
ACL 2017

The 55th Annual Meeting of the
Association for Computational Linguistics

Proceedings of the Conference, Vol. 1 (Long Papers)

July 30 - August 4, 2017
Vancouver, Canada

Platinum Sponsors:

Gold Sponsors:

ii

Silver Sponsors:

Bronze Sponsors:

Supporters:

iii

c©2017 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-945626-75-3 (Volume 1)
ISBN 978-1-945626-76-0 (Volume 2)

iv

Preface: General Chair

Welcome to ACL 2017 in Vancouver, Canada! This is the 55th annual meeting of the Association for
Computational Linguistics. A tremendous amount of knowledge has been presented at more than half
a century’s worth of our conferences. Hopefully, some of it is still relevant now that deep learning has
solved language. We are anticipating one of the largest ACL conferences ever. We had a record number
of papers submitted to the conference, and a record number of industry partners joining us as sponsors of
the conference. We are on track to be one of the best attended ACL conferences to date. I hope that this
year’s conference is intellectually stimulating and that you take home many new ideas and techniques
that will help extend your own research.

Each year, the ACL conference is organized by a dedicated team of volunteers. Please thank this year’s
organizers for their service to the community when you see them at the conference. Without these peo-
ple, this conference would not happen: Regina Barzilay and Min-Yen Kan (Program Co-Chairs), Priscilla
Rasmussen and Anoop Sarkar (Local Organizing Committee), Wei Xu and Jonathan Berant (Workshop
Chairs), Maja Popović and Jordan Boyd-Graber (Tutorial Chairs), Wei Lu, Sameer Singh and Mar-
garet Mitchell (Publication Chairs), Heng Ji and Mohit Bansal (Demonstration Chairs), Spandana Gella,
Allyson Ettinger, and Matthieu Labeau (Student Research Workshop Organizers), Cecilia Ovesdotter
Alm, Mark Dredze, and Marine Carpuat (Faculty Advisors to the Student Research Workshop), Charley
Chan (Publicity Chair), Christian Federmann (Conference Handbook Chair), Maryam Siahbani (Student
Volunteer Coordinator), and Nitin Madnani (Webmaster and Appmaster).

The organizers have been working for more than a year to put together the conference. Far more than
a year in advance, the ACL 2017 Coordinating Committee helped to select the venue and to pick the
General Chair and the Program Co-Chairs. This consisted of members from NAACL and ACL executive
boards. Representing NAACL we had Hal Daumé III, Michael White, Joel Tetreault, and Emily Bender.
Representing ACL we had Pushpak Bhattacharyya, Dragomir Radev, Graeme Hirst, Yejin Choi, and
Priscilla Rasmussen. I would like to extend a personal thanks to Graeme and Priscilla who often serve
as the ACL’s institutional memory, and who have helped fill in many details along the way.

I would like to extend a special thanks to our Program Co-Chairs, Regina Barzilay and Min-Yen Kan.
They documented their work creating the program by running a blog. They used their blog as a plat-
form for engaging the ACL community in many of the decision making processes including soliciting
suggestions for the conference’s area chairs and invited speakers. They hosted discussions with Marti
Hearst and Joakim Nivre about the value of publishing pre-prints of submitted paper on arXiv and how
they relate to double blind reviewing. They even invited several prominent members of our community
to provide last-minute writing advice. If you weren’t following the blog in the lead-up to the conference,
I highly recommend taking a look through it now. You can find it linked from the ACL 2017 web page.

This year’s program looks like it will be excellent! We owe a huge thank you to Regina Barzilay and Min-
Yen Kan. They selected this year’s papers from 1,318 submissions with the help of 44 area chairs and
more than 1,200 reviewers. Thanks to Regina, Min, the area chairs, the reviewers and the authors. Be-
yond the papers, we have talks by luminaries in the field of NLP, including ACL President Joakim Nivre,
invited speakers Mirella Lapata and Noah Smith, and the recipient of this year’s Lifetime Achievement
Award. We also have an excellent set of workshops and tutorials. On the tutorial day, there will also be a
special workshop on Women and Underrepresented Minorities in Natural Language Processing. Thank
you to our workshop organizers and tutorial presenters.

This year’s conference features two outreach activities that I would like to highlight. First, on Sunday,
July 30, 2017, there will be a workshop on Women and Underrepresented Minorities in Natural Lan-
guage Processing organized by Libby Barak, Isabelle Augenstein, Chloé Braud, He He, and Margaret
Mitchell. The goals of the workshop are to increase awareness of the work women and underrepresented

v

groups do, support women and underrepresented groups in continuing to pursue their research, and mo-
tivate long-term resources for underrepresented groups within ACL. Second, for the first time ever, ACL
is offering subsidized on-site childcare at the conference hotel. The goal of this is to allow ACL partic-
ipants with children to more readily be able to attend the conference. Since childcare duties often fall
disproportionately on women, our hope is that by having professional childcare on-site that we will allow
more women to participate, and therefore to help promote their careers. My hope is that the childcare
will be continued in future conferences.

I would like to thank our many sponsors for their generous contributions. Our platinum sponsors are Al-
ibaba, Amazon, Apple, Baidu, Bloomberg, Facebook, Google, Samsung and Tencent. Our gold sponsors
are eBay, Elsevier, IBM Research, KPMG, Maluuba, Microsoft, Naver Line, NEC, Recruit Institute of
Technology, and SAP. Our silver sponsors are Adobe, Bosch, CVTE, Duolingo, Huawei, Nuance, Oracle,
and Sogou. Our bronze sponsors are Grammarly, Toutiao, and Yandex. Our supporters include Newsela
and four professional master’s degree programs from Brandeis, Columbia, NYU and the University of
Washington. We would like to acknowledge the generous support of the National Science Foundation
which has awarded a $15,000 grant to the ACL Student Research Workshop. Finally, NVIDIA donated
several Titan X GPU cards for us to raffle off during the conference.

Lastly, I would like to thank everyone else who helped to make this conference a success. Thank you
to our area chairs, our army of reviewers, our workshop organizers, our tutorial presenters, our invited
speakers, and our authors. Best regards to all of you.

Welcome to ACL 2017!

Chris Callison-Burch
General Chair

vi

vii

Preface: Program Committee Co-Chairs

Welcome to the 55th Annual Meeting of the Association for Computational Linguistics! This year,
ACL received 751 long paper submissions and 567 short paper submissions1. Of the long papers, 195
were accepted for presentation at ACL — 117 as oral presentations and 78 as poster presentations (25%
acceptance rate). 107 short papers were accepted — 34 as oral and 73 as poster presentations (acceptance
rate of 18%). In addition, ACL will also feature 21 presentations of papers accepted in the Transactions
of the Association for Computational Linguistics (TACL). Including the student research workshop and
software demonstrations, the ACL program swells to a massive total of 367 paper presentations on the
scientific program, representing the largest ACL program to date.

ACL 2017 will have two distinguished invited speakers: Noah A. Smith (Associate Professor of Com-
puter Science and Engineering at the University of Washington) and Mirella Lapata (Professor in the
School of Informatics at the University of Edinburgh). Both are well-renowned for their contributions to
the field of computational linguistics and are excellent orators. We are honored that they have accepted
our invitation to address the membership at this exciting juncture in our field’s history, addressing key
issues in representation learning and multimodal machine translation.

To manage the tremendous growth of our field, we introduced some changes to the conference. With the
rotation of the annual meeting to the Americas, we anticipated a heavy load of submissions and early
on we decided to have both the long and short paper deadlines merged to reduce reviewing load and to
force authors to take a stand on their submissions’ format. The joint deadline allowed us to only load
our reviewers once, and also enabled us to have an extended period for more lengthy dialogue among
authors, reviewers and area chairs.

In addition, oral presentations were shortened to fourteen (twelve) minutes for long (short) papers, plus
time for questions. While this places a greater demand on speakers to be concise, we believe it is worth
the effort, allowing far more work to be presented orally. We also took advantage of the many halls
available and expanded the number of parallel talks to five during most of the conference sessions.

In keeping with changes introduced in the ACL community from last year, we continued the practice of
recognizing outstanding papers at ACL. The 22 outstanding papers (15 long, 7 short, 1.6% of submis-
sions) represent a broad spectrum of exciting contributions and have been specially placed on the final
day of the main conference where the program is focused into two parallel sessions of these outstanding
contributions. From these, a best paper and a best short paper those will be announced in the awards
session on Wednesday afternoon.

Chris has already mentioned our introduction of the chairs’ blog2, where we strove to make the selec-
tion process of the internal workings of the scientific committee more transparent. We have publicly
documented our calls for area chairs, reviewers and accepted papers selection process. Via the blog,
we communicated several innovations in the conference organization workflow, of which we would call
attention to two key ones here.

In the review process, we pioneered the use of the Toronto Paper Matching System, a topic model based
approach to the assignment of reviewers to papers. We hope this decision will spur other program
chairs to adopt the system, as increased coverage will better the reviewer/submission matching process,
ultimately leading to a higher quality program.

For posterity, we also introduced the usage of hyperlinks in the bibliography reference sections of papers,
1These numbers exclude papers that were not reviewed due to formatting, anonymity, or double submission violations or

that were withdrawn prior to review, which was unfortunately a substantial number.
2https://chairs-blog.acl2017.org/

viii

and have worked with the ACL Anthology to ensure that digital object identifiers (DOIs) appear in the
footer of each paper. These steps will help broaden the long-term impact of the work that our community
has on the scientific world at large.

There are many individuals we wish to thank for their contributions to ACL 2017, some multiple times:

• The 61 area chairs who volunteered for our extra duty. They recruited reviewers, led discussions
on each paper, replied to authors’ direct comments to them and carefully assessed each submission.
Their input was instrumental in guiding the final decisions on papers and selecting the outstanding
papers.

• Our full program committee of BUG hard-working individuals who reviewed the conference’s
1,318 submissions (including secondary reviewers).

• TACL editors-in-chief Mark Johnson, Lillian Lee, and Kristina Toutanova, for coordinating with
us on TACL presentations at ACL.

• Noah Smith and Katrin Erk, program co-chairs of ACL 2016 and Ani Nenkova and Owen Rambow,
program co-chairs of NAACL 2016, who we consulted several times on short order for help and
advice.

• Wei Lu and Sameer Singh, our well-organized publication chairs, with direction and oversight
from publication chair mentor Meg Mitchell. Also, Christian Federmann who helped with the
local handbook.

• The responsive team at Softconf led by Rich Gerber, who worked quickly to resolve problems and
who strove to integrate the use of the Toronto Paper Matching System (TPMS) for our use.

• Priscilla Rasmussen and Anoop Sarkar and the local organization team, especially webmaster Nitin
Madnani.

• Christopher Calliston-Burch, our general chair, who kept us coordinated with the rest of the ACL
2017 team and helped us free our time to concentrate on the key duty of organizing the scientific
program.

• Key-Sun Choi, Jing Jiang, Graham Neubig, Emily Pitler, and Bonnie Webber who carefully re-
viewed papers under consideration for best paper recognition.

• Our senior correspondents for the blog, who contributed guest posts and advice for writing and
reviewing: Waleed Ammar, Yoav Artzi, Tim Baldwin, Marco Baroni, Claire Cardie, Xavier Car-
reras, Hal Daumé, Kevin Duh, Chris Dyer, Marti Hearst, Mirella Lapata, Emily M. Bender, Au-
rélien Max, Kathy McKeown, Ray Mooney, Ani Nenkova, Joakim Nivre, Philip Resnik, and Joel
Tetreault. Without them, the participation of the community through the productive comments, and
without you the readership, our blog for disseminating information about the decision processes
would not have been possible and a success.

We hope that you enjoy ACL 2017 in Vancouver!

ACL 2017 program co-chairs
Regina Barzilay, Massachusetts Institute of Technology
Min-Yen Kan, National University of Singapore

ix

Organizing Committee

General Chair:

Chris Callison-Burch, University of Pennsylvania

Program Co-Chairs:

Regina Barzilay, Massachusetts Institute of Technology
Min-Yen Kan, National University of Singapore

Local Organizing Committee:

Priscilla Rasmussen, ACL
Anoop Sarkar, Simon Fraser University

Workshop Chairs:

Wei Xu, Ohio State University
Jonathan Berant, Tel Aviv University

Tutorial Chairs:

Maja Popović, Humboldt-Universität zu Berlin
Jordan Boyd-Graber, University of Colorado, Boulder

Publication Chairs:

Wei Lu, Singapore University of Technology and Design
Sameer Singh, University of California, Irvine
Margaret Mitchell, Google (Advisory)

Demonstration Chairs:

Heng Ji, Rensselaer Polytechnic Institute
Mohit Bansal, University of North Carolina, Chapel Hill

Student Research Workshop Organizers:

Spandana Gella, University of Edinburgh
Allyson Ettinger, University of Maryland, College Park
Matthieu Labeau, Laboratoire d’Informatique pour la Mécanique et les Sciences de l’Ingénieur
(LIMSI)

Faculty Advisors to the Student Research Workshop:

Cecilia Ovesdotter Alm, Rochester Institute of Technology
Mark Dredze, Johns Hopkins University
Marine Carpuat, University of Maryland, College Park

xi

Publicity Chair:

Charley Chan, Bloomberg

Conference Handbook Chair:

Christian Federmann, Microsoft

Student Volunteer Coordinator:

Maryam Siahbani, University of the Fraser Valley

Webmaster and Appmaster:

Nitin Madnani, Educational Testing Service

xii

Program Committee

Program Committee Co-Chairs

Regina Barzilay, Massachusetts Institute of Technology
Min-Yen Kan, National University of Singapore

Area Chairs

Mausam (Information Extraction and NLP Applications Area)
Omri Abend (Multilingual Area)
Eugene Agichtein (Information Extraction and NLP Applications Area)
Ron Artstein (Dialogue and Interactive Systems Area)
Alexandra Balahur (Sentiment Analysis and Opinion Mining Area)
Mohit Bansal (Vision, Robotics and Grounding Area)
Chia-Hui Chang (Information Extraction and NLP Applications Area)
Grzegorz Chrupała (Machine Learning Area)
Mona Diab (Multilingual Area)
Jason Eisner (Phonology, Morphology and Word Segmentation Area)
Manaal Faruqui (Semantics Area)
Raquel Fernandez (Dialogue and Interactive Systems Area)
Karën Fort (Multidisciplinary Area)
Amir Globerson (Machine Learning Area)
Hannaneh Hajishirzi (Semantics Area)
Chiori Hori (Speech Area)
Tommi Jaakkola (Machine Learning Area)
Yangfeng Ji (Discourse and Pragmatics Area)
Jing Jiang (Information Extraction and NLP Applications Area)
Sarvnaz Karimi (Information Extraction and NLP Applications Area)
Anna Korhonen (Semantics Area)
Zornitsa Kozareva (Information Extraction and NLP Applications Area)
Lun-Wei Ku (Sentiment Analysis and Opinion Mining Area)
Nate Kushman (Vision, Robotics and Grounding Area)
Chia-ying Lee (Speech Area)
Oliver Lemon (Dialogue and Interactive Systems Area)
Roger Levy (Cognitive Modeling and Psycholinguistics Area)
Sujian Li (Discourse and Pragmatics Area)
Wenjie Li (Summarization and Generation Area)
Kang Liu (Information Extraction and NLP Applications Area)
Tie-Yan Liu (Information Extraction and NLP Applications Area)
Yang Liu (Machine Translation Area)
Zhiyuan Liu (Social Media Area)
Minh-Thang Luong (Machine Translation Area)
Saif M Mohammad (Sentiment Analysis and Opinion Mining Area)
Alexander M Rush (Summarization and Generation Area)
Haitao Mi (Machine Translation Area)
Alessandro Moschitti (Information Extraction and NLP Applications Area)
Smaranda Muresan (Information Extraction and NLP Applications Area)
Preslav Nakov (Semantics Area)
Graham Neubig (Machine Translation Area)

xiii

Aurélie Névéol (Biomedical Area)
Shimei Pan (Social Media Area)
Michael Piotrowski (Multidisciplinary Area)
Emily Pitler (Tagging, Chunking, Syntax and Parsing Area)
Barbara Plank (Tagging, Chunking, Syntax and Parsing Area)
Sujith Ravi (Machine Learning Area)
Verena Rieser (Summarization and Generation Area)
Sophie Rosset (Resources and Evaluation Area)
Mehroosh Sadrzadeh (Semantics Area)
Hinrich Schütze (Phonology, Morphology and Word Segmentation Area)
Anders Søgaard (Cognitive Modeling and Psycholinguistics Area)
Karin Verspoor (Biomedical Area)
Aline Villavicencio (Semantics Area)
Svitlana Volkova (Social Media Area)
Bonnie Webber (Discourse and Pragmatics Area)
Deyi Xiong (Machine Translation Area)
William Yang Wang (Machine Learning Area)
Wajdi Zaghouani (Resources and Evaluation Area)
Yue Zhang (Tagging, Chunking, Syntax and Parsing Area)
Hai Zhao (Tagging, Chunking, Syntax and Parsing Area)

Primary Reviewers

Reviewers who are acknowledged by the program committee for providing one or more outstand-
ing reviews are marked with “*”.

Balamurali A R, Mourad Abbas, Omri Abend, Amjad Abu-Jbara, Gilles Adda, Heike Adel, Ster-
gos Afantenos, Apoorv Agarwal, Eneko Agirre, Željko Agić, Alan Akbik, Ahmet Aker, Mo-
hammed Alam, Hanan Aldarmaki, Enrique Alfonseca, Afra Alishahi, Laura Alonso Alemany,
David Alvarez-Melis, Maxime Amblard, Maryam Aminian, Silvio Amir, Waleed Ammar, Daniel
Andrade, Jacob Andreas∗, Nicholas Andrews∗, Ion Androutsopoulos, Galia Angelova, Jean-Yves
Antoine∗, Emilia Apostolova, Jun Araki, Yuki Arase, Lora Aroyo, Philip Arthur, Yoav Artzi∗,
Masayuki Asahara, Giuseppe Attardi, AiTi Aw, Ahmed Hassan Awadallah, Wilker Aziz

Collin Baker, Alexandra Balahur, Niranjan Balasubramanian, Timothy Baldwin, Tyler Baldwin,
Miguel Ballesteros, David Bamman, Rafael E. Banchs, Carmen Banea, Ritwik Banerjee, Srini-
vas Bangalore, Libby Barak, Alistair Baron, Marco Baroni, Alberto Barrón-Cedeño, Roberto
Basili, David Batista, Daniel Bauer, Timo Baumann, Daniel Beck, Srikanta Bedathur, Beata
Beigman Klebanov, Kedar Bellare, Charley Beller, Islam Beltagy, Anja Belz, Yassine Bena-
jiba, Fabrício Benevenuto, Luciana Benotti∗, Jonathan Berant, Taylor Berg-Kirkpatrick, Sabine
Bergler∗, Robert Berwick, Laurent Besacier, Steven Bethard, Archna Bhatia, Chris Biemann,
Joachim Bingel, Or Biran, Alexandra Birch, Arianna Bisazza, Yonatan Bisk, Prakhar Biyani,
Johannes Bjerva, Anders Björkelund, Philippe Blache, Frédéric Blain, Eduardo Blanco, Nate
Blaylock, Bernd Bohnet, Gemma Boleda, Danushka Bollegala, Claire Bonial, Francesca Bonin,
Kalina Bontcheva, Benjamin Börschinger, Johan Bos, Elizabeth Boschee, Florian Boudin, Fethi
Bougares, Samuel Bowman, Johan Boye, Kristy Boyer, Cem Bozsahin, David Bracewell, S.R.K.
Branavan, Pavel Braslavski, Adrian Brasoveanu, Ted Briscoe, Chris Brockett, Julian Brooke,
Elia Bruni, William Bryce, Marco Büchler, Christian Buck, Paul Buitelaar, Harry Bunt, Manuel
Burghardt, David Burkett, Hendrik Buschmeier, Miriam Butt

xiv

José G. C. de Souza, Deng Cai, Jose Camacho-Collados, Berkant Barla Cambazoglu, Erik Cam-
bria, Burcu Can, Marie Candito, Hailong Cao, Kris Cao∗, Yuan Cao, Ziqiang Cao, Cornelia
Caragea, Jesus Cardeńosa, Giuseppe Carenini, Marine Carpuat, Xavier Carreras, John Carroll,
Paula Carvalho, Francisco Casacuberta, Helena Caseli, Tommaso Caselli∗, Taylor Cassidy, Vitto-
rio Castelli, Giuseppe Castellucci, Asli Celikyilmaz∗, Daniel Cer, Özlem Çetinoğlu, Mauro Cet-
tolo, Arun Chaganty, Joyce Chai, Soumen Chakrabarti, Gaël de Chalendar, Yllias Chali, Nathanael
Chambers, Jane Chandlee, Muthu Kumar Chandrasekaran, Angel Chang∗, Baobao Chang, Kai-
Wei Chang, Ming-Wei Chang, Snigdha Chaturvedi, Wanxiang Che, Ciprian Chelba, Bin Chen,
Boxing Chen, Chen Chen, Hsin-Hsi Chen, John Chen, Kehai Chen, Kuang-hua Chen, Qingcai
Chen, Tao Chen, Wenliang Chen, Xinchi Chen, Yubo Chen, Yun-Nung Chen, Zhiyuan Chen,
Jianpeng Cheng, Colin Cherry, Sean Chester, Jackie Chi Kit Cheung∗, David Chiang, Jen-Tzung
Chien, Hai Leong Chieu, Laura Chiticariu, Eunsol Choi, Kostadin Cholakov, Shamil Chollampatt,
Jan Chorowski, Christos Christodoulopoulos, Tagyoung Chung, Kenneth Church, Mark Cieliebak∗,
Philipp Cimiano, Alina Maria Ciobanu∗, Alexander Clark∗, Jonathan Clark, Stephen Clark, Ann
Clifton, Maximin Coavoux, Kevin Cohen, Nigel Collier, Michael Collins, Sandra Collovini, Miriam
Connor, John Conroy∗, Matthieu Constant, Danish Contractor, Mark Core, Ryan Cotterell, Benoit
Crabbé, Danilo Croce∗, Fabien Cromieres, Montse Cuadros, Heriberto Cuayahuitl, Silviu-Petru
Cucerzan, Aron Culotta∗

Luis Fernando D’Haro, Giovanni Da San Martino, Walter Daelemans, Daniel Dahlmeier, Amitava
Das, Dipanjan Das, Rajarshi Das, Pradeep Dasigi, Johannes Daxenberger, Munmun De Choud-
hury, Eric De La Clergerie, Thierry Declerck, Luciano Del Corro, Louise Deléger, Felice Dell’Orletta,
Claudio Delli Bovi, Li Deng, Lingjia Deng, Pascal Denis, Michael Denkowski, Tejaswini Deoskar,
Leon Derczynski, Nina Dethlefs, Ann Devitt, Jacob Devlin, Lipika Dey, Barbara Di Eugenio,
Giuseppe Di Fabbrizio, Gaël Dias, Fernando Diaz, Georgiana Dinu, Liviu P. Dinu, Stefanie Dip-
per, Dmitriy Dligach, Simon Dobnik, Ellen Dodge, Jesse Dodge, Daxiang Dong, Li Dong, Doug
Downey, Gabriel Doyle, A. Seza Doğruöz, Eduard Dragut, Mark Dras∗, Markus Dreyer, Lan Du,
Nan Duan, Xiangyu Duan, Kevin Duh∗, Long Duong, Emmanuel Dupoux, Nadir Durrani, Greg
Durrett, Ondřej Dušek∗, Marc Dymetman

Judith Eckle-Kohler, Steffen Eger∗, Markus Egg, Koji Eguchi, Patrick Ehlen, Maud Ehrmann∗,
Vladimir Eidelman, Andreas Eisele, Jacob Eisenstein∗, Heba Elfardy, Michael Elhadad∗, Desmond
Elliott∗, Micha Elsner, Nikos Engonopoulos, Messina Enza, Katrin Erk, Arash Eshghi, Miquel
Esplà-Gomis

James Fan, Federico Fancellu, Licheng Fang, Benamara Farah, Stefano Faralli, Richárd Farkas,
Afsaneh Fazly, Geli Fei, Anna Feldman, Minwei Feng, Yansong Feng, Olivier Ferret, Oliver Fer-
schke, Simone Filice, Denis Filimonov, Katja Filippova∗, Andrew Finch, Nicolas Fiorini, Orhan
Firat∗, Radu Florian, Evandro Fonseca, Markus Forsberg, Eric Fosler-Lussier, George Foster,
James Foulds∗, Marc Franco-Salvador, Alexander Fraser, Dayne Freitag, Lea Frermann, An-
nemarie Friedrich, Piotr W. Fuglewicz, Akinori Fujino, Fumiyo Fukumoto, Robert Futrelle

Robert Gaizauskas, Olivier Galibert∗, Irina Galinskaya, Michel Galley∗, Michael Gamon, Kuz-
man Ganchev, Siva Reddy Gangireddy, Jianfeng Gao, Claire Gardent∗, Matt Gardner, Guillermo
Garrido, Justin Garten, Milica Gasic, Eric Gaussier, Tao Ge, Georgi Georgiev, Kallirroi Georgila,
Pablo Gervás∗, George Giannakopoulos, C Lee Giles, Kevin Gimpel∗, Maite Giménez∗, Roxana
Girju, Adrià de Gispert, Dimitra Gkatzia∗, Goran Glavaš, Amir Globerson, Yoav Goldberg, Dan
Goldwasser, Carlos Gómez-Rodríguez∗, Graciela Gonzalez, Edgar Gonzàlez Pellicer, Kyle Gor-
man, Matthew R. Gormley, Isao Goto, Cyril Goutte, Amit Goyal, Kartik Goyal, Pawan Goyal,
Joao Graca, Yvette Graham, Roger Granada, Stephan Greene, Jiatao Gu, Bruno Guillaume, Liane
Guillou, Curry Guinn, Hongyu Guo, James Gung, Jiang Guo, Weiwei Guo, Yufan Guo, Yuhong
Guo, Abhijeet Gupta, Rahul Gupta, Yoan Gutiérrez, Francisco Guzmán,

xv

Thanh-Le Ha, Christian Hadiwinoto, Gholamreza Haffari, Matthias Hagen, Udo Hahn, Jörg Hak-
enberg, Dilek Hakkani-Tur, Keith Hall, William L. Hamilton, Michael Hammond, Xianpei Han,
Sanda Harabagiu, Christian Hardmeier, Kazi Saidul Hasan, Sadid A. Hasan, Saša Hasan, Eva
Hasler, Hany Hassan, Helen Hastie, Claudia Hauff, He He∗, Hua He, Luheng He, Shizhu He,
Xiaodong He, Yulan He, Peter Heeman, Carmen Heger, Serge Heiden, Georg Heigold, Michael
Heilman, James Henderson, Matthew Henderson, Aron Henriksson, Aurélie Herbelot∗, Ulf Her-
mjakob, Daniel Hershcovich, Jack Hessel, Kristina Hettne, Felix Hieber, Ryuichiro Higashinaka,
Erhard Hinrichs, Tsutomu Hirao, Keikichi Hirose, Julian Hitschler, Cong Duy Vu Hoang, Julia
Hockenmaier, Kai Hong∗, Yu Hong, Ales Horak, Andrea Horbach, Takaaki Hori, Yufang Hou,
Julian Hough, Dirk Hovy∗, Eduard Hovy, Chun-Nan Hsu, Baotian Hu, Yuening Hu, Yuheng Hu,
Hen-Hsen Huang, Hongzhao Huang, Liang Huang, Lifu Huang, Minlie Huang, Ruihong Huang,
Songfang Huang, Xuanjing Huang, Yi-Ting Huang, Luwen Huangfu, Mans Hulden, Tim Hunter,
Seung-won Hwang

Ignacio Iacobacci, Nancy Ide, Marco Idiart, Gonzalo Iglesias, Ryu Iida, Kenji Imamura, Diana
Inkpen, Naoya Inoue, Hitoshi Isahara, Mohit Iyyer

Tommi Jaakkola, Cassandra L. Jacobs, Guillaume Jacquet, Evan Jaffe, Jagadeesh Jagarlamudi,
Siddharth Jain, Aren Jansen, Sujay Kumar Jauhar, Laura Jehl, Minwoo Jeong, Yacine Jernite,
Rahul Jha, Donghong Ji, Guoliang Ji, Sittichai Jiampojamarn, Hui Jiang, Antonio Jimeno Yepes,
Salud María Jiménez-Zafra, Richard Johansson, Kyle Johnson, Melvin Johnson Premkumar, Kris-
tiina Jokinen, Arne Jonsson, Aditya Joshi, Mahesh Joshi, Shafiq Joty, Dan Jurafsky∗, David Jur-
gens

Besim Kabashi, Ákos Kádár, Sylvain Kahane∗, Juliette Kahn, Herman Kamper, Jaap Kamps, Hi-
roshi Kanayama, Hung-Yu Kao, Justine Kao, Mladen Karan, Dimitri Kartsaklis, Arzoo Katiyar,
David Kauchak, Daisuke Kawahara, Anna Kazantseva, Hideto Kazawa, Andrew Kehler, Simon
Keizer, Frank Keller, Casey Kennington, Mitesh M. Khapra, Douwe Kiela, Halil Kilicoglu∗,
Jin-Dong Kim, Jooyeon Kim, Seokhwan Kim, Suin Kim, Yoon Kim, Young-Bum Kim, Irwin
King, Brian Kingsbury, Svetlana Kiritchenko, Dietrich Klakow, Alexandre Klementiev, Sigrid
Klerke, Roman Klinger, Julien Kloetzer, Simon Kocbek, Arne Köhn∗, Daniël de Kok, Prasanth
Kolachina, Varada Kolhatkar, Mamoru Komachi, Kazunori Komatani, Rik Koncel-Kedziorski,
Fang Kong, Lingpeng Kong, Ioannis Konstas∗, Selcuk Kopru, Valia Kordoni, Yannis Korkontze-
los, Bhushan Kotnis, Alexander Kotov, Mikhail Kozhevnikov, Martin Krallinger, Julia Kreutzer∗,
Jayant Krishnamurthy∗, Kriste Krstovski, Canasai Kruengkrai, Germán Kruszewski, Mark Kröll,
Lun-Wei Ku∗, Marco Kuhlmann, Jonas Kuhn, Roland Kuhn, Shankar Kumar, Jonathan K. Kum-
merfeld, Sadao Kurohashi, Polina Kuznetsova, Tom Kwiatkowski,

Igor Labutov, Wai Lam, Patrik Lambert, Man Lan, Ian Lane, Ni Lao, Mirella Lapata, Shalom
Lappin, Romain Laroche, Kornel Laskowski, Jey Han Lau, Alon Lavie, Angeliki Lazaridou, Phong
Le∗, Joseph Le Roux, Robert Leaman, Kenton Lee, Lung-Hao Lee, Moontae Lee, Sungjin Lee,
Yoong Keok Lee, Young-Suk Lee, Els Lefever, Tao Lei, Jochen L. Leidner, Alessandro Lenci,
Yves Lepage∗, Johannes Leveling, Tomer Levinboim, Gina-Anne Levow∗, Omer Levy∗, Roger
Levy, Dave Lewis, Mike Lewis, Binyang Li, Chen Li, Cheng-Te Li, Chenliang Li, Fangtao Li,
Haizhou Li, Hang Li, Jiwei Li, Junhui Li, Junyi Jessy Li, Lishuang Li, Peifeng Li, Peng Li, Qi Li,
Qing Li, Shaohua Li, Sheng Li, Shoushan Li, Xiaoli Li, Yanran Li, Yunyao Li, Zhenghua Li, Maria
Liakata∗, Kexin Liao∗, Xiangwen Liao, Chin-Yew Lin, Chu-Cheng Lin, Chuan-Jie Lin, Shou-de
Lin, Victoria Lin, Ziheng Lin, Wang Ling, Xiao Ling, Tal Linzen, Christina Lioma, Pierre Lison,
Marina Litvak, Bing Liu, Fei Liu, Hongfang Liu, Jiangming Liu, Lemao Liu, Qian Liu, Qun Liu,
Tie-Yan Liu, Ting Liu, Xiaobing Liu, Yang Liu, Nikola Ljubešić, Chi-kiu Lo, Henning Lobin,
Varvara Logacheva, Lucelene Lopes, Adam Lopez, Oier Lopez de Lacalle, Aurelio Lopez-Lopez,
Annie Louis, Bin Lu, Yi Luan, Andy Luecking, Michal Lukasik, Xiaoqiang Luo, Anh Tuan Luu

xvi

Ji Ma, Qingsong Ma, Shuming Ma, Xuezhe Ma, Wolfgang Macherey, Nitin Madnani, Saad Ma-
hamood, Cerstin Mahlow, Wolfgang Maier, Prodromos Malakasiotis, Andreas Maletti, Shervin
Malmasi, Titus von der Malsburg, Suresh Manandhar, Gideon Mann, Diego Marcheggiani, Daniel
Marcu, David Mareček, Matthew Marge, Benjamin Marie, Katja Markert, Marie-Catherine de
Marneffe, Erwin Marsi, Patricio Martinez-Barco, André F. T. Martins∗, Sebastian Martschat,
Héctor Martínez Alonso, Eugenio Martínez-Cámara∗, Fernando Martínez-Santiago, Yann Ma-
thet, Shigeki Matsubara, Yuichiroh Matsubayashi, Yuji Matsumoto, Takuya Matsuzaki, Austin
Matthews, Jonathan May, David McClosky, Tara McIntosh, Kathy McKeown, Michael McTear,
Yashar Mehdad, Sameep Mehta, Hongyuan Mei∗, Yelena Mejova, Oren Melamud, Fandong Meng,
Adam Meyers, Yishu Miao, Rada Mihalcea, Todor Mihaylov, Timothy Miller, Tristan Miller∗,
David Mimno, Bonan Min, Zhao-Yan Ming, Shachar Mirkin, Seyed Abolghasem Mirroshan-
del, Abhijit Mishra, Prasenjit Mitra, Makoto Miwa, Daichi Mochihashi, Ashutosh Modi, Marie-
Francine Moens, Samaneh Moghaddam, Abdelrahman Mohamed, Behrang Mohit, Mitra Mo-
htarami, Karo Moilanen, Luis Gerardo Mojica de la Vega, Manuel Montes, Andres Montoyo, Tae-
sun Moon, Michael Moortgat, Roser Morante, Hajime Morita, Lili Mou, Dana Movshovitz-Attias,
Arjun Mukherjee, Philippe Muller, Yugo Murawaki, Brian Murphy, Gabriel Murray∗, Reinhard
Muskens, Sung-Hyon Myaeng

Masaaki Nagata, Ajay Nagesh, Vinita Nahar, Iftekhar Naim, Tetsuji Nakagawa, Mikio Nakano,
Yukiko Nakano, Ndapandula Nakashole, Ramesh Nallapati, Courtney Napoles, Jason Naradowsky,
Karthik Narasimhan∗, Shashi Narayan, Alexis Nasr, Vivi Nastase, Borja Navarro, Roberto Navigli,
Adeline Nazarenko∗, Mark-Jan Nederhof, Arvind Neelakantan, Sapna Negi, Matteo Negri, Aida
Nematzadeh, Guenter Neumann, Mariana Neves, Denis Newman-Griffis, Dominick Ng, Hwee
Tou Ng, Jun-Ping Ng, Vincent Ng, Dong Nguyen∗, Thien Huu Nguyen, Truc-Vien T. Nguyen,
Viet-An Nguyen, Garrett Nicolai, Massimo Nicosia, Vlad Niculae∗, Jian-Yun Nie, Jan Niehues,
Luis Nieto Piña∗, Ivelina Nikolova, Malvina Nissim∗, Joakim Nivre∗, Hiroshi Noji, Gertjan van
Noord, Joel Nothman

Brendan O’Connor, Timothy O’Donnell, Yusuke Oda, Stephan Oepen, Kemal Oflazer∗, Alice Oh∗,
Jong-Hoon Oh, Tomoko Ohta, Kiyonori Ohtake, Hidekazu Oiwa, Naoaki Okazaki, Manabu Oku-
mura, Hiroshi G. Okuno, Constantin Orasan, Vicente Ordonez, Petya Osenova, Mari Ostendorf∗,
Myle Ott, Katja Ovchinnikova, Cecilia Ovesdotter Alm

Muntsa Padró, Valeria de Paiva, Alexis Palmer, Martha Palmer, Alessio Palmero Aprosio, Sinno
Jialin Pan∗, Xiaoman Pan, Denis Paperno, Ankur Parikh, Cecile Paris, Seong-Bae Park, Tommaso
Pasini, Marco Passarotti∗, Peyman Passban, Panupong Pasupat, Siddharth Patwardhan, Michael
J. Paul∗, Adam Pauls, Ellie Pavlick∗, Adam Pease, Pavel Pecina, Ted Pedersen, Nanyun Peng,
Xiaochang Peng, Gerald Penn, Marco Pennacchiotti, Bryan Perozzi, Casper Petersen, Slav Petrov,
Eva Pettersson, Anselmo Peñas, Hieu Pham, Nghia The Pham, Lawrence Phillips, Davide Picca,
Karl Pichotta, Olivier Pietquin, Mohammad Taher Pilehvar, Yuval Pinter, Paul Piwek, Thierry
Poibeau, Tamara Polajnar, Heather Pon-Barry, Simone Paolo Ponzetto, Andrei Popescu-Belis,
Maja Popović, Fred Popowich, François Portet∗, Matt Post∗, Christopher Potts, Vinodkumar Prab-
hakaran, Daniel Preoţiuc-Pietro, Emily Prud’hommeaux∗, Laurent Prévot, Jay Pujara, Matthew
Purver, James Pustejovsky

Juan Antonio Pérez-Ortiz, Ashequl Qadir, Peng Qi, Longhua Qian, Xian Qian, Lu Qin, Long
Qiu, Xipeng Qiu, Lizhen Qu, Ariadna Quattoni, Chris Quirk∗ Alexandre Rademaker, Will Rad-
ford, Alessandro Raganato, Afshin Rahimi∗, Altaf Rahman, Maya Ramanath, Rohan Ramanath,
A Ramanathan, Arti Ramesh, Gabriela Ramirez-de-la-Rosa, Carlos Ramisch, Anita Ramm, Vivek
Kumar Rangarajan Sridhar, Ari Rappoport, Mohammad Sadegh Rasooli, Pushpendre Rastogi, An-

xvii

toine Raux, Sravana Reddy, Ines Rehbein∗, Georg Rehm, Roi Reichart, Ehud Reiter, Zhaochun
Ren, Corentin Ribeyre, Matthew Richardson, Martin Riedl, Jason Riesa, German Rigau, Ellen
Riloff∗, Laura Rimell∗, Alan Ritter, Brian Roark∗, Molly Roberts, Tim Rocktäschel, Oleg Rokhlenko,
Salvatore Romeo, Andrew Rosenberg, Sara Rosenthal∗, Paolo Rosso, Benjamin Roth, Michael
Roth, Sascha Rothe, Masoud Rouhizadeh, Mickael Rouvier, Alla Rozovskaya, Josef Ruppenhofer,
Delia Rusu, Attapol Rutherford

Mrinmaya Sachan, Kugatsu Sadamitsu, Fatiha Sadat, Mehrnoosh Sadrzadeh, Markus Saers, Kenji
Sagae, Horacio Saggion, Saurav Sahay, Magnus Sahlgren, Patrick Saint-dizier, Hassan Sajjad,
Sakriani Sakti, Mohammad Salameh, Bahar Salehi, Avneesh Saluja, Rajhans Samdani, Mark
Sammons, Germán Sanchis-Trilles, Ryohei Sasano, Agata Savary∗, Asad Sayeed, Carolina Scar-
ton, Tatjana Scheffler, Christian Scheible, David Schlangen, Natalie Schluter, Allen Schmaltz∗,
Helmut Schmid, Alexandra Schofield, William Schuler, Sebastian Schuster, Lane Schwartz, Roy
Schwartz∗, Christof Schöch, Diarmuid Ó Séaghdha, Djamé Seddah, Abigail See, Nina Seemann,
Satoshi Sekine, Mark Seligman, Minjoon Seo, Burr Settles, Lei Sha, Kashif Shah, Rebecca Sharp,
Shiqi Shen, Shuming Shi, Hiroyuki Shindo, Koichi Shinoda, Chaitanya Shivade, Eyal Shnarch∗,
Milad Shokouhi, Ekaterina Shutova, Advaith Siddharthan, Avirup Sil, Carina Silberer, Yanchuan
Sim, Patrick Simianer, Kiril Simov, Kairit Sirts, Amy Siu, Gabriel Skantze, Kevin Small, Noah
A. Smith, Pavel Smrz, Richard Socher, Artem Sokolov, Thamar Solorio, Swapna Somasundaran,
Hyun-Je Song, Min Song, Sa-kwang Song, Yang Song, Yangqiu Song, Radu Soricut, Aitor Soroa,
Matthias Sperber, Caroline Sporleder, Vivek Srikumar, Somayajulu Sripada, Shashank Srivastava,
Edward Stabler, Jan Šnajder∗, Sanja Štajner, Gabriel Stanovsky∗, Manfred Stede, Mark Steed-
man, Josef Steinberger, Amanda Stent, Mark Stevenson, Brandon Stewart, Matthew Stone, Svet-
lana Stoyanchev, Veselin Stoyanov, Carlo Strapparava, Karl Stratos, Kristina Striegnitz∗, Emma
Strubell, Tomek Strzalkowski, Sara Stymne, Maik Stührenberg, Jinsong Su, Keh-Yih Su, Yu Su,
L V Subramaniam, Katsuhito Sudoh, Ang Sun, Huan Sun, Le Sun, Weiwei Sun, Xu Sun, Simon
Suster, Hisami Suzuki, Jun Suzuki, Yoshimi Suzuki, Swabha Swayamdipta, Stan Szpakowicz, Idan
Szpektor, Felipe Sánchez-Martínez, Pascale Sébillot, Anders Søgaard

Prasad Tadepalli, Kaveh Taghipour, Hiroya Takamura, David Talbot, Partha Talukdar, Aleš Tam-
chyna, Akihiro Tamura, Chenhao Tan∗, Liling Tan, Niket Tandon, Duyu Tang, Jiliang Tang,
Christoph Teichmann, Serra Sinem Tekiroglu, Irina Temnikova, Joel Tetreault, Kapil Thadani∗,
Sam Thomson, Jörg Tiedemann, Ivan Titov, Katrin Tomanek, Gaurav Singh Tomar, Marc Tom-
linson, Sara Tonelli, Antonio Toral, Kentaro Torisawa, Ke M. Tran, Isabel Trancoso, Ming-Feng
Tsai, Richard Tzong-Han Tsai, Reut Tsarfaty∗, Oren Tsur, Yoshimasa Tsuruoka, Yulia Tsvetkov,
Cunchao Tu, Zhaopeng Tu, Gokhan Tur, Marco Turchi, Ferhan Ture, Oscar Täckström

Raghavendra Udupa, Stefan Ultes, Lyle Ungar, Shyam Upadhyay, L. Alfonso Urena Lopez, Olga
Uryupina

Alessandro Valitutti∗, Benjamin Van Durme∗, Tim Van de Cruys, Lucy Vanderwende∗, Vasudeva
Varma, Paola Velardi, Sumithra Velupillai, Sriram Venkatapathy, Yannick Versley, Tim Vieira,
David Vilar, Martín Villalba∗, Veronika Vincze, Sami Virpioja∗, Andreas Vlachos, Rob Voigt,
Ngoc Thang Vu, Ivan Vulić, Yogarshi Vyas, V.G.Vinod Vydiswaran, Ekaterina Vylomova

Houfeng Wang, Henning Wachsmuth, Joachim Wagner, Matthew Walter∗, Stephen Wan, Xiaojun
Wan, Baoxun Wang, Chang Wang, Chong Wang, Dingquan Wang, Hongning Wang, Lu Wang,
Mingxuan Wang, Pidong Wang, Rui Wang, Shaojun Wang, Tong Wang, Yu-Chun Wang, Wei
Wang, Wenya Wang, William Yang Wang, Xiaolin Wang, Xiaolong Wang, Yiou Wang, Zhiguo
Wang, Zhongqing Wang∗, Leo Wanner, Nigel Ward, Shinji Watanabe, Taro Watanabe, Aleksander
Wawer, Bonnie Webber, Ingmar Weber, Julie Weeds, Furu Wei, Zhongyu Wei, Gerhard Weikum,
David Weir, Michael White, Antoine Widlöcher, Michael Wiegand∗, Jason D Williams∗, Shuly
Wintner, Sam Wiseman, Michael Witbrock, Silke Witt-Ehsani, Travis Wolfe, Kam-Fai Wong, Jian
Wu, Yuanbin Wu, Joern Wuebker

xviii

Aris Xanthos, Rui Xia, Yunqing Xia, Bing Xiang, Min Xiao, Tong Xiao, Xinyan Xiao, Boyi Xie,
Pengtao Xie, Shasha Xie, Chenyan Xiong, Feiyu Xu, Hua Xu, Ruifeng Xu, Wei Xu, Wenduan Xu,
Huichao Xue, Nianwen Xue

Yadollah Yaghoobzadeh, Ichiro Yamada, Bishan Yang, Cheng Yang, Diyi Yang, Grace Hui Yang,
Min Yang, Yaqin Yang, Yi Yang, Roman Yangarber, Mark Yatskar, Meliha Yetisgen, Wen-tau Yih,
Pengcheng Yin, Wenpeng Yin, Anssi Yli-Jyrä, Dani Yogatama, Naoki Yoshinaga, Bei Yu, Dian
Yu, Dianhai Yu, Kai Yu, Liang-Chih Yu, Mo Yu, Zhou Yu, François Yvon

Marcos Zampieri, Menno van Zaanen, Fabio Massimo Zanzotto, Amir Zeldes∗, Daojian Zeng,
Xiaodong Zeng, Kalliopi Zervanou∗, Luke Zettlemoyer, Deniz Zeyrek, Feifei Zhai, Congle Zhang,
Dongdong Zhang, Guchun Zhang, Jiajun Zhang, Jian Zhang, Jianwen Zhang, Lei Zhang, Meishan
Zhang, Min Zhang, Qi Zhang, Renxian Zhang, Sicong Zhang, Wei Zhang∗, Zhisong Zhang, Bing
Zhao, Dongyan Zhao, Jun Zhao, Shiqi Zhao, Tiejun Zhao, Wayne Xin Zhao, Alisa Zhila, Guodong
Zhou, Xinjie Zhou, Muhua Zhu, Xiaodan Zhu, Xiaoning Zhu, Ayah Zirikly, Chengqing Zong,
Bowei Zou

Secondary Reviewers

Naveed Afzal, Yamen Ajjour

Jeremy Barnes, Joost Bastings, Joachim Bingel, Luana Bulat

Iacer Calixto, Lea Canales, Kai Chen, Tongfei Chen, Hao Cheng, Jianpeng Cheng, Yiming Cui

Marco Damonte, Saman Daneshvar, Tobias Domhan, Daxiang Dong, Li Dong

Mohamed Eldesouki

Stefano Faralli, Bin Fu

Srinivasa P. Gadde, Qiaozi Gao, Luca Gilardi, Sujatha Das Gollapalli, J. Manuel Gomez, Stig-Arne
Grönroos, Lin Gui

Casper Hansen, Lihong He, Martin Horn

Oana Inel

Gongye Jin

Roman Kern, Vaibhav Kesarwani, Joo-Kyung Kim, Seongchan Kim, Christine Köhn, Santosh
Kosgi

Ronja Laarmann-Quante, Egoitz Laparra, Anais Lefeuvre-Halftermeyer, Guanlin Li, Jing Li, Min-
glei Li, Xiang Li, Xiaolong Li, Chen Liang, Ming Liao, Sijia Liu, Pranay Lohia

Chunpeng Ma, Shuming Ma, Tengfei Ma, Ana Marasovic

Toan Nguyen, Eric Nichols, Sergiu Nisioi

Gözde Özbal

Alexis Palmer, Suraj Pandey, Nikolaos Pappas, José M. Perea-Ortega, Marten Postma

Longhua Qian

Masoud Rouhizadeh Abeed Sarker, Andrew Schneider, Roxane Segers, Pararth Shah, Samiulla
Shaikh, Xing Shi, Tomohide Shibata, Samiulla Shiekh, Miikka Silfverberg

Bo Wang∗, Boli Wang, Jianxiang Wang, Jingjing Wang, Rui Wang, Shuai Wang, Shuting Wang,
Tsung-Hsien Wen, John Wieting

Nan Yang, Yi Yang, Mark Yatskar, Yichun Yin

Sheng Zhang, Kai Zhao, Imed Zitouni

xix

Outstanding Papers

With twin upward trends in the interest in computational linguistics and natural language processing
and the size of our annual meeting, ACL has begun the practice of recognizing outstanding papers that
represent a select cross-section of the entire field, as nominated by reviewers and vetted by the area chairs
and program co-chairs. These papers have been centrally located in the program, on the last day of our
meeting, in a more focused two parallel tracks format.

This year, we have nominated 15 long papers and 7 short papers, representing 1.8% of all submissions
and approximately 5% of the accepted ACL program. Congratulations, authors!

(in alphabetical order by first author surname)

Long Papers

• Jan Buys and Phil Blunsom. Robust Incremental Neural Semantic Graph Parsing.

• Xinchi Chen, Zhan Shi, Xipeng Qiu and Xuanjing Huang. Adversarial Multi-Criteria Learn-
ing for Chinese Word Segmentation.

• Ryan Cotterell and Jason Eisner. Probabilistic Typology: Deep Generative Models of Vowel
Inventories.

• Yanzhuo Ding, Yang Liu, Huanbo Luan and Maosong Sun. Visualizing and Understanding
Neural Machine Translation.

• Milan Gritta, Mohammad Taher Pilehvar, Nut Limsopatham and Nigel Collier. Vancouver
Welcomes You! Minimalist Location Metonymy Resolution.

• Daniel Hershcovich, Omri Abend and Ari Rappoport. A Transition-Based Directed Acyclic
Graph Parser for UCCA.

• Shuhei Kurita, Daisuke Kawahara and Sadao Kurohashi. Neural Joint Model for Transition-
based Chinese Syntactic Analysis.

• Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua
Bengio and Joelle Pineau. Towards an Automatic Turing Test: Learning to Evaluate Dialogue
Responses.

• Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi and Tomoko Ohkuma. Unifying Text,
Metadata, and User Network Representations with a Neural Network for Geolocation Pre-
diction.

• Ramakanth Pasunuru and Mohit Bansal. Multi-Task Video Captioning with Visual and En-
tailment Generation.

• Maxim Rabinovich, Mitchell Stern and Dan Klein. Abstract Syntax Networks for Code Gen-
eration and Semantic Parsing.

• Ines Rehbein and Josef Ruppenhofer. Detecting annotation noise in automatically labelled
data.

• Jiwei Tan, Xiaojun Wan and Jianguo Xiao. Abstractive Document Summarization with a
Graph-Based Attentional Neural Model.

• Mingbin Xu, Hui Jiang and Sedtawut Watcharawittayakul. A Local Detection Approach for
Named Entity Recognition and Mention Detection.

• Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou and Bo Xu. Joint
Extraction of Entities and Relations Based on a Novel Tagging Scheme.

xx

Short Papers

• Xinyu Hua and Lu Wang. Understanding and Detecting Diverse Supporting Arguments on
Controversial Issues.

• Jindřich Libovický and Jindřich Helcl. Attention Strategies for Multi-Source Sequence-to-
Sequence Learning.

• Bogdan Ludusan, Reiko Mazuka, Mathieu Bernard, Alejandrina Cristia and Emmanuel Dupoux.
The Role of Prosody and Speech Register in Word Segmentation: A Computational Modelling
Perspective.

• Afshin Rahimi, Trevor Cohn and Timothy Baldwin. A Neural Model for User Geolocation
and Lexical Dialectology.

• Keisuke Sakaguchi, Matt Post and Benjamin Van Durme. Error-repair Dependency Parsing
for Ungrammatical Texts.

• Alane Suhr, Mike Lewis, James Yeh and Yoav Artzi. A Corpus of Compositional Language
for Visual Reasoning.

• Yizhong Wang, Sujian Li and Houfeng Wang. A Two-stage Parsing Method for Text-level
Discourse Analysis.

xxi

Invited Talk: Squashing Computational Linguistics

Noah A. Smith

Paul G. Allen School of Computer Science and Engineering, University of Washington

Abstract

The computational linguistics and natural language processing community is experiencing an
episode of deep fascination with representation learning. Like many other presenters at this con-
ference, I will describe new ways to use representation learning in models of natural language.
Noting that a data-driven model always assumes a theory (not necessarily a good one), I will argue
for the benefits of language-appropriate inductive bias for representation-learning-infused models
of language. Such bias often comes in the form of assumptions baked into a model, constraints on
an inference algorithm, or linguistic analysis applied to data. Indeed, many decades of research in
linguistics (including computational linguistics) put our community in a strong position to iden-
tify promising inductive biases. The new models, in turn, may allow us to explore previously
unavailable forms of bias, and to produce findings of interest to linguistics. I will focus on new
models of documents and of sentential semantic structures, and I will emphasize abstract, reusable
components and their assumptions rather than applications.

Biography

Noah Smith is an Associate Professor in the Paul G. Allen School of Computer Science and Engi-
neering at the University of Washington. Previously, he was an Associate Professor in the School
of Computer Science at Carnegie Mellon University. He received his Ph.D. in Computer Science
from Johns Hopkins University and his B.S. in Computer Science and B.A. in Linguistics from the
University of Maryland. His research spans many topics in natural language processing, machine
learning, and computational social science. He has served on the editorial boards of CL, JAIR,
and TACL, as the secretary-treasurer of SIGDAT (2012–2015), and as program co-chair of ACL
2016. Alumni of his research group, Noah’s ARK, are international leaders in NLP in academia
and industry. Smith’s work has been recognized with a UW Innovation award, a Finmeccanica
career development chair at CMU, an NSF CAREER award, a Hertz Foundation graduate fellow-
ship, numerous best paper nominations and awards, and coverage by NPR, BBC, CBC, the New
York Times, the Washington Post, and Time.

xxii

Invited Talk: Translating from Multiple Modalities to Text and Back

Mirella Lapata

Professor, School of Informatics, University of Edinburgh

Abstract

Recent years have witnessed the development of a wide range of computational tools that process
and generate natural language text. Many of these have become familiar to mainstream computer
users in the from of web search, question answering, sentiment analysis, and notably machine
translation. The accessibility of the web could be further enhanced with applications that not only
translate between different languages (e.g., from English to French) but also within the same lan-
guage, between different modalities, or different data formats. The web is rife with non-linguistic
data (e.g., video, images, source code) that cannot be indexed or searched since most retrieval tools
operate over textual data.

In this talk I will argue that in order to render electronic data more accessible to individuals and
computers alike, new types of translation models need to be developed. I will focus on three
examples, text simplification, source code generation, and movie summarization. I will illustrate
how recent advances in deep learning can be extended in order to induce general representations
for different modalities and learn how to translate between these and natural language.

Biography

Mirella Lapata is professor of natural language processing in the School of Informatics at the
University of Edinburgh. Her research focuses on getting computers to understand, reason with,
and generate. She is as an associate editor of the Journal of Artificial Intelligence Research and has
served on the editorial boards of Transactions of the ACL and Computational Linguistics. She was
the first recipient of the Karen Sparck Jones award of the British Computer Society, recognizing
key contributions to NLP and information retrieval. She received two EMNLP best paper awards
and currently holds a prestigious Consolidator Grant from the European Research Council.

xxiii

Table of Contents

Adversarial Multi-task Learning for Text Classification
Pengfei Liu, Xipeng Qiu and Xuanjing Huang . 1

Neural End-to-End Learning for Computational Argumentation Mining
Steffen Eger, Johannes Daxenberger and Iryna Gurevych . 11

Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak Supervision
Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus and Ni Lao . 23

Neural Relation Extraction with Multi-lingual Attention
Yankai Lin, Zhiyuan Liu and Maosong Sun. .34

Learning Structured Natural Language Representations for Semantic Parsing
Jianpeng Cheng, Siva Reddy, Vijay Saraswat and Mirella Lapata . 44

Morph-fitting: Fine-Tuning Word Vector Spaces with Simple Language-Specific Rules
Ivan Vulić, Nikola Mrkšić, Roi Reichart, Diarmuid Ó Séaghdha, Steve Young and Anna Korhonen

56

Skip-Gram - Zipf + Uniform = Vector Additivity
Alex Gittens, Dimitris Achlioptas and Michael W. Mahoney . 69

The State of the Art in Semantic Representation
Omri Abend and Ari Rappoport . 77

Joint Learning for Event Coreference Resolution
Jing Lu and Vincent Ng . 90

Generating and Exploiting Large-scale Pseudo Training Data for Zero Pronoun Resolution
Ting Liu, Yiming Cui, Qingyu Yin, Wei-Nan Zhang, Shijin Wang and Guoping Hu.102

Discourse Mode Identification in Essays
Wei Song, Dong Wang, Ruiji Fu, Lizhen Liu, Ting Liu and Guoping Hu . 112

A Convolutional Encoder Model for Neural Machine Translation
Jonas Gehring, Michael Auli, David Grangier and Yann Dauphin . 123

Deep Neural Machine Translation with Linear Associative Unit
Mingxuan Wang, Zhengdong Lu, Jie Zhou and Qun Liu . 136

Neural AMR: Sequence-to-Sequence Models for Parsing and Generation
Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi and Luke Zettlemoyer146

Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems
Wang Ling, Dani Yogatama, Chris Dyer and Phil Blunsom. .158

Automatically Generating Rhythmic Verse with Neural Networks
Jack Hopkins and Douwe Kiela . 168

Creating Training Corpora for NLG Micro-Planners
Claire Gardent, Anastasia Shimorina, Shashi Narayan and Laura Perez-Beltrachini 179

xxv

Gated Self-Matching Networks for Reading Comprehension and Question Answering
Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang and Ming Zhou . 189

Generating Natural Answers by Incorporating Copying and Retrieving Mechanisms in Sequence-to-
Sequence Learning

Shizhu He, Cao Liu, Kang Liu and Jun Zhao . 199

Coarse-to-Fine Question Answering for Long Documents
Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia Polosukhin, Alexandre Lacoste and Jonathan

Berant .209

An End-to-End Model for Question Answering over Knowledge Base with Cross-Attention Combining
Global Knowledge

Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu and Jun Zhao 221

Translating Neuralese
Jacob Andreas, Anca Dragan and Dan Klein .232

Obtaining referential word meanings from visual and distributional information: Experiments on object
naming

Sina Zarrieß and David Schlangen . 243

FOIL it! Find One mismatch between Image and Language caption
Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Aurélie Herbelot, Moin Nabi, Enver Sangineto

and Raffaella Bernardi . 255

Verb Physics: Relative Physical Knowledge of Actions and Objects
Maxwell Forbes and Yejin Choi . 266

A* CCG Parsing with a Supertag and Dependency Factored Model
Masashi Yoshikawa, Hiroshi Noji and Yuji Matsumoto . 277

A Full Non-Monotonic Transition System for Unrestricted Non-Projective Parsing
Daniel Fernández-González and Carlos Gómez-Rodríguez . 288

Aggregating and Predicting Sequence Labels from Crowd Annotations
An Thanh Nguyen, Byron Wallace, Junyi Jessy Li, Ani Nenkova and Matthew Lease 299

Multi-space Variational Encoder-Decoders for Semi-supervised Labeled Sequence Transduction
Chunting Zhou and Graham Neubig . 310

Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan, Chunyuan Li, Changyou Chen, Yunchen Pu, Qinliang Su and Lawrence Carin 321

Learning attention for historical text normalization by learning to pronounce
Marcel Bollmann, Joachim Bingel and Anders Søgaard . 332

Deep Learning in Semantic Kernel Spaces
Danilo Croce, Simone Filice, Giuseppe Castellucci and Roberto Basili . 345

Topically Driven Neural Language Model
Jey Han Lau, Timothy Baldwin and Trevor Cohn . 355

Handling Cold-Start Problem in Review Spam Detection by Jointly Embedding Texts and Behaviors
Xuepeng Wang, Kang Liu and Jun Zhao . 366

xxvi

Learning Cognitive Features from Gaze Data for Sentiment and Sarcasm Classification using Convolu-
tional Neural Network

Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya . 377

An Unsupervised Neural Attention Model for Aspect Extraction
Ruidan He, Wee Sun Lee, Hwee Tou Ng and Daniel Dahlmeier . 388

Other Topics You May Also Agree or Disagree: Modeling Inter-Topic Preferences using Tweets and
Matrix Factorization

Akira Sasaki, Kazuaki Hanawa, Naoaki Okazaki and Kentaro Inui . 398

Automatically Labeled Data Generation for Large Scale Event Extraction
Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu and Jun Zhao . 409

Time Expression Analysis and Recognition Using Syntactic Token Types and General Heuristic Rules
Xiaoshi Zhong, Aixin Sun and Erik Cambria . 420

Learning with Noise: Enhance Distantly Supervised Relation Extraction with Dynamic Transition Matrix
Bingfeng Luo, Yansong Feng, Zheng Wang, Zhanxing Zhu, Songfang Huang, Rui Yan and Dongyan

Zhao . 430

A Syntactic Neural Model for General-Purpose Code Generation
Pengcheng Yin and Graham Neubig . 440

Learning bilingual word embeddings with (almost) no bilingual data
Mikel Artetxe, Gorka Labaka and Eneko Agirre . 451

Abstract Meaning Representation Parsing using LSTM Recurrent Neural Networks
William Foland and James H. Martin . 463

Deep Semantic Role Labeling: What Works and What’s Next
Luheng He, Kenton Lee, Mike Lewis and Luke Zettlemoyer . 473

Towards End-to-End Reinforcement Learning of Dialogue Agents for Information Access
Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal Ahmed and Li Deng

484

Sequential Matching Network: A New Architecture for Multi-turn Response Selection in Retrieval-Based
Chatbots

Yu Wu, Wei Wu, Chen Xing, Ming Zhou and Zhoujun Li . 496

Learning Word-Like Units from Joint Audio-Visual Analysis
David Harwath and James Glass . 506

Joint CTC/attention decoding for end-to-end speech recognition
Takaaki Hori, Shinji Watanabe and John Hershey . 518

Found in Translation: Reconstructing Phylogenetic Language Trees from Translations
Ella Rabinovich, Noam Ordan and Shuly Wintner . 530

Predicting Native Language from Gaze
Yevgeni Berzak, Chie Nakamura, Suzanne Flynn and Boris Katz . 541

MORSE: Semantic-ally Drive-n MORpheme SEgment-er
Tarek Sakakini, Suma Bhat and Pramod Viswanath . 552

xxvii

Deep Pyramid Convolutional Neural Networks for Text Categorization
Rie Johnson and Tong Zhang . 562

Improved Neural Relation Detection for Knowledge Base Question Answering
Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos Santos, Bing Xiang and Bowen Zhou . . . 571

Deep Keyphrase Generation
Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He, Peter Brusilovsky and Yu Chi 582

Attention-over-Attention Neural Networks for Reading Comprehension
Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu and Guoping Hu 593

Alignment at Work: Using Language to Distinguish the Internalization and Self-Regulation Components
of Cultural Fit in Organizations

Gabriel Doyle, Amir Goldberg, Sameer Srivastava and Michael Frank . 603

Representations of language in a model of visually grounded speech signal
Grzegorz Chrupała, Lieke Gelderloos and Afra Alishahi . 613

Spectral Analysis of Information Density in Dialogue Predicts Collaborative Task Performance
Yang Xu and David Reitter . 623

Affect-LM: A Neural Language Model for Customizable Affective Text Generation
Sayan Ghosh, Mathieu Chollet, Eugene Laksana, Louis-Philippe Morency and Stefan Scherer . 634

Domain Attention with an Ensemble of Experts
Young-Bum Kim, Karl Stratos and Dongchan Kim . 643

Learning Discourse-level Diversity for Neural Dialog Models using Conditional Variational Autoen-
coders

Tiancheng Zhao, Ran Zhao and Maxine Eskenazi . 654

Hybrid Code Networks: practical and efficient end-to-end dialog control with supervised and reinforce-
ment learning

Jason D Williams, Kavosh Asadi and Geoffrey Zweig . 665

Generating Contrastive Referring Expressions
Martin Villalba, Christoph Teichmann and Alexander Koller . 678

Modeling Source Syntax for Neural Machine Translation
Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min Zhang and Guodong Zhou 688

Sequence-to-Dependency Neural Machine Translation
Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li and Ming Zhou . 698

Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning
Jing Ma, Wei Gao and Kam-Fai Wong . 708

EmoNet: Fine-Grained Emotion Detection with Gated Recurrent Neural Networks
Muhammad Abdul-Mageed and Lyle Ungar . 718

Beyond Binary Labels: Political Ideology Prediction of Twitter Users
Daniel Preoţiuc-Pietro, Ye Liu, Daniel Hopkins and Lyle Ungar . 729

xxviii

Leveraging Behavioral and Social Information for Weakly Supervised Collective Classification of Politi-
cal Discourse on Twitter

Kristen Johnson, Di Jin and Dan Goldwasser . 741

A Nested Attention Neural Hybrid Model for Grammatical Error Correction
Jianshu Ji, Qinlong Wang, Kristina Toutanova, Yongen Gong, Steven Truong and Jianfeng Gao753

TextFlow: A Text Similarity Measure based on Continuous Sequences
Yassine Mrabet, Halil Kilicoglu and Dina Demner-Fushman . 763

Friendships, Rivalries, and Trysts: Characterizing Relations between Ideas in Texts
Chenhao Tan, Dallas Card and Noah A. Smith . 773

Polish evaluation dataset for compositional distributional semantics models
Alina Wróblewska and Katarzyna Krasnowska-Kieraś . 784

Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction
Christopher Bryant, Mariano Felice and Ted Briscoe . 793

Evaluation Metrics for Machine Reading Comprehension: Prerequisite Skills and Readability
Saku Sugawara, Yusuke Kido, Hikaru Yokono and Akiko Aizawa . 806

A Minimal Span-Based Neural Constituency Parser
Mitchell Stern, Jacob Andreas and Dan Klein. .818

Semantic Dependency Parsing via Book Embedding
Weiwei Sun, Junjie Cao and Xiaojun Wan . 828

Neural Word Segmentation with Rich Pretraining
Jie Yang, Yue Zhang and Fei Dong . 839

Neural Machine Translation via Binary Code Prediction
Yusuke Oda, Philip Arthur, Graham Neubig, Koichiro Yoshino and Satoshi Nakamura 850

What do Neural Machine Translation Models Learn about Morphology?
Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad and James Glass 861

Context-Dependent Sentiment Analysis in User-Generated Videos
Soujanya Poria, Erik Cambria, Devamanyu Hazarika, Navonil Majumder, Amir Zadeh and Louis-

Philippe Morency . 873

A Multidimensional Lexicon for Interpersonal Stancetaking
Umashanthi Pavalanathan, Jim Fitzpatrick, Scott Kiesling and Jacob Eisenstein 884

Tandem Anchoring: a Multiword Anchor Approach for Interactive Topic Modeling
Jeffrey Lund, Connor Cook, Kevin Seppi and Jordan Boyd-Graber .896

Apples to Apples: Learning Semantics of Common Entities Through a Novel Comprehension Task
Omid Bakhshandeh and James Allen . 906

Going out on a limb: Joint Extraction of Entity Mentions and Relations without Dependency Trees
Arzoo Katiyar and Claire Cardie . 917

Naturalizing a Programming Language via Interactive Learning
Sida I. Wang, Samuel Ginn, Percy Liang and Christopher D. Manning . 929

xxix

Semantic Word Clusters Using Signed Spectral Clustering
Joao Sedoc, Jean Gallier, Dean Foster and Lyle Ungar . 939

An Interpretable Knowledge Transfer Model for Knowledge Base Completion
Qizhe Xie, Xuezhe Ma, Zihang Dai and Eduard Hovy . 950

Learning a Neural Semantic Parser from User Feedback
Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy and Luke Zettlemoyer . 963

Joint Modeling of Content and Discourse Relations in Dialogues
Kechen Qin, Lu Wang and Joseph Kim . 974

Argument Mining with Structured SVMs and RNNs
Vlad Niculae, Joonsuk Park and Claire Cardie . 985

Neural Discourse Structure for Text Categorization
Yangfeng Ji and Noah A. Smith . 996

Adversarial Connective-exploiting Networks for Implicit Discourse Relation Classification
Lianhui Qin, Zhisong Zhang, Hai Zhao, Zhiting Hu and Eric Xing . 1006

Don’t understand a measure? Learn it: Structured Prediction for Coreference Resolution optimizing its
measures

Iryna Haponchyk and Alessandro Moschitti . 1018

Bayesian Modeling of Lexical Resources for Low-Resource Settings
Nicholas Andrews, Mark Dredze, Benjamin Van Durme and Jason Eisner 1029

Semi-Supervised QA with Generative Domain-Adaptive Nets
Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov and William Cohen . 1040

From Language to Programs: Bridging Reinforcement Learning and Maximum Marginal Likelihood
Kelvin Guu, Panupong Pasupat, Evan Liu and Percy Liang . 1051

Diversity driven attention model for query-based abstractive summarization
Preksha Nema, Mitesh M. Khapra, Anirban Laha and Balaraman Ravindran 1063

Get To The Point: Summarization with Pointer-Generator Networks
Abigail See, Peter J. Liu and Christopher D. Manning . 1073

Supervised Learning of Automatic Pyramid for Optimization-Based Multi-Document Summarization
Maxime Peyrard and Judith Eckle-Kohler . 1084

Selective Encoding for Abstractive Sentence Summarization
Qingyu Zhou, Nan Yang, Furu Wei and Ming Zhou . 1095

PositionRank: An Unsupervised Approach to Keyphrase Extraction from Scholarly Documents
Corina Florescu and Cornelia Caragea . 1105

Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses
Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua Bengio

and Joelle Pineau. .1116

A Transition-Based Directed Acyclic Graph Parser for UCCA
Daniel Hershcovich, Omri Abend and Ari Rappoport . 1127

xxx

Abstract Syntax Networks for Code Generation and Semantic Parsing
Maxim Rabinovich, Mitchell Stern and Dan Klein . 1139

Visualizing and Understanding Neural Machine Translation
Yanzhuo Ding, Yang Liu, Huanbo Luan and Maosong Sun. .1150

Detecting annotation noise in automatically labelled data
Ines Rehbein and Josef Ruppenhofer . 1160

Abstractive Document Summarization with a Graph-Based Attentional Neural Model
Jiwei Tan, Xiaojun Wan and Jianguo Xiao . 1171

Probabilistic Typology: Deep Generative Models of Vowel Inventories
Ryan Cotterell and Jason Eisner .1182

Adversarial Multi-Criteria Learning for Chinese Word Segmentation
Xinchi Chen, Zhan Shi, Xipeng Qiu and Xuanjing Huang . 1193

Neural Joint Model for Transition-based Chinese Syntactic Analysis
Shuhei Kurita, Daisuke Kawahara and Sadao Kurohashi . 1204

Robust Incremental Neural Semantic Graph Parsing
Jan Buys and Phil Blunsom. 1215

Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme
Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou and Bo Xu. 1227

A Local Detection Approach for Named Entity Recognition and Mention Detection
Mingbin Xu, Hui Jiang and Sedtawut Watcharawittayakul . 1237

Vancouver Welcomes You! Minimalist Location Metonymy Resolution
Milan Gritta, Mohammad Taher Pilehvar, Nut Limsopatham and Nigel Collier 1248

Unifying Text, Metadata, and User Network Representations with a Neural Network for Geolocation
Prediction

Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi and Tomoko Ohkuma 1260

Multi-Task Video Captioning with Video and Entailment Generation
Ramakanth Pasunuru and Mohit Bansal . 1273

Enriching Complex Networks with Word Embeddings for Detecting Mild Cognitive Impairment from
Speech Transcripts

Leandro Santos, Edilson Anselmo Corrêa Júnior, Osvaldo Oliveira Jr, Diego Amancio, Letícia
Mansur and Sandra Aluísio. .1284

Adversarial Adaptation of Synthetic or Stale Data
Young-Bum Kim, Karl Stratos and Dongchan Kim. 1297

Chat Detection in an Intelligent Assistant: Combining Task-oriented and Non-task-oriented Spoken Di-
alogue Systems

Satoshi Akasaki and Nobuhiro Kaji . 1308

A Neural Local Coherence Model
Dat Tien Nguyen and Shafiq Joty . 1320

xxxi

Data-Driven Broad-Coverage Grammars for Opinionated Natural Language Generation (ONLG)
Tomer Cagan, Stefan L. Frank and Reut Tsarfaty . 1331

Learning to Ask: Neural Question Generation for Reading Comprehension
Xinya Du, Junru Shao and Claire Cardie . 1342

Joint Optimization of User-desired Content in Multi-document Summaries by Learning from User Feed-
back

Avinesh PVS and Christian M. Meyer . 1353

Flexible and Creative Chinese Poetry Generation Using Neural Memory
Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang, Andrew Abel, Shiyue Zhang and Andi Zhang

1364

Learning to Generate Market Comments from Stock Prices
Soichiro Murakami, Akihiko Watanabe, Akira Miyazawa, Keiichi Goshima, Toshihiko Yanase,

Hiroya Takamura and Yusuke Miyao . 1374

Can Syntax Help? Improving an LSTM-based Sentence Compression Model for New Domains
Liangguo Wang, Jing Jiang, Hai Leong Chieu, Chen Hui Ong, Dandan Song and Lejian Liao 1385

Transductive Non-linear Learning for Chinese Hypernym Prediction
Chengyu Wang, Junchi Yan, Aoying Zhou and Xiaofeng He . 1394

A Constituent-Centric Neural Architecture for Reading Comprehension
Pengtao Xie and Eric Xing . 1405

Cross-lingual Distillation for Text Classification
Ruochen Xu and Yiming Yang . 1415

Understanding and Predicting Empathic Behavior in Counseling Therapy
Verónica Pérez-Rosas, Rada Mihalcea, Kenneth Resnicow, Satinder Singh and Lawrence An . 1426

Leveraging Knowledge Bases in LSTMs for Improving Machine Reading
Bishan Yang and Tom Mitchell . 1436

Prerequisite Relation Learning for Concepts in MOOCs
Liangming Pan, Chengjiang Li, Juanzi Li and Jie Tang . 1447

Unsupervised Text Segmentation Based on Native Language Characteristics
Shervin Malmasi, Mark Dras, Mark Johnson, Lan Du and Magdalena Wolska 1457

Weakly Supervised Cross-Lingual Named Entity Recognition via Effective Annotation and Representa-
tion Projection

Jian Ni, Georgiana Dinu and Radu Florian . 1470

Context Sensitive Lemmatization Using Two Successive Bidirectional Gated Recurrent Networks
Abhisek Chakrabarty, Onkar Arun Pandit and Utpal Garain . 1481

Learning to Create and Reuse Words in Open-Vocabulary Neural Language Modeling
Kazuya Kawakami, Chris Dyer and Phil Blunsom . 1492

Bandit Structured Prediction for Neural Sequence-to-Sequence Learning
Julia Kreutzer, Artem Sokolov and Stefan Riezler . 1503

xxxii

Prior Knowledge Integration for Neural Machine Translation using Posterior Regularization
Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu and Maosong Sun 1514

Incorporating Word Reordering Knowledge into Attention-based Neural Machine Translation
Jinchao Zhang, Mingxuan Wang, Qun Liu and Jie Zhou . 1524

Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search
Chris Hokamp and Qun Liu . 1535

Combating Human Trafficking with Multimodal Deep Models
Edmund Tong, Amir Zadeh, Cara Jones and Louis-Philippe Morency . 1547

MalwareTextDB: A Database for Annotated Malware Articles
Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu and Chen Hui Ong . 1557

A Corpus of Annotated Revisions for Studying Argumentative Writing
Fan Zhang, Homa B. Hashemi, Rebecca Hwa and Diane Litman . 1568

Automatic Induction of Synsets from a Graph of Synonyms
Dmitry Ustalov, Alexander Panchenko and Chris Biemann. .1579

Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument Structure Analysis
Hiroki Ouchi, Hiroyuki Shindo and Yuji Matsumoto . 1591

TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Comprehension
Mandar Joshi, Eunsol Choi, Daniel Weld and Luke Zettlemoyer . 1601

Learning Semantic Correspondences in Technical Documentation
Kyle Richardson and Jonas Kuhn . 1612

Bridge Text and Knowledge by Learning Multi-Prototype Entity Mention Embedding
Yixin Cao, Lifu Huang, Heng Ji, Xu Chen and Juanzi Li .1623

Interactive Learning of Grounded Verb Semantics towards Human-Robot Communication
Lanbo She and Joyce Chai .1634

Multimodal Word Distributions
Ben Athiwaratkun and Andrew Wilson . 1645

Enhanced LSTM for Natural Language Inference
Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang and Diana Inkpen 1657

Linguistic analysis of differences in portrayal of movie characters
Anil Ramakrishna, Victor R. Martínez, Nikolaos Malandrakis, Karan Singla and Shrikanth Narayanan

1669

Linguistically Regularized LSTM for Sentiment Classification
Qiao Qian, Minlie Huang, Jinhao Lei and Xiaoyan Zhu. .1679

Sarcasm SIGN: Interpreting Sarcasm with Sentiment Based Monolingual Machine Translation
Lotem Peled and Roi Reichart . 1690

Active Sentiment Domain Adaptation
Fangzhao Wu, Yongfeng Huang and Jun Yan . 1701

xxxiii

Volatility Prediction using Financial Disclosures Sentiments with Word Embedding-based IR Models
Navid Rekabsaz, Mihai Lupu, Artem Baklanov, Alexander Dür, Linda Andersson and Allan Han-

bury . 1712

CANE: Context-Aware Network Embedding for Relation Modeling
Cunchao Tu, Han Liu, Zhiyuan Liu and Maosong Sun . 1722

Universal Dependencies Parsing for Colloquial Singaporean English
Hongmin Wang, Yue Zhang, GuangYong Leonard Chan, Jie Yang and Hai Leong Chieu 1732

Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing
Anssi Yli-Jyrä and Carlos Gómez-Rodríguez . 1745

Semi-supervised sequence tagging with bidirectional language models
Matthew Peters, Waleed Ammar, Chandra Bhagavatula and Russell Power 1756

Learning Symmetric Collaborative Dialogue Agents with Dynamic Knowledge Graph Embeddings
He He, Anusha Balakrishnan, Mihail Eric and Percy Liang . 1766

Neural Belief Tracker: Data-Driven Dialogue State Tracking
Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien Wen, Blaise Thomson and Steve Young . 1777

Exploiting Argument Information to Improve Event Detection via Supervised Attention Mechanisms
Shulin Liu, Yubo Chen, Kang Liu and Jun Zhao . 1789

Topical Coherence in LDA-based Models through Induced Segmentation
Hesam Amoualian, Wei Lu, Eric Gaussier, Georgios Balikas, Massih R Amini and Marianne

Clausel . 1799

Jointly Extracting Relations with Class Ties via Effective Deep Ranking
Hai Ye, Wenhan Chao, Zhunchen Luo and Zhoujun Li . 1810

Search-based Neural Structured Learning for Sequential Question Answering
Mohit Iyyer, Wen-tau Yih and Ming-Wei Chang . 1821

Gated-Attention Readers for Text Comprehension
Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William Cohen and Ruslan Salakhutdinov 1832

Determining Gains Acquired from Word Embedding Quantitatively Using Discrete Distribution Cluster-
ing

Jianbo Ye, Yanran Li, Zhaohui Wu, James Z. Wang, Wenjie Li and Jia Li1847

Towards a Seamless Integration of Word Senses into Downstream NLP Applications
Mohammad Taher Pilehvar, Jose Camacho-Collados, Roberto Navigli and Nigel Collier 1857

Reading Wikipedia to Answer Open-Domain Questions
Danqi Chen, Adam Fisch, Jason Weston and Antoine Bordes . 1870

Learning to Skim Text
Adams Wei Yu, Hongrae Lee and Quoc Le . 1880

An Algebra for Feature Extraction
Vivek Srikumar . 1891

xxxiv

Chunk-based Decoder for Neural Machine Translation
Shonosuke Ishiwatari, Jingtao Yao, Shujie Liu, Mu Li, Ming Zhou, Naoki Yoshinaga, Masaru

Kitsuregawa and Weijia Jia . 1901

Doubly-Attentive Decoder for Multi-modal Neural Machine Translation
Iacer Calixto, Qun Liu and Nick Campbell . 1913

A Teacher-Student Framework for Zero-Resource Neural Machine Translation
Yun Chen, Yang Liu, Yong Cheng and Victor O.K. Li . 1925

Improved Neural Machine Translation with a Syntax-Aware Encoder and Decoder
Huadong Chen, Shujian Huang, David Chiang and Jiajun Chen . 1936

Cross-lingual Name Tagging and Linking for 282 Languages
Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight and Heng Ji 1946

Adversarial Training for Unsupervised Bilingual Lexicon Induction
Meng Zhang, Yang Liu, Huanbo Luan and Maosong Sun . 1959

Estimating Code-Switching on Twitter with a Novel Generalized Word-Level Language Detection Tech-
nique

Shruti Rijhwani, Royal Sequiera, Monojit Choudhury, Kalika Bali and Chandra Shekhar Maddila
1971

Using Global Constraints and Reranking to Improve Cognates Detection
Michael Bloodgood and Benjamin Strauss . 1983

One-Shot Neural Cross-Lingual Transfer for Paradigm Completion
Katharina Kann, Ryan Cotterell and Hinrich Schütze . 1993

Morphological Inflection Generation with Hard Monotonic Attention
Roee Aharoni and Yoav Goldberg . 2004

From Characters to Words to in Between: Do We Capture Morphology?
Clara Vania and Adam Lopez . 2016

Riemannian Optimization for Skip-Gram Negative Sampling
Alexander Fonarev, Oleksii Grinchuk, Gleb Gusev, Pavel Serdyukov and Ivan Oseledets 2028

Deep Multitask Learning for Semantic Dependency Parsing
Hao Peng, Sam Thomson and Noah A. Smith . 2037

Improved Word Representation Learning with Sememes
Yilin Niu, Ruobing Xie, Zhiyuan Liu and Maosong Sun . 2049

Learning Character-level Compositionality with Visual Features
Frederick Liu, Han Lu, Chieh Lo and Graham Neubig . 2059

A Progressive Learning Approach to Chinese SRL Using Heterogeneous Data
Qiaolin Xia, Lei Sha, Baobao Chang and Zhifang Sui . 2069

Revisiting Recurrent Networks for Paraphrastic Sentence Embeddings
John Wieting and Kevin Gimpel . 2078

Ontology-Aware Token Embeddings for Prepositional Phrase Attachment
Pradeep Dasigi, Waleed Ammar, Chris Dyer and Eduard Hovy . 2089

xxxv

Identifying 1950s American Jazz Musicians: Fine-Grained IsA Extraction via Modifier Composition
Ellie Pavlick and Marius Pasca .2099

Parsing to 1-Endpoint-Crossing, Pagenumber-2 Graphs
Junjie Cao, Sheng Huang, Weiwei Sun and Xiaojun Wan . 2110

Semi-supervised Multitask Learning for Sequence Labeling
Marek Rei . 2121

Semantic Parsing of Pre-university Math Problems
Takuya Matsuzaki, Takumi Ito, Hidenao Iwane, Hirokazu Anai and Noriko H. Arai 2131

xxxvi

Conference Program

Monday, July 31st

10:30–11:45 Session 1A: Information Extraction 1 (NN)

10:30–10:48 Adversarial Multi-task Learning for Text Classification
Pengfei Liu, Xipeng Qiu and Xuanjing Huang

10:49–11:07 Neural End-to-End Learning for Computational Argumentation Mining
Steffen Eger, Johannes Daxenberger and Iryna Gurevych

11:08–11:26 Neural Symbolic Machines: Learning Semantic Parsers on Freebase with Weak
Supervision
Chen Liang, Jonathan Berant, Quoc Le, Kenneth D. Forbus and Ni Lao

11:27–11:45 Neural Relation Extraction with Multi-lingual Attention
Yankai Lin, Zhiyuan Liu and Maosong Sun

Monday, July 31st

10:30–11:45 Session 1B: Semantics 1

10:30–10:48 Learning Structured Natural Language Representations for Semantic Parsing
Jianpeng Cheng, Siva Reddy, Vijay Saraswat and Mirella Lapata

10:49–11:07 Morph-fitting: Fine-Tuning Word Vector Spaces with Simple Language-Specific
Rules
Ivan Vulić, Nikola Mrkšić, Roi Reichart, Diarmuid Ó Séaghdha, Steve Young and
Anna Korhonen

11:08–11:26 Skip-Gram - Zipf + Uniform = Vector Additivity
Alex Gittens, Dimitris Achlioptas and Michael W. Mahoney

11:27–11:45 The State of the Art in Semantic Representation
Omri Abend and Ari Rappoport

xxxvii

Monday, July 31st

10:30–11:26 Session 1C: Discourse 1

10:30–10:48 Joint Learning for Event Coreference Resolution
Jing Lu and Vincent Ng

10:49–11:07 Generating and Exploiting Large-scale Pseudo Training Data for Zero Pronoun
Resolution
Ting Liu, Yiming Cui, Qingyu Yin, Wei-Nan Zhang, Shijin Wang and Guoping Hu

11:08–11:26 Discourse Mode Identification in Essays
Wei Song, Dong Wang, Ruiji Fu, Lizhen Liu, Ting Liu and Guoping Hu

Monday, July 31st

10:30–11:07 Session 1D: Machine Translation 1

10:30–10:48 A Convolutional Encoder Model for Neural Machine Translation
Jonas Gehring, Michael Auli, David Grangier and Yann Dauphin

10:49–11:07 Deep Neural Machine Translation with Linear Associative Unit
Mingxuan Wang, Zhengdong Lu, Jie Zhou and Qun Liu

xxxviii

Monday, July 31st

10:30–11:45 Session 1E: Generation 1

10:30–10:48 Neural AMR: Sequence-to-Sequence Models for Parsing and Generation
Ioannis Konstas, Srinivasan Iyer, Mark Yatskar, Yejin Choi and Luke Zettlemoyer

10:49–11:07 Program Induction by Rationale Generation: Learning to Solve and Explain Alge-
braic Word Problems
Wang Ling, Dani Yogatama, Chris Dyer and Phil Blunsom

11:08–11:26 Automatically Generating Rhythmic Verse with Neural Networks
Jack Hopkins and Douwe Kiela

11:27–11:45 Creating Training Corpora for NLG Micro-Planners
Claire Gardent, Anastasia Shimorina, Shashi Narayan and Laura Perez-Beltrachini

Monday, July 31st

13:40–14:55 Session 2A: Question Answering 1

13:40–13:58 Gated Self-Matching Networks for Reading Comprehension and Question Answer-
ing
Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang and Ming Zhou

13:59–14:17 Generating Natural Answers by Incorporating Copying and Retrieving Mechanisms
in Sequence-to-Sequence Learning
Shizhu He, Cao Liu, Kang Liu and Jun Zhao

14:18–14:36 Coarse-to-Fine Question Answering for Long Documents
Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia Polosukhin, Alexandre Lacoste
and Jonathan Berant

14:37–14:55 An End-to-End Model for Question Answering over Knowledge Base with Cross-
Attention Combining Global Knowledge
Yanchao Hao, Yuanzhe Zhang, Kang Liu, Shizhu He, Zhanyi Liu, Hua Wu and Jun
Zhao

xxxix

Monday, July 31st

13:40–14:55 Session 2B: Vision 1

13:40–13:58 Translating Neuralese
Jacob Andreas, Anca Dragan and Dan Klein

13:59–14:17 Obtaining referential word meanings from visual and distributional information:
Experiments on object naming
Sina Zarrieß and David Schlangen

14:18–14:36 FOIL it! Find One mismatch between Image and Language caption
Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Aurélie Herbelot, Moin Nabi,
Enver Sangineto and Raffaella Bernardi

14:37–14:55 Verb Physics: Relative Physical Knowledge of Actions and Objects
Maxwell Forbes and Yejin Choi

Monday, July 31st

13:40–14:36 Session 2C: Syntax 1

13:40–13:58 A* CCG Parsing with a Supertag and Dependency Factored Model
Masashi Yoshikawa, Hiroshi Noji and Yuji Matsumoto

13:59–14:17 A Full Non-Monotonic Transition System for Unrestricted Non-Projective Parsing
Daniel Fernández-González and Carlos Gómez-Rodríguez

14:18–14:36 Aggregating and Predicting Sequence Labels from Crowd Annotations
An Thanh Nguyen, Byron Wallace, Junyi Jessy Li, Ani Nenkova and Matthew Lease

xl

Monday, July 31st

13:40–15:14 Session 2D: Machine Learning 1 (NN)

13:40–13:58 Multi-space Variational Encoder-Decoders for Semi-supervised Labeled Sequence
Transduction
Chunting Zhou and Graham Neubig

13:59–14:17 Scalable Bayesian Learning of Recurrent Neural Networks for Language Modeling
Zhe Gan, Chunyuan Li, Changyou Chen, Yunchen Pu, Qinliang Su and Lawrence
Carin

14:18–14:36 Learning attention for historical text normalization by learning to pronounce
Marcel Bollmann, Joachim Bingel and Anders Søgaard

14:37–14:55 Deep Learning in Semantic Kernel Spaces
Danilo Croce, Simone Filice, Giuseppe Castellucci and Roberto Basili

14:56–15:14 Topically Driven Neural Language Model
Jey Han Lau, Timothy Baldwin and Trevor Cohn

Monday, July 31st

13:40–14:55 Session 2E: Sentiment 1 (NN)

13:40–13:58 Handling Cold-Start Problem in Review Spam Detection by Jointly Embedding Texts
and Behaviors
Xuepeng Wang, Kang Liu and Jun Zhao

13:59–14:17 Learning Cognitive Features from Gaze Data for Sentiment and Sarcasm Classifi-
cation using Convolutional Neural Network
Abhijit Mishra, Kuntal Dey and Pushpak Bhattacharyya

14:18–14:36 An Unsupervised Neural Attention Model for Aspect Extraction
Ruidan He, Wee Sun Lee, Hwee Tou Ng and Daniel Dahlmeier

14:37–14:55 Other Topics You May Also Agree or Disagree: Modeling Inter-Topic Preferences
using Tweets and Matrix Factorization
Akira Sasaki, Kazuaki Hanawa, Naoaki Okazaki and Kentaro Inui

xli

Monday, July 31st

15:45–16:41 Session 3A: Information Extraction 2 / Biomedical 1

15:45–16:03 Automatically Labeled Data Generation for Large Scale Event Extraction
Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu and Jun Zhao

16:04–16:22 Time Expression Analysis and Recognition Using Syntactic Token Types and Gen-
eral Heuristic Rules
Xiaoshi Zhong, Aixin Sun and Erik Cambria

16:23–16:41 Learning with Noise: Enhance Distantly Supervised Relation Extraction with Dy-
namic Transition Matrix
Bingfeng Luo, Yansong Feng, Zheng Wang, Zhanxing Zhu, Songfang Huang, Rui
Yan and Dongyan Zhao

Monday, July 31st

15:45–17:00 Session 3B: Semantics 2 (NN)

15:45–16:03 A Syntactic Neural Model for General-Purpose Code Generation
Pengcheng Yin and Graham Neubig

16:04–16:22 Learning bilingual word embeddings with (almost) no bilingual data
Mikel Artetxe, Gorka Labaka and Eneko Agirre

16:23–16:41 Abstract Meaning Representation Parsing using LSTM Recurrent Neural Networks
William Foland and James H. Martin

16:42–17:00 Deep Semantic Role Labeling: What Works and What’s Next
Luheng He, Kenton Lee, Mike Lewis and Luke Zettlemoyer

xlii

Monday, July 31st

15:45–17:00 Session 3C: Speech 1 / Dialogue 1

15:45–16:03 Towards End-to-End Reinforcement Learning of Dialogue Agents for Information
Access
Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao, Yun-Nung Chen, Faisal
Ahmed and Li Deng

16:04–16:22 Sequential Matching Network: A New Architecture for Multi-turn Response Selec-
tion in Retrieval-Based Chatbots
Yu Wu, Wei Wu, Chen Xing, Ming Zhou and Zhoujun Li

16:23–16:41 Learning Word-Like Units from Joint Audio-Visual Analysis
David Harwath and James Glass

16:42–17:00 Joint CTC/attention decoding for end-to-end speech recognition
Takaaki Hori, Shinji Watanabe and John Hershey

Monday, July 31st

15:45–16:22 Session 3D: Multilingual 1

15:45–16:03 Found in Translation: Reconstructing Phylogenetic Language Trees from Transla-
tions
Ella Rabinovich, Noam Ordan and Shuly Wintner

16:04–16:22 Predicting Native Language from Gaze
Yevgeni Berzak, Chie Nakamura, Suzanne Flynn and Boris Katz

xliii

Monday, July 31st

15:45–16:03 Session 3E: Phonology 1

15:45–16:03 MORSE: Semantic-ally Drive-n MORpheme SEgment-er
Tarek Sakakini, Suma Bhat and Pramod Viswanath

Tuesday, August 1st

10:30–11:45 Session 4A: Information Extraction 3 (NN)

10:30–10:48 Deep Pyramid Convolutional Neural Networks for Text Categorization
Rie Johnson and Tong Zhang

10:49–11:07 Improved Neural Relation Detection for Knowledge Base Question Answering
Mo Yu, Wenpeng Yin, Kazi Saidul Hasan, Cicero dos Santos, Bing Xiang and
Bowen Zhou

11:08–11:26 Deep Keyphrase Generation
Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He, Peter Brusilovsky and Yu
Chi

11:27–11:45 Attention-over-Attention Neural Networks for Reading Comprehension
Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang, Ting Liu and Guoping Hu

xliv

Tuesday, August 1st

10:30–11:26 Session 4B: Cognitive Modelling 1 / Vision 2

10:30–10:48 Alignment at Work: Using Language to Distinguish the Internalization and Self-
Regulation Components of Cultural Fit in Organizations
Gabriel Doyle, Amir Goldberg, Sameer Srivastava and Michael Frank

10:49–11:07 Representations of language in a model of visually grounded speech signal
Grzegorz Chrupała, Lieke Gelderloos and Afra Alishahi

11:08–11:26 Spectral Analysis of Information Density in Dialogue Predicts Collaborative Task
Performance
Yang Xu and David Reitter

Tuesday, August 1st

10:30–12:04 Session 4C: Dialogue 2

10:30–10:48 Affect-LM: A Neural Language Model for Customizable Affective Text Generation
Sayan Ghosh, Mathieu Chollet, Eugene Laksana, Louis-Philippe Morency and Ste-
fan Scherer

10:49–11:07 Domain Attention with an Ensemble of Experts
Young-Bum Kim, Karl Stratos and Dongchan Kim

11:08–11:26 Learning Discourse-level Diversity for Neural Dialog Models using Conditional
Variational Autoencoders
Tiancheng Zhao, Ran Zhao and Maxine Eskenazi

11:27–11:45 Hybrid Code Networks: practical and efficient end-to-end dialog control with su-
pervised and reinforcement learning
Jason D Williams, Kavosh Asadi and Geoffrey Zweig

11:46–12:04 Generating Contrastive Referring Expressions
Martin Villalba, Christoph Teichmann and Alexander Koller

xlv

Tuesday, August 1st

10:30–11:07 Session 4D: Machine Translation 2

10:30–10:48 Modeling Source Syntax for Neural Machine Translation
Junhui Li, Deyi Xiong, Zhaopeng Tu, Muhua Zhu, Min Zhang and Guodong Zhou

10:49–11:07 Sequence-to-Dependency Neural Machine Translation
Shuangzhi Wu, Dongdong Zhang, Nan Yang, Mu Li and Ming Zhou

Tuesday, August 1st

10:30–11:45 Session 4E: Social Media 1

10:30–10:48 Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learn-
ing
Jing Ma, Wei Gao and Kam-Fai Wong

10:49–11:07 EmoNet: Fine-Grained Emotion Detection with Gated Recurrent Neural Networks
Muhammad Abdul-Mageed and Lyle Ungar

11:08–11:26 Beyond Binary Labels: Political Ideology Prediction of Twitter Users
Daniel Preoţiuc-Pietro, Ye Liu, Daniel Hopkins and Lyle Ungar

11:27–11:45 Leveraging Behavioral and Social Information for Weakly Supervised Collective
Classification of Political Discourse on Twitter
Kristen Johnson, Di Jin and Dan Goldwasser

xlvi

Tuesday, August 1st

13:49–14:39 Session 5A: Multidisciplinary 1

13:49–14:07 A Nested Attention Neural Hybrid Model for Grammatical Error Correction
Jianshu Ji, Qinlong Wang, Kristina Toutanova, Yongen Gong, Steven Truong and
Jianfeng Gao

14:08–14:26 TextFlow: A Text Similarity Measure based on Continuous Sequences
Yassine Mrabet, Halil Kilicoglu and Dina Demner-Fushman

14:27–14:39 Friendships, Rivalries, and Trysts: Characterizing Relations between Ideas in Texts
Chenhao Tan, Dallas Card and Noah A. Smith

Tuesday, August 1st

13:30–14:26 Session 5B: Language and Resources 1

13:30–13:48 Polish evaluation dataset for compositional distributional semantics models
Alina Wróblewska and Katarzyna Krasnowska-Kieraś

13:49–14:07 Automatic Annotation and Evaluation of Error Types for Grammatical Error Cor-
rection
Christopher Bryant, Mariano Felice and Ted Briscoe

14:08–14:26 Evaluation Metrics for Machine Reading Comprehension: Prerequisite Skills and
Readability
Saku Sugawara, Yusuke Kido, Hikaru Yokono and Akiko Aizawa

xlvii

Tuesday, August 1st

13:30–14:26 Session 5C: Syntax 2 (NN)

13:30–13:48 A Minimal Span-Based Neural Constituency Parser
Mitchell Stern, Jacob Andreas and Dan Klein

13:49–14:07 Semantic Dependency Parsing via Book Embedding
Weiwei Sun, Junjie Cao and Xiaojun Wan

14:08–14:26 Neural Word Segmentation with Rich Pretraining
Jie Yang, Yue Zhang and Fei Dong

Tuesday, August 1st

13:30–14:07 Session 5D: Machine Translation 3 (NN)

13:30–13:48 Neural Machine Translation via Binary Code Prediction
Yusuke Oda, Philip Arthur, Graham Neubig, Koichiro Yoshino and Satoshi Naka-
mura

13:49–14:07 What do Neural Machine Translation Models Learn about Morphology?
Yonatan Belinkov, Nadir Durrani, Fahim Dalvi, Hassan Sajjad and James Glass

xlviii

Tuesday, August 1st

13:30–14:07 Session 5E: Sentiment 2

13:30–13:48 Context-Dependent Sentiment Analysis in User-Generated Videos
Soujanya Poria, Erik Cambria, Devamanyu Hazarika, Navonil Majumder, Amir
Zadeh and Louis-Philippe Morency

13:49–14:07 A Multidimensional Lexicon for Interpersonal Stancetaking
Umashanthi Pavalanathan, Jim Fitzpatrick, Scott Kiesling and Jacob Eisenstein

Tuesday, August 1st

15:25–16:21 Session 6A: Information Extraction 4

15:25–15:43 Tandem Anchoring: a Multiword Anchor Approach for Interactive Topic Modeling
Jeffrey Lund, Connor Cook, Kevin Seppi and Jordan Boyd-Graber

15:44–16:02 Apples to Apples: Learning Semantics of Common Entities Through a Novel Com-
prehension Task
Omid Bakhshandeh and James Allen

16:03–16:21 Going out on a limb: Joint Extraction of Entity Mentions and Relations without
Dependency Trees
Arzoo Katiyar and Claire Cardie

xlix

Tuesday, August 1st

15:25–16:40 Session 6B: Semantics 2 (NN)

15:25–15:43 Naturalizing a Programming Language via Interactive Learning
Sida I. Wang, Samuel Ginn, Percy Liang and Christopher D. Manning

15:44–16:02 Semantic Word Clusters Using Signed Spectral Clustering
Joao Sedoc, Jean Gallier, Dean Foster and Lyle Ungar

16:03–16:21 An Interpretable Knowledge Transfer Model for Knowledge Base Completion
Qizhe Xie, Xuezhe Ma, Zihang Dai and Eduard Hovy

16:22–16:40 Learning a Neural Semantic Parser from User Feedback
Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy and Luke
Zettlemoyer

Tuesday, August 1st

15:25–17:00 Session 6C: Discourse 2 / Dialogue 3

15:25–15:43 Joint Modeling of Content and Discourse Relations in Dialogues
Kechen Qin, Lu Wang and Joseph Kim

15:44–16:02 Argument Mining with Structured SVMs and RNNs
Vlad Niculae, Joonsuk Park and Claire Cardie

16:03–16:21 Neural Discourse Structure for Text Categorization
Yangfeng Ji and Noah A. Smith

16:22–16:40 Adversarial Connective-exploiting Networks for Implicit Discourse Relation Clas-
sification
Lianhui Qin, Zhisong Zhang, Hai Zhao, Zhiting Hu and Eric Xing

16:41–17:00 Don’t understand a measure? Learn it: Structured Prediction for Coreference Res-
olution optimizing its measures
Iryna Haponchyk and Alessandro Moschitti

l

Tuesday, August 1st

15:25–16:21 Session 6D: Machine Learning 2

15:25–15:43 Bayesian Modeling of Lexical Resources for Low-Resource Settings
Nicholas Andrews, Mark Dredze, Benjamin Van Durme and Jason Eisner

15:44–16:02 Semi-Supervised QA with Generative Domain-Adaptive Nets
Zhilin Yang, Junjie Hu, Ruslan Salakhutdinov and William Cohen

16:03–16:21 From Language to Programs: Bridging Reinforcement Learning and Maximum
Marginal Likelihood
Kelvin Guu, Panupong Pasupat, Evan Liu and Percy Liang

Tuesday, August 1st

15:25–17:00 Session 6E: Summarization 1

15:25–15:43 Diversity driven attention model for query-based abstractive summarization
Preksha Nema, Mitesh M. Khapra, Anirban Laha and Balaraman Ravindran

15:44–16:02 Get To The Point: Summarization with Pointer-Generator Networks
Abigail See, Peter J. Liu and Christopher D. Manning

16:03–16:21 Supervised Learning of Automatic Pyramid for Optimization-Based Multi-
Document Summarization
Maxime Peyrard and Judith Eckle-Kohler

16:22–16:40 Selective Encoding for Abstractive Sentence Summarization
Qingyu Zhou, Nan Yang, Furu Wei and Ming Zhou

16:41–17:00 PositionRank: An Unsupervised Approach to Keyphrase Extraction from Scholarly
Documents
Corina Florescu and Cornelia Caragea

li

Wednesday, August 2nd

10:40–11:36 Session 7A: Outstanding Papers 1

10:40–10:58 Towards an Automatic Turing Test: Learning to Evaluate Dialogue Responses
Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier,
Yoshua Bengio and Joelle Pineau

10:59–11:17 A Transition-Based Directed Acyclic Graph Parser for UCCA
Daniel Hershcovich, Omri Abend and Ari Rappoport

11:18–11:36 Abstract Syntax Networks for Code Generation and Semantic Parsing
Maxim Rabinovich, Mitchell Stern and Dan Klein

Wednesday, August 2nd

10:40–11:17 Session 7B: Outstanding Papers 2

10:40–10:58 Visualizing and Understanding Neural Machine Translation
Yanzhuo Ding, Yang Liu, Huanbo Luan and Maosong Sun

10:59–11:17 Detecting annotation noise in automatically labelled data
Ines Rehbein and Josef Ruppenhofer

lii

Wednesday, August 2nd

15:00–16:34 Session 8A: Outstanding Papers 3

15:00–15:18 Abstractive Document Summarization with a Graph-Based Attentional Neural
Model
Jiwei Tan, Xiaojun Wan and Jianguo Xiao

15:19–15:37 Probabilistic Typology: Deep Generative Models of Vowel Inventories
Ryan Cotterell and Jason Eisner

15:38–15:56 Adversarial Multi-Criteria Learning for Chinese Word Segmentation
Xinchi Chen, Zhan Shi, Xipeng Qiu and Xuanjing Huang

15:57–16:15 Neural Joint Model for Transition-based Chinese Syntactic Analysis
Shuhei Kurita, Daisuke Kawahara and Sadao Kurohashi

16:16–16:34 Robust Incremental Neural Semantic Graph Parsing
Jan Buys and Phil Blunsom

Wednesday, August 2nd

15:00–16:34 Session 8B: Outstanding Papers 4

15:00–15:18 Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme
Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou and Bo Xu

15:19–15:37 A Local Detection Approach for Named Entity Recognition and Mention Detection
Mingbin Xu, Hui Jiang and Sedtawut Watcharawittayakul

15:38–15:56 Vancouver Welcomes You! Minimalist Location Metonymy Resolution
Milan Gritta, Mohammad Taher Pilehvar, Nut Limsopatham and Nigel Collier

15:57–16:15 Unifying Text, Metadata, and User Network Representations with a Neural Network
for Geolocation Prediction
Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi and Tomoko Ohkuma

16:16–16:34 Multi-Task Video Captioning with Video and Entailment Generation
Ramakanth Pasunuru and Mohit Bansal

liii

Monday, July 31st

18:00–21:30 Session P1: Poster Session 1

Enriching Complex Networks with Word Embeddings for Detecting Mild Cognitive
Impairment from Speech Transcripts
Leandro Santos, Edilson Anselmo Corrêa Júnior, Osvaldo Oliveira Jr, Diego Aman-
cio, Letícia Mansur and Sandra Aluísio

Adversarial Adaptation of Synthetic or Stale Data
Young-Bum Kim, Karl Stratos and Dongchan Kim

Chat Detection in an Intelligent Assistant: Combining Task-oriented and Non-task-
oriented Spoken Dialogue Systems
Satoshi Akasaki and Nobuhiro Kaji

A Neural Local Coherence Model
Dat Tien Nguyen and Shafiq Joty

Data-Driven Broad-Coverage Grammars for Opinionated Natural Language Gen-
eration (ONLG)
Tomer Cagan, Stefan L. Frank and Reut Tsarfaty

Learning to Ask: Neural Question Generation for Reading Comprehension
Xinya Du, Junru Shao and Claire Cardie

Joint Optimization of User-desired Content in Multi-document Summaries by
Learning from User Feedback
Avinesh PVS and Christian M. Meyer

Flexible and Creative Chinese Poetry Generation Using Neural Memory
Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang, Andrew Abel, Shiyue Zhang
and Andi Zhang

Learning to Generate Market Comments from Stock Prices
Soichiro Murakami, Akihiko Watanabe, Akira Miyazawa, Keiichi Goshima, Toshi-
hiko Yanase, Hiroya Takamura and Yusuke Miyao

liv

Monday, July 31st (continued)

Can Syntax Help? Improving an LSTM-based Sentence Compression Model for
New Domains
Liangguo Wang, Jing Jiang, Hai Leong Chieu, Chen Hui Ong, Dandan Song and
Lejian Liao

Transductive Non-linear Learning for Chinese Hypernym Prediction
Chengyu Wang, Junchi Yan, Aoying Zhou and Xiaofeng He

A Constituent-Centric Neural Architecture for Reading Comprehension
Pengtao Xie and Eric Xing

Cross-lingual Distillation for Text Classification
Ruochen Xu and Yiming Yang

Understanding and Predicting Empathic Behavior in Counseling Therapy
Verónica Pérez-Rosas, Rada Mihalcea, Kenneth Resnicow, Satinder Singh and
Lawrence An

Leveraging Knowledge Bases in LSTMs for Improving Machine Reading
Bishan Yang and Tom Mitchell

Prerequisite Relation Learning for Concepts in MOOCs
Liangming Pan, Chengjiang Li, Juanzi Li and Jie Tang

Unsupervised Text Segmentation Based on Native Language Characteristics
Shervin Malmasi, Mark Dras, Mark Johnson, Lan Du and Magdalena Wolska

Weakly Supervised Cross-Lingual Named Entity Recognition via Effective Annota-
tion and Representation Projection
Jian Ni, Georgiana Dinu and Radu Florian

Context Sensitive Lemmatization Using Two Successive Bidirectional Gated Recur-
rent Networks
Abhisek Chakrabarty, Onkar Arun Pandit and Utpal Garain

Learning to Create and Reuse Words in Open-Vocabulary Neural Language Model-
ing
Kazuya Kawakami, Chris Dyer and Phil Blunsom

Bandit Structured Prediction for Neural Sequence-to-Sequence Learning
Julia Kreutzer, Artem Sokolov and Stefan Riezler

lv

Monday, July 31st (continued)

Prior Knowledge Integration for Neural Machine Translation using Posterior Reg-
ularization
Jiacheng Zhang, Yang Liu, Huanbo Luan, Jingfang Xu and Maosong Sun

Incorporating Word Reordering Knowledge into Attention-based Neural Machine
Translation
Jinchao Zhang, Mingxuan Wang, Qun Liu and Jie Zhou

Lexically Constrained Decoding for Sequence Generation Using Grid Beam Search
Chris Hokamp and Qun Liu

Combating Human Trafficking with Multimodal Deep Models
Edmund Tong, Amir Zadeh, Cara Jones and Louis-Philippe Morency

MalwareTextDB: A Database for Annotated Malware Articles
Swee Kiat Lim, Aldrian Obaja Muis, Wei Lu and Chen Hui Ong

A Corpus of Annotated Revisions for Studying Argumentative Writing
Fan Zhang, Homa B. Hashemi, Rebecca Hwa and Diane Litman

Automatic Induction of Synsets from a Graph of Synonyms
Dmitry Ustalov, Alexander Panchenko and Chris Biemann

Neural Modeling of Multi-Predicate Interactions for Japanese Predicate Argument
Structure Analysis
Hiroki Ouchi, Hiroyuki Shindo and Yuji Matsumoto

TriviaQA: A Large Scale Distantly Supervised Challenge Dataset for Reading Com-
prehension
Mandar Joshi, Eunsol Choi, Daniel Weld and Luke Zettlemoyer

Learning Semantic Correspondences in Technical Documentation
Kyle Richardson and Jonas Kuhn

Bridge Text and Knowledge by Learning Multi-Prototype Entity Mention Embed-
ding
Yixin Cao, Lifu Huang, Heng Ji, Xu Chen and Juanzi Li

Interactive Learning of Grounded Verb Semantics towards Human-Robot Commu-
nication
Lanbo She and Joyce Chai

lvi

Monday, July 31st (continued)

Multimodal Word Distributions
Ben Athiwaratkun and Andrew Wilson

Enhanced LSTM for Natural Language Inference
Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, Hui Jiang and Diana Inkpen

Linguistic analysis of differences in portrayal of movie characters
Anil Ramakrishna, Victor R. Martínez, Nikolaos Malandrakis, Karan Singla and
Shrikanth Narayanan

Linguistically Regularized LSTM for Sentiment Classification
Qiao Qian, Minlie Huang, Jinhao Lei and Xiaoyan Zhu

Sarcasm SIGN: Interpreting Sarcasm with Sentiment Based Monolingual Machine
Translation
Lotem Peled and Roi Reichart

Active Sentiment Domain Adaptation
Fangzhao Wu, Yongfeng Huang and Jun Yan

Volatility Prediction using Financial Disclosures Sentiments with Word Embedding-
based IR Models
Navid Rekabsaz, Mihai Lupu, Artem Baklanov, Alexander Dür, Linda Andersson
and Allan Hanbury

CANE: Context-Aware Network Embedding for Relation Modeling
Cunchao Tu, Han Liu, Zhiyuan Liu and Maosong Sun

Universal Dependencies Parsing for Colloquial Singaporean English
Hongmin Wang, Yue Zhang, GuangYong Leonard Chan, Jie Yang and Hai Leong
Chieu

Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing
Anssi Yli-Jyrä and Carlos Gómez-Rodríguez

Semi-supervised sequence tagging with bidirectional language models
Matthew Peters, Waleed Ammar, Chandra Bhagavatula and Russell Power

lvii

Tuesday, August 1st

19:00–22:00 Session P2: Poster Session 2

Learning Symmetric Collaborative Dialogue Agents with Dynamic Knowledge
Graph Embeddings
He He, Anusha Balakrishnan, Mihail Eric and Percy Liang

Neural Belief Tracker: Data-Driven Dialogue State Tracking
Nikola Mrkšić, Diarmuid Ó Séaghdha, Tsung-Hsien Wen, Blaise Thomson and
Steve Young

Exploiting Argument Information to Improve Event Detection via Supervised Atten-
tion Mechanisms
Shulin Liu, Yubo Chen, Kang Liu and Jun Zhao

Topical Coherence in LDA-based Models through Induced Segmentation
Hesam Amoualian, Wei Lu, Eric Gaussier, Georgios Balikas, Massih R Amini and
Marianne Clausel

Jointly Extracting Relations with Class Ties via Effective Deep Ranking
Hai Ye, Wenhan Chao, Zhunchen Luo and Zhoujun Li

Search-based Neural Structured Learning for Sequential Question Answering
Mohit Iyyer, Wen-tau Yih and Ming-Wei Chang

Gated-Attention Readers for Text Comprehension
Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William Cohen and Ruslan Salakhut-
dinov

Determining Gains Acquired from Word Embedding Quantitatively Using Discrete
Distribution Clustering
Jianbo Ye, Yanran Li, Zhaohui Wu, James Z. Wang, Wenjie Li and Jia Li

Towards a Seamless Integration of Word Senses into Downstream NLP Applications
Mohammad Taher Pilehvar, Jose Camacho-Collados, Roberto Navigli and Nigel
Collier

Reading Wikipedia to Answer Open-Domain Questions
Danqi Chen, Adam Fisch, Jason Weston and Antoine Bordes

lviii

Tuesday, August 1st (continued)

Learning to Skim Text
Adams Wei Yu, Hongrae Lee and Quoc Le

An Algebra for Feature Extraction
Vivek Srikumar

Chunk-based Decoder for Neural Machine Translation
Shonosuke Ishiwatari, Jingtao Yao, Shujie Liu, Mu Li, Ming Zhou, Naoki Yoshi-
naga, Masaru Kitsuregawa and Weijia Jia

Doubly-Attentive Decoder for Multi-modal Neural Machine Translation
Iacer Calixto, Qun Liu and Nick Campbell

A Teacher-Student Framework for Zero-Resource Neural Machine Translation
Yun Chen, Yang Liu, Yong Cheng and Victor O.K. Li

Improved Neural Machine Translation with a Syntax-Aware Encoder and Decoder
Huadong Chen, Shujian Huang, David Chiang and Jiajun Chen

Cross-lingual Name Tagging and Linking for 282 Languages
Xiaoman Pan, Boliang Zhang, Jonathan May, Joel Nothman, Kevin Knight and
Heng Ji

Adversarial Training for Unsupervised Bilingual Lexicon Induction
Meng Zhang, Yang Liu, Huanbo Luan and Maosong Sun

Estimating Code-Switching on Twitter with a Novel Generalized Word-Level Lan-
guage Detection Technique
Shruti Rijhwani, Royal Sequiera, Monojit Choudhury, Kalika Bali and Chandra
Shekhar Maddila

Using Global Constraints and Reranking to Improve Cognates Detection
Michael Bloodgood and Benjamin Strauss

One-Shot Neural Cross-Lingual Transfer for Paradigm Completion
Katharina Kann, Ryan Cotterell and Hinrich Schütze

Morphological Inflection Generation with Hard Monotonic Attention
Roee Aharoni and Yoav Goldberg

lix

Tuesday, August 1st (continued)

From Characters to Words to in Between: Do We Capture Morphology?
Clara Vania and Adam Lopez

Riemannian Optimization for Skip-Gram Negative Sampling
Alexander Fonarev, Oleksii Grinchuk, Gleb Gusev, Pavel Serdyukov and Ivan Os-
eledets

Deep Multitask Learning for Semantic Dependency Parsing
Hao Peng, Sam Thomson and Noah A. Smith

Improved Word Representation Learning with Sememes
Yilin Niu, Ruobing Xie, Zhiyuan Liu and Maosong Sun

Learning Character-level Compositionality with Visual Features
Frederick Liu, Han Lu, Chieh Lo and Graham Neubig

A Progressive Learning Approach to Chinese SRL Using Heterogeneous Data
Qiaolin Xia, Lei Sha, Baobao Chang and Zhifang Sui

Revisiting Recurrent Networks for Paraphrastic Sentence Embeddings
John Wieting and Kevin Gimpel

Ontology-Aware Token Embeddings for Prepositional Phrase Attachment
Pradeep Dasigi, Waleed Ammar, Chris Dyer and Eduard Hovy

Identifying 1950s American Jazz Musicians: Fine-Grained IsA Extraction via Mod-
ifier Composition
Ellie Pavlick and Marius Pasca

Parsing to 1-Endpoint-Crossing, Pagenumber-2 Graphs
Junjie Cao, Sheng Huang, Weiwei Sun and Xiaojun Wan

Semi-supervised Multitask Learning for Sequence Labeling
Marek Rei

Semantic Parsing of Pre-university Math Problems
Takuya Matsuzaki, Takumi Ito, Hidenao Iwane, Hirokazu Anai and Noriko H. Arai

lx

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1–10
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1001

Adversarial Multi-task Learning for Text Classification

Pengfei Liu Xipeng Qiu Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, China
{pfliu14,xpqiu,xjhuang}@fudan.edu.cn

Abstract

Neural network models have shown their
promising opportunities for multi-task
learning, which focus on learning the
shared layers to extract the common and
task-invariant features. However, in most
existing approaches, the extracted shared
features are prone to be contaminated by
task-specific features or the noise brought
by other tasks. In this paper, we propose
an adversarial multi-task learning frame-
work, alleviating the shared and private la-
tent feature spaces from interfering with
each other. We conduct extensive exper-
iments on 16 different text classification
tasks, which demonstrates the benefits of
our approach. Besides, we show that the
shared knowledge learned by our proposed
model can be regarded as off-the-shelf
knowledge and easily transferred to new
tasks. The datasets of all 16 tasks are pub-
licly available at http://nlp.fudan.
edu.cn/data/

1 Introduction

Multi-task learning is an effective approach to
improve the performance of a single task with
the help of other related tasks. Recently, neural-
based models for multi-task learning have be-
come very popular, ranging from computer vision
(Misra et al., 2016; Zhang et al., 2014) to natural
language processing (Collobert and Weston, 2008;
Luong et al., 2015), since they provide a conve-
nient way of combining information from multiple
tasks.

However, most existing work on multi-task
learning (Liu et al., 2016c,b) attempts to divide the
features of different tasks into private and shared
spaces, merely based on whether parameters of

A B

(a) Shared-Private Model

A B

(b) Adversarial Shared-Private Model

Figure 1: Two sharing schemes for task A and task
B. The overlap between two black circles denotes
shared space. The blue triangles and boxes repre-
sent the task-specific features while the red circles
denote the features which can be shared.

some components should be shared. As shown in
Figure 1-(a), the general shared-private model in-
troduces two feature spaces for any task: one is
used to store task-dependent features, the other is
used to capture shared features. The major lim-
itation of this framework is that the shared fea-
ture space could contain some unnecessary task-
specific features, while some sharable features
could also be mixed in private space, suffering
from feature redundancy.

Taking the following two sentences as exam-
ples, which are extracted from two different senti-
ment classification tasks: Movie reviews and Baby
products reviews.

The infantile cart is simple and easy to use.
This kind of humour is infantile and boring.

The word “infantile” indicates negative senti-
ment in Movie task while it is neutral in Baby task.
However, the general shared-private model could
place the task-specific word “infantile” in a
shared space, leaving potential hazards for other
tasks. Additionally, the capacity of shared space
could also be wasted by some unnecessary fea-
tures.

To address this problem, in this paper we
propose an adversarial multi-task framework, in
which the shared and private feature spaces are in-

1

https://doi.org/10.18653/v1/P17-1001

herently disjoint by introducing orthogonality con-
straints. Specifically, we design a generic shared-
private learning framework to model the text se-
quence. To prevent the shared and private latent
feature spaces from interfering with each other, we
introduce two strategies: adversarial training and
orthogonality constraints. The adversarial training
is used to ensure that the shared feature space sim-
ply contains common and task-invariant informa-
tion, while the orthogonality constraint is used to
eliminate redundant features from the private and
shared spaces.

The contributions of this paper can be summa-
rized as follows.

1. Proposed model divides the task-specific and
shared space in a more precise way, rather
than roughly sharing parameters.

2. We extend the original binary adversarial
training to multi-class, which not only en-
ables multiple tasks to be jointly trained, but
allows us to utilize unlabeled data.

3. We can condense the shared knowledge
among multiple tasks into an off-the-shelf
neural layer, which can be easily transferred
to new tasks.

2 Recurrent Models for Text
Classification

There are many neural sentence models, which
can be used for text modelling, involving recurrent
neural networks (Sutskever et al., 2014; Chung
et al., 2014; Liu et al., 2015a), convolutional neu-
ral networks (Collobert et al., 2011; Kalchbren-
ner et al., 2014), and recursive neural networks
(Socher et al., 2013). Here we adopt recurrent neu-
ral network with long short-term memory (LSTM)
due to their superior performance in various NLP
tasks (Liu et al., 2016a; Lin et al., 2017).

Long Short-term Memory Long short-term
memory network (LSTM) (Hochreiter and
Schmidhuber, 1997) is a type of recurrent neural
network (RNN) (Elman, 1990), and specifically
addresses the issue of learning long-term de-
pendencies. While there are numerous LSTM
variants, here we use the LSTM architecture used
by (Jozefowicz et al., 2015), which is similar to
the architecture of (Graves, 2013) but without
peep-hole connections.

We define the LSTM units at each time step t to
be a collection of vectors in Rd: an input gate it, a

forget gate ft, an output gate ot, a memory cell ct
and a hidden state ht. d is the number of the LSTM
units. The elements of the gating vectors it, ft and
ot are in [0, 1].

The LSTM is precisely specified as follows.




c̃t
ot
it
ft


 =




tanh
σ
σ
σ



(
Wp

[
xt

ht−1

]
+ bp

)
, (1)

ct = c̃t � it + ct−1 � ft, (2)

ht = ot � tanh (ct) , (3)

where xt ∈ Re is the input at the current time step;
Wp ∈ R4d×(d+e) and bp ∈ R4d are parameters of
affine transformation; σ denotes the logistic sig-
moid function and � denotes elementwise multi-
plication.

The update of each LSTM unit can be written
precisely as follows:

ht = LSTM(ht−1,xt, θp). (4)

Here, the function LSTM(·, ·, ·, ·) is a shorthand
for Eq. (1-3), and θp represents all the parameters
of LSTM.

Text Classification with LSTM Given a text
sequence x = {x1, x2, · · · , xT }, we first use a
lookup layer to get the vector representation (em-
beddings) xi of the each word xi. The output at
the last moment hT can be regarded as the repre-
sentation of the whole sequence, which has a fully
connected layer followed by a softmax non-linear
layer that predicts the probability distribution over
classes.

ŷ = softmax(WhT + b) (5)

where ŷ is prediction probabilities, W is the
weight which needs to be learned, b is a bias term.

Given a corpus with N training samples
(xi, yi), the parameters of the network are trained
to minimise the cross-entropy of the predicted and
true distributions.

L(ŷ, y) = −
N∑

i=1

C∑

j=1

yji log(ŷ
j
i), (6)

where yji is the ground-truth label; ŷji is prediction
probabilities, and C is the class number.

2

softmax Lm
task

LSTM

softmax Ln
task

xm

xn

(a) Fully Shared Model (FS-MTL)

xm

xn

LSTM

LSTM

LSTM

softmax

softmax

Lm
task

Ln
task

(b) Shared-Private Model (SP-MTL)

Figure 2: Two architectures for learning multiple
tasks. Yellow and gray boxes represent shared and
private LSTM layers respectively.

3 Multi-task Learning for Text
Classification

The goal of multi-task learning is to utilizes the
correlation among these related tasks to improve
classification by learning tasks in parallel. To facil-
itate this, we give some explanation for notations
used in this paper. Formally, we refer to Dk as a
dataset with Nk samples for task k. Specifically,

Dk = {(xki , yki)}Nki=1 (7)

where xki and yki denote a sentence and corre-
sponding label for task k.

3.1 Two Sharing Schemes for Sentence
Modeling

The key factor of multi-task learning is the sharing
scheme in latent feature space. In neural network
based model, the latent features can be regarded as
the states of hidden neurons. Specific to text clas-
sification, the latent features are the hidden states
of LSTM at the end of a sentence. Therefore, the
sharing schemes are different in how to group the
shared features. Here, we first introduce two shar-
ing schemes with multi-task learning: fully-shared
scheme and shared-private scheme.

Fully-Shared Model (FS-MTL) In fully-shared
model, we use a single shared LSTM layer to ex-
tract features for all the tasks. For example, given
two tasks m and n, it takes the view that the fea-
tures of task m can be totally shared by task n and
vice versa. This model ignores the fact that some
features are task-dependent. Figure 2a illustrates
the fully-shared model.

Shared-Private Model (SP-MTL) As shown in
Figure 2b, the shared-private model introduces
two feature spaces for each task: one is used to
store task-dependent features, the other is used
to capture task-invariant features. Accordingly, we
can see each task is assigned a private LSTM layer
and shared LSTM layer. Formally, for any sen-
tence in task k, we can compute its shared rep-
resentation skt and task-specific representation hkt
as follows:

skt = LSTM(xt, s
k
t−1, θs), (8)

hkt = LSTM(xt,h
m
t−1, θk) (9)

where LSTM(., θ) is defined as Eq. (4).
The final features are concatenation of the fea-

tures from private space and shared space.

3.2 Task-Specific Output Layer

For a sentence in task k, its feature h(k), emitted
by the deep muti-task architectures, is ultimately
fed into the corresponding task-specific softmax
layer for classification or other tasks.

The parameters of the network are trained to
minimise the cross-entropy of the predicted and
true distributions on all the tasks. The loss Ltask
can be computed as:

LTask =
K∑

k=1

αkL(ŷ
(k), y(k)) (10)

where αk is the weights for each task k respec-
tively. L(ŷ, y) is defined as Eq. 6.

4 Incorporating Adversarial Training

Although the shared-private model separates the
feature space into the shared and private spaces,
there is no guarantee that sharable features can not
exist in private feature space, or vice versa. Thus,
some useful sharable features could be ignored in
shared-private model, and the shared feature space
is also vulnerable to contamination by some task-
specific information.

Therefore, a simple principle can be applied
into multi-task learning that a good shared feature
space should contain more common information
and no task-specific information. To address this
problem, we introduce adversarial training into
multi-task framework as shown in Figure 3 (ASP-
MTL).

3

xm

xn

LSTM

LSTM

LSTM

LDiff LAdvLDiff

softmax

softmax

Lm
task

Ln
task

Figure 3: Adversarial shared-private model. Yel-
low and gray boxes represent shared and private
LSTM layers respectively.

4.1 Adversarial Network
Adversarial networks have recently surfaced and
are first used for generative model (Goodfellow
et al., 2014). The goal is to learn a generative dis-
tribution pG(x) that matches the real data distri-
bution Pdata(x) Specifically, GAN learns a gen-
erative network G and discriminative model D,
in which G generates samples from the genera-
tor distribution pG(x). and D learns to determine
whether a sample is from pG(x) or Pdata(x). This
min-max game can be optimized by the following
risk:

φ = min
G

max
D

(
Ex∼Pdata [logD(x)]

+ Ez∼p(z)[log(1−D(G(z)))]
)

(11)

While originally proposed for generating random
samples, adversarial network can be used as a gen-
eral tool to measure equivalence between distri-
butions (Taigman et al., 2016). Formally, (Ajakan
et al., 2014) linked the adversarial loss to the
H-divergence between two distributions and suc-
cessfully achieve unsupervised domain adaptation
with adversarial network. Motivated by theory on
domain adaptation (Ben-David et al., 2010, 2007;
Bousmalis et al., 2016) that a transferable feature
is one for which an algorithm cannot learn to iden-
tify the domain of origin of the input observation.

4.2 Task Adversarial Loss for MTL
Inspired by adversarial networks (Goodfellow
et al., 2014), we proposed an adversarial shared-
private model for multi-task learning, in which a
shared recurrent neural layer is working adversar-
ially towards a learnable multi-layer perceptron,
preventing it from making an accurate prediction
about the types of tasks. This adversarial training
encourages shared space to be more pure and en-
sure the shared representation not be contaminated
by task-specific features.

Task Discriminator Discriminator is used to
map the shared representation of sentences into a
probability distribution, estimating what kinds of
tasks the encoded sentence comes from.

D(skT , θD) = softmax(b+UskT) (12)

where U ∈ Rd×d is a learnable parameter and b ∈
Rd is a bias.

Adversarial Loss Different with most existing
multi-task learning algorithm, we add an extra task
adversarial loss LAdv to prevent task-specific fea-
ture from creeping in to shared space. The task
adversarial loss is used to train a model to pro-
duce shared features such that a classifier cannot
reliably predict the task based on these features.
The original loss of adversarial network is limited
since it can only be used in binary situation. To
overcome this, we extend it to multi-class form,
which allow our model can be trained together
with multiple tasks:

LAdv = min
θs

(
λmax
θD

(

K∑

k=1

Nk∑

i=1

dki log[D(E(xk))])

)
(13)

where dki denotes the ground-truth label indicating
the type of the current task. Here, there is a min-
max optimization and the basic idea is that, given
a sentence, the shared LSTM generates a repre-
sentation to mislead the task discriminator. At the
same time, the discriminator tries its best to make
a correct classification on the type of task. After
the training phase, the shared feature extractor and
task discriminator reach a point at which both can-
not improve and the discriminator is unable to dif-
ferentiate among all the tasks.

Semi-supervised Learning Multi-task Learning
We notice that the LAdv requires only the input
sentence x and does not require the correspond-
ing label y, which makes it possible to combine
our model with semi-supervised learning. Finally,
in this semi-supervised multi-task learning frame-
work, our model can not only utilize the data from
related tasks, but can employ abundant unlabeled
corpora.

4.3 Orthogonality Constraints
We notice that there is a potential drawback of the
above model. That is, the task-invariant features
can appear both in shared space and private space.

Motivated by recently work(Jia et al., 2010;
Salzmann et al., 2010; Bousmalis et al., 2016)

4

Dataset Train Dev. Test Unlab. Avg. L Vocab.

Books 1400 200 400 2000 159 62K
Elec. 1398 200 400 2000 101 30K
DVD 1400 200 400 2000 173 69K
Kitchen 1400 200 400 2000 89 28K
Apparel 1400 200 400 2000 57 21K
Camera 1397 200 400 2000 130 26K
Health 1400 200 400 2000 81 26K
Music 1400 200 400 2000 136 60K
Toys 1400 200 400 2000 90 28K
Video 1400 200 400 2000 156 57K
Baby 1300 200 400 2000 104 26K
Mag. 1370 200 400 2000 117 30K
Soft. 1315 200 400 475 129 26K
Sports 1400 200 400 2000 94 30K
IMDB 1400 200 400 2000 269 44K
MR 1400 200 400 2000 21 12K

Table 1: Statistics of the 16 datasets. The columns
2-5 denote the number of samples in training, de-
velopment, test and unlabeled sets. The last two
columns represent the average length and vocabu-
lary size of corresponding dataset.

on shared-private latent space analysis, we intro-
duce orthogonality constraints, which penalize re-
dundant latent representations and encourages the
shared and private extractors to encode different
aspects of the inputs.

After exploring many optional methods, we find
below loss is optimal, which is used by Bousmalis
et al. (2016) and achieve a better performance:

Ldiff =
K∑

k=1

∥∥∥Sk>Hk
∥∥∥

2

F
, (14)

where ‖ · ‖2F is the squared Frobenius norm. Sk

and Hk are two matrics, whose rows are the out-
put of shared extractor Es(, ; θs) and task-specific
extrator Ek(, ; θk) of a input sentence.

4.4 Put It All Together

The final loss function of our model can be written
as:

L = LTask + λLAdv + γLDiff (15)

where λ and γ are hyper-parameter.
The networks are trained with backpropagation

and this minimax optimization becomes possible
via the use of a gradient reversal layer (Ganin and
Lempitsky, 2015).

5 Experiment

5.1 Dataset

To make an extensive evaluation, we collect 16
different datasets from several popular review cor-
pora.

The first 14 datasets are product reviews, which
contain Amazon product reviews from different
domains, such as Books, DVDs, Electronics, ect.
The goal is to classify a product review as either
positive or negative. These datasets are collected
based on the raw data 1 provided by (Blitzer et al.,
2007). Specifically, we extract the sentences and
corresponding labels from the unprocessed orig-
inal data 2. The only preprocessing operation of
these sentences is tokenized using the Stanford to-
kenizer 3.

The remaining two datasets are about movie re-
views. The IMDB dataset4 consists of movie re-
views with binary classes (Maas et al., 2011). One
key aspect of this dataset is that each movie review
has several sentences. The MR dataset also con-
sists of movie reviews from rotten tomato website
with two classes 5(Pang and Lee, 2005).

All the datasets in each task are partitioned ran-
domly into training set, development set and test-
ing set with the proportion of 70%, 20% and 10%
respectively. The detailed statistics about all the
datasets are listed in Table 1.

5.2 Competitor Methods for Multi-task
Learning

The multi-task frameworks proposed by previous
works are various while not all can be applied to
the tasks we focused. Nevertheless, we chose two
most related neural models for multi-task learning
and implement them as competitor methods.

• MT-CNN: This model is proposed by Col-
lobert and Weston (2008) with convolutional
layer, in which lookup-tables are shared par-
tially while other layers are task-specific.

1https://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/

2Blitzer et al. (2007) also provides two extra processed
datasets with the format of Bag-of-Words, which are not
proper for neural-based models.

3http://nlp.stanford.edu/software/
tokenizer.shtml

4https://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/unprocessed.tar.gz

5https://www.cs.cornell.edu/people/
pabo/movie-review-data/.

5

Task Single Task Multiple Tasks

LSTM BiLSTM sLSTM Avg. MT-DNN MT-CNN FS-MTL SP-MTL ASP-MTL

Books 20.5 19.0 18.0 19.2 17.8(−1.4) 15.5(−3.7) 17.5(−1.7) 18.8(−0.4) 16.0(−3.2)

Electronics 19.5 21.5 23.3 21.4 18.3(−3.1) 16.8(−4.6) 14.3(−7.1) 15.3(−6.1) 13.2(−8.2)

DVD 18.3 19.5 22.0 19.9 15.8(−4.1) 16.0(−3.9) 16.5(−3.4) 16.0(−3.9) 14.5(−5.4)

Kitchen 22.0 18.8 19.5 20.1 19.3(−0.8) 16.8(−3.3) 14.0(−6.1) 14.8(−5.3) 13.8(−6.3)

Apparel 16.8 14.0 16.3 15.7 15.0(−0.7) 16.3(+0.6) 15.5(−0.2) 13.5(−2.2) 13.0(−2.7)

Camera 14.8 14.0 15.0 14.6 13.8(−0.8) 14.0(−0.6) 13.5(−1.1) 12.0(−2.6) 10.8(−3.8)

Health 15.5 21.3 16.5 17.8 14.3(−3.5) 12.8(−5.0) 12.0(−5.8) 12.8(−5.0) 11.8(−6.0)

Music 23.3 22.8 23.0 23.0 15.3(−7.7) 16.3(−6.7) 18.8(−4.2) 17.0(−6.0) 17.5(−5.5)

Toys 16.8 15.3 16.8 16.3 12.3(−4.0) 10.8(−5.5) 15.5(−0.8) 14.8(−1.5) 12.0(−4.3)

Video 18.5 16.3 16.3 17.0 15.0(−2.0) 18.5(+1.5) 16.3(−0.7) 16.8(−0.2) 15.5(−1.5)

Baby 15.3 16.5 15.8 15.9 12.0(−3.9) 12.3(−3.6) 12.0(−3.9) 13.3(−2.6) 11.8(−4.1)

Magazines 10.8 8.5 12.3 10.5 10.5(+0.0) 12.3(+1.8) 7.5(−3.0) 8.0(−2.5) 7.8(−2.7)

Software 15.3 14.3 14.5 14.7 14.3(−0.4) 13.5(−1.2) 13.8(−0.9) 13.0(−1.7) 12.8(−1.9)

Sports 18.3 16.0 17.5 17.3 16.8(−0.5) 16.0(−1.3) 14.5(−2.8) 12.8(−4.5) 14.3(−3.0)

IMDB 18.3 15.0 18.5 17.3 16.8(−0.5) 13.8(−3.5) 17.5(+0.2) 15.3(−2.0) 14.5(−2.8)

MR 27.3 25.3 28.0 26.9 24.5(−2.4) 25.5(−1.4) 25.3(−1.6) 24.0(−2.9) 23.3(−3.6)

AVG 18.2 17.4 18.3 18.0 15.7(−2.2) 15.5(−2.5) 15.3(−2.7) 14.9(−3.1) 13.9(−4.1)

Table 2: Error rates of our models on 16 datasets against typical baselines. The numbers in brackets
represent the improvements relative to the average performance (Avg.) of three single task baselines.

• MT-DNN: The model is proposed by Liu
et al. (2015b) with bag-of-words input and
multi-layer perceptrons, in which a hidden
layer is shared.

5.3 Hyperparameters
The word embeddings for all of the models are ini-
tialized with the 200d GloVe vectors ((Pennington
et al., 2014)). The other parameters are initialized
by randomly sampling from uniform distribution
in [−0.1, 0.1]. The mini-batch size is set to 16.

For each task, we take the hyperparameters
which achieve the best performance on the devel-
opment set via an small grid search over com-
binations of the initial learning rate [0.1, 0.01],
λ ∈ [0.01, 0.1], and γ ∈ [0.01, 0.1]. Finally, we
chose the learning rate as 0.01, λ as 0.05 and γ as
0.01.

5.4 Performance Evaluation
Table 2 shows the error rates on 16 text clas-
sification tasks. The column of “Single Task”
shows the results of vanilla LSTM, bidirectional
LSTM (BiLSTM), stacked LSTM (sLSTM) and
the average error rates of previous three models.
The column of “Multiple Tasks” shows the re-
sults achieved by corresponding multi-task mod-
els. From this table, we can see that the perfor-
mance of most tasks can be improved with a large
margin with the help of multi-task learning, in
which our model achieves the lowest error rates.
More concretely, compared with SP-MTL, ASP-

MTL achieves 4.1% average improvement sur-
passing SP-MTL with 1.0%, which indicates the
importance of adversarial learning. It is notewor-
thy that for FS-MTL, the performances of some
tasks are degraded, since this model puts all pri-
vate and shared information into a unified space.

5.5 Shared Knowledge Transfer
With the help of adversarial learning, the shared
feature extractor Es can generate more pure task-
invariant representations, which can be considered
as off-the-shelf knowledge and then be used for
unseen new tasks.

To test the transferability of our learned shared
extractor, we also design an experiment, in which
we take turns choosing 15 tasks to train our model
MS with multi-task learning, then the learned
shared layer are transferred to a second network
MT that is used for the remaining one task. The
parameters of transferred layer are kept frozen,
and the rest of parameters of the network MT are
randomly initialized.

More formally, we investigate two mechanisms
towards the transferred shared extractor. As shown
in Figure 4. The first one Single Channel (SC)
model consists of one shared feature extractor Es
from MS , then the extracted representation will
be sent to an output layer. By contrast, the Bi-
Channel (BC) model introduces an extra LSTM
layer to encode more task-specific information. To
evaluate the effectiveness of our introduced adver-
sarial training framework, we also make a compar-

6

Source Tasks Single Task Transfer Models

LSTM BiLSTM sLSTM Avg. SP-MTL-SC SP-MTL-BC ASP-MTL-SC ASP-MTL-BC

φ (Books) 20.5 19.0 18.0 19.2 17.8(−1.4) 16.3(−2.9) 16.8(−2.4) 16.3(−2.9)

φ (Electronics) 19.5 21.5 23.3 21.4 15.3(−6.1) 14.8(−6.6) 17.8(−3.6) 16.8(−4.6)

φ (DVD) 18.3 19.5 22.0 19.9 14.8(−5.1) 15.5(−4.4) 14.5(−5.4) 14.3(−5.6)

φ (Kitchen) 22.0 18.8 19.5 20.1 15.0(−5.1) 16.3(−3.8) 16.3(−3.8) 15.0(−5.1)

φ (Apparel) 16.8 14.0 16.3 15.7 14.8(−0.9) 12.0(−3.7) 12.5(−3.2) 13.8(−1.9)

φ (Camera) 14.8 14.0 15.0 14.6 13.3(−1.3) 12.5(−2.1) 11.8(−2.8) 10.3(−4.3)

φ (Health) 15.5 21.3 16.5 17.8 14.5(−3.3) 14.3(−3.5) 12.3(−5.5) 13.5(−4.3)

φ (Music) 23.3 22.8 23.0 23.0 20.0(−3.0) 17.8(−5.2) 17.5(−5.5) 18.3(−4.7)

φ (Toys) 16.8 15.3 16.8 16.3 13.8(−2.5) 12.5(−3.8) 13.0(−3.3) 11.8(−4.5)

φ (Video) 18.5 16.3 16.3 17.0 14.3(−2.7) 15.0(−2.0) 14.8(−2.2) 14.8(−2.2)

φ (Baby) 15.3 16.5 15.8 15.9 16.5(+0.6) 16.8(+0.9) 13.5(−2.4) 12.0(−3.9)

φ (Magazines) 10.8 8.5 12.3 10.5 10.5(+0.0) 10.3(−0.2) 8.8(−1.7) 9.5(−1.0)

φ (Software) 15.3 14.3 14.5 14.7 13.0(−1.7) 12.8(−1.9) 14.5(−0.2) 11.8(−2.9)

φ (Sports) 18.3 16.0 17.5 17.3 16.3(−1.0) 16.3(−1.0) 13.3(−4.0) 13.5(−3.8)

φ (IMDB) 18.3 15.0 18.5 17.3 12.8(−4.5) 12.8(−4.5) 12.5(−4.8) 13.3(−4.0)

φ (MR) 27.3 25.3 28.0 26.9 26.0(−0.9) 26.5(−0.4) 24.8(−2.1) 23.5(−3.4)

AVG 18.2 17.4 18.3 18.0 15.6(−2.4) 15.2(−2.8) 14.7(−3.3) 14.3(−3.7)

Table 3: Error rates of our models on 16 datasets against vanilla multi-task learning. φ (Books) means
that we transfer the knowledge of the other 15 tasks to the target task Books.

xt LSTM softmax

Es

(a) Single Channel

xt

LSTM

LSTM

softmax

Es

(b) Bi-Channel

Figure 4: Two transfer strategies using a pre-
trained shared LSTM layer. Yellow box denotes
shared feature extractor Es trained by 15 tasks.

ison with vanilla multi-task learning method.

Results and Analysis As shown in Table 3, we
can see the shared layer from ASP-MTL achieves
a better performance compared with SP-MTL. Be-
sides, for the two kinds of transfer strategies, the
Bi-Channel model performs better. The reason is
that the task-specific layer introduced in the Bi-
Channel model can store some private features.
Overall, the results indicate that we can save the
existing knowledge into a shared recurrent layer
using adversarial multi-task learning, which is
quite useful for a new task.

5.6 Visualization

To get an intuitive understanding of how the intro-
duced orthogonality constraints worked compared
with vanilla shared-private model, we design an
experiment to examine the behaviors of neurons
from private layer and shared layer. More con-
cretely, we refer to htj as the activation of the j-
neuron at time step t, where t ∈ {1, . . . , n} and

j ∈ {1, . . . , d}. By visualizing the hidden state
hj and analyzing the maximum activation, we can
find what kinds of patterns the current neuron fo-
cuses on.

Figure 5 illustrates this phenomenon. Here, we
randomly sample a sentence from the validation
set of Baby task and analyze the changes of the
predicted sentiment score at different time steps,
which are obtained by SP-MTL and our proposed
model. Additionally, to get more insights into
how neurons in shared layer behave diversely
towards different input word, we visualize the
activation of two typical neurons. For the positive
sentence “Five stars, my baby can
fall asleep soon in the stroller”,
both models capture the informative pattern
“Five stars” 6. However, SP-MTL makes a
wrong prediction due to misunderstanding of the
word “asleep”.

By contrast, our model makes a correct predic-
tion and the reason can be inferred from the acti-
vation of Figure 5-(b), where the shared layer of
SP-MTL is so sensitive that many features related
to other tasks are included, such as ”asleep”,
which misleads the final prediction. This indicates
the importance of introducing adversarial learning
to prevent the shared layer from being contami-
nated by task-specific features.

We also list some typical patterns captured by

6For this case, the vanilla LSTM also give a wrong answer
due to ignoring the feature “Five stars”.

7

Five stars , my baby can fall asleep soon in the stroller
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

SP-MTL
Ours

(a) Predicted Sentiment Score by Two Models (b) Behaviours of Neuron hs
18 and hs

21

Figure 5: (a) The change of the predicted sentiment score at different time steps. Y-axis represents the
sentiment score, while X-axis represents the input words in chronological order. The darker grey horizon-
tal line gives a border between the positive and negative sentiments. (b) The purple heat map describes the
behaviour of neuron hs18 from shared layer of SP-MTL, while the blue one is used to show the behaviour
of neuron hs21, which belongs to the shared layer of our model.

Model Shared Layer Task-Movie Task-Baby

SP-MTL

good, great
bad, love,
simple, cut,
slow, cheap,
infantile

good, great,
well-directed,
pointless, cut,
cheap, infantile

love, bad,
cute, safety,
mild, broken
simple

ASP-MTL
good, great,
love, bad
poor

well-directed,
pointless, cut,
cheap, infantile

cute, safety,
mild, broken
simple

Table 4: Typical patterns captured by shared layer
and task-specific layer of SP-MTL and ASP-MTL
models on Movie and Baby tasks.

neurons from shared layer and task-specific layer
in Table 4, and we have observed that: 1) for
SP-MTL, if some patterns are captured by task-
specific layer, they are likely to be placed into
shared space. Clearly, suppose we have many tasks
to be trained jointly, the shared layer bear much
pressure and must sacrifice substantial amount
of capacity to capture the patterns they actu-
ally do not need. Furthermore, some typical task-
invariant features also go into task-specific layer.
2) for ASP-MTL, we find the features captured by
shared and task-specific layer have a small amount
of intersection, which allows these two kinds of
layers can work effectively.

6 Related Work

There are two threads of related work. One thread
is multi-task learning with neural network. Neu-
ral networks based multi-task learning has been
proven effective in many NLP problems (Col-
lobert and Weston, 2008; Glorot et al., 2011).

Liu et al. (2016c) first utilizes different LSTM
layers to construct multi-task learning framwork

for text classification. Liu et al. (2016b) proposes
a generic multi-task framework, in which different
tasks can share information by an external mem-
ory and communicate by a reading/writing mech-
anism. These work has potential limitation of just
learning a shared space solely on sharing param-
eters, while our model introduce two strategies to
learn the clear and non-redundant shared-private
space.

Another thread of work is adversarial network.
Adversarial networks have recently surfaced as a
general tool measure equivalence between distri-
butions and it has proven to be effective in a va-
riety of tasks. Ajakan et al. (2014); Bousmalis
et al. (2016) applied adverarial training to domain
adaptation, aiming at transferring the knowledge
of one source domain to target domain. Park and
Im (2016) proposed a novel approach for multi-
modal representation learning which uses adver-
sarial back-propagation concept.

Different from these models, our model aims to
find task-invariant sharable information for mul-
tiple related tasks using adversarial training strat-
egy. Moreover, we extend binary adversarial train-
ing to multi-class, which enable multiple tasks to
be jointly trained.

7 Conclusion

In this paper, we have proposed an adversarial
multi-task learning framework, in which the task-
specific and task-invariant features are learned
non-redundantly, therefore capturing the shared-
private separation of different tasks. We have
demonstrated the effectiveness of our approach by
applying our model to 16 different text classifica-
tion tasks. We also perform extensive qualitative

8

analysis, deriving insights and indirectly explain-
ing the quantitative improvements in the overall
performance.

Acknowledgments

We would like to thank the anonymous review-
ers for their valuable comments and thank Kaiyu
Qian, Gang Niu for useful discussions. This work
was partially funded by National Natural Sci-
ence Foundation of China (No. 61532011 and
61672162), the National High Technology Re-
search and Development Program of China (No.
2015AA015408), Shanghai Municipal Science
and Technology Commission (No. 16JC1420401).

References
Hana Ajakan, Pascal Germain, Hugo Larochelle,

François Laviolette, and Mario Marchand. 2014.
Domain-adversarial neural networks. arXiv preprint
arXiv:1412.4446 .

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. 2010. A theory of learning from different
domains. Machine learning 79(1-2):151–175.

Shai Ben-David, John Blitzer, Koby Crammer, Fer-
nando Pereira, et al. 2007. Analysis of represen-
tations for domain adaptation. Advances in neural
information processing systems 19:137.

John Blitzer, Mark Dredze, Fernando Pereira, et al.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classifi-
cation. In ACL. volume 7, pages 440–447.

Konstantinos Bousmalis, George Trigeorgis, Nathan
Silberman, Dilip Krishnan, and Dumitru Erhan.
2016. Domain separation networks. In Advances in
Neural Information Processing Systems. pages 343–
351.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of ICML.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The JMLR 12:2493–2537.

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science 14(2):179–211.

Yaroslav Ganin and Victor Lempitsky. 2015. Unsu-
pervised domain adaptation by backpropagation. In
Proceedings of the 32nd International Conference
on Machine Learning (ICML-15). pages 1180–1189.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Pro-
ceedings of the 28th International Conference on
Machine Learning (ICML-11). pages 513–520.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems. pages 2672–2680.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Yangqing Jia, Mathieu Salzmann, and Trevor Darrell.
2010. Factorized latent spaces with structured spar-
sity. In Advances in Neural Information Processing
Systems. pages 982–990.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In Proceedings of The
32nd International Conference on Machine Learn-
ing.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of ACL.

Zhouhan Lin, Minwei Feng, Cicero Nogueira dos San-
tos, Mo Yu, Bing Xiang, Bowen Zhou, and Yoshua
Bengio. 2017. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130 .

Pengfe Liu, Xipeng Qiu, Jifan Chen, and Xuanjing
Huang. 2016a. Deep fusion LSTMs for text seman-
tic matching. In Proceedings of ACL.

PengFei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu,
and Xuanjing Huang. 2015a. Multi-timescale long
short-term memory neural network for modelling
sentences and documents. In Proceedings of the
Conference on EMNLP.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016b.
Deep multi-task learning with shared memory. In
Proceedings of EMNLP.

PengFei Liu, Xipeng Qiu, and Xuanjing Huang. 2016c.
Recurrent neural network for text classification with
multi-task learning. In Proceedings of International
Joint Conference on Artificial Intelligence.

9

Xiaodong Liu, Jianfeng Gao, Xiaodong He, Li Deng,
Kevin Duh, and Ye-Yi Wang. 2015b. Representation
learning using multi-task deep neural networks for
semantic classification and information retrieval. In
NAACL.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114 .

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the ACL. pages 142–150.

Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and
Martial Hebert. 2016. Cross-stitch networks for
multi-task learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition. pages 3994–4003.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of
the 43rd annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 115–124.

Gwangbeen Park and Woobin Im. 2016. Image-text
multi-modal representation learning by adversarial
backpropagation. arXiv preprint arXiv:1612.08354
.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. Proceedings of the EMNLP 12:1532–
1543.

Mathieu Salzmann, Carl Henrik Ek, Raquel Urtasun,
and Trevor Darrell. 2010. Factorized orthogonal la-
tent spaces. In AISTATS. pages 701–708.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in NIPS. pages 3104–3112.

Yaniv Taigman, Adam Polyak, and Lior Wolf.
2016. Unsupervised cross-domain image genera-
tion. arXiv preprint arXiv:1611.02200 .

Zhanpeng Zhang, Ping Luo, Chen Change Loy, and
Xiaoou Tang. 2014. Facial landmark detection by
deep multi-task learning. In European Conference
on Computer Vision. Springer, pages 94–108.

10

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 11–22
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1002

Neural End-to-End Learning for Computational Argumentation Mining

Steffen Eger†‡, Johannes Daxenberger†, Iryna Gurevych†‡
†Ubiquitous Knowledge Processing Lab (UKP-TUDA)

Department of Computer Science, Technische Universitt Darmstadt
‡Ubiquitous Knowledge Processing Lab (UKP-DIPF)

German Institute for Educational Research and Educational Information
http://www.ukp.tu-darmstadt.de

Abstract

We investigate neural techniques for end-
to-end computational argumentation min-
ing (AM). We frame AM both as a token-
based dependency parsing and as a token-
based sequence tagging problem, includ-
ing a multi-task learning setup. Contrary
to models that operate on the argument
component level, we find that framing AM
as dependency parsing leads to subpar per-
formance results. In contrast, less com-
plex (local) tagging models based on BiL-
STMs perform robustly across classifica-
tion scenarios, being able to catch long-
range dependencies inherent to the AM
problem. Moreover, we find that jointly
learning ‘natural’ subtasks, in a multi-task
learning setup, improves performance.

1 Introduction

Computational argumentation mining (AM) deals
with finding argumentation structures in text. This
involves several subtasks, such as: (a) separating
argumentative units from non-argumentative units,
also called ‘component segmentation’; (b) classi-
fying argument components into classes such as
“Premise” or “Claim”; (c) finding relations be-
tween argument components; (d) classifying rela-
tions into classes such as “Support” or “Attack”
(Persing and Ng, 2016; Stab and Gurevych, 2017).

Thus, AM would have to detect claims and
premises (reasons) in texts such as the following,
where premise P supports claim C:

Since it killed many marine livesP ,

:::::::
tourism

:::
has

::::::::::
threatened

::::::
natureC .

Argument structures in real texts are typically
much more complex, cf. Figure 1.

While different research has addressed different
subsets of the AM problem (see below), the ul-
timate goal is to solve all of them, starting from
unannotated plain text. Two recent approaches to
this end-to-end learning scenario are Persing and
Ng (2016) and Stab and Gurevych (2017). Both
solve the end-to-end task by first training indepen-
dent models for each subtask and then defining an
integer linear programming (ILP) model that en-
codes global constraints such as that each premise
has a parent, etc. Besides their pipeline architec-
ture the approaches also have in common that they
heavily rely on hand-crafted features.

Hand-crafted features pose a problem because
AM is to some degree an “arbitrary” problem in
that the notion of “argument” critically relies on
the underlying argumentation theory (Reed et al.,
2008; Biran and Rambow, 2011; Habernal and
Gurevych, 2015; Stab and Gurevych, 2017). Ac-
cordingly, datasets typically differ with respect to
their annotation of (often rather complex) argu-
ment structure. Thus, feature sets would have to
be manually adapted to and designed for each new
sample of data, a challenging task. The same cri-
tique applies to the designing of ILP constraints.
Moreover, from a machine learning perspective,
pipeline approaches are problematic because they
solve subtasks independently and thus lead to er-
ror propagation rather than exploiting interrela-
tionships between variables. In contrast to this, we
investigate neural techniques for end-to-end learn-
ing in computational AM, which do not require
the hand-crafting of features or constraints. The
models we survey also all capture some notion of
“joint”—rather than “pipeline”—learning. We in-
vestigate several approaches.

First, we frame the end-to-end AM problem
as a dependency parsing problem. Dependency
parsing may be considered a natural choice for
AM, because argument structures often form trees,

11

https://doi.org/10.18653/v1/P17-1002

or closely resemble them (see §3). Hence, it
is not surprising that ‘discourse parsing’ (Muller
et al., 2012) has been suggested for AM (Peld-
szus and Stede, 2015). What distinguishes our
approach from these previous ones is that we op-
erate on the token level, rather than on the level
of components, because we address the end-to-
end framework and, thus, do not assume that non-
argumentative units have already been sorted out
and/or that the boundaries of argumentative units
are given.

Second, we frame the problem as a sequence
tagging problem. This is a natural choice espe-
cially for component identification (segmentation
and classification), which is a typical entity recog-
nition problem for which BIO tagging is a stan-
dard approach, pursued in AM, e.g., by Haber-
nal and Gurevych (2016). The challenge in the
end-to-end setting is to also include relations into
the tagging scheme, which we realize by coding
the distances between linked components into the
tag label. Since related entities in AM are often-
times several dozens of tokens apart from each
other, neural sequence tagging models are in prin-
ciple ideal candidates for such a framing because
they can take into account long-range dependen-
cies—something that is inherently difficult to cap-
ture with traditional feature-based tagging models
such as conditional random fields (CRFs).

Third, we frame AM as a multi-task (tagging)
problem (Caruana, 1997; Collobert and Weston,
2008). We experiment with subtasks of AM—e.g.,
component identification—as auxiliary tasks and
investigate whether this improves performance on
the AM problem. Adding such subtasks can be
seen as analogous to de-coupling, e.g., component
identification from the full AM problem.

Fourth, we evaluate the model of Miwa and
Bansal (2016) that combines sequential (entity)
and tree structure (relation) information and is in
principle applicable to any problem where the aim
is to extract entities and their relations. As such,
this model makes fewer assumptions than our de-
pendency parsing and tagging approaches.

The contributions of this paper are as follows.
(1) We present the first neural end-to-end solu-
tions to computational AM. (2) We show that sev-
eral of them perform better than the state-of-the-
art joint ILP model. (3) We show that a framing
of AM as a token-based dependency parsing prob-
lem is ineffective—in contrast to what has been

proposed for systems that operate on the coarser
component level and that (4) a standard neural se-
quence tagging model that encodes distance in-
formation between components performs robustly
in different environments. Finally, (5) we show
that a multi-task learning setup where natural sub-
tasks of the full AM problem are added as auxil-
iary tasks improves performance.1

2 Related Work

AM has applications in legal decision making
(Palau and Moens, 2009; Moens et al., 2007), doc-
ument summarization, and the analysis of scien-
tific papers (Kirschner et al., 2015). Its importance
for the educational domain has been highlighted
by recent work on writing assistance (Zhang and
Litman, 2016) and essay scoring (Persing and Ng,
2015; Somasundaran et al., 2016).

Most works on AM address subtasks of AM
such as locating/classifying components (Florou
et al., 2013; Moens et al., 2007; Rooney et al.,
2012; Knight et al., 2003; Levy et al., 2014; Rinott
et al., 2015). Relatively few works address the full
AM problem of component and relation identifi-
cation. Peldszus and Stede (2016) present a cor-
pus of microtexts containing only argumentatively
relevant text of controlled complexity. To our best
knowledge, Stab and Gurevych (2017) created the
only corpus of attested high quality which anno-
tates the AM problem in its entire complexity: it
contains token-level annotations of components,
their types, as well as relations and their types.

3 Data

We use the dataset of persuasive essays (PE) from
Stab and Gurevych (2017), which contains student
essays written in response to controversial top-
ics such as “competition or cooperation—which is
better?”

Train Test

Essays 322 80
Paragraphs 1786 449
Tokens 118648 29538

Table 1: Corpus statistics

As Table 1 details, the corpus consists of 402 es-
says, 80 of which are reserved for testing. The an-

1Scripts that document how we ran our experiments
are available from https://github.com/UKPLab/
acl2017-neural_end2end_AM.

12

MC1 MC2

C1 C2 C3

P1
P2 P3 P4

P5 P6

MC1 C1 P1 P2 P3 P4 C2

P5 P6 C3 MC2

Figure 1: Bottom: Linear argumentation structure in a student essay. The essay is comprised of non-
argumentative units (square) and argumentative units of different types: Premises (P), claims (C) and
major claims (MC). Top: Relationsships between argumentative units. Solid arrows are support (for),
dashed arrows are attack (against).

notation distinguishes between major claims (the
central position of an author with respect to the es-
say’s topic), claims (controversial statements that
are either for or against the major claims), and
premises, which give reasons for claims or other
premises and either support or attack them. Over-
all, there are 751 major claims, 1506 claims, and
3832 premises. There are 5338 relations, most of
which are supporting relations (>90%).

The corpus has a special structure, illustrated in
Figure 1. First, major claims relate to no other
components. Second, claims always relate to all
other major claims.2 Third, each premise relates to
exactly one claim or premise. Thus, the argument
structure in each essay is—almost—a tree. Since
there may be several major claims, each claim po-
tentially connects to multiple targets, violating the
tree structure. This poses no problem, however,
since we can “loss-lessly” re-link the claims to one
of the major claims (e.g., the last major claim in a
document) and create a special root node to which
the major claims link. From this tree, the actual
graph can be uniquely reconstructed.

There is another peculiarity of this data. Each
essay is divided into paragraphs, of which there
are 2235 in total. The argumentation structure is
completely contained within a paragraph, except,
possibly, for the relation from claims to major
claims. Paragraphs have an average length of 66
tokens and are therefore much shorter than essays,
which have an average length of 368 tokens. Thus,
prediction on the paragraph level is easier than

2All MCs are considered as equivalent in meaning.

prediction on the essay level, because there are
fewer components in a paragraph and hence fewer
possibilities of source and target components in
argument relations. The same is true for compo-
nent classification: a paragraph can never contain
premises only, for example, since premises link to
other components.

4 Models

This section describes our neural network fram-
ings for end-to-end AM.

Sequence Tagging is the problem of assign-
ing each element in a stream of input tokens a
label. In a neural context, the natural choice
for tagging problems are recurrent neural nets
(RNNs) in which a hidden vector representation
ht at time point t depends on the previous hid-
den vector representation ht−1 and the input xt.
In this way, an infinite window (“long-range de-
pendencies”) around the current input token xt
can be taken into account when making an out-
put prediction yt. We choose particular RNNs,
namely, LSTMs (Hochreiter and Schmidhuber,
1997), which are popular for being able to address
vanishing/exploding gradients problems. In addi-
tion to considering a left-to-right flow of informa-
tion, bidirectional LSTMs (BL) also capture infor-
mation to the right of the current input token.

The most recent generation of neural tagging
models add label dependencies to BLs, so that
successive output decisions are not made indepen-
dently. This class of models is called BiLSTM-

13

CRF (BLC) (Huang et al., 2015). The model of
Ma and Hovy (2016) adds convolutional neural
nets (CNNs) on the character-level to BiLSTM-
CRFs, leading to BiLSTM-CRF-CNN (BLCC)
models. The character-level CNN may address
problems of out-of-vocabulary words, that is,
words not seen during training.

AM as Sequence Tagging: We frame AM as
the following sequence tagging problem. Each in-
put token has an associated label from Y , where

Y = {(b, t, d, s) | b ∈ {B, I,O}, t ∈ {P,C,MC,⊥},
d ∈ {. . . ,−2,−1, 1, 2, . . . ,⊥},
s ∈ {Supp,Att, For,Ag,⊥}}.

(1)

In other words, Y consists of all four-tuples
(b, t, d, s) where b is a BIO encoding indicating
whether the current token is non-argumentative
(O) or begins (B) or continues (I) a component;
t indicates the type of the component (claim C,
premise P, or major claim MC for our data). More-
over, d encodes the distance—measured in num-
ber of components—between the current compo-
nent and the component it relates to. We encode
the same d value for each token in a given compo-
nent. Finally, s is the relation type (“stance”) be-
tween two components and its value may be Sup-
port (Supp), Attack (Att), or For or Against (Ag).
We also have a special symbol ⊥ that indicates
when a particular slot is not filled: e.g., a non-
argumentative unit (b = O) has neither compo-
nent type, nor relation, nor relation type. We refer
to this framing as STagT (for “Simple Tagging”),
where T refers to the tagger used. For the example
from §1, our coding would hence be:

Since it killed many
(O,⊥,⊥,⊥) (B,P,1,Supp) (I,P,1,Supp) (I,P,1,Supp)

marine lives , tourism
(I,P,1,Supp) (I,P,1,Supp) (O,⊥,⊥,⊥) (B,C,⊥,For)

has threatened nature .
(I,C,⊥,For) (I,C,⊥,For) (I,C,⊥,For) (O,⊥, ⊥, ⊥)

While the size of the label set Y is potentially
infinite, we would expect it to be finite even in
a potentially infinitely large data set, because hu-
mans also have only finite memory and are there-
fore expected to keep related components close in
textual space. Indeed, as Figure 2 shows, in our
PE essay data set about 30% of all relations be-
tween components have distance −1, that is, they
follow the claim or premise that they attach to.
Overall, around 2/3 of all relation distances d lie

in {−2,−1, 1}. However, the figure also illus-
trates that there are indeed long-range dependen-
cies: distance values between −11 and +10 are
observed in the data.

0

5

10

15

20

25

30

−10 −5 0 5 10

%

d

d

Figure 2: Distribution of distances d between
components in PE dataset.

Multi-Task Learning Recently, there has been
a lot of interest in so-called multi-task learning
(MTL) scenarios, where several tasks are learned
jointly (Søgaard and Goldberg, 2016; Peng and
Dredze, 2016; Yang et al., 2016; Rusu et al., 2016;
Héctor and Plank, 2017). It has been argued that
such learning scenarios are closer to human learn-
ing because humans often transfer knowledge be-
tween several domains/tasks. In a neural context,
MTL is typically implemented via weight sharing:
several tasks are trained in the same network ar-
chitecture, thereby sharing a substantial portion of
network’s parameters. This forces the network to
learn generalized representations.

In the MTL framework of Søgaard and Gold-
berg (2016) the underlying model is a BiLSTM
with several hidden layers. Then, given differ-
ent tasks, each task k ‘feeds’ from one of the
hidden layers in the network. In particular, the
hidden states encoded in a specific layer are fed
into a multiclass classifier fk. The same work has
demonstrated that this MTL protocol may be suc-
cessful when there is a hierarchy between tasks
and ‘lower’ tasks feed from lower layers.

AM as MTL: We use the same framework
STagT for modeling AM as MTL. However, we
in addition train auxiliary tasks in the network—
each with a distinct label set Y ′.

Dependency Parsing methods can be classified
into graph-based and transition-based approaches
(Kiperwasser and Goldberg, 2016). Transition-
based parsers encode the parsing problem as a
sequence of configurations which may be modi-
fied by application of actions such as shift, reduce,

14

etc. The system starts with an initial configuration
in which sentence elements are on a buffer and a
stack, and a classifier successively decides which
action to take next, leading to different configura-
tions. The system terminates after a finite number
of actions, and the parse tree is read off the ter-
minal configuration. Graph-based parsers solve a
structured prediction problem in which the goal is
learning a scoring function over dependency trees
such that correct trees are scored above all others.

Traditional dependency parsers used hand-
crafted feature functions that look at “core” ele-
ments such as “word on top of the stack”, “POS
of word on top of the stack”, and conjunctions of
core features such as “word is X and POS is Y”
(see McDonald et al. (2005)). Most neural parsers
have not entirely abandoned feature engineering.
Instead, they rely, for example, on encoding the
core features of parsers as low-dimensional em-
bedding vectors (Chen and Manning, 2014) but ig-
nore feature combinations. Kiperwasser and Gold-
berg (2016) design a neural parser that uses only
four features: the BiLSTM vector representations
of the top 3 items on the stack and the first item on
the buffer. In contrast, Dyer et al. (2015)’s neural
parser associates each stack with a “stack LSTM”
that encodes their contents. Actions are chosen
based on the stack LSTM representations of the
stacks, and no more feature engineering is neces-
sary. Moreover, their parser has thus access to any
part of the input, its history and stack contents.

AM as Dependency Parsing: To frame a prob-
lem as a dependency parsing problem, each in-
stance of the problem must be encoded as a di-
rected tree, where tokens have heads, which in
turn are labeled. For end-to-end AM, we propose
the framing illustrated in Figure 3. We highlight
two design decisions, the remaining are analogous
and/or can be read off the figure.

• The head of each non-argumentative text to-
ken is the document terminating token END,
which is a punctuation mark in all our cases.
The label of this link is O, the symbol for
non-argumentative units.

• The head of each token in a premise is the
first token of the claim or premise that it
links to. The label of each of these links
is (b,P,Supp) or (b,P,Att) depending on
whether a premise “supports” or “attacks” a
claim or premise; b ∈ {B, I}.

1 2 3 4 5 6 7 8 9 10 11 12

O

(B,P,Supp)
(I,P,Supp)

O

(B,C,For)

Figure 3: Dependency representation of sample
sentence from §1. Links and selected labels.

LSTM-ER Miwa and Bansal (2016) present a
neural end-to-end system for identifying both enti-
ties as well as relations between them. Their entity
detection system is a BLC-type tagger and their re-
lation detection system is a neural net that predicts
a relation for each pair of detected entities. This
relation module is a TreeLSTM model that makes
use of dependency tree information. In addition
to de-coupling entity and relation detection but
jointly modeling them,3 pretraining on entities and
scheduled sampling (Bengio et al., 2015) is ap-
plied to prevent low performance at early training
stages of entity detection and relation classifica-
tion. To adapt LSTM-ER for the argument struc-
ture encoded in the PE dataset, we model three
types of entities (premise, claim, major claim) and
four types of relations (for, against, support, at-
tack).

We use the feature-based ILP model from
Stab and Gurevych (2017) as a comparison
system. This system solves the subtasks of
AM—component segmentation, component clas-
sification, relation detection and classification—
independently. Afterwards, it defines an ILP
model with various constraints to enforce valid ar-
gumentation structure. As features it uses struc-
tural, lexical, syntactic and context features, cf.
Stab and Gurevych (2017) and Persing and Ng
(2016).

Summarizing, we distinguish our framings in
terms of modularity and in terms of their con-
straints. Modularity: Our dependency parsing
framing and LSTM-ER are more modular than
STagT because they de-couple relation informa-
tion from entity information. However, (part of)

3By ‘de-coupling’, we mean that both tasks are treated
separately rather than merging entity and relation information
in the same tag label (output space). Still, a joint model like
that of Miwa and Bansal (2016) de-couples the two tasks in
such a way that many model parameters are shared across the
tasks, similarly as in MTL.

15

this modularity can be regained by using STagT
in an MTL setting. Moreover, since entity and re-
lation information are considerably different, such
a de-coupling may be advantageous. Constraints:
LSTM-ER can, in principle, model any kind of—
even many-to-many—relationships between de-
tected entities. Thus, it is not guaranteed to pro-
duce trees, as we observe in AM datasets. STagT
also does not need to produce trees, but it more
severely restricts search space than does LSTM-
ER: each token/component can only relate to one
(and not several) other tokens/components. The
same constraint is enforced by the dependency
parsing framing. All of the tagging modelings, in-
cluding LSTM-ER, are local models whereas our
parsing framing is a global model: it globally en-
forces a tree structure on the token-level.

Further remarks: (1) part of the TreeLSTM
modeling inherent to LSTM-ER is ineffective
for our data because this modeling exploits de-
pendency tree structures on the sentence level,
while relationships between components are al-
most never on the sentence level. In our data,
roughly 92% of all relationships are between com-
ponents that appear in different sentences. Sec-
ondly, (2) that a model enforces a constraint does
not necessarily mean that it is more suitable for a
respective task. It has frequently been observed
that models tend to produce output consistent with
constraints in their training data in such situations
(Zhang et al., 2017; Héctor and Plank, 2017); thus,
they have learned the constraints.

5 Experiments

This section presents and discusses the empirical
results for the AM framings outlined in §4. We
relegate issues of pre-trained word embeddings,
hyperparameter optimization and further practi-
cal issues to the supplementary material. Links
to software used as well as some additional error
analysis can also be found there.

Evaluation Metric We adopt the evaluation
metric suggested in Persing and Ng (2016). This
computes true positives TP, false positives FP, and
false negatives FN, and from these calculates com-
ponent and relation F1 scores as F1 =

2TP
2TP+FP+FN .

For space reasons, we refer to Persing and Ng
(2016) for specifics, but to illustrate, for compo-
nents, true positives are defined as the set of com-
ponents in the gold standard for which there ex-
ists a predicted component with the same type that

‘matches’. Persing and Ng (2016) define a notion
of what we may term ‘level α matching’: for ex-
ample, at the 100% level (exact match) predicted
and gold components must have exactly the same
spans, whereas at the 50% level they must only
share at least 50% of their tokens (approximate
match). We refer to these scores as C-F1 (100%)
and C-F1 (50%), respectively. For relations, an
analogous F1 score is determined, which we de-
note by R-F1 (100%) and R-F1 (50%). We note
that R-F1 scores depend on C-F1 scores because
correct relations must have correct arguments. We
also define a ‘global’ F1 score, which is the F1-
score of C-F1 and R-F1.

Most of our results are shown in Table 2.

(a) Dependency Parsing We show results for
the two feature-based parsers MST (McDonald
et al., 2005), Mate (Bohnet and Nivre, 2012) as
well as the neural parsers by Dyer et al. (2015)
(LSTM-Parser) and Kiperwasser and Goldberg
(2016) (Kiperwasser). We train and test all parsers
on the paragraph level, because training them on
essay level was typically too memory-exhaustive.

MST mostly labels only non-argumentative
units correctly, except for recognizing individ-
ual major claims, but never finds their exact
spans (e.g., “tourism can create negative impacts
on” while the gold major claim is “international
tourism can create negative impacts on the des-
tination countries”). Mate is slightly better and
in particular recognizes several major claims cor-
rectly. Kiperwasser performs decently on the ap-
proximate match level, but not on exact level.
Upon inspection, we find that the parser often pre-
dicts ‘too large’ component spans, e.g., by includ-
ing following punctuation. The best parser by far
is the LSTM-Parser. It is over 100% better than
Kiperwasser on exact spans and still several per-
centage points on approximate spans.

How does performance change when we switch
to the essay level? For the LSTM-Parser, the best
performance on essay level is 32.84%/47.44% C-
F1 (100%/50% level), and 9.11%/14.45% on R-
F1, but performance result varied drastically be-
tween different parametrizations. Thus, the per-
formance drop between paragraph and essay level
is in any case immense.

Since the employed features of modern feature-
based parsers are rather general—such as distance
between words or word identities—we had ex-
pected them to perform much better. The mini-

16

Paragraph level Essay level

Acc. C-F1 R-F1 F1 Acc. C-F1 R-F1 F1
100% 50% 100% 50% 100% 50% 100% 50% 100% 50% 100% 50%

MST-Parser 31.23 0 6.90 0 1.29 0 2.17
Mate 22.71 2.72 12.34 2.03 4.59 2.32 6.69
Kiperwasser 52.80 26.65 61.57 15.57 34.25 19.65 44.01
LSTM-Parser 55.68 58.86 68.20 35.63 40.87 44.38 51.11

STagBLCC 59.34 66.69 74.08 39.83 44.02 49.87 55.22 60.46 63.23 69.49 34.82 39.68 44.90 50.51

LSTM-ER 61.67 70.83 77.19 45.52 50.05 55.42 60.72 54.17 66.21 73.02 29.56 32.72 40.87 45.19

ILP 60.32 62.61 73.35 34.74 44.29 44.68 55.23

Table 2: Performance of dependency parsers, STagBLCC, LSTM-ER and ILP (from top to bottom). The
ILP model operates on both levels. Best scores in each column in bold (signific. at p < 0.01; Two-sided
Wilcoxon signed rank test, pairing F1 scores for documents). We also report token level accuracy.

mal feature set employed by Kiperwasser is appar-
ently not sufficient for accurate AM but still a lot
more powerful than the hand-crafted feature ap-
proaches. We hypothesize that the LSTM-Parser’s
good performance, relative to the other parsers, is
due to its encoding of the whole stack history—
rather than just the top elements on the stack as
in Kiperwasser— which makes it aware of much
larger ‘contexts’. While the drop in performance
from paragraph to essay level is expected, the
LSTM-Parser’s deterioration is much more severe
than the other models’ surveyed below. We believe
that this is due to a mixture of the following: (1)
‘capacity’, i.e., model complexity, of the parsers—
that is, risk of overfitting; and (2) few, but very
long sequences on essay level—that is, little train-
ing data (trees), paired with a huge search space
on each train/test instance, namely, the number of
possible trees on n tokens. See also our discus-
sions below, particularly, our stability analysis.

(b) Sequence Tagging For these experiments,
we use the BLCC tagger from Ma and Hovy
(2016) and refer to the resulting system as
STagBLCC. Again, we observe that paragraph
level is considerably easier than essay level; e.g.,
for relations, there is ∼5% points increase from
essay to paragraph level. Overall, STagBLCC is
∼13% better than the best parser for C-F1 and
∼11% better for R-F1 on the paragraph level. Our
explanation is that taggers are simpler local mod-
els, and thus need less training data and are less
prone to overfitting. Moreover, they can much bet-
ter deal with the long sequences because they are
largely invariant to length: e.g., it does in princi-
ple not matter, from a parameter estimation per-
spective, whether we train our taggers on two se-
quences of lengths n and m, respectively, or on

one long sequence of length n+m.

(c) MTL As indicated, we use the MTL tagging
framework from Søgaard and Goldberg (2016) for
multi-task experiments. The underlying tagging
framework is weaker than that of BLCC: there is
no CNN which can take subword information into
account and there are no dependencies between
output labels: each tagging prediction is made in-
dependently of the other predictions. We refer to
this system as STagBL.

Accordingly, as Table 3 shows for the essay
level (paragraph level omitted for space reasons),
results are generally weaker: For exact match,
C-F1 values are about ∼10% points below those
of STagBLCC, while approximate match perfor-
mances are much closer. Hence, the independence
assumptions of the BL tagger apparently lead to
more ‘local’ errors such as exact argument span
identification (cf. error analysis). An analogous
trend holds for argument relations.

Additional Tasks: We find that when we train
STagBL with only its main task—with label set
Y as in Eq. (1)—the overall result is worst. In
contrast, when we include the ‘natural subtasks’
“C” (label set YC consists of the projection on
the coordinates (b, t) in Y) and/or “R” (label set
YR consists of the projection on the coordinates
(d, s)), performance increases typically by a few
percentage points. This indicates that complex se-
quence tagging may benefit when we train a “sub-
labeler” in the same neural architecture, a find-
ing that may be particularly relevant for morpho-
logical POS tagging (Müller et al., 2013). Un-
like Søgaard and Goldberg (2016), we do not find
that the optimal architecture is the one in which
“lower” tasks (such as C or R) feed from lower
layers. In fact, in one of the best parametrizations

17

the C task and the full task feed from the same
layer in the deep BiLSTM. Moreover, we find that
the C task is consistently more helpful as an aux-
iliary task than the R task.

C-F1 R-F1 F1
100% 50% 100% 50% 100% 50%

Y-3 49.59 65.37 26.28 37.00 34.35 47.25

Y-3:YC -1 54.71 66.84 28.44 37.35 37.40 47.92
Y-3:YR-1 51.32 66.49 26.92 37.18 35.31 47.69
Y-3:YC -3 54.58 67.66 30.22 40.30 38.90 50.51
Y-3:YR-3 53.31 66.71 26.65 35.86 35.53 46.64
Y-3:YC -1:YR-2 52.95 67.84 27.90 39.71 36.54 50.09
Y-3:YC -3:YR-3 54.55 67.60 28.30 38.26 37.26 48.86

Table 3: Performance of MTL sequence tagging
approaches, essay level. Tasks separated by “:”.
Layers from which tasks feed are indicated by re-
spective numbers.

On essay level, (d) LSTM-ER performs very
well on component identification (+5% C-F1 com-
pared to STagBLCC), but rather poor on relation
identification (-18% R-F1). Hence, its overall
F1 on essay level is considerably below that of
STagBLCC. In contrast, LSTM-ER trained and
tested on paragraph level substantially outper-
forms all other systems discussed, both for com-
ponent as well as for relation identification.

We think that its generally excellent perfor-
mance on components is due to LSTM-ER’s
de-coupling of component and relation tasks.
Our findings indicate that a similar result can
be achieved for STagT via MTL when com-
ponents and relations are included as auxiliary
tasks, cf. Table 3. For example, the improve-
ment of LSTM-ER over STagBLCC, for C-F1,
roughly matches the increase for STagBL when
including components and relations separately
(Y-3:YC-3:YR-3) over not including them as aux-
iliary tasks (Y-3). Lastly, the better performance
of LSTM-ER over STagBLCC for relations on
paragraph level appears to be a consequence of
its better performance on components. E.g., when
both arguments are correctly predicted, STagBLCC
has even higher chance of getting their relation
correct than LSTM-ER (95.34% vs. 94.17%).

Why does LSTM-ER degrade so much on essay
level for R-F1? As said, text sequences are much
longer on essay level than on paragraph level—
hence, there are on average many more entities on
essay level. Thus, there are also many more pos-
sible relations between all entities discovered in a
text—namely, there are O(2m

2
) possible relations

between m discovered components. Due to its

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10

pr
ob

.c
or

re
ct

|d|

LSTM-ER
STagBLCC

Figure 4: Probability of correct relation identifica-
tion given true distance is |d|.

generality, LSTM-ER considers all these relations
as plausible, while STagT does not (for any of
choice of T): e.g., our coding explicitly constrains
each premise to link to exactly one other compo-
nent, rather than to 0, . . . ,m possible components,
as LSTM-ER allows. In addition, our explicit cod-
ing of distance values d biases the learner T to re-
flect the distribution of distance values found in
real essays—namely, that related components are
typically close in terms of the number of com-
ponents between them. In contrast, LSTM-ER
only mildly prefers short-range dependencies over
long-range dependencies, cf. Figure 4.

The (e) ILP has access to both paragraph and
essay level information and thus has always more
information than all neural systems compared to.
Thus, it also knows in which paragraph in an essay
it is. This is useful particularly for major claims,
which always occur in first or last paragraphs in
our data. Still, its performance is equal to or lower
than that of LSTM-ER and STagBLCC when both
are evaluated on paragraph level.

Stability Analysis
Table 4 shows averages and standard deviations of
two selected models, namely, the STagBLCC tag-
ging framework as well as the LSTM-Parser over
several different runs (different random initializa-
tions as well as different hyperparameters as dis-
cussed in the supplementary material). These re-
sults detail that the taggers have lower standard de-
viations than the parsers. The difference is partic-
ularly striking on the essay level where the parsers
often completely fail to learn, that is, their perfor-
mance scores are close to 0%. As discussed above,
we attribute this to the parsers’ increased model
capacity relative to the taggers, which makes them
more prone to overfitting. Data scarcity is another
very likely source of error in this context, as the
parsers only observe 322 (though very rich) trees

18

in the training data, while the taggers are always
roughly trained on 120K tokens. On paragraph
level, they do observe more trees, namely, 1786.

STagBLCC LSTM-Parser

Essay 60.62±3.54 9.40±13.57
Paragraph 64.74±1.97 56.24±2.87

Table 4: C-F1 (100%) in % for the two indicated
systems; essay vs. paragraph level. Note that the
mean performances are lower than the majority
performances over the runs given in Table 2.

Error analysis

A systematic source of errors for all systems is de-
tecting exact argument spans (segmentation). For
instance, the ILP system predicts the following
premise: “As a practical epitome , students should
be prepared to present in society after their grad-
uation”, while the gold premise omits the pre-
ceding discourse marker, and hence reads: “stu-
dents should be prepared to present in society af-
ter their graduation”. On the one hand, it has
been observed that even humans have problems
exactly identifying such entity boundaries (Pers-
ing and Ng, 2016; Yang and Cardie, 2013). On
the other hand, our results in Table 2 indicate that
the neural taggers BLCC and BLC (in the LSTM-
ER model) are much better at such exact identi-
fication than either the ILP model or the neural
parsers. While the parsers’ problems are most
likely due to model complexity, we hypothesize
that the ILP model’s increased error rates stem
from a weaker underlying tagging model (feature-
based CRF vs. BiLSTM) and/or its features.4 In
fact, as Table 5 shows, the macro-F1 scores5 on
only the component segmentation tasks (BIO la-
beling) are substantially higher for both LSTM-
ER and STagBLCC than for the ILP model. Note-
worthy, the two neural systems even outperform
the human upper bound (HUB) in this context, re-
ported as 88.6% in Stab and Gurevych (2017).

