigger.
Note that in our joint model, anaphoricity serves
as an auxiliary task: its intended use is to im-
prove trigger detection and event coreference, po-
tentially mediating the interaction between trigger
detection and event coreference.

Being a structured conditional random field, our
model encompasses two types of factors. Unary
factors encode the features specific for each task.
Binary and ternary factors capture the interaction
between each pair of tasks in a soft manner, en-
abling the learner to learn which combinations of
values of the output variables are more probable.
For instance, the learner should learn that it is not a
good idea to classify a verb both as anaphoric and
as a non-trigger. Our model is similar in spirit to
Durrett and Klein’s (2014) joint model for entity
analysis, which performs joint learning for entity
coreference, entity linking and semantic typing via
the use of interaction features.

Our contributions are two-fold.  First, we
present a joint model of event coreference, trigger
detection, and anaphoricity that is novel in terms
of the choice of tasks and the features used to cap-
ture cross-task interactions. Second, our model
achieves the best results to date on the KBP 2016
English and Chinese event coreference tasks.

Following the entity coreference literature, we over-
load the term anaphoricity, saying that an event mention is
anaphoric if it is coreferent with a preceding mention in the
associated text.
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2 Definitions, Task, and Corpora

2.1 Definitions

We employ the following definitions in our discus-
sion of trigger detection and event coreference:

e An event mention is an explicit occurrence
of an event consisting of a textual trigger, ar-
guments or participants (if any), and the event
type/subtype.

An event trigger is a string of text that most
clearly expresses the occurrence of an event,
usually a word or a multi-word phrase

An event argument is an argument filler that
plays a certain role in an event.

An event coreference chain (a.k.a. an event
hopper) is a group of event mentions that re-
fer to the same real-world event. They must
have the same event (sub)type.

To understand these definitions, consider the ex-
ample in Table 1, which contains two coreferent
event mentions, evl and ev2. left is the trig-
ger for evl and departed is the trigger for ev2.
Both triggers have subtype Movement.Transport-
Person. evl has three arguments, Georges Cipri-
ani, prison, and Wednesday with roles Person,
Origin, and Time respectively. ev2 also has three
arguments, He, Ensisheim, and police vehicle with
roles Person, Origin, and Instrument respectively.

2.2 Task

The version of the event coreference task we fo-
cus on in this paper is the Event Nugget Detec-
tion and Coreference task in the TAC KBP 2016
Event Track. While we discuss the role played by
event arguments in event coreference in the previ-
ous subsection, KBP 2016 addresses event argu-
ment detection as a separate shared task. In other
words, the KBP 2016 Event Nugget Detection and
Coreference task focuses solely on trigger detec-
tion and event coreference.

It is worth mentioning that the KBP Event
Nugget Detection and Coreference task, which
started in 2015, aims to address a major weakness
of the ACE 2005 event coreference task. Specif-
ically, ACE 2005 adopts a strict notion of event
identity, with which two event mentions were an-
notated as coreferent if and only if “they had
the same agent(s), patient(s), time, and location”
(Song et al., 2015), and their event attributes (po-
larity, modality, genericity, and tense) were not in-
compatible. In contrast, KBP adopts a more re-
laxed definition of event coreference, allowing two



Georges Cipriani{person], {1eft}es1 the prison[origirn) in Ensisheim in northern France on parole on Wednesday 1ime-
He[person) {departed}c,2 Ensisheimo, gy in a police vehicle[;,s¢rument) bound for an open prison near Strasbourg.

Table 1: Event coreference resolution example.

event mentions to be coreferent as long as they in-
tuitively refer to the same real-world event. Under
this definition, two event mentions can be corefer-
ent even if their time and location arguments are
not coreferent. In our example in Table 1, ev1 and
ev? are coreferent in KBP because they both refer
to the same event of Cipriani leaving the prison.
However, they are not coreferent in ACE because
their Origin arguments are not coreferent (one Ori-
gin argument involves a prison in Ensisheim while
the other involves the city Ensisheim).

2.3 Corpora

Given our focus on the KBP 2016 Event Nugget
Detection and Coreference task, we employ the
English and Chinese corpora used in this task for
evaluation, referring to these corpora as the KBP
2016 English and Chinese corpora for brevity.
There are no official training sets: the task orga-
nizers simply made available a number of event
coreference-annotated corpora for training. For
English, we use LDC2015E29, E68, E73, and E94
for training. These corpora are composed of two
types of documents, newswire documents and dis-
cussion forum documents. Together they contain
648 documents with 18739 event mentions dis-
tributed over 9955 event coreference chains. For
Chinese, we use LDC2015E78, E105, and E112
for training. These corpora are composed of dis-
cussion forum documents only. Together they con-
tain 383 documents with 4870 event mentions dis-
tributed over 3614 event coreference chains.

The test set for English consists of 169
newswire and discussion forum documents with
4155 event mentions distributed over 3191 event
coreference chains. The test set for Chinese con-
sists of 167 newswire and discussion forum docu-
ments with 2518 event mentions distributed over
1912 event coreference chains. Note that these
test sets contain only annotations for event triggers
and event coreference (i.e., there are no event ar-
gument annotations). While some of the training
sets additionally contain event argument annota-
tions, we do not make use of event argument an-
notations in model training to ensure a fairer com-
parison to the teams participating in the KBP 2016
Event Nugget Detection and Coreference task.
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3 Model

3.1 Overview

Our model, which is a structured conditional ran-
dom field, operates at the document level. Specif-
ically, given a test document, we first extract from
it (1) all single-word nouns and verbs and (2) all
words and phrases that have appeared at least once
as a trigger in the training data. We treat each of
these extracted words and phrases as a candidate
event mention.® The goal of the model is to make
joint predictions for the candidate event mentions
in a document. Three predictions will be made for
each candidate event mention that correspond to
the three tasks in the model: its trigger subtype, its
anaphoricity, and its antecedent.

Given this formulation, we define three types of
output variables:

e Event subtype variables t= (%1, ...,t,). Each
t; takes a value in the set of 18 event subtypes
defined in KBP 2016 or NONE, which indi-
cates that the event mention is not a trigger.
Anaphoricity variables a (a1,...,an).
Each a; is either ANAPHORIC or NOT
ANAPHORIC.

Coreference variables ¢ = (cy, ..., ¢,), where
¢i €{1,...,7—1, NEW}. In other words,
the value of each ¢; is the id of its antecedent,
which can be one of the preceding event men-
tions or NEW (if the event mention underly-
ing c; starts a new cluster).

Each candidate event mention is associated with
exactly one coreference variable, one event sub-
type variable, and one anaphoricity variable. Our
model induces the following log-linear probability
distribution over these variables:

p(t,a, clz;0) x exp(z 0:fi(t,a, c,x))

(2

3 According to the KBP annotation guidelines, each word
may trigger multiple event mentions (e.g., murder can trig-
ger two event mentions with subtypes Life.Die and Con-
flict.Attack). Hence, our treating each extracted word as a
candidate event mention effectively prevents a word from
triggering multiple event mentions. Rather than complicate
model design by relaxing this simplifying assumption, we
present an alternative, though partial, solution to this prob-
lem wherein we allow each event mention to be associated
with multiple event subtypes. See the Appendix for details.
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Figure 1: Unary factors for the three tasks, the
variables they are connected to, and the possible
values of the variables.

specific features. Each factor is connected to the correspond-

Unary factors encode task-

ing output node. The features associated with a factor are
used to predict the value of the output node it is connected to

when a model is run independently of other models.

where 0; € O is the weight associated with feature
function f; and « is the input document.

3.2 Features

Given that our model is a structured conditional
random field, the features can be divided into two
types: (1) task-specific features, and (2) cross-
task features, which capture the interactions be-
tween a pair of tasks. We express these two types
of features in factor graph notation. The task-
specific features are encoded in unary factors, each
of which is connected to the corresponding vari-
able (Figure 1). The cross-task features are en-
coded in binary or ternary factors, each of which
couples the output variables from two tasks (Fig-
ure 2). Next, we describe these two types of fea-
tures. Each feature is used to train models for both
English and Chinese unless otherwise stated.

3.2.1 Task-Specific Features

We begin by describing the task-specific features,
which are encoded in unary factors, as well as each
of the three independent models.

3.2.1.1 Trigger Detection

When applied in isolation, our trigger detection
model returns a distribution over possible subtypes
given a candidate trigger. Each candidate trigger ¢
is represented using t’s word, t’s lemma, word bi-
grams formed with a window size of three from
t, as well as feature conjunctions created by pair-
ing ¢’s lemma with each of the following features:
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Figure 2: Binary and ternary factors. These higher-
order factors capture cross-task interactions. The binary
anaphoricity and trigger factors encourage anaphoric men-
tions to be triggers. The binary anaphoricity and coreference
factors encourage non-anaphoric mentions to start a NEW
coreference cluster. The ternary trigger and coreference fac-

tors encourage coreferent mentions to be triggers.

the head word of the entity syntactically closest to
t, the head word of the entity textually closest to
t, the entity type of the entity that is syntactically
closest to ¢, and the entity type of the entity that is
textually closest to t.* In addition, for event men-
tions with verb triggers, we use the head words and
the entity types of their subjects and objects as fea-
tures, where the subjects and objects are extracted
from the dependency parse trees obtained using
Stanford CoreNLP (Manning et al., 2014). For
event mentions with noun triggers, we create the
same features that we did for verb triggers, except
that we replace the subjects and verbs with heuris-
tically extracted agents and patients. Finally, for
the Chinese trigger detector, we additionally cre-
ate two features from each character in ¢, one en-
coding the character itself and the other encoding
the entry number of the corresponding character in
a Chinese synonym dictionary.’

3.2.1.2

We employ a mention-ranking model for event
coreference that selects the most probable an-
tecedent for a mention to be resolved (or NEW
if the mention is non-anaphoric) from its set of
candidate antecedents. When applied in isola-
tion, the model is trained to maximize the condi-

Event Coreference

*We train a CRF-based entity extraction model for jointly
identifying the entity mentions and their types. Details can
be found in Lu et al. (2016).

>The dictionary is available from http://ir.hit.edu.cn/. An
entry number in this dictionary conceptually resembles a
synset id in WordNet (Fellbaum, 1998).



tional likelihood of collectively resolving the men-
tions to their correct antecedents in the training
texts (Durrett and Klein, 2013). Below we de-
scribe the features used to represent the candidate
antecedents for the mention to be resolved, m;.

Features representing the NULL candidate an-
tecedent: Besides m;’s word and m;’s lemma,
we employ feature conjunctions given their useful-
ness in entity coreference (Fernandes et al., 2014).
Specifically, we create a conjunction between
m;’s lemma and the number of sentences preced-
ing m;, as well as a conjunction between m;’s
lemma and the number of mentions preceding m;
in the document.

Features representing a non-NULL candidate
antecedent, m;: m;’s word, m;’s lemma,
whether m; and m; have the same lemma, and fea-
ture conjunctions including: (1) m;’s word paired
with m;’s word, (2) m;’s lemma paired with m;’s
lemma, (3) the sentence distance between m,; and
m,; paired with m;’s lemma and m;’s lemma, (4)
the mention distance between m; and m; paired
with m;’s lemma and m;’s lemma, (5) a quadru-
ple consisting of m; and m;’s subjects and their
lemmas, and (6) a quadruple consisting of m; and
m;’s objects and their lemmas.

3.2.1.3 Anaphoricity Determination

When used in isolation, the anaphoricity model re-
turns the probability that the given event mention
is anaphoric. To train the model, we represent each
event mention m; using the following features: (1)
the head word of each candidate antecedent paired
with m;’s word, (2) whether at least one candi-
date antecedent has the same lemma as that of m,
and (3) the probability that m; is anaphoric in the
training data (if m; never appears in the training
data, this probability is set to 0.5).

3.2.2 Cross-Task Interaction Features

Cross-task interaction features are associated with
the binary and ternary factors.

3.2.2.1 Trigger Detection and Anaphoricity

We fire features that conjoin each candidate event
mention’s event subtype, the lemma of its trigger
and its anaphoricity.

3.2.2.2 Trigger Detection and Coreference

We define our joint coreference and trigger detec-
tion factors such that the features defined on sub-
type variables ?; and t; are fired only if current
mention m; is coreferent with preceding mention
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m;. These features are: (1) the pair of m; and
m;’s subtypes, (2) the pair of m;’s subtype and
m;’s word, and (3) the pair of m;’s subtype and
m;’s word.

3.2.2.3 Coreference and Anaphoricity

We fire a feature that conjoins event mention m;’s
anaphoricity and whether or not a non-NULL an-
tecedent is selected for m;.

3.3 Training

We learn the model parameters © from a set of
d training documents, where document ¢ contains
content x;, gold triggers t; and gold event coref-
erence partition C;'. Before learning, there are a
couple of issues we need to address.

First, we need to derive gold anaphoricity la-
bels a; from C. This is straightforward: the
first mention of each coreference chain is NOT
ANAPHORIC, whereas the rest are ANAPHORIC.

Second, we employ gold event mentions for
model training, but training models only on gold
mentions is not sufficient: for instance, a trigger
detector trained solely on gold mentions will not
be able to classify a candidate event mention as
NONE during testing. To address this issue, we
additionally train the models on candidate event
mentions corresponding to non-triggers. We cre-
ate these candidate event mentions as follows. For
each word w that appears as a true trigger at least
once in the training data, we create a candidate
event mention from each occurrence of w in the
training data that is not annotated as a true trigger.

Third, since our model produces event corefer-
ence output in the form of an antecedent vector
(with one antecedent per event mention), it needs
to be trained on antecedent vectors. However,
since the coreference annotation for each docu-
ment 7 is provided in the form of a clustering C,
we follow previous work on entity coreference res-
olution (Durrett and Klein, 2013): we sum over
all antecedent structures A(C}) that are consis-
tent with C; (i.e., the first mention of a cluster has
antecedent NEW, whereas each of the subsequent
mentions can select any of the preceding mentions
in the same cluster as its antecedent).

Next, we learn the model parameters to max-
imize the following conditional likelihood of the
training data with L1 regularization:

d
L(®) =) log Y p(t],af,c"lxi;0)+A]O])
=1 creAlC))



In this objective, p’ is obtained by augment-
ing the distribution p (defined in Section 3.1) with
task-specific parameterized loss functions:

p/(tv a, C|xi; @> (08 p(ta a, C‘xi; 6) eXp[atlt(ta t*>
+ agla(a,a”) + acl.(c, C)]

where I, [, and [, are task-specific loss functions,
and oy, o, and o, are the associated weight pa-
rameters that specify the relative importance of the
three tasks in the objective function.

Softmax-margin, the technique of integrating
task-specific loss functions into the objective func-
tion, was introduced by Gimpel and Smith (2010)
and subsequently used by Durrett and Klein
(2013, 2014). By encoding task-specific knowl-
edge, these loss functions can help train a model
that places less probability mass on less desirable
output configurations.

Our loss function for event coreference, [, is
motivated by the one Durrett and Klein (2013) de-
veloped for entity coreference. It is a weighted
sum of the counts of three error types:

le(c,C*) = aepaFA(c,C*)+ac, pNFN(c,C*)
+ OéC7WLWL(C, C*)

where F'A(c,C*) is the number of non-anaphoric
mentions misclassified as anaphoric, F'N(c,C*)
is the number of anaphoric mentions misclassified
as non-anaphoric, and W L(c, C*) is the number
of incorrectly resolved anaphoric mentions.

Our loss function for trigger detection, Iy, is pa-
rameterized in a similar way, having three param-
eters associated with three error types: o; g7 is
associated with the number of non-triggers mis-
classified as triggers, oy g 1s associated with the
number of triggers misclassified as non-triggers,
and oy wr, 1s associated with the number of trig-
gers labeled with the wrong subtype.

Finally, our loss function for anaphoricity deter-
mination, [, is also similarly parameterized, hav-
ing two parameters: «, A and o, pN are asso-
ciated with the number of false anaphors and the
number of false non-anaphors, respectively.

Following Durrett and Klein (2014), we use
AdaGrad (Duchi et al., 2011) to optimize our ob-
jective with A = 0.001 in our experiments.

3.4 Inference

Inference, which is performed during training and
decoding, involves computing the marginals for a
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variable or a set of variables to which a factor con-
nects. For efficiency, we perform approximate in-
ference using belief propagation rather than exact
inference. Given that convergence can typically
be reached within five iterations of belief propaga-
tion, we employ five iterations in all experiments.

Performing inference using belief propagation
on the full factor graph defined in Section 3.1 can
still be computationally expensive, however. One
reason is that the number of ternary factors grows
quadratically with the number of event mentions
in a document. To improve scalability, we restrict
the domains of the coreference variables. Rather
than allow the domain of coreference variable c;
to be of size j, we allow a preceding mention m; to
be a candidate antecedent of mention m; if (1) the
sentence distance between the two mentions is less
than an empirically determined threshold and (2)
either they are coreferent at least once in the train-
ing data or their head words have the same lemma.
Doing so effectively enables us to prune the un-
likely candidate antecedents for each event men-
tion. As Durrett and Klein (2014) point out, such
pruning has the additional benefit of reducing “the
memory footprint and time needed to build a fac-
tor graph”, as we do not need to create any factor
between m; and m; and its associated features if
m; is pruned. To further reduce the memory foot-
print, we additionally restrict the domains of the
event subtype variables. Given a candidate event
mention created from word w, we allow the do-
main of its subtype variable to include only NONE
as well as those subtypes that w is labeled with at
least once in the training data.

For decoding, we employ minimum Bayes risk,
which computes the marginals of each variable
w.r.t. the joint model and derives the most prob-
able assignment to each variable.

4 Evaluation

4.1 Experimental Setup

We perform training and evaluation on the KBP
2016 English and Chinese corpora. For English,
we train models on 509 of the training documents,
tune parameters on 139 training documents, and
report results on the official KBP 2016 English test
set.® For Chinese, we train models on 302 of the
training documents, tune parameters on 81 train-
ing documents, and report results on the official

The parameters to be tuned are the a’s multiplying the
loss functions and those inside the loss functions.



English
MUC | B? | CEAF, | BLANC | AVG-F | Trigger | Anaphoricity
KBP2016 26.37 | 37.49 | 34.21 22.25 30.08 46.99 —
INDEP. 2271 | 40.72 | 39.00 22.71 31.28 48.82 27.35
JOINT 27.41 | 40.90 | 39.00 25.00 33.08 49.30 31.94
A over INDEP. || +4.70 | +0.18 | 0.00 +2.29 +1.80 | +0.48 +4.59
Chinese
MUC | B? | CEAF, | BLANC | AVG-F | Trigger | Anaphoricity
KBP2016 2427 | 32.83 | 30.82 17.80 26.43 40.01 —
INDEP. 22.68 | 32.97 | 29.96 17.74 25.84 39.82 19.31
JOINT 27.94 | 33.01 | 29.96 20.24 27.79 40.53 23.33
A over INDEP. || +5.26 | +0.04 | 0.00 +2.50 +1.95 | +0.71 +4.02

Table 2: Results of all three tasks on the KBP 2016 evaluation sets. The KBP2016 results are those achieved

by the best-performing coreference resolver in the official KBP 2016 evaluation. A is the performance difference between the

JOINT model and the corresponding INDEP. model. All results are expressed in terms of F-score.

KBP 2016 Chinese test set.

Results of event coreference and trigger de-
tection are obtained using version 1.7.2 of the
official scorer provided by the KBP 2016 or-

ganizers. To evaluate event coreference per-
formance, the scorer employs four scoring
measures, namely MUC (Vilain et al., 1995),

B3 (Bagga and Baldwin, 1998), CEAF. (Luo,
2005) and BLANC (Recasens and Hovy, 2011), as
well as the unweighted average of their F-scores
(AVG-F). The scorer reports event mention detec-
tion performance in terms of F-score, consider-
ing a mention correctly detected if it has an ex-
act match with a gold mention in terms of bound-
ary, event type, and event subtype. In addition,
we report anaphoricity determination performance
in terms of the F-score computed over anaphoric
mentions, counting an extracted anaphoric men-
tion as a true positive if it has an exact match with
a gold anaphoric mention in terms of boundary.