6 Conclusion

We present the first study on neural end-to-end
AM. We experimented with different framings,

4The BIO tagging task is independent and thus not af-
fected by the ILP constraints in the model of Stab and
Gurevych (2017). The same holds true for the model of Pers-
ing and Ng (2016).

5Denoted FscoreM in Sokolova and Lapalme (2009).

STagBLCC LSTM-ER ILP HUB

Essay 90.04 90.57
Paragraph 88.32 90.84 86.67 88.60

Table 5: F1 scores in % on BIO tagging task.

such as encoding AM as a dependency parsing
problem, as a sequence tagging problem with par-
ticular label set, as a multi-task sequence tagging
problem, and as a problem with both sequential
and tree structure information. We show that (1)
neural computational AM is as good or (substan-
tially) better than a competing feature-based ILP
formulation, while eliminating the need for man-
ual feature engineering and costly ILP constraint
designing. (2) BiLSTM taggers perform very well
for component identification, as demonstrated for
our STagT frameworks, for T = BLCC and T =
BL, as well as for LSTM-ER (BLC tagger). (3)
(Naively) coupling component and relation identi-
fication is not optimal, but both tasks should be
treated separately, but modeled jointly. (4) Re-
lation identification is more difficult: when there
are few entities in a text (“short documents”), a
more general framework such as that provided in
LSTM-ER performs reasonably well. When there
are many entities (“long documents”), a more re-
strained modeling is preferable. These are also
our policy recommendations. Our work yields new
state-of-the-art results in end-to-end AM on the PE
dataset from Stab and Gurevych (2017).

Another possible framing, not considered here,
is to frame AM as an encoder-decoder problem
(Bahdanau et al., 2015; Vinyals et al., 2015). This
is an even more general modeling than LSTM-ER.
Its suitability for the end-to-end learning task is
scope for future work, but its adequacy for com-
ponent classification and relation identification has
been investigated in Potash et al. (2016).

Acknowledgments

We thank Lucie Flekova, Judith Eckle-Kohler,
Nils Reimers, and Christian Stab for valuable
feedback and discussions. We also thank the
anonymous reviewers for their suggestions. The
second author was supported by the German Fed-
eral Ministry of Education and Research (BMBF)
under the promotional reference 01UG1416B
(CEDIFOR).

19

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR.

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and
Noam Shazeer. 2015. Scheduled sampling for
sequence prediction with recurrent neural net-
works. In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems 28, Curran
Associates, Inc., pages 1171–1179.

Or Biran and Owen Rambow. 2011. Identifying justi-
fications in written dialogs. In Fifth IEEE Interna-
tional Conference on Semantic Computing (ICSC).
pages 162–168.

Bernd Bohnet and Joakim Nivre. 2012. A transition-
based system for joint part-of-speech tagging and
labeled non-projective dependency parsing. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, EMNLP-CoNLL ’12, pages 1455–1465.

Rich Caruana. 1997. Multitask learn-
ing. Mach. Learn. 28(1):41–75.
https://doi.org/10.1023/A:1007379606734.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Empirical Methods in Natural Language
Processing (EMNLP).

Ronan Collobert and Jason Weston. 2008. A uni-
fied architecture for natural language process-
ing: Deep neural networks with multitask learn-
ing. In Proceedings of the 25th International
Conference on Machine Learning. ACM, New
York, NY, USA, ICML ’08, pages 160–167.
https://doi.org/10.1145/1390156.1390177.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics,
Beijing, China, pages 334–343.

Eirini Florou, Stasinos Konstantopoulos, Antonis
Koukourikos, and Pythagoras Karampiperis. 2013.
Argument extraction for supporting public policy
formulation. In Proceedings of the 7th Workshop on
Language Technology for Cultural Heritage, Social
Sciences, and Humanities. Association for Compu-
tational Linguistics, Sofia, Bulgaria, pages 49–54.

Ivan Habernal and Iryna Gurevych. 2015. Exploit-
ing debate portals for semi-supervised argumenta-
tion mining in user-generated web discourse. In

Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Lisbon,
Portugal, pages 2127–2137.

Ivan Habernal and Iryna Gurevych. 2016. Argumen-
tation Mining in User-Generated Web Discourse.
Computational Linguistics 43(1). In press. Preprint:
http://arxiv.org/abs/1601.02403.

Martnez Alonso Héctor and Barbara Plank. 2017.
When is multitask learning effective? semantic se-
quence prediction under varying data conditions. In
Proceedings of EACL 2017 (long paper). Associa-
tion for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. 9(8):1735–
1780. https://doi.org/10.1162/neco.1997.9.8.1735.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015.
Bidirectional LSTM-CRF models for se-
quence tagging. CoRR abs/1508.01991.
http://arxiv.org/abs/1508.01991.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics
4:313–327.

Christian Kirschner, Judith Eckle-Kohler, and Iryna
Gurevych. 2015. Linking the thoughts: Analysis of
argumentation structures in scientific publications.
In Proceedings of the 2nd Workshop on Argumenta-
tion Mining held in conjunction with the 2015 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics Human Lan-
guage Technologies (NAACL HLT 2015). pages 1–
11.

Kevin Knight, Daniel Marcu, and Jill Burstein. 2003.
Finding the write stuff: Automatic identification of
discourse structure in student essays. IEEE Intelli-
gent Systems 18:32–39.

Ran Levy, Yonatan Bilu, Daniel Hershcovich, Ehud
Aharoni, and Noam Slonim. 2014. Context depen-
dent claim detection. In COLING 2014, 25th Inter-
national Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers,
August 23-29, 2014, Dublin, Ireland. pages 1489–
1500.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1064–1074.
http://www.aclweb.org/anthology/P16-1101.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of the Conference on Human Language Technology

20

and Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’05, pages 523–530.
https://doi.org/10.3115/1220575.1220641.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pages 1105–
1116. http://www.aclweb.org/anthology/P16-1105.

Marie-Francine Moens, Erik Boiy, Raquel Mochales
Palau, and Chris Reed. 2007. Automatic de-
tection of arguments in legal texts. In Pro-
ceedings of the 11th International Conference
on Artificial Intelligence and Law. ACM, New
York, NY, USA, ICAIL ’07, pages 225–230.
https://doi.org/10.1145/1276318.1276362.

Philippe Muller, Stergos D. Afantenos, Pascal De-
nis, and Nicholas Asher. 2012. Constrained decod-
ing for text-level discourse parsing. In COLING
2012, 24th International Conference on Computa-
tional Linguistics, Proceedings of the Conference:
Technical Papers, 8-15 December 2012, Mumbai,
India. pages 1883–1900.

Thomas Müller, Helmut Schmid, and Hinrich Schütze.
2013. Efficient higher-order CRFs for morpholog-
ical tagging. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, Seattle, Washington, USA, pages 322–332.
http://www.aclweb.org/anthology/D13-1032.

Raquel Mochales Palau and Marie-Francine Moens.
2009. Argumentation mining: The detection,
classification and structure of arguments in text.
In Proceedings of the 12th International Confer-
ence on Artificial Intelligence and Law. ACM,
New York, NY, USA, ICAIL ’09, pages 98–107.
https://doi.org/10.1145/1568234.1568246.

Andreas Peldszus and Manfred Stede. 2015. Joint
prediction in mst-style discourse parsing for ar-
gumentation mining. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Lisbon, Portugal, pages 938–948.
http://aclweb.org/anthology/D15-1110.

Andreas Peldszus and Manfred Stede. 2016. An anno-
tated corpus of argumentative microtexts. In Argu-
mentation and Reasoned Action: Proceedings of the
1st European Conference on Argumentation. Lis-
abon, pages 801–815.

Nanyun Peng and Mark Dredze. 2016. Multi-
task multi-domain representation learning for
sequence tagging. CoRR abs/1608.02689.
http://arxiv.org/abs/1608.02689.

Isaac Persing and Vincent Ng. 2015. Modeling ar-
gument strength in student essays. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 543–552.

Isaac Persing and Vincent Ng. 2016. End-to-end ar-
gumentation mining in student essays. In Pro-
ceedings of the 2016 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, San Diego, California, pages 1384–1394.
http://www.aclweb.org/anthology/N16-1164.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2016. Here’s my point: Argumentation Min-
ing with Pointer Networks. Arxiv preprint
https://arxiv.org/abs/1612.08994 .

Chris Reed, Raquel Mochales-Palau, Glenn Rowe, and
Marie-Francine Moens. 2008. Language resources
for studying argument. In Proceedings of the Sixth
International Conference on Language Resources
and Evaluation. Marrakech, Morocco, LREC ’08,
pages 2613–2618.

Ruty Rinott, Lena Dankin, Carlos Alzate Perez,
Mitesh M. Khapra, Ehud Aharoni, and Noam
Slonim. 2015. Show me your evidence - an auto-
matic method for context dependent evidence detec-
tion. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21,
2015. pages 440–450.

N. Rooney, H. Wang, and F. Browne. 2012. Applying
kernel methods to argumentation mining. In Twenty-
Fifth International FLAIRS Conference.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell.
2016. Progressive neural networks. arXiv preprint
arXiv:1606.04671 .

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Association for
Computational Linguistics, Berlin, Germany, pages
231–235. http://anthology.aclweb.org/P16-2038.

Marina Sokolova and Guy Lapalme. 2009. A
systematic analysis of performance mea-
sures for classification tasks. Information
Processing & Management 45(4):427–437.
https://doi.org/10.1016/j.ipm.2009.03.002.

Swapna Somasundaran, Brian Riordan, Binod
Gyawali, and Su-Youn Yoon. 2016. Evaluating
argumentative and narrative essays using graphs.

21

In COLING 2016, 26th International Conference
on Computational Linguistics, Proceedings of the
Conference: Technical Papers, December 11-16,
2016, Osaka, Japan. pages 1568–1578.

Christian Stab and Iryna Gurevych. 2017. Pars-
ing argumentation structures in persuasive es-
says. Computational Linguistics (in press), preprint:
http://arxiv.org/abs/1604.07370).

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In C. Cortes, N. D.
Lawrence, D. D. Lee, M. Sugiyama, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 28, Curran Associates, Inc., pages
2692–2700.

Bishan Yang and Claire Cardie. 2013. Joint infer-
ence for fine-grained opinion extraction. In Pro-
ceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Sofia, Bulgaria, pages 1640–1649.
http://www.aclweb.org/anthology/P13-1161.

Zhilin Yang, Ruslan Salakhutdinov, and William W.
Cohen. 2016. Multi-task cross-lingual sequence tag-
ging from scratch. CoRR abs/1603.06270.

Fan Zhang and Diane J. Litman. 2016. Using con-
text to predict the purpose of argumentative writing
revisions. In The Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies. pages
1424–1430.

Xingxing Zhang, Jianpeng Cheng, and Mirella Lapata.
2017. Dependency parsing as head selection. In
Proceedings of EACL 2017 (long papers). Associa-
tion for Computational Linguistics.

22

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 23–33
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1003

Neural Symbolic Machines:
Learning Semantic Parsers on Freebase with Weak Supervision

Chen Liang⇤, Jonathan Berant†, Quoc Le, Kenneth D. Forbus, Ni Lao
Northwestern University, Evanston, IL

Tel-Aviv University, Tel Aviv-Yafo, Israel
Google Inc., Mountain View, CA

{chenliang2013,forbus}@u.northwestern.edu, joberant@cs.tau.ac.il, {qvl,nlao}@google.com

Abstract

Harnessing the statistical power of neu-
ral networks to perform language under-
standing and symbolic reasoning is dif-
ficult, when it requires executing effi-
cient discrete operations against a large
knowledge-base. In this work, we intro-
duce a Neural Symbolic Machine (NSM),
which contains (a) a neural “program-
mer”, i.e., a sequence-to-sequence model
that maps language utterances to programs
and utilizes a key-variable memory to han-
dle compositionality (b) a symbolic “com-
puter”, i.e., a Lisp interpreter that performs
program execution, and helps find good
programs by pruning the search space.
We apply REINFORCE to directly opti-
mize the task reward of this structured
prediction problem. To train with weak
supervision and improve the stability of
REINFORCE we augment it with an it-
erative maximum-likelihood training pro-
cess. NSM outperforms the state-of-the-
art on the WEBQUESTIONSSP dataset
when trained from question-answer pairs
only, without requiring any feature engi-
neering or domain-specific knowledge.

1 Introduction

Deep neural networks have achieved impressive
performance in supervised classification and struc-
tured prediction tasks such as speech recognition
(Hinton et al., 2012), machine translation (Bah-
danau et al., 2014; Wu et al., 2016) and more.
However, training neural networks for semantic
parsing (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005; Liang et al., 2011) or program
induction, where language is mapped to a sym-

⇤Work done while the author was interning at Google
† Work done while the author was visiting Google

x: Largest city in the US ⇒ y: NYC

(USA)

(Hop v0 CityIn)

CityIn

(Argmax v1 Population)

Population

Compositionality

Large Search Space

(Argmax

Hop

v1

v0

Population

Size

Elevation

)

v2 ←

v1 ←

v0 ←

Figure 1: The main challenges of training a semantic parser
from weak supervision: (a) compositionality: we use vari-
ables (v0, v1, v2) to store execution results of intermediate
generated programs. (b) search: we prune the search space
and augment REINFORCE with pseudo-gold programs.

bolic representation that is executed by an execu-
tor, through weak supervision remains challeng-
ing. This is because the model must interact with a
symbolic executor through non-differentiable op-
erations to search over a large program space.

In semantic parsing, recent work handled this
(Dong and Lapata, 2016; Jia and Liang, 2016)
by training from manually annotated programs
and avoiding program execution at training time.
However, annotating programs is known to be ex-
pensive and scales poorly. In program induc-
tion, attempts to address this problem (Graves
et al., 2014; Reed and de Freitas, 2016; Kaiser
and Sutskever, 2015; Graves et al., 2016b; An-
dreas et al., 2016) either utilized low-level mem-
ory (Zaremba and Sutskever, 2015), or required
memory to be differentiable (Neelakantan et al.,
2015; Yin et al., 2015) so that the model can be
trained with backpropagation. This makes it dif-
ficult to use the efficient discrete operations and
memory of a traditional computer, and limited the
application to synthetic or small knowledge bases.

In this paper, we propose to utilize the mem-
ory and discrete operations of a traditional com-

23

https://doi.org/10.18653/v1/P17-1003

puter in a novel Manager-Programmer-Computer
(MPC) framework for neural program induction,
which integrates three components:

1. A “manager” that provides weak supervi-
sion (e.g., ‘NYC’ in Figure 1) through a re-
ward indicating how well a task is accom-
plished. Unlike full supervision, weak super-
vision is easy to obtain at scale (Section 3.1).

2. A “programmer” that takes natural lan-
guage as input and generates a program that
is a sequence of tokens (Figure 2). The pro-
grammer learns from the reward and must
overcome the hard search problem of finding
correct programs (Section 2.2).

3. A “computer” that executes programs in a
high level programming language. Its non-
differentiable memory enables abstract, scal-
able and precise operations, but makes train-
ing more challenging (Section 2.3). To help
the “programmer” prune the search space,
it provides a friendly neural computer in-
terface, which detects and eliminates invalid
choices (Section 2.1).

Within this framework, we introduce the Neu-
ral Symbolic Machine (NSM) and apply it to se-
mantic parsing. NSM contains a neural sequence-
to-sequence (seq2seq) “programmer” (Sutskever
et al., 2014) and a symbolic non-differentiable
Lisp interpreter (“computer”) that executes pro-
grams against a large knowledge-base (KB).

Our technical contribution in this work is three-
fold. First, to support language compositionality,
we augment the standard seq2seq model with a
key-variable memory to save and reuse intermedi-
ate execution results (Figure 1). This is a novel ap-
plication of pointer networks (Vinyals et al., 2015)
to compositional semantics.

Second, to alleviate the search problem of find-
ing correct programs when training from question-
answer pairs,we use the computer to execute par-
tial programs and prune the programmer’s search
space by checking the syntax and semantics of
generated programs. This generalizes the weakly
supervised semantic parsing framework (Liang
et al., 2011; Berant et al., 2013) by leveraging se-
mantic denotations during structural search.

Third, to train from weak supervision and di-
rectly maximize the expected reward we turn
to the REINFORCE (Williams, 1992) algorithm.
Since learning from scratch is difficult for RE-
INFORCE, we combine it with an iterative max-

imum likelihood (ML) training process, where
beam search is used to find pseudo-gold programs,
which are then used to augment the objective of
REINFORCE.

On the WEBQUESTIONSSP dataset (Yih et al.,
2016), NSM achieves new state-of-the-art results
with weak supervision, significantly closing the
gap between weak and full supervision for this
task. Unlike prior works, it is trained end-to-
end, and does not require feature engineering or
domain-specific knowledge.

2 Neural Symbolic Machines

We now introduce NSM by first describing the
“computer”, a non-differentiable Lisp interpreter
that executes programs against a large KB and pro-
vides code assistance (Section 2.1). We then pro-
pose a seq2seq model (“programmer”) that sup-
ports compositionality using a key-variable mem-
ory to save and reuse intermediate results (Sec-
tion 2.2). Finally, we describe a training procedure
that is based on REINFORCE, but is augmented
with pseudo-gold programs found by an iterative
ML training procedure (Section 2.3).

Before diving into details, we define the seman-
tic parsing task: given a knowledge base K, and
a question x = (w1, w2, ..., wm), produce a pro-
gram or logical form z that when executed against
K generates the right answer y. Let E denote a
set of entities (e.g., ABELINCOLN),1 and let P de-
note a set of properties (e.g., PLACEOFBIRTH). A
knowledge base K is a set of assertions or triples
(e1, p, e2) 2 E ⇥ P ⇥ E , such as (ABELINCOLN,
PLACEOFBIRTH, HODGENVILLE).

2.1 Computer: Lisp Interpreter with Code
Assistance

Semantic parsing typically requires using a set of
operations to query the knowledge base and pro-
cess the results. Operations learned with neural
networks such as addition and sorting do not per-
fectly generalize to inputs that are larger than the
ones observed in the training data (Graves et al.,
2014; Reed and de Freitas, 2016). In contrast, op-
erations implemented in high level programming
languages are abstract, scalable, and precise, thus
generalizes perfectly to inputs of arbitrary size.
Based on this observation, we implement opera-
tions necessary for semantic parsing with an or-

1We also consider numbers (e.g., “1.33”) and date-times
(e.g., “1999-1-1”) as entities.

24

dinary programming language instead of trying to
learn them with a neural network.

We adopt a Lisp interpreter as the “com-
puter”. A program C is a list of expressions
(c1...cN), where each expression is either a spe-
cial token “Return” indicating the end of the pro-
gram, or a list of tokens enclosed by parentheses
“(FA1...AK)”. F is a function, which takes as
input K arguments of specific types. Table 1 de-
fines the semantics of each function and the types
of its arguments (either a property p or a variable
r). When a function is executed, it returns an en-
tity list that is the expression’s denotation in K,
and save it to a new variable.

By introducing variables that save the interme-
diate results of execution, the program naturally
models language compositionality and describes
from left to right a bottom-up derivation of the full
meaning of the natural language input, which is
convenient in a seq2seq model (Figure 1). This
is reminiscent of the floating parser (Wang et al.,
2015; Pasupat and Liang, 2015), where a deriva-
tion tree that is not grounded in the input is incre-
mentally constructed.

The set of programs defined by our functions is
equivalent to the subset of �-calculus presented in
(Yih et al., 2015). We did not use full Lisp pro-
gramming language here, because constructs like
control flow and loops are unnecessary for most
current semantic parsing tasks, and it is simple to
add more functions to the model when necessary.

To create a friendly neural computer interface,
the interpreter provides code assistance to the pro-
grammer by producing a list of valid tokens at each
step. First, a valid token should not cause a syntax
error: e.g., if the previous token is “(”, the next to-
ken must be a function name, and if the previous
token is “Hop”, the next token must be a variable.
More importantly, a valid token should not cause
a semantic (run-time) error: this is detected using
the denotation saved in the variables. For example,
if the previously generated tokens were “(Hop r”,
the next available token is restricted to properties
{p | 9e, e0 : e 2 r, (e, p, e0) 2 K} that are reach-
able from entities in r in the KB. These checks are
enabled by the variables and can be derived from
the definition of the functions in Table 1. The in-
terpreter prunes the “programmer”’s search space
by orders of magnitude, and enables learning from
weak supervision on a large KB.

2.2 Programmer: Seq2seq Model with
Key-Variable Memory

Given the “computer”, the “programmer” needs to
map natural language into a program, which is a
sequence of tokens that reference operations and
values in the “computer”. We base our program-
mer on a standard seq2seq model with attention,
but extend it with a key-variable memory that al-
lows the model to learn to represent and refer to
program variables (Figure 2).

Sequence-to-sequence models consist of two
RNNs, an encoder and a decoder. We used a
1-layer GRU (Cho et al., 2014) for both the en-
coder and decoder. Given a sequence of words
w1, w2...wm, each word wt is mapped to an em-
bedding qt (embedding details are in Section 3).
Then, the encoder reads these embeddings and up-
dates its hidden state step by step using ht+1 =
GRU(ht, qt, ✓Encoder), where ✓Encoder are the
GRU parameters. The decoder updates its hid-
den states ut by ut+1 = GRU(ut, ct�1, ✓Decoder),
where ct�1 is the embedding of last step’s output
token at�1, and ✓Decoder are the GRU parame-
ters. The last hidden state of the encoder hT is
used as the decoder’s initial state. We also adopt a
dot-product attention similar to Dong and Lapata
(2016). The tokens of the program a1, a2...an are
generated one by one using a softmax over the vo-
cabulary of valid tokens at each step, as provided
by the “computer” (Section 2.1).

To achieve compositionality, the decoder must
learn to represent and refer to intermediate vari-
ables whose value was saved in the “computer”
after execution. Therefore, we augment the model
with a key-variable memory, where each entry
has two components: a continuous embedding key
vi, and a corresponding variable token Ri refer-
encing the value in the “computer” (see Figure 2).
During encoding, we use an entity linker to link
text spans (e.g., “US”) to KB entities. For each
linked entity we add a memory entry where the key
is the average of GRU hidden states over the entity
span, and the variable token (R1) is the name of a
variable in the computer holding the linked entity
(m.USA) as its value. During decoding, when a
full expression is generated (i.e., the decoder gen-
erates “)”), it gets executed, and the result is stored
as the value of a new variable in the “computer”.
This variable is keyed by the GRU hidden state at
that step. When a new variable R1 with key em-
bedding v1 is added into the key-variable memory,

25

(Hop r p)) {e2|e1 2 r, (e1, p, e2) 2 K}
(ArgMax r p)) {e1|e1 2 r, 9e2 2 E : (e1, p, e2) 2 K, 8e : (e1, p, e) 2 K, e2 � e}
(ArgMin r p)) {e1|e1 2 r, 9e2 2 E : (e1, p, e2) 2 K, 8e : (e1, p, e) 2 K, e2  e}

(Filter r1 r2 p)) {e1|e1 2 r1, 9e2 2 r2 : (e1, p, e2) 2 K}

Table 1: Interpreter functions. r represents a variable, p a property in Freebase. � and  are defined on numbers and dates.

Key Variable

v1 R1(m.USA)
Execute
(Argmax R2 Population)

Execute
Return

m.NYCKey Variable

... ...

v3 R3(m.NYC)

Key Variable

v1 R1(m.USA)

v2 R2(list of US cities)

Execute
(Hop R1 !CityIn)

Hop R1 !CityIn()

Largest city (Hop R1in US GO !CityIn Argmax R2()Population)

R2 Population ReturnArgmax)(

Entity Resolver

Figure 2: Semantic Parsing with NSM. The key embeddings of the key-variable memory are the output of the sequence model
at certain encoding or decoding steps. For illustration purposes, we also show the values of the variables in parentheses, but the
sequence model never sees these values, and only references them with the name of the variable (“R1”). A special token “GO”
indicates the start of decoding, and “Return” indicates the end of decoding.

the token R1 is added into the decoder vocabu-
lary with v1 as its embedding. The final answer
returned by the “programmer” is the value of the
last computed variable.

Similar to pointer networks (Vinyals et al.,
2015), the key embeddings for variables are dy-
namically generated for each example. During
training, the model learns to represent variables by
backpropagating gradients from a time step where
a variable is selected by the decoder, through the
key-variable memory, to an earlier time step when
the key embedding was computed. Thus, the en-
coder/decoder learns to generate representations
for variables such that they can be used at the right
time to construct the correct program.

While the key embeddings are differentiable,
the values referenced by the variables (lists of
entities), stored in the “computer”, are symbolic
and non-differentiable. This distinguishes the key-
variable memory from other memory-augmented
neural networks that use continuous differentiable
embeddings as the values of memory entries (We-
ston et al., 2014; Graves et al., 2016a).

2.3 Training NSM with Weak Supervision

NSM executes non-differentiable operations
against a KB, and thus end-to-end backpropa-
gation is not possible. Therefore, we base our
training procedure on REINFORCE (Williams,
1992; Norouzi et al., 2016). When the reward
signal is sparse and the search space is large,
it is common to utilize some full supervision
to pre-train REINFORCE (Silver et al., 2016).

To train from weak supervision, we suggest an
iterative ML procedure for finding pseudo-gold
programs that will bootstrap REINFORCE.

REINFORCE We can formulate training as a
reinforcement learning problem: given a question
x, the state, action and reward at each time step t 2
{0, 1, ..., T} are (st, at, rt). Since the environment
is deterministic, the state is defined by the question
x and the action sequence: st = (x, a0:t�1), where
a0:t�1 = (a0, ..., at�1) is the history of actions at
time t. A valid action at time t is at 2 A(st),
where A(st) is the set of valid tokens given by the
“computer”. Since each action corresponds to a
token, the full history a0:T corresponds to a pro-
gram. The reward rt = I[t = T] · F1(x, a0:T)
is non-zero only at the last step of decoding, and
is the F1 score computed comparing the gold an-
swer and the answer generated by executing the
program a0:T . Thus, the cumulative reward of a
program a0:T is

R(x, a0:T) =
X

t

rt = F1(x, a0:T).

The agent’s decision making procedure at each
time is defined by a policy, ⇡✓(s, a) = P✓(at =
a|x, a0:t�1), where ✓ are the model parameters.
Since the environment is deterministic, the prob-
ability of generating a program a0:T is

P✓(a0:T |x) =
Y

t

P✓(at | x, a0:t�1).

We can define our objective to be the expected
cumulative reward and use policy gradient meth-

26

ods such as REINFORCE for training. The objec-
tive and gradient are:

JRL(✓) =
X

x

EP✓(a0:T |x)[R(x, a0:T)],

r✓JRL(✓) =
X

x

X

a0:T

P✓(a0:T | x) · [R(x, a0:T)�

B(x)] ·r✓ log P✓(a0:T | x),

where B(x) =
P

a0:T
P✓(a0:T | x)R(x, a0:T) is

a baseline that reduces the variance of the gradi-
ent estimation without introducing bias. Having a
separate network to predict the baseline is an in-
teresting future direction.

While REINFORCE assumes a stochastic pol-
icy, we use beam search for gradient estimation.
Thus, in contrast with common practice of ap-
proximating the gradient by sampling from the
model, we use the top-k action sequences (pro-
grams) in the beam with normalized probabilities.
This allows training to focus on sequences with
high probability, which are on the decision bound-
aries, and reduces the variance of the gradient.

Empirically (and in line with prior work), RE-
INFORCE converged slowly and often got stuck
in local optima (see Section 3). The difficulty of
training resulted from the sparse reward signal in
the large search space, which caused model prob-
abilities for programs with non-zero reward to be
very small at the beginning. If the beam size k is
small, good programs fall off the beam, leading to
zero gradients for all programs in the beam. If the
beam size k is large, training is very slow, and the
normalized probabilities of good programs when
the model is untrained are still very small, leading
to (1) near zero baselines, thus near zero gradients
on “bad” programs (2) near zero gradients on good
programs due to the low probability P✓(a0:T | x).
To combat this, we present an alternative training
strategy based on maximum-likelihood.

Iterative ML If we had gold programs, we
could directly optimize their likelihood. Since we
do not have gold programs, we can perform an
iterative procedure (similar to hard Expectation-
Maximization (EM)), where we search for good
programs given fixed parameters, and then opti-
mize the probability of the best program found so
far. We do decoding on an example with a large
beam size and declare abest

0:T (x) to be the pseudo-
gold program, which achieved highest reward with
shortest length among the programs decoded on x

in all previous iterations. Then, we can optimize
the ML objective:

JML(✓) =
X

x

log P✓(a
best
0:T (x) | x) (1)

A question x is not included if we did not find any
program with positive reward.

Training with iterative ML is fast because there
is at most one program per example and the gra-
dient is not weighted by model probability. while
decoding with a large beam size is slow, we could
train for multiple epochs after each decoding. This
iterative process has a bootstrapping effect that a
better model leads to a better program abest

0:T (x)
through decoding, and a better program abest

0:T (x)
leads to a better model through training.

Even with a large beam size, some programs are
hard to find because of the large search space. A
common solution to this problem is to use curricu-
lum learning (Zaremba and Sutskever, 2015; Reed
and de Freitas, 2016). The size of the search space
is controlled by both the set of functions used in
the program and the program length. We apply
curriculum learning by gradually increasing both
these quantities (see details in Section 3) when
performing iterative ML.

Nevertheless, iterative ML uses only pseudo-
gold programs and does not directly optimize
the objective we truly care about. This has two
adverse effects: (1) The best program abest

0:T (x)
could be a spurious program that accidentally pro-
duces the correct answer (e.g., using the prop-
erty PLACEOFBIRTH instead of PLACEOFDEATH

when the two places are the same), and thus does
not generalize to other questions. (2) Because
training does not observe full negative programs,
the model often fails to distinguish between to-
kens that are related to one another. For exam-
ple, differentiating PARENTSOF vs. SIBLINGSOF

vs. CHILDRENOF can be challenging. We now
present learning where we combine iterative ML
with REINFORCE.

Augmented REINFORCE To bootstrap REIN-
FORCE, we can use iterative ML to find pseudo-
gold programs, and then add these programs to the
beam with a reasonably large probability. This is
similar to methods from imitation learning (Ross
et al., 2011; Jiang et al., 2012) that define a
proposal distribution by linearly interpolating the
model distribution and an oracle.

27

Algorithm 1 IML-REINFORCE
Input: question-answer pairs D = {(xi, yi)}, mix ratio
↵, reward function R(·), training iterations NML, NRL,
and beam sizes BML, BRL.
Procedure:
Initialize C⇤

x = ; the best program so far for x
Initialize model ✓ randomly . Iterative ML
for n = 1 to NML do

for (x, y) in D do
C Decode BML programs given x
for j in 1...|C| do

if Rx,y(Cj) > Rx,y(C⇤
x) then C⇤

x Cj

✓ ML training with DML = {(x, C⇤
x)}

Initialize model ✓ randomly . REINFORCE
for n = 1 to NRL do

DRL ; is the RL training set
for (x, y) in D do

C Decode BRL programs from x
for j in 1...|C| do

if Rx,y(Cj) > Rx,y(C⇤
x) then C⇤

x Cj

C C [{C⇤
x}

for j in 1...|C| do
p̂j (1�↵)· pjP

j0 pj0
where pj = P✓(Cj | x)

if Cj = C⇤
x then p̂j p̂j + ↵

DRL DRL [{(x, Cj , p̂j)}
✓ REINFORCE training with DRL

Algorithm 1 describes our overall training pro-
cedure. We first run iterative ML for NML itera-
tions and record the best program found for every
example xi. Then, we run REINFORCE, where
we normalize the probabilities of the programs in
beam to sum to (1�↵) and add ↵ to the probability
of the best found program C⇤(xi). Consequently,
the model always puts a reasonable amount of
probability on a program with high reward during
training. Note that we randomly initialized the pa-
rameters for REINFORCE, since initializing from
the final ML parameters seems to get stuck in a
local optimum and produced worse results.

On top of imitation learning, our approach is
related to the common practice in reinforcement
learning (Schaul et al., 2016) to replay rare suc-
cessful experiences to reduce the training variance
and improve training efficiency. This is also simi-
lar to recent developments (Wu et al., 2016) in ma-
chine translation, where ML and RL objectives are
linearly combined, because anchoring the model
to some high-reward outputs stabilizes training.

3 Experiments and Analysis

We now empirically show that NSM can learn
a semantic parser from weak supervision over a
large KB. We evaluate on WEBQUESTIONSSP, a
challenging semantic parsing dataset with strong
baselines. Experiments show that NSM achieves

new state-of-the-art performance on WEBQUES-
TIONSSP with weak supervision, and significantly
closes the gap between weak and full supervisions
for this task.

3.1 The WEBQUESTIONSSP dataset

The WEBQUESTIONSSP dataset (Yih et al., 2016)
contains full semantic parses for a subset of the
questions from WEBQUESTIONS (Berant et al.,
2013), because 18.5% of the original dataset were
found to be “not answerable”. It consists of 3,098
question-answer pairs for training and 1,639 for
testing, which were collected using Google Sug-
gest API, and the answers were originally obtained
using Amazon Mechanical Turk workers. They
were updated in (Yih et al., 2016) by annotators
who were familiar with the design of Freebase and
added semantic parses. We further separated out
620 questions from the training set as a validation
set. For query pre-processing we used an in-house
named entity linking system to find the entities in a
question. The quality of the entity linker is similar
to that of (Yih et al., 2015) at 94% of the gold root
entities being included. Similar to Dong and Lap-
ata (2016), we replaced named entity tokens with
a special token “ENT”. For example, the question
“who plays meg in family guy” is changed to “who
plays ENT in ENT ENT”. This helps reduce over-
fitting, because instead of memorizing the correct
program for a specific entity, the model has to fo-
cus on other context words in the sentence, which
improves generalization.

Following (Yih et al., 2015) we used the last
publicly available snapshot of Freebase (Bollacker
et al., 2008). Since NSM training requires ran-
dom access to Freebase during decoding, we pre-
processed Freebase by removing predicates that
are not related to world knowledge (starting with
“/common/”, “/type/”, “/freebase/”),2 and remov-
ing all text valued predicates, which are rarely the
answer. Out of all 27K relations, 434 relations are
removed during preprocessing. This results in a
graph that fits in memory with 23K relations, 82M
nodes, and 417M edges.

3.2 Model Details

For pre-trained word embeddings, we used the
300 dimension GloVe word embeddings trained
on 840B tokens (Pennington et al., 2014). On
the encoder side, we added a projection matrix to

2We kept “/common/topic/notable types”.

28

transform the embeddings into 50 dimensions. On
the decoder side, we used the same GloVe embed-
dings to construct an embedding for each property
using its Freebase id, and also added a projection
matrix to transform this embedding to 50 dimen-
sions. A Freebase id contains three parts: domain,
type, and property. For example, the Freebase
id for PARENTSOF is “/people/person/parents”.
“people” is the domain, “person” is the type
and “parents” is the property. The embedding
is constructed by concatenating the average of
word embeddings in the domain and type name
to the average of word embeddings in the prop-
erty name. For example, if the embedding dimen-
sion is 300, the embedding dimension for “/peo-
ple/person/parents” will be 600. The first 300 di-
mensions will be the average of the embeddings
for “people” and “person”, and the second 300
dimensions will be the embedding for “parents”.

The dimension of encoder hidden state, decoder
hidden state and key embeddings are all 50. The
embeddings for the functions and special tokens
(e.g., “UNK”, “GO”) are randomly initialized by a
truncated normal distribution with mean=0.0 and
stddev=0.1. All the weight matrices are initialized
with a uniform distribution in [�

p
3

d ,
p

3
d] where d

is the input dimension. Dropout rate is set to 0.5,
and we see a clear tendency for larger dropout rate
to produce better performance, indicating overfit-
ting is a major problem for learning.

3.3 Training Details

In iterative ML training, the decoder uses a beam
of size k = 100 to update the pseudo-gold pro-
grams and the model is trained for 20 epochs after
each decoding step. We use the Adam optimizer
(Kingma and Ba, 2014) with initial learning rate
0.001. In our experiment, this process usually con-
verges after a few (5-8) iterations.

For REINFORCE training, the best hyperpa-
rameters are chosen using the validation set. We
use a beam of size k = 5 for decoding, and ↵ is
set to 0.1. Because the dataset is small and some
relations are only used once in the whole training
set, we train the model on the entire training set
for 200 iterations with the best hyperparameters.
Then we train the model with learning rate de-
cay until convergence. Learning rate is decayed as
gt = g0⇥�

max(0,t�ts)
m , where g0 = 0.001, � = 0.5

m = 1000, and ts is the number of training steps
at the end of iteration 200.

Since decoding needs to query the knowledge
base (KB) constantly, the speed bottleneck for
training is decoding. We address this problem
in our implementation by partitioning the dataset,
and using multiple decoders in parallel to han-
dle each partition. We use 100 decoders, which
queries 50 KG servers, and one trainer. The neu-
ral network model is implemented in TensorFlow.
Since the model is small, we didn’t see a signif-
icant speedup by using GPU, so all the decoders
and the trainer are using CPU only.

Inspired by the staged generation process in Yih
et al. (2015), curriculum learning includes two
steps. We first run iterative ML for 10 iterations
with programs constrained to only use the “Hop”
function and the maximum number of expressions
is 2. Then, we run iterative ML again, but use both
“Hop” and “Filter”. The maximum number of ex-
pressions is 3, and the relations used by “Hop” are
restricted to those that appeared in abest

0:T (q) in the
first step.

3.4 Results and discussion
We evaluate performance using the offical evalu-
ation script for WEBQUESTIONSSP. Because the
answer to a question may contain multiple enti-
ties or values, precision, recall and F1 are com-
puted based on the output of each individual ques-
tion, and average F1 is reported as the main eval-
uation metric. Accuracy measures the proportion
of questions that are answered exactly.

A comparison to STAGG, the previous state-of-
the-art model (Yih et al., 2016, 2015), is shown
in Table 2. Our model beats STAGG with weak
supervision by a significant margin on all metrics,
while relying on no feature engineering or hand-
crafted rules. When STAGG is trained with strong
supervision it obtains an F1 of 71.7, and thus NSM
closes half the gap between training with weak and
full supervision.

Model Prec. Rec. F1 Acc.
STAGG 67.3 73.1 66.8 58.8
NSM 70.8 76.0 69.0 59.5

Table 2: Results on the test set. Average F1 is the main evalu-
ation metric and NSM outperforms STAGG with no domain-
specific knowledge or feature engineering.

Four key ingredients lead to the final perfor-
mance of NSM. The first one is the neural com-
puter interface that provides code assistance by
checking for syntax and semantic errors. We find

29

that semantic checks are very effective for open-
domain KBs with a large number of properties.
For our task, the average number of choices is re-
duced from 23K per step (all properties) to less
than 100 (the average number of properties con-
nected to an entity).

The second ingredient is augmented REIN-
FORCE training. Table 3 compares augmented
REINFORCE, REINFORCE, and iterative ML on
the validation set. REINFORCE gets stuck in lo-
cal optimum and performs poorly. Iterative ML
training is not directly optimizing the F1 measure,
and achieves sub-optimal results. In contrast, aug-
mented REINFORCE is able to bootstrap using
pseudo-gold programs found by iterative ML and
achieves the best performance on both the training
and validation set.

Settings Train F1 Valid F1
Iterative ML 68.6 60.1
REINFORCE 55.1 47.8
Augmented REINFORCE 83.0 67.2

Table 3: Average F1 on the validation set for augmented RE-
INFORCE, REINFORCE, and iterative ML.

The third ingredient is curriculum learning dur-
ing iterative ML. We compare the performance of
the best programs found with and without curricu-
lum learning in Table 4. We find that the best pro-
grams found with curriculum learning are substan-
tially better than those found without curriculum
learning by a large margin on every metric.

Settings Prec. Rec. F1 Acc.
No curriculum 79.1 91.1 78.5 67.2
Curriculum 88.6 96.1 89.5 79.8

Table 4: Evaluation of the programs with the highest F1 score
in the beam (abest

0:t) with and without curriculum learning.

The last important ingredient is reducing over-
fitting. Given the small size of the dataset, over-
fitting is a major problem for training neural net-
work models. We show the contributions of dif-
ferent techniques for controlling overfitting in Ta-
ble 5. Note that after all the techniques have been
applied, the model is still overfitting with training
F1@1=83.0% and validation F1@1=67.2%.

Among the programs generated by the model,
a significant portion (36.7%) uses more than one
expression. From Table 6, we can see that the per-
formance doesn’t decrease much as the composi-

Settings � F1@1
�Pretrained word embeddings �5.5
�Pretrained property embeddings �2.7
�Dropout on GRU input and output �2.4
�Dropout on softmax �1.1
�Anonymize entity tokens �2.0

Table 5: Contributions of different overfitting techniques on
the validation set.

#Expressions 0 1 2 3
Percentage 0.4% 62.9% 29.8% 6.9%
F1 0.0 73.5 59.9 70.3

Table 6: Percentage and performance of model generated
programs with different complexity (number of expressions).

tional depth increases, indicating that the model
is effective at capturing compositionality. We ob-
serve that programs with three expressions use a
more limited set of properties, mainly focusing on
answering a few types of questions such as “who
plays meg in family guy”, “what college did jeff
corwin go to” and “which countries does russia
border”. In contrast, programs with two expres-
sions use a more diverse set of properties, which
could explain the lower performance compared to
programs with three expressions.

Error analysis Error analysis on the validation
set shows two main sources of errors:

1. Search failure: Programs with high reward
are not found during search for pseudo-gold
programs, either because the beam size is not
large enough, or because the set of functions
implemented by the interpreter is insufficient.
The 89.5% F1 score in Table 4 indicates that
at least 10% of the questions are of this kind.

2. Ranking failure: Programs with high reward
exist in the beam, but are not ranked at the
top during decoding. Because the training er-
ror is low, this is largely due to overfitting or
spurious programs. The 67.2% F1 score in
Table 3 indicates that about 20% of the ques-
tions are of this kind.

4 Related work

Among deep learning models for program in-
duction, Reinforcement Learning Neural Turing
Machines (RL-NTMs) (Zaremba and Sutskever,
2015) are the most similar to NSM, as a non-
differentiable machine is controlled by a sequence

30

model. Therefore, both models rely on REIN-
FORCE for training. The main difference between
the two is the abstraction level of the programming
language. RL-NTM uses lower level operations
such as memory address manipulation and byte
reading/writing, while NSM uses a high level pro-
gramming language over a large knowledge base
that includes operations such as following proper-
ties from entities, or sorting based on a property,
which is more suitable for representing semantics.
Earlier works such as OOPS (Schmidhuber, 2004)
has desirable characteristics, for example, the abil-
ity to define new functions. These remain to be
future improvements for NSM.

We formulate NSM training as an instance of
reinforcement learning (Sutton and Barto, 1998)
in order to directly optimize the task reward of
the structured prediction problem (Norouzi et al.,
2016; Li et al., 2016; Yu et al., 2017). Compared
to imitation learning methods (Daume et al., 2009;
Ross et al., 2011) that interpolate a model dis-
tribution with an oracle, NSM needs to solve a
challenging search problem of training from weak
supervisions in a large search space. Our solu-
tion employs two techniques (a) a symbolic “com-
puter” helps find good programs by pruning the
search space (b) an iterative ML training pro-
cess, where beam search is used to find pseudo-
gold programs. Wiseman and Rush (Wiseman
and Rush, 2016) proposed a max-margin approach
to train a sequence-to-sequence scorer. However,
their training procedure is more involved, and we
did not implement it in this work. MIXER (Ran-
zato et al., 2015) also proposed to combine ML
training and REINFORCE, but they only con-
sidered tasks with full supervisions. Berant and
Liang (Berant and Liang, 2015) applied imita-
tion learning to semantic parsing, but still requires
hand crafted grammars and features.

NSM is similar to Neural Programmer (Nee-
lakantan et al., 2015) and Dynamic Neural Mod-
ule Network (Andreas et al., 2016) in that they
all solve the problem of semantic parsing from
structured data, and generate programs using sim-
ilar semantics. The main difference between these
approaches is how an intermediate result (the
memory) is represented. Neural Programmer and
Dynamic-NMN chose to represent results as vec-
tors of weights (row selectors and attention vec-
tors), which enables backpropagation and search
through all possible programs in parallel. How-

ever, their strategy is not applicable to a large
KB such as Freebase, which contains about 100M
entities, and more than 20k properties. Instead,
NSM chooses a more scalable approach, where
the “computer” saves intermediate results, and the
neural network only refers to them with variable
names (e.g., “R1” for all cities in the US).

NSM is similar to the Path Ranking Algorithm
(PRA) (Lao et al., 2011) in that semantics is en-
coded as a sequence of actions, and denotations
are used to prune the search space during learning.
NSM is more powerful than PRA by 1) allowing
more complex semantics to be composed through
the use of a key-variable memory; 2) controlling
the search procedure with a trained neural net-
work, while PRA only samples actions uniformly;
3) allowing input questions to express complex re-
lations, and then dynamically generating action
sequences. PRA can combine multiple seman-
tic representations to produce the final prediction,
which remains to be future work for NSM.

5 Conclusion

We propose the Manager-Programmer-Computer
framework for neural program induction. It in-
tegrates neural networks with a symbolic non-
differentiable computer to support abstract, scal-
able and precise operations through a friendly
neural computer interface. Within this frame-
work, we introduce the Neural Symbolic Machine,
which integrates a neural sequence-to-sequence
“programmer” with key-variable memory, and a
symbolic Lisp interpreter with code assistance.
Because the interpreter is non-differentiable and to
directly optimize the task reward, we apply REIN-
FORCE and use pseudo-gold programs found by
an iterative ML training process to bootstrap train-
ing. NSM achieves new state-of-the-art results on
a challenging semantic parsing dataset with weak
supervision, and significantly closes the gap be-
tween weak and full supervision. It is trained end-
to-end, and does not require any feature engineer-
ing or domain-specific knowledge.

Acknowledgements
We thank for discussions and help from
Arvind Neelakantan, Mohammad Norouzi, Tom
Kwiatkowski, Eugene Brevdo, Lukasz Kaizer,
Thomas Strohmann, Yonghui Wu, Zhifeng Chen,
Alexandre Lacoste, and John Blitzer. The second
author is partially supported by the Israel Science
Foundation, grant 942/16.

31

References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell,

and Dan Klein. 2016. Learning to compose
neural networks for question answering. CoRR
abs/1601.01705.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473. http://arxiv.org/abs/1409.0473.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on freebase
from question-answer pairs. In EMNLP. volume 2,
page 6.

Jonathan Berant and Percy Liang. 2015. Imitation
learning of agenda-based semantic parsers. TACL
3:545–558.

K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. 2008. Freebase: a collaboratively created
graph database for structuring human knowledge. In
International Conference on Management of Data
(SIGMOD). pages 1247–1250.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, Doha, Qatar, pages
1724–1734. http://www.aclweb.org/anthology/D14-
1179.

H. Daume, J. Langford, and D. Marcu. 2009. Search-
based structured prediction. Machine Learning
75:297–325.

Li Dong and Mirella Lapata. 2016. Language to log-
ical form with neural attention. In Association for
Computational Linguistics (ACL).

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401 .

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio G. Colmenarejo, Edward Grefen-
stette, Tiago Ramalho, John Agapiou, AdriÃ P.
Badia, Karl M. Hermann, Yori Zwols, Georg
Ostrovski, Adam Cain, Helen King, Christopher
Summerfield, Phil Blunsom, Koray Kavukcuoglu,
and Demis Hassabis. 2016a. Hybrid comput-
ing using a neural network with dynamic exter-
nal memory. Nature advance online publication.
https://doi.org/10.1038/nature20101.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al.

2016b. Hybrid computing using a neural network
with dynamic external memory. Nature .

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Process-
ing Magazine 29(6):82–97.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Association for Com-
putational Linguistics (ACL).

J. Jiang, A. Teichert, J. Eisner, and H. Daume. 2012.
Learned prioritization for trading off accuracy and
speed. In Advances in Neural Information Process-
ing Systems (NIPS).

Łukasz Kaiser and Ilya Sutskever. 2015. Neural gpus
learn algorithms. arXiv preprint arXiv:1511.08228 .

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Ni Lao, Tom Mitchell, and William W Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 529–539.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016. Deep rein-
forcement learning for dialogue generation. arXiv
preprint arXiv:1606.01541 .

P. Liang, M. I. Jordan, and D. Klein. 2011. Learn-
ing dependency-based compositional semantics. In
Association for Computational Linguistics (ACL).
pages 590–599.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever.
2015. Neural programmer: Inducing la-
tent programs with gradient descent. CoRR
abs/1511.04834.

Mohammad Norouzi, Samy Bengio, zhifeng Chen,
Navdeep Jaitly, Mike Schuster, Yonghui Wu, and
Dale Schuurmans. 2016. Reward augmented max-
imum likelihood for neural structured prediction. In
Advances in Neural Information Processing Systems
(NIPS).

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
ACL.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

32

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732 .

Scott Reed and Nando de Freitas. 2016. Neural
programmer-interpreters. In ICLR.

S. Ross, G. Gordon, and A. Bagnell. 2011. A reduction
of imitation learning and structured prediction to no-
regret online learning. In Artificial Intelligence and
Statistics (AISTATS).

Tom Schaul, John Quan, Ioannis Antonoglou, and
David Silver. 2016. Prioritized experience replay.
In International Conference on Learning Represen-
tations. Puerto Rico.

Jürgen Schmidhuber. 2004. Optimal ordered problem
solver. Machine Learning 54(3):211–254.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. Nature 529(7587):484–489.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Richard S. Sutton and Andrew G. Barto. 1998. Rein-
forcement Learning: An Introduction. MIT Press,
Cambridge, MA.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems (NIPS).

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Associa-
tion for Computational Linguistics (ACL).

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv preprint
arXiv:1410.3916 .

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. In Machine Learning. pages 229–
256.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-
search optimization. CoRR abs/1606.02960.
http://arxiv.org/abs/1606.02960.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant

Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR
abs/1609.08144. http://arxiv.org/abs/1609.08144.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Association for Computational
Linguistics (ACL).

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Association for Computational Lin-
guistics (ACL).

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2015. Neural enquirer: Learning to query tables.
arXiv preprint arXiv:1512.00965 .

Adam Yu, Hongrae Lee, and Quoc Le. 2017. Learning
to skim text. In ACL.

Wojciech Zaremba and Ilya Sutskever. 2015. Rein-
forcement learning neural turing machines. arXiv
preprint arXiv:1505.00521 .

M. Zelle and R. J. Mooney. 1996. Learning to parse
database queries using inductive logic program-
ming. In Association for the Advancement of Arti-
ficial Intelligence (AAAI). pages 1050–1055.

L. S. Zettlemoyer and M. Collins. 2005. Learning to
map sentences to logical form: Structured classifica-
tion with probabilistic categorial grammars. In Un-
certainty in Artificial Intelligence (UAI). pages 658–
666.

33

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 34–43
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1004

Neural Relation Extraction with Multi-lingual Attention

Yankai Lin1, Zhiyuan Liu1∗, Maosong Sun1,2

1 Department of Computer Science and Technology,

State Key Lab on Intelligent Technology and Systems,

National Lab for Information Science and Technology, Tsinghua University, Beijing, China
2 Jiangsu Collaborative Innovation Center for Language Competence, Jiangsu, China

Abstract

Relation extraction has been widely used

for finding unknown relational facts from

the plain text. Most existing methods fo-

cus on exploiting mono-lingual data for

relation extraction, ignoring massive in-

formation from the texts in various lan-

guages. To address this issue, we intro-

duce a multi-lingual neural relation ex-

traction framework, which employs mono-

lingual attention to utilize the information

within mono-lingual texts and further pro-

poses cross-lingual attention to consider

the information consistency and comple-

mentarity among cross-lingual texts. Ex-

perimental results on real-world datasets

show that our model can take advan-

tage of multi-lingual texts and consistently

achieve significant improvements on re-

lation extraction as compared with base-

lines. The source code of this paper can

be obtained from https://github.
com/thunlp/MNRE

1 Introduction

People build many large-scale knowledge bases

(KBs) to store structured knowledge about the real

world, such as Wikidata1 and DBpedia2. KBs

are playing an important role in many AI and

NLP applications such as information retrieval

and question answering. The facts in KBs are

typically organized in the form of triplets, e.g.,

(New York, CityOf, United States). Since ex-

isting KBs are far from complete and new facts

are growing infinitely, meanwhile manual anno-

tation of these knowledge is time-consuming and

∗ Corresponding author: Zhiyuan Liu (li-

uzy@tsinghua.edu.cn).
1http://www.wikidata.org/
2http://wiki.dbpedia.org/

human-intensive, many works have been devoted

to automated extraction of novel facts from vari-

ous Web resources, where relation extraction (RE)

from plain texts is one the most important knowl-

edge sources.

Among various methods for relation extraction,

distant supervision is the most promising approach

(Mintz et al., 2009; Riedel et al., 2010; Hoffmann

et al., 2011; Surdeanu et al., 2012), which can au-

tomatically generate training instances via aligning

KBs and texts to address the issue of lacking super-

vised data. As the development of deep learning,

Zeng et al. (2015) introduce neural networks to ex-

tract relations with automatically learned features

from training instances. To address the wrong

labelling issue of distant supervision data, Lin

et al. (2016) further employ sentence-level atten-

tion mechanism in neural relation extraction, and

achieves the state-of-the-art performance.

However, most RE systems concentrate on ex-

tracting relational facts frommono-lingual data. In

fact, people describe knowledge about the world

using various languages. And people speaking

different languages also share similar knowledge

about the world due to the similarities of human

experiences and human cognitive systems. For in-

stance, though New York and United States are ex-

pressed as纽约 and美国 respectively in Chinese,

both Americans and Chinese share the fact that

“New York is a city of USA.”

It is straightforward to build mono-lingual RE

systems separately for each single language. But

if so, it won’t be able to take full advantage of di-

verse information hidden in the data of various lan-

guages. Multi-lingual data will benefit relation ex-

traction for the following two reasons: 1. Consis-

tency. According to the distant supervision data in

our experiments3, we find that over half of Chinese

3The data is generated by aligning Wikidata with Chinese

34

https://doi.org/10.18653/v1/P17-1004

Relation City in

English 1. New York is a city in the northeastern

United States.

Chinese 1. 纽约փӄ美国纽约ᐔђ঍䜞ཝ㾵⍁
⋵ዮθᱥ美国ㅢжཝคᐸ਀ㅢжཝ⑥.

(NewYork is in the United States New York

and on the Atlantic coast of the southeast At-

lantic, is the largest city and largest port in

the United States.)

2. 纽约ᱥ美国ӰਙᴶཐⲺคᐸ. (New

York is the most populous city in the

United States)

Table 1: An example of Chinese sentences and En-

glish sentence about the same relational fact (New

York, CityOf,United States). Important parts are
highlighted with bold face.

and English sentences are longer than 20 words,

in which only several words are related to the re-

lational facts. Take Table 1 for example. The

first Chinese sentence has over 20 words, in which
only “纽约” (New York) and “ᱥ美国ㅢжཝค
ᐸ” (is the biggest city in the United States) ac-

tually directly reflect the relational fact CityOf.
It is thus non-trivial to locate and learn these rela-

tional patterns from complicated sentences for re-

lation extraction. Fortunately, a relational fact is

usually expressed with certain patterns in various

languages, and the correspondence of these pat-

terns among languages is substantially consistent.

The pattern consistency among languages provides

us augmented clues to enhance relational pattern

learning for relation extraction.

2. Complementarity. From our experiment

data, we also find that 42.2% relational facts in

English data and 41.6% ones in Chinese data are

unique. Moreover, for nearly half of relations, the

number of sentences expressing relational facts of

these relations varies a lot in different languages.

It is thus straightforward that the texts in differ-

ent languages can be complementary to each other,

especially from those resource-rich languages to

resource-poor languages, and improve the overall

performance of relation extraction.

To take full consideration of these issues,

we propose Multi-lingual Attention-based Neural

Relation Extraction (MNRE). We first employ a

convolutional neural network (CNN) to embed the

relational patterns in sentences into real-valued

vectors. Afterwards, to consider the complemen-

tarity of all informative sentences in various lan-

Baidu Baike and English Wikipedia articles, which will be

introduced in details in the section of experiments.

guages and capture the consistency of relational

patterns, we apply mono-lingual attention to select

the informative sentences within each language

and propose cross-lingual attention to take advan-

tages of pattern consistency and complementarity

among languages. Finally, we classify relations

according to the global vector aggregated from all

sentence vectors weighted by mono-lingual atten-

tion and cross-lingual attention.

In experiments, we build training instances via

distant supervision by aligning Wikidata with Chi-

nese Baidu Baike and English Wikipedia articlesθ
and evaluate the performance of relation extraction

in both English and Chinese. The experimental

results show that our framework achieves signif-

icant improvement for relation extraction as com-

pared to all baselinemethods including bothmono-

lingual and multi-lingual ones. It indicates that our

framework can take full advantages of sentences

in different languages and better capture sophisti-

cated patterns expressing relations.

2 Related Work

Recent years KBs have been widely used on var-

ious AI and NLP applications. As an impor-

tant approach to enrich KBs, relation extraction

from plain text has attracted many research in-

terests. Relation extraction typically classifies

each entity pair into various relation types ac-

cording to supporting sentences that the both enti-

ties appear, which needs human-labelled relation-

specific training instances. Many works have been

invested to relation extraction including kernel-

based model (Zelenko et al., 2003), embedding-

based model (Gormley et al., 2015), CNN-based

models (Zeng et al., 2014; dos Santos et al., 2015),

and RNN-based model (Socher et al., 2012).

Nevertheless, these RE systems are insuffi-

cient due to the lack of training data. To ad-

dress this issue, Mintz et al. (2009) align plain

text with Freebase to automatically generate train-

ing instances following the distant supervision

assumption. To further alleviate the wrong la-

belling problem, Riedel et al. (2010) model dis-

tant supervision for relation extraction as a multi-

instance single-label learning problem, and Hoff-

mann et al. (2011); Surdeanu et al. (2012) regard it

as a multi-instance multi-label learning problem.

Recently, Zeng et al. (2015) attempt to connect

neural networks with distant supervision follow-

ing the expressed-at-least-once assumption. Lin

35

Relation Embedding

Sentence Representation

ChineseEnglish

English Chinese

Output Representation

Att Att

Mono-lingual and

Cross-lingual Attention

2
s

2

1
x

1

1
x 1

1

n
x 1

2
x

2

2
x 2

2

n
x

Att Att

2

1
s

1

2
s

1
s1 2

Figure 1: Overall architecture of our multi-lingual attention which contains two languages including

English and Chinese. The solid lines indicates mono-lingual attention and the dashed lines indicates

cross-lingual attention.

et al. (2016) further utilize sentence-level attention

mechanism to consider all informative sentences

jointly.

Most existing RE systems are absorbed in ex-

tracting relations from mono-lingual data, ignor-

ing massive information lying in texts from mul-

tiple languages. In this area, Faruqui and Kumar

(2015) present a language independent open do-

main relation extraction system, and Verga et al.

(2015) further employ Universal Schema to com-

bine OpenIE and link-prediction perspective for

multi-lingual relation extraction. Both the works

focus on multi-lingual transfer learning and learn

a predictive model on a new language for existing

KBs, by leveraging unified representation learn-

ing for cross-lingual entities. Different from these

works, our framework aims to jointly model the

texts in multiple languages to enhance relation ex-

traction with distant supervision. To the best of our

knowledge, this is the first effort to multi-lingual

neural relation extraction.

The scope of multi-lingual analysis has been

widely considered in many tasks besides relation

extraction, such as sentiment analysis (Boiy and

Moens, 2009), cross-lingual document summa-

rization (Boudin et al., 2011), information retrieval

in Web search (Dong et al., 2014) and so on.

3 Methodology

In this section, we describe our proposed MNRE

framework in detail. The keymotivation ofMNRE

is that, for each relational fact, the relation pat-

terns in sentences of different languages should be

substantially consistent, and MNRE can utilize the

pattern consistency and complementarity among

languages to achieve better results for relation ex-

traction.

Formally, given two entities, their correspond-

ing sentences in m different languages are de-

fined as T = {S1, S2, . . . , Sm}, where Sj =
{x1

j , x
2
j , . . . , x

nj

j } corresponds to the sentence set

in the jth language with nj sentences. Our model

measures a score f(T, r) for each relation r, which
is expected to be high when r is the valid one, oth-
erwise low. The MNRE framework contains two

main components:

1. Sentence Encoder. Given a sentence x and

two target entities, we employ CNN to encode re-

lation patterns in x into a distributed representation
x. The sentence encoder can also be implemented

with GRU (Cho et al., 2014) or LSTM (Hochre-

iter and Schmidhuber, 1997). In experiments, we

find CNN can achieve a better trade-off between

computational efficiency and performance effec-

tiveness. Thus, in this paper, we focus on CNN

as the sentence encoder.

2. Multi-lingual Attention. With all sentences

in various languages encoded into distributed vec-

tor representations, we apply mono-lingual and

cross-lingual attentions to capture those infor-

mative sentences with accurate relation patterns.

MNRE further aggregates these sentence vectors

with weighted attentions into global representa-

tions for relation prediction.

We introduce the two components in detail as

follows.

3.1 Sentence Encoder

The sentence encoder aims to transform a sentence

x into its distributed representation x via CNN.

First, it embeds the words in the input sentence

36

into dense real-valued vectors. Next, it employs

convolutional, max-pooling and non-linear trans-

formation layers to construct the distributed repre-

sentation of the sentence, i.e., x.

3.1.1 Input Representation

Following (Zeng et al., 2014), we transform each

input word into the concatenation of two kinds of

representations: (1) a word embedding which cap-

tures syntactic and semantic meanings of the word,

and (2) a position embedding which specifies the

position information of this word with respect to

two target entities. In this way, we can repre-

sent the input sentence as a vector sequence w =
{w1,w2, . . .}withwi ∈ Rd, where d = da+db×2.
(da and db are the dimensions of word embeddings

and position embeddings respectively)

3.1.2 Convolution, Max-pooling and

Non-linear Layers

After encoding the input sentence, we use a con-

volutional layer to extract the local features, max-

pooling, and non-linear layers to merge all local

features into a global representation.

First, the convolutional layer extracts local fea-

tures by sliding a window of length l over the sen-
tence and perform a convolution within each slid-

ing window. Formally, the output of convolutional

layer for the ith sliding window is computed as:

pi = Wwi−l+1:i + b, (1)

where wi−l+1:i indicates the concatenation of l
word embeddings within the i-th window, W ∈
Rdc×(l×d) is the convolution matrix and b ∈ Rdc

is the bias vector. (dc is the dimension of output

embeddings of the convolution layer)

After that, we combines all local features via a

max-pooling operation and apply a hyperbolic tan-

gent function to obtain a fixed-sized sentence vec-

tor for the input sentence. Formally, the ith ele-

ment of the output vector x ∈ Rdc
is calculated as:

[x]j = tanh
(
max

i
(pij)

)
. (2)

The final vector x is expected to efficiently en-

code relation patterns about target entities from the

input sentence.

Here, instead of max pooling operation, we can

use piecewise max pooling operation adopted by

PCNN (Zeng et al., 2015) which is a variation of

CNN to better capture the relation patterns in the

input sentence.

3.2 Multi-lingual Attention

To exploit the information of the sentences from

all languages, our model adopts two kinds of at-

tention mechanisms for multi-lingual relation ex-

traction, including: (1) the mono-lingual atten-

tion which selects the informative sentences within

one language and (2) the cross-lingual attention

which measures the pattern consistency among

languages.

3.2.1 Mono-lingual Attention

To address the wrong-labelling issue in distant su-

pervision, we follow the idea of sentence-level at-

tention (Lin et al., 2016) and set mono-lingual at-

tention for MNRE. It is intuitive that each hu-

man language has its own characteristics. Hence

we adopt different mono-lingual attentions to de-

emphasize those noisy sentences within each lan-

guage.

More specifically, for the j-th language and the
sentence set Sj , we aim to aggregate all sentence

vectors into a real-valued vector Sj for relation pre-

diction. The mono-lingual vector Sj is computed

as a weighted sum of those sentence vectors xi
j :

Sj =
∑

i

αi
jx

i
j , (3)

where αi
j is the attention score of each sentence

vector xi
j , defined as:

αi
j =

exp(ei
j)∑

k exp(e
k
j)

, (4)

where ei
j is referred as a query-based function

which scores how well the input sentence xi
j re-

flects its labelled relation r. There are many ways
to obtain ei

j , and here we simply compute ei as the

inner product:

ei
j = xi

j · rj . (5)

Here rj is the query vector of the relation r with

respect to the j-th language.

3.2.2 Cross-lingual Attention

Besides mono-lingual attention, we propose cross-

lingual attention for neural relation extraction to

better take advantages of multi-lingual data.

The key idea of cross-lingual attention is to em-

phasize those sentences which have strong con-

sistency among different languages. On the basis

of mono-lingual attention, cross-lingual attention

37

is capable of further removing unlikely sentences

and resulting in more concentrated and informa-

tive sentences, with the factor of consistent cor-

respondence of relation patterns among different

languages.

Cross-lingual attention works similar to mono-

lingual attention. Suppose j indicates a language

and k is a another language (k ̸= j). Formally,

the cross-lingual representation Sjk is defined as a

weighted sum of those sentence vectors xi
j in the

jth language:

Sjk =
∑

i

αi
jkx

i
j , (6)

where αi
jk is the cross-lingual attention score of

each sentence vector xi
j with respect to the kth lan-

guage. The cross-lingual attention αi
jk is defined

as:

αi
jk =

exp(ei
jk)∑

k exp(e
k
jk)

, (7)

where ei
jk is referred as a query-based function

which scores the consistency between the input

sentence xi
j in the jth language and the relation

patterns in the kth language for expressing the se-
mantic meanings of the labelled relation r. Similar
to the mono-lingual attention, we compute ei

jk as

follows:

ei
jk = xi

j · rk, (8)

where rk is the query vector of the relation r with
respect to the kth language.

Note that, for convenience, we denote those

mono-lingual attention vectors Sj as Sjj in the re-

mainder of this paper.

3.3 Prediction

For each entity pair and its corresponding sentence

set T in m languages, we can obtain m × m vec-

tors {Sjk|j, k ∈ {1, . . . , m}} from the neural net-

works with multi-lingual attention. Those vectors

with j = k are mono-lingual attention vectors, and
those with j ̸= k are cross-lingual attention vec-

tors.

We take all vectors {Sjk} together and define the
overall score function f(T, r) as follows:

f(T, r) =
∑

j,k∈{1,...,m}
log p(r|Sjk, θ), (9)

where p(r|Sjk, θ) is the probability of predicting

the relation r conditional on Sjk, computed using

a softmax layer as follows:

p(r|Sjk, θ) = softmax(MSjk + d), (10)

where d ∈ Rnr is a bias vector, nr is the number of

relation types andM ∈ Rnr×Rc
is a global relation

matrix initialized randomly.

To better consider the characteristics of each hu-

man language, we further introduce Rk as the spe-

cific relation matrix of the kth language. Here we
simply define Rk as composed by rk in Eq. (8).

Hence, Eq. (10) can be extended to:

p(r|Sjk, θ) = softmax[(Rk +M)Sjk + d], (11)

where M encodes global patterns for predicting

relations and Rk encodes those language-specific

characteristics.

Note that, in the training phase, the vectors

{Sjk} are constructed using Eq. (3) and (6) using

the labelled relation. In the testing phase, since the

relation is not known in advance, we will construct

different vectors {Sjk} for each possible relation r
to compute f(T, r) for relation prediction.

3.4 Optimization

Here we introduce the learning and optimization

details of our MNRE framework. We define the

objective function as follows:

J(θ) =
s∑

i=1

f(Ti, ri), (12)

where s indicates the number of all entity pairs

with each corresponding to a sentence set in dif-

ferent languages, and θ indicates all parameters of
our framework.

To solve the optimization problem, we adopt

mini-batch stochastic gradient descent (SGD) to

minimize the objective function. For learning, we

iterate by randomly selecting amini-batch from the

training set until converge.

4 Experiments

We first introduce the datasets and evaluation met-

rics used in the experiments. Next, we use a vali-

dation set to determine the best model parameters

and choose the best model via early stopping. Af-

terwards, we show the effectiveness of our frame-

work of considering pattern complementarity and

consistency for multi-lingual relation extraction by

quantitative and qualitative analysis. Finally, we

compare the effect of two kinds of relation matri-

ces in Eq. (11) used for prediction.

38

4.1 Datasets and Evaluation Metrics

We generate a new multi-lingual relation extrac-

tion dataset to evaluate our MNRE framework.

Without loss of generality, the experiments fo-

cus on relation extraction from two languages in-

cluding English and Chinese. In this dataset,

the Chinese instances are generated by aligning

Chinese Baidu Baike with Wikidata, and the En-

glish instances are generated by aligning English

Wikipedia articles with Wikidata. The relational

facts of Wikidata in this dataset are divided into

three parts for training, validation and testing re-

spectively. There are 176 relations including a spe-
cial relation NA indicating there is no relation be-

tween entities. Andwe set both validation and test-

ing sets for Chinese and English parts contain the

same facts. We list the statistics about the dataset

in Table 2.

Dataset #Rel #Sent #Fact

Train 1,022,239 47,638

English Valid 176 80,191 2,192

Test 162,018 4,326

Train 940,595 42,536

Chinese Valid 176 82,699 2,192

Test 167,224 4,326

Table 2: Statistics of the dataset.

We follow previous works (Mintz et al., 2009)

and investigate the performance of RE systems us-

ing the held-out evaluation, by comparing the re-

lational facts discovered by RE systems from the

testing set with those facts in KB. The evaluation

method assumes that if a RE system accurately

finds more relational facts in KBs from the test-

ing set, it will achieve better performance for rela-

tion extraction. The held-out evaluation provides

an approximate measure of RE performance with-

out time-consuming human evaluation. In experi-

ments, we report the precision/recall curves as the

evaluation metric.

4.2 Experimental Settings

We tune the parameters of our MNRE framework

by grid searching using validation set. For train-

ing, we set the iteration number over all the train-

ing data as 15. The best models were selected by
early stopping using the evaluation results on the

validation set. In Table 3 we show the best setting

of all parameters used in our experiments.

Hyper-parameter value

Window size w 3

Sentence embedding size dc 230

Word dimension da 50

Position dimension db 5

Batch size B 160

Learning rate λ 0.001

Dropout probability p 0.5

Table 3: Parameter settings.

4.3 Effectiveness of Consistency

To demonstrate the effectiveness of considering

pattern consistency among languages, we empir-

ically compare different methods through held-out

evaluation. We select CNN proposed in (Zeng

et al., 2014) as our sentence encoder and imple-

ment it by ourselves which achieves comparable

results as the authors reported on their experimen-

tal dataset NYT104. And we compare the perfor-

mance of our framework with the [P]CNN model

trained with only English data ([P]CNN-En),

only Chinese data ([P]CNN-Zh), a joint model

([P]CNN+joint) which predicts using [P]CNN-En

and [P]CNN-Zh jointly, and another joint model

with shared embeddings ([P]CNN+share) which

trains [P]CNN-En and [P]CNN-Zh with common

relation embedding matrices.

From Fig. 2, we have the following observa-

tions:

(1) Both [P]CNN+joint and [P]CNN+share

achieve better performances as compared to

[P]CNN-En and [P]CNN-Zh. It indicates that uti-

lizing Chinese and English sentences jointly is

beneficial to extracting novel relational facts. The

reason is that those relational facts that are discov-

ered from multiple languages are more reliable to

be true.

(2) CNN+share only has similar performance

as compared to CNN+joint, even through a bit

worse when recall ranges from 0.1 to 0.2. Besides,

PCNN+share performs worse than PCNN+joint

nearly over the entire range of recall. It demon-

strates that a simple combination of multiple lan-

guages by sharing relation embedding matrices

cannot further capture more implicit correlations

among various languages.

(3) Our MNRE model achieves the highest pre-

cision over the entire range of recall as com-

pared to other methods including [P]CNN+joint

and [P]CNN+share models. By grid searching of

4http://iesl.cs.umass.edu/riedel/ecml/

39

CNN+Zh CNN+En MNRE Sentence

— Medium Low 1. Barzun is a commune in the Pyrénées-Atlantiques department in the Nouvelle-

Aquitaine region of south-western France.

— Medium High 2. Barzun was born in Créteil , France

Medium — Low 3. ֒ѰԄ⌋国〱≇ࡦ美国ᶛⲺ京ቌ⸛䇼࠼ᆆθᐪቊ䎔ф㧧᰸޻ቊg⢯䠂
᷍Ƚᗭᘶ⢯g哜ށ୆㓩ㅿӰж䚉θ൞߭ᡎᰬᵕ〥ᶷ৸ф美国Ⲻާޢ⸛䇼⭕
⍱…(As a top intellectual immigrating from France to the United States, Barzun,

together with Lionel Trilling and DwightMacdonald, actively participated in public

knowledge life in the United States during the cold war …)

Medium — High 4. ᐪቊ䎔ӄ 1907ᒪ࠰⭕ӄ⌋国жѠ⸛䇼࠼ᆆᇬᓣθ1920ᒪ䎪美Ⱦ(Barzun

was born in a French intellectual family in 1907 and went to America in 1920.)

Table 4: An example of our multi-lingual attention. Low, medium and high indicate the attention weights.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

CNN−Zh
CNN−En
CNN+joint
CNN+share
MNRE(CNN)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

PCNN−Zh
PCNN−En
PCNN+joint
PCNN+share
MNRE(PCNN)

Figure 2: Top: Aggregated precision/recall curves

of CNN-En, CNN-Zh, CNN+joint, CNN+share,

and MNRE(CNN). Bottom: Aggregated pre-

cision/recall curves of PCNN-En, PCNN-Zh,

PCNN+joint, PCNN+share, and MNRE(PCNN)

parameters for these baseline models, we can ob-

serve that both [P]CNN+joint and [P]CNN+share

cannot achieve competitive results compared to

MNRE even when increasing the size of the output

layer. This indicates that no more useful informa-

tion can be captured by simply increasing model

size. On the contrary, our proposed MNRE model

can successfully improvemulti-lingual relation ex-

traction by considering pattern consistency among

languages.

We further give an example of cross-lingual at-

tention in Table 4. It shows four sentences hav-

ing the highest and lowest Chinese-to-English and

English-to-Chinese attention weights respectively

with respect to the relation PlaceOfBirth in

MNRE. We highlight the entity pairs in bold

face. For comparison, we also show their attention

weights from CNN+Zh and CNN+En. From the

table we find that, although all of the four sentences

actually express the fact that Barzun was born in

France, the first and third sentences contain much

more noisy information that may confuse RE sys-

tems. By considering pattern consistency between

sentences in two languages with cross-lingual at-

tention, MNRE can identify the second and fourth

sentences that unambiguously express the relation

PlaceOfBirth with higher attention as com-

pared to CNN+Zh and CNN+En.

4.4 Effectiveness of Complementarity

To demonstrate the effectiveness of consider-

ing pattern complementarity among languages,

we empirically compare the following methods

through held-out evaluation: MNRE for English

(MNRE-En) and MNRE for Chinese (MNRE-Zh)

which only use the mono-lingual vectors to predict

relations, and [P]CNN-En and [P]CNN-Zh mod-

els.

Fig. 3 shows the aggregated precision/recall

curves of the four models for both CNN and

PCNN. From the figure, we find that:

(1) MNRE-En and MNRE-Zh outperform

[P]CNN-En and [P]CNN-Zh almost in entire

range of recall. It indicates that by jointly training

with multi-lingual attention, both Chinese and

English relation extractors are beneficial from

those sentences from the other language.

(2) Although [P]CNN-En underperforms as

compared to [P]CNN-Zh, MNRE-En is compara-

ble to MNRE-Zh by jointly training through multi-

lingual attention. It demonstrates that both Chi-

40

Relation #Sent-En #Sent-Zh CNN-En CNN-Zh MNRE-En MNRE-Zh

Contains 993 6984 17.95 69.87 73.72 75.00

HeadquartersLocation 1949 210 43.04 0.00 41.77 50.63

Father 1833 983 64.71 77.12 86.27 83.01

CountryOfCitizenship 25322 15805 95.22 93.23 98.41 98.21

Table 5: Detailed results (precision@1) of some specific relations. #Sent-En and #Sent-Zh indicate the

numbers of English/Chinese sentences which are labelled with the relations.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

CNN−Zh
CNN−En
MNRE(CNN)−Zh
MNRE(CNN)−En

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

PCNN−Zh
PCNN−En
MNRE(PCNN)−Zh
MNRE(PCNN)−En

Figure 3: Top: Aggregate precision/recall curves

of CNN-En, CNN-Zh, MNRE(CNN)-En and

MNRE(CNN)-Zh. Bottom: Aggregate pre-

cision/recall curves of PCNN-En, PCNN-Zh,

MNRE(PCNN)-En and MNRE(PCNN)-Zh.

nese and English relation extractors can take full

advantages of texts in both languages via our pro-

pose multi-lingual attention scheme.

Table 5 shows the detailed results (in preci-

sion@1) of some specific relations of which the

training instances are un-balanced on English and

Chinese sides. From the table, we can see that:

(1) For the relation Contains of which the

number of English training instances is only 1/7
of Chinese ones, CNN-En gets much worse per-

formance as compared to CNN-Zh due to the lack

of training data. Nevertheless, by jointly training

through multi-lingual attention, MNRE(CNN)-

En is comparable to and slightly better than

MNRE(CNN)-Zh.

(2) For the relation HeadquartersLoca-
tion of which the number of Chinese training in-
stances is only 1/9 of English ones, CNN-Zh even
cannot predict any correct results. The reason is

perhaps that, CNN-Zh of the relation is not suf-

ficiently trained because there are only 210 Chi-

nese training instances for this relation. Simi-

larly, by jointly training through multi-lingual at-

tention, MNRE(CNN)-En and MNRE(CNN)-Zh

both achieve promising results.

(3) For the relations Father and Country-
OfCitizenship of which the sentence number

in English and Chinese are not so un-balanced, our

MNRE can still improve the performance of rela-

tion extraction on both English and Chinese sides.

4.5 Comparison of Relation Matrix

For relation prediction, we use two kinds of re-

lation matrices including: M that considers the

global consistency of relations, and R that consid-

ers the specific characteristics of relations for each

language. To measure the effect of the two relation

matrices, we compare the performance of MNRE

using the both matrices with those only using M

(MNRE-M) and only using R (MNRE-R).

Fig. 4 shows the precision-recall curves for each

method. From the figure, we observe that:t

(1) The performance of MNRE-M is much

worse than both MNRE-R and MNRE. It indicates

that we cannot just use global relation matrix for

relation prediction. The reason is that each lan-

guage has its own specific characteristics to ex-

press relation patterns, which cannot be well in-

tegrated into a single relation matrix.

(2) MNRE(CNN)-R has similar performance as

compared to MNRE(CNN) when the recall is low.

However, it has a sharp decline when the recall

reaches 0.25. It suggests there also exists global

consistency of relation patterns among languages

which cannot be neglected. Hence, we should

combine both M and R together for multi-lingual

relation extraction, as proposed in our MNRE

41

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

MNRE(CNN)−R
MNRE(CNN)−M
MNRE(CNN)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

MNRE(PCNN)−R
MNRE(PCNN)−M
MNRE(PCNN)

Figure 4: Top: Aggregated precion/recall

curves of MNRE(CNN)-M, MNRE(CNN)-R

and MNRE. Bottom: Aggregated precion/recall

curves of MNRE(PCNN)-M, MNRE(PCNN)-R

and MNRE(PCNN).

framework.

5 Conclusion

In this paper, we introduce a neural relation extrac-

tion framework with multi-lingual attention to take

pattern consistency and complementarity among

multiple languages into consideration. We evalu-

ate our framework onmulti-lingual relation extrac-

tion task, and the results show that our framework

can effectively model relation patterns among lan-

guages and achieve state-of-the-art results.

We will explore the following directions as fu-

ture work: (1) In this paper, we only consider

sentence-level multi-lingual attention for relation

extraction. In fact, we find that the word alignment

information may be also helpful for capturing rela-

tion patterns. Hence, the word-level multi-lingual

attention, which may discover implicit alignments

between words in multiple languages, will fur-

ther improve multi-lingual relation extraction. We

will explore the effectiveness of word-level multi-

lingual attention for relation extraction as our fu-

ture work. (2) MNRE can be flexibly implemented

in the scenario of multiple languages, and this pa-

per focuses on two languages of English and Chi-

nese. In future, we will extendMNRE to more lan-

guages and explore its significance.

Acknowledgments

This work is supported by the 973 Program

(No. 2014CB340501), the National Natu-

ral Science Foundation of China (NSFC No.

61572273, 61532010), and the Key Technologies

Research andDevelopment Program of China (No.

2014BAK04B03). This work is also funded by the

Natural Science Foundation of China (NSFC) and

the German Research Foundation(DFG) in Project

Crossmodal Learning, NSFC 61621136008 / DFC

TRR-169.

References

Erik Boiy and Marie-Francine Moens. 2009. A

machine learning approach to sentiment analysis

in multilingual web texts. Information retrieval

12(5):526–558.

Florian Boudin, Stéphane Huet, and Juan-Manuel

Torres-Moreno. 2011. A graph-based approach

to cross-language multi-document summarization.

Polibits (43):113–118.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-

danau, and Yoshua Bengio. 2014. On the properties

of neural machine translation: Encoder-decoder ap-

proaches. arXiv preprint arXiv:1409.1259 .

Meiping Dong, Yong Cheng, Yang Liu, Jia Xu,

Maosong Sun, Tatsuya Izuha, and Jie Hao. 2014.

Query lattice for translation retrieval. In Proceed-

ings of COLING. pages 2031–2041.

Cıcero Nogueira dos Santos, Bing Xiang, and Bowen

Zhou. 2015. Classifying relations by ranking with

convolutional neural networks. In Proceedings of

ACL. volume 1, pages 626–634.

Manaal Faruqui and Shankar Kumar. 2015. Multilin-

gual open relation extraction using cross-lingual pro-

jection. arXiv preprint arXiv:1503.06450 .

Matthew R. Gormley, Mo Yu, and Mark Dredze. 2015.

Improved relation extraction with feature-rich com-

positional embedding models. In Proceedings of

EMNLP. pages 1774–1784.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long

short-term memory. Neural Computation pages

1735–1780.

42

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke

Zettlemoyer, and Daniel S Weld. 2011. Knowledge-

based weak supervision for information extraction of

overlapping relations. In Proceedings of ACL-HLT.

pages 541–550.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,

and Maosong Sun. 2016. Neural relation extraction

with selective attention over instances. In Proceed-

ings of ACL. volume 1, pages 2124–2133.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-

sky. 2009. Distant supervision for relation extrac-

tion without labeled data. In Proceedings of ACL-

IJCNLP. pages 1003–1011.

Sebastian Riedel, Limin Yao, and Andrew McCallum.

2010. Modeling relations and their mentions without

labeled text. In Proceedings of ECML-PKDD. pages

148–163.

Richard Socher, Brody Huval, Christopher DManning,

and AndrewYNg. 2012. Semantic compositionality

through recursive matrix-vector spaces. In Proceed-

ings of EMNLP-CoNLL. pages 1201–1211.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,

Ilya Sutskever, and Ruslan Salakhutdinov. 2014.

Dropout: A simple way to prevent neural networks

from overfitting. JMLR 15(1):1929–1958.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,

and Christopher D Manning. 2012. Multi-instance

multi-label learning for relation extraction. In Pro-

ceedings of EMNLP. pages 455–465.

Patrick Verga, David Belanger, Emma Strubell, Ben-

jamin Roth, and Andrew McCallum. 2015. Multi-

lingual relation extraction using compositional uni-

versal schema. arXiv preprint arXiv:1511.06396 .

Dmitry Zelenko, Chinatsu Aone, and Anthony

Richardella. 2003. Kernel methods for relation

extraction. JMLR 3(Feb):1083–1106.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.

2015. Distant supervision for relation extraction via

piecewise convolutional neural networks. In Pro-

ceedings of EMNLP.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,

and Jun Zhao. 2014. Relation classification via con-

volutional deep neural network. In Proceedings of

COLING. pages 2335–2344.

43

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 44–55
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1005

Learning Structured Natural Language Representations
for Semantic Parsing

Jianpeng Cheng† Siva Reddy† Vijay Saraswat‡ and Mirella Lapata†
†School of Informatics, University of Edinburgh

‡IBM T.J. Watson Research
{jianpeng.cheng,siva.reddy}@ed.ac.uk, vsaraswa@us.ibm.com,

mlap@inf.ed.ac.uk

Abstract

We introduce a neural semantic parser
which is interpretable and scalable. Our
model converts natural language utter-
ances to intermediate, domain-general nat-
ural language representations in the form
of predicate-argument structures, which
are induced with a transition system and
subsequently mapped to target domains.
The semantic parser is trained end-to-end
using annotated logical forms or their de-
notations. We achieve the state of the
art on SPADES and GRAPHQUESTIONS

and obtain competitive results on GEO-
QUERY and WEBQUESTIONS. The in-
duced predicate-argument structures shed
light on the types of representations useful
for semantic parsing and how these are dif-
ferent from linguistically motivated ones.1

1 Introduction

Semantic parsing is the task of mapping natu-
ral language utterances to machine interpretable
meaning representations. Despite differences in
the choice of meaning representation and model
structure, most existing work conceptualizes se-
mantic parsing following two main approaches.
Under the first approach, an utterance is parsed
and grounded to a meaning representation directly
via learning a task-specific grammar (Zelle and
Mooney, 1996; Zettlemoyer and Collins, 2005;
Wong and Mooney, 2006; Kwiatkowksi et al.,
2010; Liang et al., 2011; Berant et al., 2013;
Flanigan et al., 2014; Pasupat and Liang, 2015;
Groschwitz et al., 2015). Under the second ap-
proach, the utterance is first parsed to an inter-
mediate task-independent representation tied to a
syntactic parser and then mapped to a grounded

1Our code is available at https://github.com/
cheng6076/scanner.

representation (Kwiatkowski et al., 2013; Reddy
et al., 2016, 2014; Krishnamurthy and Mitchell,
2015; Gardner and Krishnamurthy, 2017). A merit
of the two-stage approach is that it creates reusable
intermediate interpretations, which potentially en-
ables the handling of unseen words and knowledge
transfer across domains (Bender et al., 2015).

The successful application of encoder-decoder
models (Bahdanau et al., 2015; Sutskever et al.,
2014) to a variety of NLP tasks has provided
strong impetus to treat semantic parsing as a se-
quence transduction problem where an utterance
is mapped to a target meaning representation in
string format (Dong and Lapata, 2016; Jia and
Liang, 2016; Kočiský et al., 2016). Such models
still fall under the first approach, however, in con-
trast to previous work (Zelle and Mooney, 1996;
Zettlemoyer and Collins, 2005; Liang et al., 2011)
they reduce the need for domain-specific assump-
tions, grammar learning, and more generally ex-
tensive feature engineering. But this modeling
flexibility comes at a cost since it is no longer pos-
sible to interpret how meaning composition is per-
formed. Such knowledge plays a critical role in
understand modeling limitations so as to build bet-
ter semantic parsers. Moreover, without any task-
specific prior knowledge, the learning problem is
fairly unconstrained, both in terms of the possible
derivations to consider and in terms of the target
output which can be ill-formed (e.g., with extra or
missing brackets).

In this work, we propose a neural semantic
parser that alleviates the aforementioned prob-
lems. Our model falls under the second class of
approaches where utterances are first mapped to
an intermediate representation containing natural
language predicates. However, rather than using
an external parser (Reddy et al., 2014, 2016) or
manually specified CCG grammars (Kwiatkowski
et al., 2013), we induce intermediate representa-
tions in the form of predicate-argument structures

44

https://doi.org/10.18653/v1/P17-1005

from data. This is achieved with a transition-based
approach which by design yields recursive seman-
tic structures, avoiding the problem of generating
ill-formed meaning representations. Compared to
most existing semantic parsers which employ a
CKY style bottom-up parsing strategy (Krishna-
murthy and Mitchell, 2012; Cai and Yates, 2013;
Berant et al., 2013; Berant and Liang, 2014), the
transition-based approach we proposed does not
require feature decomposition over structures and
thereby enables the exploration of rich, non-local
features. The output of the transition system is
then grounded (e.g., to a knowledge base) with a
neural mapping model under the assumption that
grounded and ungrounded structures are isomor-
phic.2 As a result, we obtain a neural model that
jointly learns to parse natural language semantics
and induce a lexicon that helps grounding.

The whole network is trained end-to-end on
natural language utterances paired with anno-
tated logical forms or their denotations. We
conduct experiments on four datasets, including
GEOQUERY (which has logical forms; Zelle and
Mooney 1996), SPADES (Bisk et al., 2016), WEB-
QUESTIONS (Berant et al., 2013), and GRAPH-
QUESTIONS (Su et al., 2016) (which have deno-
tations). Our semantic parser achieves the state of
the art on SPADES and GRAPHQUESTIONS, while
obtaining competitive results on GEOQUERY and
WEBQUESTIONS. A side-product of our mod-
eling framework is that the induced intermedi-
ate representations can contribute to rationalizing
neural predictions (Lei et al., 2016). Specifically,
they can shed light on the kinds of representations
(especially predicates) useful for semantic pars-
ing. Evaluation of the induced predicate-argument
relations against syntax-based ones reveals that
they are interpretable and meaningful compared
to heuristic baselines, but they sometimes deviate
from linguistic conventions.

2 Preliminaries

Problem Formulation Let K denote a knowl-
edge base or more generally a reasoning system,
and x an utterance paired with a grounded mean-
ing representationG or its denotation y. Our prob-
lem is to learn a semantic parser that maps x to G
via an intermediate ungrounded representation U .
When G is executed against K, it outputs denota-

2We discuss the merits and limitations of this assumption
in Section 5

Predicate Usage Sub-categories
answer denotation wrapper —

type entity type checking stateid, cityid,
riverid, etc.

all querying for an entire
set of entities —

aggregation one-argument meta
predicates for sets

count, largest,
smallest, etc.

logical
connectors

two-argument meta
predicates for sets

intersect,
union, exclude

Table 1: List of domain-general predicates.

tion y.

Grounded Meaning Representation We repre-
sent grounded meaning representations in FunQL
(Kate et al., 2005) amongst many other alterna-
tives such as lambda calculus (Zettlemoyer and
Collins, 2005), λ-DCS (Liang, 2013) or graph
queries (Holzschuher and Peinl, 2013; Harris
et al., 2013). FunQL is a variable-free query lan-
guage, where each predicate is treated as a func-
tion symbol that modifies an argument list. For
example, the FunQL representation for the utter-
ance which states do not border texas is:

answer(exclude(state(all), next to(texas)))

where next to is a domain-specific binary predi-
cate that takes one argument (i.e., the entity texas)
and returns a set of entities (e.g., the states border-
ing Texas) as its denotation. all is a special predi-
cate that returns a collection of entities. exclude is
a predicate that returns the difference between two
input sets.

An advantage of FunQL is that the resulting
s-expression encodes semantic compositionality
and derivation of the logical forms. This prop-
erty makes FunQL logical forms convenient to be
predicted with recurrent neural networks (Vinyals
et al., 2015; Choe and Charniak, 2016; Dyer et al.,
2016). However, FunQL is less expressive than
lambda calculus, partially due to the elimination
of variables. A more compact logical formulation
which our method also applies to is λ-DCS (Liang,
2013). In the absence of anaphora and composite
binary predicates, conversion algorithms exist be-
tween FunQL and λ-DCS. However, we leave this
to future work.

Ungrounded Meaning Representation We
also use FunQL to express ungrounded meaning
representations. The latter consist primarily of
natural language predicates and domain-general
predicates. Assuming for simplicity that domain-
general predicates share the same vocabulary

45

in ungrounded and grounded representations,
the ungrounded representation for the example
utterance is:

answer(exclude(states(all), border(texas)))

where states and border are natural language pred-
icates. In this work we consider five types of
domain-general predicates illustrated in Table 1.
Notice that domain-general predicates are often
implicit, or represent extra-sentential knowledge.
For example, the predicate all in the above utter-
ance represents all states in the domain which are
not mentioned in the utterance but are critical for
working out the utterance denotation. Finally, note
that for certain domain-general predicates, it also
makes sense to extract natural language rationales
(e.g., not is indicative for exclude). But we do not
find this helpful in experiments.

In this work we constrain ungrounded represen-
tations to be structurally isomorphic to grounded
ones. In order to derive the target logical forms,
all we have to do is replacing predicates in the
ungrounded representations with symbols in the
knowledge base.

3 Modeling

In this section, we discuss our neural model which
maps utterances to target logical forms. The se-
mantic parsing task is decomposed in two stages:
we first explain how an utterance is converted to
an intermediate representation (Section 3.1), and
then describe how it is grounded to a knowledge
base (Section 3.2).

3.1 Generating Ungrounded Representations
At this stage, utterances are mapped to interme-
diate representations with a transition-based algo-
rithm. In general, the transition system generates
the representation by following a derivation tree
(which contains a set of applied rules) and some
canonical generation order (e.g., depth-first). For
FunQL, a simple solution exists since the repre-
sentation itself encodes the derivation. Consider
again answer(exclude(states(all), border(texas)))
which is tree structured. Each predicate (e.g., bor-
der) can be visualized as a non-terminal node of
the tree and each entity (e.g., texas) as a terminal.
The predicate all is a special case which acts as
a terminal directly. We can generate the tree with
a top-down, depth first transition system reminis-
cent of recurrent neural network grammars (RN-
NGs; Dyer et al. 2016). Similar to RNNG, our

algorithm uses a buffer to store input tokens in
the utterance and a stack to store partially com-
pleted trees. A major difference in our semantic
parsing scenario is that tokens in the buffer are not
fetched in a sequential order or removed from the
buffer. This is because the lexical alignment be-
tween an utterance and its semantic representation
is hidden. Moreover, some predicates cannot be
clearly anchored to a token span. Therefore, we
allow the generation algorithm to pick tokens and
combine logical forms in arbitrary orders, condi-
tioning on the entire set of sentential features. Al-
ternative solutions in the traditional semantic pars-
ing literature include a floating chart parser (Pa-
supat and Liang, 2015) which allows to construct
logical predicates out of thin air.

Our transition system defines three actions,
namely NT, TER, and RED, explained below.

NT(X) generates a Non-Terminal predicate. This
predicate is either a natural language expression
such as border, or one of the domain-general
predicates exemplified in Table 1 (e.g., exclude).
The type of predicate is determined by the place-
holder X and once generated, it is pushed onto the
stack and represented as a non-terminal followed
by an open bracket (e.g., ‘border(’). The open
bracket will be closed by a reduce operation.

TER(X) generates a TERminal entity or the spe-
cial predicate all. Note that the terminal choice
does not include variable (e.g., $0, $1), since
FunQL is a variable-free language which suffi-
ciently captures the semantics of the datasets we
work with. The framework could be extended
to generate directly acyclic graphs by incorporat-
ing variables with additional transition actions for
handling variable mentions and co-reference.

RED stands for REDuce and is used for subtree
completion. It recursively pops elements from the
stack until an open non-terminal node is encoun-
tered. The non-terminal is popped as well, af-
ter which a composite term representing the entire
subtree, e.g., border(texas), is pushed back to the
stack. If a RED action results in having no more
open non-terminals left on the stack, the transition
system terminates. Table 2 shows the transition
actions used to generate our running example.

The model generates the ungrounded represen-
tation U conditioned on utterance x by recursively
calling one of the above three actions. Note that
U is defined by a sequence of actions (denoted

46

Sentence: which states do not border texas
Non-terminal symbols in buffer: which, states, do, not, border
Terminal symbols in buffer: texas
Stack Action NT choice TER choice

NT answer
answer (NT exclude
answer (exclude (NT states
answer (exclude (states (TER all
answer (exclude (states (all RED

answer (exclude (states (all) NT border
answer (exclude (states (all) , border (TER texas
answer (exclude (states (all) , border (texas RED

answer (exclude (states (all) , border (texas) RED

answer (exclude (states (all) , border (texas)) RED

answer (exclude (states (all) , border (texas)))

Table 2: Actions taken by the transition system for generating the ungrounded meaning representation
of the example utterance. Symbols in red indicate domain-general predicates.

by a) and a sequence of term choices (denoted
by u) as shown in Table 2. The conditional proba-
bility p(U |x) is factorized over time steps as:

p(U |x) = p(a, u|x)

=

T∏

t=1

p(at|a<t, x)p(ut|a<t, x)I(at 6=RED)

(1)

where I is an indicator function.
To predict the actions of the transition system,

we encode the input buffer with a bidirectional
LSTM (Hochreiter and Schmidhuber, 1997) and
the output stack with a stack-LSTM (Dyer et al.,
2015). At each time step, the model uses the rep-
resentation of the transition system et to predict an
action:

p(at|a<t, x) ∝ exp(Wa · et) (2)

where et is the concatenation of the buffer repre-
sentation bt and the stack representation st. While
the stack representation st is easy to retrieve as
the top state of the stack-LSTM, obtaining the
buffer representation bt is more involved. This is
because we do not have an explicit buffer repre-
sentation due to the non-projectivity of semantic
parsing. We therefore compute at each time step
an adaptively weighted representation of bt (Bah-
danau et al., 2015) conditioned on the stack rep-
resentation st. This buffer representation is then
concatenated with the stack representation to form
the system representation et.

When the predicted action is either NT or TER,
an ungrounded term ut (either a predicate or an

entity) needs to be chosen from the candidate list
depending on the specific placeholder X. To se-
lect a domain-general term, we use the same rep-
resentation of the transition system et to compute
a probability distribution over candidate terms:

p(uGENERAL
t |a<t, x) ∝ exp(Wp · et) (3)

To choose a natural language term, we directly
compute a probability distribution of all natural
language terms (in the buffer) conditioned on the
stack representation st and select the most relevant
term (Jia and Liang, 2016):

p(uNL
t |a<t, x) ∝ exp(st) (4)

When the predicted action is RED, the com-
pleted subtree is composed into a single represen-
tation on the stack. For the choice of composition
function, we use a single-layer neural network as
in Dyer et al. (2015), which takes as input the con-
catenated representation of the predicate and argu-
ment of the subtree.

3.2 Generating Grounded Representations
Since we constrain the network to learn un-
grounded structures that are isomorphic to the
target meaning representation, converting un-
grounded representations to grounded ones be-
comes a simple lexical mapping problem. For sim-
plicity, hereafter we do not differentiate natural
language and domain-general predicates.

To map an ungrounded term ut to a grounded
term gt, we compute the conditional probability

47

of gt given ut with a bi-linear neural network:

p(gt|ut) ∝ exp ~ut ·Wug · ~gt> (5)

where ~ut is the contextual representation of the un-
grounded term given by the bidirectional LSTM,
~gt is the grounded term embedding, and Wug is
the weight matrix.

The above grounding step can be interpreted
as learning a lexicon: the model exclusively re-
lies on the intermediate representation U to pre-
dict the target meaning representation G without
taking into account any additional features based
on the utterance. In practice, U may provide suf-
ficient contextual background for closed domain
semantic parsing where an ungrounded predicate
often maps to a single grounded predicate, but is
a relatively impoverished representation for pars-
ing large open-domain knowledge bases like Free-
base. In this case, we additionally rely on a dis-
criminative reranker which ranks the grounded
representations derived from ungrounded repre-
sentations (see Section 3.4).

3.3 Training Objective
When the target meaning representation is avail-
able, we directly compare it against our predic-
tions and back-propagate. When only denotations
are available, we compare surrogate meaning rep-
resentations against our predictions (Reddy et al.,
2014). Surrogate representations are those with
the correct denotations. When there exist multi-
ple surrogate representations,3 we select one ran-
domly and back-propagate. The global effect of
the above update rule is close to maximizing the
marginal likelihood of denotations, which differs
from recent work on weakly-supervised seman-
tic parsing based on reinforcement learning (Nee-
lakantan et al., 2017).

Consider utterance x with ungrounded mean-
ing representation U , and grounded meaning rep-
resentation G. Both U and G are defined with
a sequence of transition actions (same for U
and G) and a sequence of terms (different for U
and G). Recall that a = [a1, · · · , an] denotes
the transition action sequence defining U and G;
let u = [u1, · · · , uk] denote the ungrounded
terms (e.g., predicates), and g = [g1, · · · , gk]
the grounded terms. We aim to maximize the
likelihood of the grounded meaning representa-
tion p(G|x) over all training examples. This

3The average Freebase surrogate representations obtained
with highest denotation match (F1) is 1.4.

likelihood can be decomposed into the likelihood
of the grounded action sequence p(a|x) and the
grounded term sequence p(g|x), which we opti-
mize separately.

For the grounded action sequence (which by
design is the same as the ungrounded action se-
quence and therefore the output of the transition
system), we can directly maximize the log likeli-
hood log p(a|x) for all examples:

La =
∑

x∈T
log p(a|x) =

∑

x∈T

n∑

t=1

log p(at|x) (6)

where T denotes examples in the training data.
For the grounded term sequence g, since the

intermediate ungrounded terms are latent, we
maximize the expected log likelihood of the
grounded terms

∑
u [p(u|x) log p(g|u, x)] for all

examples, which is a lower bound of the log like-
lihood log p(g|x):
Lg =

∑

x∈T

∑

u

[p(u|x) log p(g|u, x)]

=
∑

x∈T

∑

u

[
p(u|x)

k∑

t=1

log p(gt|ut)
] (7)

The final objective is the combination of La
and Lg, denoted as LG = La + Lg. We opti-
mize this objective with the method described in
Lei et al. (2016).

3.4 Reranker
As discussed above, for open domain semantic
parsing, solely relying on the ungrounded repre-
sentation would result in an impoverished model
lacking sentential context useful for disambigua-
tion decisions. For all Freebase experiments, we
followed previous work (Berant et al., 2013; Be-
rant and Liang, 2014; Reddy et al., 2014) in addi-
tionally training a discriminative ranker to re-rank
grounded representations globally.

The discriminative ranker is a maximum-
entropy model (Berant et al., 2013). The objective
is to maximize the log likelihood of the correct an-
swer y given x by summing over all grounded can-
didates G with denotation y (i.e.,[[G]]K = y):

Ly =
∑

(x,y)∈T
log

∑

[[G]]K=y

p(G|x) (8)

p(G|x) ∝ exp{f(G, x)} (9)

where f(G, x) is a feature function that maps
pair (G, x) into a feature vector. We give details
on the features we used in Section 4.2.

48

4 Experiments

In this section, we verify empirically that our se-
mantic parser derives useful meaning representa-
tions. We give details on the evaluation datasets
and baselines used for comparison. We also
describe implementation details and the features
used in the discriminative ranker.

4.1 Datasets

We evaluated our model on the following datasets
which cover different domains, and use differ-
ent types of training data, i.e., pairs of natural
language utterances and grounded meanings or
question-answer pairs.

GEOQUERY (Zelle and Mooney, 1996) con-
tains 880 questions and database queries about US
geography. The utterances are compositional, but
the language is simple and vocabulary size small.
The majority of questions include at most one en-
tity. SPADES (Bisk et al., 2016) contains 93,319
questions derived from CLUEWEB09 (Gabrilovich
et al., 2013) sentences. Specifically, the questions
were created by randomly removing an entity, thus
producing sentence-denotation pairs (Reddy et al.,
2014). The sentences include two or more entities
and although they are not very compositional, they
constitute a large-scale dataset for neural network
training. WEBQUESTIONS (Berant et al., 2013)
contains 5,810 question-answer pairs. Similar to
SPADES, it is based on Freebase and the questions
are not very compositional. However, they are
real questions asked by people on the Web. Fi-
nally, GRAPHQUESTIONS (Su et al., 2016) con-
tains 5,166 question-answer pairs which were cre-
ated by showing 500 Freebase graph queries to
Amazon Mechanical Turk workers and asking
them to paraphrase them into natural language.

4.2 Implementation Details

Amongst the four datasets described above, GEO-
QUERY has annotated logical forms which we di-
rectly use for training. For the other three datasets,
we treat surrogate meaning representations which
lead to the correct answer as gold standard. The
surrogates were selected from a subset of candi-
date Freebase graphs, which were obtained by en-
tity linking. Entity mentions in SPADES have been
automatically annotated with Freebase entities
(Gabrilovich et al., 2013). For WEBQUESTIONS

and GRAPHQUESTIONS, we follow the procedure
described in Reddy et al. (2016). We identify po-

tential entity spans using seven handcrafted part-
of-speech patterns and associate them with Free-
base entities obtained from the Freebase/KG API.4

We use a structured perceptron trained on the enti-
ties found in WEBQUESTIONS and GRAPHQUES-
TIONS to select the top 10 non-overlapping entity
disambiguation possibilities. We treat each possi-
bility as a candidate input utterance, and use the
perceptron score as a feature in the discriminative
reranker, thus leaving the final disambiguation to
the semantic parser.

Apart from the entity score, the discriminative
ranker uses the following basic features. The first
feature is the likelihood score of a grounded rep-
resentation aggregating all intermediate represen-
tations. The second set of features include the em-
bedding similarity between the relation and the ut-
terance, as well as the similarity between the rela-
tion and the question words. The last set of fea-
tures includes the answer type as indicated by the
last word in the Freebase relation (Xu et al., 2016).

We used the Adam optimizer for training with
an initial learning rate of 0.001, two momentum
parameters [0.99, 0.999], and batch size 1. The di-
mensions of the word embeddings, LSTM states,
entity embeddings and relation embeddings are
[50, 100, 100, 100]. The word embeddings were
initialized with Glove embeddings (Pennington
et al., 2014). All other embeddings were randomly
initialized.

4.3 Results

Experimental results on the four datasets are sum-
marized in Tables 3–6. We present comparisons of
our system which we call SCANNER (as a short-
hand for SymboliC meANiNg rEpResentation)
against a variety of models previously described
in the literature.

GEOQUERY results are shown in Table 5. The
first block contains symbolic systems, whereas
neural models are presented in the second block.
We report accuracy which is defined as the pro-
portion of the utterance that are correctly parsed
to their gold standard logical forms. All previ-
ous neural systems (Dong and Lapata, 2016; Jia
and Liang, 2016) treat semantic parsing as a se-
quence transduction problem and use LSTMs to
directly map utterances to logical forms. SCAN-
NER yields performance improvements over these

4http://developers.google.com/
freebase/

49

Models F1
Berant et al. (2013) 35.7
Yao and Van Durme (2014) 33.0
Berant and Liang (2014) 39.9
Bast and Haussmann (2015) 49.4
Berant and Liang (2015) 49.7
Reddy et al. (2016) 50.3
Bordes et al. (2014) 39.2
Dong et al. (2015) 40.8
Yih et al. (2015) 52.5
Xu et al. (2016) 53.3
Neural Baseline 48.3
SCANNER 49.4

Table 3: WEBQUESTIONS results.

Models F1
SEMPRE (Berant et al., 2013) 10.80
PARASEMPRE (Berant and Liang, 2014) 12.79
JACANA (Yao and Van Durme, 2014) 5.08
Neural Baseline 16.24
SCANNER 17.02

Table 4: GRAPHQUESTIONS results. Numbers for
comparison systems are from Su et al. (2016).

systems when using comparable data sources for
training. Jia and Liang (2016) achieve better
results with synthetic data that expands GEO-
QUERY; we could adopt their approach to improve
model performance, however, we leave this to fu-
ture work.

Table 6 reports SCANNER’s performance on
SPADES. For all Freebase related datasets we use
average F1 (Berant et al., 2013) as our evalua-
tion metric. Previous work on this dataset has
used a semantic parsing framework similar to ours
where natural language is converted to an interme-
diate syntactic representation and then grounded
to Freebase. Specifically, Bisk et al. (2016) evalu-
ate the effectiveness of four different CCG parsers
on the semantic parsing task when varying the
amount of supervision required. As can be seen,
SCANNER outperforms all CCG variants (from
unsupervised to fully supervised) without having
access to any manually annotated derivations or
lexicons. For fair comparison, we also built a neu-
ral baseline that encodes an utterance with a recur-
rent neural network and then predicts a grounded
meaning representation directly (Ture and Jojic,
2016; Yih et al., 2016). Again, we observe that
SCANNER outperforms this baseline.

Results on WEBQUESTIONS are summarized
in Table 3. SCANNER obtains performance on
par with the best symbolic systems (see the first
block in the table). It is important to note that
Bast and Haussmann (2015) develop a question
answering system, which contrary to ours can-

Models Accuracy
Zettlemoyer and Collins (2005) 79.3
Zettlemoyer and Collins (2007) 86.1
Kwiatkowksi et al. (2010) 87.9
Kwiatkowski et al. (2011) 88.6
Kwiatkowski et al. (2013) 88.0
Zhao and Huang (2015) 88.9
Liang et al. (2011) 91.1
Dong and Lapata (2016) 84.6
Jia and Liang (2016) 85.0
Jia and Liang (2016) with extra data 89.1
SCANNER 86.7

Table 5: GEOQUERY results.

Models F1
Unsupervised CCG (Bisk et al., 2016) 24.8
Semi-supervised CCG (Bisk et al., 2016) 28.4
Neural baseline 28.6
Supervised CCG (Bisk et al., 2016) 30.9
Rule-based system (Bisk et al., 2016) 31.4
SCANNER 31.5

Table 6: SPADES results.

not produce meaning representations whereas Be-
rant and Liang (2015) propose a sophisticated
agenda-based parser which is trained borrowing
ideas from imitation learning. SCANNER is con-
ceptually similar to Reddy et al. (2016) who also
learn a semantic parser via intermediate repre-
sentations which they generate based on the out-
put of a dependency parser. SCANNER performs
competitively despite not having access to any
linguistically-informed syntactic structures. The
second block in Table 3 reports the results of sev-
eral neural systems. Xu et al. (2016) represent the
state of the art on WEBQUESTIONS. Their sys-
tem uses Wikipedia to prune out erroneous candi-
date answers extracted from Freebase. Our model
would also benefit from a similar post-processing
step. As in previous experiments, SCANNER out-
performs the neural baseline, too.

Finally, Table 4 presents our results on
GRAPHQUESTIONS. We report F1 for SCANNER,
the neural baseline model, and three symbolic sys-
tems presented in Su et al. (2016). SCANNER
achieves a new state of the art on this dataset with
a gain of 4.23 F1 points over the best previously
reported model.

4.4 Analysis of Intermediate Representations

Since a central feature of our parser is that it learns
intermediate representations with natural language
predicates, we conducted additional experiments
in order to inspect their quality. For GEOQUERY

50

Metrics Accuracy
Exact match 79.3
Structure match 89.6
Token match 96.5

Table 7: GEOQUERY evaluation of ungrounded
meaning representations. We report accuracy
against a manually created gold standard.

which contains only 280 test examples, we manu-
ally annotated intermediate representations for the
test instances and evaluated the learned represen-
tations against them. The experimental setup aims
to shows how humans can participate in improving
the semantic parser with feedback at the interme-
diate stage. In terms of evaluation, we use three
metrics shown in Table 7. The first row shows the
percentage of exact matches between the predicted
representations and the human annotations. The
second row refers to the percentage of structure
matches, where the predicted representations have
the same structure as the human annotations, but
may not use the same lexical terms. Among struc-
turally correct predictions, we additionally com-
pute how many tokens are correct, as shown in the
third row. As can be seen, the induced meaning
representations overlap to a large extent with the
human gold standard.

We also evaluated the intermediate represen-
tations created by SCANNER on the other three
(Freebase) datasets. Since creating a man-
ual gold standard for these large datasets is
time-consuming, we compared the induced rep-
resentations against the output of a syntactic
parser. Specifically, we converted the ques-
tions to event-argument structures with EASY-
CCG (Lewis and Steedman, 2014), a high cover-
age and high accuracy CCG parser. EASYCCG
extracts predicate-argument structures with a la-
beled F-score of 83.37%. For further comparison,
we built a simple baseline which identifies pred-
icates based on the output of the Stanford POS-
tagger (Manning et al., 2014) following the order-
ing VBD�VBN�VB�VBP�VBZ�MD.

As shown in Table 8, on SPADES and WE-
BQUESTIONS, the predicates learned by our
model match the output of EASYCCG more
closely than the heuristic baseline. But for
GRAPHQUESTIONS which contains more compo-
sitional questions, the mismatch is higher. How-
ever, since the key idea of our model is to cap-
ture salient meaning for the task at hand rather
than strictly obey syntax, we would not expect the

Dataset SCANNER Baseline
SPADES 51.2 45.5

–conj (1422) 56.1 66.4
–control (132) 28.3 40.5
–pp (3489) 46.2 23.1
–subord (76) 37.9 52.9

WEBQUESTIONS 42.1 25.5
GRAPHQUESTIONS 11.9 15.3

Table 8: Evaluation of predicates induced by
SCANNER against EASYCCG. We report F1(%)
across datasets. For SPADES, we also provide a
breakdown for various utterance types.

predicates induced by our system to entirely agree
with those produced by the syntactic parser. To
further analyze how the learned predicates differ
from syntax-based ones, we grouped utterances in
SPADES into four types of linguistic constructions:
coordination (conj), control and raising (control),
prepositional phrase attachment (pp), and subor-
dinate clauses (subord). Table 8 also shows the
breakdown of matching scores per linguistic con-
struction, with the number of utterances in each
type. In Table 9, we provide examples of predi-
cates identified by SCANNER, indicating whether
they agree or not with the output of EASYCCG.
As a reminder, the task in SPADES is to predict the
entity masked by a blank symbol ().

As can be seen in Table 8, the match-
ing score is relatively high for utterances in-
volving coordination and prepositional phrase
attachments. The model will often identify
informative predicates (e.g., nouns) which do
not necessarily agree with linguistic intuition.
For example, in the utterance wilhelm maybach
and his son started maybach in 1909 (see
Table 9), SCANNER identifies the predicate-
argument structure son(wilhelm maybach) rather
than started(wilhelm maybach). We also observed
that the model struggles with control and subor-
dinate constructions. It has difficulty distinguish-
ing control from raising predicates as exemplified
in the utterance ceo john thain agreed to leave
from Table 9, where it identifies the raising predi-
cate agreed. For subordinate clauses, SCANNER

tends to take shortcuts identifying as predicates
words closest to the blank symbol.

5 Discussion

We presented a neural semantic parser which
converts natural language utterances to grounded
meaning representations via intermediate
predicate-argument structures. Our model

51

conj

the boeing company was founded in 1916 and is
headquartered in , illinois .
nstar was founded in 1886 and is based in boston , .
the is owned and operated by zuffa , llc ,
headquarted in las vegas , nevada .
hugh attended and then shifted to uppingham school
in england .

was incorporated in 1947 and is based in
new york city .
the ifbb was formed in 1946 by president ben weider
and his brother .
wilhelm maybach and his son started maybach in
1909 .

was founded in 1996 and is headquartered in chicago .

control

threatened to kidnap russ .
has also been confirmed to play captain haddock .

hoffenberg decided to leave .
is reportedly trying to get impregnated by djimon

now .
for right now , are inclined to trust obama to do just
that .

agreed to purchase wachovia corp .
ceo john thain agreed to leave .
so nick decided to create .
salva later went on to make the non clown-based horror

.
eddie dumped debbie to marry when carrie was 2 .

pp

is the home of the university of tennessee .
chu is currently a physics professor at .
youtube is based in , near san francisco , california .
mathematica is a product of .

jobs will retire from .
the nab is a strong advocacy group in .
this one starred robert reed , known mostly as .

is positively frightening as detective bud white .

subord

the is a national testing board that is based in toronto .
is a corporation that is wholly owned by the

city of edmonton .
unborn is a scary movie that stars .

’s third wife was actress melina mercouri , who died
in 1994 .
sure , there were who liked the shah .

founded the , which is now also a designated terrorist
group .

is an online bank that ebay owns .
zoya akhtar is a director , who has directed the
upcoming movie .
imelda staunton , who plays , is genius .

is the important president that american ever had .
plus mitt romney is the worst governor that has had .

Table 9: Informative predicates identified by SCANNER in various types of utterances. Yellow predi-
cates were identified by both SCANNER and EASYCCG, red predicates by SCANNER alone, and green
predicates by EASYCCG alone.

essentially jointly learns how to parse natural
language semantics and the lexicons that help
grounding. Compared to previous neural semantic
parsers, our model is more interpretable as the
intermediate structures are useful for inspecting
what the model has learned and whether it
matches linguistic intuition.

An assumption our model imposes is that un-
grounded and grounded representations are struc-
turally isomorphic. An advantage of this assump-
tion is that tokens in the ungrounded and grounded
representations are strictly aligned. This allows
the neural network to focus on parsing and lexi-
cal mapping, sidestepping the challenging struc-
ture mapping problem which would result in a
larger search space and higher variance. On the
negative side, the structural isomorphism assump-
tion restricts the expressiveness of the model, es-
pecially since one of the main benefits of adopt-
ing a two-stage parser is the potential of captur-
ing domain-independent semantic information via
the intermediate representation. While it would be
challenging to handle drastically non-isomorphic
structures in the current model, it is possible to
perform local structure matching, i.e., when the
mapping between natural language and domain-
specific predicates is many-to-one or one-to-many.

For instance, Freebase does not contain a rela-
tion representing daughter, using instead two rela-
tions representing female and child. Previous work
(Kwiatkowski et al., 2013) models such cases
by introducing collapsing (for many-to-one map-
ping) and expansion (for one-to-many mapping)
operators. Within our current framework, these
two types of structural mismatches can be han-
dled with semi-Markov assumptions (Sarawagi
and Cohen, 2005; Kong et al., 2016) in the pars-
ing (i.e., predicate selection) and the grounding
steps, respectively. Aside from relaxing strict iso-
morphism, we would also like to perform cross-
domain semantic parsing where the first stage of
the semantic parser is shared across domains.

Acknowledgments We would like to thank
three anonymous reviewers, members of the Ed-
inburgh ILCC and the IBM Watson, and Abul-
hair Saparov for feedback. The support of the
European Research Council under award num-
ber 681760 “Translating Multiple Modalities into
Text” is gratefully acknowledged.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly

52

learning to align and translate. In Proceedings of
ICLR 2015. San Diego, California.

Hannah Bast and Elmar Haussmann. 2015. More ac-
curate question answering on Freebase. In Proceed-
ings of the 24th ACM International on Conference
on Information and Knowledge Management. ACM,
pages 1431–1440.

Emily M Bender, Dan Flickinger, Stephan Oepen,
Woodley Packard, and Ann Copestake. 2015. Lay-
ers of interpretation: On grammar and composition-
ality. In Proceedings of the 11th International Con-
ference on Computational Semantics. London, UK,
pages 239–249.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing. Seattle, Washington, pages 1533–
1544.

Jonathan Berant and Percy Liang. 2014. Semantic
parsing via paraphrasing. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Balti-
more, Maryland, pages 1415–1425.

Jonathan Berant and Percy Liang. 2015. Imitation
learning of agenda-based semantic parsers. Trans-
actions of the Association for Computational Lin-
guistics 3:545–558.

Yonatan Bisk, Siva Reddy, John Blitzer, Julia Hock-
enmaier, and Mark Steedman. 2016. Evaluating in-
duced CCG parsers on grounded semantic parsing.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Austin,
Texas, pages 2022–2027.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014. Question answering with subgraph embed-
dings. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Doha, Qatar, pages 615–620.

Qingqing Cai and Alexander Yates. 2013. Large-scale
semantic parsing via schema matching and lexicon
extension. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Sofia, Bulgaria, pages
423–433.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing. Austin, Texas, pages 2331–2336.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).
Berlin, Germany, pages 33–43.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2015.
Question answering over Freebase with multi-
column convolutional neural networks. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers). Beijing, China,
pages 260–269.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Beijing, China, pages 334–343.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural net-
work grammars. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. San Diego, California, pages
199–209.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Baltimore, Mary-
land, pages 1426–1436.

Evgeniy Gabrilovich, Michael Ringgaard, and Amar-
nag Subramanya. 2013. FACC1: Freebase anno-
tation of ClueWeb corpora, version 1 (release date
2013-06-26, format version 1, correction level 0) .

Matt Gardner and Jayant Krishnamurthy. 2017. Open-
Vocabulary Semantic Parsing with both Distribu-
tional Statistics and Formal Knowledge. In Pro-
ceedings of the 31st AAAI Conference on Artificial
Intelligence. San Francisco, California, pages 3195–
3201.

Jonas Groschwitz, Alexander Koller, and Christoph Te-
ichmann. 2015. Graph parsing with s-graph gram-
mars. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers).
Beijing, China, pages 1481–1490.

Steve Harris, Andy Seaborne, and Eric
Prud’hommeaux. 2013. SPARQL 1.1 query
language. W3C recommendation 21(10).

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Florian Holzschuher and René Peinl. 2013. Perfor-
mance of graph query languages: comparison of

53

cypher, gremlin and native access in Neo4j. In Pro-
ceedings of the Joint EDBT/ICDT 2013 Workshops.
ACM, pages 195–204.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).
Berlin, Germany, pages 12–22.

Rohit J. Kate, Yuk Wah Wong, and Raymond J.
Mooney. 2005. Learning to Transform Natural to
Formal Languages. In Proceedings for the 20th Na-
tional Conference on Artificial Intelligence. Pitts-
burgh, Pennsylvania, pages 1062–1068.

Lingpeng Kong, Chris Dyer, and Noah A Smith. 2016.
Segmental recurrent neural networks. In Proceed-
ings of ICLR 2016. San Juan, Puerto Rico.

Tomáš Kočiský, Gábor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic parsing with
semi-supervised sequential autoencoders. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Austin, Texas,
pages 1078–1087.

Jayant Krishnamurthy and Tom Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning. Jeju Is-
land, Korea, pages 754–765.

Jayant Krishnamurthy and Tom M. Mitchell. 2015.
Learning a Compositional Semantics for Freebase
with an Open Predicate Vocabulary. Transactions
of the Association for Computational Linguistics
3:257–270.

Tom Kwiatkowksi, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing. Cambridge, MA, pages 1223–1233.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling Semantic Parsers with
On-the-Fly Ontology Matching. In Proceedings of
Empirical Methods on Natural Language Process-
ing. pages 1545–1556.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generaliza-
tion in CCG grammar induction for semantic pars-
ing. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing.
Edinburgh, Scotland, pages 1512–1523.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing. Austin, Texas, pages 107–
117.

Mike Lewis and Mark Steedman. 2014. A* CCG pars-
ing with a supertag-factored model. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Doha,
Qatar, pages 990–1000.

Percy Liang. 2013. Lambda dependency-based
compositional semantics. arXiv preprint
arXiv:1309.4408 .

Percy Liang, Michael Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics:
Human Language Technologies. Portland, Oregon,
pages 590–599.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations. Baltimore, Mary-
land, pages 55–60.

Arvind Neelakantan, Quoc V Le, Martin Abadi, An-
drew McCallum, and Dario Amodei. 2017. Learn-
ing a natural language interface with neural pro-
grammer. In Proceedings of ICLR 2017. Toulon,
France.

Panupong Pasupat and Percy Liang. 2015. Compo-
sitional semantic parsing on semi-structured tables.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Beijing,
China, pages 1470–1480.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Doha, Qatar, pages 1532–
1543.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics 2:377–392.

Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming dependency
structures to logical forms for semantic parsing.
Transactions of the Association for Computational
Linguistics 4:127–140.

Sunita Sarawagi and William W Cohen. 2005. Semi-
markov conditional random fields for information
extraction. In Advances in Neural Information Pro-
cessing Systems 17, MIT Press, pages 1185–1192.

Yu Su, Huan Sun, Brian Sadler, Mudhakar Srivatsa,
Izzeddin Gur, Zenghui Yan, and Xifeng Yan. 2016.
On generating characteristic-rich question sets for

54

qa evaluation. In Proceedings of the 2016 Confer-
ence on Empirical Methods in Natural Language
Processing. Austin, Texas, pages 562–572.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27, MIT Press, pages 3104–3112.

Ferhan Ture and Oliver Jojic. 2016. Simple and ef-
fective question answering with recurrent neural net-
works. arXiv preprint arXiv:1606.05029 .

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neu-
ral Information Processing Systems 28. MIT Press,
pages 2773–2781.

Yuk Wah Wong and Raymond Mooney. 2006. Learn-
ing for semantic parsing with statistical machine
translation. In Proceedings of the Human Language
Technology Conference of the NAACL, Main Con-
ference. New York City, USA, pages 439–446.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016. Question answering
on Freebase via relation extraction and textual evi-
dence. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Berlin, Germany, pages 2326–
2336.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with Freebase. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Balti-
more, Maryland, pages 956–966.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Beijing, China, pages 1321–1331.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers). Berlin, Germany, pages
201–206.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to Parse Database Queries Using Inductive Logic
Programming. In Proceedings of the 13th National
Conference on Artificial Intelligence. Portland, Ore-
gon, pages 1050–1055.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to

logical form. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL). Prague, Czech Repub-
lic, pages 678–687.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to Map Sentences to Logical Form: Struc-
tured Classification with Probabilistic Categorial
Grammars. In Proceedings of 21st Conference in
Uncertainilty in Artificial Intelligence. Edinburgh,
Scotland, pages 658–666.

Kai Zhao and Liang Huang. 2015. Type-driven in-
cremental semantic parsing with polymorphism. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Denver, Colorado, pages 1416–1421.

55

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 56–68
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1006

Morph-fitting: Fine-Tuning Word Vector Spaces
with Simple Language-Specific Rules

Ivan Vulić1 , Nikola Mrkšić1, Roi Reichart2

Diarmuid Ó Séaghdha3, Steve Young1 , Anna Korhonen1

1 University of Cambridge 2 Technion, Israel Institute of Technology 3 Apple Inc.
{iv250,nm480,sjy11,alk23}@cam.ac.uk

doseaghdha@apple.com roiri@ie.technion.ac.il

Abstract

Morphologically rich languages accentu-
ate two properties of distributional vec-
tor space models: 1) the difficulty of in-
ducing accurate representations for low-
frequency word forms; and 2) insensitivity
to distinct lexical relations that have simi-
lar distributional signatures. These effects
are detrimental for language understanding
systems, which may infer that inexpensive
is a rephrasing for expensive or may not as-
sociate acquire with acquires. In this work,
we propose a novel morph-fitting procedure
which moves past the use of curated seman-
tic lexicons for improving distributional
vector spaces. Instead, our method injects
morphological constraints generated using
simple language-specific rules, pulling in-
flectional forms of the same word close to-
gether and pushing derivational antonyms
far apart. In intrinsic evaluation over four
languages, we show that our approach: 1)
improves low-frequency word estimates;
and 2) boosts the semantic quality of the
entire word vector collection. Finally, we
show that morph-fitted vectors yield large
gains in the downstream task of dialogue
state tracking, highlighting the importance
of morphology for tackling long-tail phe-
nomena in language understanding tasks.

1 Introduction

Word representation learning has become a re-
search area of central importance in natural lan-
guage processing (NLP), with its usefulness demon-
strated across many application areas such as pars-
ing (Chen and Manning, 2014; Johannsen et al.,
2015), machine translation (Zou et al., 2013), and
many others (Turian et al., 2010; Collobert et al.,

2011). Most prominent word representation tech-
niques are grounded in the distributional hypothe-
sis (Harris, 1954), relying on word co-occurrence
information in large textual corpora (Curran, 2004;
Turney and Pantel, 2010; Mikolov et al., 2013;
Mnih and Kavukcuoglu, 2013; Levy and Goldberg,
2014; Schwartz et al., 2015, i.a.).

Morphologically rich languages, in which “sub-
stantial grammatical information. . . is expressed at
word level” (Tsarfaty et al., 2010), pose specific
challenges for NLP. This is not always considered
when techniques are evaluated on languages such
as English or Chinese, which do not have rich mor-
phology. In the case of distributional vector space
models, morphological complexity brings two chal-
lenges to the fore:

1. Estimating Rare Words: A single lemma
can have many different surface realisations.
Naively treating each realisation as a separate word
leads to sparsity problems and a failure to exploit
their shared semantics. On the other hand, lemma-
tising the entire corpus can obfuscate the differ-
ences that exist between different word forms even
though they share some aspects of meaning.

2. Embedded Semantics: Morphology can en-
code semantic relations such as antonymy (e.g. lit-
erate and illiterate, expensive and inexpensive) or
(near-)synonymy (north, northern, northerly).

In this work, we tackle the two challenges jointly
by introducing a resource-light vector space fine-
tuning procedure termed morph-fitting. The pro-
posed method does not require curated knowledge
bases or gold lexicons. Instead, it makes use of the
observation that morphology implicitly encodes
semantic signals pertaining to synonymy (e.g.,
German word inflections katalanisch, katalanis-
chem, katalanischer denote the same semantic con-
cept in different grammatical roles), and antonymy
(e.g., mature vs. immature), capitalising on the

56

https://doi.org/10.18653/v1/P17-1006

en_expensive de_teure it_costoso en_slow de_langsam it_lento en_book de_buch it_libro
costly teuren dispendioso fast allmählich lentissimo books sachbuch romanzo

costlier kostspielige remunerativo slowness rasch lenta memoir buches racconto
cheaper aufwändige redditizio slower gemächlich inesorabile novel romandebüt volumetto

prohibitively kostenintensive rischioso slowed schnell rapidissimo storybooks büchlein saggio
pricey aufwendige costosa slowing explosionsartig graduale blurb pamphlet ecclesiaste

expensiveness teures costosa slowing langsamer lenti booked bücher libri
costly teuren costose slowed langsames lente rebook büch libra

costlier teurem costosi slowness langsame lenta booking büche librare
ruinously teurer dispendioso slows langsamem veloce rebooked büches libre

unaffordable teurerer dispendiose idle langsamen rapido books büchen librano

Table 1: The nearest neighbours of three example words (expensive, slow and book) in English, German
and Italian before (top) and after (bottom) morph-fitting.

proliferation of word forms in morphologically
rich languages. Formalised as an instance of the
post-processing semantic specialisation paradigm
(Faruqui et al., 2015; Mrkšić et al., 2016), morph-
fitting is steered by a set of linguistic constraints
derived from simple language-specific rules which
describe (a subset of) morphological processes in
a language. The constraints emphasise similarity
on one side (e.g., by extracting morphological syn-
onyms), and antonymy on the other (by extracting
morphological antonyms), see Fig. 1 and Tab. 2.

The key idea of the fine-tuning process is to pull
synonymous examples described by the constraints
closer together in the transformed vector space,
while at the same time pushing antonymous exam-
ples away from each other. The explicit post-hoc
injection of morphological constraints enables: a)
the estimation of more accurate vectors for low-
frequency words which are linked to their high-
frequency forms by the constructed constraints;1

this tackles the data sparsity problem; and b) spe-
cialising the distributional space to distinguish be-
tween similarity and relatedness (Kiela et al., 2015),
thus supporting language understanding applica-
tions such as dialogue state tracking (DST).2

As a post-processor, morph-fitting allows the
integration of morphological rules with any distri-
butional vector space in any language: it treats an
input distributional word vector space as a black
box and fine-tunes it so that the transformed space
reflects the knowledge coded in the input morpho-
logical constraints (e.g., Italian words rispettoso
and irrispetosa should be far apart in the trans-

1For instance, the vector for the word katalanischem which
occurs only 9 times in the German Wikipedia will be pulled
closer to the more reliable vectors for katalanisch and kata-
lanischer, with frequencies of 2097 and 1383 respectively.

2Representation models that do not distinguish between
synonyms and antonyms may have grave implications in down-
stream language understanding applications such as spoken
dialogue systems: a user looking for ‘an affordable Chinese
restaurant in west Cambridge’ does not want a recommenda-
tion for ‘an expensive Thai place in east Oxford’.

rispettoso

rispettosa

rispettosi

irrispettoso

irrispettosa

irrispettosi

Figure 1: Morph-fitting in Italian. Representations
for rispettoso, rispettosa, rispettosi (EN: respectful),
are pulled closer together in the vector space (solid
lines; ATTRACT constraints). At the same time,
the model pushes them away from their antonyms
(dashed lines; REPEL constraints) irrispettoso, ir-
rispettosa, irrispettosi (EN: disrespectful), obtained
through morphological affix transformation cap-
tured by language-specific rules (e.g., adding the
prefix ir- typically negates the base word in Italian)

formed vector space, see Fig. 1). Tab. 1 illustrates
the effects of morph-fitting by qualitative exam-
ples in three languages: the vast majority of nearest
neighbours are “morphological” synonyms.

We demonstrate the efficacy of morph-fitting
in four languages (English, German, Italian, Rus-
sian), yielding large and consistent improvements
on benchmarking word similarity evaluation sets
such as SimLex-999 (Hill et al., 2015), its multilin-
gual extension (Leviant and Reichart, 2015), and
SimVerb-3500 (Gerz et al., 2016). The improve-
ments are reported for all four languages, and with
a variety of input distributional spaces, verifying
the robustness of the approach.

We then show that incorporating morph-fitted
vectors into a state-of-the-art neural-network DST
model results in improved tracking performance,
especially for morphologically rich languages. We
report an improvement of 4% on Italian, and 6% on
German when using morph-fitted vectors instead of
the distributional ones, setting a new state-of-the-
art DST performance for the two datasets.3

3There are no readily available DST datasets for Russian.

57

2 Morph-fitting: Methodology

Preliminaries In this work, we focus on four lan-
guages with varying levels of morphological com-
plexity: English (EN), German (DE), Italian (IT),
and Russian (RU). These correspond to languages
in the Multilingual SimLex-999 dataset. Vocabu-
laries Wen, Wde, Wit, Wru are compiled by retain-
ing all word forms from the four Wikipedias with
word frequency over 10, see Tab. 3. We then extract
sets of linguistic constraints from these (large) vo-
cabularies using a set of simple language-specific
if-then-else rules, see Tab. 2.4 These constraints
(Sect. 2.2) are used as input for the vector space
post-processing ATTRACT-REPEL algorithm (out-
lined in Sect. 2.1).

2.1 The ATTRACT-REPEL Model
The ATTRACT-REPEL model, proposed by Mrkšić
et al. (2017b), is an extension of the PARAGRAM

procedure proposed by Wieting et al. (2015). It
provides a generic framework for incorporating
similarity (e.g. successful and accomplished) and
antonymy constraints (e.g. nimble and clumsy) into
pre-trained word vectors. Given the initial vector
space and collections of ATTRACT and REPEL con-
straints A and R, the model gradually modifies the
space to bring the designated word vectors closer
together or further apart. The method’s cost func-
tion consists of three terms. The first term pulls the
ATTRACT examples (xl, xr) ∈ A closer together.
If BA denotes the current mini-batch of ATTRACT

examples, this term can be expressed as:

A(BA) =
∑

(xl,xr)∈BA

(ReLU (δatt + xltl − xlxr)

+ ReLU (δatt + xrtr − xlxr))

where δatt is the similarity margin which de-
termines how much closer synonymous vectors
should be to each other than to each of their respec-
tive negative examples. ReLU(x) = max(0, x) is
the standard rectified linear unit (Nair and Hinton,
2010). The ‘negative’ example ti for each word
xi in any ATTRACT pair is the word vector clos-
est to xi among the examples in the current mini-
batch (distinct from its target synonym and xi it-
self). This means that this term forces synonymous

4A native speaker can easily come up with these sets of
morphological rules (or at least with a reasonable subset of
them) without any linguistic training. What is more, the rules
for DE, IT, and RU were created by non-native, non-fluent
speakers with a limited knowledge of the three languages,
exemplifying the simplicity and portability of the approach.

English German Italian

(discuss, discussed) (schottisch, schottischem) (golfo, golfi)
(laugh, laughing) (damalige, damaligen) (minato, minata)
(pacifist, pacifists) (kombiniere, kombinierte) (mettere, metto)
(evacuate, evacuated) (schweigt, schweigst) (crescono, cresci)
(evaluate, evaluates) (hacken, gehackt) (crediti, credite)

(dressed, undressed) (stabil, unstabil) (abitata, inabitato)
(similar, dissimilar) (geformtes, ungeformt) (realtà, irrealtà)
(formality, informality) (relevant, irrelevant) (attuato, inattuato)

Table 2: Example synonymous (inflectional; top)
and antonymous (derivational; bottom) constraints.

words from the in-batch ATTRACT constraints to
be closer to one another than to any other word in
the current mini-batch.

The second term pushes antonyms away from
each other. If (xl, xr) ∈ BR is the current mini-
batch of REPEL constraints, this term can be ex-
pressed as follows:

R(BR) =
∑

(xl,xr)∈BR

(ReLU (δrpl + xlxr − xltr)

+ ReLU (δrpl + xlxr − xrtr))

In this case, each word’s ‘negative’ example is the
(in-batch) word vector furthest away from it (and
distinct from the word’s target antonym). The intu-
ition is that we want antonymous words from the
input REPEL constraints to be further away from
each other than from any other word in the current
mini-batch; δrpl is now the repel margin.

The final term of the cost function serves to
retain the abundance of semantic information en-
coded in the starting distributional space. If xiniti is
the initial distributional vector and V (B) is the set
of all vectors present in the given mini-batch, this
term (per mini-batch) is expressed as follows:

R(BA,BR) =
∑

xi∈V (BA∪BR)

λreg

∥∥∥xinit
i − xi

∥∥∥
2

where λreg is the L2 regularisation constant.5 This
term effectively pulls word vectors towards their
initial (distributional) values, ensuring that rela-
tions encoded in initial vectors persist as long as
they do not contradict the newly injected ones.

2.2 Language-Specific Rules and Constraints

Semantic Specialisation with Constraints The
fine-tuning ATTRACT-REPEL procedure is entirely
driven by the input ATTRACT and REPEL sets of

5We use hyperparameter values δatt = 0.6, δrpl = 0.0,
λreg = 10−9 from prior work without fine-tuning. We train
all models for 10 epochs with AdaGrad (Duchi et al., 2011).

58

|W | |A| |R|

English 1,368,891 231,448 45,964
German 1,216,161 648,344 54,644
Italian 541,779 278,974 21,400
Russian 950,783 408,400 32,174

Table 3: Vocabulary sizes and counts of ATTRACT

(A) and REPEL (R) constraints.

constraints. These can be extracted from a variety
of semantic databases such as WordNet (Fellbaum,
1998), the Paraphrase Database (Ganitkevitch et al.,
2013; Pavlick et al., 2015), or BabelNet (Navigli
and Ponzetto, 2012; Ehrmann et al., 2014) as done
in prior work (Faruqui et al., 2015; Wieting et al.,
2015; Mrkšić et al., 2016, i.a.). In this work, we
investigate another option: extracting constraints
without curated knowledge bases in a spectrum of
languages by exploiting inherent language-specific
properties related to linguistic morphology. This
relaxation ensures a wider portability of ATTRACT-
REPEL to languages and domains without readily
available or adequate resources.

Extracting ATTRACT Pairs The core difference
between inflectional and derivational morphology
can be summarised in a few lines as follows: the for-
mer refers to a set of processes through which the
word form expresses meaningful syntactic infor-
mation, e.g., verb tense, without any change to the
semantics of the word. On the other hand, the latter
refers to the formation of new words with seman-
tic shifts in meaning (Schone and Jurafsky, 2001;
Haspelmath and Sims, 2013; Lazaridou et al., 2013;
Zeller et al., 2013; Cotterell and Schütze, 2017).

For the ATTRACT constraints, we focus on in-
flectional rather than on derivational morphology
rules as the former preserve the full meaning of a
word, modifying it only to reflect grammatical roles
such as verb tense or case markers (e.g., (en_read,
en_reads) or (de_katalanisch, de_katalanischer)).
This choice is guided by our intent to fine-tune
the original vector space in order to improve the
embedded semantic relations.

We define two rules for English, widely recog-
nised as morphologically simple (Avramidis and
Koehn, 2008; Cotterell et al., 2016b). These are:
(R1) if w1, w2 ∈Wen, where w2 = w1 + ing/ed/s,
then add (w1, w2) and (w2, w1) to the set of AT-
TRACT constraints A. This rule yields pairs such as
(look, looks), (look, looking), (look, looked).

If w[: −1] is a function which strips the last
character from word w, the second rule is: (R2)

if w1 ends with the letter e and w1 ∈ Wen and
w2 ∈ Wen, where w2 = w1[: −1] + ing/ed, then
add (w1, w2) and (w2, w1) to A. This creates pairs
such as (create, creating) and (create, created). Nat-
urally, introducing more sophisticated rules is pos-
sible in order to cover for other special cases and
morphological irregularities (e.g., sweep / swept),
but in all our EN experiments, A is based on the
two simple EN rules R1 and R2.

The other three languages, with more compli-
cated morphology, yield a larger number of rules.
In Italian, we rely on the sets of rules spanning:
(1) regular formation of plural (libro / libri); (2)
regular verb conjugation (aspettare / aspettiamo);
(3) regular formation of past participle (aspettare
/ aspettato); and (4) rules regarding grammatical
gender (bianco / bianca). Besides these, another
set of rules is used for German and Russian: (5)
regular declension (e.g., asiatisch / asiatischem).

Extracting REPEL Pairs As another source of
implicit semantic signals, W also contains words
which represent derivational antonyms: e.g., two
words that denote concepts with opposite meanings,
generated through a derivational process. We use a
standard set of EN “antonymy” prefixes: APen =
{dis, il, un, in, im, ir, mis, non, anti} (Fromkin et al.,
2013). If w1, w2 ∈ Wen, where w2 is generated
by adding a prefix from APen to w1, then (w1, w2)
and (w2, w1) are added to the set of REPEL con-
straints R. This rule generates pairs such as (ad-
vantage, disadvantage) and (regular, irregular). An
additional rule replaces the suffix -ful with -less,
extracting antonyms such as (careful, careless).

Following the same principle, we use APde =
{un, nicht, anti, ir, in, miss}, APit = {in, ir, im,
anti}, and APru = {не, анти}. For instance, this
generates an IT pair (rispettoso, irrispettoso) (see
Fig. 1). For DE, we use another rule targeting suffix
replacement: -voll is replaced by -los.

We further expand the set of REPEL constraints
by transitively combining antonymy pairs from
the previous step with inflectional ATTRACT pairs.
This step yields additional constraints such as
(rispettosa, irrispettosi) (see Fig. 1). The final A
andR constraint counts are given in Tab. 3. The full
sets of rules are available as supplemental material.

3 Experimental Setup

Training Data and Setup For each of the four
languages we train the skip-gram with negative
sampling (SGNS) model (Mikolov et al., 2013)

59

on the latest Wikipedia dump of each language.
We induce 300-dimensional word vectors, with the
frequency cut-off set to 10. The vocabulary sizes
|W | for each language are provided in Tab. 3.6 We
label these collections of vectors SGNS-LARGE.

Other Starting Distributional Vectors We also
analyse the impact of morph-fitting on other col-
lections of well-known EN word vectors. These
vectors have varying vocabulary coverage and are
trained with different architectures. We test stan-
dard distributional models: Common-Crawl GloVe
(Pennington et al., 2014), SGNS vectors (Mikolov
et al., 2013) with various contexts (BOW = bag-of-
words; DEPS = dependency contexts), and train-
ing data (PW = Polyglot Wikipedia from Al-Rfou
et al. (2013); 8B = 8 billion token word2vec cor-
pus), following (Levy and Goldberg, 2014) and
(Schwartz et al., 2015). We also test the symmetric-
pattern based vectors of Schwartz et al. (2016)
(SymPat-Emb), count-based PMI-weighted vectors
reduced by SVD (Baroni et al., 2014) (Count-SVD),
a model which replaces the context modelling func-
tion from CBOW with bidirectional LSTMs (Mela-
mud et al., 2016) (Context2Vec), and two sets of
EN vectors trained by injecting multilingual infor-
mation: BiSkip (Luong et al., 2015) and MultiCCA
(Faruqui and Dyer, 2014).

We also experiment with standard well-known
distributional spaces in other languages (IT and
DE), available from prior work (Dinu et al., 2015;
Luong et al., 2015; Vulić and Korhonen, 2016a).

Morph-fixed Vectors A baseline which utilises
an equal amount of knowledge as morph-fitting,
termed morph-fixing, fixes the vector of each word
to the distributional vector of its most frequent
inflectional synonym, tying the vectors of low-
frequency words to their more frequent inflections.
For each word w1, we construct a set of M + 1
words Ww1 = {w1, w

′
1, . . . , w

′
M} consisting of

the word w1 itself and all M words which co-
occur with w1 in the ATTRACT constraints. We
then choose the word w′max from the set Ww1 with
the maximum frequency in the training data, and
fix all other word vectors in Ww1 to its word vec-
tor. The morph-fixed vectors (MFIX) serve as our
primary baseline, as they outperformed another
straightforward baseline based on stemming across

6Other SGNS parameters were set to standard values (Ba-
roni et al., 2014; Vulić and Korhonen, 2016b): 15 epochs, 15
negative samples, global learning rate: .025, subsampling rate:
1e− 4. Similar trends in results persist with d = 100, 500.

all of our intrinsic and extrinsic experiments.

Morph-fitting Variants We analyse two vari-
ants of morph-fitting: (1) using ATTRACT con-
straints only (MFIT-A), and (2) using both AT-
TRACT and REPEL constraints (MFIT-AR).

4 Intrinsic Evaluation: Word Similarity

Evaluation Setup and Datasets The first set of
experiments intrinsically evaluates morph-fitted
vector spaces on word similarity benchmarks, using
Spearman’s rank correlation as the evaluation met-
ric. First, we use the SimLex-999 dataset, as well
as SimVerb-3500, a recent EN verb pair similarity
dataset providing similarity ratings for 3,500 verb
pairs.7 SimLex-999 was translated to DE, IT, and
RU by Leviant and Reichart (2015), and they crowd-
sourced similarity scores from native speakers. We
use this dataset for our multilingual evaluation.8

Morph-fitting EN Word Vectors As the first ex-
periment, we morph-fit a wide spectrum of EN dis-
tributional vectors induced by various architectures
(see Sect. 3). The results on SimLex and SimVerb
are summarised in Tab. 4. The results with EN

SGNS-LARGE vectors are shown in Fig. 3a. Morph-
fitted vectors bring consistent improvement across
all experiments, regardless of the quality of the ini-
tial distributional space. This finding confirms that
the method is robust: its effectiveness does not de-
pend on the architecture used to construct the initial
space. To illustrate the improvements, note that the
best score on SimVerb for a model trained on run-
ning text is achieved by Context2vec (ρ = 0.388);
injecting morphological constraints into this vector
space results in a gain of 7.1 ρ points.

Experiments on Other Languages We next ex-
tend our experiments to other languages, testing
both morph-fitting variants. The results are sum-
marised in Tab. 5, while Fig. 3a-3d show results
for the morph-fitted SGNS-LARGE vectors. These
scores confirm the effectiveness and robustness of
morph-fitting across languages, suggesting that the
idea of fitting to morphological constraints is in-
deed language-agnostic, given the set of language-
specific rule-based constraints. Fig. 3 also demon-

7Unlike other gold standard resources such as WordSim-
353 (Finkelstein et al., 2002) or MEN (Bruni et al., 2014),
SimLex and SimVerb provided explicit guidelines to discern
between semantic similarity and association, so that related
but non-similar words (e.g. cup and coffee) have a low rating.

8Since Leviant and Reichart (2015) re-scored the original
EN SimLex, we use their EN SimLex version for consistency.

60

Evaluation
Vectors SimLex-999 SimVerb-3500

1. SG-BOW2-PW (300)
(Mikolov et al., 2013) .339→ .439 .277→ .381
2. GloVe-6B (300)
(Pennington et al., 2014) .324→ .438 .286→ .405
3. Count-SVD (500)
(Baroni et al., 2014) .267→ .360 .199→ .301
4. SG-DEPS-PW (300)
(Levy and Goldberg, 2014) .376→ .434 .313→ .418
5. SG-DEPS-8B (500)
(Bansal et al., 2014) .373→ .441 .356→ .473
6. MultiCCA-EN (512)
(Faruqui and Dyer, 2014) .314→ .391 .296→ .354
7. BiSkip-EN (256)
(Luong et al., 2015) .276→ .356 .260→ .333
8. SG-BOW2-8B (500)
(Schwartz et al., 2015) .373→ .440 .348→ .441
9. SymPat-Emb (500)
(Schwartz et al., 2016) .381→ .442 .284→ .373
10. Context2Vec (600)
(Melamud et al., 2016) .371→ .440 .388→ .459

Table 4: The impact of morph-fitting (MFIT-AR
used) on a representative set of EN vector space
models. All results show the Spearman’s ρ corre-
lation before and after morph-fitting. The numbers
in parentheses refer to the vector dimensionality.

Vectors Distrib. MFIT-A MFIT-AR

EN: GloVe-6B (300) .324 .376 .438
EN: SG-BOW2-PW (300) .339 .385 .439
DE: SG-DEPS-PW (300)
(Vulić and Korhonen, 2016a) .267 .318 .325
DE: BiSkip-DE (256)
(Luong et al., 2015) .354 .414 .421
IT: SG-DEPS-PW (300)
(Vulić and Korhonen, 2016a) .237 .351 .391
IT: CBOW5-Wacky (300)
(Dinu et al., 2015) .363 .417 .446

Table 5: Results on multilingual SimLex-999 (EN,
DE, and IT) with two morph-fitting variants.

strates that the morph-fitted vector spaces consis-
tently outperform the morph-fixed ones.

The comparison between MFIT-A and MFIT-
AR indicates that both sets of constraints are im-
portant for the fine-tuning process. MFIT-A yields
consistent gains over the initial spaces, and (con-
sistent) further improvements are achieved by also
incorporating the antonymous REPEL constraints.
This demonstrates that both types of constraints are
useful for semantic specialisation.

Comparison to Other Specialisation Methods
We also tried using other post-processing spe-
cialisation models from the literature in lieu of
ATTRACT-REPEL using the same set of “morpho-
logical” synonymy and antonymy constraints. We
compare ATTRACT-REPEL to the retrofitting model

en:GloVe en:BOW2 de:DEPS de:BiSkip it:DEPS it:CBOW5
Word Vector Space

0.20

0.25

0.30

0.35

0.40

0.45

Sp
ea

rm
an

’s
ρ

co
rr

el
at

io
n

sc
or

e

Distrib
RF
CF
MFit-AR

Figure 2: A comparison of morph-fitting (the MFIT-
AR variant) with two other standard specialisation
approaches using the same set of morphological
constraints: Retrofitting (RF) (Faruqui et al., 2015)
and Counter-fitting (CF) (Mrkšić et al., 2016).
Spearman’s ρ correlation scores on the multilingual
SimLex-999 dataset for the same six distributional
spaces from Tab. 5.

of (Faruqui et al., 2015) and counter-fitting (Mrkšić
et al., 2017a). The two baselines were trained for
20 iterations using suggested settings. The results
for EN, DE, and IT are summarised in Fig. 2. They
clearly indicate that MFIT-AR outperforms the two
other post-processors for each language. We hy-
pothesise that the difference in performance mainly
stems from context-sensitive vector space updates
performed by ATTRACT-REPEL. Conversely, the
other two models perform pairwise updates which
do not consider what effect each update has on the
example pair’s relation to other word vectors (for a
detailed comparison, see (Mrkšić et al., 2017b)).

Besides their lower performance, the two other
specialisation models have additional disadvan-
tages compared to the proposed morph-fitting
model. First, retrofitting is able to incorporate
only synonymy/ATTRACT pairs, while our re-
sults demonstrate the usefulness of both types of
constraints, both for intrinsic evaluation (Tab. 5)
and downstream tasks (see later Fig. 3). Second,
counter-fitting is computationally intractable with
SGNS-LARGE vectors, as its regularisation term in-
volves the computation of all pairwise distances
between words in the vocabulary.

Further Discussion The simplicity of the used
language-specific rules does come at a cost of occa-
sionally generating incorrect linguistic constraints
such as (tent, intent), (prove, improve) or (press,
impress). In future work, we will study how to fur-

61

ther refine extracted sets of constraints. We also
plan to conduct experiments with gold standard
morphological lexicons on languages for which
such resources exist (Sylak-Glassman et al., 2015;
Cotterell et al., 2016b), and investigate approaches
which learn morphological inflections and deriva-
tions in different languages automatically as an-
other potential source of morphological constraints
(Soricut and Och, 2015; Cotterell et al., 2016a;
Faruqui et al., 2016; Kann et al., 2017; Aharoni
and Goldberg, 2017, i.a.).

5 Downstream Task: Dialogue State
Tracking (DST)

Goal-oriented dialogue systems provide conversa-
tional interfaces for tasks such as booking flights
or finding restaurants. In slot-based systems, ap-
plication domains are specified using ontologies
that define the search constraints which users can
express. An ontology consists of a number of slots
and their assorted slot values. In a restaurant search
domain, sets of slot-values could include PRICE =
[cheap, expensive] or FOOD = [Thai, Indian, ...].

The DST model is the first component of mod-
ern dialogue pipelines (Young, 2010). It serves to
capture the intents expressed by the user at each
dialogue turn and update the belief state. This prob-
ability distribution over the possible dialogue states
(defined by the domain ontology) is the system’s
internal estimate of the user’s goals. It is used by
the downstream dialogue manager component to
choose the subsequent system response (Su et al.,
2016). The following example shows the true dia-
logue state in a multi-turn dialogue:

User: What’s good in the southern part of town?
inform(area=south)

System: Vedanta is the top-rated Indian place.
User: How about something cheaper?
inform(area=south, price=cheap)

System: Seven Days is very popular. Great hot pot.
User: What’s the address?
inform(area=south, price=cheap);
request(address)

System: Seven Days is at 66 Regent Street.

The Dialogue State Tracking Challenge (DSTC)
shared task series formalised the evaluation and
provided labelled DST datasets (Henderson et al.,
2014a,b; Williams et al., 2016). While a plethora
of DST models are available based on, e.g., hand-
crafted rules (Wang et al., 2014) or conditional
random fields (Lee and Eskenazi, 2013), the recent
DST methodology has seen a shift towards neural-

network architectures (Henderson et al., 2014c,d;
Zilka and Jurcicek, 2015; Mrkšić et al., 2015; Perez
and Liu, 2017; Liu and Perez, 2017; Vodolán et al.,
2017; Mrkšić et al., 2017a, i.a.).

Model: Neural Belief Tracker To detect intents
in user utterances, most existing models rely on ei-
ther (or both): 1) Spoken Language Understanding
models which require large amounts of annotated
training data; or 2) hand-crafted, domain-specific
lexicons which try to capture lexical and morpho-
logical variation. The Neural Belief Tracker (NBT)
is a novel DST model which overcomes both issues
by reasoning purely over pre-trained word vectors
(Mrkšić et al., 2017a). The NBT learns to compose
these vectors into intermediate utterance and con-
text representations. These are then used to decide
which of the ontology-defined intents (goals) have
been expressed by the user. The NBT model keeps
word vectors fixed during training, so that unseen,
yet related words can be mapped to the right intent
at test time (e.g. northern to north).

Data: Multilingual WOZ 2.0 Dataset Our DST
evaluation is based on the WOZ dataset, released
by Wen et al. (2017). In this Wizard-of-Oz setup,
two Amazon Mechanical Turk workers assumed
the role of the user and the system asking/providing
information about restaurants in Cambridge (oper-
ating over the same ontology and database used
for DSTC2 (Henderson et al., 2014a)). Users typed
instead of speaking, removing the need to deal with
noisy speech recognition. In DSTC datasets, users
would quickly adapt to the system’s inability to
deal with complex queries. Conversely, the WOZ
setup allowed them to use sophisticated language.
The WOZ 2.0 release expanded the dataset to 1,200
dialogues (Mrkšić et al., 2017a). In this work, we
use translations of this dataset to Italian and Ger-
man, released by Mrkšić et al. (2017b).

Evaluation Setup The principal metric we use
to measure DST performance is the joint goal ac-
curacy, which represents the proportion of test set
dialogue turns where all user goals expressed up to
that point of the dialogue were decoded correctly
(Henderson et al., 2014a). The NBT models for
EN, DE and IT are trained using four variants of the
SGNS-LARGE vectors: 1) the initial distributional
vectors; 2) morph-fixed vectors; 3) and 4) the two
variants of morph-fitted vectors (see Sect. 3).

As shown by Mrkšić et al. (2017b), semantic
specialisation of the employed word vectors ben-

62

Distrib MFix MFit-A MFit-AR
0.15

0.20

0.25

0.30

0.35

0.40

0.45

Si
m

L
ex

(S
pe

ar
m

an
’s

ρ
)

0.60

0.65

0.70

0.75

0.80

0.85

D
ST

Perform
ance

(Joint)

(a) English

Distrib MFix MFit-A MFit-AR
0.15

0.20

0.25

0.30

0.35

0.40

0.45

Si
m

L
ex

(S
pe

ar
m

an
’s

ρ
)

SimLex

0.60

0.65

0.70

0.75

0.80

0.85

D
ST

Perform
ance

(Joint)

DST

(b) German

Distrib MFix MFit-A MFit-AR
0.15

0.20

0.25

0.30

0.35

0.40

0.45

Si
m

L
ex

(S
pe

ar
m

an
’s

ρ
)

0.60

0.65

0.70

0.75

0.80

0.85

D
ST

Perform
ance

(Joint)

(c) Italian

Distrib MFix MFit-A MFit-AR
RU Word Vector Space

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Si
m

L
ex

(S
pe

ar
m

an
’s

ρ
)

SimLex

(d) Russian

Figure 3: An overview of the results (Spearman’s ρ correlation) for four languages on SimLex-999 (grey
bars, left y axis) and the downstream DST performance (dark bars, right y axis) using SGNS-LARGE vectors
(d = 300), see Tab. 3 and Sect. 3. The left y axis measures the intrinsic word similarity performance,
while the right y axis provides the scale for the DST performance (there are no DST datasets for Russian).

efits DST performance across all three languages.
However, large gains on SimLex-999 do not al-
ways induce correspondingly large gains in down-
stream performance. In our experiments, we inves-
tigate the extent to which morph-fitting improves
DST performance, and whether these gains exhibit
stronger correlation with intrinsic performance.

Results and Discussion The dark bars (against
the right axes) in Fig. 3 show the DST perfor-
mance of NBT models making use of the four
vector collections. IT and DE benefit from both
kinds of morph-fitting: IT performance increases
from 74.1→ 78.1 (MFIT-A) and DE performance
rises even more: 60.6→ 66.3 (MFIT-AR), setting
a new state-of-the-art score for both datasets. The
morph-fixed vectors do not enhance DST perfor-
mance, probably because fixing word vectors to
their highest frequency inflectional form eliminates
useful semantic content encoded in the original
vectors. On the other hand, morph-fitting makes
use of this information, supplementing it with se-
mantic relations between different morphological
forms. These conclusions are in line with the Sim-
Lex gains, where morph-fitting outperforms both
distributional and morph-fixed vectors.

English performance shows little variation
across the four word vector collections investigated
here. This corroborates our intuition that, as a mor-
phologically simpler language, English stands to
gain less from fine-tuning the morphological varia-
tion for downstream applications. This result again
points at the discrepancy between intrinsic and ex-
trinsic evaluation: the considerable gains in Sim-
Lex performance do not necessarily induce similar
gains in downstream performance. Additional dis-
crepancies between SimLex and downstream DST
performance are detected for German and Italian.
While we observe a slight drop in SimLex perfor-
mance with the DE MFIT-AR vectors compared
to the MFIT-A ones, their relative performance is
reversed in the DST task. On the other hand, we
see the opposite trend in Italian, where the MFIT-
A vectors score lower than the MFIT-AR vectors
on SimLex, but higher on the DST task. In sum-
mary, we believe these results show that SimLex is
not a perfect proxy for downstream performance
in language understanding tasks. Regardless, its
performance does correlate with downstream per-
formance to a large extent, providing a useful in-
dicator for the usefulness of specific word vector

63

spaces for extrinsic tasks such as DST.

6 Related Work

Semantic Specialisation A standard approach
to incorporating external information into vector
spaces is to pull the representations of similar
words closer together. Some models integrate such
constraints into the training procedure, modify-
ing the prior or the regularisation (Yu and Dredze,
2014; Xu et al., 2014; Bian et al., 2014; Kiela et al.,
2015), or using a variant of the SGNS-style objec-
tive (Liu et al., 2015; Osborne et al., 2016). Another
class of models, popularly termed retrofitting, in-
jects lexical knowledge from available semantic
databases (e.g., WordNet, PPDB) into pre-trained
word vectors (Faruqui et al., 2015; Jauhar et al.,
2015; Wieting et al., 2015; Nguyen et al., 2016;
Mrkšić et al., 2016). Morph-fitting falls into the
latter category. However, instead of resorting to cu-
rated knowledge bases, and experimenting solely
with English, we show that the morphological rich-
ness of any language can be exploited as a source
of inexpensive supervision for fine-tuning vector
spaces, at the same time specialising them to better
reflect true semantic similarity, and learning more
accurate representations for low-frequency words.

Word Vectors and Morphology The use of mor-
phological resources to improve the representations
of morphemes and words is an active area of re-
search. The majority of proposed architectures en-
code morphological information, provided either
as gold standard morphological resources (Sylak-
Glassman et al., 2015) such as CELEX (Baayen
et al., 1995) or as an external analyser such as
Morfessor (Creutz and Lagus, 2007), along with
distributional information jointly at training time
in the language modelling (LM) objective (Luong
et al., 2013; Botha and Blunsom, 2014; Qiu et al.,
2014; Cotterell and Schütze, 2015; Bhatia et al.,
2016, i.a.). The key idea is to learn a morphologi-
cal composition function (Lazaridou et al., 2013;
Cotterell and Schütze, 2017) which synthesises the
representation of a word given the representations
of its constituent morphemes. Contrary to our work,
these models typically coalesce all lexical relations.

Another class of models, operating at the charac-
ter level, shares a similar methodology: such mod-
els compose token-level representations from sub-
component embeddings (subwords, morphemes, or
characters) (dos Santos and Zadrozny, 2014; Ling
et al., 2015; Cao and Rei, 2016; Kim et al., 2016;

Wieting et al., 2016; Verwimp et al., 2017, i.a.).
In contrast to prior work, our model decouples

the use of morphological information, now pro-
vided in the form of inflectional and derivational
rules transformed into constraints, from the actual
training. This pipelined approach results in a sim-
pler, more portable model. In spirit, our work is sim-
ilar to Cotterell et al. (2016b), who formulate the
idea of post-training specialisation in a generative
Bayesian framework. Their work uses gold mor-
phological lexicons; we show that competitive per-
formance can be achieved using a non-exhaustive
set of simple rules. Our framework facilitates the
inclusion of antonyms at no extra cost and natu-
rally extends to constraints from other sources (e.g.,
WordNet) in future work. Another practical differ-
ence is that we focus on similarity and evaluate
morph-fitting in a well-defined downstream task
where the artefacts of the distributional hypothesis
are known to prompt statistical system failures.

7 Conclusion and Future Work

We have presented a novel morph-fitting method
which injects morphological knowledge in the form
of linguistic constraints into word vector spaces.
The method makes use of implicit semantic signals
encoded in inflectional and derivational rules which
describe the morphological processes in a language.
The results in intrinsic word similarity tasks show
that morph-fitting improves vector spaces induced
by distributional models across four languages. Fi-
nally, we have shown that the use of morph-fitted
vectors boosts the performance of downstream lan-
guage understanding models which rely on word
representations as features, especially for morpho-
logically rich languages such as German.

Future work will focus on other potential sources
of morphological knowledge, porting the frame-
work to other morphologically rich languages and
downstream tasks, and on further refinements of
the post-processing specialisation algorithm and
the constraint selection.

Acknowledgments

This work is supported by the ERC Consolidator
Grant LEXICAL: Lexical Acquisition Across Lan-
guages (no 648909). RR is supported by the Intel-
ICRI grant: Hybrid Models for Minimally Super-
vised Information Extraction from Conversations.
The authors are grateful to the anonymous review-
ers for their helpful suggestions.

64

References
Roee Aharoni and Yoav Goldberg. 2017. Mor-

phological inflection generation with hard
monotonic attention. In Proceedings of ACL.
https://arxiv.org/abs/1611.01487.

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.
2013. Polyglot: Distributed word representations for
multilingual NLP. In Proceedings of CoNLL. pages
183–192. http://www.aclweb.org/anthology/W13-
3520.

Eleftherios Avramidis and Philipp Koehn.
2008. Enriching morphologically poor lan-
guages for statistical machine translation.
In Proceedings of ACL. pages 763–770.
http://www.aclweb.org/anthology/P/P08/P08-1087.

Harald R. Baayen, Richard Piepenbrock, and Hedderik
van Rijn. 1995. The CELEX lexical data base on
CD-ROM .

Mohit Bansal, Kevin Gimpel, and Karen Livescu. 2014.
Tailoring continuous word representations for depen-
dency parsing. In Proceedings of ACL. pages 809–
815. http://www.aclweb.org/anthology/P14-2131.

Marco Baroni, Georgiana Dinu, and Ger-
mán Kruszewski. 2014. Don’t count, pre-
dict! A systematic comparison of context-
counting vs. context-predicting semantic vec-
tors. In Proceedings of ACL. pages 238–247.
http://www.aclweb.org/anthology/P14-1023.

Parminder Bhatia, Robert Guthrie, and Jacob
Eisenstein. 2016. Morphological priors for
probabilistic neural word embeddings. In
Proceedings of EMNLP. pages 490–500.
https://aclweb.org/anthology/D16-1047.

Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014.
Knowledge-powered deep learning for word embed-
ding. In Proceedings of ECML-PKDD. pages 132–
148. https://doi.org/10.1007/978-3-662-44848-9_9.

Jan A. Botha and Phil Blunsom. 2014. Com-
positional morphology for word repre-
sentations and language modelling. In
Proceedings of ICML. pages 1899–1907.
http://jmlr.org/proceedings/papers/v32/botha14.html.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni.
2014. Multimodal distributional semantics. Jour-
nal of Artificial Intelligence Research 49:1–47.
https://doi.org/10.1613/jair.4135.

Kris Cao and Marek Rei. 2016. A joint model
for word embedding and word morphology.
In Proceedings of the 1st Workshop on Rep-
resentation Learning for NLP. pages 18–26.
http://aclweb.org/anthology/W/W16/W16-1603.

Danqi Chen and Christopher D. Manning. 2014. A
fast and accurate dependency parser using neural net-
works. In Proceedings of EMNLP. pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and
Pavel P. Kuksa. 2011. Natural language pro-
cessing (almost) from scratch. Journal of
Machine Learning Research 12:2493–2537.
http://dl.acm.org/citation.cfm?id=1953048.2078186.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016a. The sigmorphon 2016 shared task - morpho-
logical reinflection. In Proceedings of the 14th SIG-
MORPHON Workshop on Computational Research
in Phonetics, Phonology, and Morphology. pages
10–22. http://anthology.aclweb.org/W16-2002.

Ryan Cotterell and Hinrich Schütze. 2015.
Morphological word-embeddings. In Pro-
ceedings of NAACL-HLT . pages 1287–1292.
http://www.aclweb.org/anthology/N15-1140.

Ryan Cotterell and Hinrich Schütze. 2017. Joint
semantic synthesis and morphological analysis of
the derived word. Transactions of the ACL
https://arxiv.org/abs/1701.00946.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner.
2016b. Morphological smoothing and extrapolation
of word embeddings. In Proceedings of ACL. pages
1651–1660. http://www.aclweb.org/anthology/P16-
1156.

Mathias Creutz and Krista Lagus. 2007. Un-
supervised models for morpheme segmentation
and morphology learning. TSLP 4(1):3:1–3:34.
http://doi.acm.org/10.1145/1217098.1217101.

James Curran. 2004. From Distributional to
Semantic Similarity. Ph.D. thesis, School
of Informatics, University of Edinburgh.
http://hdl.handle.net/1842/563.

Georgiana Dinu, Angeliki Lazaridou, and Marco Ba-
roni. 2015. Improving zero-shot learning by mitigat-
ing the hubness problem. In Proceedings of ICLR
(Workshop Papers). http://arxiv.org/abs/1412.6568.

Cícero Nogueira dos Santos and Bianca
Zadrozny. 2014. Learning character-level
representations for part-of-speech tagging.
In Proceedings of ICML. pages 1818–1826.
http://jmlr.org/proceedings/papers/v32/santos14.html.

John C. Duchi, Elad Hazan, and Yoram Singer.
2011. Adaptive subgradient methods for on-
line learning and stochastic optimization. Jour-
nal of Machine Learning Research 12:2121–2159.
http://dl.acm.org/citation.cfm?id=2021068.

Maud Ehrmann, Francesco Cecconi, Daniele Vannella,
John Philip Mccrae, Philipp Cimiano, and Roberto
Navigli. 2014. Representing multilingual data as
linked data: The case of BabelNet 2.0. In Proceed-
ings of LREC. pages 401–408. http://www.lrec-
conf.org/proceedings/lrec2014/summaries/810.html.

65

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A. Smith.
2015. Retrofitting word vectors to semantic lexi-
cons. In Proceedings of NAACL-HLT . pages 1606–
1615. http://www.aclweb.org/anthology/N15-1184.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of EACL. pages 462–
471. http://www.aclweb.org/anthology/E14-1049.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection gener-
ation using character sequence to sequence learn-
ing. In Proceedings of NAACL-HLT . pages 634–643.
http://www.aclweb.org/anthology/N16-1077.

Christiane Fellbaum. 1998. WordNet.
https://mitpress.mit.edu/books/wordnet.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Ma-
tias, Ehud Rivlin, Zach Solan, Gadi Wolfman,
and Eytan Ruppin. 2002. Placing search in
context: The concept revisited. ACM Trans-
actions on Information Systems 20(1):116–131.
https://doi.org/10.1145/503104.503110.

Victoria Fromkin, Robert Rodman, and Nina Hyams.
2013. An Introduction to Language, 10th Edition.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of NAACL-HLT . pages
758–764. http://www.aclweb.org/anthology/N13-
1092.

Daniela Gerz, Ivan Vulić, Felix Hill, Roi Re-
ichart, and Anna Korhonen. 2016. SimVerb-
3500: A large-scale evaluation set of verb similar-
ity. In Proceedings of EMNLP. pages 2173–2182.
https://aclweb.org/anthology/D16-1235.

Zellig S. Harris. 1954. Distributional structure. Word
10(23):146–162.

Martin Haspelmath and Andrea Sims. 2013. Under-
standing morphology.

Matthew Henderson, Blaise Thomson, and Jason D.
Wiliams. 2014a. The Second Dialog State Tracking
Challenge. In Proceedings of SIGDIAL. pages 263–
272. http://aclweb.org/anthology/W/W14/W14-
4337.pdf.

Matthew Henderson, Blaise Thomson, and Jason D.
Wiliams. 2014b. The Third Dialog State Tracking
Challenge. In Proceedings of IEEE SLT . pages 324–
329. https://doi.org/10.1109/SLT.2014.7078595.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014c. Robust dialog state tracking using
delexicalised recurrent neural networks and unsu-
pervised adaptation. In Proceedings of IEEE SLT .
pages 360–365.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014d. Word-based dialog state
tracking with recurrent neural networks. In
Proceedings of SIGDIAL. pages 292–299.
http://aclweb.org/anthology/W/W14/W14-
4340.pdf.

Felix Hill, Roi Reichart, and Anna Korhonen.
2015. SimLex-999: Evaluating semantic
models with (genuine) similarity estimation.
Computational Linguistics 41(4):665–695.
https://doi.org/10.1162/COLI_a_00237.

Sujay Kumar Jauhar, Chris Dyer, and Eduard H. Hovy.
2015. Ontologically grounded multi-sense repre-
sentation learning for semantic vector space mod-
els. In Proceedings of NAACL. pages 683–693.
http://www.aclweb.org/anthology/N15-1070.

Anders Johannsen, Héctor Martínez Alonso, and An-
ders Søgaard. 2015. Any-language frame-semantic
parsing. In Proceedings of EMNLP. pages 2062–
2066. http://aclweb.org/anthology/D15-1245.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2017. Neural multi-source morphological reinflec-
tion. In Proceedings of EACL. pages 514–524.
http://www.aclweb.org/anthology/E17-1049.

Douwe Kiela, Felix Hill, and Stephen Clark. 2015.
Specializing word embeddings for similarity or re-
latedness. In Proceedings of EMNLP. pages 2044–
2048. http://aclweb.org/anthology/D15-1242.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of AAAI. pages 2741–
2749.

Angeliki Lazaridou, Marco Marelli, Roberto Zam-
parelli, and Marco Baroni. 2013. Compositional-
ly derived representations of morphologically
complex words in distributional semantics.
In Proceedings of ACL. pages 1517–1526.
http://www.aclweb.org/anthology/P13-1149.

Sungjin Lee and Maxine Eskenazi. 2013. Recipe
for building robust spoken dialog state trackers:
Dialog State Tracking Challenge system descrip-
tion. In Proceedings of SIGDIAL. pages 414–
422. http://aclweb.org/anthology/W/W13/W13-
4066.pdf.

Ira Leviant and Roi Reichart. 2015. Separated by
an un-common language: Towards judgment lan-
guage informed vector space modeling. CoRR
abs/1508.00106. http://arxiv.org/abs/1508.00106.

Omer Levy and Yoav Goldberg. 2014.
Dependency-based word embeddings. In
Proceedings of ACL. pages 302–308.
http://www.aclweb.org/anthology/P14-2050.

Wang Ling, Chris Dyer, Alan W. Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:

66

Compositional character models for open vocabu-
lary word representation. In Proceedings of EMNLP.
pages 1520–1530. http://aclweb.org/anthology/D15-
1176.

Fei Liu and Julien Perez. 2017. Gated end-to-end mem-
ory networks. In Proceedings of EACL. pages 1–10.
http://www.aclweb.org/anthology/E17-1001.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling,
and Yu Hu. 2015. Learning semantic word
embeddings based on ordinal knowledge con-
straints. In Proceedings of ACL. pages 1501–1511.
http://www.aclweb.org/anthology/P15-1145.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings
of the 1st Workshop on Vector Space Modeling
for Natural Language Processing. pages 151–159.
http://www.aclweb.org/anthology/W15-1521.

Thang Luong, Richard Socher, and Christopher
Manning. 2013. Better word representations
with recursive neural networks for morphol-
ogy. In Proceedings of CoNLL. pages 104–113.
http://www.aclweb.org/anthology/W13-3512.

Oren Melamud, Jacob Goldberger, and Ido Da-
gan. 2016. Context2vec: Learning generic
context embedding with bidirectional LSTM.
In Proceedings of CoNLL. pages 51–61.
http://aclweb.org/anthology/K/K16/K16-1006.pdf.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. In Proceedings of NIPS. pages 3111–3119.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Proceedings of NIPS. pages 2265–
2273.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Pei-Hao Su, David Vandyke,
Tsung-Hsien Wen, and Steve Young. 2015. Multi-
domain dialog state tracking using recurrent neural
networks. In Proceedings of ACL. pages 794–799.
http://aclweb.org/anthology/P/P15/P15-2130.pdf.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise
Thomson, Tsung-Hsien Wen, and Steve Young.
2017a. Neural Belief Tracker: Data-driven di-
alogue state tracking. In Proceedings of ACL.
http://arxiv.org/abs/1606.03777.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Maria Rojas-Barahona,
Pei-Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vectors
to linguistic constraints. In Proceedings of NAACL-
HLT . http://aclweb.org/anthology/N/N16/N16-
1018.pdf.

Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Roi
Reichart, Milica Gašić, Anna Korhonen, and Steve
Young. 2017b. Semantic Specialisation of Distribu-
tional Word Vector Spaces using Monolingual and
Cross-Lingual Constraints. arXiv.

Vinod Nair and Geoffrey E. Hinton. 2010. Recti-
fied linear units improve restricted Boltzmann ma-
chines. In Proceedings of ICML. pages 807–814.
http://www.icml2010.org/papers/432.pdf.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belNet: The automatic construction, evaluation and
application of a wide-coverage multilingual seman-
tic network. Artificial Intelligence 193:217–250.
https://doi.org/10.1016/j.artint.2012.07.001.

Kim Anh Nguyen, Sabine Schulte im Walde, and
Ngoc Thang Vu. 2016. Integrating distributional
lexical contrast into word embeddings for antonym-
synonym distinction. In Proceedings of ACL. pages
454–459. http://anthology.aclweb.org/P16-2074.

Dominique Osborne, Shashi Narayan, and Shay Cohen.
2016. Encoding prior knowledge with eigenword
embeddings. Transactions of the ACL 4:417–430.
https://arxiv.org/abs/1509.01007.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proceedings of ACL. pages
425–430. http://www.aclweb.org/anthology/P15-
2070.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of EMNLP. pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Julien Perez and Fei Liu. 2017. Dialog state track-
ing, a machine reading approach using Memory Net-
work. In Proceedings of EACL. pages 305–314.
http://www.aclweb.org/anthology/E17-1029.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and
Tie-Yan Liu. 2014. Co-learning of word rep-
resentations and morpheme representations.
In Proceedings of COLING. pages 141–150.
http://www.aclweb.org/anthology/C14-1015.

Patrick Schone and Daniel Jurafsky. 2001.
Knowledge-free induction of inflectional
morphologies. In Proceedings of NAACL.
http://aclweb.org/anthology/N/N01/N01-1024.

Roy Schwartz, Roi Reichart, and Ari Rappoport.
2015. Symmetric pattern based word em-
beddings for improved word similarity predic-
tion. In Proceedings of CoNLL. pages 258–267.
http://www.aclweb.org/anthology/K15-1026.

Roy Schwartz, Roi Reichart, and Ari Rappoport. 2016.
Symmetric patterns and coordinations: Fast and
enhanced representations of verbs and adjectives.

67

In Proceedings of NAACL-HLT . pages 499–505.
http://www.aclweb.org/anthology/N16-1060.

Radu Soricut and Franz Och. 2015. Unsupervised
morphology induction using word embeddings. In
Proceedings of NAACL-HLT . pages 1627–1637.
http://www.aclweb.org/anthology/N15-1186.

Pei-Hao Su, Milica Gašić, Nikola Mrkšić, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. ???? Continuously
learning neural dialogue management.

Pei-Hao Su, Milica Gašić, Nikola Mrkšić, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016. On-line active
reward learning for policy optimisation in spoken
dialogue systems. In Proceedings of ACL. pages
2431–2441. http://www.aclweb.org/anthology/P16-
1230.

John Sylak-Glassman, Christo Kirov, David
Yarowsky, and Roger Que. 2015. A language-
independent feature schema for inflectional mor-
phology. In Proceedings of ACL. pages 674–680.
http://www.aclweb.org/anthology/P15-2111.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg, Sandra
Kuebler, Yannick Versley, Marie Candito, Jennifer
Foster, Ines Rehbein, and Lamia Tounsi. 2010. Sta-
tistical parsing of morphologically rich languages
(SPMRL) What, how and whither. In Proceed-
ings of the NAACL Workshop on Statistical Pars-
ing of Morphologically-Rich Languages. pages 1–
12. http://www.aclweb.org/anthology/W10-1401.

Joseph P. Turian, Lev-Arie Ratinov, and Yoshua
Bengio. 2010. Word representations: A sim-
ple and general method for semi-supervised learn-
ing. In Proceedings of ACL. pages 384–394.
http://www.aclweb.org/anthology/P10-1040.

Peter D. Turney and Patrick Pantel. 2010. From
frequency to meaning: vector space models of se-
mantics. Journal of Artifical Intelligence Research
37(1):141–188. https://doi.org/10.1613/jair.2934.

Lyan Verwimp, Joris Pelemans, Hugo Van hamme, and
Patrick Wambacq. 2017. Character-word LSTM lan-
guage models. In Proceedings of EACL. pages 417–
427. http://www.aclweb.org/anthology/E17-1040.

Miroslav Vodolán, Rudolf Kadlec, and Jan Kleindi-
enst. 2017. Hybrid dialog state tracker with ASR
features. In Proceedings of EACL. pages 205–210.
http://www.aclweb.org/anthology/E17-2033.

Ivan Vulić and Anna Korhonen. 2016a. Is "universal
syntax" universally useful for learning distributed
word representations? In Proceedings of ACL. pages
518–524. http://anthology.aclweb.org/P16-2084.

Ivan Vulić and Anna Korhonen. 2016b. On the role
of seed lexicons in learning bilingual word embed-
dings. In Proceedings of ACL. pages 247–257.
http://www.aclweb.org/anthology/P16-1024.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph embedding by trans-
lating on hyperplanes. In Proceedings of AAAI.
pages 1112–1119.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
Milica Gašić, Lina M. Rojas-Barahona, Pei-Hao
Su, Stefan Ultes, and Steve Young. 2017. A
network-based end-to-end trainable task-oriented
dialogue system. In Proceedings of EACL.
http://www.aclweb.org/anthology/E17-1042.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From paraphrase database to compo-
sitional paraphrase model and back. Transactions of
the ACL 3:345–358.

John Wieting, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2016. Charagram: Embed-
ding words and sentences via character n-grams.
In Proceedings of EMNLP. pages 1504–1515.
https://aclweb.org/anthology/D16-1157.

Jason D. Williams, Antoine Raux, and Matthew
Henderson. 2016. The Dialog State Track-
ing Challenge series: A review. Dialogue
& Discourse 7(3):4–33. http://dad.uni-
bielefeld.de/index.php/dad/article/view/3685.

Chang Xu, Yalong Bai, Jiang Bian, Bin Gao,
Gang Wang, Xiaoguang Liu, and Tie-Yan Liu.
2014. RC-NET: A general framework for
incorporating knowledge into word representa-
tions. In Proceedings of CIKM. pages 1219–1228.
https://doi.org/10.1145/2661829.2662038.

Steve Young. 2010. Cognitive User Interfaces. IEEE
Signal Processing Magazine .

Mo Yu and Mark Dredze. 2014. Improving
lexical embeddings with semantic knowl-
edge. In Proceedings of ACL. pages 545–550.
http://www.aclweb.org/anthology/P14-2089.

Britta Zeller, Jan Šnajder, and Sebastian Padó.
2013. DErivBase: Inducing and evaluating
a derivational morphology resource for Ger-
man. In Proceedings of ACL. pages 1201–1211.
http://www.aclweb.org/anthology/P13-1118.

Lukas Zilka and Filip Jurcicek. 2015. Incremental
LSTM-based dialog state tracker. In Proceedings of
ASRU.

Will Y. Zou, Richard Socher, Daniel Cer, and
Christopher D. Manning. 2013. Bilingual word
embeddings for phrase-based machine translation.
In Proceedings of EMNLP. pages 1393–1398.
http://www.aclweb.org/anthology/D13-1141.

68

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 69–76
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1007

Skip-Gram – Zipf + Uniform = Vector Additivity

Alex Gittens
Dept. of Computer Science

Rensselaer Polytechnic Institute
gittea@rpi.edu

Dimitris Achlioptas
Dept. of Computer Science

UC Santa Cruz
optas@soe.ucsc.edu

Michael W. Mahoney
ICSI and Dept. of Statistics

UC Berkeley
mmahoney@stat.berkeley.edu

Abstract

In recent years word-embedding models
have gained great popularity due to their
remarkable performance on several tasks,
including word analogy questions and cap-
tion generation. An unexpected “side-
effect” of such models is that their vectors
often exhibit compositionality, i.e., adding
two word-vectors results in a vector that is
only a small angle away from the vector
of a word representing the semantic com-
posite of the original words, e.g., “man” +
“royal” = “king”.

This work provides a theoretical justifica-
tion for the presence of additive composi-
tionality in word vectors learned using the
Skip-Gram model. In particular, it shows
that additive compositionality holds in an
even stricter sense (small distance rather
than small angle) under certain assump-
tions on the process generating the corpus.
As a corollary, it explains the success of
vector calculus in solving word analogies.
When these assumptions do not hold, this
work describes the correct non-linear com-
position operator.

Finally, this work establishes a con-
nection between the Skip-Gram model
and the Sufficient Dimensionality Reduc-
tion (SDR) framework of Globerson and
Tishby: the parameters of SDR models
can be obtained from those of Skip-Gram
models simply by adding information on
symbol frequencies. This shows that Skip-
Gram embeddings are optimal in the sense
of Globerson and Tishby and, further, im-
plies that the heuristics commonly used to
approximately fit Skip-Gram models can
be used to fit SDR models.

1 Introduction

The strategy of representing words as vectors has
a long history in computational linguistics and
machine learning. The general idea is to find
a map from words to vectors such that word-
similarity and vector-similarity are in correspon-
dence. Whilst vector-similarity can be readily
quantified in terms of distances and angles, quan-
tifying word-similarity is a more ambiguous task.
A key insight in that regard is to posit that the
meaning of a word is captured by “the company it
keeps” (Firth, 1957) and, therefore, that two words
that keep company with similar words are likely to
be similar themselves.

In the simplest case, one seeks vectors whose
inner products approximate the co-occurrence fre-
quencies. In more sophisticated methods co-
occurrences are reweighed to suppress the effect
of more frequent words (Rohde et al., 2006) and/or
to emphasize pairs of words whose co-occurrence
frequency maximally deviates from the indepen-
dence assumption (Church and Hanks, 1990).

An alternative to seeking word-embeddings that
reflect co-occurrence statistics is to extract the
vectorial representation of words from non-linear
statistical language models, specifically neural
networks. (Bengio et al., 2003) already proposed
(i) associating with each vocabulary word a fea-
ture vector, (ii) expressing the probability func-
tion of word sequences in terms of the feature vec-
tors of the words in the sequence, and (iii) learn-
ing simultaneously the vectors and the parame-
ters of the probability function. This approach
came into prominence recently through works of
Mikolov et al. (see below) whose main departure
from (Bengio et al., 2003) was to follow the sug-
gestion of (Mnih and Hinton, 2007) and trade-
away the expressive capacity of general neural-
network models for the scalability (to very large

69

https://doi.org/10.18653/v1/P17-1007

corpora) afforded by (the more restricted class of)
log-linear models.

An unexpected side effect of deriving word-
embeddings via neural networks is that the word-
vectors produced appear to enjoy (approximate)
additive compositionality: adding two word-
vectors often results in a vector whose nearest
word-vector belongs to the word capturing the
composition of the added words, e.g., “man” +
“royal” = “king” (Mikolov et al., 2013c). This un-
expected property allows one to use these vectors
to answer word-analogy questions algebraically,
e.g., answering the question “Man is to king as
woman is to ” by returning the word whose
word-vector is nearest to the vector

v(king) - v(man) + v(woman).

In this work we focus on explaining the source
of this phenomenon for the most prominent such
model, namely the Skip-Gram model introduced
in (Mikolov et al., 2013a). The Skip-Gram model
learns vector representations of words based on
their patterns of co-occurrence in the training cor-
pus as follows: it assigns to each word c in the
vocabulary V , a “context” and a “target” vector,
respectively uc and vc, which are to be used in or-
der to predict the words that appear around each
occurrence of c within a window of ∆ tokens.
Specifically, the log probability of any target word
w to occur at any position within distance ∆ of
a context word c is taken to be proportional to
the inner product between uc and vw, i.e., letting
n = |V |,

p(w|c) =
eu

T
c vw

∑n
i=1 euT

c vi
. (1)

Further, Skip-Gram assumes that the conditional
probability of each possible set of words in a win-
dow around a context word c factorizes as the
product of the respective conditional probabilities:

p(w−∆, . . . , w∆|c) =
∆∏

δ=−∆
δ 6=0

p(wδ|c). (2)

(Mikolov et al., 2013a) proposed learning the
Skip-Gram parameters on a training corpus by us-
ing maximum likelihood estimation under (1) and
(2). Thus, if wi denotes the i-th word in the train-
ing corpus and T the length of the corpus, we seek

the word vectors that maximize

1

T

T∑

i=1

∆∑

δ=−∆
δ 6=0

log p(wi+δ|wi) . (3)

As mentioned, the normalized context vectors
obtained from maximizing (3) under (1) and (2)
exhibit additive compositionality. For example,
the cosine distance between the sum of the context
vectors of the words “Vietnam” and “capital” and
the context vector of the word “Hanoi” is small.

While there has been much interest in using
algebraic operations on word vectors to carry
out semantic operations like composition, and
mathematically-flavored explanations have been
offered (e.g., in the recent work (Paperno and Ba-
roni, 2016)), the only published work which at-
tempts a rigorous theoretical understanding of this
phenomenon is (Arora et al., 2016). This work
guarantees that word vectors can be recovered by
factorizing the so-called PMI matrix, and that al-
gebraic operations on these word vectors can be
used to solve analogies, under certain conditions
on the process that generated the training corpus.
Specifically, the word vectors must be known a
priori, before their recovery, and to have been
generated by randomly scaling uniformly sampled
vectors from the unit sphere1. Further, the ith word
in the corpus must have been selected with proba-
bility proportional to eu

T
wci , where the “discourse”

vector ci governs the topic of the corpus at the
ith word. Finally, the discourse vector is assumed
to evolve according to a random walk on the unit
sphere that has a uniform stationary distribution.

By way of contrast, our results assume nothing
a priori about the properties of the word vectors.
In fact, the connection we establish between the
Skip-Gram and the Sufficient Dimensionality Re-
duction model of (Globerson and Tishby, 2003)
shows that the word vectors learned by Skip-Gram
are information-theoretically optimal. Further, the
context word c in the Skip-Gram model essentially
serves the role that the discourse vector does in
the PMI model of (Arora et al., 2016): the words
neighboring c are selected with probability propor-
tional to eu

T
c vw . We find the exact non-linear com-

position operator when no assumptions are made
on the context word. When an analogous assump-
tion to that of (Arora et al., 2016) is made, that the

1More generally, it suffices that the word vectors have cer-
tain properties consistent with this sampling process.

70

context words are uniformly distributed, we prove
that the composition operator reduces to vector ad-
dition.

While our primary motivation has been to pro-
vide a better theoretical understanding of word
compositionality in the popular Skip-Gram model,
our connection with the SDR method illuminates
a much more general point about the practical ap-
plicability of the Skip-Gram model. In particular,
it addresses the question of whether, for a given
corpus, fitting a Skip-Gram model will give good
embeddings. Even if we are making reasonable
linguistic assumptions about how to model words
and the interdependencies of words in a corpus,
it’s not clear that these have to hold universally
on all corpuses to which we apply Skip-Gram.
However, the fact that when we fit a Skip-Gram
model we are fitting an SDR model (up to fre-
quency information), and the fact that SDR mod-
els are information-theoretically optimal in a cer-
tain sense, argues that regardless of whether the
Skip-Gram assumptions hold, Skip-Gram always
gives us optimal features in the following sense:
the learned context embeddings and target embed-
dings preserve the maximal amount of mutual in-
formation between any pair of random variablesX
and Y consistent with the observed co-occurence
matrix, where Y is the target word and X is the
predictor word (in a min-max sense, since there
are many ways of coupling X and Y , each of
which may have different amounts of mutual in-
formation). Importantly, this statement requires no
assumptions on the distribution P (X,Y).

2 Compositionality of Skip-Gram

In this section, we first give a mathematical formu-
lation of the intuitive notion of compositionality of
words. We then prove that the composition oper-
ator for the Skip-Gram model in full generality is
a non-linear function of the vectors of the words
being composed. Under a single simplifying as-
sumption, the operator linearizes and reduces to
the addition of the word vectors. Finally, we ex-
plain how linear compositionality allows for solv-
ing word analogies with vector algebra.

A natural way of capturing the compositional-
ity of words is to say that the set of context words
c1, . . . , cm has the same meaning as the single
word c if for every other word w,

p(w|c1, . . . , cm) = p(w|c) .

Although this is an intuitively satisfying defini-
tion, we never expect it to hold exactly; instead,
we replace exact equality with the minimization
of KL-divergence. That is, we state that the best
candidate for having the same meaning as the set
of context words C is the word

arg min
c∈V

DKL(p(·|C) | p(·|c)) . (4)

We refer to any vector that minimizes (4) as a
paraphrase of the set of words C.

There are two natural concerns with (4). The
first is that, in general, it is not clear how to define
p(·|C). The second is that KL-divergence min-
imization is a hard problem, as it involves opti-
mization over many high dimensional probability
distributions. Our main result shows that both of
these problems go away for any language model
that satisfies the following two assumptions:

A1. For every word c, there exists Zc such that for
every word w,

p(w|c) =
1

Zc
exp(uTc vw) . (5)

A2. For every set of words C = {c1, c2, . . . , cm},
there exists ZC such that for every word w,

p(w|C) =
p(w)1−m

ZC

m∏

i=1

p(w|ci) . (6)

Clearly, the Skip-Gram model satisfies A1 by
definition. We prove that it also satisfies A2 when
m ≤ ∆ (Lemma 1). Next, we state a theorem
that holds for any model satisfying assumptions
A1 and A2, including the Skip-Gram model when
m ≤ ∆.

Theorem 1. In every word model that satisfies A1
and A2, for every set of words C = {c1, . . . , cm},
any paraphase c of C satisfies

∑

w∈V
p(w|c)vw =

∑

w∈V
p(w|C)vw . (7)

Theorem 1 characterizes the composition opera-
tor for any language model which satisfies our two
assumptions; in general, this operator is not addi-
tion. Instead, a paraphrase c is a vector such that
the average word vector under p(·|c) matches that
under p(·|C). When the expectations in (7) can
be computed, the composition operator can be im-
plemented by solving a non-linear system of equa-
tions to find a vector u for which the left-hand side
of (7) equals the right-hand side.

71

Our next result proves that although the compo-
sition operator is nontrivial in the general case, to
recover vector addition as the composition opera-
tor, it suffices to assume that the word frequency
is uniform.

Theorem 2. In every word model that satisfies A1,
A2, and where p(w) = 1/|V | for everyw ∈ V , the
paraphrase of C = {c1, . . . , cm} is

u1 + . . .+ um .

As word frequencies are typically much closer
to a Zipf distribution (Piantadosi, 2014), the uni-
formity assumption of Theorem 2 is not realistic.
That said, we feel it is important to point out that,
as reported in (Mikolov et al., 2013b), additivity
captures compositionality more accurately when
the training set is manipulated so that the prior dis-
tribution of the words is made closer to uniform.

Using composition to solve analogies. It has
been observed that word vectors trained using non-
linear models like Skip-Gram tend to encode se-
mantic relationships between words as linear re-
lationships between the word vectors (Mikolov
et al., 2013b; Pennington et al., 2014; Levy and
Goldberg, 2014). In particular, analogies of the
form “man:woman::king:?” can often be solved
by taking ? to be the word in the vocabulary
whose context vector has the smallest angle with
uwoman + (uking − uman). Theorems 1 and 2 offer
insight into the solution such analogy questions.

We first consider solving an analogy of the form
“m:w::k:?”” in the case where the composition
operator is nonlinear. The fact that m and w share
a relationship means m is a paraphrase of the set
of words {w,R}, whereR is a set of words encod-
ing the relationship between m and w. Similarly,
the fact that k and ? share the same relationship
means k is a paraphrase of the set of words {?, R}.
By Theorem 1, we have that R and ? must satisfy

∑

`∈V
p(`|m)v` =

∑

`∈V
p(`|w,R)v` and

∑

`∈V
p(`|k)v` =

∑

`∈V
p(`|?, R)v`.

We see that solving analogies when the compo-
sition operator is nonlinear requires the solution
of two highly nonlinear systems of equations. In
sharp contrast, when the composition operator is
linear, the solution of analogies delightfully re-
duces to elementary vector algebra. To see this,

we again begin with the assertion that the fact that
m and w share a relationship means m is a para-
phrase of the set of words {w,R}; Similarly, k is
a paraphrase of {?, R}. By Theorem 2,

um = uw + ur and

uk = u? + ur,

which gives the expected relationship

u? = uk + (uw − um).

Note that because this expression for u? is in terms
of k, w, andm, there is actually no need to assume
that R is a set of actual words in V .

2.1 Proofs
Proof of Theorem 1. Note that p(w|C) equals

p(w)1−m

ZC

m∏

i=1

p(w|ci)

=
p(w)1−m

ZC
exp

(
m∑

i=1

uTcivw −
m∑

i=1

logZci

)

=
1

Z
p(w)1−m exp(uTCvw) ,

where Z = ZC
∏m
i=1 Zi, and uC =

∑m
i=1 ui.

Minimizing the KL-divergence

DKL(p(·|c1, . . . , cm)‖p(·|c))

as a function of c is equivalent to maximizing the
negative cross-entropy as a function of uc, i.e., as
maximizing

Q(uc) = Z
∑

w

exp(uTCvw)

p(w)m−1
(uTc vw − logZc) .

Since Q is concave, the maximizers occur where
its gradient vanishes. As∇ucQ equals

Z
∑

w

exp(uTCvw)

p(w)m−1

[
vw −

∑n
`=1 exp(uTc v`)v`∑n
k=1 exp(uTc vk)

]

=

∑n
`=1 exp(uTc v`)v`∑n
k=1 exp(uTc vk)

− Z
∑

w

exp(uTCvw)vw
p(w)m−1

=
∑

w∈V
p(w|c)vw −

∑

w∈V
p(w|c1, . . . , cm)vw ,

we see that (7) follows.

Proof of Theorem 2. Recall that uC =
∑m

i=1 ui.
When p(w) = 1/|V | for all w ∈ V , the negative
cross-entropy simplifies to

Q(uc) = Z
∑

w

exp
(
uTCvw

)
(uTc vw − logZc) ,

72

and its gradient∇ucQ to

Z
∑

w

exp(uC
Tvw)

[
vw −

∑n
`=1 exp(uTc v`)v`∑n
k=1 exp(uTc vk)

]

= Z
∑

w

exp(uC
Tvw)vw −

∑

w

exp(uTc vw)vw .

Thus,∇Q(uC) = 0 and since Q is concave, uC is
its unique maximizer.

Lemma 1. The Skip-Gram model satisfies as-
sumption A2 when m ≤ ∆.

Proof of Lemma 1. First, assume that m = ∆. In
the Skip-Gram model target words are condition-
ally independent given a context word, i.e.,

p(c1, . . . , cm|w) =

m∏

i=1

p(ci|w).

Applying Baye’s rule,

p(w|c1, . . . , cm) =
p(c1, . . . , cm|w)p(w)

p(c1, . . . , cm)

=
p(w)

p(c1, . . . , cm)

m∏

i=1

p(ci|w)

=
p(w)

p(c1, . . . , cm)

m∏

i=1

p(w|ci)p(ci)
p(w)

=
p(w)1−m

ZC

m∏

i=1

p(w|ci) , (8)

where ZC = 1/ (
∏m
i=1 p(ci)). This establishes the

result when m = ∆. The cases m < ∆ follow
by marginalizing out ∆ −m context words in the
equality (8).

Projection of paraphrases onto the vocabulary
Theorem 2 states that if there is a word c in the vo-
cabulary V whose context vector equals the sum of
the context vectors of the words c1, . . . , cm, then
c has the same “meaning”, in the sense of (4), as
the composition of the words c1, . . . , cm. For any
given set of words C = {c1, . . . , cm}, it is un-
likely that there exists a word c ∈ V whose con-
text vector is exactly equal to the sum of the con-
text vectors of the words c1, . . . , cm. Similarly, in
Theorem 1, the solution(s) to (7) will most likely
not equal the context vector of any word in V . In
both cases, we thus need to project the vector(s)
onto words in our vocabulary in some manner.

Since Theorem 1 holds for any prior over V ,
in theory, we could enumerate all words in V and

find the word(s) that minimize the difference of
the left hand side of (7) from the right hand side.
In practice, it turns out that the angle between the
context vector of a word w ∈ V and solution-
vector(s) is a good proxy and one gets very good
experimental results by selecting as the paraphrase
of a collection of words, the word that minimizes
the angle to the paraphrase vector.

Minimizing the angle has been empirically suc-
cessful at capturing composition in multiple log-
linear word models. One way to understand the
success of this approach is to recall that each word
c is characterized by a categorical distribution over
all other words w, as stated in (1). The peaks
of this categorical distribution are precisely the
words with which c co-occurs most often. These
words characterize c more than all the other words
in the vocabulary, so it is reasonable to expect that
a word c′ whose categorical distribution has simi-
lar peaks as the categorical distribution of c is sim-
ilar in meaning to c. Note that the location of the
peaks of p(·|c) are immune to the scaling of uc
(athough the values of p(·|c) may change); thus,
the wordsw which best characterize c are those for
which vw has a high inner product with uc/‖uc‖2.
Since

∣∣∣∣
uTc vw
‖uc‖2

− uTc′vw
‖uc′‖2

∣∣∣∣≤
√

2

(
1− uTc uc′

‖uc‖2‖uc′‖2

)
‖vw‖2,

it is clear that if the angle between the context
representations of c and c′ is small, the distribu-
tions p(w|c) and p(w|c′) will tend to have similar
peaks.

3 Skip-Gram learns a Sufficient
Dimensionality Reduction Model

The Skip-Gram model assumes that the distribu-
tion of the neighbors of a word follows a specific
exponential parametrization of a categorical distri-
bution. There is empirical evidence that this model
generates features that are useful for NLP tasks,
but there is no a priori guarantee that the training
corpus was generated in this manner. In this sec-
tion, we provide theoretical support for the useful-
ness of the features learned even when the Skip-
Gram model is misspecified.

To do so, we draw a connection between Skip-
Gram and the Sufficient Dimensionality Reduc-
tion (SDR) factorization of Globerson and Tishby
(Globerson and Tishby, 2003). The SDR model

73

learns optimal2 embeddings for discrete random
variables X and Y without assuming any para-
metric form on the distributions of X and Y , and
it is useful in a variety of applications, includ-
ing information retrieval, document classification,
and association analysis (Globerson and Tishby,
2003). As it turns out, these embeddings, like
Skip-Gram, are obtained by learning the param-
eters of an exponentially parameterized distribu-
tion. In Theorem 3 below, we show that if a Skip-
Gram model is fit to the cooccurence statistics of
X and Y , then the output can be trivially modified
(by adding readily-available information on word
frequencies) to obtain the parameters of an SDR
model.

This connection is significant for two reasons:
first, the original algorithm of (Globerson and
Tishby, 2003) for learning SDR embeddings is
expensive, as it involves information projections.
Theorem 3 shows that if one can efficiently fit
a Skip-Gram model, then one can efficiently fit
an SDR model. This implies that Skip-Gram
specific approximation heuristics like negative-
sampling, hierarchical softmax, and Glove, which
are believed to return high-quality approxima-
tions to Skip-Gram parameters (Mikolov et al.,
2013b; Pennington et al., 2014), can be used to
efficiently approximate SDR model parameters.
Second, (Globerson and Tishby, 2003) argues for
the optimality of the SDR embedding in any do-
main where the training information on X and Y
consists of their coocurrence statistics; this op-
timality and the Skip-Gram/SDR connection ar-
gues for the use of Skip-Gram approximations in
such domains, and supports the positive experi-
mental results that have been observed in appli-
cations in network science (Grover and Leskovec,
2016), proteinomics (Asgari and Mofrad, 2015),
and other fields.

As stated above, the SDR factorization solves
the problem of finding information-theoretically
optimal features, given co-occurrence statistics
for a pair of discrete random variables X and
Y . Associate a vector wi to the ith state of
X , a vector hj to the jth state of Y , and let
W = [wT

1 · · ·wT
|X|]

T and H be defined similarly.
Globerson and Tishby show that such optimal fea-
tures can be obtained from a low-rank factoriza-

2Optimal in an information-theoretic sense: they preserve
the maximal mutual information between any pair of random
variables with the observed coocurrence statistics, without re-
gard to the underlying joint distribution.

tion of the matrix G of co-occurence measure-
ments: Gij counts the number of times state i of
X has been observed to co-occur with state j of
Y. The loss of this factorization is measured using
the KL-divergence, and so the optimal features are
obtained from solving the problem

arg min
W,H

DKL

(
G

ZG

∥∥∥∥
1

ZW,H
eWHT

)
.

Here, ZG =
∑

ij Gij normalizes G into an esti-
mate of the joint pmf of X and Y , and similarly
ZW,H is the constant that normalizes eWHT

into
a joint pmf. The expression eWHT

denotes entry-
wise exponentiation of WHT .

Now we revisit the Skip-Gram training objec-
tive, and show that it differs from the SDR ob-
jective only slightly. Whereas the SDR objective
measures the distance between the pmfs given by
(normalized versions of) G and eWHT

, the Skip-
Gram objective measures the distance between the
pmfs given by (normalized versions of) the rows
of G and eWHT

. That is, SDR emphasizes fitting
the entire pmfs, while Skip-Gram emphasizes fit-
ting conditional distributions.

Before presenting our main result, we state and
prove the following lemma, which is of indepen-
dent interest and is used in the proof of our main
theorem. Recall that Skip-Gram represents each
word c as a multinomial distribution over all other
words w, and it learns the parameters for these
distributions by a maximum likelihood estima-
tion. It is known that learning model parameters
by maximum likelihood estimation is equivalent
to minimizing the KL-divergence of the learned
model from the empirical distribution; the fol-
lowing lemma establishes the KL-divergence that
Skip-Gram minimizes.

Lemma 2. Let G be the word co-occurrence ma-
trix constructed from the corpus on which a Skip-
Gram model is trained, in which case Gcw is the
number of times word w occurs as a neighboring
word of c in the corpus. For each word c, let gc
denote the empirical frequency of the word in the
corpus, so that

gc =
∑

w

Gcw/
∑

t,w

Gt,w.

Given a positive vector x, let x̂ = x/‖x‖1.
Then, the Skip-Gram model parameters U =[
u1 · · · u|V |

]T and V =
[
v1 · · · u|V |

]T

74

minimize the objective
∑

c

gcDKL(ĝc ‖ êuT
c VT),

where gc is the cth row of G.

Proof. Recall that Skip-Gram chooses U and V
to maximize

Q =
1

T

T∑

i=1

C∑

δ=−C
δ 6=0

log p(wi+δ|wi) ,

where

p(w|c) =
eu

T
c vw

∑n
i=1 euT

c vi
.

This objective can be rewritten using the pairwise
cooccurence statistics as

Q=
1

T

∑

c,w

Gcw log p(w|c)

=
1

T

∑

c

[(∑

t

Gct

)∑

w

Gcw∑
tGct

log p(w|c)
]

∝ 1

T

∑

c

[
(
∑

tGct)

(
∑

twGtw)

∑

w

Gcw∑
tGct

log p(w|c)
]

=
∑

c

gc

(∑

w

(
ĝc
)
w

log p(w|c)
)

=
∑

c

gc
(
−DKL(ĝc ‖ p(·|c))−H(ĝc)

)
,

where H(·) denotes the entropy of a distribution.
It follows that since Skip-Gram maximizes Q, it
minimizes
∑

c

gcDKL(ĝc ‖ p(·|c))=
∑

c

gcDKL(ĝc ‖ êuT
c VT).

We now prove our main theorem of this section,
which states that SDR parameters can be obtained
by augmenting the Skip-Gram embeddings to ac-
count for word frequencies.
Theorem 3. Let U,V be the results of fitting a
Skip-Gram model to G, and consider the aug-
mented matrices

Ũ = [U |α] and Ṽ = [V |1],

where

αc = log

(
gc∑

w euT
c vw

)
and gc =

∑
wGc,w∑
t,wGt,w

.

Then, the features (Ũ, Ṽ) constitute a sufficient
dimensionality reduction of G.

Proof. For convenience, let G denote the joint
pdf matrix G/ZG, and let Ĝ denote the matrix
obtained by normalizing each row of G to be a
probability distribution. Then, it suffices to show
that DKL(G ‖ qW,H) is minimized over the set of
probability distributions
{
qW,H

∣∣∣∣ qW,H(w, c) =
1

Z

(
eWHT

)
cw

}
,

when W = Ũ and H = Ṽ.
To establish this result, we use a chain rule for

the KL-divergence. Recall that if we denote the
expected KL-divergence between two marginal
pmfs by

DKL(p(·|c)‖q(·|c))

=
∑

c

p(c)

(∑

w

p(w|c) log

(
p(w|c)
q(w|c)

))
,

then the KL-divergence satisfies the chain rule:

DKL(p(w, c)‖q(w, c))
= DKL(p(c)‖q(c)) +DKL(p(w|c)‖q(w|c)).

Using this chain rule, we get

DKL(G ‖ qW,H(w, c)) (9)

=DKL(g ‖ qW,H(c))+DKL(Ĝ‖qW,H(w|c)).

Note that the second term in this sum is, in the
notation of Lemma 2,

DKL(Ĝ‖qW,H(w|c)) =
∑

c

gcDKL(ĝc ‖ êwT
c HT),

so the matrices U and V that are returned by fit-
ting the Skip-Gram model minimize the second
term in this sum. We now show that the augmented
matrices W = Ũ and H = Ṽ also minimize this
second term, and in addition they make the first
term vanish.

To see that the first of these claims holds, i.e.,
that the augmented matrices make the second term
in (9) vanish, note that

qŨ,Ṽ(w|c) ∝ eũ
T
c ṽw = eu

T
c vw+αc ∝ qU,V(w|c),

and the constant of proportionality is independent
of w. It follows that qŨ,Ṽ(w|c) = qU,V(w|c) and

DKL(Ĝ ‖ qŨ,Ṽ(w|c)) = DKL(Ĝ ‖ qU,V(w|c)).

Thus, the choice W = Ũ and H = Ṽ minimizes
the second term in (9).

75

To see that the augmented matrices make the
first term in (9) vanish, observe that when W = Ũ
and H = Ṽ, we have that qŨ,Ṽ(c) = g by con-
struction. This can be verified by calculation:

qŨ,Ṽ(c) =

∑
w qŨ,Ṽ(w, c)

∑
w,t qŨ,Ṽ(w, t)

=

∑
w eu

T
c vw+αc

∑
w,t eu

T
t vw+αt

=

(∑
w eu

T
c vw

)
eαc

∑
t

(∑
w eu

T
t vw

)
eαt

=

[
(eUVT

1)� eα
]
c

1T
[
(eUVT

1)� eα
] .

Here, the notation x � y denotes entry-wise mul-
tiplication of vectors.

Since αc = log(gc) − log
((

eUVT
1
)
c

)
, we

have

qŨ,Ṽ(c) =

[
(eUVT

1)� eα
]
c

1T
[
(eUVT

1)� eα
] =

gc∑
t gt

= gc.

The choice W = Ũ and H = Ṽ makes the
first term in (9) vanish, and it also minimizes the
second term in (9). Thus, it follows that the fea-
tures (Ũ, Ṽ) constitute a sufficient dimensionality
reduction of G.

References
Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,

and Andrej Risteski. 2016. A latent variable model
approach to PMI-based word embeddings. Transac-
tions of the Association for Computational Linguis-
tics 4:385–399.

Ehsaneddin Asgari and Mohammad R.K. Mofrad.
2015. Continuous distributed representation of bi-
ological sequences for deep proteomics and ge-
nomics. PloS One 10(11).

Yoshua Bengio, Rejean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A Neural Probabilistic Lan-
guage Model. Journal Of Machine Learning Re-
search 3:1137–1155.

Kenneth Ward Church and Patrick Hanks. 1990. Word
Association Norms, Mutual Information, and Lexi-
cography. Computational Linguistics 16(1):22–29.

J.R. Firth. 1957. A synopsis of linguistic theory 1930-
1955. Studies in Linguistic Analysis pages 1–32.

Amir Globerson and Naftali Tishby. 2003. Sufficient
Dimensionality Reduction. Journal of Machine
Learning Research 3:1307–1331.

Aditya Grover and Jure Leskovec. 2016. node2vec:
Scalable Feature Learning for Networks. In Pro-
ceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing. pages 855–864.

Omer Levy and Yoav Goldberg. 2014. Linguistic Reg-
ularities in Sparse and Explicit Word Representa-
tions. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning.
pages 171–180.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient Estimation of Word Repre-
sentations in Vector Space. In International Confer-
ence on Learning Representations.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed Rep-
resentations of Words and Phrases and their Com-
positionality. In Advances in Neural Information
Processing Systems 26: 27th Annual Conference
on Neural Information Processing Systems. pages
3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Human Language Tech-
nologies: Conference of the North American Chap-
ter of the Association of Computational Linguistics,
Proceedings. pages 746–751.

Andriy Mnih and Geoffrey Hinton. 2007. Three New
Graphical Models for Statistical Language Mod-
elling. In Proceedings of the 24th International
Conference on Machine Learning. ACM, pages
641–648.

Denis Paperno and Marco Baroni. 2016. When the
Whole is Less than the Sum of Its Parts: How Com-
position Affects PMI Values in Distributional Se-
mantic Vectors. Computational Linguistics 42:345–
350.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543.

Steven T. Piantadosi. 2014. Zipf’s word frequency
law in natural language: A critical review and fu-
ture directions. Psychonomic Bulletin & Review
21(5):1112–1130.

Douglas L. T. Rohde, Laura M. Gonnerman, and
David C. Plaut. 2006. An improved model of
semantic similarity based on lexical co-occurence.

Communications of the ACM 8:627–633.

76

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 77–89
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1008

The State of the Art in Semantic Representation

Omri Abend Ari Rappoport

Department of Computer Science, The Hebrew University of Jerusalem
{oabend|arir}@cs.huji.ac.il

Abstract

Semantic representation is receiving grow-
ing attention in NLP in the past few years,
and many proposals for semantic schemes
(e.g., AMR, UCCA, GMB, UDS) have
been put forth. Yet, little has been done to
assess the achievements and the shortcom-
ings of these new contenders, compare
them with syntactic schemes, and clarify
the general goals of research on semantic
representation. We address these gaps by
critically surveying the state of the art in
the field.

1 Introduction

Schemes for Semantic Representation of Text
(SRT) aim to reflect the meaning of sentences and
texts in a transparent way. There has recently been
an influx of proposals for semantic representa-
tions and corpora, e.g. GMB (Basile et al., 2012),
AMR (Banarescu et al., 2013), UCCA (Abend
and Rappoport, 2013b) and Universal Decomposi-
tional Semantics (UDS; White et al., 2016). Nev-
ertheless, no detailed assessment of the relative
merits of the different schemes has been carried
out, nor their comparison to previous sentential
analysis schemes, notably syntactic ones. An un-
derstanding of the achievements and gaps of se-
mantic analysis in NLP is crucial to its future
prospects.

In this paper we begin to chart the various pro-
posals for semantic schemes according to the con-
tent they support. As not many semantic queries
on texts can at present be answered with near
human-like reliability without using manual sym-
bolic annotation, we will mostly focus on schemes

that represent semantic distinctions explicitly.1

We begin by discussing the goals of SRT in Sec-
tion 2. Section 3 surveys major represented mean-
ing components, including predicate-argument re-
lations, discourse relations and logical structure.
Section 4 details the various concrete proposals for
SRT schemes and annotated resources, while Sec-
tions 5 and 6 discuss criteria for their evaluation
and their relation to syntax, respectively.

We find that despite the major differences in
terms of formalism and interface with syntax, in
terms of their content there is a great deal of con-
vergence of SRT schemes. Principal differences
between schemes are mostly related to their ability
to abstract away from formal and syntactic vari-
ation, namely to assign similar structures to dif-
ferent constructions that have a similar meaning,
and to assign different structures to constructions
that have different meanings, despite their surface
similarity. Other important differences are in the
level of training they require from their annota-
tors (e.g., expert annotators vs. crowd-sourcing)
and in their cross-linguistic generality. We discuss
the complementary strengths of different schemes,
and suggest paths for future integration.

2 Defining Semantic Representation

The term semantics is used differently in different
contexts. For the purposes of this paper we define
a semantic representation as one that reflects the
meaning of the text as it is understood by a lan-
guage speaker. A semantic representation should
thus be paired with a method for extracting infor-
mation from it that can be directly evaluated by
humans. The extraction process should be reliable
and computationally efficient.

1Note that even a string representation of text can be re-
garded as semantic given a reliable enough parser.

77

https://doi.org/10.18653/v1/P17-1008

We stipulate that a fundamental component of
the content conveyed by SRTs is argument struc-
ture – who did what to whom, where, when and
why, i.e., events, their participants and the rela-
tions between them. Indeed, the fundamental sta-
tus of argument structure has been recognized by
essentially all approaches to semantics both in the-
oretical linguistics (Levin and Hovav, 2005) and in
NLP, through approaches such as Semantic Role
Labeling (SRL; Gildea and Jurafsky, 2002), for-
mal semantic analysis (e.g., Bos, 2008), and Ab-
stract Meaning Representation (AMR; Banarescu
et al., 2013). Many other useful meaning compo-
nents have been proposed, and are discussed at a
greater depth in Section 3.

Another approach to defining an SRT is through
external (extra-textual) criteria or applications.
For instance, a semantic representation can be de-
fined to support inference, as in textual entailment
(Dagan et al., 2006) or natural logic (Angeli and
Manning, 2014). Other examples include defin-
ing a semantic representation in terms of support-
ing knowledge base querying (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005), or defin-
ing semantics through a different modality, for in-
stance interpreting text in terms of images that cor-
respond to it (Kiros et al., 2014), or in terms of em-
bodied motor and perceptual schemas (Feldman
et al., 2010).

A different approach to SRT is taken by Vector
Space Models (VSM), which eschew the use of
symbolic structures, instead modeling all linguis-
tic elements as vectors, from the level of words
to phrases and sentences. Proponents of this ap-
proach generally invoke neural network methods,
obtaining impressive results on a variety of tasks
including lexical tasks such as cross-linguistic
word similarity (Ammar et al., 2016), machine
translation (Bahdanau et al., 2015), and depen-
dency parsing (Andor et al., 2016). VSMs are
also attractive in being flexible enough to model
non-local and gradient phenomena (e.g., Socher
et al., 2013). However, more research is needed to
clarify the scope of semantic phenomena that such
models are able to reliably capture. We therefore
only lightly touch on VSMs in this survey.

Finally, a major consideration in semantic anal-
ysis, and one of its great potential advantages, is
its cross-linguistic universality. While languages
differ in terms of their form (e.g., in their phonol-
ogy, lexicon, and syntax), they have often been as-

sumed to be much closer in terms of their semantic
content (Bar-Hillel, 1960; Fodor, 1975). See Sec-
tion 5 for further discussion.

A terminological note: within formal linguis-
tics, semantics is often the study of the relation
between symbols (e.g., words, syntactic construc-
tions) and what they signify. In this sense, seman-
tics is the study of the aspects of meaning that are
overtly expressed by the lexicon and grammar of
a language, and is thus tightly associated with a
theory of the syntax-semantics interface. We note
that this definition of semantics is somewhat dif-
ferent from the one intended here, which defines
semantic schemes as theories of meaning.

3 Semantic Content

We turn to discussing the main content types en-
coded by semantic representation schemes. Due
to space limitations, we focus only on text seman-
tics, which studies the meaning relationships be-
tween lexical items, rather than the meaning of the
lexical items themselves.2 We also defer discus-
sion of more targeted semantic distinctions, such
as sentiment, to future work.

We will use the following as a running example:

(1) Although Ann was leaving, she gave the
present to John.

Events. Events (sometimes called frames,
propositions or scenes) are the basic building
blocks of argument structure representations.
An event includes a predicate (main relation,
frame-evoking element), which is the main
determinant of what the event is about. It also
includes arguments (participants, core elements)
and secondary relations (modifiers, non-core
elements). Example 1 is usually viewed as having
two events, evoked by “leaving” and “gave”.

Schemes commonly provide an ontology or a
lexicon of event types (also a predicate lexicon),
which categorizes semantically similar events
evoked by different lexical items. For instance,
FrameNet defines frames as schematized story
fragments evoked by a set of conceptually simi-
lar predicates. In (1), the frames evoked by “leav-
ing” and “gave” are DEPARTING and GIVING, but
DEPARTING may also be evoked by “depart” and
“exit”, and GIVING by “donate” and “gift”.

2 We use the term “Text Semantics”, rather than the com-
monly used “Sentence Semantics” to include inter-sentence
semantic relations as well.

78

The events discussed here should not be con-
fused with events as defined in Information Ex-
traction and related tasks such as event co-
reference (Humphreys et al., 1997), which corre-
spond more closely to the everyday notion of an
event, such as a political or financial event, and
generally consist of multiple events in the sense
discussed here. The representation of such events
is recently receiving considerable interest within
NLP, e.g. the Richer Event Descriptions frame-
work (RED; Ikuta et al., 2014).

Predicates and Arguments. While predicate-
argument relations are universally recognized as
fundamental to semantic representation, the inter-
pretation of the terms varies across schemes. Most
SRL schemes cover a wide variety of verbal pred-
icates, but differ in which nominal and adjecti-
val predicates are covered. For example, Prop-
Bank (Palmer et al., 2005), one of the major re-
sources for SRL, covers verbs, and in its recent
versions also eventive nouns and multi-argument
adjectives. FrameNet (Ruppenhofer et al., 2016)
covers all these, but also covers relational nouns
that do not evoke an event, such as “president”.
Other lines of work address semantic arguments
that appear outside sentence boundaries, or that do
not explicitly appear anywhere in the text (Gerber
and Chai, 2010; Roth and Frank, 2015).

Core and Non-core Arguments. Perhaps the
most common distinction between argument types
is between core and non-core arguments (Dowty,
2003). While it is possible to define the dis-
tinction distributionally as one between obligatory
and optional arguments, here we focus on the se-
mantic dimension, which distinguishes arguments
whose meaning is predicate-specific and are nec-
essary components of the described event (core),
and those which are predicate-general (non-core).
For example, FrameNet defines core arguments
as conceptually necessary components of a frame,
that make the frame unique and different from
other frames, and peripheral arguments as those
that introduce additional, independent or distinct
relations from that of the frame such as time,
place, manner, means and degree (Ruppenhofer
et al., 2016, pp. 23-24).

Semantic Roles. Semantic roles are categories
of arguments. Many different semantic role inven-
tories have been proposed and used in NLP over
the years, the most prominent being FrameNet
(where roles are shared across predicates that

evoke the same frame type, such as “leave” and
“depart”), and PropBank (where roles are verb-
specific). PropBank’s role sets were extended by
subsequent projects such as AMR. Another promi-
nent semantic role inventory is VerbNet (Kip-
per et al., 2008) and subsequent projects (Bonial
et al., 2011; Schneider et al., 2015), which define
a closed set of abstract semantic roles (such as
AGENT, PATIENT and INSTRUMENT) that apply
to all predicate arguments.

Co-reference and Anaphora. Co-reference al-
lows to abstract away from the different ways to
refer to the same entity, and is commonly included
in semantic resources. Coreference interacts with
argument structure annotation, as in its absence
each argument is arbitrarily linked to one of its
textual instances. Most SRL schemes would mark
“Ann” in (1) as an argument of “leaving” and
“she” as an argument of “gave”, although on se-
mantic grounds “Ann” is an argument of both.

Some SRTs distinguish between the cases of ar-
gument sharing which is encoded by the syntax
and is thus explicit (e.g., in “John went home and
took a shower”, “John” is both an argument of
“went home” and of “took a shower”), and cases
where the sharing of arguments is inferred (as in
(1)). This distinction may be important for text un-
derstanding, as the inferred cases tend to be more
ambiguous (“she” in (1) might not refer to “Ann”).
Other schemes, such as AMR, eschew this distinc-
tion and use the same terms to represent all cases
of coreference.

Temporal Relations. Most temporal semantic
work in NLP has focused on temporal relations
between events, either by timestamping them ac-
cording to time expressions found in the text, or
by predicting their relative order in time. Im-
portant resources include TimeML, a specification
language for temporal relations (Pustejovsky et al.,
2003), and the TempEval series of shared tasks
and annotated corpora (Verhagen et al., 2009,
2010; UzZaman et al., 2013). A different line of
work explores scripts: schematic, temporally or-
dered sequences of events associated with a cer-
tain scenario (Chambers and Jurafsky, 2008, 2009;
Regneri et al., 2010). For instance, going to a
restaurant includes sitting at a table, ordering, eat-
ing and paying, generally in this order.

Related to temporal relations, are causal rela-
tions between events, which are ubiquitous in lan-
guage, and central for a variety of applications,

79

including planning and entailment. See (Mirza
et al., 2014) and (Dunietz et al., 2015) for recently
proposed annotation schemes for causality and its
sub-types. Mostafazadeh et al. (2016) integrated
causal and TimeML-style temporal relations into
a unified representation.

The internal temporal structure of events has
been less frequently tackled. Moens and Steed-
man (1988) defined an ontology for the tempo-
ral components of an event, such as its prepara-
tory process (e.g., “climbing a mountain”), or
its culmination (“reaching its top”). Statistical
work on this topic is unfortunately scarce, and
mostly focuses on lexical categories such as aspec-
tual classes (Siegel and McKeown, 2000; Palmer
et al., 2007; Friedrich et al., 2016; White et al.,
2016), and tense distinctions (Elson and McKe-
own, 2010). Still, casting events in terms of their
temporal components, characterizing an annota-
tion scheme for doing so and rooting it in theo-
retical foundations, is an open challenge for NLP.

Spatial Relations. The representation of spatial
relations is pivotal in cognitive theories of mean-
ing (e.g., Langacker, 2008), and in application
domains such as geographical information sys-
tems or robotic navigation. Important tasks in this
field include Spatial Role Labeling (Kordjamshidi
et al., 2012) and the more recent SpaceEval (Puste-
jovsky et al., 2015). The tasks include the identi-
fication and classification of spatial elements and
relations, such as places, paths, directions and mo-
tions, and their relative configuration.

Discourse Relations encompass any semantic
relation between events or larger semantic units.
For example, in (1) the leaving and the giving
events are sometimes related through a discourse
relation of type CONCESSION, evoked by “al-
though”. Such information is useful, often essen-
tial for a variety of NLP tasks such as summariza-
tion, machine translation and information extrac-
tion, but is commonly overlooked in the develop-
ment of such systems (Webber and Joshi, 2012).

The Penn Discourse Treebank (PeDT; Milt-
sakaki et al., 2004) annotates discourse units, and
classifies the relations between them into a hier-
archical, closed category set, including high-level
relation types like TEMPORAL, COMPARISON and
CONTINGENCY and finer-grained ones such as
JUSTIFICATION and EXCEPTION. Another com-
monly used resource is the RST Discourse Tree-

bank (Carlson et al., 2003), which places more fo-
cus on higher-order discourse structures, resulting
in deeper hierarchical structures than the PeDT’s,
which focuses on local discourse structure.

Another discourse information type explored in
NLP is discourse segmentation, where texts are
partitioned into shallow structures of discourse
units categorized either according to their topic or
according to their function within the text. An ex-
ample is the segmentation of scientific papers into
functional segments and their labeling with cate-
gories such as BACKGROUND and DISCUSSION

(Liakata et al., 2010). See (Webber et al., 2011)
for a survey of discourse structure in NLP.

Discourse relations beyond the scope of a single
sentence are often represented by specialized se-
mantic resources and not by general ones, despite
the absence of a clear boundary line between them.
This, however, is beginning to change with some
schemes, e.g., GMB and UCCA, already support-
ing cross-sentence semantic relations.3

Logical Structure. Logical structure, including
quantification, negation, coordination and their as-
sociated scope distinctions, is the cornerstone of
semantic analysis in much of theoretical linguis-
tics, and has attracted much attention in NLP as
well. Common representations are often based
on variants of predicate calculus, and are use-
ful for applications that require mapping text into
an external, often executable, formal language,
such as a querying language (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005) or robot in-
structions (Artzi and Zettlemoyer, 2013). Logi-
cal structures are also useful for recognizing en-
tailment relations between sentences, as some en-
tailments can be computed from the text’s logi-
cal structure by formal provers (Bos and Markert,
2005; Lewis and Steedman, 2013).

Inference and Entailment. A primary motiva-
tion for many semantic schemes is their abil-
ity to support inference and entailment. Indeed,
means for predicting logical entailment are built
into many forms of semantic representations. A
different approach was taken in the tasks of Rec-
ognizing Textual Entailment (Dagan et al., 2013),
and Natural Logic (van Eijck, 2005), which con-
siders an inference valid if a reasonable annota-
tor would find the hypothesis likely to hold given

3AMR will also support discourse structure in its future
versions (N. Schneider; personal communication).

80

the premise, even if it cannot be deduced from it.
See (Manning, 2006) for a discussion of this point.
Such inference relations are usually not included
in semantic treebanks, but annotated in specialized
resources (e.g., Dagan et al., 2006; Bowman et al.,
2015).

4 Semantic Schemes and Resources

This section briefly surveys the different schemes
and resources for SRT. We focus on design princi-
ples rather than specific features, as the latter are
likely to change as the schemes undergo continu-
ous development. In general, schemes discussed
in Section 3 are not repeated here.

Semantic Role Labeling. SRL schemes diverge
in their event types, the type of predicates they
cover, their granularity, their cross-linguistic ap-
plicability, their organizing principles and their
relation with syntax. Most SRL schemes define
their annotation relative to some syntactic struc-
ture, such as parse trees of the PTB in the case of
PropBank, or specialized syntactic categories de-
fined for SRL purposes in the case of FrameNet.
Other than PropBank, FrameNet and VerbNet
discussed above, other notable resources include
Semlink (Loper et al., 2007) that links correspond-
ing entries in different resources such as Prop-
Bank, FrameNet, VerbNet and WordNet, and the
Preposition Supersenses project (Schneider et al.,
2015), which focuses on roles evoked by preposi-
tions. See (Palmer et al., 2010, 2013) for a review
of SRL schemes and resources. SRL schemes
are often termed “shallow semantic analysis” due
to their focus on argument structure, leaving out
other relations such as discourse events, or how
predicates and arguments are internally structured.

AMR. AMR covers predicate-argument rela-
tions, including semantic roles (adapted from
PropBank) that apply to a wide variety of pred-
icates (including verbal, nominal and adjectival
predicates), modifiers, co-reference, named enti-
ties and some time expressions.

AMR does not currently support relations above
the sentence level, and is admittedly English-
centric, which results in an occasional conflation
of semantic phenomena that happen to be sim-
ilarly realized in English, into a single seman-
tic category. AMR thus faces difficulties when
assessing the invariance of its structures across
translations (Xue et al., 2014). As an example,

consider the sentences “I happened to meet Jack
in the office”, and “I asked to meet Jack in the
office”. While the two have similar syntactic
forms, the first describes a single “meeting” event,
where “happened” is a modifier, while the second
describes two distinct events: asking and meet-
ing. AMR annotates both in similar terms, which
may be suitable for English, where aspectual rela-
tions are predominantly expressed as subordinat-
ing verbs (e.g., “begin”, “want”), and are syntac-
tically similar to primary verbs that take an infini-
tival complement (such as “ask to meet” or “learn
to swim”). However, this approach is less suitable
cross-linguistically. For instance, when translating
the sentences to German, the divergence between
the semantics of the two sentences is clear: in the
first “happened” is translated to an adverb: “Ich
habe Jack im Büro zufällig getroffen” (lit. “I have
Jack in-the office by-chance met”), and in the sec-
ond “asked” is translated to a verb: “Ich habe ge-
beten, Jack im Büro zu treffen” (lit. “I have asked,
Jack in-the office to meet”).

UCCA. UCCA (Universal Conceptual Cogni-
tive Annotation) (Abend and Rappoport, 2013a,b)
is a cross-linguistically applicable scheme for se-
mantic annotation, building on typological the-
ory, primarily on Basic Linguistic Theory (Dixon,
2010). UCCA’s foundational layer of categories
focuses on argument structures of various types
and relations between them. In its current state,
UCCA is considerably more coarse-grained than
the above mentioned schemes (e.g., it does not
include semantic role information). However, its
distinctions tend to generalize well across lan-
guages (Sulem et al., 2015). For example, unlike
AMR, it distinguishes between primary and aspec-
tual verbs, so cases such as “happened to meet”
are annotated similarly to cases such as “met by
chance”, and differently from “asked to meet”.

Another design principle UCCA evokes is sup-
port for annotation by non-experts. To do so
the scheme reformulates some of the harder dis-
tinctions into more intuitive ones. For instance,
the core/non-core distinction is replaced in UCCA
with the distinction between pure relations (Ad-
verbials) and those evoking an object (Partici-
pants), which has been found easier for annotators
to apply.

UDS. Universal Decompositional Semantics
(White et al., 2016) is a multi-layered scheme,
which currently includes semantic role anno-

81

tation, word senses and aspectual classes (e.g.,
realis/irrealis). UDS emphasizes accessible
distinctions, which can be collected through
crowd-sourcing. However, the skeletal structure
of UDS representations is derived from syntactic
dependencies, and only includes verbal argument
structures that can be so extracted. Notably,
many of the distinctions in UDS are defined using
feature bundles, rather than mutually exclusive
categories. For instance, a semantic role may be
represented as having the features +VOLITION

and +AWARENESS, rather than as having the
category AGENT.

The Prague Dependency Treebank (PDT) Tec-
togrammatical Layer (PDT-TL) (Sgall, 1992;
Böhmová et al., 2003) covers a rich variety of
functional and semantic distinctions, such as argu-
ment structure (including semantic roles), tense,
ellipsis, topic/focus, co-reference, word sense dis-
ambiguation and local discourse information. The
PDT-TL results from an abstraction over PDT’s
syntactic layers, and its close relation with syntax
is apparent. For instance, the PDT-TL encodes the
distinction between a governing clause and a de-
pendent clause, which is primarily syntactic in na-
ture, so in the clauses “John came just as we were
leaving” and “We were leaving just as John came”
the governing and dependent clause are swapped,
despite their semantic similarity.

CCG-based Schemes. CCG (Steedman, 2000)
is a lexicalized grammar (i.e., nearly all semantic
content is encoded in the lexicon), which defines
a theory of how lexical information is composed
to form the meaning of phrases and sentences (see
Section 6.2), and has proven effective in a vari-
ety of semantic tasks (Zettlemoyer and Collins,
2005, 2007; Kwiatkowski et al., 2010; Artzi and
Zettlemoyer, 2013, inter alia). Several projects
have constructed logical representations by asso-
ciating CCG with semantic forms (by assigning
logical forms to the leaves). For example, Boxer
(Bos, 2008) and GMB, which builds on Boxer, use
Discourse Representation Structures (Kamp and
Reyle, 1993), while Lewis and Steedman (2013)
used Davidsonian-style λ-expressions, accompa-
nied by lexical categorization of the predicates.
These schemes encode events with their argument
structures, and include an elaborate logical struc-
ture, as well as lexical and discourse information.

HPSG-based Schemes. Related to CCG-based
schemes are SRTs based on Head-driven Phrase

Structure Grammar (HPSG; Pollard and Sag,
1994), where syntactic and semantic features are
represented as feature bundles, which are it-
eratively composed through unification rules to
form composite units. HPSG-based SRT schemes
commonly use the Minimal Recursion Semantics
(Copestake et al., 2005) formalism. Annotated
corpora and manually crafted grammars exist for
multiple languages (Flickinger, 2002; Oepen et al.,
2004; Bender and Flickinger, 2005, inter alia),
and generally focus on argument structural and
logical semantic phenomena. The Broad-coverage
Semantic Dependency Parsing shared task and
corpora (Oepen et al., 2014, 2015) include corpora
annotated with the PDT-TL, and dependencies ex-
tracted from the HPSG grammars Enju (Miyao,
2006) and the LinGO English Reference Grammar
(ERG; Flickinger, 2002).

Like the PDT-TL, projects based on CCG,
HPSG, and other expressive grammars such as
LTAG (Joshi and Vijay-Shanker, 1999) and LFG
(Kaplan and Bresnan, 1982) (e.g., GlueTag (Frank
and van Genabith, 2001)), yield semantic repre-
sentations that are coupled with syntactic ones.
While this approach provides powerful tools for
inference, type checking, and mapping into exter-
nal formal languages, it also often results in dif-
ficulties in abstracting away from some syntactic
details. For instance, the dependencies derived
from ERG in the SDP corpus use the same label
for different senses of the English possessive con-
struction, regardless of whether they correspond
to ownership (e.g., “John’s dog”) or to a different
meaning, such as marking an argument of a nomi-
nal predicate (e.g., “John’s kick”). See Section 6.

OntoNotes is a useful resource with multiple
inter-linked layers of annotation, borrowed from
different schemes. The layers include syntactic,
SRL, co-reference and word sense disambiguation
content. Some properties of the predicate, such as
which nouns are eventive, are encoded as well.

To summarize, while SRT schemes differ in the
types of content they support, schemes evolve to
continuously add new content types, making these
differences less consequential. The fundamental
difference between the schemes is the extent that
they abstract away from syntax. For instance,
AMR and UCCA abstract away from syntax as
part of their design, while in most other schemes
syntax and semantics are more tightly coupled.

82

Schemes also differ in other aspects discussed in
Sections 5 and 6.

5 Evaluation

Human evaluation is the ultimate criterion for val-
idating an SRT scheme given our definition of se-
mantics as meaning as it is understood by a lan-
guage speaker. Determining how well an SRT
scheme corresponds to human interpretation of
a text is ideally carried out by asking annota-
tors to make some semantic prediction or anno-
tation according to pre-specified guidelines, and
to compare this to the information extracted from
the SRT. Question Answering SRL (QASRL; He
et al., 2015) is an SRL scheme which solicits non-
experts to answer mostly wh-questions, convert-
ing their output to an SRL annotation. Hartshorne
et al. (2013) and Reisinger et al. (2015) use crowd-
sourcing to elicit semantic role features, such as
whether the argument was volitional in the de-
scribed event, in order to evaluate proposals for
semantic role sets.

Another evaluation approach is task-based eval-
uation. Many semantic representations in NLP are
defined with an application in mind, making this
type of evaluation natural. For instance, a major
motivation for AMR is its applicability to machine
translation, making MT a natural (albeit hitherto
unexplored) testbed for AMR evaluation. Another
example is using question answering to evaluate
semantic parsing into knowledge-base queries.

Another common criterion for evaluating a se-
mantic scheme is invariance, where semantic
analysis should be similar across paraphrases or
translation pairs (Xue et al., 2014; Sulem et al.,
2015). For instance, most SRL schemes abstract
away from the syntactic divergence between the
sentences (1) “He gave a present to John” and (2)
“It was John who was given a present” (although
a complete analysis would reflect the difference of
focus between them).

Importantly, these evaluation criteria also ap-
ply in cases where the representation is automat-
ically induced, rather than manually defined. For
instance, vector space representations are gener-
ally evaluated either through task-based evalua-
tion, or in terms of semantic features computed
from them, whose validity is established by human
annotators (e.g., Agirre et al., 2013, 2014).

Finally, where semantic schemes are induced
through manual annotation (and not through au-

tomated procedures), a common criterion for de-
termining whether the guidelines are sufficiently
clear, and whether the categories are well-defined
is to measure agreement between annotators, by
assigning them the same texts and measuring the
similarity of the resulting structures. Measures
include the SMATCH measure for AMR (Cai
and Knight, 2013), and the PARSEVAL F-score
(Black et al., 1991) adapted for DAGs for UCCA.

SRT schemes diverge in the background and
training they require from their annotators. Some
schemes require extensive training (e.g., AMR),
while others can be (at least partially) collected
by crowdsourcing (e.g., UDS). Other examples in-
clude FrameNet, which requires expert annotators
for creating new frames, but employs less trained
in-house annotators for applying existing frames
to texts; QASRL, which employs non-expert an-
notators remotely; and UCCA, which uses in-
house non-experts, demonstrating no advantage to
expert over non-expert annotators after an initial
training period. Another approach is taken by
GMB, which uses online collaboration where ex-
pert collaborators participate in manually correct-
ing automatically created representations. They
further employ gamification strategies for collect-
ing some aspects of the annotation.

Universality. One of the great promises of se-
mantic analysis (over more surface forms of anal-
ysis) is its cross-linguistic potential. However,
while the theoretical and applicative importance of
universality in semantics has long been recognized
(Goddard, 2011), the nature of universal seman-
tics remains unknown. Recently, projects such as
BabelNet (Ehrmann et al., 2014), UBY (Gurevych
et al., 2012) and Open Multilingual Wordnet4,
constructed huge multi-lingual semantic nets, by
linking resources such as Wikipedia and WordNet
and processing them using modern NLP. However,
such projects currently focus on lexical semantic
and encyclopedic information rather than on text
semantics.

Symbolic SRT schemes such as SRL schemes
and AMR have also been studied for their cross-
linguistic applicability (Padó and Lapata, 2009;
Sun et al., 2010; Xue et al., 2014), indicating par-
tial portability across languages. Translated ver-
sions of PropBank and FrameNet have been con-
structed for multiple languages (e.g., Akbik et al.,
2016; Hartmann and Gurevych, 2013). How-

4http://compling.hss.ntu.edu.sg/omw/

83

ever, as both PropBank and FrameNet are lexi-
calized schemes, and as lexicons diverge wildly
across languages, these schemes require consid-
erable adaptation when ported across languages
(Kozhevnikov and Titov, 2013). Ongoing research
tackles the generalization of VerbNet’s unlexical-
ized roles to a universally applicable set (e.g.,
Schneider et al., 2015). Few SRT schemes place
cross-linguistically applicability as one of their
main criteria, examples include UCCA, and the
LinGO Grammar Matrix (Bender and Flickinger,
2005), both of which draw on typological theory.

Vector space models, which embed words and
sentences in a vector space, have also been applied
to induce a shared cross-linguistic space (Klemen-
tiev et al., 2012; Rajendran et al., 2015; Wu et al.,
2016). However, further evaluation is required in
order to determine what aspects of meaning these
representations reflect reliably.

6 Syntax and Semantics

6.1 Syntactic and Semantic Generalization

Syntactic distinctions are generally guided by
a combination of semantic and distributional
considerations, where emphasis varies across
schemes.

Consider phrase-based syntactic structures,
common examples of which, such as the Penn
Treebank for English (Marcus et al., 1993) and
the Penn Chinese Treebank (Xue et al., 2005), are
adaptations of X-bar theory. Constituents are com-
monly defined in terms of distributional criteria,
such as whether they can serve as conjuncts, be
passivized, elided or fronted (Carnie, 2002, pp.
50-53). Moreover, phrase categories are defined
according to the POS category of their headword,
such as Noun Phrase, Verb Phrase or Preposition
Phrase, which are also at least partly distributional,
motivated by their similar morphological and syn-
tactic distribution. In contrast, SRT schemes tend
to abstract away from these realizational differ-
ences and directly reflect the argument structure of
the sentence using the same set of categories, irre-
spective of the POS of the predicate, or the case
marking of its arguments.

Distributional considerations are also apparent
with functional syntactic schemes (the most com-
monly used form of which in NLP are lexicalist
dependency structures), albeit to a lesser extent.
A prominent example is Universal Dependencies
(UD; Nivre et al., 2016), which aims at produc-

ing a cross-linguistically consistent dependency-
based annotation, and whose categories are moti-
vated by a combination of distributional and se-
mantic considerations. For example, UD would
distinguish between the dependency type between
“John” and “brother” in “John, my brother, ar-
rived” and “John, who is my brother, arrived”, de-
spite their similar semantics. This is due to the
former invoking an apposition, and the latter a rel-
ative clause, which are different in their distribu-
tion.

As an example of the different categorization
employed by UD and by purely semantic schemes
such as AMR and UCCA consider (1) “founding
of the school”, (2) “president of the United States”
and (3) “United States president”. UD is faithful
to the syntactic structure and represents (1) and (2)
similarly, while assigning a different structure to
(3). In contrast, AMR and UCCA perform a se-
mantic generalization and represents examples (2)
and (3) similarly and differently from (1).

6.2 The Syntax-Semantics Interface

A common assumption on the interface between
syntax and semantics is that semantics of phrases
and sentences is compositional – it is determined
recursively by the meaning of its immediate con-
stituents and their syntactic relationships, which
are generally assumed to form a closed set (Mon-
tague, 1970, and much subsequent work). Thus,
the interpretation of a sentence can be computed
bottom-up, by establishing the meaning of indi-
vidual words, and recursively composing them, to
obtain the full sentential semantics. The order and
type of these compositions are determined by the
syntactic structure.

Compositionality is employed by linguistically
expressive grammars, such as those based on
CCG and HPSG, and has proven to be a power-
ful method for various applications. See (Ben-
der et al., 2015) for a recent discussion of the ad-
vantages of compositional SRTs. Nevertheless,
a compositional account meets difficulties when
faced with multi-word expressions and in account-
ing for cases like “he sneezed the napkin off the
table”, where it is difficult to determine whether
“sneezed” or “off” account for the constructional
meaning. Construction Grammar (Fillmore et al.,
1988; Goldberg, 1995) answers these issues by
using an open set of construction-specific com-
positional operators, and supporting lexical en-

84

tries of varying lengths. Several ongoing projects
address the implementation of the principles of
Construction Grammar into explicit grammars, in-
cluding Sign-based Construction Grammar (Fill-
more et al., 2012), Embodied Construction Gram-
mar (Feldman et al., 2010) and Fluid Construction
Grammar (Steels and de Beules, 2006).

The achievements of machine learning methods
in many areas, and optimism as to its prospects,
have enabled the approaches to semantics dis-
cussed in this paper. Machine learning allows
to define semantic structures on purely semantic
grounds and to let algorithms identify how these
distinctions are mapped to surface/distributional
forms. Some of the schemes discussed in this pa-
per take this approach in its pure form (e.g., AMR
and UCCA).

7 Conclusion
Semantic representation in NLP is undergoing
rapid changes. Traditional semantic work has ei-
ther used shallow methods that focus on specific
semantic phenomena, or adopted formal seman-
tic theories which are coupled with a syntactic
scheme through a theory of the syntax-semantics
interface. Recent years have seen increasing inter-
est in an alternative approach that defines semantic
structures independently from any syntactic or dis-
tributional criteria, much due to the availability of
semantic treebanks that implement this approach.

Semantic schemes diverge in whether they are
anchored in the words and phrases of the text (e.g.,
all types of semantic dependencies and UCCA) or
not (e.g., AMR and logic-based representations).
We do not view this as a major difference, be-
cause most unanchored representations (including
AMR) retain their close affinity with the words
of the sentence, possibly because of the absence
of a workable scheme for lexical decomposition,
while dependency structures can be converted into
logic-based representations (Reddy et al., 2016).
In practice, anchoring facilitates parsing, while
unanchored representations are more flexible to
use where words and semantic components are not
in a one-to-one correspondence.

Our survey concludes that the main distinguish-
ing factors between schemes are their relation to
syntax, their degree of universality, and the exper-
tise and training they require from annotators, an
important factor in addressing the annotation bot-
tleneck. We hope this survey of the state of the
art in semantic representation will promote discus-

sion, expose more researchers to the most press-
ing questions in semantic representation, and lead
to the wide adoption of the best components from
each scheme.

Acknowledgements. We thank Nathan Schnei-
der for his helpful comments. The work was sup-
port by the Intel Collaborative Research Institute
for Computational Intelligence (ICRI-CI).

References
Omri Abend and Ari Rappoport. 2013a. UCCA: A

semantic-based grammatical annotation scheme. In
Proc. of IWCS. pages 1–12.

Omri Abend and Ari Rappoport. 2013b. Universal
Conceptual Cognitive Annotation (UCCA). In Proc.
of ACL. pages 228–238.

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. Semeval-2014 task 10: Multilingual
semantic textual similarity. In Proc. of SemEval.
pages 81–91.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *sem 2013 shared
task: Semantic textual similarity. In Proc. of Se-
mEval. pages 32–43.

Alan Akbik, vishwajeet kumar, and Yunyao Li. 2016.
Towards semi-automatic generation of proposition
banks for low-resource languages. In Proc. of
EMNLP. pages 993–998.

Waleed Ammar, George Mulcaire, Yulia Tsvetkov,
Guillaume Lample, Chris Dyer, and Noah A. Smith.
2016. Massively multilingual word embeddings.
CoRR abs/1602.01925.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In Proc.
of ACL. pages 2442–2452.

Gabor Angeli and Christopher D Manning. 2014. Nat-
uralli: Natural logic inference for common sense
reasoning. In EMNLP. pages 534–545.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. TACL 1:49–62.

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proc. of LAW. pages 178–186.

85

Yehoshua Bar-Hillel. 1960. The present status of auto-
matic translation of languages. In Advances in com-
puters, Academic Press, New York, volume 1, pages
91–163.

Valerio Basile, Johan Bos, Kilian Evang, and Noortje
Venhuizen. 2012. Developing a large semantically
annotated corpus. In Proc. of LREC. pages 3196–
3200.

Emily Bender and Dan Flickinger. 2005. Rapid proto-
typing of scalable grammars: Towards modularity in
extensions to a language-independent core. In Proc.
of IJCNLP. pages 203–208.

Emily M. Bender, Dan Flickinger, Stephan Oepen,
Woodley Packard, and Ann Copestake. 2015. Lay-
ers of interpretation: On grammar and composition-
ality. In Proc. of IWCS. pages 239–249.

Ezra Black, Steve Abney, Dan Flickinger, C. Gdaniec,
Ralph Grishman, P. Harrison, Donald Hindle,
Robert Ingria, Frederick Jelinek, Judith Klavans,
Mark Liberman, Mitch Marcus, Salim Roukos,
Beatrice Santorini, and Thomas Strzalkowski. 1991.
A procedure for quantitatively comparing the syn-
tactic coverage of English grammars. In Proc. of the
DARPA Speech and Natural Language Workshop.
pages 204–210.

Alena Böhmová, Jan Hajič, Eva Hajičová, and Barbora
Hladká. 2003. The Prague dependency treebank. In
Treebanks, Springer, pages 103–127.

Claire Bonial, William Corvey, Martha Palmer,
Volha V Petukhova, and Harry Bunt. 2011. A hi-
erarchical unification of lirics and verbnet semantic
roles. In Semantic Computing (ICSC). pages 483–
489.

Johan Bos. 2008. Wide-coverage semantic analysis
with Boxer. In Johan Bos and Rodolfo Delmonte,
editors, Proc. of the Conference on Semantics in Text
Processing (STEP). College Publications, Research
in Computational Semantics, pages 277–286.

Johan Bos and Katja Markert. 2005. Recognising tex-
tual entailment with logical inference. In Proc. of
EMNLP. pages 628–635.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proc. of EMNLP. pages 632–642.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Proc.
of ACL. pages 748–752.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2003. Building a discourse-tagged cor-
pus in the framework of rhetorical structure theory.
In Current and new directions in discourse and dia-
logue, Springer, pages 85–112.

Andrew Carnie. 2002. Syntax: A Generative Introduc-
tion. Wiley-Blackwell.

Nathanael Chambers and Dan Jurafsky. 2008. Unsu-
pervised learning of narrative event chains. In Proc.
of ACL-HLT . pages 789–797.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proc. of ACL-IJCNLP. pages 602–610.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A. Sag. 2005. Minimal recursion semantics:
An introduction. Research on Language and Com-
putation 3:281–332.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising text entailment
challenge. In Bernardo Magnini Joaquin Quiñonero
Candela, Ido Dagan and Florence d’Alché Buc,
editors, Machine Learning Challenges, Springer,
Berlin, volume 3944 of Lecture Notes in Computer
Science, pages 177–190.

Ido Dagan, Dan Roth, and Mark Sammons. 2013. Rec-
ognizing textual entailment. Morgan & Claypool
Publishers.

Robert M.W. Dixon. 2010. Basic Linguistic Theory:
Methodology, volume 1. Oxford University Press.

David Dowty. 2003. The dual analysis of ad-
juncts/complements in categorial grammar. In
Ewald Lang, Claudia Maienborn, and Cathry
Fabricius-Hansen, editors, Modifying Adjuncts,
Mouton de Gruyter, Berlin, pages 33–66.

Jesse Dunietz, Lori Levin, and Jaime Carbonell. 2015.
Annotating causal language using corpus lexicogra-
phy of constructions. In Proc. of LAW. pages 188–
196.

Maud Ehrmann, Francesco Cecconi, Daniele Vannella,
John Philip McCrae, Philipp Cimiano, and Roberto
Navigli. 2014. Representing multilingual data as
linked data: the case of babelnet 2.0. In Proc. of
LREC. pages 401–408.

David K Elson and Kathleen R McKeown. 2010. Tense
and aspect assignment in narrative discourse. In
Proc. of the International Natural Language Gen-
eration Conference. pages 47–56.

Jerome Feldman, Ellen Dodge, and John Bryant. 2010.
Embodied construction grammar. In Bernd Heine
and Heiko Narrog, editors, The Oxford Handbook of
Linguistic Analysis, Oxford University Press, pages
111–158.

Charles Fillmore, Russell Lee-Goldman, and Russell
Rhodes. 2012. The FrameNet Constructicon. In
Hans Boas and Ivan Sag, editors, Sign-based con-
struction grammar, CSLI Publications, pages 309–
372.

Charles J Fillmore, Paul Kay, and Mary C O’Connor.
1988. Regularity and idiomaticity in grammatical
constructions: The case of let alone. Language
64(3):501–538.

86

Daniel Flickinger. 2002. On building a more efficient
grammar by exploiting types. In Jun’ichi Tsujii,
Stefan Oepen, Daniel Flickinger, and Hans Uszko-
reit, editors, Collaborative Language Engineering,
CLSI, Stanford, CA.

Jerry A Fodor. 1975. The language of thought, vol-
ume 5. Harvard University Press.

Anette Frank and Josef van Genabith. 2001. Gluetag:
Linear logic based semantics construction for ltag
and what it teaches us about the relation between
LFG and LTAG. In Proc. of LFG.

Annemarie Friedrich, Alexis Palmer, and Manfred
Pinkal. 2016. Situation entity types: automatic clas-
sification of clause-level aspect. In Proceedings of
ACL 2016. pages 1757–1768.

Matthew Gerber and Joyce Y Chai. 2010. Beyond
nombank: A study of implicit arguments for nom-
inal predicates. In Proc. of ACL. pages 1583–1592.

Daniel Gildea and Dan Jurafsky. 2002. Automatic la-
beling of semantic roles. Computational Linguistics
28(3):245–288.

Cliff Goddard. 2011. Semantic analysis: A practical
introduction. Oxford University Press, 2nd edition.

Adèle Goldberg. 1995. Constructions: A Construc-
tion Grammar Approach to Argument Structure.
Chicago University Press, Chicago.

Iryna Gurevych, Judith Eckle-Kohler, Silvana Hart-
mann, Michael Matuschek, Christian M. Meyer, and
Christian Wirth. 2012. UBY - a large-scale unified
lexical-semantic resource based on lmf. In Proc. of
EACL. pages 580–590.

Silvana Hartmann and Iryna Gurevych. 2013.
Framenet on the way to babel: Creating a bilin-
gual framenet using wiktionary as interlingual
connection. In Proc. of ACL. pages 1363–1373.

Joshua K. Hartshorne, Claire Bonial, and Martha
Palmer. 2013. The VerbCorner project: Toward an
empirically-based semantic decomposition of verbs.
In Proc. of EMNLP. pages 1438–1442.

Luheng He, Mike Lewis, and Luke Zettlemoyer. 2015.
Question-answer driven semantic role labeling: Us-
ing natural language to annotate natural language.
In Proc. of EMNLP. pages 643–653.

Kevin Humphreys, Robert Gaizauskas, and Saliha Az-
zam. 1997. Event coreference for information ex-
traction. In Proc. of a Workshop on Operational
Factors in Practical, Robust Anaphora Resolution
for Unrestricted Texts. pages 75–81.

Rei Ikuta, Will Styler, Mariah Hamang, Tim
O’Gorman, and Martha Palmer. 2014. Challenges
of adding causation to richer event descriptions. In
Proc. of the Second Workshop on EVENTS: Defi-
nition, Detection, Coreference, and Representation.
pages 12–20.

Aravind Joshi and K. Vijay-Shanker. 1999. Compo-
sitional semantics with Lexicalized Tree-Adjoining
Grammar (LTAG). In Proc. of IWCS. pages 131–
146.

Hans Kamp and Uwe Reyle. 1993. From Discourse to
Logic. Kluwer, Dordrecht.

Ronald M Kaplan and Joan Bresnan. 1982. Lexical-
functional grammar: A formal system for gram-
matical representation. Formal Issues in Lexical-
Functional Grammar pages 29–130.

Karen Kipper, Anna Korhonen, Neville Ryant, and
Martha Palmer. 2008. A large-scale classification of
English verbs. Language Resources and Evaluation
42:21–40.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S.
Zemel. 2014. Unifying visual-semantic embeddings
with multimodal neural language models. CoRR
abs/1411.2539.

Alexandre Klementiev, Ivan Titov, and Binod Bhat-
tarai. 2012. Inducing crosslingual distributed rep-
resentations of words. In Proc. of COLING. pages
1459–1474.

Parisa Kordjamshidi, Steven Bethard, and Marie-
Francine Moens. 2012. Semeval-2012 task 3: Spa-
tial role labeling. In In Proc. of *SEM. pages 365–
373.

Mikhail Kozhevnikov and Ivan Titov. 2013. Cross-
lingual transfer of semantic role labeling models. In
Proc. of ACL. pages 1190–1200.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proc. of EMNLP. pages 1223–
1233.

Ronald Langacker. 2008. Cognitive Grammar: A Ba-
sic Introduction. Oxford University Press, Oxford.

Beth Levin and Malka Rappaport Hovav. 2005. Argu-
ment realization. Cambridge University Press.

Michael Lewis and Mark Steedman. 2013. Combined
distributional and logical semantics. TACL 1:179–
192.

Maria Liakata, Simone Teufel, Advaith Siddharthan,
and Colin Batchelor. 2010. Corpora for the concep-
tualisation and zoning of scientific papers. In Proc.
of LREC. pages 2054–2061.

Edward Loper, Szu-Ting Yi, and Martha Palmer. 2007.
Combining lexical resources: Mapping between
PropBank and VerbNet. In Proc. of the 7th Inter-
national Workshop on Computational Linguistics.

Christopher Manning. 2006. Local textual inference:
It’s hard to circumscribe, but you know it when you
see it—and nlp needs it. unpublished ms.

87

Mitch Marcus, Beatrice Santorini, and
M. Marcinkiewicz. 1993. Building a large an-
notated corpus of English: The Penn Treebank.
Computational Linguistics 19:313–330.

Eleni Miltsakaki, Rashmi Prasad, Aravind K Joshi, and
Bonnie L Webber. 2004. The penn discourse tree-
bank. In LREC. pages 2237–2240.

Paramita Mirza, Rachele Sprugnoli, Sara Tonelli, and
Manuela Speranza. 2014. Annotating causality in
the tempeval-3 corpus. In Proc. of the EACL Work-
shop on Computational Approaches to Causality in
Language (CAtoCL). pages 10–19.

Yusuke Miyao. 2006. Corpus-oriented grammar de-
velopment and feature forest model. Ph.D. thesis,
University of Tokyo.

Marc Moens and Mark Steedman. 1988. Temporal
ontology and temporal reference. Computational
Linguistics 14:15–28. Reprinted in Inderjeet Mani,
James Pustejovsky, and Robert Gaizauskas (eds.)
The Language of Time: A Reader. Oxford Univer-
sity Press, 93-114.

Richard Montague. 1970. English as a formal lan-
guage. In Bruno Visentini, editor, Linguaggi nella
Società e nella Technica, Edizioni di Communità,
Milan, pages 189–224. Reprinted as Thomason
1974:188-221.

Nasrin Mostafazadeh, Alyson Grealish, Nathanael
Chambers, James Allen, and Lucy Vanderwende.
2016. Caters: Causal and temporal relation scheme
for semantic annotation of event structures. In Proc.
of the Fourth Workshop on Events. pages 51–61.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proc. of LREC. pages 1659–
1666.

Stephan Oepen, Dan Flickinger, Kristina Toutanova,
and Chris Manning. 2004. Lingo Redwoods. Re-
search on Language & Computation 2:575–596.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajič, and Zdeňka Urešová. 2015. SemEval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proc. of SemEval. pages 915–926.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proc. of SemEval. pages 63–72.

Sebastian Padó and Mirella Lapata. 2009. Cross-
lingual annotation projection of semantic roles.
Journal of Artificial Intelligence Research 36:307–
340.

Alexis Palmer, Elias Ponvert, Jason Baldridge, and
Carlota Smith. 2007. A sequencing model for sit-
uation entity classification. In Proc. of ACL. pages
896–903.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The Proposition Bank: An annotated cor-
pus of semantic roles. Computational Linguistics
31(1):71–106.

Martha Palmer, Daniel Gildea, and Nianwen Xue.
2010. Semantic Role Labeling. Synthesis lectures
on human language technologies. Morgan & Clay-
pool Publishers.

Martha Palmer, Ivan Titov, and Shumin Wu. 2013.
Semantic role labeling tutorial at naacl 2013.
http://ivan-titov.org/teaching/
srl-tutorial-naacl13/.

Carl Pollard and Ivan A Sag. 1994. Head-driven
phrase structure grammar. University of Chicago
Press.

James Pustejovsky, José Casteño, Robert Ingria, Roser
Saurı́, Robert Gaizauiuskas, Andrea Setzer, Graham
Katz, and Dragomir Radev. 2003. Timeml: Robust
specification of event and temporal expressions in
text. In Proc. of the 5th International Workshop on
Computational Semantics.

James Pustejovsky, Parisa Kordjamshidi, Marie-
Francine Moens, Aaron Levine, Seth Dworman,
and Zachary Yocum. 2015. Semeval-2015 task 8:
Spaceeval. In Proc. of SemEval. pages 884–894.

Janarthanan Rajendran, Mitesh M. Khapra, Sarath
Chandar, and Balaraman Ravindran. 2015. Bridge
correlational neural networks for multilingual
multimodal representation learning. CoRR
abs/1510.03519.

Siva Reddy, Oscar Täckström, Michael Collins, Tom
Kwiatkowski, Dipanjan Das, Mark Steedman, and
Mirella Lapata. 2016. Transforming dependency
structures to logical forms for semantic parsing.
TACL 4:127–140.

Michaela Regneri, Alexander Koller, and Manfred
Pinkal. 2010. Learning script knowledge with web
experiments. In Proc. of ACL. pages 979–988.

Drew Reisinger, Rachel Rudinger, Francis Ferraro,
Craig Harman, Kyle Rawlins, and Benjamin Van
Durme. 2015. Semantic proto-roles. TACL 3:475–
488.

Michael Roth and Anette Frank. 2015. Inducing im-
plicit arguments from comparable texts: A frame-
work and its applications. Computational Linguis-
tics 41:625–664.

Josef Ruppenhofer, Michael Ellsworth, Miriam R. L.
Petruck, Christopher R. Johnson, Collin F. Baker,
and Jan Scheffczyk. 2016. FrameNet II: Extended
Theory and Practice. The Berkeley FrameNet
Project.

88

Nathan Schneider, Vivek Srikumar, Jena D. Hwang,
and Martha Palmer. 2015. A hierarchy with, of, and
for preposition supersenses. In Proc. of LAW. pages
112–123.

Petr Sgall. 1992. Underlying Structure of Sentences
and Its Relations to Semantics. In T. Reuthe, edi-
tor, Wiener Slawistischer Almanach. Sonderband 33,
Wien: Gesellschaft zur Förderung slawistischer Stu-
dien, pages 273–282.

Eric Siegel and Kathy McKeown. 2000. Learning
methods to combine linguistic indicators: Improv-
ing aspectual classification and revealing linguistic
insights. Computational Linguistics 26:595–628.

Richard Socher, John Bauer, Christopher D. Manning,
and Ng Andrew Y. 2013. Parsing with composi-
tional vector grammars. In Proc. of ACL. pages 455–
465.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA.

Luc Steels and Joachim de Beules. 2006. A (very) brief
introduction to fluid construction grammar. In Proc.
of the 3rd Workshop on Scalable Natural Language
Understanding. pages 73–80.

Elior Sulem, Omri Abend, and Ari Rappoport. 2015.
Conceptual annotations preserve structure across
translations: A French-English case study. In ACL
2015 Workshop on Semantics-Driven Statistical Ma-
chine Translation (S2MT). pages 11–22.

Lin Sun, Anna Korhonen, Thierry Poibeau, and Cédric
Messiant. 2010. Investigating the cross-linguistic
potential of verbnet: style classification. In Proc.
of COLING. pages 1056–1064.

Richmond Thomason, editor. 1974. Formal Philoso-
phy: Papers of Richard Montague. Yale University
Press, New Haven, CT.

Naushad UzZaman, Hector Llorens, Leon Derczyn-
ski, James Allen, Marc Verhagen, and James Puste-
jovsky. 2013. Semeval-2013 task 1: Tempeval-3:
Evaluating time expressions, events, and temporal
relations. In *SEM-SemEval ’13. pages 1–9.

Jan van Eijck. 2005. Natural logic for natural language.
In Balder ten Cate and Henk Zeevat, editors, Logic,
Language, and Computation. Springer, Berlin, Lec-
ture Notes in Computer Science 4363, pages 216–
230.

Marc Verhagen, Roser Sauri, Tomasso Caselli, and
James Pustejovsky. 2010. Semeval-2010 task 13:
Tempeval-2. In Proc. of the 5th International Work-
shop on Semantic Evaluation. ACL, pages 57–62.

Mark Verhagen, Robert Gaizauskas, Frank Schilder,
Mark Hepple, Jessica Moszkowitcz, and James
Pustejovsky. 2009. The tempeval challenge: Iden-
tifying temporal relations in text. Language Re-
sources and Evaluation 43:161–179.

Bonnie Webber, Markus Egg, and Valia Kordoni. 2011.
Discourse structure and language technology. Natu-
ral Language Engineering 18(4):437–490.

Bonnie Webber and Aravind Joshi. 2012. Discourse
structure and computation: Past, present and future.
In Proceedings of the ACL-2012 Special Workshop
on Rediscovering 50 Years of Discoveries. pages 42–
54.

Aaron Steven White, Drew Reisinger, Keisuke Sak-
aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2016.
Universal decompositional semantics on universal
dependencies. In Proc. of EMNLP. pages 1713–
1723.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR
abs/1609.08144.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural lan-
guage engineering 11(02):207–238.

Nianwen Xue, Odrej Bojar, Jan Hajic, Martha Palmer,
Zdenka Uresova, and Xiuhong Zhang. 2014. Not an
intelingua, but close: comparison of English AMRs
to Chinese and Czech. In Proc. of LREC. pages
1765–1772.

John Zelle and Ray Mooney. 1996. Learning to
parse database queries using inductive logic pro-
gramming. In Proc. of the 14th National Conference
on Artificial Intelligence. pages 1050–1055.

Luke Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: Structured
classification with Probabilistic Categorial Gram-
mars. In Proc. of UAI. pages 658–666.

Luke Zettlemoyer and Michael Collins. 2007. Online
learning of relaxed CCG grammars for parsing to
logical form. In Proc. of EMNLP-CoNLL. pages
678–687.

89

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 90–101
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1009

Joint Learning for Event Coreference Resolution

Jing Lu and Vincent Ng
Human Language Technology Research Institute

University of Texas at Dallas
Richardson, TX 75083-0688

{ljwinnie,vince}@hlt.utdallas.edu

Abstract

While joint models have been developed
for many NLP tasks, the vast majority of
event coreference resolvers, including the
top-performing resolvers competing in the
recent TAC KBP 2016 Event Nugget De-
tection and Coreference task, are pipeline-
based, where the propagation of errors
from the trigger detection component to
the event coreference component is a ma-
jor performance limiting factor. To ad-
dress this problem, we propose a model
for jointly learning event coreference, trig-
ger detection, and event anaphoricity. Our
joint model is novel in its choice of tasks
and its features for capturing cross-task
interactions. To our knowledge, this is
the first attempt to train a mention-ranking
model and employ event anaphoricity for
event coreference. Our model achieves the
best results to date on the KBP 2016 En-
glish and Chinese datasets.

1 Introduction

Within-document event coreference resolution is
the task of determining which event mentions in a
text refer to the same real-world event. Compared
to entity coreference resolution, event coreference
resolution is not only much less studied, but it is
arguably more challenging. The challenge stems
in part from the fact that an event coreference re-
solver typically lies towards the end of the stan-
dard information extraction pipeline, assuming as
input the noisy outputs of its upstream compo-
nents. One such component is the trigger detection
system, which is responsible for identifying event
triggers and determining their event subtypes.

As is commonly known, trigger detection is
another challenging task that is far from being

solved. In fact, in the recent TAC KBP 2016 Event
Nugget Detection and Coreference task, trigger
detection (a.k.a. event nugget detection in KBP)
is deliberately made more challenging by focus-
ing only on detecting the 18 subtypes of triggers
on which the KBP 2015 participating systems’
performances were the poorest (Mitamura et al.,
2016). The best-performing KBP 2016 system on
English trigger detection achieved only an F-score
of 47 (Lu and Ng, 2016).1

Given the difficulty of trigger detection, it is
conceivable that many errors will propagate from
the trigger detection component to the event coref-
erence component in any pipeline architecture
where trigger detection precedes event corefer-
ence resolution. These trigger detection errors
could severely harm event coreference perfor-
mance. For instance, two event mentions could
be wrongly posited as coreferent if the underlying
triggers were wrongly predicted to have the same
subtype. Nevertheless, the top-performing sys-
tems in the KBP 2016 event coreference task all
adopted the aforementioned pipeline architecture
(Liu et al., 2016; Lu and Ng, 2016; Nguyen et al.,
2016). Their performances are not particularly im-
pressive, however: the best English event corefer-
ence F-score (averaged over four scoring metrics)
is only around 30%.

To address this error propagation problem, we
describe a joint model of trigger detection, event
coreference, and event anaphoricity in this pa-
per. Our choice of these three tasks is moti-
vated in part by their inter-dependencies. As men-
tioned above, it is well-known that trigger de-
tection performance has a huge impact on event
coreference performance. Though largely under-
investigated, event coreference could also improve

1This is the best English nugget type result in KBP 2016.
In this paper, we will not be concerned with realis classifica-
tion, as it does not play any role in event coreference.

90

https://doi.org/10.18653/v1/P17-1009

trigger detection. For instance, if two event men-
tions are posited as coreferent, then the under-
lying triggers must have the same event sub-
type. While the use of anaphoricity information
for entity coreference has been extensively stud-
ied (see Ng (2010)), to our knowledge there has
thus far been no attempt to explicitly model event
anaphoricity for event coreference.2 Although
the mention-ranking model we employ for event
coreference also allows an event mention to be
posited as non-anaphoric (by resolving it to a null
candidate antecedent), our decision to train a sep-
arate anaphoricity model and integrate it into our
joint model is motivated in part by the recent suc-
cesses of Wiseman et al. (2015), who showed that
there are benefits in jointly training a noun phrase
anaphoricity model and a mention-ranking model
for entity coreference resolution. Finally, event
anaphoricity and trigger detection can also mu-
tually benefit each other. For instance, any verb
posited as a non-trigger cannot be anaphoric, and
any verb posited as anaphoric must be a trigger.
Note that in our joint model, anaphoricity serves
as an auxiliary task: its intended use is to im-
prove trigger detection and event coreference, po-
tentially mediating the interaction between trigger
detection and event coreference.

Being a structured conditional random field, our
model encompasses two types of factors. Unary
factors encode the features specific for each task.
Binary and ternary factors capture the interaction
between each pair of tasks in a soft manner, en-
abling the learner to learn which combinations of
values of the output variables are more probable.
For instance, the learner should learn that it is not a
good idea to classify a verb both as anaphoric and
as a non-trigger. Our model is similar in spirit to
Durrett and Klein’s (2014) joint model for entity
analysis, which performs joint learning for entity
coreference, entity linking and semantic typing via
the use of interaction features.

Our contributions are two-fold. First, we
present a joint model of event coreference, trigger
detection, and anaphoricity that is novel in terms
of the choice of tasks and the features used to cap-
ture cross-task interactions. Second, our model
achieves the best results to date on the KBP 2016
English and Chinese event coreference tasks.

2Following the entity coreference literature, we over-
load the term anaphoricity, saying that an event mention is
anaphoric if it is coreferent with a preceding mention in the
associated text.

2 Definitions, Task, and Corpora

2.1 Definitions
We employ the following definitions in our discus-
sion of trigger detection and event coreference:

• An event mention is an explicit occurrence
of an event consisting of a textual trigger, ar-
guments or participants (if any), and the event
type/subtype.

• An event trigger is a string of text that most
clearly expresses the occurrence of an event,
usually a word or a multi-word phrase

• An event argument is an argument filler that
plays a certain role in an event.

• An event coreference chain (a.k.a. an event
hopper) is a group of event mentions that re-
fer to the same real-world event. They must
have the same event (sub)type.

To understand these definitions, consider the ex-
ample in Table 1, which contains two coreferent
event mentions, ev1 and ev2. left is the trig-
ger for ev1 and departed is the trigger for ev2.
Both triggers have subtype Movement.Transport-
Person. ev1 has three arguments, Georges Cipri-
ani, prison, and Wednesday with roles Person,
Origin, and Time respectively. ev2 also has three
arguments, He, Ensisheim, and police vehicle with
roles Person, Origin, and Instrument respectively.

2.2 Task
The version of the event coreference task we fo-
cus on in this paper is the Event Nugget Detec-
tion and Coreference task in the TAC KBP 2016
Event Track. While we discuss the role played by
event arguments in event coreference in the previ-
ous subsection, KBP 2016 addresses event argu-
ment detection as a separate shared task. In other
words, the KBP 2016 Event Nugget Detection and
Coreference task focuses solely on trigger detec-
tion and event coreference.

It is worth mentioning that the KBP Event
Nugget Detection and Coreference task, which
started in 2015, aims to address a major weakness
of the ACE 2005 event coreference task. Specif-
ically, ACE 2005 adopts a strict notion of event
identity, with which two event mentions were an-
notated as coreferent if and only if “they had
the same agent(s), patient(s), time, and location”
(Song et al., 2015), and their event attributes (po-
larity, modality, genericity, and tense) were not in-
compatible. In contrast, KBP adopts a more re-
laxed definition of event coreference, allowing two

91

Georges Cipriani[Person], {left}ev1 the prison[Origin] in Ensisheim in northern France on parole on Wednesday[Time].
He[Person] {departed}ev2 Ensisheim[Origin] in a police vehicle[Instrument] bound for an open prison near Strasbourg.

Table 1: Event coreference resolution example.

event mentions to be coreferent as long as they in-
tuitively refer to the same real-world event. Under
this definition, two event mentions can be corefer-
ent even if their time and location arguments are
not coreferent. In our example in Table 1, ev1 and
ev2 are coreferent in KBP because they both refer
to the same event of Cipriani leaving the prison.
However, they are not coreferent in ACE because
their Origin arguments are not coreferent (one Ori-
gin argument involves a prison in Ensisheim while
the other involves the city Ensisheim).

2.3 Corpora

Given our focus on the KBP 2016 Event Nugget
Detection and Coreference task, we employ the
English and Chinese corpora used in this task for
evaluation, referring to these corpora as the KBP
2016 English and Chinese corpora for brevity.
There are no official training sets: the task orga-
nizers simply made available a number of event
coreference-annotated corpora for training. For
English, we use LDC2015E29, E68, E73, and E94
for training. These corpora are composed of two
types of documents, newswire documents and dis-
cussion forum documents. Together they contain
648 documents with 18739 event mentions dis-
tributed over 9955 event coreference chains. For
Chinese, we use LDC2015E78, E105, and E112
for training. These corpora are composed of dis-
cussion forum documents only. Together they con-
tain 383 documents with 4870 event mentions dis-
tributed over 3614 event coreference chains.

The test set for English consists of 169
newswire and discussion forum documents with
4155 event mentions distributed over 3191 event
coreference chains. The test set for Chinese con-
sists of 167 newswire and discussion forum docu-
ments with 2518 event mentions distributed over
1912 event coreference chains. Note that these
test sets contain only annotations for event triggers
and event coreference (i.e., there are no event ar-
gument annotations). While some of the training
sets additionally contain event argument annota-
tions, we do not make use of event argument an-
notations in model training to ensure a fairer com-
parison to the teams participating in the KBP 2016
Event Nugget Detection and Coreference task.

3 Model

3.1 Overview
Our model, which is a structured conditional ran-
dom field, operates at the document level. Specif-
ically, given a test document, we first extract from
it (1) all single-word nouns and verbs and (2) all
words and phrases that have appeared at least once
as a trigger in the training data. We treat each of
these extracted words and phrases as a candidate
event mention.3 The goal of the model is to make
joint predictions for the candidate event mentions
in a document. Three predictions will be made for
each candidate event mention that correspond to
the three tasks in the model: its trigger subtype, its
anaphoricity, and its antecedent.

Given this formulation, we define three types of
output variables:

• Event subtype variables t = (t1, . . . , tn). Each
ti takes a value in the set of 18 event subtypes
defined in KBP 2016 or NONE, which indi-
cates that the event mention is not a trigger.

• Anaphoricity variables a = (a1, . . . , an).
Each ai is either ANAPHORIC or NOT

ANAPHORIC.
• Coreference variables c = (c1, . . . , cn), where

ci ∈ {1, . . . , i − 1, NEW}. In other words,
the value of each ci is the id of its antecedent,
which can be one of the preceding event men-
tions or NEW (if the event mention underly-
ing ci starts a new cluster).

Each candidate event mention is associated with
exactly one coreference variable, one event sub-
type variable, and one anaphoricity variable. Our
model induces the following log-linear probability
distribution over these variables:

p(t,a, c|x; Θ) ∝ exp(
∑

i

θifi(t,a, c,x))

3According to the KBP annotation guidelines, each word
may trigger multiple event mentions (e.g., murder can trig-
ger two event mentions with subtypes Life.Die and Con-
flict.Attack). Hence, our treating each extracted word as a
candidate event mention effectively prevents a word from
triggering multiple event mentions. Rather than complicate
model design by relaxing this simplifying assumption, we
present an alternative, though partial, solution to this prob-
lem wherein we allow each event mention to be associated
with multiple event subtypes. See the Appendix for details.

92

Figure 1: Unary factors for the three tasks, the
variables they are connected to, and the possible
values of the variables. Unary factors encode task-

specific features. Each factor is connected to the correspond-

ing output node. The features associated with a factor are

used to predict the value of the output node it is connected to

when a model is run independently of other models.

where θi ∈ Θ is the weight associated with feature
function fi and x is the input document.

3.2 Features
Given that our model is a structured conditional
random field, the features can be divided into two
types: (1) task-specific features, and (2) cross-
task features, which capture the interactions be-
tween a pair of tasks. We express these two types
of features in factor graph notation. The task-
specific features are encoded in unary factors, each
of which is connected to the corresponding vari-
able (Figure 1). The cross-task features are en-
coded in binary or ternary factors, each of which
couples the output variables from two tasks (Fig-
ure 2). Next, we describe these two types of fea-
tures. Each feature is used to train models for both
English and Chinese unless otherwise stated.

3.2.1 Task-Specific Features
We begin by describing the task-specific features,
which are encoded in unary factors, as well as each
of the three independent models.

3.2.1.1 Trigger Detection
When applied in isolation, our trigger detection
model returns a distribution over possible subtypes
given a candidate trigger. Each candidate trigger t
is represented using t’s word, t’s lemma, word bi-
grams formed with a window size of three from
t, as well as feature conjunctions created by pair-
ing t’s lemma with each of the following features:

Figure 2: Binary and ternary factors. These higher-

order factors capture cross-task interactions. The binary

anaphoricity and trigger factors encourage anaphoric men-

tions to be triggers. The binary anaphoricity and coreference

factors encourage non-anaphoric mentions to start a NEW

coreference cluster. The ternary trigger and coreference fac-
tors encourage coreferent mentions to be triggers.

the head word of the entity syntactically closest to
t, the head word of the entity textually closest to
t, the entity type of the entity that is syntactically
closest to t, and the entity type of the entity that is
textually closest to t.4 In addition, for event men-
tions with verb triggers, we use the head words and
the entity types of their subjects and objects as fea-
tures, where the subjects and objects are extracted
from the dependency parse trees obtained using
Stanford CoreNLP (Manning et al., 2014). For
event mentions with noun triggers, we create the
same features that we did for verb triggers, except
that we replace the subjects and verbs with heuris-
tically extracted agents and patients. Finally, for
the Chinese trigger detector, we additionally cre-
ate two features from each character in t, one en-
coding the character itself and the other encoding
the entry number of the corresponding character in
a Chinese synonym dictionary.5

3.2.1.2 Event Coreference
We employ a mention-ranking model for event
coreference that selects the most probable an-
tecedent for a mention to be resolved (or NEW

if the mention is non-anaphoric) from its set of
candidate antecedents. When applied in isola-
tion, the model is trained to maximize the condi-

4We train a CRF-based entity extraction model for jointly
identifying the entity mentions and their types. Details can
be found in Lu et al. (2016).

5The dictionary is available from http://ir.hit.edu.cn/. An
entry number in this dictionary conceptually resembles a
synset id in WordNet (Fellbaum, 1998).

93

tional likelihood of collectively resolving the men-
tions to their correct antecedents in the training
texts (Durrett and Klein, 2013). Below we de-
scribe the features used to represent the candidate
antecedents for the mention to be resolved, mj .
Features representing the NULL candidate an-
tecedent: Besides mj’s word and mj’s lemma,
we employ feature conjunctions given their useful-
ness in entity coreference (Fernandes et al., 2014).
Specifically, we create a conjunction between
mj’s lemma and the number of sentences preced-
ing mj , as well as a conjunction between mj’s
lemma and the number of mentions preceding mj

in the document.
Features representing a non-NULL candidate
antecedent, mi: mi’s word, mi’s lemma,
whether mi and mj have the same lemma, and fea-
ture conjunctions including: (1) mi’s word paired
with mj’s word, (2) mi’s lemma paired with mj’s
lemma, (3) the sentence distance between mi and
mj paired with mi’s lemma and mj’s lemma, (4)
the mention distance between mi and mj paired
with mi’s lemma and mj’s lemma, (5) a quadru-
ple consisting of mi and mj’s subjects and their
lemmas, and (6) a quadruple consisting of mi and
mj’s objects and their lemmas.

3.2.1.3 Anaphoricity Determination
When used in isolation, the anaphoricity model re-
turns the probability that the given event mention
is anaphoric. To train the model, we represent each
event mention mj using the following features: (1)
the head word of each candidate antecedent paired
with mj’s word, (2) whether at least one candi-
date antecedent has the same lemma as that of mj ,
and (3) the probability that mj is anaphoric in the
training data (if mj never appears in the training
data, this probability is set to 0.5).

3.2.2 Cross-Task Interaction Features
Cross-task interaction features are associated with
the binary and ternary factors.

3.2.2.1 Trigger Detection and Anaphoricity
We fire features that conjoin each candidate event
mention’s event subtype, the lemma of its trigger
and its anaphoricity.

3.2.2.2 Trigger Detection and Coreference
We define our joint coreference and trigger detec-
tion factors such that the features defined on sub-
type variables ti and tj are fired only if current
mention mj is coreferent with preceding mention

mi. These features are: (1) the pair of mi and
mj’s subtypes, (2) the pair of mj’s subtype and
mi’s word, and (3) the pair of mi’s subtype and
mj’s word.

3.2.2.3 Coreference and Anaphoricity
We fire a feature that conjoins event mention mj’s
anaphoricity and whether or not a non-NULL an-
tecedent is selected for mj .

3.3 Training

We learn the model parameters Θ from a set of
d training documents, where document i contains
content xi, gold triggers t∗

i and gold event coref-
erence partition C∗

i . Before learning, there are a
couple of issues we need to address.

First, we need to derive gold anaphoricity la-
bels a∗

i from C∗
i . This is straightforward: the

first mention of each coreference chain is NOT

ANAPHORIC, whereas the rest are ANAPHORIC.
Second, we employ gold event mentions for

model training, but training models only on gold
mentions is not sufficient: for instance, a trigger
detector trained solely on gold mentions will not
be able to classify a candidate event mention as
NONE during testing. To address this issue, we
additionally train the models on candidate event
mentions corresponding to non-triggers. We cre-
ate these candidate event mentions as follows. For
each word w that appears as a true trigger at least
once in the training data, we create a candidate
event mention from each occurrence of w in the
training data that is not annotated as a true trigger.

Third, since our model produces event corefer-
ence output in the form of an antecedent vector
(with one antecedent per event mention), it needs
to be trained on antecedent vectors. However,
since the coreference annotation for each docu-
ment i is provided in the form of a clustering C∗

i ,
we follow previous work on entity coreference res-
olution (Durrett and Klein, 2013): we sum over
all antecedent structures A(C∗

i) that are consis-
tent with C∗

i (i.e., the first mention of a cluster has
antecedent NEW, whereas each of the subsequent
mentions can select any of the preceding mentions
in the same cluster as its antecedent).

Next, we learn the model parameters to max-
imize the following conditional likelihood of the
training data with L1 regularization:

L(Θ) =

d∑

i=1

log
∑

c∗∈A(C∗
i)

p′(t∗
i ,a

∗
i , c

∗|xi; Θ)+λ‖Θ‖1

94

In this objective, p′ is obtained by augment-
ing the distribution p (defined in Section 3.1) with
task-specific parameterized loss functions:

p′(t,a, c|xi; Θ) ∝ p(t,a, c|xi; Θ) exp[αtlt(t, t
∗)

+ αala(a,a∗) + αclc(c, C
∗)]

where lt, la and lc are task-specific loss functions,
and αt, αa and αc are the associated weight pa-
rameters that specify the relative importance of the
three tasks in the objective function.

Softmax-margin, the technique of integrating
task-specific loss functions into the objective func-
tion, was introduced by Gimpel and Smith (2010)
and subsequently used by Durrett and Klein
(2013, 2014). By encoding task-specific knowl-
edge, these loss functions can help train a model
that places less probability mass on less desirable
output configurations.

Our loss function for event coreference, lc, is
motivated by the one Durrett and Klein (2013) de-
veloped for entity coreference. It is a weighted
sum of the counts of three error types:

lc(c, C
∗) = αc,FAFA(c, C∗)+αc,FNFN(c, C∗)

+ αc,WLWL(c, C∗)

where FA(c, C∗) is the number of non-anaphoric
mentions misclassified as anaphoric, FN(c, C∗)
is the number of anaphoric mentions misclassified
as non-anaphoric, and WL(c, C∗) is the number
of incorrectly resolved anaphoric mentions.

Our loss function for trigger detection, lt, is pa-
rameterized in a similar way, having three param-
eters associated with three error types: αt,FT is
associated with the number of non-triggers mis-
classified as triggers, αt,FN is associated with the
number of triggers misclassified as non-triggers,
and αt,WL is associated with the number of trig-
gers labeled with the wrong subtype.

Finally, our loss function for anaphoricity deter-
mination, la, is also similarly parameterized, hav-
ing two parameters: αa,FA and αa,FN are asso-
ciated with the number of false anaphors and the
number of false non-anaphors, respectively.

Following Durrett and Klein (2014), we use
AdaGrad (Duchi et al., 2011) to optimize our ob-
jective with λ = 0.001 in our experiments.

3.4 Inference

Inference, which is performed during training and
decoding, involves computing the marginals for a

variable or a set of variables to which a factor con-
nects. For efficiency, we perform approximate in-
ference using belief propagation rather than exact
inference. Given that convergence can typically
be reached within five iterations of belief propaga-
tion, we employ five iterations in all experiments.

Performing inference using belief propagation
on the full factor graph defined in Section 3.1 can
still be computationally expensive, however. One
reason is that the number of ternary factors grows
quadratically with the number of event mentions
in a document. To improve scalability, we restrict
the domains of the coreference variables. Rather
than allow the domain of coreference variable cj

to be of size j, we allow a preceding mention mi to
be a candidate antecedent of mention mj if (1) the
sentence distance between the two mentions is less
than an empirically determined threshold and (2)
either they are coreferent at least once in the train-
ing data or their head words have the same lemma.
Doing so effectively enables us to prune the un-
likely candidate antecedents for each event men-
tion. As Durrett and Klein (2014) point out, such
pruning has the additional benefit of reducing “the
memory footprint and time needed to build a fac-
tor graph”, as we do not need to create any factor
between mi and mj and its associated features if
mi is pruned. To further reduce the memory foot-
print, we additionally restrict the domains of the
event subtype variables. Given a candidate event
mention created from word w, we allow the do-
main of its subtype variable to include only NONE

as well as those subtypes that w is labeled with at
least once in the training data.

For decoding, we employ minimum Bayes risk,
which computes the marginals of each variable
w.r.t. the joint model and derives the most prob-
able assignment to each variable.

4 Evaluation

4.1 Experimental Setup
We perform training and evaluation on the KBP
2016 English and Chinese corpora. For English,
we train models on 509 of the training documents,
tune parameters on 139 training documents, and
report results on the official KBP 2016 English test
set.6 For Chinese, we train models on 302 of the
training documents, tune parameters on 81 train-
ing documents, and report results on the official

6The parameters to be tuned are the α’s multiplying the
loss functions and those inside the loss functions.

95

English
MUC B3 CEAFe BLANC AVG-F Trigger Anaphoricity

KBP2016 26.37 37.49 34.21 22.25 30.08 46.99 −
INDEP. 22.71 40.72 39.00 22.71 31.28 48.82 27.35
JOINT 27.41 40.90 39.00 25.00 33.08 49.30 31.94

∆ over INDEP. +4.70 +0.18 0.00 +2.29 +1.80 +0.48 +4.59
Chinese

MUC B3 CEAFe BLANC AVG-F Trigger Anaphoricity
KBP2016 24.27 32.83 30.82 17.80 26.43 40.01 −

INDEP. 22.68 32.97 29.96 17.74 25.84 39.82 19.31
JOINT 27.94 33.01 29.96 20.24 27.79 40.53 23.33

∆ over INDEP. +5.26 +0.04 0.00 +2.50 +1.95 +0.71 +4.02

Table 2: Results of all three tasks on the KBP 2016 evaluation sets. The KBP2016 results are those achieved

by the best-performing coreference resolver in the official KBP 2016 evaluation. ∆ is the performance difference between the

JOINT model and the corresponding INDEP. model. All results are expressed in terms of F-score.

KBP 2016 Chinese test set.
Results of event coreference and trigger de-

tection are obtained using version 1.7.2 of the
official scorer provided by the KBP 2016 or-
ganizers. To evaluate event coreference per-
formance, the scorer employs four scoring
measures, namely MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), CEAFe (Luo,
2005) and BLANC (Recasens and Hovy, 2011), as
well as the unweighted average of their F-scores
(AVG-F). The scorer reports event mention detec-
tion performance in terms of F-score, consider-
ing a mention correctly detected if it has an ex-
act match with a gold mention in terms of bound-
ary, event type, and event subtype. In addition,
we report anaphoricity determination performance
in terms of the F-score computed over anaphoric
mentions, counting an extracted anaphoric men-
tion as a true positive if it has an exact match with
a gold anaphoric mention in terms of boundary.

4.2 Results and Discussion

Results are shown in Table 2 where performance
on all three tasks (event coreference, trigger detec-
tion, and anaphoricity determination) is expressed
in terms of F-score. The top half of the table shows
the results on the English evaluation set. Specif-
ically, row 1 shows the performance of the best
event coreference system participating in KBP
2016 (Lu and Ng, 2016). This system adopts a
pipeline architecture. It first uses an ensemble of
one-nearest-neighbor classifiers for trigger detec-
tion. Using the extracted triggers, it then applies
a pipeline of three sieves, each of which is a one-

nearest-neighbor classifier, for event coreference.
As we can see, this system achieves an AVG-F
of 30.08 for event coreference and an F-score of
46.99 for trigger detection.

Row 2 shows the performance of the indepen-
dent models, each of which is trained indepen-
dently of the other models. Specifically, each in-
dependent model is trained using only the unary
factors associated with it. As we can see, the in-
dependent models outperform the top KBP 2016
system by 1.2 points in AVG-F for event corefer-
ence and 1.83 points for trigger detection.

Results of our joint model are shown in row 3.
The absolute performance differences between the
joint model and the independent models are shown
in row 4. As we can see, the joint model outper-
forms the independent models for all three tasks:
by 1.80 points for event coreference, 0.48 points
for trigger detection and 4.59 points for anaphoric-
ity determination. Most encouragingly, the joint
model outperforms the top KBP 2016 system for
both event coreference and trigger detection. For
event coreference, it outperforms the top KBP sys-
tem w.r.t. all scoring metrics, yielding an improve-
ment of 3 points in AVG-F. For trigger detection,
it outperforms the top KBP system by 2.31 points.

The bottom half of Table 2 shows the results on
the Chinese evaluation set. The top KBP 2016
event coreference system on Chinese is also the
Lu and Ng (2016) system. While the top KBP sys-
tem outperforms the independent models for both
tasks (by 0.59 points in AVG-F for event coref-
erence and 0.19 points for trigger detection), our
joint model outperforms the independent models

96

English Chinese
Coref Trigger Anaph Coref Trigger Anaph

INDEP. 31.28 48.82 27.35 25.84 39.82 19.31
INDEP.+CorefTrigger +0.39 +0.42 −0.05 +0.95 +0.56 −0.37
INDEP.+CorefAnaph +0.40 −0.08 +3.45 +0.37 +0.04 −0.11

INDEP.+TriggerAnaph +0.11 +0.38 +1.35 +0.14 +0.52 +0.02
JOINT−CorefTrigger +0.56 −0.06 +4.41 +0.19 +0.35 +3.34
JOINT−CorefAnaph +0.63 +0.66 +1.46 +1.50 +0.88 +0.28

JOINT−TriggerAnaph +1.89 +0.50 +4.01 +1.65 +0.50 +1.79
JOINT +1.80 +0.48 +4.59 +1.95 +0.71 +4.02

Table 3: Results of model ablations on the KBP 2016 evaluation sets. Each row of ablation results is obtained

by either adding one type of interaction factor to the INDEP. model or deleting one type of interaction factor from the JOINT

model. For each column, the results are expressed in terms of changes to the INDEP. model’s F-score shown in row 1.

for all three tasks: by 1.95 points for event coref-
erence, 4.02 points for anaphoricity determination,
and 0.71 points for trigger detection. Like its En-
glish counterpart, our Chinese joint model outper-
forms the top KBP system for both event corefer-
ence and trigger detection. For event coreference,
it outperforms the top KBP system w.r.t. all but the
CEAFe metric, yielding an absolute improvement
of 1.36 points in AVG-F. For trigger detection, it
outperforms the top KBP system by 0.52 points.

For both datasets, the joint model’s superior per-
formance to the independent coreference model
stems primarily from considerable improvements
in MUC F-score. As MUC is a link-based mea-
sure, these results provide suggestive evidence that
joint modeling has enabled more event corefer-
ence links to be discovered.

4.3 Model Ablations

To evaluate the importance of each of the three
types of joint factors in the joint model, we per-
form ablation experiments.7 Table 3 shows the re-
sults on the English and Chinese datasets when we
add each type of joint factors to the independent
model and remove each type of joint factors from
the full joint model. The results of each task are
expressed in terms of changes to the correspond-
ing independent model’s F-score.

7Chen and Ng (2013) also performed ablation on their
ACE-style Chinese event coreference resolver. However,
given the differences in the tasks involved (e.g., they did not
model event anaphoricity, but included tasks such as event ar-
gument extraction and role classification, entity coreference,
and event mention attribute value computation) and the ab-
lation setup (e.g., they ablated individual tasks/components
in their pipeline-based system in an incremental fashion,
whereas we ablate interaction factors rather than tasks), a di-
rect comparison of their observations and ours is difficult.

Coref-Trigger interactions. Among the three
types of factors, this one contributes the most to
coreference performance, regardless of whether it
is applied in isolation or in combination with the
other two types of factors to the independent coref-
erence model. In addition, it is the most effec-
tive type of factor for improving trigger detec-
tion. When applied in combination, it also im-
proves anaphoricity determination, although less
effectively than the other two types of factors.

Coref-Anaphoricity interactions. When ap-
plied in isolation to the independent models, this
type of factor improves coreference resolution but
has a mixed impact on anaphoricity determina-
tion. When applied in combination with other
types of factors, it improves both tasks, partic-
ularly anaphoricity determination. Its impact on
trigger detection, however, is generally negative.

Trigger-Anaphoricity interactions. When ap-
plied in isolation to the independent models, this
type of factor improves both trigger detection
and anaphoricity determination. When applied in
combination with other types of factors, it still im-
proves anaphoricity determination (particularly on
Chinese), but has a mixed effect on trigger detec-
tion. Among the three types of factors, it has the
least impact on coreference resolution.

4.4 Error Analysis

Next, we conduct an analysis of the major sources
of error made by our joint coreference model.

4.4.1 Two Major Types of Precision Error
Erroneous and mistyped triggers. Our trigger
model tends to assign the same subtype to event
mentions triggered by the same word. As a result,
it often assigns the wrong subtype to triggers that

97

possess different subtypes in different contexts.
For the same reason, words that are only some-
times used as triggers are often wrongly posited
as triggers when they are not. These two types of
triggers have in turn led to the establishment of in-
correct coreference links.8

Failure to extract arguments. In the absence of
an annotated corpus for training an argument clas-
sifier, we exploit dependency relations for argu-
ment extraction. Doing so proves inadequate, par-
ticularly for noun triggers, owing to the absence
of dependency relations that can be used to reli-
ably extract their arguments. Moreover, using de-
pendency relations does not allow the extraction of
arguments that do not appear in the same sentence
as their trigger. Since the presence of incompat-
ible arguments is an important indicator of non-
coreference, our model’s failure to extract argu-
ments has resulted in incorrect coreference links.

4.4.2 Three Major Types of Recall Error
Missing triggers. Our trigger model fails to
identify trigger words that are unseen or rarely-
occurring in the training data. As a result, many
coreference links cannot be established.
Lack of entity coreference information. Entity
coreference information is useful for event coref-
erence because the corresponding arguments of
two event mentions are typically coreferent. Since
our model does not exploit entity coreference in-
formation, it treats two lexically different event ar-
guments as non-coreferent/unrelated. This in turn
weakens its ability to determine whether two event
mentions are coreferent. This issue is particularly
serious in discussion forum documents, where it
is not uncommon to see pronouns serve as sub-
jects and objects of event mentions. The situation
is further aggravated in Chinese documents, where
zero pronouns are prevalent.
Lack of contextual understanding. Our model
only extracts features from the sentence in which
an event mention appears. However, additional
contextual information present in neighboring sen-
tences may be needed for correct coreference res-
olution. This is particularly true in discussion fo-
rum documents, where the same event may be de-
scribed differently by different people. For exam-

8In our joint model, mentions that are posited as corefer-
ent are encouraged to have the same subtype. While it can
potentially fix the errors involving coreferent mentions that
have different subtypes, it cannot fix the errors in which the
two mentions involved have the same erroneous subtype.

ple, when describing the fact that Tim Cook will
attend Apple’s Istanbul store opening, one person
said “Cook is expected to return to Turkey for
the store opening”, and another person described
this event as “Tim travels abroad YET AGAIN to
be feted by the not-so-high-and-mighty”. It is by
no means easy to determine that return and travel
trigger two coreferent mentions in these sentences.

5 Related Work

Existing event coreference resolvers have
been evaluated on different corpora, such
as MUC (e.g., Humphreys et al. (1997)),
ACE (e.g., Ahn (2006), Chen and Ji (2009),
McConky et al. (2012), Sangeetha and Arock
(2012), Chen and Ng (2015, 2016), Krause et al.
(2016)), OntoNotes (e.g., Chen et al. (2011)),
the Intelligence Community corpus (e.g.,
Cybulska and Vossen (2012), Araki et al. (2014),
Liu et al. (2014)), the ECB corpus (e.g., Lee et al.
(2012), Bejan and Harabagiu (2014)) and its
extension ECB+ (e.g., Yang et al. (2015)), and
ProcessBank (e.g., Araki and Mitamura (2015)).
The newest event coreference corpora are the ones
used in the KBP 2015 and 2016 Event Nugget
Detection and Coreference shared tasks, in which
the best performers in 2015 and 2016 are RPI’s
system (Hong et al., 2015) and UTD’s system
(Lu and Ng, 2016), respectively. The KBP 2015
corpus has recently been used to evaluate Peng et
al.’s (2016) minimally supervised approach and
Lu et al.’s (2016) joint inference approach to event
coreference. With the rarest exceptions (e.g.,
Lu et al. (2016)), existing resolvers have adopted
a pipeline architecture in which trigger detection
is performed prior to coreference resolution.

6 Conclusion

We proposed a joint model of event coreference
resolution, trigger detection, and event anaphoric-
ity determination. The model is novel in its choice
of tasks and the cross-task interaction features.
When evaluated on the KBP 2016 English and
Chinese corpora, our model not only outperforms
the independent models but also achieves the best
results to date on these corpora.

Acknowledgments

We thank the three anonymous reviewers for their
detailed comments. This work was supported in
part by NSF Grants IIS-1219142 and IIS-1528037.

98

References
David Ahn. 2006. The stages of event extraction.

In Proceedings of the COLING/ACL Workshop on
Annotating and Reasoning about Time and Events.
pages 1–8.

Jun Araki, Zhengzhong Liu, Eduard Hovy, and Teruko
Mitamura. 2014. Detecting subevent structure for
event coreference resolution. In Proceedings of the
Ninth International Conference on Language Re-
sources and Evaluation, pages 4553–4558.

Jun Araki and Teruko Mitamura. 2015. Joint event trig-
ger identification and event coreference resolution
with structured perceptron. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 2074–2080.

Amit Bagga and Breck Baldwin. 1998. Algorithms
for scoring coreference chains. In Proceedings of
the Linguistic Coreference Workshop at The First In-
ternational Conference on Language Resources and
Evaluation, pages 563–566.

Cosmin Adrian Bejan and Sanda Harabagiu. 2014. Un-
supervised event coreference resolution. Computa-
tional Linguistics 40(2):311–347.

Bin Chen, Jian Su, Sinno Jialin Pan, and Chew Lim
Tan. 2011. A unified event coreference resolution by
integrating multiple resolvers. In Proceedings of the
Fifth International Conference on Natural Language
Processing. pages 102–110.

Chen Chen and Vincent Ng. 2013. Chinese event
coreference resolution: Understanding the state of
the art. In Proceedings of the 6th International Joint
Conference on Natural Language Processing. pages
822–828.

Chen Chen and Vincent Ng. 2015. Chinese event
coreference resolution: An unsupervised probabilis-
tic model rivaling supervised resolvers. In Proceed-
ings of Human Language Technologies: The 2015
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics.
pages 1097–1107.

Chen Chen and Vincent Ng. 2016. Joint inference over
a lightly supervised information extraction pipeline:
Towards event coreference resolution for resource-
scarce languages. In Proceedings of the 30th AAAI
Conference on Artificial Intelligence. pages 2913–
2920.

Zheng Chen and Heng Ji. 2009. Graph-based event
coreference resolution. In Proceedings of the 2009
Workshop on Graph-based Methods for Natural
Language Processing (TextGraphs-4), pages 54–57.

Agata Cybulska and Piek Vossen. 2012. Using se-
mantic relations to solve event coreference in text.
In Proceedings of the LREC Workshop on Semantic
Relations-II Enhancing Resources and Applications,
pages 60–67.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12:2121–2159.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In Proceed-
ings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pages 1971–1982.

Greg Durrett and Dan Klein. 2014. A joint model for
entity analysis: Coreference, typing, and linking.
Transactions of the Association for Computational
Linguistics 2:477–490.

Christiane Fellbaum. 1998. WordNet: An Electronical
Lexical Database. MIT Press, Cambridge, MA.

Eraldo Rezende Fernandes, Cı́cero Nogueira dos San-
tos, and Ruy Luiz Milidiu. 2014. Latent trees for
coreference resolution. Computational Linguistics
40(4):801–835.

Kevin Gimpel and Noah A Smith. 2010. Softmax-
margin CRFs: Training log-linear models with cost
functions. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 733–736.

Yu Hong, Di Lu, Dian Yu, Xiaoman Pan, Xiaobin
Wang, Yadong Chen, Lifu Huang, and Heng Ji.
2015. RPI BLENDER TAC-KBP2015 system de-
scription. In Proceedings of the Eighth Text Analysis
Conference.

Kevin Humphreys, Robert Gaizauskas, and Saliha Az-
zam. 1997. Event coreference for information ex-
traction. In Proceedings of the ACL/EACL Work-
shop on Operational Factors in Practical, Robust
Anaphora Resolution for Unrestricted Texts, pages
75–81.

Sebastian Krause, Feiyu Xu, Hans Uszkoreit, and Dirk
Weissenborn. 2016. Event linking with sentential
features from convolutional neural networks. In
Proceedings of the 20th SIGNLL Conference on
Computational Natural Language Learning, pages
239–249.

Heeyoung Lee, Marta Recasens, Angel Chang, Mihai
Surdeanu, and Dan Jurafsky. 2012. Joint entity and
event coreference resolution across documents. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning, pages
489–500.

Zhengzhong Liu, Jun Araki, Eduard Hovy, and Teruko
Mitamura. 2014. Supervised within-document event
coreference using information propagation. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation, pages 4539–
4544.

99

Zhengzhong Liu, Jun Araki, Teruko Mitamura, and Ed-
uard Hovy. 2016. CMU-LTI at KBP 2016 event
nugget track. In Proceedings of the Ninth Text Anal-
ysis Conference.

Jing Lu and Vincent Ng. 2016. UTD’s event nugget
detection and coreference system at KBP 2016. In
Proceedings of the Ninth Text Analysis Conference.

Jing Lu, Deepak Venugopal, Vibhav Gogate, and Vin-
cent Ng. 2016. Joint inference for event corefer-
ence resolution. In Proceedings of the 26th Inter-
national Conference on Computational Linguistics,
pages 3264–3275.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Process-
ing, pages 25–32.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55–60.

Katie McConky, Rakesh Nagi, Moises Sudit, and
William Hughes. 2012. Improving event co-
reference by context extraction and dynamic feature
weighting. In Proceedings of the 2012 IEEE Inter-
national Multi-Disciplinary Conference on Cogni-
tive Methods in Situation Awareness and Decision
Support, pages 38–43.

Teruko Mitamura, Zhengzhong Liu, and Eduard Hovy.
2016. Overview of TAC-KBP 2016 event nugget
track. In Proceedings of the Ninth Text Analysis
Conference.

Vincent Ng. 2010. Supervised noun phrase coreference
research: The first fifteen years. In Proceedings of
the 48th Annual Meeting of the Association for Com-
putational Linguistics. pages 1396–1411.

Thien Huu Nguyen, Adam Meyers, and Ralph Grish-
man. 2016. New York University 2016 system for
KBP event nugget: A deep learning approach. In
Proceedings of Ninth Text Analysis Conference.

Haoruo Peng, Yangqiu Song, and Dan Roth. 2016.
Event detection and co-reference with minimal su-
pervision. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing. pages 392–402.

Marta Recasens and Eduard Hovy. 2011. BLANC:
Implementing the Rand Index for coreference eval-
uation. Natural Language Engineering 17(4):485–
510.

S. Sangeetha and Michael Arock. 2012. Event coref-
erence resolution using mincut based graph clus-
tering. In Proceedings of the Fourth International
Workshop on Computer Networks & Communica-
tions pages 253–260.

Zhiyi Song, Ann Bies, Stephanie Strassel, Tom Riese,
Justin Mott, Joe Ellis, Jonathan Wright, Seth Kulick,
Neville Ryant, and Xiaoyi Ma. 2015. From light
to rich ERE: Annotation of entities, relations, and
events. In Proceedings of the 3rd Workshop on
EVENTS, pages 89–98.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the Sixth Message Understanding Confer-
ence, pages 45–52.

Sam Wiseman, Alexander M. Rush, Stuart Shieber, and
Jason Weston. 2015. Learning anaphoricity and an-
tecedent ranking features for coreference resolution.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1416–1426.

Bishan Yang, Claire Cardie, and Peter Frazier. 2015.
A hierarchical distance-dependent Bayesian model
for event coreference resolution. Transactions of the
Association for Computational Linguistics 3:517–
528.

Appendix: Handling Words that Trigger
Multiple Event Mentions

In KBP, a word can trigger multiple event men-
tions. However, since we create exactly one can-
didate event mention from each extracted word in
each test document, our model effectively prevents
a word from triggering multiple event mentions.
This poses a problem: each word cannot be as-
sociated with more than one event subtype. This
appendix describes how we (partially) address this
issue that involves allowing each event mention to
be associated with multiple event subtypes.

To address this problem, we preprocess the gold
trigger annotations in the training data as follows.
First, for each word triggering multiple event men-
tions (with different event subtypes), we merge
their event mentions into one event mention hav-
ing the combined subtype. In principle, we can
add each of these combined subtypes into our
event subtype inventory and allow our model to
make predictions using them. However, to avoid
over-complicating the prediction task (by having
a large subtype inventory), we only add the three
most frequently occurring combined subtypes in
the training data to the inventory. Merged men-
tions whose combined subtype is not among the
most frequent three will be unmerged in order to
recover the original mentions so that the model can
still be trained on them.

100

To train our joint model, however, the trigger
annotations and the event coreference annotations
in the training data must be consistent. Since we
modified the trigger annotations (by merging event
mentions and allowing combined subtypes), we
make two modifications to the event coreference
annotations to ensure consistency between the two
sets of annotations. First, let C1 and C2 be two
event coreference chains in a training document
such that the set of words triggering the event
mentions in C1 (with subtype t1) is the same as
that triggering the event mentions in C2 (with sub-
type t2). If each of the event mentions in C1 was
merged with the corresponding event mention in
C2 during the aforementioned preprocessing of the
trigger annotations (because combining t1 and t2
results in one of the three most frequent combined
subtypes), then we delete one of the two corefer-
ence chains, and assign the combined subtype to
the remaining chain. Finally, we remove any re-
maining event mentions that were merged during
the preprocessing of trigger annotations from their
respective coreference chains and create a single-
ton cluster for each of the merged mentions.

101

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 102–111
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1010

Generating and Exploiting Large-scale Pseudo Training Data for Zero
Pronoun Resolution

Ting Liu†, Yiming Cui‡, Qingyu Yin†, Weinan Zhang†, Shijin Wang‡ and Guoping Hu‡
†Research Center for Social Computing and Information Retrieval,

Harbin Institute of Technology, Harbin, China
‡iFLYTEK Research, Beijing, China

†{tliu,qyyin,wnzhang}@ir.hit.edu.cn
‡{ymcui,sjwang3,gphu}@iflytek.com

Abstract

Most existing approaches for zero pronoun
resolution are heavily relying on annotated
data, which is often released by shared
task organizers. Therefore, the lack of
annotated data becomes a major obstacle
in the progress of zero pronoun resolution
task. Also, it is expensive to spend man-
power on labeling the data for better per-
formance. To alleviate the problem above,
in this paper, we propose a simple but
novel approach to automatically generate
large-scale pseudo training data for zero
pronoun resolution. Furthermore, we suc-
cessfully transfer the cloze-style reading
comprehension neural network model into
zero pronoun resolution task and propose
a two-step training mechanism to over-
come the gap between the pseudo training
data and the real one. Experimental re-
sults show that the proposed approach sig-
nificantly outperforms the state-of-the-art
systems with an absolute improvements of
3.1% F-score on OntoNotes 5.0 data.

1 Introduction

Previous works on zero pronoun (ZP) resolution
mainly focused on the supervised learning ap-
proaches (Han, 2006; Zhao and Ng, 2007; Iida
et al., 2007; Kong and Zhou, 2010; Iida and Poe-
sio, 2011; Chen and Ng, 2013). However, a ma-
jor obstacle for training the supervised learning
models for ZP resolution is the lack of anno-
tated data. An important step is to organize the
shared task on anaphora and coreference resolu-
tion, such as the ACE evaluations, SemEval-2010
shared task on Coreference Resolution in Multiple
Languages (Marta Recasens, 2010) and CoNLL-
2012 shared task on Modeling Multilingual Unre-

stricted Coreference in OntoNotes (Sameer Prad-
han, 2012). Following these shared tasks, the an-
notated evaluation data can be released for the fol-
lowing researches. Despite the success and con-
tributions of these shared tasks, it still faces the
challenge of spending manpower on labeling the
extended data for better training performance and
domain adaptation.

To address the problem above, in this paper, we
propose a simple but novel approach to automati-
cally generate large-scale pseudo training data for
zero pronoun resolution. Inspired by data genera-
tion on cloze-style reading comprehension, we can
treat the zero pronoun resolution task as a special
case of reading comprehension problem. So we
can adopt similar data generation methods of read-
ing comprehension to the zero pronoun resolution
task. For the noun or pronoun in the document,
which has the frequency equal to or greater than 2,
we randomly choose one position where the noun
or pronoun is located on, and replace it with a spe-
cific symbol 〈blank〉. Let query Q and answer
A denote the sentence that contains a 〈blank〉,
and the noun or pronoun which is replaced by
the 〈blank〉, respectively. Thus, a pseudo training
sample can be represented as a triple:

〈D,Q,A〉 (1)

For the zero pronoun resolution task, a 〈blank〉
represents a zero pronoun (ZP) in query Q, and
A indicates the corresponding antecedent of the
ZP. In this way, tremendous pseudo training sam-
ples can be generated from the various documents,
such as news corpus.

Towards the shortcomings of the previous ap-
proaches that are based on feature engineering, we
propose a neural network architecture, which is
an attention-based neural network model, for zero
pronoun resolution. Also we propose a two-step

102

https://doi.org/10.18653/v1/P17-1010

training method, which benefit from both large-
scale pseudo training data and task-specific data,
showing promising performance.

To sum up, the contributions of this paper are
listed as follows.

• To our knowledge, this is the first time that
utilizing reading comprehension neural net-
work model into zero pronoun resolution
task.

• We propose a two-step training approach,
namely pre-training-then-adaptation, which
benefits from both the large-scale automati-
cally generated pseudo training data and task-
specific data.

• Towards the shortcomings of the feature en-
gineering approaches, we first propose an
attention-based neural network model for
zero pronoun resolution.

2 The Proposed Approach

In this section, we will describe our approach in
detail. First, we will describe our method of gen-
erating large-scale pseudo training data for zero
pronoun resolution. Then we will introduce two-
step training approach to alleviate the gaps be-
tween pseudo and real training data. Finally, the
attention-based neural network model as well as
associated unknown words processing techniques
will be described.

2.1 Generating Pseudo Training Data

In order to get large quantities of training data for
neural network model, we propose an approach,
which is inspired by (Hermann et al., 2015), to
automatically generate large-scale pseudo training
data for zero pronoun resolution. However, our ap-
proach is much more simple and general than that
of (Hermann et al., 2015). We will introduce the
details of generating the pseudo training data for
zero pronoun resolution as follows.

First, we collect a large number of documents
that are relevant (or homogenous in some sense)
to the released OntoNote 5.0 data for zero pronoun
resolution task in terms of its domain. In our ex-
periments, we used large-scale news data for train-
ing.

Given a certain document D, which is com-
posed by a set of sentences D = {s1, s2, ..., sn},

we randomly choose an answer wordA in the doc-
ument. Note that, we restrictA to be either a noun
or pronoun, where the part-of-speech is identified
using LTP Toolkit (Che et al., 2010), as well as
the answer word should appear at least twice in
the document. Second, after the answer word A is
chosen, the sentence that contains A is defined as
a queryQ, in which the answer wordA is replaced
by a specific symbol 〈blank〉. In this way, given
the queryQ and documentD, the target of the pre-
diction is to recover the answer A. That is quite
similar to the zero pronoun resolution task. There-
fore, the automatically generated training samples
is called pseudo training data. Figure 1 shows an
example of a pseudo training sample.

In this way, we can generate tremendous triples
of 〈D,Q,A〉 for training neural network, without
making any assumptions on the nature of the orig-
inal corpus.

2.2 Two-step Training

It should be noted that, though we have generated
large-scale pseudo training data for neural network
training, there is still a gap between pseudo train-
ing data and the real zero pronoun resolution task
in terms of the query style. So we should do some
adaptations to our model to deal with the zero pro-
noun resolution problems ideally.

In this paper, we used an effective approach
to deal with the mismatch between pseudo train-
ing data and zero pronoun resolution task-specific
data. Generally speaking, in the first stage, we use
a large amount of the pseudo training data to train
a fundamental model, and choose the best model
according to the validation accuracy. Then we
continue to train from the previous best model us-
ing the zero pronoun resolution task-specific train-
ing data, which is exactly the same domain and
query type as the standard zero pronoun resolution
task data.

The using of the combination of proposed
pseudo training data and task-specific data, i.e.
zero pronoun resolution task data, is far more ef-
fective than using either of them alone. Though
there is a gap between these two data, they share
many similar characteristics to each other as illus-
trated in the previous part, so it is promising to
utilize these two types of data together, which will
compensate to each other.

The two-step training procedure can be con-
cluded as,

103

Document:
1 ||| welcome both of you to the studio to participate in our program ,

欢迎两位呢来演播室参与我们的 节目，
2 ||| it happened that i was going to have lunch with a friend at noon .

正好因为我也和朋友这个，这个中午一起吃饭。
3 ||| after that , i received an sms from 1860 .

然后我就收到 1860 的短信。
4 ||| uh-huh , it was by sms .

嗯，是通过短信 的方式 ，
5 ||| uh-huh , that means , er , you knew about the accident through the source of radio station .

嗯，就是说呃你是通过台里面的一个信息 的渠道知道这儿出了这样的事故。
6 ||| although we live in the west instead of the east part , and it did not affect us that much ,

虽然我们生活在西部不是在东部，对我们影响 不是很大，
7 ||| but i think it is very useful to inform people using sms .

但是呢，我觉得 有这样 一个短信告诉大家呢 是非常有用的啊。
Query:
8 ||| some car owners said that <blank> was very good。

有车主表示，说这 <blank> 非常的好。
Answer:
sms
短信

Figure 1: Example of pseudo training sample for zero pronoun resolution system. (The original data is
in Chinese, we translate this sample into English for clarity)

• Pre-training stage: by using large-scale train-
ing data to train the neural network model,
we can learn richer word embeddings, as well
as relatively reasonable weights in neural net-
works than just training with a small amount
of zero pronoun resolution task training data;

• Adaptation stage: after getting the best model
that is produced in the previous step, we con-
tinue to train the model with task-specific
data, which can force the previous model to
adapt to the new data, without losing much
knowledge that has learned in the previous
stage (such as word embeddings).

As we will see in the experiment section that
the proposed two-step training approach is effec-
tive and brings significant improvements.

2.3 Attention-based Neural Network Model
Our model is primarily an attention-based neu-
ral network model, which is similar to Atten-
tive Reader proposed by (Hermann et al., 2015).
Formally, when given a set of training triple
〈D,Q,A〉, we will construct our network in the
following way.

Firstly, we project one-hot representation of
document D and query Q into a continuous space
with the shared embedding matrix We. Then
we input these embeddings into different bi-
directional RNN to get their contextual represen-
tations respectively. In our model, we used the
bidirectional Gated Recurrent Unit (GRU) as RNN
implementation (Cho et al., 2014).

e(x) =We · x, where x ∈ D,Q (2)

−→
hs =

−−−→
GRU(e(x));

←−
hs =

←−−−
GRU(e(x)) (3)

hs = [
−→
hs;
←−
hs] (4)

For the query representation, instead of concate-
nating the final forward and backward states as its
representations, we directly get an averaged repre-
sentations on all bi-directional RNN slices, which
can be illustrated as

hquery =
1

n

n∑

t=1

hquery(t) (5)

For the document, we place a soft attention over
all words in document (Bahdanau et al., 2014),
which indicate the degree to which part of doc-
ument is attended when filling the blank in the
query sentence. Then we calculate a weighted sum
of all document tokens to get the attended repre-
sentation of document.

m(t) = tanh(W · hdoc(t) + U · hquery) (6)

α(t) =
exp(Ws ·m(t))
n∑
j=1

exp(Ws ·m(j))
(7)

hdoc att = hdoc · α (8)

where variable α(t) is the normalized attention
weight at tth word in document, hdoc is a matrix
that concatenate all hdoc(t) in sequence.

hdoc = concat[hdoc(1), hdoc(2), ..., hdoc(t)] (9)

Then we use attended document representation
and query representation to estimate the final an-
swer, which can be illustrated as follows, where V

104

Bi-GRU Encoder

Σ

d1 d2 d3 d4 q1 q2 q3

Query

Softmax Layer

Concat Layer

AttentionLayer

Answer

Document

Embedding Layer

Figure 2: Architecture of attention-based neural
network model for zero pronoun resolution task.

is the vocabulary,

r = concat[hdoc att, hquery] (10)

P (A|D,Q) ∝ softmax(Wr · r) , s.t. A ∈ V
(11)

Figure 2 shows the proposed neural network ar-
chitecture.

Note that, for zero pronoun resolution task,
antecedents of zero pronouns are always noun
phrases (NPs), while our model generates only one
word (a noun or a pronoun) as the result. To better
adapt our model to zero pronoun resolution task,
we further process the output result in the follow-
ing procedure. First, for a given zero pronoun, we
extract a set of NPs as its candidates utilizing the
same strategy as (Chen and Ng, 2015). Then, we
use our model to generate an answer (one word)
for the zero pronoun. After that, we go through
all the candidates from the nearest to the far-most.
For an NP candidate, if the produced answer is
its head word, we then regard this NP as the an-
tecedent of the given zero pronoun. By doing so,
for a given zero pronoun, we generate an NP as the
prediction of its antecedent.

2.4 Unknown Words Processing

Because of the restriction on both memory occu-
pation and training time, it is usually suggested
to use a shortlist of vocabulary in neural network
training. However, we often replace the out-of-
vocabularies to a unique special token, such as
〈unk〉. But this may place an obstacle in real

world test. When the model predicts the answer
as 〈unk〉, we do not know what is the exact word
it represents in the document, as there may have
many 〈unk〉s in the document.

In this paper, we propose to use a simple but
effective way to handle unknown words issue. The
idea is straightforward, which can be illustrated as
follows.

• Identify all unknown words inside of each
〈D,Q,A〉;

• Instead of replacing all these unknown words
into one unique token 〈unk〉, we make
a hash table to project these unique un-
known words to numbered tokens, such as
〈unk1〉, 〈unk2〉, ..., 〈unkN〉 in terms of its
occurrence order in the document. Note that,
the same words are projected to the same un-
known word tokens, and all these projections
are only valid inside of current sample. For
example, 〈unk1〉 indicate the first unknown
word, say “apple”, in the current sample, but
in another sample the 〈unk1〉 may indicate
the unknown word “orange”. That is, the
unknown word labels are indicating position
features rather than the exact word;

• Insert these unknown marks in the vocabu-
lary. These marks may only take up dozens of
slots, which is negligible to the size of short-
lists (usually 30K ∼ 100K).

(a) The weather today is not as pleasant as the weather of yesterday.

(b) The <unk> today is not as <unk> as the <unk> of yesterday.

(c) The <unk1> today is not as <unk2> as the <unk1> of yesterday.

Figure 3: Example of unknown words processing.
a) original sentence; b) original unknown words
processing method; c) our method

We take one sentence “The weather of today is
not as pleasant as the weather of yesterday.” as
an example to show our unknown word processing
method, which is shown in Figure 3.

If we do not discriminate the unknown words
and assign different unknown words with the same
token 〈unk〉, it would be impossible for us to
know what is the exact word that 〈unk〉 repre-
sents for in the real test. However, when using
our proposed unknown word processing method,
if the model predicts a 〈unkX〉 as the answer,

105

we can simply scan through the original document
and identify its position according to its unknown
word number X and replace the 〈unkX〉 with the
real word. For example, in Figure 3, if we adopt
original unknown words processing method, we
could not know whether the 〈unk〉 is the word
“weather” or “pleasant”. However, when using
our approach, if the model predicts an answer as
〈unk1〉, from the original text, we can know that
〈unk1〉 represents the word “weather”.

3 Experiments

3.1 Data

In our experiments, we choose a selection of
public news data to generate large-scale pseudo
training data for pre-training our neural network
model (pre-training step)1. In the adaptation step,
we used the official dataset OntoNotes Release
5.02 which is provided by CoNLL-2012 shared
task, to carry out our experiments. The CoNLL-
2012 shared task dataset consists of three parts:
a training set, a development set and a test set.
The datasets are made up of 6 different domains,
namely Broadcast News (BN), Newswires (NW),
Broadcast Conversations (BC), Telephone Con-
versations (TC), Web Blogs (WB), and Magazines
(MZ). We closely follow the experimental settings
as (Kong and Zhou, 2010; Chen and Ng, 2014,
2015, 2016), where we treat the training set for
training and the development set for testing, be-
cause only the training and development set are
annotated with ZPs. The statistics of training and
testing data is shown in Table 1 and 2 respectively.

Sentences # Query #

General Train 18.47M 1.81M
Domain Train 122.8K 9.4K
Validation 11,191 2,667

Table 1: Statistics of training data, including
pseudo training data and OntoNotes 5.0 training
data.

3.2 Neural Network Setups

Training details of our neural network models are
listed as follows.

1The news data is available at http://www.sogou.
com/labs/dl/cs.html

2http://catalog.ldc.upenn.edu/
LDC2013T19

Docs Sentences Words AZPs

Test 172 6,083 110K 1,713

Table 2: Statistics of test set (OntoNotes 5.0 de-
velopment data).

• Embedding: We use randomly initialized em-
bedding matrix with uniformed distribution
in the interval [-0.1,0.1], and set units num-
ber as 256. No pre-trained word embeddings
are used.

• Hidden Layer: We use GRU with 256 units,
and initialize the internal matrix by random
orthogonal matrices (Saxe et al., 2013). As
GRU still suffers from the gradient exploding
problem, we set gradient clipping threshold
to 10.

• Vocabulary: As the whole vocabulary is very
large (over 800K), we set a shortlist of 100K
according to the word frequency and un-
known words are mapped to 20 〈unkX〉 us-
ing the proposed method.

• Optimization: We used ADAM update rule
(Kingma and Ba, 2014) with an initial learn-
ing rate of 0.001, and used negative log-
likelihood as the training objective. The
batch size is set to 32.

All models are trained on Tesla K40 GPU. Our
model is implemented with Theano (Theano De-
velopment Team, 2016) and Keras (Chollet, 2015).

3.3 Experimental results
Same to the previous researches that are related
to zero pronoun resolution, we evaluate our sys-
tem performance in terms of F-score (F). We fo-
cus on AZP resolution process, where we assume
that gold AZPs and gold parse trees are given3.
The same experimental setting is utilized in (Chen
and Ng, 2014, 2015, 2016). The overall results are
shown in Table 3, where the performances of each
domain are listed in detail and overall performance
is also shown in the last column.

• Overall Performance
We employ four Chinese ZP resolution baseline
systems on OntoNotes 5.0 dataset. As we can

3All gold information are provided by the CoNLL-2012
shared task dataset

106

NW (84) MZ (162) WB (284) BN (390) BC (510) TC (283) Overall

Kong and Zhou (2010) 34.5 32.7 45.4 51.0 43.5 48.4 44.9
Chen and Ng (2014) 38.1 31.0 50.4 45.9 53.8 54.9 48.7
Chen and Ng (2015) 46.4 39.0 51.8 53.8 49.4 52.7 50.2
Chen and Ng (2016) 48.8 41.5 56.3 55.4 50.8 53.1 52.2

Our Approach† 59.2 51.3 60.5 53.9 55.5 52.9 55.3

Table 3: Experimental result (F-score) on the OntoNotes 5.0 test data. The best results are marked
with bold face. † indicates that our approach is statistical significant over the baselines (using t-test, with
p < 0.05). The number in the brackets indicate the number of AZPs.

see that our model significantly outperforms the
previous state-of-the-art system (Chen and Ng,
2016) by 3.1% in overall F-score, and substan-
tially outperform the other systems by a large mar-
gin. When observing the performances of differ-
ent domains, our approach also gives relatively
consistent improvements among various domains,
except for BN and TC with a slight drop. All these
results approve that our proposed approach is ef-
fective and achieves significant improvements in
AZP resolution.

In our quantitative analysis, we investigated the
reasons of the declines in the BN and TC domain.
A primary observation is that the word distribu-
tions in these domains are fairly different from
others. The average document length of BN and
TC are quite longer than other domains, which
suggest that there is a bigger chance to have un-
known words than other domains, and add dif-
ficulties to the model training. Also, we have
found that in the BN and TC domains, the texts
are often in oral form, which means that there are
many irregular expressions in the context. Such
expressions add noise to the model, and it is dif-
ficult for the model to extract useful information
in these contexts. These phenomena indicate that
further improvements can be obtained by filtering
stop words in contexts, or increasing the size of
task-specific data, while we leave this in the future
work.

• Effect of UNK processing
As we have mentioned in the previous section,
traditional unknown word replacing methods are
vulnerable to the real word test. To alleviate this
issue, we proposed the UNK processing mecha-
nism to recover the UNK tokens to the real words.
In Table 4, we compared the performance that
with and without the proposed UNK processing,

to show whether the proposed UNK processing
method is effective. As we can see that, by apply-
ing our UNK processing mechanism, the model
do learned the positional features in these low-
frequency words, and brings over 3% improve-
ments in F-score, which indicated the effective-
ness of our UNK processing approach.

F-score

Without UNK replacement 52.2
With UNK replacement 55.3

Table 4: Performance comparison on whether us-
ing the proposed unknown words processing.

• Effect of Domain Adaptation
We also tested out whether our domain adapta-
tion method is effective. In this experiments, we
used three different types of training data: only
pseudo training data, only task-specific data, and
our adaptation method, i.e. using pseudo train-
ing data in the pre-training step and task-specific
data for domain adaptation step. The results are
given in Table 5. As we can see that, using either
pseudo training data or task-specific data alone
can not bring inspiring result. By adopting our
domain adaptation method, the model could give
significant improvements over the other models,
which demonstrate the effectiveness of our pro-
posed two-step training approach. An intuition
behind this phenomenon is that though pseudo
training data is fairly big enough to train a reli-
able model parameters, there is still a gap to the
real zero pronoun resolution tasks. On the con-
trary, though task-specific training data is exactly
the same type as the real test, the quantity is not
enough to train a reasonable model (such as word
embedding). So it is better to make use of both to

107

take the full advantage.
However, as the original task-specific data is

fairly small compared to pseudo training data, we
also wondered if the large-scale pseudo training
data is only providing rich word embedding infor-
mation. So we use the large-scale pseudo training
data for embedding training using GloVe toolkit
(Pennington et al., 2014), and initialize the word
embeddings in the “only task-specific data” sys-
tem. From the result we can see that the pseudo
training data provide more information than word
embeddings, because though we used GloVe em-
beddings in “only task-specific data”, it still can
not outperform the system that uses domain adap-
tation which supports our claim.

F-score

Only Pseudo Training Data 41.1
Only Task-Specific Data 44.2
Only Task-Specific Data + GloVe 50.9
Domain Adaptation 55.3

Table 5: Performance comparison of using differ-
ent training data.

4 Error Analysis

To better evaluate our proposed approach, we per-
formed a qualitative analysis of errors, where two
major errors are revealed by our analysis, as dis-
cussed below.

4.1 Effect of Unknown Words
Our approach does not do well when there are lots
of 〈unk〉s in the context of ZPs, especially when
the 〈unk〉s appears near the ZP. An example is
given below, where words with # are regarded as
〈unk〉s in our model.

φ 登上# 太平山# 顶 , 将香港岛# 和维多
利亚港# 的美景尽收眼底。
φ Successfully climbed# the peak of [Taiping
Mountain]#, to have a panoramic view of the
beauty of [Hong Kong Island]# and [Victoria
Harbour]#.

In this case, the words “登上/climbed” and “太
平山/Taiping Mountain” that appears immediately
after the ZP “φ” are all regarded as 〈unk〉s in
our model. As we model the sequence of words
by RNN, the 〈unk〉s make the model more dif-
ficult to capture the semantic information of the
sentence, which in turn influence the overall per-
formance. Especially for the words that are near

the ZP, which play important roles when model-
ing context information for the ZP. By looking at
the word “顶/peak”, it is hard to comprehend the
context information, due to the several surround-
ing 〈unk〉s. Though our proposed unknown words
processing method is effective in empirical evalu-
ation, we think that more advanced method for un-
known words processing would be of a great help
in improving comprehension of the context.

4.2 Long Distance Antecedents
Also, our model makes incorrect decisions when
the correct antecedents of ZPs are in long distance.
As our model chooses answer from words in the
context, if there are lots of words between the ZP
and its antecedent, more noise information are in-
troduced, and adds more difficulty in choosing the
right answer. For example:

我帮不了那个人那天结束后 φ 回到
家中。
I can’t help that guy After that day, φ return
home.

In this case, the correct antecedent of ZP “φ” is
the NP candidate “我/I”. By seeing the contexts,
we observe that there are over 30 words between
the ZP and its antecedent. Although our model
does not intend to fill the ZP gap only with the
words near the ZP, as most of the antecedents ap-
pear just a few words before the ZPs, our model
prefers the nearer words as correct antecedents.
Hence, once there are lots of words between ZP
and its nearest antecedent, our model can some-
times make wrong decisions. To correctly handle
such cases, our model should learn how to filter the
useless words and enhance the learning of long-
term dependency.

5 Related Work

5.1 Zero pronoun resolution
For Chinese zero pronoun (ZP) resolution, early
studies employed heuristic rules to Chinese ZP
resolution. Converse (2006) proposes a rule-based
method to resolve the zero pronouns, by utiliz-
ing Hobbs algorithm (Hobbs, 1978) in the CTB
documents. Then, supervised approaches to this
task have been vastly explored. Zhao and Ng
(2007) first present a supervised machine learn-
ing approach to the identification and resolution
of Chinese ZPs. Kong and Zhou (2010) develop
a tree-kernel based approach for Chinese ZP res-
olution. More recently, unsupervised approaches

108

have been proposed. Chen and Ng (2014) de-
velop an unsupervised language-independent ap-
proach, utilizing the integer linear programming
to using ten overt pronouns. Chen and Ng (2015)
propose an end-to-end unsupervised probabilistic
model for Chinese ZP resolution, using a salience
model to capture discourse information. Also,
there have been many works on ZP resolution for
other languages. These studies can be divided into
rule-based and supervised machine learning ap-
proaches. Ferrández and Peral (2000) proposed a
set of hand-crafted rules for Spanish ZP resolu-
tion. Recently, supervised approaches have been
exploited for ZP resolution in Korean (Han, 2006)
and Japanese (Isozaki and Hirao, 2003; Iida et al.,
2006, 2007; Sasano and Kurohashi, 2011). Iida
and Poesio (2011) developed a cross-lingual ap-
proach for Japanese and Italian ZPs where an ILP-
based model was employed to zero anaphora de-
tection and resolution.

In sum, most recent researches on ZP resolu-
tion are supervised approaches, which means that
their performance highly relies on large-scale an-
notated data. Even for the unsupervised approach
(Chen and Ng, 2014), they also utilize a super-
vised pronoun resolver to resolve ZPs. Therefore,
the advantage of our proposed approach is obvi-
ous. We are able to generate large-scale pseudo
training data for ZP resolution, and also we can
benefit from the task-specific data for fine-tuning
via the proposed two-step training approach.

5.2 Cloze-style Reading Comprehension

Our neural network model is mainly motivated by
the recent researches on cloze-style reading com-
prehension tasks, which aims to predict one-word
answer given the document and query. These
models can be seen as a general model of min-
ing the relations between the document and query,
so it is promising to combine these models to the
specific domain.

A representative work of cloze-style reading
comprehension is done by Hermann et al. (2015).
They proposed a methodology for obtaining large
quantities of 〈D,Q,A〉 triples. By using this
method, a large number of training data can be
obtained without much human intervention, and
make it possible to train a reliable neural network.
They used attention-based neural networks for
this task. Evaluation on CNN/DailyMail datasets
showed that their approach is much effective than

traditional baseline systems.
While our work is similar to Hermann et al.

(2015), there are several differences which can be
illustrated as follows. Firstly, though we both uti-
lize the large-scale corpus, they require that the
document should accompany with a brief sum-
mary of it, while this is not always available in
most of the document, and it may place an obstacle
in generating limitless training data. In our work,
we do not assume any prerequisite of the training
data, and directly extract queries from the docu-
ment, which makes it easy to generate large-scale
training data. Secondly, their work mainly focuses
on reading comprehension in the general domain.
We are able to exploit large-scale training data for
solving problems in the specific domain, and we
proposed two-step training method which can be
easily adapted to other domains as well.

6 Conclusion

In this study, we propose an effective way to gen-
erate and exploit large-scale pseudo training data
for zero pronoun resolution task. The main idea
behind our approach is to automatically generate
large-scale pseudo training data and then utilize an
attention-based neural network model to resolve
zero pronouns. For training purpose, two-step
training approach is employed, i.e. a pre-training
and adaptation step, and this can be also easily
applied to other tasks as well. The experimental
results on OntoNotes 5.0 corpus are encouraging,
showing that the proposed model and accompany-
ing approaches significantly outperforms the state-
of-the-art systems.

The future work will be carried out on two main
aspects: First, as experimental results show that
the unknown words processing is a critical part in
comprehending context, we will explore more ef-
fective way to handle the UNK issue. Second, we
will develop other neural network architecture to
make it more appropriate for zero pronoun resolu-
tion task.

Acknowledgements

We would like to thank the anonymous review-
ers for their thorough reviewing and propos-
ing thoughtful comments to improve our paper.
This work was supported by the National 863
Leading Technology Research Project via grant
2015AA015407, Key Projects of National Natural
Science Foundation of China via grant 61632011,

109

and National Natural Science Youth Foundation of
China via grant 61502120.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Wanxiang Che, Zhenghua Li, and Ting Liu. 2010. Ltp:
A chinese language technology platform. In Pro-
ceedings of the 23rd International Conference on
Computational Linguistics: Demonstrations. Asso-
ciation for Computational Linguistics, pages 13–16.

Chen Chen and Vincent Ng. 2013. Chinese zero pro-
noun resolution: Some recent advances. In EMNLP.
pages 1360–1365.

Chen Chen and Vincent Ng. 2014. Chinese zero pro-
noun resolution: An unsupervised approach com-
bining ranking and integer linear programming. In
Twenty-Eighth AAAI Conference on Artificial Intel-
ligence.

Chen Chen and Vincent Ng. 2015. Chinese zero pro-
noun resolution: A joint unsupervised discourse-
aware model rivaling state-of-the-art resolvers. In
Proceedings of the 53rd Annual Meeting of the ACL
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers).
page 320.

Chen Chen and Vincent Ng. 2016. Chinese zero pro-
noun resolution with deep neural networks. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 778–788. http://aclweb.org/anthology/P16-
1074.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Susan P Converse. 2006. Pronominal anaphora resolu-
tion in chinese .

Antonio Ferrández and Jesús Peral. 2000. A compu-
tational approach to zero-pronouns in spanish. In
Proceedings of the 38th Annual Meeting on Associ-
ation for Computational Linguistics. Association for
Computational Linguistics, pages 166–172.

Na-Rae Han. 2006. Korean zero pronouns: analysis
and resolution. Ph.D. thesis, Citeseer.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1684–
1692.

Jerry R Hobbs. 1978. Resolving pronoun references.
Lingua 44(4):311–338.

Ryu Iida, Kentaro Inui, and Yuji Matsumoto. 2006. Ex-
ploiting syntactic patterns as clues in zero-anaphora
resolution. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 625–632.

Ryu Iida, Kentaro Inui, and Yuji Matsumoto. 2007.
Zero-anaphora resolution by learning rich syntactic
pattern features. ACM Transactions on Asian Lan-
guage Information Processing (TALIP) 6(4):1.

Ryu Iida and Massimo Poesio. 2011. A cross-lingual
ilp solution to zero anaphora resolution. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies-Volume 1. Association for Computa-
tional Linguistics, pages 804–813.

Hideki Isozaki and Tsutomu Hirao. 2003. Japanese
zero pronoun resolution based on ranking rules and
machine learning. In Proceedings of the 2003 con-
ference on Empirical methods in natural language
processing. Association for Computational Linguis-
tics, pages 184–191.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Fang Kong and Guodong Zhou. 2010. A tree kernel-
based unified framework for chinese zero anaphora
resolution. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 882–891.

Lluis Marquez Emili Sapena M Antonia Marti Mar-
iona Taule Veronique Hoste Massimo Poesio Yan-
nick Versley Marta Recasens. 2010. Semeval-2010
task 1: Coreference resolution in multiple languages
.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 1532–1543.
http://aclweb.org/anthology/D14-1162.

Alessandro Moschitti Nianwen Xue Olga Uryupina
Yuchen Zhang Sameer Pradhan. 2012. Conll-2012
shared task: Modeling multilingual unrestricted
coreference in ontonotes .

110

Ryohei Sasano and Sadao Kurohashi. 2011. A dis-
criminative approach to japanese zero anaphora res-
olution with large-scale lexicalized case frames. In
IJCNLP. pages 758–766.

Andrew M Saxe, James L McClelland, and Surya Gan-
guli. 2013. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv
preprint arXiv:1312.6120 .

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

Shanheng Zhao and Hwee Tou Ng. 2007. Identifica-
tion and resolution of chinese zero pronouns: A ma-
chine learning approach. In EMNLP-CoNLL. vol-
ume 2007, pages 541–550.

111

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 112–122
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1011

Discourse Mode Identification in Essays

Wei Song†, Dong Wang‡, Ruiji Fu ‡, Lizhen Liu †, Ting Liu §, Guoping Hu‡
†Information Engineering, Capital Normal University, Beijing, China

‡iFLYTEK Research, Beijing, China
§Harbin Institute of Technology, Harbin, China

{wsong, lzliu}@cnu.edu.cn,{dongwang4,rjfu, gphu}@iflytek.com, tliu@ir.hit.edu.cn

Abstract

Discourse modes play an important role in
writing composition and evaluation. This
paper presents a study on the manual and
automatic identification ofnarration, ex-
position, description, argumentandemo-
tion expressingsentences in narrative es-
says. We annotate a corpus to study the
characteristics of discourse modes and de-
scribe a neural sequence labeling model
for identification. Evaluation results show
that discourse modes can be identified au-
tomatically with an average F1-score of
0.7. We further demonstrate that discourse
modes can be used as features that im-
prove automatic essay scoring (AES). The
impacts of discourse modes for AES are
also discussed.

1 Introduction

Discourse modes, also known as rhetorical
modes, describe the purpose and conventions
of the main kinds of language based communi-
cation.Most common discourse modes include
narration, description, exposition and argument.
A typical text would make use of all the modes,
although in a given one there will often be a
main mode. Despite their importance in writing
composition and assessment (Braddock et al.,
1963), there is relatively little work on analyzing
discourse modes based on computational models.
We aim to contribute for automatic discourse
mode identification and its application on writing
assessment.

The use of discourse modes is important in writ-
ing composition, because they relate to several as-
pects that would influence the quality of a text.

First, discourse modes reflect the organization
of a text. Natural language texts consist of sen-

tences which form a unified whole and make up
the discourse (Clark et al., 2013). Recognizing the
structure of text organization is a key part for dis-
course analysis.Meurer (2002) points that dis-
course modes stand for unity as they constitute
general patterns of language organization strate-
gically used by the writer.Smith(2003) also pro-
poses to study discourse passages from a linguistic
view of point through discourse modes. The orga-
nization of a text can be realized by segmenting
text into passages according to the set of discourse
modes that are used to indicate the functional re-
lationship between the several parts of the text.
For example, the writer can present major events
through narration, provide details with description
and establish ideas with argument. The combi-
nation and interaction of various discourse modes
make an organized unified text.

Second, discourse modes have rhetorical
significance. Discourse modes are closely related
to rhetoric (Connors, 1981; Brooks and Warren,
1958), which offers a principle for learning how to
express material in the best way. Discourse modes
have different preferences on expressive styles.
Narration mainly controls story progression by
introducing and connecting events; exposition is
to instruct or explain so that the language should
be precise and informative; argument is used to
convince or persuade through logical and inspiring
statements; description attempts to bring detailed
observations of people and scenery, which is
related to the writing of figurative language; the
way to express emotions may relate to the use of
rhetorical devices and poetic language. Discourse
modes reflect the variety of expressive styles. The
flexible use of various discourse modes should be
important evidence of language proficiency.

According to the above thought, we propose the
discourse mode identification task. In particular,
we make the following contributions:

112

https://doi.org/10.18653/v1/P17-1011

• We build a corpus of narrative essays written
by Chinese students in native language.
Sentence level discourse modes are annotated
with acceptable inter-annotator agreement.
Corpus analysis reveals the characteristics of
discourse modes in several aspects, including
discourse mode distribution, co-occurrence
and transition patterns.

• We describe a multi-label neural sequence la-
beling approach for discourse mode identi-
fication so that the co-occurrence and tran-
sition preferences can be captured. Experi-
mental results show that discourse modes can
be identified with an average F1-score of 0.7,
indicating that automatic discourse mode i-
dentification is feasible.

• We demonstrate the effectiveness of taking
discourse modes into account for automatic
essay scoring. A higher ratio of description
and emotion expressing can indicate essay
quality to a certain extent. Discourse modes
can be potentially used as features for other
NLP applications.

2 Related Work

2.1 Discourse Analysis

Discourse analysis is an important subfield of
natural language processing (Webber et al., 2011).
Discourse is expected to be both cohesive and
coherent. Many principles are proposed for
discourse analysis, such as coherence relations
(Hobbs, 1979; Mann and Thompson, 1988), the
centering theory for local coherence (Grosz et al.,
1995) and topic-based text segmentation (Hearst,
1997). In some domains, discourse can be
segmented according to specific discourse ele-
ments (Hutchins, 1977; Teufel and Moens, 2002;
Burstein et al., 2003; Clerehan and Buchbinder,
2006; Song et al., 2015).

This paper focuses on discourse modes
influenced bySmith (2003). From the linguistic
view of point, discourse modes are supposed to
have different distributions of situation entity
types such as event, state and generic (Smith,
2003; Mavridou et al., 2015). Therefore, there
is work on automatically labeling clause level
situation entity types (Palmer et al., 2007;
Friedrich et al., 2016). Actually, situation entity
type identification is also a challenging problem.
It is even harder for processing Chinese language,

since Chinese doesn’t have grammatical tense
(Xue and Zhang, 2014) and sentence components
are often omitted. This increases the difficulties
for situation entity type based discourse mode
identification. In this paper, we investigate an
end-to-end approach to directly model discourse
modes without the necessity of identifying
situation entity types first.

2.2 Automatic Writing Assessment

Automatic writing assessment is an important ap-
plication of natural language processing. The task
aims to let computers have the ability to appreciate
and criticize writing. It would be hugely benefi-
cial for applications like automatic essay scoring
(AES) and content recommendation.

AES is the task of building a computer-aided
scoring system, in order to reduce the involvement
of human raters. Traditional approaches are
based on supervised learning with designed
feature templates (Larkey, 1998; Burstein, 2003;
Attali and Burstein, 2006; Chen and He, 2013;
Phandi et al., 2015; Cummins et al., 2016).
Recently, automatic feature learning based
on neural networks starts to draw attentions
(Alikaniotis et al., 2016; Dong and Zhang, 2016;
Taghipour and Ng, 2016).

Writing assessment involves highly technical
aspects of language and discourse. In addition
to give a score, it would be better to provide
explainable feedbacks to learners at the same time.
Some work has studied several aspects such as
spelling errors (Brill and Moore, 2000), grammar
errors (Rozovskaya and Roth, 2010), coherence
(Barzilay and Lapata, 2008), organization of
argumentative essays (Persing et al., 2010) and the
use of figurative language (Louis and Nenkova,
2013). This paper extends this line of work by
taking discourse modes into account.

2.3 Neural Sequence Modeling

A main challenge of discourse analysis is hard
to collect large scale data due to its complexity,
which may lead to data sparseness problem.
Recently, neural networks become popular for
natural language processing (Bengio et al., 2003;
Collobert et al., 2011). One of the advantages is
the ability of automatic representation learning.
Representing words or relations with continuous
vectors (Mikolov et al., 2013; Ji and Eisenstein,
2014) embeds semantics in the same space, which
benefits alleviating the data sparseness problem

113

and enables end-to-end and multi-task learning.
Recurrent neural networks (RNNs) (Graves, 2012)
and the variants like Long Short-Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) and
Gated Recurrent (GRU) (Cho et al., 2014) neural
networks show good performance for capturing
long distance dependencies on tasks like Named
Entity Recognition (NER) (Chiu and Nichols,
2016; Ma and Hovy, 2016), dependency parsing
(Dyer et al., 2015) and semantic composition
of documents (Tang et al., 2015). This work
describes a hierarchical neural architecture with
multiple label outputs for modeling the discourse
mode sequence of sentences.

3 Discourse Mode Annotation

We are interested in the use of discourse modes
in writing composition. This section describes the
discourse modes we are going to study, an anno-
tated corpus of student essays and what we learn
from corpus analysis.

3.1 Discourse Modes

Discourse modes have several taxonomies in
the literature. Four basic discourse modes are
narration, description, expositionand argument
in English composition and rhetoric (Bain, 1890).
Smith (2003) proposes five modes for studying
discourse passages: narrative, description,
report, information and argument. In Chinese
composition, discourse modes are categorized
into narration, description, exposition, argument
andemotion expressing(Zhu, 1983).

These taxonomies are similar. Their elements
can mostly find corresponding ones in other tax-
onomies literally or conceptually, e.g., exposition
mode has similar functions to information mode.
Emotion expressing that is to express the writer’s
emotions is relatively special. It can be realized by
expressing directly or through lyrical writing with
beautiful and poetic language. It is also related to
appeal to emotion, which is a method for argumen-
tation by the manipulation of the recipient’s emo-
tions in classical rhetoric (Aristotle and Kennedy,
2006). Proper emotion expressing can touch the
hearts of the readers and improve the expressive-
ness of writing. Therefore, considering it as an
independent mode is also reasonable.

We cope with essays written in Chinese in this
work so that we follow the Chinese convention
with five discourse modes. Emotion expressing

is added on the basis of four recognized discourse
modes and Smith’s report mode is viewed as a sub-
type of description mode:dialogue description.

In summary, we study the following discourse
modes:

• Narration introduces an event or series of
events into the universe of discourse. The
events are temporally related according to
narrative time.
E.g., Last year, we drove to San Francisco
along the State Route 1 (SR 1).

• Exposition has a function to explain or in-
struct. It provides background information in
narrative context. The information presented
should be general and (expected to be) well
accepted truth.
E.g.,SR 1 is a major north-south state high-
way that runs along most of the Pacific coast-
line of the U.S.

• Description re-creates, invents, or vividly
show what things are like according to the
five senses so that the reader can picture that
which is being described.
E.g., Along SR 1 are stunning rugged
coastline, coastal forests and cliffs, beautiful
little towns and some of the West coast’s
most amazing nature.

• Argument makes a point of view and proves
its validity towards a topic in order to con-
vince or persuade the reader.
E.g., Point Arena Lighthouse is a must see
along SR 1, in my opinion.

• Emotion expressing1 presents the writer’s e-
motions, usually in a subjective, personal and
lyrical way, to involve the reader to experi-
ence the same situations and to be touched.
E.g., I really love the ocean, the coastline
and all the amazing scenery along the route.
When could I come back again?

The distinction between discourse modes is ex-
pected to be clarified conceptually by considering
their different communication purposes. However,
there would still be specific ambiguous and vague
cases. We will describe the data annotation and
corpus analysis in the following parts.

1In some cases, we use emotion for short.

114

INITIAL FINAL

P R F P R F
Nar 0.90 0.88 0.89 0.96 0.84 0.90
Exp 0.79 0.73 0.76 0.89 0.76 0.81
Des 0.84 0.74 0.79 0.87 0.65 0.74
Emo 0.75 0.68 0.71 0.79 0.73 0.76
Arg 0.35 0.28 0.31 0.76 0.61 0.68
Avg. 0.73 0.66 0.69 0.87 0.71 0.78
κ 0.55 0.72

Table 1: Inter-annotator agreement between two
annotators on the dominant discourse mode. Ini-
tial: The result of the first round annotation; Final:
The result of the final annotation;κ: Agreement
measured with Cohen’s Kappa.

3.2 Data Annotation

Discourse modes are almost never found in a pure
form but are embedded one within another to help
the writer achieve the purpose, but the empha-
sis varies in different types of writing. We focus
on narrative essays. A good narrative composi-
tion must properly manipulate multiple discourse
modes to make it vivid and impressive.

The corpus has 415 narrative essays written by
high school students in their native Chinese lan-
guage.The average number of sentences is 32 and
the average length is 670 words.

We invited two high school teachers to annotate
discourse modes at sentence level, expecting their
background help for annotation. A detail manual
was discussed before annotation.

We notice that discourse modes can mix in the
same sentence. Therefore, the annotation standard
allows that one sentence can have multiple modes.
But we require that every sentence should have a
dominant mode. The annotators should try to think
in the writer’s perspective and guess the writer’s
main purpose of writing the sentence in order to
decide the dominant mode.

Among the discourse modes, description can be
applied in various situations. We focus on the
following description types: portrait, appearance,
action, dialogue, psychological, environment and
detail description. If a sentence has any type of de-
scription, it would be assigned a description label.

3.3 Corpus Analysis

We conducted corpus analysis on the annotated
data to gain observations on several aspects.
Inter-Annotator Agreement : 50 essays were in-
dependently annotated by two annotators. We e-
valuate the inter-annotator agreement on the dom-

Narration

57.6%

Exposition
2.0%

Description

23.2%

Argument

1.0%

Emotion

16.2%

Figure 1: The distribution of dominant modes.

inant mode. The two annotators’ annotations are
used as the golden answer and prediction respec-
tively. We compute the precision, recall and F1-
score for each discourse mode separately to mea-
sure the inter-annotator agreement. Precision and
recall are symmetric for the two annotators.

The result of the first round annotation is shown
in the INITIAL columns of Table1. The agreement
on argument mode is low, while the agreement on
other modes is acceptable. The average F1-score
is 0.69. The Cohen’s Kappa (Cohen et al., 1960)
is 0.55 over all judgements on the dominant mode.

The main disagreement on argument lies in the
confusion with emotion expressing. Consider the
following sentence:

Father’s love is the fire that lights the
lamp of hope.

One annotator thought that it is expressed in an
emotional and lyrical way so that the discourse
mode should be emotion expressing. The other
one thought that it (implicitly) gives a point and
should be an argument. Many disagreements hap-
pened in cases like this.

Based on the observations of the first round an-
notation, we discussed and updated the manual
and let the annotators rechecked their annotations.
The final result is shown in the FINAL columns of
Table 1. The agreement on description decreas-
es. Annotators seem to be more conservative on
labeling description as the dominant mode. The
overall average F1-score increases to 0.78 and the
Cohen’s Kappa is 0.72. This indicates that humans
can reach an acceptable agreement on the domi-
nant discourse mode of sentences after training.
Discourse mode distribution: After the training
phase, the annotators labeled the whole corpus.
Figure 1 shows the distribution of dominant

115

Mode Nar Exp Des Emo Arg
Nar 5285 11 2552 65 2
Exp - 148 11 1 1
Des - - 2538 105 8
Emo - - - 1947 63
Arg - - - - 318

Table 2: Co-occurrence of discourse modes in the
same sentences. The numbers in diagonal indicate
the number of sentences with a single mode.

from \ to Nar Exp Des Emo Arg
Nar 72% - 17% 7% 1%
Exp 59% 8% 8% 16% 6%
Des 42% - 53% 3% -
Emo 25% 2% 4% 66% 1%
Arg 27% - 4% 12% 54%

Begin with 50% 3% 6% 32% 7%
End with 12% 1% 2% 76% 6%

Table 3: Transition between discourse modes of
consecutive sentences and the distribution of dis-
course modes that essays begin with and end with.

discourse modes. The distribution is imbalanced.
Narration, description and emotion expressing
are the main discourse modes in narrative essays,
while exposition and argument are rare.
Co-occurrence: Statistics show that 78% of sen-
tences have only one discourse mode, and 19%
have two discourse modes, and 3% have more than
two discourse modes.

Table 2 shows the co-occurrence of discourse
modes. The numbers that are in the diagonal
represent the distribution of discourse modes of
sentences with only one mode. The numbers that
are not in the diagonal indicate the co-occurrence
of modes in the same sentences. We can see
that description tends to co-occur with narration
and emotion expressing. Description can provide
states that happen together with events and
emotion-evoking scenes are often described to
elicit a strong emotional response, for example:

The bright moon hanging on the distant
sky reminds me of my hometown miles
away.

Emotion expressing and argument also co-occur
in some cases. It is reasonable, since a successful
emotional appeal can enhance the effectiveness of
an argument.

Generally, these observations are consistent
with intuition. Properly combining multiple
modes could produce impressive sentences.

Transition : Table 3 shows the transition matrix
between the dominant modes of consecutive
sentences within the same paragraphs. All modes
tend to transit to themselves except exposition,
which is rare and usually brief. This means
that discourse modes of adjacent sentences have
high correlation. We also see that narration and
emotion are more often at the beginning and the
end of essays. The above observations indicate
that discourse modes have local preferred patterns.

To summarize, the implications of corpus
analysis include: (1) Manual identification of
discourse modes is feasible with an acceptable
inter-annotator agreement; (2) The distribution of
discourse modes in narrative essays is imbalanced;
(3) About 22% sentences have multiple discourse
modes; (4) Discourse modes have local transition
patterns that consecutive discourse modes have
high correlation.

4 Discourse Mode Identification based
on Neural Sequence Labeling

This section describes the proposed method for
discourse mode identification. According to the
corpus analysis, sentences often have multiple dis-
course modes and prefer local transition patterns.
Therefore, we view this task as a multi-label se-
quence labeling problem.

4.1 Model

We propose a hierarchical neural sequence label-
ing model to capture multiple level information.
Figure2(a) shows the basic architecture. We in-
troduce it from the bottom up.
Word level embedding layer: We transform
words into continuous vectors, word embeddings.
Vector representation of words is useful for
capturing semantic relatedness. This should
be effective in our case, since large amount of
training data is not available. It is unrealistic to
learn the embedding parameters on limited data
so that we just look up embeddings of words
from a pre-trained word embedding table. The
pre-trained word embeddings were learned with
the Word2Vec toolkit (Mikolov et al., 2013)
on a domain corpus which consists of about
490,000 student essays. The embeddings are kept
unchanged during learning and prediction.
Sentence level GRU layer: Each sentence is a
sequence of words. We feed the word embeddings
into a forward recurrent neural networks. Here,

116

BiGRU BiGRU BiGRU

Mul-Label Mul-Label

Discourse level

BiGRU layer

GRU GRU GRU
Sentence level

GRU layer

s1 s2 sm

w21 w22 w2n

Word level

Embeddings

Discourse

Modes
Mul-Label Mul-Label

(a) The basic hierarchical architecture.

BiGRU

s

Fully connected

Hidden Layer

Fully connected

Sigmoid

ys,1 ys,2 ys,3 ys,4 ys,5

(b) The detail of the Mul-Label layer

Figure 2: The multi-label neural sequence labeling model for discourse mode identification.

we use the GRU (Cho et al., 2014) as the recurrent
unit. The GRU is to make each recurrent unit to
adaptively capture dependencies of different time
scales. The output of the last time-step is used as
the representation of a sentence.
Discourse level bidirectional-GRU layer: An es-
say consists of a sequence of sentences. Access-
ing information of past and future sentences pro-
vides more contextual information for current pre-
diction. Therefore, we use a bidirectional RNN
to connect sentences. We use the GRU as the
recurrent unit, which is also shown effective on
semantic composition of documents for sentiment
classification (Tang et al., 2015). The BiGRU rep-
resents the concatenation of the hidden states of
the forward GRU and the backward GRU units.
Multi-Label layer : Since one sentence can have
more than one discourse mode, our model allows
multiple label outputs. Figure2(b) details the
Mul-Label layer in Figure2(a). The representation
of each sentence after the bidirectional-GRU layer
is first fully connected to a hidden layer. The
hidden layer output is then fully connected to
a five-way output layer, corresponding to five
discourse modes. The sigmoid activation function
is applied to each way to get the probability that
whether corresponding discourse mode should be
assigned to the sentence.

In the training phase, the probability of any la-
beled discourse modes is set to 1 and the others are
set to 0. In the prediction phase, if the predicted
probability of a discourse mode is larger than 0.5,
the discourse mode would be assigned.

4.1.1 Considering Paragraph Boundaries

Different from NER that processes a single
sentence each time, our task processes sequences
of sentences in discourse, which are usually

grouped by paragraphs to split the whole
discourse into several relatively independent
segments. Sentences from different paragraphs
should have less effect to each other, even though
they are adjacent.

To capture paragraph boundary information, we
insert an empty sentence at the end of every para-
graph to indicate a paragraph boundary. The emp-
ty sentence is represented by a zero vector and its
outputs are set to zeros as well. We expect this
modification can better capture position related in-
formation.

4.2 Implementation Details

We implement the model using the Keras
library.2 The models are trained with the binary
cross-entropy objective. The optimizer is Adam
(Kingma and Ba, 2014). The word embedding
dimension is 50. The dimension of the hidden
layer in Mul-Label layer is 100. The length of
sentences is fixed as 40. All other parameters are
set by default parameter values. We adopt early
stopping strategy (Caruana et al., 2000) to decide
when the training process stops.

4.3 Evaluation

4.3.1 Data

We use 100 essays as the test data. The remain-
ing ones are used as the training data. 10% of the
shuffled training data is used for validation.

4.3.2 Comparisons

We compare the following systems:

• SVM: We use bag of ngram (unigram and bi-
gram) features to train a support vector clas-
sifier for sentence classification.

2https://github.com/fchollet/keras/

117

• CNN: We implement a convolutional neural
network (CNN) based method (Kim, 2014),
as it is the state-of-the-art for sentence classi-
fication.

• GRU: We use the sentence level representa-
tion in Figure2(a)for sentence classification.

• GRU-GRU(GG): This method is introduced
in this paper in§4.1, but it doesn’t consider
paragraph information.

• GRU-GRU-SEG (GG-SEG): The model con-
siders paragraph information on the top of G-
G as introduced in§4.1.1.

The first three classification based methods
classify sentences independently. To deal with
multiple labels, the classifiers are trained for each
discourse mode separately. At prediction time, if
the classifier for any discourse mode predicts a
sentence as positive, the corresponding discourse
mode would be assigned.

4.3.3 Evaluation Results

Table4 shows the experimental results. We evalu-
ate the systems for each discourse mode with F1-
score, which is the harmonic mean of precision
and recall. The best performance is in bold.

The SVM performs worst among all systems.
The reason is due to the data sparseness and term-
mismatch problem, since the size of the annotated
dataset is not big enough. In contrast, systems
based on neural networks with pre-trained word
embeddings achieve much better performance.

The CNN and GRU have comparable perfor-
mance. The GRU is slightly better. The two meth-
ods don’t consider the semantic representations of
adjacent sentences.

The GG and GG-SEG explore the semantic in-
formation of sentences in a sequence by the bidi-
rectional GRU layer. The results demonstrate that
considering such information improve the perfor-
mance on all discourse modes. This proves the ad-
vantage of sequential identification compared with
isolated sentence classification.

We can see that the GG-SEG further improves
the performance on three minority discourse
modes compared with GG. This means that the
minority modes may have stronger preference
to special locations. Exposition benefits most,
since many exposition sentences in our dataset are
isolated.

Model \ Mode Nar Des Emo Arg Exp
SVM 0.672 0.588 0.407 0.152 0.095
CNN 0.793 0.764 0.594 0.333 0.293
GRU 0.800 0.784 0.615 0.402 0.364
GG 0.822 0.797 0.680 0.423 0.481

GG-SEG 0.815 0.791 0.717 0.483 0.667

Table 4: The F1-scores of systems on each dis-
course mode.

The performance on argument is not so good.
As we discussed in corpus analysis, argument and
emotion expressing mode interact frequently. Be-
cause the amount of emotion expressing sentences
is much more, distinguishing argument from them
is hard. Actually, their functions in narrative es-
says seem to be similar that both are to deepen the
author’s response or evoke the reader’s response to
the story.

The overall average F1-score can reach to 0.7
and the performance on identifying three most
common discourse modes are consistent, with an
average F1-score above 0.76 using the proposed
neural sequence labeling models. Automatic
discourse mode identification should be feasible.

5 Essay Scoring with Discourse Modes

Discourse mode identification can potentially pro-
vide features for downstream NLP applications.
This section describes our attempt to explore dis-
course modes for automatic essay scoring (AES).

5.1 Essay Scoring Framework

We adopt the standard regression framework for
essay scoring. We use support vector regression
(SVR) and Bayesian linear ridge regression (BLR-
R), which are used in recent work (Phandi et al.,
2015). The key is to design effective features.

5.2 Features

The basic feature sets are based on (Phandi et al.,
2015).The original feature sets include:

• Length features

• Part-Of-Speech (POS) features

• Prompt features

• Bag of words features

We re-implement the feature extractors exact-
ly according to the description in (Phandi et al.,
2015) except for the POS features, since we don’t

118

Score
Prompt #Essays Avg. len Range Median

1 4000 628 0-60 46
2 4000 660 0-50 41
3 3300 642 0-50 41

Table 5: Details of the three datasets for AES.

have correct POS ngrams for Chinese. We com-
plement two additional features: (1) The number
of words occur in Chinese Proficiency Test 6 vo-
cabulary; (2) The number of Chinese idioms used.

We further design discourse mode related fea-
tures for each essay:

• Mode ratio: For each discourse mode,
we compute its mode ratio according to
ratio = #sentences with the discourse mode

#sentences in the essay . Such
features indicate the distribution of discourse
modes.

• Bag of ngrams of discourse modes: We use
the number of unigrams and bigrams of the
dominant discourse modes of the sequence of
sentences in the essay as features.

5.3 Experimental Settings

The experiments were conducted on narrative es-
says written by Chinese middle school students in
native language during regional tests. There are
three prompts and students are required to write
an essay related to the given prompt with no less
than 600 Chinese characters. All these essays were
evaluated by professional teachers.

We randomly sampled essays from each promp-
t for experiments. Table5 shows the details of
the datasets. We ran experiments on each prompt
dataset respectively by 5-fold cross-validation.

The GG-SEG model was used to identify dis-
course modes of sentences. Notice that a sentence
can have multiple discourse modes. The mode ra-
tio features are computed for each mode separate-
ly. When extracting the bag of ngrams of discourse
modes features, the discourse mode with highest
prediction probability was chosen as the dominant
discourse mode.

We use the Quadratic Weighted Kappa (QWK)
as the evaluation metric.

5.4 Evaluation Results

Table 6 shows the evaluation results of AES on
three datasets. We can see that the BLRR algorith-
m performs better than the SVR algorithm. No

QWK Score
Prompt 1 2 3

SVR-Basic 0.554 0.468 0.457
+ mode 0.6 0.501 0.481

BLRR-Basic 0.683 0.557 0.513
+ mode 0.696 0.565 0.527

Table 6: Evaluation results of AES on three
datasets. Basic: the basic feature sets; mode: dis-
course mode features.