4.2 Results and Discussion

Results are shown in Table 2 where performance
on all three tasks (event coreference, trigger detec-
tion, and anaphoricity determination) is expressed
in terms of F-score. The top half of the table shows
the results on the English evaluation set. Specif-
ically, row 1 shows the performance of the best
event coreference system participating in KBP
2016 (Luand Ng, 2016). This system adopts a
pipeline architecture. It first uses an ensemble of
one-nearest-neighbor classifiers for trigger detec-
tion. Using the extracted triggers, it then applies
a pipeline of three sieves, each of which is a one-
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nearest-neighbor classifier, for event coreference.
As we can see, this system achieves an AVG-F
of 30.08 for event coreference and an F-score of
46.99 for trigger detection.

Row 2 shows the performance of the indepen-
dent models, each of which is trained indepen-
dently of the other models. Specifically, each in-
dependent model is trained using only the unary
factors associated with it. As we can see, the in-
dependent models outperform the top KBP 2016
system by 1.2 points in AVG-F for event corefer-
ence and 1.83 points for trigger detection.

Results of our joint model are shown in row 3.
The absolute performance differences between the
joint model and the independent models are shown
in row 4. As we can see, the joint model outper-
forms the independent models for all three tasks:
by 1.80 points for event coreference, 0.48 points
for trigger detection and 4.59 points for anaphoric-
ity determination. Most encouragingly, the joint
model outperforms the top KBP 2016 system for
both event coreference and trigger detection. For
event coreference, it outperforms the top KBP sys-
tem w.r.t. all scoring metrics, yielding an improve-
ment of 3 points in AVG-F. For trigger detection,
it outperforms the top KBP system by 2.31 points.

The bottom half of Table 2 shows the results on
the Chinese evaluation set. The top KBP 2016
event coreference system on Chinese is also the
Lu and Ng (2016) system. While the top KBP sys-
tem outperforms the independent models for both
tasks (by 0.59 points in AVG-F for event coref-
erence and 0.19 points for trigger detection), our
joint model outperforms the independent models



English Chinese

Coref | Trigger | Anaph || Coref | Trigger | Anaph

INDEP. || 31.28 | 48.82 | 27.35 || 25.84 | 39.82 | 19.31
INDEP.4+CorefTrigger || +0.39 | +0.42 | —0.05 | +0.95 | +0.56 | —0.37
INDEP.+CorefAnaph || +0.40 | —0.08 | +3.45 | +0.37 | +0.04 | —0.11
INDEP.+TriggerAnaph || +0.11 | +0.38 | +1.35 || +0.14 | +0.52 | +0.02
JOINT—CorefTrigger || +0.56 | —0.06 | +4.41 | +0.19 | +0.35 | +3.34
JOINT—CorefAnaph || +0.63 | +0.66 | +1.46 || +1.50 | +0.88 | +0.28
JOINT—TriggerAnaph || +1.89 | +0.50 | +4.01 || +1.65 | +0.50 | +1.79
JOINT || +1.80 | +0.48 | +4.59 || +1.95 | +0.71 | +4.02

Table 3: Results of model ablations on the KBP 2016 evaluation sets. Each row of ablation results is obtained

by either adding one type of interaction factor to the INDEP. model or deleting one type of interaction factor from the JOINT

model. For each column, the results are expressed in terms of changes to the INDEP. model’s F-score shown in row 1.

for all three tasks: by 1.95 points for event coref-
erence, 4.02 points for anaphoricity determination,
and 0.71 points for trigger detection. Like its En-
glish counterpart, our Chinese joint model outper-
forms the top KBP system for both event corefer-
ence and trigger detection. For event coreference,
it outperforms the top KBP system w.r.t. all but the
CEAF, metric, yielding an absolute improvement
of 1.36 points in AVG-F. For trigger detection, it
outperforms the top KBP system by 0.52 points.

For both datasets, the joint model’s superior per-
formance to the independent coreference model
stems primarily from considerable improvements
in MUC F-score. As MUC is a link-based mea-
sure, these results provide suggestive evidence that
joint modeling has enabled more event corefer-
ence links to be discovered.

4.3 Model Ablations

To evaluate the importance of each of the three
types of joint factors in the joint model, we per-
form ablation experiments.” Table 3 shows the re-
sults on the English and Chinese datasets when we
add each type of joint factors to the independent
model and remove each type of joint factors from
the full joint model. The results of each task are
expressed in terms of changes to the correspond-
ing independent model’s F-score.

"Chen and Ng (2013) also performed ablation on their
ACE-style Chinese event coreference resolver. However,
given the differences in the tasks involved (e.g., they did not
model event anaphoricity, but included tasks such as event ar-
gument extraction and role classification, entity coreference,
and event mention attribute value computation) and the ab-
lation setup (e.g., they ablated individual tasks/components
in their pipeline-based system in an incremental fashion,
whereas we ablate interaction factors rather than tasks), a di-
rect comparison of their observations and ours is difficult.
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Coref-Trigger interactions. Among the three
types of factors, this one contributes the most to
coreference performance, regardless of whether it
is applied in isolation or in combination with the
other two types of factors to the independent coref-
erence model. In addition, it is the most effec-
tive type of factor for improving trigger detec-
tion. When applied in combination, it also im-
proves anaphoricity determination, although less
effectively than the other two types of factors.

Coref-Anaphoricity interactions. When ap-
plied in isolation to the independent models, this
type of factor improves coreference resolution but
has a mixed impact on anaphoricity determina-
tion. When applied in combination with other
types of factors, it improves both tasks, partic-
ularly anaphoricity determination. Its impact on
trigger detection, however, is generally negative.

Trigger-Anaphoricity interactions. When ap-
plied in isolation to the independent models, this
type of factor improves both trigger detection
and anaphoricity determination. When applied in
combination with other types of factors, it still im-
proves anaphoricity determination (particularly on
Chinese), but has a mixed effect on trigger detec-
tion. Among the three types of factors, it has the
least impact on coreference resolution.

4.4 Error Analysis

Next, we conduct an analysis of the major sources
of error made by our joint coreference model.

4.4.1 Two Major Types of Precision Error

Erroneous and mistyped triggers. Our trigger
model tends to assign the same subtype to event
mentions triggered by the same word. As a result,
it often assigns the wrong subtype to triggers that



possess different subtypes in different contexts.
For the same reason, words that are only some-
times used as triggers are often wrongly posited
as triggers when they are not. These two types of
triggers have in turn led to the establishment of in-
correct coreference links.?

Failure to extract arguments. In the absence of
an annotated corpus for training an argument clas-
sifier, we exploit dependency relations for argu-
ment extraction. Doing so proves inadequate, par-
ticularly for noun triggers, owing to the absence
of dependency relations that can be used to reli-
ably extract their arguments. Moreover, using de-
pendency relations does not allow the extraction of
arguments that do not appear in the same sentence
as their trigger. Since the presence of incompat-
ible arguments is an important indicator of non-
coreference, our model’s failure to extract argu-
ments has resulted in incorrect coreference links.

4.4.2 Three Major Types of Recall Error

Missing triggers. Our trigger model fails to
identify trigger words that are unseen or rarely-
occurring in the training data. As a result, many
coreference links cannot be established.

Lack of entity coreference information. Entity
coreference information is useful for event coref-
erence because the corresponding arguments of
two event mentions are typically coreferent. Since
our model does not exploit entity coreference in-
formation, it treats two lexically different event ar-
guments as non-coreferent/unrelated. This in turn
weakens its ability to determine whether two event
mentions are coreferent. This issue is particularly
serious in discussion forum documents, where it
is not uncommon to see pronouns serve as sub-
jects and objects of event mentions. The situation
is further aggravated in Chinese documents, where
zero pronouns are prevalent.

Lack of contextual understanding. Our model
only extracts features from the sentence in which
an event mention appears. However, additional
contextual information present in neighboring sen-
tences may be needed for correct coreference res-
olution. This is particularly true in discussion fo-
rum documents, where the same event may be de-
scribed differently by different people. For exam-

8n our joint model, mentions that are posited as corefer-
ent are encouraged to have the same subtype. While it can
potentially fix the errors involving coreferent mentions that
have different subtypes, it cannot fix the errors in which the
two mentions involved have the same erroneous subtype.
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ple, when describing the fact that Tim Cook will
attend Apple’s Istanbul store opening, one person
said “Cook is expected to return to Turkey for
the store opening”, and another person described
this event as “Tim travels abroad YET AGAIN to
be feted by the not-so-high-and-mighty”. It is by
no means easy to determine that return and travel
trigger two coreferent mentions in these sentences.

5 Related Work

Existing event coreference resolvers have
been evaluated on different corpora, such
as MUC (e.g., Humphreysetal. (1997)),

ACE (e.g., Ahn (2006), Chen andJi (2009),
McConky et al. (2012), Sangeetha and Arock
(2012), Chen and Ng (2015, 2016), Krause et al.
(2016)), OntoNotes (e.g., Chenetal. (2011)),
the Intelligence Community corpus (e.g.,
Cybulska and Vossen (2012), Araki et al. (2014),
Liu et al. (2014)), the ECB corpus (e.g., Lee et al.
(2012), Bejan and Harabagiu (2014)) and its
extension ECB+ (e.g., Yangetal. (2015)), and
ProcessBank (e.g., Araki and Mitamura (2015)).
The newest event coreference corpora are the ones
used in the KBP 2015 and 2016 Event Nugget
Detection and Coreference shared tasks, in which
the best performers in 2015 and 2016 are RPI's
system (Hong et al., 2015) and UTD’s system
(Lu and Ng, 2016), respectively. The KBP 2015
corpus has recently been used to evaluate Peng et
al.’s (2016) minimally supervised approach and
Lu et al.’s (2016) joint inference approach to event
coreference. ~With the rarest exceptions (e.g.,
Lu et al. (2016)), existing resolvers have adopted
a pipeline architecture in which trigger detection
is performed prior to coreference resolution.

6 Conclusion

We proposed a joint model of event coreference
resolution, trigger detection, and event anaphoric-
ity determination. The model is novel in its choice
of tasks and the cross-task interaction features.
When evaluated on the KBP 2016 English and
Chinese corpora, our model not only outperforms
the independent models but also achieves the best
results to date on these corpora.
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Appendix: Handling Words that Trigger
Multiple Event Mentions

In KBP, a word can trigger multiple event men-
tions. However, since we create exactly one can-
didate event mention from each extracted word in
each test document, our model effectively prevents
a word from triggering multiple event mentions.
This poses a problem: each word cannot be as-
sociated with more than one event subtype. This
appendix describes how we (partially) address this
issue that involves allowing each event mention to
be associated with multiple event subtypes.

To address this problem, we preprocess the gold
trigger annotations in the training data as follows.
First, for each word triggering multiple event men-
tions (with different event subtypes), we merge
their event mentions into one event mention hav-
ing the combined subtype. In principle, we can
add each of these combined subtypes into our
event subtype inventory and allow our model to
make predictions using them. However, to avoid
over-complicating the prediction task (by having
a large subtype inventory), we only add the three
most frequently occurring combined subtypes in
the training data to the inventory. Merged men-
tions whose combined subtype is not among the
most frequent three will be unmerged in order to
recover the original mentions so that the model can
still be trained on them.



To train our joint model, however, the trigger
annotations and the event coreference annotations
in the training data must be consistent. Since we
modified the trigger annotations (by merging event
mentions and allowing combined subtypes), we
make two modifications to the event coreference
annotations to ensure consistency between the two
sets of annotations. First, let C; and C5 be two
event coreference chains in a training document
such that the set of words triggering the event
mentions in C (with subtype ¢1) is the same as
that triggering the event mentions in C (with sub-
type to). If each of the event mentions in C; was
merged with the corresponding event mention in
C5 during the aforementioned preprocessing of the
trigger annotations (because combining ¢; and
results in one of the three most frequent combined
subtypes), then we delete one of the two corefer-
ence chains, and assign the combined subtype to
the remaining chain. Finally, we remove any re-
maining event mentions that were merged during
the preprocessing of trigger annotations from their
respective coreference chains and create a single-
ton cluster for each of the merged mentions.
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Abstract

Most existing approaches for zero pronoun
resolution are heavily relying on annotated
data, which is often released by shared
task organizers. Therefore, the lack of
annotated data becomes a major obstacle
in the progress of zero pronoun resolution
task. Also, it is expensive to spend man-
power on labeling the data for better per-
formance. To alleviate the problem above,
in this paper, we propose a simple but
novel approach to automatically generate
large-scale pseudo training data for zero
pronoun resolution. Furthermore, we suc-
cessfully transfer the cloze-style reading
comprehension neural network model into
zero pronoun resolution task and propose
a two-step training mechanism to over-
come the gap between the pseudo training
data and the real one. Experimental re-
sults show that the proposed approach sig-
nificantly outperforms the state-of-the-art
systems with an absolute improvements of
3.1% F-score on OntoNotes 5.0 data.

1 Introduction

Previous works on zero pronoun (ZP) resolution
mainly focused on the supervised learning ap-
proaches (Han, 2006; Zhao and Ng, 2007; lida
et al., 2007; Kong and Zhou, 2010; lida and Poe-
sio, 2011; Chen and Ng, 2013). However, a ma-
jor obstacle for training the supervised learning
models for ZP resolution is the lack of anno-
tated data. An important step is to organize the
shared task on anaphora and coreference resolu-
tion, such as the ACE evaluations, SemEval-2010
shared task on Coreference Resolution in Multiple
Languages (Marta Recasens, 2010) and CoNLL-
2012 shared task on Modeling Multilingual Unre-
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stricted Coreference in OntoNotes (Sameer Prad-
han, 2012). Following these shared tasks, the an-
notated evaluation data can be released for the fol-
lowing researches. Despite the success and con-
tributions of these shared tasks, it still faces the
challenge of spending manpower on labeling the
extended data for better training performance and
domain adaptation.

To address the problem above, in this paper, we
propose a simple but novel approach to automati-
cally generate large-scale pseudo training data for
zero pronoun resolution. Inspired by data genera-
tion on cloze-style reading comprehension, we can
treat the zero pronoun resolution task as a special
case of reading comprehension problem. So we
can adopt similar data generation methods of read-
ing comprehension to the zero pronoun resolution
task. For the noun or pronoun in the document,
which has the frequency equal to or greater than 2,
we randomly choose one position where the noun
or pronoun is located on, and replace it with a spe-
cific symbol (blank). Let query Q and answer
A denote the sentence that contains a (blank),
and the noun or pronoun which is replaced by
the (blank), respectively. Thus, a pseudo training
sample can be represented as a triple:

(D,Q,A) (1
For the zero pronoun resolution task, a (blank)
represents a zero pronoun (ZP) in query Q, and
A indicates the corresponding antecedent of the
ZP. In this way, tremendous pseudo training sam-
ples can be generated from the various documents,
such as news corpus.

Towards the shortcomings of the previous ap-
proaches that are based on feature engineering, we
propose a neural network architecture, which is
an attention-based neural network model, for zero
pronoun resolution. Also we propose a two-step
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training method, which benefit from both large-
scale pseudo training data and task-specific data,
showing promising performance.

To sum up, the contributions of this paper are
listed as follows.

e To our knowledge, this is the first time that
utilizing reading comprehension neural net-
work model into zero pronoun resolution
task.

We propose a two-step training approach,
namely pre-training-then-adaptation, which
benefits from both the large-scale automati-
cally generated pseudo training data and task-
specific data.

Towards the shortcomings of the feature en-
gineering approaches, we first propose an
attention-based neural network model for
zero pronoun resolution.

2 The Proposed Approach

In this section, we will describe our approach in
detail. First, we will describe our method of gen-
erating large-scale pseudo training data for zero
pronoun resolution. Then we will introduce two-
step training approach to alleviate the gaps be-
tween pseudo and real training data. Finally, the
attention-based neural network model as well as
associated unknown words processing techniques
will be described.

2.1 Generating Pseudo Training Data

In order to get large quantities of training data for
neural network model, we propose an approach,
which is inspired by (Hermann et al., 2015), to
automatically generate large-scale pseudo training
data for zero pronoun resolution. However, our ap-
proach is much more simple and general than that
of (Hermann et al., 2015). We will introduce the
details of generating the pseudo training data for
zero pronoun resolution as follows.

First, we collect a large number of documents
that are relevant (or homogenous in some sense)
to the released OntoNote 5.0 data for zero pronoun
resolution task in terms of its domain. In our ex-
periments, we used large-scale news data for train-
ing.

Given a certain document D, which is com-
posed by a set of sentences D = {sq, 2, ..., Sn}»
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we randomly choose an answer word A in the doc-
ument. Note that, we restrict A to be either a noun
or pronoun, where the part-of-speech is identified
using LTP Toolkit (Che et al., 2010), as well as
the answer word should appear at least twice in
the document. Second, after the answer word A is
chosen, the sentence that contains .4 is defined as
aquery Q, in which the answer word A is replaced
by a specific symbol (blank). In this way, given
the query Q and document D, the target of the pre-
diction is to recover the answer A. That is quite
similar to the zero pronoun resolution task. There-
fore, the automatically generated training samples
is called pseudo training data. Figure 1 shows an
example of a pseudo training sample.

In this way, we can generate tremendous triples
of (D, Q, A) for training neural network, without
making any assumptions on the nature of the orig-
inal corpus.

2.2 Two-step Training

It should be noted that, though we have generated
large-scale pseudo training data for neural network
training, there is still a gap between pseudo train-
ing data and the real zero pronoun resolution task
in terms of the query style. So we should do some
adaptations to our model to deal with the zero pro-
noun resolution problems ideally.

In this paper, we used an effective approach
to deal with the mismatch between pseudo train-
ing data and zero pronoun resolution task-specific
data. Generally speaking, in the first stage, we use
a large amount of the pseudo training data to train
a fundamental model, and choose the best model
according to the validation accuracy. Then we
continue to train from the previous best model us-
ing the zero pronoun resolution task-specific train-
ing data, which is exactly the same domain and
query type as the standard zero pronoun resolution
task data.

The using of the combination of proposed
pseudo training data and task-specific data, i.e.
zero pronoun resolution task data, is far more ef-
fective than using either of them alone. Though
there is a gap between these two data, they share
many similar characteristics to each other as illus-
trated in the previous part, so it iS promising to
utilize these two types of data together, which will
compensate to each other.

The two-step training procedure can be con-
cluded as,



uh-huh , that means , er , you knew about the accident through the source of radio station .
ALV VR R 2 @i B B R — AN EE 0 IEE HE XL T RRE A i,

Document:
il welcome both of you to the studio to participate in our program,
XU P AL WE K g E 25 JATH E
2|l it happened that i was going to have lunch with a friend at noon .
TEAF K9 et AC XA, 1A WA il 12,
3 after that , i received an sms from 1860 .
IRFE ek WeEl 1860 By #1E .
4 uh-huh | it was by sms .
W, R mn R R 5
51
g,
6| although we live in the west instead of the east part , and it did not affect us that much,
IR A AETE AL P R R AE R, X
71 but i think it is very useful to inform people using sms .
HRWE, AR A X — A IR SR KRFWE & 5 A I ml,
Query:
8|l some car owners said that <blank> was very good,
A HFEERR, YX <blank> JEE 1 4F,
Answer:
sms
w5

i1 #m A~ ]k,

Figure 1: Example of pseudo training sample for zero pronoun resolution system. (The original data is
in Chinese, we translate this sample into English for clarity)

e Pre-training stage: by using large-scale train-
ing data to train the neural network model,
we can learn richer word embeddings, as well
as relatively reasonable weights in neural net-
works than just training with a small amount
of zero pronoun resolution task training data;

Adaptation stage: after getting the best model
that is produced in the previous step, we con-
tinue to train the model with task-specific
data, which can force the previous model to
adapt to the new data, without losing much
knowledge that has learned in the previous
stage (such as word embeddings).

As we will see in the experiment section that
the proposed two-step training approach is effec-
tive and brings significant improvements.

2.3 Attention-based Neural Network Model

Our model is primarily an attention-based neu-
ral network model, which is similar to Atten-
tive Reader proposed by (Hermann et al., 2015).
Formally, when given a set of training triple
(D, Q, A), we will construct our network in the
following way.

Firstly, we project one-hot representation of
document D and query @ into a continuous space
with the shared embedding matrix W.. Then
we input these embeddings into different bi-
directional RNN to get their contextual represen-
tations respectively. In our model, we used the
bidirectional Gated Recurrent Unit (GRU) as RNN
implementation (Cho et al., 2014).

e(x) =W, -z, where x € D, Q 2)
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Iy = GRU (e(x)); hy = GRU (e(x))  (3)
he = [h; ) )

For the query representation, instead of concate-
nating the final forward and backward states as its
representations, we directly get an averaged repre-
sentations on all bi-directional RNN slices, which
can be illustrated as

1
hquery = E Z hquery (t) (5)
t=1

For the document, we place a soft attention over
all words in document (Bahdanau et al., 2014),
which indicate the degree to which part of doc-
ument is attended when filling the blank in the
query sentence. Then we calculate a weighted sum
of all document tokens to get the attended repre-
sentation of document.

m(t) = tanh(W - hgoe(t) + U - hguery)  (6)
ot) = o2 (D) ™
Zl eXp(Ws ’ m(]))
j=
hdoc,att = hdoc e (8)

where variable «(t) is the normalized attention
weight at ¢th word in document, hg,. is a matrix
that concatenate all h4,.(t) in sequence.

haoe = concat[hgoc(1), Raoc(2), -y haoe(t)] (9)

Then we use attended document representation
and query representation to estimate the final an-
swer, which can be illustrated as follows, where V'
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Figure 2: Architecture of attention-based neural
network model for zero pronoun resolution task.

is the vocabulary,

r = concat|hdoc_att, hquery] (10)
P(A|D, Q) x softmax(W, -r) ,st. AeV
(11

Figure 2 shows the proposed neural network ar-
chitecture.

Note that, for zero pronoun resolution task,
antecedents of zero pronouns are always noun
phrases (NPs), while our model generates only one
word (a noun or a pronoun) as the result. To better
adapt our model to zero pronoun resolution task,
we further process the output result in the follow-
ing procedure. First, for a given zero pronoun, we
extract a set of NPs as its candidates utilizing the
same strategy as (Chen and Ng, 2015). Then, we
use our model to generate an answer (one word)
for the zero pronoun. After that, we go through
all the candidates from the nearest to the far-most.
For an NP candidate, if the produced answer is
its head word, we then regard this NP as the an-
tecedent of the given zero pronoun. By doing so,
for a given zero pronoun, we generate an NP as the
prediction of its antecedent.

2.4 Unknown Words Processing

Because of the restriction on both memory occu-
pation and training time, it is usually suggested
to use a shortlist of vocabulary in neural network
training. However, we often replace the out-of-
vocabularies to a unique special token, such as
(unk). But this may place an obstacle in real
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world test. When the model predicts the answer
as (unk), we do not know what is the exact word
it represents in the document, as there may have
many (unk)s in the document.

In this paper, we propose to use a simple but
effective way to handle unknown words issue. The
idea is straightforward, which can be illustrated as
follows.

e Identify all unknown words inside of each

(D, Q, A);

o Instead of replacing all these unknown words
into one unique token (unk), we make
a hash table to project these unique un-
known words to numbered tokens, such as
(unkl), (unk2), ..., (unkN) in terms of its
occurrence order in the document. Note that,
the same words are projected to the same un-
known word tokens, and all these projections
are only valid inside of current sample. For
example, (unkl) indicate the first unknown
word, say “apple”, in the current sample, but
in another sample the (unkl) may indicate
the unknown word “orange”. That is, the
unknown word labels are indicating position
features rather than the exact word;

e Insert these unknown marks in the vocabu-
lary. These marks may only take up dozens of
slots, which is negligible to the size of short-
lists (usually 30K ~ 100K).

(a) The weather today is not as pleasant as the weather of yesterday.

(b) The <unk> today is not as <unk> as the <unk> of yesterday.

(c) The <unkl> today is not as <unk2> as the <unklI> of yesterday.

Figure 3: Example of unknown words processing.
a) original sentence; b) original unknown words
processing method; ¢) our method

We take one sentence “The weather of today is
not as pleasant as the weather of yesterday.” as
an example to show our unknown word processing
method, which is shown in Figure 3.

If we do not discriminate the unknown words
and assign different unknown words with the same
token (unk), it would be impossible for us to
know what is the exact word that (unk) repre-
sents for in the real test. However, when using
our proposed unknown word processing method,
if the model predicts a (unkX) as the answer,



we can simply scan through the original document
and identify its position according to its unknown
word number X and replace the (unkX) with the
real word. For example, in Figure 3, if we adopt
original unknown words processing method, we
could not know whether the (unk) is the word
“weather” or “pleasant”. However, when using
our approach, if the model predicts an answer as
(unkl), from the original text, we can know that
(unk1) represents the word “weather”.

3 Experiments

3.1 Data

In our experiments, we choose a selection of
public news data to generate large-scale pseudo
training data for pre-training our neural network
model (pre-training step)'. In the adaptation step,
we used the official dataset OntoNotes Release
5.0> which is provided by CoNLL-2012 shared
task, to carry out our experiments. The CoNLL-
2012 shared task dataset consists of three parts:
a training set, a development set and a test set.
The datasets are made up of 6 different domains,
namely Broadcast News (BN), Newswires (NW),
Broadcast Conversations (BC), Telephone Con-
versations (TC), Web Blogs (WB), and Magazines
(MZ). We closely follow the experimental settings
as (Kong and Zhou, 2010; Chen and Ng, 2014,
2015, 2016), where we treat the training set for
training and the development set for testing, be-
cause only the training and development set are
annotated with ZPs. The statistics of training and
testing data is shown in Table 1 and 2 respectively.

Sentences # Query #

General Train 18.47TM 1.81M
Domain Train 122.8K 9.4K
Validation 11,191 2,667

Table 1:  Statistics of training data, including

pseudo training data and OntoNotes 5.0 training
data.

3.2 Neural Network Setups

Training details of our neural network models are
listed as follows.

'The news data is available at http://www.sogou.
com/labs/dl/cs.html

http://catalog.ldc.upenn.edu/
LDC2013T19

Words
110K

AZPs
1,713

Sentences

6,083

Docs

Test 172

Table 2: Statistics of test set (OntoNotes 5.0 de-
velopment data).

o Embedding: We use randomly initialized em-
bedding matrix with uniformed distribution
in the interval [-0.1,0.1], and set units num-
ber as 256. No pre-trained word embeddings
are used.

e Hidden Layer: We use GRU with 256 units,
and initialize the internal matrix by random
orthogonal matrices (Saxe et al., 2013). As
GRU still suffers from the gradient exploding
problem, we set gradient clipping threshold
to 10.

e Vocabulary: As the whole vocabulary is very
large (over 800K), we set a shortlist of 100K
according to the word frequency and un-
known words are mapped to 20 (unkX) us-
ing the proposed method.

e Optimization: We used ADAM update rule
(Kingma and Ba, 2014) with an initial learn-
ing rate of 0.001, and used negative log-
likelihood as the training objective. The
batch size is set to 32.

All models are trained on Tesla K40 GPU. Our
model is implemented with Theano (Theano De-
velopment Team, 2016) and Keras (Chollet, 2015).

3.3 Experimental results

Same to the previous researches that are related
to zero pronoun resolution, we evaluate our sys-
tem performance in terms of F-score (F). We fo-
cus on AZP resolution process, where we assume
that gold AZPs and gold parse trees are given®.
The same experimental setting is utilized in (Chen
and Ng, 2014, 2015, 2016). The overall results are
shown in Table 3, where the performances of each
domain are listed in detail and overall performance

is also shown in the last column.

e Overall Performance
We employ four Chinese ZP resolution baseline
systems on OntoNotes 5.0 dataset. As we can

3All gold information are provided by the CONLL-2012
shared task dataset



NW 84 MZ162) WB 284) BN @390 BC510) TC (283) Overall
Kong and Zhou (2010) 34.5 32.7 454 51.0 43.5 48.4 44.9
Chen and Ng (2014) 38.1 31.0 504 45.9 53.8 54.9 48.7
Chen and Ng (2015) 46.4 39.0 51.8 53.8 49.4 52.7 50.2
Chen and Ng (2016) 48.8 41.5 56.3 554 50.8 53.1 52.2
Our Approach! 59.2 51.3 60.5 53.9 55.5 52.9 55.3
Table 3: Experimental result (F-score) on the OntoNotes 5.0 test data. The best results are marked

with bold face. { indicates that our approach is statistical significant over the baselines (using t-test, with
p < 0.05). The number in the brackets indicate the number of AZPs.

see that our model significantly outperforms the
previous state-of-the-art system (Chen and Ng,
2016) by 3.1% in overall F-score, and substan-
tially outperform the other systems by a large mar-
gin. When observing the performances of differ-
ent domains, our approach also gives relatively
consistent improvements among various domains,
except for BN and TC with a slight drop. All these
results approve that our proposed approach is ef-
fective and achieves significant improvements in
AZP resolution.

In our quantitative analysis, we investigated the
reasons of the declines in the BN and TC domain.
A primary observation is that the word distribu-
tions in these domains are fairly different from
others. The average document length of BN and
TC are quite longer than other domains, which
suggest that there is a bigger chance to have un-
known words than other domains, and add dif-
ficulties to the model training. Also, we have
found that in the BN and TC domains, the texts
are often in oral form, which means that there are
many irregular expressions in the context. Such
expressions add noise to the model, and it is dif-
ficult for the model to extract useful information
in these contexts. These phenomena indicate that
further improvements can be obtained by filtering
stop words in contexts, or increasing the size of
task-specific data, while we leave this in the future
work.

o Effect of UNK processing

As we have mentioned in the previous section,
traditional unknown word replacing methods are
vulnerable to the real word test. To alleviate this
issue, we proposed the UNK processing mecha-
nism to recover the UNK tokens to the real words.
In Table 4, we compared the performance that
with and without the proposed UNK processing,
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to show whether the proposed UNK processing
method is effective. As we can see that, by apply-
ing our UNK processing mechanism, the model
do learned the positional features in these low-
frequency words, and brings over 3% improve-
ments in F-score, which indicated the effective-
ness of our UNK processing approach.

F-score
Without UNK replacement  52.2
With UNK replacement 55.3

Table 4: Performance comparison on whether us-
ing the proposed unknown words processing.

o Effect of Domain Adaptation

We also tested out whether our domain adapta-
tion method is effective. In this experiments, we
used three different types of training data: only
pseudo training data, only task-specific data, and
our adaptation method, i.e. using pseudo train-
ing data in the pre-training step and task-specific
data for domain adaptation step. The results are
given in Table 5. As we can see that, using either
pseudo training data or task-specific data alone
can not bring inspiring result. By adopting our
domain adaptation method, the model could give
significant improvements over the other models,
which demonstrate the effectiveness of our pro-
posed two-step training approach. An intuition
behind this phenomenon is that though pseudo
training data is fairly big enough to train a reli-
able model parameters, there is still a gap to the
real zero pronoun resolution tasks. On the con-
trary, though task-specific training data is exactly
the same type as the real test, the quantity is not
enough to train a reasonable model (such as word
embedding). So it is better to make use of both to



take the full advantage.

However, as the original task-specific data is
fairly small compared to pseudo training data, we
also wondered if the large-scale pseudo training
data is only providing rich word embedding infor-
mation. So we use the large-scale pseudo training
data for embedding training using GloVe toolkit
(Pennington et al., 2014), and initialize the word
embeddings in the “only task-specific data” sys-
tem. From the result we can see that the pseudo
training data provide more information than word
embeddings, because though we used GloVe em-
beddings in “only task-specific data”, it still can
not outperform the system that uses domain adap-
tation which supports our claim.

F-score
Only Pseudo Training Data 41.1
Only Task-Specific Data 44.2
Only Task-Specific Data + GloVe  50.9
Domain Adaptation 55.3

Table 5: Performance comparison of using differ-
ent training data.

4 Error Analysis

To better evaluate our proposed approach, we per-
formed a qualitative analysis of errors, where two
major errors are revealed by our analysis, as dis-
cussed below.

4.1 Effect of Unknown Words

Our approach does not do well when there are lots
of (unk)s in the context of ZPs, especially when
the (unk)s appears near the ZP. An example is
given below, where words with # are regarded as
(unk)s in our model.
¢ BL#RFILF TH, f FEEY AL
HMILHEF 7 £7 RICRE
¢ Successfully climbed? the peak of [Taiping
Mountain]#, to have a panoramic view of the

beauty of [Hong Kong Island]” and [Victoria
Harbour]*.

In this case, the words “%& I"/climbed” and “K
*F L1/Taiping Mountain” that appears immediately
after the ZP “¢” are all regarded as (unk)s in
our model. As we model the sequence of words
by RNN, the (unk)s make the model more dif-
ficult to capture the semantic information of the
sentence, which in turn influence the overall per-
formance. Especially for the words that are near
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the ZP, which play important roles when model-
ing context information for the ZP. By looking at
the word “Tifl/peak”, it is hard to comprehend the
context information, due to the several surround-
ing (unk)s. Though our proposed unknown words
processing method is effective in empirical evalu-
ation, we think that more advanced method for un-
known words processing would be of a great help
in improving comprehension of the context.

4.2 Long Distance Antecedents

Also, our model makes incorrect decisions when
the correct antecedents of ZPs are in long distance.
As our model chooses answer from words in the
context, if there are lots of words between the ZP
and its antecedent, more noise information are in-
troduced, and adds more difficulty in choosing the
right answer. For example:

BHATHESNLLIERERE ¢ HE
R -

I can’t help that guy
home.

After that day, ¢ return

In this case, the correct antecedent of ZP “¢” is
the NP candidate “F/I”. By seeing the contexts,
we observe that there are over 30 words between
the ZP and its antecedent. Although our model
does not intend to fill the ZP gap only with the
words near the ZP, as most of the antecedents ap-
pear just a few words before the ZPs, our model
prefers the nearer words as correct antecedents.
Hence, once there are lots of words between ZP
and its nearest antecedent, our model can some-
times make wrong decisions. To correctly handle
such cases, our model should learn how to filter the
useless words and enhance the learning of long-
term dependency.

5 Related Work

5.1 Zero pronoun resolution

For Chinese zero pronoun (ZP) resolution, early
studies employed heuristic rules to Chinese ZP
resolution. Converse (2006) proposes a rule-based
method to resolve the zero pronouns, by utiliz-
ing Hobbs algorithm (Hobbs, 1978) in the CTB
documents. Then, supervised approaches to this
task have been vastly explored. Zhao and Ng
(2007) first present a supervised machine learn-
ing approach to the identification and resolution
of Chinese ZPs. Kong and Zhou (2010) develop
a tree-kernel based approach for Chinese ZP res-
olution. More recently, unsupervised approaches



have been proposed. Chen and Ng (2014) de-
velop an unsupervised language-independent ap-
proach, utilizing the integer linear programming
to using ten overt pronouns. Chen and Ng (2015)
propose an end-to-end unsupervised probabilistic
model for Chinese ZP resolution, using a salience
model to capture discourse information. Also,
there have been many works on ZP resolution for
other languages. These studies can be divided into
rule-based and supervised machine learning ap-
proaches. Ferrandez and Peral (2000) proposed a
set of hand-crafted rules for Spanish ZP resolu-
tion. Recently, supervised approaches have been
exploited for ZP resolution in Korean (Han, 2006)
and Japanese (Isozaki and Hirao, 2003; lida et al.,
2006, 2007; Sasano and Kurohashi, 2011). Iida
and Poesio (2011) developed a cross-lingual ap-
proach for Japanese and Italian ZPs where an ILP-
based model was employed to zero anaphora de-
tection and resolution.

In sum, most recent researches on ZP resolu-
tion are supervised approaches, which means that
their performance highly relies on large-scale an-
notated data. Even for the unsupervised approach
(Chen and Ng, 2014), they also utilize a super-
vised pronoun resolver to resolve ZPs. Therefore,
the advantage of our proposed approach is obvi-
ous. We are able to generate large-scale pseudo
training data for ZP resolution, and also we can
benefit from the task-specific data for fine-tuning
via the proposed two-step training approach.

5.2 Cloze-style Reading Comprehension

Our neural network model is mainly motivated by
the recent researches on cloze-style reading com-
prehension tasks, which aims to predict one-word
answer given the document and query. These
models can be seen as a general model of min-
ing the relations between the document and query,
so it is promising to combine these models to the
specific domain.

A representative work of cloze-style reading
comprehension is done by Hermann et al. (2015).
They proposed a methodology for obtaining large
quantities of (D, Q, A) triples. By using this
method, a large number of training data can be
obtained without much human intervention, and
make it possible to train a reliable neural network.
They used attention-based neural networks for
this task. Evaluation on CNN/DailyMail datasets
showed that their approach is much effective than
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traditional baseline systems.

While our work is similar to Hermann et al.
(2015), there are several differences which can be
illustrated as follows. Firstly, though we both uti-
lize the large-scale corpus, they require that the
document should accompany with a brief sum-
mary of it, while this is not always available in
most of the document, and it may place an obstacle
in generating limitless training data. In our work,
we do not assume any prerequisite of the training
data, and directly extract queries from the docu-
ment, which makes it easy to generate large-scale
training data. Secondly, their work mainly focuses
on reading comprehension in the general domain.
We are able to exploit large-scale training data for
solving problems in the specific domain, and we
proposed two-step training method which can be
easily adapted to other domains as well.

6 Conclusion

In this study, we propose an effective way to gen-
erate and exploit large-scale pseudo training data
for zero pronoun resolution task. The main idea
behind our approach is to automatically generate
large-scale pseudo training data and then utilize an
attention-based neural network model to resolve
zero pronouns. For training purpose, two-step
training approach is employed, i.e. a pre-training
and adaptation step, and this can be also easily
applied to other tasks as well. The experimental
results on OntoNotes 5.0 corpus are encouraging,
showing that the proposed model and accompany-
ing approaches significantly outperforms the state-
of-the-art systems.

The future work will be carried out on two main
aspects: First, as experimental results show that
the unknown words processing is a critical part in
comprehending context, we will explore more ef-
fective way to handle the UNK issue. Second, we
will develop other neural network architecture to
make it more appropriate for zero pronoun resolu-
tion task.
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Abstract tences which form a unified whole and make up
. _ _ the discourse(lark et al, 2013. Recognizing the
Discourse modes play animportantrole in strcture of text organization is a key part for dis-
writing composition and evaluation. This  coyrse analysis.Meurer (2002 points that dis-
paper presents a study on the manual and  ¢oyrse modes stand for unity as they constitute
automatic identification oharration, ex- general patterns of language organization strate-
position description argumentand emo- gically used by the writerSmith (2003 also pro-
tion expressingsentences In narrative €s-  poses to study discourse passages from a linguistic
says. We annotate a corpus to study the ey of point through discourse modes. The orga-
characteristics of discourse modes and de-  pnization of a text can be realized by segmenting
scribe a neural sequence labeling model  text into passages according to the set of discourse
for identification. Evaluation results show  modes that are used to indicate the functional re-
that discourse modes can be identified au-  |ationship between the several parts of the text.
tomatically with an average Fl-score of  Eor example, the writer can present major events
0.7. We further demonstrate that discourse  through narration, provide details with description
modes can be used as features that im-  gnq establish ideas with argument. The combi-
prove automatic essay scoring (AES). The  pation and interaction of various discourse modes
impacts of discourse modes for AES are  yake an organized unified text.
also discussed. Second, discourse modes have rhetorical
significance. Discourse modes are closely related
to rhetoric Connors 1981 Brooks and Warren
Discourse modes, also known as rhetoricall958, which offers a principle for learning how to
modes, describe the purpose and conventiongxpress material in the best way. Discourse modes
of the main kinds of language based communihave different preferences on expressive styles.
cation.Most common discourse modes includéNarration mainly controls story progression by
narration, description, exposition and argumentintroducing and connecting events; exposition is
A typical text would make use of all the modes, to instruct or explain so that the language should
although in a given one there will often be abe precise and informative; argument is used to
main mode. Despite their importance in writing convince or persuade through logical and inspiring
composition and assessmenBrdddock etal. statements; description attempts to bring detailed
1963, there is relatively little work on analyzing observations of people and scenery, which is
discourse modes based on computational modelselated to the writing of figurative language; the
We aim to contribute for automatic discourseway to express emotions may relate to the use of
mode identification and its application on writing rhetorical devices and poetic language. Discourse
assessment. modes reflect the variety of expressive styles. The
The use of discourse modes is important in writ-flexible use of various discourse modes should be
ing composition, because they relate to several asmportant evidence of language proficiency.
pects that would influence the quality of a text. According to the above thought, we propose the
First, discourse modes reflect the organizatiordiscourse mode identification task. In particular,
of a text. Natural language texts consist of senwe make the following contributions:

1 Introduction
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e We build a corpus of narrative essays writtensince Chinese doesn’t have grammatical tense
by Chinese students in native language(Xue and Zhang2014 and sentence components
Sentence level discourse modes are annotateate often omitted. This increases the difficulties
with acceptable inter-annotator agreementfor situation entity type based discourse mode
Corpus analysis reveals the characteristics oidentification. In this paper, we investigate an
discourse modes in several aspects, includingnd-to-end approach to directly model discourse
discourse mode distribution, co-occurrencemodes without the necessity of identifying
and transition patterns. situation entity types first.

e \We describe a multi-label neural sequence la2.2 Automatic Writing Assessment

beling approach for discourse mode identi-aytomatic writing assessment is an important ap-
fication so that the co-occurrence and tranyication of natural language processing. The task
sition preferences can be captured. Experiyims to let computers have the ability to appreciate
mental results show that discourse modes cagnq criticize writing. It would be hugely benefi-

be identified with an average F1-score of 0.7.¢i5| for applications like automatic essay scoring
indicating that automatic discourse mode I-(AES) and content recommendation.

dentification is feasible. AES is the task of building a computer-aided

gscoring system, in order to reduce the involvement
f human raters. Traditional approaches are

essay scoring. A higher ratio of description °25€d on  supervised learing with designed
and emotion expressing can indicate essajfaiure templatesarkey, 1998 Burstein 2003
quality to a certain extent. Discourse modes ‘el and Burstein 200§ Chen and He 2013

can be potentially used as features for othef Nandi et al. 2015_ Cummins et al. . 2016.
NLP applications. Recently, automatic feature learning based

on neural networks starts to draw attentions
2 Related Work (Alikaniotis et al, 2016 Dong and Zhang2016
Taghipour and Ng2016).