Prompt 1 2 3 Avg
LEN 0.59 0.52 0.45 0.52
Des 0.23 0.24 0.24 0.24
Emo 0.09 0.15 0.12 0.12
Exp -0.07 0.01 0.01 -0.03
Arg -0.08 -0.06 -0.1 -0.08
Nar -0.11 -0.15 -0.12 -0.13

Table 7: Pearson correlation coefficients of mode
ratio to essay score. LEN represents essay length.

matter which algorithm is adopted, adding dis-
course mode features make positive contributions
for AES compared with using basic feature sets.
The trends are consistent over all three datasets.
Impact of discourse mode ratio on scores: We
are interested in which discourse mode correlates
to essay scores best. Table7 shows the Pearson
correlation coefficient between the mode ratio
and essay score. LEN represents the correlation
of essay length and is listed as a reference. We
can see that the ratio of narration has a negative
correlation, which means just narrating stories
without auxiliary discourse modes would lead to
poor scores. The description mode ratio has the
strongest positive correlation to essay scores. This
may indicate that using vivid language to provide
detail information is essential in writing narrative
essays. Emotion expressing also has a positive
correlation. It is reasonable since emotional
writing can involve readers into the stories. The
ratio of argument shows a negative correlation.
The reason may be that: first, the identification
of argument is not good enough; second, the
existence of an argument doesn’t mean the quality
of argumentation is good. Exposition has little
effect on essay scores.

Generally, the distribution of discourse modes
shows correlations to the quality of essays. This
may relate to the difficulties of manipulating dif-
ferent discourse modes. It is easy for students to
use narration, but it is more difficult to manipulate
description and emotion expressing well. As a re-
sult, the ability of descriptive and emotional writ-

119

100 200 400 600
Length threshold

0.40

0.45

0.50

0.55

0.60

0.65

Q
W
K

PROMPT 1

basic

basic+mode

100 200 400 600
Length threshold

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58
PROMPT 2

basic

basic+mode

100 200 400 600
Length threshold

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.50

0.51
PROMPT 3

basic

basic+mode

Figure 3: QWK scores on essays satisfying different length thresholds on three prompts. Basic: the basic
feature sets; mode: discourse mode features.

ing should be an indicator of language proficiency
and can better distinguish the quality of writing.

Impact on scoring essays with various length: It
is easy to understand that length is a strong indi-
cator for essay scoring. It is interesting to study
that when the effect of length becomes weaker,
e.g., the lengths of essays are close, how does the
performance of the AES system change?

We conducted experiments on essays with vari-
ous lengths. Only essays that the length is no less
than a given threshold are selected for evaluation.
The threshold is set to 100, 200, 400 and 600 Chi-
nese characters respectively. We ran 5-fold cross-
validation with BLRR on the datasets after essay
selection.

Figure3 shows the results on three datasets. We
can see the following trends: (1) The QWK scores
decrease along with shorter essays are removed
gradually; (2) Adding discourse mode features al-
ways improves the performance; (3) As the thresh-
old becomes larger, the improvements by adding
discourse mode features become larger.

The results indicate that the current AES sys-
tem can achieve a high correlation score when the
lengths of essays differ obviously. Even the sim-
ple features like length can judge that short es-
says tend to have low scores. However, when
the lengths of essays are close, AES would face
greater challenges, because it is required to deep-
er understand the properties of well written es-
says. In such situations, features that can model
more advanced aspects of writing, such as dis-
course modes, should play a more important role.
It should be also essential for evaluating essays
written in the native language of the writer, when
spelling and grammar are not big issues any more.

6 Conclusion

This paper has introduced a fundamental but less
studied task in NLP—discourse mode identifica-
tion, which is designed in this work to automati-
cally identify five discourse modes in essays.

A corpus of narrative student essays was man-
ually annotated with discourse modes at sentence
level, with acceptable inter-annotator agreement.
The corpus analysis revealed several aspects of
characteristics of discourse modes including the
distribution, co-occurrence and transition patterns.

Considering these characteristics, we proposed
a neural sequence labeling approach for identi-
fying discourse modes. The experimental results
demonstrate that automatic discourse mode iden-
tification is feasible.

We evaluated discourse mode features for auto-
matic essay scoring and draw preliminary observa-
tions. Discourse mode features can make positive
contributions, especially in challenging situation-
s when simple surface features don’t work well.
The ratio of description and emotion expressing is
shown to be positively correlated to essay scores.

In future, we plan to exploit discourse mode i-
dentification for providing novel features for more
downstream NLP applications.

Acknowledgements

The research work is partially funded by
the National High Technology Research and
Development Program (863 Program) of China
(No.2015AA015409), National Natural Science
Foundation of China (No.61402304), Ministry of
Education (No.14YJAZH046), Beijing Municipal
Education Commission (KM201610028015,
Connotation Development) and Beijing Advanced
Innovation Center for Imaging Technology.

120

References

Dimitrios Alikaniotis, Helen Yannakoudakis, and
Marek Rei. 2016. Automatic text scoring using neu-
ral networks. InProceedings of ACL 2016. pages
715–725.

Omer Aristotle and George A Kennedy. 2006.On
rhetoric: A theory of civic discourse. Oxford Uni-
versity Press.

Yigal Attali and Jill Burstein. 2006. Automated essay
scoring with e-raterR© v. 2. The Journal of Technol-
ogy, Learning and Assessment4(3).

Alexander Bain. 1890. English composition and
rhetoric. Longmans, Green & Company.

Regina Barzilay and Mirella Lapata. 2008. Modeling
local coherence: An entity-based approach.Compu-
tational Linguistics34(1):1–34.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model.Journal of machine learning research
3(Feb):1137–1155.

Richard Reed Braddock, Richard Lloyd-Jones, and
Lowell Schoer. 1963.Research in written compo-
sition. JSTOR.

Eric Brill and Robert C Moore. 2000. An improved
error model for noisy channel spelling correction. In
Proceedings of ACL 2000. pages 286–293.

Cleanth Brooks and Robert Penn Warren. 1958.Mod-
ern rhetoric. Harcourt, Brace.

Jill Burstein. 2003. The e-raterR© scoring engine: Au-
tomated essay scoring with natural language pro-
cessing. .

Jill Burstein, Daniel Marcu, and Kevin Knight. 2003.
Finding the write stuff: Automatic identification of
discourse structure in student essays.Intelligent
Systems, IEEE18(1):32–39.

Rich Caruana, Steve Lawrence, and Lee Giles. 2000.
Overfitting in neural nets: Backpropagation, conju-
gate gradient, and early stopping. InProceedings of
NIPS 2000. pages 402–408.

Hongbo Chen and Ben He. 2013. Automated essay
scoring by maximizing human-machine agreement.
In Proceedings of EMNLP 2013. pages 1741–1752.

Jason PC Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns.Transac-
tions of the Association for Computational Linguis-
tics4:357–370.

Kyunghyun Cho, Bart van Merriënboer Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. InProceedings
of EMNLP 2014. pages 1724–1734.

Alexander Clark, Chris Fox, and Shalom Lappin. 2013.
The handbook of computational linguistics and nat-
ural language processing. John Wiley & Sons.

Rosemary Clerehan and Rachelle Buchbinder. 2006.
Toward a more valid account of functional text qual-
ity: The case of the patient information leaflet.Tex-
t & Talk-An Interdisciplinary Journal of Language,
Discourse Communication Studies26(1):39–68.

Jacob Cohen et al. 1960. A coefficient of agreement
for nominal scales.Educational and psychological
measurement20(1):37–46.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Robert J Connors. 1981. The rise and fall of the modes
of discourse.College Composition and Communi-
cation32(4):444–455.

Ronan Cummins, Meng Zhang, and Ted Briscoe. 2016.
Constrained multi-task learning for automated essay
scoring. InProceedings of ACL 2016. pages 789–
799.

Fei Dong and Yue Zhang. 2016. Automatic features for
essay scoring – an empirical study. InProceedings
of EMNLP 2016. pages 1072–1077.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. InProceedings of ACL 2015. pages
334–343.

Annemarie Friedrich, Alexis Palmer, and Manfred
Pinkal. 2016. Situation entity types: automatic clas-
sification of clause-level aspect. InProceedings of
ACL 2016. pages 1757–1768.

Alex Graves. 2012. Supervised sequence labelling. In
Supervised Sequence Labelling with Recurrent Neu-
ral Networks, Springer Berlin Heidelberg, pages 5–
13.

Barbara J Grosz, Scott Weinstein, and Aravind K Joshi.
1995. Centering: A framework for modeling the lo-
cal coherence of discourse.Computational linguis-
tics21(2):203–225.

Marti A Hearst. 1997. Texttiling: Segmenting text into
multi-paragraph subtopic passages.Computational
linguistics23(1):33–64.

Jerry R Hobbs. 1979. Coherence and coreference.
Cognitive science3(1):67–90.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

John Hutchins. 1977. On the structure of scientific
texts.UEA Papers in Linguistics5(3):18–39.

121

Yangfeng Ji and Jacob Eisenstein. 2014. Represen-
tation learning for text-level discourse parsing. In
Proceedings of ACL 2014. pages 13–24.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. InProceedings of EMNLP
2014. pages 1746–1751.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization.arXiv preprint
arXiv:1412.6980.

Leah S Larkey. 1998. Automatic essay grading using
text categorization techniques. InProceedings of
SIGIR 1998. pages 90–95.

Annie Louis and Ani Nenkova. 2013. What makes
writing great? first experiments on article quality
prediction in the science journalism domain.Trans-
actions of the Association for Computational Lin-
guistics1:341–352.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of ACL 2016. pages 1064–1074.

William C Mann and Sandra A Thompson. 1988.
Rhetorical structure theory: Toward a functional the-
ory of text organization.Text-Interdisciplinary Jour-
nal for the Study of Discourse8(3):243–281.

Kleio-Isidora Mavridou, Annemarie Friedrich, Melis-
sa Peate Sørensen, Alexis Palmer, and Manfred
Pinkal. 2015. Linking discourse modes and situa-
tion entity types in a cross-linguistic corpus study.
In Workshop on Linking Models of Lexical, Sen-
tential and Discourse-level Semantics (LSDSem).
page 12.

José Luiz Meurer. 2002. Genre as diversity, and rhetor-
ical mode as unity in language use.Ilha do Desterro
A Journal of English Language, Literatures in En-
glish and Cultural Studies(43):061–082.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositionali-
ty. In Proceedings of NIPS 2013. pages 3111–3119.

Alexis Palmer, Elias Ponvert, Jason Baldridge, and
Carlota Smith. 2007. A sequencing model for sit-
uation entity classification. InProceedings of ACL
2007. pages 896–903.

Isaac Persing, Alan Davis, and Vincent Ng. 2010.
Modeling organization in student essays. InPro-
ceedings of EMNLP 2010. pages 229–239.

Peter Phandi, Kian Ming A. Chai, and Hwee Tou Ng.
2015. Flexible domain adaptation for automated es-
say scoring using correlated linear regression. In
Proceedings of EMNLP 2015. pages 431–439.

Alla Rozovskaya and Dan Roth. 2010. Generating con-
fusion sets for context-sensitive error correction. In
Proceedings of EMNLP 2010. pages 961–970.

Carlota S Smith. 2003.Modes of discourse: The local
structure of texts, volume 103. Cambridge Universi-
ty Press.

Wei Song, Ruiji Fu, Lizhen Liu, and Ting Liu. 2015.
Discourse element identification in student essays
based on global and local cohesion. InProceedings
of EMNLP 2015. pages 2255–2261.

Kaveh Taghipour and Hwee Tou Ng. 2016. A neural
approach to automated essay scoring. InProceed-
ings of EMNLP 2016. pages 1882–1891.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Documen-
t modeling with gated recurrent neural network for
sentiment classification. InProceedings of EMNLP
2015. pages 1422–1432.

Simone Teufel and Marc Moens. 2002. Summariz-
ing scientific articles: experiments with relevance
and rhetorical status. Computational linguistics
28(4):409–445.

Bonnie Webber, Markus Egg, and Valia Kordoni. 2011.
Discourse structure and language technology.Natu-
ral Language Engineering18(4):437–490.

Nianwen Xue and Yuchen Zhang. 2014. Buy one get
one free: Distant annotation of chinese tense, event
type and modality. InProceedings of LREC 2014.
pages 1412–1416.

Boshi Zhu. 1983.��VØ(An Introduction to Writ-
ing). Wuhan, Hubei Educational Press.

122

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 123–135
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1012

A Convolutional Encoder Model for Neural Machine Translation

Jonas Gehring, Michael Auli, David Grangier, Yann N. Dauphin
Facebook AI Research

Abstract

The prevalent approach to neural machine
translation relies on bi-directional LSTMs
to encode the source sentence. We present
a faster and simpler architecture based on a
succession of convolutional layers. This al-
lows to encode the source sentence simulta-
neously compared to recurrent networks for
which computation is constrained by tem-
poral dependencies. On WMT’16 English-
Romanian translation we achieve compet-
itive accuracy to the state-of-the-art and
on WMT’15 English-German we outper-
form several recently published results. Our
models obtain almost the same accuracy
as a very deep LSTM setup on WMT’14
English-French translation. We speed up
CPU decoding by more than two times at
the same or higher accuracy as a strong bi-
directional LSTM.1

1 Introduction

Neural machine translation (NMT) is an end-to-end
approach to machine translation (Sutskever et al.,
2014). The most successful approach to date en-
codes the source sentence with a bi-directional re-
current neural network (RNN) into a variable length
representation and then generates the translation
left-to-right with another RNN where both com-
ponents interface via a soft-attention mechanism
(Bahdanau et al., 2015; Luong et al., 2015a; Brad-
bury and Socher, 2016; Sennrich et al., 2016a).
Recurrent networks are typically parameterized as
long short term memory networks (LSTM; Hochre-
iter et al. 1997) or gated recurrent units (GRU; Cho
et al. 2014), often with residual or skip connec-
tions (Wu et al., 2016; Zhou et al., 2016) to enable
stacking of several layers (§2).

There have been several attempts to use convo-
lutional encoder models for neural machine trans-

1The source code will be availabe at https://github.
com/facebookresearch/fairseq

lation in the past but they were either only ap-
plied to rescoring n-best lists of classical systems
(Kalchbrenner and Blunsom, 2013) or were not
competitive to recurrent alternatives (Cho et al.,
2014a). This is despite several attractive properties
of convolutional networks. For example, convolu-
tional networks operate over a fixed-size window of
the input sequence which enables the simultaneous
computation of all features for a source sentence.
This contrasts to RNNs which maintain a hidden
state of the entire past that prevents parallel com-
putation within a sequence.

A succession of convolutional layers provides a
shorter path to capture relationships between ele-
ments of a sequence compared to RNNs.2 This also
eases learning because the resulting tree-structure
applies a fixed number of non-linearities compared
to a recurrent neural network for which the number
of non-linearities vary depending on the time-step.
Because processing is bottom-up, all words un-
dergo the same number of transformations, whereas
for RNNs the first word is over-processed and the
last word is transformed only once.

In this paper we show that an architecture based
on convolutional layers is very competitive to recur-
rent encoders. We investigate simple average pool-
ing as well as parameterized convolutions as an al-
ternative to recurrent encoders and enable very deep
convolutional encoders by using residual connec-
tions (He et al., 2015; §3).

We experiment on several standard datasets and
compare our approach to variants of recurrent en-
coders such as uni-directional and bi-directional
LSTMs. On WMT’16 English-Romanian transla-
tion we achieve accuracy that is very competitive
to the current state-of-the-art result. We perform
competitively on WMT’15 English-German, and
nearly match the performance of the best WMT’14
English-French system based on a deep LSTM
setup when comparing on a commonly used subset

2For kernel width k and sequence length n we require
max

(
1,
⌈

n−1
k−1

⌉)
forwards on a succession of stacked convo-

lutional layers compared to n forwards with an RNN.

123

https://doi.org/10.18653/v1/P17-1012

of the training data (Zhou et al. 2016; §4, §5).

2 Recurrent Neural Machine Translation

The general architecture of the models in this work
follows the encoder-decoder approach with soft at-
tention first introduced in (Bahdanau et al., 2015).
A source sentence x = (x1, . . . , xm) of m words is
processed by an encoder which outputs a sequence
of states z = (z1. . . . , zm).

The decoder is an RNN network that computes a
new hidden state si+1 based on the previous state
si, an embedding gi of the previous target lan-
guage word yi, as well as a conditional input ci de-
rived from the encoder output z. We use LSTMs
(Hochreiter and Schmidhuber, 1997) for all decoder
networks whose state si comprises of a cell vector
and a hidden vector hi which is output by the LSTM
at each time step. We input ci into the LSTM by
concatenating it to gi.

The translation model computes a distribution
over the V possible target words yi+1 by trans-
forming the LSTM output hi via a linear layer with
weights Wo and bias bo:

p(yi+1|y1, . . . , yi,x) = softmax(Wohi+1 + bo)

The conditional input ci at time i is computed
via a simple dot-product style attention mecha-
nism (Luong et al., 2015a). Specifically, we trans-
form the decoder hidden state hi by a linear layer
with weights Wd and bd to match the size of the
embedding of the previous target word gi and then
sum the two representations to yield di. Condi-
tional input ci is a weighted sum of attention scores
ai ∈ Rm and encoder outputs z. The attention
scores ai are determined by a dot product between
hi with each zj , followed by a softmax over the
source sequence:

di =Wdhi + bd + gi,

aij =
exp

(
dTi zj

)
∑m

t=1 exp
(
dTi zt

) , ci =

m∑

j=1

aijzj

In preliminary experiments, we did not find the
MLP attention of (Bahdanau et al., 2015) to perform
significantly better in terms of BLEU nor perplex-
ity. However, we found the dot-product attention to
be more favorable in terms of training and evalua-
tion speed.

We use bi-directional LSTMs to implement re-
current encoders similar to (Zhou et al., 2016)
which achieved some of the best WMT14 English-
French results reported to date. First, each word

of the input sequence x is embedded in distribu-
tional space resulting in e = (e1, . . . , em). The em-
beddings are input to two stacks of uni-directional
RNNs where the output of each layer is reversed
before being fed into the next layer. The first stack
takes the original sequence while the second takes
the reversed input sequence; the output of the sec-
ond stack is reversed so that the final outputs of the
stacks align. Finally, the top-level hidden states of
the two stacks are concatenated and fed into a linear
layer to yield z. We denote this encoder architecture
as BiLSTM.

3 Non-recurrent Encoders

3.1 Pooling Encoder

A simple baseline for non-recurrent encoders is the
pooling model described in (Ranzato et al., 2015)
which simply averages the embeddings of k con-
secutive words. Averaging word embeddings does
not convey positional information besides that the
words in the input are somewhat close to each
other. As a remedy, we add position embeddings
to encode the absolute position of each source
word within a sentence. Each source embedding
ej therefore contains a position embedding lj as
well as the word embedding wj . Position embed-
dings have also been found helpful in memory net-
works for question-answering and language model-
ing (Sukhbaatar et al., 2015). Similar to the recur-
rent encoder (§2), the attention scores aij are com-
puted from the pooled representations zj , however,
the conditional input ci is a weighted sum of the
embeddings ej , not zj , i.e.,

ej = wj + lj , zj =
1

k

bk/2c∑

t=−bk/2c
ej+t,

ci =

m∑

j=1

aijej

The input sequence is padded prior to pooling such
that the encoder output matches the input length
|z| = |x|. We set k to 5 in all experiments as (Ran-
zato et al., 2015).

3.2 Convolutional Encoder

A straightforward extension of pooling is to learn
the kernel in a convolutional neural network (CNN).
The encoder output zj contains information about a
fixed-sized context depending on the kernel width
k but the desired context width may vary. This can

124

be addressed by stacking several layers of convolu-
tions followed by non-linearities: additional layers
increase the total context size while non-linearities
can modulate the effective size of the context as
needed. For instance, stacking 5 convolutions with
kernel width k = 3 results in an input field of 11
words, i.e., each output depends on 11 input words,
and the non-linearities allow the encoder to exploit
the full input field, or to concentrate on fewer words
as needed.

To ease learning for deep encoders, we add resid-
ual connections from the input of each convolution
to the output and then apply the non-linear activa-
tion function to the output (tanh; He et al., 2015);
the non-linearities are therefore not ’bypassed’.
Multi-layer CNNs are constructed by stacking sev-
eral blocks on top of each other. The CNNs do not
contain pooling layers which are commonly used
for down-sampling, i.e., the full source sequence
length will be retained after the network has been
applied. Similar to the pooling model, the convolu-
tional encoder uses position embeddings.

The final encoder consists of two stacked convo-
lutional networks (Figure 1): CNN-a produces the
encoder output zj to compute the attention scores
ai, while the conditional input ci to the decoder is
computed by summing the outputs of CNN-c,

zj = CNN-a(e)j , ci =
m∑

j=1

aij CNN-c(e)j .

In practice, we found that two different CNNs re-
sulted in better perplexity as well as BLEU com-
pared to using a single one (§5.3). We also found
this to perform better than directly summing the ei
without transformation as for the pooling model.

3.3 Related Work
There are several past attempts to use convolutional
encoders for neural machine translation, however,
to our knowledge none of them were able to match
the performance of recurrent encoders. (Kalch-
brenner and Blunsom, 2013) introduce a convolu-
tional sentence encoder in which a multi-layer CNN
generates a fixed sized embedding for a source
sentence, or an n-gram representation followed by
transposed convolutions for directly generating a
per-token decoder input. The latter requires the
length of the translation prior to generation and both
models were evaluated by rescoring the output of
an existing translation system. (Cho et al., 2014a)
propose a gated recursive CNN which is repeat-
edly applied until a fixed-size representation is ob-

tained but the recurrent encoder achieves higher ac-
curacy. In follow-up work, the authors improved the
model via a soft-attention mechanism but did not re-
consider convolutional encoder models (Bahdanau
et al., 2015).

Concurrently to our work, (Kalchbrenner et al.,
2016) have introduced convolutional translation
models without an explicit attention mechanism
but their approach does not yet result in state-of-
the-art accuracy. (Lamb and Xie, 2016) also pro-
posed a multi-layer CNN to generate a fixed-size
encoder representation but their work lacks quan-
titative evaluation in terms of BLEU. Meng et al.
(2015) and (Tu et al., 2015) applied convolutional
models to score phrase-pairs of traditional phrase-
based and dependency-based translation models.
Convolutional architectures have also been success-
ful in language modeling but so far failed to outper-
form LSTMs (Pham et al., 2016).

4 Experimental Setup

4.1 Datasets

We evaluate different encoders and ablate architec-
tural choices on a small dataset from the German-
English machine translation track of IWSLT
2014 (Cettolo et al., 2014) with a similar setting
to (Ranzato et al., 2015). Unless otherwise stated,
we restrict training sentences to have no more than
175 words; test sentences are not filtered. This is
a higher threshold compared to other publications
but ensures proper training of the position embed-
dings for non-recurrent encoders; the length thresh-
old did not significantly effect recurrent encoders.
Length filtering results in 167K sentence pairs and
we test on the concatenation of tst2010, tst2011,
tst2012, tst2013 and dev2010 comprising 6948 sen-
tence pairs.3 Our final results are on three major
WMT tasks:
WMT’16 English-Romanian. We use the same
data and pre-processing as (Sennrich et al., 2016a)
and train on 2.8M sentence pairs.4 Our model is
word-based instead of relying on byte-pair encod-
ing (Sennrich et al., 2016b). We evaluate on new-
stest2016.
WMT’15 English-German. We use all available
parallel training data, namely Europarl v7, Com-

3Different to the other datasets, we lowercase the training
data and evaluate with case-insensitive BLEU.

4We followed the pre-processing of https:
//github.com/rsennrich/wmt16-scripts/
blob/master/sample/preprocess.sh and added the
back-translated data from http://data.statmt.org/
rsennrich/wmt16_backtranslations/en-ro.

125

hh
LSTM

Die Katze schlief ein <p><p> Die Katze schlief ein <p> <p>

the cat fell

cc

Convolutional
Encoder Networks

Attention Weights

Conditional
Input Computation

LSTM Decoder

Figure 1: Neural machine translation model with single-layer convolutional encoder networks. CNN-a is
on the left and CNN-c is at the right. Embedding layers are not shown.

mon Crawl and News Commentary v10 and ap-
ply the standard Moses tokenization to obtain 3.9M
sentence pairs (Koehn et al., 2007). We report re-
sults on newstest2015.
WMT’14 English-French. We use a commonly
used subset of 12M sentence pairs (Schwenk,
2014), and remove sentences longer than 150
words. This results in 10.7M sentence-pairs for
training. Results are reported on ntst14.

A small subset of the training data serves as vali-
dation set (5% for IWSLT’14 and 1% for WMT) for
early stopping and learning rate annealing (§4.3).
For IWSLT’14, we replace words that occur fewer
than 3 times with a <unk> symbol, which results in
a vocabulary of 24158 English and 35882 German
word types. For WMT datasets, we retain 200K
source and 80K target words. For English-French
only, we set the target vocabulary to 30K types to
be comparable with previous work.

4.2 Model parameters

We use 512 hidden units for both recurrent encoders
and decoders. We reset the decoder hidden states to
zero between sentences. For the convolutional en-
coder, 512 hidden units are used for each layer in
CNN-a, while layers in CNN-c contain 256 units
each. All embeddings, including the output pro-
duced by the decoder before the final linear layer,
are of 256 dimensions. On the WMT corpora, we
find that we can improve the performance of the bi-
directional LSTM models (BiLSTM) by using 512-
dimensional word embeddings.

Model weights are initialized from a uniform
distribution within [−0.05, 0.05]. For convolu-
tional layers, we use a uniform distribution of[
−kd−0.5, kd−0.5

]
, where k is the kernel width (we

use 3 throughout this work) and d is the input size

for the first layer and the number of hidden units
for subsequent layers (Collobert et al., 2011b). For
CNN-c, we transform the input and output with
a linear layer each to match the smaller embed-
ding size. The model parameters were tuned on
IWSLT’14 and cross-validated on the larger WMT
corpora.

4.3 Optimization

Recurrent models are trained with Adam as we
found them to benefit from aggressive optimization.
We use a step width of 3.125 · 10−4 and early stop-
ping based on validation perplexity (Kingma and
Ba, 2014). For non-recurrent encoders, we obtain
best results with stochastic gradient descent (SGD)
and annealing: we use a learning rate of 0.1 and
once the validation perplexity stops improving, we
reduce the learning rate by an order of magnitude
each epoch until it falls below 10−4.

For all models, we use mini-batches of 32 sen-
tences for IWSLT’14 and 64 for WMT. We use
truncated back-propagation through time to limit
the length of target sequences per mini-batch to 25
words. Gradients are normalized by the mini-batch
size. We re-normalize the gradients if their norm
exceeds 25 (Pascanu et al., 2013). Gradients of con-
volutional layers are scaled by sqrt(dim(input))−1

similar to (Collobert et al., 2011b). We use dropout
on the embeddings and decoder outputs hi with a
rate of 0.2 for IWSLT’14 and 0.1 for WMT (Sri-
vastava et al., 2014). All models are implemented
in Torch (Collobert et al., 2011a) and trained on a
single GPU.

4.4 Evaluation

We report accuracy of single systems by train-
ing several identical models with different ran-

126

dom seeds (5 for IWSLT’14, 3 for WMT) and
pick the one with the best validation perplex-
ity for final BLEU evaluation. Translations are
generated by a beam search and we normalize
log-likelihood scores by sentence length. On
IWSLT’14 we use a beam width of 10 and for
WMT models we tune beam width and word
penalty on a separate test set, that is newsdev2016
for WMT’16 English-Romanian, newstest2014
for WMT’15 English-German and ntst1213 for
WMT’14 English-French.5 The word penalty adds
a constant factor to log-likelihoods, except for the
end-of-sentence token.

Prior to scoring the generated translations against
the respective references, we perform unknown
word replacement based on attention scores (Jean
et al., 2015). Unknown words are replaced by look-
ing up the source word with the maximum atten-
tion score in a pre-computed dictionary. If the
dictionary contains no translation, then we simply
copy the source word. Dictionaries were extracted
from the aligned training data that was aligned with
fast align (Dyer et al., 2013). Each source
word is mapped to the target word it is most fre-
quently aligned to.

For convolutional encoders with stacked CNN-c
layers we noticed for some models that the atten-
tion maxima were consistently shifted by one word.
We determine this per-model offset on the above-
mentioned development sets and correct for it. Fi-
nally, we compute case-sensitive tokenized BLEU,
except for WMT’16 English-Romanian where we
use detokenized BLEU to be comparable with Sen-
nrich et al. (2016a).6

5 Results

5.1 Recurrent vs. Non-recurrent Encoders
We first compare recurrent and non-recurrent en-
coders in terms of perplexity and BLEU on
IWSLT’14 with and without position embeddings
(§3.1) and include a phrase-based system (Koehn
et al., 2007). Table 1 shows that a single-layer con-
volutional model with position embeddings (Con-
volutional) can outperform both a uni-directional
LSTM encoder (LSTM) as well as a bi-directional
LSTM encoder (BiLSTM). Next, we increase the
depth of the convolutional encoder. We choose a

5Specifically, we select a beam from {5, 10} and a word
penalty from {0,−0.5,−1,−1.5}

6https://github.com/moses-smt/
mosesdecoder/blob/617e8c8ed1630fb1d1/
scripts/generic/{multi-bleu.perl,
mteval-v13a.pl}

System/Encoder BLEU BLEU PPL
wrd+pos wrd wrd+pos

Phrase-based – 28.4 –

LSTM 27.4 27.3 10.8
BiLSTM 29.7 29.8 9.9

Pooling 26.1 19.7 11.0
Convolutional 29.9 20.1 9.1
Deep Convolutional 6/3 30.4 25.2 8.9

Table 1: Accuracy of encoders with position fea-
tures (wrd+pos) and without (wrd) in terms of
BLEU and perplexity (PPL) on IWSLT’14 Ger-
man to English translation; results include unknown
word replacement. Deep Convolutional 6/3 is the
only multi-layer configuration, more layers for the
LSTMs did not improve accuracy on this dataset.

good setting by independently varying the number
of layers in CNN-a and CNN-c between 1 and 10
and obtained best validation set perplexity with six
layers for CNN-a and three layers for CNN-c. This
configuration outperforms BiLSTM by 0.7 BLEU
(Deep Convolutional 6/3). We investigate depth in
the convolutional encoder more in §5.3.

Among recurrent encoders, the BiLSTM is 2.3
BLEU better than the uni-directional version. The
simple pooling encoder which does not contain any
parameters is only 1.3 BLEU lower than a uni-
directional LSTM encoder and 3.6 BLEU lower
than BiLSTM. The results without position em-
beddings (words) show that position information
is crucial for convolutional encoders. In particu-
lar for shallow models (Pooling and Convolutional),
whereas deeper models are less effected. Recurrent
encoders do not benefit from explicit position in-
formation because this information can be naturally
extracted through the sequential computation.

When tuning model settings, we generally ob-
serve good correlation between perplexity and
BLEU. However, for convolutional encoders per-
plexity gains translate to smaller BLEU improve-
ments compared to recurrent counterparts (Table 1).
We observe a similar trend on larger datasets.

5.2 Evaluation on WMT Corpora
Next, we evaluate the BiLSTM encoder and the
convolutional encoder architecture on three larger
tasks and compare against previously published re-
sults. On WMT’16 English-Romanian translation
we compare to (Sennrich et al., 2016a), the win-
ning single system entry for this language pair.
Their model consists of a bi-directional GRU en-
coder, a GRU decoder and MLP-based attention.

127

WMT’16 English-Romanian Encoder Vocabulary BLEU

(Sennrich et al., 2016a) BiGRU BPE 90K 28.1

Single-layer decoder BiLSTM 80K 27.5
Convolutional 80K 27.1
Deep Convolutional 8/4 80K 27.8

WMT’15 English-German Encoder Vocabulary BLEU

(Jean et al., 2015) RNNsearch-LV BiGRU 500K 22.4
(Chung et al., 2016) BPE-Char BiGRU Char 500 23.9
(Yang et al., 2016) RNNSearch + UNK replace BiLSTM 50K 24.3
+ recurrent attention BiLSTM 50K 25.0

Single-layer decoder BiLSTM 80K 23.5
Deep Convolutional 8/4 80K 23.6

Two-layer decoder Two-layer BiLSTM 80K 24.1
Deep Convolutional 15/5 80K 24.2

WMT’14 English-French (12M) Encoder Vocabulary BLEU

(Bahdanau et al., 2015) RNNsearch BiGRU 30K 28.5
(Luong et al., 2015b) Single LSTM 6-layer LSTM 40K 32.7
(Jean et al., 2014) RNNsearch-LV BiGRU 500K 34.6
(Zhou et al., 2016) Deep-Att Deep BiLSTM 30K 35.9

Single-layer decoder BiLSTM 30K 34.3
Deep Convolutional 8/4 30K 34.6

Two-layer decoder 2-layer BiLSTM 30K 35.3
Deep Convolutional 20/5 30K 35.7

Table 2: Accuracy on three WMT tasks, including results published in previous work. For deep convolu-
tional encoders, we include the number of layers in CNN-a and CNN-c, respectively.

They use byte pair encoding (BPE) to achieve open-
vocabulary translation and dropout in all compo-
nents of the neural network to achieve 28.1 BLEU;
we use the same pre-processing but no BPE (§4).

The results (Table 2) show that a deep convo-
lutional encoder can perform competitively to the
state of the art on this dataset (Sennrich et al.,
2016a). Our bi-directional LSTM encoder baseline
is 0.6 BLEU lower than the state of the art but uses
only 512 hidden units compared to 1024. A single-
layer convolutional encoder with embedding size
256 performs at 27.1 BLEU. Increasing the num-
ber of convolutional layers to 8 in CNN-a and 4
in CNN-c achieves 27.8 BLEU which outperforms
our baseline and is competitive to the state of the
art.

On WMT’15 English to German, we compare to
a BiLSTM baseline and prior work: (Jean et al.,
2015) introduce a large output vocabulary; the
decoder of (Chung et al., 2016) operates on the
character-level; (Yang et al., 2016) uses LSTMs in-
stead of GRUs and feeds the conditional input to the
output layer as well as to the decoder.

Our single-layer BiLSTM baseline is competi-
tive to prior work and a two-layer BiLSTM encoder
performs 0.6 BLEU better at 24.1 BLEU. Previ-
ous work also used multi-layer setups, e.g., (Chung

et al., 2016) has two layers both in the encoder
and the decoder with 1024 hidden units, and (Yang
et al., 2016) use 1000 hidden units per LSTM. We
use 512 hidden units for both LSTM and convolu-
tional encoders. Our convolutional model with ei-
ther 8 or 15 layers in CNN-a outperform the BiL-
STM encoder with both a single decoder layer or
two decoder layers.

Finally, we evaluate on the larger WMT’14
English-French corpus. On this dataset the recur-
rent architectures benefit from an additional layer
both in the encoder and the decoder. For a single-
layer decoder, a deep convolutional encoder outper-
forms the BiLSTM accuracy by 0.3 BLEU and for a
two-layer decoder, our very deep convolutional en-
coder with up to 20 layers outperforms the BiLSTM
by 0.4 BLEU. It has 40% fewer parameters than the
BiLSTM due to the smaller embedding sizes. We
also outperform several previous systems, includ-
ing the very deep encoder-decoder model proposed
by (Luong et al., 2015a). Our best result is just 0.2
BLEU below (Zhou et al., 2016) who use a very
deep LSTM setup with a 9-layer encoder, a 7-layer
decoder, shortcut connections and extensive regu-
larization with dropout and L2 regularization.

128

5.3 Convolutional Encoder Architecture
Details

We next motivate our design of the convolutional
encoder (§3.2). We use the smaller IWSLT’14
German-English setup without unknown word re-
placement to enable fast experimental turn-around.
BLEU results are averaged over three training runs
initialized with different seeds.

Figure 2 shows accuracy for a different number
of layers of both CNNs with and without residual
connections. Our first observation is that computing
the conditional input ci directly over embeddings e
(line ”without CNN-c”) is already working well at
28.3 BLEU with a single CNN-a layer and at 29.1
BLEU for CNN-a with 7 layers (Figure 2a). In-
creasing the number of CNN-c layers is beneficial
up to three layers and beyond this we did not ob-
serve further improvements. Similarly, increasing
the number of layers in CNN-a beyond six does not
increase accuracy on this relatively small dataset. In
general, choosing two to three times as many layers
in CNN-a as in CNN-c is a good rule of thumb.
Without residual connections, the model fails to
utilize the increase in modeling power from addi-
tional layers, and performance drops significantly
for deeper encoders (Figure 2b).

Our convolutional architecture relies on two sets
of networks, CNN-a for attention score computa-
tion ai and CNN-c for the conditional input ci to
be fed to the decoder. We found that using the
same network for both tasks, similar to recurrent
encoders, resulted in poor accuracy of 22.9 BLEU.
This compares to 28.5 BLEU for separate single-
layer networks, or 28.3 BLEU when aggregating
embeddings for ci. Increasing the number of layers
in the single network setup did not help. Figure 2(a)
suggests that the attention weights (CNN-a) need
to integrate information from a wide context which
can be done with a deep stack. At the same time,
the vectors which are averaged (CNN-c) seem to
benefit from a shallower, more local representation
closer to the input words. Two stacks are an easy
way to achieve these contradicting requirements.

In Appendix A we visualize attention scores and
find that alignments for CNN encoders are less
sharp compared to BiLSTMs, however, this does
not affect the effectiveness of unknown word re-
placement once we adjust for shifted maxima. In
Appendix B we investigate whether deep convo-
lutional encoders are required for translating long
sentences and observe that even relatively shallow
encoders perform well on long sentences.

5.4 Training and Generation Speed
For training, we use the fast CuDNN LSTM im-
plementation for layers without attention and ex-
periment on IWSLT’14 with batch size 32. The
single-layer BiLSTM model trains at 4300 target
words/second, while the 6/3 deep convolutional en-
coder compares at 6400 words/second on an NVidia
Tesla M40 GPU. We do not observe shorter over-
all training time since SGD converges slower than
Adam which we use for BiLSTM models.

We measure generation speed on an Intel Haswell
CPU clocked at 2.50GHz with a single thread for
BLAS operations. We use vocabulary selection
which can speed up generation by up to a factor of
ten at no cost in accuracy via making the time to
compute the final output layer negligible (Mi et al.,
2016; L’Hostis et al., 2016). This shifts the focus
from the efficiency of the encoder to the efficiency
of the decoder. On IWSLT’14 (Table 3a) the convo-
lutional encoder increases the speed of the overall
model by a factor of 1.35 compared to the BiLSTM
encoder while improving accuracy by 0.7 BLEU. In
this setup both encoders models have the same hid-
den layer and embedding sizes.

On the larger WMT’15 English-German task
(Table 3b) the convolutional encoder speeds up gen-
eration by 2.1 times compared to a two-layer BiL-
STM. This corresponds to 231 source words/second
with beam size 5. Our best model on this dataset
generates 203 words/second but at slightly lower
accuracy compared to the full vocabulary setting in
Table 2. The recurrent encoder uses larger embed-
dings than the convolutional encoder which were
required for the models to match in accuracy.

The smaller embedding size is not the only rea-
son for the speed-up. In Table 3a (a), we com-
pare a Conv 6/3 encoder and a BiLSTM with equal
embedding sizes. The convolutional encoder is
still 1.34x faster (at 0.7 higher BLEU) although it
requires roughly 1.6x as many FLOPs. We be-
lieve that this is likely due to better cache locality
for convolutional layers on CPUs: an LSTM with
fused gates7 requires two big matrix multiplications
with different weights as well as additions, multi-
plications and non-linearities for each source word,
while the output of each convolutional layer can be
computed as whole with a single matrix multiply.

For comparison, the quantized deep LSTM-
7Our bi-directional LSTM implementation is

based on torch rnnlib which uses fused LSTM gates
(https://github.com/facebookresearch/
torch-rnnlib/) and which we consider an efficient
implementation.

129

 28

 28.5

 29

 29.5

 30

 1 2 3 4 5 6 7 8 9 10

BL
EU

Number of Layers in CNN-a

without CNN-c
1-layer CNN-c
2-layer CNN-c
3-layer CNN-c
4-layer CNN-c

(a) With residual connections

 28

 28.5

 29

 29.5

 30

 1 2 3 4 5 6 7 8 9 10

BL
EU

Number of Layers in CNN-a

1-layer CNN-c, no res.
2-layer CNN-c, no res.
3-layer CNN-c, no res.

(b) Without residual connections

Figure 2: Effect of encoder depth on IWSLT’14 with and without residual connections. The x-axis varies
the number of layers in CNN-a and curves show different CNN-c settings.

Encoder Words/s BLEU

BiLSTM 139.7 22.4
Deep Conv. 6/3 187.9 23.1

(a) IWSLT’14 German-English generation speed on
tst2013 with beam size 10.

Encoder Words/s BLEU

2-layer BiLSTM 109.9 23.6
Deep Conv. 8/4 231.1 23.7
Deep Conv. 15/5 203.3 24.0

(b) WMT’15 English-German generation speed on new-
stest2015 with beam size 5.

Table 3: Generation speed in source words per second on a single CPU core using vocabulary selection.

based model in (Wu et al., 2016) processes 106.4
words/second for English-French on a CPU with
88 cores and 358.8 words/second on a custom TPU
chip. The optimized RNNsearch model and C++
decoder described by (Junczys-Dowmunt et al.,
2016) translates 265.3 words/s on a CPU with a
similar vocabulary selection technique, computing
16 sentences in parallel, i.e., 16.6 words/s on a sin-
gle core.

6 Conclusion

We introduced a simple encoder model for neu-
ral machine translation based on convolutional net-
works. This approach is more parallelizable than
recurrent networks and provides a shorter path to
capture long-range dependencies in the source. We
find it essential to use source position embeddings
as well as different CNNs for attention score com-
putation and conditional input aggregation.

Our experiments show that convolutional en-
coders perform on par or better than baselines based
on bi-directional LSTM encoders. In comparison
to other recent work, our deep convolutional en-
coder is competitive to the best published results
to date (WMT’16 English-Romanian) which are
obtained with significantly more complex models
(WMT’14 English-French) or stem from improve-
ments that are orthogonal to our work (WMT’15
English-German). Our architecture also leads to

large generation speed improvements: translation
models with our convolutional encoder can translate
twice as fast as strong baselines with bi-directional
recurrent encoders.

Future work includes better training to enable
faster convergence with the convolutional encoder
to better leverage the higher processing speed. Our
fast architecture is interesting for character level en-
coders where the input is significantly longer than
for words. Also, we plan to investigate the effec-
tiveness of our architecture on other sequence-to-
sequence tasks, e.g. summarization, constituency
parsing, dialog modeling.

130

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. of ICLR.

James Bradbury and Richard Socher. 2016. MetaMind
Neural Machine Translation System for WMT 2016.
In Proc. of WMT .

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa
Bentivogli, and Marcello Federico. 2014. Report on
the 11th IWSLT evaluation campaign. In Proc. of
IWSLT .

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the Properties
of Neural Machine Translation: Encoder-decoder Ap-
proaches. In Proc. of SSST .

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014b. Learning
Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation. In Proc. of
EMNLP.

Junyoung Chung, Kyunghyun Cho, and Yoshua Bengio.
2016. A Character-level Decoder without Explicit
Segmentation for Neural Machine Translation. arXiv
preprint arXiv:1603.06147 .

Ronan Collobert, Koray Kavukcuoglu, and Clement
Farabet. 2011a. Torch7: A Matlab-like Environment
for Machine Learning. In BigLearn, NIPS Workshop.
http://torch.ch.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011b.
Natural Language Processing (almost) from scratch.
JMLR 12(Aug):2493–2537.

Chris Dyer, Victor Chahuneau, and Noah A Smith. 2013.
A Simple, Fast, and Effective Reparameterization of
IBM Model 2. Proc. of ACL.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep Residual Learning for Image Recog-
nition. In Proc. of CVPR.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8):1735–
1780.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2014. On Using Very Large
Target Vocabulary for Neural Machine Translation.
arXiv preprint arXiv:1412.2007v2 .

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2015. Montreal
Neural Machine Translation systems for WMT15. In
Proc. of WMT . pages 134–140.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu
Hoang. 2016. Is Neural Machine Translation Ready
for Deployment? A Case Study on 30 Translation Di-
rections. arXiv preprint arXiv:1610.01108 .

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
Continuous Translation Models. In Proc. of EMNLP.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural Machine Translation in
Linear Time. arXiv .

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. Proc. of ICLR .

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation. In
Proc. of ACL.

Andrew Lamb and Michael Xie. 2016. Con-
volutional Encoders for Neural Machine Trans-
lation. https://cs224d.stanford.edu/
reports/LambAndrew.pdf. Accessed: 2010-
10-31.

Gurvan L’Hostis, David Grangier, and Michael Auli.
2016. Vocabulary Selection Strategies for Neural Ma-
chine Translation. arXiv preprint arXiv:1610.00072 .

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015a. Effective approaches to attention-
based neural machine translation. In Proc. of
EMNLP.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2015b. Addressing
the Rare Word Problem in Neural Machine Transla-
tion. In Proc. of ACL.

Fandong Meng, Zhengdong Lu, Mingxuan Wang, Hang
Li, Wenbin Jiang, and Qun Liu. 2015. Encoding
Source Language with Convolutional Neural Network
for Machine Translation. In Proc. of ACL.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Vocabulary Manipulation for Neural Machine Trans-
lation. arXiv preprint arXiv:1605.03209 .

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the Difficulty of Training Recurrent Neural
Networks. ICML (3) 28:1310–1318.

Ngoc-Quan Pham, Germn Kruszewski, and Gemma
Boleda. 2016. Convolutional Neural Network Lan-
guage Models. In Proc. of EMNLP.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level Train-
ing with Recurrent Neural Networks. In Proc. of
ICLR.

Holger Schwenk. 2014. http://www-lium.
univ-lemans.fr/˜schwenk/cslm_joint_
paper/. Accessed: 2016-10-15.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Edinburgh neural machine translation systems
for wmt 16.

131

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural Machine Translation of Rare Words
with Subword Units. In Proc. of ACL.

Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent Neural Networks
from overfitting. JMLR 15:1929–1958.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, and
Arthur Szlam. 2015. End-to-end Memory Networks.
In Proc. of NIPS. pages 2440–2448.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to Sequence Learning with Neural Networks.
In Proc. of NIPS. pages 3104–3112.

Zhaopeng Tu, Baotian Hu, Zhengdong Lu, and Hang Li.
2015. Context-dependent Translation selection us-
ing Convolutional Neural Network. In Proc. of ACL-
IJCNLP.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le,
Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s Neural Machine Translation Sys-
tem: Bridging the Gap between Human and Machine
Translation. arXiv preprint arXiv:1609.08144 .

Zichao Yang, Zhiting Hu, Yuntian Deng, Chris Dyer,
and Alex Smola. 2016. Neural Machine Translation
with Recurrent Attention Modeling. arXiv preprint
arXiv:1607.05108 .

Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and Wei
Xu. 2016. Deep Recurrent Models with Fast-Forward
Connections for Neural Machine Translation. arXiv
preprint arXiv:1606.04199 .

132

A Alignment Visualization

In Figure 4 and Figure 5, we plot attention
scores for a sample WMT’15 English-German and
WMT’14 English-French translation with BiLSTM
and deep convolutional encoders. The translation is
on the x-axis and the source sentence on the y-axis.

The attention scores of the BiLSTM output are
sharp but do not necessarily represent a correct
alignment. For CNN encoders the scores are less
focused but still indicate an approximate source lo-
cation, e.g., in Figure 4b, when moving the clause
”over 1,000 people were taken hostage” to the back
of the translation. For some models, attention max-
ima are consistently shifted by one token as both in
Figure 4b and Figure 5b.

Interestingly, convolutional encoders tend to fo-
cus on the last token (Figure 4b) or both the first and
last tokens (Figure 5b). Motivated by the hypothe-
sis that the this may be due to the decoder depend-
ing on the length of the source sentence (which it
cannot determine without position embeddings), we
explicitly provided a distributed representation of
the input length to the decoder and attention mod-
ule. However, this did not cause a change in atten-
tion patterns nor did it improve translation accuracy.

B Performance by Sentence Length

 20

 21

 22

 23

 24

 25

 26

 27

 28

 29

1-7 7-9 9-11
11-13

13-15
15-17

17-19
19-21

21-23
23-26

26-28
28-31

31-35
35-43

43-85

BL
EU

Range of Sentence Lengths

2-layer BiLSTM
Deep Conv. 6/3
Deep Conv. 8/4

Deep Conv. 15/5

Figure 3: BLEU per sentence length on WMT’15
English-German newstest2015. The test set is par-
titioned into 15 equally-sized buckets according to
source sentence length.

One characteristic of our convolutional encoder
architecture is that the context over which outputs
are computed depends on the number of layers.
With bi-directional RNNs, every encoder output de-
pends on the entire source sentence. In Figure 3,
we evaluate whether limited context affects the
translation quality on longer sentences of WMT’15
English-German which often requires moving verbs
over long distances. We sort the newstest2015 test
set by source length, partition it into 15 equally-
sized buckets, and compare the BLEU scores of
models listed in Table 2 on a per-bucket basis.

There is no clear evidence for sub-par transla-
tions on sentences that are longer than the observ-
able context per encoder output. We include a small
encoder with a 6-layer CNN-c and a 3-layer CNN-a
in the comparison which performs worse than a 2-
layer BiLSTM (23.3 BLEU vs. 24.1). With 6 con-
volutional layers at kernel width 3, each encoder
output contains information of 13 adjacent source
words. Looking at the accuracy for sentences with
15 words or more, this relatively shallow CNN is
either on par or better than the BiLSTM for 5 out
of 10 buckets; the BiLSTM has access to the entire
source context. Similar observations can be made
for the deeper convolutional encoders.

133

[1] Vor

[2] zehn

[3] Jahren

[4] wurden

[5] m
ehr

[6] als

[7] 1.000

[8] Menschen

[9] von

[10] tschetschenischen

[11] Käm
pfern

[12] in

[13] einer

[14] Schule

[15] in

[16] Beslan

[17] als

[18] Geiseln

[19] genom
m
en

[20] .

[21] </s>

[1] Ten
[2] years

[3] ago
[4] over

[5] 1,000
[6] people

[7] were
[8] taken

[9] hostage
[10] by

[11] Chechen
[12] militants

[13] at
[14] a

[15] school
[16] in

[17] Beslan
[18] ,

[19] southern
[20] Russia
[21] </s>

0

0.2

0.4

0.6

0.8

(a) 2-layer BiLSTM encoder.

[1] Vor

[2] zehn

[3] Jahren

[4] wurden

[5] von

[6] tschetschenischen

[7] Käm
pfern

[8] in

[9] einer

[10] Schule

[11] in

[12] Beslan

[13] ,

[14] im

[15] Süden

[16] Russlands

[17] ,

[18] über

[19] 1.000

[20] Menschen

[21] als

[22] Geiseln

[23] genom
m
en

[24] .

[25] </s>

[1] Ten
[2] years

[3] ago
[4] over

[5] 1,000
[6] people

[7] were
[8] taken

[9] hostage
[10] by

[11] Chechen
[12] militants

[13] at
[14] a

[15] school
[16] in

[17] Beslan
[18] ,

[19] southern
[20] Russia
[21] </s>

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Deep convolutional encoder with 15-layer CNN-a and 5-layer CNN-c.

Figure 4: Attention scores for WMT’15 English-German translation for a sentence of newstest2015.

134

[1] La

[2] police

[3] de

[4] Phuket

[5] a
[6] interrogé

[7] les

[8] <unk>

[9] pendant

[10] deux

[11] jours

[12] avant

[13] de

[14] faire

[15] la

[16] fabrication

[17] de

[18] l'

[19] histoire

[20] .

[21] </s>

[1] Phuket

[2] police

[3] interviewed

[4] Bamford

[5] for

[6] two

[7] days

[8] before

[9] she

[10] confessed

[11] to

[12] fabricating

[13] the

[14] story

[15] .

[16] </s>

0

0.2

0.4

0.6

0.8

(a) 2-layer BiLSTM encoder.

[1] La

[2] police

[3] de

[4] Phuket

[5] a
[6] interrogé

[7] <unk>

[8] pendant

[9] deux

[10] jours

[11] avant

[12] d'

[13] avoir

[14] avoué

[15] l'

[16] histoire

[17] .

[18] </s>

[1] Phuket

[2] police

[3] interviewed

[4] Bamford

[5] for

[6] two

[7] days

[8] before

[9] she

[10] confessed

[11] to

[12] fabricating

[13] the

[14] story

[15] .

[16] </s>

0

0.1

0.2

0.3

0.4

0.5

0.6

(b) Deep convolutional encoder with 20-layer CNN-a and 5-layer CNN-c.

Figure 5: Attention scores for WMT’14 English-French translation for a sentence of ntst14.

135

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 136–145
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1013

Deep Neural Machine Translation with Linear Associative Unit

Mingxuan Wang1 Zhengdong Lu2 Jie Zhou2 Qun Liu4,5

1Mobile Internet Group, Tencent Technology Co., Ltd
wangmingxuan@ict.ac.cn

2DeeplyCurious.ai
3 Insititute of Deep Learning Research, Baidu Co., Ltd

4 Institute of Computing Technology, Chinese Academy of Sciences
5ADAPT Centre, School of Computing, Dublin City University

Abstract

Deep Neural Networks (DNNs) have
provably enhanced the state-of-the-art
Neural Machine Translation (NMT)
with their capability in modeling com-
plex functions and capturing com-
plex linguistic structures. However
NMT systems with deep architecture
in their encoder or decoder RNNs of-
ten suffer from severe gradient diffu-
sion due to the non-linear recurrent ac-
tivations, which often make the opti-
mization much more difficult. To ad-
dress this problem we propose novel
linear associative units (LAU) to re-
duce the gradient propagation length
inside the recurrent unit. Different
from conventional approaches (LSTM
unit and GRU), LAUs utilizes lin-
ear associative connections between in-
put and output of the recurrent unit,
which allows unimpeded information
flow through both space and time di-
rection. The model is quite simple,
but it is surprisingly effective. Our
empirical study on Chinese-English
translation shows that our model with
proper configuration can improve by
11.7 BLEU upon Groundhog and the
best reported results in the same set-
ting. On WMT14 English-German task
and a larger WMT14 English-French
task, our model achieves comparable
results with the state-of-the-art.

1 Introduction

Neural Machine Translation (NMT) is an end-
to-end learning approach to machine transla-

tion which has recently shown promising re-
sults on multiple language pairs (Luong et al.,
2015; Shen et al., 2015; Wu et al., 2016; Zhang
et al., 2016; Tu et al., 2016; Zhang and Zong,
2016; Jean et al., 2015; Meng et al., 2015). Un-
like conventional Statistical Machine Transla-
tion (SMT) systems (Koehn et al., 2003; Chi-
ang, 2005; Liu et al., 2006; Xiong et al., 2006;
Mi et al., 2008) which consist of multiple sep-
arately tuned components, NMT aims at build-
ing upon a single and large neural network
to directly map input text to associated output
text. Typical NMT models consists of two re-
current neural networks (RNNs), an encoder to
read and encode the input text into a distributed
representation and a decoder to generate trans-
lated text conditioned on the input representa-
tion (Sutskever et al., 2014; Bahdanau et al.,
2014).

Driven by the breakthrough achieved in
computer vision (He et al., 2015; Srivastava
et al., 2015), research in NMT has recently
turned towards studying Deep Neural Net-
works (DNNs). Wu et al. (2016) and Zhou et
al. (2016) found that deep architectures in both
the encoder and decoder are essential for cap-
turing subtle irregularities in the source and tar-
get languages. However, training a deep neu-
ral network is not as simple as stacking lay-
ers. Optimization often becomes increasingly
difficult with more layers. One reasonable ex-
planation is the notorious problem of vanish-
ing/exploding gradients which was first studied
in the context of vanilla RNNs (Pascanu et al.,
2013b). Most prevalent approaches to solve
this problem rely on short-cut connections be-
tween adjacent layers such as residual or fast-
forward connections (He et al., 2015; Srivas-
tava et al., 2015; Zhou et al., 2016). Differ-

136

https://doi.org/10.18653/v1/P17-1013

ent from previous work, we choose to reduce
the gradient path inside the recurrent units and
propose a novel Linear Associative Unit (LAU)
which creates a fusion of both linear and non-
linear transformations of the input. Through
this design, information can flow across sev-
eral steps both in time and in space with lit-
tle attenuation. The mechanism makes it easy
to train deep stack RNNs which can efficiently
capture the complex inherent structures of sen-
tences for NMT. Based on LAUs, we also pro-
pose a NMT model , called DEEPLAU, with
deep architecture in both the encoder and de-
coder.

Although DEEPLAU is fairly simple, it
gives remarkable empirical results. On the
NIST Chinese-English task, DEEPLAU with
proper settings yields the best reported result
and also a 4.9 BLEU improvement over a
strong NMT baseline with most known tech-
niques (e.g, dropout) incorporated. On WMT
English-German and English-French tasks, it
also achieves performance superior or compa-
rable to the state-of-the-art.

2 Neural machine translation

A typical neural machine translation system
is a single and large neural network which
directly models the conditional probability
p(y|x) of translating a source sentence x =
{x1, x2, · · · , xTx} to a target sentence y =
{y1, y2, · · · , yTy}.

Attention-based NMT, with RNNsearch as
its most popular representative, generalizes the
conventional notion of encoder-decoder in us-
ing an array of vectors to represent the source
sentence and dynamically addressing the rele-
vant segments of them during decoding. The
process can be explicitly split into an encoding
part, a decoding part and an attention mech-
anism. The model first encodes the source
sentence x into a sequence of vectors c =
{h1, h2, · · · , hTx}. In general, hi is the anno-
tation of xi from a bi-directional RNN which
contains information about the whole sentence
with a strong focus on the parts of xi. Then, the
RNNsearch model decodes and generates the
target translation y based on the context c and
the partial traslated sequence y<t by maximiz-
ing the probability of p(yi|y<i, c). In the atten-

tion model, c is dynamically obtained accord-
ing to the contribution of the source annotation
made to the word prediction. This is called au-
tomatic alignment (Bahdanau et al., 2014) or
attention mechanism (Luong et al., 2015), but
it is essentially reading with content-based ad-
dressing defined in (Graves et al., 2014). With
this addressing strategy the decoder can attend
to the source representation that is most rele-
vant to the stage of decoding.

Deep neural models have recently achieved
a great success in a wide range of problems. In
computer vision, models with more than 100
convolutional layers have outperformed shal-
low ones by a big margin on a series of im-
age tasks (He et al., 2015; Srivastava et al.,
2015). Following similar ideas of building
deep CNNs, some promising improvements
have also been achieved on building deep NMT
systems. Zhou et al. (2016) proposed a new
type of linear connections between adjacent
layers to simplify the training of deeply stacked
RNNs. Similarly, Wu et al. (2016) introduced
residual connections to their deep neural ma-
chine translation system and achieve great im-
provements. However the optimization of deep
RNNs is still an open problem due to the mas-
sive recurrent computation which makes the
gradient propagation path extremely tortuous.

3 Model Description

In this section, we discuss Linear Associative
Unit (LAU) to ease the training of deep stack
of RNNs. Based on this idea, we further pro-
pose DEEPLAU, a neural machine translation
model with a deep encoder and decoder.

3.1 Recurrent Layers

A recurrent neural network (Williams and
Zipser, 1989) is a class of neural network
that has recurrent connections and a state (or
its more sophisticated memory-like extension).
The past information is built up through the
recurrent connections. This makes RNN ap-
plicable for sequential prediction tasks of ar-
bitrary length. Given a sequence of vectors
x = {x1,x2, · · · ,xT } as input, a standard
RNN computes the sequence hidden states h =
{h1,h2, · · · ,hT } by iterating the following

137

equation from t = 1 to t = T :

ht = φ(xt,ht−1) (1)

φ is usually a nonlinear function such as com-
position of a logistic sigmoid with an affine
transformation.

3.2 Gated Recurrent Unit
It is difficult to train RNNs to capture long-
term dependencies because the gradients tend
to either vanish (most of the time) or ex-
plode. The effect of long-term dependencies is
dropped exponentially with respect to the gra-
dient propagation length. The problem was ex-
plored in depth by (Hochreiter and Schmidhu-
ber, 1997; Pascanu et al., 2013b). A successful
approach is to design a more sophisticated acti-
vation function than a usual activation function
consisting of gating functions to control the
information flow and reduce the propagation
path. There is a long thread of work aiming
to solve this problem, with the long short-term
memory units (LSTM) being the most salient
examples and gated recurrent unit (GRU) being
the most recent one (Hochreiter and Schmidhu-
ber, 1997; Cho et al., 2014). RNNs employing
either of these recurrent units have been shown
to perform well in tasks that require capturing
long-term dependencies.

GRU can be viewed as a slightly more dra-
matic variation on LSTM with fewer parame-
ters. The activation function is armed with two
specifically designed gates called update and
reset gates to control the flow of information
inside each hidden unit. Each hidden state at
time-step t is computed as follows

ht = (1− zt)� ht−1 + zt � h̃t (2)

where � is an element-wise product, zt is the
update gate, and h̃t is the candidate activation.

h̃t = tanh(Wxhxt +Whh(rt � ht−1)) (3)

where rt is the reset gate. Both reset and update
gates are computed as :

rt = σ(Wxrxt +Whrht−1) (4)

zt = σ(Wxzxt +Whzht−1) (5)

This procedure of taking a linear sum between
the existing state and the newly computed state
is similar to the LSTM unit.

3.3 Linear Associative Unit
GRU can actually be viewed as a non-linear ac-
tivation function with gating mechanism. Here
we propose LAU which extends GRU by hav-
ing an additional linear transformation of the
input in its dynamics. More formally, the state
update function becomes

ht =((1− zt)� ht−1 + zt � h̃t)� (1− gt)

+ gt �H(xt).

(6)

Here the updated ht has three sources: 1) the
direct transfer from previous state ht−1, 2) the
candidate update h̃t, and 3) a direct contribu-
tion from the input H(xt). More specifically,
h̃t contains the nonlinear information of the in-
put and the previous hidden state.

h̃t = tanh(ft� (Wxhxt)+rt� (Whhht−1)),
(7)

where ft and rt express how much of the non-
linear abstraction are produced by the input xt
and previous hidden state ht, respectively. For
simplicity, we set ft = 1 − rt in this paper
and find that this works well in our experi-
ments. The term H(xt) is usually an affine
linear transformation of the input xt to mach
the dimensions of ht, where H(xt) = Wxxt.
The associated term gt (the input gate) decides
how much of the linear transformation of the
input is carried to the hidden state and then the
output. The gating function rt (reset gate) and
zt (update gate) are computed following Equa-
tion (4) and (5) while gt is computed as

gt = σ(Wxgxt +Whght−1). (8)

The term gt � H(xt) therefore offers a di-
rect way for input xt to go to later hidden lay-
ers, which can eventually lead to a path to the
output layer when applied recursively. This
mechanism is potentially very useful for trans-
lation where the input, no matter whether it is
the source word or the attentive reading (con-
text), should sometimes be directly carried to
the next stage of processing without any sub-
stantial composition or nonlinear transforma-
tion. To understand this, imagine we want to
translate a English sentence containing a rela-
tive rare entity name such as “Bahrain” to Chi-
nese: LAU is potentially able to retain the em-
bedding of this word in its hidden state, which

138

will otherwise be prone to serious distortion
due to the scarcity of training instances for it.

3.4 DEEPLAU

•••

•••

•••

•••

•••

•••

𝑥1 𝑥2 𝑥𝑛 <s> 𝑦1 𝑦𝑚

Attention

•••

•••

•••

softmax
𝑦1 𝑦2 </s>

𝑐𝑡

𝑠𝑖

Encoder Decoder

Figure 1: DEEPLAU: a neural machine trans-
lation model with deep encoder and decoder.

Graves et al. (2013) explored the advantages
of deep RNNs for handwriting recognition and
text generation. There are multiple ways of
combining one layer of RNN with another.
Pascanu et al. (2013a) introduced Deep Tran-
sition RNNs with Skip connections (DT(S)-
RNNs). Kalchbrenner et al. (2015) proposed to
make a full connection of all the RNN hidden
layers. In this work we employ vertical stack-
ing where only the output of the previous layer
of RNN is fed to the current layer as input. The
input at recurrent layer ` (denoted as x`t) is ex-
actly the output of the same time step at layer
` − 1 (denoted as h`−1t). Additionally, in or-
der to learn more temporal dependencies, the
sequences can be processed in different direc-
tions. More formally, given an input sequence
x = (x1, ...,xT), the output on layer ` is

h
(`)
t =

{
xt, ` = 1

φ`(h
(`)
t+d,h

(`−1)
t), ` > 1

(9)

where

• h
(`)
t gives the output of layer ` at location
t.

• φ is a recurrent function and we choose
LAUs in this work.

• The directions are marked by a direction
term d ∈ {−1, 1}. If we fixed d to −1,
the input will be processed in forward di-
rection, otherwise backward direction.

The deep architecture of DEEPLAU, as
shown in Figure 1, consists of three parts: a
stacked LAU-based encoder, a stacked LAU-
based decoder and an improved attention
model.

Encoder One shortcoming of conventional
RNNs is that they are only able to make use
of previous context. In machine translation,
where whole source utterances are transcribed
at once, there is no reason not to exploit fu-
ture context as well. Thus bi-directional RNNs
are proposed to integrate information from the
past and the future. The typical bidirectional
approach processes the raw input in backward
and forward direction with two separate lay-
ers, and then concatenates them together. Fol-
lowing Zhou et al. (2016), we choose another
bidirectional approach to process the sequence
in order to learn more temporal dependencies
in this work. Specifically, an RNN layer pro-
cesses the input sequence in forward direction.
The output of this layer is taken by an upper
RNN layer as input, processed in reverse direc-
tion. Formally, following Equation (9), we set
d = (−1)`. This approach can easily build a
deeper network with the same number of pa-
rameters compared to the classical approach.
The final encoder consists of Lenc layers and
produces the output hLenc to compute the con-
ditional input c to the decoder.

Attention Model The alignment model αt,j
scores how well the output at position t
matches the inputs around position j based on
s1t−1 and hLenc

j where hLenc
j is the top-most layer

of the encoder at step j and s1t−1 is the first
layer of decoder at step t − 1. It is intu-
itively beneficial to exploit the information of
yt−1 when reading from the source sentence
representation, which is missing from the im-
plementation of attention-based NMT in (Bah-
danau et al., 2014). In this work, we build a
more effective alignment path by feeding both
the previous hidden state s1t−1 and the context
word yt−1 to the attention model, inspired by
the recent implementation of attention-based

139

NMT1. The conditional input cj is a weighted
sum of attention score αt,j and encoder output
hLenc . Formally, the calculation of cj is

cj =

t=Lx∑

t=1

αt,jh
Lenc
t (10)

where

et,j = vTa σ(Was
1
t−1 +Uah

Lenc
j +Wyyt−1)

αt,j = softmax(et,j).
(11)

σ is a nonlinear function with the informa-
tion of yt−1 (its word embedding being yt−1)
added. In our preliminary experiments, we
found that GRU works slightly better than tanh
function, but we chose the latter for simplicity.

Decoder The decoder follows Equation (9)
with fixed direction term d = −1. At the first
layer, we use the following input:

xt = [ct,yt−1]

where yt−1 is the target word embedding at
time step t, ct is dynamically obtained follows
Equation (10). There are Ldec layers of RNNs
armed with LAUs in the decoder. At infer-
ence stage, we only utilize the top-most hidden
states sLdec to make the final prediction with a
softmax layer:

p(yi|y<i,x) = softmax(Wos
Ldec
i) (12)

.

4 Experiments

4.1 Setup

We mainly evaluated our approaches on the
widely used NIST Chinese-English translation
task. In order to show the usefulness of our
approaches, we also provide results on other
two translation tasks: English-French, English-
German. The evaluation metric is BLEU2 (Pa-
pineni et al., 2002).

For Chinese-English, our training data con-
sists of 1.25M sentence pairs extracted from

1github.com/nyu-dl/dl4mt-tutorial/
tree/master/session2

2 For Chinese-English task, we apply case-insensitive
NIST BLEU. For other tasks, we tokenized the reference
and evaluated the performance with multi-bleu.pl. The
metrics are exactly the same as in previous work.

LDC corpora3, with 27.9M Chinese words and
34.5M English words respectively. We choose
NIST 2002 (MT02) dataset as our development
set, and the NIST 2003 (MT03), 2004 (MT04)
2005 (MT05) and 2006 (MT06) datasets as our
test sets.

For English-German, to compare with the
results reported by previous work (Luong et al.,
2015; Zhou et al., 2016; Jean et al., 2015), we
used the same subset of the WMT 2014 train-
ing corpus that contains 4.5M sentence pairs
with 91M English words and 87M German
words. The concatenation of news-test 2012
and news-test 2013 is used as the validation set
and news-test 2014 as the test set.

To evaluate at scale, we also report the re-
sults of English-French. To compare with the
results reported by previous work on end-to-
end NMT (Sutskever et al., 2014; Bahdanau
et al., 2014; Jean et al., 2015; Luong et al.,
2014; Zhou et al., 2016), we used the same sub-
set of the WMT 2014 training corpus that con-
tains 12M sentence pairs with 304M English
words and 348M French words. The concate-
nation of news-test 2012 and news-test 2013
serves as the validation set and news-test 2014
as the test set.

4.2 Training details
Our training procedure and hyper parameter
choices are similar to those used by (Bahdanau
et al., 2014). In more details, we limit the
source and target vocabularies to the most fre-
quent 30K words in both Chinese-English and
English-French. For English-German, we set
the source and target vocabularies size to 120K
and 80K, respectively.

For all experiments, the dimensions of word
embeddings and recurrent hidden states are
both set to 512. The dimension of ct is also
of size 512. Note that our network is more
narrow than most previous work where hidden
states of dimmention 1024 is used. we initial-
ize parameters by sampling each element from
the Gaussian distribution with mean 0 and vari-
ance 0.042.

Parameter optimization is performed using
stochastic gradient descent. Adadelta (Zeiler,

3The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

140

SYSTEM MT03 MT04 MT05 MT06 AVE.
Existing systems

Moses 31.61 33.48 30.75 30.85 31.67
Groundhog 31.92 34.09 31.56 31.12 32.17
COVERAGE 34.49 38.34 34.91 34.25 35.49
MEMDEC 36.16 39.81 35.91 35.98 36.95

Our deep NMT systems
DEEPGRU 33.21 36.76 33.05 33.30 34.08
DEEPLAU 39.35 41.15 38.07 37.29 38.97
DEEPLAU +Ensemble + PosUnk 42.21 43.85 44.75 42.58 43.35

Table 1: Case-insensitive BLEU scores on Chinese-English translation.

2012) is used to automatically adapt the learn-
ing rate of each parameter (ε = 10−6 and
ρ = 0.95). To avoid gradient explosion, the
gradients of the cost function which had `2
norm larger than a predefined threshold τ were
normalized to the threshold (Pascanu et al.,
2013a). We set τ to 1.0 at the beginning and
halve the threshold until the BLEU score does
not change much on the development set. Each
SGD is a mini-batch of 128 examples. We train
our NMT model with the sentences of length
up to 80 words in the training data, while for
the Moses system we use the full training data.
Translations are generated by a beam search
and log-likelihood scores are normalized by
sentence length. We use a beam width of 10
in all the experiments. Dropout was also ap-
plied on the output layer to avoid over-fitting.
The dropout rate is set to 0.5. Except when
otherwise mentioned, NMT systems are have 4
layers encoders and 4 layers decoders.

4.3 Results on Chinese-English
Translation

Table 1 shows BLEU scores on Chinese-
English datasets. Clearly DEEPLAU leads to
a remarkable improvement over their competi-
tors. Compared to DEEPGRU, DEEPLAU is
+4.89 BLEU score higher on average four test
sets, showing the modeling power gained from
the liner associative connections. We suggest it
is because LAUs apply adaptive gate function
conditioned on the input which make it able to
automatically decide how much linear informa-
tion should be transferred to the next step.

To show the power of DEEPLAU, we also
make a comparison with previous work. Our

best single model outperforms both a phrased-
based MT system (Moses) as well as an open
source attention-based NMT system (Ground-
hog) by +7.3 and +6.8 BLEU points respec-
tively on average. The result is also bet-
ter than some other state-of-the-art variants of
attention-based NMT mode with big margins.
After PosUnk and ensemble, DEEPLAU seizes
another notable gain of +4.38 BLEU and out-
perform Moses by +11.68 BLEU.

4.4 Results on English-German
Translation

The results on English-German translation are
presented in Table 2. We compare our NMT
systems with various other systems including
the winning system in WMT14 (Buck et al.,
2014), a phrase-based system whose language
models were trained on a huge monolingual
text, the Common Crawl corpus. For end-to-
end NMT systems, to the best of our knowl-
edge, Wu et al. (2016) is currently the SOTA
system and about 4 BLEU points on top of pre-
viously best reported results even though Zhou
et al. (2016) used a much deeper neural net-
work4.

Following Wu et al. (2016), the BLEU score
represents the averaged score of 8 models we
trained. Our approach achieves comparable re-
sults with SOTA system. As can be seen from
the Table 2, DeepLAU performs better than the
word based model and even not much worse
than the best wordpiece models achieved by
Wu et al. (2016). Note that DEEPLAU are sim-

4It is also worth mentioning that the result reported
by Zhou et al. (2016) does not include PosUnk, and this
comparison is not fair enough.

141

SYSTEM Architecture Voc. BLEU
Existing systems

Buck et al. (2014) Winning WMT14 system phrase-based + large LM - 20.7

Jean et al. (2015) gated RNN with search + LV + PosUnk 500K 19.4
Luong et al. (2015) LSTM with 4 layers + dropout + local att. + PosUnk 80K 20.9
Shen et al. (2015) gated RNN with search + PosUnk + MRT 80K 20.5
Zhou et al. (2016) LSTM with 16 layers + F-F connections 80K 20.6
Wu et al. (2016) LSTM with 8 laysrs + RL-refined Word 80K 23.1
Wu et al. (2016) LSTM with 8 laysrs + RL-refined WPM-32K - 24.6
Wu et al. (2016) LSTM with 8 laysrs + RL-refined WPM-32K + Ensemble - 26.3

Our deep NMT systems
this work DEEPLAU 80K 22.1(±0.3)
this work DEEPLAU + PosUnk 80K 23.8(±0.3)
this work DEEPLAU + PosUnk + Ensemble 8 models 80K 26.1

Table 2: Case-sensitive BLEU scores on German-English translation.

ple and easy to implement, as opposed to previ-
ous models reported in Wu et al. (2016), which
dependends on some external techniques to
achieve their best performance, such as their
introduction of length normalization, coverage
penalty, fine-tuning and the RL-refined model.

4.5 Results on English-French Translation

SYSTEM BLEU
Enc-Dec (Luong et al., 2014) 30.4
RNNsearch (Bahdanau et al., 2014) 28.5
RNNsearch-LV (Jean et al., 2015) 32.7
Deep-Att (Zhou et al., 2016) 35.9

DEEPLAU 35.1

Table 3: English-to-French task: BLEU scores
of single neural models.

To evaluate at scale, we also show the re-
sults on an English-French task with 12M sen-
tence pairs and 30K vocabulary in Table 3.
Luong et al. (2014) achieves BLEU score of
30.4 with a six layers deep Encoder-Decoder
model. The two attention models, RNNSearch
and RNNsearch-LV achieve BLEU scores of
28.5 and 32.7 respectively. The previous best
single NMT Deep-Att model with an 18 layers
encoder and 7 layers decoder achieves BLEU
score of 35.9. For DEEPLAU, we obtain the
BLEU score of 35.1 with a 4 layers encoder
and 4 layers decoder, which is on par with
the SOTA system in terms of BLEU. Note that

Zhou et al. (2016) utilize a much larger depth
as well as external alignment model and exten-
sive regularization to achieve their best results.

4.6 Analysis
Then we will study the main factors that in-
fluence our results on NIST Chinese-English
translation task. We also compare our approach
with two SOTA topologies which were used in
building deep NMT systems.

• Residual Networks (ResNet) are among
the pioneering works (Szegedy et al.,
2016; He et al., 2016) that utilize extra
identity connections to enhance informa-
tion flow such that very deep neural net-
works can be effectively optimized. Share
the similar idea, Wu et al. (2016) intro-
duced to leverage residual connections to
train deep RNNs.

• Fast Forward (F-F) connections were pro-
posed to reduce the propagation path
length which is the pioneer work to sim-
plify the training of deep NMT model
(Zhou et al., 2016). The work can be
viewed as a parametric ResNet with short
cut connections between adjacent layers.
The procedure takes a linear sum between
the input and the newly computed state.

LAU vs. GRU Table 4 shows the effect of
the novel LAU. By comparing row 3 to row 7,
we see that when LEnc and LDec are set to 2,

142

SYSTEM (Lenc,LDec) width AVE.
1 DEEPGRU (2,1) 512 33.59
2 DEEPGRU (2,2) 1024 34.68
3 DEEPGRU (2,2) 512 34.91
4 DEEPGRU (4,4) 512 34.08

5 4+ResNet (4,4) 512 36.40
6 4+F-F (4,4) 512 37.62

7 DEEPLAU (2,2) 512 37.65
8 DEEPLAU (4,4) 512 38.97
9 DEEPLAU (8,6) 512 39.01
10 DEEPLAU (8,6) 256 38.91

Table 4: BLEU scores of DEEPLAU and
DEEPGRU with different model sizes.

the average BLEU scores achieved by DEEP-
GRU and DEEPLAU are 34.68 and 37.65, re-
spectively. LAU can bring an improvement of
2.97 in terms of BLEU. After increasing the
model depth to 4 (row 4 and row 6), the im-
provement is enlarged to 4.91. When DEEP-
GRU is trained with larger depth (say, 4), the
training becomes more difficult and the perfor-
mance falls behind its shallow partner. While
for DEEPLAU, as can be see in row 9, with
increasing the depth even to LEnc = 8 and
LDec = 6 we can still obtain growth by 0.04
BLEU score. Compared to previous short-
cut connection methods (row 5 and row 6),
The LAU still achieve meaningful improve-
ments over F-F connections and Residual con-
nections by +1.35 and +2.57 BLEU points re-
spectively.

DEEPLAU introduces more parameters than
DEEPGRU. In order to figure out the effect of
DEEPLAU comparing models with the same
parameter size, we increase the hidden size of
DEEPGRU model. Row 3 shows that, after us-
ing a twice larger GRU layer, the BLEU score
is 34.68, which is still worse than the corre-
sponding DEEPLAU model with fewer param-
eters.

Depth vs. Width Next we will study the
model size. In Table 4, starting from LEnc = 2
and LDec = 2 and gradually increasing the
model depth, we can achieve substantial im-
provements in terms of BLEU. With LEnc = 8
and LDec = 6, our DEEPLAU model yields
the best BLEU score. We tried to increase

the model depth with the same hidden size but
failed to see further improvements.

We then tried to increase the hidden size. By
comparing row 2 and row 3, we find the im-
provements is relative small with a wider hid-
den size. It is also worth mentioning that a deep
and thin network with fewer parameters can
still achieve comparable results with its shal-
low partner. This suggests that depth plays a
more important role in increasing the complex-
ity of neural networks than width and our de-
liberately designed LAU benefit from the opti-
mizing of such a deep model.

 26

 28

 30

 32

 34

 36

 38

 40

 42

 44

10 20 30 40 50 60

B
L

E
U

(%
)

sentence length (Merge)

LAU(4/4)
LAU(2/2)
GRU(4/4)

Figure 2: The BLEU scores of generated trans-
lations on the merged four test sets with respect
to the lengths of source sentences.

About Length A more detailed comparison
between DEEPLAU (4 layers encoder and 4
layers decoder), DEEPLAU(2 layer encoder
and 2 layer decoder) and DEEPGRU (4 lay-
ers encoder and 4 layers decoder), suggest
that with deep architectures are essential to
the superior performance of our system. In
particular, we test the BLEU scores on sen-
tences longer than {10, 20, 30, 40, 50, 60} on
the merged test set. Clearly, in all curves,
performance degrades with increased sentence
length. However, DEEPLAU models yield
consistently higher BLEU scores than the
DEEPGRU model on longer sentences. These
observations are consistent with our intuition
that very deep RNN model is especially good
at modeling the nested latent structures on rel-
atively complicated sentences and LAU plays
an important role on optimizing such a com-
plex deep model.

143

5 Conclusion

We propose a Linear Associative Unit (LAU)
which makes a fusion of both linear and non-
linear transformation inside the recurrent unit.
On this way, gradients decay much slower
compared to the standard deep networks which
enable us to build a deep neural network
for machine translation. Our empirical study
shows that it can significantly improve the per-
formance of NMT.

6 acknowledge

We sincerely thank the anonymous reviewers
for their thorough reviewing and valuable sug-
gestions. Wang’s work is partially supported
by National Science Foundation for Deep Se-
mantics Based Uighur to Chinese Machine
Translation (ID 61662077). Qun Liu’s work is
partially supported by Science Foundation Ire-
land in the ADAPT Centre for Digital Content
Technology (www.adaptcentre.ie) at Dublin
City University funded under the SFI Research
Centres Programme (Grant 13/RC/2106) co-
funded under the European Regional Develop-
ment Fund.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. arXiv
preprint arXiv:1409.0473 .

Christian Buck, Kenneth Heafield, and Bas
Van Ooyen. 2014. N-gram counts and language
models from the common crawl. In LREC. Cite-
seer, volume 2, page 4.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of the 43rd Annual Meeting on Associ-
ation for Computational Linguistics. Association
for Computational Linguistics, pages 263–270.

Kyunghyun Cho, Bart Van Merriënboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014.
Learning phrase representations using rnn
encoder-decoder for statistical machine transla-
tion. arXiv preprint arXiv:1406.1078 .

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 .

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401 .

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. 2015. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385 .

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and
Jian Sun. 2016. Deep residual learning for image
recognition. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recogni-
tion. pages 770–778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Sébastien Jean, Kyunghyun Cho, Roland Memise-
vic, and Yoshua Bengio. 2015. On using very
large target vocabulary for neural machine trans-
lation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 1–10.
http://www.aclweb.org/anthology/P15-1001.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves.
2015. Grid long short-term memory. arXiv
preprint arXiv:1507.01526 .

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In
Proceedings of the 2003 Conference of the
North American Chapter of the Association for
Computational Linguistics on Human Language
Technology-Volume 1. Association for Computa-
tional Linguistics, pages 48–54.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment template for statistical ma-
chine translation. In Proceedings of the 21st
International Conference on Computational Lin-
guistics and the 44th annual meeting of the As-
sociation for Computational Linguistics. Associ-
ation for Computational Linguistics, pages 609–
616.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D Manning. 2015. Effective approaches
to attention-based neural machine translation.
arXiv preprint arXiv:1508.04025 .

Minh-Thang Luong, Ilya Sutskever, Quoc V
Le, Oriol Vinyals, and Wojciech Zaremba.
2014. Addressing the rare word problem in
neural machine translation. arXiv preprint
arXiv:1410.8206 .

Fandong Meng, Zhengdong Lu, Zhaopeng Tu,
Hang Li, and Qun Liu. 2015. Neural transforma-
tion machine: A new architecture for sequence-
to-sequence learning. CoRR abs/1506.06442.
http://arxiv.org/abs/1506.06442.

144

Haitao Mi, Liang Huang, and Qun Liu. 2008.
Forest-based translation. In ACL. pages 192–
199.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of the 40th annual meeting on associ-
ation for computational linguistics. Association
for Computational Linguistics, pages 311–318.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun
Cho, and Yoshua Bengio. 2013a. How to con-
struct deep recurrent neural networks. arXiv
preprint arXiv:1312.6026 .

Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. 2013b. On the difficulty of training recur-
rent neural networks. ICML (3) 28:1310–1318.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He,
Hua Wu, Maosong Sun, and Yang Liu. 2015.
Minimum risk training for neural machine trans-
lation. arXiv preprint arXiv:1512.02433 .

Rupesh K Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Training very deep net-
works. In Advances in neural information pro-
cessing systems. pages 2377–2385.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
2014. Sequence to sequence learning with neu-
ral networks. In Advances in neural information
processing systems. pages 3104–3112.

Christian Szegedy, Sergey Ioffe, Vincent Van-
houcke, and Alex Alemi. 2016. Inception-
v4, inception-resnet and the impact of resid-
ual connections on learning. arXiv preprint
arXiv:1602.07261 .

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua
Liu, and Hang Li. 2016. Modeling coverage for
neural machine translation. ArXiv eprints, Janu-
ary .

Ronald J Williams and David Zipser. 1989. A
learning algorithm for continually running fully
recurrent neural networks. Neural computation
1(2):270–280.

Yonghui Wu, Mike Schuster, Zhifeng Chen,
Quoc V Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao,
Klaus Macherey, et al. 2016. Google’s neural
machine translation system: Bridging the gap
between human and machine translation. arXiv
preprint arXiv:1609.08144 .

Deyi Xiong, Qun Liu, and Shouxun Lin. 2006.
Maximum entropy based phrase reordering
model for statistical machine translation. In Pro-
ceedings of the 21st International Conference on
Computational Linguistics and the 44th annual

meeting of the Association for Computational
Linguistics. Association for Computational Lin-
guistics, pages 521–528.

Matthew D Zeiler. 2012. Adadelta: an adap-
tive learning rate method. arXiv preprint
arXiv:1212.5701 .

Biao Zhang, Deyi Xiong, and Jinsong Su. 2016.
Variational neural machine translation. arXiv
preprint arXiv:1605.07869 .

Jiajun Zhang and Chengqing Zong. 2016. Exploit-
ing source-side monolingual data in neural ma-
chine translation. In Proceedings of EMNLP.

Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and
Wei Xu. 2016. Deep recurrent models with fast-
forward connections for neural machine transla-
tion. arXiv preprint arXiv:1606.04199 .

145

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 146–157
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1014

Neural AMR: Sequence-to-Sequence Models for Parsing and Generation

Ioannis Konstas† Srinivasan Iyer† Mark Yatskar†
Yejin Choi† Luke Zettlemoyer†‡

†Paul G. Allen School of Computer Science & Engineering, Univ. of Washington, Seattle, WA
{ikonstas,sviyer,my89,yejin,lsz}@cs.washington.edu

‡Allen Institute for Artificial Intelligence, Seattle, WA
lukez@allenai.org

Abstract

Sequence-to-sequence models have shown
strong performance across a broad range
of applications. However, their applica-
tion to parsing and generating text using
Abstract Meaning Representation (AMR)
has been limited, due to the relatively lim-
ited amount of labeled data and the non-
sequential nature of the AMR graphs. We
present a novel training procedure that can
lift this limitation using millions of unla-
beled sentences and careful preprocessing
of the AMR graphs. For AMR parsing, our
model achieves competitive results of 62.1
SMATCH, the current best score reported
without significant use of external seman-
tic resources. For AMR generation, our
model establishes a new state-of-the-art
performance of BLEU 33.8. We present
extensive ablative and qualitative analysis
including strong evidence that sequence-
based AMR models are robust against
ordering variations of graph-to-sequence
conversions.

1 Introduction

Abstract Meaning Representation (AMR) is a se-
mantic formalism to encode the meaning of natu-
ral language text. As shown in Figure 1, AMR rep-
resents the meaning using a directed graph while
abstracting away the surface forms in text. AMR
has been used as an intermediate meaning repre-
sentation for several applications including ma-
chine translation (MT) (Jones et al., 2012), sum-
marization (Liu et al., 2015), sentence compres-
sion (Takase et al., 2016), and event extraction
(Huang et al., 2016). While AMR allows for rich
semantic representation, annotating training data
in AMR is expensive, which in turn limits the use

Obama was elected and his voters celebrated

Obama

elect.01 celebrate.01

vote.01

and *

op1 op2

ARG0
poss

ARG0

person
name

name
op1

person

ARG0-of

Figure 1: An example sentence and its cor-
responding Abstract Meaning Representation
(AMR). AMR encodes semantic dependencies be-
tween entities mentioned in the sentence, such as
“Obama” being the “arg0” of the verb “elected”.

of neural network models (Misra and Artzi, 2016;
Peng et al., 2017; Barzdins and Gosko, 2016).

In this work, we present the first success-
ful sequence-to-sequence (seq2seq) models that
achieve strong results for both text-to-AMR pars-
ing and AMR-to-text generation. Seq2seq models
have been broadly successful in many other appli-
cations (Wu et al., 2016; Bahdanau et al., 2015;
Luong et al., 2015; Vinyals et al., 2015). How-
ever, their application to AMR has been limited,
in part because effective linearization (encoding
graphs as linear sequences) and data sparsity were
thought to pose significant challenges. We show
that these challenges can be easily overcome, by
demonstrating that seq2seq models can be trained
using any graph-isomorphic linearization and that
unlabeled text can be used to significantly reduce
sparsity.

Our approach is two-fold. First, we introduce a
novel paired training procedure that enhances both
the text-to-AMR parser and AMR-to-text genera-
tor. More concretely, first we use self-training to

146

https://doi.org/10.18653/v1/P17-1014

bootstrap a high quality AMR parser from mil-
lions of unlabeled Gigaword sentences (Napoles
et al., 2012) and then use the automatically parsed
AMR graphs to pre-train an AMR generator. This
paired training allows both the parser and genera-
tor to learn high quality representations of fluent
English text from millions of weakly labeled ex-
amples, that are then fine-tuned using human an-
notated AMR data.

Second, we propose a preprocessing procedure
for the AMR graphs, which includes anonymizing
entities and dates, grouping entity categories, and
encoding nesting information in concise ways, as
illustrated in Figure 2(d). This preprocessing pro-
cedure helps overcoming the data sparsity while
also substantially reducing the complexity of the
AMR graphs. Under such a representation, we
show that any depth first traversal of the AMR is
an effective linearization, and it is even possible to
use a different random order for each example.

Experiments on the LDC2015E86 AMR cor-
pus (SemEval-2016 Task 8) demonstrate the ef-
fectiveness of the overall approach. For parsing,
we are able to obtain competitive performance of
62.1 SMATCH without using any external anno-
tated examples other than the output of a NER
system, an improvement of over 10 points rela-
tive to neural models with a comparable setup.
For generation, we substantially outperform previ-
ous best results, establishing a new state of the art
of 33.8 BLEU. We also provide extensive ablative
and qualitative analysis, quantifying the contribu-
tions that come from preprocessing and the paired
training procedure.

2 Related Work

Alignment-based Parsing Flanigan et al.
(2014) (JAMR) pipeline concept and relation
identification with a graph-based algorithm. Zhou
et al. (2016) extend JAMR by performing the
concept and relation identification tasks jointly
with an incremental model. Both systems rely on
features based on a set of alignments produced
using bi-lexical cues and hand-written rules. In
contrast, our models train directly on parallel cor-
pora, and make only minimal use of alignments to
anonymize named entities.

Grammar-based Parsing Wang et al. (2016)
(CAMR) perform a series of shift-reduce transfor-
mations on the output of an externally-trained de-
pendency parser, similar to Damonte et al. (2017),

Brandt et al. (2016), Puzikov et al. (2016), and
Goodman et al. (2016). Artzi et al. (2015) use
a grammar induction approach with Combinatory
Categorical Grammar (CCG), which relies on pre-
trained CCGBank categories, like Bjerva et al.
(2016). Pust et al. (2015) recast parsing as a
string-to-tree Machine Translation problem, us-
ing unsupervised alignments (Pourdamghani et al.,
2014), and employing several external semantic
resources. Our neural approach is engineering
lean, relying only on a large unannotated corpus
of English and algorithms to find and canonicalize
named entities.

Neural Parsing Recently there have been a few
seq2seq systems for AMR parsing (Barzdins and
Gosko, 2016; Peng et al., 2017). Similar to our
approach, Peng et al. (2017) deal with sparsity by
anonymizing named entities and typing low fre-
quency words, resulting in a very compact vocab-
ulary (2k tokens). However, we avoid reducing our
vocabulary by introducing a large set of unlabeled
sentences from an external corpus, therefore dras-
tically lowering the out-of-vocabulary rate (see
Section 6).

AMR Generation Flanigan et al. (2016) spec-
ify a number of tree-to-string transduction rules
based on alignments and POS-based features that
are used to drive a tree-based SMT system. Pour-
damghani et al. (2016) also use an MT decoder;
they learn a classifier that linearizes the input
AMR graph in an order that follows the output
sentence, effectively reducing the number of align-
ment crossings of the phrase-based decoder. Song
et al. (2016) recast generation as a traveling sales-
man problem, after partitioning the graph into
fragments and finding the best linearization order.
Our models do not need to rely on a particular lin-
earization of the input, attaining comparable per-
formance even with a per example random traver-
sal of the graph. Finally, all three systems intersect
with a large language model trained on Gigaword.
We show that our seq2seq model has the capacity
to learn the same information as a language model,
especially after pretraining on the external corpus.

Data Augmentation Our paired training proce-
dure is largely inspired by Sennrich et al. (2016).
They improve neural MT performance for low re-
source language pairs by using a back-translation
MT system for a large monolingual corpus of the
target language in order to create synthetic output,

147

and mixing it with the human translations. We
instead pre-train on the external corpus first, and
then fine-tune on the original dataset.

3 Methods

In this section, we first provide the formal defini-
tion of AMR parsing and generation (section 3.1).
Then we describe the sequence-to-sequence mod-
els we use (section 3.2), graph-to-sequence con-
version (section 3.3), and our paired training pro-
cedure (section 3.4).

3.1 Tasks

We assume access to a training dataset D where
each example pairs a natural language sentence s
with an AMR a. The AMR is a rooted directed
acylical graph. It contains nodes whose names
correspond to sense-identified verbs, nouns, or
AMR specific concepts, for example elect.01,
Obama, and person in Figure 1. One of
these nodes is a distinguished root, for exam-
ple, the node and in Figure 1. Furthermore, the
graph contains labeled edges, which correspond
to PropBank-style (Palmer et al., 2005) seman-
tic roles for verbs or other relations introduced for
AMR, for example, arg0 or op1 in Figure 1. The
set of node and edge names in an AMR graph is
drawn from a set of tokens C, and every word in a
sentence is drawn from a vocabulary W .

We study the task of training an AMR parser,
i.e., finding a set of parameters θP for model f ,
that predicts an AMR graph â, given a sentence s:

â = argmax
a

f
(
a|s; θP

)
(1)

We also consider the reverse task, training an
AMR generator by finding a set of parameters
θG, for a model f that predicts a sentence ŝ, given
an AMR graph a:

ŝ = argmax
s

f
(
s|a; θG

)
(2)

In both cases, we use the same family of pre-
dictors f , sequence-to-sequence models that use
global attention, but the models have independent
parameters, θP and θG.

3.2 Sequence-to-sequence Model

For both tasks, we use a stacked-LSTM sequence-
to-sequence neural architecture employed in neu-
ral machine translation (Bahdanau et al., 2015; Wu

et al., 2016).1 Our model uses a global atten-
tion decoder and unknown word replacement with
small modifications (Luong et al., 2015).

The model uses a stacked bidirectional-LSTM
encoder to encode an input sequence and a stacked
LSTM to decode from the hidden states produced
by the encoder. We make two modifications to
the encoder: (1) we concatenate the forward and
backward hidden states at every level of the stack
instead of at the top of the stack, and (2) intro-
duce dropout in the first layer of the encoder. The
decoder predicts an attention vector over the en-
coder hidden states using previous decoder states.
The attention is used to weigh the hidden states of
the encoder and then predict a token in the out-
put sequence. The weighted hidden states, the
decoded token, and an attention signal from the
previous time step (input feeding) are then fed to-
gether as input to the next decoder state. The de-
coder can optionally choose to output an unknown
word symbol, in which case the predicted atten-
tion is used to copy a token directly from the input
sequence into the output sequence.

3.3 Linearization
Our seq2seq models require that both the input and
target be presented as a linear sequence of tokens.
We define a linearization order for an AMR graph
as any sequence of its nodes and edges. A lin-
earization is defined as (1) a linearization order
and (2) a rendering function that generates any
number of tokens when applied to an element in
the linearization order (see Section 4.2 for imple-
mentation details). Furthermore, for parsing, a
valid AMR graph must be recoverable from the
linearization.

3.4 Paired Training
Obtaining a corpus of jointly annotated pairs of
sentences and AMR graphs is expensive and cur-
rent datasets only extend to thousands of exam-
ples. Neural sequence-to-sequence models suffer
from sparsity with so few training pairs. To reduce
the effect of sparsity, we use an external unan-
notated corpus of sentences Se, and a procedure
which pairs the training of the parser and genera-
tor.

Our procedure is described in Algorithm 1, and
first trains a parser on the datasetD of pairs of sen-
tences and AMR graphs. Then it uses self-training

1We extended the Harvard NLP seq2seq framework from
http://nlp.seas.harvard.edu/code.

148

Algorithm 1 Paired Training Procedure
Input: Training set of sentences and AMR graphs (s, a) ∈

D, an unannotated external corpus of sentences Se, a
number of self training iterations,N , and an initial sam-
ple size k.

Output: Model parameters for AMR parser θP and AMR
generator θG.

1: θP ← Train parser on D
. Self-train AMR parser.

2: S1
e ← sample k sentences from Se

3: for i = 1 to N do
4: Ai

e ← Parse Si
e using parameters θP

. Pre-train AMR parser.
5: θP ← Train parser on (Ai

e, S
i
e)

. Fine tune AMR parser.
6: θP ← Train parser on D with initial parameters θP
7: Si+1

e ← sample k · 10i new sentences from Se

8: end for
9: SN

e ← sample k · 10N new sentences from Se

. Pre-train AMR generator.
10: Ae ← Parse SN

e using parameters θP
11: θG ← Train generator on (AN

e , S
N
e)

. Fine tune AMR generator.
12: θG ← Train generator on D using initial parameters θG
13: return θP , θG

to improve the initial parser. Every iteration of
self-training has three phases: (1) parsing samples
from a large, unlabeled corpus Se, (2) creating a
new set of parameters by training on Se, and (3)
fine-tuning those parameters on the original paired
data. After each iteration, we increase the size of
the sample from Se by an order of magnitude. Af-
ter we have the best parser from self-training, we
use it to label AMRs for Se and pre-train the gen-
erator. The final step of the procedure fine-tunes
the generator on the original dataset D.

4 AMR Preprocessing

We use a series of preprocessing steps, including
AMR linerization, anonymization, and other mod-
ifications we make to sentence-graph pairs. Our
methods have two goals: (1) reduce the complex-
ity of the linearized sequences to make learning
easier while maintaining enough original informa-
tion, and (2) address sparsity from certain open
class vocabulary entries, such as named entities
(NEs) and quantities. Figure 2(d) contains exam-
ple inputs and outputs with all of our preprocess-
ing techniques.

Graph Simplification In order to reduce the
overall length of the linearized graph, we first re-
move variable names and the instance-of re-
lation (/) before every concept. In case of
re-entrant nodes we replace the variable mention
with its co-referring concept. Even though this
replacement incurs loss of information, often the

surrounding context helps recover the correct real-
ization, e.g., the possessive role :poss in the ex-
ample of Figure 1 is strongly correlated with the
surface form his. Following Pourdamghani et al.
(2016) we also remove senses from all concepts
for AMR generation only. Figure 2(a) contains an
example output after this stage.

4.1 Anonymization of Named Entities

Open-class types including NEs, dates, and num-
bers account for 9.6% of tokens in the sentences
of the training corpus, and 31.2% of vocabulary
W . 83.4% of them occur fewer than 5 times in the
dataset. In order to reduce sparsity and be able to
account for new unseen entities, we perform ex-
tensive anonymization.

First, we anonymize sub-graphs headed by one
of AMR’s over 140 fine-grained entity types that
contain a :name role. This captures structures
referring to entities such as person, country,
miscellaneous entities marked with *-enitity,
and typed numerical values, *-quantity. We
exclude date entities (see the next section). We
then replace these sub-graphs with a token indicat-
ing fine-grained type and an index, i, indicating it
is the ith occurrence of that type.2 For example, in
Figure 2 the sub-graph headed by country gets
replaced with country 0.

On the training set, we use alignments obtained
using the JAMR aligner (Flanigan et al., 2014) and
the unsupervised aligner of Pourdamghani et al.
(2014) in order to find mappings of anonymized
subgraphs to spans of text and replace mapped text
with the anonymized token that we inserted into
the AMR graph. We record this mapping for use
during testing of generation models. If a gener-
ation model predicts an anonymization token, we
find the corresponding token in the AMR graph
and replace the model’s output with the most fre-
quent mapping observed during training for the
entity name. If the entity was never observed, we
copy its name directly from the AMR graph.

Anonymizing Dates For dates in AMR graphs,
we use separate anonymization tokens for year,
month-number, month-name, day-number and
day-name, indicating whether the date is men-
tioned by word or by number.3 In AMR gener-

2In practice we only used three groups of ids: a different
one for NEs, dates and constants/numbers.

3We also use three date format markers that appear in the
text as: YYYYMMDD, YYMMDD, and YYYY-MM-DD.

149

US officials held an expert group meeting in January 2002 in New York.
(h / hold-04

 :ARG0 (p2 / person

 :ARG0-of (h2 / have-org-role-91

 :ARG1 (c2 / country

 :name (n3 / name

 :op1 “United" op2: “States”))

 :ARG2 (o / official)))

 :ARG1 (m / meet-03

 :ARG0 (p / person

 :ARG1-of (e / expert-01)

 :ARG2-of (g / group-01)))

 :time (d2 / date-entity :year 2002 :month 1)

 :location (c / city

 :name (n / name :op1 “New" :op2 “York”)))

hold
 :ARG0 person :ARG0-of have-org-role :ARG1 loc_0 :ARG2 official
 :ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
 :time date-entity year_0 month_0
 :location loc_1

hold
 :ARG0 person :ARG0-of have-org-role :ARG1 country_0 :ARG2 official
 :ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
 :time date-entity year_0 month_0
 :location city_1

hold
 :ARG0 person :ARG0-of have-org-role :ARG1 country :name name :op1
United :op2 States :ARG2 official
 :ARG1 meet :ARG0 person :ARG1-of expert :ARG2-of group
 :time date-entity :year 2002 :month 1
 :location city :name name :op1 New :op2 York

hold
 :ARG0 (person :ARG0-of (have-org-role :ARG1 loc_0 :ARG2 official))
 :ARG1 (meet :ARG0 (person :ARG1-of expert :ARG2-of group))
 :time (date-entity year_0 month_0)
 :location loc_1

US officials held an expert group meeting in January 2002 in New York.

country_0 officials held an expert group meeting in month_0 year_0 in city_1.

loc_0 officials held an expert group meeting in month_0 year_0 in loc_1.

loc_0 officials held an expert group meeting in month_0 year_0 in loc_1.

(a)

(b)

(c)

(d)

Figure 2: Preprocessing methods applied to sentence (top row) - AMR graph (left column) pairs.
Sentence-graph pairs after (a) graph simplification, (b) named entity anonymization, (c) named entity
clustering, and (d) insertion of scope markers.

ation, we render the corresponding format when
predicted. Figure 2(b) contains an example of all
preprocessing up to this stage.

Named Entity Clusters When performing
AMR generation, each of the AMR fine-grained
entity types is manually mapped to one of the
four coarse entity types used in the Stanford NER
system (Finkel et al., 2005): person, location,
organization and misc. This reduces the sparsity
associated with many rarely occurring entity
types. Figure 2 (c) contains an example with
named entity clusters.

NER for Parsing When parsing, we must nor-
malize test sentences to match our anonymized
training data. To produce fine-grained named enti-
ties, we run the Stanford NER system and first try
to replace any identified span with a fine-grained
category based on alignments observed during
training. If this fails, we anonymize the sentence
using the coarse categories predicted by the NER
system, which are also categories in AMR. After
parsing, we deterministically generate AMR for
anonymizations using the corresponding text span.

4.2 Linearization
Linearization Order Our linearization order
is defined by the order of nodes visited by
depth first search, including backward travers-
ing steps. For example, in Figure 2, start-
ing at meet the order contains meet, :ARG0,
person, :ARG1-of, expert, :ARG2-of,

group, :ARG2-of, :ARG1-of, :ARG0.4 The
order traverses children in the sequence they are
presented in the AMR. We consider alternative or-
derings of children in Section 7 but always follow
the pattern demonstrated above.

Rendering Function Our rendering function
marks scope, and generates tokens following the
pre-order traversal of the graph: (1) if the element
is a node, it emits the type of the node. (2) if the el-
ement is an edge, it emits the type of the edge and
then recursively emits a bracketed string for the
(concept) node immediately after it. In case the
node has only one child we omit the scope mark-
ers (denoted with left “(”, and right “)” paren-
theses), thus significantly reducing the number of
generated tokens. Figure 2(d) contains an example
showing all of the preprocessing techniques and
scope markers that we use in our full model.

5 Experimental Setup

We conduct all experiments on the AMR cor-
pus used in SemEval-2016 Task 8 (LDC2015E86),
which contains 16,833/1,368/1,371 train/dev/test
examples. For the paired training procedure of Al-
gorithm 1, we use Gigaword as our external cor-
pus and sample sentences that only contain words
from the AMR corpus vocabulary W . We sub-
sampled the original sentence to ensure there is no
overlap with the AMR training or test sets. Table 2

4Sense, instance-of and variable information has
been removed at the point of linearization.

150

Dev Test
Model Prec Rec F1 Prec Rec F1
SBMT (Pust et al., 2015) - - 69.0 - - 67.1
CAMR (Wang et al., 2016) 72.3 61.4 66.6 70.4 63.1 66.5
CCG* (Artzi et al., 2015) 67.2 65.1 66.1 66.8 65.7 66.3
JAMR (Flanigan et al., 2014) - - - 64.0 53.0 58.0
GIGA-20M 62.2 66.0 64.4 59.7 64.7 62.1
GIGA-2M 61.9 64.8 63.3 60.2 63.6 61.9
GIGA-200k 59.7 62.9 61.3 57.8 60.9 59.3
AMR-ONLY 54.9 60.0 57.4 53.1 58.1 55.5
SEQ2SEQ (Peng et al., 2017) - - - 55.0 50.0 52.0
CHAR-LSTM (Barzdins and Gosko, 2016) - - - - - 43.0

Table 1: SMATCH scores for AMR Parsing. *Reported numbers are on the newswire portion of a
previous release of the corpus (LDC2014T12).

summarizes statistics about the original dataset
and the extracted portions of Gigaword. We evalu-
ate AMR parsing with SMATCH (Cai and Knight,
2013), and AMR generation using BLEU (Pap-
ineni et al., 2002)5.

We validated word embedding sizes and RNN
hidden representation sizes by maximizing AMR
development set performance (Algorithm 1 – line
1). We searched over the set {128, 256, 500,
1024} for the best combinations of sizes and set
both to 500. Models were trained by optimiz-
ing cross-entropy loss with stochastic gradient de-
scent, using a batch size of 100 and dropout rate
of 0.5. Across all models when performance does
not improve on the AMR dev set, we decay the
learning rate by 0.8.

For the initial parser trained on the AMR cor-
pus, (Algorithm 1 – line 1), we use a single stack
version of our model, set initial learning rate to
0.5 and train for 60 epochs, taking the best per-
forming model on the development set. All subse-
quent models benefited from increased depth and
we used 2-layer stacked versions, maintaining the
same embedding sizes. We set the initial Giga-
word sample size to k = 200, 000 and executed a
maximum of 3 iterations of self-training. For pre-
training the parser and generator, (Algorithm 1 –
lines 4 and 9), we used an initial learning rate of
1.0, and ran for 20 epochs. We attempt to fine-tune
the parser and generator, respectively, after every
epoch of pre-training, setting the initial learning
rate to 0.1. We select the best performing model on
the development set among all of these fine-tuning

5We use the multi-BLEU script from the MOSES decoder
suite (Koehn et al., 2007).

Corpus Examples OOV@1 OOV@5
AMR 16833 44.7 74.9
GIGA-200k 200k 17.5 35.3
GIGA-2M 2M 11.2 19.1
GIGA-20M 20M 8.0 12.7

Table 2: LDC2015E86 AMR training set,
GIGA-200k, GIGA-2M and GIGA-20M statistics;
OOV@1 and OOV@5 are the out-of-vocabulary
rates on the NL side with thresholds of 1 and 5, re-
spectively. Vocabulary sizes are 13027 tokens for
the AMR side, and 17319 tokens for the NL side.

Model Dev Test
GIGA-20M 33.1 33.8
GIGA-2M 31.8 32.3
GIGA-200k 27.2 27.4
AMR-ONLY 21.7 22.0
PBMT* (Pourdamghani et al., 2016) 27.2 26.9
TSP (Song et al., 2016) 21.1 22.4
TREETOSTR (Flanigan et al., 2016) 23.0 23.0

Table 3: BLEU results for AMR Generation.
*Model has been trained on a previous release of
the corpus (LDC2014T12).

attempts. During prediction we perform decoding
using beam search and set the beam size to 5 both
for parsing and generation.

6 Results

Parsing Results Table 1 summarizes our devel-
opment results for different rounds of self-training
and test results for our final system, self-trained
on 200k, 2M and 20M unlabeled Gigaword sen-
tences. Through every round of self-training, our

151

parser improves. Our final parser outperforms
comparable seq2seq and character LSTM models
by over 10 points. While much of this improve-
ment comes from self-training, our model with-
out Gigaword data outperforms these approaches
by 3.5 points on F1. We attribute this increase
in performance to different handling of prepro-
cessing and more careful hyper-parameter tuning.
All other models that we compare against use se-
mantic resources, such as WordNet, dependency
parsers or CCG parsers (models marked with *
were trained with less data, but only evaluate on
newswire text; the rest evaluate on the full test set,
containing text from blogs). Our full models out-
perform JAMR, a graph-based model but still lags
behind other parser-dependent systems (CAMR6),
and resource heavy approaches (SBMT).

Generation Results Table 3 summarizes our
AMR generation results on the development and
test set. We outperform all previous state-of-the-
art systems by the first round of self-training and
further improve with the next rounds. Our fi-
nal model trained on GIGA-20M outperforms TSP
and TREETOSTR trained on LDC2015E86, by
over 9 BLEU points.7 Overall, our model incor-
porates less data than previous approaches as all
reported methods train language models on the
whole Gigaword corpus. We leave scaling our
models to all of Gigaword for future work.

Sparsity Reduction Even after anonymization
of open class vocabulary entries, we still encounter
a great deal of sparsity in vocabulary given the
small size of the AMR corpus, as shown in Ta-
ble 2. By incorporating sentences from Gigaword
we are able to reduce vocabulary sparsity dramati-
cally, as we increase the size of sampled sentences:
the out-of-vocabulary rate with a threshold of 5 re-
duces almost 5 times for GIGA-20M.

Preprocessing Ablation Study We consider the
contribution of each main component of our pre-
processing stages while keeping our linearization
order identical. Figure 2 contains examples for
each setting of the ablations we evaluate on. First
we evaluate using linearized graphs without paren-

6Since we are currently not using any Wikipedia resources
for the prediction of named entities, we compare against the
no-wikification version of the CAMR system.

7We also trained our generator on GIGA-2M and fine-
tuned on LDC2014T12 in order to have a direct comparison
with PBMT, and achieved a BLEU score of 29.7, i.e., 2.8
points of improvement.

Model BLEU
FULL 21.8
FULL - SCOPE 19.7
FULL - SCOPE - NE 19.5
FULL - SCOPE - NE - ANON 18.7

Table 4: BLEU scores for AMR generation abla-
tions on preprocessing (DEV set).

Model Prec Rec F1
FULL 54.9 60.0 57.4
FULL - ANON 22.7 54.2 32.0

Table 5: SMATCH scores for AMR parsing abla-
tions on preprocessing (DEV set).

theses for indicating scope, Figure 2(c), then with-
out named entity clusters, Figure 2(b), and addi-
tionally without any anonymization, Figure 2(a).

Tables 4 summarizes our evaluation on the
AMR generation. Each components is required,
and scope markers and anonymization contribute
the most to overall performance. We suspect with-
out scope markers our seq2seq models are not as
effective at capturing long range semantic rela-
tionships between elements of the AMR graph.
We also evaluated the contribution of anonymiza-
tion to AMR parsing (Table 5). Following pre-
vious work, we find that seq2seq-based AMR
parsing is largely ineffective without anonymiza-
tion (Peng et al., 2017).

7 Linearization Evaluation

In this section we evaluate three strategies for con-
verting AMR graphs into sequences in the context
of AMR generation and show that our models are
largely agnostic to linearization orders. Our re-
sults argue, unlike SMT-based AMR generation
methods (Pourdamghani et al., 2016), that seq2seq
models can learn to ignore artifacts of the conver-
sion of graphs to linear sequences.

7.1 Linearization Orders

All linearizations we consider use the pattern de-
scribed in Section 4.2, but differ on the order in
which children are visited. Each linearization gen-
erates anonymized, scope-marked output (see Sec-
tion 4), of the form shown in Figure 2(d).

Human The proposal traverses children in the
order presented by human authored AMR annota-
tions exactly as shown in Figure 2(d).

152

Linearization Order BLEU
HUMAN 21.7
GLOBAL-RANDOM 20.8
RANDOM 20.3

Table 6: BLEU scores for AMR generation for dif-
ferent linearization orders (DEV set).

Global-Random We construct a random global
ordering of all edge types appearing in AMR
graphs and re-use it for every example in the
dataset. We traverse children based on the posi-
tion in the global ordering of the edge leading to a
child.

Random For each example in the dataset we tra-
verse children following a different random order
of edge types.

7.2 Results
We present AMR generation results for the three
proposed linearization orders in Table 6. Ran-
dom linearization order performs somewhat worse
than traversing the graph according to Human lin-
earization order. Surprisingly, a per example ran-
dom linearization order performs nearly identi-
cally to a global random order, arguing seq2seq
models can learn to ignore artifacts of the conver-
sion of graphs to linear sequences.

Human-authored AMR leaks information
The small difference between random and global-
random linearizations argues that our models are
largely agnostic to variation in linearization order.
On the other hand, the model that follows the
human order performs better, which leads us to
suspect it carries extra information not apparent
in the graphical structure of the AMR.

To further investigate, we compared the rela-
tive ordering of edge pairs under the same par-
ent to the relative position of children nodes de-
rived from those edges in a sentence, as reported
by JAMR alignments. We found that the majority
of pairs of AMR edges (57.6%) always occurred
in the same relative order, therefore revealing no
extra generation order information.8 Of the exam-
ples corresponding to edge pairs that showed vari-
ation, 70.3% appeared in an order consistent with
the order they were realized in the sentence. The
relative ordering of some pairs of AMR edges was

8This is consistent with constraints encoded in the anno-
tation tool used to collect AMR. For example, :ARG0 edges
are always ordered before :ARG1 edges.

Error Type %
Coverage 29
Disfluency 23
Anonymization 14
Sparsity 13
Attachment 12
Other 10

Table 7: Error analysis for AMR generation on a
sample of 50 examples from the development set.

particularly indicative of generation order. For ex-
ample, the relative ordering of edges with types
location and time, was 17% more indicative
of the generation order than the majority of gener-
ated locations before time.9

To compare to previous work we still report re-
sults using human orderings. However, we note
that any practical application requiring a system to
generate an AMR representation with the intention
to realize it later on, e.g., a dialog agent, will need
to be trained either using consistent, or random-
derived linearization orders. Arguably, our models
are agnostic to this choice.

8 Qualitative Results

Figure 3 shows example outputs of our full sys-
tem. The generated text for the first graph is nearly
perfect with only a small grammatical error due
to anonymization. The second example is more
challenging, with a deep right-branching struc-
ture, and a coordination of the verbs stabilize
and push in the subordinate clause headed by
state. The model omits some information from
the graph, namely the concepts terrorist and
virus. In the third example there are greater
parts of the graph that are missing, such as the
whole sub-graph headed by expert. Also the
model makes wrong attachment decisions in the
last two sub-graphs (it is the evidence that
is unimpeachable and irrefutable, and not the
equipment), mostly due to insufficient annota-
tion (thing) thus making their generation harder.

Finally, Table 7 summarizes the proportions of
error types we identified on 50 randomly selected
examples from the development set. We found that
the generator mostly suffers from coverage issues,

9Consider the sentences “She went to school in New York
two years ago”, and “Two years ago, she went to school in
New York”, where “two year ago” is the time modifying con-
stituent for the verb went and “New York” is the location
modifying constituent of went.

153

an inability to mention all tokens in the input, fol-
lowed by fluency mistakes, as illustrated above.
Attachment errors are less frequent, which sup-
ports our claim that the model is robust to graph
linearization, and can successfully encode long
range dependency information between concepts.

9 Conclusions

We applied sequence-to-sequence models to the
tasks of AMR parsing and AMR generation, by
carefully preprocessing the graph representation
and scaling our models via pretraining on mil-
lions of unlabeled sentences sourced from Giga-
word corpus. Crucially, we avoid relying on re-
sources such as knowledge bases and externally
trained parsers. We achieve competitive results for
the parsing task (SMATCH 62.1) and state-of-the-
art performance for generation (BLEU 33.8).

For future work, we would like to extend our
work to different meaning representations such as
the Minimal Recursion Semantics (MRS; Copes-
take et al. (2005)). This formalism tackles certain
linguistic phenomena differently from AMR (e.g.,
negation, and co-reference), contains explicit an-
notation on concepts for number, tense and case,
and finally handles multiple languages10 (Bender,
2014). Taking a step further, we would like to
apply our models on Semantics-Based Machine
Translation using MRS as an intermediate rep-
resentation between pairs of languages, and in-
vestigate the added benefit compared to directly
translating the surface strings, especially in the
case of distant language pairs such as English and
Japanese (Siegel, 2000).

Acknowledgments

The research was supported in part by DARPA un-
der the DEFT program through AFRL (FA8750-
13-2-0019) and the CwC program through ARO
(W911NF-15-1-0543), the ARO (W911NF-16-1-
0121), the NSF (IIS-1252835, IIS-1562364, IIS-
1524371), an Allen Distinguished Investigator
Award, and gifts by Google and Facebook. The
authors thank Rik Koncel-Kedziorski and the UW
NLP group for helpful discussions, and the anony-
mous reviewers for their thorough and helpful
comments.

10A list of actively maintained languages can be
found here: http://moin.delph-in.net/
GrammarCatalogue

limit
 :arg0 (treaty :arg0-of (control :arg1 arms))
 :arg1 (number
 :arg1 (weapon :mod conventional
 :arg1-of (deploy
 :arg2 (relative-pos :op1 loc_0 :dir west)
 :arg1-of possible)))

SYS: the arms control treaty limits the number of
conventional weapons that can be deployed west of
Ural Mountains .

REF: the arms control treaty limits the number of
conventional weapons that can be deployed west of
the Ural Mountains .

COMMENT: disfluency

state
 :arg0 (person
 :arg0-of (have-org-role
 :arg1 (committee :mod technical)
 :arg3 (expert
 :arg1 person
 :arg2 missile
 :mod loc_0)))
 :arg1 (evidence
 :arg0 equipment
 :arg1 (plan :arg1 (transfer :arg1 (contrast
 :arg1 (missile :mod (just :polarity -))
 :arg2 (capable
 :arg1 thing
 :arg2 (make :arg1 missile)))))
 :mod (impeach :polarity - :arg1 thing)
 :mod (refute :polarity - :arg1 thing))

SYS: a technical committee expert on the
technical committee stated that the equipment is
not impeach , but it is not refutes .

REF: a technical committee of Indian missile
experts stated that the equipment was
unimpeachable and irrefutable evidence of a plan
to transfer not just missiles but missile-making
capability.

COMMENT: coverage , disfluency, attachment

state
 :arg0 report
 :arg1 (obligate :arg1 (government-organization
 :arg0-of (govern :arg1 loc_0))
 :arg2 (help :arg1 (and
 :op1 (stabilize :arg1 (state :mod weak))
 :op2 (push :arg1 (regulate
 :mod international :arg0-of (stop
 :arg1 terrorist
 :arg2 (use
 :arg1 (information
 :arg2-of (available :arg3-of free))
 :arg2 (and
 :op1 (create :arg1 (form
 :domain (warfare
 :mod biology :example (version
 :arg1-of modify :poss other_1))
 :mod new))
 :op2 (unleash :arg1 form)
))))))))

REF: the report stated British government must
help to stabilize weak states and push for
international regulations that would stop
terrorists using freely available information to
create and unleash new forms of biological
warfare such as a modified version of the
influenza virus .

COMMENT: coverage , disfluency, attachment

SYS: the report stated that the Britain
government must help stabilize the weak states
and push international regulations to stop the
use of freely available information to create a
form of new biological warfare such as the
modified version of the influenza .

Figure 3: Linearized AMR after preprocessing,
reference sentence, and output of the generator.
We mark with colors common error types: disflu-
ency, coverage (missing information from the in-
put graph), and attachment (implying a semantic
relation from the AMR between incorrect entities).

154

References
Yoav Artzi, Kenton Lee, and Luke Zettlemoyer.

2015. Broad-coverage CCG semantic parsing
with AMR. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 1699–1710.
http://aclweb.org/anthology/D15-1198.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings
of the 2015 International Conference on Learn-
ing Representations. CBLS, San Diego, California.
http://arxiv.org/abs/1409.0473.

Guntis Barzdins and Didzis Gosko. 2016. RIGA
at SemEval-2016 Task 8: Impact of Smatch ex-
tensions and character-level neural translation on
AMR parsing accuracy. In Proceedings of the
10th International Workshop on Semantic Eval-
uation. Association for Computational Linguis-
tics, San Diego, California, pages 1143–1147.
http://www.aclweb.org/anthology/S16-1176.

Emily M. Bender. 2014. Language CoLLAGE: Gram-
matical description with the LinGO grammar ma-
trix. In Proceedings of the 9th International Confer-
ence on Language Resources and Evaluation. Reyk-
javik, Iceland, pages 2447–2451.

Johannes Bjerva, Johan Bos, and Hessel Haagsma.
2016. The Meaning Factory at SemEval-2016 Task
8: Producing AMRs with Boxer. In Proceed-
ings of the 10th International Workshop on Seman-
tic Evaluation. Association for Computational Lin-
guistics, San Diego, California, pages 1179–1184.
http://www.aclweb.org/anthology/S16-1182.

Lauritz Brandt, David Grimm, Mengfei Zhou, and
Yannick Versley. 2016. ICL-HD at SemEval-2016
Task 8: Meaning representation parsing - aug-
menting AMR parsing with a preposition seman-
tic role labeling neural network. In Proceed-
ings of the 10th International Workshop on Seman-
tic Evaluation. Association for Computational Lin-
guistics, San Diego, California, pages 1160–1166.
http://www.aclweb.org/anthology/S16-1179.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, Sofia, Bulgaria, pages
748–752. http://www.aclweb.org/anthology/P13-
2131.

Ann Copestake, Dan Flickinger, Carl Pollard,
and Ivan A. Sag. 2005. Minimal Recur-
sion Semantics: An introduction. Research
on Language and Computation 3(2):281–332.
https://doi.org/10.1007/s11168-006-6327-9.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for abstract meaning

representation. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Valencia, Spain, pages 536–
546. http://www.aclweb.org/anthology/E17-1051.

Jenny Rose Finkel, Trond Grenager, and Christo-
pher Manning. 2005. Incorporating non-local in-
formation into information extraction systems by
Gibbs sampling. In Proceedings of the 43rd An-
nual Meeting on Association for Computational
Linguistics. Association for Computational Lin-
guistics, Ann Arbor, Michigan, pages 363–370.
https://doi.org/10.3115/1219840.1219885.

Jeffrey Flanigan, Chris Dyer, Noah A. Smith, and
Jaime Carbonell. 2016. Generation from abstract
meaning representation using tree transducers. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, San Diego, California, pages 731–739.
http://www.aclweb.org/anthology/N16-1087.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract mean-
ing representation. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Lin-
guistics, Baltimore, Maryland, pages 1426–1436.
http://www.aclweb.org/anthology/P14-1134.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. UCL+Sheffield at SemEval-2016
Task 8: Imitation learning for AMR parsing
with an alpha-bound. In Proceedings of the
10th International Workshop on Semantic Eval-
uation. Association for Computational Linguis-
tics, San Diego, California, pages 1167–1172.
http://www.aclweb.org/anthology/S16-1180.

Lifu Huang, Taylor Cassidy, Xiaocheng Feng, Heng
Ji, Clare R. Voss, Jiawei Han, and Avirup Sil.
2016. Liberal event extraction and event schema
induction. In Proceedings of the 54th An-
nual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics, Berlin, Germany, pages 258–268.
http://www.aclweb.org/anthology/P16-1025.

Bevan Jones, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, and Kevin Knight. 2012.
Semantics-Based Machine Translation with Hyper-
edge Replacement Grammars. In Proceedings of the
2012 International Conference on Computational
Linguistics. Bombay, India, pages 1359–1376.
http://www.aclweb.org/anthology/C12-1083.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Christine
Moran, Richard Zens, Chris Dyer, Ondřej Bojar,
Alexandra Constantin, and Evan Herbst. 2007.
Moses: Open source toolkit for statistical machine

155

translation. In Proceedings of the 45th Annual
Meeting of the Association for Computational
Linguistics. Association for Computational Lin-
guistics, Prague, Czech Republic, pages 177–180.
http://dl.acm.org/citation.cfm?id=1557769.1557821.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A. Smith. 2015. Toward abstrac-
tive summarization using semantic representations.
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Denver, Colorado, pages 1077–1086.
http://www.aclweb.org/anthology/N15-1114.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1412–
1421. http://aclweb.org/anthology/D15-1166.

Dipendra Kumar Misra and Yoav Artzi. 2016. Neu-
ral shift-reduce CCG semantic parsing. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages
1775–1786. https://aclweb.org/anthology/D16-
1183.

Courtney Napoles, Matthew Gormley, and Ben-
jamin Van Durme. 2012. Annotated Gigaword.
In Proceedings of the Joint Workshop on Auto-
matic Knowledge Base Construction and Web-scale
Knowledge Extraction. Association for Computa-
tional Linguistics, Montréal, Canada, pages 95–100.
http://www.aclweb.org/anthology/W12-3018.

Martha Palmer, Daniel Gildea, and Paul
Kingsbury. 2005. The Proposition Bank:
An annotated corpus of semantic roles.
Computational Linguistics 31(1):71–106.
http://www.cs.rochester.edu/ gildea/palmer-
propbank-cl.pdf.

Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. 2002. Bleu: a method
for automatic evaluation of machine transla-
tion. In Proceedings of 40th Annual Meeting
of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA, pages 311–318.
https://doi.org/10.3115/1073083.1073135.

Xiaochang Peng, Chuan Wang, Daniel Gildea, and
Nianwen Xue. 2017. Addressing the data spar-
sity issue in neural AMR parsing. In Pro-
ceedings of the 15th Conference of the Eu-
ropean Chapter of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Valencia, Spain, pages 366–375.
http://www.aclweb.org/anthology/E17-1035.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning English strings with

abstract meaning representation graphs. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, Doha, Qatar, pages 425–
429. http://www.aclweb.org/anthology/D14-1048.

Nima Pourdamghani, Kevin Knight, and Ulf Her-
mjakob. 2016. Generating English from ab-
stract meaning representations. In Proceed-
ings of the 9th International Natural Language
Generation conference. Association for Computa-
tional Linguistics, Edinburgh, UK, pages 21–25.
http://anthology.aclweb.org/W16-6603.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing english
into abstract meaning representation using syntax-
based machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1143–
1154. https://aclweb.org/anthology/D/D15/D15-
1136.

Yevgeniy Puzikov, Daisuke Kawahara, and Sadao
Kurohashi. 2016. M2L at SemEval-2016 Task 8:
AMR parsing with neural networks. In Proceed-
ings of the 10th International Workshop on Seman-
tic Evaluation. Association for Computational Lin-
guistics, San Diego, California, pages 1154–1159.
http://www.aclweb.org/anthology/S16-1178.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Berlin, Germany, pages 86–96.
http://www.aclweb.org/anthology/P16-1009.

Melanie Siegel. 2000. HPSG Analysis of Japanese,
Springer Berlin Heidelberg, pages 264–279.

Linfeng Song, Yue Zhang, Xiaochang Peng, Zhiguo
Wang, and Daniel Gildea. 2016. AMR-to-text gen-
eration as a traveling salesman problem. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages
2084–2089. https://aclweb.org/anthology/D16-
1224.

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsu-
tomu Hirao, and Masaaki Nagata. 2016. Neu-
ral headline generation on abstract meaning rep-
resentation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Austin, Texas, pages 1054–1059.
https://aclweb.org/anthology/D16-1112.

Oriol Vinyals, Ł ukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proceedings of the

156

28th International Conference on Neural Informa-
tion Processing Systems, MIT Press, pages 2773–
2781. http://papers.nips.cc/paper/5635-grammar-
as-a-foreign-language.pdf.

Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng Ji,
and Nianwen Xue. 2016. CAMR at SemEval-2016
Task 8: An extended transition-based AMR parser.
In Proceedings of the 10th International Workshop
on Semantic Evaluation. Association for Compu-
tational Linguistics, San Diego, California, pages
1173–1178. http://www.aclweb.org/anthology/S16-
1181.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR
abs/1609.08144. http://arxiv.org/abs/1609.08144.

Junsheng Zhou, Feiyu Xu, Hans Uszkoreit, Weiguang
QU, Ran Li, and Yanhui Gu. 2016. AMR parsing
with an incremental joint model. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Austin, Texas, pages 680–689.
https://aclweb.org/anthology/D16-1065.

157

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 158–167
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1015

Program Induction by Rationale Generation:
Learning to Solve and Explain Algebraic Word Problems

Wang Ling♠ Dani Yogatama♠ Chris Dyer♠ Phil Blunsom♠♦
♠DeepMind ♦University of Oxford

{lingwang,dyogatama,cdyer,pblunsom}@google.com

Abstract

Solving algebraic word problems re-
quires executing a series of arithmetic
operations—a program—to obtain a final
answer. However, since programs can
be arbitrarily complicated, inducing them
directly from question-answer pairs is a
formidable challenge. To make this task
more feasible, we solve these problems by
generating answer rationales, sequences
of natural language and human-readable
mathematical expressions that derive the
final answer through a series of small
steps. Although rationales do not explic-
itly specify programs, they provide a scaf-
folding for their structure via intermedi-
ate milestones. To evaluate our approach,
we have created a new 100,000-sample
dataset of questions, answers and ratio-
nales. Experimental results show that in-
direct supervision of program learning via
answer rationales is a promising strategy
for inducing arithmetic programs.

1 Introduction

Behaving intelligently often requires mathemat-
ical reasoning. Shopkeepers calculate change,
tax, and sale prices; agriculturists calculate the
proper amounts of fertilizers, pesticides, and wa-
ter for their crops; and managers analyze produc-
tivity. Even determining whether you have enough
money to pay for a list of items requires applying
addition, multiplication, and comparison. Solv-
ing these tasks is challenging as it involves rec-
ognizing how goals, entities, and quantities in the
real-world map onto a mathematical formaliza-
tion, computing the solution, and mapping the so-
lution back onto the world. As a proxy for the
richness of the real world, a series of papers have

used natural language specifications of algebraic
word problems, and solved these by either learn-
ing to fill in templates that can be solved with
equation solvers (Hosseini et al., 2014; Kushman
et al., 2014) or inferring and modeling operation
sequences (programs) that lead to the final an-
swer (Roy and Roth, 2015).

In this paper, we learn to solve algebraic word
problems by inducing and modeling programs that
generate not only the answer, but an answer ratio-
nale, a natural language explanation interspersed
with algebraic expressions justifying the overall
solution. Such rationales are what examiners re-
quire from students in order to demonstrate un-
derstanding of the problem solution; they play the
very same role in our task. Not only do natural
language rationales enhance model interpretabil-
ity, but they provide a coarse guide to the structure
of the arithmetic programs that must be executed.
In fact the learner we propose (which relies on a
heuristic search; §4) fails to solve this task with-
out modeling the rationales—the search space is
too unconstrained.

This work is thus related to models that can
explain or rationalize their decisions (Hendricks
et al., 2016; Harrison et al., 2017). However, the
use of rationales in this work is quite different
from the role they play in most prior work, where
interpretation models are trained to generate plau-
sible sounding (but not necessarily accurate) post-
hoc descriptions of the decision making process
they used. In this work, the rationale is generated
as a latent variable that gives rise to the answer—it
is thus a more faithful representation of the steps
used in computing the answer.

This paper makes three contributions. First, we
have created a new dataset with more than 100,000
algebraic word problems that includes both an-
swers and natural language answer rationales (§2).
Figure 1 illustrates three representative instances

158

https://doi.org/10.18653/v1/P17-1015

Problem 1:
Question: Two trains running in opposite directions cross a
man standing on the platform in 27 seconds and 17 seconds
respectively and they cross each other in 23 seconds. The ratio
of their speeds is:
Options: A) 3/7 B) 3/2 C) 3/88 D) 3/8 E) 2/2
Rationale: Let the speeds of the two trains be x m/sec and y
m/sec respectively. Then, length of the first train = 27x meters,
and length of the second train = 17 y meters. (27x + 17y) / (x +
y) = 23→ 27x + 17y = 23x + 23y→ 4x = 6y→ x/y = 3/2.
Correct Option: B
Problem 2:
Question: From a pack of 52 cards, two cards are drawn to-
gether at random. What is the probability of both the cards
being kings?
Options: A) 2/1223 B) 1/122 C) 1/221 D) 3/1253 E) 2/153
Rationale: Let s be the sample space.
Then n(s) = 52C2 = 1326
E = event of getting 2 kings out of 4
n(E) = 4C2 = 6
P(E) = 6/1326 = 1/221
Answer is C
Correct Option: C
Problem 3:
Question: For which of the following does p(a)−p(b) = p(ab)
for all values of a and b?
Options:A) p(x) = x2, B) p(x) = x/2, C) p(x) = x + 5, D)
p(x) = 2x1, E) p(x) = |x|
Rationale: To solve this easiest way is just put the value and
see that if it equals or not.
with option A. p(a) = a2 and p(b) = b2

so L.H.S = a2 − b2
and R.H.S = (a− b)2 → a2 + b2 − 2ab.
so L.H.S not equal to R.H.S
with option B. p(a) = a/2 and p(b) = b/2
L.H.S = a/2− b/2→ 1/2(a− b)
R.H.S = (a− b)/2
so L.H.S = R.H.S which is the correct answer.
answer:B
Correct Option: B

Figure 1: Examples of solved math problems.

from the dataset. Second, we propose a sequence
to sequence model that generates a sequence of in-
structions that, when executed, generates the ra-
tionale; only after this is the answer chosen (§3).
Since the target program is not given in the train-
ing data (most obviously, its specific form will de-
pend on the operations that are supported by the
program interpreter); the third contribution is thus
a technique for inferring programs that generate a
rationale and, ultimately, the answer. Even con-
strained by a text rationale, the search space of
possible programs is quite large, and we employ
a heuristic search to find plausible next steps to
guide the search for programs (§4). Empirically,
we are able to show that state-of-the-art sequence
to sequence models are unable to perform above
chance on this task, but that our model doubles the
accuracy of the baseline (§6).

2 Dataset

We built a dataset with 100,000 problems with the
annotations shown in Figure 1. Each question is
decomposed in four parts, two inputs and two out-
puts: the description of the problem, which we
will denote as the question, and the possible (mul-
tiple choice) answer options, denoted as options.
Our goal is to generate the description of the ratio-
nale used to reach the correct answer, denoted as
rationale and the correct option label. Problem
1 illustrates an example of an algebra problem,
which must be translated into an expression (i.e.,
(27x + 17y)/(x + y) = 23) and then the desired
quantity (x/y) solved for. Problem 2 is an exam-
ple that could be solved by multi-step arithmetic
operations proposed in (Roy and Roth, 2015). Fi-
nally, Problem 3 describes a problem that is solved
by testing each of the options, which has not been
addressed in the past.

2.1 Construction

We first collect a set of 34,202 seed problems that
consist of multiple option math questions covering
a broad range of topics and difficulty levels. Ex-
amples of exams with such problems include the
GMAT (Graduate Management Admission Test)
and GRE (General Test). Many websites contain
example math questions in such exams, where the
answer is supported by a rationale.

Next, we turned to crowdsourcing to generate
new questions. We create a task where users are
presented with a set of 5 questions from our seed
dataset. Then, we ask the Turker to choose one
of the questions and write a similar question. We
also force the answers and rationale to differ from
the original question in order to avoid paraphrases
of the original question. Once again, we manually
check a subset of the jobs for each Turker for qual-
ity control. The type of questions generated us-
ing this method vary. Some turkers propose small
changes in the values of the questions (e.g., chang-
ing the equality p(a)p(b) = p(ab) in Problem 3
to a different equality is a valid question, as long
as the rationale and options are rewritten to reflect
the change). We designate these as replica prob-
lems as the natural language used in the question
and rationales tend to be only minimally unaltered.
Others propose new problems in the same topic
where the generated questions tend to differ more
radically from existing ones. Some Turkers also
copy math problems available on the web, and we

159

Question Rationale
Training Examples 100,949

Dev Examples 250
Test Examples 250

Numeric Average Length 9.6 16.6
Vocab Size 21,009 14,745

Non-Numeric Average Length 67.8 89.1
Vocab Size 17,849 25,034

All Average Length 77.4 105.7
Vocab Size 38,858 39,779

Table 1: Descriptive statistics of our dataset.

define in the instructions that this is not allowed, as
it will generate multiple copies of the same prob-
lem in the dataset if two or more Turkers copy
from the same resource. These Turkers can be de-
tected by checking the nearest neighbours within
the collected datasets as problems obtained from
online resources are frequently submitted by more
than one Turker. Using this method, we obtained
70,318 additional questions.

2.2 Statistics

Descriptive statistics of the dataset is shown in
Figure 1. In total, we collected 104,519 problems
(34,202 seed problems and 70,318 crowdsourced
problems). We removed 500 problems as heldout
set (250 for development and 250 for testing). As
replicas of the heldout problems may be present in
the training set, these were removed manually by
listing for each heldout instance the closest prob-
lems in the training set in terms of character-based
Levenstein distance. After filtering, 100,949 prob-
lems remained in the training set.

We also show the average number of tokens (to-
tal number of tokens in the question, options and
rationale) and the vocabulary size of the questions
and rationales. Finally, we provide the same statis-
tics exclusively for tokens that are numeric values
and tokens that are not.

Figure 2 shows the distribution of examples
based on the total number of tokens. We can see
that most examples consist of 30 to 500 tokens, but
there are also extremely long examples with more
than 1000 tokens in our dataset.

3 Model

Generating rationales for math problems is chal-
lenging as it requires models that learn to per-
form math operations at a finer granularity as
each step within the solution must be explained.
For instance, in Problem 1, the equation (27x +

0 200 400 600 800 1000

0
10
00

20
00

30
00

fre
qu
en
cy

length

Figure 2: Distribution of examples per length.

17y)/(x + y) = 23 must be solved to obtain
the answer. In previous work (Kushman et al.,
2014), this could be done by feeding the equation
into an expression solver to obtain x/y = 3/2.
However, this would skip the intermediate steps
27x+17y = 23x+23y and 4x = 6y, which must
also be generated in our problem. We propose a
model that jointly learns to generate the text in the
rationale, and to perform the math operations re-
quired to solve the problem. This is done by gener-
ating a program, containing both instructions that
generate output and instructions that simply gener-
ate intermediate values used by following instruc-
tions.

3.1 Problem Definition

In traditional sequence to sequence mod-
els (Sutskever et al., 2014; Bahdanau et al.,
2014), the goal is to predict the output sequence
y = y1, . . . , y|y| from the input sequence
x = x1, . . . , x|x|, with lengths |y| and |x|.

In our particular problem, we are given the
problem and the set of options, and wish to pre-
dict the rationale and the correct option. We set x
as the sequence of words in the problem, concate-
nated with words in each of the options separated
by a special tag. Note that knowledge about the
possible options is required as some problems are
solved by the process of elimination or by testing
each of the options (e.g. Problem 3). We wish to
generate y, which is the sequence of words in the
rationale. We also append the correct option as the
last word in y, which is interpreted as the chosen
option. For example, y in Problem 1 is “Let the
. . . = 3/2 . 〈EOR〉 B 〈EOS〉”, whereas in Problem
2 it is “Let s be . . . Answer is C 〈EOR〉 C 〈EOS〉”,
where “〈EOS〉” is the end of sentence symbol and
“〈EOR〉” is the end of rationale symbol.

160

i x z v r

1 From Id(“Let”) Let y1
2 a Id(“s”) s y2
3 pack Id(“be”) be y3
4 of Id(“the”) the y4
5 52 Id(“sample”) sample y5
6 cards Id(“space”) space y6
7 , Id(“.”) . y7
8 two Id(“\n”) \n y8
9 cards Id(“Then”) Then y9

10 are Id(“n”) n y10
11 drawn Id(“(”) (y11
12 together Id(“s”) s y12
13 at Id(“)”)) y13
14 random Id(“=”) = y14
15 . Str to Float(x5) 52 m1

16 What Float to Str(m1) 52 y15
17 is Id(“C”) C y16
18 the Id(“2”) 2 y17
19 probability Id(“=”) = y18
20 of Str to Float(y17) 2 m2

21 both Choose(m1,m2) 1326 m3

22 cards Float to Str(m3) 1326 y19
23 being Id(“E”) E y20
24 kings Id(“=”) = y21
25 ? Id(“event”) event y22
26 <O> Id(“of”) of y23
27 A) Id(“getting”) getting y24
28 2/1223 Id(“2”) 2 y25
29 <O> Id(“kings”) kings y26
30 B) Id(“out”) out y27
31 1/122 Id(“of”) of y28
.
|z| Id(“〈EOS〉”) 〈EOS〉 y|y|

Table 2: Example of a program z that would gen-
erate the output y. In v, italics indicates string
types; bold indicates float types. Refer to §3.3 for
description of variable names.

3.2 Generating Programs to Generate
Rationales

We wish to generate a latent sequence of program
instructions, z = z1, . . . , z|z|, with length |z|,
that will generate y when executed.

We express z as a program that can access x, y,
and the memory buffer m. Upon finishing execu-
tion we expect that the sequence of output tokens
to be placed in the output vector y.

Table 2 illustrates an example of a sequence of
instructions that would generate an excerpt from
Problem 2, where columns x, z, v, and r denote
the input sequence, the instruction sequence (pro-
gram), the values of executing the instruction, and
where each value vi is written (i.e., either to the
output or to the memory). In this example, instruc-
tions from indexes 1 to 14 simply fill each position
with the observed output y1, . . . , y14 with a string,
where the Id operation simply returns its parame-

ter without applying any operation. As such, run-
ning this operation is analogous to generating a
word by sampling from a softmax over a vocabu-
lary. However, instruction z15 reads the input word
x5, 52, and applies the operation Str to Float,
which converts the word 52 into a floating point
number, and the same is done for instruction z20,
which reads a previously generated output word
y17. Unlike, instructions z1, . . . , z14, these op-
erations write to the external memory m, which
stores intermediate values. A more sophisticated
instruction—which shows some of the power of
our model—is z21 = Choose(m1,m2) → m3

which evaluates
(
m1

m2

)
and stores the result in m3.

This process repeats until the model generates the
end-of-sentence symbol. The last token of the pro-
gram as said previously must generate the correct
option value, from “A” to “E”.

By training a model to generate instructions that
can manipulate existing tokens, the model ben-
efits from the additional expressiveness needed
to solve math problems within the generation
process. In total we define 22 different oper-
ations, 13 of which are frequently used opera-
tions when solving math problems. These are:
Id, Add, Subtract, Multiply, Divide,
Power, Log, Sqrt, Sine, Cosine, Tangent,
Factorial, and Choose (number of combi-
nations). We also provide 2 operations to con-
vert between Radians and Degrees, as these
are needed for the sine, cosine and tangent opera-
tions. There are 6 operations that convert floating
point numbers into strings and vice-versa. These
include the Str to Float and Float to Str
operations described previously, as well as opera-
tions which convert between floating point num-
bers and fractions, since in many math problems
the answers are in the form “3/4”. For the same
reason, an operation to convert between a float-
ing point number and number grouped in thou-
sands is also used (e.g. 1000000 to “1,000,000”
or “1.000.000”). Finally, we define an opera-
tion (Check) that given the input string, searches
through the list of options and returns a string with
the option index in {“A”, “B”, “C”, “D”, “E”}. If
the input value does not match any of the options,
or more than one option contains that value, it can-
not be applied. For instance, in Problem 2, once
the correct probability “1/221” is generated, by ap-
plying the check operation to this number we can
obtain correct option “C”.

161

hi

softmax

oi

ri

softmax

ri

qi,j=1

softmax

qij

softmax copy
input

aij

qi,j+1

copy
output

hi+1

j < argc(oi)?

vi

execute

Figure 3: Illustration of the generation process of
a single instruction tuple at timestamp i.

3.3 Generating and Executing Instructions
In our model, programs consist of sequences of
instructions, z. We turn now to how we model
each zi, conditional on the text program specifi-
cation, and the program’s history. The instruction
zi is a tuple consisting of an operation (oi), an or-
dered sequence of its arguments (ai), and a deci-
sion about where its results will be placed (ri) (is
it appended in the output y or in a memory buffer
m?), and the result of applying the operation to its
arguments (vi). That is, zi = (oi, ri,ai, vi).

Formally, oi is an element of the pre-specified
set of operations O, which contains, for example
add, div, Str to Float, etc. The number of
arguments required by oi is given by argc(oi), e.g.,
argc(add) = 2 and argc(log) = 1. The argu-
ments are ai = ai,1, . . . , ai,argc(oi). An instruc-
tion will generate a return value vi upon execution,
which will either be placed in the output y or hid-
den. This decision is controlled by ri. We define
the instruction probability as:

p(oi,ai, ri,vi | z<i,x,y,m) =

p(oi | z<i,x)× p(ri | z<i,x, oi)×
argc(oi)∏

j=1

p(ai,j | z<i,x, oi,m,y)×

[vi = apply(oi,a)],

where [p] evaluates to 1 if p is true and 0 otherwise,
and apply(f,x) evaluates the operation f with ar-
guments x. Note that the apply function is not
learned, but pre-defined.

The network used to generate an instruction at
a given timestamp i is illustrated in Figure 3. We
first use the recurrent state hi to generate p(oi |
z<i,x) = softmax

oi∈O
(hi), using a softmax over the

set of available operations O.
In order to predict ri, we generate a new hid-

den state ri, which is a function of the current pro-
gram context hi, and an embedding of the cur-
rent predicted operation, oi. As the output can
either be placed in the memory m or the output
y, we compute the probability p(ri = OUTPUT |
z<i,x, oi) = σ(ri · wr + br), where σ is the lo-
gistic sigmoid function. If ri = OUTPUT, vi is
appended to the output y; otherwise it is appended
to the memorym.

Once we generate ri, we must predict ai, the
argc(oi)-length sequence of arguments that oper-
ation oi requires. The jth argument ai,j can be
either generated from a softmax over the vocab-
ulary, copied from the input vector x, or copied
from previously generated values in the output
y or memory m. This decision is modeled us-
ing a latent predictor network (Ling et al., 2016),
where the control over which method used to gen-
erate ai,j is governed by a latent variable qi,j ∈
{SOFTMAX, COPY-INPUT, COPY-OUTPUT}. Sim-
ilar to when predicting ri, in order to make this
choice, we also generate a new hidden state for
each argument slot j, denoted by qi,j with an
LSTM, feeding the previous argument in at each
time step, and initializing it with ri and by reading
the predicted value of the output ri.

• If qi,j = SOFTMAX, ai,j is generated by sam-
pling from a softmax over the vocabulary Y ,

p(ai,j | qi,j = SOFTMAX) = softmax
ai,j∈Y

(qi,j).

This corresponds to a case where a string is used
as argument (e.g. y1=“Let”).
• If qi,j = COPY-INPUT, ai,j is obtained by copy-

ing an element from the input vector with a
pointer network (Vinyals et al., 2015) over input
words x1, . . . , x|x|, represented by their encoder
LSTM state u1, . . . ,u|x|. As such, we compute
the probability distribution over input words as:

p(ai,j | qi,j =COPY-INPUT) = (1)

softmax
ai,j∈x1,...,x|x|

(
f(uai,j ,qi,j)

)

Function f computes the affinity of each to-
ken xai,j and the current output context qi,j . A
common implementation of f , which we follow,
is to apply a linear projection from [uai,j ;qi,j]
into a fixed size vector (where [u;v] is vector
concatenation), followed by a tanh and a linear
projection into a single value.

162

• If qi,j = COPY-OUTPUT, the model copies from
either the output y or the memory m. This is
equivalent to finding the instruction zi, where
the value was generated. Once again, we de-
fine a pointer network that points to the output
instructions and define the distribution over pre-
viously generated instructions as:

p(ai,j | qi,j =COPY-OUTPUT) =

softmax
ai,j∈z1,...,zi−1

(
f(hai,j ,qi,j)

)

Here, the affinity is computed using the decoder
state hai,j and the current state qi,j .

Finally, we embed the argument ai,j1 and the
state qi,j to generate the next state qi,j+1. Once
all arguments for oi are generated, the operation
is executed to obtain vi. Then, the embedding of
vi, the final state of the instruction qi,|ai| and the
previous state hi are used to generate the state at
the next timestamp hi+1.

4 Inducing Programs while Learning

The set of instructions z that will generate y is un-
observed. Thus, given x we optimize the marginal
probability function:

p(y | x) =
∑

z∈Z
p(y | z)p(z | x) =

∑

z∈Z(y)
p(z | x),

where p(y | z) is the Kronecker delta function
δe(z),y, which is 1 if the execution of z, denoted as
e(z), generates y and 0 otherwise. Thus, we can
redefine p(y|x), the marginal over all programsZ ,
as a marginal over programs that would generate
y, defined as Z(y). As marginalizing over z ∈
Z(y) is intractable, we approximate the marginal
by generating samples from our model. Denote
the set of samples that are generated by Ẑ(y). We
maximize

∑
z ∈ Ẑ(y)p(z|x).

However, generating programs that generate y
is not trivial, as randomly sampling from the RNN
distribution over instructions at each timestamp is
unlikely to generate a sequence z ∈ Z(y).

This is analogous to the question answering
work in Liang et al. (2016), where the query that

1 The embeddings of a given argument ai,j and the return
value vi are obtained with a lookup table embedding and two
flags indicating whether it is a string and whether it is a float.
Furthermore, if the the value is a float we also add its numeric
value as a feature.

generates the correct answer must be found dur-
ing inference, and training proved to be difficult
without supervision. In Roy and Roth (2015) this
problem is also addressed by adding prior knowl-
edge to constrain the exponential space.

In our work, we leverage the fact that we are
generating rationales, where there is a sense of
progression within the rationale. That is, we as-
sume that the rationale solves the problem step by
step. For instance, in Problem 2, the rationale first
describes the number of combinations of two cards
in a deck of 52 cards, then describes the number
of combinations of two kings, and finally com-
putes the probability of drawing two kings. Thus,
while generating the final answer without the ra-
tionale requires a long sequence of latent instruc-
tions, generating each of the tokens of the rationale
requires far less operations.

More formally, given the sequence z1, . . . , zi−1
generated so far, and the possible values for zi
given by the network, denotedZi, we wish to filter
Zi to Zi(yk), which denotes a set of possible op-
tions that contain at least one path capable of gen-
erating the next token at index k. Finding the set
Zi(yk) is achieved by testing all combinations of
instructions that are possible with at most one level
of indirection, and keeping those that can generate
yk. This means that the model can only gener-
ate one intermediate value in memory (not includ-
ing the operations that convert strings into floating
point values and vice-versa).

Decoding. During decoding we find the most
likely sequence of instructions z given x, which
can be performed with a stack-based decoder.
However, it is important to refer that each gen-
erated instruction zi = (oi, ri, ai,1, . . . , ai,|ai|, vi)
must be executed to obtain vi. To avoid generating
unexecutable code—e.g., log(0)—each hypothesis
instruction is executed and removed if an error oc-
curs. Finally, once the “〈EOR〉” tag is generated,
we only allow instructions that would generate one
of the option “A” to “E” to be generated, which
guarantees that one of the options is chosen.

5 Staged Back-propagation

As it is shown in Figure 2, math rationales with
more than 200 tokens are not uncommon, and with
additional intermediate instructions, the size z can
easily exceed 400. This poses a practical challenge
for training the model.

For both the attention and copy mechanisms,

163

for each instruction zi, the model needs to com-
pute the probability distribution between all the at-
tendable units c conditioned on the previous state
hi−1. For the attention model and input copy
mechanisms, c = x0,i−1 and for the output copy
mechanism c = z. These operations generally
involve an exponential number of matrix multi-
plications as the size of c and z grows. For in-
stance, during the computation of the probabilities
for the input copy mechanism in Equation 1, the
affinity function f between the current context q
and a given input uk is generally implemented by
projecting u and q into a single vector followed
by a non-linearity, which is projected into a sin-
gle affinity value. Thus, for each possible input
u, 3 matrix multiplications must be performed.
Furthermore, for RNN unrolling, parameters and
intermediate outputs for these operations must be
replicated for each timestamp. Thus, as z becomes
larger the attention and copy mechanisms quickly
become a memory bottleneck as the computation
graph becomes too large to fit on the GPU. In con-
trast, the sequence-to-sequence model proposed in
(Sutskever et al., 2014), does not suffer from these
issues as each timestamp is dependent only on the
previous state hi−1.

To deal with this, we use a training method we
call staged back-propagation which saves mem-
ory by considering slices of K tokens in z, rather
than the full sequence. That is, to train on a mini-
batch where |z| = 300 with K = 100, we would
actually train on 3 mini-batches, where the first
batch would optimize for the first z1:100, the sec-
ond for z101:200 and the third for z201:300. The
advantage of this method is that memory intensive
operations, such as attention and the copy mecha-
nism, only need to be unrolled for K steps, and K
can be adjusted so that the computation graph fits
in memory.

However, unlike truncated back-propagation for
language modeling, where context outside the
scope of K is ignored, sequence-to-sequence
models require global context. Thus, the sequence
of states h is still built for the whole sequence z.
Afterwards, we obtain a slice hj:j+K , and com-
pute the attention vector.2 Finally, the prediction
of the instruction is conditioned on the LSTM state
and the attention vector.

2This modeling strategy is sometimes known as late fu-
sion, as the attention vector is not used for state propagation,
it is incorporated “later”.

6 Experiments

We apply our model to the task of generating ratio-
nales for solutions to math problems, evaluating it
on both the quality of the rationale and the ability
of the model to obtain correct answers.

6.1 Baselines
As the baseline we use the attention-based se-
quence to sequence model proposed by Bahdanau
et al. (2014), and proposed augmentations, allow-
ing it to copy from the input (Ling et al., 2016) and
from the output (Merity et al., 2016).

6.2 Hyperparameters
We used a two-layer LSTM with a hidden size of
H = 200, and word embeddings with size 200.
The number of levels that the graph G is expanded
during sampling D is set to 5. Decoding is per-
formed with a beam of 200. As for the vocabulary
of the softmax and embeddings, we keep the most
frequent 20,000 word types, and replace the rest of
the words with an unknown token. During train-
ing, the model only learns to predict a word as an
unknown token, when there is no other alternative
to generate the word.

6.3 Evaluation Metrics
The evaluation of the rationales is performed
with average sentence level perplexity and BLEU-
4 (Papineni et al., 2002). When a model cannot
generate a token for perplexity computation, we
predict unknown token. This benefits the baselines
as they are less expressive. As the perplexity of
our model is dependent on the latent program that
is generated, we force decode our model to gener-
ate the rationale, while maximizing the probability
of the program. This is analogous to the method
used to obtain sample programs described in Sec-
tion 4, but we choose the most likely instructions
at each timestamp instead of sampling. Finally,
the correctness of the answer is evaluated by com-
puting the percentage of the questions, where the
chosen option matches the correct one.

6.4 Results
The test set results, evaluated on perplexity,
BLEU, and accuracy, are presented in Table 3.

Perplexity. In terms of perplexity, we observe
that the regular sequence to sequence model fares
poorly on this dataset, as the model requires
the generation of many values that tend to be

164

Model Perplexity BLEU Accuracy
Seq2Seq 524.7 8.57 20.8
+Copy Input 46.8 21.3 20.4
+Copy Output 45.9 20.6 20.2
Our Model 28.5 27.2 36.4

Table 3: Results over the test set measured in Per-
plexity, BLEU and Accuracy.

sparse. Adding an input copy mechanism greatly
improves the perplexity as it allows the genera-
tion process to use values that were mentioned
in the question. The output copying mechanism
improves perplexity slightly over the input copy
mechanism, as many values are repeated after their
first occurrence. For instance, in Problem 2, the
value “1326” is used twice, so even though the
model cannot generate it easily in the first occur-
rence, the second one can simply be generated by
copying the first one. We can observe that our
model yields significant improvements over the
baselines, demonstrating that the ability to gener-
ate new values by algebraic manipulation is essen-
tial in this task. An example of a program that is
inferred is shown in Figure 4. The graph was gen-
erated by finding the most likely program z that
generates y. Each node isolates a value in x, m,
or y, where arrows indicate an operation executed
with the outgoing nodes as arguments and incom-
ing node as the return of the operation. For sim-
plicity, operations that copy or convert values (e.g.
from string to float) were not included, but nodes
that were copied/converted share the same color.
Examples of tokens where our model can obtain
the perplexity reduction are the values “0.025”,
“0.023”, “0.002” and finally the answer “E” , as
these cannot be copied from the input or output.

BLEU. We observe that the regular sequence to
sequence model achieves a low BLEU score. In
fact, due to the high perplexities the model gener-
ates very short rationales, which frequently consist
of segments similar to “Answer should be D”, as
most rationales end with similar statements. By
applying the copy mechanism the BLEU score
improves substantially, as the model can define
the variables that are used in the rationale. In-
terestingly, the output copy mechanism adds no
further improvement in the perplexity evaluation.
This is because during decoding all values that can
be copied from the output are values that could

have been generated by the model either from the
softmax or the input copy mechanism. As such,
adding an output copying mechanism adds little to
the expressiveness of the model during decoding.

Finally, our model can achieve the highest
BLEU score as it has the mechanism to generate
the intermediate and final values in the rationale.

Accuracy. In terms of accuracy, we see that
all baseline models obtain values close to chance
(20%), indicating that they are completely unable
to solve the problem. In contrast, we see that our
model can solve problems at a rate that is signifi-
cantly higher than chance, demonstrating the value
of our program-driven approach, and its ability to
learn to generate programs.

In general, the problems we solve correctly cor-
respond to simple problems that can be solved in
one or two operations. Examples include ques-
tions such as “Billy cut up each cake into 10 slices,
and ended up with 120 slices altogether. How
many cakes did she cut up? A) 9 B) 7 C) 12 D)
14 E) 16”, which can be solved in a single step. In
this case, our model predicts “120 / 10 = 12 cakes.
Answer is C” as the rationale, which is reasonable.

6.5 Discussion.
While we show that our model can outperform the
models built up to date, generating complex ratio-
nales as those shown in Figure 1 correctly is still
an unsolved problem, as each additional step adds
complexity to the problem both during inference
and decoding. Yet, this is the first result showing
that it is possible to solve math problems in such
a manner, and we believe this modeling approach
and dataset will drive work on this problem.

7 Related Work

Extensive efforts have been made in the domain
of math problem solving (Hosseini et al., 2014;
Kushman et al., 2014; Roy and Roth, 2015), which
aim at obtaining the correct answer to a given math
problem. Other work has focused on learning to
map math expressions into formal languages (Roy
et al., 2016). We aim to generate natural language
rationales, where the bindings between variables
and the problem solving approach are mixed into
a single generative model that attempts to solve the
problem while explaining the approach taken.

Our approach is strongly tied with the work
on sequence to sequence transduction using the
encoder-decoder paradigm (Sutskever et al., 2014;

165

Bottle R contains 250 capsules and costs $ 6.25 .
Bottle T contains 130 capsules and costs $ 2.99 .
What is the difference between the cost per capsule for bottle R and the
cost per capsule for bottle T ?
 (A) $ 0.25
 (B) $ 0.12
 (C) $ 0.05
 (D) $ 0.03
 (E) $ 0.002

Cost per capsule in R is 6.25 / 250 = 0.025

Cost per capsule in T is 2.99 / 130 = 0.023

The difference is 0.002

The answer is E

250 6.25 0.025 2.99130 0.023 0.002 E

div(m1,m2) div(m4,m5)

sub(m6,m3) check(m7)

\n

\n

\n

<EOS>

y

m

x

Figure 4: Illustration of the most likely latent program inferred by our algorithm to explain a held-out
question-rationale pair.

Bahdanau et al., 2014; Kalchbrenner and Blun-
som, 2013), and inherits ideas from the extensive
literature on semantic parsing (Jones et al., 2012;
Berant et al., 2013; Andreas et al., 2013; Quirk
et al., 2015; Liang et al., 2016; Neelakantan et al.,
2016) and program generation (Reed and de Fre-
itas, 2016; Graves et al., 2016), namely, the usage
of an external memory, the application of differ-
ent operators over values in the memory and the
copying of stored values into the output sequence.

Providing textual explanations for classification
decisions has begun to receive attention, as part of
increased interest in creating models whose deci-
sions can be interpreted. Lei et al. (2016), jointly
modeled both a classification decision, and the se-
lection of the most relevant subsection of a docu-
ment for making the classification decision. Hen-
dricks et al. (2016) generate textual explanations
for visual classification problems, but in contrast
to our model, they first generate an answer, and
then, conditional on the answer, generate an ex-
planation. This effectively creates a post-hoc jus-
tification for a classification decision rather than
a program for deducing an answer. These papers,

like ours, have jointly modeled rationales and an-
swer predictions; however, we are the first to use
rationales to guide program induction.

8 Conclusion

In this work, we addressed the problem of generat-
ing rationales for math problems, where the task is
to not only obtain the correct answer of the prob-
lem, but also generate a description of the method
used to solve the problem. To this end, we collect
100,000 question and rationale pairs, and propose
a model that can generate natural language and
perform arithmetic operations in the same decod-
ing process. Experiments show that our method
outperforms existing neural models, in both the
fluency of the rationales that are generated and the
ability to solve the problem.

References
Jacob Andreas, Andreas Vlachos, and Stephen Clark.

2013. Semantic parsing as machine translation. In
Proc. of ACL.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

166

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv 1409.0473.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proc. of EMNLP.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwiska, Sergio Gmez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou,
Adri Puigdomnech Badia, Karl Moritz Hermann,
Yori Zwols, Georg Ostrovski, Adam Cain, Helen
King, Christopher Summerfield, Phil Blunsom,
Koray Kavukcuoglu, and Demis Hassabis. 2016.
Hybrid computing using a neural network with
dynamic external memory. Nature 538(7626):471–
476.

Brent Harrison, Upol Ehsan, and Mark O. Riedl. 2017.
Rationalization: A neural machine translation ap-
proach to generating natural language explanations.
CoRR abs/1702.07826.

Lisa Anne Hendricks, Zeynep Akata, Marcus
Rohrbach, Jeff Donahue, Bernt Schiele, and Trevor
Darrell. 2016. Generating visual explanations. In
Proc. ECCV .

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In Proc. of EMNLP.

Bevan Keeley Jones, Mark Johnson, and Sharon Gold-
water. 2012. Semantic parsing with bayesian tree
transducers. In Proc. of ACL.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proc. of EMNLP.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proc. of ACL.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. In Proc. of
EMNLP.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D.
Forbus, and Ni Lao. 2016. Neural symbolic ma-
chines: Learning semantic parsers on freebase with
weak supervision. arXiv 1611.00020.

Wang Ling, Edward Grefenstette, Karl Moritz Her-
mann, Tomás Kociský, Andrew Senior, Fumin
Wang, and Phil Blunsom. 2016. Latent predictor
networks for code generation. In Proc. of ACL.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. arXiv 1609.07843.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever.
2016. Neural programmer: Inducing latent pro-
grams with gradient descent. In Proc. ICLR.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proc. of ACL.

Chris Quirk, Raymond Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proc. of ACL.

Scott E. Reed and Nando de Freitas. 2016. Neural
programmer-interpreters. In Proc. of ICLR.

Subhro Roy and Dan Roth. 2015. Solving general
arithmetic word problems. In Proc. of EMNLP.

Subhro Roy, Shyam Upadhyay, and Dan Roth. 2016.
Equation parsing: Mapping sentences to grounded
equations. In Proc. of EMNLP.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. arXiv 1409.3215.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Proc. of NIPS.

167

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 168–178
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1016

Automatically Generating Rhythmic Verse with Neural Networks

Jack Hopkins
Computer Laboratory

University of Cambridge
jack.hopkins@me.com

Douwe Kiela
Facebook AI Research
dkiela@fb.com

Abstract

We propose two novel methodologies for
the automatic generation of rhythmic po-
etry in a variety of forms. The first
approach uses a neural language model
trained on a phonetic encoding to learn
an implicit representation of both the form
and content of English poetry. This model
can effectively learn common poetic de-
vices such as rhyme, rhythm and allitera-
tion. The second approach considers po-
etry generation as a constraint satisfac-
tion problem where a generative neural
language model is tasked with learning a
representation of content, and a discrimi-
native weighted finite state machine con-
strains it on the basis of form. By manip-
ulating the constraints of the latter model,
we can generate coherent poetry with arbi-
trary forms and themes. A large-scale ex-
trinsic evaluation demonstrated that partic-
ipants consider machine-generated poems
to be written by humans 54% of the time.
In addition, participants rated a machine-
generated poem to be the most human-like
amongst all evaluated.

1 Introduction

Poetry is an advanced form of linguistic commu-
nication, in which a message is conveyed that sat-
isfies both aesthetic and semantic constraints. As
poetry is one of the most expressive forms of lan-
guage, the automatic creation of texts recognis-
able as poetry is difficult. In addition to requiring
an understanding of many aspects of language in-
cluding phonetic patterns such as rhyme, rhythm
and alliteration, poetry composition also requires
a deep understanding of the meaning of language.

Poetry generation can be divided into two sub-
tasks, namely the problem of content, which is
concerned with a poem’s semantics, and the prob-
lem of form, which is concerned with the aesthetic
rules that a poem follows. These rules may de-
scribe aspects of the literary devices used, and are
usually highly prescriptive. Examples of different
forms of poetry are limericks, ballads and sonnets.
Limericks, for example, are characterised by their
strict rhyme scheme (AABBA), their rhythm (two
unstressed syllables followed by one stressed syl-
lable) and their shorter third and fourth lines. Cre-
ating such poetry requires not only an understand-
ing of the language itself, but also of how it sounds
when spoken aloud.

Statistical text generation usually requires the
construction of a generative language model that
explicitly learns the probability of any given word
given previous context. Neural language models
(Schwenk and Gauvain, 2005; Bengio et al., 2006)
have garnered signficant research interest for their
ability to learn complex syntactic and seman-
tic representations of natural language (Mikolov
et al., 2010; Sutskever et al., 2014; Cho et al.,
2014; Kim et al., 2015). Poetry generation is an
interesting application, since performing this task
automatically requires the creation of models that
not only focus on what is being written (content),
but also on how it is being written (form).

We experiment with two novel methodologies
for solving this task. The first involves training a
model to learn an implicit representation of con-
tent and form through the use of a phonological
encoding. The second involves training a gener-
ative language model to represent content, which
is then constrained by a discriminative pronuncia-
tion model, representing form. This second model
is of particular interest because poetry with arbi-
trary rhyme, rhythm, repetition and themes can be
generated by tuning the pronunciation model.

168

https://doi.org/10.18653/v1/P17-1016

2 Related Work

Automatic poetry generation is an important task
due to the significant challenges involved. Most
systems that have been proposed can loosely be
categorised as rule-based expert systems, or statis-
tical approaches.

Rule-based poetry generation attempts include
case-based reasoning (Gervás, 2000), template-
based generation (Colton et al., 2012), constraint
satisfaction (Toivanen et al., 2013; Barbieri et al.,
2012) and text mining (Netzer et al., 2009). These
approaches are often inspired by how humans
might generate poetry.

Statistical approaches, conversely, make no as-
sumptions about the creative process. Instead,
they attempt to extract statistical patterns from ex-
isting poetry corpora in order to construct a lan-
guage model, which can then be used to gener-
ate new poetic variants (Yi et al., 2016; Greene
et al., 2010). Neural language models have been
increasingly applied to the task of poetry gener-
ation. The work of Zhang and Lapata (2014) is
one such example, where they were able to outper-
form all other classical Chinese poetry generation
systems with both manual and automatic evalua-
tion. Ghazvininejad et al. (2016) and Goyal et al.
(2016) apply neural language models with regu-
larising finite state machines. However, in the for-
mer case the rhythm of the output cannot be de-
fined at sample time, and in the latter case the fi-
nite state machine is not trained on rhythm at all,
as it is trained on dialogue acts. McGregor et al.
(2016) construct a phonological model for gener-
ating prosodic texts, however there is no attempt
to embed semantics into this model.

3 Phonetic-level Model

Our first model is a pure neural language model,
trained on a phonetic encoding of poetry in or-
der to represent both form and content. Phonetic
encodings of language represent information as
sequences of around 40 basic acoustic symbols.
Training on phonetic symbols allows the model
to learn effective representations of pronunciation,
including rhyme and rhythm.

However, just training on a large corpus of po-
etry data is not enough. Specifically, two problems
need to be overcome. 1) Phonetic encoding re-
sults in information loss: words that have the same
pronunciation (homophones) cannot be perfectly
reconstructed from the corresponding phonemes.

This means that we require an additional proba-
bilistic model in order to determine the most likely
word given a sequence of phonemes. 2) The va-
riety of poetry and poetic devices one can use—
e.g., rhyme, rhythm, repetition—means that po-
ems sampled from a model trained on all poetry
would be unlikely to maintain internal consistency
of meter and rhyme. It is therefore important to
train the model on poetry which has its own inter-
nal consistency.

Thus, the model comprises three steps: translit-
erating an orthographic sequence to its phonetic
representation, training a neural language model
on the phonetic encoding, and decoding the gen-
erated sequence back from phonemes to ortho-
graphic symbols.

Phonetic encoding To solve the first step, we
apply a combination of word lookups from the
CMU pronunciation dictionary (Weide, 2005)
with letter-to-sound rules for handling out-of-
vocabulary words. These rules are based on the
CART techniques described by Black et al. (1998),
and are represented with a simple Finite State
Transducer1. The number of letters and number
of phones in a word are rarely a one-to-one match:
letters may match with up to three phones. In ad-
dition, virtually all letters can, in some contexts,
map to zero phones, which is known as ‘wild’
or epsilon. Expectation Maximisation is used to
compute the probability of a single letter match-
ing a single phone, which is maximised through
the application of Dynamic Time Warping (Myers
et al., 1980) to determine the most likely position
of epsilon characters.

Although this approach offers full coverage
over the training corpus—even for abbreviated
words like ask’d and archaic words like re-
newest—it has several limitations. Irregularities
in the English language result in difficulty deter-
mining general letter-to-sound rules that can man-
age words with unusual pronunciations such as
“colonel” and “receipt” 2.

In addition to transliterating words into
phoneme sequences, we also represent word
break characters as a specific symbol. This makes

1Implemented using FreeTTS (Walker et al., 2010)
2An evaluation of models in American English, British

English, German and French was undertaken by Black et al.
(1998), who reported an externally validated per token accu-
racy on British English as low as 67%. Although no experi-
ments were carried out on corpora of early-modern English,
it is likely that this accuracy would be significantly lower.

169

decipherment, when converting back into an or-
thographic representation, much easier. Phonetic
transliteration allows us to construct a phonetic
poetry corpus comprising 1,046,536 phonemes.

Neural language model We train a Long-Short
Term Memory network (Hochreiter and Schmid-
huber, 1997) on the phonetic representation of our
poetry corpus. The model is trained using stochas-
tic gradient descent to predict the next phoneme
given a sequence of phonemes. Specifically, we
maximize a multinomial logistic regression ob-
jective over the final softmax prediction. Each
phoneme is represented as a 256-dimensional em-
bedding, and the model consists of two hidden
layers of size 256. We apply backpropagation-
through-time (Werbos, 1990) for 150 timesteps,
which roughly equates to four lines of poetry in
sonnet form. This allows the network to learn
features like rhyme even when spread over mul-
tiple lines. Training is preemptively stopped at 25
epochs to prevent overfitting.

Orthographic decoding When decoding from
phonemes back to orthographic symbols, the goal
is to compute the most likely word correspond-
ing to a sequence of phonemes. That is, we com-
pute the most probable hypothesis word W given
a phoneme sequence ρ:

arg maxi P (Wi | ρ) (1)

We can consider the phonetic encoding of plain-
text to be a homophonic cipher; that is, a cipher in
which each symbol can correspond to one or more
possible decodings. The problem of homophonic
decipherment has received significant research at-
tention in the past; with approaches utilising Ex-
pectation Maximisation (Knight et al., 2006), In-
teger Programming (Ravi and Knight, 2009) and
A* search (Corlett and Penn, 2010).

Transliteration from phonetic to an ortho-
graphic representation is done by constructing a
Hidden Markov Model using the CMU pronunci-
ation dictionary (Weide, 2005) and an n-gram lan-
guage model. We calculate the transition proba-
bilities (using the n-gram model) and the emission
matrix (using the CMU pronunciation dictionary)
to determine pronunciations that correspond to a
single word. All pronunciations are naively con-
sidered equiprobable. We perform Viterbi decod-
ing to find the most likely sequence of words. This
means finding the most likely word wt+1 given a

And humble and their fit flees are wits size
but that one made and made thy step me lies

—————————————
Cool light the golden dark in any way
the birds a shade a laughter turn away

—————————————
Then adding wastes retreating white as thine

She watched what eyes are breathing awe what shine
—————————————

But sometimes shines so covered how the beak
Alone in pleasant skies no more to seek

Figure 1: Example output of the phonetic-level
model trained on Iambic Pentameter poetry (gram-
matical errors are emphasised).

previous word sequence (wt−n, ..., wt).

arg maxwt+1 P (wt+1 | w1, ... , wt) (2)

If a phonetic sequence does not map to any word,
we apply the heuristic of artificially breaking the
sequence up into two subsequences at index n,
such that n maximises the n-gram frequency of the
subsequences.

Output A popular form of poetry with strict in-
ternal structure is the sonnet. Popularised in En-
glish by Shakespeare, the sonnet is characterised
by a strict rhyme scheme and exactly fourteen
lines of Iambic Pentameter (Greene et al., 2010).
Since the 17,134 word tokens in Shakespeare’s
153 sonnets are insufficient to train an effective
model, we augment this corpus with poetry taken
from the website sonnets.org, yielding a training
set of 288,326 words and 1,563,457 characters.

An example of the output when training on this
sonnets corpus is provided in Figure 1. Not only is
it mostly in strict Iambic Pentameter, but the gram-
mar of the output is mostly correct and the poetry
contains rhyme.

4 Constrained Character-level Model

As the example shows, phonetic-level language
models are effective at learning poetic form, de-
spite small training sets and relatively few param-
eters. However, the fact that they require training
data with internal poetic consistency implies that
they do not generalise to other forms of poetry.
That is, in order to generate poetry in Dactylic
Hexameter (for example), a phonetic model must
be trained on a corpus of Dactylic poetry. Not only
is this impractical, but in many cases no corpus of

170

adequate size even exists. Even when such poetic
corpora are available, a new model must be trained
for each type of poetry. This precludes tweaking
the form of the output, which is important when
generating poetry automatically.

We now explore an alternative approach. In-
stead of attempting to represent both form and
content in a single model, we construct a pipeline
containing a generative language model represent-
ing content, and a discriminative model represent-
ing form. This allows us to represent the problem
of creating poetry as a constraint satisfaction prob-
lem, where we can modify constraints to restrict
the types of poetry we generate.

Character Language Model Rather than train
a model on data representing features of both con-
tent and form, we now use a simple character-level
model (Sutskever et al., 2011) focused solely on
content. This approach offers several benefits over
the word-level models that are prevalent in the lit-
erature. Namely, their more compact vocabulary
allows for more efficient training; they can learn
common prefixes and suffixes to allow us to sam-
ple words that are not present in the training cor-
pus and can learn effective language representa-
tions from relatively small corpora; and they can
handle archaic and incorrect spellings of words.

As we no longer need the model to explicitly
represent the form of generated poetry, we can
loosen our constraints when choosing a training
corpus. Instead of relying on poetry only in sonnet
form, we can instead construct a generic corpus of
poetry taken from online sources. This corpus is
composed of 7.56 million words and 34.34 mil-
lion characters, taken largely from 20th Century
poetry books found online. The increase in cor-
pus size facilitates a corresponding increase in the
number of permissible model parameters. This al-
lows us to train a 3-layer LSTM model with 2048-
dimensional hidden layers, with embeddings in
128 dimensions. The model was trained to pre-
dict the next character given a sequence of charac-
ters, using stochastic gradient descent. We attenu-
ate the learning rate over time, and by 20 epochs
the model converges.

Rhythm Modeling Although a character-level
language model trained on a corpus of generic po-
etry allows us to generate interesting text, internal
irregularities and noise in the training data prevent
the model from learning important features such

as rhythm. Hence, we require an additional classi-
fier to constrain our model by either accepting or
rejecting sampled lines based on the presence or
absence of these features. As the presence of me-
ter (rhythm) is the most characteristic feature of
poetry, it therefore must be our primary focus.

Pronunciation dictionaries have often been used
to determine the syllabic stresses of words (Colton
et al., 2012; Manurung et al., 2000; Misztal and In-
durkhya, 2014), but suffer from some limitations
for constructing a classifier. All word pronunci-
ations are considered equiprobable, including ar-
chaic and uncommon pronunciations, and pronun-
ciations are provided context free, despite the im-
portance of context for pronunciation3. Further-
more, they are constructed from American En-
glish, meaning that British English may be mis-
classified.

These issues are circumvented by applying
lightly supervised learning to determine the con-
textual stress pattern of any word. That is, we ex-
ploit the latent structure in our corpus of sonnet
poetry, namely, the fact that sonnets are composed
of lines in rigid Iambic Pentameter, and are there-
fore exactly ten syllables long with alternating syl-
labic stress. This allows us to derive a syllable-
stress distribution. Although we use the sonnets
corpus for this, it is important to note that any cor-
pus with such a latent structure could be used.

We represent each line of poetry as a cascade
of Weighted Finite State Transducers (WFST). A
WFST is a finite-state automaton that maps be-
tween two sets of symbols. It is defined as an
eight-tuple where ⟨Q, Σ, ρ, I, F, ∆, λ, p⟩:

Q : A set of states

Σ : An input alphabet of symbols

ρ : An output alphabet of symbols

I : A set of initial states

F : A set of final states, or sinks

∆ : A transition function mapping pairs of states
and symbols to sets of states

λ : A set of weights for initial states

P : A set of weights for final states
3For example, the independent probability of stressing the

single syllable word at is 40%, but this increases to 91% when
the following word is the (Greene et al., 2010)

171

A WFST assigns a probability (or weight, in the
general case) to each path through it, going from
an initial state to an end state. Every path corre-
sponds to an input and output label sequence, and
there can be many such paths for each sequence.

WFSTs are often used in a cascade, where a
number of machines are executed in series, such
that the output tape of one machine is the input
tape for the next. Formally, a cascade is repre-
sented by the functional composition of several
machines.

W (x, z) = A(x|y) ◦ B(y|z) ◦ C(z) (3)

Where W (x, z) is defined as the ⊕ sum of the
path probabilities through the cascade, and x and z
are an input sequence and output sequence respec-
tively. In the real semiring (where the product of
probabilities are taken in series, and the sum of the
probabilities are taken in parallel), we can rewrite
the definition of weighted composition to produce
the following:

W (x, z) =
⊕

y

A(x | y) ⊗ B(y | z) ⊗ C(z) (4)

As we are dealing with probabilities, this can be
rewritten as:

P (x, z) =
∑

y

P (x | y)P (y | z)P (z) (5)

We can perform Expectation Maximisation over
the poetry corpus to obtain a probabilistic classi-
fier which enables us to determine the most likely
stress patterns for each word. Every word is rep-
resented by a single transducer.

In each cascade, a sequence of input words is
mapped onto a sequence of stress patterns ⟨×, /⟩
where each pattern is between 1 and 5 syllables
in length4. We initially set all transition proba-
bilities equally, as we make no assumptions about
the stress distributions in our training set. We
then iterate over each line of the sonnet corpus,
using Expectation Maximisation to train the cas-
cades. In practice, there are several de facto vari-
ations of Iambic meter which are permissible, as
shown in Figure 2. We train the rhythm classifier
by converging the cascades to whatever output is
the most likely given the line.

4Words of more than 5 syllables comprise less than 0.1%
of the lexicon (Aoyama and Constable, 1998).

× / × / × / × / × /
/ × × / × / × / × /
× / × / × / × / × / ×
/ × × / × / × / × / ×

Figure 2: Permissible variations of Iambic Pen-
tameter in Shakespeare’s sonnets.

Generic poetry

Sonnet poetry

LSTM

WFST

Rhythmic Output

Trained

Trained

Buffer

Constraining the model To generate poetry us-
ing this model, we sample sequences of charac-
ters from the character-level language model. To
impose rhythm constrains on the language model,
we first represent these sampled characters at the
word level and pool sampled characters into word
tokens in an intermediary buffer. We then apply
the separately trained word-level WFSTs to con-
struct a cascade of this buffer and perform Viterbi
decoding over the cascade. This defines the distri-
bution of stress-patterns over our word tokens.

We can represent this cascade as a probabilistic
classifier, and accept or reject the buffered output
based on how closely it conforms to the desired
meter. While sampling sequences of words from
this model, the entire generated sequence is passed
to the classifier each time a new word is sampled.
The pronunciation model then returns the proba-
bility that the entire line is within the specified me-
ter. If a new word is rejected by the classifier, the
state of the network is rolled back to the last for-
mulaically acceptable state of the line, removing
the rejected word from memory. The constraint on
rhythm can be controlled by adjusting the accept-
ability threshold of the classifier. By increasing
the threshold, output focuses on form over content.
Conversely, decreasing the criterion puts greater
emphasis on content.

172

Themed Training Set

Poetry LSTM

Themed Output

Training Set

Poetry LSTM

Themed Output

Thematic Boosting

Implicit Explicit

Figure 3: Two approaches for generating themed
poetry.

4.1 Themes and Poetic devices
It is important for any generative poetry model to
include themes and poetic devices. One way to
achieve this would be by constructing a corpus
that exhibits the desired themes and devices. To
create a themed corpus about ‘love’, for instance,
we would aggregate love poetry to train the model,
which would thus learn an implicit representation
of love. However, this forces us to generate poetry
according to discrete themes and styles from pre-
trained models, requiring a new training corpus
for each model. In other words, we would suffer
from similar limitations as with the phonetic-level
model, in that we require a dedicated corpus. Al-
ternatively, we can manipulate the language model
by boosting character probabilities at sample time
to increase the probability of sampling thematic
words like ‘love’. This approach is more robust,
and provides us with more control over the final
output, including the capacity to vary the inclusion
of poetic devices in the output.

Themes In order to introduce thematic content,
we heuristically boost the probability of sampling
words that are semantically related to a theme
word from the language model. First, we com-
pile a list of similar words to a key theme word by
retrieving its semantic neighbours from a distribu-
tional semantic model (Mikolov et al., 2013). For
example, the theme winter might include thematic
words frozen, cold, snow and frosty. We represent
these semantic neighbours at the character level,
and heuristically boost their probability by multi-
plying the sampling probability of these character
strings by their cosine similarity to the key word,
plus a constant. Thus, the likelihood of sampling a
thematically related word is artificially increased,
while still constraining the model rhythmically.

Errors per line 1 2 3 4 Total

Phonetic Model 11 2 3 1 28
Character Model + WFST 6 5 1 1 23
Character Model 3 8 7 7 68

Table 1: Number of lines with n errors from a set
of 50 lines generated by each of the three models.