Writing assessment involves highly technical
Discourse analysis is an important subfield ofaspects of language and discourse. In addition
natural language processing/gbber et al.2011). to give a score, it would be better to provide
Discourse is expected to be both cohesive andxplainable feedbacks to learners at the same time.
coherent. Many principles are proposed forSome work has studied several aspects such as
discourse analysis, such as coherence relatiorspelling errors Brill and Moorg 2000, grammar
(Hobbs 1979 Mann and Thompsgn1988, the errors Rozovskaya and Roth2010, coherence
centering theory for local coherencérpsz etal. (Barzilay and Lapata 2008, organization of
1999 and topic-based text segmentatidte@rst  argumentative essayBérsing et a) 2010 and the
1997). In some domains, discourse can beuse of figurative languagel¢uis and Nenkova
segmented according to specific discourse ele2013. This paper extends this line of work by
ments Hutching 1977 Teufel and Moens2002  taking discourse modes into account.

Burstein et al. 2003 Clerehan and Buchbinder .
2006 Song et al.2015. 2.3 Neural Sequence Modeling

This paper focuses on discourse mode#\ main challenge of discourse analysis is hard
influenced bySmith (2003. From the linguistic to collect large scale data due to its complexity,
view of point, discourse modes are supposed tavhich may lead to data sparseness problem.
have different distributions of situation entity Recently, neural networks become popular for
types such as event, state and gene8mifh, natural language processinggngio et al. 2003
2003 Mavridou et al, 2015. Therefore, there Collobert et al. 2011). One of the advantages is
is work on automatically labeling clause level the ability of automatic representation learning.
situation entity types Ralmeretal. 2007  Representing words or relations with continuous
Friedrich et al. 2016. Actually, situation entity vectors Mikolov et al, 2013 Ji and Eisenstein
type identification is also a challenging problem.2014) embeds semantics in the same space, which
It is even harder for processing Chinese languageyenefits alleviating the data sparseness problem

e We demonstrate the effectiveness of takin
discourse modes into account for automatic®

2.1 Discourse Analysis
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and enables end-to-end and multi-task learningis added on the basis of four recognized discourse

Recurrent neural networks (RNN$jiaves2012)

modes and Smith’s report mode is viewed as a sub-

and the variants like Long Short-Term Memory type of description modedialogue description

(LSTM) (Hochreiter and Schmidhuhek997) and
Gated Recurrent (GRUXho et al, 2014 neural
networks show good performance for capturing

In summary, we study the following discourse
modes:

long distance dependencies on tasks like Named e Narration introduces an event or series of

Entity Recognition (NER) Chiu and Nichols
2016 Ma and Hovy 2016, dependency parsing
(Dyer etal, 2015 and semantic composition
of documents Tang et al. 2015. This work
describes a hierarchical neural architecture with
multiple label outputs for modeling the discourse
mode sequence of sentences.

3 Discourse Mode Annotation

We are interested in the use of discourse modes
in writing composition. This section describes the
discourse modes we are going to study, an anno-
tated corpus of student essays and what we learn
from corpus analysis.

3.1 Discourse Modes

Discourse modes have several taxonomies in
the literature. Four basic discourse modes are
narration, description expositionand argument

in English composition and rhetori@éin, 1890).
Smith (2003 proposes five modes for studying
discourse passages: narrative description
report, information and argument In Chinese
composition, discourse modes are categorized
into narration, description exposition argument
andemotion expressinfZzhu, 1983.

These taxonomies are similar. Their elements
can mostly find corresponding ones in other tax-
onomies literally or conceptually, e.g., exposition
mode has similar functions to information mode.
Emotion expressing that is to express the writer’'s
emotions is relatively special. It can be realized by
expressing directly or through lyrical writing with
beautiful and poetic language. It is also related to
appeal to emotion, which is a method for argumen-
tation by the manipulation of the recipient’'s emo-
tions in classical rhetoricAristotle and Kennedy
2006. Proper emotion expressing can touch the
hearts of the readers and improve the expressive:
ness of writing. Therefore, considering it as al
independent mode is also reasonable.

We cope with essays written in Chinese in this
work so that we follow the Chinese convention
with five discourse modes. Emotion expressing
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events into the universe of discourse. The
events are temporally related according to
narrative time.

E.g., Last year, we drove to San Francisco
along the State Route 1 (SR 1)

Exposition has a function to explain or in-
struct. It provides background information in
narrative context. The information presented
should be general and (expected to be) well
accepted truth.

E.g.,SR 1 is a major north-south state high-
way that runs along most of the Pacific coast-
line of the U.S

Description re-creates, invents, or vividly
show what things are like according to the
five senses so that the reader can picture that
which is being described.

E.g., Along SR 1 are stunning rugged
coastline, coastal forests and cliffs, beautiful
little towns and some of the West coast’s
most amazing nature.

Argument makes a point of view and proves
its validity towards a topic in order to con-

vince or persuade the reader.

E.g., Point Arena Lighthouse is a must see
along SR 1, in my opinion.

Emotion expressing presents the writer’s e-
motions, usually in a subjective, personal and
lyrical way, to involve the reader to experi-
ence the same situations and to be touched.
E.g., | really love the ocean, the coastline
and all the amazing scenery along the route.
When could | come back again?

The distinction between discourse modes is ex-
ected to be clarified conceptually by considering
heir different communication purposes. However,
n . ‘e .

there would still be specific ambiguous and vague
cases. We will describe the data annotation and
corpus analysis in the following parts.

In some cases, we use emotion for short.



INITIAL FINAL
P R F P R F Emotion
Nar | 0.90 0.88 0.89|| 0.96 0.84 0.90
Exp | 0.79 0.73 0.76| 0.89 0.76 0.81
Des | 0.84 0.74 0.79|| 0.87 0.65 0.74
Emo | 0.75 0.68 0.71 0.79 0.73 0.76
Arg | 0.35 0.28 0.31}] 0.76 0.61 0.68
Avg. | 0.73 0.66 0.69] 0.87 0.71 0.78

K 0.55 0.72

Argument

Description

Exposition

Table 1. Inter-annotator agreement between two
annotators on the dominant discourse mode. Ini-
tial: The result of the first round annotation; Final:
The result of the final annotation;: Agreement
measured with Cohen’s Kappa.

Narration

Figure 1: The distribution of dominant modes.

inant mode. The two annotators’ annotations are
used as the golden answer and prediction respec-
Discourse modes are almost never found in a purévely. We compute the precision, recall and F1-
form but are embedded one within another to helgcore for each discourse mode separately to mea-
the writer achieve the purpose, but the emphasure the inter-annotator agreement. Precision and
sis varies in different types of writing. We focus recall are symmetric for the two annotators.
on narrative essays. A good narrative composi- The result of the first round annotation is shown
tion must properly manipulate multiple discoursein the INITIAL columns of Tabld.. The agreement
modes to make it vivid and impressive. on argument mode is low, while the agreement on

The corpus has 415 narrative essays written bpther modes is acceptable. The average F1-score
high school students in their native Chinese lanis 0.69. The Cohen’s Kapp&¢hen et al.1960
guage.The average number of sentences is 32 aigl0.55 over all judgements on the dominant mode.
the average length is 670 words. The main disagreement on argument lies in the

We invited two high school teachers to annotateconfusion with emotion expressing. Consider the
discourse modes at sentence level, expecting thefigllowing sentence:
background help for annotation. A detail manual
was discussed before annotation.

We notice that discourse modes can mix in the
same sentence. Therefore, the annotation standardone annotator thought that it is expressed in an

allows that one sentence can have multiple modegmotional and lyrical way so that the discourse
But we require that every sentence should have gode should be emotion expressing. The other
dominant modeThe annotators should try to think one thought that it (implicitly) gives a point and

in the writer's perspective and guess the writer'sshould be an argument. Many disagreements hap-
main purpose of writing the sentence in order topened in cases like this.
decide the dominant mode. Based on the observations of the first round an-
Among the discourse modes, description can b@otation, we discussed and updated the manual
applied in various situations. We focus on theand let the annotators rechecked their annotations.
following description types: portrait, appearance,The final result is shown in thelfAL columns of
action, dialogue, psychological, environment andrable 1. The agreement on description decreas-
detail description. If a sentence has any type of dees. Annotators seem to be more conservative on
scription, it would be assigned a description labeligbeling description as the dominant mode. The
overall average F1-score increases to 0.78 and the
Cohen’s Kappa is 0.72. This indicates that humans
We conducted corpus analysis on the annotatedan reach an acceptable agreement on the domi-
data to gain observations on several aspects. nant discourse mode of sentences after training.
Inter-Annotator Agreement: 50 essays were in- Discourse mode distribution After the training
dependently annotated by two annotators. We ephase, the annotators labeled the whole corpus.
valuate the inter-annotator agreement on the dontigure 1 shows the distribution of dominant

3.2 Data Annotation

Father’s love is the fire that lights the
lamp of hope.

3.3 Corpus Analysis
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Mode Nar Exp Des Emo Arg Transition: Table 3 shows the transition matrix
Nar 5285 11 2552 65 2

Exp B 148 11 1 1 between the dominant modes of consecutive
Des - - 2538 105 8 sentences within the same paragraphs. All modes
Emo - - - 1947 63

tend to transit to themselves except exposition,
which is rare and usually brief. This means

Table 2: Co-occurrence of discourse modes in th%zat discourse modes of adjacent sentences have

same sentences. The numbers in diagonal indica ghfcorrelaﬂon. W?,[ alsotstﬁe Lhat. nqrratlondaéﬂd
the number of sentences with a single mode. emotion are more often at the beginning and the

end of essays. The above observations indicate

Arg - - - - 318

fom\to Nar Exp Des Emo Arg that discourse modes have local preferred patterns.
I’;‘af ggfﬁ) o 1870;@ 17;/(; g;//o To summarize, the implications of corpus
Doe  aon o enge mop analysis include: (1) Manual identification of
Emo 25% 2% 4% 66% 1% discourse modes is feasible with an acceptable
Arg _ 21% - 4% 12% 54% inter-annotator agreement; (2) The distribution of

Beginwith 50% 3% 6% 32% 7% . . . . ]

Endwith  12% 1% 2%  76% 6% discourse modes in narrative essays is imbalanced;

(3) About 22% sentences have multiple discourse

Table 3: Transition between discourse modes of0des; (4) Discourse modes have local transition
consecutive sentences and the distribution of digPatterns that consecutive discourse modes have
course modes that essays begin with and end wittnigh correlation.

4 Discourse Mode Identification based
discourse modes. The distribution is imbalanced.  on Neural Sequence Labeling
Narration, description and emotion expressing _ _
are the main discourse modes in narrative essay$his section describes the proposed method for
Co-occurrence Statistics show that 78% of sen- COrpus analysis, sentences often have multiple dis-
tences have only one discourse mode, and 19#PuUrse modes and prefer local transition patterns.
have two discourse modes, and 3% have more thahherefore, we view this task as a multi-label se-
two discourse modes. quence labeling problem.

Table 2 shows the co-occurrence of discourse4 1 Model

modes. The numbers that are in the diagonal”

represent the distribution of discourse modes ofVe propose a hierarchical neural sequence label-

sentences with only one mode. The numbers thdfg model to capture multiple level information.

are not in the diagonal indicate the co-occurrencérigure 2(a) shows the basic architecture. We in-

of modes in the same sentences. We can sdeoduce it from the bottom up.

that description tends to co-occur with narrationWord level embedding layer We transform

and emotion expressing. Description can providgvords into continuous vectors, word embeddings.

states that happen together with events andfector representation of words is useful for

emotion-evoking scenes are often described téapturing semantic relatedness.  This should

elicit a strong emotional response, for example: be effective in our case, since large amount of
training data is not available. It is unrealistic to

The bright moon hanging on the distant learn the embedding parameters on limited data
sky reminds me of my hometown miles  so that we just look up embeddings of words
away. from a pre-trained word embedding table. The

pre-trained word embeddings were learned with
Emotion expressing and argument also co-occuthe Word2Vec toolkit ikolov etal, 2013
in some cases. It is reasonable, since a successfth a domain corpus which consists of about
emotional appeal can enhance the effectiveness @B0,000 student essays. The embeddings are kept
an argument. unchanged during learning and prediction.
Generally, these observations are consisterfsentence level GRU layer Each sentence is a
with intuition.  Properly combining multiple sequence of words. We feed the word embeddings
modes could produce impressive sentences. into a forward recurrent neural networks. Here,
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Discourse
Modes

[Mul Labcl] (Mul Labcl) Mul-Label

Multi-Label Output
| BiGRU |-—>| BiGRU |-—> Discourse level Yol Yoo Y3 Yad Ves
BiGRU layer Sigmoid
? S f S2 m
| GRU l_,l GRU l_, - Sentence level Fully connected
GRU layer | Hidden Layer ]
T T Fully connected
[e o o] [e o o] Word level 1
Embeddings o BiGRU -
W21 W2 u-s
(a) The basic hierarchical architecture. (b) The detail of the Mul-Label layer

Figure 2: The multi-label neural sequence labeling modetifscourse mode identification.

we use the GRUCGho et al, 2014) as the recurrent grouped by paragraphs to split the whole
unit. The GRU is to make each recurrent unit todiscourse into several relatively independent
adaptively capture dependencies of different timesegments. Sentences from different paragraphs
scales. The output of the last time-step is used ashould have less effect to each other, even though
the representation of a sentence. they are adjacent.

Discourse level bidirectional-GRU layer An es- To capture paragraph boundary information, we
say consists of a sequence of sentences. Accesggsert an empty sentence at the end of every para-
ing information of past and future sentences prograph to indicate a paragraph boundary. The emp-
vides more contextual information for current pre-ty sentence is represented by a zero vector and its
diction. Therefore, we use a bidirectional RNN outputs are set to zeros as well. We expect this
to connect sentences. We use the GRU as thmodification can better capture position related in-
recurrent unit, which is also shown effective onformation.

semantic composition of documents for sentiment ] ]

classification Tang et al,2015. The BiGRU rep- 4-2 Implementation Details

resents the concatenation of the hidden states &ffe implement the model using the Keras
the forward GRU and the backward GRU units. library? The models are trained with the binary
Multi-Label layer : Since one sentence can havecross-entropy objective. The optimizer is Adam
more than one discourse mode, our model allow¢Kingma and Ba 2014. The word embedding
multiple label outputs. Figur@(b) details the dimension is 50. The dimension of the hidden
Mul-Label layer in Figure2(a). The representation layer in Mul-Label layer is 100. The length of
of each sentence after the bidirectional-GRU layesentences is fixed as 40. All other parameters are
is first fully connected to a hidden layer. The set by default parameter values. We adopt early
hidden layer output is then fully connected tostopping strategyGaruana et al.2000 to decide

a five-way output layer, corresponding to five when the training process stops.

discourse modes. The sigmoid activation functlon
is applied to each way to get the probability that
whether corresponding discourse mode should bé.3.1 Data

assigned to the sentence. We use 100 essays as the test data. The remain-
In the training phase, the probability of any la- ing ones are used as the training data. 10% of the

beled discourse modes is set to 1 and the others agguffled training data is used for validation.

set to 0. In the prediction phase, if the predicted

probability of a discourse mode is larger than 0.54-3-2 Comparisons

the discourse mode would be assigned. We compare the following systems:

4.3 Evaluation

4.1.1 Considering Paragraph Boundaries e SVM: We use bag of ngram (unigram and bi-

Different from NER that processes a single gram) features to train a support vector clas-

sentence each time, our task processes sequences Sifier for sentence classification.
of sentences in discourse, which are usually 2https://github.com fchollet/keras/

117



e CNN: We implement a convolutional neural _Model\Mode Nar Des Emo Arg  Exp

. SVM 0.672 0588 0.407 0.152 0.095
network (CNN) based methokim, 2014, ¢y 0793 0.764 0594 0.333 0.293
as itis the state-of-the-art for sentence classi- GRU 0.800 0.784 0.615 0.402 0.364
fication. GG 0.822 0.797 0.680 0.423 0.481

GG-SEG 0.815 0.791 0.717 0.483 0.667

e GRU: We use the sentence level representa- _
tion in Figure2(a)for sentence classification. Table 4: The Fl-scores of systems on each dis-

course mode.
e GRU-GRU(GG): This method is introduced
in this paper ing4.1, but it doesn’t consider

- : The performance on argument is not so good.
paragraph information.

As we discussed in corpus analysis, argument and

¢ GRU-GRU-SEG (GG-SEG): The model con- emotion expressing mode interact frequently. Be-
siders paragraph informatioﬁ on the top of G-cause the amount of emotion expressing sentences

G as introduced if§4.1.1 is much more, distinguishing argument from them
is hard. Actually, their functions in narrative es-

The first three classification based methods$ays seem to be similar that both are to deepen the
classify sentences independently. To deal witfuthor’s response or evoke the reader’s response to
multiple labels, the classifiers are trained for eactthe story.
discourse mode separately. At prediction time, if The overall average F1-score can reach to 0.7
the classifier for any discourse mode predicts @&nd the performance on identifying three most
sentence as positive, the corresponding discoursg@mmon discourse modes are consistent, with an
mode would be assigned. average F1-score above 0.76 using the proposed
neural sequence labeling models. Automatic
discourse mode identification should be feasible.
Table4 shows the experimental results. We evalu-
ate the systems for each discourse mode with F12  Essay Scoring with Discourse Modes
score, which is the harmonic mean of precision
and recall. The best performance is in bold.

The SVM performs worst among all systems.
The reason is due to the data sparseness and ter
mismatch problem, since the size of the annotate
dataset is not big enough. In contrast, systems.1 Essay Scoring Framework

based on neural networks with pre-trained worc\Ne adopt the standard regression framework for

embeddings achieve much better performance. essay scoring. We use support vector regression

The CTI\IhN SE%GRlIJ E?Vi comp_?rr]able perfor:-(SVR) and Bayesian linear ridge regression (BLR-
mance. the Is slightly better. The two met 'R), which are used in recent workRlgandi et al.

ods don't consider the semantic representations %15 The key is to design effective features
adjacent sentences. ' '

The GG and GG-SEG explore the semantic in5.2 Features
formation of sentences in a sequence by the bidi.—l.he basic feature sets are based Bhandi et al.
rectlc_)naI_GRU Iaygr. The r_esu_lts demonstrate th 015.The original feature sets include:
considering such information improve the perfor-
mance on all discourse modes. This proves the ad- e Length features
vantage of sequential identification compared with
isolated sentence classification. e Part-Of-Speech (POS,) features

We can see that the GG-SEG further improves
the performance on three minority discourse
modes compared with GG. This means that the
minority modes may have stronger preference
to special locations. Exposition benefits most, We re-implement the feature extractors exact-
since many exposition sentences in our dataset ahg according to the description irPfandi et al.
isolated. 2015 except for the POS features, since we don’t

4.3.3 Evaluation Results

Discourse mode identification can potentially pro-
vide features for downstream NLP applications.
This section describes our attempt to explore dis-
rérb'urse modes for automatic essay scoring (AES).

e Prompt features

e Bag of words features
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Score QWK Score
Prompt #Essays Avg.len Range Median Prompt 1 2 3
1 4000 628 0-60 46 SVR-Basic | 0.554 0.468 0.457
2 4000 660 0-50 41 + mode 0.6 0.501 0.481
3 3300 642 0-50 41 BLRR-Basic | 0.683 0.557 0.513
-+ mode 0.696 0.565 0.527

Table 5: Details of the three datasets for AES.
Table 6: Evaluation results of AES on three

. datasets. Basic: the basic feature sets; mode: dis-
have correct POS ngrams for Chinese. We COM. . irse mode features.

plement two additional features: (1) The number

of words occur in Chinese Proficiency Test 6 vo- Prompt| 1 2 3 | Avg
cabulary; (2) The number of Chinese idioms used. II_DEeI: 8-22 8-22 8-;51 8-23

We further design discourse mode related fea- Emo | 0.09 015 0.12| 0.12
tures for each essay: Exp |-0.07 0.01 0.01|-0.03

Arg -0.08 -0.06 -0.1| -0.08
Nar -0.11 -0.15 -0.12] -0.13

e Mode ratio: For each discourse mode,

we compute its mode ratio according to . -
#sentences with the discourse modeg -y Table 7: Pearson correlation coefficients of mode

ratio = L

.. #sentences in the essay ) i
features indicate the distribution of dlscourseratIO to essay score. LEN represents essay length.
modes.

matter which algorithm is adopted, adding dis-
* Bag of ngrams of discourse modes: We Us&qyrse mode features make positive contributions
the number of unigrams and bigrams of thego; AES compared with using basic feature sets.
dominant discourse modes of the sequence of he trends are consistent over all three datasets.
sentences in the essay as features. Impact of discourse mode ratio on scoresWe
are interested in which discourse mode correlates
to essay scores best. Tableshows the Pearson
The experiments were conducted on narrative egorrelation coefficient between the mode ratio
says written by Chinese middle school students itind essay score. LEN represents the correlation
native language during regional tests. There argf essay length and is listed as a reference. We
three prompts and students are required to writgan see that the ratio of narration has a negative
an essay related to the given prompt with no lesgorrelation, which means just narrating stories
than 600 Chinese characters. All these essays weythout auxiliary discourse modes would lead to
evaluated by professional teachers. poor scores. The description mode ratio has the
We randomly sampled essays from each prompstrongest positive correlation to essay scores. This
t for experiments. Tabl® shows the details of may indicate that using vivid language to provide
the datasets. We ran experiments on each prompgtail information is essential in writing narrative
dataset respectively by 5-fold cross-validation. essays. Emotion expressing also has a positive
The GG-SEG model was used to identify dis-correlation. It is reasonable since emotional
course modes of sentences. Notice that a sentenggiting can involve readers into the stories. The
can have multiple discourse modes. The mode raatio of argument shows a negative correlation.
tio features are computed for each mode separat@he reason may be that: first, the identification
ly. When extracting the bag of ngrams of discourseof argument is not good enough; second, the
modes features, the discourse mode with highesixistence of an argument doesn’'t mean the quality
prediction probability was chosen as the dominanbf argumentation is good. Exposition has little

5.3 Experimental Settings

discourse mode. effect on essay scores.
We use the Quadratic Weighted Kappa (QWK) Generally, the distribution of discourse modes
as the evaluation metric. shows correlations to the quality of essays. This

may relate to the difficulties of manipulating dif-
ferent discourse modes. It is easy for students to
Table 6 shows the evaluation results of AES onuse narration, but it is more difficult to manipulate
three datasets. We can see that the BLRR algorittdescription and emotion expressing well. As a re-
m performs better than the SVR algorithm. Nosult, the ability of descriptive and emotional writ-

5.4 Evaluation Results
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PROMPT 1 0.58 PROMPT 2
0.651 +—+ basic +—+ basic
: @@ basic+mode 056 @@ basic+mode 0.501

0.60 1 o054l 1 oa9f

PROMPT 3

+—+ basic
@@ basic+mode

QWK
o
>
<N

0.50

1 oas}

0.45] 1 o4l

0.44}

100 200 400 600 100 200 400 600 100 200 400 600
Length threshold Length threshold Length threshold

Figure 3: QWK scores on essays satisfying different lerigtbsholds on three prompts. Basic: the basic
feature sets; mode: discourse mode features.

ing should be an indicator of language proficiency6 Conclusion

and can better distinguish the quality of writing. This paper has introduced a fundamental but less
Impact on scoring essays with various lengthlt  studied task in NLP—discourse mode identifica-
is easy to understand that length is a strong indition, which is designed in this work to automati-
cator for essay scoring. It is interesting to studycally identify five discourse modes in essays.

that when the effect of length becomes weaker, A corpus of narrative student essays was man-
e.g., the lengths of essays are close, how does thelly annotated with discourse modes at sentence
performance of the AES system change? level, with acceptable inter-annotator agreement.

We conducted experiments on essays with vari] '€ COrpus analysis revealed several aspects of
aracteristics of discourse modes including the

ous lengths. Only essays that the length is no Ies%h N o
than a given threshold are selected for evaluatiorfiStribution, co-occurrence and transition patterns.
The threshold is set to 100, 200, 400 and 600 Chi- Considering these characterlstlcs, we prqposgd
nese characters respectively. We ran 5-fold cros& neural sequence labeling approach for identi-

validation with BLRR on the datasets after essaJymg discourse modes. The gxperlmental re§ults
selection. demonstrate that automatic discourse mode iden-

tification is feasible.

Figure3 shows the results on three datasets. We We evaluated discourse mode features for auto-
can see the following trends: (1) The QWK scoresmatic essay scoring and draw preliminary observa-
decrease along with shorter essays are removegns. Discourse mode features can make positive
gradually; (2) Adding discourse mode features alcontributions, especially in challenging situation-
ways improves the performance; (3) As the threshs when simple surface features don’t work well.
old becomes larger, the improvements by addingrhe ratio of description and emotion expressing is
discourse mode features become larger. shown to be positively correlated to essay scores.

The results indicate that the current AES sys- N future, we plan to exploit discourse mode i-
tem can achieve a high correlation score when thdentification for providing novel features for more
lengths of essays differ obviously. Even the sim-downstream NLP applications.
ple features like length can judge that short eSACknowledgements
says tend to have low scores. However, when
the lengths of essays are close, AES would fac&he research work is partially funded by
greater challenges, because it is required to deephe National High Technology Research and
er understand the properties of well written es-Development Program (863 Program) of China
says. In such situations, features that can mod€No0.2015AA015409), National Natural Science
more advanced aspects of writing, such as disFoundation of China (N0.61402304), Ministry of
course modes, should play a more important roleEducation (No.14YJAZHO046), Beijing Municipal
It should be also essential for evaluating essay&ducation Commission (KM201610028015,
written in the native language of the writer, whenConnotation Development) and Beijing Advanced
spelling and grammar are not big issues any mordnnovation Center for Imaging Technology.
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Abstract

The prevalent approach to neural machine
translation relies on bi-directional LSTMs
to encode the source sentence. We present
a faster and simpler architecture based on a
succession of convolutional layers. This al-
lows to encode the source sentence simulta-
neously compared to recurrent networks for
which computation is constrained by tem-
poral dependencies. On WMT’ 16 English-
Romanian translation we achieve compet-
itive accuracy to the state-of-the-art and
on WMT’15 English-German we outper-
form several recently published results. Our
models obtain almost the same accuracy
as a very deep LSTM setup on WMT’ 14
English-French translation. We speed up
CPU decoding by more than two times at
the same or higher accuracy as a strong bi-
directional LSTM.!

1 Introduction

Neural machine translation (NMT) is an end-to-end
approach to machine translation (Sutskever et al.,
2014). The most successful approach to date en-
codes the source sentence with a bi-directional re-
current neural network (RNN) into a variable length
representation and then generates the translation
left-to-right with another RNN where both com-
ponents interface via a soft-attention mechanism
(Bahdanau et al., 2015; Luong et al., 2015a; Brad-
bury and Socher, 2016; Sennrich et al., 2016a).
Recurrent networks are typically parameterized as
long short term memory networks (LSTM; Hochre-
iter et al. 1997) or gated recurrent units (GRU; Cho
et al. 2014), often with residual or skip connec-
tions (Wu et al., 2016; Zhou et al., 2016) to enable
stacking of several layers (§2).

There have been several attempts to use convo-
lutional encoder models for neural machine trans-

"The source code will be availabe at https: //github.
com/facebookresearch/fairseq
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lation in the past but they were either only ap-
plied to rescoring n-best lists of classical systems
(Kalchbrenner and Blunsom, 2013) or were not
competitive to recurrent alternatives (Cho et al.,
2014a). This is despite several attractive properties
of convolutional networks. For example, convolu-
tional networks operate over a fixed-size window of
the input sequence which enables the simultaneous
computation of all features for a source sentence.
This contrasts to RNNs which maintain a hidden
state of the entire past that prevents parallel com-
putation within a sequence.

A succession of convolutional layers provides a
shorter path to capture relationships between ele-
ments of a sequence compared to RNNs.? This also
eases learning because the resulting tree-structure
applies a fixed number of non-linearities compared
to a recurrent neural network for which the number
of non-linearities vary depending on the time-step.
Because processing is bottom-up, all words un-
dergo the same number of transformations, whereas
for RNNs the first word is over-processed and the
last word is transformed only once.

In this paper we show that an architecture based
on convolutional layers is very competitive to recur-
rent encoders. We investigate simple average pool-
ing as well as parameterized convolutions as an al-
ternative to recurrent encoders and enable very deep
convolutional encoders by using residual connec-
tions (He et al., 2015; §3).

We experiment on several standard datasets and
compare our approach to variants of recurrent en-
coders such as uni-directional and bi-directional
LSTMs. On WMT’16 English-Romanian transla-
tion we achieve accuracy that is very competitive
to the current state-of-the-art result. We perform
competitively on WMT’15 English-German, and
nearly match the performance of the best WMT’ 14
English-French system based on a deep LSTM
setup when comparing on a commonly used subset

For kernel width k and sequence length n we require
max (1, [Zf_ﬂ) forwards on a succession of stacked convo-
lutional layers compared to n forwards with an RNN.
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of the training data (Zhou et al. 2016; §4, §5).

2 Recurrent Neural Machine Translation

The general architecture of the models in this work
follows the encoder-decoder approach with soft at-
tention first introduced in (Bahdanau et al., 2015).
A source sentence X = (21, . .., Zy,) of m words is
processed by an encoder which outputs a sequence
of states z = (21....,2m).

The decoder is an RNN network that computes a
new hidden state s;;1 based on the previous state
si, an embedding g; of the previous target lan-
guage word y;, as well as a conditional input ¢; de-
rived from the encoder output z. We use LSTMs
(Hochreiter and Schmidhuber, 1997) for all decoder
networks whose state s; comprises of a cell vector
and a hidden vector h; which is output by the LSTM
at each time step. We input ¢; into the LSTM by
concatenating it to g;.

The translation model computes a distribution
over the V possible target words ;41 by trans-
forming the LSTM output /; via a linear layer with
weights W, and bias b,:

p(Yiv1ly1s - -, yi,x) = softmax(Wyh;+1 + bo)

The conditional input ¢; at time ¢ is computed
via a simple dot-product style attention mecha-
nism (Luong et al., 2015a). Specifically, we trans-
form the decoder hidden state h; by a linear layer
with weights Wy and by to match the size of the
embedding of the previous target word g; and then
sum the two representations to yield d;. Condi-
tional input c; is a weighted sum of attention scores
a; € R™ and encoder outputs z. The attention
scores a; are determined by a dot product between
h; with each z;, followed by a softmax over the
source sequence:

di = Wah; + bq + gi,

B exp (dZsz) o Ui o
- Zgl exp (leZt) ) C; = ; aZjZ]

In preliminary experiments, we did not find the
MLP attention of (Bahdanau et al., 2015) to perform
significantly better in terms of BLEU nor perplex-
ity. However, we found the dot-product attention to
be more favorable in terms of training and evalua-
tion speed.

We use bi-directional LSTMs to implement re-
current encoders similar to (Zhou et al., 2016)
which achieved some of the best WMT14 English-
French results reported to date. First, each word

aij
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of the input sequence x is embedded in distribu-
tional space resulting ine = (e, ..., €,,). The em-
beddings are input to two stacks of uni-directional
RNNs where the output of each layer is reversed
before being fed into the next layer. The first stack
takes the original sequence while the second takes
the reversed input sequence; the output of the sec-
ond stack is reversed so that the final outputs of the
stacks align. Finally, the top-level hidden states of
the two stacks are concatenated and fed into a linear
layer to yield z. We denote this encoder architecture
as BiLSTM.

3 Non-recurrent Encoders

3.1 Pooling Encoder

A simple baseline for non-recurrent encoders is the
pooling model described in (Ranzato et al., 2015)
which simply averages the embeddings of k£ con-
secutive words. Averaging word embeddings does
not convey positional information besides that the
words in the input are somewhat close to each
other. As a remedy, we add position embeddings
to encode the absolute position of each source
word within a sentence. Each source embedding
e;j therefore contains a position embedding [; as
well as the word embedding w;. Position embed-
dings have also been found helpful in memory net-
works for question-answering and language model-
ing (Sukhbaatar et al., 2015). Similar to the recur-
rent encoder (§2), the attention scores a;; are com-
puted from the pooled representations z;, however,
the conditional input ¢; is a weighted sum of the
embeddings e, not z;, i.e.,

Lk/2]

D G

t=—|k/2]

m
C; = E A5€4
j=1

The input sequence is padded prior to pooling such
that the encoder output matches the input length
|z| = |x|. We set k to 5 in all experiments as (Ran-
zato et al., 2015).

1

ej:wj—i—lj, zj =

3.2 Convolutional Encoder

A straightforward extension of pooling is to learn
the kernel in a convolutional neural network (CNN).
The encoder output z; contains information about a
fixed-sized context depending on the kernel width
k but the desired context width may vary. This can



be addressed by stacking several layers of convolu-
tions followed by non-linearities: additional layers
increase the total context size while non-linearities
can modulate the effective size of the context as
needed. For instance, stacking 5 convolutions with
kernel width £ = 3 results in an input field of 11
words, i.e., each output depends on 11 input words,
and the non-linearities allow the encoder to exploit
the full input field, or to concentrate on fewer words
as needed.

To ease learning for deep encoders, we add resid-
ual connections from the input of each convolution
to the output and then apply the non-linear activa-
tion function to the output (tanh; He et al., 2015);
the non-linearities are therefore not ’bypassed’.
Multi-layer CNNs are constructed by stacking sev-
eral blocks on top of each other. The CNNs do not
contain pooling layers which are commonly used
for down-sampling, i.e., the full source sequence
length will be retained after the network has been
applied. Similar to the pooling model, the convolu-
tional encoder uses position embeddings.

The final encoder consists of two stacked convo-
Iutional networks (Figure 1): CNN-a produces the
encoder output z; to compute the attention scores
a;, while the conditional input ¢; to the decoder is
computed by summing the outputs of CNN-c,

Zj = CNN—a(e)j, C; = Z Qjj CNN—c(e)j.
j=1

In practice, we found that two different CNNs re-
sulted in better perplexity as well as BLEU com-
pared to using a single one (§5.3). We also found
this to perform better than directly summing the e;
without transformation as for the pooling model.

3.3 Related Work

There are several past attempts to use convolutional
encoders for neural machine translation, however,
to our knowledge none of them were able to match
the performance of recurrent encoders. (Kalch-
brenner and Blunsom, 2013) introduce a convolu-
tional sentence encoder in which a multi-layer CNN
generates a fixed sized embedding for a source
sentence, or an n-gram representation followed by
transposed convolutions for directly generating a
per-token decoder input. The latter requires the
length of the translation prior to generation and both
models were evaluated by rescoring the output of
an existing translation system. (Cho et al., 2014a)
propose a gated recursive CNN which is repeat-
edly applied until a fixed-size representation is ob-
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tained but the recurrent encoder achieves higher ac-
curacy. In follow-up work, the authors improved the
model via a soft-attention mechanism but did not re-
consider convolutional encoder models (Bahdanau
et al., 2015).

Concurrently to our work, (Kalchbrenner et al.,
2016) have introduced convolutional translation
models without an explicit attention mechanism
but their approach does not yet result in state-of-
the-art accuracy. (Lamb and Xie, 2016) also pro-
posed a multi-layer CNN to generate a fixed-size
encoder representation but their work lacks quan-
titative evaluation in terms of BLEU. Meng et al.
(2015) and (Tu et al., 2015) applied convolutional
models to score phrase-pairs of traditional phrase-
based and dependency-based translation models.
Convolutional architectures have also been success-
ful in language modeling but so far failed to outper-
form LSTMs (Pham et al., 2016).

4 Experimental Setup
4.1 Datasets

We evaluate different encoders and ablate architec-
tural choices on a small dataset from the German-
English machine translation track of IWSLT
2014 (Cettolo et al., 2014) with a similar setting
to (Ranzato et al., 2015). Unless otherwise stated,
we restrict training sentences to have no more than
175 words; test sentences are not filtered. This is
a higher threshold compared to other publications
but ensures proper training of the position embed-
dings for non-recurrent encoders; the length thresh-
old did not significantly effect recurrent encoders.
Length filtering results in 167K sentence pairs and
we test on the concatenation of tst2010, tst2011,
1512012, tst2013 and dev2010 comprising 6948 sen-
tence pairs.> Our final results are on three major
WMT tasks:

WMT’16 English-Romanian. We use the same
data and pre-processing as (Sennrich et al., 2016a)
and train on 2.8M sentence pairs.* Our model is
word-based instead of relying on byte-pair encod-
ing (Sennrich et al., 2016b). We evaluate on new-
stest2016.

WMT’1S5 English-German. We use all available
parallel training data, namely Europarl v7, Com-

3Different to the other datasets, we lowercase the training
data and evaluate with case-insensitive BLEU.

*We followed the pre-processing of https:
//github.com/rsennrich/wmtl6-scripts/
blob/master/sample/preprocess. sh and added the
back-translated data from http://data.statmt.org/
rsennrich/wmtl6_backtranslations/en—ro.
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Figure 1: Neural machine translation model with single-layer convolutional encoder networks. CNN-a is
on the left and CNN-c is at the right. Embedding layers are not shown.

mon Crawl and News Commentary v10 and ap-
ply the standard Moses tokenization to obtain 3.9M
sentence pairs (Koehn et al., 2007). We report re-
sults on newstest2015.

WMT’14 English-French. We use a commonly
used subset of 12M sentence pairs (Schwenk,
2014), and remove sentences longer than 150
words. This results in 10.7M sentence-pairs for
training. Results are reported on ntsti4.

A small subset of the training data serves as vali-
dation set (5% for IWSLT 14 and 1% for WMT) for
early stopping and learning rate annealing (§4.3).
For IWSLT’ 14, we replace words that occur fewer
than 3 times with a <unk> symbol, which results in
a vocabulary of 24158 English and 35882 German
word types. For WMT datasets, we retain 200K
source and 80K target words. For English-French
only, we set the target vocabulary to 30K types to
be comparable with previous work.

4.2 Model parameters

We use 512 hidden units for both recurrent encoders
and decoders. We reset the decoder hidden states to
zero between sentences. For the convolutional en-
coder, 512 hidden units are used for each layer in
CNN-a, while layers in CNN-c contain 256 units
each. All embeddings, including the output pro-
duced by the decoder before the final linear layer,
are of 256 dimensions. On the WMT corpora, we
find that we can improve the performance of the bi-
directional LSTM models (BiLSTM) by using 512-
dimensional word embeddings.

Model weights are initialized from a uniform
distribution within [—0.05,0.05]. For convolu-
tional layers, we use a uniform distribution of
[—kd™%5,kd 03], where k is the kernel width (we
use 3 throughout this work) and d is the input size
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for the first layer and the number of hidden units
for subsequent layers (Collobert et al., 2011b). For
CNN-c, we transform the input and output with
a linear layer each to match the smaller embed-
ding size. The model parameters were tuned on
IWSLT’ 14 and cross-validated on the larger WMT
corpora.