Poetic devices A similar method may be used
for poetic devices such as assonance, consonance
and alliteration. Since these devices can be or-
thographically described by the repetition of iden-
tical sequences of characters, we can apply the
same heuristic to boost the probability of sampling
character strings that have previously been sam-
pled. That is, to sample a line with many instances
of alliteration (multiple words with the same ini-
tial sound) we record the historical frequencies of
characters sampled at the beginning of each previ-
ous word. After a word break character, we boost
the probability that those characters will be sam-
pled again in the softmax. We only keep track of
frequencies for a fixed number of time steps. By
increasing or decreasing the size of this window,
we can manipulate the prevalence of alliteration.
Variations of this approach are applied to invoke
consonance (by boosting intra-word consonants)
and assonance (by boosting intra-word vowels).
An example of two sampled lines with high de-
grees of alliteration, assonance and consonance is
given in Figure 4c.

5 Evaluation

In order to examine how effective our methodolo-
gies for generating poetry are, we evaluate the pro-
posed models in two ways. First, we perform an
intrinsic evaluation where we examine the quality
of the models and the generated poetry. Second,
we perform an extrinsic evaluation where we eval-
uate the generated output using human annotators,
and compare it to human-generated poetry.

5.1 Intrinsic evaluation

To evaluate the ability of both models to gen-
erate formulaic poetry that adheres to rhythmic
rules, we compared sets of fifty sampled lines
from each model. The first set was sampled from
the phonetic-level model trained on Iambic poetry.
The second set was sampled from the character-
level model, constrained to Iambic form. For com-

173

Word Line Coverage

Wikipedia 64.84% 83.35% 97.53%
Sonnets 85.95% 80.32% 99.36%

Table 2: Error when transliterating text into
phonemes and reconstructing back into text.

parison, and to act as a baseline, we also sampled
from the unconstrained character model.

We created gold-standard syllabic classifica-
tions by recording each line spoken-aloud, and
marking each syllable as either stressed or un-
stressed. We then compared these observations
to loose Iambic Pentameter (containing all four
variants), to determine how many syllabic mis-
classifications existed on each line. This was done
by speaking each line aloud, and noting where the
speaker put stresses.

As Table 1 shows, the constrained character
level model generated the most formulaic poetry.
Results from this model show that 70% of lines
had zero mistakes, with frequency obeying an in-
verse power-law relationship with the number of
errors. We can see that the phonetic model per-
formed similarly, but produced more subtle mis-
takes than the constrained character model: many
of the errors were single mistakes in an otherwise
correct line of poetry.

In order to investigate this further, we examined
to what extent these errors are due to translitera-
tion (i.e., the phonetic encoding and orthographic
decoding steps). Table 2 shows the reconstruction
accuracy per word and per line when transliterat-
ing either Wikipedia or Sonnets to phonemes us-
ing the CMU pronunciation dictionary and subse-
quently reconstructing English text using the n-
gram model5. Word accuracy reflects the fre-
quency of perfect reconstruction, whereas per line
tri-gram similarity (Kondrak, 2005) reflects the
overall reconstruction. Coverage captures the per-
centage of in-vocabulary items. The relatively low
per-word accuracy achieved on the Wikipedia cor-
pus is likely due to the high frequency of out-of-
vocabulary words. The results show that a signifi-
cant number of errors in the phonetic-level model
are likely to be caused by transliteration mistakes.

5Obviously, calculating this value for the character-level
model makes no sense, since no transliteration occurs in that
case.

5.2 Extrinsic evaluation

We conducted an indistinguishability study with
a selection of automatically generated poetry and
human poetry. As extrinsic evaluations are expen-
sive and the phonetic model was unlikely to do
well (as illustrated in Figure 4e: the model gener-
ates good Iambic form, but not very good English),
we only evaluate on the constrained character-
level model. Poetry was generated with a variety
of themes and poetic devices (see supplementary
material).

The aim of the study was to determine whether
participants could distinguish between human and
machine-generated poetry, and if so to what ex-
tent. A set of 70 participants (of whom 61
were English native speakers) were each shown
a selection of randomly chosen poetry segments,
and were invited to classify them as either hu-
man or generated. Participants were recruited
from friends and people within poetry communi-
ties within the University of Cambridge, with an
age range of 17 to 80, and a mean age of 29. Our
participants were not financially incentivised, per-
ceiving the evaluation as an intellectual challenge.

In addition to the classification task, each partic-
ipant was also invited to rate each poem on a 1-5
scale with respect to three criteria, namely read-
ability, form and evocation (how much emotion
did a poem elicit). We naively consider the over-
all quality of a poem to be the mean of these three
measures. We used a custom web-based environ-
ment, built specifically for this evaluation6, which
is illustrated in Figure 5. Based on human judg-
ments, we can determine whether the models pre-
sented in this work can produce poetry of a similar
quality to humans.

To select appropriate human poetry that could
be meaningfully compared with the machine-
generated poetry, we performed a comprehension
test on all poems used in the evaluation, using the
Dale-Chall readability formula (Dale and Chall,
1948). This formula represents readability as a
function of the complexity of the input words.
We selected nine machine-generated poems with
a high readability score. The generated poems
produced an average score of 7.11, indicating that
readers over 15 years of age should easily be able
to comprehend them.

For our human poems, we focused explicitly on
poetry where greater consideration is placed on

6http://neuralpoetry.getforge.io/

174

(a)
The crow crooked on more beautiful and free,
He journeyed off into the quarter sea.
his radiant ribs girdled empty and very -
least beautiful as dignified to see.

(c)
Man with the broken blood blue glass and gold.
Cheap chatter chants to be a lover do.

(e)
The son still streams and strength and spirit.
The ridden souls of which the fills of.

(b)
Is that people like things
(are the way we to figure it
out) and I thought of you
reading and then is your
show or you know we will
finish along will you play.

(d)
How dreary to be somebody,
How public like a frog
To tell one’s name the livelong day
To an admiring bog.

Figure 4: Examples of automatically generated and human generated poetry. (a) Character-level model
- Strict rhythm regularisation - Iambic - No Theme. (b) Character-level model - Strict rhythm regulari-
sation - Anapest. (c) Character-level model - Boosted alliteration/assonance. (d) Emily Dickinson - I’m
nobody, who are you? (e) Phonetic-level model - Nonsensical Iambic lines.

Figure 5: The experimental environment for ask-
ing participants to distinguish between automati-
cally generated and human poetry.

prosodic elements like rhythm and rhyme than se-
mantic content (known as “nonsense verse”). We
randomly selected 30 poems belonging to that cat-
egory from the website poetrysoup.com, of which
eight were selected for the final comparison based
on their comparable readability score. The se-
lected poems were segmented into passages of be-
tween four and six lines, to match the length of the
generated poetry segments. An example of such a
segment is shown in Figure 4d. The human poems
had an average score of 7.52, requiring a similar
level of English aptitude to the generated texts.

The performance of each human poem, along-
side the aggregated scores of the generated poems,
is illustrated in Table 3. For the human poems,

our group of participants guessed correctly that
they were human 51.4% of the time. For the gen-
erated poems, our participants guessed correctly
46.2% of the time that they were machine gener-
ated. To determine whether our results were statis-
tically significant, we performed a Chi2 test. This
resulted in a p-value of 0.718. This indicates that
our participants were unable to tell the difference
between human and generated poetry in any sig-
nificant way. Although our participants generally
considered the human poems to be of marginally
higher quality than our generated poetry, they were
unable to effectively distinguish between them.
Interestingly, our results seem to suggest that our
participants consider the generated poems to be
more ‘human-like’ than those actually written by
humans. In addition, the poem with the highest
overall quality rating is a machine generated one.
This shows that our approach was effective at gen-
erating high-quality rhythmic verse.

It should be noted that the poems that were most
‘human-like’ and most aesthetic respectively were
generated by the neural character model. Gener-
ally the set of poetry produced by the neural char-
acter model was slightly less readable and emo-
tive than the human poetry, but had above average
form. All generated poems included in this evalu-
ation can be found in the supplementary material,
and our code is made available online7.

7https://github.com/JackHopkins/ACLPoetry

175

Poet Title Human Readability Emotion Form

Generated Best 0.66 0.60 -0.77 0.90

G. M. Hopkins Carrion Comfort 0.62 -1.09 1.39 -1.55

J. Thornton Delivery of Death 0.60 0.26 -1.38 -0.65

Generated Mean 0.54 -0.28 -0.30 0.23

M. Yvonne Intricate Weave 0.53 2.38 0.94 -1.67

E. Dickinson I’m Nobody 0.52 -0.46 0.92 0.44

G. M. Hopkins The Silver Jubilee 0.52 0.71 -0.33 0.65

R. Dryden Mac Flecknoe 0.51 -0.01 0.35 -0.78

A. Tennyson Beautiful City 0.48 -1.05 0.97 -1.26

W. Shakespeare A Fairy Song 0.45 0.65 1.30 1.18

Table 3: Proportion of people classifying each poem as ‘human’, as well as the relative qualitative scores
of each poem as deviations from the mean.

6 Conclusions

Our contributions are twofold. First, we devel-
oped a neural language model trained on a pho-
netic transliteration of poetic form and content.
Although example output looked promising, this
model was limited by its inability to generalise to
novel forms of verse. We then proposed a more ro-
bust model trained on unformed poetic text, whose
output form is constrained at sample time. This
approach offers greater control over the style of
the generated poetry than the earlier method, and
facilitates themes and poetic devices.

An indistinguishability test, where participants
were asked to classify a randomly selected set of
human “nonsense verse” and machine-generated
poetry, showed generated poetry to be indistin-
guishable from that written by humans. In ad-
dition, the poems that were deemed most ‘hu-
manlike’ and most aesthetic were both machine-
generated.

In future work, it would be useful to investigate
models based on morphemes, rather than char-
acters, which offers potentially superior perfor-
mance for complex and rare words (Luong et al.,
2013), which are common in poetry.

References
Hideaki Aoyama and John Constable. 1998. Word

length frequency and distribution in english: Obser-
vations, theory, and implications for the construction
of verse lines. arXiv preprint cmp-lg/9808004 .

Gabriele Barbieri, François Pachet, Pierre Roy, and

Mirko Degli Esposti. 2012. Markov constraints for
generating lyrics with style. In Proceedings of the
20th European Conference on Artificial Intelligence.
IOS Press, pages 115–120.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien
Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural probabilistic language models. In
Innovations in Machine Learning, Springer, pages
137–186.

Alan W Black, Kevin Lenzo, and Vincent Pagel. 1998.
Issues in building general letter to sound rules .

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. Proceedings of
ICLR .

Simon Colton, Jacob Goodwin, and Tony Veale. 2012.
Full face poetry generation. In Proceedings of the
Third International Conference on Computational
Creativity. pages 95–102.

Eric Corlett and Gerald Penn. 2010. An exact a*
method for deciphering letter-substitution ciphers.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics, pages 1040–
1047.

Edgar Dale and Jeanne S Chall. 1948. A formula for
predicting readability: Instructions. Educational re-
search bulletin pages 37–54.

Pablo Gervás. 2000. Wasp: Evaluation of different
strategies for the automatic generation of spanish
verse. In Proceedings of the AISB-00 Symposium on
Creative & Cultural Aspects of AI. pages 93–100.

176

Marjan Ghazvininejad, Xing Shi, Yejin Choi, and
Kevin Knight. 2016. Generating topical poetry.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing. pages
1183–1191.

Raghav Goyal, Marc Dymetman, and Eric Gaussier.
2016. Natural language generation through
character-based rnns with finite-state prior knowl-
edge. In Proceedings of COLING 2016, the 26th In-
ternational Conference on Computational Linguis-
tics: Technical Papers. Osaka, Japan, pages 1083–
1092.

Erica Greene, Tugba Bodrumlu, and Kevin Knight.
2010. Automatic analysis of rhythmic poetry with
applications to generation and translation. In Pro-
ceedings of the 2010 conference on empirical meth-
ods in natural language processing. Association for
Computational Linguistics, pages 524–533.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2015. Character-aware neural language
models. arXiv preprint arXiv:1508.06615 .

Kevin Knight, Anish Nair, Nishit Rathod, and Kenji
Yamada. 2006. Unsupervised analysis for deci-
pherment problems. In Proceedings of the COL-
ING/ACL on Main conference poster sessions. As-
sociation for Computational Linguistics, pages 499–
506.

Grzegorz Kondrak. 2005. N-gram similarity and dis-
tance. In String processing and information re-
trieval. Springer, pages 115–126.

Thang Luong, Richard Socher, and Christopher D
Manning. 2013. Better word representations with
recursive neural networks for morphology. In
CoNLL. pages 104–113.

Hisar Manurung, Graeme Ritchie, and Henry Thomp-
son. 2000. Towards a computational model of po-
etry generation. Technical report, The University of
Edinburgh.

Stephen McGregor, Matthew Purver, and Geraint Wig-
gins. 2016. Process based evaluation of computer
generated poetry. In The INLG 2016 Workshop on
Computational Creativity in Natural Language Gen-
eration. page 51.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH. volume 2, page 3.

Joanna Misztal and Bipin Indurkhya. 2014. Poetry
generation system with an emotional personality. In
Proceedings of the Fourth International Conference
on Computational Creativity.

Cory Myers, Lawrence R Rabiner, and Aaron E Rosen-
berg. 1980. Performance tradeoffs in dynamic
time warping algorithms for isolated word recog-
nition. Acoustics, Speech and Signal Processing,
IEEE Transactions on 28(6):623–635.

Yael Netzer, David Gabay, Yoav Goldberg, and
Michael Elhadad. 2009. Gaiku: Generating haiku
with word associations norms. In Proceedings of the
Workshop on Computational Approaches to Linguis-
tic Creativity. Association for Computational Lin-
guistics, pages 32–39.

Sujith Ravi and Kevin Knight. 2009. Learning
phoneme mappings for transliteration without paral-
lel data. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 37–45.

Holger Schwenk and Jean-Luc Gauvain. 2005. Train-
ing neural network language models on very large
corpora. In Proceedings of the conference on Hu-
man Language Technology and Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, pages 201–208.

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural
networks. In Proceedings of the 28th International
Conference on Machine Learning (ICML-11). pages
1017–1024.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Jukka M Toivanen, Matti Järvisalo, Hannu Toivonen,
et al. 2013. Harnessing constraint programming for
poetry composition. In Proceedings of the Fourth
International Conference on Computational Cre-
ativity. page 160.

Willie Walker, Paul Lamere, and Philip Kwok. 2010.
Freetts 1.2: A speech synthesizer written entirely in
the java programming language.

R Weide. 2005. The carnegie mellon pronouncing dic-
tionary [cmudict. 0.6].

Paul J Werbos. 1990. Backpropagation through time:
what it does and how to do it. Proceedings of the
IEEE 78(10):1550–1560.

Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. 2016. Gen-
erating chinese classical poems with rnn encoder-
decoder. arXiv preprint arXiv:1604.01537 .

177

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
EMNLP. pages 670–680.

178

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 179–188
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1017

Creating Training Corpora for NLG Micro-Planning

Claire Gardent Anastasia Shimorina
CNRS, LORIA, UMR 7503

Vandoeuvre-lès-Nancy, F-54500, France
{claire.gardent,anastasia.shimorina}@loria.fr

Shashi Narayan Laura Perez-Beltrachini
School of Informatics, University of Edinburgh
10 Crichton Street, Edinburgh, EH8 9AB, UK

{shashi.narayan,lperez}@ed.ac.uk

Abstract

In this paper, we present a novel
framework for semi-automatically cre-
ating linguistically challenging micro-
planning data-to-text corpora from ex-
isting Knowledge Bases. Because our
method pairs data of varying size and
shape with texts ranging from simple
clauses to short texts, a dataset created us-
ing this framework provides a challenging
benchmark for microplanning. Another
feature of this framework is that it can be
applied to any large scale knowledge base
and can therefore be used to train and learn
KB verbalisers. We apply our framework
to DBpedia data and compare the resulting
dataset with Wen et al. (2016)’s. We show
that while Wen et al.’s dataset is more than
twice larger than ours, it is less diverse
both in terms of input and in terms of text.
We thus propose our corpus generation
framework as a novel method for creat-
ing challenging data sets from which NLG
models can be learned which are capable
of handling the complex interactions oc-
curring during in micro-planning between
lexicalisation, aggregation, surface reali-
sation, referring expression generation and
sentence segmentation. To encourage re-
searchers to take up this challenge, we re-
cently made available a dataset created us-
ing this framework in the context of the
WEBNLG shared task.

1 Introduction

To train Natural Language Generation (NLG) sys-
tems, various input-text corpora have been devel-
oped which associate (numerical, formal, linguis-
tic) input with text. As discussed in detail in Sec-

tion 2, these corpora can be classified into three
main types namely, (i) domain specific corpora,
(ii) benchmarks constructed from “Expert” Lin-
guistic Annotations and (iii) crowdsourced bench-
marks.1

In this paper, we focus on how to create data-
to-text corpora which can support the learning of
micro-planners i.e., data-to-text generation sys-
tems that can handle the complex interactions
occurring between lexicalisation (mapping data
to words), aggregation (exploiting linguistic con-
structs such as ellipsis and coordination to avoid
repetition), surface realisation (using the appropri-
ate syntactic constructs to build sentences), sen-
tence segmentation and referring expression gen-
eration.

We start by reviewing the main existing types of
NLG benchmarks and we argue for a crowdsourc-
ing approach in which (i) data units are automati-
cally built from an existing Knowledge Base (KB)
and (ii) text is crowdsourced from the data (Sec-
tion 2). We then propose a generic framework for
semi-automatically creating training corpora for
NLG (Section 3) from existing knowledge bases.
In Section 4, we apply this framework to DBpedia
data and we compare the resulting dataset with the
dataset of Wen et al. (2016) using various metrics
to evaluate the linguistic and computational ade-
quacy of both datasets. By applying these metrics,
we show that while Wen et al.’s dataset is more
than twice larger than ours, it is less diverse both in
terms of input and in terms of text. We also com-

1We ignore here (Lebret et al., 2016)’s dataset which was
created fully automatically from Wikipedia by associating
infoboxes with text because this dataset fails to ensure an
adequate match between data and text. We manually ex-
amined 50 input/output pairs randomly extracted from this
dataset and did not find a single example where data and text
matched. As such, this dataset is ill-suited for training micro-
planners. Moreover, since its texts contain both missing and
additional information, it cannot be used to train joint models
for content selection and micro-planning either.

179

https://doi.org/10.18653/v1/P17-1017

pare the performance of a sequence-to-sequence
model (Vinyals et al., 2015) on both datasets to es-
timate the complexity of the learning task induced
by each dataset. We show that the performance of
this neural model is much lower on the new data
set than on the existing ones. We thus propose our
corpus generation framework as a novel method
for creating challenging data sets from which NLG
models can be learned which are capable of gen-
erating complex texts from KB data.

2 NLG Benchmarks

Domain specific benchmarks. Several domain
specific data-text corpora have been built by re-
searchers to train and evaluate NLG systems. In
the sports domain, Chen and Mooney (2008) con-
structed a dataset mapping soccer games events to
text which consists of 1,539 data-text pairs and a
vocabulary of 214 words. For weather forecast
generation, the dataset of Liang et al. (2009) in-
cludes 29,528 data-text pairs with a vocabulary of
345 words. For the air travel domain, Ratnaparkhi
(2000) created a dataset consisting of 5,426 data-
text pairs with a richer vocabulary (927 words)
and in the biology domain, the KBGen shared task
(Banik et al., 2013) made available 284 data-text
pairs where the data was extracted from an exist-
ing knowledge base and the text was authored by
biology experts.

An important limitation of these datasets is that,
because they are domain specific, systems learned
from them are restricted to generating domain spe-
cific, often strongly stereotyped text (e.g., weather
forecast or soccer game commentator reports). Ar-
guably, training corpora for NLG should support
the learning of more generic systems capable of
handling a much wider range of linguistic interac-
tions than is present in stereotyped texts. By na-
ture however, domain specific corpora restrict the
lexical and often the syntactic coverage of the texts
to be produced and thereby indirectly limit the ex-
pressivity of the generators trained on them.

Benchmarks constructed from “expert” lin-
guistic annotations. NLG benchmarks have
also been proposed where the input data is either
derived from dependency parse trees (SR’11 task,
Belz et al. 2011) or constructed through manual
annotation (AMR Corpus, Banarescu et al. 2012).
Contrary to the domain-specific data sets just men-
tioned, these corpora have a wider coverage and

are large enough for training systems that can gen-
erate linguistically sophisticated text.

One main drawback of these benchmarks how-
ever is that their construction required massive
manual annotation of text with complex linguis-
tic structures (parse trees for the SR task and Ab-
stract Meaning Representation for the AMR cor-
pus). Moreover because these structures are com-
plex, the annotation must be done by experts. It
cannot be delegated to the crowd. In short, the
creation of such benchmark is costly both in terms
of time and in terms of expertise.

Another drawback is that, because the input rep-
resentation derived from a text is relatively close
to its surface form2, the NLG task is mostly re-
stricted to surface realisation (mapping input to
sentences). That is, these benchmarks give very
limited support for learning models that can han-
dle the interactions between micro-planning sub-
tasks.

Crowdsourced benchmarks. More recently,
data-to-text benchmarks have also been created by
associating data units with text using crowdsourc-
ing.

Wen et al. (2016) first created data by enumer-
ating all possible combinations of 14 dialog act
types (e.g., request, inform) and attribute-value
pairs present in four small-size, hand-written on-
tologies about TVs, laptops, restaurants and ho-
tels. They then use crowdsourcing to associate
each data unit with a text. The resulting dataset
is both large and varied (4 domains) and was
successfully exploited to train neural and imita-
tion learning data-to-text generator (Wen et al.,
2016; Lampouras and Vlachos, 2016). Similarly,
Novikova and Rieser (2016) described a frame-
work for collecting data-text pairs using automatic
quality control measures and evaluating how the
type of the input representations (text vs pictures)
impacts the quality of crowdsourced text.

The crowdsourcing approach to creating input-
text corpora has several advantages.

First, it is low cost in that the data is produced
automatically and the text is authored by a crowd-
worker. This is in stark contrast with the previ-
ous approach where expert linguists are required
to align text with data.

2For instance, the input structures made available by the
shallow track of the SR task contain all the lemmas present
in the corresponding text. In this case, the generation task is
limited to determining (i) the linear ordering and (ii) the full
form of the word in the input.

180

Second, because the text is crowd-sourced from
the data (rather than the other way round), there is
an adequate match between text and data both se-
mantically (the text expresses the information con-
tained in the data) and computationally (the data
is sufficiently different from the text to require the
learning of complex generation operations such as
sentence segmentation, aggregation and referring
expression generation).

Third, by exploiting small hand-written ontolo-
gies to quickly construct meaningful artificial data,
the crowdsourcing approach allows for the easy
creation of a large dataset with data units of var-
ious size and bearing on different domains. This,
in turn, allows for better linguistic coverage and
for NLG tasks of various complexity since typi-
cally, inputs of larger size increases the need for
complex microplanning operations.

3 The WebNLG Framework for
Creating Data-to-Text, Micro-Planning
Benchmarks

While as just noted, the crowdsourcing approach
presented by Wen et al. (2016) has several advan-
tages, it also has a number of shortcomings.

One important drawback is that it builds on arti-
ficial rather than “real” data i.e., data that would be
extracted from an existing knowledge base. As a
result, the training corpora built using this method
cannot be used to train KB verbalisers i.e., gener-
ation systems that can verbalise KB fragments.

Another limitation concerns the shape of the in-
put data. Wen et al.’s data can be viewed as trees of
depth one (a set of attributes-value pairs describing
a single entity e.g., a restaurant or a laptop). As
illustrated in Figure 1 however, there is a strong
correlation between the shape of the input and the
syntactic structure of the corresponding sentence.
The path structure T1 where B is shared by two
predicates (mission and operator) will favour the
use of a participial or a passive subject relative
clause. In contrast, the branching structure T2 will
favour the use of a new clause with a pronomi-
nal subject or a coordinated VP. More generally,
allowing for trees of deeper depth is necessary to
indirectly promote the introduction in the bench-
mark of a more varied set of syntactic constructs
to be learned by generators.

To address these issues, we introduce a novel
method for creating data-to-text corpora from
large knowledge bases such as DBPedia. Our

T1
A B Cmission operator

S1.1 A participated in mission B operated by C.
S1.2 A participated in mission B which was

operated by C.

T2

A

D

E

occupation

birthPlace

S2.1 A was born in E. She worked as an engineer.
S2.2 A was born in E and worked as an engineer.

Figure 1: Input shape and linguistic structures (A
= Susan Helms, B = STS 78, C = NASA, D = en-
gineer, E = Charlotte, North Carolina).

method combines (i) a content selection module
designed to extract varied, relevant and coherent
data units from DBPedia with (ii) a crowdsourc-
ing process for associating data units with human
authored texts that correctly capture their mean-
ing. Example 1 shows a data/text unit created by
our method using DBPedia as input KB.

(1) a. (John E Blaha birthDate 1942 08 26)
(John E Blaha birthPlace San Antonio)
(John E Blaha occupation Fighter pilot)

b. John E Blaha, born in San Antonio on 1942-08-26,
worked as a fighter pilot

Our method has the following features.
First, it can be used to create a data-to-text cor-

pus from any knowledge base where entities are
categorised and there is a large number of entities
belonging to the same category. As noted above,
this means that the resulting corpus can be used to
train KB verbalisers i.e., generators that are able to
verbalise fragments of existing knowledge bases.
It could be used for instance, to verbalise frag-
ments of e.g., MusicBrainz3, FOAF4 or Linked-
GeoData.5

Second, as crowdworkers are required to enter
text that matches the data and a majority vote val-
idation process is used to eliminate mis-matched
pairs, there is a direct match between text and
data. This allows for a clear focus on the non con-
tent selection part of generation known as micro-
planning.

Third, because data of increasing size is
matched with texts ranging from simple clauses to

3https://musicbrainz.org/
4http://www.foaf-project.org/
5http://linkedgeodata.org/

181

Figure 2: Extracting data units from DBPedia.

short texts consisting of several sentences, the re-
sulting benchmark is appropriate for exercising the
main subtasks of microplanning. For instance, in
Example (1) above, given the input shown in (1a),
generating (1b) involves lexicalising the occupa-
tion property as the phrase worked as (lexicalisa-
tion); using PP coordination (born in San Antonio
on 1942-08-26) to avoid repeating the word born
(aggregation); and verbalising the three triples us-
ing a single complex sentence including an appo-
sition, a PP coordination and a transitive verb con-
struction (sentence segmentation and surface real-
isation).

3.1 DBPedia

To illustrate the functioning of our benchmark cre-
ation framework, we apply it to DBPedia. DBPe-
dia is a multilingual knowledge base that was built
from various kinds of structured information con-
tained in Wikipedia (Mendes et al., 2012). This
data is stored as RDF (Resource Description For-
mat) triples of the form (subject, property, object)
where the subject is a URI (Uniform Resource
Identifier), the property is a binary relation and
the object is either a URI or a literal value such
as a string, a date or a number. We use an English
version of the DBPedia knowledge base which en-
compasses 6.2M entities, 739 classes, 1,099 prop-
erties with reference values and 1,596 properties

with typed literal values.6

3.2 Selecting Content

To create data units, we adapted the procedure
outlined by Perez-Beltrachini et al. (2016) and
sketched in Figure 2. This method can be sum-
marised as follows.

First, DBPedia category graphs are extracted
from DBPedia by retrieving up to 500 entity
graphs for entities of the same category.7 For ex-
ample, we build a category graph for the Astronaut
category by collecting, graphs of depth five for 500
entities of types astronaut.

Next, category graphs are used to learn bi-gram
models of DBPedia properties which specify the
probability of two properties co-occuring together.
Three types of bi-gram models are extracted from
category graphs using the SRILM toolkit (Stolcke,
2002): one model (S-Model) for bigrams occur-
ring in sibling triples (triples with a shared sub-
ject); one model (C-Model) for bigrams occurring
in chained triples (the object of one triple is the
subject of the other); and one model (M-Model)
which is a linear interpolation of the sibling and
the chain model. The intuition is that these sib-

6http://wiki.dbpedia.org/
dbpedia-dataset-version-2015-10

7An entity graph for some entity e is a graph obtained by
traversing the DBPedia graph starting in e and stopping at
depth five.

182

ling and chain models capture different types of
coherence, namely, topic-based coherence for the
S-Model and discourse-based coherence for the C-
Model.

Finally, the content selection task is formulated
as an Integer Linear Programming (ILP) problem
to select, for a given entity of category C and its
entity graph Ge, subtrees of Ge with maximal bi-
gram probability and varying size (between 1 and
7 RDF triples).

Category A B M U S W
#Inputs 663 1220 333 508 1137 1207
#I. Patterns 546 369 300 432 184 277
#Properties 38 46 30 41 32 50
#Entities 74 278 47 75 264 224

Table 1: Data statistics from content selec-
tion (A:Astronaut, B:Building, M:Monument,
U:University, W:Written work, S:Sports team).

We applied this content selection procedure to
the DBPedia categories Astronaut (A), Building
(B), Monument (M), University (U), Sports team
(S) and Written work (W), using the three bi-gram
models (S-Model, C-Model, M-Model) and mak-
ing the number of triples required by the ILP con-
straint to occur in the output solutions vary be-
tween 1 and 7. The results are shown in Table 1.
An input is a set of triples produced by the content
selection module. The number of input (#Inputs)
is thus the number of distinct sets of triples pro-
duced by this module. In contrast, input patterns
are inputs where subject and object have been ab-
stracted over. That is, the number of input patterns
(#I. Patterns) is the number of distinct sets of prop-
erties present in the set of inputs. The number of
properties (#Properties) is the number of distinct
RDF properties occurring in the dataset. Similarly,
the number of entities (#Entities) is the number
of distinct RDF subjects and objects occurring in
each given dataset.

3.3 Associating Content with Text

We associate data with text using the Crowdflower
platform.8 We do this in four main steps as fol-
lows.

1. Clarifying properties. One difficulty when
collecting texts verbalising sets of DBPedia triples
is that the meaning of DBPedia properties may
be unclear. We therefore first manually clarified

8http://www.crowdflower.com

for each category being worked on, those prop-
erties which have no obvious lexicalisations (e.g.,
crew1up was replaced by commander).

2. Getting verbalisations for single triples.
Next, we collected three verbalisations for data
units of size one, i.e. single triples consisting
of a subject, a property and an object. For each
such input, crowdworkers were asked to produce
a sentence verbalising its content. We used both
a priori automatic checks to prevent spamming
and a posteriori manual checks to remove incor-
rect verbalisations. We also monitored crowd-
workers as they entered their input and banned
those who tried to circumvent our instructions and
validators. The automatic checks comprise 12
custom javascript validators implemented in the
CrowdFlower platform to block contributor an-
swers which fail to meet requirements such as the
minimal time a contributor should stay on page,
the minimal length of the text produced, the min-
imal match of tokens between a triple and its ver-
balisation and various format restrictions used to
detect invalid input. The exact match between a
triple and its verbalisation was also prohibited. In
addition, after data collection was completed, we
manually checked each data-text pair and elimi-
nated from the data set any pair where the text ei-
ther did not match the information conveyed by the
triple or was not a well-formed English sentence.

3. Getting verbalisations for input containing
more than one triple. The verbalisations col-
lected for single triples were used to construct in-
put with bigger size. Thus, for input with a number
of triples more than one, the crowd was asked to
merge the sentences corresponding to each triple
(obtained in step 2) into a natural sounding text.
In such a way, we diminish the risk of having
misinterpretations of the original semantics of a
data unit. Contributors were also encouraged to
change the order, and the wording of sentences,
while writing their texts. For each data unit, we
collected three verbalisations.

4. Verifying the quality of the collected texts.
The verbalisations obtained in Step 3 were veri-
fied through crowdsourcing. Each verbalisation
collected in Step 3 was displayed to CrowdFlower
contributors together with the corresponding set
of triples. Then the crowd was asked to assess its
fluency, semantic adequacy, and grammaticality.
Those criteria were checked by asking the follow-

183

Triples 1 2 3 4 5 6 7
Tokens 4/30/10.48 11/45/22.97 7/37/16.96 17/60/36.38 14/53/29.61 29/80/49.14 24/73/42.95
Sentences 1/2/1.00 1/4/1.23 1/3/1.02 1/5/2.05 1/4/1.64 1/6/2.85 1/5/2.42

Table 2: Text statistics from crowdsourcing for triple sets of varying sizes (min/max/avg).

ing three questions:

Does the text sound fluent and natural?
Does the text contain all and only the information
from the data?
Is the text good English (no spelling or grammati-
cal mistakes)?

We collected five answers per verbalisation. A
verbalisation was considered bad, if it received
three negative answers in at least one criterion. Af-
ter the verification step, the total corpus loss was
of 8.7%. An example of rejected verbalisation can
be found in Example (2). The verbalisation was
dropped due to the lack of fluency (awkward lexi-
calisation of the property club).
(2) (AEK Athens F.C. manager Gus Poyet)

(Gus Poyet club Chelsea F.C.)
AEK Athens F.C. are managed by Gus Poyet, who is in
Chelsea F.C.

Table 2 shows some statistics about the texts
obtained using our crowdsourcing procedure for
triple sets of size one to seven.

4 Comparing Benchmarks

We now compare a dataset created using
our dataset creation framework (henceforth
WEBNLG) with the dataset of Wen et al. (2016)9

(henceforth, RNNLG). Example 3 shows a
sample data-text pair taken from the RNNLG
dataset.
(3) Dialog Moves

recommend(name=caerus 33;type=television;
screensizerange=medium;family=t5;hasusbport=true)
The caerus 33 is a medium television in the T5 family
that’s USB-enabled.

As should be clear from the discussion in Sec-
tion 2 and 3, both datasets are similar in that, in
both cases, data is built from ontological infor-
mation and text is crowdsourced from the data.
An important difference between the two datasets
is that, while the RNNLG data was constructed
by enumerating possible combinations of dialog
act types and attribute-value pairs, the WEBNLG
data is created using a sophisticated content se-
lection procedure geared at producing sets of data

9https://github.com/shawnwun/RNNLG

units that are relevant for a given ontological cat-
egory and that are varied in terms of size, shape
and content. We now investigate the impact of
this difference on the two datasets (WEBNLG and
RNNLG). To assess the degree to which both
datasets support the generation of linguistically
varied text requiring complex micro-planning op-
erations, we examine a number of data and text
related metrics. We also compare the results of
an out-of-the-box sequence-to-sequence model as
a way to estimate the complexity of the learning
task induced by each dataset.

WEBNLG RNNLG
Nb. Input 5068 22225
Nb. Data-Text Pairs 13339 30842
Nb. Domains 6 4
Nb. Attributes 172 108
Nb. Input Patterns 2108 2155
Nb. Input / Nb Input Pattern 2.40 10.31
Nb. Input Shapes 58 6

Table 3: Comparing WEBNLG and RNNLG
datasets. Attributes are properties in RDF triples
or slots in dialog acts.

4.1 Data Comparison

Terminology. The attributes in the RNNLG
dataset can be viewed as binary relations between
the object talked about (a restaurant, a laptop, a
TV or a hotel) and a value. Similarly, in the
WEBNLGdataset, DBpedia RDF properties relate
a subject entity to an object which can be either
an entity or a datatype value. In what follows, we
refer to both as attributes.

Table 3 shows several statistics which indicate
that, while the RNNLG dataset is larger than
WEBNLG, WEBNLG is much more diverse in
terms of attributes, input patterns and input shapes.

Number of attributes. As illustrated in Exam-
ple (4) below, different attributes can be lexi-
calised using different parts of speech. A dataset
with a larger number of attributes is therefore more
likely to induce texts with greater syntactic variety.

(4) Verb: X title Y / X served as Y
Relational noun: X nationality Y / X’s nationality is Y
Preposition: X country Y / X is in Y
Adjective: X nationality USA / X is American

184

As shown in Table 3, WEBNLG has a more
diverse attribute set than RNNLG both in abso-
lute (172 attributes in WEBNLG against 108 in
RNNLG) and in relative terms (RNNLG is a lit-
tle more than twice as large as WEBNLG).

Number of input patterns. Since attributes
may give rise to lexicalisation with different parts
of speech, the sets of attributes present in an input
(input pattern)10 indirectly determine the syntac-
tic realisation of the corresponding text. Hence
a higher number of input patterns will favour a
higher number of syntactic realisations. This is ex-
emplified in Example (5) where two inputs with
the same number of attributes give rise to texts
with different syntactic forms. While in Exam-
ple (5a), the attribute set {country, location, start-
Date} is realised by a passive (is located), an ap-
position (Australia) and a deverbal nominal (its
construction), in Example (5b), the attribute set
{almaMater, birthPlace, selection} induced a pas-
sive (was born) and two VP coordinations (gradu-
ated and joined).

(5) a. (‘108 St Georges Terrace location Perth’, ‘Perth
country Australia’, ‘108 St Georges Terrace start-
Date 1981’)
country, location, startDate
108 St. Georges Terrace is located in Perth, Aus-
tralia. Its construction began in 1981.
passive, apposition, deverbal nominal

b. (‘William Anders selection 1963’,
‘William Anders birthPlace British Hong Kong’,
‘William Anders almaMater ”AFIT, M.S. 1962”’)
almaMater, birthPlace, selection
William Anders was born in British Hong Kong,
graduated from AFIT in 1962, and joined NASA in
1963.
passive, VP coordination, VP coordination

Again, despite the much larger size of the
RNNLG dataset, the number of input patterns
in both datasets is almost the same. That is,
the relative variety in input patterns is higher in
WEBNLG.

Number of input / Number of input patterns.
The ratio between number of inputs and the num-
ber of input patterns has an important impact both
in terms of linguistic diversity and in terms of
learning complexity. A large ratio indicates a
“repetitive dataset” where the same pattern is in-
stantiated a high number of times. While this

10Recall from section 3 that input patterns are inputs where
subjects and objects have been remove thus, in essence, an
input pattern is the set of all the attributes occurring in a given
input.

facilitates learning, this also reduces linguistic
coverage (less combinations of structures can be
learned) and may induce over-fitting. Note that
because datasets are typically delexicalised when
training NLG models (cf. e.g., Wen et al. 2015 and
Lampouras and Vlachos 2016), at training time,
different instantiations of the same input pattern
reduce to identical input.

The two datasets markedly differ on this ratio
which is five times lower in WEBNLG. While
in WEBNLG, the same pattern is instantiated in
average 2.40 times, it is instantiated 10.31 times
in average in RNNLG. From a learning perspec-
tive, this means that the RNNLG dataset facili-
tates learning but also makes it harder to assess
how well systems trained on it can generalise to
handle unseen input.

Input shape. As mentioned in Section 3, in the
RNNLG dataset, all inputs can be viewed as trees
of depth one while in the WEBNLG dataset, input
may have various shapes. As a result, RNNLG
texts will be restricted to syntactic forms which
permit expressing such multiple predications of
the same entity e.g., subject relative clause, VP
and sentence coordination etc. In contrast, the
trees extracted by the WEBNLG content selection
procedure may be of depth five and therefore allow
for further syntactic constructs such as object rel-
ative clause and passive participles (cf. Figure 1).

We can show this empirically as well that
WEBNLG is far more diverse than RNNLG in
terms of input shapes. The RNNLG dataset has
only 6 distinct shapes and all of them are of depth
1, i.e., all (attribute, value) pairs in an input are
siblings to each other. In contrast, the WEBNLG
dataset has 58 distinct shapes, out of which only
7 shapes are with depth 1, all others have depth
more than 1 and they cover 49.6% of all inputs.

4.2 Text Comparison

Table 4 gives some statistics about the texts con-
tained in each dataset.

(6) (Alan Bean birthDate “1932-03-15”)
Alan Bean was born on March 15, 1932.

(7) (‘Alan Bean nationality United States’, ‘Alan Bean
birthDate “1932-03-15”’, ‘Alan Bean almaMater
“UT Austin, B.S. 1955”’, ‘Alan Bean birthPlace
Wheeler, Texas’, ‘Alan Bean selection 1963’)
Alan Bean was an American astronaut, born on March
15, 1932 in Wheeler, Texas. He received a Bachelor of
Science degree at the University of Texas at Austin in
1955 and was chosen by NASA in 1963.

185

As illustrated by the contrast between Exam-
ples (6) and (7) above, text length (number of to-
kens per text) and the number of sentences per text
are strong indicators of the complexity of the gen-
eration task. We use the Stanford Part-Of-Speech
Tagger and Parser version 3.5.2 (dated 2015-04-
20, Manning et al. 2014) to tokenize and to per-
form sentence segmentation on text. As shown in
Table 4, WEBNLG’s texts are longer both in terms
of tokens and in terms of number of sentences per
text. Another difference between the two datasets
is that WEBNLG contains a higher number of text
per input thereby providing a better basis for learn-
ing paraphrases.

WEBNLG RNNLG
Nb. Text / Input 2.63 1.38
Text Length 24.36/23/4/80 18.37/19/1/76
(avg/median/min/max)
Nb. Sentence / Text 1.45/1/1/6 1.25/1/1/6
(avg/median/min/max)
Nb. Tokens 290479 531871
Nb. Types 2992 3524
Lexical Sophistication 0.69 0.54
CTTR 3.93 3.42

Table 4: Text statistics from WEBNLG and
RNNLG.

The size and the content of the vocabulary is an-
other important factor in ensuring the learning of
wide coverage generators. While a large vocab-
ulary makes the learning problem harder, it also
allows for larger coverage. WEBNLG exhibits a
higher corrected type-token ratio (CTTR), which
indicates greater lexical variety, and higher lexical
sophistication (LS). Lexical sophistication mea-
sures the proportion of relatively unusual or ad-
vanced word types in the text. In practice, LS
is the proportion of lexical word types (lemma)
which are not in the list of 2,000 most frequent
words generated from the British National Cor-
pus11. Type-token ratio (TTR) is a measure of di-
versity defined as the ratio of the number of word
types to the number of words in a text. To address
the fact that this ratio tends to decrease with the
size of the corpus, corrected TTR can be used to
control for corpus size. It is defined as T/

√
2N ,

where T is the number of types and N the number
of tokens.

Overall, the results shown in Table 4 indicate
that WEBNLG texts are both lexically more di-
verse (higher corrected type/token ratio) and more

11We compute LS and CTTR using the Lexical Complexity
Analyzer developed by Lu (2012).

sophisticated (higher proportion of unfrequent
words) than RNNLG’s. They also show a propor-
tionately larger vocabulary for WEBNLG (2,992
types for 290,479 tokens in WEBNLG against
3,524 types for 531,871 tokens in RNNLG).

4.3 Neural Generation

Richer and more varied datasets are harder to learn
from. As a proof-of-concept study of the compar-
ative difficulty of the two datasets with respect to
machine learning, we compare the performance of
a sequence-to-sequence model for generation on
both datasets.

We use the multi-layered sequence-to-sequence
model with attention mechanism described in
(Vinyals et al., 2015).12 The model was trained
with 3-layer LSTMs with 512 units each with a
batch size of 64 and a learning rate of 0.5.

To allow for a fair comparison, we use a simi-
lar amount of data (13K data-text pairs) for both
datasets. As RNNLG is bigger in size than
WEBNLG, we constructed a balanced sample of
RNNLG which included equal number of in-
stances per category (tv, laptop, etc). We use a
3:1:1 ratio for training, developement and test-
ing. The training was done in two delexicalisa-
tion modes: fully and name only. In case of fully
delexicalisation, all entities were replaced by their
generic terms, whereas in name only mode only
subjects were modified in that way. For instance,
the triple (FC Köln manager Peter Stöger) was
delexicalised as (SportsTeam manager Manager)
in the first mode, and as (SportsTeam manager Pe-
ter Stöger) in the second mode. The delexicalisa-
tion in sentences was done using the exact match
between entities and tokens. For training, we use
all the available vocabulary. Input and output vo-
cabulary sizes are reported in Table 5.

Table 5 shows the perplexity results. In
both modes, RNNLG yielded lower scores than
WEBNLG. This is inline with the observations
made above concerning the higher data diver-
sity, larger vocabulary and more complex texts of

12We used the TensorFlow code available at
https://github.com/tensorflow/models/
tree/master/tutorials/rnn/translate. Alter-
natively, we could have used the implementation of Wen
et al. (2016) which is optimised for generation. However
the code is geared toward dialog acts and modifying it to
handle RDF triples is non trivial. Since the comparison
aims at examining the relative performance of the same
neural network on the two datasets, we used the tensor flow
implementation instead.

186

WEBNLG. Similary, the BLEU score of the gen-
erated sentences (Papineni et al., 2002) is lower for
WEBNLG suggesting again a dataset that is more
complex and therefore more difficult to learn from.

Delexicalisation
Mode

WEBNLG RNNLG

Vocab size Fully 520, 2430 140, 1530
Name only 1130, 2940 570, 1680

Perplexity Fully 27.41 17.42
Name only 25.39 23.93

BLEU Fully 0.19 0.26
Name only 0.10 0.27

Table 5: Vocabulary sizes of input, output (number
of tokens). Perplexity and BLEU scores.

5 Conclusion

We presented a framework for building NLG data-
to-text training corpora from existing knowledge
bases.

One feature of our framework is that datasets
created using this framework can be used for train-
ing and testing KB verbalisers an in particular,
verbalisers for RDF knowledge bases. Following
the development of the semantic web, many large
scale datasets are encoded in the RDF language
(e.g., MusicBrainz, FOAF, LinkedGeoData) and
official institutions13 increasingly publish their
data in this format. In this context, our frame-
work is useful both for creating training data from
RDF KB verbalisers and to increase the number of
datasets available for training and testing NLG.

Another important feature of our framework is
that it permits creating semantically and linguis-
tically diverse datasets which should support the
learning of lexically and syntactically, wide cov-
erage micro-planners. We applied our framework
to DBpedia data and showed that although twice
smaller than the largest corpora currently available
for training data-to-text microplanners, the result-
ing dataset is more semantically and linguistically
diverse. Despite the disparity in size, the num-
ber of attributes is comparable in the two datasets.
The ratio between input and input patterns is five
times lower in our dataset thereby making learning
harder but also diminishing the risk of overfitting
and providing for wider linguistic coverage. Con-
versely, the ratio of text per input is twice higher
thereby providing better support for learning para-
phrases.

13See http://museum-api.pbworks.com for ex-
amples.

We have recently released a first version of
the WebNLG dataset in the context of a shared
task on micro-planning14. This new dataset
consists of 21,855 data/text pairs with a to-
tal of 8,372 distinct data input. The input
describes entities belonging to 9 distinct DB-
pedia categories namely, Astronaut, University,
Monument, Building, ComicsCharacter, Food,
Airport, SportsTeam and WrittenWork. The
WebNLG data is licensed under the follow-
ing license: CC Attribution-Noncommercial-
Share Alike 4.0 International and can be
downloaded at http://talc1.loria.fr/
webnlg/stories/challenge.html.

Recently, several sequence-to-sequence models
have been proposed for generation. Our exper-
iments suggest that these are not optimal when
it comes to generate linguistically complex texts
from rich data. More generally, they indicate that
the data-to-text corpora built by our framework are
challenging for such models. We hope that the
WEBNLG dataset which we have made available
for the WEBNLG shared task will drive the deep
learning community to take up this new challenge
and work on the development of neural generators
that can handle the generation of KB verbalisers
and of linguistically rich texts.

Acknowledgments

The research presented in this paper was par-
tially supported by the French National Research
Agency within the framework of the WebNLG
Project (ANR-14-CE24-0033). The third author is
supported by the H2020 project SUMMA (under
grant agreement 688139).

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2012. Abstract meaning representa-
tion (AMR) 1.0 specification. In Proceedings of
EMNLP.

Eva Banik, Claire Gardent, and Eric Kow. 2013. The
KBGen challenge. In Proceedings of ENLG.

Anja Belz, Michael White, Dominic Espinosa, Eric
Kow, Deirdre Hogan, and Amanda Stent. 2011. The

14The test data for the WEBNLG challenge will be re-
leased on August 18th, 2017 and preliminary results will
be presented and discussed at INLG 2017, https://
eventos.citius.usc.es/inlg2017/index.

187

first surface realisation shared task: Overview and
evaluation results. In Proceedings of ENLG.

David L Chen and Raymond J Mooney. 2008. Learn-
ing to sportscast: A test of grounded language ac-
quisition. In Proceedings of ICML.

Gerasimos Lampouras and Andreas Vlachos. 2016.
Imitation learning for language generation from un-
aligned data. In Proceedings of COLING.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural Text Generation from Structured Data with
Application to the Biography Domain. In Proceed-
ings of EMNLP.

Percy Liang, Michael I Jordan, and Dan Klein. 2009.
Learning Semantic Correspondences with Less Su-
pervision. In Proceedings of ACL-IJCNLP.

Xiaofei Lu. 2012. The relationship of lexical richness
to the quality of ESL learners’ oral narratives. The
Modern Language Journal 96(2):190–208.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural
language processing toolkit. In Proceedings of
ACL:System Demonstrations.

Pablo N Mendes, Max Jakob, and Christian Bizer.
2012. DBpedia: A Multilingual Cross-domain
Knowledge Base. In Proceedings of LREC.

Jekaterina Novikova and Verena Rieser. 2016. The
aNALoGuE challenge: Non aligned language gen-
eration. In Proceedings of INLG.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei
jing Zhu. 2002. Bleu: A method for automatic eval-
uation of machine translation. In Proceedings of
ACL.

Laura Perez-Beltrachini, Rania Mohamed Sayed, and
Claire Gardent. 2016. Building RDF content for
Data-to-Text generation. In Proceedings of COL-
ING.

Adwait Ratnaparkhi. 2000. Trainable methods for sur-
face natural language generation. In Proceedings of
NAACL.

Andreas Stolcke. 2002. SRILM – An extensible lan-
guage modeling toolkit. In Proceedings of ICSLP.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proceedings of NIPS.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić,
Lina M. Rojas-Barahona, Pei-Hao Su, David
Vandyke, and Steve Young. 2016. Multi-domain
neural network language generation for spoken di-
alogue systems. In Proceedings of NAACL-HLT .

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned LSTM-based natural lan-
guage generation for spoken dialogue systems. In
Proceedings of EMNLP.

188

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 189–198
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1018

Gated Self-Matching Networks for
Reading Comprehension and Question Answering

Wenhui Wang†\§∗ Nan Yang‡§ Furu Wei‡ Baobao Chang†\ Ming Zhou‡
†Key Laboratory of Computational Linguistics, Peking University, MOE, China

‡Microsoft Research, Beijing, China
\Collaborative Innovation Center for Language Ability, Xuzhou, 221009, China

{wangwenhui,chbb}@pku.edu.cn
{nanya,fuwei,mingzhou}@microsoft.com

Abstract

In this paper, we present the gated self-
matching networks for reading compre-
hension style question answering, which
aims to answer questions from a given pas-
sage. We first match the question and pas-
sage with gated attention-based recurrent
networks to obtain the question-aware pas-
sage representation. Then we propose a
self-matching attention mechanism to re-
fine the representation by matching the
passage against itself, which effectively
encodes information from the whole pas-
sage. We finally employ the pointer net-
works to locate the positions of answers
from the passages. We conduct extensive
experiments on the SQuAD dataset. The
single model achieves 71.3% on the evalu-
ation metrics of exact match on the hidden
test set, while the ensemble model further
boosts the results to 75.9%. At the time of
submission of the paper, our model holds
the first place on the SQuAD leaderboard
for both single and ensemble model.

1 Introduction

In this paper, we focus on reading comprehension
style question answering which aims to answer
questions given a passage or document. We specif-
ically focus on the Stanford Question Answering
Dataset (SQuAD) (Rajpurkar et al., 2016), a large-
scale dataset for reading comprehension and ques-
tion answering which is manually created through
crowdsourcing. SQuAD constrains answers to
the space of all possible spans within the refer-
ence passage, which is different from cloze-style
reading comprehension datasets (Hermann et al.,

∗Contribution during internship at Microsoft Research.
§Equal contribution.

2015; Hill et al., 2016) in which answers are sin-
gle words or entities. Moreover, SQuAD requires
different forms of logical reasoning to infer the an-
swer (Rajpurkar et al., 2016).

Rapid progress has been made since the release
of the SQuAD dataset. Wang and Jiang (2016b)
build question-aware passage representation with
match-LSTM (Wang and Jiang, 2016a), and pre-
dict answer boundaries in the passage with pointer
networks (Vinyals et al., 2015). Seo et al. (2016)
introduce bi-directional attention flow networks to
model question-passage pairs at multiple levels of
granularity. Xiong et al. (2016) propose dynamic
co-attention networks which attend the question
and passage simultaneously and iteratively refine
answer predictions. Lee et al. (2016) and Yu et al.
(2016) predict answers by ranking continuous text
spans within passages.

Inspired by Wang and Jiang (2016b), we in-
troduce a gated self-matching network, illustrated
in Figure 1, an end-to-end neural network model
for reading comprehension and question answer-
ing. Our model consists of four parts: 1) the re-
current network encoder to build representation
for questions and passages separately, 2) the gated
matching layer to match the question and passage,
3) the self-matching layer to aggregate informa-
tion from the whole passage, and 4) the pointer-
network based answer boundary prediction layer.
The key contributions of this work are three-fold.

First, we propose a gated attention-based re-
current network, which adds an additional gate to
the attention-based recurrent networks (Bahdanau
et al., 2014; Rocktäschel et al., 2015; Wang and
Jiang, 2016a), to account for the fact that words
in the passage are of different importance to an-
swer a particular question for reading comprehen-
sion and question answering. In Wang and Jiang
(2016a), words in a passage with their correspond-
ing attention-weighted question context are en-

189

https://doi.org/10.18653/v1/P17-1018

coded together to produce question-aware passage
representation. By introducing a gating mecha-
nism, our gated attention-based recurrent network
assigns different levels of importance to passage
parts depending on their relevance to the question,
masking out irrelevant passage parts and empha-
sizing the important ones.

Second, we introduce a self-matching mecha-
nism, which can effectively aggregate evidence
from the whole passage to infer the answer.
Through a gated matching layer, the resulting
question-aware passage representation effectively
encodes question information for each passage
word. However, recurrent networks can only
memorize limited passage context in practice de-
spite its theoretical capability. One answer candi-
date is often unaware of the clues in other parts
of the passage. To address this problem, we pro-
pose a self-matching layer to dynamically refine
passage representation with information from the
whole passage. Based on question-aware passage
representation, we employ gated attention-based
recurrent networks on passage against passage it-
self, aggregating evidence relevant to the current
passage word from every word in the passage. A
gated attention-based recurrent network layer and
self-matching layer dynamically enrich each pas-
sage representation with information aggregated
from both question and passage, enabling subse-
quent network to better predict answers.

Lastly, the proposed method yields state-of-the-
art results against strong baselines. Our single
model achieves 71.3% exact match accuracy on
the hidden SQuAD test set, while the ensemble
model further boosts the result to 75.9%. At the
time1 of submission of this paper, our model holds
the first place on the SQuAD leader board.

2 Task Description

For reading comprehension style question answer-
ing, a passage P and question Q are given, our task
is to predict an answer A to question Q based on
information found in P. The SQuAD dataset fur-
ther constrains answer A to be a continuous sub-
span of passage P. Answer A often includes non-
entities and can be much longer phrases. This
setup challenges us to understand and reason about
both the question and passage in order to infer the
answer. Table 1 shows a simple example from the
SQuAD dataset.

1On Feb. 6, 2017

Passage: Tesla later approached Morgan to ask for
more funds to build a more powerful transmitter.
When asked where all the money had gone, Tesla
responded by saying that he was affected by the
Panic of 1901, which he (Morgan) had caused.
Morgan was shocked by the reminder of his part in
the stock market crash and by Tesla’s breach of con-
tract by asking for more funds. Tesla wrote another
plea to Morgan, but it was also fruitless. Morgan
still owed Tesla money on the original agreement,
and Tesla had been facing foreclosure even before
construction of the tower began.
Question: On what did Tesla blame for the loss of
the initial money?
Answer: Panic of 1901

Table 1: An example from the SQuAD dataset.

3 Gated Self-Matching Networks

Figure 1 gives an overview of the gated self-
matching networks. First, the question and pas-
sage are processed by a bi-directional recur-
rent network (Mikolov et al., 2010) separately.
We then match the question and passage with
gated attention-based recurrent networks, obtain-
ing question-aware representation for the passage.
On top of that, we apply self-matching attention
to aggregate evidence from the whole passage and
refine the passage representation, which is then fed
into the output layer to predict the boundary of the
answer span.

3.1 Question and Passage Encoder
Consider a question Q = {wQt }mt=1 and a pas-
sage P = {wPt }nt=1. We first convert the words to
their respective word-level embeddings ({eQt }mt=1

and {ePt }nt=1) and character-level embeddings
({cQt }mt=1 and {cPt }nt=1). The character-level em-
beddings are generated by taking the final hid-
den states of a bi-directional recurrent neural net-
work (RNN) applied to embeddings of characters
in the token. Such character-level embeddings
have been shown to be helpful to deal with out-of-
vocab (OOV) tokens. We then use a bi-directional
RNN to produce new representation uQ1 , . . . , u

Q
m

and uP1 , . . . , u
P
n of all words in the question and

passage respectively:

uQt = BiRNNQ(uQt−1, [e
Q
t , c

Q
t]) (1)

uPt = BiRNNP (uPt−1, [e
P
t , c

P
t]) (2)

We choose to use Gated Recurrent Unit (GRU)
(Cho et al., 2014) in our experiment since it per-
forms similarly to LSTM (Hochreiter and Schmid-
huber, 1997) but is computationally cheaper.

190

𝑢1
𝑄

𝑢2
𝑄

𝑢𝑚
𝑄

Question

Attention
Question

Vector

𝑣1
𝑃 𝑣2

𝑃 𝑣3
𝑃

𝑢1
𝑃 𝑢2

𝑃 𝑢3
𝑃

Passage

𝑣1
𝑃 𝑣2

𝑃 𝑣3
𝑃 𝑣𝑛

𝑃

ℎ1
𝑃 ℎ2

𝑃 ℎ3
𝑃

Attention

ℎ1
𝑎 ℎ2

𝑎

Question and Passage
GRU Layer

Question and Passage
Matching Layer

Passage
Self-Matching Layer

Output Layer Start End

𝑢𝑛
𝑃…

…𝑣𝑛
𝑃…

ℎ𝑛
𝑃…

When was tested The delay in

…

test……

𝑟𝑄

Figure 1: Gated Self-Matching Networks structure overview.

3.2 Gated Attention-based Recurrent
Networks

We propose a gated attention-based recurrent net-
work to incorporate question information into pas-
sage representation. It is a variant of attention-
based recurrent networks, with an additional gate
to determine the importance of information in
the passage regarding a question. Given ques-
tion and passage representation {uQt }mt=1 and
{uPt }nt=1, Rocktäschel et al. (2015) propose gen-
erating sentence-pair representation {vPt }nt=1 via
soft-alignment of words in the question and pas-
sage as follows:

vPt = RNN(vPt−1, ct) (3)

where ct = att(uQ, [uPt , v
P
t−1]) is an attention-

pooling vector of the whole question (uQ):

stj = vTtanh(WQ
u u

Q
j +WP

u u
P
t +WP

v v
P
t−1)

ati = exp(sti)/Σ
m
j=1exp(stj)

ct = Σm
i=1a

t
iu
Q
i (4)

Each passage representation vPt dynamically in-
corporates aggregated matching information from
the whole question.

Wang and Jiang (2016a) introduce match-
LSTM, which takes uPt as an additional input into
the recurrent network:

vPt = RNN(vPt−1, [u
P
t , ct]) (5)

To determine the importance of passage parts and
attend to the ones relevant to the question, we add
another gate to the input ([uPt , ct]) of RNN:

gt = sigmoid(Wg[u
P
t , ct])

[uPt , ct]
∗ = gt � [uPt , ct] (6)

Different from the gates in LSTM or GRU, the ad-
ditional gate is based on the current passage word
and its attention-pooling vector of the question,
which focuses on the relation between the ques-
tion and current passage word. The gate effec-
tively model the phenomenon that only parts of
the passage are relevant to the question in reading
comprehension and question answering. [uPt , ct]

∗

is utilized in subsequent calculations instead of
[uPt , ct]. We call this gated attention-based recur-
rent networks. It can be applied to variants of
RNN, such as GRU and LSTM. We also conduct
experiments to show the effectiveness of the addi-
tional gate on both GRU and LSTM.

3.3 Self-Matching Attention

Through gated attention-based recurrent networks,
question-aware passage representation {vPt }nt=1 is
generated to pinpoint important parts in the pas-
sage. One problem with such representation is
that it has very limited knowledge of context. One
answer candidate is often oblivious to important

191

cues in the passage outside its surrounding win-
dow. Moreover, there exists some sort of lexical
or syntactic divergence between the question and
passage in the majority of SQuAD dataset (Ra-
jpurkar et al., 2016). Passage context is neces-
sary to infer the answer. To address this problem,
we propose directly matching the question-aware
passage representation against itself. It dynami-
cally collects evidence from the whole passage for
words in passage and encodes the evidence rele-
vant to the current passage word and its matching
question information into the passage representa-
tion hPt :

hPt = BiRNN(hPt−1, [v
P
t , ct]) (7)

where ct = att(vP , vPt) is an attention-pooling
vector of the whole passage (vP):

stj = vTtanh(WP
v v

P
j +W P̃

v v
P
t)

ati = exp(sti)/Σ
n
j=1exp(stj)

ct = Σn
i=1a

t
iv
P
i (8)

An additional gate as in gated attention-based re-
current networks is applied to [vPt , ct] to adap-
tively control the input of RNN.

Self-matching extracts evidence from the whole
passage according to the current passage word and
question information.

3.4 Output Layer
We follow Wang and Jiang (2016b) and use
pointer networks (Vinyals et al., 2015) to predict
the start and end position of the answer. In addi-
tion, we use an attention-pooling over the question
representation to generate the initial hidden vector
for the pointer network. Given the passage rep-
resentation {hPt }nt=1, the attention mechanism is
utilized as a pointer to select the start position (p1)
and end position (p2) from the passage, which can
be formulated as follows:

stj = vTtanh(WP
h h

P
j +W a

hh
a
t−1)

ati = exp(sti)/Σ
n
j=1exp(stj)

pt = arg max(at1, . . . , a
t
n) (9)

Here hat−1 represents the last hidden state of
the answer recurrent network (pointer network).
The input of the answer recurrent network is
the attention-pooling vector based on current pre-
dicted probability at:

ct = Σn
i=1a

t
ih
P
i

hat = RNN(hat−1, ct) (10)

When predicting the start position, hat−1 repre-
sents the initial hidden state of the answer recur-
rent network. We utilize the question vector rQ as
the initial state of the answer recurrent network.
rQ = att(uQ, V Q

r) is an attention-pooling vector
of the question based on the parameter V Q

r :

sj = vTtanh(WQ
u u

Q
j +WQ

v V
Q
r)

ai = exp(si)/Σ
m
j=1exp(sj)

rQ = Σm
i=1aiu

Q
i (11)

To train the network, we minimize the sum of
the negative log probabilities of the ground truth
start and end position by the predicted distribu-
tions.

4 Experiment

4.1 Implementation Details
We specially focus on the SQuAD dataset to train
and evaluate our model, which has garnered a huge
attention over the past few months. SQuAD is
composed of 100,000+ questions posed by crowd
workers on 536 Wikipedia articles. The dataset is
randomly partitioned into a training set (80%), a
development set (10%), and a test set (10%). The
answer to every question is a segment of the cor-
responding passage.

We use the tokenizer from Stanford CoreNLP
(Manning et al., 2014) to preprocess each passage
and question. The Gated Recurrent Unit (Cho
et al., 2014) variant of LSTM is used through-
out our model. For word embedding, we use pre-
trained case-sensitive GloVe embeddings2 (Pen-
nington et al., 2014) for both questions and pas-
sages, and it is fixed during training; We use
zero vectors to represent all out-of-vocab words.
We utilize 1 layer of bi-directional GRU to com-
pute character-level embeddings and 3 layers of
bi-directional GRU to encode questions and pas-
sages, the gated attention-based recurrent network
for question and passage matching is also encoded
bidirectionally in our experiment. The hidden vec-
tor length is set to 75 for all layers. The hidden
size used to compute attention scores is also 75.
We also apply dropout (Srivastava et al., 2014) be-
tween layers with a dropout rate of 0.2. The model
is optimized with AdaDelta (Zeiler, 2012) with
an initial learning rate of 1. The ρ and ε used in
AdaDelta are 0.95 and 1e−6 respectively.

2Downloaded from http://nlp.stanford.edu/
data/glove.840B.300d.zip.

192

Dev Set Test Set
Single model EM / F1 EM / F1
LR Baseline (Rajpurkar et al., 2016) 40.0 / 51.0 40.4 / 51.0
Dynamic Chunk Reader (Yu et al., 2016) 62.5 / 71.2 62.5 / 71.0
Match-LSTM with Ans-Ptr (Wang and Jiang, 2016b) 64.1 / 73.9 64.7 / 73.7
Dynamic Coattention Networks (Xiong et al., 2016) 65.4 / 75.6 66.2 / 75.9
RaSoR (Lee et al., 2016) 66.4 / 74.9 - / -
BiDAF (Seo et al., 2016) 68.0 / 77.3 68.0 / 77.3
jNet (Zhang et al., 2017) - / - 68.7 / 77.4
Multi-Perspective Matching (Wang et al., 2016) - / - 68.9 / 77.8
FastQA (Weissenborn et al., 2017) - / - 68.4 / 77.1
FastQAExt (Weissenborn et al., 2017) - / - 70.8 / 78.9
R-NET 71.1 / 79.5 71.3 / 79.7
Ensemble model
Fine-Grained Gating (Yang et al., 2016) 62.4 / 73.4 62.5 / 73.3
Match-LSTM with Ans-Ptr (Wang and Jiang, 2016b) 67.6 / 76.8 67.9 / 77.0
RaSoR (Lee et al., 2016) 68.2 / 76.7 - / -
Dynamic Coattention Networks (Xiong et al., 2016) 70.3 / 79.4 71.6 / 80.4
BiDAF (Seo et al., 2016) 73.3 / 81.1 73.3 / 81.1
Multi-Perspective Matching (Wang et al., 2016) - / - 73.8 / 81.3
R-NET 75.6 / 82.8 75.9 / 82.9
Human Performance (Rajpurkar et al., 2016) 80.3 / 90.5 77.0 / 86.8

Table 2: The performance of our gated self-matching networks (R-NET) and competing approaches4.

Single Model EM / F1
Gated Self-Matching (GRU) 71.1 / 79.5
-Character embedding 69.6 / 78.6
-Gating 67.9 / 77.1
-Self-Matching 67.6 / 76.7
-Gating, -Self-Matching 65.4 / 74.7

Table 3: Ablation tests of single model on the
SQuAD dev set. All the components significantly
(t-test, p < 0.05) improve the model.

4.2 Main Results
Two metrics are utilized to evaluate model perfor-
mance: Exact Match (EM) and F1 score. EM
measures the percentage of the prediction that
matches one of the ground truth answers exactly.
F1 measures the overlap between the prediction
and ground truth answers which takes the max-
imum F1 over all of the ground truth answers.
The scores on dev set are evaluated by the offi-
cial script3. Since the test set is hidden, we are re-
quired to submit the model to Stanford NLP group
to obtain the test scores.

Table 2 shows exact match and F1 scores on the
3Downloaded from http://stanford-qa.com

Single Model EM / F1
Base model (GRU) 64.5 / 74.1
+Gating 66.2 / 75.8
Base model (LSTM) 64.2 / 73.9
+Gating 66.0 / 75.6

Table 4: Effectiveness of gated attention-based re-
current networks for both GRU and LSTM.

dev and test set of our model and competing ap-
proaches4. The ensemble model consists of 20
training runs with the identical architecture and
hyper-parameters. At test time, we choose the an-
swer with the highest sum of confidence scores
amongst the 20 runs for each question. As we can
see, our method clearly outperforms the baseline
and several strong state-of-the-art systems for both
single model and ensembles.

4.3 Ablation Study

We do ablation tests on the dev set to analyze the
contribution of components of gated self-matching
networks. As illustrated in Table 3, the gated

4Extracted from SQuAD leaderboard http:
//stanford-qa.com on Feb. 6, 2017.

193

Figure 2: Part of the attention matrices for self-matching. Each row is the attention weights of the whole
passage for the current passage word. The darker the color is the higher the weight is. Some key evidence
relevant to the question-passage tuple is more encoded into answer candidates.

attention-based recurrent network (GARNN) and
self-matching attention mechanism positively con-
tribute to the final results of gated self-matching
networks. Removing self-matching results in 3.5
point EM drop, which reveals that information in
the passage plays an important role. Character-
level embeddings contribute towards the model’s
performance since it can better handle out-of-
vocab or rare words. To show the effectiveness
of GARNN for variant RNNs, we conduct experi-
ments on the base model (Wang and Jiang, 2016b)
of different variant RNNs. The base model match
the question and passage via a variant of attention-
based recurrent network (Wang and Jiang, 2016a),
and employ pointer networks to predict the an-
swer. Character-level embeddings are not utilized.
As shown in Table 4, the gate introduced in ques-
tion and passage matching layer is helpful for both
GRU and LSTM on the SQuAD dataset.

5 Discussion

5.1 Encoding Evidence from Passage
To show the ability of the model for encoding
evidence from the passage, we draw the align-

ment of the passage against itself in self-matching.
The attention weights are shown in Figure 2,
in which the darker the color is the higher the
weight is. We can see that key evidence aggre-
gated from the whole passage is more encoded
into the answer candidates. For example, the an-
swer “Egg of Columbus” pays more attention to
the key information “Tesla”, “device” and the lexi-
cal variation word “known” that are relevant to the
question-passage tuple. The answer “world clas-
sic of epoch-making oratory” mainly focuses on
the evidence “Michael Mullet”, “speech” and lex-
ical variation word “considers”. For other words,
the attention weights are more evenly distributed
between evidence and some irrelevant parts. Self-
matching do adaptively aggregate evidence for
words in passage.

5.2 Result Analysis

To further analyse the model’s performance, we
analyse the F1 score for different question types
(Figure 3(a)), different answer lengths (Figure
3(b)), different passage lengths (Figure 3(c)) and
different question lengths (Figure 3(d)) of our

194

(a) (b)

(c) (d)

Figure 3: Model performance on different question types (a), different answer lengths (b), different
passage lengths (c), different question lengths (d). The point on the x-axis of figure (c) and (d) represent
the datas whose passages length or questions length are between the value of current point and last point.

model and its ablation models. As we can see,
both four models show the same trend. The ques-
tions are split into different groups based on a
set of question words we have defined, includ-
ing “what”, “how”, “who”, “when”, “which”,
“where”, and “why”. As we can see, our model is
better at “when” and “who” questions, but poorly
on “why” questions. This is mainly because the
answers to why questions can be very diverse,
and they are not restricted to any certain type of
phrases. From the Graph 3(b), the performance
of our model obviously drops with the increase of
answer length. Longer answers are harder to pre-
dict. From Graph 3(c) and 3(d), we discover that
the performance remains stable with the increase
in length, the obvious fluctuation in longer pas-
sages and questions is mainly because the propor-
tion is too small. Our model is largely agnostic to
long passages and focuses on important part of the
passage.

6 Related Work

Reading Comprehension and Question An-
swering Dataset Benchmark datasets play an im-
portant role in recent progress in reading compre-
hension and question answering research. Exist-

ing datasets can be classified into two categories
according to whether they are manually labeled.
Those that are labeled by humans are always in
high quality (Richardson et al., 2013; Berant et al.,
2014; Yang et al., 2015), but are too small for
training modern data-intensive models. Those that
are automatically generated from natural occur-
ring data can be very large (Hill et al., 2016; Her-
mann et al., 2015), which allow the training of
more expressive models. However, they are in
cloze style, in which the goal is to predict the
missing word (often a named entity) in a passage.
Moreover, Chen et al. (2016) have shown that the
CNN / Daily News dataset (Hermann et al., 2015)
requires less reasoning than previously thought,
and conclude that performance is almost saturated.

Different from above datasets, the SQuAD pro-
vides a large and high-quality dataset. The an-
swers in SQuAD often include non-entities and
can be much longer phrase, which is more chal-
lenging than cloze-style datasets. Moreover, Ra-
jpurkar et al. (2016) show that the dataset retains a
diverse set of answers and requires different forms
of logical reasoning, including multi-sentence rea-
soning. MS MARCO (Nguyen et al., 2016) is also
a large-scale dataset. The questions in the dataset

195

are real anonymized queries issued through Bing
or Cortana and the passages are related web pages.
For each question in the dataset, several related
passages are provided. However, the answers are
human generated, which is different from SQuAD
where answers must be a span of the passage.

End-to-end Neural Networks for Reading
Comprehension Along with cloze-style datasets,
several powerful deep learning models (Hermann
et al., 2015; Hill et al., 2016; Chen et al., 2016;
Kadlec et al., 2016; Sordoni et al., 2016; Cui et al.,
2016; Trischler et al., 2016; Dhingra et al., 2016;
Shen et al., 2016) have been introduced to solve
this problem. Hermann et al. (2015) first intro-
duce attention mechanism into reading compre-
hension. Hill et al. (2016) propose a window-
based memory network for CBT dataset. Kadlec
et al. (2016) introduce pointer networks with one
attention step to predict the blanking out entities.
Sordoni et al. (2016) propose an iterative alternat-
ing attention mechanism to better model the links
between question and passage. Trischler et al.
(2016) solve cloze-style question answering task
by combining an attentive model with a reranking
model. Dhingra et al. (2016) propose iteratively
selecting important parts of the passage by a multi-
plying gating function with the question represen-
tation. Cui et al. (2016) propose a two-way atten-
tion mechanism to encode the passage and ques-
tion mutually. Shen et al. (2016) propose itera-
tively inferring the answer with a dynamic number
of reasoning steps and is trained with reinforce-
ment learning.

Neural network-based models demonstrate the
effectiveness on the SQuAD dataset. Wang and
Jiang (2016b) combine match-LSTM and pointer
networks to produce the boundary of the answer.
Xiong et al. (2016) and Seo et al. (2016) employ
variant coattention mechanism to match the ques-
tion and passage mutually. Xiong et al. (2016)
propose a dynamic pointer network to iteratively
infer the answer. Yu et al. (2016) and Lee et al.
(2016) solve SQuAD by ranking continuous text
spans within passage. Yang et al. (2016) present
a fine-grained gating mechanism to dynamically
combine word-level and character-level represen-
tation and model the interaction between questions
and passages. Wang et al. (2016) propose match-
ing the context of passage with the question from
multiple perspectives.

Different from the above models, we introduce

self-matching attention in our model. It dynami-
cally refines the passage representation by looking
over the whole passage and aggregating evidence
relevant to the current passage word and question,
allowing our model make full use of passage in-
formation. Weightedly attending to word context
has been proposed in several works. Ling et al.
(2015) propose considering window-based con-
textual words differently depending on the word
and its relative position. Cheng et al. (2016) pro-
pose a novel LSTM network to encode words in
a sentence which considers the relation between
the current token being processed and its past to-
kens in the memory. Parikh et al. (2016) apply
this method to encode words in a sentence ac-
cording to word form and its distance. Since pas-
sage information relevant to question is more help-
ful to infer the answer in reading comprehension,
we apply self-matching based on question-aware
representation and gated attention-based recurrent
networks. It helps our model mainly focus on
question-relevant evidence in the passage and dy-
namically look over the whole passage to aggre-
gate evidence.

Another key component of our model is the
attention-based recurrent network, which has
demonstrated success in a wide range of tasks.
Bahdanau et al. (2014) first propose attention-
based recurrent networks to infer word-level align-
ment when generating the target word. Hermann
et al. (2015) introduce word-level attention into
reading comprehension to model the interaction
between questions and passages. Rocktäschel
et al. (2015) and Wang and Jiang (2016a) propose
determining entailment via word-by-word match-
ing. The gated attention-based recurrent network
is a variant of attention-based recurrent network
with an additional gate to model the fact that pas-
sage parts are of different importance to the partic-
ular question for reading comprehension and ques-
tion answering.

7 Conclusion

In this paper, we present gated self-matching net-
works for reading comprehension and question
answering. We introduce the gated attention-
based recurrent networks and self-matching atten-
tion mechanism to obtain representation for the
question and passage, and then use the pointer-
networks to locate answer boundaries. Our model
achieves state-of-the-art results on the SQuAD

196

dataset, outperforming several strong competing
systems. As for future work, we are applying
the gated self-matching networks to other reading
comprehension and question answering datasets,
such as the MS MARCO dataset (Nguyen et al.,
2016).

Acknowledgement

We thank all the anonymous reviewers for their
helpful comments. We thank Pranav Rajpurkar
for testing our model on the hidden test dataset.
This work is partially supported by National Key
Basic Research Program of China under Grant
No.2014CB340504 and National Natural Science
Foundation of China under Grant No.61273318.
The corresponding author of this paper is Baobao
Chang.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR .

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad
Huang, Peter Clark, and Christopher D. Manning.
2014. Modeling biological processes for reading
comprehension. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special In-
terest Group of the ACL.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2016, Austin, Texas, USA, November
1-4, 2016.

Kyunghyun Cho, Bart van Merrienboer, Çaglar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL. pages 1724–
1734.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2016. Attention-over-
attention neural networks for reading comprehen-
sion. CoRR .

Bhuwan Dhingra, Hanxiao Liu, William W. Cohen, and
Ruslan Salakhutdinov. 2016. Gated-attention read-
ers for text comprehension. CoRR .

Karl Moritz Hermann, Tomás Kociský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in
Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Sys-
tems 2015. pages 1693–1701.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. In Proceedings of the International Confer-
ence on Learning Representations.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan
Kleindienst. 2016. Text understanding with the at-
tention sum reader network. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics.

Kenton Lee, Tom Kwiatkowski, Ankur Parikh, and Di-
panjan Das. 2016. Learning recurrent span repre-
sentations for extractive question answering. arXiv
preprint arXiv:1611.01436 .

Wang Ling, Yulia Tsvetkov, Silvio Amir, Ramon Fer-
mandez, Chris Dyer, Alan W. Black, Isabel Tran-
coso, and Chu-Cheng Lin. 2015. Not all con-
texts are created equal: Better word representations
with variable attention. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In ACL (System Demon-
strations). pages 55–60.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng
Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. 2016. MS MARCO: A human gener-
ated machine reading comprehension dataset. CoRR
abs/1611.09268.

197

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL. pages 1532–1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the Conference on Empirical Methods in Natural
Language Processing.

Matthew Richardson, Christopher J. C. Burges, and
Erin Renshaw. 2013. Mctest: A challenge dataset
for the open-domain machine comprehension of
text. In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing.
pages 193–203.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomás Kociský, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
CoRR .

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2016. Reasonet: Learning to stop
reading in machine comprehension. In Proceedings
of the Workshop on Cognitive Computation: Inte-
grating neural and symbolic approaches 2016 co-
located with the 30th Annual Conference on Neu-
ral Information Processing Systems (NIPS 2016),
Barcelona, Spain, December 9, 2016..

Alessandro Sordoni, Phillip Bachman, and Yoshua
Bengio. 2016. Iterative alternating neural attention
for machine reading. CoRR abs/1606.02245.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdi-
nov. 2014. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research .

Adam Trischler, Zheng Ye, Xingdi Yuan, and Kaheer
Suleman. 2016. Natural language comprehension
with the epireader. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural

Information Processing Systems 28: Annual Con-
ference on Neural Information Processing Systems
2015, December 7-12, 2015, Montreal, Quebec,
Canada. pages 2692–2700.

Shuohang Wang and Jing Jiang. 2016a. Learning natu-
ral language inference with LSTM. In NAACL HLT
2016, The 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, San Diego
California, USA, June 12-17, 2016.

Shuohang Wang and Jing Jiang. 2016b. Machine com-
prehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905 .

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu
Florian. 2016. Multi-perspective context match-
ing for machine comprehension. arXiv preprint
arXiv:1612.04211 .

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017. Fastqa: A simple and efficient neural ar-
chitecture for question answering. arXiv preprint
arXiv:1703.04816 .

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of EMNLP. Cite-
seer, pages 2013–2018.

Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu,
William W. Cohen, and Ruslan Salakhutdinov. 2016.
Words or characters? fine-grained gating for reading
comprehension. CoRR abs/1611.01724.

Yang Yu, Wei Zhang, Kazi Hasan, Mo Yu, Bing Xi-
ang, and Bowen Zhou. 2016. End-to-end reading
comprehension with dynamic answer chunk rank-
ing. arXiv preprint arXiv:1610.09996 .

Matthew D. Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR abs/1212.5701.

Junbei Zhang, Xiaodan Zhu, Qian Chen, Lirong
Dai, and Hui Jiang. 2017. Exploring ques-
tion understanding and adaptation in neural-
network-based question answering. arXiv preprint
arXiv:1703.04617 .

198

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 199–208
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1019

Generating Natural Answers by Incorporating
Copying and Retrieving Mechanisms in Sequence-to-Sequence Learning

Shizhu He1, Cao Liu1,2, Kang Liu1 and Jun Zhao1,2

1 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, 100190, China

2 University of Chinese Academy of Sciences, Beijing, 100049, China
{shizhu.he, cao.liu, kliu, jzhao}@nlpr.ia.ac.cn

Abstract

Generating answer with natural language
sentence is very important in real-world
question answering systems, which need-
s to obtain a right answer as well as
a coherent natural response. In this
paper, we propose an end-to-end ques-
tion answering system called COREQA in
sequence-to-sequence learning, which in-
corporates copying and retrieving mech-
anisms to generate natural answers with-
in an encoder-decoder framework. Specif-
ically, in COREQA, the semantic units
(words, phrases and entities) in a natural
answer are dynamically predicted from the
vocabulary, copied from the given ques-
tion and/or retrieved from the correspond-
ing knowledge base jointly. Our em-
pirical study on both synthetic and real-
world datasets demonstrates the efficien-
cy of COREQA, which is able to generate
correct, coherent and natural answers for
knowledge inquired questions.

1 Introduction

Question answering (QA) systems devote to pro-
viding exact answers, often in the form of phrases
and entities for natural language questions (Wood-
s, 1977; Ferrucci et al., 2010; Lopez et al., 2011;
Yih et al., 2015), which mainly focus on analyzing
questions, retrieving related facts from text snip-
pets or knowledge bases (KBs), and finally pre-
dicting the answering semantic units-SU (word-
s, phrases and entities) through ranking (Yao and
Van Durme, 2014) and reasoning (Kwok et al.,
2001).

However, in real-world environments, most
people prefer the correct answer replied with a
more natural way. For example, most existing

<ÀîÁ¬½Ü£¬³öÉúµØµã£¬±±¾©>

<ÀîÁ¬½Ü£¬¹ú¼®£¬ÐÂ¼ÓÆÂ>

<ÀîÁ¬½Ü£¬³öÉúÄêÔÂ£¬1963Äê4ÔÂ26ÈÕ>

...

ÀîÁ¬½ÜÊÇÄÄÀïÈË£¿ ÀîÁ¬½Ü³öÉúÓÚ±±¾©£¬Ëû

<ÀîÁ¬½Ü£¬ÐÔ±ð£¬ÄÐ>

ÏÖÔÚÊÇÐÂ¼ÓÆÂ¹ú¼®¡£

Copy

Reasoning

From Question

From KB

Question Response

Jet Liwhere was Jet Li was born in Beijing. He is now a Singaporean citizen.

Copying and Retrieving

Predicting

Copying from Question

Retrieving from KB

Question Natural Answer

Do you know from ?

Knowledge
Base

Figure 1: Incorporating copying and retrieving
mechanisms in generating a natural answer.

commercial products such as Siri1 will reply a nat-
ural answer “Jet Li is 1.64m in height.” for the
question “How tall is Jet Li?”, rather than only
answering one entity “1.64m”. Basic on this ob-
servation, we define the “natural answer” as the
natural response in our daily communication for
replying factual questions, which is usually ex-
pressed in a complete/partial natural language sen-
tence rather than a single entity/phrase. In this
case, the system needs to not only parse question,
retrieve relevant facts from KB but also generate a
proper reply. To this end, most previous approach-
es employed message-response patterns. Figure 1
schematically illustrates the major steps and fea-
tures in this process. The system first needs to rec-
ognize the topic entity “Jet Li” in the question and
then extract multiple related facts <Jet Li, gender,
Male>, <Jet Li, birthplace, Beijing> and <Jet
Li, nationality, Singapore> from KB. Based on
the chosen facts and the commonly used message-
response patterns “where was %entity from?” -
“%entity was born in %birthplace, %pronoun is
%nationality citizen.”2, the system could finally
generate the natural answer (McTear et al., 2016).

In order to generate natural answers, typical

1http://www.apple.com/ios/siri/
2In this pattern, %entity indicates the placeholder of the

topic entity, %property indicates the property value of the
topic entity.

199

https://doi.org/10.18653/v1/P17-1019

products need lots of Natural Language Process-
ing (NLP) tools and pattern engineering (McTear
et al., 2016), which not only suffers from high
costs of manual annotations for training data and
patterns, but also have low coverage that cannot
flexibly deal with variable linguistic phenomena
in different domains. Therefore, this paper de-
votes to develop an end-to-end paradigm that gen-
erates natural answers without any NLP tools (e.g.
POS tagging, parsing, etc.) and pattern engineer-
ing. This paradigm tries to consider question an-
swering in an end-to-end framework. In this way,
the complicated QA process, including analyz-
ing question, retrieving relevant facts from KB,
and generating correct, coherent, natural answer-
s, could be resolved jointly.

Nevertheless, generating natural answers in an
end-to-end manner is not an easy task. The key
challenge is that the words in a natural answer may
be generated by different ways, including: 1) the
common words usually are predicted using a (con-
ditional) language model (e.g. “born” in Figure 1);
2) the major entities/phrases are selected from the
source question (e.g. “Jet Li”); 3) the answering
entities/phrases are retrieved from the correspond-
ing KB (e.g. “Beijing”). In addition, some words
or phrases even need to be inferred from related
knowledge (e.g. “He” should be inferred from the
value of “gender”). And we even need to deal with
some morphological variants (e.g. “Singapore” in
KB but “Singaporean” in answer). Although ex-
isting end-to-end models for KB-based question
answering, such as GenQA (Yin et al., 2016), were
able to retrieve facts from KBs with neural mod-
els. Unfortunately, they cannot copy SUs from
the question in generating answers. Moreover,
they could not deal with complex questions which
need to utilize multiple facts. In addition, exist-
ing approaches for conversational (Dialogue) sys-
tems are able to generate natural utterances (Ser-
ban et al., 2016; Li et al., 2016) in sequence-to-
sequence learning (Seq2Seq). But they cannot in-
teract with KB and answer information-inquired
questions. For example, CopyNet (Gu et al., 2016)
is able to copy words from the original source in
generating the target through incorporating copy-
ing mechanism in conventional Seq2Seq learning,
but they cannot retrieve SUs from external memo-
ry (e.g. KBs, Texts, etc.).

Therefore, facing the above challenges, this pa-
per proposes a neural generative model called

COREQA with Seq2Seq learning, which is able to
reply an answer in a natural way for a given ques-
tion. Specifically, we incorporate COpying and
REtrieving mechanisms within Seq2Seq learning.
COREQA is able to analyze the question, retrieve
relevant facts and generate a sequence of SUs us-
ing a hybrid method with a completely end-to-end
learning framework. We conduct experiments on
both synthetic data sets and real-world datasets,
and the experimental results demonstrate the effi-
ciency of COREQA compared with existing end-
to-end QA/Dialogue methods.

In brief, our main contributions are as follows:

• We propose a new and practical question an-
swering task which devotes to generating nat-
ural answers for information inquired ques-
tions. It can be regarded as a fusion task of
QA and Dialogue.

• We propose a neural network based model,
named as COREQA, by incorporating copy-
ing and retrieving mechanism in Seq2Seq
learning. In our knowledge, it is the first
end-to-end model that could answer complex
questions in a natural way.

• We implement experiments on both synthet-
ic and real-world datasets. The experimental
results demonstrate that the proposed model
could be more effective for generating cor-
rect, coherent and natural answers for knowl-
edge inquired questions compared with exist-
ing approaches.

2 Background: Neural Models for
Sequence-to-Sequence Learning

2.1 RNN Encoder-Decoder

Recurrent Neural Network (RNN) based Encoder-
Decoder is the backbone of Seq2Seq learn-
ing (Cho et al., 2014). In the Encoder-Decoder
framework, an encoding RNN first transform a
source sequential object X = [x1, ..., xLX

] into
an encoded representation c. For example, we can
utilize the basic model: ht = f(xt,ht−1); c =
φ(h1, ...,hLX

), where {ht} are the RNN hidden
states, c is the context vector which could be as-
sumed as an abstract representation of X . In prac-
tice, gated RNN variants such as LSTM (Hochre-
iter and Schmidhuber, 1997) and GRU (Chung
et al., 2014) are commonly used for learning long-
term dependencies. And the another encoding

200

Do you know where was Jet_Li from ?

𝒉1 𝒉2 𝒉3 𝒉4 𝒉5 𝒉6 𝒉7 𝒉8
Subject Property Object

Jet_Li gender Male

Jet_Li birthplace Beijing

Jet_Li nationality Singapore

Jet_Li birthdate 26 April 1963

… … …

Attentive Read
from Question

Attentive Read
from KB Copying

from Question
Retrieving
from KB

𝒇1

𝒇2

𝒇3

𝒇4

𝒇…

𝒒

𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

<eos> Jet_Li was born in

Jet_Li was born in Beijing

𝑠5

… … …
Softmax

𝑃 Beijing = 𝑃𝑝𝑟(Beijing) + 𝑃𝑐𝑜(Beijing) + 𝑃re(Beijing)

(a) Knowledge (facts) Retrieval

(c) Decoder: Natural Answer Generation

(d) Predicting, Copying (from Question)
and Retrieving (from KB)

DNN DNN

KB PositionQuestion PositionVocabulary

DNN
Question context

KB context

Question Copying
History

KB Retrieving
History

(e) State Update

“in” embedding

Copying “in”
from Question

Retrieving “in”
from KB

(b) Encoder: Question and KB Representation

Figure 2: The overall diagram of COREQA.

tricks is Bi-directional RNN, which connect two
hidden states of positive time direction and neg-
ative time direction. Once the source sequence
is encoded, another decoding RNN model is to
generate a target sequence Y = [y1, ..., yLY

],
through the following prediction model: st =
f(yt−1, st−1, c); p(yt|y<t, X) = g(yt−1, st, c),
where st is the RNN hidden state at time t, the
predicted target word yt at time t is typically per-
formed by a softmax classifier over a settled vo-
cabulary (e.g. 30,000 words) through function g.

2.2 The Attention Mechanism

The prediction model of classical decoders for
each target word yi share the same context vec-
tor c. However, a fixed vector is not enough to ob-
tain a better result on generating a long targets.The
attention mechanism in the decoding can dynam-
ically choose context ct at each time step (Bah-
danau et al., 2014), for example, representing ct
as the weighted sum of the source states {ht},

ct =
∑LX

i=1
αtihi; αti =

eρ(st−1,hi)

∑
i′ e

ρ(st−1,h′i)
(1)

where the function ρ use to compute the atten-
tive strength with each source state, which usually
adopts a neural network such as multi-layer per-
ceptron (MLP).

2.3 The Copying Mechanism

Seq2Seq learning heavily rely on the “meaning”
for each word in source and target sequences, how-
ever, some words in sequences are “no-meaning”
symbols and it is improper to encode them in en-
coding and decoding processes. For example, gen-
erating the response “Of course, read” for reply-
ing the message “Can you read the word ‘read’?”
should not consider the meaning of the second
“read”. By incorporating the copying mechanism,
the decoder could directly copy the sub-sequences
of source into the target (Vinyals et al., 2015). The
basic approach is to jointly predict the indexes
of the target word in the fixed vocabulary and/or
matched positions in the source sequences (Gu
et al., 2016; Gulcehre et al., 2016).

3 COREQA

To generate natural answers for information in-
quired questions, we should first recognize key
topics in the question, then extract related facts
from KB, and finally fusion those instance-level
knowledge with some global-level “smooth” and
“glue” words to generate a coherent reply. In this
section, we present COREQA, a differentiable Se-
q2Seq model to generate natural answers, which is
able to analyze the question, retrieve relevant fact-
s and predict SUs in an end-to-end fashion, and
the predicted SUs may be predicted from the vo-

201

cabulary, copied from the given question, and/or
retrieved from the corresponding KB.

3.1 Model Overview

As illustrated in Figure 2, COREQA is an encoder-
decoder framework plugged with a KB engineer.
A knowledge retrieval module is firstly employed
to retrieve related facts from KB by question anal-
ysis (see Section 3.2). And then the input question
and the retrieved facts are transformed into the cor-
responding representations by Encoders (see Sec-
tion 3.3). Finally, the encoded representations are
feed to Decoder for generating the target natural
answer (see Section 3.4).

3.2 Knowledge (facts) Retrieval

We mainly focus on answering the information in-
quired questions (factual questions, and each ques-
tion usually contains one or more topic entities).
This paper utilizes the gold topic entities for sim-
plifying our design. Given the topic entities, we
retrieve the related facts from the corresponding
KB. KB consists of many relational data, which
usually are sets of inter-linked subject-property-
object (SPO) triple statements. Usually, question
contains the information used to match the subject
and property parts in a fact triple, and answer in-
corporates the object part information.

3.3 Encoder

The encoder transforms all discrete input symbol-
s (including words, entities, properties and prop-
erties’ values) and their structures into numerical
representations which are able to feed into neural
models (Weston et al., 2014).

3.3.1 Question Encoding

Following (Gu et al., 2016), a bi-directional RN-
N (Schuster and Paliwal, 1997) is used to trans-
form the question sequence into a sequence of
concatenated hidden states with two independent
RNNs. The forward and backward RNN respec-
tively obtain {−→h 1, ...,

−→
h LX
} and {←−h LX

, ...,
←−
h 1}.

The concatenated representation is considered to
be the short-term memory of question (MQ =

{ht},ht = [
−→
h t,
←−
h LX−t+1]). q = [

−→
h LX

,
←−
h 1] is

used to represent the entire question, which could
be used to compute the similarity between the
question and the retrieved facts.

3.3.2 Knowledge Base Encoding
We use s, p and o denote the subject, property and
object (value) of one fact f, and es, ep and eo to de-
note its corresponding embeddings. The fact rep-
resentation f is then defined as the concatenation
of es, ep and eo. The list of all related facts’ repre-
sentations, {f} = {f1, ..., fLF

} (refer to MKB , LF
denotes the maximum of candidate facts), is con-
sidered to be a short-term memory of KB while
answering questions about the topic entities.

In addition, given the distributed representation
of question and candidate facts, we define the
matching scores function between question and
facts as S(q, fj) = DNN1(q, fj) = tanh(W2 ·
tanh(W1 ·[q, fj]+b1)+b2), , whereDNN1 is the
matching function defined by a two-layer percep-
tron, [·, ·] denotes vector concatenation, and W1,
W2, b1 and b2 are the learning parameters. In fac-
t, we will make a slight change of the matching
function because it will also depend on the state of
decoding process at different times. The modified
function is S(q, st, fj) = DNN1(q, st, fj) where
st is the hidden state of decoder at time t.

3.4 Decoder
The decoder uses an RNN to generate a natural
answer based on the short-term memory of ques-
tion and retrieved facts which represented as MQ

and MKB , respectively. The decoding process
of COREQA have the following differences com-
pared with the conventional decoder:
Answer words prediction: COREQA predicts
SUs based on a mixed probabilistic model of three
modes, namely the predict-mode, the copy-mode
and the retrieve-mode, where the first mode pre-
dicts words with the vocabulary, and the two latter
modes pick SUs from the questions and matched
facts, respectively;
State update: the predicted word at step t − 1 is
used to update st, but COREQA uses not only its
word embedding but also its corresponding posi-
tional attention informations in MQ and MKB ;
Reading short-Memory MQ and MKB: MQ and
MKB are fed into COREQA with two ways, the
first one is the “meaning” with embeddings and
the second one is the positions of different words
(properties’ values).

3.4.1 Answer Words Prediction
The generated words (entities) may come from vo-
cabulary, source question and matched KB. Ac-
cordingly, our model use three correlative output

202

layer: shortlist prediction layer, question location
copying layer and candidate-facts location retriev-
ing layer, respectively. And we use the softmax
classifier of the above three cascaded output lay-
ers to pick SUs. We assume a vocabulary V =
{v1, ..., vN} ∪ {UNK}, where UNK indicates any
out-of-vocabulary (OOV) words. Therefore, we
have adopted another two set of SUs XQ and XKB
which cover words/entities in the source question
and the partial KB. That is, we have adopted the
instance-specific vocabulary V ∪ XQ ∪ XKB for
each question. It’s important to note that these
three vocabularies V , XQ and XKB may overlap.

At each time step t in the decoding process, giv-
en the RNN state st together with MQ and MKB ,
the probabilistic function for generating any target
SU yt is a “mixture” model as follow

p(yt|st, yt−1,MQ,MKB) =

ppr(yt|st, yt−1, ct) · pm(pr|st, yt−1)+
pco(yt|st, yt−1,MQ) · pm(co|st, yt−1)+
pre(yt|st, yt−1,MKB) · pm(re|st, yt−1)

(2)

where pr, co and re stand for the predict-mode,
the copy-mode and the retrieve-mode, respective-
ly, pm(·|·) indicates the probability model for
choosing different modes (we use a softmax
classifier with two-layer MLP). The probability of
the three modes are given by

ppr(yt|·) =
1

Z
eψpr(yt)

pco(yt|·) =
1

Z

∑
j:Qj=yt

eψco(yt)

pre(yt|·) =
1

Z

∑
j:KBj=yt

eψre(yt)

(3)

where ψpr(·), ψco(·) and ψre(·) are score func-
tions for choosing SUs in predict-mode (from V),
copy-mode (from XQ) and retrieve-mode (from
XKB), respectively. And Z is the normaliza-
tion term shared by the three modes, Z =
eψpr(v) +

∑
j:Qj=v

eψco(v) +
∑

j:KBj=v
eψre(v).

And the three modes could compete with each oth-
er through a softmax function in generating tar-
get SUs with the shared normalization term (as
shown in Figure 2. Specifically, the scoring func-
tions of each mode are defined as follows:
Predict-mode: Some generated words need rea-
soning (e.g. “He” in Figure 1) and morphological
transformation (e.g. “Singaporean” in Figure 1).
Therefore, we modify the function as ψpr(yt =
vi) = vTi Wpr[st, cqt , ckbt] , where vi ∈ Rdo is the

word vector at the output layer (not the input word
embedding), Wpr ∈ R(dh+di+df)×do (di, dh and
df indicate the size of input word vector, RNN de-
coder hidden state and fact representation respec-
tively), and cqt and ckbt are the temporary mem-
ory of reading MQ and MKB at time t (see Sec-
tion 3.4.3).
Copy-mode: The score for “copying” the word
xj from question Q is calculated as ψco(yt =
xj) = DNN2(hj , st,histQ) , where DNN2 is
a neural network function with a two-layer MLP
and histQ ∈ RLX is an accumulated vector which
record the attentive history for each word in ques-
tion (similar with the coverage vector in (Tu et al.,
2016)).
Retrieve-mode: The score for “retrieving” the
entity word vj from retrieval facts (“Objec-
t” part) is calculated as ψre(yt = vj) =
DNN3(fj , st,histKB) , where DNN3 is also a
neural network function and histKB ∈ RLF is an
accumulated vector which record the attentive his-
tory for each fact in candidate facts.

3.4.2 State Update

In the generic decoding process, each RNN hid-
den state st is updated with the previous state
st−1, the word embedding of previous predict-
ed symbol yt−1, and an optional context vector
ct (with attention mechanism). However, yt−1
may not come from vocabulary V and not own-
s a word vector. Therefore, we modify the state
update process in COREQA. More specifically,
yt−1 will be represented as concatenated vector of
[e(yt−1), rqt−1 , rkbt−1], where e(yt−1) is the word
embedding associated with yt−1, rqt−1 and rkbt−1

are the weighted sum of hidden states in MQ and
MKB corresponding to yt−1 respectively.

rqt =
∑LX

j=1
ρtjhj , rkbt =

∑LF

j=1
δtjfj

ρtj =





1

K1
pco(xj |·), xj = yt

0 otherwise

δtj =





1

K2
pre(fj |·), object(fj) = yt

0 otherwise

(4)

where object(f) indicate the “object” part of fac-
t f (see Figure 2), and K1 and K2 are the nor-
malization terms which equal

∑
j′:x′j=yt

pco(x
′
j |·)

and
∑

j′:object(f ′j)=yt
pre(f

′
j |·), respectively, and it

203

could consider the multiple positions matching yt
in source question and KB.

3.4.3 Reading short-Memory MQ and MKB

COREQA employ the attention mechanism at de-
coding process. At each decoder time t, we se-
lective read the context vector cqt and ckbt from
the short-term memory of question MQ and re-
trieval facts MKB (alike to Formula 1). In addi-
tion, the accumulated attentive vectors histQ and
histKB are able to record the positional informa-
tion of SUs in the source question and retrieved
facts.

3.5 Training

Although some target SUs in answer are copied
and retrieved from the source question and the ex-
ternal KB respectively, COREQA is fully differen-
tial and can be optimized in an end-to-end manner
using back-propagation. Given the batches of the
source questions {X}M and target answers {Y }M
both expressed with natural language (symbolic
sequences), the objective function is to minimize
the negative log-likelihood:

L = − 1

N

M∑

k=1

LY∑

t=1

log[p(y
(k)
t |y

(k)
<t , X

(k)] (5)

where the superscript (k) indicates the index of
one question-answer (Q-A) pair. The network is
no need for any additional labels for training mod-
els, because the three modes sharing the same
softmax classifier for predicting target words,
they can learn to coordinate with each other by
maximizing the likelihood of observed Q-A pairs.

4 Experiments

In this section, we present our main experimental
results in two datasets. The first one is a small syn-
thetic dataset in a restricted domain (only involv-
ing four properties of persons) (Section 4.1). The
second one is a big dataset in open domain, where
the Q-A pairs are extracted from community QA
website and grounded against a KB with an Integer
Linear Programming (ILP) method (Section 4.2).
COREQA and all baseline models are trained on a
NVIDIA TITAN X GPU using TensorFlow3 tools,
where we used the Adam (Kingma and Ba, 2014)
learning rule to update gradients in all experimen-
tal configures. The sources codes and data will be

3https://www.tensorflow.org/

released at the personal homepage of the first au-
thor4.

4.1 Natural QA in Restricted Domain

Task: The QA systems need to answer question-
s involving 4 concrete properties of birthdate (in-
cluding year, month and day) and gender).
Through merely involving 4 properties, there are
plenty of QA patterns which focus on different as-
pects of birthdate, for example, “What year were
you born?” touches on “year”, but “When is your
birthday?” touches on “month and day”.
Dataset: Firstly, 108 different Q-A pattern-
s have been constructed by two annotators, one
in charge of raising question patterns and an-
other one is responsible for generating corre-
sponding suitable answer patterns, e.g. When
is %e birthday? → She was born in
%m %dth. where the variables %e, %y, %m,
%d and %g (deciding she or he) indicates the per-
son’s name, birth year, birth month, birth day and
gender, respectively. Then we randomly generate
a KB which contains 80,000 person entities, and
each entity including four facts. Given KB fact-
s, we can finally obtain specific Q-A pairs. And
the sampling KB, patterns, and the generated Q-
A pairs are shown in Table 1. In order to main-
tain the diversity, we randomly select 6 patterns
for each person. Finally, we totally obtain 239,934
sequences pairs (half patterns may be unmatched
because of “gender” property).

Q-A Patterns
Examples (e.g. KB facts

(e2,year,1987);(e2,month,6);
(e2,day,20);(e2,gender,male))

When is %e birthday? When is e2 birthday?
He was born in %m%dth. He was born in June 20th.
What year were %e born? What year were e2 born?
%e is born in %y year. e2 is born in 1987 year.

Table 1: Sample KB facts, patterns and their gen-
erated Q-A pairs.

Experimental Setting: The total 239,934 Q-A
pairs are split into training (90%) and testing set
(10%). The baseline includes 1) generic RNN
Encoder-Decoder (marked as RNN), 2) Seq2Seq
with attention (marked as RNN+atten), 3) Copy-
Net, and 4) GenQA. For a fair comparison, we use
bi-directional LSTM for encoder and another LST-
M for decoder for all Seq2Seq models, with hid-
den layer size = 600 and word embedding dimen-

4http://www.nlpr.ia.ac.cn/cip/shizhuhe/publications.html

204

sion = 200. We set LF as 5.
Metrics: We adopt (automatic evaluation (AE)
to test the effects of different models. AE consid-
ers the precisions of the entire predicted answer-
s and four specific properties, and the answer is
complete correct only when all predicted proper-
ties’ values is right. To measure the performance
of the proposed method, we select following met-
rics, including Pg5, Py, Pm and Pd which denote
the precisions for ‘gender’, ‘year’, ‘month’ and
‘day’ properties, respectively. And PA, RA and
F1A indicate the precision, recall and F1 in the
complete way.
Experimental Results: The AE experimental re-
sults are shown in Table 2. It is very clear from Ta-
ble 2 that COREQA significantly outperforms all
other compared methods. The reason of the Gen-
QA’s poor performance is that all synthetic ques-
tions need multiple facts, and GenQA will “safe-
ly” choose the most frequent property (“gender”)
for all questions. We also found the performances
on “year” and “day” have a little worse than other
properties such as “gender”, it may because there
have more ways to answer questions about “year”
and “day”.

Models Pg Py Pm Pd PA RA F1A
RNN 72.2 0 1.1 0.2 0 27.5 0

RNN+atten 55.8 1.1 11.3 9.5 1.7 34 3.2
CopyNet 75.2 8.7 28.3 5.8 3.7 32.5 6.7
GenQA 73.4 0 0 0 0 27.1 0

COREQA 100 84.8 93.4 81 87.4 94 90.6

Table 2: The AE results (%) on synthetic test data.

Discussion: Because of the feature of directly
“hard” copy and retrieve SUs from question and
KB, COREQA could answer questions about un-
seen entities.To evaluate the effects of answering
questions about unseen entities, we re-construct
2,000 new person entities and their correspond-
ing facts about four known properties, and obtain
6,081 Q-A pairs through matching the sampling
patterns mentioned above. The experimental re-
sults are shown in Table 3, it can be seen that the
performance did not fall too much.

Entities Pg Py Pm Pd PA RA F1A
Seen 100 84.8 93.4 81 87.4 94 90.6

Unseen 75.1 84.5 93.5 81.2 63.8 85.1 73.1

Table 3: The AE (%) for seen and unseen entities.

5The “gender” is right when the entity name (e.g. ‘e2’) or
the personal pronoun (e.g. ‘She’) in answer is correct.

4.2 Natural QA in Open Domain

Task: To test the performance of the proposed
approach in open domains, we modify the task of
GenQA (Yin et al., 2016) for supporting multi-
facts (a typical example is shown in Figure 1).
That is, a natural QA system should generate a
sequence of SUs as the natural answer for a giv-
en natural language question through interacting
with a KB.
Dataset: GenQA have released a corpus6, which
contains a crawling KB and a set of ground Q-
A pairs. However, the original Q-A pairs on-
ly matched with just one single fact. In fac-
t, we found that a lot of questions need more
than one fact (about 20% based on sampling in-
spection). Therefore, we crawl more Q-A pairs
from Chinese community QA website (Baidu Zhi-
dao7). Combined with the originally published
corpus, we create a lager and better-quality data
for natural question answering. Specifically, an
Integral Linear Programming (ILP) based method
is employed to automatically construct “ground-
ing” Q-A pairs with the facts in KB (inspired
by the work of adopting ILP to parse question-
s (Yahya et al., 2012)). In ILP, the main con-
straints and considered factors are listed below:
1) the “subject” entity and “object” enti-
ty of a triple have to match with question word-
s/phrases (marked as subject mention) and answer
words/phrases (marked as object mention) respec-
tively; 2) any two subject mentions or object men-
tions should not overlap; 3) a mention can match
at most one entity; 4) the edit distance be-
tween the Q-A pair and the matched candidate
fact (use a space to joint three parts) is smaller,
they are more relevant. Finally, we totally obtain
619,199 instances (an instance contains a ques-
tion, an answer, and multiple facts), and the num-
ber of instances that can match one and multiple
facts in KB are 499,809 and 119,390, respectively.
Through the evaluation of 200 sampling instances,
we estimate that approximate 81% matched facts
are helpful for the generating answers. However,
strictly speaking, only 44% instances are truly cor-
rect grounding. In fact, grounding the Q-A pairs
from community QA website is a very challenge
problem, we will leave it in the future work.
Experimental Setting: The dataset is split into
training (90%) and testing set (10%). The sen-

6https://github.com/jxfeb/Generative QA
7https://zhidao.baidu.com/

205

tences in Chinese are segmented into word se-
quences with Jieba8 tool. And we use the word-
s with the frequency larger than 3, which cover-
ing 98.4% of the word in the corpus. For a fair
comparison, we use bi-directional LSTM for the
encoder and another LSTM for decoder for al-
l Seq2Seq models, with hidden layer size = 1024
and word embedding dimension = 300. We selec-
t CopyNet (more advanced Seq2Seq model) and
GenQA for comparison. We set LF as 10.
Metrics: Besides adopting the AE as a met-
ric (same as GenQA (Yin et al., 2016)), we ad-
ditionally use manual evaluation (ME) as anoth-
er metric. ME considers three aspects about the
quality of the generated answer (refer to (Asghar
et al., 2016)): 1) correctness; 2) syntactical flu-
ency; 3) coherence with the question. We employ
two annotators to rate such three aspects of Copy-
Net, GenQA and COREQA. Specifically, we sam-
ple 100 questions, and conduct C2

3 = 3 pair-wise
comparisons for each question and count the win-
ning times of each model (comparisons may both
win or both lose).
Experimental Results: The AE and ME result-
s are shown in Table 4 and Table 5, respectively.
Meanwhile, we separately present the results ac-
cording to the number of the facts which a ques-
tion needs in KB, including just one single fac-
t (marked as Single), multiple facts (marked as
Multi) and all (marked as Mixed). In fact, we
train two separate models for Single and Multi
questions for the unbalanced data . From Table 4
and Table 5, we can clearly observe that CORE-
QA significantly outperforms all other baseline
models. And COREQA could generate a bet-
ter natural answer in three aspects: correctness,
fluency and coherence. CopyNet cannot interac-
t with KB which is important to generate correc-
t answers. For example, for “Who is the direc-
tor of The Little Chinese Seamstress?”, if without
the fact (The Little Chinese Seamstress, director,
Dai Siji), QA systems cannot generate a correct
answer.

Models Single Multi Mixed
CopyNet 9.7 0.8 8.7
GenQA 47.2 28.9 45.1

COREQA 58.4 42.7 56.6

Table 4: The AE accuracies (%) on real world test
data.

8https://github.com/fxsjy/jieba

Models Correctness Fluency Coherence
CopyNet 0 13.3 3.3
GenQA 26.7 33.3 20

COREQA 46.7 50 60

Table 5: The ME results (%) on sampled mixed
test data.

Case Study and Error Analysis: Table 6 gives
some examples of generated by COREQA and the
gold answers to the questions in test set. It is very
clearly seen that the parts of generating SUs are
predicted from the vocabulary, and other SUs are
copied from the given question (marked as bold)
and retrieved from the KB (marked as underline).
And we analyze sampled examples and believe
that there are several major causes of errors: 1)
did not match the right facts (ID 6); 2) the gener-
ated answers contain some repetition of meaning-
less words (ID 7); 3) the generated answers are not
coherence natural language sentences (ID 8).

5 Related Work

Seq2Seq learning is to maximize the likelihood
of predicting the target sequence Y conditioned
on the observed source sequence X (Sutskever
et al., 2014), which has been applied success-
fully to a large number of NLP tasks such as
Machine Translation (Wu et al., 2016) and Dia-
logue (Vinyals and Le, 2015). Our work is par-
tially inspired by the recent work of QA and
Dialogue which have adopted Seq2Seq learning.
CopyNet (Gu et al., 2016) and Pointer Network-
s (Vinyals et al., 2015; Gulcehre et al., 2016)
which could incorporate copying mechanism in
conventional Seq2Seq learning. Different from
our application which deals with knowledge in-
quired questions and generates natural answers,
CopyNet (Gu et al., 2016) and Pointer Network-
s (Gulcehre et al., 2016) can only copy words from
the original input sequence. In contrast, COREQA
is able to retrieve SUs from external memory. And
GenQA (Yin et al., 2016) can only deal with the
simple questions which could be answered by one
fact, and it also did not incorporate the copying
mechanism in Seq2Seq learning.

Moreover, our work is also inspired by Neural
Abstract Machine (Graves et al., 2016; Yin et al.,
2015; Liang et al., 2016) which could retrieve facts
from KBs with neural models. Unlike natural an-
swer, Neural Abstract Machine (Mou et al., 2016)
is concentrating on obtaining concrete answer en-

206

ID Question Gold Answer Generated Natural Answer

1
~;�M�pÅd´=I<º =I<�\<�Ñ) \<�<§=I<

Which country did Hargreaves of Bayern comes from? British! born in Canada Canadians, British

2
âyx´=�x�º Çxy3´éÜIB�Ö� éÜIB�Ö�§´Çx

Which ethnic groups is Sha Zukang from? Han, now he is the DSG of the UN DSG of the UN, Han

3
ÛËA#Óù´Xº ´���[!ÑW[ÛÛÛËËËAAA###ÓÓÓùùù��[óÆ[

Who is Robert Schumann? a writer, musician Robert Schuhmann is a writer and philosopher.

4
êd�.ì´Xº ¦´�¶v¥$Ä
 ��`D�v¥$Ä

Who is Mascherano? He is a football player An excellent football player

5
n�S���à¿��ü´Xº �g# ���üüü´�g#

Who is the director of The Little Chinese Seamstress? Dai Sijie Director Dai Sijie

6
>Kcn�´Xû�º M�!�*À!Új¸ ¾�f

Who shot the movie The Iron Triangle? Tsui Hark, Johnny To, Ringo Lam Feng Xiaogang

7
X��R6Iù�<��
�[]�º å�< ´´´

Who knows some details of Xi Murong? poetess yes, yes, yes

8
��,´=�úimu�º AT´þ°��
þ°��

Which company developed the game Crazy Arcade? should be the Shanda Group playing Shanda Group

Table 6: Examples of the generated natural answers by COREQA.

tities with neural network based reasoning.

6 Conclusion and Future Work

In this paper, we propose an end-to-end system
to generate natural answers through incorporating
copying and retrieving mechanisms in sequence-
to-sequence learning. Specifically, the sequences
of SUs in the generated answer may be predict-
ed from the vocabulary, copied from the given
question and retrieved from the corresponding K-
B. And the future work includes: a) lots of ques-
tions cannot be answered directly by facts in a KB
(e.g. “Who is Jet Li’s father-in-law?”), we plan to
learn QA system with latent knowledge (e.g. K-
B embedding (Bordes et al., 2013)); b) we plan to
adopt memory networks (Sukhbaatar et al., 2015)
to encode the temporary KB for each question.

Acknowledgments

The authors are grateful to anonymous review-
ers for their constructive comments. The work
was supported by the Natural Science Foundation
of China (No.61533018) and the National High
Technology Development 863 Program of China
(No.2015AA015405).

References

Nabiha Asghar, Pascal Poupart, Jiang Xin, and Hang
Li. 2016. Online sequence-to-sequence reinforce-
ment learning for open-domain conversational a-
gents. arXiv preprint arXiv:1612.03929 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint arX-
iv:1409.0473 .

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems. pages 2787–2795.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

David Ferrucci, Eric Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya A Kalyanpur,
Adam Lally, J William Murdock, Eric Nyberg, John
Prager, et al. 2010. Building watson: An overview
of the deepqa project. AI magazine 31(3):59–79.

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al.
2016. Hybrid computing using a neural net-
work with dynamic external memory. Nature
538(7626):471–476.

Jiatao Gu, Zhengdong Lu, Hang Li, and O.K. Vic-
tor Li. 2016. Incorporating copying mechanism
in sequence-to-sequence learning. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Paper-
s). Association for Computational Linguistics, pages
1631–1640.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 140–149.

207

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Cody Kwok, Oren Etzioni, and Daniel S Weld. 2001.
Scaling question answering to the web. ACM Trans-
actions on Information Systems (TOIS) 19(3):242–
262.

Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky,
Michel Galley, and Jianfeng Gao. 2016. Deep rein-
forcement learning for dialogue generation. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1192–1202.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D
Forbus, and Ni Lao. 2016. Neural symbolic ma-
chines: Learning semantic parsers on freebase with
weak supervision. arXiv preprint arXiv:1611.00020
.

Vanessa Lopez, Victoria Uren, Marta Sabou, and En-
rico Motta. 2011. Is question answering fit for the
semantic web?: a survey. Semantic Web 2(2):125–
155.

Michael McTear, Zoraida Callejas, and David Griol.
2016. The Conversational Interface: Talking to S-
mart Devices. Springer Publishing Company, Incor-
porated, 1st edition.

Lili Mou, Zhengdong Lu, Hang Li, and Zhi Jin.
2016. Coupling distributed and symbolic execution
for natural language queries. arXiv preprint arX-
iv:1612.02741 .

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673–2681.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Proceedings of
the 30th AAAI Conference on Artificial Intelligence
(AAAI-16).

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems. pages
2440–2448.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural network-
s. In Advances in neural information processing sys-
tems. pages 3104–3112.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Coverage-based neural machine
translation. arXiv preprint arXiv:1601.04811 .

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems. pages 2692–2700.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869 .

Jason Weston, Sumit Chopra, and Antoine Bordes.
2014. Memory networks. CoRR abs/1410.3916.

William A Woods. 1977. Lunar rocks in natural en-
glish: Explorations in natural language question an-
swering. In Linguistic structures processing. pages
521–569.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between hu-
man and machine translation. arXiv preprint arX-
iv:1609.08144 .

Mohamed Yahya, Klaus Berberich, Shady Elbas-
suoni, Maya Ramanath, Volker Tresp, and Gerhard
Weikum. 2012. Natural language questions for the
web of data. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning. Association for Computational Linguis-
tics, pages 379–390.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with freebase. In Proceedings of the 52nd
Annual Meeting of the Association for Computation-
al Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 956–966.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 1321–1331.

Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang,
Hang Li, and Xiaoming Li. 2016. Neural generative
question answering. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (I-
JCAI).

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2015. Neural enquirer: Learning to query tables.
arXiv preprint arXiv:1512.00965 .

208

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 209–220
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1020

Coarse-to-Fine Question Answering for Long Documents

Eunsol Choi†
University of Washington

eunsol@cs.washington.edu

Daniel Hewlett, Jakob Uszkoreit
Google

{dhewlett,usz}@google.com

Illia Polosukhin†
XIX.ai

i@xix.ai

Alexandre Lacoste†
Element AI

allac@elementai.com

Jonathan Berant†
Tel Aviv University

joberant@cs.tau.ac.il

Abstract

We present a framework for question
answering that can efficiently scale to
longer documents while maintaining or
even improving performance of state-of-
the-art models. While most successful ap-
proaches for reading comprehension rely
on recurrent neural networks (RNNs), run-
ning them over long documents is pro-
hibitively slow because it is difficult to
parallelize over sequences. Inspired by
how people first skim the document, iden-
tify relevant parts, and carefully read these
parts to produce an answer, we combine
a coarse, fast model for selecting rele-
vant sentences and a more expensive RNN
for producing the answer from those sen-
tences. We treat sentence selection as a la-
tent variable trained jointly from the an-
swer only using reinforcement learning.
Experiments demonstrate the state of the
art performance on a challenging subset of
the WIKIREADING dataset (Hewlett et al.,
2016) and on a new dataset, while speed-
ing up the model by 3.5x-6.7x.

1 Introduction

Reading a document and answering questions
about its content are among the hallmarks of nat-
ural language understanding. Recently, interest in
question answering (QA) from unstructured doc-
uments has increased along with the availability
of large scale datasets for reading comprehension
(Hermann et al., 2015; Hill et al., 2015; Rajpurkar
et al., 2016; Onishi et al., 2016; Nguyen et al.,
2016; Trischler et al., 2016a).

Current state-of-the-art approaches for QA over
documents are based on recurrent neural networks
†Work done while the authors were at Google.

Query (x) Document (d)

Answer (y)

Sentence Selection (Latent)

Answer Generation (RNN)

Document Summary (d̂)

Figure 1: Hierarchical question answering: the model first
selects relevant sentences that produce a document summary
(d̂) for the given query (x), and then generates an answer (y)
based on the summary (d̂) and the query x.

(RNNs) that encode the document and the ques-
tion to determine the answer (Hermann et al.,
2015; Chen et al., 2016; Kumar et al., 2016;
Kadlec et al., 2016; Xiong et al., 2016). While
such models have access to all the relevant infor-
mation, they are slow because the model needs to
be run sequentially over possibly thousands of to-
kens, and the computation is not parallelizable.
In fact, such models usually truncate the docu-
ments and consider only a limited number of to-
kens (Miller et al., 2016; Hewlett et al., 2016).
Inspired by studies on how people answer ques-
tions by first skimming the document, identifying
relevant parts, and carefully reading these parts to
produce an answer (Masson, 1983), we propose a
coarse-to-fine model for question answering.

Our model takes a hierarchical approach (see
Figure 1), where first a fast model is used to select
a few sentences from the document that are rele-
vant for answering the question (Yu et al., 2014;
Yang et al., 2016a). Then, a slow RNN is em-
ployed to produce the final answer from the se-
lected sentences. The RNN is run over a fixed
number of tokens, regardless of the length of the
document. Empirically, our model encodes the

209

https://doi.org/10.18653/v1/P17-1020

d:

s1: The 2011 Joplin tornado was a catastrophic EF5-
rated multiple-vortex tornado that struck Joplin, Mis-
souri . . .
s4: It was the third tornado to strike Joplin since May
1971.
s5: Overall, the tornado killed 158 people . . ., in-
jured some 1,150 others, and caused damages . . .

x: how many people died in joplin mo tornado
y: 158 people

Figure 2: A training example containing a document d, a
question x and an answer y in the WIKISUGGEST dataset.
In this example, the sentence s5 is necessary to answer the
question.

text up to 6.7 times faster than the base model,
which reads the first few paragraphs, while having
access to four times more tokens.

A defining characteristic of our setup is that an
answer does not necessarily appear verbatim in the
input (the genre of a movie can be determined even
if not mentioned explicitly). Furthermore, the an-
swer often appears multiple times in the document
in spurious contexts (the year ‘2012’ can appear
many times while only once in relation to the ques-
tion). Thus, we treat sentence selection as a la-
tent variable that is trained jointly with the answer
generation model from the answer only using re-
inforcement learning. Treating sentence selection
as a latent variable has been explored in classifi-
cation (Yessenalina et al., 2010; Lei et al., 2016),
however, to our knowledge, has not been applied
for question answering.

We find that jointly training sentence selec-
tion and answer generation is especially helpful
when locating the sentence containing the answer
is hard. We evaluate our model on the WIKIREAD-
ING dataset (Hewlett et al., 2016), focusing on ex-
amples where the document is long and sentence
selection is challenging, and on a new dataset
called WIKISUGGEST that contains more natural
questions gathered from a search engine.

To conclude, we present a modular framework
and learning procedure for QA over long text. It
captures a limited form of document structure such
as sentence boundaries and deals with long docu-
ments or potentially multiple documents. Exper-
iments show improved performance compared to
the state of the art on the subset of WIKIREADING,
comparable performance on other datasets, and a
3.5x-6.7x speed up in document encoding, while
allowing access to much longer documents.

% answer avg # of % match
string exists ans. match first sent

WIKIREADING 47.1 1.22 75.1
WR-LONG 50.4 2.18 31.3

WIKISUGGEST 100 13.95 33.6

Table 1: Statistics on string matches of the answer y∗ in the
document. The third column only considers examples with
answer match. Often the answer string is missing or appears
many times while it is relevant to query only once.

2 Problem Setting
Given a training set of question-document-answer
triples {x(i), d(i), y(i)}Ni=1, our goal is to learn a
model that produces an answer y for a question-
document pair (x, d). A document d is a list of
sentences s1, s2, . . . , s|d|, and we assume that the
answer can be produced from a small latent sub-
set of the sentences. Figure 2 illustrates a training
example in which sentence s5 is in this subset.

3 Data
We evaluate on WIKIREADING, WIKIREADING

LONG, and a new dataset, WIKISUGGEST.
WIKIREADING (Hewlett et al., 2016) is a QA

dataset automatically generated from Wikipedia
and Wikidata: given a Wikipedia page about an
entity and a Wikidata property, such as PROFES-
SION, or GENDER, the goal is to infer the tar-
get value based on the document. Unlike other
recently released large-scale datasets (Rajpurkar
et al., 2016; Trischler et al., 2016a), WIKIREAD-
ING does not annotate answer spans, making sen-
tence selection more challenging.

Due to the structure and short length of most
Wikipedia documents (median number of sen-
tences: 9), the answer can usually be inferred from
the first few sentences. Thus, the data is not ideal
for testing a sentence selection model compared
to a model that uses the first few sentences. Ta-
ble 1 quantifies this intuition: We consider sen-
tences containing the answer y∗ as a proxy for sen-
tences that should be selected, and report how of-
ten y∗ appears in the document. Additionally, we
report how frequently this proxy oracle sentence is
the first sentence. We observe that in WIKIREAD-
ING, the answer appears verbatim in 47.1% of the
examples, and in 75% of them the match is in the
first sentence. Thus, the importance of modeling
sentence selection is limited.

To remedy that, we filter WIKIREADING and
ensure a more even distribution of answers
throughout the document. We prune short docu-

210

of uniq. # of # of words # of tokens
queries examples / query / doc.

WIKIREADING 867 18.58M 2.35 489.2
WR-LONG 239 1.97M 2.14 1200.7

WIKISUGGEST 3.47M 3.47M 5.03 5962.2

Table 2: Data statistics.

ments with less than 10 sentences, and only con-
sider Wikidata properties for which Hewlett et al.
(2016)’s best model obtains an accuracy of less
than 60%. This prunes out properties such as
GENDER, GIVEN NAME, and INSTANCE OF.1

The resulting WIKIREADING LONG dataset con-
tains 1.97M examples, where the answer appears
in 50.4% of the examples, and appears in the first
sentence only 31% of the time. On average, the
documents in WIKIREADING LONG contain 1.2k
tokens, more tokens than those of SQuAD (av-
erage 122 tokens) or CNN (average 763 tokens)
datasets (see Table 2). Table 1 shows that the exact
answer string is often missing from the document
in WIKIREADING. This is since Wikidata state-
ments include properties such as NATIONALITY,
which are not explicitly mentioned, but can still
be inferred. A drawback of this dataset is that the
queries, Wikidata properties, are not natural lan-
guage questions and are limited to 858 properties.

To model more realistic language queries, we
collect the WIKISUGGEST dataset as follows. We
use the Google Suggest API to harvest natural
language questions and submit them to Google
Search. Whenever Google Search returns a box
with a short answer from Wikipedia (Figure 3),
we create an example from the question, answer,
and the Wikipedia document. If the answer string
is missing from the document this often implies a
spurious question-answer pair, such as (‘what time
is half time in rugby’, ‘80 minutes, 40 minutes’).
Thus, we pruned question-answer pairs without
the exact answer string. We examined fifty ex-
amples after filtering and found that 54% were
well-formed question-answer pairs where we can
ground answers in the document, 20% contained
answers without textual evidence in the document
(the answer string exists in an irreleveant context),
and 26% contain incorrect QA pairs such as the
last two examples in Figure 3. The data collection
was performed in May 2016.

1These three relations alone account for 33% of the data.

WIKISUGGEST Query Answer

what year did virgina became a state 1788
general manager of smackdown Theodore Long
minnesota viking colors purple
coco martin latest movies maybe this time
longest railway station in asia Gorakhpur
son from modern family Claire Dunphy
north dakota main religion Christian
lands end’ brand Lands’ End
wdsu radio station WCBE

Figure 3: Example queries and answers of WIKISUGGEST.

4 Model

Our model has two parts (Figure 1): a fast sen-
tence selection model (Section 4.1) that defines a
distribution p(s | x, d) over sentences given the in-
put question (x) and the document (d), and a more
costly answer generation model (Section 4.3) that
generates an answer y given the question and a
document summary, d̂ (Section 4.2), that focuses
on the relevant parts of the document.

4.1 Sentence Selection Model

Following recent work on sentence selection (Yu
et al., 2014; Yang et al., 2016b), we build a
feed-forward network to define a distribution over
the sentences s1, s2, . . . , s|d|. We consider three
simple sentence representations: a bag-of-words
(BoW) model, a chunking model, and a (paral-
lelizable) convolutional model. These models are
efficient at dealing with long documents, but do
not fully capture the sequential nature of text.

BoW Model Given a sentence s, we denote by
BoW(s) the bag-of-words representation that av-
erages the embeddings of the tokens in s. To de-
fine a distribution over the document sentences,
we employ a standard attention model (e.g., (Her-
mann et al., 2015)), where the BoW representation
of the query is concatenated to the BoW represen-
tation of each sentence sl, and then passed through
a single layer feed-forward network:

hl = [BoW(x);BoW(sl)]

vl = v>ReLU(Whl),

p(s = sl | x, d) = softmax(vl),

211

where [;] indicates row-wise concatenation, and
the matrix W , the vector v, and the word embed-
dings are learned parameters.

Chunked BoW Model To get more fine-grained
granularity, we split sentences into fixed-size
smaller chunks (seven tokens per chunk) and score
each chunk separately (Miller et al., 2016). This
is beneficial if questions are answered with sub-
sentential units, by allowing to learn attention over
different chunks. We split a sentence sl into a fixed
number of chunks (cl,1, cl,2 . . . , cl,J), generate a
BoW representation for each chunk, and score it
exactly as in the BoW model. We obtain a distribu-
tion over chunks, and compute sentence probabil-
ities by marginalizing over chunks from the same
sentence. Let p(c = cl,j | x, d) be the distribution
over chunks from all sentences, then:

p(s = sl | x, d) =
J∑

j=1

p(c = cl,j | x, d),

with the same parameters as in the BoW model.

Convolutional Neural Network Model While
our sentence selection model is designed to be fast,
we explore a convolutional neural network (CNN)
that can compose the meaning of nearby words. A
CNN is still efficient, since all filters can be com-
puted in parallel. Following previous work (Kim,
2014; Kalchbrenner et al., 2014), we concatenate
the embeddings of tokens in the query x and the
sentence sl, and run a convolutional layer with F
filters and width w over the concatenated embed-
dings. This results in F features for every span of
length w, and we employ max-over-time-pooling
(Collobert et al., 2011) to get a final representa-
tion hl ∈ RF . We then compute p(s = sl | x, d)
by passing hl through a single layer feed-forward
network as in the BoW model.

4.2 Document Summary

After computing attention over sentences, we cre-
ate a summary that focuses on the document parts
related to the question using deterministic soft at-
tention or stochastic hard attention. Hard attention
is more flexible, as it can focus on multiple sen-
tences, while soft attention is easier to optimize
and retains information from multiple sentences.

Hard Attention We sample a sentence ŝ ∼
p(s | x, d) and fix the document summary d̂ = ŝ
to be that sentence during training. At test time,

we choose the most probable sentence. To extend
the document summary to contain more informa-
tion, we can sample without replacement K sen-
tences from the document and define the summary
to be the concatenation of the sampled sentences
d̂ = [ŝ1; ŝ2; . . . ; ŝK].

Soft Attention In the soft attention model (Bah-
danau et al., 2015) we compute a weighted av-
erage of the tokens in the sentences according to
p(s | x, d). More explicitly, let d̂m be the mth to-
ken of the document summary. Then, by fixing the
length of every sentence toM tokens,2 the blended
tokens are computed as follows:

d̂m =

|d|∑

l=1

p(s = sl | x, d) · sl,m,

where sl,m is the mth word in the lth sentence
(m ∈ {1, . . . ,M}).

As the answer generation models (Section 4.3)
take a sequence of vectors as input, we average
the tokens at the word level. This gives the hard
attention an advantage since it samples a “real”
sentence without mixing words from different sen-
tences. Conversely, soft attention is trained more
easily, and has the capacity to learn a low-entropy
distribution that is similar to hard attention.

4.3 Answer Generation Model

State-of-the-art question answering models use
RNN models to encode the document and ques-
tion and selects the answer. We focus on a hierar-
chical model with fast sentence selection, and do
not subscribe to a particular answer generation ar-
chitecture.

Here we implemented the state-of-the-art word-
level sequence-to-sequence model with placehold-
ers, described by Hewlett et al. (2016). This mod-
els can produce answers that does not appear in the
sentence verbatim. This model takes the query to-
kens, and the document (or document summary)
tokens as input and encodes them with a Gated
Recurrent Unit (GRU; Cho et al. (2014)). Then,
the answer is decoded with another GRU model,
defining a distribution over answers p(y | x, d̂).
In this work, we modified the original RNN: the
word embeddings for the RNN decoder input, out-
put and original word embeddings are shared.

2Long sentences are truncated and short ones are padded.

212

5 Learning

We consider three approaches for learning the
model parameters (denoted by θ): (1) We present
a pipeline model, where we use distant super-
vision to train a sentence selection model inde-
pendently from an answer generation model. (2)
The hard attention model is optimized with REIN-
FORCE (Williams, 1992) algorithm. (3) The soft
attention model is fully differentiable and is opti-
mized end-to-end with backpropagation.

Distant Supervision While we do not have an
explicit supervision for sentence selection, we can
define a simple heuristic for labeling sentences.
We define the gold sentence to be the first sen-
tence that has a full match of the answer string, or
the first sentence in the document if no full match
exists. By labeling gold sentences, we can train
sentence selection and answer generation indepen-
dently with standard supervised learning, maxi-
mizing the log-likelihood of the gold sentence and
answer, given the document and query. Let y∗ and
s∗ be the target answer and sentence , where s∗

also serves as the document summary. The objec-
tive is to maximize:

J(θ) = log pθ(y
∗, s∗ | x, d)

= log pθ(s
∗ | x, d) + log pθ(y

∗ | s∗, x).

Since at test time we do not have access to
the target sentence s∗ needed for answer gen-
eration, we replace it by the model prediction
argmaxsl∈d pθ(s = sl | d, x).

Reinforcement Learning Because the target
sentence is missing, we use reinforcement learn-
ing where our action is sentence selection, and our
goal is to select sentences that lead to a high re-
ward. We define the reward for selecting a sen-
tence as the log probability of the correct answer
given that sentence, that is, Rθ(sl) = log pθ(y =
y∗ | sl, x). Then the learning objective is to maxi-
mize the expected reward:

J(θ) =
∑

sl∈d
pθ(s=sl | x, d) ·Rθ(sl)

=
∑

sl∈d
pθ(s=sl | x, d) · log pθ(y=y∗ | sl, x).

Following REINFORCE (Williams, 1992), we
approximate the gradient of the objective with a

sample, ŝ ∼ pθ(s | x, d):

∇J(θ) ≈ ∇ log pθ(y | ŝ, x)
+ log pθ(y | ŝ, x) · ∇ log pθ(ŝ | x, d).

Sampling K sentences is similar and omitted for
brevity.

Training with REINFORCE is known to be un-
stable due to the high variance induced by sam-
pling. To reduce variance, we use curriculum
learning, start training with distant supervision
and gently transition to reinforcement learning,
similar to DAGGER (Ross et al., 2011). Given an
example, we define the probability of using the
distant supervision objective at each step as re,
where r is the decay rate and e is the index of the
current training epoch.3

Soft Attention We train the soft attention model
by maximizing the log likelihood of the correct an-
swer y∗ given the input question and document
log pθ(y

∗ | d, x). Recall that the answer gener-
ation model takes as input the query x and doc-
ument summary d̂, and since d̂ is an average of
sentences weighted by sentence selection, the ob-
jective is differentiable and is trained end-to-end.

6 Experiments

Experimental Setup We used 70% of the data
for training, 10% for development, and 20% for
testing in all datasets. We used the first 35 sen-
tences in each document as input to the hierarchi-
cal models, where each sentence has a maximum
length of 35 tokens. Similar to Miller et al. (2016),
we add the first five words in the document (typi-
cally the title) at the end of each sentence sequence
for WIKISUGGEST. We add the sentence index as
a one hot vector to the sentence representation.

We coarsely tuned and fixed most hyper-
parameters for all models. The word embedding
dimension is set to 256 for both sentence selection
and answer generation models. We used the decay
rate of 0.8 for curriculum learning. Hidden dimen-
sion is fixed at 128, batch size at 128, GRU state
cell at 512, and vocabulary size at 100K. For CNN
sentence selection model, we used 100 filters and
set filter width as five. The initial learning rate
and gradient clipping coefficients for each model
are tuned on the development set. The ranges for
learning rates were 0.00025, 0.0005, 0.001, 0.002,
0.004 and 0.5, 1.0 for gradient clipping coefficient.

3 We tuned r ∈ [0.3, 1] on the development set.

213

Figure 4: Runtime for document encoding on an Intel Xeon
CPU E5-1650 @3.20GHz on WIKIREADING at test time.
The boxplot represents the throughput of BASE and each line
plot shows the proposed models’ speed gain over BASE. Ex-
act numbers are reported in the supplementary material.

We halved the learning rate every 25k steps. We
use the Adam (Kingma and Ba, 2015) optimizer
and TensorFlow framework (Abadi et al., 2015).

Evaluation Metrics Our main evaluation metric
is answer accuracy, the proportion of questions an-
swered correctly. For sentence selection, since we
do not know which sentence contains the answer,
we report approximate accuracy by matching sen-
tences that contain the answer string (y∗). For the
soft attention model, we treat the sentence with the
highest probability as the predicted sentence.

Models and Baselines The models PIPELINE,
REINFORCE, and SOFTATTEND correspond to the
learning objectives in Section 5. We compare
these models against the following baselines:

FIRST always selects the first sentence of the
document. The answer appears in the first
sentence in 33% and 15% of documents in
WIKISUGGEST and WIKIREADING LONG.
BASE is the re-implementation of the best
model by Hewlett et al. (2016), consum-
ing the first 300 tokens. We experimented
with providing additional tokens to match the
length of document available to hierarchical
models, but this performed poorly.4

ORACLE selects the first sentence with the
answer string if it exists, or otherwise the first
sentence in the document.

4Our numbers on WIKIREADING outperform previously
reported numbers due to modifications in implementation and
better optimization.

Dataset Learning Accuracy
FIRST 26.7
BASE 40.1

ORACLE 43.9
WIKIREADING PIPELINE 36.8

LONG SOFTATTEND 38.3
REINFORCE (K=1) 40.1
REINFORCE (K=2) 42.2

FIRST 44.0
BASE 46.7

ORACLE 60.0
WIKI PIPELINE 45.3

SUGGEST SOFTATTEND 45.4
REINFORCE (K=1) 45.4
REINFORCE (K=2) 45.8

FIRST 71.0
HEWLETT ET AL. (2016) 71.8

BASE 75.6
ORACLE 74.6

WIKIREADING SOFTATTEND 71.6
PIPELINE 72.4

REINFORCE (K=1) 73.0
REINFORCE (K=2) 73.9

Table 3: Answer prediction accuracy on the test set. K is the
number of sentences in the document summary.

Answer Accuracy Results Table 3 summarizes
answer accuracy on all datasets. We use BOW en-
coder for sentence selection as it is the fastest. The
proposed hierarchical models match or exceed the
performance of BASE, while reducing the number
of RNN steps significantly, from 300 to 35 (or 70
for K=2), and allowing access to later parts of the
document. Figure 4 reports the speed gain of our
system. While throughput at training time can be
improved by increasing the batch size, at test time
real-life QA systems use batch size 1, where RE-
INFORCE obtains a 3.5x-6.7x speedup (for K=2
or K=1). In all settings, REINFORCE was at least
three times faster than the BASE model.

All models outperform the FIRST baseline, and
utilizing the proxy oracle sentence (ORACLE)
improves performance on WIKISUGGEST and
WIKIREADNG LONG. In WIKIREADING, where
the proxy oracle sentence is often missing and
documents are short, BASE outperforms ORACLE.

Jointly learning answer generation and sentence
selection, REINFORCE outperforms PIPELINE,
which relies on a noisy supervision signal for sen-
tence selection. The improvement is larger in
WIKIREADING LONG, where the approximate su-
pervision for sentence selection is missing for 51%
of examples compared to 22% of examples in
WIKISUGGEST.5

On WIKIREADING LONG, REINFORCE outper-

5The number is lower than in Table 1 because we cropped
sentences and documents, as mentioned above.

214

Dataset Learning Model Accuracy
CNN 70.7

PIPELINE BOW 69.2
CHUNKBOW 74.6

WIKI CNN 74.2
READING REINFORCE BOW 72.2

LONG CHUNKBOW 74.4
FIRST 31.3

SOFTATTEND (BoW) 70.1
CNN 62.3

PIPELINE BOW 67.5
CHUNKBOW 57.4

WIKI CNN 64.6
SUGGEST REINFORCE BOW 67.3

CHUNKBOW 59.3
FIRST 42.6

SOFTATTEND (BoW) 49.9

Table 4: Approximate sentence selection accuracy on the de-
velopment set for all models. We use ORACLE to find a proxy
gold sentence and report the proportion of times each model
selects the proxy sentence.

forms all other models (excluding ORACLE, which
has access to gold labels at test time). In other
datasets, BASE performs slightly better than the
proposed models, at the cost of speed. In these
datasets, the answers are concentrated in the first
few sentences. BASE is advantageous in categori-
cal questions (such as GENDER), gathering bits of
evidence from the whole document, at the cost of
speed. Encouragingly, our system almost reaches
the performance of ORACLE in WIKIREADING,
showing strong results in a limited token setting.

Sampling an additional sentence into the doc-
ument summary increased performance in all
datasets, illustrating the flexibility of hard at-
tention compared to soft attention. Addi-
tional sampling allows recovery from mistakes in
WIKIREADING LONG, where sentence selection
is challenging.6 Comparing hard attention to soft
attention, we observe that REINFORCE performed
better than SOFTATTEND. The attention distribu-
tion learned by the soft attention model was often
less peaked, generating noisier summaries.

Sentence Selection Results Table 4 reports sen-
tence selection accuracy by showing the pro-
portion of times models selects the proxy gold
sentence when it is found by ORACLE. In
WIKIREADING LONG, REINFORCE finds the ap-
proximate gold sentence in 74.4% of the examples
where the the answer is in the document. In WIK-
ISUGGEST performance is at 67.5%, mostly due to
noise in the data. PIPELINE performs slightly bet-
ter as it is directly trained towards our noisy eval-

6Sampling more help pipeline methods less.

WR WIKI
LONG SUGGEST

No evidence in doc. 29 8
Error in answer generation 13 15
Noisy query & answer 0 24
Error in sentence selection 8 3

Table 5: Manual error analysis on 50 errors from the devel-
opment set for REINFORCE (K=1).

uation. However, not all sentences that contain the
answer are useful to answer the question (first ex-
ample in Table 6). REINFORCE learned to choose
sentences that are likely to generate a correct an-
swer rather than proxy gold sentences, improv-
ing the final answer accuracy. On WIKIREADING

LONG, complex models (CNN and CHUNKBOW)
outperform the simple BOW, while on WIKISUG-
GEST BOW performed best.

Qualitative Analysis We categorized the pri-
mary reasons for the errors in Table 5 and present
an example for each error type in Table 6. All
examples are from REINFORCE with BOW sen-
tence selection. The most frequent source of error
for WIKIREADING LONG was lack of evidence in
the document. While the dataset does not contain
false answers, the document does not always pro-
vide supporting evidence (examples of properties
without clues are ELEVATION ABOVE SEA LEVEL

and SISTER). Interestingly, the answer string can
still appear in the document as in the first ex-
ample in Table 6: ‘Saint Petersburg’ appears in
the document (4th sentence). Answer generation
at times failed to generate the answer even when
the correct sentence was selected. This was pro-
nounced especially in long answers. For the auto-
matically collected WIKISUGGEST dataset, noisy
question-answer pairs were problematic, as dis-
cussed in Section 3. However, the models fre-
quently guessed the spurious answer. We attribute
higher proxy performance in sentence selection
for WIKISUGGEST to noise. In manual analysis,
sentence selection was harder in WIKIREADING

LONG, explaining why sampling two sentences
improved performance.

In the first correct prediction (Table 6), the
model generates the answer, even when it is not in
the document. The second example shows when
our model spots the relevant sentence without ob-
vious clues. In the last example the model spots a
sentence far from the head of the document.

Figure 5 contains a visualization of the atten-

215

W
IK

IR
E

A
D

IN
G

L
O

N
G

(W
R

L
O

N
G

) Error Type No evidence in doc.
(Query, Answer) (place of death, Saint Petersburg)
System Output Crimean Peninsula

1 11.7 Alexandrovich Friedmann (also spelled Friedman or [Fridman] , Russian : . . .
4 3.4 Friedmann was baptized . . . and lived much of his life in Saint Petersburg .

25 63.6 Friedmann died on September 16 , 1925 , at the age of 37 , from typhoid fever that
he contracted while returning from a vacation in Crimean Peninsula .

Error Type Error in sentence selection
(Query, Answer) (position played on team speciality, power forward)
System Output point guard

1 37.8 James Patrick Johnson (born February 20 , 1987) is an American professional basketball player
for the Toronto Raptors of the National Basketball Association (NBA).

3 22.9 Johnson was the starting power forward for the Demon Deacons of Wake Forest University

W
IK

IS
U

G
G

E
S

T
(W

S
)

Error Type Error in answer generation
(Query, Answer) (david blaine’s mother, Patrice Maureen White)
System Output Maureen

1 14.1 David Blaine (born David Blaine White; April 4, 1973) is an American magician, illusionist . . .
8 22.6 Blaine was born and raised in, Brooklyn , New York the son of Patrice Maureen White . . .

Error Type Noisy query & answer
(Query, Answer) (what are dried red grapes called, dry red wines)
System Output Chardonnay

1 2.8 Burgundy wine (French : Bourgogne or vin de Bourgogne) is wine made in the . . .
2 90.8 The most famous wines produced here . . . are dry red wines made from Pinot noir grapes . . .

Correctly Predicted Examples

W
R

L
O

N
G

(Query, Answer) (position held, member of the National Assembly of South Africa)

1 98.4 Anchen Margaretha Dreyer (born 27 March 1952) is a South African politician, a Member of
Parliament for the opposition Democratic Alliance , and currently . . .

(Query, Answer) (headquarters locations, Solihull)

1 13.8 LaSer UK is a provider of credit and loyalty programmes , operating in the UK and Republic . . .
4 82.3 The company ’s operations are in Solihull and Belfast where it employs 800 people .

W
S

(Query, Answer) (avril lavigne husband, Chad Kroeger)

1 17.6 Avril Ramona Lavigne ([vrłl] [lvin] / ; French pronunciation : ¡200b¿ ([avil] [lavi]) ;. . .
23 68.4 Lavigne married Nickelback frontman , Chad Kroeger , in 2013 . Avril Ramona Lavigne was . . .

Table 6: Example outputs from REINFORCE (K=1) with BOW sentence selection model. First column: sentence index (l).
Second column: attention distribution pθ(sl|d, x). Last column: text sl.

tion distribution over sentences, p(sl | d, x), for
different learning procedures. The increased fre-
quency of the answer string in WIKISUGGEST vs.
WIKIREADING LONG is evident in the leftmost
plot. SOFTATTEND and CHUNKBOW clearly dis-
tribute attention more evenly across the sentences
compared to BOW and CNN.

7 Related Work

There has been substantial interest in datasets
for reading comprehension. MCTest (Richard-
son et al., 2013) is a smaller-scale datasets focus-
ing on common sense reasoning; bAbi (Weston
et al., 2015) is a synthetic dataset that captures
various aspects of reasoning; and SQuAD (Ra-
jpurkar et al., 2016; Wang et al., 2016; Xiong

et al., 2016) and NewsQA (Trischler et al., 2016a)
are QA datasets where the answer is a span in
the document. Compared to Wikireading, some
datasets covers shorter passages (average 122
words for SQuAD). Cloze-style question answer-
ing datasets (Hermann et al., 2015; Onishi et al.,
2016; Hill et al., 2015) assess machine compre-
hension but do not form questions. The recently
released MS MARCO dataset (Nguyen et al.,
2016) consists of query logs, web documents and
crowd-sourced answers.

Answer sentence selection is studied with the
TREC QA (Voorhees and Tice, 2000), Wik-
iQA (Yang et al., 2016b) and SelQA (Jurczyk
et al., 2016) datasets. Recently, neural networks
models (Wang and Nyberg, 2015; Severyn and

216

Figure 5: For a random subset of documents in the development set, we visualized the learned attention over the sentences
(p(sl|d, x)).

Moschitti, 2015; dos Santos et al., 2016) achieved
improvements on TREC datsaet. Sultan et al.
(2016) optimized the answer sentence extraction
and the answer extraction jointly, but with gold la-
bels for both parts. Trischler et al. (2016b) pro-
posed a model that shares the intuition of ob-
serving inputs at multiple granularities (sentence,
word), but deals with multiple choice questions.
Our model considers answer sentence selection as
latent and generates answer strings instead of se-
lecting text spans, and we found that WIKIREAD-
ING dataset suits our purposes best with some
pruning, which still provided 1.97 million exam-
ples compared to 2K questions for TREC dataset.

Hierarchical models which treats sentence se-
lection as a latent variable have been applied
text categorization (Yang et al., 2016b), extractive
summarization (Cheng and Lapata, 2016), ma-
chine translation (Ba et al., 2014) and sentiment
analysis (Yessenalina et al., 2010; Lei et al., 2016).
To the best of our knowledge, we are the first to
use the hierarchical nature of a document for QA.

Finally, our work is related to the reinforcement
learning literature. Hard and soft attention were
examined in the context of caption generation (Xu
et al., 2015). Curriculum learning was investigated
in Sachan and Xing (2016), but they focused on
the ordering of training examples while we com-

bine supervision signals. Reinforcement learning
recently gained popularity in tasks such as co-
reference resolution (Clark and Manning, 2016),
information extraction (Narasimhan et al., 2016),
semantic parsing (Andreas et al., 2016) and textual
games (Narasimhan et al., 2015; He et al., 2016).

8 Conclusion

We presented a coarse-to-fine framework for QA
over long documents that quickly focuses on the
relevant portions of a document. In future work we
would like to deepen the use of structural clues and
answer questions over multiple documents, using
paragraph structure, titles, sections and more. In-
corporating coreference resolution would be an-
other important direction for future work. We ar-
gue that this is necessary for developing systems
that can efficiently answer the information needs
of users over large quantities of text.

Acknowledgement

We appreciate feedbacks from Google colleagues.
We also thank Yejin Choi, Kenton Lee, Mike
Lewis, Mark Yatskar and Luke Zettlemoyer for
comments on the earlier draft of the paper. The
last author is partially supported by Israel Science
Foundation, grant 942/16.

217

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.
http://tensorflow.org/.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Learning to compose neural net-
works for question answering. Proceedings of the
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies .

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu.
2014. Multiple object recognition with visual at-
tention. The International Conference on Learning
Representations .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. Proceedings of the
International Conference on Learning Representa-
tions .

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In As-
sociation for Computational Linguistics.

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
Proceedings of the Annual Meeting of the Associa-
tion for Computational Linguistics .

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. Proceedings of
the Conference of the Empirical Methods in Natural
Language Processing .

Kevin Clark and Christopher D. Manning. 2016. Deep
reinforcement learning for mention-ranking corefer-
ence models. In Proceedings of the Conference of
the Empirical Methods in Natural Language Pro-
cessing.

R. Collobert, J. Weston, L. Bottou, M. Karlen,
K. Kavukcuoglu, and P. Kuksa. 2011. Natural lan-
guage processing (almost) from scratch. Journal of
Machine Learning Research (JMLR) 12:2493–2537.

Cı́cero Nogueira dos Santos, Ming Tan, Bing Xiang,
and Bowen Zhou. 2016. Attentive pooling net-
works. CoRR abs/1602.03609.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li-
hong Li, Li Deng, and Mari Ostendorf. 2016. Deep
reinforcement learning with an unbounded action
space. Proceedings of the Conference of the Asso-
ciation for Computational Linguistics .

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. 2015. Teach-
ing machines to read and comprehend. In Ad-
vances in Neural Information Processing Systems.
http://arxiv.org/abs/1506.03340.

Daniel Hewlett, Alexandre Lacoste, Llion Jones, Illia
Polosukhin, Andrew Fandrianto, Jay Han, Matthew
Kelcey, and David Berthelot. 2016. Wikireading: A
novel large-scale language understanding task over
wikipedia. In Proceedings of the Conference of the
Association for Computational Linguistics.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. The International Conference on Learning
Representations .

Tomasz Jurczyk, Michael Zhai, and Jinho D. Choi.
2016. SelQA: A New Benchmark for Selection-
based Question Answering. In Proceedings of
the 28th International Conference on Tools with
Artificial Intelligence. San Jose, CA, ICTAI’16.
https://arxiv.org/abs/1606.08513.

Rudolf Kadlec, Martin Schmid, Ondřej Bajgar, and
Jan Kleindienst. 2016. Text understanding with
the attention sum reader network. In Proceed-
ings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 908–918.
http://www.aclweb.org/anthology/P16-1086.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics .

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. Proceedings of the Confer-
ence of the Empirical Methods in Natural Language
Processing .

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. The Interna-
tional Conference on Learning Representations .

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit
Iyyer, James Bradbury, Ishaan Gulrajani, Victor
Zhong, Romain Paulus, and Richard Socher. 2016.
Ask me anything: Dynamic memory networks for
natural language processing. In Proceedings of the
International Conference on Machine Learning.

218

Tao Lei, Regina Barzilay, and Tommi S. Jaakkola.
2016. Rationalizing neural predictions. Proceed-
ings of the Conference of the Empirical Methods in
Natural Language Processing .

Michael EJ Masson. 1983. Conceptual processing of
text during skimming and rapid sequential reading.
Memory & Cognition 11(3):262–274.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for directly
reading documents. Proceedings of the Conference
of the Empirical Methods in Natural Language Pro-
cessing .

Karthik Narasimhan, Tejas Kulkarni, and Regina
Barzilay. 2015. Language understanding for text-
based games using deep reinforcement learning.
Proceedings of the Conference of the Empirical
Methods in Natural Language Processing .

Karthik Narasimhan, Adam Yala, and Regina Barzi-
lay. 2016. Improving information extraction by ac-
quiring external evidence with reinforcement learn-
ing. Proceedings of the Conference of the Empirical
Methods in Natural Language Processing .

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In Workshop in Ad-
vances in Neural Information Processing Systems.

Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gim-
pel, and David McAllester. 2016. Who did what:
A large-scale person-centered cloze dataset. Pro-
ceedings of Empirical Methods in Natural Language
Processing .

P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang. 2016.
Squad: 100,000+ questions for machine comprehen-
sion of text. In Proceedings of the Conference of the
Empirical Methods in Natural Language Process-
ing.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text.
In Proceedings of the Conference of the Empirical
Methods in Natural Language Processing.

Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In In-
ternational Conference on Artificial Intelligence and
Statistics.

Mrinmaya Sachan and Eric P Xing. 2016. Easy ques-
tions first? a case study on curriculum learning for
question answering. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
pages 373–382.

Md. Arafat Sultan, Vittorio Castelli, and Radu Florian.
2016. A joint model for answer sentence ranking
and answer extraction. Transactions of the Associa-
tion for Computational Linguistics 4:113–125.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2016a. Newsqa: A machine compre-
hension dataset. arXiv preprint arXiv:1611.09830 .

Adam Trischler, Zheng Ye, Xingdi Yuan, Jing He,
Phillip Bachman, and Kaheer Suleman. 2016b. A
parallel-hierarchical model for machine comprehen-
sion on sparse data. Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics .

Ellen M Voorhees and Dawn M Tice. 2000. Building
a question answering test collection. In Proceedings
of the 23rd annual international ACM SIGIR confer-
ence on Research and development in information
retrieval. ACM, pages 200–207.

Di Wang and Eric Nyberg. 2015. A long short-term
memory model for answer sentence selection in
question answering. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics.

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu
Florian. 2016. Multi-perspective context match-
ing for machine comprehension. arXiv preprint
arXiv:1612.04211 .

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698 .

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4):229–256.

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual
attention. Proceedings of the International Confer-
ence on Machine Learning .

Yi Yang, Wen-tau Yih, and Christopher Meek. 2016a.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. Proceedings of the Conference of
the Empirical Methods in Natural Language Pro-
cessing .

219

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016b. Hierarchical
attention networks for document classification. In
Proceedings of the Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies.

Ainur Yessenalina, Yisong Yue, and Claire Cardie.
2010. Multi-level structured models for document-
level sentiment classification. In Proceedings of the
2010 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, pages 1046–1056.

Lei Yu, Karl Moritz Hermann, Phil Blunsom, and
Stephen Pulman. 2014. Deep Learning for Answer
Sentence Selection. In NIPS Deep Learning Work-
shop. http://arxiv.org/abs/1412.1632.

220

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 221–231
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1021

An End-to-End Model for Question Answering over Knowledge Base with
Cross-Attention Combining Global Knowledge

Yanchao Hao1,2, Yuanzhe Zhang1,3, Kang Liu1, Shizhu He1, Zhanyi Liu3, Hua Wu3 and Jun Zhao1,2

1 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, 100190, China

2 University of Chinese Academy of Sciences, Beijing, 100049, China
3 Baidu Inc., Beijing, 100085, China

{yanchao.hao, yzzhang, kliu, shizhu.he, jzhao}@nlpr.ia.ac.cn
{liuzhanyi, wu hua}@baidu.com

Abstract

With the rapid growth of knowledge bases
(KBs) on the web, how to take full advan-
tage of them becomes increasingly impor-
tant. Question answering over knowledge
base (KB-QA) is one of the promising ap-
proaches to access the substantial knowl-
edge. Meanwhile, as the neural network-
based (NN-based) methods develop, NN-
based KB-QA has already achieved im-
pressive results. However, previous work
did not put more emphasis on question
representation, and the question is con-
verted into a fixed vector regardless of its
candidate answers. This simple represen-
tation strategy is not easy to express the
proper information in the question. Hence,
we present an end-to-end neural network
model to represent the questions and their
corresponding scores dynamically accord-
ing to the various candidate answer aspect-
s via cross-attention mechanism. In ad-
dition, we leverage the global knowledge
inside the underlying KB, aiming at inte-
grating the rich KB information into the
representation of the answers. As a result,
it could alleviates the out-of-vocabulary
(OOV) problem, which helps the cross-
attention model to represent the question
more precisely. The experimental result-
s on WebQuestions demonstrate the effec-
tiveness of the proposed approach.

1 Introduction
As the amount of the knowledge bases (KBs)
grows, people are paying more attention to seeking
effective methods for accessing these precious in-
tellectual resources. There are several tailor-made
languages designed for querying KBs, such as

SPARQL (Prudhommeaux and Seaborne, 2008).
However, to handle such query languages, users
are required to not only be familiar with the partic-
ular language grammars, but also be aware of the
architectures of the KBs. By contrast, knowledge
base-based question answering (KB-QA) (Unger
et al., 2014), which takes natural language as
query language, is a more user-friendly solution,
and has become a research focus in recent years.

Given natural language questions, the goal of
KB-QA is to automatically return answers from
the KB. There are two mainstream research direc-
tions for this task: semantic parsing-based (SP-
based) (Zettlemoyer and Collins, 2009, 2012; K-
wiatkowski et al., 2013; Cai and Yates, 2013; Be-
rant et al., 2013; Yih et al., 2015, 2016; Red-
dy et al., 2016) and information retrieval-based
(IR-based) (Yao and Van Durme, 2014; Bordes
et al., 2014a,b, 2015; Dong et al., 2015; Xu et al.,
2016a,b) methods. SP-based methods usually fo-
cus on constructing a semantic parser that could
convert natural language questions into structured
expressions like logical forms. IR-based methods
usually search answers from the KB based on the
information conveyed in questions, where ranking
techniques are often adopted to make correct se-
lections from candidate answers.

Recently, with the progress of deep learning,
neural network-based (NN-based) methods have
been introduced to the KB-QA task (Bordes et al.,
2014b). Different from previous methods, NN-
based methods represent both of the questions and
the answers as semantic vectors. Then the com-
plex process of KB-QA could be converted into
a similarity matching process between an input
question and its candidate answers in a semantic
space. The candidates with the highest similarity
score will be selected as the final answers. Be-
cause they are more adaptive, NN-based methods
have attracted more and more attention, and this

221

https://doi.org/10.18653/v1/P17-1021

paper also focuses on using end-to-end neural net-
works to answer questions over knowledge base.

In NN-based methods, the crucial step is to
compute the similarity score between a question
and a candidate answer, where the key is to learn
their representations. Previous methods put more
emphasis on learning representation of the answer
end. For example, Bordes et al. (2014a) consid-
er the importance of the subgraph of the candidate
answer. Dong et al. (2015) make use of the context
and the type of the answer. However, the repre-
sentation of the question end is oligotrophic. Ex-
isting approaches often represent a question into
a single vector using simple bag-of-words (BOW)
model (Bordes et al., 2014a,b), whereas the relat-
edness to the answer end is neglected. We argue
that a question should be represented differently
according to the different focuses of various an-
swer aspects1.

Take the question “Who is the president of
France?” and one of its candidate answers “Fran-
cois Hollande” as an example. When dealing
with the answer entity Francois Holland,
“president” and “France” in the question is more
focused, and the question representation should
bias towards the two words. While facing
the answer type /business/board member,
“Who” should be the most prominent word.
Meanwhile, some questions may value answer
type more than other answer aspects. While in
some other questions, answer relation may be the
most important information we should consider,
which is dynamic and flexible corresponding to d-
ifferent questions and answers. Obviously, this is
an attention mechanism, which reveals the mutual
influences between the representation of questions
and the corresponding answer aspects.

We believe that such kind of representation is
more expressive. Dong et al. (2015) represents
questions using three CNNs with different param-
eters when dealing with different answer aspect-
s including answer path, answer context and an-
swer type. The method is very enlightening and
achieves the best performance on WebQeustion-
s at that time among the end-to-end approach-
es. However, we argue that simply selecting three
independent CNNs is mechanical and inflexible.
Thus, we go one step further, and propose a cross-
attention based neural network to perform KB-

1An answer aspect could be the answer entity itself, the
answer type, the answer context, etc.

QA. The cross-attention model, which stands for
the mutual attention between the question and the
answer aspects, contains two parts: the answer-
towards-question attention part and the question-
towards-answer attention part. The former help
learn flexible and adequate question representa-
tion, and the latter help adjust the question-answer
weight, getting the final score. We illustrate in sec-
tion 3.2 for more details. In this way, we formulate
the cross-attention mechanism to model the ques-
tion answering procedure. Note that our proposed
model is an entire end-to-end approach which only
depends on training data. Some integrated systems
which use extra patterns and resources are not di-
rectly comparable to ours. Our target is to explore
a better solution following the end-to-end KB-QA
technical path.

Moreover, we notice that the representations of
the KB resources (entities and relations) are also
limited in previous work. specifically, they are of-
ten learned barely on the QA training data, which
results in two limitations. 1) The global infor-
mation of the KB is deficient. For example, if
question-answer pair (q, a) appears in the train-
ing data, and the global KB information implies
us that a′ is similar to a2, denoted by (a∼ a′), then
(q, a′) is more probable to be right. However, cur-
rent QA training mechanism cannot guarantee (a
∼ a′) could be learned. 2) The problem of out-of-
vocabulary (OOV) stands out. Due to the limited
coverage of the training data, the OOV problem
is common while testing, and many answer enti-
ties in testing candidate set have never been seen
before. The attention of these resources become
the same because they shared the same OOV em-
bedding, and this will do harm to the proposed at-
tention model. To tackle these two problems, we
additionally incorporates KB itself as training data
for training embeddings besides original question-
answer pairs. In this way, the global structure of
the whole knowledge could be captured, and the
OOV problem could be alleviated naturally.

In summary, the contributions are as follows.
1) We present a novel cross-attention based NN
model tailored to KB-QA task, which considers
the mutual influence between the representation of
questions and the corresponding answer aspects.
2) We leverage the global KB information, aiming
at represent the answers more precisely. It also al-

2The complete KB is able to offer this kind of informa-
tion, e.g., a and a′ share massive context.

222

leviates the OOV problem, which is very helpful
to the cross-attention model.
3) The experimental results on the open dataset
WebQuestions demonstrate the effectiveness of
the proposed approach.

2 Overview

The goal of KB-QA task could be formulated as
follows. Given a natural language question q, the
system returns an entity set A as answers. The
architecture of our proposed KB-QA system is
shown in Figure 1, which illustrates the basic flow
of our approach. First, we identify the topic enti-
ty of the question, and generate candidate answer-
s from Freebase. Then, a cross-attention based
neural network is employed to represent the ques-
tion under the influence of the candidate answer
aspects. Finally, the similarity score between the
question and each corresponding candidate answer
is calculated, and the candidates with highest score
will be selected as the final answers3.

Cross-Attention based Neural Network

q: Who is the president of France?

Topic entity
France Candidate

generation

Candidate Answers

Paris 𝑎1

French 𝑎2

Semi-presidential system

⋮

Answer Aspects

answer entity:/m/05qtj

answer relation: capital

answer type: /location/city town

answer context:/m/0276jx2, /m

/0jd4j, /m/0f3vz, …

⋮

S(𝑞, 𝑎1) S(𝑞, 𝑎2)

⋮ ⋮

⋯

A

Ranking

Freebase

Figure 1: The overview of the proposed KB-QA
system.

We utilize Freebase (Bollacker et al., 2008)
as our knowledge base. It has more than 3
billion facts, and is used as the supporting KB
for many QA tasks. In Freebase, the facts are
represented by subject-predicate-object triples
(s, p, o). For clarity, we call each basic el-
ement a resource, which could be either an
entity or a relation. For example, (/m/0f8l9c,
location.country.capital,/m/05qtj)4

describes the fact that the capital of France is
Paris, where /m/0f8l9c and /m/05qtj are
entities denoting France and Paris respective-

3We also adopt a margin strategy to obtain multiple an-
swers for a question and this will be explained in the next
section.

4Note that the Freebase prefixes are omitted for neatness.

ly, and location.country.capital is a
relation.

3 Our Approach

3.1 Candidate Generation

All the entities in Freebase should be candidate an-
swers ideally, but in practice, this is time consum-
ing and not really necessary. For each question q,
we use Freebase API (Bollacker et al., 2008) to
identify a topic entity, which could be simply un-
derstood as the main entity of the question. For ex-
ample, France is the topic entity of question “Who
is the president of France?”. Freebase API method
is able to resolve as many as 86% questions if we
use the top1 result (Yao and Van Durme, 2014).
After getting the topic entity, we collect all the en-
tities directly connected to it and the ones connect-
ed with 2-hop5. These entities constitute a candi-
date set Cq .

3.2 The Neural Cross-Attention Model

We present a cross-attention based neural network,
which represents the question dynamically accord-
ing to different answer aspects, also considering
their connections. Concretely, each aspect of the
answer focuses on different words of the question
and thus decides how the question is represented.
Then the question pays different attention to each
answer aspect to decide their weights. Figure 2 is
the architecture of our model. We will illustrate
how the system works as follows.

3.2.1 Question Representation
First of all, we have to obtain the representation
of each word in the question. These representa-
tions retain all the information of the question, and
could serve the following steps. Suppose question
q is expressed as q = (x1, x2, ..., xn), where xi de-
notes the ith word. As shown in Figure 2, we first
look up a word embedding matrix Ew ∈ Rd×vw to
get the word embeddings, which is randomly ini-
tialized, and updated during the training process.
Here, d means the dimension of the embeddings
and vw denotes the vocabulary size of natural lan-
guage words.

Then, the embeddings are fed into a long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) networks. LSTM has been proven to

5For example, (/m/0f8l9c, governing officials, govern-
ment.position held.office holder, /m/02qg4z) is a 2-top con-
nection.

223

𝑥1𝑞 𝑥2 𝑥6𝑥5𝑥3 𝑥4 𝑎𝑡𝑎𝑟𝑎𝑒 𝑎𝑐

Word Embedding Matrix 𝐸𝑤 KB Embedding Matrix 𝐸𝑘

ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6
 𝑞

𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6

𝑞1A-Q Attention Model

𝑒𝑐

+ + + = 𝑆(𝑞, 𝑎)

𝛽1 𝛽2 𝛽3 𝛽4

Q-A Attention Model

Mean

over time

Bidirectional LSTM

𝑒𝑡𝑒𝑟𝑒𝑒

Figure 2: The architecture of the proposed cross-
attention based neural network. Note that only one
aspect(in orange color) is depicted for clarity. The
other three aspects follow the same way.

be effective in many natural language processing
(NLP) tasks such as machine translation (Sutskev-
er et al., 2014) and dependency parsing (Dyer
et al., 2015), and it is adept in harnessing long
sentences. Note that if we use unidirectional L-
STM, the outcome of a specific word contains on-
ly the information of the words before it, whereas
the words after it are not taken into account. To
avoid this, we employ bidirectional LSTM as Bah-
danau (2015) does, which consists of both forward
and backward networks. The forward LSTM han-
dles the question from left to right, and the back-
ward LSTM processes in the reverse order. Thus,
we could acquire two hidden state sequences, one
from the forward one (

−→
h1,
−→
h2, ...,

−→
hn) and the other

from the backward one (
←−
h1,
←−
h2, ...,

←−
hn). We con-

catenate the forward hidden state and the back-
ward hidden state of each word, resulting in hj =
[
−→
hj ;
←−
hj]. The hidden unit of forward and backward

LSTM is d
2 , so the concatenated vector is of di-

mension d. In this way, we obtain the representa-
tion of each word in the question.

3.2.2 Answer aspect representation

We directly use the embedding for each answer
aspect through the KB embedding matrix Ek ∈
Rd×vk . Here, vk means the vocabulary size of
the KB resources. The embedding matrix is ran-
domly initialized and learned during training, and
could be further enhanced with the help of glob-
al information as described in Section 3.3. Con-
cretely, we employ four kinds of answer aspect-
s: answer entity ae, answer relation ar, answer

type at and answer context ac6. Their embeddings
are denoted as ee, er, et and ec, respectively. It
is worth noting that the answer context consist-
s of multiple KB resources, and we denote it as
(c1, c2, ..., cm). We first acquire their KB embed-
dings (ec1 , ec2 , ..., ecm) throughEk, then calculate

an average embedding by ec = 1
m

m∑
i=1

eci .

3.2.3 Cross-Attention model
The most crucial part of the proposed approach
is the cross-attention mechanism. The cross-
attention mechanism is composed of two parts:
the answer-towards-question attention part and the
question-towards-answer attention part.

The proposed cross-attention model could also
be intuitively interpreted as a re-reading mecha-
nism (Hermann et al., 2015). Our aim is to select
correct answers from a candidate set. When we
judge a candidate answer, suppose we first look at
its type, and we will reread the question to find
out which part of the question should be more fo-
cused (handling attention). Then we go to next
aspect and reread the question again, until the all
the aspects are utilized. After we read all the an-
swer aspects and get all the scores, the final sim-
ilarity score between question and answer should
be a weighted sum of all the scores. We believe
that this mechanism is beneficial for the system to
better understand the question with the help of the
answer aspects, and it may lead to a performance
promotion.
• Answer-towards-question(A-Q) attention

Based on our assumption, each answer aspect
should focus on different words of the same ques-
tion. The extent of attention can be measured
by the relatedness between each word representa-
tion hj and an answer aspect embedding ei. We
propose the following formulas to calculate the
weights.

αij =
exp(ωij)

n∑
k=1

exp(ωik)
(1)

ωij = f(WT [hj ; ei] + b) (2)

Here, αij denotes the weight of attention from an-
swer aspect ei to the jth word in the question,
where ei ∈ {ee, er, et, ec}. f(·) is a non-linear ac-
tivation function, such as hyperbolic tangent trans-
formation here. Let n be the length of the ques-
tion. W ∈ R2d×d is an intermediate matrix and b

6Answer context is the 1-hop entities and predicates
which connect to the answer entity along the answer path.

224

is the offset. Both of them are randomly initialized
and updated during training. Subsequently, ac-
cording to the specific answer aspect ei, the atten-
tion weights are employed to calculate a weighted
sum of the hidden representations, resulting in a
semantic vector that represent the question.

qi =

n∑

j=1

αijhj (3)

The similarity score of the question q and this
particular candidate answer aspect ei (ei ∈
{ee, er, et, ec}) could be defined as follows.

S (q, ei) = h(qi, ei) (4)

The scoring function h(·) is computed as the in-
ner product between the sentence representation
qi, which has already carried the attention from the
answer aspect part, and the corresponding answer
aspect ei, and is parametrized into the network and
updated during the training process.
• Question-towards-answer(Q-A) attention

Intuitively, different question should value the
four answer aspect differently. Since we have al-
ready calculated the scores of (q, ei), we define the
final similarity score of the question q and each
candidate answer a as follows.

S (q, a) =
∑

ei∈{ee,er,et,ec}
βeiS (q, ei) (5)

βei =
exp (ωei)∑

ek∈{ee,er,et,ec}
exp (ωek)

(6)

ωei = f
(
WT [q; ei] + b

)
(7)

q =
1

n

∑n

j
hj (8)

Here βei denotes the attention of question toward-
s answer aspects, indicating which answer as-
pect should be more focused in one (q, a) pair.
W ∈ R2d×d is also a intermediate matrix as in
the answer-towards-question attention part, and b
is an offset value.7 q is calculated by averagely
pooling all the bi-directional LSTM hidden state
sequences, resulting a vector which represents the
question to determine which answer aspect should
be more focused.

7Note that the W and b in the two attention part is differ-
ent and independent.

3.2.4 Training
We first construct the training data. Since we have
(q, a) pairs as supervision data, candidate set Cq
can be divided into two subsets, namely, correc-
t answer set Pq and wrong answer set Nq. For
each correct answer a ∈ Pq, we randomly select
k wrong answers a′ ∈ Nq as negative examples.
For some topic entities, there may be not enough
wrong answers to acquire k wrong answers. Un-
der this circumstance, we extend Nq from other
randomly selected candidate set C ′q. With the gen-
erated training data, we are able to make use of
pairwise training. The training loss is given as fol-
lows, which is a hinge loss.

Lq,a,a′ = [γ + S (q, a′)− S (q, a)]+ (9)

where γ is a positive real number that ensures a
margin between positive and negative examples.
And [z]+ means max(0, z). The intuition of this
training strategy is to guarantee the score of posi-
tive question-answer pairs to be higher than nega-
tive ones with a margin. The objective function is
as follows.

min
∑

q

1

|Pq|
∑

a∈Pq

∑

a′∈Nq

Lq,a,a′ (10)

We adopt stochastic gradient descent (SGD) to
minimize the learning process, shuffled mini-
batches are utilized.

3.2.5 Inference
In testing stage, given the candidate answer setCq,
we have to calculate S(q, a) for each a ∈ Cq, and
find out the maximum value Smax.

Smax = argmax
a∈Cq

{S (q, a)} (11)

It is worth noting that many questions have more
than one answer, so it is improper to set the can-
didate answer which have the maximum value as
the final answer. Instead, we take advantage of the
margin γ. If the score of a candidate answer is
within the margin compared with Smax, we put it
in the final answer set.

A = {â|Smax − S (q, â) < γ} (12)

3.3 Combining Global Knowledge
In this section, we elaborate how the global in-
formation of a KB could be leveraged. As stat-
ed before, we try to take into account the com-
plete knowledge information of the KB. To this

225

end, we adopt TransE model (Bordes et al., 2013)
and integrate its outcome into our training process.
In TransE, relations are considered as translations
in the embedding space. For consistency, we de-
note each fact as (s, p, o). TransE utilizes pair-
wise training strategy as well. Randomly sampled
corrupted facts (s′, p, o′) are the negative exam-
ples. The distance measure d(s + p, o) is defined
as ‖s+ p− o‖22. And the training loss is given as
follows.

Lk =
∑

(s,p,o)∈S

∑

(s′,p,o′)∈S′
[γk + d (s+ p, o)− d

(
s′ + p, o′

)
]
+

(13)

Where S is the set of KB facts and S′ is the cor-
rupted facts. In our QA task, we filter out the com-
pletely unrelated facts to save time. Specifically,
we first collect all the topic entities of all the ques-
tions as initial set. Then, we expand the set by
adding directly connected and 2-hop entities. Fi-
nally, all the facts containing these entities form
the positive set, and the negative facts are random-
ly corrupted. This is a compromising solution due
to the large scale of Freebase. To employ the glob-
al information in our training process, we adop-
t a multi-task training strategy. Specifically, we
perform KB-QA training and TransE training in
turn. The proposed training process ensures that
the global KB information acts as additional su-
pervision, and the interconnections among the re-
sources are fully considered. In addition, as more
KB resources are involved, the OOV problem is
relieved. Since all the OOV resources have exact-
ly the same attention towards a question, it will
weaken the effectiveness of the attention model.
So the alleviation of OOV is able to bring addi-
tional benefits to the attention model.

4 Experiments

To evaluate the proposed method, we conduct ex-
periments on WebQuestions (Berant et al., 2013)
dataset that includes 3,778 question-answer pairs
for training and 2,032 for testing. The question-
s are collected from Google Suggest API, and the
answers are labeled manually by Amazon MTurk.
All the answers are from Freebase. We use three-
quarter of the training data as training set, and the
left as validate set. We use F1 score as evaluation
matric, and the average result is computed by the
script provided by Berant et al. (2013).

Note that our proposed approach is an en-
tire end-to-end method, which totally depends

on training data. It is worth noting that Yih et
al. (2015; 2016) achieve much higher F1 scores
than other methods. Their staged system is able
to address more questions with constraints and
aggregations. However, their approach applies
numbers of manually designed rules and features,
which come from the observations on the training
set questions. These particular manual efforts re-
duce the adaptability of their approach. Moreover,
there are some integrated systems such as Xu et
al. (2016a; 2016b) achieve higher F1 scores which
leverage Wikipedia free text as external knowl-
edge, so their systems are not directly comparable
to ours.

4.1 Settings

For KB-QA training, we use mini-batch stochastic
gradient descent to minimize the pairwise train-
ing loss. The minibatch size is set to 100. The
learning rate is set to 0.01. Both the word embed-
ding matrix Ew and KB embedding matrix Ev are
normalized after each epoch. The embedding size
d = 512, then the hidden unit size is 256. Mar-
gin γ is set to 0.6. Negative example number k =
2000. We set the embedding dimension to 512 in
TransE training process, and the minibatch size is
also 100. γk is set to 1. All these hyperparameters
of the proposed network is determined according
to the performance on the validate set.

4.2 Results

The effectiveness of the proposed approach
To demonstrate the effectiveness of the pro-

posed approach, we compare our method with
state-of-the-art end-to-end NN-based methods.

Methods Avg F1

Bordes et al., 2014b 29.7

Bordes et al., 2014a 39.2

Yang et al., 2014 41.3

Dong et al., 2015 40.8

Bordes et al., 2015 42.2

our approach 42.9

Table 1: The evaluation results on WebQuestions.

Table 1 shows the results on WebQuestions
dataset. Bordes et al. (2014b) apply BOW method
to obtain a single vector for both questions and
answers. Bordes et al. (2014a) further improve
their work by proposing the concept of subgraph
embeddings. Besides the answer path, the sub-

226

graph contains all the entities and relations con-
nected to the answer entity. The final vector is
also obtained by bag-of-words strategy. Yang et
al. (2014) follow the SP-based manner, but uses
embeddings to map entities and relations into K-
B resources, then the question can be converted
into logical forms. They jointly consider the t-
wo mapping processes. Dong et al. (2015) use
three columns of Convolutional Neural Network-
s (CNNs) to represent questions corresponding to
three aspects of the answers, namely the answer
context, the answer path and the answer type. Bor-
des et al. (2015) put KB-QA into the memory net-
works framework (Sukhbaatar et al., 2015), and
achieves the state-of-the-art performance of end-
to-end methods. Our approach employs bidirec-
tional LSTM, cross-attention model and global K-
B information.

From the results, we observe that our approach
achieves the best performance of all the end-to-end
methods on WebQuestions. Bordes et al. (2014b;
2014a; 2015) all utilize BOW model to represent
the questions, while ours takes advantage of the at-
tention of answer aspects to dynamically represent
the questions. Also note that Bordes et al. (2015)
uses additional training data such as Reverb (Fad-
er et al., 2011) and their original dataset Simple-
Questions. Dong et al. (2015) employs three fixed
CNNs to represent questions, while ours is able
to express the focus of each unique answer aspec-
t to the words in the question. Besides, our ap-
proach employs the global KB information. So,
we believe that the results faithfully show that the
proposed approach is more effective than the other
competitive methods.
Model Analysis

In this part, we further discuss the impacts of
the components of our model. Table 2 indicates
the effectiveness of different parts in the model.

Methods Avg F1

LSTM 38.2

Bi LSTM 39.1

Bi LSTM+A-Q-ATT 41.6

Bi LSTM+C-ATT 41.8

Bi LSTM+GKI 40.4

Bi LSTM+A-Q-ATT+GKI 42.6

Bi LSTM+C-ATT+GKI 42.9

Table 2: The ablation results of our models.

LSTM employs unidirectional LSTM, and us-

es the last hidden state as the question repre-
sentation. Bi LSTM adopts a bidirectional LST-
M. A-Q-ATT denotes the answer-towards-question
attention part, and C-ATT stands for our cross-
attention. GKI means global knowledge informa-
tion. Bi LSTMS+C-ATT+GKI is our full proposed
approach. From the results, we could observe the
following.

1) Bi LSTM+C-ATT dramatically improves the
F1 score by 2.7 points compared with Bi LSTM,
0.2 points higher than Bi LSTM+A-Q-ATT. Simi-
larly, Bi LSTM+C-ATT+GKI significantly outper-
forms Bi LSTM+GKI by 2.5 points, improving
Bi LSTM+A-Q-ATT+GKI by 0.3 points. The re-
sults prove that the proposed cross-attention mod-
el is effective.

2) Bi LSTM+GKI performs better than
Bi LSTM, and achieves an improvement of 1.3
points. Similarly, Bi LSTM+C-ATT+GKI im-
proves Bi LSTM+C-ATT by 1.1 points, which
indicates that the proposed training strategy
successfully leverages the global information of
the underlying KB.

3) Bi LSTM+C-ATT+GKI achieves the best
performance as we expected, and improves the o-
riginal Bi LSTM dramatically by 3.8 points. This
directly shows the power of the attention model
and the global KB information.

To illustrate the effectiveness of the atten-
tion mechanism clearly, we present the attention
weights of a question in the form of heat map as
shown in Figure 3.

where is the carpathian mountain range located

answer entity

answer type

answer relation

answer context

Figure 3: The visualized attention heat map. An-
swer entity: /m/06npd(Slovakia), answer
relation: partially containedby, answer
type: /location/country, answer context:
(/m/04dq9kf, /m/01mp, ...)

From this example we observe that our meth-
ods is able to capture the attention properly. It is
instructive to figure out the attention part of the
question when dealing with different answer as-
pects. The heat map will help us understand which
parts are most useful for selecting correct answer-
s. For instance, from Figure 3, we can see that
location.country is paying great attention

227

to “Where”, indicating that “Where” is much more
important than the other parts in the question when
dealing with this type. In other words, the other
parts are not that crucial since “Where” is strongly
implying that the question is asking about a loca-
tion. As for Q-A attention part, we see that answer
type and answer relation are more important than
other answer aspects in this example.

4.3 Error Analysis

We randomly sample 100 imperfectly answered
questions and categorize the errors into two main
classes as follows.
Wrong attention

In some occasions (18 in 100 questions, 18%),
we find the generated attention weights unrea-
sonable. For instance, for question “What are
the songs that Justin Bieber wrote?”, answer type
/music/composition pays the most atten-
tion on “What” rather than “songs”. We think this
is due to the bias of the training data, and we be-
lieve these errors could be solved by introducing
more instructive training data.
Complex questions and label errors

Another challenging problem is the complex
questions (35%). For example, “When was the
last time Knicks won the championship?” is actu-
ally to ask the last championship, but the predicted
answers give all the championships. This is due
to that the model cannot learn what “last” mean
in the training process. In addition, the label mis-
takes also influence the evaluation (3%), such as,
“What college did John Nash teach at?”, where the
labeled answer is Princeton University,
but Massachusetts Institute of
Technology should also be an answer, and the
proposed method is able to answer it correctly.
Other errors include topic entity generation error
and the multiple answers error (giving more
answers than expected). We guess these errors
are caused by the simple implementations of
the related steps in our method, and we will not
explain them in detail.

5 Related Work

The past years have seen a growing amount of re-
search on KB-QA, shaping an interaction paradig-
m that allows end users to profit from the expres-
sive power of Semantic Web data while at the same
time hiding their complexity behind an intuitive
and easy-to-use interface. At the same time the

growing amount of data has led to a heterogeneous
data landscape where QA systems struggle to keep
up with the volume, variety and veracity of the un-
derlying knowledge.

5.1 Neural Network-based KB-QA
In recent years, deep neural networks have been
applied to many NLP tasks, showing promising re-
sults. Bordes et al. (2014b) was the first to intro-
duce NN-based method to solve KB-QA problem.
The questions and KB triples were represented by
vectors in a low dimensional space. Thus the co-
sine similarity could be used to find the most pos-
sible answer. BOW method was employed to ob-
tain a single vector for both the questions and the
answers. Pairwise training was utilized, and the
negative examples were randomly selected from
the KB facts. Bordes et al. (2014a) further im-
proved their work by proposing the concept of
subgraph embeddings. The key idea was to in-
volve as much information as possible in the an-
swer end. Besides the answer triple, the subgraph
contained all the entities and relations connected
to the answer entity. The final vector was also ob-
tained by bag-of-words strategy.

Yih et al. (2014) focused on single-relation
questions. The KB-QA task was divided into t-
wo steps. Firstly, they found the topic entity of
the question. Then, the rest of the question was
represented by CNNs and used to match relation-
s. Yang et al. (2014) tackled entity and relation
mapping as joint procedures. Actually, these two
methods followed the SP-based manner, but they
took advantage of neural networks to obtain inter-
mediate mapping results.

The most similar work to ours is Dong et
al. (2015). They considered the different aspects
of answers, using three columns of CNNs to repre-
sent questions respectively. The difference is that
our approach uses cross-attention mechanism for
each unique answer aspect, so the question repre-
sentation is not fixed to only three types. More-
over, we utilize the global KB information.

Xu et al. (2016a; 2016b) proposed integrated
systems to address KB-QA problems incorporat-
ing Wikipedia free text, in which they used multi-
channel CNNs to extract relations.

5.2 Attention-based Model
The attention mechanism has been widely used
in different areas. Bahdanau et al. (2015) first
applied attention model in NLP. They improved

228

the encoder-decoder Neural Machine Translation
(NMT) framework by jointly learning align and
translation. They argued that representing source
sentence by a fixed vector is unreasonable, and
proposed a soft-align method, which could be
understood as attention mechanism. Rush et
al. (2015) implemented sentence-level summa-
rization task. They utilized local attention-based
model that generated each word of the summa-
ry conditioned on the input sentence. Wang et
al. (2016) proposed an inner attention mechanis-
m that the attention was imposed directly to the
input. And their experiment on answer selection
showed the advantage of inner attention compared
with traditional attention methods.

Yin et al. (2016) tackled simple question an-
swering by an attentive convolutional neural net-
work. They stacked an attentive max-pooling
above convolution layer to model the relationship
between predicates and question patterns. Our ap-
proach differs from previous work in that we use
attentions to help represent questions dynamical-
ly, not generating current word from vocabulary
as before.

6 Conclusion

In this paper, we focus on KB-QA task. Firstly,
we consider the impacts of the different answer
aspects when representing the question, and pro-
pose a novel cross-attention model for KB-QA.
Specifically, we employ the focus of the answer
aspects to each question word and the attention
weights of the question towards the answer aspect-
s. This kind of dynamic representation is more
precise and flexible. Secondly, we leverage the
global KB information, which could take full ad-
vantage of the complete KB, and also alleviate the
OOV problem for the attention model. The ex-
tensive experiments demonstrate that the proposed
approach could achieve better performance com-
pared with state-of-the-art end-to-end methods.

Acknowledgments

This work was supported by the Natural Sci-
ence Foundation of China (No.61533018) and the
National Program of China (973 program No.
2014CB340505). And this research work was al-
so supported by Google through focused research
awards program. We would like to thank the
anonymous reviewers for their useful comments
and suggestions.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. Proceedings of I-
CLR,2015 .

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on free-
base from question-answer pairs. In Proceed-
ings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1533–1544.
http://aclweb.org/anthology/D13-1160.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim S-
turge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data. ACM, pages 1247–1250.

Antoine Bordes, Sumit Chopra, and Jason We-
ston. 2014a. Question answering with sub-
graph embeddings. In Proceedings of the
2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 615–620.
https://doi.org/10.3115/v1/D14-1067.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075 .

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in neural information
processing systems. pages 2787–2795.

Antoine Bordes, Jason Weston, and Nicolas Usunier.
2014b. Open question answering with weakly su-
pervised embedding models. In Joint European
Conference on Machine Learning and Knowledge
Discovery in Databases. Springer, pages 165–180.

Qingqing Cai and Alexander Yates. 2013. Large-
scale semantic parsing via schema matching and
lexicon extension. In Proceedings of the 51st An-
nual Meeting of the Association for Computation-
al Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, pages 423–433.
http://aclweb.org/anthology/P13-1042.

Li Dong, Furu Wei, Ming Zhou, and Ke Xu.
2015. Question answering over freebase with multi-
column convolutional neural networks. In Pro-
ceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Associ-
ation for Computational Linguistics, pages 260–269.
https://doi.org/10.3115/v1/P15-1026.

229

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and A. Noah Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistic-
s, pages 334–343. https://doi.org/10.3115/v1/P15-
1033.

Anthony Fader, Stephen Soderland, and Oren
Etzioni. 2011. Identifying relations for open
information extraction. In Proceedings of the
2011 Conference on Empirical Methods in
Natural Language Processing. Association for
Computational Linguistics, pages 1535–1545.
http://aclweb.org/anthology/D11-1142.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1693–
1701.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and
Luke Zettlemoyer. 2013. Scaling semantic parser-
s with on-the-fly ontology matching. In Proceed-
ings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1545–1556.
http://aclweb.org/anthology/D13-1161.

Eric Prudhommeaux and Andy Seaborne. 2008. Sparql
query language for rdf. w3c recommendation, jan-
uary 2008.

Siva Reddy, Oscar Täckström, Michael Collins,
Tom Kwiatkowski, Dipanjan Das, Mark Steed-
man, and Mirella Lapata. 2016. Transform-
ing dependency structures to logical forms for
semantic parsing. Transactions of the Asso-
ciation of Computational Linguistics 4:127–141.
http://aclweb.org/anthology/Q16-1010.

M. Alexander Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 379–389.
https://doi.org/10.18653/v1/D15-1044.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems. pages
2440–2448.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural network-
s. In Advances in neural information processing sys-
tems. pages 3104–3112.

Christina Unger, André Freitas, and Philipp Cimiano.
2014. An introduction to question answering over
linked data. In Reasoning Web International Sum-
mer School. Springer, pages 100–140.

Bingning Wang, Kang Liu, and Jun Zhao. 2016. In-
ner attention based recurrent neural networks for
answer selection. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1288–1297.
https://doi.org/10.18653/v1/P16-1122.

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2016b. Hybrid question answering
over knowledge base and free text. In Proceedings
of COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers.
The COLING 2016 Organizing Committee, pages
2397–2407. http://aclweb.org/anthology/C16-1226.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016a. Question answering on
freebase via relation extraction and textual evidence.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics, pages 2326–
2336. https://doi.org/10.18653/v1/P16-1220.

Min-Chul Yang, Nan Duan, Ming Zhou, and Hae-
Chang Rim. 2014. Joint relational embeddings for
knowledge-based question answering. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Associ-
ation for Computational Linguistics, pages 645–650.
https://doi.org/10.3115/v1/D14-1071.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with freebase. In Proceedings of the 52nd
Annual Meeting of the Association for Computation-
al Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, pages 956–966.
https://doi.org/10.3115/v1/P14-1090.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 1321–1331. https://doi.org/10.3115/v1/P15-
1128.

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation ques-
tion answering. In Proceedings of the 52nd An-
nual Meeting of the Association for Computation-
al Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 643–648.
https://doi.org/10.3115/v1/P14-2105.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of

230

semantic parse labeling for knowledge base ques-
tion answering. In Proceedings of the 54th An-
nual Meeting of the Association for Computation-
al Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 201–206.
https://doi.org/10.18653/v1/P16-2033.

Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou,
and Hinrich Schütze. 2016. Simple question
answering by attentive convolutional neural net-
work. In Proceedings of COLING 2016, the
26th International Conference on Computation-
al Linguistics: Technical Papers. The COLING
2016 Organizing Committee, pages 1746–1756.
http://aclweb.org/anthology/C16-1164.

Luke Zettlemoyer and Michael Collins. 2009. Learn-
ing context-dependent mappings from sentences to
logical form. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP. Associa-
tion for Computational Linguistics, pages 976–984.
http://aclweb.org/anthology/P09-1110.

Luke S Zettlemoyer and Michael Collins. 2012. Learn-
ing to map sentences to logical form: Structured
classification with probabilistic categorial gram-
mars. arXiv preprint arXiv:1207.1420 .

231

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 232–242
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1022

Translating Neuralese

Jacob Andreas Anca Dragan Dan Klein
Computer Science Division

University of California, Berkeley
{jda,anca,klein}@cs.berkeley.edu

Abstract

Several approaches have recently been pro-
posed for learning decentralized deep mul-
tiagent policies that coordinate via a dif-
ferentiable communication channel. While
these policies are effective for many tasks,
interpretation of their induced communi-
cation strategies has remained a challenge.
Here we propose to interpret agents’ mes-
sages by translating them. Unlike in typi-
cal machine translation problems, we have
no parallel data to learn from. Instead we
develop a translation model based on the
insight that agent messages and natural lan-
guage strings mean the same thing if they
induce the same belief about the world in a
listener. We present theoretical guarantees
and empirical evidence that our approach
preserves both the semantics and pragmat-
ics of messages by ensuring that players
communicating through a translation layer
do not suffer a substantial loss in reward rel-
ative to players with a common language.1

1 Introduction

Several recent papers have described approaches
for learning deep communicating policies (DCPs):
decentralized representations of behavior that en-
able multiple agents to communicate via a differ-
entiable channel that can be formulated as a recur-
rent neural network. DCPs have been shown to
solve a variety of coordination problems, including
reference games (Lazaridou et al., 2016b), logic
puzzles (Foerster et al., 2016), and simple control
(Sukhbaatar et al., 2016). Appealingly, the agents’
communication protocol can be learned via direct

1 We have released code and data at http://github.
com/jacobandreas/neuralese.

z(1)
a z(2)

a

z
(1)
b z

(2)
b

Figure 1: Example interaction between a pair of agents in a
deep communicating policy. Both cars are attempting to cross
the intersection, but cannot see each other. By exchanging
message vectors z(t), the agents are able to coordinate and
avoid a collision. This paper presents an approach for under-
standing the contents of these message vectors by translating
them into natural language.

backpropagation through the communication chan-
nel, avoiding many of the challenging inference
problems associated with learning in classical de-
centralized decision processes (Roth et al., 2005).

But analysis of the strategies induced by DCPs
has remained a challenge. As an example, Figure 1
depicts a driving game in which two cars, which
are unable to see each other, must both cross an
intersection without colliding. In order to ensure
success, it is clear that the cars must communi-
cate with each other. But a number of successful
communication strategies are possible—for exam-
ple, they might report their exact (x, y) coordinates
at every timestep, or they might simply announce
whenever they are entering and leaving the inter-
section. If these messages were communicated
in natural language, it would be straightforward
to determine which strategy was being employed.
However, DCP agents instead communicate with
an automatically induced protocol of unstructured,
real-valued recurrent state vectors—an artificial
language we might call “neuralese,” which superfi-
cially bears little resemblance to natural language,
and thus frustrates attempts at direct interpretation.

232

https://doi.org/10.18653/v1/P17-1022

We propose to understand neuralese messages
by translating them. In this work, we present a sim-
ple technique for inducing a dictionary that maps
between neuralese message vectors and short natu-
ral language strings, given only examples of DCP
agents interacting with other agents, and humans
interacting with other humans. Natural language
already provides a rich set of tools for describing
beliefs, observations, and plans—our thesis is that
these tools provide a useful complement to the visu-
alization and ablation techniques used in previous
work on understanding complex models (Strobelt
et al., 2016; Ribeiro et al., 2016).

While structurally quite similar to the task of
machine translation between pairs of human lan-
guages, interpretation of neuralese poses a number
of novel challenges. First, there is no natural source
of parallel data: there are no bilingual “speakers”
of both neuralese and natural language. Second,
there may not be a direct correspondence between
the strategy employed by humans and DCP agents:
even if it were constrained to communicate using
natural language, an automated agent might choose
to produce a different message from humans in a
given state. We tackle both of these challenges by
appealing to the grounding of messages in game-
play. Our approach is based on one of the core
insights in natural language semantics: messages
(whether in neuralese or natural language) have
similar meanings when they induce similar beliefs
about the state of the world.

Based on this intuition, we introduce a transla-
tion criterion that matches neuralese messages with
natural language strings by minimizing statistical
distance in a common representation space of dis-
tributions over speaker states. We explore several
related questions:

• What makes a good translation, and under
what conditions is translation possible at all?
(Section 4)

• How can we build a model to translate
between neuralese and natural language?
(Section 5)

• What kinds of theoretical guarantees can
we provide about the behavior of agents
communicating via this translation model?
(Section 6)

Our translation model and analysis are general,
and in fact apply equally to human–computer and

large bird
black wings

black crown

agent translator

agent translator

small brown
light brown
dark brown

Figure 2: Overview of our approach—best-scoring transla-
tions generated for a reference game involving images of birds.
The speaking agent’s goal is to send a message that uniquely
identifies the bird on the left. From these translations it can be
seen that the learned model appears to discriminate based on
coarse attributes like size and color.

human–human translation problems grounded in
gameplay. In this paper, we focus our experiments
specifically on the problem of interpreting commu-
nication in deep policies, and apply our approach
to the driving game in Figure 1 and two reference
games of the kind shown in Figure 2. We find that
this approach outperforms a more conventional ma-
chine translation criterion both when attempting
to interoperate with neuralese speakers and when
predicting their state.

2 Related work

A variety of approaches for learning deep policies
with communication were proposed essentially si-
multaneously in the past year. We have broadly
labeled these as “deep communicating policies”;
concrete examples include Lazaridou et al. (2016b),
Foerster et al. (2016), and Sukhbaatar et al. (2016).
The policy representation we employ in this paper
is similar to the latter two of these, although the
general framework is agnostic to low-level model-
ing details and could be straightforwardly applied
to other architectures. Analysis of communication
strategies in all these papers has been largely ad-
hoc, obtained by clustering states from which simi-
lar messages are emitted and attempting to manu-
ally assign semantics to these clusters. The present
work aims at developing tools for performing this
analysis automatically.

Most closely related to our approach is that of
Lazaridou et al. (2016a), who also develop a model
for assigning natural language interpretations to
learned messages; however, this approach relies
on supervised cluster labels and is targeted specif-
ically towards referring expression games. Here
we attempt to develop an approach that can handle
general multiagent interactions without assuming a
prior discrete structure in space of observations.

233

The literature on learning decentralized multi-
agent policies in general is considerably larger
(Bernstein et al., 2002; Dibangoye et al., 2016).
This includes work focused on communication in
multiagent settings (Roth et al., 2005) and even
communication using natural language messages
(Vogel et al., 2013b). All of these approaches em-
ploy structured communication schemes with man-
ually engineered messaging protocols; these are, in
some sense, automatically interpretable, but at the
cost of introducing considerable complexity into
both training and inference.

Our evaluation in this paper investigates com-
munication strategies that arise in a number of dif-
ferent games, including reference games and an
extended-horizon driving game. Communication
strategies for reference games were previously ex-
plored by Vogel et al. (2013a), Andreas and Klein
(2016) and Kazemzadeh et al. (2014), and refer-
ence games specifically featuring end-to-end com-
munication protocols by Yu et al. (2016). On the
control side, a long line of work considers nonver-
bal communication strategies in multiagent policies
(Dragan and Srinivasa, 2013).

Another group of related approaches focuses on
the development of more general machinery for
interpreting deep models in which messages have
no explicit semantics. This includes both visualiza-
tion techniques (Zeiler and Fergus, 2014; Strobelt
et al., 2016), and approaches focused on generat-
ing explanations in the form of natural language
(Hendricks et al., 2016; Vedantam et al., 2017).

3 Problem formulation

Games Consider a cooperative game with two
players a and b of the form given in Figure 3. At
every step t of this game, player a makes an ob-
servation x(t)a and receives a message z(t−1)b from
b. It then takes an action u(t)a and sends a message
z
(t)
a to b. (The process is symmetric for b.) The

distributions p(ua|xa, zb) and p(za|xa) together
define a policy π which we assume is shared by
both players, i.e. p(ua|xa, zb) = p(ub|xb, za) and
p(za|xa) = p(zb|xb). As in a standard Markov
decision process, the actions (u

(t)
a , u

(t)
b) alter the

world state, generating new observations for both
players and a reward shared by both.

The distributions p(z|x) and p(u|x, z) may also
be viewed as defining a language: they specify how
a speaker will generate messages based on world
states, and how a listener will respond to these mes-

a

b

x(1)
a

x
(1)
b x

(2)
b

u(1)
a u(2)

a

u
(2)
bu

(1)
b

z(1)
a z(2)

a

z
(1)
b

z
(2)
b

a

b

x(2)
a

0.3: stop
0.5: forward
0.1: left
0.1: right

observations actions messages

Figure 3: Schematic representation of communication games.
At every timestep t, players a and b make an observation x(t)

and receive a message z(t−1), then produce an action u(t) and
a new message z(t).

sages. Our goal in this work is to learn to translate
between pairs of languages generated by different
policies. Specifically, we assume that we have ac-
cess to two policies for the same game: a “robot
policy” πr and a “human policy” πh. We would
like to use the representation of πh, the behavior of
which is transparent to human users, in order to un-
derstand the behavior of πr (which is in general an
uninterpretable learned model); we will do this by
inducing bilingual dictionaries that map message
vectors zr of πr to natural language strings zh of
πh and vice-versa.

Learned agents πr Our goal is to present tools
for interpretation of learned messages that are ag-
nostic to the details of the underlying algorithm for
acquiring them. We use a generic DCP model as
a basis for the techniques developed in this paper.
Here each agent policy is represented as a deep
recurrent Q network (Hausknecht and Stone, 2015).
This network is built from communicating cells of
the kind depicted in Figure 4. At every timestep,
this agent receives three pieces of information: an

x(t)
a

z
(t�1)
b

h(t�1)
a h(t)

a

u(t)
a

z(t)
aMLP

GRU

Figure 4: Cell implementing a single step of agent commu-
nication (compare with Sukhbaatar et al. (2016) and Foerster
et al. (2016)). MLP denotes a multilayer perceptron; GRU
denotes a gated recurrent unit (Cho et al., 2014). Dashed lines
represent recurrent connections.

234

observation of the current state of the world, the
agent’s memory vector from the previous timestep,
and a message from the other player. It then pro-
duces three outputs: a predicted Q value for every
possible action, a new memory vector for the next
timestep, and a message to send to the other agent.

Sukhbaatar et al. (2016) observe that models of
this form may be viewed as specifying a single
RNN in which weight matrices have a particular
block structure. Such models may thus be trained
using the standard recurrent Q-learning objective,
with communication protocol learned end-to-end.

Human agents πh The translation model we de-
velop requires a representation of the distribution
over messages p(za|xa) employed by human speak-
ers (without assuming that humans and agents pro-
duce equivalent messages in equivalent contexts).
We model the human message generation process
as categorical, and fit a simple multilayer percep-
tron model to map from observations to words and
phrases used during human gameplay.

4 What’s in a translation?

What does it mean for a message zh to be a “trans-
lation” of a message zr? In standard machine trans-
lation problems, the answer is that zh is likely to
co-occur in parallel data with zr; that is, p(zh|zr)
is large. Here we have no parallel data: even if
we could observe natural language and neuralese
messages produced by agents in the same state, we
would have no guarantee that these messages ac-
tually served the same function. Our answer must
instead appeal to the fact that both natural language
and neuralese messages are grounded in a common
environment. For a given neuralese message zr,
we will first compute a grounded representation
of that message’s meaning; to translate, we find a
natural-language message whose meaning is most
similar. The key question is then what form this
grounded meaning representation should take. The
existing literature suggests two broad approaches:

Semantic representation The meaning of a mes-
sage za is given by its denotations: that is, by the
set of world states of which za may be felicitously
predicated, given the existing context available to
a listener. In probabilistic terms, this says that the
meaning of a message za is represented by the dis-
tribution p(xa|za, xb) it induces over speaker states.
Examples of this approach include Guerin and Pitt
(2001) and Pasupat and Liang (2016).

Pragmatic representation The meaning of a
message za is given by the behavior it induces in
a listener. In probabilistic terms, this says that the
meaning of a message za is represented by the dis-
tribution p(ub|za, xb) it induces over actions given
the listener’s observation xb. Examples of this ap-
proach include Vogel et al. (2013a) and Gauthier
and Mordatch (2016).

These two approaches can give rise to rather dif-
ferent behaviors. Consider the following example:

square hexagon circle

few many many

The top language (in blue) has a unique name for
every kind of shape, while the bottom language (in
red) only distinguishes between shapes with few
sides and shapes with many sides. Now imagine
a simple reference game with the following form:
player a is covertly assigned one of these three
shapes as a reference target, and communicates
that reference to b; b must then pull a lever labeled
large or small depending on the size of the
target shape. Blue language speakers can achieve
perfect success at this game, while red language
speakers can succeed at best two out of three times.

How should we translate the blue word hexagon
into the red language? The semantic approach sug-
gests that we should translate hexagon as many:
while many does not uniquely identify the hexagon,
it produces a distribution over shapes that is clos-
est to the truth. The pragmatic approach instead
suggests that we should translate hexagon as few,
as this is the only message that guarantees that the
listener will pull the correct lever large. So in
order to produce a correct listener action, the trans-
lator might have to “lie” and produce a maximally
inaccurate listener belief.

If we were exclusively concerned with building
a translation layer that allowed humans and DCP
agents to interoperate as effectively as possible, it
would be natural to adopt a pragmatic representa-
tion strategy. But our goals here are broader: we
also want to facilitate understanding, and specif-
ically to help users of learned systems form true
beliefs about the systems’ computational processes
and representational abstractions. The example
above demonstrates that “pragmatically” optimiz-
ing directly for task performance can sometimes
lead to translations that produce inaccurate beliefs.

235

We instead build our approach around seman-
tic representations of meaning. By preserving se-
mantics, we allow listeners to reason accurately
about the content and interpretation of messages.
We might worry that by adopting a semantics-first
view, we have given up all guarantees of effective
interoperation between humans and agents using
a translation layer. Fortunately, this is not so: as
we will see in Section 6, it is possible to show that
players communicating via a semantic translator
perform only boundedly worse (and sometimes bet-
ter!) than pairs of players with a common language.

5 Translation models

In this section, we build on the intuition that mes-
sages should be translated via their semantics to
define a concrete translation model—a procedure
for constructing a natural language ↔ neuralese
dictionary given agent and human interactions.

We understand the meaning of a message za to
be represented by the distribution p(xa|za, xb) it
induces over speaker states given listener context.
We can formalize this by defining the belief
distribution β for a message z and context xb as:

β(za, xb) = p(xa|za, xb) =
p(za|xa)p(xb|xa)∑
x′a
p(za|x′a)p(xb|x′a)

Here we have modeled the listener as performing
a single step of Bayesian inference, using the lis-
tener state and the message generation model (by
assumption shared between players) to compute
the posterior over speaker states. While in gen-
eral neither humans nor DCP agents compute ex-
plicit representations of this posterior, past work
has found that both humans and suitably-trained
neural networks can be modeled as Bayesian rea-
soners (Frank et al., 2009; Paige and Wood, 2016).

This provides a context-specific representation
of belief, but for messages z and z′ to have the same
semantics, they must induce the same belief over
all contexts in which they occur. In our probabilis-
tic formulation, this introduces an outer expectation
over contexts, providing a final measure q of the
quality of a translation from z to z′:

q(z, z′) = E
[
DKL(β(z,Xb) || β(z′, Xb)) | z, z′

]

=
∑

xa,xb

p(xa, xb|z, z′)DKL(β(z, xb) || β(z′, xb))

∝
∑

xa,xb

p(xa, xb) · p(z|xa) · p(z′|xa)
· DKL(β(z, xb) || β(z′, xb)); (1)

Algorithm 1 Translating messages

given: a phrase inventory L
function TRANSLATE(z)

return argminz′∈L q̂(z, z
′)

function q̂(z, z′)
// sample contexts and distractors
xai, xbi ∼ p(Xa, Xb) for i = 1..n
x′ai ∼ p(Xa|xbi)
// compute context weights
w̃i ← p(z|xai) · p(z′|xai)
wi ← w̃i/

∑
j w̃j

// compute divergences
ki ←

∑
x∈{xa,x′a} p(z|x) log

p(z|x)
p(z′|x)

return
∑

iwiki

recalling that in this setting

DKL(β || β′) =
∑

xa

p(xa|z, xb) log
p(xa|z, xb)
p(xa|z′, xb)

∝
∑

xa

p(xa|xb)p(z|xa) log
p(z|xa)
p(z′|xa)

(2)

which is zero when the messages z and z′ give rise
to identical belief distributions and increases as
they grow more dissimilar. To translate, we would
like to compute tr(zr) = argminzh q(zr, zh) and
tr(zh) = argminzr q(zh, zr). Intuitively, Equa-
tion 1 says that we will measure the quality of a
proposed translation z 7→ z′ by asking the follow-
ing question: in contexts where z is likely to be
used, how frequently does z′ induce the same belief
about speaker states as z?

While this translation criterion directly encodes
the semantic notion of meaning described in Sec-
tion 4, it is doubly intractable: the KL divergence
and outer expectation involve a sum over all obser-
vations xa and xb respectively; these sums are not
in general possible to compute efficiently. To avoid
this, we approximate Equation 1 by sampling. We
draw a collection of samples (xa, xb) from the prior
over world states, and then generate for each sam-
ple a sequence of distractors (x′a, xb) from p(x′a|xb)
(we assume access to both of these distributions
from the problem representation). The KL term
in Equation 1 is computed over each true sample
and its distractors, which are then normalized and
averaged to compute the final score.

Sampling accounts for the outer p(xa, xb) in
Equation 1 and the inner p(xa|xb) in Equation 2.

236

a

b

xa z

xb

u
Figure 5: Simplified game representation used for analysis in
Section 6. A speaker agent sends a message to a listener agent,
which takes a single action and receives a reward.

The only quantities remaining are of the form
p(z|xa). In the case of neuralese, this distribu-
tion already is part of the definition of the agent
policy πr and can be reused directly. For natural
language, we use transcripts of human interactions
to fit a model that maps from world states to a dis-
tribution over frequent utterances as discussed in
Section 3. Details of these model implementations
are provided in Appendix B, and the full translation
procedure is given in Algorithm 1.

6 Belief and behavior

The translation criterion in the previous section
makes no reference to listener actions at all. The
shapes example in Section 4 shows that some
model performance might be lost under translation.
It is thus reasonable to ask whether this transla-
tion model of Section 5 can make any guarantees
about the effect of translation on behavior. In this
section we explore the relationship between belief-
preserving translations and the behaviors they pro-
duce, by examining the effect of belief accuracy
and strategy mismatch on the reward obtained by
cooperating agents.

To facilitate this analysis, we consider a sim-
plified family of communication games with the
structure depicted in Figure 5. These games can be
viewed as a subset of the family depicted in Fig-
ure 3; and consist of two steps: a listener makes
an observation xa and sends a single message z
to a speaker, which makes its own observation xb,
takes a single action u, and receives a reward. We
emphasize that the results in this section concern
the theoretical properties of idealized games, and
are presented to provide intuition about high-level
properties of our approach. Section 8 investigates
empirical behavior of this approach on real-world
tasks where these ideal conditions do not hold.

Our first result is that translations that minimize
semantic dissimilarity q cause the listener to take
near-optimal actions:2

2Proof is provided in Appendix A.

Proposition 1.
Semantic translations reward rational listeners.
Define a rational listener as one that chooses the
best action in expectation over the speaker’s state:

U(z, xb) = argmax
u

∑

xa

p(xa|xb, z)r(xa, xb, u)

for a reward function r ∈ [0, 1] that depends only
on the two observations and the action.3 Now let a
be a speaker of a language r, b be a listener of the
same language r, and b′ be a listener of a different
language h. Suppose that we wish for a and b′ to
interact via the translator tr : zr 7→ zh (so that
a produces a message zr, and b′ takes an action
U(zh = tr(zr), xb′)). If tr respects the semantics
of zr, then the bilingual pair a and b′ achieves only
boundedly worse reward than the monolingual pair
a and b. Specifically, if q(zr, zh) ≤ D, then

Er(Xa, Xb, U(tr(Z))

≥ Er(Xa, Xb, U(Z))−
√
2D (3)

So as discussed in Section 4, even by committing
to a semantic approach to meaning representation,
we have still succeeded in (approximately) captur-
ing the nice properties of the pragmatic approach.

Section 4 examined the consequences of a mis-
match between the set of primitives available in
two languages. In general we would like some
measure of our approach’s robustness to the lack of
an exact correspondence between two languages.
In the case of humans in particular we expect that
a variety of different strategies will be employed,
many of which will not correspond to the behavior
of the learned agent. It is natural to want some as-
surance that we can identify the DCP’s strategy as
long as some human strategy mirrors it. Our second
observation is that it is possible to exactly recover
a translation of a DCP strategy from a mixture of
humans playing different strategies:

Proposition 2.
Semantic translations find hidden correspondences.
Consider a fixed robot policy πr and a set of
human policies {πh1 , πh2 , . . . } (recalling from
Section 3 that each π is defined by distributions

3This notion of rationality is a fairly weak one: it permits
many suboptimal communication strategies, and requires only
that the listener do as well as possible given a fixed speaker—
a first-order optimality criterion likely to be satisfied by any
richly-parameterized model trained via gradient descent.

237

p(z |xa) and p(u |z , xb)). Suppose further that
the messages employed by these human strate-
gies are disjoint; that is, if phi(z |xa) > 0, then
phj (z |xa) = 0 for all j 6= i. Now suppose that
all q(zr , zh) = 0 for all messages in the support
of some phi(z |xa) and > 0 for all j 6= i. Then
every message zr is translated into a message pro-
duced by πhi , and messages from other strategies
are ignored.

This observation follows immediately from the
definition of q(zr, zh), but demonstrates one of
the key distinctions between our approach and a
conventional machine translation criterion. Maxi-
mizing p(zh|zr) will produce the natural language
message most often produced in contexts where
zr is observed, regardless of whether that message
is useful or informative. By contrast, minimizing
q(zh, zr) will find the zh that corresponds most
closely to zr even when zh is rarely used.

The disjointness condition, while seemingly
quite strong, in fact arises naturally in many
circumstances—for example, players in the driving
game reporting their spatial locations in absolute
vs. relative coordinates, or speakers in a color refer-
ence game (Figure 6) discriminating based on light-
ness vs. hue. It is also possible to relax the above
condition to require that strategies be only locally
disjoint (i.e. with the disjointness condition holding
for each fixed xa), in which case overlapping hu-
man strategies are allowed, and the recovered robot
strategy is a context-weighted mixture of these.

7 Evaluation

7.1 Tasks
In the remainder of the paper, we evaluate the em-
pirical behavior of our approach to translation. Our
evaluation considers two kinds of tasks: reference
games and navigation games. In a reference game
(e.g. Figure 6a), both players observe a pair of can-
didate referents. A speaker is assigned a target ref-
erent; it must communicate this target to a listener,
who then performs a choice action corresponding
to its belief about the true target. In this paper we
consider two variants on the reference game: a sim-
ple color-naming task, and a more complex task
involving natural images of birds. For examples
of human communication strategies for these tasks,
we obtain the XKCD color dataset (McMahan and
Stone, 2015; Monroe et al., 2016) and the Caltech
Birds dataset (Welinder et al., 2010) with accom-

(a) (b)

(c)

Figure 6: Tasks used to evaluate the translation model. (a–b)
Reference games: both players observe a pair of reference
candidates (colors or images); Player a is assigned a target
(marked with a star), which player b must guess based on
a message from a. (c) Driving game: each car attempts to
navigate to its goal (marked with a star). The cars cannot see
each other, and must communicate to avoid a collision.

panying natural language descriptions (Reed et al.,
2016). We use standard train / validation / test splits
for both of these datasets.

The final task we consider is the driving task
(Figure 6c) first discussed in the introduction. In
this task, two cars, invisible to each other, must
each navigate between randomly assigned start and
goal positions without colliding. This task takes
a number of steps to complete, and potentially in-
volves a much broader range of communication
strategies. To obtain human annotations for this
task, we recorded both actions and messages gener-
ated by pairs of human Amazon Mechanical Turk
workers playing the driving game with each other.
We collected close to 400 games, with a total of
more than 2000 messages exchanged, from which
we held out 100 game traces as a test set.

7.2 Metrics

A mechanism for understanding the behavior of
a learned model should allow a human user both
to correctly infer its beliefs and to successfully
interoperate with it; we accordingly report results
of both “belief” and “behavior” evaluations.

To support easy reproduction and comparison
(and in keeping with standard practice in machine

238

translation), we focus on developing automatic
measures of system performance. We use the avail-
able training data to develop simulated models of
human decisions; by first showing that these mod-
els track well with human judgments, we can be
confident that their use in evaluations will corre-
late with human understanding. We employ the
following two metrics:

Belief evaluation This evaluation focuses on the
denotational perspective in semantics that moti-
vated the initial development of our model. We
have successfully understood the semantics of a
message zr if, after translating zr 7→ zh, a human
listener can form a correct belief about the state
in which zr was produced. We construct a simple
state-guessing game where the listener is presented
with a translated message and two state observa-
tions, and must guess which state the speaker was
in when the message was emitted.

When translating from natural language to neu-
ralese, we use the learned agent model to directly
guess the hidden state. For neuralese to natural
language we must first construct a “model human
listener” to map from strings back to state repre-
sentations; we do this by using the training data to
fit a simple regression model that scores (state, sen-
tence) pairs using a bag-of-words sentence repre-
sentation. We find that our “model human” matches
the judgments of real humans 83% of the time on
the colors task, 77% of the time on the birds task,
and 77% of the time on the driving task. This gives
us confidence that the model human gives a reason-
ably accurate proxy for human interpretation.

Behavior evaluation This evaluation focuses on
the cooperative aspects of interpretability: we mea-
sure the extent to which learned models are able
to interoperate with each other by way of a transla-
tion layer. In the case of reference games, the goal
of this semantic evaluation is identical to the goal
of the game itself (to identify the hidden state of
the speaker), so we perform this additional prag-
matic evaluation only for the driving game. We
found that the most data-efficient and reliable way
to make use of human game traces was to construct
a “deaf” model human. The evaluation selects a
full game trace from a human player, and replays
both the human’s actions and messages exactly (dis-
regarding any incoming messages); the evaluation
measures the quality of the natural-language-to-
neuralese translator, and the extent to which the

(a)

as speaker
R H

as
lis

te
ne

r R 1.00
0.50 random
0.70 direct
0.73 belief (ours)

H*
0.50

0.830.72
0.86

(b)

as speaker
R H

as
lis

te
ne

r R 0.95
0.50 random
0.55 direct
0.60 belief (ours)

H*
0.50

0.770.57
0.75

Table 1: Evaluation results for reference games. (a) The colors
task. (b) The birds task. Whether the model human is in a
listener or speaker role, translation based on belief matching
outperforms both random and machine translation baselines.

learned agent model can accommodate a (real) hu-
man given translations of the human’s messages.

Baselines We compare our approach to two base-
lines: a random baseline that chooses a translation
of each input uniformly from messages observed
during training, and a direct baseline that directly
maximizes p(z′|z) (by analogy to a conventional
machine translation system). This is accomplished
by sampling from a DCP speaker in training states
labeled with natural language strings.

8 Results

In all below, “R” indicates a DCP agent, “H” in-
dicates a real human, and “H*” indicates a model
human player.

Reference games Results for the two reference
games are shown in Table 1. The end-to-end trained
model achieves nearly perfect accuracy in both

magenta, hot, rose, violet, purple

magenta, hot, violet, rose, purple

olive, puke, pea, grey, brown

pinkish, grey, dull, pale, light

Figure 7: Best-scoring translations generated for color task.

239

as speaker
R H

as
lis

te
ne

r R 0.85
0.50 random
0.45 direct
0.61 belief (ours)

H*
0.5

0.770.45
0.57

Table 2: Belief evaluation results for the driving game. Driving
states are challenging to identify based on messages alone (as
evidenced by the comparatively low scores obtained by single-
language pairs) . Translation based on belief achieves the best
overall performance in both directions.

R / R H / H R / H

1.93 / 0.71 — / 0.77
1.35 / 0.64 random
1.49 / 0.67 direct
1.54 / 0.67 belief (ours)

Table 3: Behavior evaluation results for the driving game.
Scores are presented in the form “reward / completion rate”.
While less accurate than either humans or DCPs with a shared
language, the models that employ a translation layer obtain
higher reward and a greater overall success rate than baselines.

cases, while a model trained to communicate in
natural language achieves somewhat lower perfor-
mance. Regardless of whether the speaker is a
DCP and the listener a model human or vice-versa,
translation based on the belief-matching criterion
in Section 5 achieves the best performance; indeed,
when translating neuralese color names to natural
language, the listener is able to achieve a slightly
higher score than it is natively. This suggests that
the automated agent has discovered a more effec-
tive strategy than the one demonstrated by humans
in the dataset, and that the effectiveness of this
strategy is preserved by translation. Example trans-
lations from the reference games are depicted in
Figure 2 and Figure 7.

Driving game Behavior evaluation of the driving
game is shown in Table 3, and belief evaluation is
shown in Table 2. Translation of messages in the
driving game is considerably more challenging than
in the reference games, and scores are uniformly
lower; however, a clear benefit from the belief-
matching model is still visible. Belief matching
leads to higher scores on the belief evaluation in
both directions, and allows agents to obtain a higher
reward on average (though task completion rates
remain roughly the same across all agents). Some
example translations of driving game messages are
shown in Figure 8.

at goal

done

left to top

going in intersection

proceed

going

you first

following

going down

Figure 8: Best-scoring translations generated for driving task
generated from the given speaker state.

9 Conclusion

We have investigated the problem of interpreting
message vectors from deep networks by translat-
ing them. After introducing a translation criterion
based on matching listener beliefs about speaker
states, we presented both theoretical and empirical
evidence that this criterion outperforms a conven-
tional machine translation approach at recovering
the content of message vectors and facilitating col-
laboration between humans and learned agents.

While our evaluation has focused on under-
standing the behavior of deep communicating poli-
cies, the framework proposed in this paper could
be much more generally applied. Any encoder–
decoder model (Sutskever et al., 2014) can be
thought of as a kind of communication game played
between the encoder and the decoder, so we can
analogously imagine computing and translating
“beliefs” induced by the encoding to explain what
features of the input are being transmitted. The cur-
rent work has focused on learning a purely categor-
ical model of the translation process, supported by
an unstructured inventory of translation candidates,
and future work could explore the compositional
structure of messages, and attempt to synthesize
novel natural language or neuralese messages from
scratch. More broadly, the work here shows that
the denotational perspective from formal seman-
tics provides a framework for precisely framing the
demands of interpretable machine learning (Wil-
son et al., 2016), and particularly for ensuring that
human users without prior exposure to a learned
model are able to interoperate with it, predict its
behavior, and diagnose its errors.

240

Acknowledgments

JA is supported by a Facebook Graduate Fellowship
and a Berkeley AI / Huawei Fellowship. We are
grateful to Lisa Anne Hendricks for assistance with
the Caltech Birds dataset.

References
Jacob Andreas and Dan Klein. 2016. Reasoning about

pragmatics with neural listeners and speakers. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing.

Daniel S Bernstein, Robert Givan, Neil Immerman,
and Shlomo Zilberstein. 2002. The complexity of
decentralized control of Markov decision processes.
Mathematics of operations research 27(4):819–840.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint arXiv:1409.1259 .

Jilles Steeve Dibangoye, Christopher Amato, Olivier
Buffet, and François Charpillet. 2016. Optimally
solving Dec-POMDPs as continuous-state MDPs.
Journal of Artificial Intelligence Research 55:443–
497.

Anca Dragan and Siddhartha Srinivasa. 2013. Gener-
ating legible motion. In Robotics: Science and Sys-
tems.

Jakob Foerster, Yannis M Assael, Nando de Freitas,
and Shimon Whiteson. 2016. Learning to commu-
nicate with deep multi-agent reinforcement learning.
In Advances in Neural Information Processing Sys-
tems. pages 2137–2145.

Michael C Frank, Noah D Goodman, Peter Lai, and
Joshua B Tenenbaum. 2009. Informative communi-
cation in word production and word learning. In Pro-
ceedings of the 31st annual conference of the cogni-
tive science society. pages 1228–1233.

Yang Gao, Oscar Beijbom, Ning Zhang, and Trevor
Darrell. 2016. Compact bilinear pooling. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition. pages 317–326.

Jon Gauthier and Igor Mordatch. 2016. A paradigm for
situated and goal-driven language learning. arXiv
preprint arXiv:1610.03585 .

Frank Guerin and Jeremy Pitt. 2001. Denotational se-
mantics for agent communication language. In Pro-
ceedings of the fifth international conference on Au-
tonomous agents. ACM, pages 497–504.

Matthew Hausknecht and Peter Stone. 2015. Deep
recurrent q-learning for partially observable mdps.
arXiv preprint arXiv:1507.06527 .

Lisa Anne Hendricks, Zeynep Akata, Marcus
Rohrbach, Jeff Donahue, Bernt Schiele, and Trevor
Darrell. 2016. Generating visual explanations. In
European Conference on Computer Vision. Springer,
pages 3–19.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara L Berg. 2014. ReferItGame: Referring
to objects in photographs of natural scenes. In Pro-
ceedings of the Conference on Empirical Methods in
Natural Language Processing. pages 787–798.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Angeliki Lazaridou, Alexander Peysakhovich, and
Marco Baroni. 2016a. Multi-agent cooperation and
the emergence of (natural) language. arXiv preprint
arXiv:1612.07182 .

Angeliki Lazaridou, Nghia The Pham, and
Marco Baroni. 2016b. Towards multi-agent
communication-based language learning. arXiv
preprint arXiv:1605.07133 .

Brian McMahan and Matthew Stone. 2015. A
Bayesian model of grounded color semantics. Trans-
actions of the Association for Computational Lin-
guistics 3:103–115.

Will Monroe, Noah D Goodman, and Christopher Potts.
2016. Learning to generate compositional color de-
scriptions. arXiv preprint arXiv:1606.03821 .

Brooks Paige and Frank Wood. 2016. Inference net-
works for sequential monte carlo in graphical mod-
els. volume 48.

Panupong Pasupat and Percy Liang. 2016. Inferring
logical forms from denotations. arXiv preprint
arXiv:1606.06900 .

Scott Reed, Zeynep Akata, Honglak Lee, and Bernt
Schiele. 2016. Learning deep representations of
fine-grained visual descriptions. In Proceedings of
the IEEE Conference on Computer Vision and Pat-
tern Recognition. pages 49–58.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Why should I trust you?: Explain-
ing the predictions of any classifier. In Proceedings
of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM,
pages 1135–1144.

Maayan Roth, Reid Simmons, and Manuela Veloso.
2005. Reasoning about joint beliefs for execution-
time communication decisions. In Proceedings
of the fourth international joint conference on Au-
tonomous agents and multiagent systems. ACM,
pages 786–793.

Hendrik Strobelt, Sebastian Gehrmann, Bernd Huber,
Hanspeter Pfister, and Alexander M Rush. 2016. Vi-
sual analysis of hidden state dynamics in recurrent
neural networks. arXiv preprint arXiv:1606.07461 .

241

Sainbayar Sukhbaatar, Rob Fergus, et al. 2016. Learn-
ing multiagent communication with backpropaga-
tion. In Advances in Neural Information Processing
Systems. pages 2244–2252.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in Neural Information Processing Sys-
tems. pages 3104–3112.

Ramakrishna Vedantam, Samy Bengio, Kevin Murphy,
Devi Parikh, and Gal Chechik. 2017. Context-aware
captions from context-agnostic supervision. arXiv
preprint arXiv:1701.02870 .

Adam Vogel, Max Bodoia, Christopher Potts, and
Daniel Jurafsky. 2013a. Emergence of Gricean max-
ims from multi-agent decision theory. In Proceed-
ings of the Human Language Technology Confer-
ence of the North American Chapter of the Asso-
ciation for Computational Linguistics. pages 1072–
1081.

Adam Vogel, Christopher Potts, and Dan Jurafsky.
2013b. Implicatures and nested beliefs in approx-
imate Decentralized-POMDPs. In ACL (2). pages
74–80.

P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff,
S. Belongie, and P. Perona. 2010. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001,
California Institute of Technology.

Andrew Gordon Wilson, Been Kim, and William Her-
lands. 2016. Proceedings of nips 2016 workshop on
interpretable machine learning for complex systems.
arXiv preprint arXiv:1611.09139 .

Licheng Yu, Hao Tan, Mohit Bansal, and Tamara L
Berg. 2016. A joint speaker-listener-reinforcer
model for referring expressions. arXiv preprint
arXiv:1612.09542 .

Matthew D Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Euro-
pean conference on computer vision. Springer, pages
818–833.

242

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 243–254
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1023

Obtaining referential word meanings from visual and distributional
information: Experiments on object naming

Sina Zarrieß and David Schlangen
Dialogue Systems Group // CITEC // Faculty of Linguistics and Literary Studies

Bielefeld University, Germany
{sina.zarriess,david.schlangen}@uni-bielefeld.de

Abstract

We investigate object naming, which is an
important sub-task of referring expression
generation on real-world images. As op-
posed to mutually exclusive labels used in
object recognition, object names are more
flexible, subject to communicative pref-
erences and semantically related to each
other. Therefore, we investigate models
of referential word meaning that link vi-
sual to lexical information which we as-
sume to be given through distributional
word embeddings. We present a model
that learns individual predictors for object
names that link visual and distributional
aspects of word meaning during training.
We show that this is particularly benefi-
cial for zero-shot learning, as compared to
projecting visual objects directly into the
distributional space. In a standard object
naming task, we find that different ways of
combining lexical and visual information
achieve very similar performance, though
experiments on model combination sug-
gest that they capture complementary as-
pects of referential meaning.

1 Introduction

Expressions referring to objects in visual scenes
typically include a word naming the type of the
object: E.g., house in Figure 1 (a), or, as a very
general type, thingy in Figure 1 (d). Determin-
ing such a name is a crucial step for referring
expression generation (REG) systems, as many
other decisions concerning, e.g., the selection of
attributes follow from it (Dale and Reiter, 1995;
Krahmer and Van Deemter, 2012). For a long
time, however, research on REG mostly assumed
the availability of symbolic representations of ref-

(a)“house” (b)“buildings”

(c)“large structure” (d)“roof thingy”

Figure 1: Examples of object names in the
REFERIT corpus referring to instances of buildings

erent and scene, and sidestepped questions about
how speakers actually choose these names, due
to the lack of models capable of capturing what
a word like house refers to in the real world.

Recent advances in image processing promise
to fill this gap, with state-of-the-art computer vi-
sion systems being able to classify images into
thousands of different categories (e.g. Szegedy
et al. (2015)). However, classification is not nam-
ing (Ordonez et al., 2016). Standard object clas-
sification schemes are inherently “flat”, and treat
object labels as mutually exclusive (Deng et al.,
2014). A state-of-the-art object recognition sys-
tem would be trained to classify the object in e.g.
Figure 1 (a) as either house or building, ignoring
the lexical similarity between these two names. In
contrast, humans seem to be more flexible as to
the chosen level of generality. Depending on the
prototypicality of the object to name, and possi-
bly other visual properties, a general name might
be more or less appropriate. For instance, a robin
can be named bird, but a penguin is better referred

243

https://doi.org/10.18653/v1/P17-1023

to as “penguin” (Rosch, 1978); along the same
lines, the rather unusual building in Figure 1 (c)
that is not easy to otherwise categorise was named
“structure”.

Other work at the intersection of image and
language processing has investigated models that
learn to directly associate visual objects with a
continuous representation of word meaning, i.e.
through cross-modal transfer into distributional
vector spaces (Frome et al., 2013; Norouzi et al.,
2013). Here, the idea is to exploit a powerful
model of lexical similarity induced from large
amounts text for being able to capture inherent lex-
ical relations between object categories. Thus, un-
der the assumption that such semantic spaces rep-
resent, in some form at least, taxonomic knowl-
edge, this makes labels on different levels of speci-
ficity available for a given object. Moreover, if the
mapping is sufficiently general, it should be able
to map objects to an appropriate label, even if dur-
ing training of the mapping this label has not been
seen (zero-shot learning).

While cross-modal transfer seems to be a con-
ceptually attractive model for learning object
names, it is based on an important assumption that,
in our view, has not received sufficient attention
in previous works: it assumes that a given distri-
butional vector space constitutes an optimal target
representation that visual instances of objects can
be mapped to. However, distributional represen-
tations of word meaning are known to capture a
rather fuzzy notion of lexical similarity, e.g. car is
similar to van and to street. A cross-modal transfer
model is “forced” to learn to map objects into the
same area in the semantic space if their names are
distributionally similar, but regardless of their ac-
tual visual similarity. Indeed, we have found in a
recent study that the contribution of distributional
information to learning referential word meanings
is restricted to certain types of words and does
not generalize across the vocabulary (Zarrieß and
Schlangen, 2017).

The goal of this work is to learn a model of
referential word meaning that makes accurate ob-
ject naming predictions and goes beyond treat-
ing words as independent, mutually exclusive la-
bels in a flat classification scheme. We extend
upon work on learning models of referential word
use from corpora of images paired with referring
expressions (Schlangen et al., 2016; Zarrieß and
Schlangen, 2017) that treats words as individual

predictors capturing referential appropriateness.
We explore different ways of linking these predic-
tors to distributional knowledge, during applica-
tion and during training. We find that these differ-
ent models achieve very similar performance in a
standard object naming task, though experiments
on model combination suggest that they capture
complementary aspects of referential meaning. In
a zero-shot setup of an object naming task, we find
that combining lexical and visual information dur-
ing training is most beneficial, outperforming vari-
ants of cross-modal transfer.

2 Related Work

Grounding and Reference An early example
for work in REG that goes beyond Dale and Re-
iter (1995)’s dominant symbolic paradigm is Deb
Roy’s work from the early 2000s (Roy et al., 2002;
Roy, 2002, 2005). Roy et al. (2002) use com-
puter vision techniques to process a video feed,
and to compute colour, positional and spatial fea-
tures. These features are then associated in a learn-
ing process with certain words, resulting in an
association of colour features with colour words,
spatial features with prepositions, etc., and based
on this, these words can be interpreted with refer-
ence to the scene currently presented to the video
feed. Whereas Roy’s work still looked at relatively
simple scenes with graphical objects, research on
REG has recently started to investigate set-ups
based on real-world images (Kazemzadeh et al.,
2014; Gkatzia et al., 2015; Zarrieß and Schlangen,
2016; Mao et al., 2015). Importantly, the low-
level visual features that can be extracted from
these scenes correspond less directly to particu-
lar word classes. Moreover, the visual scenes con-
tain many different types of objects, which poses
new challenges for REG. For instance, Zarrieß and
Schlangen (2016) find that semantic errors related
to mismatches between nouns (e.g. the system
generates tree vs. man) are particularly disturb-
ing for users. Whereas Zarrieß and Schlangen
(2016) propose a strategy to avoid object names
when the systems confidence is low, we focus on
improving the generation of object names, using
distributional knowledge as an additional source.
Similarly, Ordonez et al. (2016) have studied the
problem of deriving appropriate object names, or
so-called entry-level categories, from the output
of an object recognizer. Their approach focusses
on linking abstract object categories in ImageNet

244

to actual words via various translation procedures.
We are interested in learning referential appropri-
ateness and extensional word meanings directly
from actual human referring expressions (REs)
paired with objects in images, using an existing
object recognizer for feature extraction.

Multi-modal distributional semantics Distri-
butional semantic models are a well-known
method for capturing lexical word meaning in a
variety of tasks (Turney and Pantel, 2010; Mikolov
et al., 2013; Erk, 2016). Recent work on multi-
modal distributional vector spaces (Feng and La-
pata, 2010; Silberer and Lapata, 2014; Kiela and
Bottou, 2014; Lazaridou et al., 2015b; Kottur
et al., 2016) has aimed at capturing semantic simi-
larity even more accurately by integrating distri-
butional and perceptual features associated with
words (mostly taken from images) into a single
representation.

Cross-modal transfer Rather than fusing dif-
ferent modalities into a single, joint space, other
work has looked at cross-modal mapping between
spaces. Herbelot and Vecchi (2015) present a
model that learns to map vectors in a distributional
space to vectors in a set-theoretic space, showing
that there is a functional relationship between dis-
tributional information and conceptual knowledge
representing quantifiers and predicates. More re-
lated to our work are cross-modal mapping mod-
els,that learn to transfer from a representation of
an object or image in the visual space to a vec-
tor in a distributional space (Socher et al., 2013;
Frome et al., 2013; Norouzi et al., 2013; Lazari-
dou et al., 2014). Here, the motivation is to exploit
the rich lexical knowledge encoded in a distribu-
tional space for learning visual classifications. In
practice, these models are mostly used for zero-
shot learning where the test set contains object
categories not observed during training. When
tested on standard object recognition tasks, trans-
fer, however, comes at a price. Frome et al.
(2013) and Norouzi et al. (2013) both find that
it slightly degrades performance as compared to
a plain object classification using standard accu-
racy metrics (called flat “hit @k metric” in their
paper). Interestingly though, Frome et al. (2013)
report better performance using “hierarchical pre-
cision”, which essentially means that transfer pre-
dicts words that are ontologically closer to the gold
label and makes “semantically more reasonable er-

rors”. To the best of our knowledge, this pattern
has not been systematically investigated any fur-
ther. Another known problem with cross-modal
transfer is that it seems to generalize less well than
expected, i.e. tends to reproduce word vectors ob-
served during training (Lazaridou et al., 2015a). In
this work, we present a model that exploits distri-
butional knowledge for learning referential word
meaning as well, but explore and compare differ-
ent ways of combining visual and lexical aspects
of referential word meaning.

3 Task and Data

We define object naming as follows: Given an ob-
ject x in an image, the task is to predict a word
w that could be used as the head noun of a real-
istic referring expression. (Cf. discussion above:
“bird” when naming a robin, but “penguin” when
naming a penguin.) To get at this, we develop our
approach using a corpus of referring expressions
produced by human users under natural, interac-
tive conditions (Kazemzadeh et al., 2014), and
train and test on the corresponding head nouns in
these REs. This is similar to picture naming setups
used in psycholinguistic research (cf. Levelt et al.
(1991)) and based on the simplifying assumption
that the name used for referring to an object can be
determined successfully without looking at other
objects in the image.

We now summarise the details of our setup:

Corpus We train and test on the REFERIT cor-
pus (Kazemzadeh et al., 2014), which is based
on the SAIAPR image collection (Grubinger et al.,
2006) (99.5k image regions;120K REs). We fol-
low (Schlangen et al., 2016) and select words with
a minimum frequency of 40 in these two data sets,
which gives us a vocabulary of 793 words.

Names For most of our experiments, we only
use a subset of this vocabulary, namely the set of
object names. As the REs contain nouns that can-
not be considered to be object names (background,
bottom, etc.), we extract a list of names from the
semantically annotated held-out set released with
the REFERIT. These correspond to ‘entry-level’
nouns mentioned in Kazemzadeh et al. (2014).
This gives us a list of 159 names. This set cor-
responds to the majority of object names in the
corpus: out of the 99.5K available image regions,
we use 80K for training and testing. Thus, our
experiments are on a smaller scale as compared

245

to (Ordonez et al., 2016). Nevertheless, the data
is challenging, as the corpus contains references
to objects that fall outside of the object labeling
scheme that available object recognition systems
are typically optimized for, cf. Hu et al. (2015)’s
discussion on “stuff” entities such “sky” or “grass”
in the REFERIT data. For testing, we remove re-
lational REs (containing a relational preposition
such as ‘left of X’), because here we cannot be
sure that the head noun of the target is fully infor-
mative; we also remove REs with more than one
head noun from our list (i.e. these are mostly rela-
tional expressions as well such as ‘girl laughing at
boy’). We pair each image region from the test set
with its corresponding names from the remaining
REs.

Image and Word Embeddings Following
Schlangen et al. (2016), we derive representations
of our visual inputs with a convolutional neural
network, ‘GoogleNet’ (Szegedy et al., 2015),
which was trained on the ImageNet corpus (Deng
et al., 2009), and extract the final fully-connected
layer before the classification layer, to give us a
1024 dimensional representation of the region.
We add 7 features that encode information about
the region relative to the image, thus representing
each object as a vector of 1031 features. As dis-
tributional word vectors, we use the word2vec
representations provided by Baroni et al. (2014)
(trained with CBOW, 5-word context window, 10
negative samples, 400 dimensions).

4 Three Models of Interfacing Visual and
Distributional Information

4.1 Direct Cross-Modal Mapping

Following Lazaridou et al. (2014), referential
meaning can be represented as a translation func-
tion that projects visual representations of objects
to linguistic representations of words in a distribu-
tional vector space. Thus, in contrast to standard
object recognition systems or the other models we
will use here, cross-modal mapping does not treat
words as individual labels or classifiers, but learns
to directly predict continuous representations of
words in a vector space, such as the space defined
by the word2vec embeddings that we use in this
work. This model will be called TRANSFER below.

During training, we pair each object with the
distributional embedding of its name, and use
standard Ridge regression for learning the trans-

formation. Lazaridou et al. (2014) and Lazaridou
et al. (2015a) test a range of technical tweaks and
different algorithms for cross-modal mapping. For
ease of comparison with other models, we stick
with simple Ridge Regression in this work.

For decoding, we map an object into the dis-
tributional space, and retrieve the nearest neigh-
bors of the predicted vector using cosine similar-
ity. In theory, the model should generalize easily
to words that it has not observed in a pair with an
object during training as it can map an object any-
where in the distributional space.

4.2 Lexical Mapping Through Individual
Word Classifiers

Another approach is to keep visual and distribu-
tional information separate, by training a separate
visual classifier for each word w in the vocabu-
lary. Predictions can then be mapped into distribu-
tional space during application time via the vectors
of the predicted words. Here, we use Schlangen
et al. (2016)’s WAC model, building the training
set for each word w as follows: all visual objects
in a corpus that have been referred to as w are
used as positive instances, the remaining objects
as negative instances. Thus, the classifiers learn
to predict referential appropriateness for individ-
ual words based on the visual features of the ob-
jects they refer to, in isolation of other words.

During decoding, we apply all word classifiers
from the model’s vocabulary to the given object,
and take the argmax over the individual word
probabilities. The model predicts names directly,
without links into a distributional space.

In order to extend the model’s vocabulary for
zero-shot learning, we follow Norouzi et al. (2013)
and associate the top n words with their corre-
sponding distributional vector and compute the
convex combination of these vectors. Then, in par-
allel to cross-modal mapping, we retrieve the near-
est neighbors of the combined embedding from the
distributional space. Thus, with this model, we use
two different modes of decoding: one that projects
into distributional space, one that only applies the
available word classifiers.

We did some small-scale experiments to find
an optimal value for n, similar to Norouzi et al.
(2013). In our case, performance started to de-
crease systematically with n > 10, but did not dif-
fer significantly for values below 10. In Section 5,
we will report results for n set to 5 and 10.

246

4.3 Word Prediction via Cross-Modal
Similarity Mapping

Finally, we implement an approach that combines
ideas from cross-modal mapping with the WAC

model: we train individual predictors for each
word in the vocabulary, but, during training, we
exploit lexical similarity relations encoded in a
distributional space. Instead of treating a word as a
binary classifier, we annotate its training instances
with a fine-grained similarity signal according to
their object names. When building the training set
for such a word predictor w, instead of simply di-
viding objects into w and ¬w instances, we label
each object with a real-valued similarity obtained
from cosine similarity between w and v in a dis-
tributional vector space, where v is the word that
was used to refer to the object. Thus, we task the
model with jointly learning similarities and refer-
ential appropriateness, by training it with Ridge
regression on a continuous output space. Object
instances where v = w (i.e., the positive instances
in the binary setup) have maximal similarity; the
remaining instances have a lower value which is
more or less close to maximal similarity. This is
the SIM-WAP model, recently proposed in Zarrieß
and Schlangen (2017).

Importantly, and going beyond Zarrieß and
Schlangen (2017), this model allows for an in-
novative treatment of words that only exist in a
distributional space (without being paired with vi-
sual referents in the image corpus): as the predic-
tors are trained on a continuous output space, no
genuine positive instances of a word’s referent are
needed. When training a predictor for such a word
w, we use all available objects from our corpus and
annotate them with the expected lexical similarity
between w and the actual object names v, which
for all objects will be below the maximal value that
marks genuine positive instances. During decod-
ing, this model does not need to project its pre-
dictions into a distributional space, but it simply
applies all available predictors to the object, and
takes the argmax over the predicted referential ap-
propriateness scores.

5 Experiment 1: Naming Objects

This Section reports on experiments in a stan-
dard setup of the object naming task where all
object names are paired with visual instances of
their referents during training. In a compara-
ble task, i.e. object recognition with known ob-

ject categories, cross-modal projection or trans-
fer approaches have been reported to perform
worse than standard object classification methods
(Frome et al., 2013; Norouzi et al., 2013). This
seems to suggest that lexical or at least distri-
butional knowledge is detrimental when learning
what a word refers to in the real world and that
referential meaning should potentially be learned
from visual object representation only.

5.1 Model comparison

Setup We use the train/test split of REFERIT data
as in (Schlangen et al., 2016). We consider image
regions with non-relational referring expressions
that contain at least one of the 159 head nouns
from the list of entry-level nouns (see section 3).
This amounts to 6208 image regions for testing
and 73K instances for training.

Results Table 1 shows accuracies in the object
naming task for the TRANSFER, WAC and SIM-
WAP models according to their accuracies in the
top n, including two variants of WAC where its
top 5 and top 10 predictions are projected into the
distributional space. Overall, the models achieve
very similar performance. However, there is an in-
teresting pattern when comparing accuracies @1
and @2 to accuracies in the top 5 predictions.
Thus, looking at accuracies for the top (two) pre-
dictions, the various models that link referential
meaning to word representations in the distribu-
tional space all perform slightly worse than the
plain WAC model, i.e. individual word classifiers
trained on visual features only. This might sug-
gest that certain aspects of referential word mean-
ing are learned less accurately when mapping from
visual to distributional space (which replicates re-
sults reported in the literature on standard object
recognition benchmarks). On the other hand, the
SIM-WAP model is on a par with WAC in terms of
the @5 accuracy. This effect suggests that dis-
tributional knowledge that SIM-WAP has access
to during training sometimes distracts the model
from predicting the exact name chosen by a hu-
man speaker, but that SIM-WAP is still able to rank
it among the most probable names. As a simple
accuracy-based evaluation is not suited to fully ex-
plain this pattern, we carry out a more detailed
analysis in Section 5.3.

247

hit @k(%)
@1 @2 @5

transfer 48.34 60.49 74.89
wac 49.34 61.86 75.35
wac, project top5 48.73 61.10 74.07
wac, project top10 48.68 61.23 74.31
sim-wap 48.13 60.60 75.40

Table 1: Accuracies in object naming

hit @k(%)
1 5 10

sim-wap + transfer 49.10 61.78 75.81
sim-wap + wac 51.10 63.45 77.92
transfer + wac 51.13 63.76 77.84
wac + transfer + sim-wap 52.19 64.71 78.40

Table 2: Object naming acc., combined models

5.2 Model combination
In order to get more insight into why the TRANS-
FER and SIM-WAP models produce slightly worse
results than individual visual word classifiers, we
now test to what extent the different models are
complementary and combine them by aggregating
over their naming predictions. If the models are
complementary, their combination should lead to
more confident and accurate naming decisions.

Setup We combine TRANSFER, SIM-WAP and
WAC by aggregating the scores they predict for
different object names for a given object. Dur-
ing testing, we apply all models to an image re-
gion and consider words ranked among the top
10. We first normalize the referential appropri-
ateness scores in each top-10 list and then com-
pute their sum. This aggregation scheme will give
more weight to words that appear in the top 10 list
of different models, and less weight to words that
only get top-ranked by a single model. We test on
the same data as in Section 5.1.

Results Table 2 shows that all model combi-
nations improve over the results of their isolated
models in Table 1, suggesting that WAC, TRANS-
FER and SIM-WAP indeed do capture complemen-
tary aspects of referential word meaning. On their
own, the distributionally informed models are less
tuned to specific word occurrences than the visual
word classifiers in the WAC model, but they can
add useful information which leads to a clear over-
all improvement. We take this as a promising find-
ing, supporting our initial hypothesis that knowl-
edge on lexical distributional meaning should and

Av. cosine similarity
among top k gold - top k

5 10 5 10

transfer 0.32 0.27 0.28 0.25
wac 0.18 0.20 0.18 0.16
sim-wap 0.32 0.26 0.28 0.25

Table 3: Cosine similarities between word2vec
embeddings of nouns generated in the top k

can be exploited when learning how to use words
for reference.

5.3 Analysis

Figure 2 illustrates objects from our test set where
the combination of TRANSFER, SIM-WAP and
WAC predicts an accurate name, whereas the mod-
els in isolation do not. These examples give some
interesting insight into why the models capture
different aspects of referential word meaning.

Word Similarities Many of the examples in
Figure 2 suggest that the object names ranked
among the top 3 by the TRANSFER and SIM-
WAP model are semantically similar to each other,
whereas WAC generates object names on top that
describe very different underlying object cate-
gories, such as seal / rock in Figure 2(a), animal /
lamp in Figure 2(g) or chair / shirt in Figure 2(c).
To quantify this general impression, Table 3 shows
cosine similarities among words in the top n gen-
erated by our models, using their word2vec em-
beddings. The average cosine similarity between
words in our vocabulary is 0.17. The TRANSFER

and SIM-WAP model rank words on top that are
clearly more similar to each other than word pairs
on average, whereas words ranked top by the WAC

model are more dissimilar to each other. Another
remarkable finding is that the words generated by
TRANSFER and SIM-WAP are not only more simi-
lar among the top predictions, but also more sim-
ilar to the gold name (Table 3 , right columns).
This result is noteworthy since the accuracies for
the top predictions shown in Table 1 are slightly
below WAC. In general, this suggests that there is
a trade-off between optimizing a model of refer-
ential word meaning to exact naming decisions,
or tailoring it to make lexically consistent pre-
dictions. This parallels findings by Frome et al.
(2013) who found that their transfer-based object
recognition made “semantically more reasonable”
errors than a standard convolutional network while

248

not improving accuracies for object recognition,
see discussion in Section 2. Additional evaluation
metrics, such as success rates in a human evalua-
tion (cf. Zarrieß and Schlangen (2016)), would be
an interesting direction for more detailed investi-
gation here.

Word Use But even though the WAC classifiers
lack knowledge on lexical similarities, they seem
to able to detect relatively specific instances of
word use such as hut in Figure 2(b), shirt in 2(c) or
lamp in 2(h). Here, the combination with TRANS-
FER and SIM-WAP is helpful to give more weight
to the object name that is taxonomically correct
(sometimes pushing up words below the top-3 and
hence not shown in Figure 2). In Figure 1(e), SIM-
WAP and TRANSFER give more weight to typical
names for persons, whereas WAC top-ranks more
unusual names, reflecting that the person is diffi-
cult to identify visually. Another observation is
that the mapping models have difficulties deal-
ing with object names in singular and plural. As
these words have very similar representations in
the distributional space, they are often predicted as
likely variants among the top 10 by SIM-WAP and
TRANSFER, whereas the WAC model seems to pre-
dict inappropriate plural words less often among
the top 3. Such specific phenomena at the intersec-
tion of visual and semantic similarity have found
very little attention in the literature. We will in-
vestigate them further in our Experiments on zero-
shot naming in the following Section.

6 Zero-Shot Naming

Zero-shot learning is an attractive prospect for
REG from images, as it promises to overcome de-
pendence on pairings of visual instances and nat-
ural names being available for all names, if vi-
sual/referential data can be generalised from other
types of information. Previous work has looked
at the feasibility of zero-shot learning as a func-
tion of semantic similarity or ontological close-
ness between unknown and known categories, and
confirmed the intuition that the task is harder the
less close unknown categories are to known ones
(Frome et al., 2013; Norouzi et al., 2013).

Our experiments on object naming in Section 5
suggest that lexical similarities encoded in a dis-
tributional space might not always fully carry over
to referential meaning. This could constitute an
additional challenge for zero-shot learning, as dis-
tributional similarities might be misleading when

the model has to fully rely on them for learning
referential word meanings. Therefore, the fol-
lowing experiments investigate the performance of
our models in zero-shot naming as a function of
the lexical relation between unknown and known
object names, i.e. namely hypernyms and singu-
lar/plurals. Both relations are typically captured
by distributional models of word meaning in terms
of closeness in the vector space, but their visual
and referential relation is clearly different.

6.1 Vocabulary Splits and Testsets

Random As in previous work on zero-shot
learning, we consider zero-shot naming for words
of varying degrees of similarity. We randomly
split our 159 names from Experiment 1 into 10
subsets. We train the models on 90% of the nouns
(and all their visual instances in the image cor-
pus) and test on the set of image regions that are
named with words which the model did not ob-
serve during training. Results reported in Table
4 on the random test set correspond to averaged
scores from cross-validation over the 10 splits.

Hypernyms We manually split the model’s vo-
cabulary into set of hypernyms (see Appendix A)
and the remaining nouns. We train the models on
those 84K image regions that where not named
with a hypernym, and test on 8895 image regions
that were named with a hypernym in the corpus.
We checked that for each of these hypernyms, the
vocabulary contains at least one or two names that
can be considered as hyponyms, i.e. the model
sees objects during training that are instances of
vehicle for example, but never encounters actual
uses of that name. This test set is particularly inter-
esting from an REG perspective, as objects named
with very general terms by human speakers are of-
ten difficult to describe with more common, but
more specific terms, as is illustrated by the uses of
structure and thingy in Figure 1.

Singulars/Plurals We pick 68 words from our
vocabulary that can be grouped into 34 singular-
plural noun pairs (see Appendix A). From each
pair, we randomly include the singular or plural
noun in the set of zero-shot nouns. Thus, we make
sure that the model encounters singular and plu-
ral names during training, but it never encounters
both variants of a name. This results training split
of 23K image regions and a test split of 13825 in-
stances.

249

(a)
wac: seal, rock, water

sim-wap: side, rock,rocks

transfer: rocks, rock, water

combination: rock

(c)
wac: chair, shirt, guy

sim-wap: woman, man, girl

transfer: door, woman, window

combination: shirt

(e)
wac: chick, person, guy

sim-wap: man, person, woman

transfer: man, guy, girl

combination: person

(g)
wac: animal, lamp, table

sim-wap: man, girl, person

transfer: man, clouds, cloud

combination: person

(b)
wac: cactus, hut, mountain

sim-wap: side, rock, mountain

transfer: mountain, rocks, rock

combination: hut

(d)
wac: roof, house, building

sim-wap: building, house, trees

transfer: building, house, trees

combination: house

(f)
wac: bush, bushes, tree

sim-wap: trees, tree, grass

transfer: trees, tree, bushes

combination: bushes

(h)
wac: post, light, lamp

sim-wap: tree, sky, pole

transfer: tree, sky, trees

combination: lamp

Figure 2: Examples from object naming experiment where model combination is accurate

Zero-shot Model full vocab disjoint vocab
names @1 @2 @5 @10 @1 @2

Random

transfer 0.05 2.38 16.57 35.71 41.49 62.34
wac, project top10 0.00 4.42 21.16 39.17 38.03 58.07
wac, project top5 0.00 4.39 21.63 40.01 37.46 57.36
sim-wap 3.71 13.13 36.49 54.44 42.28 64.26

Hypernyms

transfer 0.07 1.25 7.75 29.93 59.88 73.88
wac, project top10 0.00 3.01 15.55 36.99 50.51 66.33
wac, project top5 0.00 2.78 16.75 38.13 47.73 64.38
sim-wap 3.16 10.33 31.14 49.62 57.55 70.15

Singulars/Plurals

transfer 0.01 22.84 44.30 72.85 34.56 51.79
wac, project top10 0.00 22.21 43.43 68.95 31.46 48.76
wac, project top5 0.00 22.18 43.93 69.33 31.46 48.88
sim-wap 15.39 34.73 56.62 77.32 37.24 54.02

Table 4: Accuracies in zero-shot object naming on different vocabulary splits

250

6.2 Evaluation

Some previous work on zero-shot image labeling
assumes additional components that first identify
whether an image should be labelled by a known
or unknown word (Frome et al., 2013). We fol-
low Lazaridou et al. (2014) and let the model de-
cide whether to refer to an object by a known or
unknown name. Related to that, distinct evalua-
tion procedures have been used in the literature on
zero-shot learning:

Testing on full vocabulary A realistic way to
test zero-shot learning performance is to consider
all words from a given vocabulary during testing,
though the testset only contains instances of ob-
jects that have been named with a ‘zero-shot word’
(for which no visual instances were seen during
training). Accuracies in this setup reflect how well
the model is able to generalize, i.e. how often it
decides to deviate from the words it was trained
on, and (implicitly) predicts that the given object
requires a “new” name. In case of the (i) hyper-
nym and (ii) singular/plural test set, this accuracy
also reflects to what extent the model is able to de-
tect cases where (i) a more general or vague term
is needed, where (ii) an unknown singular/plural
counterpart of a known object type occurs.

Testing on disjoint vocabulary Alternatively,
the model’s vocabulary can be restricted during
testing to zero-shot words only, such that names
encountered during training and testing are dis-
joint, see e.g. (Lampert et al., 2009, 2013). This
setup factors out the generalization problem, and
assesses to what extent a model is able to cap-
ture the referential meaning of a word that does
not have instances in the training data.

6.3 Results

As compared to Experiment 1 where models
achieved similar performance, differences are
more pronounced in the zero-shot setup, as shown
in Table 4. In particular, we find that the SIM-
WAP model which induces individual predictors
for words that have not been observed in the train-
ing data is clearly more successful than TRANS-
FER or WAC that project predictions into the dis-
tributional space. When tested on the full vocabu-
lary, we find that TRANSFER and WAC very rarely
generate names whose referents were excluded
from training, which is in line with observations
made by Lazaridou et al. (2015a). The SIM-WAP

predictors generalize much better, in particular on
the singular/plural testset.

An interesting exception is the good perfor-
mance of the TRANSFER model on the hypernym
test set, when evaluated with a disjoint vocabu-
lary. This corroborates evidence from Experiment
1, namely that the transfer model captures tax-
onomic aspects of object names better than the
other models. Projection via individual word clas-
sifiers, on the other hand, seems to generalize bet-
ter than TRANSFER, at least when looking at ac-
curacies @2 ... @10. Thus, combining several
vectors predicted by a model of referential word
meaning can provide additional information, as
compared to mapping an object to a single vec-
tor in distributional space. More work is needed to
establish how these approaches can be integrated
more effectively.

7 Discussion and Conclusion

In this paper, we have investigated models of refer-
ential word meaning, using different ways of com-
bining visual information about a word’s referent
and distributional knowledge about its lexical sim-
ilarities. Previous cross-modal mapping models
essentially force semantically similar objects to be
mapped into the same area in the semantic space
regardless of their actual visual similarity. We
found that cross-modal mapping produces seman-
tically appropriate and mutually highly similar ob-
ject names in its top-n list, but does not preserve
differences in referential word use (e.g. appropri-
atness of person vs. woman) especially within the
same semantic field. We have shown that it is
beneficial for performance in standard and zero-
shot object naming to treat words as individual
predictors that capture referential appropriateness
and are only indirectly linked to a distributional
space, either through lexical mapping during ap-
plication or through cross-modal similarity map-
ping during training. As we have tested these ap-
proaches on a rather small vocabulary, which may
limit generality of conclusions, future work will
be devoted to scaling up these findings to larger
test sets, as e.g. recently collected through conver-
sational agents (Das et al., 2016) that circumvent
the need for human-human interaction data. Also
from an REG perspective, various extensions of
this approach are possible, such as the inclusion of
contextual information during object naming and
its combination with attribute selection.

251

Acknowledgments

We acknowledge support by the Cluster of
Excellence “Cognitive Interaction Technology”
(CITEC; EXC 277) at Bielefeld University, which
is funded by the German Research Foundation
(DFG). We thank the anonymous reviewers for
their very valuable, very detailed and highly in-
teresting comments.

References
Marco Baroni, Georgiana Dinu, and Germán

Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Lin-
guistics, Baltimore, Maryland, pages 238–247.
http://www.aclweb.org/anthology/P14-1023.

Robert Dale and Ehud Reiter. 1995. Computational
interpretations of the gricean maxims in the gener-
ation of referring expressions. Cognitive Science
19(2):233–263.

Abhishek Das, Satwik Kottur, Khushi Gupta,
Avi Singh, Deshraj Yadav, José M. F.
Moura, Devi Parikh, and Dhruv Batra.
2016. Visual dialog. CoRR abs/1611.08669.
http://arxiv.org/abs/1611.08669.

Jia Deng, Nan Ding, Yangqing Jia, Andrea Frome,
Kevin Murphy, Samy Bengio, Yuan Li, Hartmut
Neven, and Hartwig Adam. 2014. Large-scale ob-
ject classification using label relation graphs. In Eu-
ropean Conference on Computer Vision. Springer,
pages 48–64.

Jia Deng, W. Dong, Richard Socher, L.-J. Li, K. Li, and
L. Fei-Fei. 2009. ImageNet: A Large-Scale Hierar-
chical Image Database. In CVPR09.

Katrin Erk. 2016. What do you know about
an alligator when you know the company it
keeps? Semantics and Pragmatics 9(17):1–63.
https://doi.org/10.3765/sp.9.17.

Yansong Feng and Mirella Lapata. 2010. Visual in-
formation in semantic representation. In Human
Language Technologies: The 2010 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, pages 91–99.

Andrea Frome, Greg S Corrado, Jon Shlens, Samy
Bengio, Jeff Dean, Marc Aurelio Ranzato, and
Tomas Mikolov. 2013. Devise: A deep visual-
semantic embedding model. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 26, Curran Associates, Inc.,
pages 2121–2129.

Dimitra Gkatzia, Verena Rieser, Phil Bartie, and
William Mackaness. 2015. From the virtual to
the realworld: Referring to objects in real-world
spatial scenes. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 1936–1942.
http://aclweb.org/anthology/D15-1224.

Michael Grubinger, Paul Clough, Henning Müller, and
Thomas Deselaers. 2006. The IAPR TC-12 bench-
mark: a new evaluation resource for visual informa-
tion systems. In Proceedings of the International
Conference on Language Resources and Evaluation
(LREC 2006). Genoa, Italy, pages 13–23.

Aurélie Herbelot and Eva Maria Vecchi. 2015. Build-
ing a shared world: mapping distributional to model-
theoretic semantic spaces. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 22–32.
http://aclweb.org/anthology/D15-1003.

Ronghang Hu, Huazhe Xu, Marcus Rohrbach, Jiashi
Feng, Kate Saenko, and Trevor Darrell. 2015. Natu-
ral language object retrieval. CoRR abs/1511.04164.
http://arxiv.org/abs/1511.04164.

Sahar Kazemzadeh, Vicente Ordonez, Mark Matten,
and Tamara L Berg. 2014. ReferItGame: Referring
to Objects in Photographs of Natural Scenes. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing (EMNLP 2014).
Doha, Qatar, pages 787–798.

Douwe Kiela and Léon Bottou. 2014. Learning image
embeddings using convolutional neural networks for
improved multi-modal semantics. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Association for
Computational Linguistics, Doha, Qatar, pages 36–
45. http://www.aclweb.org/anthology/D14-1005.

Satwik Kottur, Ramakrishna Vedantam, José MF
Moura, and Devi Parikh. 2016. Visual word2vec
(vis-w2v): Learning visually grounded word embed-
dings using abstract scenes. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition. pages 4985–4994.

Emiel Krahmer and Kees Van Deemter. 2012. Compu-
tational generation of referring expressions: A sur-
vey. Computational Linguistics 38(1):173–218.

Christoph H Lampert, Hannes Nickisch, and Stefan
Harmeling. 2009. Learning to detect unseen object
classes by between-class attribute transfer. In IEEE
Computer Vision and Pattern Recognition. IEEE,
pages 951–958.

Christoph H. Lampert, Hannes Nickisch, and Stefan
Harmeling. 2013. Attribute-based classification for
zero-shot visual object categorization. IEEE Trans-
actions on Pattern Analysis and Machine Intelli-
gence 36(3):453–465.

252

Angeliki Lazaridou, Elia Bruni, and Marco Baroni.
2014. Is this a wampimuk? Cross-modal map-
ping between distributional semantics and the visual
world. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). pages 1403–1414.

Angeliki Lazaridou, Georgiana Dinu, and Marco
Baroni. 2015a. Hubness and pollution: Delv-
ing into cross-space mapping for zero-shot learn-
ing. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 270–280.
http://www.aclweb.org/anthology/P15-1027.

Angeliki Lazaridou, Nghia The Pham, and Marco Ba-
roni. 2015b. Combining language and vision with a
multimodal skip-gram model. In Proceedings of the
2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Com-
putational Linguistics, Denver, Colorado, pages
153–163. http://www.aclweb.org/anthology/N15-
1016.

Willem JM Levelt, Herbert Schriefers, Dirk Vor-
berg, Antje S Meyer, Thomas Pechmann, and Jaap
Havinga. 1991. The time course of lexical access in
speech production: A study of picture naming. Psy-
chological review 98(1):122.

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana
Camburu, Alan L. Yuille, and Kevin Murphy. 2015.
Generation and comprehension of unambiguous ob-
ject descriptions. ArXiv / CoRR abs/1511.02283.
http://arxiv.org/abs/1511.02283.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013. Distributed
representations of words and phrases and
their compositionality. In Proceedings of
the 26th International Conference on Neural
Information Processing Systems. Curran As-
sociates Inc., USA, NIPS’13, pages 3111–3119.
http://dl.acm.org/citation.cfm?id=2999792.2999959.

Mohammad Norouzi, Tomas Mikolov, Samy Bengio,
Yoram Singer, Jonathon Shlens, Andrea Frome,
Greg S Corrado, and Jeffrey Dean. 2013. Zero-shot
learning by convex combination of semantic embed-
dings. International Conference on Learning Rep-
resentations (ICLR) .

Vicente Ordonez, Wei Liu, Jia Deng, Yejin Choi,
Alexander C. Berg, and Tamara L. Berg. 2016.
Learning to name objects. Commun. ACM
59(3):108–115.

Eleanor Rosch. 1978. Principles of Categorization.
In Eleanor Rosch and Barbara B. Lloyd, editors,
Cognition and Categorization, Lawrence Erlbaum,
Hillsdale, N.J., USA, pages 27—-48.

Deb Roy. 2005. Grounding words in perception and
action: Computational insights. Trends in Cognitive
Sciene 9(8):389–396.

Deb Roy, Peter Gorniak, Niloy Mukherjee, and Josh
Juster. 2002. A trainable spoken language under-
standing system for visual object selection. In Pro-
ceedings of the International Conference on Speech
and Language Processing 2002 (ICSLP 2002). Col-
orado, USA.

Deb K. Roy. 2002. Learning visually-grounded words
and syntax for a scene description task. Computer
Speech and Language 16(3).

David Schlangen, Sina Zarriess, and Casey Kenning-
ton. 2016. Resolving references to objects in pho-
tographs using the words-as-classifiers model. In
Proceedings of the 54rd Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2016).

Carina Silberer and Mirella Lapata. 2014. Learn-
ing grounded meaning representations with autoen-
coders. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computa-
tional Linguistics, Baltimore, Maryland, pages 721–
732. http://www.aclweb.org/anthology/P14-1068.

Richard Socher, Milind Ganjoo, Christopher D Man-
ning, and Andrew Ng. 2013. Zero-shot learning
through cross-modal transfer. In Advances in neu-
ral information processing systems. pages 935–943.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. 2015. Going deeper with convolutions. In
CVPR 2015. Boston, MA, USA.

Peter D Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of se-
mantics. Journal of artificial intelligence research
37(1):141–188.

Sina Zarrieß and David Schlangen. 2016. Easy
things first: Installments improve referring expres-
sion generation for objects in photographs. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 610–620.
http://www.aclweb.org/anthology/P16-1058.

Sina Zarrieß and David Schlangen. 2017. Is this a
child, a girl or a car? exploring the contribution of
distributional similarity to learning referential word
meanings. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 2, Short Papers. Asso-
ciation for Computational Linguistics, pages 86–91.
http://aclweb.org/anthology/E17-2014.

253

A Vocabulary Splits for Zero-Shot
Naming

Hypernyms animal, animals, plant, plants, ve-
hicle, person, persons, food, thing, object, area,
things, thingy, toy, anyone, clothes, dish, building,
land, structure, item, water

Singulars/Plurals . . .

. . . training on instances of: animals, plants,
cars, people, buildings, trees, man, kid, guy,
girl, boy, flower, bird, hill, orange, cloud,
curtain, window, shrub, apple, light, house,
glass, bottle, dude, leg, book, wall, bananas,
carrots, pillows, bushes, mountains, bags

. . . testing on instances of: animal, plant, car,
person, building, tree, men, kids, guys, girls,
boys, flowers, birds, hills, oranges, clouds,
curtains, windows, shrubs, apples, lights,
houses, glasses, bottles, dudes, legs, books,
walls, banana, carrot, pillow, bush, mountain,
bag

254

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 255–265
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1024

FOIL it! Find One mismatch between Image and Language caption

Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich,
Aurélie Herbelot, Moin Nabi, Enver Sangineto, Raffaella Bernardi

University of Trento
{firstname.lastname}@unitn.it

Abstract

In this paper, we aim to understand
whether current language and vision
(LaVi) models truly grasp the interac-
tion between the two modalities. To this
end, we propose an extension of the MS-
COCO dataset, FOIL-COCO, which asso-
ciates images with both correct and ‘foil’
captions, that is, descriptions of the im-
age that are highly similar to the original
ones, but contain one single mistake (‘foil
word’). We show that current LaVi mod-
els fall into the traps of this data and per-
form badly on three tasks: a) caption clas-
sification (correct vs. foil); b) foil word
detection; c) foil word correction. Hu-
mans, in contrast, have near-perfect per-
formance on those tasks. We demonstrate
that merely utilising language cues is not
enough to model FOIL-COCO and that it
challenges the state-of-the-art by requiring
a fine-grained understanding of the rela-
tion between text and image.

1 Introduction

Most human language understanding is grounded
in perception. There is thus growing interest in
combining information from language and vision
in the NLP and AI communities.

So far, the primary testbeds of Language and
Vision (LaVi) models have been ‘Visual Question
Answering’ (VQA) (e.g. Antol et al. (2015); Mali-
nowski and Fritz (2014); Malinowski et al. (2015);
Gao et al. (2015); Ren et al. (2015)) and ‘Im-
age Captioning’ (IC) (e.g. Hodosh et al. (2013);
Fang et al. (2015); Chen and Lawrence Zitnick
(2015); Donahue et al. (2015); Karpathy and
Fei-Fei (2015); Vinyals et al. (2015)). Whilst
some models have seemed extremely successful
on those tasks, it remains unclear how the re-
ported results should be interpreted and what those

Figure 1: Is the caption correct or foil (T1)? If it
is foil, where is the mistake (T2) and which is the
word to correct the foil one (T3)?

models are actually learning. There is an emerg-
ing feeling in the community that the VQA task
should be revisited, especially as many current
dataset can be handled by ‘blind’ models which
use language input only, or by simple concate-
nation of language and vision features (Agrawal
et al., 2016; Jabri et al., 2016; Zhang et al., 2016;
Goyal et al., 2016a). In IC too, Hodosh and Hock-
enmaier (2016) showed that, contrarily to what
prior research had suggested, the task is far from
been solved, since IC models are not able to dis-
tinguish between a correct and incorrect caption.

Such results indicate that in current datasets,
language provides priors that make LaVi models
successful without truly understanding and inte-
grating language and vision. But problems do not
stop at biases. Johnson et al. (2016) also point out
that current data ‘conflate multiple sources of er-
ror, making it hard to pinpoint model weaknesses’,
thus highlighting the need for diagnostic datasets.
Thirdly, existing IC evaluation metrics are sensi-
tive to n-gram overlap and there is a need for mea-
sures that better simulate human judgments (Ho-
dosh et al., 2013; Elliott and Keller, 2014; Ander-
son et al., 2016).

Our paper tackles the identified issues by
proposing an automatic method for creating a

255

https://doi.org/10.18653/v1/P17-1024

large dataset of real images with minimal lan-
guage bias and some diagnostic abilities. Our
dataset, FOIL (Find One mismatch between Im-
age and Language caption),1 consists of images
associated with incorrect captions. The captions
are produced by introducing one single error (or
‘foil’) per caption in existing, human-annotated
data (Figure 1). This process results in a chal-
lenging error-detection/correction setting (because
the caption is ‘nearly’ correct). It also provides us
with a ground truth (we know where the error is)
that can be used to objectively measure the perfor-
mance of current models.

We propose three tasks based on widely ac-
cepted evaluation measures: we test the ability
of the system to a) compute whether a caption is
compatible with the image (T1); b) when it is in-
compatible, highlight the mismatch in the caption
(T2); c) correct the mistake by replacing the foil
word (T3).

The dataset presented in this paper (Section 3)
is built on top of MS-COCO (Lin et al., 2014),
and contains 297,268 datapoints and 97,847 im-
ages. We will refer to it as FOIL-COCO. We eval-
uate two state-of-the-art VQA models: the popular
one by Antol et al. (2015), and the attention-based
model by Lu et al. (2016), and one popular IC
model by (Wang et al., 2016). We show that those
models perform close to chance level, while hu-
mans can perform the tasks accurately (Section 4).
Section 5 provides an analysis of our results, al-
lowing us to diagnose three failures of LaVi mod-
els. First, their coarse representations of language
and visual input do not encode suitably structured
information to spot mismatches between an utter-
ance and the corresponding scene (tested by T1).
Second, their language representation is not fine-
grained enough to identify the part of an utterance
that causes a mismatch with the image as it is (T2).
Third, their visual representation is also too poor
to spot and name the visual area that corresponds
to a captioning error (T3).

2 Related Work

The image captioning (IC) and visual question
answering (VQA) tasks are the most relevant to
our work. In IC (Fang et al., 2015; Chen and
Lawrence Zitnick, 2015; Donahue et al., 2015;
Karpathy and Fei-Fei, 2015; Vinyals et al., 2015;

1The dataset is available from https://foilunitn.
github.io/

Wang et al., 2016), the goal is to generate a caption
for a given image, such that it is both semantically
and syntactically correct, and properly describes
the content of that image. In VQA (Antol et al.,
2015; Malinowski and Fritz, 2014; Malinowski
et al., 2015; Gao et al., 2015; Ren et al., 2015),
the system attempts to answer open-ended ques-
tions related to the content of the image. There is
a wealth of literature on both tasks, but we only
discuss here the ones most related to our work and
refer the reader to the recent surveys by (Bernardi
et al., 2016; Wu et al., 2016).

Despite their success, it remains unclear
whether state-of-the-art LaVi models capture vi-
sion and language in a truly integrative fashion.
We could identify three types of arguments sur-
rounding the high performance of LaVi models:

(i) Triviality of the LaVi tasks: Recent work
has shown that LaVi models heavily rely on lan-
guage priors (Ren et al., 2015; Agrawal et al.,
2016; Kafle and Kanan, 2016). Even simple cor-
relation and memorisation can result in good per-
formance, without the underlying models truly un-
derstanding visual content (Zhou et al., 2015; Jabri
et al., 2016; Hodosh and Hockenmaier, 2016).
Zhang et al. (2016) first unveiled that there exists
a huge bias in the popular VQA dataset by An-
tol et al. (2015): they showed that almost half of
all the questions in this dataset could be answered
correctly by using the question alone and ignoring
the image completely. In the same vein, Zhou et al.
(2015) proposed a simple baseline for the task
of VQA. This baseline simply concatenates the
Bag of Words (BoW) features from the question
and Convolutional Neural Networks (CNN) fea-
tures from the image to predict the answer. They
showed that such a simple method can achieve
comparable performance to complex and deep ar-
chitectures. Jabri et al. (2016) proposed a similar
model for the task of multiple choice VQA, and
suggested a cross-dataset generalization scheme as
an evaluation criterion for VQA systems. We com-
plement this research by introducing three new
tasks with different levels of difficulty, on which
LaVi models can be evaluated sequentially.

(ii) Need for diagnostics: To overcome the
bias uncovered in previous datasets, several re-
search groups have started proposing tasks which
involve distinguishing distractors from a ground-
truth caption for an image. Zhang et al. (2016) in-
troduced a binary VQA task along with a dataset

256

composed of sets of similar artificial images, al-
lowing for more precise diagnostics of a system’s
errors. Goyal et al. (2016a) balanced the dataset
of Antol et al. (2015), collecting a new set of com-
plementary natural images which are similar to ex-
isting items in the original dataset, but result in
different answers to a common question. Hodosh
and Hockenmaier (2016) also proposed to evalu-
ate a number of state-of-the-art LaVi algorithms
in the presence of distractors. Their evaluation
was however limited to a small dataset (namely,
Flickr30K (Young et al., 2014)) and the caption
generation was based on a hand-crafted scheme
using only inter-dataset distractors.

Most related to our paper is the work by Ding
et al. (2016). Like us, they propose to extend
the MS-COCO dataset by generating decoys from
human-created image captions. They also suggest
an evaluation apparently similar to our T1, requir-
ing the LaVi system to detect the true target cap-
tion amongst the decoys. Our efforts, however,
differ in some substantial ways. First, their tech-
nique to create incorrect captions (using BLEU to
set an upper similarity threshold) is so that many
of those captions will differ from the gold descrip-
tion in more than one respect. For instance, the
caption two elephants standing next to each other
in a grass field is associated with the decoy a herd
of giraffes standing next to each other in a dirt field
(errors: herd, giraffe, dirt) or with animals are
gathering next to each other in a dirt field (error:
dirt; infelicities: animals and gathering, which are
both pragmatically odd). Clearly, the more the
caption changes in the decoy, the easier the task
becomes. In contrast, the foil captions we propose
only differ from the gold description by one word
and are thus more challenging. Secondly, the auto-
matic caption generation of Ding et al means that
‘correct’ descriptions can be produced, resulting
in some confusion in human responses to the task.
We made sure to prevent such cases, and human
performance on our dataset is thus close to 100%.
We note as well that our task does not require any
complex instructions for the annotation, indicat-
ing that it is intuitive to human beings (see §4).
Thirdly, their evaluation is a multiple-choice task,
where the system has to compare all captions to
understand which one is closest to the image. This
is arguably a simpler task than the one we propose,
where a caption is given and the system is asked
to classify it as correct or foil: as we show in §4,

detecting a correct caption is much easier than de-
tecting foils. So evaluating precision on both gold
and foil items is crucial.

Finally, (Johnson et al., 2016) proposed
CLEVR, a dataset for the diagnostic evaluation of
VQA systems. This dataset was designed with the
explicit goal of enabling detailed analysis of dif-
ferent aspects of visual reasoning, by minimising
dataset biases and providing rich ground-truth rep-
resentations for both images and questions.

(iii) Lack of objective evaluation metrics:
The evaluation of Natural Language Generation
(NLG) systems is known to be a hard prob-
lem. It is further unclear whether the quality
of LaVi models should be measured using met-
rics designed for language-only tasks. Elliott and
Keller (2014) performed a sentence-level correla-
tion analysis of NLG evaluation measures against
expert human judgements in the context of IC.
Their study revealed that most of those metrics
were only weakly correlated with human judge-
ments. In the same line of research, Anderson
et al. (2016) showed that the most widely-used
metrics for IC fail to capture semantic proposi-
tional content, which is an essential component of
human caption evaluation. They proposed a se-
mantic evaluation metric called SPICE, that mea-
sures how effectively image captions recover ob-
jects, attributes and the relations between them. In
this paper, we tackle this problem by proposing
tasks which can be evaluated based on objective
metrics for classification/detection error.

3 Dataset

In this section, we describe how we automati-
cally generate FOIL-COCO datapoints, i.e. im-
age, original and foil caption triples. We used the
training and validation Microsoft’s Common Ob-
jects in Context (MS-COCO) dataset (Lin et al.,
2014) (2014 version) as our starting point. In
MS-COCO, each image is described by at least
five descriptions written by humans via Amazon
Mechanical Turk (AMT). The images contains 91
common object categories (e.g. dog, elephant,
bird, . . . and car, bicycle, airplane, . . .), from 11
supercategories (Animal, Vehicle, resp.), with 82
of them having more than 5K labeled instances.
In total there are 123,287 images with captions
(82,783 for training and 40,504 for validation).2

Our data generation process consists of four
2The MS-COCO test set is not available for download.

257

nr. of datapoints nr. unique images nr. of tot. captions nr. target::foil pairs
Train 197,788 65,697 395,576 256
Test 99,480 32,150 198,960 216

Table 1: Composition of FOIL-COCO.

main steps, as described below. The last two steps
are illustrated in Figure 2.

1. Generation of replacement word pairs We
want to replace one noun in the original caption
(the target) with an incorrect but similar word
(the foil). To do this, we take the labels of MS-
COCO categories, and we pair together words
belonging to the same supercategory (e.g., bicy-
cle::motorcycle, bicycle::car, bird::dog). We use
as our vocabulary 73 out of the 91 MS-COCO cat-
egories, leaving out those categories that are multi-
word expressions (e.g. traffic light). We thus ob-
tain 472 target::foil pairs.

2. Splitting of replacement pairs into train-
ing and testing To avoid the models learning
trivial correlations due to replacement frequency,
we randomly split, within each supercategory, the
candidate target::foil pairs which are used to gen-
erate the captions of the training vs. test sets. We
obtain 256 pairs, built out of 72 target and 70 foil
words, for the training set, and 216 pairs, contain-
ing 73 target and 71 foil words, for the test set.

3. Generation of foil captions We would like
to generate foil captions by replacing only target
words which refer to visually salient objects. To
this end, given an image, we replace only those tar-
get words that occur in more than one MS-COCO
caption associated with that image. Moreover, we
want to use foils which are not visually present,
i.e. that refer to visual content not present in the
image. Hence, given an image, we only replace
a word with foils that are not among the labels
(objects) annotated in MS-COCO for that image.
We use the images from the MS-COCO training
and validation sets to generate our training and test
sets, respectively. We obtain 2,229,899 for train-
ing and 1,097,012 captions for testing.

4. Mining the hardest foil caption for
each image To eliminate possible visual-language
dataset bias, out of all foil captions generated in
step 3, we select only the hardest one. For this pur-
pose, we need to model the visual-language bias
of the dataset. To this end, we use Neuraltalk3

3https://github.com/karpathy/
neuraltalk

(Karpathy and Fei-Fei, 2015), one of the state-
of-the-art image captioning systems, pre-trained
on MS-COCO. Neuraltalk is based on an LSTM
which takes as input an image and generates a sen-
tence describing its content. We obtain a neural
network N that implicitly represents the visual-
language bias through its weights. We use N to
approximate the conditional probability of a cap-
tion C given a dataset T and and an image I
(P (C|I, T)). This is obtained by simply using the
loss l(C,N (I)) i.e., the error obtained by compar-
ing the pseudo-ground truth C with the sentence
predicted by N : P (C|I, T) = 1 − l(C,N (I))
(we refer to (Karpathy and Fei-Fei, 2015) for more
details on how l() is computed). P (C|I, T) is
used to select the hardest foil among all the pos-
sible foil captions, i.e. the one with the highest
probability according to the dataset bias learned by
N . Through this process, we obtain 197,788 and
99,480 original::foil caption pairs for the training
and test sets, respectively. None of the target::foil
word pairs are filtered out by this mining process.

The final FOIL-COCO dataset consists of
297,268 datapoints (197,788 in training and
99,480 in test set). All the 11 MS-COCO supercat-
egories are represented in our dataset and contain
73 categories from the 91 MS-COCO ones (4.8
categories per supercategory on average.) Further
details are reported in Table 1.

4 Experiments and Results

We conduct three tasks, as presented below:

Task 1 (T1): Correct vs. foil classification
Given an image and a caption, the model is asked
to mark whether the caption is correct or wrong.
The aim is to understand whether LaVi models can
spot mismatches between their coarse representa-
tions of language and visual input.

Task 2 (T2): Foil word detection Given an im-
age and a foil caption, the model has to detect the
foil word. The aim is to evaluate the understanding
of the system at the word level. In order to system-
atically check the system’s performance with dif-
ferent prior information, we test two different set-

258

Figure 2: The main aspects of the foil caption generation process. Left column: some of the original
COCO captions associated with an image. In bold we highlight one of the target words (bicycle), chosen
because it is mentioned by more than one annotator. Middle column: For each original caption and each
chosen target word, different foil captions are generated by replacing the target word with all possible
candidate foil replacements. Right column: A single caption is selected amongst all foil candidates. We
select the ‘hardest’ caption, according to Neuraltalk model, trained using only the original captions.

tings: the foil has to be selected amongst (a) only
the nouns or (b) all content words in the caption.

Task 3 (T3): Foil word correction Given an
image, a foil caption and the foil word, the model
has to detect the foil and provide its correction.
The aim is to check whether the system’s visual
representation is fine-grained enough to be able
to extract the information necessary to correct the
error. For efficiency reasons, we operationalise
this task by asking models to select a correction
from the set of target words, rather than the whole
dataset vocabulary (viz. more than 10K words).

4.1 Models
We evaluate both VQA and IC models against our
tasks. For the former, we use two of the three mod-
els evaluated in (Goyal et al., 2016a) against a bal-
anced VQA dataset. For the latter, we use the mul-
timodal bi-directional LSTM, proposed in (Wang
et al., 2016), and adapted for our tasks.

LSTM + norm I: We use the best performing
VQA model in (Antol et al., 2015) (deeper LSTM
+ norm I). This model uses a two stack Long-
Short Term Memory (LSTM) to encode the ques-
tions and the last fully connected layer of VG-
GNet to encode images. Both image embedding
and caption embedding are projected into a 1024-
dimensional feature space. Following (Antol et al.,
2015), we have normalised the image feature be-
fore projecting it. The combination of these two

projected embeddings is performed by a point-
wise multiplication. The multi-model represen-
tation thus obtained is used for the classification,
which is performed by a multi-layer perceptron
(MLP) classifier.

HieCoAtt: We use the Hierarchical Co-
Attention model proposed by (Lu et al., 2016)
that co-attends to both the image and the question
to solve the task. In particular, we evaluate the
‘alternate’ version, i.e. the model that sequentially
alternates between generating some attention over
the image and question. It does so in a hierarchical
way by starting from the word-level, then going
to the phrase and then to the entire sentence-level.
These levels are combined recursively to produce
the distribution over the foil vs. correct captions.

IC-Wang: Amongst the IC models, we choose
the multimodal bi-directional LSTM (Bi-LSTM)
model proposed in (Wang et al., 2016). This
model predicts a word in a sentence by considering
both the past and future context, as sentences are
fed to the LSTM in forward and backward order.
The model consists of three modules: a CNN for
encoding image inputs, a Text-LSTM (T-LSTM)
for encoding sentence inputs, a Multimodal LSTM
(M-LSTM) for embedding visual and textual vec-
tors to a common semantic space and decoding to
sentence. The bidirectional LSTM is implemented
with two separate LSTM layers.

259

Baselines: We compare the SoA models above
against two baselines. For the classification task,
we use a Blind LSTM model followed by a fully
connected layer and softmax and train it only on
captions as input to predict the answer. In addition,
we evaluate the CNN+LSTM model, where visual
and textual features are simply concatenated.

The models at work on our three tasks For the
classification task (T1), the baselines and VQA
models can be applied directly. We adapt the gen-
erative IC model to perform the classification task
as follows. Given a test image I and a test cap-
tion, for each word wt in the test caption, we
remove the word and use the model to gener-
ate new captions in which the wt has been re-
placed by the word vt predicted by the model
(w1,...,wt−1, vt, wt−1,...,wn). We then compare
the conditional probability of the test caption with
all the captions generated from it by replacing wt
with vt. When all the conditional probabilities of
the generated captions are lower than the one as-
signed to the test caption the latter is classified
as good, otherwise as foil. For the other tasks,
the models have been trained on T1. To perform
the foil word detection task (T2), for the VQA
models, we apply the occlusion method. Follow-
ing (Goyal et al., 2016b), we systematically oc-
clude subsets of the language input, forward prop-
agate the masked input through the model, and
compute the change in the probability of the an-
swer predicted with the unmasked original input.
For the IC model, similarly to T1, we sequentially
generate new captions from the foil one by replac-
ing, one by one, the words in it and computing the
conditional probability of the foil caption and the
one generated from it. The word whose replace-
ment generate the caption with the highest con-
ditional probabilities is taken to be the foil word.
Finally, to evaluate the models on the error cor-
rection task (T3), we apply the linear regression
method over all the target words and select the tar-
get word which has the highest probability of mak-
ing that wrong caption correct with respect to the
given image.

Upper-bound Using Crowdflower, we collected
human answers from 738 native English speak-
ers for 984 image-caption pairs randomly selected
from the test set. Subjects were given an image
and a caption and had to decide whether it was cor-
rect or wrong (T1). If they thought it was wrong,

they were required to mark the error in the cap-
tion (T2). We collected 2952 judgements (i.e. 3
judgements per pair and 4 judgements per rater)
and computed human accuracy in T1 when con-
sidering as answer (a) the one provided by at least
2 out of 3 annotators (majority) and (b) the one
provided by all 3 annotators (unanimity). The
same procedure was adopted for computing ac-
curacies in T2. Accuracies in both T1 an T2 are
reported in Table 2. As can be seen, in the ma-
jority setting annotators are quasi-perfect in classi-
fying captions (92.89%) and detecting foil words
(97.00%). Though lower, accuracies in the una-
nimity setting are still very high, with raters pro-
viding the correct answer in 3 out of 4 cases in
both tasks. Hence, although we have collected hu-
man answers only on a rather small subset of the
test set, we believe their results are representative
of how easy the tasks are for humans.

4.2 Results

As shown in Table 2, the FOIL-COCO dataset
is challenging. On T1, for which the chance
level is 50.00%, the ‘blind’, language-only model,
does badly with an accuracy of 55.62% (25.04%
on foil captions), demonstrating that language
bias is minimal. By adding visual information,
CNN+LSTM, the overall accuracy increases by
5.45% (7.94% on foil captions.) reaching 61.07%
(resp. 32.98%). Both SoA VQA and IC models
do significantly worse than humans on both T1
and T2. The VQA systems show a strong bias
towards correct captions and poor overall perfor-
mance. They only identify 34.51% (LSTM +norm
I) and 36.38% (HieCoAtt) of the incorrect cap-
tions (T1). On the other hand, the IC model tends
to be biased toward the foil captions, on which it
achieves an accuracy of 45.44%, higher than the
VQA models. But the overall accuracy (42.21%)
is poorer than the one obtained by the two base-
lines. On the foil word detection task, when con-
sidering only nouns as possible foil word, both the
IC and the LSTM+norm I models perform close
to chance level, and the HieCoAtt performs some-
what better, reaching 38.79%. Similar results are
obtained when considering all words in the caption
as possible foil. Finally, the VQA models’ accu-
racy on foil word correction (T3) is extremely low,
at 4.7% (LSTM +norm I) and 4.21% (HieCoAtt).
The result on T3 makes it clear that the VQA sys-
tems are unable to extract from the image rep-

260

resentation the information needed to correct the
foil: despite being told which element in the cap-
tion is wrong, they are not able to zoom into the
correct part of the image to provide a correction, or
if they are, cannot name the object in that region.
The IC model performs better compared to the
other models, having an accuracy that is 20,78%
higher than chance level.

T1: Classification task
Overall Correct Foil

Blind 55.62 86.20 25.04
CNN+LSTM 61.07 89.16 32.98
IC-Wang 42.21 38.98 45.44
LSTM + norm I 63.26 92.02 34.51
HieCoAtt 64.14 91.89 36.38
Human (majority) 92.89 91.24 94.52
Human (unanimity) 76.32 73.73 78.90

T2: Foil word detection task
nouns all content words

Chance 23.25 15.87
IC-Wang 27.59 23.32
LSTM + norm I 26.32 24.25
HieCoAtt 38.79 33.69
Human (majority) 97.00
Human (unanimity) 73.60

T3: Foil word correction task
all target words

Chance 1.38
IC-Wang 22.16
LSTM + norm I 4.7
HieCoAtt 4.21

Table 2: T1: Accuracy for the classification task,
relatively to all image-caption pairs (overall) and
by type of caption (correct vs. foil); T2: Accu-
racy for the foil word detection task, when the foil
is known to be among the nouns only or when it
is known to be among all the content words; T3:
Accuracy for the foil word correction task when
the correct word has to be chosen among any of
the target words.

5 Analysis

We performed a mixed-effect logistic regression
analysis in order to check whether the behavior
of the best performing models in T1, namely the
VQA models, can be predicted by various linguis-

tic variables. We included: 1) semantic similar-
ity between the original word and the foil (com-
puted as the cosine between the two corresponding
word2vec embeddings (Mikolov et al., 2013));
2) frequency of original word in FOIL-COCO cap-
tions; 3) frequency of the foil word in FOIL-
COCO captions; 4) length of the caption (number
of words). The mixed-effect model was performed
to get rid of possible effects due to either object
supercategory (indoor, food, vehicle, etc.) or tar-
get::foil pair (e.g., zebra::giraffe, boat::airplane,
etc.). For both LSTM + norm I and HieCoAtt,
word2vec similarity, frequency of the original
word, and frequency of the foil word turned out
to be highly reliable predictors of the model’s re-
sponse. The higher the values of these variables,
the more the models tend to provide the wrong
output. That is, when the foil word (e.g. cat) is
semantically very similar to the original one (e.g.
dog), the models tend to wrongly classify the cap-
tion as ‘correct’. The same holds for frequency
values. In particular, the higher the frequency of
both the original word and the foil one, the more
the models fail. This indicates that systems find it
difficult to distinguish related concepts at the text-
vision interface, and also that they may tend to
be biased towards frequently occurring concepts,
‘seeing them everywhere’ even when they are not
present in the image. Caption length turned out to
be only a partially reliable predictor in the LSTM
+ norm I model, whereas it is a reliable predictor
in HieCoAtt. In particular, the longer the caption,
the harder for the model to spot that there is a foil
word that makes the caption wrong.

As revealed by the fairly high variance ex-
plained by the random effect related to target::foil
pairs in the regression analysis, both models per-
form very well on some target::foil pairs, but
fail on some others (see leftmost part of Table 4
for same examples of easy/hard target::foil pairs).
Moreover, the variance explained by the random
effect related to object supercategory is reported in
Table 3. As can be seen, for some supercategories
accuracies are significatively higher than for oth-
ers (compare, e.g., ‘electronic’ and ‘outdoor’).

In a separate analysis, we also checked whether
there was any correlation between results and the
position of the foil in the sentence, to ensure the
models did not profit from any undesirable arti-
facts of the data. We did not find any such corre-
lation.

261

Super-category No. of object
No. of foil
captions

Acc. using
LSTM + norm I

Acc. using
HieCoAtt

outdoor 2 107 2.80 0.93
food 9 10407 22.00 26.59

indoor 6 4911 30.74 27.97
appliance 5 2811 32.72 34.54

sports 10 16276 31.57 31.61
animal 10 21982 39.03 43.18
vehicle 8 16514 34.38 40.09

furniture 5 13625 33.27 33.13
accessory 5 3040 49.53 31.80
electronic 6 5615 45.82 43.47
kitchen 7 4192 38.19 45.34

Table 3: Classification Accuracy of foil captions by Super Categories (T1). The No. of the objects and
the No. of foil captions refer to the test set. The training set has a similar distribution.

Top-5 Bottom-5
T1: LSTM + norm I

racket::glove 100 motorcycle::airplane 0
racket::kite 97.29 bicycle::airplane 0
couch::toilet 97.11 drier::scissors 0
racket::skis 95.23 bus::airplane 0.35
giraffe::sheep 95.09 zebra::giraffe 0.43

T1: HieCoAtt
tie::handbag 100 drier::scissors 0
snowboard::glove 100 fork::glass 0
racket::skis 100 handbag::tie 0
racket::glove 100 motorcycle::airplane 0
backpack::handbag 100 train::airplane 0

Top-5 Bottom-5
T2: LSTM + norm I

drier::scissors 100 glove::skis 0
zebra::giraffe 88.98 snowboard::racket 0
boat::airplane 87.87 donut::apple 0
truck::airplane 85.71 glove::surfboard 0
train::airplane 81.93 spoon::bottle 0

T2: HieCoAtt
zebra::elephant 94.92 drier::scissors 0
backpack::handbag 94.44 handbag::tie 0
cow::zebra 93.33 broccoli:orange 1.47
bird::sheep 93.11 zebra::giraffe 1.96
orange::carrot 92.37 boat::airplane 2.09

Table 4: Easiest and hardest target::foil pairs: T1 (caption classification) and T2 (foil word detection).

To better understand results on T2, we per-
formed an analysis investigating the performance
of the VQA models on different target::foil pairs.
As reported in Table 4 (right), both models per-
form nearly perfectly with some pairs and very
badly with others. At first glance, it can be no-
ticed that LSTM + norm I is very effective with
pairs involving vehicles (airplane, truck, etc.),
whereas HieCoAtt seems more effective with pairs
involving animate nouns (i.e. animals), though
more in depth analysis is needed on this point.
More interestingly, some pairs that are found
to be predicted almost perfectly by LSTM + I
norm, namely boat::airplane, zebra::giraffe, and
drier::scissors, turn out to be among the Bottom-5
cases in HieCoAtt. This suggests, on the one hand,
that the two VQA models use different strategies
to perform the task. On the other hand, it shows
that our dataset does not contain cases that are a
priori easy for any model.

The results of IC-Wang on T3 are much higher

than LSTM + norm I and HieCoAtt, although it is
outperformed by or is on par with HieCoAtton on
T1-T2. Our interpretation is that this behaviour is
related to the discriminative/generative nature of
our tasks. Specifically, T1 and T2 are discrimina-
tive tasks and LSTM + norm I and HieCoAtt are
discriminative models. Conversely, T3 is a gen-
erative task (a word needs to be generated) and
IC-Wang is a generative model. It would be in-
teresting to test other IC models on T3 and com-
pare their results against the ones reported here.
However, note that IC-Wang is ‘tailored’ for T3
because it takes as input the whole sentence (mi-
nus the word to be generated), while common se-
quential IC approaches can only generate a word
depending on the previous words in the sentence.

As far as human performance is concerned,
both T1 and T2 turn out to be extremely easy.
In T1, image-caption pairs were correctly judged
as correct/wrong in overall 914 out of 984 cases
(92.89%) in the majority setting. In the unanim-

262

ity setting, the correct response was provided in
751 out of 984 cases (76.32%). Judging foil cap-
tions turns out to be slightly easier than judging
correct captions in both settings, probably due to
the presence of typos and misspellings that some-
times occur in the original caption (e.g. raters
judge as wrong the original caption People playing
ball with a drown and white dog, where ‘brown’
was misspelled as ‘drown’). To better under-
stand which factors contribute to make the task
harder, we qualitatively analyse those cases where
all annotators provided a wrong judgement for an
image-caption pair. As partly expected, almost
all cases where original captions (thus correct for
the given image) are judged as being wrong are
cases where the original caption is indeed incor-
rect. For example, a caption using the word ‘mo-
torcycle’ to refer to a bicycle in the image is
judged as wrong. More interesting are those cases
where all raters agreed in considering as correct
image-caption pairs that are instead foil. Here, it
seems that vagueness as well as certain metaphor-
ical properties of language are at play: human
annotators judged as correct a caption describing
Blue and banana large birds on tree with metal pot
(see Fig 3, left), where ‘banana’ replaced ‘orange’.
Similarly, all raters judged as correct the caption A
cat laying on a bed next to an opened keyboard
(see Fig 3, right), where the cat is instead laying
next to an opened laptop.

Focusing on T2, it is interesting to report that
among the correctly-classified foil cases, annota-
tors provided the target word in 97% and 73.6%
of cases in the majority and unanimity setting, re-
spectively. This further indicates that finding the
foil word in the caption is a rather trivial task for
humans.

Figure 3: Two cases of foil image-caption pairs
that are judged as correct by all annotators.

6 Conclusion

We have introduced FOIL-COCO, a large dataset
of images associated with both correct and foil
captions. The error production is automatically
generated, but carefully thought out, making the
task of spotting foils particularly challenging. By
associating the dataset with a series of tasks, we al-
low for diagnosing various failures of current LaVi
systems, from their coarse understanding of the
correspondence between text and vision to their
grasp of language and image structure.

Our hypothesis is that systems which, like hu-
mans, deeply integrate the language and vision
modalities, should spot foil captions quite easily.
The SoA LaVi models we have tested fall through
that test, implying that they fail to integrate the two
modalities. To complete the analysis of these re-
sults, we plan to carry out a further task, namely
ask the system to detect in the image the area that
produces the mismatch with the foil word (the red
box around the bird in Figure 1.) This extra step
would allow us to fully diagnose the failure of the
tested systems and confirm what is implicit in our
results from task 3: that the algorithms are unable
to map particular elements of the text to their vi-
sual counterparts. We note that the addition of this
extra step will move this work closer to the tex-
tual/visual explanation research (e.g., (Park et al.,
2016; Selvaraju et al., 2016)). We will then have
a pipeline able to not only test whether a mistake
can be detected, but also whether the system can
explain its decision: ‘the wrong word is dog be-
cause the cyclists are in fact approaching a bird,
there, in the image’.

LaVi models are a great success of recent re-
search, and we are impressed by the amount of
ideas, data and models produced in this stimulat-
ing area. With our work, we would like to push the
community to think of ways that models can bet-
ter merge language and vision modalites, instead
of merely using one to supplement the other.

Acknowledgments

We are greatful to the Erasmus Mundus European
Master in Language and Communication Tech-
nologies (EM LCT) for the scholarship provided
to the third author. Moreover, we gratefully ac-
knowledge the support of NVIDIA Corporation
with the donation of the GPUs used in our re-
search.

263

References
Aishwarya Agrawal, Dhruv Batra, and Devi Parikh.

2016. Analyzing the behavior of visual question an-
swering models. In Proceedings of Empirical Meth-
ods in Natural Language Processing (EMNLP).

Peter Anderson, Basura Fernando, Mark Johnson, and
Stephen Gould. 2016. SPICE: Semantic Proposi-
tional Image Caption Evaluation. In In Proceed-
ings of the European Conference on Computer Vi-
sion (ECCV).

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C. Lawrence Zitnick,
and Devi Parikh. 2015. VQA: Visual Question
Answering. In International Conference on Com-
puter Vision (ICCV). https://github.com/
VT-vision-lab/VQA_LSTM_CNN.

Raffaella Bernardi, Ruket Cakici, Desmond Elliott,
Aykut Erdem, Erkut Erdem, Nazli Ikizler-Cinbis,
Frank Keller, Adrian Muscat, and Barbara Plank.
2016. Automatic description generation from im-
ages: A survey of models, datasets, and evaluation
measures. J. Artif. Intell. Res.(JAIR) 55:409–442.

Xinlei Chen and C Lawrence Zitnick. 2015. Mind’s
eye: A recurrent visual representation for image cap-
tion generation. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition.
pages 2422–2431.

Nan Ding, Sebastian Goodman, Fei Sha, and Radu
Soricut. 2016. Understanding image and text simul-
taneously: a dual vision-language machine compre-
hension task. arXiv preprint arXiv:1612.07833 .

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadar-
rama, Marcus Rohrbach, Subhashini Venugopalan,
Kate Saenko, and Trevor Darrell. 2015. Long-term
recurrent convolutional networks for visual recogni-
tion and description. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion. pages 2625–2634.

Desmond Elliott and Frank Keller. 2014. Comparing
automatic evaluation measures for image descrip-
tion. In In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics: Short Papers. pages 452–457.

Hao Fang, Saurabh Gupta, Forrest Iandola, Rupesh K
Srivastava, Li Deng, Piotr Dollár, Jianfeng Gao, Xi-
aodong He, Margaret Mitchell, John C Platt, et al.
2015. From captions to visual concepts and back. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pages 1473–1482.

Haoyuan Gao, Junhua Mao, Jie Zhou, Zhiheng Huang,
Lei Wang, and Wei Xu. 2015. Are you talking to a
machine? dataset and methods for multilingual im-
age question. In Advances in Neural Information
Processing Systems. pages 2296–2304.

Yash Goyal, Tejas Khot, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2016a. Making the
V in VQA Matter: Elevating the Role of Image Un-
derstanding in Visual Question Answering. arXiv
preprint arXiv:1612.00837 .

Yash Goyal, Akrit Mohapatra, Devi Parikh, and Dhruv
Batra. 2016b. Towards Transparent AI Systems: In-
terpreting Visual Question Answering Models . In
In Proceedings of ICML Visualization Workshop.

Micah Hodosh and Julia Hockenmaier. 2016. Focused
evaluation for image description with binary forced-
choice tasks. In Proceedings of the 5th Workshop on
Vision and Language (VL’16).

Micah Hodosh, Peter Young, and Julia Hockenmaier.
2013. Framing image description as a ranking task:
Data, models and evaluation metrics. Journal of Ar-
tificial Intelligence Research 47:853–899.

Allan Jabri, Armand Joulin, and Laurens van der
Maaten. 2016. Revisiting visual question answering
baselines. In Proceedings of the European Confer-
ence on Computer Vision (ECCV). pages 727–739.

Justin Johnson, Bharath Hariharan, Laurens van der
Maaten, Li Fei-Fei, C. Lawrence Zitnick, and Ross
Girshick. 2016. CLEVR: A Diagnostic Dataset
for Compositional Language and Elementary Visual
Reasoning. ArXiv:1612.06890.

Kushal Kafle and Christopher Kanan. 2016. Visual
question answering: Datasets, algorithms, and fu-
ture challenges. arXiv preprint arXiv:1610.01465 .

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pages
3128–3137.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft COCO:
Common Objects in Context. In European Confer-
ence on Computer Vision. Springer, pages 740–755.

Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi
Parikh. 2016. Hierarchical question-image co-
attention for visual question answering. In In Pro-
ceedings of NIPS 2016. https://github.
com/jiasenlu/HieCoAttenVQA.

Mateusz Malinowski and Mario Fritz. 2014. A multi-
world approach to question answering about real-
world scenes based on uncertain input. In Advances
in Neural Information Processing Systems. pages
1682–1690.

Mateusz Malinowski, Marcus Rohrbach, and Mario
Fritz. 2015. Ask your neurons: A neural-based ap-
proach to answering questions about images. In
Proceedings of the IEEE International Conference
on Computer Vision. pages 1–9.

264

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata,
Trevor Darrell Bernt Schiele, and Marcus Rohrbach.
2016. Attentive explanations: Justifying decisions
and pointing to the evidence. ArXiv:1612.04757.

Mengye Ren, Ryan Kiros, and Richard Zemel. 2015.
Exploring models and data for image question an-
swering. In Advances in Neural Information Pro-
cessing Systems (NIPS 2015).

Ramprasaath R. Selvaraju, Abhishek Das, Ramakr-
ishna Vedantam, Michael Cogswell, Devi Parikh,
and Dhruv Batra. 2016. Grad-cam: Why did you say
that? visual explanations from deep networks via
gradient-based localization. ArXiv:1610.02391v2.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition. pages 3156–3164.

Cheng Wang, Haojin Yang, Christian Bartz, and
Christoph Meinel. 2016. Image captioning with
deep bidirectional LSTMs. In Proceedings of the
2016 ACM on Multimedia Conference. ACM, pages
988–997.

Qi Wu, Damien Teney, Peng Wang, Chunhua Shen,
Anthony Dick, and Anton van den Hengel. 2016.
Visual question answering: A survey of methods and
datasets. arXiv preprint arXiv:1607.05910 .

Peter Young, Alice Lai, Micah Hodosh, and Julia
Hockenmaier. 2014. From image descriptions to
visual denotations: New similarity metrics for se-
mantic inference over event descriptions. Transac-
tions of the Association for Computational Linguis-
tics 2:67–78.

Peng Zhang, Yash Goyal, Douglas Summers-Stay,
Dhruv Batra, and Devi Parikh. 2016. Yin and yang:
Balancing and answering binary visual questions. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pages 5014–5022.

Bolei Zhou, Yuandong Tian, Sainbayar Sukhbaatar,
Arthur Szlam, and Rob Fergus. 2015. Simple base-
line for visual question answering. arXiv preprint
arXiv:1512.02167 .

265

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 266–276
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1025

VERB PHYSICS: Relative Physical Knowledge of Actions and Objects

Maxwell Forbes Yejin Choi
Paul G. Allen School of Computer Science & Engineering

University of Washington
{mbforbes,yejin}@cs.washington.edu

Abstract

Learning commonsense knowledge from
natural language text is nontrivial due to
reporting bias: people rarely state the ob-
vious, e.g., “My house is bigger than me.”
However, while rarely stated explicitly,
this trivial everyday knowledge does influ-
ence the way people talk about the world,
which provides indirect clues to reason
about the world. For example, a statement
like, “Tyler entered his house” implies that
his house is bigger than Tyler.

In this paper, we present an approach to
infer relative physical knowledge of ac-
tions and objects along five dimensions
(e.g., size, weight, and strength) from un-
structured natural language text. We frame
knowledge acquisition as joint inference
over two closely related problems: learn-
ing (1) relative physical knowledge of ob-
ject pairs and (2) physical implications
of actions when applied to those object
pairs. Empirical results demonstrate that it
is possible to extract knowledge of actions
and objects from language and that joint
inference over different types of knowl-
edge improves performance.

1 Introduction

Reading and reasoning about natural language text
often requires trivial knowledge about everyday
physical actions and objects. For example, given
a sentence “Shanice could fit the trophy into the
suitcase,” we can trivially infer that the trophy
must be smaller than the suitcase even though it
is not stated explicitly. This reasoning requires
knowledge about the action “fit”—in particular,
typical preconditions that need to be satisfied in
order to perform the action. In addition, reasoning

Natural language clues

approx max width

Relative physical knowledge about objects

Physical implications of actions

“She barged into the stable.”

HUMAN STABLE

size: smaller

weight: lighter
speed: faster

strength: n/a

rigidness: less rigid

x barged into y

⇒ x is smaller than y

⇒ x is lighter than y

⇒ x is faster than y

⇒ x is less rigid than y

Figure 1: An overview of our approach. A verb’s
usage in language (top) implies physical relations
between objects it takes as arguments. This allows
us to reason about properties of specific objects
(middle), as well as the knowledge implied by the
verb itself (bottom).

about the applicability of various physical actions
in a given situation often requires background
knowledge about objects in the world, for exam-
ple, that people are usually smaller than houses,
that cars generally move faster than humans walk,
or that a brick probably is heavier than a feather.

In fact, the potential use of such knowledge
about everyday actions and objects can go beyond
language understanding and reasoning. Many
open challenges in computer vision and robotics
may also benefit from such knowledge, as shown

266

https://doi.org/10.18653/v1/P17-1025

in recent work that requires visual reasoning and
entailment (Izadinia et al., 2015; Zhu et al., 2014).
Ideally, an AI system should acquire such knowl-
edge through direct physical interactions with the
world. However, such a physically interactive sys-
tem does not seem feasible in the foreseeable fu-
ture.

In this paper, we present an approach to ac-
quire trivial physical knowledge from unstructured
natural language text as an alternative knowledge
source. In particular, we focus on acquiring rel-
ative physical knowledge of actions and objects
organized along five dimensions: size, weight,
strength, rigidness, and speed. Figure 1 illustrates
example knowledge of (1) relative physical rela-
tions of object pairs and (2) physical implications
of actions when applied to those object pairs.

While natural language text is a rich source to
obtain broad knowledge about the world, compil-
ing trivial commonsense knowledge from unstruc-
tured text is a nontrivial feat. The central challenge
lies in reporting bias: people rarely states the obvi-
ous (Gordon and Van Durme, 2013; Sorower et al.,
2011; Misra et al., 2016; Zhang et al., 2017), since
it goes against Grice’s conversational maxim on
the quantity of information (Grice, 1975).

In this work, we demonstrate that it is possi-
ble to overcome reporting bias and still extract the
unspoken knowledge from language. The key in-
sight is this: there is consistency in the way people
describe how they interact with the world, which
provides vital clues to reverse engineer the com-
mon knowledge shared among people. More con-
cretely, we frame knowledge acquisition as joint
inference over two closely related puzzles: in-
ferring relative physical knowledge about object
pairs while simultaneously reasoning about physi-
cal implications of actions.

Importantly, four of five dimensions of knowl-
edge in our study—weight, strength, rigidness,
and speed—are either not visual or not easily rec-
ognizable by image recognition using currently
available computer vision techniques. Thus, our
work provides unique value to complement re-
cent attempts to acquire commonsense knowledge
from web images (Izadinia et al., 2015; Bagher-
inezhad et al., 2016; Sadeghi et al., 2015).

In sum, our contributions are threefold:

• We introduce a new task in the domain
of commonsense knowledge extraction from
language, focusing on the physical implica-

tions of actions and the relative physical re-
lations among objects, organized along five
dimensions.
• We propose a model that can infer relations

over grounded object pairs together with first
order relations implied by physical verbs.
• We develop a new dataset VERBPHYSICS

that compiles crowdsourced knowledge of
actions and objects.1

The rest of the paper is organized as follows. We
first provide the formal definition of knowledge
we aim to learn in Section 2. We then describe
our data collection in Section 3 and present our in-
ference model in Section 4. Empirical results are
given in Section 5 and discussed in Section 6. We
review related work in Section 7 and conclude in
Section 8.

2 Representation of Relative Physical
Knowledge

2.1 Knowledge Dimensions
We consider five dimensions of relative physical
knowledge in this work: size, weight, strength,
rigidness, and speed. “Strength” in our work
refers to the physical durability of an object (e.g.,
“diamond” is stronger than “glass”), while “rigid-
ness” refers to the physical flexibility of an object
(e.g., “glass” is more rigid than a “wire”). When
considered in verb implications, size, weight,
strength, and rigidness concern individual-level
semantics; the relative properties implied by verbs
in these dimensions are true in general. On the
other hand, speed concerns stage-level semantics;
its implied relations hold only during a window
surrounding the verb.2

2.2 Relative physical knowledge
Let us first consider the problem of representing
relative physical knowledge between two objects.
We can write a single piece of knowledge like “A
person is larger than a basketball” as

person >size basketball

Any propositional statement can have exceptions
and counterexamples. Moreover, we need to cope

1https://uwnlp.github.io/verbphysics/
2We thank reviewer two for pointing us to this terminol-

ogy and for the illustrative example: “When a person throws a
ball, the ball is faster than the person (stage-level) but it’s not
true in general that balls are faster than people (individual-
level).”

267

approx max width

action

theme
Iagent,theme

agent goal
Itheme,goal

Iagent,goal

“He threw the ball”

Iagent,theme

x threw y

⇒ x is larger than y
⇒ x is heavier than y
⇒ x is slower than y

“We walked into the house”

x walked into y

⇒ x is smaller than y
⇒ x is lighter than y
⇒ x is faster than y

Iagent,goal
“I squashed the bug with my boot”

squashed x with y

⇒ x is smaller than y
⇒ x is lighter than y

⇒ x is weaker than y

Itheme,goal

⇒ x is less rigid than y

⇒ x is slower than y

Figure 2: Example physical implications represented as frame relations between a pair of arguments.

with uncertainties involved in knowledge acquisi-
tion. Therefore, we assume each piece of knowl-
edge is associated with a probability distribution.
More formally, given objects x and y, we define a
random variable Oax,y whose range is {>, <,'}
with respect to a knowledge dimension a ∈
{SIZE,WEIGHT,STRENGTH,RIGIDNESS,SPEED}
so that:

P(Oax,y = r), r ∈ {>, <,'}.

This immediately provides two simple properties:

P(Ox,y = >) = P(Oy,x = <)

P(Ox,x = ') = 1

2.3 Physical Implications of Verbs
Next we consider representing relative physical
implications of actions applied over two objects.
For example, consider an action frame “x threw
y.” In general, following implications are likely to
be true:

“x threw y” =⇒ x >size y

“x threw y” =⇒ x >weight y

“x threw y” =⇒ x <speed y

Again, in order to cope with exceptions and uncer-
tainties, we assume a probability distribution asso-
ciated with each implication. More formally, we
define a random variable F av to denote the impli-
cation of the action verb v when applied over its
arguments x and y with respect to a knowledge di-
mension a so that:

P(F size
threw = >) := P(“x threw y”⇒ x >size y)

P(Fwgt
threw = >) := P(“x threw y”⇒ x >wgt y)

where the range of F sizethrew is {>, <,'}. Intu-
itively, F sizethrew represents the likely first order re-
lation implied by “throw” over ungrounded (i.e.,
variable) object pairs.

The above definition assumes that there is only a
single implication relation for any given verb with
respect to a specific knowledge dimension. This
is generally not true, since a verb, especially a
common action verb, can often invoke a number
of different frames according to frame semantics
(Fillmore, 1976). Thus, given a number of differ-
ent frame relations v1...vT associated with a verb
v, we define random variables F with respect to
a specific frame relation vt, i.e., F avt . We use this
notation going forward.

Frame Perspective on Verb Implications: Fig-
ure 2 illustrates the frame-centric view of physical
implication knowledge we aim to learn. Impor-
tantly, the key insight of our work is inspired by
Fillmore’s original manuscript on frame seman-
tics (Fillmore, 1976). Fillmore has argued that
“frames”—the contexts in which utterances are
situated—should be considered as a third primi-
tive of describing a language, along with a gram-
mar and lexicon. While existing frame annotations
such as FrameNet (Baker et al., 1998), PropBank
(Palmer et al., 2005), and VerbNet (Kipper et al.,
2000) provide rich frame knowledge associated

268

with a predicate, none of them provide the exact
kind of physical implications we consider in our
paper. Thus, our work can potentially contribute
to these resources by investigating new approaches
to automatically recover richer frame knowledge
from language. In addition, our work is motivated
by the formal semantics of Dowty (1991), as the
task of learning verb implications is essentially
that of extracting lexical entailments for verbs.

3 Data and Crowdsourced Knowledge

Action Verbs: We pick 50 classes of Levin
verbs from both “alternation classes” and “verb
classes” (Levin, 1993), which corresponds to
about 1100 unique verbs. We sort this list by fre-
quency of occurrence in our frame patterns in the
Google Syntax Ngrams corpus (Goldberg and Or-
want, 2013) and pick the top 100 verbs.

Action Frames: Figure 2 illustrates examples
of action frame relations. Because we consider
implications over pairwise argument relations for
each frame, there are sometimes multiple frame
relations we consider for a single frame. To enu-
merate action frame relations for each verb, we use
syntactic patterns based on dependency parse by
extracting the core components (subject, verb, di-
rect object, prepositional object) of an action, then
map the subject to an agent, the direct object to a
theme, and the prepositional object to a goal.3 For
those frames that involve an argument in a prepo-
sitional phrase, we create a separate frame for each
preposition based on the statistics observed in the
Google Syntax Ngram corpus.

Because the syntax ngram corpus provides only
tree snippets without context, this way of enu-
merating potential frame patterns tend to over-
generate. Thus we refine our prepositions for each
frame by taking either the intersection or union
with the top 5 Google Surface Ngrams (Michel
et al., 2011), depending on whether the frame was
under- or over-generating. We also add an ad-
ditional crowdsourcing step where we ask crowd
workers to judge whether a frame pattern with a
particular verb and preposition could plausibly be
found in a sentence. This process results in 813
frame templates, an average of 8.13 per verb.

3Future research could use an SRL parser instead. We use
dependency parse to benefit from the Google Syntax Ngram
dataset that provides language statistics over an extremely
large corpus, which does not exist for SRL.

Data collected
Total Seed / dev / test

Verbs5% 100 5 / 45 / 50
Verbs20% ” 20 / 30 / 50
Frames5% 813 65 / 333 / 415
Frames20% ” 188 / 210 / 415
Object pairs5% 3656 183 / 1645 / 1828
Object pairs20% ” 733 / 1096 / 1828

Per attribute frame statistics
Agreement Counts (usable)
2/3 3/3 Verbs Frames

size 0.91 0.41 96 615
weight 0.90 0.33 97 562
strength 0.88 0.25 95 465
rigidness 0.87 0.26 89 432
speed 0.93 0.36 88 420

Per attribute object pair statistics
Agreement Counts (usable)
2/3 3/3 Distinct objs Pairs

size 0.95 0.59 210 2552
weight 0.95 0.56 212 2586
strength 0.92 0.43 208 2335
rigidness 0.91 0.39 212 2355
speed 0.90 0.38 209 2184

Table 1: Statistics of crowdsourced knowledge.
Frames are partitioned by verb. Counts are shown
for usable data, which includes only ≥ 2/3 agree-
ment and removes all with “no relation.” Each pre-
diction task (frames or object pairs) is given 5% of
that domain’s data as seed. We compare models
using either 5% or 20% of the other domain’s data
as seed.

Object Pairs: To provide a source of ground
truth relations between objects, we select the ob-
ject pairs that occur in the 813 frame templates
with positive pointwise mutual information (PMI)
across the Google Syntax Ngram corpus. After
replacing a small set of “human” nouns with a
generic HUMAN object, filtering out nouns labeled
as abstract by WordNet (Miller, 1995), and distill-
ing all surface forms to their lemmas (also with
WordNet), the result is 3656 object pairs.

3.1 Crowdsourcing Knowledge

We collect human judgements of the frame knowl-
edge implications to use as a small set of seed
knowledge (5%), a development set (45%), and a
test set (50%). Crowd workers are given with a
frame template such as “x threw y,” and then asked
to list a few plausible objects (including people
and animals) for the missing slots (e.g., x and y).4

4This step is to prime them for thinking about the partic-
ular template; we do not use the objects they provided.

269

We then ask them to rate the general relationship
that the arguments of the frame exhibit with re-
spect to all knowledge dimensions (size, weight,
etc.). For each knowledge dimension, or attribute,
a, workers select an answer from (1) x >a y, (2)
x <a y, (3) x 'a y, or (4) no general relation.

We conduct a similar crowdsourcing step for
the set of object pairs. We ask crowd workers
to compare each of the 3656 object pairs along
the five knowledge dimensions we consider, se-
lecting an answer from the same options above as
with frames. We reserve 50% of the data as a test
set, and split the remainder up either 5% / 45%
or 20% / 30% (seed / development) to investigate
the effects of different seed knowledge sizes on the
model.

Statistics for the dataset are provided in Table 1.
About 90% of the frames as well as object pairs
had 2/3 agreement between workers. After remov-
ing frame/attribute combinations and object pairs
that received less than 2/3 agreement, or were se-
lected by at least 2/3 workers to have no relation,
we end up with roughly 400–600 usable frames
and 2100–2500 usable object pairs per attribute.

4 Model

We model knowledge acquisition as probabilistic
inference over a factor graph of knowledge. As
shown in Figure 3, the graph consists of multiple
substrates (page-wide boxes) corresponding to dif-
ferent knowledge dimensions (shown only three of
them —strength, size, weight—for brevity). Each
substrate consists of two types of sub-graphs: verb
subgraphs and object subgraphs, which are con-
nected through factors that quantify action–object
compatibilities. Connecting across substrates are
factors that model inter-dependencies across dif-
ferent knowledge dimensions. In what follows, we
describe each graph component.

4.1 Nodes

The factor graph contains two types of nodes in or-
der to capture two classes of knowledge. The first
type of nodes are object pair nodes. Each object
pair node is a random variable Oax,y which cap-
tures the relative strength of an attribute a between
objects x and y.

The second type of nodes are frame nodes. Each
frame node is a random variable F avt . This corre-
sponds to the verb v used in a particular type of
frame t, and captures the implied knowledge the

frame vt holds along an attribute a.
All random variables take on the values
{>, <,'}. For an object pair node Oax,y, the
value represents the belief about the relation be-
tween x and y along the attribute a. For a frame
node F avt , the value represents the belief about the
relation along the attribute a between any two ob-
jects that might be used in the frame vt.

We denote the sets of all object pair and frame
random variables O and F , respectively.

4.2 Action–Object Compatibility

The key aspect of our work is to reason about
two types of knowledge simultaneously: relative
knowledge of grounded object pairs, and implica-
tions of actions related to those objects. Thus we
connect the verb subgraphs and object subgraphs
through selectional preference factors ψs between
two such nodes Oax,y and F avt if we find evidence
from text that suggests objects x and y are used in
the frame vt. These factors encourage both ran-
dom variables to agree on the same value.

As an example, consider a node Osizep,b which
represents the relative size of a person and a bas-
ketball, and a node F sizethrewdobj

which represents the
relative size implied by an “x threw y” frame. If
we find significant evidence in text that “[person]
threw [basketball]” occurs, we would add a se-
lectional preference factor to connect Osizep,b with
F sizethrewdobj

and encourage them towards the same
value. This means that if it is discovered that peo-
ple are larger than basketballs (the value >), then
we would expect the frame “x threw y” to entail
x >size y (also the value >).

4.3 Semantic Similarities

Some frames have relatively sparse text evidences
to support their corresponding knowledge acqui-
sition. Thus, we include several types of factors
based on semantic similarities as described below.

Cross-Verb Frame Similarity: We add a group
of factors ψv between two verbs v and u (to con-
nect a specific frame of v with a corresponding
frame of u) based on the verb-level similarities.

Within-Verb Frame Similarity: Within each
verb v, which consists of a set of frame relations
v1, ...vT , we also include frame-level similarity
factors ψf between vi and vj . This gives us more
evidence over a broader range of frames when tex-
tual evidence might be sparse.

270

vsize
squish

vsize
throw

vsize
walk

vweight
throw

vweight
walk

…
… …

F size
throw1

F size
throw2

F size
throw3

F size
throw4

 f a o v

 s

 f

 v v

 a

 s

 s
 v

 a

 a

frames for vsize
throw

 o

 o

 s

h
a
rd

n
e
ss

random variable (RV)

group of RVs

factor connects RV

factors connect
 subset of RVs

verb similarity

frame similarity

object similarity

attribute similarity

selectional preference

 f

 a

 o

 v

 s
attribute subgraphs

subgraphs
object

verb subgraphs

si
z
e

w
e
ig

h
t

Osize
s,t

Osize
p,q

Osize
q,r

Osize
p,s

st
re

n
g
th

vstrength
squish

Ostrength
p,t Ostrength

p,q

Figure 3: High level view of the factor graph model. Performance on both learning relative knowledge
about objects (right), as well as entailed knowledge from verbs (center) via realized frames (left), is
improved by modeling their interplay (orange). Unary seed (ψseed) and embedding (ψemb) factors are
omitted for clarity.

Object Similarity: As with verbs, we add fac-
tors ψo that encourage similar pairs of objects to
take the same value. Given that each node rep-
resents a pair of objects, finding that x and y are
similar yields two main cases in how to add fac-
tors (aside from the trivial case where the variable
Oax,y is given a unary factor to encourage the value
').

1. If nodes Ox,z and Oy,z exist, we expect ob-
jects x and y to both have a similar relation
to z. We add a factor that encourages Ox,z
and Oy,z to take the same value. The same is
true if nodes Oz,x and Oz,y exist.

2. On the other hand, if nodesOx,z andOz,y ex-
ist, we expect these two nodes to reach the
opposite decision. In this case, we add a fac-
tor that encourages one node to take the value
> if the other prefers the value <, and vice
versa. (For the case of ', if one prefers that
value, then both should.)

4.4 Cross-Knowledge Correlation

Some knowledge dimensions, such as size and
weight, have a significant correlation in their im-
plied relations. For two such attributes a and b, if
the same frame F avi and F bvi exists in both graphs,

we add a factor ψa between them to push them to-
wards taking the same value.

4.5 Seed Knowledge

In order to kick off learning, we provide a small set
of seed knowledge among the random variables in
{O,F} with seed factors ψseed. These unary seed
factors push the belief for its associated random
variable strongly towards the seed label.

4.6 Potential Functions

Unary Factors: For all frame and object pair
random variables in the training set, we train a
maximum entropy classifier to predict the value
of the variable. We then use the probabilities of
the classifier as potentials for seed factors given to
all random variables in their class (frame or ob-
ject pair). Each log-linear classifier is trained sep-
arately per attribute on a featurized vector of the
variable:

P(r|Xa) ∝ ewa·f(Xa)

The feature function is defined differently accord-
ing to the node type:

f(Oap,q) := 〈g(p), g(q)〉
f(F avt) := 〈h(t), g(v), g(t)〉

271

Development Test
Algorithm size weight stren rigid speed overall size weight stren rigid speed overall
RANDOM 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

MAJORITY 0.38 0.41 0.42 0.18 0.83 0.43 0.35 0.35 0.43 0.20 0.88 0.44
EMB-MAXENT 0.62 0.64 0.60 0.83 0.83 0.69 0.55 0.55 0.59 0.79 0.88 0.66

OUR MODEL (A) 0.71 0.63 0.61 0.82 0.83 0.71 0.55 0.55 0.55 0.79 0.89 0.65
OUR MODEL (B) 0.75 0.68 0.68 0.82 0.78 0.74 0.74 0.71 0.65 0.80 0.87 0.75

Development Test
Algorithm size weight stren rigid speed overall size weight stren rigid speed overall
RANDOM 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

MAJORITY 0.50 0.54 0.51 0.50 0.53 0.51 0.51 0.55 0.52 0.49 0.50 0.51
EMB-MAXENT 0.68 0.66 0.64 0.67 0.65 0.66 0.71 0.67 0.64 0.65 0.63 0.66

OUR MODEL (A) 0.74 0.69 0.67 0.68 0.66 0.69 0.68 0.70 0.66 0.66 0.60 0.66
OUR MODEL (B) 0.75 0.74 0.71 0.68 0.66 0.71 0.75 0.76 0.72 0.65 0.61 0.70

Table 2: Accuracy of baselines and our model on both tasks. Top: frame prediction task; bottom:
object pair prediction task. In both tasks 5% of in-domain data (frames or object pairs, respectively) are
available as seed data. We compare providing the other type of data (object pairs or frames, respectively)
as seed knowledge, trying 5% (OUR MODEL (A)) and 20% (OUR MODEL (B)).

Here g(x) is the GloVe word embedding (Pen-
nington et al., 2014) for the word x (t is the frame
relation’s preposition, and g(t) is simply set to the
zero vector if there is no preposition) and h(t) is
a one-hot vector of the frame relation type. We
use GloVe vectors of 100 dimensions for verbs and
50 dimensions for objects and prepositions (the di-
mensions picked based on development set).

Binary Factors: In the case of all other factors,
we use a “soft 1” agreement matrix with strong
signal down the diagonals:




> ' <
> 0.7 0.1 0.2
' 0.15 0.7 0.15
< 0.2 0.1 0.7




4.7 Inference

After our full graph is constructed, we use belief
propagation to infer the assignments of frames and
object pairs not in our training data. Each mes-
sage µ is a vector where each element is the prob-
ability that a random variable takes on each value
x ∈ {>, <,'}. A message passed from a ran-
dom variable v to a neighboring factor f about
the value x is the product of the messages from
its other neighboring factors about x:

µv→f (x) ∝
∏

f ′∈N(v)\{f}
µf ′→v(x)

A message passed from a factor f with potential
ψ to a random variable v about its value x is a
marginalized belief about v taking value x from
the other neighboring random variables combined

with its potential:

µf→v(x) ∝
∑

x:x[v]=x

ψ(x)
∏

v′∈N(f)\{v}
µv′→f (x[v′])

After stopping belief propagation, the marginals
for a node can be computed and used as a deci-
sion for that random variable. The marginal for
v taking value x is the product of its surrounding
factors’ messages:

v(x) ∝
∏

f∈N(v)

µf→v(x)

5 Experimental Results

Factor Graph Construction: We first need to
pick a set of frames and objects to determine our
set of random variables. The frames are simply
the subset of the frames that were crowdsourced
in the given configuration (e.g., seed + dev), with
“soft 1” unary seed factors (the gold label indexed
row of the binary factor matrix) given only to those
in the seed set. The same selection criteria and
seed factors are applied to the crowdsourced ob-
ject pairs.

For lexical similarity factors (ψv, ψo), we pick
connections based on the cosine similarity scores
of GloVe vectors thresholded above a value chosen
based on development set performance. Attribute
similarity factors (ψa) are chosen based on sets of
frames that reach largely the same decisions on the
seed data (95%). Frame similarity factors (ψf) are
added to pairs of frames with linguistically sim-
ilar constructions. Finally, selectional preference

272

Attr

approx max width

Frame gloss Score
Example model predictions (frame) (dev set)
Ex

___ opened ___ size1

PERSON set ___ upon ___ wgt2

___ stood on ___ str3

PERSON arrived on ___ rgd4

___ put up ___ spd5
'> <

close

just wrong + easy for humans to judge

bad data; nonsensical comparison

could go either way (interesting physics things going on here)

some polysemy / either way possible

PERSON drove ___ for ___ size6

PERSON stopped ___with ___ wgt7

___ lived at ___ str8

___ snipped off ___ rgd9

___ caught ___ spd10
'> <

Figure 4: Example model predictions on dev set
frames. The model’s confidence is shown by the
bars on the right. The correct relation is high-
lighted in orange (6–10 are failure cases for the
model). If there are two blanks, the relation is be-
tween them. If there is only one blank, the relation
is between PERSON and the blank. Note that '
receives miniscule weight because it is never the
correct value for frames in the seed set.

factors (ψs) are picked by using a threshold (also
tuned on the development set) of pointwise mu-
tual information (PMI) between the frames and
the object pairs’ occurrences in the Google Syn-
tax Ngram corpus.

For each task, we consider the set of factors to
include in each model a hyperparameter, which is
also tuned on the development set.

Baselines: Baselines include making a RAN-
DOM choice, picking between >, <, and '), pick-
ing the MAJORITY label, and a maximum entropy
classifier based on the embedding representations
(EMB-MAXENT) defined in Section 4.6.

Inferring Knowledge of Actions: Our first ex-
periment is to predict knowledge implied by new
frames. In this task, 5% of the frames are avail-
able as seed knowledge. We experiment with two
different sets of seed knowledge for the object pair
data: OUR MODEL (A) uses only 5% of the object
pair data as seed, and OUR MODEL (B) uses 20%.

The full results for the baseline methods and our
model are given in the upper half of Table 2. Our
model outperforms the baselines on all attributes
except for the speed, which has a highly skewed
label distribution to allow the majority baseline to

Ablated (or added) component Accuracy
– Verb similarity 0.69
+ Frame similarity 0.62
– Action-object compatibility 0.62
– Object similarity 0.70
+ Attribute similarity 0.62
– Frame embeddings 0.63
– Frame seeds 0.62
– Object embeddings 0.62
– Object seeds 0.62

OUR MODEL (A) 0.71

Table 3: Ablation results on size attribute for the
frame prediction task on the development dataset
for OUR MODEL (A) (5% of the object pairs as
seed data). We find that different graph configura-
tions improve performance for different tasks and
data amounts. In this setting, frame and attribute
similarity factors hindered performance.

perform well. Ablations are given in Table 3, and
sample correct predictions from the development
set are shown in examples 1–5 of Figure 4.

Inferring Knowledge of Objects: Our second
experiment is to predict the correct relations of
new object pairs. The data for this task is the
inverse of before: 5% of the object pairs are
available as seed knowledge, and we experiment
with both 5% (OUR MODEL (A)) and 20% (OUR

MODEL (B)) frames given as seed data. Again,
both are independently tuned on the development
data. Results for this task are presented in the
lower half of Table 2. While OUR MODEL (A) is
competitive with the strongest baseline, introduc-
ing the additional frame data allows OUR MODEL

(B) to reach the highest accuracy.

6 Discussion

Metaphorical Language: While our frame pat-
terns are intended to capture action verbs, our tem-
plates also match senses of those verbs that can
be used with abstract or metaphorical arguments,
rather than directly physical ones. One exam-
ple from the development set is “x contained y.”
While x and y can be real objects, more abstract
senses of “contained” could involve y as a “for-
est fire” or even a “revolution.” In these instances,
x >size y is plausible as an abstract notion: if
some entity can contain a revolution, we might
think that entity as “larger” or “stronger” than the
revolution.

Error analysis: Examples 6–10 in Figure 4
highlight failure cases for the model. Example

273

6 shows a case where the comparison is non-
sensical because “for” would naturally be fol-
lowed by a purpose (“He drove the car for work.”)
or a duration (“She drove the car for hours.”)
rather than a concrete object whose size is mea-
surable. Example 7 highlights an underspecified
frame. One crowd worker provided the example,
“PERSON stopped the fly with {the jar / a swat-
ter},” where fly <weight {jar, swatter}. How-
ever, two crowd workers provided examples like
“PERSON stopped their car with the brake,” where
clearly car >weight brake. This example il-
lustrates complex underlying physics we do not
model: a brake—the pedal itself—is used to stop
a car, but it does so by applying significant force
through a separate system.

The next two examples are cases where the
model nearly predicts correctly (8, e.g., “She lived
at the office.”) and is just clearly wrong (9, e.g.,
“He snipped off a locket of hair”). Example 10
demonstrates a case of polysemy where the model
picks the wrong side. In the phrase, “She caught
the runner in first,”, it is correct that she >speed

runner. However, the sense chosen by the crowd
workers is that of, “She caught the baseball,”
where indeed she <speed baseball.

7 Related work

Several works straddle the gap between IE, knowl-
edge base completion, and learning commonsense
knowledge from text. Earlier works in these areas
use large amounts of text to try to extract general
statements like “A THING CAN BE READABLE”
(Gordon et al., 2010) and frequencies of events
(Gordon and Schubert, 2012). Our work focuses
on specific domains of knowledge rather than gen-
eral statements or occurrence statistics, and devel-
ops a frame-centric approach to circumvent report-
ing bias. Other work uses a knowledge base and
scores unseen tuples based on similarity to exist-
ing ones (Angeli and Manning, 2013; Li et al.,
2016). Relatedly, previous work uses natural lan-
guage inference to infer new facts from a dataset
of commonsense facts that can be extracted from
unstructured text (Angeli and Manning, 2014). In
contrast, we focus on a small number of specific
types of knowledge without access to an existing
database of knowledge.

A number of recent works combine multi-
modal input to learn visual attributes (Bruni et al.,
2012; Silberer et al., 2013), extract commonsense

knowledge from web images (Tandon et al., 2016),
and overcome reporting bias (Misra et al., 2016).
In contrast, we focus on natural language evidence
to reason about attributes that are both in (size)
and out (weight, rigidness, etc.) of the scope of
computer vision. Yet other works mine numerical
attributes of objects (Narisawa et al., 2013; Taka-
mura and Tsujii, 2015; Davidov and Rappoport,
2010) and comparative knowledge from the web
(Tandon et al., 2014). Our work uniquely learns
verb-centric lexical entailment knowledge.

A handful of works have attempted to learn the
types of knowledge we address in this work. One
recent work tried to directly predict several binary
attributes (such “is large” and “is yellow”) from on
off-the-shelf word embeddings, noting that accu-
racy was very low (Rubinstein et al., 2015). An-
other line of work addressed grounding verbs in
the context of robotic tasks. One paper in this
line acquires verb meanings by observing state
changes in the environment (She and Chai, 2016).
Another work in this line does a deep investigation
of eleven verbs, modeling their physical effect via
annotated images along eighteen attributes (Gao
et al., 2016). These works are encouraging inves-
tigations into multimodal groundings of a small set
of verbs. Our work instead grounds into a fixed set
of attributes but leverages language on a broader
scale to learn about more verbs in more diverse set
of frames.

8 Conclusion

We presented a novel take on verb-centric frame
semantics to learn implied physical knowledge la-
tent in verbs. Empirical results confirm that by
modeling changes in physical attributes entailed
by verbs together with objects that exhibit these
properties, we are able to better infer new knowl-
edge in both domains.

Acknowledgements

This research is supported in part by the Na-
tional Science Foundation Graduate Research
Fellowship, DARPA CwC program through
ARO (W911NF-15-1-0543), the NSF grant (IIS-
1524371), and gifts by Google and Facebook. The
authors thank the anonymous reviewers for their
thorough and insightful comments.

274

References

Gabor Angeli and Christopher D Manning. 2013.
Philosophers are mortal: Inferring the truth of un-
seen facts. In CoNLL. pages 133–142.

Gabor Angeli and Christopher D Manning. 2014. Nat-
uralli: Natural logic inference for common sense
reasoning. In EMNLP. pages 534–545.

Hessam Bagherinezhad, Hannaneh Hajishirzi, Yejin
Choi, and Ali Farhadi. 2016. Are elephants bigger
than butterflies? reasoning about sizes of objects.
arXiv preprint arXiv:1602.00753 .

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The berkeley framenet project. In Proceed-
ings of the 36th Annual Meeting of the Associa-
tion for Computational Linguistics and 17th Inter-
national Conference on Computational Linguistics-
Volume 1. Association for Computational Linguis-
tics, pages 86–90.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in tech-
nicolor. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1. Association for Com-
putational Linguistics, pages 136–145.

Dmitry Davidov and Ari Rappoport. 2010. Extraction
and approximation of numerical attributes from the
web. In Proceedings of the 48th Annual Meeting
of the Association for Computational Linguistics.
Association for Computational Linguistics, pages
1308–1317.

David Dowty. 1991. Thematic proto-roles and argu-
ment selection. language pages 547–619.

Charles J Fillmore. 1976. Frame semantics and the na-
ture of language. Annals of the New York Academy
of Sciences 280(1):20–32.

Qiaozi Gao, Malcolm Doering, Shaohua Yang, and
Joyce Y Chai. 2016. Physical causality of action
verbs in grounded language understanding. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL). volume 1,
pages 1814–1824.

Yoav Goldberg and Jon Orwant. 2013. A dataset of
syntactic-ngrams over time from a very large cor-
pus of english books. In Second Joint Conference
on Lexical and Computational Semantics (* SEM).
volume 1, pages 241–247.

Jonathan Gordon and Lenhart K Schubert. 2012. Us-
ing textual patterns to learn expected event frequen-
cies. In Proceedings of the Joint Workshop on Auto-
matic Knowledge Base Construction and Web-scale
Knowledge Extraction. Association for Computa-
tional Linguistics, pages 122–127.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 workshop on Automated knowledge
base construction. ACM, pages 25–30.

Jonathan Gordon, Benjamin Van Durme, and
Lenhart K Schubert. 2010. Learning from the
web: Extracting general world knowledge from
noisy text. In Collaboratively-Built Knowledge
Sources and AI.

HP Grice. 1975. Logic and conversation. In P. Cole
and J. Morgan, editors, Syntax and Semantics. Aca-
demic Press, New York, volume 3: Speech Acts.

Hamid Izadinia, Fereshteh Sadeghi, Santosh K Div-
vala, Hannaneh Hajishirzi, Yejin Choi, and Ali
Farhadi. 2015. Segment-phrase table for semantic
segmentation, visual entailment and paraphrasing.
In Proceedings of the IEEE International Confer-
ence on Computer Vision. pages 10–18.

Karin Kipper, Hoa Trang Dang, Martha Palmer, et al.
2000. Class-based construction of a verb lexicon.
AAAI/IAAI 691:696.

Beth Levin. 1993. English verb classes and alterna-
tions: A preliminary investigation. University of
Chicago press.

Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel.
2016. Commonsense knowledge base completion.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (ACL),
Berlin, Germany, August. Association for Computa-
tional Linguistics.

Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser
Aiden, Adrian Veres, Matthew K Gray, Joseph P
Pickett, Dale Hoiberg, Dan Clancy, Peter Norvig,
Jon Orwant, et al. 2011. Quantitative analysis of
culture using millions of digitized books. science
331(6014):176–182.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

Ishan Misra, C Lawrence Zitnick, Margaret Mitchell,
and Ross Girshick. 2016. Seeing through the human
reporting bias: Visual classifiers from noisy human-
centric labels. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition.
pages 2930–2939.

Katsuma Narisawa, Yotaro Watanabe, Junta Mizuno,
Naoaki Okazaki, and Kentaro Inui. 2013. Is a 204
cm man tall or small? acquisition of numerical com-
mon sense from the web. In ACL (1). pages 382–
391.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational linguistics 31(1):71–
106.

275

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari
Rappoport. 2015. How well do distributional mod-
els capture different types of semantic knowledge?
In ACL (2). pages 726–730.

Fereshteh Sadeghi, Santosh K Kumar Divvala, and Ali
Farhadi. 2015. Viske: Visual knowledge extraction
and question answering by visual verification of re-
lation phrases. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition.
pages 1456–1464.

Lanbo She and Joyce Y Chai. 2016. Incremental ac-
quisition of verb hypothesis space towards physical
world interaction. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (ACL).

Carina Silberer, Vittorio Ferrari, and Mirella Lapata.
2013. Models of semantic representation with visual
attributes. In ACL (1). pages 572–582.

Mohammad S Sorower, Janardhan R Doppa, Walker
Orr, Prasad Tadepalli, Thomas G Dietterich, and
Xiaoli Z Fern. 2011. Inverting grice’s maxims to
learn rules from natural language extractions. In
Advances in neural information processing systems.
pages 1053–1061.

Hiroya Takamura and Jun’ichi Tsujii. 2015. Estimat-
ing numerical attributes by bringing together frag-
mentary clues. In HLT-NAACL. pages 1305–1310.

Niket Tandon, Gerard De Melo, and Gerhard Weikum.
2014. Acquiring comparative commonsense knowl-
edge from the web. In AAAI. pages 166–172.

Niket Tandon, Charles Hariman, Jacopo Urbani, Anna
Rohrbach, Marcus Rohrbach, and Gerhard Weikum.
2016. Commonsense in parts: Mining part-whole
relations from the web and image tags. In AAAI.
pages 243–250.

Sheng Zhang, Rachel Rudinger, Kevin Duh, and Ben-
jamin Van Durme. 2017. Ordinal common-sense in-
ference. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Yuke Zhu, Alireza Fathi, and Li Fei-Fei. 2014. Rea-
soning about object affordances in a knowledge base
representation. In European conference on com-
puter vision. Springer, pages 408–424.

276

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 277–287
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1026

A* CCG Parsing with a Supertag and Dependency Factored Model

Masashi Yoshikawa and Hiroshi Noji and Yuji Matsumoto
Graduate School of Information and Science

Nara Institute of Science and Technology
8916-5, Takayama, Ikoma, Nara, 630-0192, Japan

{ masashi.yoshikawa.yh8, noji, matsu }@is.naist.jp

Abstract

We propose a new A* CCG parsing model
in which the probability of a tree is decom-
posed into factors of CCG categories and
its syntactic dependencies both defined on
bi-directional LSTMs. Our factored model
allows the precomputation of all probabil-
ities and runs very efficiently, while mod-
eling sentence structures explicitly via de-
pendencies. Our model achieves the state-
of-the-art results on English and Japanese
CCG parsing.1

1 Introduction

Supertagging in lexicalized grammar parsing is
known as almost parsing (Bangalore and Joshi,
1999), in that each supertag is syntactically infor-
mative and most ambiguities are resolved once a
correct supertag is assigned to every word. Re-
cently this property is effectively exploited in A*
Combinatory Categorial Grammar (CCG; Steed-
man (2000)) parsing (Lewis and Steedman, 2014;
Lewis et al., 2016), in which the probability of
a CCG tree y on a sentence x of length N is
the product of the probabilities of supertags (cate-
gories) ci (locally factored model):

P (y|x) =
∏

i∈[1,N]

Ptag(ci|x). (1)

By not modeling every combinatory rule in a
derivation, this formulation enables us to employ
efficient A* search (see Section 2), which finds the
most probable supertag sequence that can build a
well-formed CCG tree.

Although much ambiguity is resolved with this
supertagging, some ambiguity still remains. Fig-
ure 1 shows an example, where the two CCG

1 Our software and the pretrained models are available at:
https://github.com/masashi-y/depccg.

(a)

a house in Paris in France

NP (NP\NP)/NP NP (NP\NP)/NP NP
> >

NP\NP NP\NP
<

NP
<

NP
(b)

a house in Paris in France

NP (NP\NP)/NP NP (NP\NP)/NP NP
>

NP\NP
<

NP
>

NP\NP
<

NP

Figure 1: CCG trees that are equally likely under
Eq. 1. Our model resolves this ambiguity by mod-
eling the head of every word (dependencies).

parses are derived from the same supertags. Lewis
et al.’s approach to this problem is resorting to
some deterministic rule. For example, Lewis et al.
(2016) employ the attach low heuristics, which
is motivated by the right-branching tendency of
English, and always prioritizes (b) for this type
of ambiguity. Though for English it empirically
works well, an obvious limitation is that it does not
always derive the correct parse; consider a phrase
“a house in Paris with a garden”, for which the
correct parse has the structure corresponding to (a)
instead.

In this paper, we provide a way to resolve these
remaining ambiguities under the locally factored
model, by explicitly modeling bilexical dependen-
cies as shown in Figure 1. Our joint model is still
locally factored so that an efficient A* search can
be applied. The key idea is to predict the head of
every word independently as in Eq. 1 with a strong
unigram model, for which we utilize the scoring
model in the recent successful graph-based depen-
dency parsing on LSTMs (Kiperwasser and Gold-
berg, 2016; Dozat and Manning, 2016). Specif-

277

https://doi.org/10.18653/v1/P17-1026

ically, we extend the bi-directional LSTM (bi-
LSTM) architecture of Lewis et al. (2016) predict-
ing the supertag of a word to predict the head of it
at the same time with a bilinear transformation.

The importance of modeling structures beyond
supertags is demonstrated in the performance gain
in Lee et al. (2016), which adds a recursive com-
ponent to the model of Eq. 1. Unfortunately, this
formulation loses the efficiency of the original one
since it needs to compute a recursive neural net-
work every time it searches for a new node. Our
model does not resort to the recursive networks
while modeling tree structures via dependencies.

We also extend the tri-training method of Lewis
et al. (2016) to learn our model with dependen-
cies from unlabeled data. On English CCGbank
test data, our model with this technique achieves
88.8% and 94.0% in terms of labeled and unla-
beled F1, which mark the best scores so far.

Besides English, we provide experiments on
Japanese CCG parsing. Japanese employs freer
word order dominated by the case markers and a
deterministic rule such as the attach low method
may not work well. We show that this is actually
the case; our method outperforms the simple ap-
plication of Lewis et al. (2016) in a large margin,
10.0 points in terms of clause dependency accu-
racy.

2 Background

Our work is built on A* CCG parsing (Section
2.1), which we extend in Section 3 with a head
prediction model on bi-LSTMs (Section 2.2).

2.1 Supertag-factored A* CCG Parsing

CCG has a nice property that since every category
is highly informative about attachment decisions,
assigning it to every word (supertagging) resolves
most of its syntactic structure. Lewis and Steed-
man (2014) utilize this characteristics of the gram-
mar. Let a CCG tree y be a list of categories
⟨c1, . . . , cN ⟩ and a derivation on it. Their model
looks for the most probable y given a sentence x
of length N from the set Y (x) of possible CCG
trees under the model of Eq. 1:

ŷ = arg max
y∈Y (x)

∑

i∈[1,N]

log Ptag(ci|x).

Since this score is factored into each supertag, they
call the model a supertag-factored model.

Exact inference of this problem is possible by
A* parsing (Klein and D. Manning, 2003), which
uses the following two scores on a chart:

b(Ci,j) =
∑

ck∈ci,j

log Ptag(ck|x),

a(Ci,j) =
∑

k∈[1,N]\[i,j]

max
ck

log Ptag(ck|x),

where Ci,j is a chart item called an edge, which
abstracts parses spanning interval [i, j] rooted by
category C. The chart maps each edge to the
derivation with the highest score, i.e., the Viterbi
parse for Ci,j . ci,j is the sequence of categories on
such Viterbi parse, and thus b is called the Viterbi
inside score, while a is the approximation (upper
bound) of the Viterbi outside score.

A* parsing is a kind of CKY chart parsing aug-
mented with an agenda, a priority queue that keeps
the edges to be explored. At every step it pops the
edge e with the highest priority b(e) + a(e) and
inserts that into the chart, and enqueue any edges
that can be built by combining e with other edges
in the chart. The algorithm terminates when an
edge C1,N is popped from the agenda.

A* search for this model is quite efficient be-
cause both b and a can be obtained from the uni-
gram category distribution on every word, which
can be precomputed before search. The heuris-
tics a gives an upper bound on the true Viterbi
outside score (i.e., admissible). Along with this
the condition that the inside score never increases
by expansion (monotonicity) guarantees that the
first found derivation on C1,N is always optimal.
a(Ci,j) matches the true outside score if the one-
best category assignments on the outside words
(arg maxck

log Ptag(ck|x)) can comprise a well-
formed tree with Ci,j , which is generally not true.

Scoring model For modeling Ptag, Lewis and
Steedman (2014) use a log-linear model with fea-
tures from a fixed window context. Lewis et al.
(2016) extend this with bi-LSTMs, which encode
the complete sentence and capture the long range
syntactic information. We base our model on this
bi-LSTM architecture, and extend it to modeling a
head word at the same time.

Attachment ambiguity In A* search, an edge
with the highest priority b+a is searched first, but
as shown in Figure 1 the same categories (with the
same priority) may sometimes derive more than

278

one tree. In Lewis and Steedman (2014), they pri-
oritize the parse with longer dependencies, which
they judge with a conversion rule from a CCG
tree to a dependency tree (Section 4). Lewis et al.
(2016) employ another heuristics prioritizing low
attachments of constituencies, but inevitably these
heuristics cannot be flawless in any situations. We
provide a simple solution to this problem by ex-
plicitly modeling bilexical dependencies.

2.2 Bi-LSTM Dependency Parsing
For modeling dependencies, we borrow the idea
from the recent graph-based neural dependency
parsing (Kiperwasser and Goldberg, 2016; Dozat
and Manning, 2016) in which each dependency
arc is scored directly on the outputs of bi-LSTMs.
Though the model is first-order, bi-LSTMs enable
conditioning on the entire sentence and lead to the
state-of-the-art performance. Note that this mech-
anism is similar to modeling of the supertag distri-
bution discussed above, in that for each word the
distribution of the head choice is unigram and can
be precomputed. As we will see this keeps our
joint model still locally factored and A* search
tractable. For score calculation, we use an ex-
tended bilinear transformation by Dozat and Man-
ning (2016) that models the prior headness of each
token as well, which they call biaffine.

3 Proposed Method

3.1 A* parsing with Supertag and
Dependency Factored Model

We define a CCG tree y for a sentence x =
⟨xi, . . . , xN ⟩ as a triplet of a list of CCG cat-
egories c = ⟨c1, . . . , cN ⟩, dependencies h =
⟨h1, . . . , hN ⟩, and the derivation, where hi is the
head index of xi. Our model is defined as follows:

P (y|x) =
∏

i∈[1,N]

Ptag(ci|x)
∏

i∈[1,N]

Pdep(hi|x).

(2)

The added term Pdep is a unigram distribution of
the head choice.

A* search is still tractable under this model.
The search problem is changed as:

ŷ = arg max
y∈Y (x)

(∑

i∈[1,N]

log Ptag(ci|x)

+
∑

i∈[1,N]

log Pdep(hi|x)

)
,

John met
NP S\NP/NP NP

Mary

b(e2) b(e1)
 b(e3) =
 b(e1) + b(e2)
 + logPdep(met → John)
NP S\NP/NP NP
John saw Mary

NP S\NP
S

Figure 2: Viterbi inside score for edge e3 under
our model is the sum of those of e1 and e2 and the
score of dependency arc going from the head of e2

to that of e1 (the head direction changes according
to the child categories).

and the inside score is given by:

b(Ci,j) =
∑

ck∈ci,j

log Ptag(ck|x) (3)

+
∑

k∈[i,j]\{root(hC
i,j)}

log Pdep(hk|x),

where hC
i,j is a dependency subtree for the Viterbi

parse on Ci,j and root(h) returns the root index.
We exclude the head score for the subtree root to-
ken since it cannot be resolved inside [i, j]. This
causes the mismatch between the goal inside score
b(C1,N) and the true model score (log of Eq. 2),
which we adjust by adding a special unary rule that
is always applied to the popped goal edge C1,N .

We can calculate the dependency terms in Eq. 3
on the fly when expanding the chart. Let the cur-
rently popped edge be Ai,k, which will be com-
bined with Bk,j into Ci,j . The key observation is
that only one dependency arc (between root(hA

i,k)

and root(hB
k,j)) is resolved at every combination

(see Figure 2). For every rule C → A B we
can define the head direction (see Section 4) and
Pdep is obtained accordingly. For example, when
the right child B becomes the head, b(Ci,j) =
b(Ai,k) + b(Bk,j) + log Pdep(hl = m|x), where
l = root(hA

i,k) and m = root(hB
k,j) (l < m).

The Viterbi outside score is changed as:

a(Ci,j) =
∑

k∈[1,N]\[i,j]

max
ck

log Ptag(ck|x)

+
∑

k∈L

max
hk

log Pdep(hk|x),

where L = [1, N] \ [k′|k′ ∈ [i, j], root(hC
i,j) ̸=

k′]. We regard root(hC
i,j) as an outside word since

its head is undefined yet. For every outside word
we independently assign the weight of its argmax

279

head, which may not comprise a well-formed de-
pendency tree. We initialize the agenda by adding
an item for every supertag C and word xi with the
score a(Ci,i) =

∑
k∈I\{i} max log Ptag(ck|x) +∑

k∈I max log Pdep(hk|x). Note that the depen-
dency component of it is the same for every word.

3.2 Network Architecture
Following Lewis et al. (2016) and Dozat and Man-
ning (2016), we model Ptag and Pdep using bi-
LSTMs for exploiting the entire sentence to cap-
ture the long range phenomena. See Figure 3 for
the overall network architecture, where Ptag and
Pdep share the common bi-LSTM hidden vectors.

First we map every word xi to their hidden vec-
tor ri with bi-LSTMs. The input to the LSTMs
is word embeddings, which we describe in Sec-
tion 6. We add special start and end tokens to each
sentence with the trainable parameters following
Lewis et al. (2016). For Pdep, we use the biaffine
transformation in Dozat and Manning (2016):

gdep
i = MLP dep

child(ri),

gdep
hi

= MLP dep
head(rhi

),

Pdep(hi|x) (4)

∝ exp((gdep
i)TWdepg

dep
hi

+ wdepg
dep
hi

),

where MLP is a multilayered perceptron.
Though Lewis et al. (2016) simply use an MLP
for mapping ri to Ptag, we additionally utilize the
hidden vector of the most probable head hi =
arg maxh′

i
Pdep(h

′
i|x), and apply ri and rhi

to a
bilinear function:2

gtag
i = MLP tag

child(ri),

gtag
hi

= MLP tag
head(rhi

), (5)

ℓ = (gtag
i)TUtagg

tag
hi

+ Wtag

[
gtag

i

gtag
hi

]
+ btag,

Ptag(ci|x) ∝ exp(ℓc),

where Utag is a third order tensor. As in Lewis et
al. these values can be precomputed before search,
which makes our A* parsing quite efficient.

4 CCG to Dependency Conversion

Now we describe our conversion rules from a CCG
tree to a dependency one, which we use in two pur-

2 This is inspired by the formulation of label prediction in
Dozat and Manning (2016), which performs the best among
other settings that remove or reverse the dependence between
the head model and the supertag model.

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

concat concat concat concat

x1 x2 x3 x4

Bilinear Biaffine

S NP S/S ..
 ..

x1 x2 x3 ..
 ..

r1 r2 r3 r4

PdepPtag

Figure 3: Neural networks of our supertag and
dependency factored model. First we map every
word xi to a hidden vector ri by bi-LSTMs, and
then apply biaffine (Eq. 4) and bilinear (Eq. 5)
transformations to obtain the distributions of de-
pendency heads (Pdep) and supertags (Ptag).

poses: 1) creation of the training data for the de-
pendency component of our model; and 2) extrac-
tion of a dependency arc at each combinatory rule
during A* search (Section 3.1). Lewis and Steed-
man (2014) describe one way to extract dependen-
cies from a CCG tree (LEWISRULE). Below in
addition to this we describe two simpler alterna-
tives (HEADFIRST and HEADFINAL), and see the
effects on parsing performance in our experiments
(Section 6). See Figure 4 for the overview.

LEWISRULE This is the same as the conversion
rule in Lewis and Steedman (2014). As shown in
Figure 4c the output looks a familiar English de-
pendency tree.

For forward application and (generalized) for-
ward composition, we define the head to be the
left argument of the combinatory rule, unless it
matches either X/X or X/(X\Y), in which case
the right argument is the head. For example, on
“Black Monday” in Figure 4a we choose Mon-
day as the head of Black. For the backward rules,
the conversions are defined as the reverse of the
corresponding forward rules. For other rules, Re-
movePunctuation (rp) chooses the non punctua-
tion argument as the head, while Conjunction (Φ)
chooses the right argument.3

3When applying LEWISRULE to Japanese, we ignore the
feature values in determining the head argument, which we
find often leads to a more natural dependency structure. For
example, in “tabe ta” (eat PAST), the category of auxiliary
verb “ta” is Sf1\Sf2 with f1 ̸= f2, and thus Sf1 ̸= Sf2 . We
choose “tabe” as the head in this case by removing the feature
values, which makes the category X\X .

280

No , it was n′t Black Monday .

S/S , NP (S\NP)/NP (S\NP)\(S\NP) NP/NP NP .
<B× >

(S\NP)/NP NP
>

S\NP
<

S
rp

S
>

S
rp

S

(a) English sentence

I SUB English ACC speak want .
Boku wa eigo wo hanasi tai .

NP NP\NP NP NP\NP (S\NP)\NP S\S S\S
< < <B2

NP NP (S\NP)\NP
<

S\NP
<

S
<

S

(b) Japanese sentence “I want to speak English.”

No , it was n’t Black Monday .

(c) LEWISRULE

No , it was n’t Black Monday .

(d) HEADFIRST

Boku wa eigo wo hanasi tai .

(e) HEADFINAL

Figure 4: Examples of applying conversion rules in Section 4 to English and Japanese sentences.

One issue when applying this method for ob-
taining the training data is that due to the mis-
match between the rule set of our CCG parser, for
which we follow Lewis and Steedman (2014), and
the grammar in English CCGbank (Hockenmaier
and Steedman, 2007) we cannot extract dependen-
cies from some of annotated CCG trees.4 For this
reason, we instead obtain the training data for this
method from the original dependency annotations
on CCGbank. Fortunately the dependency annota-
tions of CCGbank matches LEWISRULE above in
most cases and thus they can be a good approxi-
mation to it.

HEADFINAL Among SOV languages, Japanese
is known as a strictly head final language, mean-
ing that the head of every word always follows
it. Japanese dependency parsing (Uchimoto et al.,
1999; Kudo and Matsumoto, 2002) has exploited
this property explicitly by only allowing left-to-
right dependency arcs. Inspired by this tradition,
we try a simple HEADFINAL rule in Japanese
CCG parsing, in which we always select the right
argument as the head. For example we obtain the
head final dependency tree in Figure 4e from the
Japanese CCG tree in Figure 4b.

HEADFIRST We apply the similar idea as
HEADFINAL into English. Since English has the
opposite, SVO word order, we define the simple
“head first” rule, in which the left argument always
becomes the head (Figure 4d).

4 For example, the combinatory rules in Lewis and Steed-
man (2014) do not contain Nconj → N N in CCGbank.
Another difficulty is that in English CCGbank the name of
each combinatory rule is not annotated explicitly.

Though this conversion may look odd at first
sight it also has some advantages over LEWIS-
RULE. First, since the model with LEWISRULE

is trained on the CCGbank dependencies, at infer-
ence, occasionally the two components Pdep and
Ptag cause some conflicts on their predictions. For
example, the true Viterbi parse may have a lower
score in terms of dependencies, in which case
the parser slows down and may degrade the ac-
curacy. HEADFIRST, in contract, does not suffer
from such conflicts. Second, by fixing the direc-
tion of arcs, the prediction of heads becomes eas-
ier, meaning that the dependency predictions be-
come more reliable. Later we show that this is in
fact the case for existing dependency parsers (see
Section 5), and in practice, we find that this simple
conversion rule leads to the higher parsing scores
than LEWISRULE on English (Section 6).

5 Tri-training

We extend the existing tri-training method to our
models and apply it to our English parsers.

Tri-training is one of the semi-supervised meth-
ods, in which the outputs of two parsers on un-
labeled data are intersected to create (silver) new
training data. This method is successfully applied
to dependency parsing (Weiss et al., 2015) and
CCG supertagging (Lewis et al., 2016).

We simply combine the two previous ap-
proaches. Lewis et al. (2016) obtain their sil-
ver data annotated with the high quality supertags.
Since they make this data publicly available 5, we
obtain our silver data by assigning dependency

5https://github.com/uwnlp/taggerflow

281

structures on top of them.6

We train two very different dependency parsers
from the training data extracted from CCGbank
Section 02-21. This training data differs depend-
ing on our dependency conversion strategies (Sec-
tion 4). For LEWISRULE, we extract the orig-
inal dependency annotations of CCGbank. For
HEADFIRST, we extract the head first dependen-
cies from the CCG trees. Note that we cannot an-
notate dependency labels so we assign a dummy
“none” label to every arc. The first parser is
graph-based RBGParser (Lei et al., 2014) with
the default settings except that we train an unla-
beled parser and use word embeddings of Turian
et al. (2010). The second parser is transition-based
lstm-parser (Dyer et al., 2015) with the de-
fault parameters.