4.3 Optimization

Recurrent models are trained with Adam as we
found them to benefit from aggressive optimization.
We use a step width of 3.125 - 10~4 and early stop-
ping based on validation perplexity (Kingma and
Ba, 2014). For non-recurrent encoders, we obtain
best results with stochastic gradient descent (SGD)
and annealing: we use a learning rate of 0.1 and
once the validation perplexity stops improving, we
reduce the learning rate by an order of magnitude
each epoch until it falls below 104

For all models, we use mini-batches of 32 sen-
tences for IWSLT 14 and 64 for WMT. We use
truncated back-propagation through time to limit
the length of target sequences per mini-batch to 25
words. Gradients are normalized by the mini-batch
size. We re-normalize the gradients if their norm
exceeds 25 (Pascanu et al., 2013). Gradients of con-
volutional layers are scaled by sqrt(dim (input)) =
similar to (Collobert et al., 2011b). We use dropout
on the embeddings and decoder outputs h; with a
rate of 0.2 for IWSLT’14 and 0.1 for WMT (Sri-
vastava et al., 2014). All models are implemented
in Torch (Collobert et al., 2011a) and trained on a
single GPU.

4.4 Evaluation

We report accuracy of single systems by train-
ing several identical models with different ran-



dom seeds (5 for IWSLT 14, 3 for WMT) and
pick the one with the best validation perplex-
ity for final BLEU evaluation. Translations are
generated by a beam search and we normalize
log-likelihood scores by sentence length. On
IWSLT’ 14 we use a beam width of 10 and for
WMT models we tune beam width and word
penalty on a separate test set, that is newsdev2016
for WMT’16 English-Romanian, newstest2014
for WMT’15 English-German and ntst/213 for
WMT’ 14 English-French.’ The word penalty adds
a constant factor to log-likelihoods, except for the
end-of-sentence token.

Prior to scoring the generated translations against
the respective references, we perform unknown
word replacement based on attention scores (Jean
et al., 2015). Unknown words are replaced by look-
ing up the source word with the maximum atten-
tion score in a pre-computed dictionary. If the
dictionary contains no translation, then we simply
copy the source word. Dictionaries were extracted
from the aligned training data that was aligned with
fast_align (Dyer et al., 2013). Each source
word is mapped to the target word it is most fre-
quently aligned to.

For convolutional encoders with stacked CNN-c
layers we noticed for some models that the atten-
tion maxima were consistently shifted by one word.
We determine this per-model offset on the above-
mentioned development sets and correct for it. Fi-
nally, we compute case-sensitive tokenized BLEU,
except for WMT’16 English-Romanian where we
use detokenized BLEU to be comparable with Sen-
nrich et al. (2016a).°

5 Results

5.1 Recurrent vs. Non-recurrent Encoders

We first compare recurrent and non-recurrent en-
coders in terms of perplexity and BLEU on
IWSLT’ 14 with and without position embeddings
(§3.1) and include a phrase-based system (Koehn
et al., 2007). Table 1 shows that a single-layer con-
volutional model with position embeddings (Con-
volutional) can outperform both a uni-directional
LSTM encoder (LSTM) as well as a bi-directional
LSTM encoder (BiLSTM). Next, we increase the
depth of the convolutional encoder. We choose a

>Specifically, we select a beam from {5, 10} and a word
penalty from {0, —0.5,—1,—1.5}

*https://github.com/moses—smt/
mosesdecoder/blob/617e8c8edl1630£fbldl/
scripts/generic/{multi-bleu.perl,
mteval-vl3a.pl}
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System/Encoder BLEU BLEU PPL

wrd+pos wrd  wrd+pos
Phrase-based - 28.4 -
LSTM 27.4 27.3 10.8
BiLSTM 29.7 29.8 9.9
Pooling 26.1 19.7 11.0
Convolutional 29.9 20.1 9.1
Deep Convolutional 6/3 30.4 25.2 8.9

Table 1: Accuracy of encoders with position fea-
tures (wrd+pos) and without (wrd) in terms of
BLEU and perplexity (PPL) on IWSLT 14 Ger-
man to English translation; results include unknown
word replacement. Deep Convolutional 6/3 is the
only multi-layer configuration, more layers for the
LSTMs did not improve accuracy on this dataset.

good setting by independently varying the number
of layers in CNN-a and CNN-c between 1 and 10
and obtained best validation set perplexity with six
layers for CNN-a and three layers for CNN-c. This
configuration outperforms BiLSTM by 0.7 BLEU
(Deep Convolutional 6/3). We investigate depth in
the convolutional encoder more in §5.3.

Among recurrent encoders, the BiLSTM is 2.3
BLEU better than the uni-directional version. The
simple pooling encoder which does not contain any
parameters is only 1.3 BLEU lower than a uni-
directional LSTM encoder and 3.6 BLEU lower
than BiLSTM. The results without position em-
beddings (words) show that position information
is crucial for convolutional encoders. In particu-
lar for shallow models (Pooling and Convolutional),
whereas deeper models are less effected. Recurrent
encoders do not benefit from explicit position in-
formation because this information can be naturally
extracted through the sequential computation.

When tuning model settings, we generally ob-
serve good correlation between perplexity and
BLEU. However, for convolutional encoders per-
plexity gains translate to smaller BLEU improve-
ments compared to recurrent counterparts (Table 1).
We observe a similar trend on larger datasets.

5.2 Evaluation on WMT Corpora

Next, we evaluate the BiLSTM encoder and the
convolutional encoder architecture on three larger
tasks and compare against previously published re-
sults. On WMT’16 English-Romanian translation
we compare to (Sennrich et al., 2016a), the win-
ning single system entry for this language pair.
Their model consists of a bi-directional GRU en-
coder, a GRU decoder and MLP-based attention.



WMT’16 English-Romanian Encoder Vocabulary BLEU
(Sennrich et al., 2016a) BiGRU BPE 90K 28.1
Single-layer decoder BiLSTM 80K 27.5

Convolutional 80K 27.1

Deep Convolutional 8/4 80K 27.8
WMT’15 English-German Encoder Vocabulary BLEU
(Jean et al., 2015) RNNsearch-LV BiGRU 500K 224
(Chung et al., 2016) BPE-Char BiGRU Char 500 23.9
(Yang et al., 2016) RNNSearch + UNK replace  BiLSTM 50K 243
+ recurrent attention BiLSTM 50K 25.0
Single-layer decoder BiLSTM 80K 23.5

Deep Convolutional 8/4 80K 23.6
Two-layer decoder Two-layer BILSTM 80K 24.1

Deep Convolutional 15/5 80K 242
WMT’14 English-French (12M) Encoder Vocabulary BLEU
(Bahdanau et al., 2015) RNNsearch BiGRU 30K 28.5
(Luong et al., 2015b) Single LSTM 6-layer LSTM 40K 32.7
(Jean et al., 2014) RNNsearch-LV BiGRU 500K 34.6
(Zhou et al., 2016) Deep-Att Deep BiLSTM 30K 35.9
Single-layer decoder BiLSTM 30K 343

Deep Convolutional 8/4 30K 34.6
Two-layer decoder 2-layer BiLSTM 30K 353

Deep Convolutional 20/5 30K 35.7

Table 2: Accuracy on three WMT tasks, including results published in previous work. For deep convolu-
tional encoders, we include the number of layers in CNN-a and CNN-c, respectively.

They use byte pair encoding (BPE) to achieve open-
vocabulary translation and dropout in all compo-
nents of the neural network to achieve 28.1 BLEU;
we use the same pre-processing but no BPE (§4).

The results (Table 2) show that a deep convo-
lutional encoder can perform competitively to the
state of the art on this dataset (Sennrich et al.,
2016a). Our bi-directional LSTM encoder baseline
is 0.6 BLEU lower than the state of the art but uses
only 512 hidden units compared to 1024. A single-
layer convolutional encoder with embedding size
256 performs at 27.1 BLEU. Increasing the num-
ber of convolutional layers to 8 in CNN-a and 4
in CNN-c achieves 27.8 BLEU which outperforms
our baseline and is competitive to the state of the
art.

On WMT"15 English to German, we compare to
a BiLSTM baseline and prior work: (Jean et al.,
2015) introduce a large output vocabulary; the
decoder of (Chung et al., 2016) operates on the
character-level; (Yang et al., 2016) uses LSTMs in-
stead of GRUs and feeds the conditional input to the
output layer as well as to the decoder.

Our single-layer BiILSTM baseline is competi-
tive to prior work and a two-layer BiLSTM encoder
performs 0.6 BLEU better at 24.1 BLEU. Previ-
ous work also used multi-layer setups, e.g., (Chung
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et al.,, 2016) has two layers both in the encoder
and the decoder with 1024 hidden units, and (Yang
et al., 2016) use 1000 hidden units per LSTM. We
use 512 hidden units for both LSTM and convolu-
tional encoders. Our convolutional model with ei-
ther 8 or 15 layers in CNN-a outperform the BiL-
STM encoder with both a single decoder layer or
two decoder layers.

Finally, we evaluate on the larger WMT’14
English-French corpus. On this dataset the recur-
rent architectures benefit from an additional layer
both in the encoder and the decoder. For a single-
layer decoder, a deep convolutional encoder outper-
forms the BiILSTM accuracy by 0.3 BLEU and for a
two-layer decoder, our very deep convolutional en-
coder with up to 20 layers outperforms the BiLSTM
by 0.4 BLEU. It has 40% fewer parameters than the
BiLSTM due to the smaller embedding sizes. We
also outperform several previous systems, includ-
ing the very deep encoder-decoder model proposed
by (Luong et al., 2015a). Our best result is just 0.2
BLEU below (Zhou et al., 2016) who use a very
deep LSTM setup with a 9-layer encoder, a 7-layer
decoder, shortcut connections and extensive regu-
larization with dropout and L2 regularization.



5.3 Convolutional Encoder Architecture
Details

We next motivate our design of the convolutional
encoder (§3.2). We use the smaller IWSLT 14
German-English setup without unknown word re-
placement to enable fast experimental turn-around.
BLEU results are averaged over three training runs
initialized with different seeds.

Figure 2 shows accuracy for a different number
of layers of both CNNs with and without residual
connections. Our first observation is that computing
the conditional input ¢; directly over embeddings e
(line "without CNN-c”) is already working well at
28.3 BLEU with a single CNN-a layer and at 29.1
BLEU for CNN-a with 7 layers (Figure 2a). In-
creasing the number of CNN-c layers is beneficial
up to three layers and beyond this we did not ob-
serve further improvements. Similarly, increasing
the number of layers in CNN-a beyond six does not
increase accuracy on this relatively small dataset. In
general, choosing two to three times as many layers
in CNN-a as in CNN-c is a good rule of thumb.
Without residual connections, the model fails to
utilize the increase in modeling power from addi-
tional layers, and performance drops significantly
for deeper encoders (Figure 2b).

Our convolutional architecture relies on two sets
of networks, CNN-a for attention score computa-
tion a; and CNN-c for the conditional input ¢; to
be fed to the decoder. We found that using the
same network for both tasks, similar to recurrent
encoders, resulted in poor accuracy of 22.9 BLEU.
This compares to 28.5 BLEU for separate single-
layer networks, or 28.3 BLEU when aggregating
embeddings for c;. Increasing the number of layers
in the single network setup did not help. Figure 2(a)
suggests that the attention weights (CNN-a) need
to integrate information from a wide context which
can be done with a deep stack. At the same time,
the vectors which are averaged (CNN-c) seem to
benefit from a shallower, more local representation
closer to the input words. Two stacks are an easy
way to achieve these contradicting requirements.

In Appendix A we visualize attention scores and
find that alignments for CNN encoders are less
sharp compared to BiLSTMs, however, this does
not affect the effectiveness of unknown word re-
placement once we adjust for shifted maxima. In
Appendix B we investigate whether deep convo-
lutional encoders are required for translating long
sentences and observe that even relatively shallow
encoders perform well on long sentences.
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5.4 Training and Generation Speed

For training, we use the fast CuDNN LSTM im-
plementation for layers without attention and ex-
periment on IWSLT 14 with batch size 32. The
single-layer BiLSTM model trains at 4300 target
words/second, while the 6/3 deep convolutional en-
coder compares at 6400 words/second on an NVidia
Tesla M40 GPU. We do not observe shorter over-
all training time since SGD converges slower than
Adam which we use for BILSTM models.

We measure generation speed on an Intel Haswell
CPU clocked at 2.50GHz with a single thread for
BLAS operations. We use vocabulary selection
which can speed up generation by up to a factor of
ten at no cost in accuracy via making the time to
compute the final output layer negligible (Mi et al.,
2016; L’Hostis et al., 2016). This shifts the focus
from the efficiency of the encoder to the efficiency
of the decoder. On IWSLT’ 14 (Table 3a) the convo-
lutional encoder increases the speed of the overall
model by a factor of 1.35 compared to the BiLSTM
encoder while improving accuracy by 0.7 BLEU. In
this setup both encoders models have the same hid-
den layer and embedding sizes.

On the larger WMT’15 English-German task
(Table 3b) the convolutional encoder speeds up gen-
eration by 2.1 times compared to a two-layer Bil-
STM. This corresponds to 231 source words/second
with beam size 5. Our best model on this dataset
generates 203 words/second but at slightly lower
accuracy compared to the full vocabulary setting in
Table 2. The recurrent encoder uses larger embed-
dings than the convolutional encoder which were
required for the models to match in accuracy.

The smaller embedding size is not the only rea-
son for the speed-up. In Table 3a (a), we com-
pare a Conv 6/3 encoder and a BiLSTM with equal
embedding sizes. The convolutional encoder is
still 1.34x faster (at 0.7 higher BLEU) although it
requires roughly 1.6x as many FLOPs. We be-
lieve that this is likely due to better cache locality
for convolutional layers on CPUs: an LSTM with
fused gates’ requires two big matrix multiplications
with different weights as well as additions, multi-
plications and non-linearities for each source word,
while the output of each convolutional layer can be
computed as whole with a single matrix multiply.

For comparison, the quantized deep LSTM-

"Our  bi-directional LSTM  implementation  is
based on torch rnnlib which uses fused LSTM gates
(https://github.com/facebookresearch/
torch-rnnlib/) and which we consider an efficient
implementation.
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Figure 2: Effect of encoder depth on IWSLT’ 14 with and without residual connections. The x-axis varies
the number of layers in CNN-a and curves show different CNN-c settings.

Encoder Words/s BLEU
BiLSTM 139.7 22.4
Deep Conv. 6/3 187.9 23.1

(a) IWSLT’14 German-English generation speed on
tst2013 with beam size 10.

Encoder Words/s BLEU
2-layer BiLSTM 109.9 23.6
Deep Conv. 8/4 231.1 23.7
Deep Conv. 15/5 203.3 24.0

(b) WMT’15 English-German generation speed on new-
stest2015 with beam size 5.

Table 3: Generation speed in source words per second on a single CPU core using vocabulary selection.

based model in (Wu et al., 2016) processes 106.4
words/second for English-French on a CPU with
88 cores and 358.8 words/second on a custom TPU
chip. The optimized RNNsearch model and C++
decoder described by (Junczys-Dowmunt et al.,
2016) translates 265.3 words/s on a CPU with a
similar vocabulary selection technique, computing
16 sentences in parallel, i.e., 16.6 words/s on a sin-
gle core.

6 Conclusion

We introduced a simple encoder model for neu-
ral machine translation based on convolutional net-
works. This approach is more parallelizable than
recurrent networks and provides a shorter path to
capture long-range dependencies in the source. We
find it essential to use source position embeddings
as well as different CNNs for attention score com-
putation and conditional input aggregation.

Our experiments show that convolutional en-
coders perform on par or better than baselines based
on bi-directional LSTM encoders. In comparison
to other recent work, our deep convolutional en-
coder is competitive to the best published results
to date (WMT 16 English-Romanian) which are
obtained with significantly more complex models
(WMT’ 14 English-French) or stem from improve-
ments that are orthogonal to our work (WMT’15
English-German). Our architecture also leads to
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large generation speed improvements: translation
models with our convolutional encoder can translate
twice as fast as strong baselines with bi-directional
recurrent encoders.

Future work includes better training to enable
faster convergence with the convolutional encoder
to better leverage the higher processing speed. Our
fast architecture is interesting for character level en-
coders where the input is significantly longer than
for words. Also, we plan to investigate the effec-
tiveness of our architecture on other sequence-to-
sequence tasks, e.g. summarization, constituency
parsing, dialog modeling.
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A Alignment Visualization

In Figure 4 and Figure 5, we plot attention
scores for a sample WMT’15 English-German and
WMT’ 14 English-French translation with BiLSTM
and deep convolutional encoders. The translation is
on the x-axis and the source sentence on the y-axis.

The attention scores of the BILSTM output are
sharp but do not necessarily represent a correct
alignment. For CNN encoders the scores are less
focused but still indicate an approximate source lo-
cation, e.g., in Figure 4b, when moving the clause
“over 1,000 people were taken hostage” to the back
of the translation. For some models, attention max-
ima are consistently shifted by one token as both in
Figure 4b and Figure 5b.

Interestingly, convolutional encoders tend to fo-
cus on the last token (Figure 4b) or both the first and
last tokens (Figure 5b). Motivated by the hypothe-
sis that the this may be due to the decoder depend-
ing on the length of the source sentence (which it
cannot determine without position embeddings), we
explicitly provided a distributed representation of
the input length to the decoder and attention mod-
ule. However, this did not cause a change in atten-
tion patterns nor did it improve translation accuracy.

B Performance by Sentence Length

2-layer BILSTM mmmm
Deep Conv. 6/3

Deep Conv. 84 =1
Deep Conv. 15/5 =1

BLEU

9. lo, Ao D, b, By Ny B, %
% 0 oy Vg Ty By, gy Mgy Ry

Range of Sentence Lengths

. 2 F2 2 € 2,
> 9 gy g Yy g

Figure 3: BLEU per sentence length on WMT’15
English-German newstest2015. The test set is par-
titioned into 15 equally-sized buckets according to
source sentence length.

One characteristic of our convolutional encoder
architecture is that the context over which outputs
are computed depends on the number of layers.
With bi-directional RNNs, every encoder output de-
pends on the entire source sentence. In Figure 3,
we evaluate whether limited context affects the
translation quality on longer sentences of WMT’15
English-German which often requires moving verbs
over long distances. We sort the newstest2015 test
set by source length, partition it into 15 equally-
sized buckets, and compare the BLEU scores of
models listed in Table 2 on a per-bucket basis.
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There is no clear evidence for sub-par transla-
tions on sentences that are longer than the observ-
able context per encoder output. We include a small
encoder with a 6-layer CNN-c and a 3-layer CNN-a
in the comparison which performs worse than a 2-
layer BiLSTM (23.3 BLEU vs. 24.1). With 6 con-
volutional layers at kernel width 3, each encoder
output contains information of 13 adjacent source
words. Looking at the accuracy for sentences with
15 words or more, this relatively shallow CNN is
either on par or better than the BiLSTM for 5 out
of 10 buckets; the BiLSTM has access to the entire
source context. Similar observations can be made
for the deeper convolutional encoders.
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(a) 2-layer BiLSTM encoder.
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(b) Deep convolutional encoder with 15-layer CNN-a and 5-layer CNN-c.

Figure 4: Attention scores for WMT’ 15 English-German translation for a sentence of newstest2015.
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(b) Deep convolutional encoder with 20-layer CNN-a and 5-layer CNN-c.

Figure 5: Attention scores for WMT’ 14 English-French translation for a sentence of ntst/4.
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Abstract

Deep Neural Networks (DNNs) have
provably enhanced the state-of-the-art
Neural Machine Translation (NMT)
with their capability in modeling com-
plex functions and capturing com-
plex linguistic structures. However
NMT systems with deep architecture
in their encoder or decoder RNNs of-
ten suffer from severe gradient diffu-
sion due to the non-linear recurrent ac-
tivations, which often make the opti-
mization much more difficult. To ad-
dress this problem we propose novel
linear associative units (LAU) to re-
duce the gradient propagation length
inside the recurrent unit. Different
from conventional approaches (LSTM
unit and GRU), LAUs utilizes lin-
ear associative connections between in-
put and output of the recurrent unit,
which allows unimpeded information
flow through both space and time di-
rection. The model is quite simple,
but it is surprisingly effective. Our
empirical study on Chinese-English
translation shows that our model with
proper configuration can improve by
11.7 BLEU upon Groundhog and the
best reported results in the same set-
ting. On WMT 14 English-German task
and a larger WMT14 English-French
task, our model achieves comparable
results with the state-of-the-art.

1 Introduction

Neural Machine Translation (NMT) is an end-
to-end learning approach to machine transla-

tion which has recently shown promising re-
sults on multiple language pairs (Luong et al.,
2015; Shen et al., 2015; Wu et al., 2016; Zhang
et al., 2016; Tu et al., 2016; Zhang and Zong,
2016; Jean et al., 2015; Meng et al., 2015). Un-
like conventional Statistical Machine Transla-
tion (SMT) systems (Koehn et al., 2003; Chi-
ang, 2005; Liu et al., 2006; Xiong et al., 2006;
Mi et al., 2008) which consist of multiple sep-
arately tuned components, NMT aims at build-
ing upon a single and large neural network
to directly map input text to associated output
text. Typical NMT models consists of two re-
current neural networks (RNNSs), an encoder to
read and encode the input text into a distributed
representation and a decoder to generate trans-
lated text conditioned on the input representa-
tion (Sutskever et al., 2014; Bahdanau et al.,
2014).

Driven by the breakthrough achieved in
computer vision (He et al., 2015; Srivastava
et al., 2015), research in NMT has recently
turned towards studying Deep Neural Net-
works (DNNs). Wu et al. (2016) and Zhou et
al. (2016) found that deep architectures in both
the encoder and decoder are essential for cap-
turing subtle irregularities in the source and tar-
get languages. However, training a deep neu-
ral network is not as simple as stacking lay-
ers. Optimization often becomes increasingly
difficult with more layers. One reasonable ex-
planation is the notorious problem of vanish-
ing/exploding gradients which was first studied
in the context of vanilla RNNs (Pascanu et al.,
2013b). Most prevalent approaches to solve
this problem rely on short-cut connections be-
tween adjacent layers such as residual or fast-
forward connections (He et al., 2015; Srivas-
tava et al., 2015; Zhou et al., 2016). Differ-
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ent from previous work, we choose to reduce
the gradient path inside the recurrent units and
propose a novel Linear Associative Unit (LAU)
which creates a fusion of both linear and non-
linear transformations of the input. Through
this design, information can flow across sev-
eral steps both in time and in space with lit-
tle attenuation. The mechanism makes it easy
to train deep stack RNNs which can efficiently
capture the complex inherent structures of sen-
tences for NMT. Based on LAUs, we also pro-
pose a NMT model , called DEEPLAU, with
deep architecture in both the encoder and de-
coder.

Although DEEPLAU is fairly simple, it
gives remarkable empirical results. On the
NIST Chinese-English task, DEEPLAU with
proper settings yields the best reported result
and also a 4.9 BLEU improvement over a
strong NMT baseline with most known tech-
niques (e.g, dropout) incorporated. On WMT
English-German and English-French tasks, it
also achieves performance superior or compa-
rable to the state-of-the-art.

2 Neural machine translation

A typical neural machine translation system
is a single and large neural network which
directly models the conditional probability
p(y|x) of translating a source sentence x =
{z1,29, - , o7, } to a target sentence y =
{yi,92,--- ,yr, }-

Attention-based NMT, with RNNsearch as
its most popular representative, generalizes the
conventional notion of encoder-decoder in us-
ing an array of vectors to represent the source
sentence and dynamically addressing the rele-
vant segments of them during decoding. The
process can be explicitly split into an encoding
part, a decoding part and an attention mech-
anism. The model first encodes the source
sentence x into a sequence of vectors ¢ =
{h1,ha,--- ,h7,}. In general, h; is the anno-
tation of x; from a bi-directional RNN which
contains information about the whole sentence
with a strong focus on the parts of ;. Then, the
RNNsearch model decodes and generates the
target translation y based on the context ¢ and
the partial traslated sequence y; by maximiz-
ing the probability of p(y;|y<i, c). In the atten-

tion model, c is dynamically obtained accord-
ing to the contribution of the source annotation
made to the word prediction. This is called au-
tomatic alignment (Bahdanau et al., 2014) or
attention mechanism (Luong et al., 2015), but
it is essentially reading with content-based ad-
dressing defined in (Graves et al., 2014). With
this addressing strategy the decoder can attend
to the source representation that is most rele-
vant to the stage of decoding.

Deep neural models have recently achieved
a great success in a wide range of problems. In
computer vision, models with more than 100
convolutional layers have outperformed shal-
low ones by a big margin on a series of im-
age tasks (He et al., 2015; Srivastava et al.,
2015). Following similar ideas of building
deep CNNs, some promising improvements
have also been achieved on building deep NMT
systems. Zhou et al. (2016) proposed a new
type of linear connections between adjacent
layers to simplify the training of deeply stacked
RNNs. Similarly, Wu et al. (2016) introduced
residual connections to their deep neural ma-
chine translation system and achieve great im-
provements. However the optimization of deep
RNNss is still an open problem due to the mas-
sive recurrent computation which makes the
gradient propagation path extremely tortuous.

3 Model Description

In this section, we discuss Linear Associative
Unit (LAU) to ease the training of deep stack
of RNNs. Based on this idea, we further pro-
pose DEEPLAU, a neural machine translation
model with a deep encoder and decoder.

3.1 Recurrent Layers

A recurrent neural network (Williams and
Zipser, 1989) is a class of neural network
that has recurrent connections and a state (or
its more sophisticated memory-like extension).
The past information is built up through the
recurrent connections. This makes RNN ap-
plicable for sequential prediction tasks of ar-
bitrary length. Given a sequence of vectors
x = {x1,X2,---,Xr} as input, a standard
RNN computes the sequence hidden states h =
{hy,hy,--- ;hp} by iterating the following
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equation fromt =1tot =1T:

h; = ¢(Xt,ht—1) (D

¢ is usually a nonlinear function such as com-
position of a logistic sigmoid with an affine
transformation.

3.2 Gated Recurrent Unit

It is difficult to train RNNs to capture long-
term dependencies because the gradients tend
to either vanish (most of the time) or ex-
plode. The effect of long-term dependencies is
dropped exponentially with respect to the gra-
dient propagation length. The problem was ex-
plored in depth by (Hochreiter and Schmidhu-
ber, 1997; Pascanu et al., 2013b). A successful
approach is to design a more sophisticated acti-
vation function than a usual activation function
consisting of gating functions to control the
information flow and reduce the propagation
path. There is a long thread of work aiming
to solve this problem, with the long short-term
memory units (LSTM) being the most salient
examples and gated recurrent unit (GRU) being
the most recent one (Hochreiter and Schmidhu-
ber, 1997; Cho et al., 2014). RNNs employing
either of these recurrent units have been shown
to perform well in tasks that require capturing
long-term dependencies.

GRU can be viewed as a slightly more dra-
matic variation on LSTM with fewer parame-
ters. The activation function is armed with two
specifically designed gates called update and
reset gates to control the flow of information
inside each hidden unit. Each hidden state at
time-step ¢ is computed as follows

hy=(1-2z)0h1+z60h (2

where © is an element-wise product, z; is the
update gate, and h; is the candidate activation.

hy = tanh(Wp,x, + Wi (r ©hy_1)) (3)

where r; is the reset gate. Both reset and update
gates are computed as :
ry = U(erxt + Whrhtfl) (4)
Z;y = U(szxt + thhtfl) (5)
This procedure of taking a linear sum between

the existing state and the newly computed state
is similar to the LSTM unit.

3.3 Linear Associative Unit

GRU can actually be viewed as a non-linear ac-
tivation function with gating mechanism. Here
we propose LAU which extends GRU by hav-
ing an additional linear transformation of the
input in its dynamics. More formally, the state
update function becomes

hy =((1-2z)Oh1+20 flt) © (1 —g)
+ gt ® H(Xt).
(6)

Here the updated h; has three sources: 1) the
direct transfer from previous state h;_1, 2) the
candidate update flt, and 3) a direct contribu-
tion from the input H(x;). More specifically,
flt contains the nonlinear information of the in-
put and the previous hidden state.

h; = tanh(f; © (Wypx) +1: © (Wirphi 1)),

)
where f; and r; express how much of the non-
linear abstraction are produced by the input x;
and previous hidden state hy, respectively. For
simplicity, we set f; = 1 — r; in this paper
and find that this works well in our experi-
ments. The term H(x;) is usually an affine
linear transformation of the input x; to mach
the dimensions of h;, where H(x;) = W,z;.
The associated term g; (the input gate) decides
how much of the linear transformation of the
input is carried to the hidden state and then the
output. The gating function r; (reset gate) and
z; (update gate) are computed following Equa-
tion (4) and (5) while g; is computed as

gt = U(Wxgxt + Whght—l)- (8)

The term g; © H(x;) therefore offers a di-
rect way for input x; to go to later hidden lay-
ers, which can eventually lead to a path to the
output layer when applied recursively. This
mechanism is potentially very useful for trans-
lation where the input, no matter whether it is
the source word or the attentive reading (con-
text), should sometimes be directly carried to
the next stage of processing without any sub-
stantial composition or nonlinear transforma-
tion. To understand this, imagine we want to
translate a English sentence containing a rela-
tive rare entity name such as “Bahrain” to Chi-
nese: LAU is potentially able to retain the em-
bedding of this word in its hidden state, which
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will otherwise be prone to serious distortion
due to the scarcity of training instances for it.

3.4 DEEPLAU

Decoder

Y1 Y2 </s>

Ts

H- 1

<> N Ym

Encoder

-

Figure 1: DEEPLAU: a neural machine trans-
lation model with deep encoder and decoder.

Graves et al. (2013) explored the advantages
of deep RNNs for handwriting recognition and
text generation. There are multiple ways of
combining one layer of RNN with another.
Pascanu et al. (2013a) introduced Deep Tran-
sition RNNs with Skip connections (DT(S)-
RNNs). Kalchbrenner et al. (2015) proposed to
make a full connection of all the RNN hidden
layers. In this work we employ vertical stack-
ing where only the output of the previous layer
of RNN is fed to the current layer as input. The
input at recurrent layer ¢ (denoted as Xf) is ex-
actly the output of the same time step at layer
¢ — 1 (denoted as hffl). Additionally, in or-
der to learn more temporal dependencies, the
sequences can be processed in different direc-
tions. More formally, given an input sequence

x = (x1, ..., XT), the output on layer ¢ is
=1
h(@) _ Xty B 9
' { om®,n), es1 @
where

° hgg) gives the output of layer £ at location
t.

e ¢ is a recurrent function and we choose
LAUEs in this work.

o The directions are marked by a direction
term d € {—1,1}. If we fixed d to —1,
the input will be processed in forward di-
rection, otherwise backward direction.

The deep architecture of DEEPLAU, as
shown in Figure 1, consists of three parts: a
stacked LAU-based encoder, a stacked LAU-
based decoder and an improved attention
model.

Encoder One shortcoming of conventional
RNNs is that they are only able to make use
of previous context. In machine translation,
where whole source utterances are transcribed
at once, there is no reason not to exploit fu-
ture context as well. Thus bi-directional RNNs
are proposed to integrate information from the
past and the future. The typical bidirectional
approach processes the raw input in backward
and forward direction with two separate lay-
ers, and then concatenates them together. Fol-
lowing Zhou et al. (2016), we choose another
bidirectional approach to process the sequence
in order to learn more temporal dependencies
in this work. Specifically, an RNN layer pro-
cesses the input sequence in forward direction.
The output of this layer is taken by an upper
RNN layer as input, processed in reverse direc-
tion. Formally, following Equation (9), we set
d = (—1)*. This approach can easily build a
deeper network with the same number of pa-
rameters compared to the classical approach.
The final encoder consists of Ley. layers and
produces the output h’ee to compute the con-
ditional input c to the decoder.

Attention Model The alignment model oy ;
scores how well the output at position ¢
matches the inputs around position j based on
s;_, and hfe"“ where h]me is the top-most layer
of the encoder at step j and s} _; is the first
layer of decoder at step ¢ — 1. It is intu-
itively beneficial to exploit the information of
y;—1 when reading from the source sentence
representation, which is missing from the im-
plementation of attention-based NMT in (Bah-
danau et al., 2014). In this work, we build a
more effective alignment path by feeding both
the previous hidden state s} ; and the context
word y;—1 to the attention model, inspired by
the recent implementation of attention-based
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NMT!. The conditional input c; is a weighted
sum of attention score o ; and encoder output
h’ec. Formally, the calculation of cjis

t=Lg

cj= Y aghpe (10)
t=1

where

€t = Vgg(wastl—l + UahJLe"C + Wyyi-1)

oy, j = softmax(ey ;).

(11
o is a nonlinear function with the informa-
tion of y;_1 (its word embedding being y;_1)
added. In our preliminary experiments, we
found that GRU works slightly better than tanh
function, but we chose the latter for simplicity.

Decoder The decoder follows Equation (9)
with fixed direction term d = —1. At the first
layer, we use the following input:

Xt = [Cta}’t—l]

where y;_1 is the target word embedding at
time step ¢, ¢; is dynamically obtained follows
Equation (10). There are Lge. layers of RNNs
armed with LAUs in the decoder. At infer-
ence stage, we only utilize the top-most hidden
states s’ to make the final prediction with a
softmax layer:

p(Yily<i, x) = softmax(Wosfd“) (12)

4 Experiments

4.1 Setup

We mainly evaluated our approaches on the
widely used NIST Chinese-English translation
task. In order to show the usefulness of our
approaches, we also provide results on other
two translation tasks: English-French, English-
German. The evaluation metric is BLEU? (Pa-
pineni et al., 2002).

For Chinese-English, our training data con-
sists of 1.25M sentence pairs extracted from

'github.com/nyu-dl/dl4mt—tutorial/
tree/master/session?

% For Chinese-English task, we apply case-insensitive
NIST BLEU. For other tasks, we tokenized the reference
and evaluated the performance with multi-bleu.pl. The
metrics are exactly the same as in previous work.

LDC corpora®, with 27.9M Chinese words and
34.5M English words respectively. We choose
NIST 2002 (MTO02) dataset as our development
set, and the NIST 2003 (MTO03), 2004 (MT04)
2005 (MTO05) and 2006 (MTO06) datasets as our
test sets.

For English-German, to compare with the
results reported by previous work (Luong et al.,
2015; Zhou et al., 2016; Jean et al., 2015), we
used the same subset of the WMT 2014 train-
ing corpus that contains 4.5M sentence pairs
with 91M English words and 87M German
words. The concatenation of news-test 2012
and news-test 2013 is used as the validation set
and news-test 2014 as the test set.

To evaluate at scale, we also report the re-
sults of English-French. To compare with the
results reported by previous work on end-to-
end NMT (Sutskever et al., 2014; Bahdanau
et al., 2014; Jean et al., 2015; Luong et al.,
2014; Zhou et al., 2016), we used the same sub-
set of the WMT 2014 training corpus that con-
tains 12M sentence pairs with 304M English
words and 348M French words. The concate-
nation of news-test 2012 and news-test 2013
serves as the validation set and news-test 2014
as the test set.

4.2 Training details

Our training procedure and hyper parameter
choices are similar to those used by (Bahdanau
et al.,, 2014). In more details, we limit the
source and target vocabularies to the most fre-
quent 30K words in both Chinese-English and
English-French. For English-German, we set
the source and target vocabularies size to 120K
and 80K, respectively.

For all experiments, the dimensions of word
embeddings and recurrent hidden states are
both set to 512. The dimension of ¢; is also
of size 512. Note that our network is more
narrow than most previous work where hidden
states of dimmention 1024 is used. we initial-
ize parameters by sampling each element from
the Gaussian distribution with mean 0 and vari-
ance 0.042.

Parameter optimization is performed using
stochastic gradient descent. Adadelta (Zeiler,

3The corpora include LDC2002E18, LDC2003E07,

LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.
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SYSTEM MT03 MT04 MTO05 MTO06 | AVE.
Existing systems
Moses 31.61 33.48 30.75 30.85 | 31.67
Groundhog 31.92 34.09 31.56 31.12 | 32.17
COVERAGE 34.49 3834 3491 34.25 | 35.49
MEMDEC 36.16 39.81 3591 35.98 | 36.95
Our deep NMT systems
DEEPGRU 33.21  36.76 33.05 33.30 | 34.08
DEEPLAU 3935 41.15 38.07 37.29 | 38.97
DEEPLAU +Ensemble + PosUnk | 42.21 43.85 44.75 42.58 | 43.35

Table 1: Case-insensitive BLEU scores on Chinese-English translation.

2012) is used to automatically adapt the learn-
ing rate of each parameter (¢ = 107° and
p = 0.95). To avoid gradient explosion, the
gradients of the cost function which had /o
norm larger than a predefined threshold 7 were
normalized to the threshold (Pascanu et al.,
2013a). We set 7 to 1.0 at the beginning and
halve the threshold until the BLEU score does
not change much on the development set. Each
SGD is a mini-batch of 128 examples. We train
our NMT model with the sentences of length
up to 80 words in the training data, while for
the Moses system we use the full training data.
Translations are generated by a beam search
and log-likelihood scores are normalized by
sentence length. We use a beam width of 10
in all the experiments. Dropout was also ap-
plied on the output layer to avoid over-fitting.
The dropout rate is set to 0.5. Except when
otherwise mentioned, NMT systems are have 4
layers encoders and 4 layers decoders.

4.3 Results on Chinese-English
Translation

Table 1 shows BLEU scores on Chinese-
English datasets. Clearly DEEPLAU leads to
a remarkable improvement over their competi-
tors. Compared to DEEPGRU, DEEPLAU is
+4.89 BLEU score higher on average four test
sets, showing the modeling power gained from
the liner associative connections. We suggest it
is because LAUs apply adaptive gate function
conditioned on the input which make it able to
automatically decide how much linear informa-
tion should be transferred to the next step.

To show the power of DEEPLAU, we also
make a comparison with previous work. Our
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best single model outperforms both a phrased-
based MT system (Moses) as well as an open
source attention-based NMT system (Ground-
hog) by +7.3 and +6.8 BLEU points respec-
tively on average. The result is also bet-
ter than some other state-of-the-art variants of
attention-based NMT mode with big margins.
After PosUnk and ensemble, DEEPL AU seizes
another notable gain of +4.38 BLEU and out-
perform Moses by +11.68 BLEU.

4.4 Results on English-German
Translation

The results on English-German translation are
presented in Table 2. We compare our NMT
systems with various other systems including
the winning system in WMT14 (Buck et al.,
2014), a phrase-based system whose language
models were trained on a huge monolingual
text, the Common Crawl corpus. For end-to-
end NMT systems, to the best of our knowl-
edge, Wu et al. (2016) is currently the SOTA
system and about 4 BLEU points on top of pre-
viously best reported results even though Zhou
et al. (2016) used a much deeper neural net-
work?.

Following Wu et al. (2016), the BLEU score
represents the averaged score of 8§ models we
trained. Our approach achieves comparable re-
sults with SOTA system. As can be seen from
the Table 2, DeepL AU performs better than the
word based model and even not much worse
than the best wordpiece models achieved by
Wau et al. (2016). Note that DEEPLAU are sim-

*It is also worth mentioning that the result reported
by Zhou et al. (2016) does not include PosUnk, and this
comparison is not fair enough.



SYSTEM | Architecture | Voc. | BLEU
Existing systems
Buck et al. (2014) | Winning WMT14 system phrase-based + large LM - 20.7
Jean et al. (2015) gated RNN with search + LV + PosUnk 500K 19.4
Luong et al. (2015) | LSTM with 4 layers + dropout + local att. + PosUnk 80K 20.9
Shen et al. (2015) gated RNN with search + PosUnk + MRT 80K 20.5
Zhou et al. (2016) LSTM with 16 layers + F-F connections 80K 20.6
Wuetal. (2016) LSTM with 8 laysrs + RL-refined Word 80K 23.1
Wuetal. (2016) LSTM with 8 laysrs + RL-refined WPM-32K - 24.6
Wuetal. (2016) LSTM with 8 laysrs + RL-refined WPM-32K + Ensemble - 26.3
Our deep NMT systems

this work DEEPLAU 80K | 22.1(%0.3)
this work DEEPLAU + PosUnk 80K | 23.8(£0.3)
this work DEEPLAU + PosUnk + Ensemble 8 models 80K 26.1

Table 2: Case-sensitive BLEU scores on German-English translation.

ple and easy to implement, as opposed to previ-
ous models reported in Wu et al. (2016), which
dependends on some external techniques to
achieve their best performance, such as their
introduction of length normalization, coverage
penalty, fine-tuning and the RL-refined model.

4.5 Results on English-French Translation

SYSTEM | BLEU
Enc-Dec (Luong et al., 2014) 30.4
RNNsearch (Bahdanau et al., 2014) | 28.5
RNNsearch-LV (Jean et al., 2015) 32.7
Deep-Att (Zhou et al., 2016) 35.9
DEEPLAU 35.1

Table 3: English-to-French task: BLEU scores
of single neural models.