On the development set (Section 00), with
LEWISRULE dependencies RBGParser shows
93.8% unlabeled attachment score while that of
lstm-parser is 92.5% using gold POS tags.
Interestingly, the parsers with HEADFIRST de-
pendencies achieve higher scores: 94.9% by
RBGParser and 94.6% by lstm-parser, sug-
gesting that HEADFIRST dependencies are easier
to parse. For both dependencies, we obtain more
than 1.7 million sentences on which two parsers
agree.

Following Lewis et al. (2016), we include 15
copies of CCGbank training set when using these
silver data. Also to make effects of the tri-train
samples smaller we multiply their loss by 0.4.

6 Experiments

We perform experiments on English and Japanese
CCGbanks.

6.1 English Experimental Settings

We follow the standard data splits and use Sections
02-21 for training, Section 00 for development,
and Section 23 for final evaluation. We report la-
beled and unlabeled F1 of the extracted CCG se-
mantic dependencies obtained using generate
program supplied with C&C parser.

For our models, we adopt the pruning strate-
gies in Lewis and Steedman (2014) and allow at
most 50 categories per word, use a variable-width
beam with β = 0.00001, and utilize a tag dictio-
nary, which maps frequent words to the possible

6We annotate POS tags on this data using Stanford POS
tagger (Toutanova et al., 2003).

supertags7. Unless otherwise stated, we only al-
low normal form parses (Eisner, 1996; Hocken-
maier and Bisk, 2010), choosing the same subset
of the constraints as Lewis and Steedman (2014).

We use as word representation the concatena-
tion of word vectors initialized to GloVe8 (Pen-
nington et al., 2014), and randomly initialized pre-
fix and suffix vectors of the length 1 to 4, which
is inspired by Lewis et al. (2016). All affixes ap-
pearing less than two times in the training data are
mapped to “UNK”.

Other model configurations are: 4-layer bi-
LSTMs with left and right 300-dimensional
LSTMs, 1-layer 100-dimensional MLPs with
ELU non-linearity (Clevert et al., 2015) for all
MLP dep

child, MLP dep
head, MLP tag

child and MLP tag
head,

and the Adam optimizer with β1 = 0.9, β2 = 0.9,
L2 norm (1e−6), and learning rate decay with the
ratio 0.75 for every 2,500 iteration starting from
2e−3, which is shown to be effective for training
the biaffine parser (Dozat and Manning, 2016).

6.2 Japanese Experimental Settings
We follow the default train/dev/test splits of
Japanese CCGbank (Uematsu et al., 2013). For
the baselines, we use an existing shift-reduce CCG
parser implemented in an NLP tool Jigg9 (Noji
and Miyao, 2016), and our implementation of the
supertag-factored model using bi-LSTMs.

For Japanese, we use as word representation
the concatenation of word vectors initialized to
Japanese Wikipedia Entity Vector10, and 100-
dimensional vectors computed from randomly
initialized 50-dimensional character embeddings
through convolution (dos Santos and Zadrozny,
2014). We do not use affix vectors as affixes are
less informative in Japanese. All characters ap-
pearing less than two times are mapped to “UNK”.
We use the same parameter settings as English for
bi-LSTMs, MLPs, and optimization.

One issue in Japanese experiments is evalua-
tion. The Japanese CCGbank is encoded in a dif-
ferent format than the English bank, and no stan-
dalone script for extracting semantic dependen-
cies is available yet. For this reason, we evaluate
the parser outputs by converting them to bunsetsu

7We use the same tag dictionary provided with their bi-
LSTM model.

8http://nlp.stanford.edu/projects/
glove/

9https://github.com/mynlp/jigg
10http://www.cl.ecei.tohoku.ac.jp/

˜m-suzuki/jawiki_vector/

282

Method Labeled Unlabeled
CCGbank

LEWISRULE w/o dep 85.8 91.7
LEWISRULE 86.0 92.5
HEADFIRST w/o dep 85.6 91.6
HEADFIRST 86.6 92.8

Tri-training
LEWISRULE 86.9 93.0
HEADFIRST 87.6 93.3

Table 1: Parsing results (F1) on English develop-
ment set. “w/o dep” means that the model discards
dependency components at prediction.

Method Labeled Unlabeled # violations
CCGbank

LEWISRULE w/o dep 85.8 91.7 2732
LEWISRULE 85.4 92.2 283
HEADFIRST w/o dep 85.6 91.6 2773
HEADFIRST 86.8 93.0 89

Tri-training
LEWISRULE 86.7 92.8 253
HEADFIRST 87.7 93.5 66

Table 2: Parsing results (F1) on English develop-
ment set when excluding the normal form con-
straints. # violations is the number of combina-
tions violating the constraints on the outputs.

dependencies, the syntactic representation ordi-
nary used in Japanese NLP (Kudo and Matsumoto,
2002). Given a CCG tree, we obtain this by first
segment a sentence into bunsetsu (chunks) using
CaboCha11 and extract dependencies that cross a
bunsetsu boundary after obtaining the word-level,
head final dependencies as in Figure 4b. For ex-
ample, the sentence in Figure 4e is segmented as
“Boku wa | eigo wo | hanashi tai”, from which we
extract two dependencies (Boku wa) ← (hanashi
tai) and (eigo wo) ← (hanashi tai). We perform
this conversion for both gold and output CCG trees
and calculate the (unlabeled) attachment accuracy.
Though this is imperfect, it can detect important
parse errors such as attachment errors and thus can
be a good proxy for the performance as a CCG
parser.

6.3 English Parsing Results
Effect of Dependency We first see how the de-
pendency components added in our model affect
the performance. Table 1 shows the results on the
development set with the several configurations,
in which “w/o dep” means discarding the depen-

11http://taku910.github.io/cabocha/

Method Labeled Unlabeled
CCGbank
C&C (Clark and Curran, 2007) 85.5 91.7
w/ LSTMs (Vaswani et al., 2016) 88.3 -
EasySRL (Lewis et al., 2016) 87.2 -
EasySRL reimpl 86.8 92.3
HEADFIRST w/o NF (Ours) 87.7 93.4

Tri-training
EasySRL (Lewis et al., 2016) 88.0 92.9
neuralccg (Lee et al., 2016) 88.7 93.7
HEADFIRST w/o NF (Ours) 88.8 94.0

Table 3: Parsing results (F1) on English test
set (Section 23).

dency terms of the model and applying the attach
low heuristics (Section 1) instead (i.e., a supertag-
factored model; Section 2.1). We can see that for
both LEWISRULE and HEADFIRST, adding de-
pendency terms improves the performance.

Choice of Dependency Conversion Rule To
our surprise, our simple HEADFIRST strategy al-
ways leads to better results than the linguistically
motivated LEWISRULE. The absolute improve-
ments by tri-training are equally large (about 1.0
points), suggesting that our model with dependen-
cies can also benefit from the silver data.

Excluding Normal Form Constraints One ad-
vantage of HEADFIRST is that the direction of
arcs is always right, making the structures sim-
pler and more parsable (Section 5). From another
viewpoint, this fixed direction means that the con-
stituent structure behind a (head first) dependency
tree is unique. Since the constituent structures of
CCGbank trees basically follow the normal form
(NF), we hypothesize that the model learned with
HEADFIRST has an ability to force the outputs in
NF automatically. We summarize the results with-
out the NF constraints in Table 2, which shows
that the above argument is correct; the number
of violating NF rules on the outputs of HEAD-
FIRST is much smaller than that of LEWISRULE

(89 vs. 283). Interestingly the scores of HEAD-
FIRST slightly increase from the models with NF
(e.g., 86.8 vs. 86.6 for CCGbank), suggesting that
the NF constraints hinder the search of HEAD-
FIRST models occasionally.

Results on Test Set Parsing results on the test
set (Section 23) are shown in Table 3, where we
compare our best performing HEADFIRST depen-
dency model without NF constraints with the sev-
eral existing parsers. In the CCGbank experi-

283

EasySRL reimpl neuralccg Ours
Tagging 24.8 21.7 16.6
A* Search 185.2 16.7 114.6
Total 21.9 9.33 14.5

Table 4: Results of the efficiency experiment,
where each number is the number of sentences
processed per second. We compare our proposed
parser against neuralccg and our reimplemen-
tation of EasySRL.

ment, our parser shows the better result than all
the baseline parsers except C&C with an LSTM
supertagger (Vaswani et al., 2016). Our parser
outperforms EasySRL by 0.5% and our reimple-
mentation of that parser (EasySRL reimpl) by
0.9% in terms of labeled F1. In the tri-training
experiment, our parser shows much increased per-
formance of 88.8% labeled F1 and 94.0% unla-
beled F1, outperforming the current state-of-the-
art neuralccg (Lee et al., 2016) that uses recur-
sive neural networks by 0.1 point and 0.3 point in
terms of labeled and unlabeled F1. This is the best
reported F1 in English CCG parsing.

Efficiency Comparison We compare the ef-
ficiency of our parser with neuralccg and
EasySRL reimpl.12 The results are shown
in Table 4. For the overall speed (the third
row), our parser is faster than neuralccg al-
though lags behind EasySRL reimpl. Inspect-
ing the details, our supertagger runs slower than
those of neuralccg and EasySRL reimpl,
while in A* search our parser processes over 7
times more sentences than neuralccg. The
delay in supertagging can be attributed to sev-
eral factors, in particular the differences in net-
work architectures including the number of bi-
LSTM layers (4 vs. 2) and the use of bilin-
ear transformation instead of linear one. There
are also many implementation differences in our
parser (C++A* parser with neural network model
implemented with Chainer (Tokui et al., 2015))
and neuralccg (Java parser with C++ Tensor-
Flow (Abadi et al., 2015) supertagger and recur-
sive neural model in C++ DyNet (Neubig et al.,
2017)).

6.4 Japanese Parsing Result
We show the results of the Japanese parsing exper-
iment in Table 5. The simple application of Lewis

12This experiment is performed on a laptop with 4-thread
2.0 GHz CPU.

Method Category Bunsetsu Dep.
Noji and Miyao (2016) 93.0 87.5
Supertag model 93.7 81.5
LEWISRULE (Ours) 93.8 90.8
HEADFINAL (Ours) 94.1 91.5

Table 5: Results of Japanese CCGbank.

Yesterday buy−PAST curry−ACC eat−PAST
Kinoo kat − ta karee − wo tabe − ta
S/S S NP S\NP

>
S un

NP/NP
>

NP
<

S

Yesterday buy−PAST curry−ACC eat−PAST
Kinoo kat − ta karee − wo tabe − ta
S/S S NP S\NP

un
NP/NP

>
NP

<
S

>
S

Figure 5: Examples of ambiguous Japanese sen-
tence given fixed supertags. The English transla-
tion is “I ate the curry I bought yesterday”.

et al. (2016) (Supertag model) is not effective for
Japanese, showing the lowest attachment score of
81.5%. We observe a performance boost with our
method, especially with HEADFINAL dependen-
cies, which outperforms the baseline shift-reduce
parser by 1.1 points on category assignments and
4.0 points on bunsetsu dependencies.

The degraded results of the simple application
of the supertag-factored model can be attributed to
the fact that the structure of a Japanese sentence
is still highly ambiguous given the supertags (Fig-
ure 5). This is particularly the case in construc-
tions where phrasal adverbial/adnominal modi-
fiers (with the supertag S/S) are involved. The
result suggests the importance of modeling depen-
dencies in some languages, at least Japanese.

7 Related Work

There is some past work that utilizes dependencies
in lexicalized grammar parsing, which we review
briefly here.

For Head-driven Phrase Structure Gram-
mar (HPSG; Pollard and Sag (1994)), there are
studies to use the predicted dependency structure
to improve HPSG parsing accuracy. Sagae et al.
(2007) use dependencies to constrain the form
of the output tree. As in our method, for every
rule (schema) application they define which child
becomes the head and impose a soft constraint
that these dependencies agree with the output of
the dependency parser. Our method is different

284

in that we do not use the one-best dependency
structure alone, but rather we search for a CCG
tree that is optimal in terms of dependencies
and CCG supertags. Zhang et al. (2010) use the
syntactic dependencies in a different way, and
show that dependency-based features are useful
for predicting HPSG supertags.

In the CCG parsing literature, some work op-
timizes a dependency model, instead of supertags
or a derivation (Clark and Curran, 2007; Xu et al.,
2014). This approach is reasonable given that the
objective matches the evaluation metric. Instead
of modeling dependencies alone, our method finds
a CCG derivation that has a higher dependency
score. Lewis et al. (2015) present a joint model
of CCG parsing and semantic role labeling (SRL),
which is closely related to our approach. They
map each CCG semantic dependency to an SRL
relation, for which they give the A* upper bound
by the score from a predicate to the most proba-
ble argument. Our approach is similar; the largest
difference is that we instead model syntactic de-
pendencies from each token to its head, and this is
the key to our success. Since dependency parsing
can be formulated as independent head selections
similar to tagging, we can build the entire model
on LSTMs to exploit features from the whole sen-
tence. This formulation is not straightforward in
the case of multi-headed semantic dependencies in
their model.

8 Conclusion

We have presented a new A* CCG parsing
method, in which the probability of a CCG tree
is decomposed into local factors of the CCG cat-
egories and its dependency structure. By explic-
itly modeling the dependency structure, we do not
require any deterministic heuristics to resolve at-
tachment ambiguities, and keep the model locally
factored so that all the probabilities can be pre-
computed before running the search. Our parser
efficiently finds the optimal parse and achieves the
state-of-the-art performance in both English and
Japanese parsing.

Acknowledgments

We are grateful to Mike Lewis for answering
our questions and your Github repository from
which we learned many things. We also thank
Yuichiro Sawai for the faster LSTM implementa-
tion. This work was in part supported by JSPS

KAKENHI Grant Number 16H06981, and also by
JST CREST Grant Number JPMJCR1301.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete War-
den, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng. 2015. TensorFlow: Large-
Scale Machine Learning on Heterogeneous Sys-
tems. Software available from tensorflow.org.
http://tensorflow.org/.

Srinivas Bangalore and Aravind K Joshi. 1999. Su-
pertagging: An Approach to Almost Parsing. Com-
putational linguistics 25(2):237–265.

Stephen Clark and James R. Curran. 2007. Wide-
Coverage Efficient Statistical Parsing with CCG
and Log-Linear Models. Computational Lin-
guistics, Volume 33, Number 4, December 2007
http://aclweb.org/anthology/J07-4004.

Djork-Arné Clevert, Thomas Unterthiner, and
Sepp Hochreiter. 2015. Fast and Accurate
Deep Network Learning by Exponential Lin-
ear Units (ELUs). CoRR abs/1511.07289.
http://arxiv.org/abs/1511.07289.

Cı́cero Nogueira dos Santos and Bianca Zadrozny.
2014. Learning Character-level Representations for
Part-of-Speech Tagging. ICML.

Timothy Dozat and Christopher D. Manning.
2016. Deep Biaffine Attention for Neural
Dependency Parsing. CoRR abs/1611.01734.
http://arxiv.org/abs/1611.01734.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and A. Noah Smith. 2015. Transition-
Based Dependency Parsing with Stack Long Short-
Term Memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 334–343. https://doi.org/10.3115/v1/P15-
1033.

Jason Eisner. 1996. Efficient Normal-Form Parsing for
Combinatory Categorial Grammar. In 34th Annual
Meeting of the Association for Computational Lin-
guistics. http://aclweb.org/anthology/P96-1011.

285

Julia Hockenmaier and Yonatan Bisk. 2010. Normal-
form parsing for Combinatory Categorial Grammars
with generalized composition and type-raising. In
Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010). Col-
ing 2010 Organizing Committee, pages 465–473.
http://aclweb.org/anthology/C10-1053.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A Corpus of CCG Derivations and Depen-
dency Structures Extracted from the Penn Tree-
bank. Computational Linguistics 33(3):355–396.
http://www.aclweb.org/anthology/J07-3004.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Repre-
sentations. Transactions of the Association
for Computational Linguistics 4:313–327.
https://www.transacl.org/ojs/index.php/tacl/article/view/885.

Dan Klein and Christopher D. Manning. 2003. A*
Parsing: Fast Exact Viterbi Parse Selection. In
Proceedings of the 2003 Human Language Tech-
nology Conference of the North American Chapter
of the Association for Computational Linguistics.
http://aclweb.org/anthology/N03-1016.

Taku Kudo and Yuji Matsumoto. 2002. Japanese
Dependency Analysis using Cascaded Chunking.
In Proceedings of the 6th Conference on Natu-
ral Language Learning, CoNLL 2002, Held in
cooperation with COLING 2002, Taipei, Taiwan,
2002. http://aclweb.org/anthology/W/W02/W02-
2016.pdf.

Kenton Lee, Mike Lewis, and Luke Zettlemoyer.
2016. Global Neural CCG Parsing with Op-
timality Guarantees. In Proceedings of the
2016 Conference on Empirical Methods in
Natural Language Processing. Association for
Computational Linguistics, pages 2366–2376.
http://aclweb.org/anthology/D16-1262.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-Rank Tensors for
Scoring Dependency Structures. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Pa-
pers). Association for Computational Linguistics,
pages 1381–1391. https://doi.org/10.3115/v1/P14-
1130.

Mike Lewis, Luheng He, and Luke Zettlemoyer. 2015.
Joint A* CCG Parsing and Semantic Role Labelling.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1444–
1454. https://doi.org/10.18653/v1/D15-1169.

Mike Lewis, Kenton Lee, and Luke Zettlemoyer.
2016. LSTM CCG Parsing. In Proceedings
of the 2016 Conference of the North American

Chapter of the Association for Computational Lin-
guistics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 221–231.
https://doi.org/10.18653/v1/N16-1026.

Mike Lewis and Mark Steedman. 2014. A* CCG Pars-
ing with a Supertag-factored Model. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Asso-
ciation for Computational Linguistics, pages 990–
1000. https://doi.org/10.3115/v1/D14-1107.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The Dynamic Neural Network Toolkit. arXiv
preprint arXiv:1701.03980 .

Hiroshi Noji and Yusuke Miyao. 2016. Jigg:
A Framework for an Easy Natural Language
Processing Pipeline. In Proceedings of ACL-
2016 System Demonstrations. Association for
Computational Linguistics, pages 103–108.
https://doi.org/10.18653/v1/P16-4018.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Carl Pollard and Ivan A Sag. 1994. Head-driven
phrase structure grammar. University of Chicago
Press.

Kenji Sagae, Yusuke Miyao, and Jun’ichi Tsujii.
2007. HPSG Parsing with Shallow Dependency
Constraints. In Proceedings of the 45th Annual
Meeting of the Association of Computational Lin-
guistics. Association for Computational Linguistics,
pages 624–631. http://aclweb.org/anthology/P07-
1079.

Mark Steedman. 2000. The Syntactic Process. The
MIT Press.

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin
Clayton. 2015. Chainer: a Next-Generation
Open Source Framework for Deep Learn-
ing. In Proceedings of Workshop on Ma-
chine Learning Systems (LearningSys) in The
Twenty-ninth Annual Conference on Neu-
ral Information Processing Systems (NIPS).
http://learningsys.org/papers/LearningSys 2015 paper 33.pdf.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-Rich Part-
of-Speech Tagging with a Cyclic Dependency Net-
work. In Proceedings of the 2003 Human Lan-
guage Technology Conference of the North Ameri-
can Chapter of the Association for Computational

286

Linguistics. http://www.aclweb.org/anthology/N03-
1033.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Ben-
gio. 2010. Word Representations: A Simple and
General Method for Semi-Supervised Learning. In
Proceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 384–394.
http://aclweb.org/anthology/P10-1040.

Kiyotaka Uchimoto, Satoshi Sekine, and Hitoshi
Isahara. 1999. Japanese Dependency Structure
Analysis Based on Maximum Entropy Models.
In Ninth Conference of the European Chapter
of the Association for Computational Linguistics.
http://aclweb.org/anthology/E99-1026.

Sumire Uematsu, Takuya Matsuzaki, Hiroki Hanaoka,
Yusuke Miyao, and Hideki Mima. 2013. Inte-
grating Multiple Dependency Corpora for Induc-
ing Wide-coverage Japanese CCG Resources. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Compu-
tational Linguistics, Sofia, Bulgaria, pages 1042–
1051. http://www.aclweb.org/anthology/P13-1103.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging With LSTMs. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 232–
237. https://doi.org/10.18653/v1/N16-1027.

David Weiss, Chris Alberti, Michael Collins, and
Slav Petrov. 2015. Structured Training for Neu-
ral Network Transition-Based Parsing. In Proceed-
ings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, pages 323–333.
https://doi.org/10.3115/v1/P15-1032.

Wenduan Xu, Stephen Clark, and Yue Zhang. 2014.
Shift-Reduce CCG Parsing with a Dependency
Model. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 218–227.
https://doi.org/10.3115/v1/P14-1021.

Yao-zhong Zhang, Takuya Matsuzaki, and Jun’ichi
Tsujii. 2010. A Simple Approach for HPSG Su-
pertagging Using Dependency Information. In Hu-
man Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics, pages 645–648.
http://aclweb.org/anthology/N10-1090.

287

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 288–298
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1027

A Full Non-Monotonic Transition System for
Unrestricted Non-Projective Parsing

Daniel Fernández-González and Carlos Gómez-Rodrı́guez
Universidade da Coruña

FASTPARSE Lab, LyS Research Group, Departamento de Computación
Campus de Elviña, s/n, 15071 A Coruña, Spain

d.fgonzalez@udc.es, carlos.gomez@udc.es

Abstract

Restricted non-monotonicity has been
shown beneficial for the projective arc-
eager dependency parser in previous re-
search, as posterior decisions can repair
mistakes made in previous states due to the
lack of information. In this paper, we pro-
pose a novel, fully non-monotonic trans-
ition system based on the non-projective
Covington algorithm. As a non-monotonic
system requires exploration of erroneous
actions during the training process, we de-
velop several non-monotonic variants of
the recently defined dynamic oracle for the
Covington parser, based on tight approx-
imations of the loss. Experiments on data-
sets from the CoNLL-X and CoNLL-XI
shared tasks show that a non-monotonic
dynamic oracle outperforms the mono-
tonic version in the majority of languages.

1 Introduction

Greedy transition-based dependency parsers are
widely used in different NLP tasks due to their
speed and efficiency. They parse a sentence from
left to right by greedily choosing the highest-
scoring transition to go from the current parser
configuration or state to the next. The resulting se-
quence of transitions incrementally builds a parse
for the input sentence. The scoring of the trans-
itions is provided by a statistical model, previously
trained to approximate an oracle, a function that
selects the needed transitions to parse a gold tree.

Unfortunately, the greedy nature that grants
these parsers their efficiency also represents their
main limitation. McDonald and Nivre (2007)
show that greedy transition-based parsers lose ac-
curacy to error propagation: a transition erro-
neously chosen by the greedy parser can place it

in an incorrect and unknown configuration, caus-
ing more mistakes in the rest of the transition se-
quence. Training with a dynamic oracle (Goldberg
and Nivre, 2012) improves robustness in these
situations, but in a monotonic transition system,
erroneous decisions made in the past are perman-
ent, even when the availability of further informa-
tion in later states might be useful to correct them.

Honnibal et al. (2013) show that allowing some
degree of non-monotonicity, by using a limited
set of non-monotonic actions that can repair past
mistakes and replace previously-built arcs, can in-
crease the accuracy of a transition-based parser. In
particular, they present a modified arc-eager trans-
ition system where the Left-Arc and Reduce trans-
itions are non-monotonic: the former is used to
repair invalid attachments made in previous states
by replacing them with a leftward arc, and the
latter allows the parser to link two words with a
rightward arc that were previously left unattached
due to an erroneous decision. Since the Right-Arc
transition is still monotonic and leftward arcs can
never be repaired because their dependent is re-
moved from the stack by the arc-eager parser and
rendered inaccessible, this approach can only re-
pair certain kinds of mistakes: namely, it can fix
erroneous rightward arcs by replacing them with
a leftward arc, and connect a limited set of un-
attached words with rightward arcs. In addition,
they argue that non-monotonicity in the training
oracle can be harmful for the final accuracy and,
therefore, they suggest to apply it only as a fall-
back component for a monotonic oracle, which is
given priority over the non-monotonic one. Thus,
this strategy will follow the path dictated by the
monotonic oracle the majority of the time. Hon-
nibal and Johnson (2015) present an extension of
this transition system with an Unshift transition al-
lowing it some extra flexibility to correct past er-
rors. However, the restriction that only rightward

288

https://doi.org/10.18653/v1/P17-1027

arcs can be deleted, and only by replacing them
with leftward arcs, is still in place. Furthermore,
both versions of the algorithm are limited to pro-
jective trees.

In this paper, we propose a non-monotonic
transition system based on the non-projective Cov-
ington parser, together with a dynamic oracle to
train it with erroneous examples that will need to
be repaired. Unlike the system developed in (Hon-
nibal et al., 2013; Honnibal and Johnson, 2015),
we work with full non-monotonicity. This has
a twofold meaning: (1) our approach can repair
previous erroneous attachments regardless of their
original direction, and it can replace them either
with a rightward or leftward arc as both arc trans-
itions are non-monotonic;1 and (2) we use exclus-
ively a non-monotonic oracle, without the inter-
ferences of monotonic decisions. These modi-
fications are feasible because the non-projective
Covington transition system is less rigid than the
arc-eager algorithm, as words are never deleted
from the parser’s data structures and can always
be revisited, making it a better option to exploit
the full potencial of non-monotonicity. To our
knowledge, the presented system is the first non-
monotonic parser that can produce non-projective
dependency analyses. Another novel aspect is
that our dynamic oracle is approximate, i.e., based
on efficiently-computable approximations of the
loss due to the complexity of calculating its ac-
tual value in a non-monotonic and non-projective
scenario. However, this is not a problem in prac-
tice: experimental results show how our parser
and oracle can use non-monotonic actions to repair
erroneous attachments, outperforming the mono-
tonic version developed by Gómez-Rodrı́guez and
Fernández-González (2015) in a large majority of
the datasets tested.

2 Preliminaries

2.1 Non-Projective Covington Transition
System

The non-projective Covington parser was origin-
ally defined by Covington (2001), and then recast
by Nivre (2008) under the transition-based parsing
framework.

1The only restriction is that parsing must still proceed in
left-to-right order. For this reason, a leftward arc cannot be
repaired with a rightward arc, because this would imply going
back in the sentence. The other three combinations (replacing
leftward with leftward, rightward with leftward or rightward
with rightward arcs) are possible.

The transition system that defines this parser
is as follows: each parser configuration is of the
form c = 〈λ1, λ2, B,A〉, such that λ1 and λ2 are
lists of partially processed words, B is another
list (called the buffer) containing currently unpro-
cessed words, and A is the set of dependencies
that have been built so far. Suppose that our in-
put is a string w1 · · ·wn, whose word occurrences
will be identified with their indices 1 · · ·n for sim-
plicity. Then, the parser will start at an initial
configuration cs(w1 . . . wn) = 〈[], [], [1 . . . n], ∅〉,
and execute transitions chosen from those in Fig-
ure 1 until a terminal configuration of the form
{〈λ1, λ2, [], A〉 ∈ C} is reached. At that point,
the sentence’s parse tree is obtained from A.2

These transitions implement the same logic as
the double nested loop traversing word pairs in the
original formulation by Covington (2001). When
the parser’s configuration is 〈λ1|i, λ2, j|B,A〉, we
say that it is considering the focus words i and j,
located at the end of the first list and at the begin-
ning of the buffer. At that point, the parser must
decide whether these two words should be linked
with a leftward arc i ← j (Left-Arc transition),
a rightward arc i → j (Right-Arc transition), or
not linked at all (No-Arc transition). However,
the two transitions that create arcs will be disal-
lowed in configurations where this would cause
a violation of the single-head constraint (a node
can have at most one incoming arc) or the acyc-
licity constraint (the dependency graph cannot
have cycles). After applying any of these three
transitions, i is moved to the second list to make
i − 1 and j the focus words for the next step. As
an alternative, we can instead choose to execute a
Shift transition which lets the parser read a new
input word, placing the focus on j and j + 1.

The resulting parser can generate any possible
dependency tree for the input, including arbit-
rary non-projective trees. While it runs in quad-
ratic worst-case time, in theory worse than linear-
time transition-based parsers (e.g. (Nivre, 2003;
Gómez-Rodrı́guez and Nivre, 2013)), it has been
shown to outspeed linear algorithms in practice,
thanks to feature extraction optimizations that can-
not be implemented in other parsers (Volokh and
Neumann, 2012). In fact, one of the fastest de-
pendency parsers ever reported uses this algorithm

2In general A is a forest, but it can be converted to a tree
by linking headless nodes as dependents of an artificial root
node at position 0. When we refer to parser outputs as trees,
we assume that this transformation is being implicitly made.

289

Shift: 〈λ1, λ2, j|B,A〉 ⇒ 〈λ1 · λ2|j, [], B,A〉
No-Arc: 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
Left-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {j → i}〉

only if @k | k → i ∈ A (single-head) and i→∗ j 6∈ A (acyclicity).
Right-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {i→ j}〉

only if @k | k → j ∈ A (single-head) and j →∗ i 6∈ A (acyclicity).

Figure 1: Transitions of the monotonic Covington non-projective dependency parser. The notation i→∗
j ∈ A means that there is a (possibly empty) directed path from i to j in A.

(Volokh, 2013).

2.2 Monotonic Dynamic Oracle
A dynamic oracle is a function that maps a config-
uration c and a gold tree tG to the set of transitions
that can be applied in c and lead to some parse tree
t minimizing the Hamming loss with respect to tG
(the amount of nodes whose head is different in t
and tG). Following Goldberg and Nivre (2013),
we say that an arc set A is reachable from con-
figuration c, and we write c A, if there is some
(possibly empty) path of transitions from c to some
configuration c′ = 〈λ1, λ2, B,A′〉, with A ⊆ A′.
Then, we can define the loss of configuration c as

`(c) = min
t|c t

L(t, tG),

and therefore, a correct dynamic oracle will return
the set of transitions

od(c, tG) = {τ | `(c)− `(τ(c)) = 0},

i.e., the set of transitions that do not increase con-
figuration loss, and thus lead to the best parse (in
terms of loss) reachable from c. Hence, imple-
menting a dynamic oracle reduces to computing
the loss `(c) for each configuration c.

Goldberg and Nivre (2013) show a straightfor-
ward method to calculate loss for parsers that are
arc-decomposable, i.e., those where every arc set
A that can be part of a well-formed parse verifies
that if c (i → j) for every i → j ∈ A (i.e.,
each of the individual arcs of A is reachable from
a given configuration c), then c A (i.e., the set
A as a whole is reachable from c). If this holds,
then the loss of a configuration c equals the num-
ber of gold arcs that are not individually reachable
from c, which is easy to compute in most parsers.

Gómez-Rodrı́guez and Fernández-González
(2015) show that the non-projective Covington
parser is not arc-decomposable because sets of
individually reachable arcs may form cycles
together with already-built arcs, preventing them

from being jointly reachable due to the acyclicity
constraint. In spite of this, they prove that a
dynamic oracle for the Covington parser can be
efficiently built by counting individually unreach-
able arcs, and correcting for the presence of such
cycles. Concretely, the loss is computed as:

`(c) = |U(c, tG)|+ nc(A ∪ I(c, tG))

where I(c, tG) = {x → y ∈ tG | c (x → y)}
is the set of individually reachable arcs of tG
from configuration c; U(c, tG) is the set of indi-
vidually unreachable arcs of tG from c, com-
puted as tG\I(c, tG); and nc(G) denotes the num-
ber of cycles in a graph G.

Therefore, to calculate the loss of a configur-
ation c, we only need to compute the two terms
|U(c, tG)| and nc(A ∪ I(c, tG)). To calculate the
first term, given a configuration cwith focus words
i and j (i.e., c = 〈λ1|i, λ2, j|B,A〉), an arc x→ y
will be in U(c, tG) if it is not in A, and at least one
of the following holds:

• j > max(x, y), (i.e., we have read too far in
the string and can no longer get max(x, y) as
right focus word),
• j = max(x, y) ∧ i < min(x, y), (i.e., we

have max(x, y) as the right focus word but
the left focus word has already moved left
past min(x, y), and we cannot go back),
• there is some z 6= 0, z 6= x such that z →
y ∈ A, (i.e., we cannot create x→ y because
it would violate the single-head constraint),
• x and y are on the same weakly connected

component of A (i.e., we cannot create x →
y due to the acyclicity constraint).

The second term of the loss, nc(A ∪ I(c, tG)),
can be computed by first obtaining I(c, tG) as
tG \ U(c, tG). Since the graph I(c, tG) has in-
degree 1, the algorithm by Tarjan (1972) can then
be used to find and count the cycles in O(n) time.

290

Algorithm 1 Computation of the loss of a config-
uration in the monotonic oracle.
1: function LOSS(c = 〈λ1|i, λ2, j|B,A〉, tG)
2: U ← ∅ . Variable U is for U(c, tG)
3: for each x→ y ∈ (tG \A) do
4: left ← min(x, y)
5: right ← max(x, y)
6: if j > right ∨
7: (j = right ∧ i < left)∨
8: (∃z > 0, z 6= x : z → y ∈ A)∨
9: WEAKLYCONNECTED(A, x, y) then

10: U ← u ∪ {x→ y}
11: I ← tG \U . Variable I is for I(c, tG)
12: return |U |+ COUNTCYCLES(A ∪ I)

Algorithm 1 shows the resulting loss calcula-
tion algorithm, where COUNTCYCLES is a func-
tion that counts the number of cycles in the given
graph and WEAKLYCONNECTED returns whether
two given nodes are weakly connected in A.

3 Non-Monotonic Transition System for
the Covington Non-Projective Parser

We now define a non-monotonic variant of the
Covington non-projective parser. To do so, we al-
low the Right-Arc and Left-Arc transitions to cre-
ate arcs between any pair of nodes without restric-
tion. If the node attached as dependent already
had a previous head, the existing attachment is dis-
carded in favor of the new one. This allows the
parser to correct erroneous attachments made in
the past by assigning new heads, while still enfor-
cing the single-head constraint, as only the most
recent head assigned to each node is kept.

To enforce acyclicity, one possibility would be
to keep the logic of the monotonic algorithm,
forbidding the creation of arcs that would cre-
ate cycles. However, this greatly complicates the
definition of the set of individually unreachable
arcs, which is needed to compute the loss bounds
that will be used by the dynamic oracle. This is
because a gold arc x → y may superficially seem
unreachable due to forming a cycle together with
arcs in A, but it might in fact be reachable if there
is some transition sequence that first breaks the
cycle using non-monotonic transitions to remove
arcs from A, to then create x → y. We do not
know of a way to characterize the conditions un-
der which such a transition sequence exists, and
thus cannot estimate the loss efficiently.

Instead, we enforce the acyclicity constraint
in a similar way to the single-head constraint:
Right-Arc and Left-Arc transitions are always al-
lowed, even if the prospective arc would create a

cycle in A. However, if the creation of a new arc
x→ y generates a cycle in A, we immediately re-
move the arc of the form z → x from A (which
trivially exists, and is unique due to the single-
head constraint). This not only enforces the acyc-
licity constraint while keeping the computation of
U(c, tG) simple and efficient, but also produces
a straightforward, coherent algorithm (arc trans-
itions are always allowed, and both constraints are
enforced by deleting a previous arc) and allows us
to exploit non-monotonicity to the maximum (we
can not only recover from assigning a node the
wrong head, but also from situations where pre-
vious errors together with the acyclicity constraint
prevent us from building a gold arc, keeping with
the principle that later decisions override earlier
ones).

In Figure 2, we can see the resulting non-
monotonic transition system for the non-projective
Covington algorithm, where, unlike the monotonic
version, all transitions are allowed at each con-
figuration, and the single-head and acyclicity con-
straints are kept in A by removing offending arcs.

4 Non-Monotonic Approximate Dynamic
Oracle

To successfully train a non-monotonic system, we
need a dynamic oracle with error exploration, so
that the parser will be put in erroneous states and
need to apply non-monotonic transitions in or-
der to repair them. To achieve that, we modify
the dynamic oracle defined by Gómez-Rodrı́guez
and Fernández-González (2015) so that it can deal
with non-monotonicity. Our modification is an ap-
proximate dynamic oracle: due to the extra flexib-
ility added to the algorithm by non-monotonicity,
we do not know of an efficient way of obtaining an
exact calculation of the loss of a given configura-
tion. Instead, we use upper or lower bounds on the
loss, which we empirically show to be very tight
(less that 1% relative error with respect to the real
loss) and are sufficient for the algorithm to provide
better accuracy than the exact monotonic oracle.

First of all, we adapt the computation of the set
of individually unreachable arcs U(c, tG) to the
new algorithm. In particular, if c has focus words
i and j (i.e., c = 〈λ1|i, λ2, j|B,A〉), then an arc
x → y is in U(c, tG) if it is not in A, and at least
one of the following holds:
• j > max(x, y), (i.e., we have read too far in

the string and can no longer get max(x, y) as

291

Shift: 〈λ1, λ2, j|B,A〉 ⇒ 〈λ1 · λ2|j, [], B,A〉
No-Arc: 〈λ1|i, λ2, B,A〉 ⇒ 〈λ1, i|λ2, B,A〉
Left-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B, (A ∪ {j → i})

\{x→ i ∈ A} \ {k → j ∈ A | i→∗ k ∈ A}〉
Right-Arc: 〈λ1|i, λ2, j|B,A〉 ⇒ 〈λ1, i|λ2, j|B,A ∪ {i→ j}

\{x→ j ∈ A} \ {k → i ∈ A | j →∗ k ∈ A}〉

Figure 2: Transitions of the non-monotonic Covington non-projective dependency parser. The notation
i→∗ j ∈ A means that there is a (possibly empty) directed path from i to j in A.

right focus word),
• j = max(x, y) ∧ i < min(x, y) (i.e., we

have max(x, y) as the right focus word but
the left focus word has already moved left
past min(x, y), and we cannot move it back).

Note that, since the head of a node can change
during the parsing process and arcs that produce
cycles in A can be built, the two last conditions
present in the monotonic scenario for comput-
ing U(c, tG) are not needed when we use non-
monotonicity and, as a consequence, the set of
individually reachable arcs I(c, tG) is larger:
due to the greater flexibility provided by non-
monotonicity, we can reach arcs that would be un-
reachable for the monotonic version.

Since arcs that are in this new U(c, tG) are
unreachable even by the non-monotonic parser,
|U(c, tG)| is trivially a lower bound of the loss
`(c). It is worth noting that there always exists
at least one transition sequence that builds every
arc in I(c, tG) at some point (although not all
of them necessarily appear in the final tree, due
to non-monotonicity). This can be easily shown
based on the fact that the non-monotonic parser
does not forbid transitions at any configuration.
Thanks to this, we can can generate one such se-
quence by just applying the original Covington
(2001) criteria (choose an arc transition whenever
the focus words are linked in I(c, tG), and oth-
erwise Shift or No-Arc depending on whether the
left focus word is the first word in the sentence
or not), although this sequence is not necessar-
ily optimal in terms of loss. In such a transition
sequence, the gold arcs that are missed are (1)
those in U(c, tG), and (2) those that are removed
by the cycle-breaking in Left-Arc and Right-Arc
transitions. In practice configurations where (2) is
needed are uncommon, so this lower bound is a
very close approximation of the real loss, as will
be seen empirically below.

This reasoning also helps us calculate an up-

per bound of the loss: in a transition sequence
as described, if we only build the arcs in I(c, tG)
and none else, the amount of arcs removed by
breaking cycles (2) cannot be larger than the num-
ber of cycles in A ∪ I(c, tG). This means that
|U(c, tG)|+nc(A∪I(c, tG)) is an upper bound of
the loss `(c). Note that, contrary to the monotonic
case, this expression does not always give us the
exact loss, for several reasons: firstly, A∪I(c, tG)
can have non-disjoint cycles (a node may have
different heads in A and I since attachments are
not permanent, contrary to the monotonic ver-
sion) and thus removing a single arc may break
more than one cycle; secondly, the removed arc
can be a non-gold arc of A and therefore not in-
cur loss; and thirdly, there may exist alternative
transition sequences where a cycle in A∪I(c, tG)
is broken early by non-monotonic configurations
that change the head of a wrongly-attached node
in A to a different (and also wrong) head,3 remov-
ing the cycle before the cycle-breaking mechanism
needs to come into play without incurring in extra
errors. Characterizing the situations where such an
alternative exists is the main difficulty for an exact
calculation of the loss.

However, it is possible to obtain a closer upper
bound to the real loss if we consider the following:
for each cycle in A ∪ I(c, tG) that will be broken
by the transition sequence described above, we
can determine exactly which is the arc removed by
cycle-breaking (if x → y is the arc that will close
the cycle according to the Covington arc-building
order, then the affected arc is the one of the form
z → x). The cycle can only cause the loss of a
gold arc if that arc z → x is gold, which can be
trivially checked. Hence, if we call cycles where
that holds problematic cycles, then the expression

3Note that, in this scenario, the new head must also be
wrong because otherwise the newly created arc would be an
arc of I(c, tG) (and therefore, would not be breaking a cycle
in A ∪ I(c, tG)). However, replacing a wrong attachment
with another wrong attachment need not increase loss.

292

average value relative difference to loss
Language lower loss pc upper upper lower pc upper upper
Arabic 0.66925 0.67257 0.67312 0.68143 0.00182 0.00029 0.00587
Basque 0.58260 0.58318 0.58389 0.62543 0.00035 0.00038 0.02732
Catalan 0.58009 0.58793 0.58931 0.60644 0.00424 0.00069 0.00961
Chinese 0.56515 0.56711 0.57156 0.62921 0.00121 0.00302 0.03984
Czech 0.57521 0.58357 0.59401 0.62883 0.00476 0.00685 0.02662
English 0.55267 0.56383 0.56884 0.59494 0.00633 0.00294 0.01767
Greek 0.56123 0.57443 0.57983 0.61256 0.00731 0.00296 0.02256
Hungarian 0.46495 0.46672 0.46873 0.48797 0.00097 0.00114 0.01165
Italian 0.62033 0.62612 0.62767 0.64356 0.00307 0.00082 0.00883
Turkish 0.60143 0.60215 0.60660 0.63560 0.00060 0.00329 0.02139
Bulgarian 0.61415 0.62257 0.62433 0.64497 0.00456 0.00086 0.01233
Danish 0.67350 0.67904 0.68119 0.69436 0.00291 0.00108 0.00916
Dutch 0.69201 0.70600 0.71105 0.74008 0.00709 0.00251 0.01862
German 0.54581 0.54755 0.55080 0.58182 0.00104 0.00208 0.02033
Japanese 0.60515 0.60515 0.60515 0.60654 0.00000 0.00000 0.00115
Portuguese 0.58880 0.60063 0.60185 0.61780 0.00651 0.00067 0.00867
Slovene 0.56155 0.56860 0.57135 0.60373 0.00396 0.00153 0.01979
Spanish 0.58247 0.59119 0.59277 0.61273 0.00487 0.00089 0.01197
Swedish 0.57543 0.58636 0.58933 0.61104 0.00585 0.00153 0.01383
Average 0.59009 0.59656 0.59954 0.62416 0.00355 0.00176 0.01513

Table 1: Average value of the different bounds and the loss, and of the relative differences from each
bound to the loss, on CoNLL-XI (first block) and CoNLL-X (second block) datasets during 100,000
transitions. For each language, we show in boldface the average value and relative difference of the
bound that is closer to the loss.

|U(c, tG)|+npc(A∪I(c, tG)), where “pc” stands
for problematic cycles, is a closer upper bound to
the loss `(c) and the following holds:

|U(c, tG)| ≤ `(c) ≤ |U(c, tG)|+npc(A∪I(c, tG))

≤ |U(c, tG)|+ nc(A ∪ I(c, tG))

As mentioned before, unlike the monotonic ap-
proach, a node can have a different head in A
than in I(c, tG) and, as a consequence, the result-
ing graph A ∪ I(c, tG) has maximum in-degree 2
rather than 1, and there can be overlapping cycles.
Therefore, the computation of the non-monotonic
terms nc(A ∪ I(c, tG)) and npc(A ∪ I(c, tG)) re-
quires an algorithm such as the one by Johnson
(1975) to find all elementary cycles in a directed
graph. This runs in O((n + e)(c + 1)), where
n is the number of vertices, e is the number of
edges and c is the number of elementary cycles in
the graph. This implies that the calculation of the
two non-monotonic upper bounds is less efficient
than the linear loss computation in the monotonic
scenario. However, a non-monotonic algorithm
that uses the lower bound as loss expression is the
fastest option (even faster than the monotonic ap-
proach) as the oracle does not need to compute
cycles at all, speeding up the training process.

Algorithm 2 shows the non-monotonic vari-
ant of Algorithm 1, where COUNTRELEVANT-
CYCLES is a function that counts the number of
cycles or problematic cycles in the given graph,

Algorithm 2 Computation of the approximate loss
of a non-monotonic configuration.
1: function LOSS(c = 〈λ1|i, λ2, j|B,A〉, tG)
2: U ← ∅ . Variable U is for U(c, tG)
3: for each x→ y ∈ (tG \A) do
4: left ← min(x, y)
5: right ← max(x, y)
6: if j > right ∨
7: (j = right ∧ i < left) then
8: U ← u ∪ {x→ y}
9: I ← tG \U . Variable I is for I(c, tG)

10: return |U |+ COUNTRELEVANTCYCLES(A ∪ I)

depending on the upper bound implemented, and
will return 0 in case we use the lower bound.

5 Evaluation of the Loss Bounds

To determine how close the lower bound
|U(c, tG)| and the upper bounds |U(c, tG)| +
npc(A∪I(c, tG)) and |U(c, tG)|+nc(A∪I(c, tG))
are to the actual loss in practical scenarios, we use
exhaustive search to calculate the real loss of a
given configuration, to then compare it with the
bounds. This is feasible because the lower and up-
per bounds allow us to prune the search space: if
an upper and a lower bound coincide for a con-
figuration we already know the loss and need not
keep searching, and if we can branch to two con-
figurations such that the lower bound of one is
greater or equal than an upper bound of the other,
we can discard the former as it will never lead to
smaller loss than the latter. Therefore, this ex-

293

Unigrams
L0w; L0p; L0wp; L0l; L0hw; L0hp; L0hl; L0l′w; L0l′p;
L0l′ l; L0r′w; L0r′p; L0r′ l; L0h2w; L0h2p; L0h2l; L0lw;
L0lp; L0ll; L0rw; L0rp; L0rl; L0wd; L0pd; L0wvr ; L0pvr ;
L0wvl; L0pvl; L0wsl; L0psl; L0wsr ; L0psr ; L1w; L1p;
L1wp; R0w; R0p; R0wp; R0hw; R0hp;R0hl; R0h2w;
R0h2p; R0l′w; R0l′p; R0l′ l; R0lw; R0lp; R0ll; R0wd;
R0pd; R0wvl; R0pvl; R0wsl; R0psl; R1w; R1p; R1wp;
R2w; R2p; R2wp; CLw; CLp; CLwp; CRw; CRp; CRwp;
Pairs
L0wp+R0wp; L0wp+R0w; L0w+R0wp; L0wp+R0p;
L0p+R0wp; L0w+R0w; L0p+R0p; R0p+R1p; L0w+R0wd;
L0p+R0pd;
Triples
R0p+R1p+R2p; L0p+R0p+R1p; L0hp+L0p+R0p;
L0p+L0l′p+R0p; L0p+L0r′p+R0p; L0p+R0p+R0l′p;
L0p+L0l′p+L0lp; L0p+L0r′p+L0rp; L0p+L0hp+L0h2p;
R0p+R0l′p+R0lp;

Table 2: Feature templates. L0 and R0 denote
the left and right focus words; L1, L2, . . . are the
words to the left of L0 and R1, R2, . . . those to the
right of R0. Xih means the head of Xi, Xih2 the
grandparent, Xil and Xil′ the farthest and closest
left dependents, and Xir and Xir′ the farthest and
closest right dependents, respectively. CL and
CR are the first and last words between L0 andR0

whose head is not in the interval [L0, R0]. Finally,
w stands for word form; p for PoS tag; l for de-
pendency label; d is the distance between L0 and
R0; vl, vr are the left/right valencies (number of
left/right dependents); and sl, sr the left/right label
sets (dependency labels of left/right dependents).

haustive search with pruning guarantees to find the
exact loss.

Due to the time complexity of this process, we
undertake the analysis of only the first 100,000
transitions on each dataset of the nineteen lan-
guages available from CoNLL-X and CoNLL-XI
shared tasks (Buchholz and Marsi, 2006; Nivre
et al., 2007). In Table 1, we present the average
values for the lower bound, both upper bounds
and the loss, as well as the relative differences
from each bound to the real loss. After those
experiments, we conclude that the lower and the
closer upper bounds are a tight approximation of
the loss, with both bounds incurring relative er-
rors below 0.8% in all datasets. If we compare
them, the real loss is closer to the upper bound
|U(c, tG)| + npc(A ∪ I(c, tG)) in the majority of
datasets (12 out of 18 languages, excluding Ja-
panese where both bounds were exactly equal to
the real loss in the whole sample of configura-
tions). This means that the term npc(A∪I(c, tG))
provides a close approximation of the gold arcs
missed by the presence of cycles in A. Regard-
ing the upper bound |U(c, tG)|+nc(A∪I(c, tG)),

it presents a more variable relative error, ranging
from 0.1% to 4.0%.

Thus, although we do not know an algorithm to
obtain the exact loss which is fast enough to be
practical, any of the three studied loss bounds can
be used to obtain a feasible approximate dynamic
oracle with full non-monotonicity.

6 Experiments

To prove the usefulness of our approach, we im-
plement the static, dynamic monotonic and non-
monotonic oracles for the non-projective Coving-
ton algorithm and compare their accuracies on
nine datasets4 from the CoNLL-X shared task
(Buchholz and Marsi, 2006) and all datasets from
the CoNLL-XI shared task (Nivre et al., 2007).
For the non-monotonic algorithm, we test the three
different loss expressions defined in the previous
section. We train an averaged perceptron model
for 15 iterations and use the same feature tem-
plates for all languages5 which are listed in detail
in Table 2.

6.1 Results

The accuracies obtained by the non-projective
Covington parser with the three available oracles
are presented in Table 3, in terms of Unlabeled
(UAS) and Labeled Attachment Score (LAS). For
the non-monotonic dynamic oracle, three variants
are shown, one for each loss expression implemen-
ted. As we can see, the novel non-monotonic or-
acle improves over the accuracy of the monotonic
version on 14 out of 19 languages (0.32 in UAS
on average) with the best loss calculation being
|U(c, tG)| + nc(A ∪ I(c, tG)), where 6 of these
improvements are statistically significant at the .05
level (Yeh, 2000). The other two loss calculation
methods also achieve good results, outperforming
the monotonic algorithm on 12 out of 19 datasets
tested.

The loss expression |U(c, tG)| + nc(A ∪
I(c, tG)) obtains greater accuracy on average than
the other two loss expressions, including the more
adjusted upper bound that is provably closer to the
real loss. This could be explained by the fact that

4We excluded the languages from CoNLL-X that also ap-
peared in CoNLL-XI, i.e., if a language was present in both
shared tasks, we used the latest version.

5No feature optimization is performed since our priority
in this paper is not to compete with state-of-the-art systems,
but to prove, under uniform experimental settings, that our
approach outperforms the baseline system.

294

dynamic dynamic non-monotonic
static monotonic lower pc upper upper

Language UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
Arabic 80.67 66.51 82.76∗ 68.48∗ 83.29∗ 69.14∗ 83.18∗ 69.05∗ 83.40† 69.29†

Basque 76.55 66.05 77.49† 67.31† 74.61 65.31 74.69 65.18 74.27 64.78
Catalan 90.52 85.09 91.37∗ 85.98∗ 90.51 85.35 90.40 85.30 90.44 85.35
Chinese 84.93 80.80 85.82 82.15 86.55∗ 82.53∗ 86.29∗ 82.27∗ 86.60∗ 82.51∗

Czech 78.49 61.77 80.21∗ 63.52∗ 81.32† 64.89† 81.33† 64.81† 81.49† 65.18†

English 85.35 84.29 87.47∗ 86.55∗ 88.44† 87.37† 88.23† 87.22† 88.50† 87.55†
Greek 79.47 69.35 80.76 70.43 80.90 70.46 80.84 70.34 81.02∗ 70.49∗
Hungarian 77.65 68.32 78.84∗ 70.16∗ 78.67∗ 69.83∗ 78.47∗ 69.66∗ 78.65∗ 69.74∗

Italian 84.06 79.79 84.30 80.17 84.38 80.30 84.64 80.52 84.47 80.32
Turkish 81.28 70.97 81.14 71.38 80.65 71.15 80.80 71.29 80.60 71.07
Bulgarian 89.13 85.30 90.45∗ 86.86∗ 91.36† 87.88† 91.33† 87.89† 91.73† 88.26†
Danish 86.00 81.49 86.91∗ 82.75∗ 86.83∗ 82.63∗ 86.89∗ 82.74∗ 86.94∗ 82.68∗

Dutch 81.54 78.46 82.07 79.26 82.78∗ 79.64∗ 82.80∗ 79.68∗ 83.02† 79.92†
German 86.97 83.91 87.95∗ 85.17∗ 87.31 84.37 87.18 84.22 87.48 84.54
Japanese 93.63 92.20 93.67 92.33 94.02 92.68 94.02 92.68 93.97 92.66
Portuguese 86.55 82.61 87.45∗ 83.62∗ 87.17∗ 83.47∗ 87.12∗ 83.45∗ 87.40∗ 83.71∗

Slovene 76.76 63.53 77.86 64.43 80.39† 67.04† 80.56† 67.10† 80.47† 67.10†
Spanish 79.20 76.00 80.12∗ 77.24∗ 81.36∗ 78.30∗ 81.12∗ 77.99∗ 81.33∗ 78.16∗

Swedish 87.43 81.77 88.05∗ 82.77∗ 88.20∗ 83.02∗ 88.09∗ 82.87∗ 88.36∗ 83.16∗

Average 83.48 76.75 84.46 77.92 84.67 78.18 84.63 78.12 84.74 78.24

Table 3: Parsing accuracy (UAS and LAS, including punctuation) of the Covington non-projective parser
with static, and dynamic monotonic and non-monotonic oracles on CoNLL-XI (first block) and CoNLL-
X (second block) datasets. For the dynamic non-monotonic oracle, we show the performance with the
three loss expressions, where lower stands for the lower bound |U(c, tG)|, pc upper for the upper bound
|U(c, tG)| + npc(A ∪ I(c, tG)), and upper for the upper bound |U(c, tG)| + nc(A ∪ I(c, tG)). For
each language, we run five experiments with the same setup but different seeds and report the averaged
accuracy. Best results for each language are shown in boldface. Statistically significant improvements
(α = .05) of both dynamic oracles are marked with ∗ if they are only over the static oracle, and with † if
they are over the opposite dynamic oracle too.

identifying problematic cycles is a difficult task
to learn for the parser, and for this reason a more
straightforward approach, which tries to avoid all
kinds of cycles (regardless of whether they will
cost gold arcs or not), can perform better. This also
leads us to hypothesize that, even if it were feas-
ible to build an oracle with the exact loss, it would
not provide practical improvements over these ap-
proximate oracles; as it appears difficult for a stat-
istical model to learn the situations where repla-
cing a wrong arc with another indirectly helps due
to breaking prospective cycles.

It is also worth mentioning that the non-
monotonic dynamic oracle with the best loss ex-
pression accomplishes an average improvement
over the static version (1.26 UAS) greater than that
obtained by the monotonic oracle (0.98 UAS), res-
ulting in 13 statistically significant improvements
achieved by the non-monotonic variant over the
static oracle in comparison to the 12 obtained by
the monotonic system. Finally, note that, despite
this remarkable performance, the non-monotonic
version (regardless of the loss expression imple-
mented) has an inexplicable drop in accuracy in
Basque in comparison to the other two oracles.

6.2 Comparison

In order to provide a broader contextualization
of our approach, Table 4 presents a comparison
of the average accuracy and parsing speed ob-
tained by some well-known transition-based sys-
tems with dynamic oracles. Concretely, we in-
clude in this comparison both monotonic (Gold-
berg and Nivre, 2012) and non-monotonic (Hon-
nibal et al., 2013) versions of the arc-eager parser,
as well as the original monotonic Covington sys-
tem (Gómez-Rodrı́guez and Fernández-González,
2015). The three of them were ran with our
own implementation so the comparison is homo-
geneous. We also report the published accuracy
of the non-projective Attardi algorithm (Gómez-
Rodrı́guez et al., 2014) on the nineteen datasets
used in our experiments. From Table 4 we can
see that our approach achieves the best average
UAS score, but is slightly slower at parsing time
than the monotonic Covington algorithm. This can
be explained by the fact that the non-monotonic
parser has to take into consideration the whole set
of transitions at each configuration (since all are
allowed), while the monotonic parser only needs
to evaluate a limited set of transitions in some con-

295

Average value
Algorithm UAS LAS sent./s.
G&N 2012 84.32 77.68 833.33
G-R et al. 2014* 83.78 78.64 -
G-R&F-G 2015 84.46 77.92 335.63
H et al. 2013 84.28 77.68 847.33
This work 84.74 78.24 236.74

Table 4: Comparison of the average Unlabeled
and Labeled Attachment Scores (including punc-
tuation) achieved by some widely-used transition-
based algorithms with dynamic oracles on nine
CoNLL-X datasets and all CoNLL-XI datatsets,
as well as their average parsing speed (sen-
tences per second across all datasets) measured
on a 2.30GHz Intel Xeon processor. The first
block corresponds to monotonic parsers, while the
second gathers non-monotonic parsers. All al-
gorithms are tested under our own implementa-
tion, except for the system developed by Gómez-
Rodrı́guez et al. (2014) (marked with *) where we
report the published results.

figurations, speeding up the parsing process.

6.3 Error Analysis

We also carry out some error analysis to provide
some insights about how non-monotonicity is im-
proving accuracy with respect to the original Cov-
ington parser. In particular, we notice that non-
monotonicity tends to be more beneficial on pro-
jective than on non-projective arcs. In addi-
tion, the non-monotonic algorithm presents a not-
able performance on long arcs (which are more
prone to error propagation): average precision
on arcs with length greater than 7 goes from
58.41% in the monotonic version to 63.19% in
the non-monotonic parser, which may mean that
non-monotonicity is alleviating the effect of er-
ror propagation. Finally, we study the effective-
ness of non-monotonic arcs (i.e., those that break
a previously-created arc), obtaining that, on aver-
age across all datasets tested, 36.86% of the arc
transitions taken were non-monotonic, replacing
an existing arc with a new one. Out of these trans-
itions, 60.31% created a gold arc, and only 5.99%
were harmful (i.e., they replaced a previously-built
gold arc with an incorrect arc), with the remain-
ing cases creating non-gold arcs without introdu-
cing extra errors (replacing a non-gold arc with
another). These results back up the usefulness of
non-monotonicity in transition-based parsing.

7 Conclusion

We presented a novel, fully non-monotonic vari-
ant of the well-known non-projective Covington
parser, trained with a dynamic oracle. Due to
the unpredictability of a non-monotonic scenario,
the real loss of each configuration cannot be com-
puted. To overcome this, we proposed three differ-
ent loss expressions that closely bound the loss and
enable us to implement a practical non-monotonic
dynamic oracle.

On average, our non-monotonic algorithm ob-
tains better performance than the monotonic ver-
sion, regardless of which of the variants of the
loss calculation is used. In particular, one of the
loss expressions developed proved very promising
by providing the best average accuracy, in spite
of being the farthest approximation from the ac-
tual loss. On the other hand, the proposed lower
bound makes the non-monotonic oracle the fastest
one among all dynamic oracles developed for the
non-projective Covington algorithm.

To our knowledge, this is the first im-
plementation of non-monotonicity for a non-
projective parsing algorithm, and the first approx-
imate dynamic oracle that uses close, efficiently-
computable approximations of the loss, showing
this to be a feasible alternative when it is not prac-
tical to compute the actual loss.

While we used a perceptron classifier for our ex-
periments, our oracle could also be used in neural-
network implementations of greedy transition-
based parsing (Chen and Manning, 2014; Dyer
et al., 2015), providing an interesting avenue for
future work. We believe that gains from both tech-
niques should be complementary, as they apply to
orthogonal components of the parsing system (the
scoring model vs. the transition system), although
we might see a ”diminishing returns”effect.

Acknowledgments

This research has received funding from the
European Research Council (ERC) under the
European Union’s Horizon 2020 research and in-
novation programme (grant agreement No 714150
- FASTPARSE). The second author has re-
ceived funding from the TELEPARES-UDC pro-
ject (FFI2014-51978-C2-2-R) from MINECO.

296

References
Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X

shared task on multilingual dependency parsing. In
Proceedings of the 10th Conference on Computa-
tional Natural Language Learning (CoNLL). pages
149–164. http://www.aclweb.org/anthology/W06-
2920.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Michael A. Covington. 2001. A fundamental algorithm
for dependency parsing. In Proceedings of the 39th
Annual ACM Southeast Conference. ACM, New
York, NY, USA, pages 95–102.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Con-
ference on Natural Language Processing (Volume
1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 334–343.
http://www.aclweb.org/anthology/P15-1033.

Yoav Goldberg and Joakim Nivre. 2012. A dynamic
oracle for arc-eager dependency parsing. In Pro-
ceedings of COLING 2012. Association for Compu-
tational Linguistics, Mumbai, India, pages 959–976.
http://www.aclweb.org/anthology/C12-1059.

Yoav Goldberg and Joakim Nivre. 2013. Training
deterministic parsers with non-deterministic
oracles. Transactions of the Association
for Computational Linguistics 1:403–414.
http://anthology.aclweb.org/Q/Q13/Q13-1033.pdf.

Carlos Gómez-Rodrı́guez and Daniel Fernández-
González. 2015. An efficient dynamic oracle for
unrestricted non-projective parsing. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the Asian Federation of Natural Language
Processing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 2: Short Papers. pages 256–261.
http://aclweb.org/anthology/P/P15/P15-2042.pdf.

Carlos Gómez-Rodrı́guez and Joakim Nivre.
2013. Divisible transition systems and
multiplanar dependency parsing. Com-
putational Linguistics 39(4):799–845.
http://aclweb.org/anthology/J/J13/J13-4002.pdf.

Carlos Gómez-Rodrı́guez, Francesco Sartorio, and
Giorgio Satta. 2014. A polynomial-time dy-
namic oracle for non-projective dependency

parsing. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for
Computational Linguistics, pages 917–927.
http://aclweb.org/anthology/D14-1099.

Matthew Honnibal, Yoav Goldberg, and Mark John-
son. 2013. A non-monotonic arc-eager trans-
ition system for dependency parsing. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning, CoNLL 2013,
Sofia, Bulgaria, August 8-9, 2013. pages 163–
172. http://aclweb.org/anthology/W/W13/W13-
3518.pdf.

Matthew Honnibal and Mark Johnson. 2015. An
improved non-monotonic transition system for de-
pendency parsing. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 1373–1378.
http://aclweb.org/anthology/D15-1162.

Donald B. Johnson. 1975. Finding all the ele-
mentary circuits of a directed graph. SIAM
Journal on Computing 4(1):77–84. ht-
tps://doi.org/10.1137/0204007.

Ryan McDonald and Joakim Nivre. 2007. Char-
acterizing the errors of data-driven dependency
parsing models. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL). pages 122–
131. http://www.aclweb.org/anthology/D/D07/D07-
1013.pdf.

Joakim Nivre. 2003. An efficient algorithm for pro-
jective dependency parsing. In Proceedings of the
8th International Workshop on Parsing Technologies
(IWPT 03). ACL/SIGPARSE, pages 149–160.

Joakim Nivre. 2008. Algorithms for Determ-
inistic Incremental Dependency Parsing.
Computational Linguistics 34(4):513–553.
https://doi.org/10.1162/coli.07-056-R1-07-027.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan
McDonald, Jens Nilsson, Sebastian Riedel,
and Deniz Yuret. 2007. The CoNLL 2007
shared task on dependency parsing. In Pro-
ceedings of the CoNLL Shared Task Session
of EMNLP-CoNLL 2007. pages 915–932.
http://www.aclweb.org/anthology/D/D07/D07-
1096.pdf.

Robert Endre Tarjan. 1972. Depth-first search
and linear graph algorithms. SIAM J.
Comput. 1(2):146–160. http://dblp.uni-
trier.de/db/journals/siamcomp/siamcomp1.html.

Alexander Volokh. 2013. Performance-Oriented De-
pendency Parsing. Doctoral dissertation, Saarland
University, Saarbrücken, Germany.

297

Alexander Volokh and Günter Neumann. 2012. De-
pendency parsing with efficient feature extrac-
tion. In Birte Glimm and Antonio Krüger,
editors, KI. Springer, volume 7526 of Lec-
ture Notes in Computer Science, pages 253–256.
https://doi.org/10.1007/978-3-642-33347-7.

Alexander Yeh. 2000. More accurate tests for the stat-
istical significance of result differences. In Proceed-
ings of the 18th International Conference on Com-
putational Linguistics (COLING). pages 947–953.
http://aclweb.org/anthology/C/C00/C00-2137.pdf.

298

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 299–309
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1028

Aggregating and Predicting Sequence Labels from Crowd Annotations

An T. Nguyen1 Byron C. Wallace2 Junyi Jessy Li3 Ani Nenkova3 Matthew Lease 1

1University of Texas at Austin, 2Northeastern University,
3University of Pennsylvania,

atn@cs.utexas.edu, byron@ccs.neu.edu,
{ljunyi|nenkova}@seas.upenn.edu, ml@utexas.edu

Abstract

Despite sequences being core to NLP,
scant work has considered how to handle
noisy sequence labels from multiple anno-
tators for the same text. Given such anno-
tations, we consider two complementary
tasks: (1) aggregating sequential crowd la-
bels to infer a best single set of consen-
sus annotations; and (2) using crowd an-
notations as training data for a model that
can predict sequences in unannotated text.
For aggregation, we propose a novel Hid-
den Markov Model variant. To predict se-
quences in unannotated text, we propose
a neural approach using Long Short Term
Memory. We evaluate a suite of meth-
ods across two different applications and
text genres: Named-Entity Recognition in
news articles and Information Extraction
from biomedical abstracts. Results show
improvement over strong baselines. Our
source code and data are available online1.

1 Introduction

Many important problems in Natural Language
Processing (NLP) may be viewed as sequence la-
beling tasks, such as part-of-speech (PoS) tagging,
named-entity recognition (NER), and Information
Extraction (IE). As with other machine learning
tasks, automatic sequence labeling typically re-
quires annotated corpora on which to train pre-
dictive models. While such annotation was tra-
ditionally performed by domain experts, crowd-
sourcing has become a popular means to acquire
large labeled datasets at lower cost, though anno-
tations from laypeople may be lower quality than
those from domain experts (Snow et al., 2008). It

1 Soure code and biomedical abstract data:
www.github.com/thanhan/seqcrowd-acl17,
www.byronwallace.com/EBM_abstracts_data

is therefore essential to model crowdsourced la-
bel quality, both to estimate individual annotator
reliability and to aggregate individual annotations
to induce a single set of “reference standard” con-
sensus labels. While many models have been pro-
posed for aggregating crowd labels for binary or
multiclass classification problems (Sheshadri and
Lease, 2013), far less work has explored crowd-
based annotation of sequences (Finin et al., 2010;
Hovy et al., 2014; Rodrigues et al., 2014).

In this paper, we investigate two complemen-
tary challenges in using sequential crowd labels:
how to best aggregate them (Task 1); and how to
accurately predict sequences in unannotated text
given training data from the crowd (Task 2). For
aggregation, one might want to induce a single set
of high-quality consensus annotations for various
purposes: (i) for direct use at run-time (when a
given application requires human-level accuracy
in identifying sequences); (ii) for sharing with oth-
ers; or (iii) for training a predictive model.

When human-level accuracy in tagging of se-
quences is not crucial, automatic labeling of unan-
notated text is typically preferable, as it is more ef-
ficient, scalable, and cost-effective. Given a train-
ing set of crowd labels, how can we best predict
sequences in unannotated text? Should we: (i)
consider Task 1 as a pre-processing step and train
the model using consensus labels; or (ii) instead
directly train the model on all of the individual an-
notations, as done by Yang et al. (2010)? We in-
vestigate both directions in this work.

Our approach is to augment existing sequence
labeling models such as HMMs (Rabiner and
Juang, 1986) and LSTMs (Hochreiter and Schmid-
huber, 1997; Lample et al., 2016) by introduc-
ing an explicit ”crowd component”. For HMMs,
we model this crowd component by including ad-
ditional parameters for worker label quality and
crowd label variables. For the LSTM, we intro-
duce a vector representation for each annotator. In

299

https://doi.org/10.18653/v1/P17-1028

both cases, the crowd component models both the
noise from labels and the label quality from each
annotator. We find that principled combination of
the “crowd component” with the “sequence com-
ponent” yields strong improvement.

For evaluation, we consider two practical ap-
plications in two text genres: NER in news and
IE from medical abstracts. Recognizing named-
entities such as people, organizations or loca-
tions can be viewed as a sequence labeling task
in which each label specifies whether each word
is Inside, Outside or Beginning (IOB) a named-
entity. For this task, we consider the English por-
tion of the CoNLL-2003 dataset (Tjong Kim Sang
and De Meulder, 2003), using crowd labels col-
lected by Rodrigues et al. (2014).

For the IE application, we use a set of biomedi-
cal abstracts that describe Randomized Controlled
Trials (RCTs). The crowdsourced annotations
comprise labeled text spans that describe the pa-
tient populations enrolled in the corresponding
RCTs. For example, an abstract may contain the
text: we recruited and enrolled diabetic patients.
Identifying these sequences is useful for down-
stream systems that process biomedical literature,
e.g., clinical search engines (Huang et al., 2006;
Schardt et al., 2007; Wallace et al., 2016).

Contributions. We present a systematic inves-
tigation and evaluation of alternative methods for
handling and utilizing crowd labels for sequen-
tial annotation tasks. We consider both how to
best aggregate sequential crowd labels (Task 1)
and how to best predict sequences in unannotated
text given a training set of crowd annotations (Task
2). As part of this work, we propose novel models
for working with noisy sequence labels from the
crowd. Reported experiments both benchmark ex-
isting state-of-the-art approaches (sequential and
non-sequential) and show that our proposed mod-
els achieve best-in-class performance. As noted in
the Abstract, we have also shared our sourcecode
and data online for use by the community.

2 Related Work

We briefly review two separate threads of relevant
prior work: (1) sequence labeling models; and (2)
aggregation of crowdsourcing annotations.

Sequence labeling. Early work on learning for
sequential tasks used HMMs (Bikel et al., 1997).
HMMs are a class of generative probabilistic mod-
els comprising two components: an emission

model from a hidden state to an observation and
a transition model from a hidden state to the next
hidden state. Later work focused on discriminative
models such as Maximum Entropy Models (Chieu
and Ng, 2002) and Conditional Random Fields
(CRFs) (Lafferty et al., 2001). These were able
to achieve strong predictive performance by ex-
ploiting arbitrary features, but they may not be the
best choice for label aggregation. Also, compared
to the simple HMM model, discriminative sequen-
tially structured models require more complex op-
timization and are generally more difficult to ex-
tend. Here we argue for the generative HMMs
for our first task of aggregating crowd labels. The
generative nature of HMMs is a good fit for exist-
ing crowd modeling techniques and also enables
very efficient parameter estimation.

In addition to the supervised setting, previ-
ous work has studied unsupervised HMMs, e.g.,
for PoS induction (Goldwater and Griffiths, 2007;
Johnson, 2007). These works are similar to our
work in trying to infer the hidden states without
labeled data. Our graphical model is different in
incorporating signal from the crowd labels.

For Task 2 (training predictive models), we con-
sider CRFs and LSTMs. CRFs are undirected,
conditional models that can exploit arbitrary fea-
tures. They have achieved strong performance on
many sequence labeling tasks (McCallum and Li,
2003), but they depend on hand-crafted features.
Recent work has considered end-to-end neural ar-
chitectures that learn features, e.g., Convolutional
Neural Networks (CNNs) (Collobert et al., 2011;
Kim, 2014; Zhang and Wallace, 2015) and LSTMs
(Lample et al., 2016). Here we modify the LSTM
model proposed by Lample et al. (2016) by aug-
menting the network with ‘crowd worker vectors’.

Crowdsourcing. Acquiring labeled data is crit-
ical for training supervised models. Snow et al.
(2008) proposed using Amazon Mechanical Turk
to collect labels in NLP quickly and at low cost,
albeit with some degradation in quality. Subse-
quent work has developed models for improving
aggregate label quality (Raykar et al., 2010; Felt
et al., 2015; Kajino et al., 2012; Bi et al., 2014;
Liu et al., 2012; Hovy et al., 2013). Sheshadri and
Lease (2013) survey and benchmark methods.

However, these models are almost all in the
binary or multiclass classification setting; only a
few have considered sequence labeling. Dredze
et al. (2009) proposed a method for learning a CRF

300

model from multiple labels (although the identi-
ties of the annotators or workers were not used).
Rodrigues et al. (2014) extended this approach to
account for worker identities, providing a joint
”crowd-CRF” model. They collected a dataset of
crowdsourced labels for a portion of the CoNLL
2003 dataset. Using this, they showed that their
model outperformed Dredze et al. (2009)’s model
and other baselines. However, due to the technical
difficulty of the joint approach with CRFs, they re-
sorted to strong modeling assumptions. For exam-
ple, their model assumes that for each word, only
one worker provides the correct answer while all
others label the word completely randomly. While
this assumption captures some aspects of label
quality, it is potentially problematic, such as for
‘easy words’ labeled correctly by all workers.

More recently, ? proposed HMM models for
aggregating crowdsourced discourse segmentation
labels. However, they did not consider the general
sequence labeling setting. Their method includes
task-specific assumptions, e.g., that discourse seg-
ment lengths follow some empirical distribution
estimated from data. In the absence of a gold stan-
dard, they evaluated by checking that workers ac-
curacies are consistent and by comparing their two
models to each other. We include their approach
along with Rodrigues et al. (2014) as a baseline in
our evaluation.

3 Methods

We present our Task 1 HMM approach in Section
3.1 and our Task 2 LSTM approach in Section 3.2.

3.1 HMMs with Crowd Workers

Model: We first define a standard HMM with hid-
den states hi, observations vi, transition parameter
vectors τ hi and emission parameter vectors Ωhi :

hi+1|hi ∼ Discrete(τ hi) (1)

vi|hi ∼ Discrete(Ωhi) (2)

The discrete distributions here are governed by
Multinomials. In the context of our task, vi is the
word at position i and hi is the true, latent class of
vi (e.g., entity or non-entity).

For the crowd component, assume there are n
classes, and let lij be the label for word i provided
by worker j. Further, let C(j) be the confusion
matrix for worker j, i.e., C

(j)
k is a vector of size n

in which element k′ is the probability of worker j

lij
Discrete

C(j)

hihi−1 hi+1

m workers

Discrete

vi

Ω

Figure 1: The factor graph for our HMM-Crowd
model. Dotted rectangles are gates, where the
value of hi is used to select the parameters for the
Multinomial governing the Discrete distribution.

providing the label k′ for a word of true class k:

lij |hi ∼ Discrete(C
(j)
hi

) (3)

Figure 1 shows the factor graph of this model,
which we call HMM-Crowd. Note that we assume
that individual crowdworker labels are condition-
ally independent given the (hidden) true label.

A common problem with crowdsourcing mod-
els is data sparsity. For workers who provide only
a few labels, it is hard to derive a good estimate
of their confusion matrices. This is exacerbated
when the label distribution is imbalanced, e.g.,
most words are not part of a named entity, con-
centrating the counts in a few confusion matrix
entries. Solutions for this problem include hierar-
chical models of ‘worker communities’ (Venanzi
et al., 2014) or correlations between confusion ma-
trix entries (Nguyen et al., 2016). Although ef-
fective, these methods are also quite computation-
ally expensive. For our models, to keep parame-
ter estimation efficient, we use a simpler solution
of ‘collapsing’ the confusion matrix into a ‘confu-
sion vector’. For worker j, instead of having the
n × n matrix C(j), we use the n × 1 vector C′(j)

where C′(j)k is the probability of worker j labeling
a word with true class k correctly. We also smooth
the estimate of C′ with prior counts as in (Liu and
Wang, 2012; Kim and Ghahramani, 2012).
Learning: We use the Expectation Maximization
(EM) algorithm (Dempster et al., 1977) to learn
the parameters (τ ,Ω,C′), given the observations
(all the words V and all the worker labels L).

In the E-step, given the current estimates of the
parameters, we take a forward and a backward

301

pass in the HMM to infer the hidden states, i.e. to
calculate p(hi|V,L) and p(hi, hi+1|V,L) for all
appropriate i. Let α(hi) = p(hi, v1:i, l1:i) where
v1:i are the words from position 1 to i and l1:i are
the crowd labels for these words from all work-
ers. Similarly, let β(hi) = p(vi+1:n, li+1:n|hi).
We have the recursions:

α(hi) =
∑

hi−1

p(vi|hi)p(hi|hi−1)
∏

j

p(lij |hi)α(hi−1)

(4)

β(hi) =
∑

hi+1

p(hi+1|hi)p(vi+1|hi+1)

∏

j

p(li+1,j |hi+1)β(hi+1) (5)

These are the standard α and β recursions for
HMMs augmented with the crowd model: the
product

∏
j over the workers j who have provided

labels for word i (or i + 1). The posteriors
can then be easily evaluated: p(hi|V,L) ∝
α(hi)β(hi) and p(hi, hi+1|V,L) ∝
α(hi)p(hi+1|hi)p(vi+1|hi+1)β(hi+1)

In the standard M-step, the parameters are es-
timated using maximum likelihood. However, we
found a Variational Bayesian (VB) update proce-
dure for the HMM parameters similar to (John-
son, 2007; Beal, 2003) provides some improve-
ment and stability. We first define the Dirichlet
priors over the transition and emission parameters:

p(τ hi) = Dir(at) (6)

p(Ωhi) = Dir(ae) (7)

With these priors, the variational M-step updates
the parameters as follows2:

τ h′|h =
exp{Ψ(Eh′|h + at)}
exp{Ψ(Eh + nat)}

(8)

Ωv|h =
exp{Ψ(Ev|h + ae)}
exp{Ψ(Eh +mae)}

(9)

where Ψ is the Digamma function, n is the num-
ber of states and m is the number of observa-
tions. E denotes the expected counts, calculated
from the posteriors inferred in the E-step. Eh′|h
is the expected number of times the HMM transi-
tioned from state h to state h′, where the expec-
tation is with respect to the posterior distribution
p(hi, hi+1|V,L) that we infer in the E step:

Eh′|h =
∑

i

p(hi = h, hi+1 = h′|V,L) (10)

2See Beal (2003) for the derivation and Johnson (2007)
for further discussion for the Variational Bayesian approach.

Similarly, Eh is the expected number of times the
HMM is at state h: Eh =

∑
i p(hi = h|V,L) and

Ev|h is the expected number of times the HMM
emits the observation v from the state h: Ev|h =∑

i,vi=v
p(hi = h|V,L).

For the crowd parameters C′(j), we use the
(smoothed) maximum likelihood estimate:

C
′(j)
k =

E
(j)
k|k + ac

E
(j)
k + nac

(11)

where ac is the smoothing parameter and E
(j)
k|k is

the expected number of times that worker j cor-
rectly labeled a word of true class k as k while E

(j)
k

is the expected total number of words belonging to
class k worker j has labeled. Again, the expecta-
tion in E is taken under the posterior distributions
that we infer in the E step.

3.2 Long Short Term Memory with Crowds
For Task 2, we extend the LSTM architecture
(Hochreiter and Schmidhuber, 1997) for NER
(Lample et al., 2016) to account for noisy crowd-
sourced labels (this can be easily adapted to other
sequence labeling tasks). In this model, the sen-
tence input is first fed into an LSTM block (which
includes character- and word-level bi-directional
LSTM units). The LSTM block’s output then be-
comes input to a (fully connected) hidden layer,
which produces a vector of tags scores for each
word. This tag score vector is the word-level pre-
diction, representing the likelihood of the word be-
ing from each tag. All the tags scores are then fed
into a ‘CRF layer’ that ‘connects’ the word-level
predictions in the sentence and produces the final
output: the most likely sequence of tags.

We introduce a crowd representation in which a
worker vector represents the noise associated with
her labels. In other words, the parameters in the
original architecture learns the correct sequence
labeling model while the crowd vectors add noise
to its predictions to ‘explain’ the lower quality of
the labels. We assume a perfect worker has a zero
vector as her representation while an unreliable
worker is represented by a large magnitude vector.
At test time, we ignore the crowd component and
make predictions by feeding the unlabeled sen-
tence into the original LSTM architecture. At train
time, an example consists of the labeled sentence
and the ID of the worker who provided the labels.
Worker IDs are mapped to vector representations
and incorporated into the LSTM architecture.

302

LSTM

Hidden Layer

Tags Scores

CRF

+

Crowd Vector

Worker ID

Sentence
...

Figure 2: The LSTM-Crowd model. The Crowd
Vector is added (element-wise) to the Tags Scores.

LSTM

Hidden Layer

Tags Scores

CRF

Crowd Vector

Worker ID

Sentence
...

Figure 3: The LSTM-Crowd-cat model. The
crowd vectors provide additional input for the Hid-
den Layer (they are effectively concatenated to the
output of the LSTM block).

We propose two strategies for incorporating the
crowd vector into the LSTM: (1) adding the crowd
vector to the tags scores and (2) concatenating the
crowd vector to the output of the LSTM block.

LSTM-Crowd. The first strategy is illustrated
in Figure 2. We set the dimension of the crowd
vectors to be equal to the number of tags and
the addition is element-wise. In this strategy, the
crowd vectors have a nice interpretation: the tag-
conditional noise for the worker. This is useful for
worker evaluation and intelligent task routing (i.e.
assigning the right work to the right worker).

LSTM-Crowd-cat. The second strategy is il-
lustrated in Figure 3. We set the crowd vectors to
be additional inputs for the Hidden Layer (along
with the LSTM block output). In this way, we are
free to set the dimension of the crowd vectors and
we have a more flexible model of worker noise.
This comes with a cost of reduced interpretability
and additional parameters in the hidden layer.

For both strategies, the crowd vectors are ran-
domly initialized and learned in the same LSTM
architecture using Back Propagation (Rumelhart
et al., 1985) and Stochastic Gradient Descent
(SGD) (Bottou, 2010).

Dataset Application Size Gold Crowd
CoNLL’03 NER 1393 All 400
Medical IE 5000 200 All

Table 1: Datasets used for each application. We
list the total number of articles/abstracts and the
number which have Gold/Crowd labels.

4 Evaluation Setup

4.1 Datasets & Tuning

NER. We use the English portion of the CoNLL-
2003 dataset (Tjong Kim Sang and De Meulder,
2003), which includes over 21,000 annotated sen-
tences from 1,393 news articles split into 3 sets:
train, validation and test. We also use crowd la-
bels collected by Rodrigues et al. (2014) for 400
articles in the train set3. For Task 1 (aggregating
crowd labels), to avoid overfitting, we split these
400 articles into 50% validation and 50% test4.
For Task 2 (predicting sequences on unannotated
text), we follow Rodrigues et al. (2014) in using
the CoNLL validation and test sets.

Biomedical IE. We use 5,000 medical paper
abstracts describing randomized control trials
(RCTs) involving people. Each abstract is an-
notated by roughly 5 Amazon Mechanical Turk
workers. Annotators were asked to mark all text
spans in a given abstract which identify the pop-
ulation enrolled in the clinical trial. The anno-
tations are therefore binary: inside or outside a
span. In addition to annotations collected from
laypeople via Mechanical Turk, we also use gold
annotations by medical students for a small set of
200 abstracts, which we split into 50% validation
and 50% test. For Task 1, we run methods being
compared on all 5,000 abstracts, but we evaluate
them only using the validation/test set. For Task 2,
the validation and test sets are held out. Table 1
presents key statistics of datasets used.

Tuning: In all experiments, validation set results
are used to tune the models hyper-parameters. For
HMM-Crowd, we have a smoothing parameter
and two Dirichlet priors. For our two LSTMs, we
have a L2 regularization parameter. For LSTM-
Crowd-cat, we also have the crowd vector dimen-

3http://www.fprodrigues.com/software/
crf-ma-sequence-labeling-with-multiple-annotators/

4Rodrigues et al. (2014)’s results on the ‘training set’ are
not directly comparable to ours since they do not partition the
crowd labels into validation and test sets.

303

sion. For each hyper-parameter, we consider a few
(less then 5) different parameter settings for light
tuning. We report results achieved on the test set.

4.2 Baselines
Task 1. For aggregating crowd labels, we consider
the following baselines:

• Majority Voting (MV) at the token level. Ro-
drigues et al. (2014) show that this generally
performs better than MV at the entity level.

• Dawid and Skene (1979) weighted voting at
the token level. We tested both a popular
public implementation5 of Dawid-Skene and
our own and found that ours performed better
(likely due to smoothing), so we report it.

• MACE (Hovy et al., 2013), using the authors’
public implementation6.

• Dawid-Skene then HMM. We propose a sim-
ple heuristic to aggregate sequential crowd
labels: (1) use Dawid and Skene (1979) to in-
duce consensus labels from individual crowd
labels; (2) train a HMM using the input text
and consensus labels; and then (3) use the
trained HMM to predict and output labels for
the input text. We also tried using a CRF or
LSTM as the sequence labeler but found the
HMM performed best. This is not surprising:
CRFs and LSTM are good at predicting un-
seen sequences, whereas the predictions here
are on the seen training sequences.

• Rodrigues et al. (2014)’s CRF with Multiple
Annotators (CRF-MA). We use the source
code provided by the authors.

• ?’s Interval-dependent (ID) HMM using the
authors’ source code7. Since they assume
binary labels, we can only apply this to the
biomedical IE task.

For non-sequential aggregation baselines, we eval-
uate majority voting (MV) and Dawid and Skene
(1979) as perhaps the most widely known and
used in practice. A recent benchmark evalua-
tion of aggregation methods for (non-sequential)
crowd labels found that classic Dawid-Skene was
the most consistently strong performing method

5https://github.com/ipeirotis/Get-Another-Label
6http://www.isi.edu/publications/licensed-sw/mace/
7https://academiccommons.columbia.edu/catalog/ac:199939

among those considered, despite its age, while
majority voting was often outperformed by other
methods (Sheshadri and Lease, 2013).

Dawid and Skene (1979) models a confusion
matrix for each annotator, using EM estimation of
these matrices as parameters and the true token la-
bels as hidden variables. This is roughly equiv-
alent to our proposed HMM-Crowd model (Sec-
tion 3), but without the HMM component.

Task 2. To predict sequences on unannotated text
when trained on crowd labels, we consider two
broad approaches: (1) directly train the model on
all individual crowd annotations; and (2) induce
consensus labels via Task 1 and train on them.

For approach (1), we report as baselines:

• Rodrigues et al. (2014)’s CRF-MA

• Lample et al. (2016)’s LSTM trained on all
crowd labels (ignoring worker IDs)

For approach (2), we report as baselines:

• Majority Voting (MV) then Conditional Ran-
dom Field (CRF). We train the CRF using the
CRF Suite package (Okazaki, 2007) with the
same features as in Rodrigues et al. (2014),
who also report this baseline.

• Lample et al. (2016)’s LSTM trained on
Dawid-Skene (DS) consensus labels.

4.3 Metrics
NER. We use the CoNLL 2003 metrics of entity-
level precision, recall and F1. The predicted entity
must match the gold entity exactly (i.e. no partial
credit is given for partial matches).

Biomedical IE. The above metrics are overly
strict for the biomedical IR task, in which an-
notated sequences are typically far longer than
named-entities. We therefore ‘relax’ the metric to
credit partial matches as follows. For each pre-
dicted positive contiguous text span, we calculate:

Precision =
true positive words

words in this predicted span

For example, for a predicted span of 10 words, if 6
words are truly positive, the Precision is 60%. We
evaluate this ‘local’ precision for each predicted
span and then take the average as the ‘global’ pre-
cision. Similarly, for each gold span, we calculate:

Recall =
words in a predicted span
words in this gold span

304

Method Precision Recall F1
Majority Vote 78.35 56.57 65.71
MACE 65.10 69.81 67.37
Dawid-Skene (DS) 78.05 65.78 71.39
CRF-MA 80.29 51.20 62.53
DS then HMM 76.81 71.41 74.01
HMM-Crowd 77.40 72.29 74.76

Table 2: NER results for Task 1 (crowd label ag-
gregation). Rows 1-3 show non-sequential meth-
ods while Rows 4-6 show sequential methods.

The recall scores for all the gold spans are again
averaged to get a global recall score.

For the biomedical IE task, because we have
gold labels for only a small set of 200 abstracts,
we create 100 bootstrap re-samples of the (pre-
dicted and gold) spans and perform the evaluation
for each re-sample. We then report the mean and
standard deviation over these 100 re-samples.

5 Evaluation Results

5.1 Named-Entity Recognition (NER)

Table 2 presents Task 1 results for aggregat-
ing crowd labels. For the non-sequential aggre-
gation baselines, we see that Dawid and Skene
(1979) outperforms both majority voting and
MACE (Hovy et al., 2013). For sequential
methods, our heuristic ‘Dawid-Skene then HMM’
method performs surprisingly well, nearly as well
as HMM-Crowd. However, we will see that this
heuristic does not work as well for biomedical IR.

Rodrigues et al. (2014)’s CRF-MA achieves the
highest Precision of all methods, but surprisingly
the lowest F1. We use their public implementa-
tion but observe different results from what they
report (we observed similar results when using all
the crowd data without validation/test split as they
do). We suspect their released source code may be
optimized for Task 2, though we could not reach
the authors to verify this.

Table 3 reports NER results for Task 2: predict-
ing sequences on unannotated text when trained on
crowd labels. Results for Rodrigues et al. (2014)’s
CRF-MA are reproduced using their public imple-
mentation and match their reported results. While
CRF-MA outperforms ‘Majority Vote then CRF’
as the authors reported, and achieves the highest
Recall of all methods, its F1 results are generally
not competitive with other methods.

Methods based on Lample et al. (2016)’s LSTM
generally outperform the CRF methods. Adding a
crowd component to the LSTM yields marked im-
provement of 2.5-3 points F1 vs. the LSTM trained
on individual crowd annotations or consensus MV
annotations. LSTM-Crowd (trained on individual
labels) and ‘HMM-Crowd then LSTM’ (LSTM
trained on HMM consensus labels) offer different
paths to achieving comparable, best results.

5.2 Biomedical Information Extraction (IE)

Tables 4 and 5 present Biomedical IE results for
Tasks 1 and 2, respectively. We were unable to run
Rodrigues et al. (2014)’s CRF-MA public imple-
mentation on the Biomedical IE dataset (due to an
‘Out of Memory Error’ with 8gb max heapsize).

For Task 1, Majority Vote achieves nearly 92%
Precision but suffers from very low Recall. As
with NER, HMM-Crowd achieves the highest Re-
call and F1, showing 2 points F1 improvement
here over non-sequential Dawid and Skene (1979).
In contrast with the NER results, our heuristic
‘Dawid-Skene then HMM’ performs much worse
for Biomedical IE. In general, we expect heuristics
to be less robust than principled methods.

For Task 2, as with NER, we again see that
LSTM-Crowd (trained on individual labels) and
‘HMM-Crowd then LSTM’ (LSTM trained on
HMM consensus labels) offer different paths
to achieving fairly comparable results. While
LSTM-Crowd-cat again achieves slightly lower
F1, simply training Lample et al. (2016)’s LSTM
directly on all crowd labels performs much better
than seen earlier with NER, likely due to the rela-
tively larger size of this dataset (see Table 1). To
further investigate, we study the performances of
these LSTM models as a function of training data
available. In Figure 4, we see that as the amount
of training data decreases, our crowd-augmented
LSTM models produce greater relative improve-
ment compared to the original LSTM architecture.

Table 6 presents an example from Task 1 of
a sentence with its gold span, annotations and
the outputs from Dawid-Skene and HMM-Crowd.
Dawid-Skene aggregates labels based only on the
crowd labels while our HMM-Crowd combines
that with a sequence model. HMM-Crowd is able
to return the longer part of the correct span.

305

Method Precision Recall F1
CRF-MA (Rodrigues et al., 2014) 49.40 85.60 62.60
LSTM (Lample et al., 2016) 83.19 57.12 67.73
LSTM-Crowd 82.38 62.10 70.82
LSTM-Crowd-cat 79.61 62.87 70.26
Majority Vote then CRF 45.50 80.90 58.20
Dawid-Skene then LSTM 72.30 61.17 66.27
HMM-Crowd then CRF 77.40 61.40 68.50
HMM-Crowd then LSTM 76.19 66.24 70.87
LSTM on Gold Labels (upper-bound) 85.27 83.19 84.22

Table 3: NER results on Task 2: predicting sequences on unannotated text when trained on crowd labels.
Rows 1-4 train the predictive model using individual crowd labels, while Rows 5-8 first aggregate crowd
labels then train the model on the induced consensus labels. The last row indicates an upper-bound from
training on gold labels. LSTM-Crowd and LSTM-Crowd-cat are described in Section 3.

Method Precision Recall F1 std
Majority Vote 91.89 48.03 63.03 2.6
MACE 45.01 88.49 59.63 1.7
Dawid-Skene 77.85 66.77 71.84 1.7
Dawid-Skene then HMM 72.49 58.77 64.86 2.0
ID HMM (?) 78.99 68.10 73.11 1.9
HMM-Crowd 72.81 75.14 73.93 1.8

Table 4: Biomedical IE results for Task 1: aggregating sequential crowd labels to induce consensus
labels. Rows 1-3 indicate non-sequential baselines. Results are averaged over 100 bootstrap re-samples.
We report the standard deviation of F1, std, due to this dataset having fewer gold labels for evaluation.

Method Precision Recall F1 std
LSTM (Lample et al., 2016) 77.43 61.13 68.27 1.9
LSTM-Crowd 73.83 63.93 68.47 1.6
LSTM-Crowd-cat 68.08 68.41 68.20 1.8
Majority Vote then CRF 93.71 33.16 48.92 2.8
Dawid-Skene then LSTM 70.21 65.26 67.59 1.7
HMM-Crowd then CRF 79.54 54.76 64.81 2.0
HMM-Crowd then LSTM 73.65 64.64 68.81 1.9

Table 5: Biomedical IE results for Task 2. Rows 1-3 correspond to training on all labels, while Rows
4-7 first aggregate crowd labels then train the sequence labeling model on consensus annotations.

306

Gold ... was as safe and effective as ... for the empiric treatment of acute invasive diarrhea
in ambulatory pediatric patients requiring an emergency room visit

Annotations ... was as safe and effective as ... for the empiric treatment of acute invasive diarrhea

(2 out of 5) in ambulatory pediatric patients requiring an emergency room visit

Dawid-Skene ... was as safe and effective as ... for the empiric treatment of acute invasive diarrhea
in ambulatory pediatric patients requiring an emergency room visit

HMM-Crowd ... was as safe and effective as ... for the empiric treatment of acute invasive diarrhea
in ambulatory pediatric patients requiring an emergency room visit

Table 6: An example from the medical abstract dataset for task 1: inferring true labels. Out of 5 an-
notations, only 2 have identified a positive span (the other 3 are empty). Dawid-Skene is able to assign
higher weights to the minority of 2 annotations to return a part of the correct span. HMM-Crowd returns
a longer part of the span, which we believe is due to useful signal from its sequence model.

Figure 4: F1 scores in Task 2 for biomedical IE
with varying percentages of training data.

6 Conclusions and Future Work

Given a dataset of crowdsourced sequence labels,
we presented novel methods to: (1) aggregate se-
quential crowd labels to infer a best single set of
consensus annotations; and (2) use crowd annota-
tions as training data for a model that can predict
sequences in unannotated text. We evaluated our
approaches on two datasets representing different
domains and tasks: general NER and biomedical
IE. Results showed that our methods show im-
provement over strong baselines.

We expect our methods to be applicable to and
similarly benefit other sequence labeling tasks,
such as POS tagging and chunking (Hovy et al.,
2014). Our methods also provide an estimate of
each worker’s label quality, which can be trans-
fered between tasks and is useful for error analy-
sis and intelligent task routing (Bragg et al., 2014).
We also plan to investigate extension of the crowd
component in our HMM method with hierarchical
models, as well as a fully-Bayesian approach.

Acknowledgements

We thank the reviewers for their valuable com-
ments. This work is supported in part by by Na-
tional Science Foundation grant No. 1253413 and
the National Cancer Institute (NCI) of the Na-
tional Institutes of Health (NIH), award number
UH2CA203711. Any opinions, findings, and con-
clusions or recommendations expressed by the au-
thors are entirely their own and do not represent
those of the sponsoring agencies.

References
Matthew James Beal. 2003. Variational algorithms for

approximate Bayesian inference. University of Lon-
don United Kingdom.

Wei Bi, Liwei Wang, James T. Kwok, and Zhuowen Tu.
2014. Learning to predict from crowdsourced data.
In Uncertainty in Artificial Intelligence.

Daniel M Bikel, Scott Miller, Richard Schwartz,
and Ralph Weischedel. 1997. Nymble: a
high-performance learning name-finder. In
Proceedings of the fifth conference on Applied
natural language processing. Association for
Computational Linguistics, pages 194–201.
https://doi.org/10.3115/974557.974586.

Léon Bottou. 2010. Large-scale machine learning
with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, Springer, pages 177–186.

Jonathan Bragg, Andrey Kolobov, Mausam Mausam,
and Daniel S Weld. 2014. Parallel task routing for
crowdsourcing. In Second AAAI Conference on Hu-
man Computation and Crowdsourcing.

Hai Leong Chieu and Hwee Tou Ng. 2002. Named en-
tity recognition: a maximum entropy approach using
global information. In Proceedings of the 19th inter-
national conference on Computational linguistics-
Volume 1. Association for Computational Linguis-

307

tics, pages 1–7. http://aclweb.org/anthology/C02-
1025.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Alexander Philip Dawid and Allan M Skene. 1979.
Maximum likelihood estimation of observer error-
rates using the em algorithm. Applied statistics
pages 20–28.

Arthur P Dempster, Nan M Laird, and Donald B Rubin.
1977. Maximum likelihood from incomplete data
via the em algorithm. Journal of the royal statistical
society. Series B (methodological) pages 1–38.

Mark Dredze, Partha Pratim Talukdar, and Koby Cram-
mer. 2009. Sequence learning from data with mul-
tiple labels. In ECML-PKDD 2009 workshop on
Learning from Multi- Label Data.

Paul Felt, Eric Ringger, Kevin Seppi, and Robbie Haer-
tel. 2015. Early gains matter: A case for preferring
generative over discriminative crowdsourcing mod-
els. In Conference of the North American Chap-
ter of the Association for Computational Linguistics.
https://doi.org/10.3115/v1/N15-1089.

Tim Finin, Will Murnane, Anand Karandikar, Nicholas
Keller, Justin Martineau, and Mark Dredze. 2010.
Annotating named entities in twitter data with
crowdsourcing. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk. Association
for Computational Linguistics, pages 80–88.

Sharon Goldwater and Tom Griffiths. 2007. A fully
bayesian approach to unsupervised part-of-speech
tagging. In Annual meeting-association for compu-
tational linguistics. Citeseer, volume 45, page 744.
http://aclweb.org/anthology/P07-1094.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom
to trust with mace. In Proceedings of the
2013 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, pages 1120–1130.
http://aclweb.org/anthology/N13-1132.

Dirk Hovy, Barbara Plank, and Anders Søgaard. 2014.
Experiments with crowdsourced re-annotation of a
pos tagging data set. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Associ-
ation for Computational Linguistics, pages 377–382.
https://doi.org/10.3115/v1/P14-2062.

Xiaoli Huang, Jimmy Lin, and Dina Demner-Fushman.
2006. PICO as a Knowledge Representation for
Clinical Questions. In AMIA 2006 Symposium Pro-
ceedings. pages 359–363.

Ziheng Huang, Jialu Zhong, and Rebecca J. Passon-
neau. 2015. Estimation of discourse segmentation
labels from crowd data. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 2190–
2200. http://aclweb.org/anthology/D15-1261.

Mark Johnson. 2007. Why doesn’t em find good hmm
pos-taggers? In EMNLP-CoNLL. pages 296–305.
http://aclweb.org/anthology/D07-1031.

Hiroshi Kajino, Yuta Tsuboi, and Hisashi Kashima.
2012. A convex formulation for learning from
crowds. In Twenty-Sixth AAAI Conference on Ar-
tificial Intelligence.

Hyun-Chul Kim and Zoubin Ghahramani. 2012.
Bayesian classifier combination. In International
conference on artificial intelligence and statistics.
pages 619–627.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, Doha, Qatar, pages 1746–
1751. http://www.aclweb.org/anthology/D14-1181.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the eighteenth in-
ternational conference on machine learning, ICML.
volume 1, pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, pages
260–270. https://doi.org/10.18653/v1/N16-1030.

Chao Liu and Yi-min Wang. 2012. Truelabel+ con-
fusions: A spectrum of probabilistic models in an-
alyzing multiple ratings. In Proceedings of the
29th International Conference on Machine Learning
(ICML-12). pages 225–232.

Qiang Liu, Jian Peng, and Alex T Ihler. 2012. Varia-
tional inference for crowdsourcing. In Advances in
Neural Information Processing Systems. pages 692–
700.

Andrew McCallum and Wei Li. 2003. Proceed-
ings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003,

308

chapter Early results for Named Entity Recog-
nition with Conditional Random Fields, Fea-
ture Induction and Web-Enhanced Lexicons.
http://aclweb.org/anthology/W03-0430.

An T Nguyen, Byron C Wallace, and Matthew Lease.
2016. A correlated worker model for grouped, im-
balanced and multitask data. In Uncertainty in Arti-
ficial Intelligence.

Naoaki Okazaki. 2007. Crfsuite: a fast im-
plementation of conditional random fields (crfs).
http://www.chokkan.org/software/crfsuite/.

Lawrence Rabiner and B Juang. 1986. An introduc-
tion to hidden markov models. ieee assp magazine
3(1):4–16.

Vikas C Raykar, Shipeng Yu, Linda H Zhao, Ger-
ardo Hermosillo Valadez, Charles Florin, Luca
Bogoni, and Linda Moy. 2010. Learning from
crowds. Journal of Machine Learning Research
11(Apr):1297–1322.

Filipe Rodrigues, Francisco Pereira, and Bernardete
Ribeiro. 2014. Sequence labeling with multiple an-
notators. Machine learning 95(2):165–181.

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1985. Learning internal representations
by error propagation. Technical report, DTIC Doc-
ument.

Connie Schardt, Martha B Adams, Thomas Owens,
Sheri Keitz, and Paul Fontelo. 2007. Utilization of
the PICO framework to improve searching PubMed
for clinical questions. BMC medical informatics and
decision making 7(1):16.

Aashish Sheshadri and Matthew Lease. 2013. Square:
A benchmark for research on computing crowd con-
sensus. In First AAAI Conference on Human Com-
putation and Crowdsourcing.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Ng. 2008. Cheap and fast – but is it good?
evaluating non-expert annotations for natural lan-
guage tasks. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 254–263. http://aclweb.org/anthology/D08-
1027.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition,
pages 142–147. http://aclweb.org/anthology/W03-
0419.

Matteo Venanzi, John Guiver, Gabriella Kazai,
Pushmeet Kohli, and Milad Shokouhi. 2014.
Community-based bayesian aggregation models for
crowdsourcing. In Proceedings of the 23rd interna-
tional conference on World wide web. ACM, pages
155–164.

Byron C Wallace, Joël Kuiper, Aakash Sharma,
Mingxi Brian Zhu, and Iain J Marshall. 2016. Ex-
tracting pico sentences from clinical trial reports us-
ing supervised distant supervision. Journal of Ma-
chine Learning Research 17(132):1–25.

Hui Yang, Anton Mityagin, Krysta M Svore, and
Sergey Markov. 2010. Collecting high quality over-
lapping labels at low cost. In Proceedings of the
33rd international ACM SIGIR conference on Re-
search and development in information retrieval.
ACM, pages 459–466.

Ye Zhang and Byron Wallace. 2015. A sensitivity anal-
ysis of (and practitioners’ guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820 .

309

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 310–320
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1029

Multi-space Variational Encoder-Decoders
for Semi-supervised Labeled Sequence Transduction

Chunting Zhou, Graham Neubig
Language Technologies Institute

Carnegie Mellon University
ctzhou,gneubig@cs.cmu.edu

Abstract

Labeled sequence transduction is a task
of transforming one sequence into another
sequence that satisfies desiderata speci-
fied by a set of labels. In this paper we
propose multi-space variational encoder-
decoders, a new model for labeled se-
quence transduction with semi-supervised
learning. The generative model can use
neural networks to handle both discrete
and continuous latent variables to exploit
various features of data. Experiments
show that our model provides not only a
powerful supervised framework but also
can effectively take advantage of the un-
labeled data. On the SIGMORPHON
morphological inflection benchmark, our
model outperforms single-model state-of-
art results by a large margin for the major-
ity of languages.1

1 Introduction

This paper proposes a model for labeled sequence
transduction tasks, tasks where we are given an
input sequence and a set of labels, from which
we are expected to generate an output sequence
that reflects the content of the input sequence and
desiderata specified by the labels. Several exam-
ples of these tasks exist in prior work: using labels
to moderate politeness in machine translation re-
sults (Sennrich et al., 2016), modifying the output
language of a machine translation system (John-
son et al., 2016), or controlling the length of a
summary in summarization (Kikuchi et al., 2016).
In particular, however, we are motivated by the
task of morphological reinflection (Cotterell et al.,

1An implementation of our model are avail-
able at https://github.com/violet-zct/
MSVED-morph-reinflection.

playing played
POS=Verb, Tense=Past

Model

plays

Supervised Learning

Semi-Supervised Learning

Figure 1: Standard supervised labeled sequence transduction,
and our proposed semi-supervised method.

2016), which we will use as an example in our de-
scription and test bed for our models.

In morphologically rich languages, different af-
fixes (i.e. prefixes, infixes, suffixes) can be com-
bined with the lemma to reflect various syntac-
tic and semantic features of a word. The ability
to accurately analyze and generate morphologi-
cal forms is crucial to creating applications such
as machine translation (Chahuneau et al., 2013;
Toutanova et al., 2008) or information retrieval
(Darwish and Oard, 2007) in these languages. As
shown in 1, re-inflection of an inflected form given
the target linguistic labels is a challenging sub-
task of handling morphology as a whole, in which
we take as input an inflected form (in the exam-
ple, “playing”) and labels representing the desired
form (“pos=Verb, tense=Past”) and must gen-
erate the desired form (“played”).

Approaches to this task include those utilizing
hand-crafted linguistic rules and heuristics (Taji
et al., 2016), as well as learning-based approaches
using alignment and extracted transduction rules
(Durrett and DeNero, 2013; Alegria and Etxeber-
ria, 2016; Nicolai et al., 2016). There have also
been methods proposed using neural sequence-
to-sequence models (Faruqui et al., 2016; Kann
et al., 2016; Ostling, 2016), and currently ensem-
bles of attentional encoder-decoder models (Kann
and Schütze, 2016a,b) have achieved state-of-art
results on this task. One feature of these neu-
ral models however, is that they are trained in a

310

https://doi.org/10.18653/v1/P17-1029

largely supervised fashion (top of Fig. 1), using
data explicitly labeled with the input sequence and
labels, along with the output representation. Need-
less to say, the ability to obtain this annotated data
for many languages is limited. However, we can
expect that for most languages we can obtain large
amounts of unlabeled surface forms that may al-
low for semi-supervised learning over this unla-
beled data (entirety of Fig. 1).2

In this work, we propose a new frame-
work for labeled sequence transduction prob-
lems: multi-space variational encoder-decoders
(MSVED, §3.3). MSVEDs employ continuous
or discrete latent variables belonging to multiple
separate probability distributions3 to explain the
observed data. In the example of morphological
reinflection, we introduce a vector of continuous
random variables that represent the lemma of the
source and target words, and also one discrete ran-
dom variable for each of the labels, which are on
the source or the target side.

This model has the advantage of both providing
a powerful modeling framework for supervised
learning, and allowing for learning in an unsuper-
vised setting. For labeled data, we maximize the
variational lower bound on the marginal log like-
lihood of the data and annotated labels. For un-
labeled data, we train an auto-encoder to recon-
struct a word conditioned on its lemma and mor-
phological labels. While these labels are unavail-
able, a set of discrete latent variables are associ-
ated with each unlabeled word. Afterwards we can
perform posterior inference on these latent vari-
ables and maximize the variational lower bound
on the marginal log likelihood of data.

Experiments on the SIGMORPHON morpho-
logical reinflection task (Cotterell et al., 2016) find
that our model beats the state-of-the-art for a sin-
gle model in the majority of languages, and is par-
ticularly effective in languages with more compli-
cated inflectional phenomena. Further, we find
that semi-supervised learning allows for signifi-
cant further gains. Finally, qualitative evaluation
of lemma representations finds that our model is
able to learn lemma embeddings that match with
human intuition.

2Faruqui et al. (2016) have attempted a limited form of
semi-supervised learning by re-ranking with a standard n-
gram language model, but this is not integrated with the learn-
ing process for the neural model and gains are limited.

3Analogous to multi-space hidden Markov models
(Tokuda et al., 2002)

2 Labeled Sequence Transduction

In this section, we first present some notations re-
garding labeled sequence transduction problems in
general, then describe a particular instantiation for
morphological reinflection.
Notation: Labeled sequence transduction prob-
lems involve transforming a source sequence x(s)

into a target sequence x(t), with some labels
describing the particular variety of transforma-
tion to be performed. We use discrete variables
y
(t)
1 , y

(t)
2 , · · · , y(t)K to denote the labels associated

with each target sequence, where K is the total
number of labels. Let y(t) = [y

(t)
1 , y

(t)
2 , · · · , y(t)K]

denote a vector of these discrete variables. Each
discrete variable y(t)k represents a categorical fea-
ture pertaining to the target sequence, and has a
set of possible labels. In the later sections, we also
use y(t) and y(t)k to denote discrete latent variables
corresponding to these labels.

Given a source sequence x(s) and a set of as-
sociated target labels y(t), our goal is to gener-
ate a target sequence x(t) that exhibits the fea-
tures specified by y(t) using a probabilistic model
p(x(t)|x(s),y(t)). The best target sequence x̂(t) is
then given by:

x̂(t) = argmax
x(t)

p(x(t)|x(s),y(t)). (1)

Morphological Reinflection Problem: In mor-
phological reinflection, the source sequence x(s)

consists of the characters in an inflected word
(e.g., “played”), while the associated labels y(t)

describe some linguistic features (e.g., y(t)pos =

Verb, y(t)tense = Past) that we hope to realize
in the target. The target sequence x(t) is there-
fore the characters of the re-inflected form of the
source word (e.g., “played”) that satisfy the lin-
guistic features specified by y(t). For this task,
each discrete variable y(t)k has a set of possible la-
bels (e.g. pos=V, pos=ADJ, etc) and follows a
multinomial distribution.

3 Proposed Method

3.1 Preliminaries: Variational Autoencoder

As mentioned above, our proposed model uses
probabilistic latent variables in a model based
on neural networks. The variational autoencoder
(Kingma and Welling, 2014) is an efficient way
to handle (continuous) latent variables in neural

311

(a) VAE

y(t)

x

(t)
x

(t)
x

(s)
x

(s)
xx

x

z yz z z z y(t)y

(b) Labeled MSVAE (c) MSVAE (d) Labeled MSVED (e) MSVED

Figure 2: Graphical models of (a) VAE, (b) labeled MSVAE,
(c) MSVAE, (d) labeled MSVED, and (e) MSVED. White
circles are latent variables and shaded circles are observed
variables. Dashed lines indicate the inference process while
the solid lines indicate the generative process.

models. We describe it briefly here, and inter-
ested readers can refer to Doersch (2016) for de-
tails. The VAE learns a generative model of the
probability p(x|z) of observed data x given a la-
tent variable z, and simultaneously uses a recog-
nition model q(z|x) at learning time to estimate z
for a particular observation x (Fig. 2(a)). q(·) and
p(·) are modeled using neural networks parameter-
ized by φ and θ respectively, and these parameters
are learned by maximizing the variational lower
bound on the marginal log likelihood of data:

log pθ(x) ≥ Ez∼qφ(z|x)[log pθ(x|z)]−
KL(qφ(z|x)||p(z)) (2)

The KL-divergence term (a standard feature of
variational methods) ensures that the distributions
estimated by the recognition model qφ(z|x) do
not deviate far from our prior probability p(z) of
the values of the latent variables. To optimize
the parameters with gradient descent, Kingma
and Welling (2014) introduce a reparameterization
trick that allows for training using simple back-
propagation w.r.t. the Gaussian latent variables z.
Specifically, we can express z as a deterministic
variable z = gφ(ε,x) where ε is an independent
Gaussian noise variable ε ∼ N (0, 1). The mean
µ and the variance σ2 of z are reparameterized by
the differentiable functions w.r.t. φ. Thus, instead
of generating z from qφ(z|x), we sample the aux-
iliary variable ε and obtain z = µφ(x)+σφ(x)◦ ε,
which enables gradients to backpropagate through
φ.

3.2 Multi-space Variational Autoencoders

As an intermediate step to our full model, we
next describe a generative model for a single se-
quence with both continuous and discrete latent
variables, the multi-space variational auto-encoder
(MSVAE). MSVAEs are a combination of two
threads of previous work: deep generative mod-
els with both continuous/discrete latent variables
for classification problems (Kingma et al., 2014;

Maaløe et al., 2016) and VAEs with only continu-
ous variables for sequential data (Bowman et al.,
2016; Chung et al., 2015; Zhang et al., 2016;
Fabius and van Amersfoort, 2014; Bayer and Os-
endorfer, 2014). In MSVAEs, we have an ob-
served sequence x, continuous latent variables z
like the VAE, as well as discrete variables y.

In the case of the morphology example, x can be
interpreted as an inflected word to be generated. y
is a vector representing its linguistic labels, either
annotated by an annotator in the observed case, or
unannotated in the unobserved case. z is a vector
of latent continuous variables, e.g. a latent embed-
ding of the lemma that captures all the information
about x that is not already represented in labels y.

MSVAE: Because inflected words can be naturally
thought of as “lemma+morphological labels”, to
interpret a word, we resort to discrete and continu-
ous latent variables that represent the linguistic la-
bels and the lemma respectively. In this case when
the labels of the sequence y is not observed, we
perform inference over possible linguistic labels
and these inferred labels are referenced in gener-
ating x.

The generative model pθ(x,y, z) =
p(z)pπ(y)pθ(x|y, z) is defined as:

p(z) = N (z|0, I) (3)

pπ(y) =
∏

k

Cat(yk|πk) (4)

pθ(x|y, z) = f(x;y, z, θ). (5)

Like the standard VAE, we assume the prior of
the latent variable z is a diagonal Gaussian dis-
tribution with zero mean and unit variance. We
assume that each variable in y is independent,
resulting in a factorized distribution in Eq. 4,
where Cat(yk|πk) is a multinomial distribution
with parameters πk. For the purposes of this study,
we set these to a uniform distribution πk,j =
1
|πk| . f(x;y, z, θ) calculates the likelihood of x,
a function parametrized by deep neural networks.
Specifically, we employ an RNN decoder to gener-
ate the target word conditioned on the lemma vari-
able z and linguistic labels y, detailed in §5.

When inferring the latent variables from the
given data x, we assume the joint distribution of
latent variables z and y has a factorized form, i.e.
q(z,y|x) = q(z|x)q(y|x) as shown in Fig. 2(c).

312

The inference model is defined as follows:

qφ(z|x) = N (z|µφ(x), diag(σ2φ(x))) (6)

qφ(y|x) =
∏

k

qφ(yk|x)

=
∏

k

Cat(yk|πφ(x)) (7)

where the inference distribution over z is a diago-
nal Gaussian distribution with mean and variance
parameterized by neural networks. The inference
model q(y|x) on labels y has the form of a dis-
criminative classifier that generates a set of multi-
nomial probability vectors πφ(x) over all labels
for each tag yk. We represent each multinomial
distribution q(yk|x) with an MLP.

The MSVAE is trained by maximizing the fol-
lowing variational lower bound U(x) on the objec-
tive for unlabeled data:

log pθ(x) ≥ E(y,z)∼qφ(y,z|x) log
pθ(x,y, z)

qφ(y, z|x)
= Ey∼qφ(y|x)[Ez∼qφ(z|x)[log pθ(x|z,y)]
− KL(qφ(z|x)||p(z)) + log pπ(y)

− log qφ(y|x)] = U(x) (8)

Note that this introduction of discrete variables
requires more sophisticated optimization algo-
rithms, which we will discuss in §4.1.
Labeled MSVAE: When y is observed as shown
in Fig. 2(b), we maximize the following varia-
tional lower bound on the marginal log likelihood
of the data and the labels:

log pθ(x,y) ≥ Ez∼qφ(z|x) log
pθ(x,y, z)

qφ(z|x)
=

Ez∼qφ(z|x)[log pθ(x|y, z) + log pπ(y)]

− KL(qφ(z|x)||p(z)) (9)

which is a simple extension to Eq. 2.
Note that when labels are not observed, the in-

ference model qφ(y|x) has the form of a discrim-
inative classifier, thus we can use observed labels
as the supervision signal to learn a better classifier.
In this case we also minimize the following cross
entropy as the classification loss:

D(x,y) = E(x,y)∼pl(x,y)[− log qφ(y|x)] (10)

where pl(x,y) is the distribution of labeled data.
This is a form of multi-task learning, as this addi-
tional loss also informs the learning of our repre-
sentations.

3.3 Multi-space Variational
Encoder-Decoders

Finally, we discuss the full proposed method:
the multi-space variational encoder-decoder
(MSVED), which generates the target x(t) from
the source x(s) and labels y(t). Again, we discuss
two cases of this model: labels of the target
sequence are observed and not observed.
MSVED: The graphical model for the MSVED is
given in Fig. 2 (e). Because the labels of target se-
quence are not observed, once again we treat them
as discrete latent variables and make inference
on the these labels conditioned on the target se-
quence. The generative process for the MSVED is
very similar to that of the MSVAE with one impor-
tant exception: while the standard MSVAE condi-
tions the recognition model q(z|x) on x, then gen-
erates x itself, the MSVED conditions the recogni-
tion model q(z|x(s)) on the source x(s), then gen-
erates the target x(t). Because only the recogni-
tion model is changed, the generative equations for
pθ(x

(t),y(t), z) are exactly the same as Eqs. 3–5
with x(t) swapped for x and y(t) swapped for y.
The variational lower bound on the conditional log
likelihood, however, is affected by the recognition
model, and thus is computed as:

log pθ(x
(t)|x(s))

≥E(y(t),z)∼qφ(y(t),z|x(s),x(t)) log
pθ(x

(t),y(t), z|x(s))

qφ(y(t), z|x(s),x(t))

=Ey(t)∼qφ(y(t)|x(t))[Ez∼qφ(z|x(s))[log pθ(x
(t)|y(t), z)]

− KL(qφ(z|x(s))||p(z)) + log pπ(y
(t))

− log qφ(y
(t)|x(t))] = Lu(x(t)|x(s)) (11)

Labeled MSVED: When the complete form of
x(s), y(t), and x(t) is observed in our training data,
the graphical model of the labeled MSVED model
is illustrated in Fig. 2 (d). We maximize the vari-
ational lower bound on the conditional log likeli-
hood of observing x(t) and y(t) as follows:

log pθ(x
(t),y(t)|x(s))

≥ Ez∼qφ(z|x(s)) log
pθ(x

(t),y(t), z|x(s))

qφ(z|x(s))

= Ez∼qφ(z|x(s))[log pθ(x
(t)|y(t), z) + log pπ(y

(t))]−
KL(qφ(z|x(s))||p(z)) = Ll(x(t),y(t)|x(s)) (12)

4 Learning MSVED

Now that we have described our overall model, we
discuss details of the learning process that prove

313

useful to its success.

4.1 Learning Discrete Latent Variables
One challenge in training our model is that it is not
trivial to perform back-propagation through dis-
crete random variables, and thus it is difficult to
learn in the models containing discrete tags such
as MSVAE or MSVED.4 To alleviate this problem,
we use the recently proposed Gumbel-Softmax
trick (Maddison et al., 2014; Gumbel and Lieblein,
1954) to create a differentiable estimator for cate-
gorical variables.

The Gumbel-Max trick (Gumbel and Lieblein,
1954) offers a simple way to draw samples from
a categorical distribution with class probabili-
ties π1, π2, · · · by using the argmax operation as
follows: one hot(argmaxi[gi + log πi]), where
g1, g2, · · · are i.i.d. samples drawn from the Gum-
bel(0,1) distribution.5 When making inferences on
the morphological labels y1, y2, · · · , the Gumbel-
Max trick can be approximated by the continuous
softmax function with temperature τ to generate a
sample vector ŷi for each label i:

ŷij =
exp((log(πij) + gij)/τ)∑Ni
k=1 exp((log(πik) + gik)/τ

(13)

whereNi is the number of classes of label i. When
τ approaches zero, the generated sample ŷi be-
comes a one-hot vector. When τ > 0, ŷi is smooth
w.r.t πi. In experiments, we start with a relatively
large temperature and decrease it gradually.

4.2 Learning Continuous Latent Variables
MSVED aims at generating the target sequence
conditioned on the latent variable z and the tar-
get labels y(t). This requires the encoder to
generate an informative representation z encod-
ing the content of the x(s). However, the varia-
tional lower bound in our loss function contains
the KL-divergence between the approximate pos-
terior qφ(z|x) and the prior p(z), which is rel-
atively easy to learn compared with learning to
generate output from a latent representation. We
observe that with the vanilla implementation the
KL cost quickly decreases to near zero, setting
qφ(z|x) equal to standard normal distribution. In

4 Kingma et al. (2014) solve this problem by marginaliz-
ing over all labels, but this is infeasible in our case where we
have an exponential number of label combinations.

5The Gumbel (0,1) distribution can be sampled by
first drawing u ∼ Uniform(0,1) and computing g =
− log(− log(u)).

this case, the RNN decoder can easily rely on the
true output of last time step during training to de-
code the next token, which degenerates into an
RNN language model. Hence, the latent variables
are ignored by the decoder and cannot encode any
useful information. The latent variable z learns an
undesirable distribution that coincides with the im-
posed prior distribution but has no contribution to
the decoder. To force the decoder to use the latent
variables, we take the following two approaches
which are similar to Bowman et al. (2016).
KL-Divergence Annealing: We add a coefficient
λ to the KL cost and gradually anneal it from zero
to a predefined threshold λm. At the early stage
of training, we set λ to be zero and let the model
first figure out how to project the representation
of the source sequence to a roughly right point in
the space and then regularize it with the KL cost.
Although we are not optimizing the tight varia-
tional lower bound, the model balances well be-
tween generation and regularization. This tech-
nique can also be seen in (Kočiskỳ et al., 2016;
Miao and Blunsom, 2016).
Input Dropout in the Decoder: Besides anneal-
ing the KL cost, we also randomly drop out the
input token with a probability of β at each time
step of the decoder during learning. The previous
ground-truth token embedding is replaced with a
zero vector when dropped. In this way, the RNN
decoder could not fully rely on the ground-truth
previous token, which ensures that the decoder
uses information encoded in the latent variables.

5 Architecture for Morphological
Reinflection

Training details: For the morphological reinflec-
tion task, our supervised training data consists of
source x(s), target x(t), and target tags y(t). We
test three variants of our model trained using dif-
ferent types of data and different loss functions.
First, the single-directional supervised model (SD-
Sup) is purely supervised: it only decodes the
target word from the given source word with the
loss function Ll(x(t),y(t)|x(s)) from Eq. 12. Sec-
ond, the bi-directional supervised model (BD-
Sup) is trained in both directions: decoding the
target word from the source word and decoding
the source word from the target word, which cor-
responds to the loss function Ll(x(t),y(t)|x(s)) +
Lu(x(s)|x(t)) using Eqs. 11–12. Finally, the semi-
supervised model (Semi-sup) is trained to maxi-

314

Proposed MSVED Baseline MED
Language #LD #ULD SD-Sup BD-Sup Semi-sup Single Ensemble

Turkish 12,798 29,608 93.25 95.66† 97.25‡ 89.56 95.00
Hungarian 19,200 34,025 97.00 98.54† 99.16‡ 96.46 98.37
Spanish 12,799 72,151 88.32 91.50 93.74 94.74†

‡ 96.69
Russian 12,798 67,691 75.77 83.07 86.80‡ 83.55† 87.13
Navajo 12,635 6,839 85.00 95.37† 98.25‡ 63.62 83.00
Maltese 19,200 46,918 84.83 88.21† 88.46‡ 79.59 84.25
Arabic 12,797 53,791 79.13 92.62† 93.37‡ 72.58 82.80
Georgian 12,795 46,562 89.31 93.63† 95.97‡ 91.06 96.21
German 12,777 56,246 75.55 84.08 90.28‡ 89.11† 92.41
Finnish 12,800 74,687 75.59 85.11 91.20‡ 85.63† 93.18

Avg. Acc – – 84.38 90.78† 93.45‡ 84.59 90.90

Table 1: Results for Task 3 of SIGMORPHON 2016 on Morphology Reinflection. † represents the best single supervised
model score, ‡ represents the best model including semi-supervised models, and bold represents the best score overall. #LD
and #ULD are the number of supervised data and unlabeled words respectively.

k a l b

⌃(x)

µ(x)

✏ ⇠ N (0, 1)

z

<w> k

k ä

+
yT1 yT2 yT3 yT4

......

k a l b

⌃(x)

µ(x)

✏ ⇠ N (0, 1)

z

<w> k

k a

Multinomial Sampling

+

......

y1 2 {pos: V, N, ADJ}..
y2 2 {def: DEF, INDEF}
y3 2 {num: DU, SG, PL}...
...

...

Source Word Reinflected Form

Source Word Source Word

Supervised Variational Encoder Decoder

Unsupervised Variational Auto-encoder

y1

y2

y3

y4

· · ·

Figure 3: Model architecture for labeled and unlabeled data.
For the encoder-decoder model, only one direction from the
source to target is given. The classification model is not illus-
trated in the diagram.

mize the variational lower bounds and minimize
the classification cross-entropy error of 10.

L(x(s),x(t),y(t),x) = α · U(x) + Lu(x(s)|x(t))

+ Ll(x(t),y(t)|x(s))−D(x(t),y(t)) (14)

The weight α controls the relative weight between
the loss from unlabeled data and labeled data.

We use Monte Carlo methods to estimate the
expectation over the posterior distribution q(z|x)
and q(y|x) inside the objective function 14.
Specifically, we draw Gumbel noise and Gaussian
noise one at a time to compute the latent variables
y and z.

The overall model architecture is shown in
Fig. 3. Each character and each label is associ-
ated with a continuous vector. We employ Gated
Recurrent Units (GRUs) for the encoder and de-

coder. Let
−→
ht and

←−
ht denote the hidden state of the

forward and backward encoder RNN at time step
t. u is the hidden representation of x(s) concate-
nating the last hidden state from both directions
i.e. [

−→
hT ;
←−
hT] where T is the word length. u is

used as the input for the inference model on z. We
represent µ(u) and σ2(u) as MLPs and sample z
fromN (µ(u), diag(σ2(u))), using z = µ+ σ ◦ ε,
where ε ∼ N (0, I). Similarly, we can obtain the
hidden representation of x(t) and use this as input
to the inference model on each label y(t)

i which is
also an MLP following a softmax layer to generate
the categorical probabilities of target labels.

In decoding, we use 3 types of information in
calculating the probability of the next character :
(1) the current decoder state, (2) a tag context vec-
tor using attention (Bahdanau et al., 2015) over
the tag embeddings, and (3) the latent variable z.
The intuition behind this design is that we would
like the model to constantly consider the lemma
represented by z, and also reference the tag cor-
responding to the current morpheme being gen-
erated at this point. We do not marginalize over
the latent variable z however, instead we use the
mode µ of z as the latent representation for z. We
use beam search with a beam size of 8 to perform
search over the character vocabulary at each de-
coding time step.
Other experimental setups: All hyperparame-
ters are tuned on the validation set, and include
the following: For KL cost annealing, λm is set
to be 0.2 for all language settings. For character
drop-out at the decoder, we empirically set β to
be 0.4 for all languages. We set the dimension of
character embeddings to be 300, tag label embed-
dings to be 200, RNN hidden state to be 256, and

315

latent variable z to be 150. We set α the weight
for the unsupervised loss to be 0.8. We train the
model with Adadelta (Zeiler, 2012) and use early-
stop with a patience of 10.

6 Experiments

6.1 Background: SIGMORPHON 2016
SIGMORPHON 2016 is a shared task on mor-
phological inflection over 10 different morpholog-
ically rich languages. There are a total of three
tasks, the most difficult of which is task 3, which
requires the system to output the reinflection of an
inflected word.6 The training data format in task
3 is in triples: (source word, target labels, target
word). In the test phase, the system is asked to
generate the target word given a source word and
the target labels. There are a total of three tracks
for each task, divided based the amount of super-
vised data that can be used to solve the problem,
among which track 2 has the strictest limitation of
only using data for the corresponding task. As this
is an ideal testbed for our method, which can learn
from unlabeled data, we choose track 2 and task 3
to test our our model’s ability to exploit this data.

As a baseline, we compare our results with the
MED system (Kann and Schütze, 2016a) which
achieved state-of-the-art results in the shared task.
This system used an encoder-decoder model with
attention on the concatenated source word and tar-
get labels. Its best result is obtained from an en-
semble of five RNN encoder-decoders (Ensem-
ble). To make a fair comparison with our mod-
els, which don’t use ensembling, we also calcu-
lated single model results (Single).

All models are trained using the labeled training
data provided for task 3. For our semi-supervised
model (Semi-sup), we also leverage unlabeled
data from the training and validation data for tasks
1 and 2 to train variational auto-encoders.

6.2 Results and Analysis
From the results in Tab. 1, we can glean a number
of observations. First, comparing the results of our
full Semi-sup model, we can see that for all lan-
guages except Spanish, it achieves accuracies bet-
ter than the single MED system, often by a large
margin. Even compared to the MED ensembled
model, our single-model system is quite compet-
itive, achieving higher accuracies for Hungarian,

6Task 1 is inflection of a lemma word and task 2 is rein-
flection but also provides the source word labels.

Language Prefix Stem Suffix

Turkish 0.21 1.12 98.75
Hungarian 0.00 0.08 99.79
Spanish 0.09 3.25 90.74
Russian 0.66 7.70 85.00
Navajo 77.64 18.38 26.40
Maltese 48.81 11.05 98.74
Arabic 68.52 37.04 88.24
Georgian 4.46 0.41 92.47
German 0.84 3.32 89.19
Finnish 0.02 12.33 96.16

Table 2: Percentage of inflected word forms that have mod-
ified each part of the lemma (Cotterell et al., 2016) (some
words can be inflected zero or multiple times, thus sums may
not add to 100%).

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage of suffixing inflection

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy

Navajo
Arabic

Maltese
Finnish

Russian

Georgian

German

Spanish

Turkish
Hungarian

MSVED

MED (1)

Figure 4: Performance on test data w.r.t. the percentage of
suffixing inflection. Points with the same x-axis value corre-
spond to the same language results.

Navajo, Maltese, and Arabic, as well as achieving
average accuracies that are state-of-the-art.

Next, comparing the different varieties of our
proposed models, we can see that the semi-
supervised model consistently outperforms the
bidirectional model for all languages. And simi-
larly, the bidirectional model consistently outper-
forms the single direction model. From these re-
sults, we can conclude that the unlabeled data is
beneficial to learn useful latent variables that can
be used to decode the corresponding word.

Examining the linguistic characteristics of the
models in which our model performs well pro-
vides even more interesting insights. Cotterell
et al. (2016) estimate how often the inflection
process involves prefix changes, stem-internal
changes or suffix changes, the results of which
are shown in Tab. 2. Among the many languages,
the inflection processes of Arabic, Maltese and
Navajo are relatively diverse, and contain a large
amount of all three forms of inflection. By ex-
amining the experimental results together with the
morphological inflection process of different lan-
guages, we found that among all the languages,
Navajo, Maltese and Arabic obtain the largest
gains in performance compared with the ensem-

316

a l - ↩ i mā r ā t i y y ā t u

def=DEF

gen=FEM

voice=None

aspect=None

tense=None

num=PL

poss=None

per=None

pos=ADJ

mood=None

case=NOM

n ı́ d a j i d l e e h

arg=None

aspect=
IPFV/PROG

num=PL

per=4

pos=V

mood=REAL

0.0

0.2

0.4

0.6

0.8

Figure 5: Two examples of attention weights on target lin-
guistic labels: Arabic (Left) and Navajo (Right). When a tag
equals None, it means the word does not have this tag.

bled MED system. To demonstrate this visually, in
Fig. 4, we compare the semi-supervised MSVED
with the MED single model w.r.t. the percentage
of suffixing inflection of each language, showing
this clear trend.

This strongly demonstrates that our model is ag-
nostic to different morphological inflection forms
whereas the conventional encoder-decoder with
attention on the source input tends to perform bet-
ter on suffixing-oriented morphological inflection.
We hypothesize that for languages that the inflec-
tion mostly comes from suffixing, transduction is
relatively easy because the source and target words
share the same prefix and the decoder can copy the
prefix of the source word via attention. However,
for languages in which different inflections of a
lemma go through different morphological pro-
cesses, the inflected word and the target word may
differ greatly and thus it is crucial to first analyze
the lemma of the inflected word before generat-
ing the corresponding the reinflection form based
on the target labels. This is precisely what our
model does by extracting the lemma representa-
tion z learned by the variational inference model.

6.3 Analysis on Tag Attention

To analyze how the decoder attends to the linguis-
tic labels associated with the target word, we ran-
domly pick two words from the Arabic and Navajo
test set and plot the attention weight in Fig. 5.
The Arabic word “al-’imārātiyyātu” is an adjec-
tive which means “Emirati”, and its source word in
the test data is “’imārātiyyin” 7. Both of these are
declensions of “’imārātiyy”. The source word is

7https://en.wiktionary.org/wiki/%D8%
A5%D9%85%D8%A7%D8%B1%D8%A7%D8%AA%D9%8A

Figure 6: Visualization of latent variables z for Maltese with
35 pseudo-lemma groups in the figure.

singular, masculine, genitive and indefinite, while
the required inflection is plural, feminine, nomi-
native and definite. We can see from the left heat
map that the attention weights are turned on at sev-
eral positions of the word when generating corre-
sponding inflections. For example, “al-” in Ara-
bic is the definite article that marks definite nouns.
The same phenomenon can also be observed in the
Navajo example, as well as other languages, but
due to space limitation, we don’t provide detailed
analysis here.

6.4 Visualization of Latent Lemmas

To investigate the learned latent representations,
in this section we visualize the z vectors, ex-
amining whether the latent space groups together
words with the same lemma. Each sample in SIG-
MORPHON 2016 contains source word and tar-
get words which share the same lemma. We run a
heuristic process to assign pairs of words to groups
that likely share a lemma by grouping together
word pairs for which at least one of the words in
each pair shares a surface form. This process is
not error free – errors may occur in the case where
multiple lemmas share the same surface form – but
in general the groupings will generally reflect lem-
mas except in these rare erroneous cases, so we
dub each of these groups a pseudo-lemma.

In Fig. 6, we randomly pick 1500 words from
Maltese and visualize the continuous latent vec-
tors of these words. We compute the latent vec-
tors as µφ(x) in the variational posterior inference
(Eq. 6) without adding the variance. As expected,
words that belong to the same pseudo-lemma (in
the same color) are projected into adjacent points
in the two-dimensional space. This demonstrates
that the continuous latent variable captures the
canonical form of a set of words and demonstrates
the effectiveness of the proposed representation.

317

Language Src Word Tgt Labels Gold Tgt MED Ours

Turkish
kocama pos=N,poss=PSS1S,case=ESS,num=SG kocamda kocama kocamda
yaratmamdan pos=N,case=NOM,num=SG yaratma yaratma yaratman
bitimizde pos=N,tense=PST,per=1,num=SG bittik bitiydik bittim

Maltese
ndammhomli pos=V,polar=NEG,tense=PST,num=SG tindammhiex ndammejthiex tindammhiex
tqożżhieli pos=V,polar=NEG,tense=PST,num=SG tqożżx tqożżx qażżejtx
tissikkmuhomli pos=V,polar=POS,tense=PST,num=PL ssikkmulna tissikkmulna tissikkmulna

Finnish
verovapaatta pos=ADJ,case=PRT,num=PL verovapaita verovappaita verovapaita
turrumme pos=V,mood=POT,tense=PRS,num=PL turtunemme turtunemme turrunemme
sukunimin pos=N,case=PRIV,num=PL sukunimitt sukunimeitta sukunimeitta

Table 3: Randomly picked output examples on the test data. Within each block, the first, second and third lines are outputs that
ours is correct and MED’s is wrong, ours is wrong and MED’s is correct, both are wrong respectively.

6.5 Analyzing Effects of Size of Unlabeled
Data

From Tab. 1, we can see that semi-supervised
learning always performs better than supervised
learning without unlabeled data. In this section,
we investigate to what extent the size of unlabeled
data can help with performance. We process a
German corpus from a 2017 Wikipedia dump and
obtain more than 100,000 German words. These
words are ranked in order of occurrence frequency
in Wikipedia. The data contains a certain amount
of noise since we did not apply any special pro-
cessing. We shuffle all unlabeled data from both
the Wikipedia and the data provided in the shared
task used in previous experiments, and increase
the number of unlabeled words used in learning
by 10,000 each time, and finally use all the un-
labeled data (more than 150,000 words) to train
the model. Fig. 7 shows that the performance
on the test data improves as the amount of unla-
beled data increases, which implies that the un-
supervised learning continues to help improve the
model’s ability to model the latent lemma repre-
sentation even as we scale to a noisy, real, and rela-
tively large-scale dataset. Note that the growth rate
of the performance grows slower as more data is
added, because although the number of unlabeled
data is increasing, the model has seen most word
patterns in a relatively small vocabulary.

6.6 Case Study on Reinflected Words

In Tab. 3, we examine some model outputs on the
test data from the MED system and our model re-
spectively. It can be seen that most errors of MED
and our models can be ascribed to either over-copy
or under-copy of characters. In particular, from the
complete outputs we observe that our model tends
to be more aggressive in its changes, resulting in

0

1
e
4

2
e
4

3
e
4

5
e
4

>
1

5
e
5

Unlabeled words

83

84

85

86

87

88

89

90

91

92

A
cc

u
ra

cy
 o

n
 t

e
st

 d
a
ta

 (
%

)

Figure 7: Performance on the German test data w.r.t. the
amount of unlabeled Wikipedia data.

it performing more complicated transformations,
both successfully (such as Maltese “ndammhomli”
to “tindammhiex”) and unsuccessfully (“tqożżx”
to “qażżejtx”). In contrast, the attentional encoder-
decoder model is more conservative in its changes,
likely because it is less effective in learning an ab-
stracted representation for the lemma, and instead
copies characters directly from the input.

7 Conclusion and Future Work

In this work, we propose a multi-space variational
encoder-decoder framework for labeled sequence
transduction problem. The MSVED performs well
in the task of morphological reinflection, outper-
forming the state of the art, and further improv-
ing with the addition of external unlabeled data.
Future work will adapt this framework to other
sequence transduction scenarios such as machine
translation, dialogue generation, question answer-
ing, where continuous and discrete latent variables
can be abstracted to guide sequence generation.

Acknowledgments

The authors thank Jiatao Gu, Xuezhe Ma, Zihang
Dai and Pengcheng Yin for their helpful discus-
sions. This work has been supported in part by an
Amazon Academic Research Award.

318

References
Iñaki Alegria and Izaskun Etxeberria. 2016. Ehu at

the sigmorphon 2016 shared task. a simple proposal:
Grapheme-to-phoneme for inflection. In Proceed-
ings of the 2016 Meeting of SIGMORPHON .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. The International
Conference on Learning Representations .

Justin Bayer and Christian Osendorfer. 2014. Learn-
ing stochastic recurrent networks. arXiv preprint
arXiv:1411.7610 .

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. Proceedings of CoNLL .

Victor Chahuneau, Eva Schlinger, Noah A Smith, and
Chris Dyer. 2013. Translating into morphologically
rich languages with synthetic phrases. Association
for Computational Linguistics.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth
Goel, Aaron C Courville, and Yoshua Bengio. 2015.
A recurrent latent variable model for sequential data.
In Advances in neural information processing sys-
tems. pages 2980–2988.

R. Cotterell, C. Kirov, J. Sylak-Glassman,
D. Yarowsky, J. Eisner, and M. Hulden. 2016.
The sigmorphon 2016 shared taskmorphological
reinflection. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics.

Kareem Darwish and Douglas W Oard. 2007. Adapt-
ing morphology for arabic information retrieval. In
Arabic Computational Morphology, Springer, pages
245–262.

Carl Doersch. 2016. Tutorial on variational autoen-
coders. arXiv preprint arXiv:1606.05908 .

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, Atlanta,
Georgia, pages 1185–1195.

Otto Fabius and Joost R van Amersfoort. 2014. Vari-
ational recurrent auto-encoders. arXiv preprint
arXiv:1412.6581 .

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection gener-
ation using character sequence to sequence learn-
ing. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, San Diego, California, pages 634–643.

Emil Julius Gumbel and Julius Lieblein. 1954. Sta-
tistical theory of extreme values and some practical
applications: a series of lectures. US Government
Printing Office Washington .

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2016. Google’s multilingual neural machine
translation system: Enabling zero-shot translation.
arXiv preprint arXiv:1611.04558 .

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2016. Neural multi-source morphological reinflec-
tion. arXiv preprint arXiv:1612.06027 .

Katharina Kann and Hinrich Schütze. 2016a. Med:
The lmu system for the sigmorphon 2016 shared task
on morphological reinflection. In In Proceedings
of the 14th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology. Berlin, Germany.

Katharina Kann and Hinrich Schütze. 2016b. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics. Berlin, Germany.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and Manabu Okumura. 2016. Control-
ling output length in neural encoder-decoders. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Associ-
ation for Computational Linguistics, Austin, Texas,
pages 1328–1338.

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez
Rezende, and Max Welling. 2014. Semi-supervised
learning with deep generative models. In Ad-
vances in Neural Information Processing Systems.
Montréal, Canada, pages 3581–3589.

D.P. Kingma and M. Welling. 2014. Auto-encoding
variational bayes. In The International Conference
on Learning Representations.

Tomáš Kočiskỳ, Gábor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic parsing with
semi-supervised sequential autoencoders. the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP) .

Lars Maaløe, Casper Kaae Sønderby, Søren Kaae
Sønderby, and Ole Winther. 2016. Auxiliary deep
generative models. Proceedings of the 33rd Interna-
tional Conference on Machine Learning .

Chris J Maddison, Daniel Tarlow, and Tom Minka.
2014. A* sampling. In Advances in Neural Infor-
mation Processing Systems. pages 3086–3094.

319

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. the 2016 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP) .

Garrett Nicolai, Bradley Hauer, Adam St. Arnaud, and
Grzegorz Kondrak. 2016. Morphological reinflec-
tion via discriminative string transduction. In Pro-
ceedings of the 2016 Meeting of SIGMORPHON .

Robert Ostling. 2016. Morphological reinflection with
convolutional neural networks. In Proceedings of
the 14th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology, and Mor-
phology page 23.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Controlling politeness in neural machine
translation via side constraints. In Proceedings of
the 2016 Conference of The North American Chap-
ter of the Association for Computational Linguistics
(NAACL). pages 35–40.

Dima Taji, Ramy Eskander, Nizar Habash, and Owen
Rambow. 2016. The columbia university - new york
university abu dhabi sigmorphon 2016 morphologi-
cal reinflection shared task submission. In Proceed-
ings of the 2016 Meeting of SIGMORPHON .

Keiichi Tokuda, Takashi Masuko, Noboru Miyazaki,
and Takao Kobayashi. 2002. Multi-space probabil-
ity distribution hmm. IEICE TRANSACTIONS on
Information and Systems 85(3):455–464.

Kristina Toutanova, Hisami Suzuki, and Achim Ruopp.
2008. Applying morphology generation models to
machine translation. In Proceedings of the 46th An-
nual Meeting of the Association for Computational
Linguistics. pages 514–522.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

Biao Zhang, Deyi Xiong, Jinsong Su, Hong Duan, and
Min Zhang. 2016. Variational neural machine trans-
lation. Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics .

320

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 321–331
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1030

Scalable Bayesian Learning of Recurrent Neural Networks for
Language Modeling

Zhe Gan∗, Chunyuan Li∗†, Changyou Chen, Yunchen Pu, Qinliang Su, Lawrence Carin
Department of Electrical and Computer Engineering, Duke University
{zg27, cl319, cc448, yp42, qs15, lcarin}@duke.edu

Abstract

Recurrent neural networks (RNNs) have
shown promising performance for lan-
guage modeling. However, traditional
training of RNNs using back-propagation
through time often suffers from overfit-
ting. One reason for this is that stochastic
optimization (used for large training sets)
does not provide good estimates of model
uncertainty. This paper leverages recent
advances in stochastic gradient Markov
Chain Monte Carlo (also appropriate for
large training sets) to learn weight uncer-
tainty in RNNs. It yields a principled
Bayesian learning algorithm, adding gra-
dient noise during training (enhancing ex-
ploration of the model-parameter space)
and model averaging when testing. Ex-
tensive experiments on various RNN mod-
els and across a broad range of applica-
tions demonstrate the superiority of the
proposed approach relative to stochastic
optimization.

1 Introduction

Language modeling is a fundamental task, used
for example to predict the next word or charac-
ter in a text sequence given the context. Recently,
recurrent neural networks (RNNs) have shown
promising performance on this task (Mikolov
et al., 2010; Sutskever et al., 2011). RNNs with
Long Short-Term Memory (LSTM) units (Hochre-
iter and Schmidhuber, 1997) have emerged as a
popular architecture, due to their representational
power and effectiveness at capturing long-term de-
pendencies.

RNNs are usually trained via back-propagation
through time (Werbos, 1990), using stochastic op-

∗Equal contribution. †Corresponding author.

timization methods such as stochastic gradient de-
scent (SGD) (Robbins and Monro, 1951); stochas-
tic methods of this type are particularly important
for training with large data sets. However, this
approach often provides a maximum a posteriori
(MAP) estimate of model parameters. The MAP
solution is a single point estimate, ignoring weight
uncertainty (Blundell et al., 2015; Hernández-
Lobato and Adams, 2015). Natural language of-
ten exhibits significant variability, and hence such
a point estimate may make over-confident predic-
tions on test data.

To alleviate overfitting RNNs, good regular-
ization is known as a key factor to successful
applications. In the neural network literature,
Bayesian learning has been proposed as a princi-
pled method to impose regularization and incor-
porate model uncertainty (MacKay, 1992; Neal,
1995), by imposing prior distributions on model
parameters. Due to the intractability of poste-
rior distributions in neural networks, Hamiltonian
Monte Carlo (HMC) (Neal, 1995) has been used to
provide sample-based approximations to the true
posterior. Despite the elegant theoretical prop-
erty of asymptotic convergence to the true poste-
rior, HMC and other conventional Markov Chain
Monte Carlo methods are not scalable to large
training sets.

This paper seeks to scale up Bayesian learning
of RNNs to meet the challenge of the increasing
amount of “big” sequential data in natural lan-
guage processing, leveraging recent advances in
stochastic gradient Markov Chain Monte Carlo
(SG-MCMC) algorithms (Welling and Teh, 2011;
Chen et al., 2014; Ding et al., 2014; Li et al.,
2016a,b). Specifically, instead of training a sin-
gle network, SG-MCMC is employed to train an
ensemble of networks, where each network has its
parameters drawn from a shared posterior distri-
bution. This is implemented by adding additional

321

https://doi.org/10.18653/v1/P17-1030

Encoding weights

Recurrent weights

Decoding weights

Output

Input

Hidden

Figure 1: Illustration of different weight learning
strategies in a single-hidden-layer RNN. Stochas-
tic optimization used for MAP estimation puts
fixed values on all weights. Naive dropout is al-
lowed to put weight uncertainty only on encoding
and decoding weights, and fixed values on recur-
rent weights. The proposed SG-MCMC scheme
imposes distributions on all weights.

gradient noise during training and utilizing model
averaging when testing.

This simple procedure has the following salu-
tary properties for training neural networks: (i)
When training, the injected noise encourages
model-parameter trajectories to better explore the
parameter space. This procedure was also empiri-
cally found effective in Neelakantan et al. (2016).
(ii) Model averaging when testing alleviates over-
fitting and hence improves generalization, trans-
ferring uncertainty in the learned model parame-
ters to subsequent prediction. (iii) In theory, both
asymptotic and non-asymptotic consistency prop-
erties of SG-MCMC methods in posterior estima-
tion have been recently established to guarantee
convergence (Chen et al., 2015a; Teh et al., 2016).
(iv) SG-MCMC is scalable; it shares the same
level of computational cost as SGD in training,
by only requiring the evaluation of gradients on
a small mini-batch. To the authors’ knowledge,
RNN training using SG-MCMC has not been in-
vestigated previously, and is a contribution of this
paper. We also perform extensive experiments on
several natural language processing tasks, demon-
strating the effectiveness of SG-MCMC for RNNs,
including character/word-level language model-
ing, image captioning and sentence classification.

2 Related Work

Several scalable Bayesian learning methods have
been proposed recently for neural networks. These
come in two broad categories: stochastic vari-
ational inference (Graves, 2011; Blundell et al.,
2015; Hernández-Lobato and Adams, 2015) and

SG-MCMC methods (Korattikara et al., 2015; Li
et al., 2016a). While prior work focuses on
feed-forward neural networks, there has been lit-
tle if any research reported for RNNs using SG-
MCMC.

Dropout (Hinton et al., 2012; Srivastava et al.,
2014) is a commonly used regularization method
for training neural networks. Recently, several
works have studied how to apply dropout to
RNNs (Pachitariu and Sahani, 2013; Bayer et al.,
2013; Pham et al., 2014; Zaremba et al., 2014;
Bluche et al., 2015; Moon et al., 2015; Semeniuta
et al., 2016; Gal and Ghahramani, 2016b). Among
them, naive dropout (Zaremba et al., 2014) can im-
pose weight uncertainty only on encoding weights
(those that connect input to hidden units) and de-
coding weights (those that connect hidden units to
output), but not the recurrent weights (those that
connect consecutive hidden states). It has been
concluded that noise added in the recurrent con-
nections leads to model instabilities, hence dis-
rupting the RNN’s ability to model sequences.

Dropout has been recently shown to be a varia-
tional approximation technique in Bayesian learn-
ing (Gal and Ghahramani, 2016a; Kingma et al.,
2015). Based on this, (Gal and Ghahramani,
2016b) proposed a new variant of dropout that can
be successfully applied to recurrent layers, where
the same dropout masks are shared along time for
encoding, decoding and recurrent weights, respec-
tively. Alternatively, we focus on SG-MCMC,
which can be viewed as the Bayesian interpreta-
tion of dropout from the perspective of posterior
sampling (Li et al., 2016c); this also allows im-
position of model uncertainty on recurrent layers,
enhancing performance. A comparison of naive
dropout and SG-MCMC is illustrated in Fig. 1.

3 Recurrent Neural Networks

3.1 RNN as Bayesian Predictive Models

Consider data D = {D1, · · · ,DN}, where Dn ,
(Xn,Yn), with input Xn and output Yn. Our
goal is to learn model parameters θ to best
characterize the relationship from Xn to Yn,
with corresponding data likelihood p(D|θ) =∏N
n=1 p(Dn|θ). In Bayesian statistics, one sets

a prior on θ via distribution p(θ). The posterior
p(θ|D) ∝ p(θ)p(D|θ) reflects the belief concern-
ing the model parameter distribution after observ-
ing the data. Given a test input X̃ (with miss-
ing output Ỹ), the uncertainty learned in training

322

is transferred to prediction, yielding the posterior
predictive distribution:

p(Ỹ|X̃,D)=
∫

θ
p(Ỹ|X̃,θ)p(θ|D)dθ . (1)

When the input is a sequence, RNNs may be
used to parameterize the input-output relation-
ship. Specifically, consider input sequence X =
{x1, . . . ,xT }, where xt is the input data vector at
time t. There is a corresponding hidden state vec-
tor ht at each time t, obtained by recursively ap-
plying the transition function ht = H(ht−1,xt)
(specified in Section 3.2; see Fig. 1). The output Y
differs depending on the application: a sequence
{y1, . . . ,yT } in language modeling or a discrete
label in sentence classification. In RNNs the cor-
responding decoding function is p(y|h), described
in Section 3.3.

3.2 RNN Architectures

The transition function H(·) can be implemented
with a gated activation function, such as Long
Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) or a Gated Recurrent Unit
(GRU) (Cho et al., 2014). Both the LSTM and
GRU have been proposed to address the issue of
learning long-term sequential dependencies.

Long Short-Term Memory The LSTM archi-
tecture addresses the problem of learning long-
term dependencies by introducing a memory cell,
that is able to preserve the state over long periods
of time. Specifically, each LSTM unit has a cell
containing a state ct at time t. This cell can be
viewed as a memory unit. Reading or writing the
cell is controlled through sigmoid gates: input gate
it, forget gate ft, and output gate ot. The hidden
units ht are updated as

it = σ(Wixt +Uiht−1 + bi) ,

ft = σ(Wfxt +Ufht−1 + bf) ,

ot = σ(Woxt +Uoht−1 + bo) ,

c̃t = tanh(Wcxt +Ucht−1 + bc) ,

ct = ft � ct−1 + it � c̃t ,
ht = ot � tanh(ct) ,

where σ(·) denotes the logistic sigmoid func-
tion, and � represents the element-wise matrix
multiplication operator. W{i,f,o,c} are encoding
weights, and U{i,f,o,c} are recurrent weights, as
shown in Fig. 1. b{i,f,o,c} are bias terms.

Variants Similar to the LSTM unit, the GRU
also has gating units that modulate the flow of
information inside the hidden unit. It has been
shown that a GRU can achieve similar perfor-
mance to an LSTM in sequence modeling (Chung
et al., 2014). We specify the GRU in the Supple-
mentary Material.

The LSTM can be extended to the bidirec-
tional LSTM and multilayer LSTM. A bidirec-
tional LSTM consists of two LSTMs that are run
in parallel: one on the input sequence and the other
on the reverse of the input sequence. At each time
step, the hidden state of the bidirectional LSTM
is the concatenation of the forward and backward
hidden states. In multilayer LSTMs, the hidden
state of an LSTM unit in layer ` is used as input
to the LSTM unit in layer ` + 1 at the same time
step (Graves, 2013).

3.3 Applications
The proposed Bayesian framework can be applied
to any RNN model; we focus on the following
tasks to demonstrate the ideas.

Language Modeling In word-level language
modeling, the input to the network is a sequence
of words, and the network is trained to predict the
next word in the sequence with a softmax classi-
fier. Specifically, for a length-T sequence, denote
yt = xt+1 for t = 1, . . . , T − 1. x1 and yT are
always set to a special START and END token,
respectively. At each time t, there is a decoding
function p(yt|ht) = softmax(Vht) to compute
the distribution over words, where V are the de-
coding weights (the number of rows of V corre-
sponds to the number of words/characters). We
also extend this basic language model to consider
other applications: (i) a character-level language
model can be specified in a similar manner by
replacing words with characters (Karpathy et al.,
2016). (ii) Image captioning can be considered
as a conditional language modeling problem, in
which we learn a generative language model of the
caption conditioned on an image (Vinyals et al.,
2015; Gan et al., 2017).

Sentence Classification Sentence classification
aims to assign a semantic category label y to a
whole sentence X. This is usually implemented
through applying the decoding function once at
the end of sequence: p(y|hT) = softmax(VhT),
where the final hidden state of a RNN hT is often
considered as the summary of the sentence (here

323

the number of rows of V corresponds to the num-
ber of classes).

4 Scalable Learning with SG-MCMC

4.1 The Pitfall of Stochastic Optimization
Typically there is no closed-form solution for the
posterior p(θ|D), and traditional Markov Chain
Monte Carlo (MCMC) methods (Neal, 1995) scale
poorly for largeN . To ease the computational bur-
den, stochastic optimization is often employed to
find the MAP solution. This is equivalent to min-
imizing an objective of regularized loss function
U(θ) that corresponds to a (non-convex) model
of interest: θMAP = argminU(θ), U(θ) =
− log p(θ|D). The expectation in (1) is approxi-
mated as:

p(Ỹ|X̃,D)= p(Ỹ|X̃,θMAP) . (2)

Though simple and effective, this procedure
largely loses the benefit of the Bayesian approach,
because the uncertainty on weights is ignored.
To more accurately approximate (1), we employ
stochastic gradient (SG) MCMC (Welling and
Teh, 2011).

4.2 Large-scale Bayesian Learning
The negative log-posterior is

U(θ) , − log p(θ)−
N∑

n=1

log p(Dn|θ). (3)

In optimization,E = −∑N
n=1 log p(Dn|θ) is typ-

ically referred to as the loss function, and R ∝
− log p(θ) as a regularizer.

For large N , stochastic approximations are of-
ten employed:

Ũt(θ),− log p(θ)− N

M

M∑

m=1

log p(Dim |θ), (4)

where Sm = {i1, · · · , iM} is a random subset of
the set {1, 2, · · · , N}, with M � N . The gradi-
ent on this mini-batch is denoted as f̃t = ∇Ũt(θ),
which is an unbiased estimate of the true gradi-
ent. The evaluation of (4) is cheap even when N
is large, allowing one to efficiently collect a suf-
ficient number of samples in large-scale Bayesian
learning, {θs}Ss=1, where S is the number of sam-
ples (this will be specified later). These samples
are used to construct a sample-based estimation to
the expectation in (1):

Table 1: SG-MCMC algorithms and their optimiza-
tion counterparts. Algorithms in the same row share
similar characteristics.

Algorithms SG-MCMC Optimization
Basic SGLD SGD
Precondition pSGLD RMSprop/Adagrad
Momentum SGHMC momentum SGD
Thermostat SGNHT Santa

p(Ỹ|X̃,D)≈ 1

S

S∑

s=1

p(Ỹ|X̃,θs) . (5)

The finite-time estimation errors of SG-MCMC
methods are bounded (Chen et al., 2015a), which
guarantees (5) is an unbiased estimate of (1)
asymptotically under appropriate decreasing step-
sizes.

4.3 SG-MCMC Algorithms

SG-MCMC and stochastic optimization are par-
allel lines of work, designed for different pur-
poses; their relationship has recently been re-
vealed in the context of deep learning. The most
basic SG-MCMC algorithm has been applied to
Langevin dynamics, and is termed SGLD (Welling
and Teh, 2011). To help convergence, a momen-
tum term has been introduced in SGHMC (Chen
et al., 2014), a “thermostat” has been devised
in SGNHT (Ding et al., 2014; Gan et al., 2015)
and preconditioners have been employed in pS-
GLD (Li et al., 2016a). These SG-MCMC algo-
rithms often share similar characteristics with their
counterpart approaches from the optimization lit-
erature such as the momentum SGD, Santa (Chen
et al., 2016) and RMSprop/Adagrad (Tieleman
and Hinton, 2012; Duchi et al., 2011). The interre-
lationships between SG-MCMC and optimization-
based approaches are summarized in Table 1.

SGLD Stochastic Gradient Langevin Dynamics
(SGLD) (Welling and Teh, 2011) draws posterior
samples, with updates

θt = θt−1 − ηtf̃t−1 +
√
2ηtξt , (6)

where ηt is the learning rate, and ξt ∼ N (0, Ip) is
a standard Gaussian random vector. SGLD is the
SG-MCMC analog to stochastic gradient descent
(SGD), whose parameter updates are given by:

θt = θt−1 − ηtf̃t−1 . (7)

324

Algorithm 1: pSGLD
Input: Default hyperparameter settings:

ηt = 1×10−3, λ = 10−8, β1 = 0.99.
Initialize: v0 ← 0, θ1 ∼ N (0, I) ;
for t = 1, 2, . . . , T do

% Estimate gradient from minibatch St
f̃t = ∇Ũt(θ);
% Preconditioning

vt ← β1vt−1 + (1− β1)f̃t � f̃t;
G−1t ← diag

(
1�

(
λ1+ v

1
2
t

))
;

% Parameter update

ξt ∼ N (0, ηtG
−1
t);

θt+1← θt +
ηt
2 G

−1
t f̃t+ ξt;

end

SGD is guaranteed to converge to a local mini-
mum under mild conditions (Bottou, 2010). The
additional Gaussian term in SGLD helps the learn-
ing trajectory to explore the parameter space to ap-
proximate posterior samples, instead of obtaining
a local minimum.

pSGLD Preconditioned SGLD (pSGLD) (Li
et al., 2016a) was proposed recently to improve
the mixing of SGLD. It utilizes magnitudes of re-
cent gradients to construct a diagonal precondi-
tioner to approximate the Fisher information ma-
trix, and thus adjusts to the local geometry of
parameter space by equalizing the gradients so
that a constant stepsize is adequate for all dimen-
sions. This is important for RNNs, whose parame-
ter space often exhibits pathological curvature and
saddle points (Pascanu et al., 2013), resulting in
slow mixing. There are multiple choices of pre-
conditioners; similar ideas in optimization include
Adagrad (Duchi et al., 2011), Adam (Kingma and
Ba, 2015) and RMSprop (Tieleman and Hinton,
2012). An efficient version of pSGLD, adopt-
ing RMSprop as the preconditioner G, is summa-
rized in Algorithm 1, where � denotes element-
wise matrix division. When the preconditioner is
fixed as the identity matrix, the method reduces to
SGLD.

4.4 Understanding SG-MCMC

To further understand SG-MCMC, we show its
close connection to dropout/dropConnect (Srivas-
tava et al., 2014; Wan et al., 2013). These methods
improve the generalization ability of deep models,
by randomly adding binary/Gaussian noise to the

local units or global weights. For neural networks
with the nonlinear function q(·) and consecutive
layers h1 and h2, dropout and dropConnect are
denoted as:

Dropout: h2 = ξ0 � q(θh1),

DropConnect: h2 = q((ξ0 � θ)h1),

where the injected noise ξ0 can be binary-valued
with dropping rate p or its equivalent Gaussian
form (Wang and Manning, 2013):

Binary noise: ξ0 ∼ Ber(p),

Gaussian noise: ξ0 ∼ N (1,
p

1− p).

Note that ξ0 is defined as a vector for dropout, and
a matrix for dropConnect. By combining drop-
Connect and Gaussian noise from the above, we
have the update rule (Li et al., 2016c):

θt+1 = ξ0 � θt −
η

2
f̃t = θt −

η

2
f̃t + ξ

′
0 , (8)

where ξ′0 ∼ N
(
0, p

(1−p)diag(θ2t)
)

; (8) shows
that dropout/ dropConnect and SGLD in (6) share
the same form of update rule, with the distinc-
tion being that the level of injected noise is dif-
ferent. In practice, the noise injected by SGLD
may not be enough. A better way that we find to
improve the performance is to jointly apply SGLD
and dropout. This method can be interpreted as
using SGLD to sample the posterior distribution
of a mixture of RNNs, with mixture probability
controlled by the dropout rate.

5 Experiments

We present results on several tasks, including
character/word-level language modeling, image
captioning, and sentence classification. We do
not perform any dataset-specific tuning other than
early stopping on validation sets. When dropout is
utilized, the dropout rate is set to 0.5. All experi-
ments are implemented in Theano (Theano Devel-
opment Team, 2016), using a NVIDIA GeForce
GTX TITAN X GPU with 12GB memory.

The hyper-parameters for the proposed algo-
rithm include step size, minibatch size, thinning
interval, number of burn-in epochs and variance
of the Gaussian priors. We list the specific val-
ues used in our experiments in Table 2. The ex-
planation of these hyperparameters, the initializa-
tion of model parameters and model specifications
on each dataset are provided in the Supplementary
Material.

325

Table 2: Hyper-parameter settings of pSGLD for different datasets. For PTB, SGLD is used.

Datasets WP PTB Flickr8k Flickr30k MR CR SUBJ MPQA TREC
Minibatch Size 100 32 64 64 50 50 50 50 50
Step Size 2×10−3 1 10−3 10−3 10−3 10−3 10−3 10−3 10−3

Total Epoch 20 40 20 20 20 20 20 20 20
Burn-in (#Epoch) 4 4 3 3 1 1 1 1 1
Thinning Interval (#Epoch) 1/2 1/2 1 1/2 1 1 1 1 1
Samples Collected 32 72 17 34 19 19 19 19 19

5.1 Language Modeling
We first test character-level and word-level lan-
guage modeling. The setup is as follows.

• Following Karpathy et al. (2016), we test
character-level language modeling on the
War and Peace (WP) novel. The train-
ing/validation/test sets contain 260/32/33
batches, in which there are 100 characters.
The vocabulary size is 87, and we consider
a 2-hidden-layer RNN of dimension 128.
• The Penn Treebank (PTB) corpus (Marcus

et al., 1993) is used for word-level lan-
guage modeling. The dataset adopts the
standard split (929K training words, 73K
validation words, and 82K test words) and
has a vocabulary of size 10K. We train
LSTMs of three sizes; these are denoted the
small/medium/large LSTM. All LSTMs have
two layers and are unrolled for 20 steps. The
small, medium and large LSTM has 200, 650
and 1500 units per layer, respectively.

We consider two types of training schemes
on PTB corpus: (i) Successive minibatches:
Following Zaremba et al. (2014), the final
hidden states of the current minibatch are
used as the initial hidden states of the subse-
quent minibatch (successive minibatches se-
quentially traverse the training set). (ii) Ran-
dom minibatches: The initial hidden states of
each minibatch are set to zero vectors, hence
we can randomly sample minibatches in each
update.

We study the effects of different types of architec-
ture (LSTM/GRU/Vanilla RNN (Karpathy et al.,
2016)) on the WP dataset, and effects of differ-
ent learning algorithms on the PTB dataset. The
comparison of test cross-entropy loss on WP is
shown in Table 3. We observe that pSGLD con-
sistently outperforms RMSprop. Table 4 summa-
rizes the test set performance on PTB1. It is clear

1The results reported here do not match Zaremba et al.
(2014) due to the implementation details. However, we pro-

Table 3: Test cross-entropy loss on WP dataset.
Methods LSTM GRU RNN
RMSprop 1.3607 1.2759 1.4239
pSGLD 1.3375 1.2561 1.4093

10 20 30 40 50 60
Individual Sample

110
120
130
140
150
160
170
180

Pe
rp

le
xi

ty
0 10 20 30 40 50 60
Number of Samples for Model Averaging

110
120
130
140
150
160
170
180

Pe
rp

le
xi

ty

forward collection
backward collection
thinned collection

(a) Single sample (b) Different collections

Figure 2: Effects of collected samples.

that our sampling-based method consistently out-
performs the optimization counterpart, where the
performance gain mainly comes from adding gra-
dient noise and model averaging. When com-
pared with dropout, SGLD performs better on the
small LSTM model, but worse on the medium
and large LSTM model. This may imply that
dropout is suitable to regularizing large networks,
while SGLD exhibits better regularization ability
on small networks, partially due to the fact that
dropout may inject a higher level of noise during
training than SGLD. In order to inject a higher
level of noise into SGLD, we empirically apply
SGLD and dropout jointly, and found that this
provided the best performace on the medium and
large LSTM model.

We study three strategies to do model averaging,
i.e., forward collection, backward collection and
thinned collection. Given samples (θ1, · · · ,θK)
and the number of samples S used for averaging,
forward collection refers to using (θ1, · · · ,θS) for
the evaluation of a test function, backward col-
lection refers to using (θK−S+1, · · · ,θK), while
thinned collection chooses samples from θ1 to θK
with interval K/S. Fig. 2 plots the effects of
these strategies, where Fig. 2(a) plots the perplex-
ity of every single sample, Fig. 2(b) plots the per-
plexities using the three schemes. Only after 20

vide a fair comparison to all methods.

326

Table 4: Test perplexity on Penn Treebank.
Methods Small Medium Large

Random minibatches

SGD 123.85 126.31 130.25
SGD+Dropout 136.39 100.12 97.65
SGLD 117.36 109.14 105.86
SGLD+Dropout 139.54 99.58 94.03

Successive minibatches

SGD 113.45 123.14 127.68
SGD+Dropout 117.85 84.60 80.85
SGLD 108.61 121.16 131.40
SGLD+Dropout 125.44 82.71 78.91

Literature

Moon et al. (2015) − 97.0 118.7
Moon et al. (2015)+ emb. dropout − 86.5 86.0
Zaremba et al. (2014) − 82.7 78.4
Gal and Ghahramani (2016b) − 78.6 73.4

samples is a converged perplexity achieved in the
thinned collection, while it requires 30 samples
for forward collection or 60 samples for backward
collection. This is unsurprising, because thinned
collection provides a better way to select samples.
Nevertheless, averaging of samples provides sig-
nificantly lower perplexity than using single sam-
ples. Note that the overfitting problem in Fig. 2(a)
is also alleviated by model averaging.

To better illustrate the benefit of model averag-
ing, we visualize in Fig. 3 the probabilities of each
word in a randomly chosen test sentence. The first
3 rows are the results predicted by 3 distinctive
model samples, respectively; the bottom row is the
result after averaging. Their corresponding per-
plexities for the test sentence are also shown on
the right of each row. The 3 individual samples
provide reasonable probabilities. For example, the
consecutive words “New York”, “stock exchange”
and “did not” are assigned with a higher proba-
bility. After averaging, we can see a much lower
perplexity, as the samples can complement each
other. For example, though the second sample can
yield the lowest single-model perplexity, its pre-
diction on word “York” is still benefited from the
other two via averaging.

5.2 Image Caption Generation

We next consider the problem of image caption
generation, which is a conditional RNN model,
where image features are extracted by residual net-
work (He et al., 2016), and then fed into the RNN
to generate the caption. We present results on
two benchmark datasets, Flickr8k (Hodosh et al.,
2013) and Flickr30k (Young et al., 2014). These

25.55the 25.55new 25.55york 25.55stock 25.55exchange 25.55did 25.55not 25.55fall 25.55apart
22.24the 22.24new 22.24york 22.24stock 22.24exchange 22.24did 22.24not 22.24fall 22.24apart
29.83the 29.83new 29.83york 29.83stock 29.83exchange 29.83did 29.83not 29.83fall 29.83apart

21.98the 21.98new 21.98york 21.98stock 21.98exchange 21.98did 21.98not 21.98fall 21.98apart
0

0.2

0.4

0.6

0.8

1

Figure 3: Predictive probabilities obtained by 3
samples and their average. Colors indicate nor-
malized probability of each word. Best viewed in
color.

a"tan"dog"is"playing"in"the"grass
a"tan"dog"is"playing"with"a"red"ball"in"the"grass
a"tan"dog"with"a"red"collar"is"running"in"the"grass

a"yellow"dog"runs"through"the"grass
a"yellow"dog"is"running"through"the"grass
a"brown"dog"is"running"through"the"grass

a"group"of"people"stand"in"front"of"a"building
a"group"of"people"stand"in"front"of"a"white"building
a"group"of"people"stand"in"front"of"a"large"building

a"man"and"a"woman"walking"on"a"sidewalk
a"man"and"a"woman"stand"on"a"balcony
a"man"and"a"woman"standing"on"the"ground

Figure 4: Image captioning with different sam-
ples. Left are the given images, right are the cor-
responding captions. The captions in each box are
from the same model sample.

datasets contain 8,000 and 31,000 images, respec-
tively. Each image is annotated with 5 sentences.
A single-layer LSTM is employed with the num-
ber of hidden units set to 512.

The widely used BLEU (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), ROUGE-
L (Lin, 2004), and CIDEr-D (Vedantam et al.,
2015) metrics are used to evaluate the perfor-
mance. All the metrics are computed by us-
ing the code released by the COCO evaluation
server (Chen et al., 2015b).

Table 5 presents results for pSGLD/RMSprop

327

Table 5: Performance on Flickr8k & Flickr30k: BLEU’s, METEOR, CIDEr, ROUGE-L and perplexity.

Methods B-1 B-2 B-3 B-4 METEOR CIDEr ROUGE-L Perp.
Results on Flickr8k
RMSprop 0.640 0.427 0.288 0.197 0.205 0.476 0.500 16.64
RMSprop + Dropout 0.647 0.444 0.305 0.209 0.208 0.514 0.510 15.72
RMSprop + Gal’s Dropout 0.651 0.443 0.305 0.209 0.206 0.501 0.509 14.70
pSGLD 0.669 0.463 0.321 0.224 0.214 0.535 0.522 14.29
pSGLD + Dropout 0.656 0.450 0.309 0.211 0.209 0.512 0.512 14.26
Results on Flickr30k
RMSprop 0.644 0.422 0.279 0.184 0.180 0.372 0.476 17.80
RMSprop + Dropout 0.656 0.435 0.295 0.200 0.185 0.396 0.481 18.05
RMSprop + Gal’s Dropout 0.636 0.429 0.290 0.197 0.190 0.408 0.480 17.27
pSGLD 0.657 0.438 0.300 0.206 0.192 0.421 0.490 15.61
pSGLD + Dropout 0.666 0.448 0.308 0.209 0.189 0.419 0.487 17.05

with or without dropout. In addition to (naive)
dropout, we further compare pSGLD with the
Gal’s dropout, recently proposed in Gal and
Ghahramani (2016b), which is shown to be ap-
plicable to recurrent layers. Consistent with
the results in the basic language modeling, pS-
GLD yields improved performance compared to
RMSprop. For example, pSGLD provides 2.7
BLEU-4 score improvement over RMSprop on the
Flickr8k dataset. By comparing pSGLD with RM-
Sprop with dropout, we conclude that pSGLD ex-
hibits better regularization ability than dropout on
these two datasets.

Apart from modeling weight uncertainty, differ-
ent samples from our algorithm may capture dif-
ferent aspects of the input image. An example
with two images is shown in Fig. 4, where 2 ran-
domly chosen model samples are considered for
each image. For each model sample, the top 3 gen-
erated captions are presented. We use the beam
search approach (Vinyals et al., 2015) to gener-
ate captions, with a beam of size 5. In Fig. 4,
the two samples for the first image mainly differ
in the color and activity of the dog, e.g., “tan” or
“yellow”, “playing” or “running”, whereas for the
second image, the two samples reflect different un-
derstanding of the image content.

5.3 Sentence Classification
We study the task of sentence classification on 5
datasets as in Kiros et al. (2015): MR (Pang and
Lee, 2005), CR (Hu and Liu, 2004), SUBJ (Pang
and Lee, 2004), MPQA (Wiebe et al., 2005) and
TREC (Li and Roth, 2002). A single-layer bidi-
rectional LSTM is employed with the number of
hidden units set to 400. Table 6 shows the test-

5 10 15
#Epoch

0.00

0.05

0.10

0.15

0.20

0.25

Er
ro

r

Train
RMSprop
RMSprop + Dropout
pSGLD
pSGLD + Dropout

5 10 15
#Epoch

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Er
ro

r

Validation

5 10 15
#Epoch

0.10

0.15

0.20

Er
ro

r

Test

Figure 5: Learning curves on TREC dataset.

ing classification errors. 10-fold cross-validation
is used for evaluation on the first 4 datasets, while
TREC has a pre-defined training/test split, and we
run each algorithm 10 times on TREC. The com-
bination of pSGLD and dropout consistently pro-
vides the lowest errors.

In the following, we focus on the analysis of
TREC. Each sentence of TREC is a question, and
the goal is to decide which topic type the ques-
tion is most related to: location, human, numeric,
abbreviation, entity or description. Fig. 5 plots
the learning curves of different algorithms on the
training, validation and testing sets of the TREC
dataset. pSGLD and dropout have similar behav-
ior: they explore the parameter space during learn-
ing, and thus coverge slower than RMSprop on the
training dataset. However, the learned uncertainty
alleviates overfitting and results in lower errors on
the validation and testing datasets.

To further study the Bayesian nature of the pro-
posed approach, in Fig. 6 we choose two test-
ing sentences with high uncertainty (i.e., standard
derivation in prediction) from the TREC dataset.
Interestingly, after embedding to 2d-space with
tSNE (Van der Maaten and Hinton, 2008), the two

328

Table 6: Sentence classification errors on five benchmark datasets.

Methods MR CR SUBJ MPQA TREC
RMSprop 21.86±1.19 20.20±1.35 8.13±1.19 10.60±1.28 8.14±0.63

RMSprop + Dropout 20.52±0.99 19.57±1.79 7.24±0.86 10.66±0.74 7.48±0.47

RMSprop + Gal’s Dropout 20.22±1.12 19.29±1.93 7.52±1.17 10.59±1.12 7.34±0.66

pSGLD 20.36±0.85 18.72±1.28 7.00±0.89 10.54±0.99 7.48±0.82

pSGLD + Dropout 19.33±1.10 18.18±1.32 6.61±1.06 10.22±0.89 6.88±0.65

Whatdoes cc in engines mean?

Whatdoes adefibrillatordo?

True5Type Predicted5 Type

Description

Description

Testing5Question

Entity

Abbreviation

Figure 6: Visualization. Top two rows show se-
lected ambiguous sentences, which correspond to
the points with black circles in tSNE visualization
of the testing dataset.

sentences correspond to points lying on the bound-
ary of different classes. We use 20 model sam-
ples to estimate the prediction mean and standard
derivation on the true type and predicted type. The
classifier yields higher probability on the wrong
types, associated with higher standard derivations.
One can leverage the uncertainty information to
make decisions: either manually make a human
judgement when uncertainty is high, or automat-
ically choose the one with lower standard deriva-
tions when both types exhibits similar prediction
means. A more rigorous usage of the uncertainty
information is left as future work.

5.4 Discussion

Ablation Study We investigate the effectivenss
of each module in the proposed algorithm in Ta-
ble 7 on two datasets: TREC and PTB. The small
network size is used on PTB. Let M1 denote only
gradient noise, and M2 denote only model averag-
ing. As can be seen, The last sample in pSGLD
(M1) does not necessarily bring better results than
RMSprop, but the model averaging over the sam-
ples of pSGLD indeed provide better results than
model averaging of RMSprop (M2). This indi-
cates that both gradient noise and model averaging
are crucial for good performance in pSGLD.

Table 7: Ablation study on TREC and PTB.
Datasets RMSprop M1 M2 pSGLD

TREC 8.14 8.34 7.54 7.48
PTB 120.45 122.14 114.86 109.44

Table 8: Running time on Flickr30k in seconds.
Stages pSGLD RMSprop+Dropout
Training 20324 12578
Testing 7047 1311

Running Time We report the training and test-
ing time for image captioning on the Flickr30k
dataset in Table 8. For pSGLD, the extra cost in
training comes from adding gradient noise, and the
extra cost in testing comes from model averaging.
However, the cost in model averaging can be alle-
viated via the distillation methods: learning a sin-
gle neural network that approximates the results
of either a large model or an ensemble of mod-
els (Korattikara et al., 2015; Kim and Rush, 2016;
Kuncoro et al., 2016). The idea can be incorpo-
rated with our SG-MCMC technique to achieve
the same goal, which we leave for our future work.

6 Conclusion

We propose a scalable Bayesian learning frame-
work using SG-MCMC, to model weight uncer-
tainty in recurrent neural networks. The learn-
ing framework is tested on several tasks, includ-
ing language models, image caption generation
and sentence classification. Our algorithm outper-
forms stochastic optimization algorithms, indicat-
ing the importance of learning weight uncertainty
in recurrent neural networks. Our algorithm re-
quires little additional computational overhead in
training, and multiple times of forward-passing for
model averaging in testing.

Acknowledgments This research was supported
by ARO, DARPA, DOE, NGA, ONR and NSF. We
acknowledge Wenlin Wang for the code on lan-
guage modeling experiment.

329

References
S. Banerjee and A. Lavie. 2005. Meteor: An automatic

metric for mt evaluation with improved correlation
with human judgments. In ACL workshop.

J. Bayer, C. Osendorfer, D. Korhammer, N. Chen,
S. Urban, and P. van der Smagt. 2013. On fast
dropout and its applicability to recurrent networks.
arXiv:1311.0701 .

T. Bluche, C. Kermorvant, and J. Louradour. 2015.
Where to apply dropout in recurrent neural networks
for handwriting recognition? In ICDAR.

C. Blundell, J. Cornebise, K. Kavukcuoglu, and
D. Wierstra. 2015. Weight uncertainty in neural net-
works. In ICML.

L Bottou. 2010. Large-scale machine learning with
stochastic gradient descent. In COMPSTAT .

C. Chen, D. Carlson, Z. Gan, C. Li, and L. Carin.
2016. Bridging the gap between stochastic gradient
MCMC and stochastic optimization. In AISTATS.

C. Chen, N. Ding, and L. Carin. 2015a. On the conver-
gence of stochastic gradient MCMC algorithms with
high-order integrators. In NIPS.

T. Chen, E. B. Fox, and C. Guestrin. 2014. Stochastic
gradient Hamiltonian Monte Carlo. In ICML.

X. Chen, H. Fang, T. Lin, R. Vedantam, S. Gupta,
P. Dollár, and C. L. Zitnick. 2015b. Microsoft
coco captions: Data collection and evaluation server.
arXiv:1504.00325 .

K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bah-
danau, F. Bougares, H. Schwenk, and Y. Bengio.
2014. Learning phrase representations using RNN
encoder-decoder for statistical machine translation.
In EMNLP.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. 2014.
Empirical evaluation of gated recurrent neural net-
works on sequence modeling. arXiv:1412.3555 .

N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel,
and H. Neven. 2014. Bayesian sampling using
stochastic gradient thermostats. In NIPS.

J. Duchi, E. Hazan, and Y. Singer. 2011. Adaptive sub-
gradient methods for online learning and stochastic
optimization. JMLR .

Y. Gal and Z. Ghahramani. 2016a. Dropout as a
Bayesian approximation: Representing model un-
certainty in deep learning. In ICML.

Y. Gal and Z. Ghahramani. 2016b. A theoretically
grounded application of dropout in recurrent neural
networks. In NIPS.

Z. Gan, C. Chen, R. Henao, D. Carlson, and L. Carin.
2015. Scalable deep poisson factor analysis for topic
modeling. In ICML.

Z. Gan, C. Gan, X. He, Y. Pu, K. Tran, J. Gao, L. Carin,
and L. Deng. 2017. Semantic compositional net-
works for visual captioning. In CVPR.

A. Graves. 2011. Practical variational inference for
neural networks. In NIPS.

A. Graves. 2013. Generating sequences with recurrent
neural networks. arXiv:1308.0850 .

K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep resid-
ual learning for image recognition. In CVPR.

J. M. Hernández-Lobato and R. P. Adams. 2015. Prob-
abilistic backpropagation for scalable learning of
Bayesian neural networks. In ICML.

G. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever,
and R Salakhutdinov. 2012. Improving neural net-
works by preventing co-adaptation of feature detec-
tors. arXiv:1207.0580 .

S. Hochreiter and J. Schmidhuber. 1997. Long short-
term memory. In Neural computation.

M. Hodosh, P. Young, and J. Hockenmaier. 2013.
Framing image description as a ranking task: Data,
models and evaluation metrics. JAIR .