To evaluate at scale, we also show the re-
sults on an English-French task with 120 sen-
tence pairs and 30K vocabulary in Table 3.
Luong et al. (2014) achieves BLEU score of
30.4 with a six layers deep Encoder-Decoder
model. The two attention models, RNNSearch
and RNNsearch-LV achieve BLEU scores of
28.5 and 32.7 respectively. The previous best
single NMT Deep-Att model with an 18 layers
encoder and 7 layers decoder achieves BLEU
score of 35.9. For DEEPLAU, we obtain the
BLEU score of 35.1 with a 4 layers encoder
and 4 layers decoder, which is on par with
the SOTA system in terms of BLEU. Note that

Zhou et al. (2016) utilize a much larger depth
as well as external alignment model and exten-
sive regularization to achieve their best results.

4.6 Analysis

Then we will study the main factors that in-
fluence our results on NIST Chinese-English
translation task. We also compare our approach
with two SOTA topologies which were used in
building deep NMT systems.

e Residual Networks (ResNet) are among
the pioneering works (Szegedy et al.,
2016; He et al., 2016) that utilize extra
identity connections to enhance informa-
tion flow such that very deep neural net-
works can be effectively optimized. Share
the similar idea, Wu et al. (2016) intro-
duced to leverage residual connections to
train deep RNNs.

e Fast Forward (F-F) connections were pro-
posed to reduce the propagation path
length which is the pioneer work to sim-
plify the training of deep NMT model
(Zhou et al., 2016). The work can be
viewed as a parametric ResNet with short
cut connections between adjacent layers.
The procedure takes a linear sum between
the input and the newly computed state.

LAU vs. GRU Table 4 shows the effect of
the novel LAU. By comparing row 3 to row 7,
we see that when Lg,. and Lpe. are set to 2,

142



SYSTEM | (Lenc.Lpec) width | AVE.
1 DEEPGRU (2,1) 512 | 33.59
2 DEEPGRU (2,2) 1024 | 34.68
3 DEEPGRU (2,2) 512 | 34.91
4 DEEPGRU 4,4) 512 | 34.08
5 44+ResNet (4,4) 512 | 36.40
6 4+F-F 4,4) 512 | 37.62
7 DEEPLAU (2,2) 512 | 37.65
8 DEEPLAU 4,4) 512 | 38.97
9 DEEPLAU (8,6) 512 | 39.01
10 DEEPLAU (8,6) 256 | 38.91
Table 4: BLEU scores of DEEPLAU and

DEEPGRU with different model sizes.

the average BLEU scores achieved by DEEP-
GRU and DEEPLAU are 34.68 and 37.65, re-
spectively. LAU can bring an improvement of
2.97 in terms of BLEU. After increasing the
model depth to 4 (row 4 and row 6), the im-
provement is enlarged to 4.91. When DEEP-
GRU is trained with larger depth (say, 4), the
training becomes more difficult and the perfor-
mance falls behind its shallow partner. While
for DEEPLAU, as can be see in row 9, with
increasing the depth even to Lg,, = 8 and
Lpec = 6 we can still obtain growth by 0.04
BLEU score. Compared to previous short-
cut connection methods (row 5 and row 6),
The LAU still achieve meaningful improve-
ments over F-F connections and Residual con-
nections by +1.35 and +2.57 BLEU points re-
spectively.

DEEPLAU introduces more parameters than
DEEPGRU. In order to figure out the effect of
DEEPLAU comparing models with the same
parameter size, we increase the hidden size of
DEEPGRU model. Row 3 shows that, after us-
ing a twice larger GRU layer, the BLEU score
is 34.68, which is still worse than the corre-
sponding DEEPL AU model with fewer param-
eters.

Depth vs. Width Next we will study the
model size. In Table 4, starting from Lg,c = 2
and Lpe. = 2 and gradually increasing the
model depth, we can achieve substantial im-
provements in terms of BLEU. With Lg,. = 8
and Lpe. = 6, our DEEPLAU model yields
the best BLEU score. We tried to increase

the model depth with the same hidden size but
failed to see further improvements.

We then tried to increase the hidden size. By
comparing row 2 and row 3, we find the im-
provements is relative small with a wider hid-
den size. It is also worth mentioning that a deep
and thin network with fewer parameters can
still achieve comparable results with its shal-
low partner. This suggests that depth plays a
more important role in increasing the complex-
ity of neural networks than width and our de-
liberately designed LAU benefit from the opti-
mizing of such a deep model.
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Figure 2: The BLEU scores of generated trans-
lations on the merged four test sets with respect
to the lengths of source sentences.

About Length A more detailed comparison
between DEEPLAU (4 layers encoder and 4
layers decoder), DEEPLAU(2 layer encoder
and 2 layer decoder) and DEEPGRU (4 lay-
ers encoder and 4 layers decoder), suggest
that with deep architectures are essential to
the superior performance of our system. In
particular, we test the BLEU scores on sen-
tences longer than {10, 20, 30,40, 50,60} on
the merged test set. Clearly, in all curves,
performance degrades with increased sentence
length. However, DEEPLAU models yield
consistently higher BLEU scores than the
DEEPGRU model on longer sentences. These
observations are consistent with our intuition
that very deep RNN model is especially good
at modeling the nested latent structures on rel-
atively complicated sentences and LAU plays
an important role on optimizing such a com-
plex deep model.
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5 Conclusion

We propose a Linear Associative Unit (LAU)
which makes a fusion of both linear and non-
linear transformation inside the recurrent unit.
On this way, gradients decay much slower
compared to the standard deep networks which
enable us to build a deep neural network
for machine translation. Our empirical study
shows that it can significantly improve the per-
formance of NMT.
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Abstract

Sequence-to-sequence models have shown
strong performance across a broad range
of applications. However, their applica-
tion to parsing and generating text using
Abstract Meaning Representation (AMR)
has been limited, due to the relatively lim-
ited amount of labeled data and the non-
sequential nature of the AMR graphs. We
present a novel training procedure that can
lift this limitation using millions of unla-
beled sentences and careful preprocessing
of the AMR graphs. For AMR parsing, our
model achieves competitive results of 62.1
SMATCH, the current best score reported
without significant use of external seman-
tic resources. For AMR generation, our
model establishes a new state-of-the-art
performance of BLEU 33.8. We present
extensive ablative and qualitative analysis
including strong evidence that sequence-
based AMR models are robust against
ordering variations of graph-to-sequence
conversions.

1 Introduction

Abstract Meaning Representation (AMR) is a se-
mantic formalism to encode the meaning of natu-
ral language text. As shown in Figure 1, AMR rep-
resents the meaning using a directed graph while
abstracting away the surface forms in text. AMR
has been used as an intermediate meaning repre-
sentation for several applications including ma-
chine translation (MT) (Jones et al., 2012), sum-
marization (Liu et al., 2015), sentence compres-
sion (Takase et al., 2016), and event extraction
(Huang et al., 2016). While AMR allows for rich
semantic representation, annotating training data
in AMR is expensive, which in turn limits the use
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Obama was elected and his voters celebrated

*

and
opl op2

elect.01 celebrate.01

ARGO l \A‘RGO
poss

person <«—————— pPerson

name
/ ARGO-of l
opl
name Obama vote.01
Figure 1: An example sentence and its cor-

responding Abstract Meaning Representation
(AMR). AMR encodes semantic dependencies be-
tween entities mentioned in the sentence, such as
“Obama” being the “arg0” of the verb “elected”.

of neural network models (Misra and Artzi, 2016;
Peng et al., 2017; Barzdins and Gosko, 2016).

In this work, we present the first success-
ful sequence-to-sequence (seq2seq) models that
achieve strong results for both text-to-AMR pars-
ing and AMR-to-text generation. Seq2seq models
have been broadly successful in many other appli-
cations (Wu et al., 2016; Bahdanau et al., 2015;
Luong et al., 2015; Vinyals et al., 2015). How-
ever, their application to AMR has been limited,
in part because effective linearization (encoding
graphs as linear sequences) and data sparsity were
thought to pose significant challenges. We show
that these challenges can be easily overcome, by
demonstrating that seq2seq models can be trained
using any graph-isomorphic linearization and that
unlabeled text can be used to significantly reduce
sparsity.

Our approach is two-fold. First, we introduce a
novel paired training procedure that enhances both
the text-to-AMR parser and AMR-to-text genera-
tor. More concretely, first we use self-training to

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 146—157
Vancouver, Canada, July 30 - August 4, 2017. (©)2017 Association for Computational Linguistics
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bootstrap a high quality AMR parser from mil-
lions of unlabeled Gigaword sentences (Napoles
et al., 2012) and then use the automatically parsed
AMR graphs to pre-train an AMR generator. This
paired training allows both the parser and genera-
tor to learn high quality representations of fluent
English text from millions of weakly labeled ex-
amples, that are then fine-tuned using human an-
notated AMR data.

Second, we propose a preprocessing procedure
for the AMR graphs, which includes anonymizing
entities and dates, grouping entity categories, and
encoding nesting information in concise ways, as
illustrated in Figure 2(d). This preprocessing pro-
cedure helps overcoming the data sparsity while
also substantially reducing the complexity of the
AMR graphs. Under such a representation, we
show that any depth first traversal of the AMR is
an effective linearization, and it is even possible to
use a different random order for each example.

Experiments on the LDC2015E86 AMR cor-
pus (SemEval-2016 Task 8) demonstrate the ef-
fectiveness of the overall approach. For parsing,
we are able to obtain competitive performance of
62.1 SMATCH without using any external anno-
tated examples other than the output of a NER
system, an improvement of over 10 points rela-
tive to neural models with a comparable setup.
For generation, we substantially outperform previ-
ous best results, establishing a new state of the art
of 33.8 BLEU. We also provide extensive ablative
and qualitative analysis, quantifying the contribu-
tions that come from preprocessing and the paired
training procedure.

2 Related Work

Alignment-based Parsing Flanigan et al.
(2014) (JAMR) pipeline concept and relation
identification with a graph-based algorithm. Zhou
et al. (2016) extend JAMR by performing the
concept and relation identification tasks jointly
with an incremental model. Both systems rely on
features based on a set of alignments produced
using bi-lexical cues and hand-written rules. In
contrast, our models train directly on parallel cor-
pora, and make only minimal use of alignments to
anonymize named entities.

Grammar-based Parsing Wang et al. (2016)
(CAMR) perform a series of shift-reduce transfor-
mations on the output of an externally-trained de-
pendency parser, similar to Damonte et al. (2017),
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Brandt et al. (2016), Puzikov et al. (2016), and
Goodman et al. (2016). Artzi et al. (2015) use
a grammar induction approach with Combinatory
Categorical Grammar (CCG), which relies on pre-
trained CCGBank categories, like Bjerva et al.
(2016). Pust et al. (2015) recast parsing as a
string-to-tree Machine Translation problem, us-
ing unsupervised alignments (Pourdamghani et al.,
2014), and employing several external semantic
resources. Our neural approach is engineering
lean, relying only on a large unannotated corpus
of English and algorithms to find and canonicalize
named entities.

Neural Parsing Recently there have been a few
seq2seq systems for AMR parsing (Barzdins and
Gosko, 2016; Peng et al., 2017). Similar to our
approach, Peng et al. (2017) deal with sparsity by
anonymizing named entities and typing low fre-
quency words, resulting in a very compact vocab-
ulary (2k tokens). However, we avoid reducing our
vocabulary by introducing a large set of unlabeled
sentences from an external corpus, therefore dras-
tically lowering the out-of-vocabulary rate (see
Section 6).

AMR Generation Flanigan et al. (2016) spec-
ify a number of tree-to-string transduction rules
based on alignments and POS-based features that
are used to drive a tree-based SMT system. Pour-
damghani et al. (2016) also use an MT decoder;
they learn a classifier that linearizes the input
AMR graph in an order that follows the output
sentence, effectively reducing the number of align-
ment crossings of the phrase-based decoder. Song
et al. (2016) recast generation as a traveling sales-
man problem, after partitioning the graph into
fragments and finding the best linearization order.
Our models do not need to rely on a particular lin-
earization of the input, attaining comparable per-
formance even with a per example random traver-
sal of the graph. Finally, all three systems intersect
with a large language model trained on Gigaword.
We show that our seq2seq model has the capacity
to learn the same information as a language model,
especially after pretraining on the external corpus.

Data Augmentation Our paired training proce-
dure is largely inspired by Sennrich et al. (2016).
They improve neural MT performance for low re-
source language pairs by using a back-translation
MT system for a large monolingual corpus of the
target language in order to create synthetic output,



and mixing it with the human translations. We
instead pre-train on the external corpus first, and
then fine-tune on the original dataset.

3 Methods

In this section, we first provide the formal defini-
tion of AMR parsing and generation (section 3.1).
Then we describe the sequence-to-sequence mod-
els we use (section 3.2), graph-to-sequence con-
version (section 3.3), and our paired training pro-
cedure (section 3.4).

3.1 Tasks

We assume access to a training dataset D where
each example pairs a natural language sentence s
with an AMR a. The AMR is a rooted directed
acylical graph. It contains nodes whose names
correspond to sense-identified verbs, nouns, or
AMR specific concepts, for example elect .01,
Obama, and person in Figure 1. One of
these nodes is a distinguished root, for exam-
ple, the node and in Figure 1. Furthermore, the
graph contains labeled edges, which correspond
to PropBank-style (Palmer et al., 2005) seman-
tic roles for verbs or other relations introduced for
AMR, for example, arg0 or op1 in Figure 1. The
set of node and edge names in an AMR graph is
drawn from a set of tokens C, and every word in a
sentence is drawn from a vocabulary WW.

We study the task of training an AMR parser,
i.e., finding a set of parameters #p for model f,
that predicts an AMR graph a, given a sentence s:

a= argmaxf(a\s; 0p) (1)
a

We also consider the reverse task, training an
AMR generator by finding a set of parameters
O¢, for a model f that predicts a sentence 3, given
an AMR graph a:

§ = argmax f(s|a; 9(;) 2)
S

In both cases, we use the same family of pre-
dictors f, sequence-to-sequence models that use
global attention, but the models have independent
parameters, 0p and 0.

3.2 Sequence-to-sequence Model

For both tasks, we use a stacked-LSTM sequence-
to-sequence neural architecture employed in neu-
ral machine translation (Bahdanau et al., 2015; Wu
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et al.,, 2016).! Our model uses a global atten-
tion decoder and unknown word replacement with
small modifications (Luong et al., 2015).

The model uses a stacked bidirectional-LSTM
encoder to encode an input sequence and a stacked
LSTM to decode from the hidden states produced
by the encoder. We make two modifications to
the encoder: (1) we concatenate the forward and
backward hidden states at every level of the stack
instead of at the top of the stack, and (2) intro-
duce dropout in the first layer of the encoder. The
decoder predicts an attention vector over the en-
coder hidden states using previous decoder states.
The attention is used to weigh the hidden states of
the encoder and then predict a token in the out-
put sequence. The weighted hidden states, the
decoded token, and an attention signal from the
previous time step (input feeding) are then fed to-
gether as input to the next decoder state. The de-
coder can optionally choose to output an unknown
word symbol, in which case the predicted atten-
tion is used to copy a token directly from the input
sequence into the output sequence.

3.3 Linearization

Our seq2seq models require that both the input and
target be presented as a linear sequence of tokens.
We define a linearization order for an AMR graph
as any sequence of its nodes and edges. A lin-
earization is defined as (1) a linearization order
and (2) a rendering function that generates any
number of tokens when applied to an element in
the linearization order (see Section 4.2 for imple-
mentation details). Furthermore, for parsing, a
valid AMR graph must be recoverable from the
linearization.

3.4 Paired Training

Obtaining a corpus of jointly annotated pairs of
sentences and AMR graphs is expensive and cur-
rent datasets only extend to thousands of exam-
ples. Neural sequence-to-sequence models suffer
from sparsity with so few training pairs. To reduce
the effect of sparsity, we use an external unan-
notated corpus of sentences S, and a procedure
which pairs the training of the parser and genera-
tor.

Our procedure is described in Algorithm 1, and
first trains a parser on the dataset D of pairs of sen-
tences and AMR graphs. Then it uses self-training

'We extended the Harvard NLP seq2seq framework from
http://nlp.seas.harvard.edu/code.



Algorithm 1 Paired Training Procedure

Input: Training set of sentences and AMR graphs (s,a) €
D, an unannotated external corpus of sentences S, a
number of self training iterations, N, and an initial sam-
ple size k.

Output: Model parameters for AMR parser §p and AMR

generator 0.

0p < Train parser on D

> Self-train AMR parser.

S < sample k sentences from S

fori =1to N do

A¢ < Parse S¢ using parameters 6 p
> Pre-train AMR parser. o
0p < Train parser on (Ag, S¢)
> Fine tune AMR parser.
0p < Train parser on D with initial parameters 6 p
St « sample k - 10° new sentences from S,

end for

SN« sample k - 10V new sentences from S

> Pre-train AMR generator.

A, + Parse SY using parameters 0p

: 0g < Train generator on (AY, STV)

> Fine tune AMR generator.

0c < Train generator on D using initial parameters 0

return Op, O

1:

Rl

12:
13:

to improve the initial parser. Every iteration of
self-training has three phases: (1) parsing samples
from a large, unlabeled corpus Se, (2) creating a
new set of parameters by training on S, and (3)
fine-tuning those parameters on the original paired
data. After each iteration, we increase the size of
the sample from S, by an order of magnitude. Af-
ter we have the best parser from self-training, we
use it to label AMRs for S, and pre-train the gen-
erator. The final step of the procedure fine-tunes
the generator on the original dataset D.

4 AMR Preprocessing

We use a series of preprocessing steps, including
AMR linerization, anonymization, and other mod-
ifications we make to sentence-graph pairs. Our
methods have two goals: (1) reduce the complex-
ity of the linearized sequences to make learning
easier while maintaining enough original informa-
tion, and (2) address sparsity from certain open
class vocabulary entries, such as named entities
(NEs) and quantities. Figure 2(d) contains exam-
ple inputs and outputs with all of our preprocess-
ing techniques.

Graph Simplification In order to reduce the
overall length of the linearized graph, we first re-
move variable names and the instance-of re-
lation ( / ) before every concept. In case of
re-entrant nodes we replace the variable mention
with its co-referring concept. Even though this
replacement incurs loss of information, often the
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surrounding context helps recover the correct real-
ization, e.g., the possessive role : poss in the ex-
ample of Figure 1 is strongly correlated with the
surface form his. Following Pourdamghani et al.
(2016) we also remove senses from all concepts
for AMR generation only. Figure 2(a) contains an
example output after this stage.

4.1 Anonymization of Named Entities

Open-class types including NEs, dates, and num-
bers account for 9.6% of tokens in the sentences
of the training corpus, and 31.2% of vocabulary
W. 83.4% of them occur fewer than 5 times in the
dataset. In order to reduce sparsity and be able to
account for new unseen entities, we perform ex-
tensive anonymization.

First, we anonymize sub-graphs headed by one
of AMR’s over 140 fine-grained entity types that
contain a :name role. This captures structures
referring to entities such as person, country,
miscellaneous entities marked with x—enitity,
and typed numerical values, x—quantity. We
exclude date entities (see the next section). We
then replace these sub-graphs with a token indicat-
ing fine-grained type and an index, %, indicating it
is the ith occurrence of that type.> For example, in
Figure 2 the sub-graph headed by country gets
replaced with country_0.

On the training set, we use alignments obtained
using the JAMR aligner (Flanigan et al., 2014) and
the unsupervised aligner of Pourdamghani et al.
(2014) in order to find mappings of anonymized
subgraphs to spans of text and replace mapped text
with the anonymized token that we inserted into
the AMR graph. We record this mapping for use
during testing of generation models. If a gener-
ation model predicts an anonymization token, we
find the corresponding token in the AMR graph
and replace the model’s output with the most fre-
quent mapping observed during training for the
entity name. If the entity was never observed, we
copy its name directly from the AMR graph.

Anonymizing Dates For dates in AMR graphs,
we use separate anonymization tokens for year,
month-number, month-name, day-number and
day-name, indicating whether the date is men-
tioned by word or by number.> In AMR gener-

%In practice we only used three groups of ids: a different
one for NEs, dates and constants/numbers.

3We also use three date format markers that appear in the
text as: YYYYMMDD, YYMMDD, and YYYY-MM-DD.



US officials held an ex

pert group meeting in January 2002 in New York.
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:time date-entity :year 2002 :mon