M. Hu and B. Liu. 2004. Mining and summarizing cus-
tomer reviews. SIGKDD .

A. Karpathy, J. Johnson, and L. Fei-Fei. 2016. Visu-
alizing and understanding recurrent networks. In
ICLR Workshop.

Y. Kim and A. M. Rush. 2016. Sequence-level knowl-
edge distillation. In EMNLP.

D. Kingma and J. Ba. 2015. Adam: A method for
stochastic optimization. In ICLR.

D. Kingma, T. Salimans, and M. Welling. 2015. Varia-
tional dropout and the local reparameterization trick.
In NIPS.

R. Kiros, Y. Zhu, R. Salakhutdinov, R. Zemel, R. Urta-
sun, A. Torralba, and S. Fidler. 2015. Skip-thought
vectors. In NIPS.

A. Korattikara, V. Rathod, K. Murphy, and M. Welling.
2015. Bayesian dark knowledge. In NIPS.

A. Kuncoro, M. Ballesteros, L. Kong, C. Dyer, and
N. A. Smith. 2016. Distilling an ensemble of greedy
dependency parsers into one mst parser. In EMNLP.

C. Li, C. Chen, D. Carlson, and L. Carin. 2016a. Pre-
conditioned stochastic gradient Langevin dynamics
for deep neural networks. In AAAI.

C. Li, C. Chen, K. Fan, and L. Carin. 2016b. High-
order stochastic gradient thermostats for Bayesian
learning of deep models. In AAAI.

C. Li, A. Stevens, C. Chen, Y. Pu, Z. Gan, and L. Carin.
2016c. Learning weight uncertainty with stochastic
gradient mcmc for shape classification. In CVPR.

330

X. Li and D. Roth. 2002. Learning question classifiers.
ACL .

C. Lin. 2004. Rouge: A package for automatic evalua-
tion of summaries. In ACL workshop.

D. J. C. MacKay. 1992. A practical Bayesian frame-
work for backpropagation networks. In Neural com-
putation.

M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini.
1993. Building a large annotated corpus of english:
The penn treebank. Computational linguistics .

T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and
S. Khudanpur. 2010. Recurrent neural network
based language model. In INTERSPEECH.

T. Moon, H. Choi, H. Lee, and I. Song. 2015. Rnndrop:
A novel dropout for rnns in asr. ASRU .

R. M. Neal. 1995. Bayesian learning for neural net-
works. PhD thesis, University of Toronto.

A. Neelakantan, L. Vilnis, Q. Le, I. Sutskever,
L. Kaiser, K. Kurach, and J. Martens. 2016. Adding
gradient noise improves learning for very deep net-
works. In ICLR workshop.

M. Pachitariu and M. Sahani. 2013. Regularization and
nonlinearities for neural language models: when are
they needed? arXiv:1301.5650 .

B. Pang and L. Lee. 2004. A sentimental education:
Sentiment analysis using subjectivity summarization
based on minimum cuts. ACL .

B. Pang and L. Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. ACL .

K. Papineni, S. Roukos, T. Ward, and W. Zhu. 2002.
Bleu: a method for automatic evaluation of machine
translation. In ACL.

R. Pascanu, T. Mikolov, and Y. Bengio. 2013. On the
difficulty of training recurrent neural networks. In
ICML.

V. Pham, T. Bluche, C. Kermorvant, and J. Louradour.
2014. Dropout improves recurrent neural networks
for handwriting recognition. In ICFHR.

H. Robbins and S. Monro. 1951. A stochastic ap-
proximation method. In The annals of mathematical
statistics.

S. Semeniuta, A. Severyn, and E. Barth. 2016.
Recurrent dropout without memory loss.
arXiv:1603.05118 .

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever,
and R. Salakhutdinov. 2014. Dropout: A simple
way to prevent neural networks from overfitting.
JMLR .

I. Sutskever, J. Martens, and G. E. Hinton. 2011. Gen-
erating text with recurrent neural networks. In
ICML.

Y. W. Teh, A. H. Thiéry, and S. J. Vollmer. 2016.
Consistency and fluctuations for stochastic gradient
Langevin dynamics. JMLR .

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv:1605.02688 .

T. Tieleman and G. Hinton. 2012. Lecture 6.5-
rmsprop: Divide the gradient by a running average
of its recent magnitude. Coursera: Neural Networks
for Machine Learning .

L. Van der Maaten and G. E. Hinton. 2008. Visualizing
data using t-SNE. JMLR .

R. Vedantam, C. L. Zitnick, and D. Parikh. 2015.
Cider: Consensus-based image description evalua-
tion. In CVPR.

O. Vinyals, A. Toshev, S. Bengio, and D. Erhan. 2015.
Show and tell: A neural image caption generator. In
CVPR.

L. Wan, M. Zeiler, S. Zhang, Y. LeCun, and R. Fer-
gus. 2013. Regularization of neural networks using
DropConnect. In ICML.

S. Wang and C. Manning. 2013. Fast Dropout training.
In ICML.

M. Welling and Y. W. Teh. 2011. Bayesian learning via
stochastic gradient Langevin dynamics. In ICML.

P. Werbos. 1990. Backpropagation through time: what
it does and how to do it. In Proceedings of the IEEE.

J. Wiebe, T. Wilson, and C. Cardie. 2005. Annotating
expressions of opinions and emotions in language.
Language resources and evaluation .

P. Young, A. Lai, M. Hodosh, and J. Hockenmaier.
2014. From image descriptions to visual denota-
tions: New similarity metrics for semantic inference
over event descriptions. TACL .

W. Zaremba, I. Sutskever, and O. Vinyals. 2014.
Recurrent neural network regularization.
arXiv:1409.2329 .

331

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 332–344
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1031

Learning attention for historical text normalization
by learning to pronounce

Marcel Bollmann
Department of Linguistics
Ruhr-Universität Bochum

Germany
bollmann@linguistics.rub.de

Joachim Bingel
Dept. of Computer Science
University of Copenhagen

Denmark
bingel@di.ku.dk

Anders Søgaard
Dept. of Computer Science
University of Copenhagen

Denmark
soegaard@di.ku.dk

Abstract

Automated processing of historical texts
often relies on pre-normalization to mod-
ern word forms. Training encoder-decoder
architectures to solve such problems typi-
cally requires a lot of training data, which
is not available for the named task. We ad-
dress this problem by using several novel
encoder-decoder architectures, including a
multi-task learning (MTL) architecture us-
ing a grapheme-to-phoneme dictionary as
auxiliary data, pushing the state-of-the-
art by an absolute 2% increase in perfor-
mance. We analyze the induced models
across 44 different texts from Early New
High German. Interestingly, we observe
that, as previously conjectured, multi-task
learning can learn to focus attention during
decoding, in ways remarkably similar to
recently proposed attention mechanisms.
This, we believe, is an important step to-
ward understanding how MTL works.

1 Introduction

There is a growing interest in automated process-
ing of historical documents, as evidenced by the
growing field of digital humanities and the in-
creasing number of digitally available collections
of historical documents. A common approach to
deal with the high amount of variance often found
in this type of data is to perform spelling nor-
malization (Piotrowski, 2012), which is the map-
ping of historical spelling variants to standard-
ized/modernized forms (e.g. vnd→ und ‘and’).

Training data for supervised learning of histor-
ical text normalization is typically scarce, mak-
ing it a challenging task for neural architec-
tures, which typically require large amounts of la-
beled data. Nevertheless, we explore framing the

spelling normalization task as a character-based
sequence-to-sequence transduction problem, and
use encoder–decoder recurrent neural networks
(RNNs) to induce our transduction models. This is
similar to models that have been proposed for neu-
ral machine translation (e.g., Cho et al. (2014)), so
essentially, our approach could also be considered
a specific case of character-based neural machine
translation.

By basing our model on individual characters as
input, we keep the vocabulary size small, which
in turn reduces the model’s complexity and the
amount of data required to train it effectively. Us-
ing an encoder–decoder architecture removes the
need for an explicit character alignment between
historical and modern wordforms. Furthermore,
we explore using an auxiliary task for which data
is more readily available, namely grapheme-to-
phoneme mapping (word pronunciation), to reg-
ularize the induction of the normalization models.

We propose several architectures, including
multi-task learning architectures taking advantage
of the auxiliary data, and evaluate them across
44 small datasets from Early New High German.

Contributions Our contributions are as follows:

• We are, to the best of our knowledge, the first
to propose and evaluate encoder-decoder ar-
chitectures for historical text normalization.

• We evaluate several such architectures across
44 datasets of Early New High German.

• We show that such architectures benefit from
bidirectional encoding, beam search, and at-
tention.

• We also show that MTL with pronuncia-
tion as an auxiliary task improves the perfor-
mance of architectures without attention.

332

https://doi.org/10.18653/v1/P17-1031

• We analyze the above architectures and show
that the MTL architecture learns attention
from the auxiliary task, making the attention
mechanism largely redundant.

• We make our implementation publicly
available at https://bitbucket.org/
mbollmann/acl2017.

In sum, we both push the state-of-the-art in his-
torical text normalization and present an analysis
that, we believe, brings us a step further in under-
standing the benefits of multi-task learning.

2 Datasets

Normalization For the normalization task, we
use a total of 44 texts from the Anselm cor-
pus (Dipper and Schultz-Balluff, 2013) of Early
New High German.1 The corpus is a collection of
manuscripts and prints of the same core text, a reli-
gious treatise. Although the texts are semi-parallel
and share some vocabulary, they were written in
different time periods (between the 14th and 16th
century) as well as different dialectal regions, and
show quite diverse spelling characteristics. For ex-
ample, the modern German word Frau ‘woman’
can be spelled as fraw/vraw (Me), frawe (N2),
frauwe (St), fraüwe (B2), frow (Stu), vrowe (Ka),
vorwe (Sa), or vrouwe (B), among others.2

All texts in the Anselm corpus are manually an-
notated with gold-standard normalizations follow-
ing guidelines described in Krasselt et al. (2015).
For our experiments, we excluded texts from the
corpus that are shorter than 4,000 tokens, as well
as a few for which annotations were not yet avail-
able at the time of writing (mostly Low German
and Dutch versions). Nonetheless, the remaining
44 texts are still quite short for machine-learning
standards, ranging from about 4,200 to 13,200 to-
kens, with an average length of 7,350 tokens.

For all texts, we removed tokens that consisted
solely of punctuation characters. We also lower-
case all characters, since it helps keep the size of
the vocabulary low, and uppercasing of words is
usually not very consistent in historical texts. Tok-
enization was not an issue for pre-processing these
texts, since modern token boundaries have already
been marked by the transcribers.

1https://www.linguistics.rub.de/
anselm/

2We refer to individual texts using the same internal IDs
that are found in the Anselm corpus (cf. the website).

Grapheme-to-phoneme mappings We use
learning to pronounce as our auxiliary task. This
task consists of learning mappings from sequences
of graphemes to the corresponding sequences of
phonemes. We use the German part of the CELEX
lexical database (Baayen et al., 1995), particu-
larly the database of phonetic transcriptions of
German wordforms. The database contains a
total of 365,530 wordforms with transcriptions
in DISC format, which assigns one character to
each distinct phonological segment (including
affricates and diphthongs). For example, the word
Jungfrau ‘virgin’ is represented as ’jUN-frB.

3 Model

3.1 Base model
We propose several architectures that are ex-
tensions of a base neural network architecture,
closely following the sequence-to-sequence model
proposed by Sutskever et al. (2014). It consists of
the following:

• an embedding layer that maps one-hot input
vectors to dense vectors;

• an encoder RNN that transforms the input se-
quence to an intermediate vector of fixed di-
mensionality;

• a decoder RNN whose hidden state is initial-
ized with the intermediate vector, and which
is fed the output prediction of one timestep as
the input for the next one; and

• a final dense layer with a softmax activation
which takes the decoder’s output and gener-
ates a probability distribution over the output
classes at each timestep.

For the encoder/decoder RNNs, we use long
short-term memory units (LSTM) (Hochreiter and
Schmidhuber, 1997). LSTMs are designed to al-
low recurrent networks to better learn long-term
dependencies, and have proven advantageous to
standard RNNs on many tasks. We found no sig-
nificant advantage from stacking multiple LSTM
layers for our task, so we use the simplest compet-
itive model with only a single LSTM unit for both
encoder and decoder.

By using this encoder–decoder model, we avoid
the need to generate explicit alignments between
the input and output sequences, which would bring
up the question of how to deal with input/output

333

v r o w e (START) f r a u

f r a u (END)

Figure 1: Flow diagram of the base model; left side is the encoder, right side the decoder, the latter of
which has an additional prediction layer on top. Multi-task learning variants use two separate prediction
layers for main/auxiliary tasks, while sharing the rest of the model. Embedding layers for the inputs are
not explicitly shown.

pairs of different lengths. Another important prop-
erty is that the model does not start to generate
any output until it has seen the full input sequence,
which in theory allows it to learn from any part of
the input, without being restricted to fixed context
windows. An example illustration of the unrolled
network is shown in Fig. 1.

3.2 Training

During training, the encoder inputs are the histor-
ical wordforms, while the decoder inputs corre-
spond to the correct modern target wordforms. We
then train each model by minimizing the cross-
entropy loss across all output characters; i.e., if
y = (y1, ..., yn) is the correct output word (as a
list of one-hot vectors of output characters) and
ŷ = (ŷ1, ..., ŷn) is the model’s output, we mini-
mize the mean loss−∑n

i=1 yi log ŷi over all train-
ing samples. For the optimization, we use the
Adam algorithm (Kingma and Ba, 2015) with a
learning rate of 0.003.

To reduce computational complexity, we also
set a maximum word length of 14, and filter all
training samples where either the input or output
word is longer than 14 characters. This only af-
fects 172 samples across the whole dataset, and
is only done during training. In other words, we
evaluate our models across all the test examples.

3.3 Decoding

For prediction, our base model generates output
character sequences in a greedy fashion, selecting
the character with the highest probability at each
timestep. This works fairly well, but the greedy
approach can yield suboptimal global picks, in
which each individual character is sensibly de-
rived from the input, but the overall word is non-

sensical. We therefore also experiment with beam
search decoding, setting the beam size to 5.

Finally, we also experiment with using a lexi-
cal filter during the decoding step. Here, before
picking the next 5 most likely characters during
beam search, we remove all characters that would
lead to a string not covered by the lexicon. This
is again intended to reduce the occurrence of non-
sensical outputs. For the lexicon, we use all word
forms from CELEX (cf. Sec. 2) plus the target
word forms from the training set.3

3.4 Attention

In our base architecture, we assume that we can
decode from a single vector encoding of the input
sequence. This is a strong assumption, especially
with long input sequences. Attention mechanisms
give us more flexibility. The idea is that instead
of encoding the entire input sequence into a fixed-
length vector, we allow the decoder to “attend” to
different parts of the input character sequence at
each time step of the output generation. Impor-
tantly, we let the model learn what to attend to
based on the input sequence and what it has pro-
duced so far.

Our implementation is identical to the decoder
with soft attention described by Xu et al. (2015).
If a = (a1, ..., an) is the encoder’s output and ht
is the decoder’s hidden state at timestep t, we first
calculate a context vector ẑt as a weighted combi-
nation of the output vectors ai:

ẑt =

n∑

i=1

αiai (1)

3We observe that due to this filtering, we cannot reach
2.25% of the targets in our test set, most of which are Latin
word forms.

334

The weights αi are derived by feeding the en-
coder’s output and the decoder’s hidden state from
the previous timestep into a multilayer perceptron,
called the attention model (fatt):

α = softmax(fatt(a, ht−1)) (2)

We then modify the decoder by conditioning
its internal states not only on the previous hid-
den state ht−1 and the previously predicted output
character yt−1, but also on the context vector ẑt:

it = σ(Wi[ht−1, yt−1, ẑt] + bi)

ft = σ(Wf [ht−1, yt−1, ẑt] + bf)

ot = σ(Wo[ht−1, yt−1, ẑt] + bo)

gt = tanh(Wg[ht−1, yt−1, ẑt] + bg)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

(3)

In Eq. 3, we follow the traditional LSTM de-
scription consisting of input gate it, forget gate ft,
output gate ot, cell state ct and hidden state ht,
where W and b are trainable parameters.

For all experiments including an attentional de-
coder, we use a bi-directional encoder, comprised
of one LSTM layer that reads the input sequence
normally and another LSTM layer that reads it
backwards, and attend over the concatenated out-
puts of these two layers.

While a precise alignment of input and output
sequences is sometimes difficult, most of the time
the sequences align in a sequential order, which
can be exploited by an attentional component.

3.5 Multi-task learning
Finally, we introduce a variant of the base archi-
tecture, with or without beam search, that does
multi-task learning (Caruana, 1993). The multi-
task architecture only differs from the base archi-
tecture in having two classifier functions at the
outer layer, one for each of our two tasks. Our aux-
iliary task is to predict a sequence of phonemes as
the correct pronunciation of an input sequence of
graphemes. This choice is motivated by the rela-
tionship between phonology and orthography, in
particular the observation that spelling variation
often stems from phonological variation.

We train our multi-task learning architecture by
alternating between the two tasks, sampling one
instance of the auxiliary task for each training
sample of the main task. We use the encoder-
decoder to generate a corresponding output se-

quence, whether a modern word form or a pronun-
ciation. Doing so, we suffer a loss with respect to
the true output sequence and update the model pa-
rameters. The update for a sample from a specific
task affects the parameters of corresponding clas-
sifier function, as well as all the parameters of the
shared hidden layers.

3.6 Hyperparameters

We used a single manuscript (B) for manually
evaluating and setting the hyperparameters. This
manuscript is left out of the averages reported be-
low. We believe that using a single manuscript for
development, and using the same hyperparameters
across all manuscripts, is more realistic, as we of-
ten do not have enough data in historical text nor-
malization to reliably tune hyperparameters.

For the final evaluation, we set the size of the
embedding and the recurrent LSTM layers to 128,
applied a dropout of 0.3 to the input of each recur-
rent layer, and trained the model on mini-batches
with 50 samples each for a total of 50 epochs (in
the multi-task learning setup, mini-batches contain
50 samples of each task, and epochs are counted
by the size of the training set for the main task
only). All these parameters were set on the B
manuscript alone.

3.7 Implementation

We implemented all of the models in Keras (Chol-
let, 2015). Any parameters not explicitly de-
scribed here were left at their default values in
Keras v1.0.8.

4 Evaluation

We split up each text into three parts, using
1,000 tokens each for a test set and a development
set (that is not currently used), and the remainder
of the text (between 2,000 and 11,000 tokens) for
training. We then train and evaluate on each of the
43 texts (excluding the B text that was used for
hyper-parameter tuning) individually.

Baselines We compare our architectures to sev-
eral competitive baselines. Our first baseline is
an averaged perceptron model trained to predict
output character n-grams for each input character,
after using Levenshtein alignment with generated
segment distances (Wieling et al., 2009, Sec. 3.3)
to align input and output characters. Our sec-
ond baseline uses the same alignment, but trains a

335

Avg. Accuracy

Norma 77.89%
Averaged perceptron 75.72%
Bi-LSTM tagger 79.91%
MTL bi-LSTM tagger 79.56%

Base model

GREEDY 78.91%
BEAM 79.27%
BEAM+FILTER 80.46%
BEAM+FILTER+ATTENTION 82.72%

MTL model

GREEDY 80.64%
BEAM 81.13%
BEAM+FILTER 82.76%
BEAM+FILTER+ATTENTION 82.02%

Table 1: Average word accuracy across 43 texts from the Anselm dataset, evaluated on the first 1,000 to-
kens of each text. Evaluation on the base encoder-decoder model (Sec. 3.1) with greedy search, beam
search (k = 5) and/or lexical filtering (Sec. 3.3), with attentional decoder (Sec. 3.4), and the multi-task
learning (MTL) model using grapheme-to-phoneme mappings (Sec. 3.5).

deep bi-LSTM sequential tagger, following Boll-
mann and Søgaard (2016). We evaluate this tag-
ger using both standard and multi-task learning.
Finally, we compare our model to the rule-based
and Levenshtein-based algorithms provided by the
Norma tool (Bollmann, 2012).4

4.1 Word accuracy

We use word-level accuracy as our evaluation
metric. While we also measure character-level
metrics, minor differences on character level can
cause large differences in downstream applica-
tions, so we believe that perfectly matching the
output sequences is more useful. Average scores
across all 43 texts are presented in Table 1 (see
Appendix A for individual scores).

We first see that almost all our encoder-decoder
architectures perform significantly better than the
four state-of-the-art baselines. All our architec-
tures perform better than Norma and the averaged
perceptron, and all the MTL architectures outper-
form Bollmann and Søgaard (2016).

We also see that beam search, filtering, and at-
tention lead to cumulative gains in the context of
the single-task architecture – with the best archi-
tecture outperforming the state-of-the-art by al-
most 3% in absolute terms.

For our multi-task architecture, we also observe
gains when we add beam search and filtering, but

4https://github.com/comphist/norma

importantly, adding attention does not help. In
fact, attention hurts the performance of our multi-
task architecture quite significantly. Also note
that the multi-task architecture without attention
performs on-par with the single-task architecture
with attention.

We hypothesize that the reason for this pattern,
which is not only observed in the average scores in
Table 1, but also quite consistent across the indi-
vidual results in Appendix A, is that our multi-task
learning already learns how to focus attention.

This is the hypothesis that we will try to vali-
date in Sec. 5: That multi-task learning can induce
strategies for focusing attention comparable to at-
tention strategies for recurrent neural networks.

Sample predictions A small selection of pre-
dictions from our models is shown in Table 2.
They serve to illustrate the effects of the various
settings; e.g., the base model with greedy search
tends to produce more nonsense words (ters, üns-
get) than the others. Using a lexical filter helps
the most in this regard: the base model with fil-
tering correctly normalizes ergieng to erging ‘(he)
fared’, while decoding without a filter produces
the non-word erbiggen. Even for herczenlichen
(modern herzlichen ‘heartfelt’), where no model
finds the correct target form, only the model with
filtering produces a somewhat reasonable alterna-
tive (herzgeliebtes ‘heartily loved’).

In some cases (such as gewarnet ‘warned’),

336

Input Target Base model MTL model

GREEDY BEAM B+F B+F+A B+F

ergieng erging erbiggen erbiggen erging erging erging
herczenlichen herzlichen herrgelichen herzgelichen herzgeliebtes herzel herzel
tewr teuer ters terter terme teurer der
iüngst jüngst ünsget pingst fingst fingst jüngst
gewarnet gewarnt prandet prandert pranget gewarnt gewarnt
dick oft oft oft oft dicke dicke

Table 2: Selected predictions from some of our models on the M4 text; B = BEAM, F = FILTER, A = AT-
TENTION.

only the models with attention or multi-task learn-
ing produce the correct normalization, but even
when they are wrong, they often agree on the pre-
diction (e.g. dicke, herzel). We will investigate this
property further in Sec. 5.

4.2 Learned vector representations

To gain further insights into our model, we created
t-SNE projections (Maaten and Hinton, 2008) of
vector representations learned on the M4 text.

Fig. 2 shows the learned character embed-
dings. In the representations from the base model
(Fig. 2a), characters that are often normalized
to the same target character are indeed grouped
closely together: e.g., historical <v> and <u>
(and, to a smaller extent, <f>) are often used in-
terchangeably in the M4 text. Note the wide sepa-
ration of <n> and <m>, which is a feature of M4
that does not hold true for all of the texts, as these
do not always display a clear distinction between
nasals. On the other hand, the MTL model shows a
better generalization of the training data (Fig. 2b):
here, <u> is grouped closer to other vowel charac-
ters and far away from <v>/<f>. Also, <n> and
<m> are now in close proximity.

We can also visualize the internal word rep-
resentations that are produced by the encoder
(Fig. 3). Here, we chose words that demonstrate
the interchangeable use of <u> and <v>. Histor-
ical vnd, vns, vmb become modern und, uns, um,
changing the <v> to <u>. However, the represen-
tation of vmb learned by the base model is closer
to forms like von, vor, uor, all starting with <v> in
the target normalization. In the MTL model, how-
ever, these examples are indeed clustered together.

5 Analysis: Multi-task learning helps
focus attention

Table 1 shows that models which employ either an
attention mechanism or multi-task learning obtain
similar improvements in word accuracy. However,
we observe a decline in word accuracy for models
that combine multi-task learning with attention.

A possible interpretation of this counter-
intuitive pattern might be that attention and MTL,
to some degree, learn similar functions of the in-
put data, a conjecture by Caruana (1998). We put
this hypothesis to the test by closely investigating
properties of the individual models below.

5.1 Model parameters

First, we are interested in the weight parameters of
the final layer that transforms the decoder output
to class probabilities. We consider these parame-
ters for our standard encoder-decoder model and
compare them to the weights that are learned by
the attention and multi-task models, respectively.5

Note that hidden layer parameters are not neces-
sarily comparable across models, but with a fixed
seed, differences in parameters over a reference
model may be (and are, in our case). With a fixed
seed, and iterating over data points in the same or-
der, it is conceivable the two non-baselines end up
in roughly the same alternative local optimum (or
at least take comparable routes).

We observe that the weight differences between
the standard and the attention model correlate with
the differences between the standard and multi-
task model by a Pearson’s r of 0.346, averaged
across datasets, with a standard deviation of 0.315;
on individual datasets, correlation coefficient is as

5For the multi-task models, this analysis disregards those
dimensions that do not correspond to classes in the main task.

337

(a) Base model (b) Multi-task learning model

Figure 2: t-SNE projections (with perplexity 7) of character embeddings from models trained on M4

(a) Base model (b) Multi-task learning model

Figure 3: t-SNE projections (with perplexity 5) of the intermediate vectors produced by the encoder
(“historical word embeddings”), from models trained on M4

Figure 4: Heat map of parameter differences in the final dense layer between (a) the plain and the
attention model as well as (b) the plain and the multi-task model, when trained on the N4 manuscript.
The changes correlate by ρ = 0.959.

338

Figure 5: First-derivative saliency w.r.t. the input sequence, as calculated from the base model (left), the
attentional model (center), and the MTL model (right). The scores for the attentional and the multi-task
model correlate by ρ = 0.615, while the correlation of either one with the base model is |ρ| < 0.12.

high as 96. Figure 4 illustrates these highly paral-
lel weight changes for the different models when
trained on the N4 dataset.

5.2 Final output

Next, we compare the effect that employing either
an attention mechanism or multi-task learning has
on the actual output of our system. We find that out
of the 210.9 word errors that the base model pro-
duces on average across all test sets (comprising
1,000 tokens each), attention resolves 47.7, while
multi-task learning resolves an average of 45.4 er-
rors. Crucially, the overlap of errors that are re-
solved by both the attention and the MTL model
amounts to 27.7 on average.

Attention and multi-task also introduce new er-
rors compared to the base model (26.6 and 29.5
per test set, respectively), and again we can ob-
serve a relatively high agreement of the models
(11.8 word errors are introduced by both models).

Finally, the attention and multi-task models dis-
play a word-level agreement of κ=0.834 (Co-
hen’s kappa), while either of these models is less
strongly correlated with the base model (κ=0.817
for attention and κ=0.814 for multi-task learning).

5.3 Saliency analysis

Our last analysis regards the saliency of the input
timesteps with respect to the predictions of our
models. We follow Li et al. (2016) in calculat-
ing first-derivative saliency for given input/output
pairs and compare the scores from the differ-
ent models. The higher the saliency of an input
timestep, the more important it is in determining
the model’s prediction at a given output timestep.
Therefore, if two models produce similar saliency

matrices for a given input/output pair, they have
learned to focus on similar parts of the input dur-
ing the prediction. Our hypothesis is that the at-
tentional and the multi-task learning model should
be more similar in terms of saliency scores than
either of them compared to the base model.

Figure 5 shows a plot of the saliency matrices
generated from the word pair czeychen – zeichen
‘sign’. Here, the scores for the attentional and
the MTL model indeed correlate by ρ = 0.615,
while those for the base model do not correlate
with either of them. A systematic analysis across
19,000 word pairs (where all models agree on
the output) shows that this effect only holds for
longer input sequences (≥ 7 characters), with a
mean ρ = 0.303 (±0.177) for attentional vs. MTL
model, while the base model correlates with either
of them by ρ < 0.21.

6 Related Work

Many traditional approaches to spelling normal-
ization of historical texts use edit distances or
some form of character-level rewrite rules, hand-
crafted (Baron and Rayson, 2008) or learned auto-
matically (Bollmann, 2013; Porta et al., 2013).

A more recent approach is based on character-
based statistical machine translation applied to
historical text (Pettersson et al., 2013; Sánchez-
Martínez et al., 2013; Scherrer and Erjavec, 2013;
Ljubešić et al., 2016) or dialectal data (Scherrer
and Ljubešić, 2016). This is conceptually very
similar to our approach, except that we substi-
tute the classical SMT algorithms for neural net-
works. Indeed, our models can be seen as a form
of character-based neural MT (Cho et al., 2014).

Neural networks have rarely been applied to

339

historical spelling normalization so far. Azawi
et al. (2013) normalize old Bible text using bi-
directional LSTMs with a layer that performs
alignment between input and output wordforms.
Bollmann and Søgaard (2016) also use bi-LSTMs
to frame spelling normalization as a character-
based sequence labelling task, performing charac-
ter alignment as a preprocessing step.

Multi-task learning was shown to be effective
for a variety of NLP tasks, such as POS tagging,
chunking, named entity recognition (Collobert
et al., 2011) or sentence compression (Klerke
et al., 2016). It has also been used in encoder-
decoder architectures, typically for machine trans-
lation (Dong et al., 2015; Luong et al., 2016),
though so far not with attentional decoders.

7 Conclusion and Future Work

We presented an approach to historical spelling
normalization using neural networks with an
encoder-decoder architecture, and showed that it
consistently outperforms several existing base-
lines. Encouragingly, our work proves to be fully
competitive with the sequence-labeling approach
by Bollmann and Søgaard (2016), without requir-
ing a prior character alignment.

Specifically, we demonstrated the aptitude of
multi-task learning to mitigate the shortage of
training data for the named task. We included a
multifaceted analysis of the effects that MTL in-
troduces to our models and the resemblance that
it bears to attention mechanisms. We believe
that this analysis is a valuable contribution to the
understanding of MTL approaches also beyond
spelling normalization, and we are confident that
our observations will stimulate further research
into the relationship between MTL and attention.

Finally, many improvements to the presented
approach are conceivable, most notably introduc-
ing some form of token context to the model. Cur-
rently, we only consider word forms in isolation,
which is problematic for ambiguous cases (such
as jn, which can normalize to in ‘in’ or ihn ‘him’)
and conceivably makes the task harder for oth-
ers. Reranking the predictions with a language
model could be one possible way to improve on
this. Ljubešić et al. (2016), for example, exper-
iment with segment-based normalization, using
a character-based SMT model with character in-
put derived from segments (essentially, token n-
grams) instead of single tokens, which also intro-

duces context. Such an approach could also deal
with the issue of tokenization differences between
the historical and the modern text, which is an-
other challenge often found in datasets of histori-
cal text.

Acknowledgments

Marcel Bollmann was supported by Deutsche
Forschungsgemeinschaft (DFG), Grant DI 1558/4.
This research is further supported by ERC Start-
ing Grant LOWLANDS No. 313695, as well as by
Trygfonden.

References
Mayce Al Azawi, Muhammad Zeshan Afzal, and

Thomas M. Breuel. 2013. Normalizing histor-
ical orthography for OCR historical documents
using LSTM. In Proceedings of the 2nd In-
ternational Workshop on Historical Document
Imaging and Processing. ACM, pages 80–85.
https://doi.org/10.1145/2501115.2501131.

R. Harald Baayen, Richard Piepenbrock, and Léon Gu-
likers. 1995. The CELEX lexical database (Re-
lease 2) (CD-ROM). Linguistic Data Consor-
tium, University of Pennsylvania, Philadelphia, PA.
https://catalog.ldc.upenn.edu/ldc96l14.

Alistair Baron and Paul Rayson. 2008. VARD
2: A tool for dealing with spelling variation
in historical corpora. In Proceedings of the
Postgraduate Conference in Corpus Linguistics.
http://eprints.lancs.ac.uk/41666/.

Marcel Bollmann. 2012. (Semi-)automatic normal-
ization of historical texts using distance mea-
sures and the Norma tool. In Proceedings of
the Second Workshop on Annotation of Corpora
for Research in the Humanities (ACRH-2). Lis-
bon, Portugal. https://www.linguistics.ruhr-uni-
bochum.de/comphist/pub/acrh12.pdf.

Marcel Bollmann. 2013. Automatic nor-
malization for linguistic annotation of his-
torical language data. Bochumer Lin-
guistische Arbeitsberichte 13. http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-
310764.

Marcel Bollmann and Anders Søgaard. 2016. Im-
proving historical spelling normalization with bi-
directional lstms and multi-task learning. In Pro-
ceedings of the 26th International Conference on
Computational Linguistics (COLING 2016). Osaka,
Japan. http://aclweb.org/anthology/C16-1013.

Rich Caruana. 1993. Multitask learning: A
knowledge-based source of inductive bias. In Pro-
ceedings of the 10th International Conference on
Machine Learning (ICML). pages 41–48.

340

Rich Caruana. 1998. Multitask learning. In
Learning to learn, Springer, pages 95–133.
http://dl.acm.org/citation.cfm?id=296635.296645.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the proper-
ties of neural machine translation: Encoder–decoder
approaches. In Proceedings of the Eighth Work-
shop on Syntax, Semantics and Structure in Statis-
tical Translation (SSST-8). Doha, Qatar, pages 103–
111. http://dx.doi.org/10.3115/v1/W14-4012.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. 2011. Natural language pro-
cessing (almost) from scratch. The Journal
of Machine Learning Research 12:2493–2537.
http://dl.acm.org/citation.cfm?id=1953048.2078186.

Stefanie Dipper and Simone Schultz-Balluff.
2013. The Anselm corpus: Methods and
perspectives of a parallel aligned corpus.
In Proceedings of the NODALIDA Work-
shop on Computational Historical Linguistics.
http://www.ep.liu.se/ecp/087/003/ecp1387003.pdf.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for
multiple language translation. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1723–1732.
https://doi.org/10.3115/v1/P15-1166.

Sepp Hochreiter and Jürgen Schmidhu-
ber. 1997. Long short-term memory.
Neural Computation 9(8):1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735.

Diederik P. Kingma and Jimmy Lei Ba. 2015.
Adam: A method for stochastic optimiza-
tion. The International Conference on Learn-
ing Representations (ICLR) ArXiv:1412.6980.
http://arxiv.org/abs/1412.6980.

Sigrid Klerke, Yoav Goldberg, and Anders Søgaard.
2016. Improving sentence compression by learn-
ing to predict gaze. In Proceedings of NAACL-
HLT 2016. San Diego, CA, pages 1528–1533.
http://dx.doi.org/10.18653/v1/N16-1179.

Julia Krasselt, Marcel Bollmann, Stefanie Dipper,
and Florian Petran. 2015. Guidelines for nor-
malizing historical German texts. Bochumer
Linguistische Arbeitsberichte 15. http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-
419680.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Ju-
rafsky. 2016. Visualizing and understanding neu-
ral models in NLP. In Proceedings of the

2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 681–691.
https://doi.org/10.18653/v1/N16-1082.

Nikola Ljubešić, Katja Zupan, Darja Fišer, and Tomaž
Erjavec. 2016. Normalising Slovene data: histor-
ical texts vs. user-generated content. In Proceed-
ings of the 13th Conference on Natural Language
Processing (KONVENS). Bochum, Germany, pages
146–155.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. 4th International Con-
ference on Learning Representations (ICLR 2016)
https://arxiv.org/abs/1511.06114v4.

Laurens van der Maaten and Geoffrey Hinton.
2008. Visualizing data using t-SNE. Jour-
nal of Machine Learning Research 9:2579–2605.
http://www.jmlr.org/papers/v9/vandermaaten08a.html.

Eva Pettersson, Beáta Megyesi, and Jörg Tiede-
mann. 2013. An SMT approach to auto-
matic annotation of historical text. In Pro-
ceedings of the NODALIDA Workshop on Com-
putational Historical Linguistics. Oslo, Norway.
http://www.ep.liu.se/ecp/087/005/ecp1387005.pdf.

Michael Piotrowski. 2012. Natural Language
Processing for Historical Texts. Number 17 in
Synthesis Lectures on Human Language Tech-
nologies. Morgan & Claypool, San Rafael, CA.
http://dx.doi.org/10.2200/s00436ed1v01y201207hlt017.

Jordi Porta, José-Luis Sancho, and Javier Gómez.
2013. Edit transducers for spelling vari-
ation in Old Spanish. In Proceedings of
the NODALIDA Workshop on Computa-
tional Historical Linguistics. Oslo, Norway.
http://www.ep.liu.se/ecp/087/006/ecp1387006.pdf.

Yves Scherrer and Tomaž Erjavec. 2013. Moderniz-
ing historical Slovene words with character-based
SMT. In Proceedings of the 4th Biennial Work-
shop on Balto-Slavic Natural Language Processing.
Sofia, Bulgaria. https://hal.inria.fr/hal-00838575.

Yves Scherrer and Nikola Ljubešić. 2016. Auto-
matic normalisation of the Swiss German Archi-
Mob corpus using character-level machine trans-
lation. In Proceedings of the 13th Confer-
ence on Natural Language Processing (KONVENS).
Bochum, Germany, pages 248–255. http://archive-
ouverte.unige.ch/unige:90846.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems (NIPS 2014). 27, pages 3104–3112.

Felipe Sánchez-Martínez, Isabel Martínez-Sempere,
Xavier Ivars-Ribes, and Rafael C. Carrasco. 2013.
An open diachronic corpus of historical Spanish:

341

annotation criteria and automatic modernisation of
spelling. http://arxiv.org/abs/1306.3692v1.

Martijn Wieling, Jelena Prokić, and John Nerbonne.
2009. Evaluating the pairwise string align-
ment of pronunciations. In Proceedings of the
EACL 2009 Workshop on Language Technology
and Resources for Cultural Heritage, Social Sci-
ences, Humanities, and Education (LaTeCH –
SHELT&R 2009). Athens, Greece, pages 26–34.
http://dl.acm.org/citation.cfm?id=1642049.1642053.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. 2015. Show, at-
tend and tell: Neural image caption genera-
tion with visual attention. In JMLR Workshop
and Conference Proceedings: Proceedings of the
32nd International Conference on Machine Learn-
ing. Lille, France, volume 37, pages 2048–2057.
http://proceedings.mlr.press/v37/xuc15.pdf.

A Supplementary Material

For interested parties, we provide our full evalua-
tion results for each single text in our dataset. Ta-
ble 3 shows token counts, a rough classification of
each text’s dialectal region, and the results for the
baseline methods. Table 4 presents the full results
for our encoder-decoder models.

342

ID Region Tokens Norma Avg. Perc. Bi-LSTM Tagger

BASE MTL

B East Central 4,718 79.60% 76.30% 79.20% 78.82%
D3 East Central 5,704 79.70% 77.20% 80.10% 81.62%
H East Central 8,427 83.00% 78.60% 85.00% 84.32%

B2 West Central 9,145 76.20% 74.60% 82.00% 80.12%
KÄ1492 West Central 7,332 78.40% 74.80% 81.60% 80.82%
KJ1499 West Central 7,330 77.00% 73.50% 84.50% 80.22%
N1500 West Central 7,272 77.60% 72.70% 79.00% 78.52%
N1509 West Central 7,418 78.40% 74.30% 80.80% 80.02%
N1514 West Central 7,412 78.50% 72.20% 79.00% 79.62%
St West Central 7,407 73.30% 70.30% 75.50% 73.03%

D4 Upper/Central 5,806 76.10% 72.40% 76.50% 76.62%
N4 Upper 8,593 79.30% 80.00% 81.80% 82.52%
s1496/97 Upper 5,840 81.20% 77.70% 83.00% 82.62%

B3 East Upper 6,222 82.30% 79.50% 81.50% 83.02%
Hk East Upper 8,690 79.10% 78.20% 80.90% 79.52%
M East Upper 8,700 75.20% 72.80% 83.90% 82.72%
M2 East Upper 8,729 76.30% 75.10% 76.70% 79.32%
M3 East Upper 7,929 79.20% 77.30% 80.40% 81.52%
M5 East Upper 4,705 81.60% 76.40% 77.70% 76.92%
M6 East Upper 4,632 74.90% 73.70% 75.20% 75.72%
M9 East Upper 4,739 81.00% 79.00% 80.40% 79.32%
M10 East Upper 4,379 77.20% 76.00% 75.10% 75.92%
Me East Upper 4,560 80.20% 76.90% 80.30% 79.12%
Sb East Upper 7,218 79.60% 75.70% 80.00% 80.12%
T East Upper 8,678 76.00% 73.40% 75.80% 73.43%
W East Upper 8,217 77.60% 78.20% 81.40% 80.72%
We East Upper 6,661 82.70% 78.60% 81.50% 82.22%

Ba North Upper 5,934 79.10% 80.20% 80.70% 80.02%
Ba2 North Upper 5,953 80.70% 78.10% 82.50% 82.12%
M4 North Upper 8,574 76.70% 75.70% 79.40% 79.32%
M7 North Upper 4,638 78.60% 75.60% 78.20% 77.42%
M8 North Upper 8,275 79.30% 78.20% 81.10% 80.02%
n North Upper 9,191 79.80% 81.90% 84.40% 84.62%
N North Upper 13,285 74.00% 71.70% 79.00% 79.42%
N2 North Upper 7,058 82.80% 80.30% 84.30% 81.72%
N3 North Upper 4,192 78.10% 76.40% 77.60% 77.12%

Be West Upper 8,203 74.90% 75.30% 78.80% 77.52%
Ka West Upper 12,641 72.80% 75.40% 80.10% 81.62%
SG West Upper 7,838 79.70% 78.00% 81.70% 81.12%
Sa West Upper 8,668 71.50% 71.90% 76.10% 74.93%
Sa2 West Upper 8,834 77.60% 73.50% 79.50% 79.72%
St2 West Upper 8,686 72.80% 73.20% 78.20% 79.92%
Stu West Upper 8,011 78.00% 76.50% 79.40% 79.62%

Le Dutch 7,087 71.30% 65.00% 75.60% 75.12%

Average (-B) 7,353 77.89% 76.30% 79.91% 79.56%

Table 3: Word accuracy on the Anselm dataset, evaluated on the first 1,000 tokens, using the baseline
models (cf. Sec. 4): the Norma tool (Bollmann, 2012), an averaged perceptron model, and a deep bi-
LSTM sequential tagger (Bollmann and Søgaard, 2016).

343

ID Base model Multi-task learning model

G B B+F B+F+A G B B+F B+F+A

B 76.90% 77.30% 78.40% 82.70% 77.70% 79.50% 81.70% 80.10%
D3 81.50% 81.60% 82.70% 83.20% 81.10% 81.70% 82.90% 83.20%
H 82.60% 82.90% 84.50% 87.40% 85.00% 85.80% 86.60% 85.20%

B2 81.00% 81.20% 82.40% 83.40% 80.00% 80.40% 82.70% 83.00%
KÄ1492 83.00% 83.40% 83.60% 84.00% 83.40% 83.70% 85.10% 84.90%
KJ1499 81.30% 81.30% 82.00% 84.60% 84.00% 84.00% 83.80% 82.50%
N1500 79.50% 80.30% 81.30% 84.00% 82.20% 82.50% 83.60% 82.30%
N1509 82.10% 82.40% 83.10% 85.00% 82.80% 83.50% 84.50% 82.80%
N1514 80.40% 80.50% 81.10% 83.40% 82.30% 82.80% 84.20% 83.10%
St 74.60% 74.60% 76.40% 79.70% 77.60% 77.80% 80.20% 77.70%

D4 77.90% 77.20% 79.00% 81.40% 77.00% 77.90% 81.50% 79.90%
N4 82.10% 82.30% 82.90% 84.80% 83.10% 83.00% 84.40% 84.00%
s1496/97 80.40% 80.10% 81.10% 82.10% 82.30% 82.50% 85.20% 83.90%

B3 80.80% 81.20% 82.20% 85.20% 82.70% 83.30% 84.80% 84.50%
Hk 77.30% 79.00% 79.40% 82.90% 80.30% 80.40% 81.20% 83.70%
M 81.40% 81.50% 82.60% 85.00% 82.90% 82.90% 82.70% 84.00%
M2 79.90% 80.50% 81.30% 81.80% 78.80% 77.80% 79.60% 83.20%
M3 81.00% 81.10% 82.00% 83.70% 82.80% 82.50% 83.50% 81.70%
M5 76.60% 77.10% 79.00% 82.00% 78.20% 78.20% 80.90% 81.50%
M6 72.70% 73.80% 75.20% 80.20% 77.30% 79.00% 80.30% 76.60%
M9 78.20% 78.50% 79.70% 83.20% 80.70% 79.70% 83.20% 79.60%
M10 72.00% 72.40% 73.20% 77.40% 75.70% 76.30% 77.90% 77.80%
Me 76.90% 76.50% 78.50% 81.30% 77.30% 79.20% 81.00% 77.40%
Sb 78.80% 79.10% 81.30% 81.40% 80.60% 81.00% 84.00% 82.90%
T 75.60% 75.10% 77.40% 80.30% 76.90% 78.00% 80.10% 79.50%
W 80.80% 81.20% 82.40% 81.90% 80.40% 81.60% 84.40% 84.40%
We 77.70% 80.00% 81.80% 84.40% 83.00% 82.70% 83.80% 83.30%

Ba 81.00% 80.60% 80.90% 84.00% 80.40% 81.00% 82.60% 81.60%
Ba2 79.70% 80.90% 82.00% 84.00% 82.60% 83.30% 85.40% 85.10%
M4 78.40% 78.60% 79.90% 81.00% 82.10% 82.20% 82.60% 80.50%
M7 74.70% 76.30% 78.60% 82.00% 79.60% 79.90% 82.30% 81.10%
M8 80.80% 81.30% 82.50% 85.70% 82.00% 82.50% 84.00% 85.40%
n 83.40% 83.40% 84.30% 86.00% 84.90% 86.30% 88.00% 85.50%
N 77.40% 77.40% 79.40% 79.80% 80.00% 80.30% 81.50% 80.30%
N2 82.00% 82.30% 83.80% 86.40% 82.40% 83.50% 86.60% 85.80%
N3 73.60% 74.00% 75.10% 81.20% 76.00% 76.30% 80.30% 78.70%

Be 75.50% 75.40% 77.60% 78.10% 78.10% 78.40% 79.70% 80.20%
Ka 81.20% 81.20% 81.80% 83.90% 81.20% 83.10% 83.40% 82.30%
SG 81.10% 81.90% 83.40% 85.50% 82.60% 84.30% 84.90% 83.00%
Sa 76.80% 77.20% 78.10% 80.60% 77.50% 78.00% 79.70% 79.90%
Sa2 78.90% 79.70% 80.70% 81.30% 79.70% 81.00% 82.30% 82.30%
St2 77.70% 78.10% 79.00% 81.60% 79.60% 79.70% 80.50% 80.60%
Stu 77.40% 77.30% 78.30% 82.50% 82.00% 81.80% 83.10% 82.90%

Le 77.40% 78.10% 78.20% 79.60% 78.30% 78.60% 79.80% 78.90%

Average (-B) 78.91% 79.27% 80.46% 82.72% 80.64% 81.13% 82.76% 82.02%

Table 4: Word accuracy on the Anselm dataset, evaluated on the first 1,000 tokens, using our base
encoder-decoder model (Sec. 3) and the multi-task model. G = greedy decoding, B = beam-search de-
coding (with beam size 5), F = lexical filter, A = attentional model. Best results (also taking into account
the baseline results from Table 3) shown in bold.

344

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 345–354
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1032

Deep Learning in Semantic Kernel Spaces

Danilo Croce Simone Filice Giuseppe Castellucci Roberto Basili
Department of Enterprise Engineering

University of Roma Tor Vergata,
Via del Politecnico 1, 00133, Rome, Italy

{croce,filice,basili}@info.uniroma2.it
castellucci@ing.uniroma2.it

Abstract

Kernel methods enable the direct usage of
structured representations of textual data
during language learning and inference
tasks. Expressive kernels, such as Tree
Kernels, achieve excellent performance in
NLP. On the other side, deep neural net-
works have been demonstrated effective in
automatically learning feature representa-
tions during training. However, their in-
put is tensor data, i.e., they cannot man-
age rich structured information. In this pa-
per, we show that expressive kernels and
deep neural networks can be combined in
a common framework in order to (i) ex-
plicitly model structured information and
(ii) learn non-linear decision functions.
We show that the input layer of a deep ar-
chitecture can be pre-trained through the
application of the Nyström low-rank ap-
proximation of kernel spaces. The result-
ing “kernelized” neural network achieves
state-of-the-art accuracy in three different
tasks.

1 Introduction

Learning for Natural Language Processing (NLP)
requires to more or less explicitly account for trees
or graphs to express syntactic and semantic in-
formation. A straightforward modeling of such
information has been obtained in statistical lan-
guage learning with Tree Kernels (TKs) (Collins
and Duffy, 2001), or by means of structured neu-
ral models (Hochreiter and Schmidhuber, 1997;
Socher et al., 2013). In particular, kernel-based
methods (Shawe-Taylor and Cristianini, 2004)
have been largely applied in language processing
for alleviating the need of complex activities of
manual feature engineering (e.g., (Moschitti et al.,

2008)). Although ad-hoc features are adopted by
many successful approaches to language learning
(e.g., (Gildea and Jurafsky, 2002)), kernels pro-
vide a natural way to capture textual generaliza-
tions directly operating over (possibly complex)
linguistic structures. Sequence (Cancedda et al.,
2003) or tree kernels (Collins and Duffy, 2001) are
of particular interest as the feature space they im-
plicitly generate reflects linguistic patterns. On the
other hand, Recursive Neural Networks (Socher
et al., 2013) have been shown to learn dense
feature representations of the nodes in a struc-
ture, thus exploiting similarities between nodes
and sub-trees. Also, Long-Short Term Mem-
ory (Hochreiter and Schmidhuber, 1997) networks
build intermediate representations of sequences,
resulting in similarity estimates over sequences
and their inner sub-sequences.

While such methods are highly effective and
reach state-of-the-art results in many tasks, their
adoption can be problematic. In kernel-based
Support Vector Machine (SVM) the classification
model corresponds to the set of support vectors
(SVs) and weights justifying the maximal margin
hyperplane: the classification cost crucially de-
pends on their number, as classifying a new in-
stance requires a kernel computation against all
SVs, making their adoption in large data settings
prohibitive. This scalability issue is evident in
many NLP and Information Retrieval applications,
such as in answer re-ranking in question answer-
ing (Severyn et al., 2013; Filice et al., 2016),
where the number of SVs is typically very large.
Improving the efficiency of kernel-based methods
is a largely studied topic. The reduction of com-
putational costs has been early designed by impos-
ing a budget (Dekel and Singer, 2006; Wang and
Vucetic, 2010), that is limiting the maximum num-
ber of SVs in a model. However, in complex tasks,
such methods still require large budgets to reach

345

https://doi.org/10.18653/v1/P17-1032

adequate accuracies. On the other hand, train-
ing complex neural networks is also difficult as
no common design practice is established against
complex data structures. In Levy et al. (2015), a
careful analysis of neural word embedding models
is carried out and the role of the hyper-parameter
estimation is outlined. Different neural architec-
tures result in the same performances, whenever
optimal hyper-parameter tuning is applied. In this
latter case, no significant difference is observed
across different architectures, making the choice
between different neural architectures a complex
and empirical task.

A general approach to the large scale modeling
of complex structures is a critical and open prob-
lem. A viable and general solution to this scal-
ability issue is provided by the Nyström method
(Williams and Seeger, 2001); it allows to ap-
proximate the Gram matrix of a kernel function
and support the embedding of future input exam-
ples into a low-dimensional space. For example,
if used over TKs, the Nyström projection corre-
sponds to the embedding of any tree into a low-
dimensional vector.

In this paper, we show that the Nyström based
low-rank embedding of input examples can be
used as the early layer of a deep feed-forward
neural network. A standard NN back-propagation
training can thus be applied to induce non-linear
functions in the kernel space. The resulting deep
architecture, called Kernel-based Deep Architec-
ture (KDA), is a mathematically justified integra-
tion of expressive kernel functions and deep neu-
ral architectures, with several advantages: it (i) di-
rectly operates over complex non-tensor struc-
tures, e.g., trees, without any manual feature or
architectural engineering, (ii) achieves a drastic re-
duction of the computational cost w.r.t. pure ker-
nel methods, and (iii) exploits the non-linearity of
NNs to produce accurate models. The experimen-
tal evaluation shows that the proposed approach
achieves state-of-the-art results in three semantic
inference tasks: Semantic Parsing, Question Clas-
sification and Community Question Answering.

In the rest of the paper, Section 2 surveys some
of the investigated kernels. In Section 3 the
Nyström methodology and KDA are presented.
Experimental evaluations are described in Section
4. Finally, Section 5 derives the conclusions.

2 Kernel-based Semantic Inference

In almost all NLP tasks, explicit models of com-
plex syntactic and semantic structures are re-
quired, such as in Paraphrase Detection: deciding
whether two sentences are valid paraphrases in-
volves learning grammatical rewriting rules, such
as semantics preserving mappings among sub-
trees. Also in Question Answering, the syntac-
tic information about input questions is crucial.
While manual feature engineering is always possi-
ble, kernel methods on structured representations
of data objects, e.g., sentences, have been largely
applied. Since Collins and Duffy (2001), sen-
tences can be modeled through their correspond-
ing parse tree, and Tree Kernels (TKs) result in
similarity metrics directly operating over tree frag-
ments. Such kernels corresponds to dot products
in the (implicit) feature space made of all possi-
ble tree fragments (Haussler, 1999). Notice that
the number of tree fragments in a tree bank is
combinatorial with the number of tree nodes and
gives rise to billions of features, i.e., dimensions.
In this high-dimensional space, kernel-based algo-
rithms, such as SVMs, can implicitly learn robust
prediction models (Shawe-Taylor and Cristianini,
2004), resulting in state-of-the-art approaches in
several NLP tasks, e.g., Semantic Role Labeling
(Moschitti et al., 2008), Question Classification
(Croce et al., 2011) or Paraphrase Identification
(Filice et al., 2015). As the feature space gener-
ated by the structural kernels depends on the in-
put structures, different tree representations can be
adopted to reflect more or less expressive syntac-
tic/semantic feature spaces. While constituency
parse trees have been early used (e.g., (Collins and
Duffy, 2001)), dependency parse trees correspond
to graph structures. TKs usually rely on their tree
conversions, where grammatical edge labels corre-
sponds to nodes. An expressive tree representation
of dependency graphs is the Grammatical Relation
Centered Tree (GRCT). As illustrated in Figure 1,
PoS-Tags and grammatical functions correspond
to nodes, dominating their associated lexicals.
Types of tree kernels. While a variety of TK
functions have been studied, e.g., the Partial Tree
Kernel (PTK) (Moschitti, 2006), the kernels used
in this work model grammatical and semantic in-
formation, as triggered respectively by the depen-
dency edge labels and lexical nodes. The lat-
ter is exploited through recent results in distribu-
tional models of lexical semantics, as proposed in

346

ROOT

P

.

?::.

PRD

NMOD

PMOD

NN

field::n

NMOD

NN

football::n

NMOD

DT

a::d

IN

of::i

NN

width::n

NMOD

DT

the::d

VBZ

be::v

SBJ

WP

what::w

Figure 1: Grammatical Relation Centered Tree
(GRCT) of “What is the width of a football field?”

word embedding methods (e.g., (Mikolov et al.,
2013; Sahlgren, 2006). In particular, we adopt the
Smoothed Partial Tree Kernel (SPTK) described
in Croce et al. (2011): it extends the PTK formu-
lation with a similarity function between lexical
nodes in a GRCT, i.e., the cosine similarity be-
tween word vector representations based on word
embeddings. We also use a further extension of the
SPTK, called Compositionally Smoothed Partial
Tree Kernel (CSPTK) (as in Annesi et al. (2014)).
In CSPTK, the lexical information provided by
the sentence words is propagated along the non-
terminal nodes representing head-modifier depen-
dencies. Figure 2 shows a compositionally-labeled
tree, where the similarity function at the nodes can
model lexical composition, i.e., capturing contex-
tual information. For example, in the sentence,
“What instrument does Hendrix play?”, the role
of the word instrument can be fully captured only
if its composition with the verb play is consid-
ered. The CSPTK applies a composition func-
tion between nodes: while several algebraic func-
tions can be adopted to compose two word vectors
representing a head/modifier pair, here we refer
to a simple additive function that assigns to each
(h,m) pair the linear combination of the involved
vectors, i.e., (h,m) = Ah +Bm: although sim-
ple and efficient, it actually produces very effec-
tive CSPTK functions.

Complexity. The training phase of an optimal
maximum margin algorithm (such as SVM) re-
quires a number of kernel operations that is more
than linear (almost O(n2)) with respect to the
number of training examples n, as discussed in
Chang and Lin (2011). Also the classification
phase depends on the size of the input dataset and
the intrinsic complexity of the targeted task: clas-
sifying a new instance requires to evaluate the ker-
nel function with respect to each support vector.
For complex tasks, the number of selected sup-
port vectors tends to be very large, and using the

resulting model can be impractical. This cost is
also problematic as single kernel operations can
be very expensive: the cost of evaluating the PTK
on a single tree pair is almost linear in the number
of nodes in the input trees, as shown in Moschitti
(2006). When lexical semantics is considered, as
in SPTKs and CSPTKs, it is more than linear in
the number of nodes (Croce et al., 2011).

3 Deep Learning in Kernel Spaces

3.1 The Nyström method
Given an input training dataset D, a kernel
K(oi, oj) is a similarity function over D2 that
corresponds to a dot product in the implicit ker-
nel space, i.e., K(oi, oj) = Φ(oi) · Φ(oj). The
advantage of kernels is that the projection func-
tion Φ(o) = x ∈ Rn is never explicitly com-
puted (Shawe-Taylor and Cristianini, 2004). In
fact, this operation may be prohibitive when the
dimensionality n of the underlying kernel space is
extremely large, as for Tree Kernels (Collins and
Duffy, 2001). Kernel functions are used by learn-
ing algorithms, such as SVM, to operate only im-
plicitly on instances in the kernel space, by never
accessing their explicit definition. Let us apply the
projection function Φ over all examples from D
to derive representations, x denoting the rows of
the matrix X . The Gram matrix can always be
computed asG = XX>, with each single element
corresponding to Gij = Φ(oi)Φ(oj) = K(oi, oj).
The aim of the Nyström method is to derive a new
low-dimensional embedding x̃ in a l-dimensional
space, with l� n so that G̃ = X̃X̃> and G̃ ≈ G.
This is obtained by generating an approximation
G̃ of G using a subset of l columns of the matrix,
i.e., a selection of a subset L ⊂ D of the avail-
able examples, called landmarks. Suppose we ran-
domly sample l columns of G, and let C ∈ R|D|×l
be the matrix of these sampled columns. Then, we
can rearrange the columns and rows of G and de-
fine X = [X1 X2] such that:

G = XX> =

[
W X>1 X2

X>2 X1 X>2 X2

]

and C =

[
W

X>2 X1

]
(1)

where W = X>1 X1, i.e., the subset of G that con-
tains only landmarks. The Nyström approxima-
tion can be defined as:

G ≈ G̃ = CW †C> (2)

347

root〈play::v,*::*〉

VB

play::v

nsubj〈play::v,Hendrix::n〉

NNP

Hendrix::n

aux〈play::v,do::v〉

VBZ

do::v

dobj〈play::v,instrument::n〉

NN

instrument::n

det〈instrument::n,what::w〉

WDT

what::w

Figure 2: Compositional Grammatical Relation Centered Tree (CGRCT) of “What instrument does Hendrix play?”

where W † denotes the Moore-Penrose inverse of
W . The Singular Value Decomposition (SVD) is
used to obtain W † as it follows. First, W is de-
composed so that W = USV >, where U and
V are both orthogonal matrices, and S is a di-
agonal matrix containing the (non-zero) singular
values of W on its diagonal. Since W is sym-
metric and positive definite W = USU>. Then
W † = US−1U> = US−

1
2S−

1
2U> and the Equa-

tion 2 can be rewritten as

G ≈ G̃ = CUS−
1
2S−

1
2U>C>

= (CUS−
1
2)(CUS−

1
2)> = X̃X̃> (3)

Given an input example o ∈ D, a new low-
dimensional representation x̃ can be thus deter-
mined by considering the corresponding item of
C as

x̃ = cUS−
1
2 (4)

where c is the vector whose dimensions contain
the evaluations of the kernel function between o
and each landmark oj ∈ L. Therefore, the method
produces l-dimensional vectors. If k is the average
number of basic operations required during a sin-
gle kernel computation, the overall cost of a sin-
gle projection is O(kl + l2), where the first term
corresponds to the cost of generating the vector
c, while the second term is needed for the ma-
trix multiplications in Equation 4. Typically, the
number of landmarks l ranges from hundreds to
few thousands and, for complex kernels (such as
Tree Kernels), the projection cost can be reduced
to O(kl). Several policies have been defined to
determine the best selection of landmarks to re-
duce the Gram Matrix approximation error. In this
work the uniform sampling without replacement
is adopted, as suggested by Kumar et al. (2012),
where this policy has been theoretically and em-
pirically shown to achieve results comparable with
other (more complex) selection policies.

3.2 A Kernel-based Deep Architecture
The above introduced Nyström representation x̃ of
any input example o is linear and can be adopted

to feed a neural network architecture. We assume
a labeled dataset L = {(o, y) | o ∈ D, y ∈ Y }
being available, where o refers to a generic in-
stance and y is its associated class. In this Sec-
tion, we define a Multi-Layer Perceptron (MLP)
architecture, with a specific Nyström layer based
on the Nyström embeddings of Eq. 4. We will
refer to this architecture as Kernel-based Deep
Architecture (KDA). KDA has an input layer,
a Nyström layer, a possibly empty sequence of
non-linear hidden layers and a final classification
layer, which produces the output.

The input layer corresponds to the input vector
c, i.e., the row of the C matrix associated to an
example o. Notice that, for adopting the KDA,
the values of the matrix C should be all avail-
able. In the training stage, these values are in gen-
eral cached. During the classification stage, the c
vector corresponding to an example o is directly
computed by l kernel computations between o and
each one of the l landmarks.

The input layer is mapped to the Nyström
layer, through the projection in Equation 4. No-
tice that the embedding provides also the proper
weights, defined by US−

1
2 , so that the mapping

can be expressed through the Nyström matrix
HNy = US−

1
2 : it corresponds to a pre-trained

stage derived through SVD, as discussed in Sec-
tion 3.1. Equation 4 provides a static definition
for HNy whose weights can be left invariant dur-
ing the neural network training. However, the val-
ues ofHNy can be made available for the standard
back-propagation adjustments applied for train-
ing1. Formally, the low-dimensional embedding
of an input example o, is x̃ = c HNy = c US−

1
2 .

The resulting outcome x̃ is the input to one or
more non-linear hidden layers. Each t-th hidden
layer is realized through a matrix Ht ∈ Rht−1×ht

and a bias vector bt ∈ R1×ht , whereas ht denotes

1In our preliminary experiments, adjustments to the HNy

matrix have been tested, but no significant effect was ob-
served. Therefore, no adjustment has been used in any re-
ported experiment, although more in depth exploration is
needed on this aspect.

348

the desired hidden layer dimensionality. Clearly,
given that HNy ∈ Rl×l, h0 = l. The first hid-
den layer in fact receives in input x̃ = cHNy,
that corresponds to t = 0 layer input x0 = x̃
and its computation is formally expressed by
x1 = f(x0H1 + b1), where f is a non-linear acti-
vation function. In general, the generic t-th layer
is modeled as:

xt = f(xt−1Ht + bt) (5)

The final layer of KDA is the classification
layer, realized through the output matrix HO and
the output bias vector bO. Their dimensionality
depends on the dimensionality of the last hidden
layer (called O−1) and the number |Y | of different
classes, i.e., HO ∈ RhO−1

×|Y | and bO ∈ R1×|Y |,
respectively. In particular, this layer computes a
linear classification function with a softmax oper-
ator so that ŷ = softmax(xO−1HO + bO).

In order to avoid over-fitting, two different reg-
ularization schemes are applied. First, the dropout
is applied to the input xt of each hidden layer
(t ≥ 1) and to the input xO−1 of the final clas-
sifier. Second, a L2 regularization is applied to the
norm of each layer2 Ht and HO.

Finally, the KDA is trained by optimizing a loss
function made of the sum of two factors: first, the
cross-entropy function between the gold classes
and the predicted ones; second the L2 regulariza-
tion, whose importance is regulated by a meta-
parameter λ. The final loss function is thus

L(y, ŷ) =
∑

(o,y)∈L
y log(ŷ)+λ

∑

H∈{Ht}∪{HO}
||H||2

where ŷ are the softmax values computed by the
network and y are the true one-hot encoding val-
ues associated with the example from the labeled
training dataset L.

4 Empirical Investigation

The proposed KDA has been applied adopting
the same architecture but with different kernels
to three NLP tasks, i.e., Question Classification,
Community Question Answering, and Automatic
Boundary Detection in Semantic Role Labeling.
The Nyström projector has been implemented in
the KeLP framework3. The neural network has

2The input layer and the Nyström layer are not modified
during the learning process, and they are not regularized.

3
http://www.kelp-ml.org

been implemented in Tensorflow4, with 2 hidden
layers whose dimensionality corresponds to the
number of involved Nyström landmarks. The rec-
tified linear unit is the non-linear activation func-
tion in each layer. The dropout has been applied
in each hidden layer and in the final classification
layer. The values of the dropout parameter and the
λ parameter of the L2-regularization have been se-
lected from a set of values via grid-search. The
Adam optimizer with a learning rate of 0.001 has
been applied to minimize the loss function, with a
multi-epoch (500) training, each fed with batches
of size 256. We adopted an early stop strategy,
where the best model was selected according to
the performance over the development set. Every
performance measure is obtained against a specific
sampling of the Nyström landmarks. Results aver-
aged against 5 such samplings are always hereafter
reported.

4.1 Question Classification
Question Classification (QC) is the task of map-
ping a question into a closed set of answer types
in a Question Answering system. We used the
UIUC dataset (Li and Roth, 2006), including a
training and test set of 5, 452 and 500 questions,
respectively, organized in 6 classes (like ENTITY
or HUMAN). TKs resulted very effective, as shown
in Croce et al. (2011); Annesi et al. (2014). In
Annesi et al. (2014), QC is mapped into a One-vs-
All multi-classification schema, where the CSPTK
achieves state-of-the-art results of 95%: it acts di-
rectly over compositionally labeled trees without
relying on any manually designed feature.

In order to proof the benefits of the KDA ar-
chitecture, we generated Nyström representation
of the CSPTK kernel function5 with default pa-
rameters (i.e., µ = λ = 0.4). The SVM for-
mulation by Chang and Lin (2011), fed with the
CSPTK (hereafter KSVM), is here adopted to de-
termine the reachable upper bound in classifica-
tion quality, i.e., a 95% of accuracy, at higher com-
putational costs. It establishes the state-of-the-art
over the UIUC dataset. The resulting model in-
cludes 3,873 support vectors: this corresponds to
the number of kernel operations required to clas-
sify any input test question. The Nyström method
based on a number of landmarks ranging from 100
to 1,000 is adopted for modeling input vectors in

4
https://www.tensorflow.org/

5The lexical vectors used in the CSPTK are generated
again using the Word2vec tool with a Skip-gram model.

349

the CSPTK kernel space. Results are reported in
Table 1: computational saving refers to the per-
centage of avoided kernel computations with re-
spect to the application of the KSVM to each test
instance. To justify the need of the Neural Net-
work, we compared the proposed KDA to an effi-
cient linear SVM that is directly trained over the
Nyström embeddings. This SVM implements the
Dual Coordinate Descent method (Hsieh et al.,
2008) and will be referred as SVMDCD. We also
measured the state-of-the-art Convolutional Neu-
ral Network6 (CNN) of Kim (2014), achieving the
remarkable accuracy of 93.6%. Notice that the
linear classifier SVMDCD operating over the ap-
proximated kernel space achieves the same classi-
fication quality of the CNN when just 1,000 land-
marks are considered. KDA improves this results,
achieving 94.3% accuracy even with fewer land-
marks (only 600), showing the effectiveness of
non-linear learning over the Nyström input. Al-
though KSVM improves to 95%, KDA provides
a saving of more than 84% kernel computations
at classification time. This result is straightfor-
ward as it confirms that linguistic information
encoded in a tree is important in the analysis of
questions and can be used as a pre-training strat-
egy. Figure 3 shows the accuracy curves accord-
ing to various approximations of the kernel space,
i.e., number of landmarks.

Table 1: Results in terms of Accuracy and saving
in the Question Classification task

Model #Land. Accuracy Saving
CNN - 93.6% -
KSVM - 95.0% 0.0%

100 88.5% (84.1%) 97.4%
200 92.2% (88.7%) 94.8%

KDA 400 93.7% (91.6%) 89.7%
(SVMDCD) 600 94.3% (92.8%) 84.5%

800 94.3% (93.0%) 79.3%
1,000 94.2% (93.6%) 74.2%

4.2 Community Question-Answering
In the SemEval-2016 task 3, participants were
asked to automatically provide good answers in
a community question answering setting (Nakov
et al., 2016). We focused on the subtask A:
given a question and a large collection of question-
comment threads created by a user community,

6The deep architecture presented in Kim (2014) outper-
forms several NN models, including the Recursive Neural
Tensor Network or Tree-LSTM presented in (Socher et al.,
2013; Tai et al., 2015) which presents a semantic composi-
tionality model that exploits parse trees.

88%

90%

92%

94%

96%

100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y

of landmarks

CNN
KDA
KSVM
SVM_DCD

Figure 3: QC task - accuracy curves w.r.t. the
number of landmarks.

the task consists in (re-)ranking the comments
w.r.t. their utility in answering the question. Sub-
task A can be modeled as a binary classification
problem, where instances are (question, comment)
pairs. Each pair generates an example for a bi-
nary SVM, where the positive label is associated
to a good comment and the negative label refers
to potentially useful and bad comments. The clas-
sification score achieved over different (question,
comment) pairs is used to sort instances and pro-
duce the final ranking over comments. The above
setting results in a train and test dataset made
of 20,340 and 3,270 examples, respectively. In
Filice et al. (2016), a Kernel-based SVM clas-
sifier (KSVM) achieved state-of-the-art results
by adopting a kernel combination that exploited
(i) feature vectors containing linguistic similarities
between the texts in a pair; (ii) shallow syntactic
trees that encode the lexical and morpho-syntactic
information shared between text pairs; (iii) feature
vectors capturing task-specific information.

Table 2: Results in terms of F1 and savings in the
Community Question Answering task

Model #Land. F1 Saving
KSVM - 0.644 0.0%
ConvKN - 0.662 -

100 0.638 (0.596) 99.1%
200 0.635 (0.627) 98.2%

KDA 400 0.657 (0.637) 96.5%
(SVMDCD) 600 0.669 (0.645) 94.7%

800 0.680 (0.653) 92.9%
1,000 0.674 (0.644) 91.2%

Such model includes 11,322 support vectors.
We investigated the KDA architecture, trained by
maximizing the F1 measure, based on a Nyström
layer initialized using the same kernel functions as
KSVM. We varied the Nyström dimensions from
100 to 1,000 landmarks, i.e., a much lower number
than the support vectors of KSVM.

Table 2 reports the results: very high F1 scores

350

are observed with impressive savings in terms of
kernel computations (between 91.2% and 99%).
Also on the cQA task, the F1 obtained by the
SVMDCD is significantly lower than the KDA one.
Moreover, with 800 landmarks KDA achieves
the remarkable results of 0.68 of F1, that is the
state-of-the-art against other convolutional sys-
tems, e.g., ConvKN (Barrón-Cedeño et al., 2016):
this latter combines convolutional tree kernels
with kernels operating on sentence embeddings
generated by a convolutional neural network.

4.3 Argument Boundary Detection

Semantic Role Labeling (SRL) consists of the
detection of the semantic arguments associated
with the predicate of a sentence (called Lexi-
cal Unit) and their classification into their spe-
cific roles (Fillmore, 1985). For example, given
the sentence “Bootleggers then copy the film onto
hundreds of tapes” the task would be to recog-
nize the verb copy as representing the DUPLICA-
TION frame with roles, CREATOR for Bootleggers,
ORIGINAL for the film and GOAL for hundreds of
tapes.

Argument Boundary Detection (ABD) corre-
sponds to the SRL subtask of detecting the sen-
tence fragments spanning individual roles. In the
previous example the phrase “the film” represents
a role (i.e., ORIGINAL), while “of tapes” or “film
onto hundreds” do not, as they just partially cover
one or multiple roles, respectively. The ABD
task has been successfully tackled using TKs since
Moschitti et al. (2008). It can be modeled as a bi-
nary classification task over each parse tree node
n, where the argument span reflects words covered
by the sub-tree rooted at n. In our experiments,
Grammatical Relation Centered Tree (GRCT) de-
rived from dependency grammar (Fig. 4) are em-
ployed, as shown in Fig. 5. Each node is consid-
ered as a candidate in covering a possible argu-
ment. In particular, the structure in Fig. 5a is a
positive example. On the contrary, in Fig. 5b the
NMOD node only covers the phrase “of tapes”,
i.e., a subset of the correct role, and it represents a
negative example7.

We selected all the sentences whose predi-
cate word (lexical unit) is a verb (they are about

7The nodes of the subtree covering the words to be veri-
fied as possible argument are marked with a FE tag. The word
evoking the frame and its ancestor nodes are also marked with
the LU tag. The other nodes are pruned out, except the ones
connecting the LU nodes to the FE ones.

Bootleggers then copy the film onto hundreds of tapes
NNS RB VBP DT NN IN NNS IN NNS

ROOT

SUBJ

TMP

OBJ

NMOD

NMOD

PMOD NMOD PMOD

Figure 4: Example of dependency parse tree

ROOTLU

VBPLU

copy::v

SBJFE

NNSFE

bootleggers::n

(a)

ROOTLU

ADV

PMOD

NMODFE

PMODFE

NNSFE

tape::n

INFE

of::i

NNS

hundred::n

IN

onto::i

VBPLU

copy::v

(b)

Figure 5: Conversion from dependency graph to
GRCT. Tree in Fig. 5a is a positive example, while
in Fig. 5b a negative one.

60,000), from the 1.3 version of the Framenet
dataset (Baker et al., 1998). This gives rise to
about 1,400,000 sub-trees, i.e., the positive and
negative instances. The dataset is split in train
and test according to the 90/10 proportion (as
in (Johansson and Nugues, 2008)). This size
makes the application of a traditional kernel-based
method unfeasible, unless a significant instance
sub-sampling is performed.

We firstly experimented standard SVM learning
over a sampled training set of 10,000 examples,
a typical size for annotated datasets in computa-
tional linguistics tasks. We adopted the Smoothed
Partial Tree Kernel (Croce et al., 2011) with stan-
dard parameters (i.e., µ = λ = 0.4) and lexical
nodes expressed through 250-dimensional vectors
obtained by applying Word2Vec (Mikolov et al.,
2013) to the entire Wikipedia. When trained over
this 10k instances dataset, the kernel-based SVM
(KSVM) achieves an F1 of 70.2%, over the same
test set used in Croce and Basili (2016) that in-
cludes 146,399 examples. The KSVM learning
produces a model including 2, 994 support vec-
tors, i.e., the number of kernel operations required
to classify each new test instance. We then ap-
ply the Nyström linearization to a larger dataset
made of 100k examples, and trained a classifier
using both the Dual Coordinate Descent method
(Hsieh et al., 2008), SVMDCD, and the KDA pro-
posed in this work. Table 3 presents the results in
terms of F1 and saved kernel operation. Although
SVMDCD with 500 landmarks already achieves
0.713 F1, a score higher than KSVM, it is signif-

351

0,50

0,55

0,60

0,65

0,70

0,75

0,80

50 100 200 300 400 500

F1

of landmarks

KDA

KSVM

SVM_DCD

Figure 6: ABD task: F1 measure curves w.r.t. the
number of landmarks.

icantly improved by the KDA. KDA achieves up
to 0.76 F1 with only 400 landmarks, resulting in
a huge step forward w.r.t. the KSVM. This result
is straightforward considering (i) the reduction of
required kernel operations, i.e., more than 86% are
saved and (ii) the quality achieved since 100 land-
marks (i.e., 0.711, higher than the KSVM).

Table 3: Results in terms of F1 and saving in the
Argument Boundary Detection task.

Model Land. Tr.Size F1 Saving
KSVM - 10k 0.702 0.0%

100 100k 0.711 (0.618) 96.7%
KDA 200 100k 0.737 (0.661) 93.3%

(SVMDCD) 300 100k 0.753 (0.686) 90.0%
400 100k 0.760 (0.704) 86.6%
500 100k 0.754 (0.713) 83.3%

5 Discussion and Conclusions

In this work, we promoted a methodology to em-
bed structured linguistic information within NNs,
according to mathematically rich semantic simi-
larity models, based on kernel functions. Struc-
tured data, such as trees, are transformed into
dense vectors according to the Nyström method-
ology, and the NN is effective in capturing non-
linearities in these representations, but still im-
proving generalization at a reasonable complexity.

At the best our knowledge, this work is one of
the few attempts to systematically integrate lin-
guistic kernels within a deep neural network archi-
tecture. The problem of combining such method-
ologies has been studied in specific works, such
as (Baldi et al., 2011; Cho and Saul, 2009; Yu
et al., 2009). In Baldi et al. (2011) the authors pro-
pose a hybrid classifier, for bridging kernel meth-
ods and neural networks. In particular, they use
the output of a kernelized k-nearest neighbors al-
gorithm as input to a neural network. Cho and Saul
(2009) introduced a family of kernel functions that

mimic the computation of large multilayer neu-
ral networks. However, such kernels can be ap-
plied only on vector inputs. In Yu et al. (2009),
deep neural networks for rapid visual recognition
are trained with a novel regularization method tak-
ing advantage of kernels as an oracle represent-
ing prior knowledge. The authors transform the
kernel regularizer into a loss function and carry
out the neural network training by gradient de-
scent. In Zhuang et al. (2011) a different ap-
proach has been promoted: a multiple (two) layer
architecture of kernel functions, inspired by neural
networks, is studied to find the best kernel com-
bination in a Multiple Kernel Learning setting.
In Mairal et al. (2014) the invariance properties
of convolutional neural networks (LeCun et al.,
1998) are modeled through kernel functions, re-
sulting in a Convolutional Kernel Network. Other
effort for combining NNs and kernel methods is
described in Tymoshenko et al. (2016), where a
SVM adopts a tree kernels combinations with em-
beddings learned through a CNN.

The approach here discussed departs from pre-
vious approaches in different aspects. First, a gen-
eral framework is promoted: it is largely applica-
ble to any complex kernel, e.g., structural kernels
or combinations of them. The efficiency of the
Nyström methodology encourages its adoption,
especially when complex kernel computations are
required. Notice that other low-dimensional ap-
proximations of kernel functions have been stud-
ied, as for example the randomized feature map-
pings proposed in Rahimi and Recht (2008). How-
ever, these assume that (i) instances have vectorial
form and (ii) shift-invariant kernels are adopted.
The Nyström method adopted here does not suffer
of such limitations: as our target is the application
to structured (linguistic) data, more general ker-
nels, i.e., non-shift-invariant convolution kernels
are needed.

Given the Nyström approximation, the learning
setting corresponds to a general well-known neu-
ral network architecture, i.e., a multilayer percep-
tron, and does not require any manual feature en-
gineering or the design of ad-hoc network archi-
tectures. The success in three different tasks con-
firms its large applicability without major changes
or adaptations. Second, we propose a novel learn-
ing strategy, as the capability of kernel methods to
represent complex search spaces is combined with
the ability of neural networks to find non-linear so-

352

lutions to complex tasks. Last, the suggested KDA
framework is fully scalable, as (i) the network can
be parallelized on multiple machines, and (ii) the
computation of the Nyström reconstruction vector
c can be easily parallelized on multiple processing
units, ideally l, as each unit can compute one ci
value. Future work will address experimentations
with larger scale datasets; moreover, it is interest-
ing to experiment with more landmarks in order to
better understand the trade-off between the repre-
sentation capacity of the Nyström approximation
of the kernel functions and the over-fitting that can
be introduced in a neural network architecture. Fi-
nally, the optimization of the KDA methodology
through the suitable parallelization on multicore
architectures, as well as the exploration of mech-
anisms for the dynamic reconstruction of kernel
spaces (e.g., operating over HNy) also constitute
interesting future research directions on this topic.

References
Paolo Annesi, Danilo Croce, and Roberto Basili. 2014.

Semantic compositionality in tree kernels. In Pro-
ceedings of CIKM 2014. ACM.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The Berkeley FrameNet project. In Proc. of
COLING-ACL. Montreal, Canada.

Pierre Baldi, Chloe Azencott, and S. Joshua
Swamidass. 2011. Bridging the gap between
neural network and kernel methods: Appli-
cations to drug discovery. In Proceedings of
the 20th Italian Workshop on Neural Nets.
http://dl.acm.org/citation.cfm?id=1940632.1940635.

Alberto Barrón-Cedeño, Giovanni Da San Martino,
Shafiq Joty, Alessandro Moschitti, Fahad Al-
Obaidli, Salvatore Romeo, Kateryna Tymoshenko,
and Antonio Uva. 2016. ConvKN at SemEval-2016
task 3: Answer and question selection for question
answering on arabic and english fora. In Proceed-
ings of SemEval-2016.

Nicola Cancedda, Éric Gaussier, Cyril Goutte, and
Jean-Michel Renders. 2003. Word-sequence ker-
nels. Journal of Machine Learning Research
3:1059–1082.

Chih-Chung Chang and Chih-Jen Lin. 2011. Lib-
svm: A library for support vector machines.
ACM Trans. Intell. Syst. Technol. 2(3):27:1–27:27.
https://doi.org/10.1145/1961189.1961199.

Youngmin Cho and Lawrence K. Saul. 2009. Kernel
methods for deep learning. In Y. Bengio, D. Schu-
urmans, J. D. Lafferty, C. K. I. Williams, and A. Cu-
lotta, editors, Advances in Neural Information Pro-
cessing Systems 22, Curran Associates, Inc., pages

342–350. http://papers.nips.cc/paper/3628-kernel-
methods-for-deep-learning.pdf.

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. In Proceedings of Neu-
ral Information Processing Systems (NIPS’2001).
pages 625–632.

Danilo Croce and Roberto Basili. 2016. Large-scale
kernel-based language learning through the ensem-
ble nystrom methods. In Proceedings of ECIR 2016.

Danilo Croce, Alessandro Moschitti, and Roberto
Basili. 2011. Structured lexical similarity via convo-
lution kernels on dependency trees. In Proceedings
of EMNLP ’11. pages 1034–1046.

Ofer Dekel and Yoram Singer. 2006. Support vector
machines on a budget. In NIPS. MIT Press, pages
345–352.

Simone Filice, Danilo Croce, Alessandro Moschitti,
and Roberto Basili. 2016. KeLP at SemEval-2016
task 3: Learning semantic relations between ques-
tions and comments. In Proceedings of SemEval
’16.

Simone Filice, Giovanni Da San Martino, and Alessan-
dro Moschitti. 2015. Structural representations for
learning relations between pairs of texts. In Pro-
ceedings of ACL 2015. Beijing, China, pages 1003–
1013. http://www.aclweb.org/anthology/P15-1097.

Charles J. Fillmore. 1985. Frames and the semantics
of understanding. Quaderni di Semantica 6(2):222–
254.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
Labeling of Semantic Roles. Computational Lin-
guistics 28(3):245–288.

David Haussler. 1999. Convolution kernels on discrete
structures. In Technical Report UCS-CRL-99-10.
University of California, Santa Cruz.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. 9(8):1735–
1780.

Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin,
S. Sathiya Keerthi, and S. Sundararajan. 2008. A
dual coordinate descent method for large-scale lin-
ear svm. In Proceedings of the ICML 2008. ACM,
pages 408–415.

Richard Johansson and Pierre Nugues. 2008. The ef-
fect of syntactic representation on semantic role la-
beling. In Proceedings of COLING.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings EMNLP
2014. Doha, Qatar, pages 1746–1751.

Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar.
2012. Sampling methods for the nyström method.
J. Mach. Learn. Res. 13:981–1006.

353

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998.
Gradient-based learning applied to document recog-
nition. Proc. of the IEEE 86(11).

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Asso-
ciation for Computational Linguistics 3:211–225.
https://transacl.org/ojs/index.php/tacl/article/view/570.

Xin Li and Dan Roth. 2006. Learning question clas-
sifiers: the role of semantic information. Natural
Language Engineering 12(3):229–249.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and
Cordelia Schmid. 2014. Convolutional kernel net-
works. In Advances in Neural Information Process-
ing Systems.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

Alessandro Moschitti. 2006. Efficient convolution ker-
nels for dependency and constituent syntactic trees.
In ECML. Berlin, Germany.

Alessandro Moschitti, Daniele Pighin, and Robert
Basili. 2008. Tree kernels for semantic role label-
ing. Computational Linguistics 34.

Preslav Nakov, Lluı́s Màrquez, Alessandro Moschitti,
Walid Magdy, Hamdy Mubarak, Abed Alhakim
Freihat, Jim Glass, and Bilal Randeree. 2016.
SemEval-2016 task 3: Community question answer-
ing. In Proceedings of SemEval-2016.

Ali Rahimi and Benjamin Recht. 2008. Random fea-
tures for large-scale kernel machines. In J. C.
Platt, D. Koller, Y. Singer, and S. T. Roweis, ed-
itors, Advances in Neural Information Processing
Systems 20, Curran Associates, Inc., pages 1177–
1184. http://papers.nips.cc/paper/3182-random-
features-for-large-scale-kernel-machines.pdf.

Magnus Sahlgren. 2006. The Word-Space Model.
Ph.D. thesis, Stockholm University.

Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013. Building structures from classifiers
for passage reranking. ACM, New York, NY, USA,
CIKM ’13, pages 969–978.

John Shawe-Taylor and Nello Cristianini. 2004. Ker-
nel Methods for Pattern Analysis. Cambridge Uni-
versity Press, New York, NY, USA.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of EMNLP ’13.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representa-
tions from tree-structured long short-term mem-
ory networks. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing of
the Asian Federation of Natural Language Pro-
cessing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers. pages 1556–1566.
http://aclweb.org/anthology/P/P15/P15-1150.pdf.

Kateryna Tymoshenko, Daniele Bonadiman,
and Alessandro Moschitti. 2016. Convolu-
tional neural networks vs. convolution ker-
nels: Feature engineering for answer sentence
reranking. In Proceedings of NAACL 2016.
http://www.aclweb.org/anthology/N16-1152.

Zhuang Wang and Slobodan Vucetic. 2010. Online
passive-aggressive algorithms on a budget. Journal
of Machine Learning Research - Proceedings Track
9:908–915.

Christopher K. I. Williams and Matthias Seeger. 2001.
Using the nyström method to speed up kernel ma-
chines. In Proceedings of NIPS 2000.

Kai Yu, Wei Xu, and Yihong Gong. 2009. Deep learn-
ing with kernel regularization for visual recognition.
In Advances in Neural Information Processing Sys-
tems 21, Curran Associates, Inc., pages 1889–1896.

Jinfeng Zhuang, Ivor W. Tsang, and Steven C. H. Hoi.
2011. Two-layer multiple kernel learning. In AIS-
TATS. JMLR.org, volume 15 of JMLR Proceedings,
pages 909–917.

354

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 355–365
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1033

Topically Driven Neural Language Model

Jey Han Lau1,2 Timothy Baldwin2 Trevor Cohn2

1 IBM Research
2 School of Computing and Information Systems,

The University of Melbourne
jeyhan.lau@gmail.com, tb@ldwin.net, t.cohn@unimelb.edu.au

Abstract

Language models are typically applied at
the sentence level, without access to the
broader document context. We present a
neural language model that incorporates
document context in the form of a topic
model-like architecture, thus providing
a succinct representation of the broader
document context outside of the current
sentence. Experiments over a range of
datasets demonstrate that our model out-
performs a pure sentence-based model in
terms of language model perplexity, and
leads to topics that are potentially more co-
herent than those produced by a standard
LDA topic model. Our model also has the
ability to generate related sentences for a
topic, providing another way to interpret
topics.

1 Introduction

Topic models provide a powerful tool for extract-
ing the macro-level content structure of a docu-
ment collection in the form of the latent topics
(usually in the form of multinomial distributions
over terms), with a plethora of applications in NLP
(Hall et al., 2008; Newman et al., 2010a; Wang
and McCallum, 2006). A myriad of variants of
the classical LDA method (Blei et al., 2003) have
been proposed, including recent work on neural
topic models (Cao et al., 2015; Wan et al., 2012;
Larochelle and Lauly, 2012; Hinton and Salakhut-
dinov, 2009).

Separately, language models have long been a
foundational component of any NLP task involv-
ing generation or textual normalisation of a noisy
input (including speech, OCR and the processing
of social media text). The primary purpose of a
language model is to predict the probability of a

span of text, traditionally at the sentence level, un-
der the assumption that sentences are independent
of one another, although recent work has started
using broader local context such as the preceding
sentences (Wang and Cho, 2016; Ji et al., 2016).

In this paper, we combine the benefits of a
topic model and language model in proposing
a topically-driven language model, whereby we
jointly learn topics and word sequence informa-
tion. This allows us to both sensitise the predic-
tions of the language model to the larger docu-
ment narrative using topics, and to generate topics
which are better sensitised to local context and are
hence more coherent and interpretable.

Our model has two components: a language
model and a topic model. We implement both
components using neural networks, and train them
jointly by treating each component as a sub-task
in a multi-task learning setting. We show that our
model is superior to other language models that
leverage additional context, and that the generated
topics are potentially more coherent than LDA
topics. The architecture of the model provides
an extra dimensionality of topic interpretability,
in supporting the generation of sentences from a
topic (or mix of topics). It is also highly flex-
ible, in its ability to be supervised and incor-
porate side information, which we show to fur-
ther improve language model performance. An
open source implementation of our model is avail-
able at: https://github.com/jhlau/
topically-driven-language-model.

2 Related Work

Griffiths et al. (2004) propose a model that learns
topics and word dependencies using a Bayesian
framework. Word generation is driven by either
LDA or an HMM. For LDA, a word is generated
based on a sampled topic in the document. For the

355

https://doi.org/10.18653/v1/P17-1033

Document context
(n x e)

Topic input A
(k x a)

Topic output B
(k x b)

Softmax

Convolutional Max-over-time
pooling

Fully connected with softmax output

Attention distribution p

Topic model output
Document-topic
representation s

neural Language model output

Modern

network

approach

network

Language model

Topic model

x

g

lstm

lstm

lstm

Neural
Networks

are
a

computational
approach

which
is

based
on

Document vector d

Figure 1: Architecture of tdlm. Scope of the models are denoted by dotted lines: blue line denotes the
scope of the topic model, red the language model.

HMM, a word is conditioned on previous words.
A key difference over our model is that their lan-
guage model is driven by an HMM, which uses a
fixed window and is therefore unable to track long-
range dependencies.

Cao et al. (2015) relate the topic model view
of documents and words — documents having
a multinomial distribution over topics and top-
ics having a multinomial distributional over words
— from a neural network perspective by embed-
ding these relationships in differentiable functions.
With that, the model lost the stochasticity and
Bayesian inference of LDA but gained non-linear
complex representations. The authors further pro-
pose extensions to the model to do supervised
learning where document labels are given.

Wang and Cho (2016) and Ji et al. (2016) re-
lax the sentence independence assumption in lan-
guage modelling, and use preceeding sentences as
additional context. By treating words in preceed-
ing sentences as a bag of words, Wang and Cho
(2016) use an attentional mechanism to focus on
these words when predicting the next word. The
authors show that the incorporation of additional

context helps language models.

3 Architecture

The architecture of the proposed topically-driven
language model (henceforth “tdlm”) is illustrated
in Figure 1. There are two components in tdlm: a
language model and a topic model. The language
model is designed to capture word relations in sen-
tences, while the topic model learns topical infor-
mation in documents. The topic model works like
an auto-encoder, where it is given the document
words as input and optimised to predict them.

The topic model takes in word embeddings of
a document and generates a document vector us-
ing a convolutional network. Given the document
vector, we associate it with the topics via an atten-
tion scheme to compute a weighted mean of topic
vectors, which is then used to predict a word in the
document.

The language model is a standard LSTM lan-
guage model (Hochreiter and Schmidhuber, 1997;
Mikolov et al., 2010), but it incorporates the
weighted topic vector generated by the topic
model to predict succeeding words.

356

Marrying the language and topic models allows
the language model to be topically driven, i.e. it
models not just word contexts but also the doc-
ument context where the sentence occurs, in the
form of topics.

3.1 Topic Model Component

Let xi ∈ Re be the e-dimensional word vector for
the i-th word in the document. A document of n
words is represented as a concatenation of its word
vectors:

x1:n = x1 ⊕ x2 ⊕ ...⊕ xn

where ⊕ denotes the concatenation operator. We
use a number of convolutional filters to process the
word vectors, but for clarity we will explain the
network with one filter.

Let wv ∈ Reh be a convolutional filter which
we apply to a window of hwords to generate a fea-
ture. A feature ci for a window of words xi:i+h−1
is given as follows:

ci = I(wᵀvxi:i+h−1 + bv)

where bv is a bias term and I is the identity func-
tion.1 A feature map c is a collection of features
computed from all windows of words:

c = [c1, c2, ..., cn−h+1]

where c ∈ Rn−h+1. To capture the most salient
features in c, we apply a max-over-time pool-
ing operation (Collobert et al., 2011), yielding a
scalar:

d = max
i
ci

In the case where we use a filters, we have
d ∈ Ra, and this constitutes the vector represen-
tation of the document generated by the convolu-
tional and max-over-time pooling network.

The topic vectors are stored in two lookup tables
A ∈ Rk×a (input vector) and B ∈ Rk×b (output
vector), where k is the number of topics, and a and
b are the dimensions of the topic vectors.

To align the document vector d with the topics,
we compute an attention vector which is used to

1A non-linear function is typically used here, but prelimi-
nary experiments suggest that the identity function works best
for tdlm.

compute a document-topic representation:2

p = softmax(Ad) (1)

s = Bᵀp (2)

where p ∈ Rk and s ∈ Rb. Intuitively, s is a
weighted mean of topic vectors, with the weight-
ing given by the attention p. This is inspired by the
generative process of LDA, whereby documents
are defined as having a multinomial distribution
over topics.

Finally s is connected to a dense layer with soft-
max output to predict each word in the document,
where each word is generated independently as a
unigram bag-of-words, and the model is optimised
using categorical cross-entropy loss. In practice,
to improve efficiency we compute loss for pre-
dicting a sequence of m1 words in the document,
where m1 is a hyper-parameter.

3.2 Language Model Component

The language model is implemented using LSTM
units (Hochreiter and Schmidhuber, 1997):

it = σ(Wivt +Uiht−1 + bi)

ft = σ(Wfvt +Ufht−1 + bf)

ot = σ(Wovt +Uoht−1 + bi)

ĉt = tanh(Wcvt +Ucht−1 + bc)

ct = ft � ct−1 + it � ĉt

ht = ot � tanh(ct)

where � denotes element-wise product; it, ft, ot
are the input, forget and output activations respec-
tively at time step t; and vt, ht and ct are the in-
put word embedding, LSTM hidden state, and cell
state, respectively. Hereinafter W, U and b are
used to refer to the model parameters.

Traditionally, a language model operates at the
sentence level, predicting the next word given its
history of words in the sentence. The language
model of tdlm incorporates topical information
by assimilating the document-topic representation
(s) with the hidden output of the LSTM (ht) at
each time step t. To prevent tdlm from memoris-
ing the next word via the topic model network, we
exclude the current sentence from the document
context.

2The attention mechanism was inspired by memory net-
works (Graves et al., 2014; Weston et al., 2014; Sukhbaatar
et al., 2015; Tran et al., 2016). We explored various attention
styles (including traditional schemes which use one vector for
a topic), but found this approach to work best.

357

We use a gating unit similar to a GRU (Cho
et al., 2014; Chung et al., 2014) to allow tdlm
to learn the degree of influence of topical informa-
tion on the language model:

zt = σ(Wzs+Uzht + bz)

rt = σ(Wrs+Urht + br)

ĥt = tanh(Whs+Uh(rt � ht) + bh)

h′t = (1− zt)� ht + zt � ĥt

(3)

where zt and rt are the update and reset gate acti-
vations respectively at timestep t. The new hidden
state h′t is connected to a dense layer with linear
transformation and softmax output to predict the
next word, and the model is optimised using stan-
dard categorical cross-entropy loss.

3.3 Training and Regularisation
tdlm is trained using minibatches and SGD.3 For
the language model, a minibatch consists of a
batch of sentences, while for the topic model it is
a batch of documents (each predicting a sequence
of m1 words).

We treat the language and topic models as sub-
tasks in a multi-task learning setting, and train
them jointly using categorical cross-entropy loss.
Most parameters in the topic model are shared by
the language model, as illustrated by their scopes
(dotted lines) in Figure 1.

Hyper-parameters of tdlm are detailed in Ta-
ble 1. Word embeddings for the topic model and
language model components are not shared, al-
though their dimensions are the same (e).4 For
m1, m2 and m3, sequences/documents shorter
than these thresholds are padded. Sentences
longer than m2 are broken into multiple se-
quences, and documents longer than m3 are trun-
cated. Optimal hyper-parameter settings are tuned
using the development set; the presented values
are used for experiments in Sections 4 and 5.

To regularise tdlm, we use dropout regularisa-
tion (Srivastava et al., 2014). We apply dropout to
d and s in the topic model, and to the input word
embedding and hidden output of the LSTM in the
language model (Pham et al., 2013; Zaremba et al.,
2014).

4 Language Model Evaluation

We use standard language model perplexity as the
evaluation metric. In terms of dataset, we use doc-

3We use Adam as the optimiser (Kingma and Ba, 2014).
4Word embeddings are updated during training.

ument collections from 3 sources: APNEWS, IMDB

and BNC. APNEWS is a collection of Associated
Press5 news articles from 2009 to 2016. IMDB is
a set of movie reviews collected by Maas et al.
(2011). BNC is the written portion of the British
National Corpus (BNC Consortium, 2007), which
contains excerpts from journals, books, letters, es-
says, memoranda, news and other types of text.
For APNEWS and BNC, we randomly sub-sample a
set of documents for our experiments.

For preprocessing, we tokenise words and sen-
tences using Stanford CoreNLP (Klein and Man-
ning, 2003). We lowercase all word tokens, filter
word types that occur less than 10 times, and ex-
clude the top 0.1% most frequent word types.6 We
additionally remove stopwords for the topic model
document context.7 All datasets are partitioned
into training, development and test sets; prepro-
cessed dataset statistics are presented in Table 2.

We tune hyper-parameters of tdlm based on
development set language model perplexity. In
general, we find that optimal settings are fairly ro-
bust across collections, with the exception of m3,
as document length is collection dependent; opti-
mal hyper-parameter values are given in Table 1.
In terms of LSTM size, we explore 2 settings: a
small model with 1 LSTM layer and 600 hidden
units, and a large model with 2 layers and 900
hidden units.8 For the topic number, we experi-
ment with 50, 100 and 150 topics. Word embed-
dings are pre-trained 300-dimension word2vec
Google News vectors.9

For comparison, we compare tdlm with:10

vanilla-lstm: A standard LSTM language
model, using the same tdlm hyper-parameters
where applicable. This is the baseline model.

lclm: A larger context language model that
incorporates context from preceding sentences
(Wang and Cho, 2016), by treating the preced-
ing sentence as a bag of words, and using an

5https://www.ap.org/en-gb/.
6For the topic model, we remove word tokens that corre-

spond to these filtered word types; for the language model we
represent them as 〈unk〉 tokens (as for unseen words in test).

7We use Mallet’s stopword list: https://github.
com/mimno/Mallet/tree/master/stoplists.

8Multi-layer LSTMs are vanilla stacked LSTMs without
skip connections (Gers and Schmidhuber, 2000) or depth-
gating (Yao et al., 2015).

9https://code.google.com/archive/p/
word2vec/.

10Note that all models use the same pre-trained
word2vec vectors.

358

Hyper- Value Descriptionparameter

m1 3 Output sequence length for topic model
m2 30 Sequence length for language model
m3 300,150,500 Maximum document length
nbatch 64 Minibatch size
nlayer 1,2 Number of LSTM layers
nhidden 600,900 LSTM hidden size
nepoch 10 Number of training epochs
k 100,150,200 Number of topics
e 300 Word embedding size
h 2 Convolutional filter width
a 20 Topic input vector size or number of features for convolutional filter
b 50 Topic output vector size
l 0.001 Learning rate of optimiser
p1 0.4 Topic model dropout keep probability
p2 0.6 Language model dropout keep probability

Table 1: tdlm hyper-parameters; we experiment with 2 LSTM settings and 3 topic numbers, and m3

varies across the three domains (APNEWS, IMDB, and BNC).

Collection Training Development Test

#Docs #Tokens #Docs #Tokens #Docs #Tokens

APNEWS 50K 15M 2K 0.6M 2K 0.6M
IMDB 75K 20M 12.5K 0.3M 12.5K 0.3M
BNC 15K 18M 1K 1M 1K 1M

Table 2: Preprocessed dataset statistics.

attentional mechanism when predicting the next
word. An additional hyper-parameter in lclm is
the number of preceeding sentences to incorpo-
rate, which we tune based on a development set
(to 4 sentences in each case). All other hyper-
parameters (such as nbatch , e, nepoch , k2) are the
same as tdlm.

lstm+lda: A standard LSTM language model
that incorporates LDA topic information. We first
train an LDA model (Blei et al., 2003; Griffiths
and Steyvers, 2004) to learn 50/100/150 topics for
APNEWS, IMDB and BNC.11 For a document, the
LSTM incorporates the LDA topic distribution (q)
by concatenating it with the output hidden state
(ht) to predict the next word (i.e. h′t = ht ⊕ q).
That is, it incorporates topical information into the
language model, but unlike tdlm the language
model and topic model are trained separately.

We present language model perplexity perfor-
mance in Table 3. All models outperform the base-
line vanilla-lstm, with tdlm performing the

11Based on Gibbs sampling; α = 0.1, β = 0.01.

best across all collections. lclm is competitive
over the BNC, although the superiority of tdlm for
the other collections is substantial. lstm+lda
performs relatively well over APNEWS and IMDB,
but very poorly over BNC.

The strong performance of tdlm over lclm
suggests that compressing document context into
topics benefits language modelling more than us-
ing extra context words directly.12 Overall, our re-
sults show that topical information can help lan-
guage modelling and that joint inference of topic
and language model produces the best results.

5 Topic Model Evaluation

We saw that tdlm performs well as a language
model, but it is also a topic model, and like LDA it
produces: (1) a probability distribution over topics
for each document (Equation (1)); and (2) a prob-
ability distribution over word types for each topic.

12The context size of lclm (4 sentences) is technically
smaller than tdlm (full document), however, note that in-
creasing the context size does not benefit lclm, as the con-
text size of 4 gives the best performance.

359

Domain LSTM Size vanilla-
lclm

lstm+lda tdlm

lstm 50 100 150 50 100 150

APNEWS
small 64.13 54.18 57.05 55.52 54.83 53.00 52.75 52.65
large 58.89 50.63 52.72 50.75 50.17 48.96 48.97 48.21

IMDB
small 72.14 67.78 69.58 69.64 69.62 63.67 63.45 63.82
large 66.47 67.86 63.48 63.04 62.78 58.99 59.04 58.59

BNC
small 102.89 87.47 96.42 96.50 96.38 87.42 85.99 86.43
large 94.23 80.68 88.42 87.77 87.28 82.62 81.83 80.58

Table 3: Language model perplexity performance of all models over APNEWS, IMDB and BNC. Boldface
indicates best performance in each row.

lda ntm tdlm-small tdlm-large0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(a) APNEWS

lda ntm tdlm-small tdlm-large0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(b) IMDB

lda ntm tdlm-small tdlm-large0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(c) BNC

Figure 2: Boxplots of topic coherence of all models; number of topics = 100.

Recall that s is a weighted mean of topic vec-
tors for a document (Equation (2)). Generating
the vocabulary distribution for a particular topic is
therefore trivial: we can do so by treating s as hav-
ing maximum weight (1.0) for the topic of interest,
and no weight (0.0) for all other topics. Let Bt de-
note the topic output vector for the t-th topic. To
generate the multinomial distribution over word
types for the t-th topic, we replace s with Bt be-
fore computing the softmax over the vocabulary.

Topic models are traditionally evaluated using
model perplexity. There are various ways to es-
timate test perplexity (Wallach et al., 2009), but
Chang et al. (2009) show that perplexity does not
correlate with the coherence of the generated top-
ics. Newman et al. (2010b); Mimno et al. (2011);
Aletras and Stevenson (2013) propose automatic
approaches to computing topic coherence, and Lau
et al. (2014) summarises these methods to under-
stand their differences. We propose using auto-
matic topic coherence as a means to evaluate the
topic model aspect of tdlm.

Following Lau et al. (2014), we compute
topic coherence using normalised PMI (“NPMI”)
scores. Given the top-n words of a topic, co-
herence is computed based on the sum of pair-

wise NPMI scores between topic words, where the
word probabilities used in the NPMI calculation
are based on co-occurrence statistics mined from
English Wikipedia with a sliding window (New-
man et al., 2010b; Lau et al., 2014).13

Based on the findings of Lau and Baldwin
(2016), we average topic coherence over the top-
5/10/15/20 topic words. To aggregate topic coher-
ence scores for a model, we calculate the mean
coherence over topics.

In terms of datasets, we use the same document
collections (APNEWS, IMDB and BNC) as the lan-
guage model experiments (Section 4). We use the
same hyper-parameter settings for tdlm and do
not tune them.

For comparison, we use the following topic
models:

lda: We use a LDA model as a baseline topic
model. We use the same LDA models as were
used to learn topic distributions for lstm+lda
(Section 4).

13We use this toolkit to compute topic coher-
ence: https://github.com/jhlau/topic_
interpretability.

360

Topic No. System Coherence
APNEWS IMDB BNC

50

lda .125 .084 .106
ntm .075 .064 .081

tdlm-small .149 .104 .102
tdlm-large .130 .088 .095

100

lda .136 .092 .119
ntm .085 .071 .070

tdlm-small .152 .087 .106
tdlm-large .142 .097 .101

150

lda .134 .094 .119
ntm .078 .075 .072

tdlm-small .147 .085 .100
tdlm-large .145 .091 .104

Table 4: Mean topic coherence of all models over
APNEWS, IMDB and BNC. Boldface indicates the
best performance for each dataset and topic set-
ting.

ntm: ntm is a neural topic model proposed by
Cao et al. (2015). The document-topic and topic-
word multinomials are expressed from a neu-
ral network perspective using differentiable func-
tions. Model hyper-parameters are tuned using de-
velopment loss.

Topic model performance is presented in Ta-
ble 4. There are two models of tdlm
(tdlm-small and tdlm-large), which spec-
ify the size of its LSTM model (1 layer+600
hidden vs. 2 layers+900 hidden; see Section 4).
tdlm achieves encouraging results: it has the
best performance over APNEWS, and is compet-
itive over IMDB. lda, however, produces more
coherent topics over BNC. Interestingly, coher-
ence appears to increase as the topic number in-
creases for lda, but the trend is less pronounced
for tdlm. ntm performs the worst of the 3 topic
models, and manual inspection reveals that topics
are in general not very interpretable. Overall, the
results suggest that tdlm topics are competitive:
at best they are more coherent than lda topics,
and at worst they are as good as lda topics.

To better understand the spread of coherence
scores and impact of outliers, we present box plots
for all models (number of topics = 100) over the 3
domains in Figure 2. Across all domains, ntm has
poor performance and larger spread of scores. The
difference between lda and tdlm is small (tdlm
> lda in APNEWS, but lda < tdlm in BNC),
which is consistent with our previous observation
that tdlm topics are competitive with lda topics.

Partition #Docs #Tokens

Training 9314 2.6M
Development 2000 0.5M

Test 7532 1.7M

Table 5: 20NEWS preprocessed statistics.

6 Extensions

One strength of tdlm is its flexibility, owing to
it taking the form of a neural network. To show-
case this flexibility, we explore two simple ex-
tensions of tdlm, where we: (1) build a super-
vised model using document labels (Section 6.1);
and (2) incorporate additional document metadata
(Section 6.2).

6.1 Supervised Model
In datasets where document labels are known, su-
pervised topic model extensions are designed to
leverage the additional information to improve
modelling quality. The supervised setting also has
an additional advantage in that model evaluation
is simpler, since models can be quantitatively as-
sessed via classification accuracy.

To incorporate supervised document labels, we
treat document classification as another sub-task
in tdlm. Given a document and its label, we feed
the document through the topic model network to
generate the document-topic representation s, and
connect it to another dense layer with softmax out-
put to generate the probability distribution over
classes.

During training, we have additional minibatches
for the documents. We start the document classifi-
cation training after the topic and language models
have completed training in each epoch.

We use 20NEWS in this experiment, which is a
popular dataset for text classification. 20NEWS is
a collection of forum-like messages from 20 news-
groups categories. We use the “bydate” version
of the dataset, where the train and test partition is
separated by a specific date. We sample 2K doc-
uments from the training set to create the devel-
opment set. For preprocessing we tokenise words
and sentence using Stanford CoreNLP (Klein and
Manning, 2003), and lowercase all words. As
with previous experiments (Section 4) we addi-
tionally filter low/high frequency word types and
stopwords. Preprocessed dataset statistics are pre-
sented in Table 5.

For comparison, we use the same two topic

361

Topic No. System Accuracy

50
lda .567
ntm .649
tdlm .606

100
lda .581
ntm .639
tdlm .602

150
lda .597
ntm .628
tdlm .601

Table 6: 20NEWS classification accuracy. All
models are supervised extensions of the original
models. Boldface indicates the best performance
for each topic setting.

Topic No. Metadata Coherence Perplexity

50
No .128 52.45
Yes .131 51.80

100
No .142 52.14
Yes .139 51.76

150
No .135 52.25
Yes .143 51.58

Table 7: Topic coherence and language model per-
plexity by incorporating classification tags on AP-
NEWS. Boldface indicates optimal coherence and
perplexity performance for each topic setting.

models as in Section 5: ntm and lda. Both
ntm and lda have natural supervised extensions
(Cao et al., 2015; McAuliffe and Blei, 2008) for
incorporating document labels. For this task, we
tune the model hyper-parameters based on devel-
opment accuracy.14 Classification accuracy for all
models is presented in Table 6. We present tdlm
results using only the small setting of LSTM (1
layer + 600 hidden), as we found there is little
gain when using a larger LSTM.
ntm performs very strongly, outperforming

both lda and tdlm by a substantial margin.
Comparing lda and tdlm, tdlm achieves bet-
ter performance, especially when there is a smaller
number of topics. Upon inspection of the topics
we found that ntm topics are much less coherent
than those of lda and tdlm, consistent with our
observations from Section 5.

14Most hyper-parameter values for tdlm are similar to
those used in the language and topic model experiments; the
only exceptions are: a = 80, b = 100, nepoch = 20,
m3 = 150. The increase in parameters is unsurprising, as the
additional supervision provides more constraint to the model.

Figure 3: Scatter plots of tag embeddings
(model=150 topics)

6.2 Incorporating Document Metadata
In APNEWS, each news article contains addi-
tional document metadata, including subject clas-
sification tags, such as “General News”, “Acci-
dents and Disasters”, and “Military and Defense”.
We present an extension to incorporate document
metadata in tdlm to demonstrate its flexibility in
integrating this additional information.

As some of the documents in our original AP-
NEWS sample were missing tags, we re-sampled
a set of APNEWS articles of the same size as our
original, all of which have tags. In total, approxi-
mately 1500 unique tags can be found among the
training articles.

To incorporate these tags, we represent each
of them as a learnable vector and concatenate it
with the document vector before computing the
attention distribution. Let zi ∈ Rf denote the
f -dimension vector for the i-th tag. For the j-th
document, we sum up all tags associated with it:

e =

ntags∑

i=1

I(i, j)zi

where ntags is the total number of unique tags, and
function I(i, j) returns 1 is the i-th tag is in the j-th
document or 0 otherwise. We compute d as before
(Section 3.1), and concatenate it with the summed
tag vector: d′ = d⊕ e.

We train two versions of tdlm on the new AP-
NEWS dataset: (1) the vanilla version that ignores
the tag information; and (2) the extended version
which incorporates tag information.15 We exper-

15Model hyper-parameters are the same as the ones used in
the language (Section 4) and topic model (Section 5) experi-
ments.

362

Topic Generated Sentences

protesters suspect gunman
officers occupy gun arrests
suspects shooting officer

• police say a suspect in the shooting was shot in the chest and later shot and killed by a police officer .
• a police officer shot her in the chest and the man was killed .
• police have said four men have been killed in a shooting in suburban london .

film awards actress comedy
music actor album show
nominations movie

• it ’s like it ’s not fair to keep a star in a light , ” he says .
• but james , a four-time star , is just a 〈unk〉.
• a 〈unk〉 adaptation of the movie ” the dark knight rises ” won best picture and he was nominated for best
drama for best director of ” 〈unk〉, ” which will be presented sunday night .

storm snow weather inches
flooding rain service
winds tornado forecasters

• temperatures are forecast to remain above freezing enough to reach a tropical storm or heaviest temperatures .
• snowfall totals were one of the busiest in the country .
• forecasters say tornado irene ’s strong winds could ease visibility and funnel clouds of snow from snow
monday to the mountains .

virus nile flu vaccine
disease outbreak infected
symptoms cough tested

• he says the disease was transmitted by an infected person .
• 〈unk〉 says the man ’s symptoms are spread away from the heat .
• meanwhile in the 〈unk〉, the virus has been common in the mojave desert .

Table 8: Generated sentences for APNEWS topics.

imented with a few values for the tag vector size
(f) and find that a small value works well; in the
following experiments we use f = 5. We evalu-
ate the models based on language model perplex-
ity and topic model coherence, and present the re-
sults in Table 7.16

In terms of language model perplexity, we see
a consistent improvement over different topic set-
tings, suggesting that the incorporation of tags
improves modelling. In terms of topic coher-
ence, there is a small but encouraging improve-
ment (with one exception).

To investigate whether the vectors learnt for
these tags are meaningful, we plot the top-14 most
frequent tags in Figure 3.17 The plot seems reason-
able: there are a few related tags that are close to
each other, e.g. “State government” and “Govern-
ment and politics”; “Crime” and “Violent Crime”;
and “Social issues” and “Social affairs”.

7 Discussion

Topics generated by topic models are typically in-
terpreted by way of their top-N highest probabil-
ity words. In tdlm, we can additionally generate
sentences related to the topic, providing another
way to understand the topics. To do this, we can
constrain the topic vector for the language model
to be the topic output vector of a particular topic
(Equation (3)).

We present 4 topics from a APNEWS model
(k = 100; LSTM size = “large”) and 3 ran-
domly generated sentences conditioned on each

16As the vanilla tdlm is trained on the new APNEWS
dataset, the numbers are slightly different to those in Tables 3
and 4.

17The 5-dimensional vectors are compressed using PCA.

topic in Table 8.18 The generated sentences high-
light the content of the topics, providing another
interpretable aspect for the topics. These results
also reinforce that the language model is driven by
topics.

8 Conclusion

We propose tdlm, a topically driven neural lan-
guage model. tdlm has two components: a lan-
guage model and a topic model, which are jointly
trained using a neural network. We demonstrate
that tdlm outperforms a state-of-the-art language
model that incorporates larger context, and that
its topics are potentially more coherent than LDA
topics. We additionally propose simple extensions
of tdlm to incorporate information such as docu-
ment labels and metadata, and achieved encourag-
ing results.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments and valuable suggestions. This
work was funded in part by the Australian Re-
search Council.

References

Nikos Aletras and Mark Stevenson. 2013. Evaluat-
ing topic coherence using distributional semantics.
In Proceedings of the Tenth International Workshop
on Computational Semantics (IWCS-10). Potsdam,
Germany, pages 13–22.

18Words are sampled with temperature = 0.75. Generation
is terminated when a special end symbol is generated or when
sentence length is greater than 40 words.

363

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. Journal of Ma-
chine Learning Research 3:993–1022.

BNC Consortium. 2007. The British National Corpus,
version 3 (BNC XML Edition). Distributed by Ox-
ford University Computing Services on behalf of the
BNC Consortium. http://www.natcorp.ox.ac.uk/.

Ziqiang Cao, Sujian Li, Yang Liu, Wenjie Li, and Heng
Ji. 2015. A novel neural topic model and its su-
pervised extension. In Proceedings of the 29th An-
nual Conference on Artificial Intelligence (AAAI-
15). Austin, Texas, pages 2210–2216.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L.
Boyd-Graber, and David M. Blei. 2009. Reading
tea leaves: How humans interpret topic models. In
Advances in Neural Information Processing Systems
21 (NIPS-09). Vancouver, Canada, pages 288–296.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder–decoder ap-
proaches. In Proceedings of SSST-8, Eighth Work-
shop on Syntax, Semantics and Structure in Statisti-
cal Translation. Doha, Qatar, pages 103–111.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence mod-
eling. In NIPS Deep Learning and Representation
Learning Workshop. Montreal, Canada, pages 103–
111.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12:2493–2537.

Felix A. Gers and Jürgen Schmidhuber. 2000. Recur-
rent nets that time and count. In Proceedings of the
International Joint Conference on Neural Networks
(IJCNN’2000). Como, Italy, pages 198–194.

Alex Graves, Greg Wayne, and Ivo Danihelka. 2014.
Neural turing machines. CoRR abs/1410.5401.

Thomas L. Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Proceedings of the National
Academy of Sciences 101:5228–5235.

Thomas L. Griffiths, Mark Steyvers, David M. Blei,
and Joshua B. Tenenbaum. 2004. Integrating topics
and syntax. In Advances in Neural Information Pro-
cessing Systems 17 (NIPS-05). Vancouver, Canada,
pages 537–544.

David Hall, Daniel Jurafsky, and Christopher D. Man-
ning. 2008. Studying the history of ideas using topic
models. In Proceedings of the 2008 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2008). Honolulu, USA, pages 363–371.

Geoffrey E. Hinton and Ruslan R. Salakhutdinov. 2009.
Replicated softmax: an undirected topic model. In
Advances in Neural Information Processing Systems
21 (NIPS-09). Vancouver, Canada, pages 1607–
1614.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation 9:1735–
1780.

Yangfeng Ji, Trevor Cohn, Lingpeng Kong, Chris Dyer,
and Jacob Eisenstein. 2016. Document context lan-
guage models. In Proceedings of ICLR-16 Work-
shop, 2016. Toulon, France.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Com-
putational Linguistics (ACL 2003). Sapporo, Japan,
pages 423–430.

Hugo Larochelle and Stanislas Lauly. 2012. A neu-
ral autoregressive topic model. In Advances in Neu-
ral Information Processing Systems 25. pages 2708–
2716.

Jey Han Lau and Timothy Baldwin. 2016. The sensitiv-
ity of topic coherence evaluation to topic cardinality.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics — Human Language Technologies
(NAACL HLT 2016). San Diego, USA, pages 483–
487.

Jey Han Lau, David Newman, and Timothy Baldwin.
2014. Machine reading tea leaves: Automatically
evaluating topic coherence and topic model quality.
In Proceedings of the 14th Conference of the EACL
(EACL 2014). Gothenburg, Sweden, pages 530–539.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies (ACL HLT 2011). Portland,
Oregon, USA, pages 142–150.

Jon D. McAuliffe and David M. Blei. 2008. Super-
vised topic models. In Advances in Neural Informa-
tion Processing Systems 20 (NIPS-08). Vancouver,
Canada, pages 121–128.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Pro-
ceedings of the 11th Annual Conference of the In-
ternational Speech Communication Association (IN-
TERSPEECH 2010). Makuhari, Japan, pages 1045–
1048.

364

David Mimno, Hanna Wallach, Edmund Talley,
Miriam Leenders, and Andrew McCallum. 2011.
Optimizing semantic coherence in topic models. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2011). Edinburgh, UK, pages 262–272.

David Newman, Timothy Baldwin, Lawrence Cave-
don, Sarvnaz Karimi, David Martinez, and Justin
Zobel. 2010a. Visualizing document collections and
search results using topic mapping. Journal of Web
Semantics 8(2–3):169–175.

David Newman, Jey Han Lau, Karl Grieser, and Tim-
othy Baldwin. 2010b. Automatic evaluation of
topic coherence. In Proceedings of Human Lan-
guage Technologies: The 11th Annual Conference
of the North American Chapter of the Association
for Computational Linguistics (NAACL HLT 2010).
Los Angeles, USA, pages 100–108.

Vu Pham, Christopher Kermorvant, and Jérôme
Louradour. 2013. Dropout improves recurrent neu-
ral networks for handwriting recognition. CoRR
abs/1312.4569.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15:1929–1958.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In Advances in Neural Information Process-
ing Systems 28 (NIPS-15). Montreal, Canada, pages
2440–2448.

Ke Tran, Arianna Bisazza, and Christof Monz. 2016.
Recurrent memory networks for language modeling.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics — Human Language Technologies
(NAACL HLT 2016). San Diego, California, pages
321–331.

Hanna M. Wallach, Iain Murray, Ruslan Salakhutdinov,
and David Mimno. 2009. Evaluation methods for
topic models. In Proceedings of the 26th Interna-
tional Conference on Machine Learning (ICML-09).
Montreal, Canada, pages 1105–1112.

Li Wan, Leo Zhu, and Rob Fergus. 2012. A hybrid neu-
ral network-latent topic model. In Proceedings of
the Fifteenth International Conference on Artificial
Intelligence and Statistics (AISTATS-12). La Palma,
Canary Islands, pages 1287–1294.

Tian Wang and Kyunghyun Cho. 2016. Larger-
context language modelling with recurrent neural
network. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(ACL 2016). Berlin, Germany, pages 1319–1329.

Xuerui Wang and Andrew McCallum. 2006. Topics
over time: a non-Markov continuous-time model of
topical trends. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining. Philadelphia, USA,
pages 424–433.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2014. Memory networks. CoRR abs/1410.3916.

Kaisheng Yao, Trevor Cohn, Katerina Vylomova,
Kevin Duh, and Chris Dyer. 2015. Depth-gated
LSTM. CoRR abs/1508.03790.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
CoRR abs/1409.2329.

365

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 366–376
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1034

Handling Cold-Start Problem in Review Spam Detection
by Jointly Embedding Texts and Behaviors

Xuepeng Wang1,2, Kang Liu1, and Jun Zhao1,2

1 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, 100190, China

2 University of Chinese Academy of Sciences, Beijing, 100049, China
{xpwang, kliu, jzhao}@nlpr.ia.ac.cn

Abstract

Solving the cold-start problem in review s-
pam detection is an urgent and significant
task. It can help the on-line review web-
sites to relieve the damage of spammers in
time, but has never been investigated by
previous work. This paper proposes a nov-
el neural network model to detect review
spam for the cold-start problem, by learn-
ing to represent the new reviewers’ review
with jointly embedded textual and behav-
ioral information. Experimental results
prove the proposed model achieves an ef-
fective performance and possesses prefer-
able domain-adaptability. It is also appli-
cable to a large-scale dataset in an unsu-
pervised way.

1 Introduction

With the rapid growth of products reviews at the
web, it has become common for people to read
reviews before making a purchase decision. The
reviews usually contain abundant consumers’ per-
sonal experiences. It has led to a significant in-
fluence on financial gains and fame for business-
es. Existing studies have shown that an extra half-
star rating on Yelp causes restaurants to sell out
19% points more frequently (Anderson and Ma-
gruder, 2012), and a one-star increase in Yelp rat-
ing leads to a 5-9 % increase in revenue (Luca,
2011). This, unfortunately, gives strong incentives
for imposters (called spammers) to game the sys-
tem. They post fake reviews or opinions (called
review spam) to promote or to discredit some tar-
geted products and services. The news from BBC
has shown that around 25% of Yelp reviews could
be fake.1 Therefore, it is urgent to detect review s-

1http://www.bbc.com/news/technology-24299742

pam, to ensure that the online review continues to
be trusted.

Jindal and Liu (2008) make the first step to de-
tect review spam. Most efforts are devoted to ex-
ploring effective linguistic and behavioral features
by subsequent work to distinguish such spam from
the real reviews. However, to notice such pattern-
s or form behavioral features, developers should
take a long time to observe the data, because the
features are based on statistics. For instance, the
feature activity window proposed by Mukherjee
et al. (2013c) is to measure the activity freshness
of reviewers. It usually takes several months to
count the difference of timestamps between the
last and first reviews for reviewers. When the fea-
tures show themselves finally, some major dam-
ages might have already been done. Thus, it is
important to design algorithms that can detect re-
view spam as soon as possible, ideally, right after
they are posted by the new reviewers. It is a cold-
start problem which is the focus of this paper.

In this paper, we assume that we must identi-
fy fake reviews immediately when a new reviewer
posts just one review. Unfortunately, it is very dif-
ficult because the available information for detect-
ing fake reviews is very poor. Traditional behav-
ioral features based on the statistics can only work
well on users’ abundant behaviors. The more be-
havioral information obtained, the more effective
the traditional behavioral features are (see experi-
ments in Section 3). In the scenario of cold-start,
a new reviewer only has a behavior: post a review.
As a result, we can not get effective behavioral fea-
tures from the data. Although, the linguistic fea-
tures of reviews do not need to take much time to
form, Mukherjee et al. (2013c) have proved that
the linguistic features are not effective enough in
detecting real-life fake reviews from the commer-
cial websites, where we also obtain the same ob-
servation (the details are shown in Section 3).

366

https://doi.org/10.18653/v1/P17-1034

Therefore, the main difficulty of the cold-start
spam problem is that there are no sufficient behav-
iors of the new reviewers for constructing effec-
tive behavioral features. Nevertheless, there is am-
ple textual and behavioral information contained
in the abundant reviews posted by the existing re-
viewers (Figure 1). We could employ behavioral
information of existing similar reviewers to a new
reviewer to approximate his behavioral features.
We argue that a reviewer’s individual characteris-
tics such as background information, motivation,
and interactive behavior style have a great influ-
ence on a reviewer’s textual and behavioral infor-
mation. So the textual information and the behav-
ioral information of a reviewer are correlated with
each other (similar argument in Li et al. (2016)).
For example, the students of the college are likely
to choose the youth hostel during summer vaca-
tion and tend to comment the room price in their
reviews. But the financial analysts on a business
trip may tend to choose the business hotel, the en-
vironment and service are what they care about in
their reviews.

To augment the behavioral information of the
new reviewers in the cold-start problem, we first
try to find the textual information which is sim-
ilar with that of the new reviewer, from the ex-
isting reviews. There are several ways to model
the textual information of the review spam, such
as Unigram (Mukherjee et al., 2013c), POS (Ot-
t et al., 2011) and LIWC (Linguistic Inquiry and
Word Count) (Newman et al., 2003). We employ
the CNN (Convolutional Neural Network) to mod-
el the review text, which has been proved that it
can capture complex global semantic information
that is difficult to express using traditional discrete
manual features (Ren and Zhang, 2016). Then we
employ the behavioral information which is cor-
related with the found textual information to ap-
proximate the behavioral information of the new
reviewer. An intuitive approach is to search the
most similar existing review for the new review,
then take the found reviewer’s behavioral features
as the new reviewers’ features (detailed in Section
5.3). However, there is abundant behavioral infor-
mation in the review graph (Figure 1), it is diffi-
cult for the traditional discrete manual behavioral
features to record the global behavioral informa-
tion (Wang et al., 2016). Moreover, the traditional
features can not capture the reviewer’s individual
characteristics, because there is no explicit charac-
teristic tag available in the review system (experi-

HŽƚĞůͺϮ

HŽƚĞůͺϭ
RĞǀŝĞǁͺϭ

RĞǀŝĞǁͺϮ

RĞǀŝĞǁͺϯ

RĞǀŝĞǁͺϰ

A

B

C

Figure 1: Part of review graph simplified from
Yelp.

ments in Section 5.3). So, we propose a neural net-
work model to jointly encode the textual and be-
havioral information into the review embeddings
for detecting the review spam in the cold-start
problem. By encoding the review graph struc-
ture (Figure 1), the proposed model can record the
global footprints of the existing reviewers in an un-
supervised way, and further record the reviewers’
latent characteristic information in the footprints.
The jointly learnt review embeddings can model
the correlation of the reviewers’ textual and behav-
ioral information. When a new reviewer posts a re-
view, the proposed model can represent the review
with the similar textual information and the corre-
lated behavioral information encoded in the word
embeddings. Finally, the embeddings of the new
review are fed into a classifier to identify whether
it is spam or not.

In summary, our major contributions include:
• To our best knowledge, this is the first work

that explores the cold-start problem in review
spam detection. We qualitatively and quan-
titatively prove that the traditional linguistic
and behavioral features are not effective e-
nough in detecting review spam for the cold-
start task.

• We propose a neural network model to joint-
ly encode the textual and behavioral infor-
mation into the review embeddings for the
cold-start spam detection task. It is an unsu-
pervised distributional representation model
which can learn from large scale unlabeled
review data.

• Experimental results on two domains (hotel
and restaurant) give good confidence that the
proposed model performs effectively in the
cold-start spam detection task.

2 Related Work

Jindal and Liu (2008) make the first step to de-
tect review spam. Subsequent work devoted most

367

efforts to explore effective features and spammer-
like clues.

Linguistic features: Ott et al. (2011) applied
psychological and linguistic clues to identify re-
view spam; Harris (2012) explored several writ-
ing style features. Syntactic stylometry for re-
view spam detection was investigated in Feng et al.
(2012a); Xu and Zhao (2012) using deep linguis-
tic features for finding deceptive opinion spam; Li
et al. (2013) studied the topics in the review spam;
Li et al. (2014b) further analyzed the general dif-
ference of language usage. Fornaciari and Poesio
(2014) proved the effectiveness of the N-grams in
detecting deceptive Amazon book reviews. The
effectiveness of the N-grams was also explored in
Cagnina and Rosso (2015). Li et al. (2014a) pro-
posed a positive-unlabeled learning method based
on unigrams and bigrams; Kim et al. (2015) car-
ried out a frame-based deep semantic analysis. Hai
et al. (2016) exploited the relatedness of multiple
review spam detection tasks and available unla-
beled data to address the scarcity of labeled opin-
ion spam data by using linguistic features. Be-
sides, (Ren and Zhang, 2016) proved that the CNN
model is more effective than the RNN and the tra-
ditional discrete manual linguistic features. Hovy
(2016) used N-gram generative models to produce
reviews and evaluated their effectiveness.

Behavioral features: Lim et al. (2010) ana-
lyzed reviewers’ rating behavioral features; Jin-
dal et al. (2010) identified unusual review pattern-
s which can represent suspicious behaviors of re-
views; Li et al. (2011) proposed a two-view semi-
supervised co-training method base on behavioral
features. Feng et al. (2012b) study the distri-
butions of individual spammers’ behaviors. The
group spammers’ behavioral features were stud-
ied in Mukherjee et al. (2012). Temporal pat-
terns of spammers were investigated by Xie et al.
(2012), Fei et al. (2013); Li et al. (2015) ex-
plored the temporal and spatial patterns. The re-
view graph was analyzed by Wang et al. (2011),
Akoglu et al. (2013); Mukherjee et al. (2013a)
studied the spamicity of reviewers. Mukherjee
et al. (2013c), Mukherjee et al. (2013b) proved
that reviewers’ behavioral features are more ef-
fective than reviews’ linguistic features for detect-
ing review spam. Based on this conclusion, re-
cently, researchers (Rayana and Akoglu, 2015; KC
and Mukherjee, 2016) have put more efforts in
employing reviewers’ behavioral features for de-

Features P R F1 A
LF 54.5 71.1 61.7 55.9

LF+BF 63.4 52.6 57.5 61.1
LF+BF abundant 69.1 63.5 66.2 67.5

(a) Hotel

Features P R F1 A
LF 53.8 80.8 64.6 55.8

LF+BF 58.1 61.2 59.6 58.5
LF+BF abundant 56.6 78.2 65.7 59.1

(b) Restaurant

Table 1: SVM classification results across linguis-
tic features (LF, bigrams here (Mukherjee et al.,
2013b)), behavioral features (BF: RL, RD, M-
CS (Mukherjee et al., 2013b)) and behavioral
features with abundant behavioral information
(BF abundant). Both training and testing use bal-
anced data (50:50).

tecting review spam, the intuition behind which
is to capture the reviewers’ actions and supposes
that those reviews written with spammer-like be-
haviors would be spam. Wang et al. (2016) ex-
plored a method to learn the review representation
with global behavioral information. Viviani and
Pasi (2017) concentrated on the aggregation pro-
cess with respect to each single veracity feature.

3 Whether Traditional Features are
Effective

As a new reviewer posted just one review and we
have to identify it immediately, the major chal-
lenge of the cold-start task is that the available
information about the new reviewer is very poor.
The new reviewer only provides us with one re-
view record. For most traditional features based
on the statistics, they can not form themselves or
make no sense, such as the percentage of reviews
written at weekends (Li et al., 2015), the entropy
of rating distribution of user’s review (Rayana and
Akoglu, 2015). To investigate whether traditional
features are effective in the cold-start task, we con-
ducted experiments on the Yelp dataset in Mukher-
jee et al. (2013c). We trained SVM models with
different features on the existing reviews posted
before January 1, 2012, and tested on the new re-
views which just posted by the new reviewers after
January 1, 2012. Results are shown in Table 1.

368

3.1 Linguistic Features’ Poor Performance

The linguistic features need not take much time to
form. But Mukherjee et al. (2013c) have proved
that the linguistic features are not effective e-
nough in detecting real-life fake reviews from the
commercial websites, compared with the perfor-
mances on the crowd source datasets (Ott et al.,
2011). They showed that the word bigrams per-
form better than the other linguistic features, such
as LIWC (Newman et al., 2003; Pennebaker et al.,
2007), part-of-speech sequence patterns (Mukher-
jee and Liu, 2010), deep syntax (Feng et al.,
2012a), information gain (Mukherjee et al., 2013c)
and so on. So, we conduct experiments with the
word bigrams feature. As shown in Table 1 (a,
b) row 1, the word bigrams result in only around
55% in accuracy in both the hotel and restaurant
domains. It indicates that the most effective tra-
ditional linguistic feature (i.e., the word bigrams)
can’t detect the review spam effectively in the cold
start task.

3.2 Behavioral Features only Work Well with
Abundant Information

Because there is not enough available information
about the new reviewer, for most traditional be-
havioral features based on the statistical mecha-
nism, they couldn’t form themselves or make no
sense. We investigated the previous work and
found that there are three behavioral features can
be applied to the cold-start task. They are pro-
posed by Mukherjee et al. (2013b), i.e., 1.Review
length (RL) : the length of the new review posted
by the new reviewer; 2.Reviewer deviation (RD):
the absolute rating deviation of the new reviewer’s
review from other reviews on the same business;
3.Maximum content similarity (MCS) : the max-
imum content similarity (using cosine similarity)
between the new reviewer’s review with other re-
views on the same business.

Table 1 (a, b) row 2 shows the experiment re-
sults by the combinations of the bigrams feature
and the three behavioral features described above.
The behavioral features make around 5% improve-
ment in accuracy in the hotel domain (2.7% in the
restaurant domain) as compared with only using
bigrams. The accuracy is improved but it is just
near 60% in average. It indicates that the tradi-
tional features are not effective enough with poor
behavioral information. What’s more, the behav-
ioral features cause around 4.6% decrease in F1-

score and around 19% decrease in Recall in both
hotel and restaurant domains. It is obvious that
there is more false-positive review spam caused by
the behavioral features as compared to only using
bigrams. It further indicates that the traditional be-
havioral features’ discrimination for review spam
gets to be weakened by the poor behavioral infor-
mation.

To go a step further, we carried experi-
ments with the three behavioral features which
are formed on abundant behavioral information.
When the new reviewers continue to post more re-
views in after weeks, their behavioral information
gets to be more. Then the review system could ob-
tain sufficient data to extract behavior features as
compared to the poor information in the cold-start
period. So the behavioral features with abundant
information make an obvious improvement in ac-
curacy (6.4%) in the hotel domain (Table 1 (a) row
3) as compared with the results in Table 1 (a) row
2. But it is only 0.6% in the restaurant domain. By
statistics on the datasets, we found that the new re-
viewers posted about 54.4 reviews in average after
their first post in the hotel domain, but it is only
10 reviews in average for the new reviewers in the
restaurant domain. The added behavioral informa-
tion in the hotel domain is richer than that in the
restaurant domain. It indicates that:

• the traditional behavioral features can only
work well with abundant behavioral informa-
tion;

• the more behavioral information can be ob-
tained, the more effective the traditional be-
havioral features are.

Figure 2: Illustration of our model.

369

4 The Proposed Model

The difficulty of detecting review spam in the
cold-start task is that the available behavioral in-
formation of new reviewers is very poor. The new
reviewer just posted one review and we have to fil-
ter it out immediately, there is not any historical re-
view provided to us. As we argued, the textual in-
formation and the behavioral information of a re-
viewer are correlated with each other. So, to aug-
ment the behavioral information of new reviewer-
s, we try to find the textual information which is
similar with that of the new reviewer, from exist-
ing reviews. Then we take the behavioral infor-
mation which is correlated with the found textu-
al information as the most possible behavioral in-
formation of the new reviewer. For this purpose,
we propose a neural network model to jointly en-
code the textual and behavioral information into
the review embeddings for detecting the review s-
pam in the cold-start problem (shown in Figure 2).
When a new reviewer posts a review, the neural
network can represent the review with the similar
textual information and the correlated behavioral
information encoded in the word embeddings. Fi-
nally, embeddings of the new review are fed into a
classifier to identify whether it is spam or not.

4.1 Behavioral Information Encoding

In Figure 1, there is a part of review graph which is
simplified from the Yelp website. As it shows, the
review graph contains the global behavioral infor-
mation (footprints) of the existing reviewers. Be-
cause the motivations of the spammers and the re-
al reviewers are totally different, the distributions
of the behavioral information of them are differ-
ent (Mukherjee et al., 2013a). There are business-
es (even highly reputable ones) paying people to
write fake reviews for them to promote their prod-
ucts/services and/or to discredit their competitors
(Liu, 2015). So the behavioral footprints of the
spammers are decided by the demands of the busi-
nesses. But the real reviewers only post reviews to
the product or services they have actually experi-
enced. Their behavioral footprints are influenced
by their own characteristics. Previous work ex-
tracts behavioral features for reviewers from these
behavioral information. But it is impractical to the
new reviewers in the cold-start task. Moreover,
the traditional discrete features can not effective-
ly record the global behavioral information (Wang
et al., 2016). Besides, there is no explicit charac-

teristic tag available in the review system, and we
need to find a way to record the reviewers’ latent
characters information in footprints.

Therefore we encode these behavioral informa-
tion into our model by utilizing an embedding
learning model which is similar with TransE (Bor-
des et al., 2013). TransE is a model which can en-
code the graph structure, and represent the nodes
and edges (head, translation/relation, tail) in low
dimension vector space. TransE has been proved
that it is good at describing the global information
of the graph structure by the work about distri-
butional representation for knowledge base (Guu
et al., 2015). We consider that each reviewer in
review graph describes the product in his/her own
view and writes the review. When we represent
the product, reviewer, and review in low dimen-
sion vector space, the reviewer embeddings can be
taken as a translation vector, which has translated
the product embeddings to the review embeddings.
So, as shown in Figure 2, we take the products
(hotels/restaurants) as the head part of the TransE
network in our model, take the reviewers as the
translation (relation) part and take the review as
the tail part. By learning from the existing large
scale unlabeled reviews of the review graph, we
can encode the global behavioral information in-
to our model without extracting any traditional be-
havioral feature, and record reviewers’ latent char-
acteristics information.

More formally, we minimize a margin-based
criterion over the training set:

L =
∑

(β,α,τ)∈S

∑

(β′,α,τ ′)∈S′
max

{0, 1 + d(β + α, τ) − d(β′ + α, τ ′)}
(1)

S denotes the training set of triples (β, α, τ)
composed product β (β ∈ B, products set (head
part)), reviewer α (α ∈ A, reviewers set (trans-
lation part)) and review text embeddings learnt by
the CNN τ (τ ∈ T , review texts set (tail part)).

S′ = {(β′, α, τ)|β′ ∈ B} ∪ {(β, α, τ ′)|τ ′ ∈ T} (2)

The set of corrupted triplets S′ (Equation (2)), is
composed of training triplets with either the prod-
uct or review text replaced by a random chosen
one (but not both at the same time).

d(β + α, τ) = ∥β + α − τ∥2
2 ,

s.t. ∥β∥2
2 = ∥α∥2

2 = ∥τ∥2
2 = 1

(3)

370

Domain Hotel Restaurant
#reviews 688328 788471

#reviewers 5132 35593

date range
2004.10.23
2012.09.26

2004.10.12
2012.10.02

%before 2012.01.01 99.01% 97.40%

Table 2: Yelp Whole Dataset Statistics (Labeled
and Unlabeled).

d(β + α, τ) is the dissimilarity function with the
squared euclidean distance.

4.2 Textual Information Encoding

To encode the textual information into our model,
we adopt a convolutional neural network (CNN) to
learn to represent the existing reviews. By statis-
tics, we find that a review usually refers to several
aspects of the products or services. For example, a
hotel review may comment the room price, the free
WiFi, and the bathroom at the same time. Com-
pared with the recurrent neural network (RNN),
the CNN can do a better job of modeling the dif-
ferent aspects of a review. Ren and Zhang (2016)
have proved that the CNN can capture complex
global semantic information and detect review s-
pam more effectively, compared with traditional
discrete manual features and the RNN model. As
shown in Figure 2, we take the learnt embeddings
τ of reviews by the CNN as the tail part.

Specifically, we denote the review text consist-
ing of n words as {w1, w2, ..., wn}, the word em-
beddings e(wi) ∈ RD, D is the word vector di-
mension. We take the concatenation of the word
embeddings in a fixed length window size Z as
the input of the linear layer, which is denoted as
Ii ∈ RD×Z . So the output of the linear layer
Hi is calculated by Hk,i = Wk · Ii + bi, where
Wk ∈ RD×Z is the weight matrix of filter k. We
utilize a max pooling layer to get the output of
each filter. Then we take tanh as the activation
function and concatenate the outputs as the final
review embeddings, which is denoted as τi.

4.3 Jointly Information Encoding

To model the correlation of the textual and behav-
ioral information, we employ the jointly informa-
tion encoding. By jointly learning from the global
review graph, the textual and behavioral informa-
tion of existing spammers and real reviewers are
embedded into the word embeddings.

Domain Hotel Restaurant
fake 802 8368

non-fake 4876 50149
%fake 14.1% 14.3%

#reviews 5678 58517
#reviewers 5124 35593

Table 3: Yelp Labeled Dataset Statistics.

Dataset Train Test

date range
2004.10.23
2012.01.01

2012.01.01
2012.09.26

#reviews 1132 422
(a) Hotel

Dataset Train Test

date range
2004.10.12
2012.01.01

2012.01.01
2012.10.02

#reviews 14012 2368
(b) Restaurant

Table 4: The Balanced Datasets Statistics for
Training and Testing the Classifier from Table 3.

In addition, the rating usually represents the
sentiment polarity of a review, e.g., five star means
‘like’ and one star means ‘dislike’. The spammers
often review their target products with a low rat-
ing for discredited purpose, and with a high rating
for promoted purpose. To encode the semantics of
the sentiment polarity into the review embeddings,
we learn the embeddings of 1-5 stars rating in our
model at the same time. They are taken as the con-
straints of the review embeddings during the joint
learning. They are calculated as:

C =
∑

(τ ,γ)∈Γ

∑

(τ ,γ′)∈Γ′
max{0, 1+ g(τ , γ)− g(τ , γ′)} (4)

The set of corrupted tuples Γ′ is composed of
training tuples Γ with the rating of review replaced
by its opposite rating (i.e., 1 by 5, 2 by 4, 3 by
1 or 5). g(τ , γ) = ∥τ − γ∥2

2, norm constraints:
∥γ∥2

2 = 1.
The final joint loss function is as follows:

LJ = (1 − θ)L + θC (5)

where θ is a hyper-parameter.

371

Features P R F1 A
LF 54.5 71.1 61.7 55.9 1

LF+BF 63.4 52.6 57.5 61.1 2
BF EditSim+LF 55.3 69.7 61.6 56.6 3

BF W2Vsim+W2V 58.4 65.9 61.9 59.5 4
Ours RE 62.1 68.3 65.1 63.3 5

Ours RE+RRE+PRE 63.6 71.2 67.2 65.3 6
(a) Hotel

P R F1 A
53.8 80.8 64.6 55.8 1
58.1 61.2 59.6 58.5 2
53.9 82.2 65.1 56.0 3
56.3 73.4 63.7 58.2 4
58.4 75.1 65.7 60.8 5
59.0 78.8 67.5 62.0 6

(b) Restaurant

Table 5: SVM classification results across linguistic features (LF, bigrams here (Mukherjee et al.,
2013b)), behavioral features (BF: RL, RD, MCS (Mukherjee et al., 2013b)); the SVM classification re-
sults by the intuitive method that finding the most similar existing review by edit distance ratio and take
the found reviewers’ behavioral features as approximation (BF EditSim+LF), and results by the intuitive
method that finding the most similar existing review by averaged pre-trained word embeddings (using
Word2Vec) (BF W2Vsim+W2V); and the SVM classification results across the learnt review embed-
dings (RE), the learnt review’s rating embeddings (RRE), the learnt product’s average rating embeddings
(PRE) by our model. Improvements of our model are statistically significant with p<0.005 based on
paired t-test.

5 Experiments

5.1 Datasets and Evaluation Metrics

Datasets: To evaluate the proposed method, we
conducted experiments on Yelp dataset that was
used in (Mukherjee et al., 2013b,c; Rayana and
Akoglu, 2015). The statistics of the Yelp dataset
are listed in Table 2 and Table 3. The reviewed
product here refers to a hotel or restaurant. We
take the existing reviews posted before January
1, 2012 as the datasets for training our embed-
ding learning model, and take the first new reviews
which just posted by the new reviewers after Jan-
uary 1, 2012 as the test datasets. Table 4 displays
the statistics of the balanced datasets for training
and testing the classifier.
Evaluation Metrics: We select precision (P), re-
call (R), F1-Score (F1), accuracy (A) as metrics.

5.2 Our Model v.s. the Traditional Features

To illustrate the effectiveness of our model, we
conduct experiments on the public datasets, and
make comparison with the most effective tradi-
tional linguistic features, e.g., bigrams, and the
three practicable traditional behavioral features
(RL, RD, MCS (Mukherjee et al., 2013b)) referred
in Section 3.2. The results are shown in Table 5.
For our model, we set the dimension of embed-
dings to 100, the number of CNN filters to 100, θ
to 0.1, Z to 2. The hyper-parameters are tuned by
grid search on the development dataset. The prod-
uct and reviewer embeddings are randomly ini-

tialized from a uniform distribution (Socher et al.,
2013). The word embeddings are initialized with
100-dimensions vectors pre-trained by the CBOW
model (Word2Vec) (Mikolov et al., 2013). As Ta-
ble 5 showed, our model observably performs bet-
ter in detecting review spam for the cold-start task
in both hotel and restaurant domains.

Review Embeddings Compared with the tradi-
tional linguistic features, e.g., bigrams, using the
review embeddings learnt by our model, result-
s in around 3.4% improvement in F1 and around
7.4% improvement in A in the hotel domain (1.1%
in F1 and 5.0% in A for the restaurant domain,
shown in Tabel 5 (a,b) rows 1, 5). Compared with
the combination of the bigrams and the traditional
behavioral features, using the review embeddings
learnt by our model, results in around 7.6% im-
provement in F1 and around 2.2% improvement
in A in the hotel domain (6.1% in F1 and 2.3%
in A for the restaurant domain, shown in Tabel 5
(a,b) rows 2, 5). The F1-Score (F1) of the classi-
fication under the balance distribution reflects the
ability to detect the review spam. The accuracy
(A) of the classification under the balance distri-
bution reflects the ability to identify both the re-
view spam and the real review. The experimen-
t results indicate that our model performs signif-
icantly better than the traditional methods in F1
and A at the same time. The learnt review em-
beddings with encoded linguistic and behavioral
information are more effective in detecting review

372

Features P R F1 A
LF 54.5 71.1 61.7 55.9 1

Ours CNN 61.2 51.7 56.1 59.5 2
Ours RE 62.1 68.3 65.1 63.3 3

(a) Hotel

P R F1 A
53.8 80.8 64.6 55.8 1
56.9 58.8 57.8 57.1 2
58.4 75.1 65.7 60.8 3

(b) Restaurant

Table 6: SVM classification results across linguistic features (LF, bigrams here (Mukherjee et al.,
2013b)), the learnt review embeddings (RE) ; and the classification results by only using our CNN. Both
training and testing use balanced data (50:50). Improvements of our model are statistically significant
with p<0.005 based on paired t-test.

spam for the cold-start task.

Rating Embeddings As we referred in Section
4.3, the rating of a review usually means the senti-
ment polarity of a real reviewer or the motivation
of a spammer. As shown in Table 5 (a,b) rows
6, adding the rating embeddings of the products
(hotel/restaurant) and reviews renders even higher
F1 and A. We suppose that different rating embed-
dings are encoded with different semantic mean-
ings. They reflect the semantic divergences be-
tween the average rating of the product and the
review rating. In results, using RE+RRE+PRE
which makes the best performance of our mod-
el, results in around 5.5% improvement in F1 and
around 9.4% improvement in A in the hotel do-
main (2.9% in F1 and 6.2% in A for the restaurant
domain, shown in Tabel 5 (a,b) rows 1, 6), com-
pared with the LF. Using RE+RRE+PRE result-
s in around 9.7% improvement in F1 and around
4.2% improvement in A in the hotel domain (7.9%
in F1 and 3.5% in A for the restaurant domain,
shown in Tabel 5 (a,b) rows 2, 6), compared with
the LF+BF.

The experiment results prove that our model is
effective. The improvements in both the F1 and
A prove that our model performs well in both de-
tecting the review spam and identifying the real
review. Furthermore, the improvements in both
the hotel and restaurant domains prove that our
model possesses preferable domain-adaptability 2.
It can learn to represent the reviews with global
linguistic and behavioral information from large-
scale unlabeled existing reviews.

2The improvements in hotel domain are greater than that
in restaurant domain. The possible reason is the proportion
of the available training data in hotel domain is higher than
that in restaurant domain (99.01% vs. 97.40% in Table 2).

5.3 Our Jointly Embeddings v.s. the Intuitive
Methods

As mentioned in Section 1, to approximate the be-
havioral information of the new reviewers, there
are other intuitive methods. So we conduct exper-
iments with two intuitive methods as a compari-
son. One is finding the most similar existing re-
view by edit distance ratio and taking the found
reviewers’ behavioral features as an approxima-
tion, and then training the classifier on the be-
havioral features and bigrams (BF EditSim+LF).
The other is finding the most similar existing
review by cosine similarity of review embed-
dings which is the average of the pre-trained
word embeddings (using Word2Vec), and then
training the classifier on the behavioral features
and review embeddings (BF W2Vsim+W2V). As
shown in Table 5, our joint embeddings (Ours RE
and Ours RE+RRE+PRE) obviously perform bet-
ter than the intuitive methods, such as the Ours RE
is 3.8% (Accuracy) and 3.2% (F1) better than
BF W2Vsim+W2V in the hotel domain. The ex-
periments indicate that our joint embeddings do
a better job in capturing the reviewer’s character-
istics and modeling the correlation of textual and
behavioral information.

5.4 The Effectiveness of Encoding the Global
Behavioral Information

To further evaluate the effectiveness of encoding
the global behavioral information in our model,
we build an independent supervised convolutional
neural network which has the same structure and
parameter settings with the CNN part of our mod-
el. There is not any review graphic or behavioral
information in this independent supervised CNN
(Tabel 6 (a,b) row 2). As shown in Tabel 6 (a,b)
rows 2, 3, compared with the review embeddings
learnt by the independent supervised CNN, using

373

the review embeddings learnt by our model result-
s in around 9.0% improvement in F1 and around
3.8% improvement in A in the hotel domain (7.9%
in F1 and 3.7% in A for the restaurant domain).
The results show that our model can represent the
new reviews posted by the new reviewers with the
correlated behavioral information encoded in the
word embeddings. The transE part of our mod-
el has effectively recorded the behavioral informa-
tion of the review graph. Thus, our model is more
effective by jointly embedding the textual and be-
havioral informations, it helps to augment the pos-
sible behavioral information of the new reviewer.

5.5 The Effectiveness of CNN

Compared with the the most effective linguistic
features, e.g., bigrams, our independent super-
vised convolutional neural network performs bet-
ter in A than F1 (shown in Tabel 5 (a,b) rows
1, 2). It indicates that the CNN do a better job
in identifying the real review than the review s-
pam. We suppose that the possible reason is that
the CNN is good at modeling the different seman-
tic aspects of a review. And the real reviewer-
s usually tend to describe different aspects of a
hotel or restaurant according to their real person-
al experiences, but the spammers can only forge
fake reviews with their own infinite imagination.
Mukherjee et al. (2013b) also proved that different
psychological states of the minds of the spammer-
s and non-spammers, lead to significant linguistic
differences between review spam and non-spam.

6 Conclusion and Future Work

This paper analyzes the importance and difficul-
ty of the cold-start challenge in review spam com-
bat. We propose a neural network model that joint-
ly embeds the existing textual and behavioral in-
formation for detecting review spam in the cold-
start task. It can learn to represent the new re-
view of the new reviewer with the similar textu-
al information and the correlated behavioral infor-
mation in an unsupervised way. Then, a classifi-
er is applied to detect the review spam. Experi-
mental results prove the proposed model achieves
an effective performance and possesses preferable
domain-adaptability. It is also applicable to a
large-scale dataset in an unsupervised way. To our
best knowledge, this is the first work to handle the
cold-start problem in review spam detection. We
are going to explore more effective models in fu-

ture.

Acknowledgments

This work was supported by the Natural Science
Foundation of China (No. 61533018) and the
National Basic Research Program of China (No.
2014CB340503). And this research work was al-
so supported by Google through focused research
awards program. We would like to thank Prof.
Bing Liu for useful advice, and the anonymous re-
viewers for their detailed comments and sugges-
tions.

References
Leman Akoglu, Rishi Chandy, and Christos Faloutsos.

2013. Opinion fraud detection in online reviews by
network effects. ICWSM 13:2–11.

Michael Anderson and Jeremy Magruder. 2012. Learn-
ing from the crowd: Regression discontinuity esti-
mates of the effects of an online review database*.
The Economic Journal 122(563):957–989.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems. pages 2787–2795.

Leticia Cagnina and Paolo Rosso. 2015. Proceed-
ings of the 6th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Medi-
a Analysis, Association for Computational Linguis-
tics, chapter Classification of deceptive opinions us-
ing a low dimensionality representation, pages 58–
66. https://doi.org/10.18653/v1/W15-2909.

Geli Fei, Arjun Mukherjee, Bing Liu, Meichun Hsu,
Malu Castellanos, and Riddhiman Ghosh. 2013. Ex-
ploiting burstiness in reviews for review spammer
detection. In ICWSM. Citeseer.

Song Feng, Ritwik Banerjee, and Yejin Choi.
2012a. Syntactic stylometry for deception detec-
tion. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Association
for Computational Linguistics, pages 171–175.
http://aclweb.org/anthology/P12-2034.

Song Feng, Longfei Xing, Anupam Gogar, and Yejin
Choi. 2012b. Distributional footprints of deceptive
product reviews. In ICWSM.

Tommaso Fornaciari and Massimo Poesio. 2014. I-
dentifying fake amazon reviews as learning from
crowds. In Proceedings of the 14th Confer-
ence of the European Chapter of the Associ-
ation for Computational Linguistics. Association
for Computational Linguistics, pages 279–287.
https://doi.org/10.3115/v1/E14-1030.

374

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing knowledge graphs in vector space. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 318–327.
https://doi.org/10.18653/v1/D15-1038.

Zhen Hai, Peilin Zhao, Peng Cheng, Peng Yang,
Xiao-Li Li, and Guangxia Li. 2016. Decep-
tive review spam detection via exploiting task re-
latedness and unlabeled data. In Proceedings
of the 2016 Conference on Empirical Method-
s in Natural Language Processing. Association
for Computational Linguistics, pages 1817–1826.
http://aclweb.org/anthology/D16-1187.

C Harris. 2012. Detecting deceptive opinion spam us-
ing human computation. In Workshops at AAAI on
Artificial Intelligence.

Dirk Hovy. 2016. The enemy in your own
camp: How well can we detect statistically-
generated fake reviews–an adversarial study. In
The 54th Annual Meeting of the Association
for Computational Linguistics. page 351. http-
s://www.aclweb.org/anthology/385.

Nitin Jindal and Bing Liu. 2008. Opinion spam and
analysis. In Proceedings of the First WSDM. ACM,
pages 219–230.

Nitin Jindal, Bing Liu, and Ee-Peng Lim. 2010. Find-
ing unusual review patterns using unexpected rules.
In Proceedings of the 19th CIKM. ACM, pages
1549–1552.

Santosh KC and Arjun Mukherjee. 2016. On the tem-
poral dynamics of opinion spamming: Case studies
on yelp. In Proceedings of the 25th International
Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, pages
369–379.

Seongsoon Kim, Hyeokyoon Chang, Seongwoon Lee,
Minhwan Yu, and Jaewoo Kang. 2015. Deep seman-
tic frame-based deceptive opinion spam analysis. In
Proceedings of the 24th CIKM. ACM, pages 1131–
1140.

Fangtao Li, Minlie Huang, Yi Yang, and Xiaoyan Zhu.
2011. Learning to identify review spam. In IJCAI
Proceedings. volume 22, page 2488.

Huayi Li, Zhiyuan Chen, Arjun Mukherjee, Bing Li-
u, and Jidong Shao. 2015. Analyzing and detecting
opinion spam on a large-scale dataset via temporal
and spatial patterns. In Ninth International AAAI
Conference on Web and Social Media.

Huayi Li, Bing Liu, Arjun Mukherjee, and Ji-
dong Shao. 2014a. Spotting fake reviews using
positive-unlabeled learning. Computación y Sis-
temas 18(3):467–475.

Jiwei Li, Claire Cardie, and Sujian Li. 2013. Top-
icspam: a topic-model based approach for spam
detection. In Proceedings of the 51st Annu-
al Meeting of the Association for Computation-
al Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 217–221.
http://aclweb.org/anthology/P13-2039.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A persona-based neural con-
versation model. arXiv preprint arXiv:1603.06155
.

Jiwei Li, Myle Ott, Claire Cardie, and Eduard Hovy.
2014b. Towards a general rule for identifying de-
ceptive opinion spam. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 1566–
1576. https://doi.org/10.3115/v1/P14-1147.

Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu,
and Hady Wirawan Lauw. 2010. Detecting produc-
t review spammers using rating behaviors. In Pro-
ceedings of the 19th CIKM. ACM, pages 939–948.

Bing Liu. 2015. Sentiment Analysis: Mining Opinions,
Sentiments, and Emotions. Cambridge University
Press.

Michael Luca. 2011. Reviews, reputation, and rev-
enue: The case of yelp. com. Com (September 16,
2011). Harvard Business School NOM Unit Working
Paper (12-016).

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, editors, Advances in Neural Information
Processing Systems 26, Curran Associates, Inc.,
pages 3111–3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.pdf.

Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui
Wang, Meichun Hsu, Malu Castellanos, and Riddhi-
man Ghosh. 2013a. Spotting opinion spammers us-
ing behavioral footprints. In Proceedings of the 19th
ACM SIGKDD. ACM, pages 632–640.

Arjun Mukherjee and Bing Liu. 2010. Improving
gender classification of blog authors. In Pro-
ceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 207–217.
http://aclweb.org/anthology/D10-1021.

Arjun Mukherjee, Bing Liu, and Natalie Glance. 2012.
Spotting fake reviewer groups in consumer reviews.
In Proceedings of the 21st WWW. ACM, pages 191–
200.

375

Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and
Natalie Glance. 2013b. Fake review detection: Clas-
sification and analysis of real and pseudo reviews.
Technical report, Technical Report UIC-CS-2013-
03, University of Illinois at Chicago.

Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and
Natalie S Glance. 2013c. What yelp fake review fil-
ter might be doing? In ICWSM.

Matthew L Newman, James W Pennebaker, Diane S
Berry, and Jane M Richards. 2003. Lying words:
Predicting deception from linguistic styles. Person-
ality and social psychology bulletin 29(5):665–675.

Myle Ott, Yejin Choi, Claire Cardie, and T. Jeffrey
Hancock. 2011. Finding deceptive opinion spam
by any stretch of the imagination. In Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies. Association for Computational Linguistic-
s, pages 309–319. http://aclweb.org/anthology/P11-
1032.

JW Pennebaker, CK Chung, M Ireland, A Gonzales,
and RJ Booth. 2007. The development and psycho-
metric properties of liwc2007. austin, tx.

Shebuti Rayana and Leman Akoglu. 2015. Collective
opinion spam detection: Bridging review network-
s and metadata. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, pages 985–994.

Yafeng Ren and Yue Zhang. 2016. Deceptive opinion
spam detection using neural network. In Proceed-
ings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical
Papers. The COLING 2016 Organizing Committee,
pages 140–150. http://aclweb.org/anthology/C16-
1014.

Richard Socher, Alex Perelygin, Jean Wu, Ja-
son Chuang, D. Christopher Manning, Andrew
Ng, and Christopher Potts. 2013. Recur-
sive deep models for semantic compositionali-
ty over a sentiment treebank. In Proceedings
of the 2013 Conference on Empirical Method-
s in Natural Language Processing. Association
for Computational Linguistics, pages 1631–1642.
http://aclweb.org/anthology/D13-1170.

Marco Viviani and Gabriella Pasi. 2017. Quantifier
guided aggregation for the veracity assessment of
online reviews. International Journal of Intelligent
Systems 32(5):481–501.

Guan Wang, Sihong Xie, Bing Liu, and Philip S Yu.
2011. Review graph based online store review s-
pammer detection. In Proceedings of the 11th ICD-
M. IEEE, pages 1242–1247.

Xuepeng Wang, Kang Liu, Shizhu He, and Jun Zhao.
2016. Learning to represent review with ten-
sor decomposition for spam detection. In Pro-
ceedings of the 2016 Conference on Empirical

Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 866–875.
http://aclweb.org/anthology/D16-1083.

Sihong Xie, Guan Wang, Shuyang Lin, and Philip S Yu.
2012. Review spam detection via temporal pattern
discovery. In Proceedings of the 18th KDD. ACM,
pages 823–831.

Qiongkai Xu and Hai Zhao. 2012. Using deep lin-
guistic features for finding deceptive opinion spam.
In Proceedings of COLING 2012: Posters. The
COLING 2012 Organizing Committee, pages 1341–
1350. http://aclweb.org/anthology/C12-2131.

376

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 377–387
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1035

Learning Cognitive Features from Gaze Data for Sentiment and Sarcasm
Classification using Convolutional Neural Network

Abhijit Mishra†, Kuntal Dey†, Pushpak Bhattacharyya?
†IBM Research, India

?Indian Institute of Technology Bombay, India
†{abhijimi, kuntadey}@in.ibm.com

?pb@cse.iitb.ac.in

Abstract

Cognitive NLP systems- i.e., NLP systems
that make use of behavioral data - augment
traditional text-based features with cogni-
tive features extracted from eye-movement
patterns, EEG signals, brain-imaging etc..
Such extraction of features is typically
manual. We contend that manual extrac-
tion of features may not be the best way to
tackle text subtleties that characteristically
prevail in complex classification tasks like
sentiment analysis and sarcasm detection,
and that even the extraction and choice of
features should be delegated to the learn-
ing system. We introduce a framework
to automatically extract cognitive features
from the eye-movement / gaze data of hu-
man readers reading the text and use them
as features along with textual features for
the tasks of sentiment polarity and sar-
casm detection. Our proposed framework
is based on Convolutional Neural Network
(CNN). The CNN learns features from
both gaze and text and uses them to clas-
sify the input text. We test our technique
on published sentiment and sarcasm la-
beled datasets, enriched with gaze infor-
mation, to show that using a combination
of automatically learned text and gaze fea-
tures often yields better classification per-
formance over (i) CNN based systems that
rely on text input alone and (ii) existing
systems that rely on handcrafted gaze and
textual features.

1 Introduction

Detection of sentiment and sarcasm in user-
generated short reviews is of primary importance
for social media analysis, recommendation and di-
alog systems. Traditional sentiment analyzers and

sarcasm detectors face challenges that arise at lex-
ical, syntactic, semantic and pragmatic levels (Liu
and Zhang, 2012; Mishra et al., 2016c). Feature-
based systems (Akkaya et al., 2009; Sharma and
Bhattacharyya, 2013; Poria et al., 2014) can aptly
handle lexical and syntactic challenges (e.g. learn-
ing that the word deadly conveys a strong positive
sentiment in opinions such as Shane Warne is a
deadly bowler, as opposed to The high altitude Hi-
malayan roads have deadly turns). It is, however,
extremely difficult to tackle subtleties at semantic
and pragmatic levels. For example, the sentence
I really love my job. I work 40 hours a week to
be this poor. requires an NLP system to be able
to understand that the opinion holder has not ex-
pressed a positive sentiment towards her / his job.
In the absence of explicit clues in the text, it is dif-
ficult for automatic systems to arrive at a correct
classification decision, as they often lack external
knowledge about various aspects of the text being
classified.

Mishra et al. (2016b) and Mishra et al. (2016c)
show that NLP systems based on cognitive data
(or simply, Cognitive NLP systems) , that lever-
age eye-movement information obtained from hu-
man readers, can tackle the semantic and prag-
matic challenges better. The hypothesis here is
that human gaze activities are related to the cog-
nitive processes in the brain that combine the “ex-
ternal knowledge” that the reader possesses with
textual clues that she / he perceives. While in-
corporating behavioral information obtained from
gaze-data in NLP systems is intriguing and quite
plausible, especially due to the availability of low
cost eye-tracking machinery (Wood and Bulling,
2014; Yamamoto et al., 2013), few methods ex-
ist for text classification, and they rely on hand-
crafted features extracted from gaze data (Mishra
et al., 2016b,c). These systems have limited ca-
pabilities due to two reasons: (a) Manually de-
signed gaze based features may not adequately

377

https://doi.org/10.18653/v1/P17-1035

capture all forms of textual subtleties (b) Eye-
movement data is not as intuitive to analyze as text
which makes the task of designing manual features
more difficult. So, in this work, instead of hand-
crafting the gaze based and textual features, we
try to learn feature representations from both
gaze and textual data using Convolutional Neu-
ral Network (CNN). We test our technique on
two publicly available datasets enriched with eye-
movement information, used for binary classifica-
tion tasks of sentiment polarity and sarcasm detec-
tion. Our experiments show that the automatically
extracted features often help to achieve signifi-
cant classification performance improvement over
(a) existing systems that rely on handcrafted gaze
and textual features and (b) CNN based systems
that rely on text input alone. The datasets used
in our experiments, resources and other relevant
pointers are available at http://www.cfilt.iitb.ac.in/
cognitive-nlp

The rest of the paper is organized as follows.
Section 2 discusses the motivation behind using
readers’ eye-movement data in a text classification
setting. In Section 3, we argue why CNN is pre-
ferred over other available alternatives for feature
extraction. The CNN architecture is proposed and
discussed in Section 4. Section 5 describes our ex-
perimental setup and results are discussed in Sec-
tion 6. We provide a detailed analysis of the results
along with some insightful observations in Section
7. Section 8 points to relevant literature followed
by Section 9 that concludes the paper.

Terminology
A fixation is a relatively long stay of gaze on a
visual object (such as words in text) where as a
sacccade corresponds to quick shifting of gaze be-
tween two positions of rest. Forward and back-
ward saccades are called progressions and regres-
sions respectively. A scanpath is a line graph that
contains fixations as nodes and saccades as edges.

2 Eye-movement and Linguistic
Subtleties

Presence of linguistic subtleties often induces
(a) surprisal (Kutas and Hillyard, 1980; Mals-
burg et al., 2015), due to the underlying dispar-
ity /context incongruity or (b) higher cognitive
load (Rayner and Duffy, 1986), due to the pres-
ence of lexically and syntactically complex struc-
tures. While surprisal accounts for irregular sac-
cades (Malsburg et al., 2015), higher cognitive

Word ID

T
im

e
(

m
i li

s e
co

nd
s)

P1 P2 P3

S2: The lead actress is terrible and I cannot be convinced she is supposed
to be some forensic genius.

S1: I'll always cherish the original misconception I had of you..

Figure 1: Scanpaths of three participants for two
sentences (Mishra et al., 2016b). Sentence S1 is
sarcastic but S2 is not. Length of the straight lines
represents saccade distance and size of the circles
represents fixation duration

load results in longer fixation duration (Kliegl
et al., 2004).

Mishra et al. (2016b) find that presence of
sarcasm in text triggers either irregular sac-
cadic patterns or unusually high duration fixa-
tions than non-sarcastic texts (illustrated through
example scanpath representations in Figure 1).
For sentiment bearing texts, highly subtle eye-
movement patterns are observed for semanti-
cally/pragmatically complex negative opinions
(expressing irony, sarcasm, thwarted expectations,
etc.) than the simple ones (Mishra et al., 2016b).
The association between linguistic subtleties and
eye-movement patterns could be captured through
sophisticated feature engineering that considers
both gaze and text inputs. In our work, CNN takes
the onus of feature engineering.

3 Why Convolutional Neural Network?

CNNs have been quite effective in learning filters
for image processing tasks, filters being used to
transform the input image into more informative
feature space (Krizhevsky et al., 2012). Filters
learned at various CNN layers are quite similar
to handcrafted filters used for detection of edges,
contours, and removal of redundant backgrounds.
We believe, a similar technique can also be ap-
plied to eye-movement data, where the learned fil-
ters will, hopefully, extract informative cognitive
features. For instance, for sarcasm, we expect the
network to learn filters that detect long distance
saccades (refer to Figure 2 for an analogical il-

378

Figure 2: Illustrative analogy between CNN
applied to images and scanpath representations
showing why CNN can be useful for learning fea-
tures from gaze patterns. Images partially taken
from Taigman et al. (2014)

lustration). With more number of convolution fil-
ters of different dimensions, the network may ex-
tract multiple features related to different gaze at-
tributes (such as fixations, progressions, regres-
sions and skips) and will be free from any form
of human bias that manually extracted features are
susceptible to.

4 Learning Feature Representations:
The CNN Architecture

Figure 3 shows the CNN architecture with two
components for processing and extracting features
from text and gaze inputs. The components are
explained below.

4.1 Text Component

The text component is quite similar to the one pro-
posed by Kim (2014) for sentence classification.
Words (in the form of one-hot representation) in
the input text are first replaced by their embed-
dings of dimension K (ith word in the sentence
represented by an embedding vector xi ∈ RK). As
per Kim (2014), a multi-channel variant of CNN
(referred to as MULTICHANNELTEXT) can be im-
plemented by using two channels of embeddings-
one that remains static throughout training (re-
ferred to as STATICTEXT), and the other one that
gets updated during training (referred to as NON-
STATICTEXT). We separately experiment with
static, non-static and multi-channel variants.

For each possible input channel of the text com-
ponent, a given text is transformed into a tensor of
fixed length N (padded with zero-tensors wherever

necessary to tackle length variations) by concate-
nating the word embeddings.

x1:N = x1 ⊕ x2 ⊕ x3 ⊕ ...⊕ xN (1)

where ⊕ is the concatenation operator. To ex-
tract local features1, convolution operation is ap-
plied. Convolution operation involves a filter,
W ∈ RHK , which is convolved with a window
of H embeddings to produce a local feature for
the H words. A local feature, ci is generated from
a window of embeddings xi:i+H−1 by applying a
non linear function (such as a hyperbolic tangent)
over the convoluted output. Mathematically,

ci = f(W.xi:i+H−1 + b) (2)

where b ∈ R is the bias and f is the non-linear
function. This operation is applied to each possi-
ble window of H words to produce a feature map
(c) for the window size H .

c = [c1, c2, c3, ..., cN−H+1] (3)

A global feature is then obtained by applying max
pooling operation2 (Collobert et al., 2011) over the
feature map. The idea behind max-pooling is to
capture the most important feature - one with the
highest value - for each feature map.

We have described the process by which one
feature is extracted from one filter (red bordered
portions in Figure 3 illustrate the case of H = 2).
The model uses multiple filters for each filter size
to obtain multiple features representing the text.
In the MULTICHANNELTEXT variant, for a win-
dow of H words, the convolution operation is sep-
arately applied on both the embedding channels.
Local features learned from both the channels are
concatenated before applying max-pooling.

4.2 Gaze Component
The gaze component deals with scanpaths of mul-
tiple participants annotating the same text. Scan-
paths can be pre-processed to extract two se-
quences3 of gaze data to form separate channels
of input: (1) A sequence of normalized4 durations
of fixations (in milliseconds) in the order in which

1features specific to a region in case of images or window
of words in case of text

2mean pooling does not perform well.
3like text-input, gaze sequences are padded where neces-

sary
4scaled across participants using min-max normalization

to reduce subjectivity

379

T
ex

t
C

o
m

p
o
n

en
t

Non-static

Static

Saccade

Fixation

G
a
ze

 C
o
m

p
o
n

en
t P1

P2
P3
P4
P5
P6
P7
P8

N×K representation of sentences

with static and non static channels

P×G representation of sentences

with fixation and saccade channels

1-D convolution operation

with multiple filter width

and feature maps

2-D convolution operation

with multiple filter row and

Column widths

Max-pooling for

each filter width

Max-pooling over

multiple dimensions for

multiple filter widths

Fully connected with

dropouts and softmax

output

Merged

pooled

values

Figure 3: Deep convolutional model for feature extraction from both text and gaze inputs

they appear in the scanpath, and (2) A sequence of
position of fixations (in terms of word id) in the
order in which they appear in the scanpath. These
channels are related to two fundamental gaze at-
tributes such as fixation and saccade respectively.
With two channels, we thus have three possible
configurations of the gaze component such as (i)
FIXATION, where the input is normalized fixation
duration sequence, (ii) SACCADE, where the in-
put is fixation position sequence, and (iii) MULTI-
CHANNELGAZE, where both the inputs channels
are considered.

For each possible input channel, the input is in
the form of a P × G matrix (with P → number
of participants and G → length of the input se-
quence). Each element of the matrix gij ∈ R, with
i ∈ P and j ∈ G, corresponds to the jth gaze
attribute (either fixation duration or word id, de-
pending on the channel) of the input sequence of
the ith participant. Now, unlike the text compo-
nent, here we apply convolution operation across
two dimensions i.e. choosing a two dimensional
convolution filter W ∈ RJK (for simplicity, we
have kept J = K, thus , making the dimension of
W , J2). For the dimension size of J2, a local fea-
ture cij is computed from the window of gaze ele-
ments gij:(i+J−1)(j+J−1) by,

cij = f(W.gij:(i+J−1)(j+J−1) + b) (4)

where b ∈ R is the bias and f is a non-linear func-

tion. This operation is applied to each possible
window of size J2 to produce a feature map (c),

c =[c11, c12, c13, ..., c1(G−J+1),

c21, c22, c23, ..., c2(G−J+1),

...,

c(P−J+1)1, c(P−J+1)2, ..., c(P−J+1)(G−J+1)]

(5)

A global feature is then obtained by applying max
pooling operation. Unlike the text component,
max-pooling operator is applied to a 2D window
of local features size M × N (for simplicity, we
set M = N , denoted henceforth as M2). For
the window of size M2, the pooling operation on
c will result in as set of global features ĉJ =
max{cij:(i+M−1)(j+M−1)} for each possible i, j.

We have described the process by which one
feature is extracted from one filter (of 2D window
size J2 and the max-pooling window size of M2).
In Figure 3, red and blue bordered portions illus-
trate the cases of J2 = [3, 3] and M2 = [2, 2]
respectively. Like the text component, the gaze
component also uses multiple filters for each fil-
ter size to obtain multiple features representing the
gaze input. In the MULTICHANNELGAZE variant,
for a 2D window of J2, the convolution operation
is separately applied on both fixation duration and
saccade channels and local features learned from
both the channels are concatenated before max-
pooling is applied.

Once the global features are learned from both
the text and gaze components, they are merged

380

and passed to a fully connected feed forward layer
(with number of units set to 150) followed by a
SoftMax layer that outputs the the probabilistic
distribution over the class labels.

The gaze component of our network is not in-
variant of the order in which the scanpath data is
given as input- i.e., the P rows in the P × G can
not be shuffled, even if each row is independent
from others. The only way we can think of for
addressing this issue is by applying convolution
operations to all P × G matrices formed with all
the permutations of P , capturing every possible
ordering. Unfortunately, this makes the training
process significantly less scalable, as the number
of model parameters to be learned becomes huge.
As of now, training and testing are carried out by
keeping the order of the input constant.

5 Experiment Setup

We now share several details regarding our exper-
iments below.

5.1 Dataset

We conduct experiments for two binary-
classification tasks of sentiment and sarcasm
using two publicly available datasets enriched
with eye-movement information. Dataset 1 has
been released by Mishra et al. (2016a). It contains
994 text snippets with 383 positive and 611 neg-
ative examples. Out of the 994 snippets, 350 are
sarcastic. Dataset 2 has been used by Joshi et al.
(2014) and it consists of 843 snippets comprising
movie reviews and normalized tweets out of
which 443 are positive, and 400 are negative.
Eye-movement data of 7 and 5 readers is available
for each snippet for dataset 1 and 2 respectively.

5.2 CNN Variants

With text component alone we have three vari-
ants such as STATICTEXT, NONSTATICTEXT

and MULTICHANNELTEXT (refer to Section 4.1).
Similarly, with gaze component we have variants
such as FIXATION, SACCADE and MULTICHAN-
NELGAZE (refer to Section 4.2). With both text
and gaze components, 9 more variants could thus
beexperimented with.

5.3 Hyper-parameters

For text component, we experiment with filter
widths (H) of [3, 4]. For the gaze component, 2D
filters (J2) set to [3× 3], [4× 4] respectively. The

max pooling 2D window, M2, is set to [2× 2]. In
both gaze and text components, number of filters
is set to 150, resulting in 150 feature maps for each
window. These model hyper-parameters are fixed
by trial and error and are possibly good enough to
provide a first level insight into our system. Tun-
ing of hyper-parameters might help in improving
the performance of our framework, which is on
our future research agenda.

5.4 Regularization

For regularization dropout is employed both on the
embedding and the penultimate layers with a con-
straint on l2-norms of the weight vectors (Hinton
et al., 2012). Dropout prevents co-adaptation of
hidden units by randomly dropping out - i.e., set-
ting to zero - a proportion p of the hidden units
during forward propagation. We set p to 0.25.

5.5 Training

We use ADADELTA optimizer (Zeiler, 2012), with
a learning rate of 0.1. The input batch size is set
to 32 and number of training iterations (epochs) is
set to 200. 10% of the training data is used for
validation.

5.6 Use of Pre-trained Embeddings:

Initializing the embedding layer with of pre-
trained embeddings can be more effective than
random initialization (Kim, 2014). In our exper-
iments, we have used embeddings learned using
the movie reviews with one sentence per review
dataset (Pang and Lee, 2005). It is worth noting
that, for a small dataset like ours, using a small
data-set like the one from (Pang and Lee, 2005)
helps in reducing the number model parameters
resulting in faster learning of embeddings. The re-
sults are also quite close to the ones obtained using
word2vec facilitated by Mikolov et al. (2013).

5.7 Comparison with Existing Work

For sentiment analysis, we compare our systems’s
accuracy (for both datasets 1 and 2) with Mishra
et al. (2016c)’s systems that rely on handcrafted
text and gaze features. For sarcasm detection, we
compare Mishra et al. (2016b)’s sarcasm classi-
fier with ours using dataset 1 (with available gold
standard labels for sarcasm). We follow the same
10-fold train-test configuration as these existing
works for consistency.

381

Dataset1 Dataset2

Configuration P R F P R F

Traditional
systems based on

Näive Bayes 63.0 59.4 61.14 50.7 50.1 50.39
Multi-layered Perceptron 69.0 69.2 69.2 66.8 66.8 66.8

textual features SVM (Linear Kernel) 72.8 73.2 72.6 70.3 70.3 70.3
Systems by
Mishra et al. (2016c)

Gaze based (Best) 61.8 58.4 60.05 53.6 54.0 53.3
Text + Gaze (Best) 73.3 73.6 73.5 71.9 71.8 71.8

CNN with only
text input
(Kim, 2014)

STATICTEXT 63.85 61.26 62.22 55.46 55.02 55.24
NONSTATICTEXT 72.78 71.93 72.35 60.51 59.79 60.14
MULTICHANNELTEXT 72.17 70.91 71.53 60.51 59.66 60.08

CNN with only
gaze Input

FIXATION 60.79 58.34 59.54 53.95 50.29 52.06
SACCADE 64.19 60.56 62.32 51.6 50.65 51.12
MULTICHANNELGAZE 65.2 60.35 62.68 52.52 51.49 52

CNN with both
text and
gaze Input

STATICTEXT + FIXATION 61.52 60.86 61.19 54.61 54.32 54.46
STATICTEXT + SACCADE 65.99 63.49 64.71 58.39 56.09 57.21
STATICTEXT + MULTICHANNELGAZE 65.79 62.89 64.31 58.19 55.39 56.75
NONSTATICTEXT + FIXATION 73.01 70.81 71.9 61.45 59.78 60.60
NONSTATICTEXT + SACCADE 77.56 73.34 75.4 65.13 61.08 63.04
NONSTATICTEXT + MULTICHANNELGAZE 79.89 74.86 77.3 63.93 60.13 62
MULTICHANNELTEXT + FIXATION 74.44 72.31 73.36 60.72 58.47 59.57
MULTICHANNELTEXT + SACCADE 78.75 73.94 76.26 63.7 60.47 62.04
MULTICHANNELTEXT + MULTICHANNELGAZE 78.38 74.23 76.24 64.29 61.08 62.64

Table 1: Results for different traditional feature based systems and CNN model variants for the task of
sentiment analysis. Abbreviations (P,R,F)→ Precision, Recall, F-score. SVM→Support Vector Machine

6 Results

In this section, we discuss the results for different
model variants for sentiment polarity and sarcasm
detection tasks.

6.1 Results for Sentiment Analysis Task

Table 1 presents results for sentiment analysis
task. For dataset 1, different variants of our CNN
architecture outperform the best systems reported
by Mishra et al. (2016c), with a maximum F-score
improvement of 3.8%. This improvement is sta-
tistically significant of p < 0.05 as confirmed by
McNemar test. Moreover, we observe an F-score
improvement of around 5% for CNNs with both
gaze and text components as compared to CNNs
with only text components (similar to the system
by Kim (2014)), which is also statistically signifi-
cant (with p < 0.05).

For dataset 2, CNN based approaches do not
perform better than manual feature based ap-
proaches. However, variants with both text and
gaze components outperform the ones with only
text component (Kim, 2014), with a maximum F-
score improvement of 2.9%. We observe that for
dataset 2, training accuracy reaches 100 within
25 epochs with validation accuracy stable around
50%, indicating the possibility of overfitting.
Tuning the regularization parameters specific to
dataset 2 may help here. Even though CNN might

not be proving to be a choice as good as hand-
crafted features for dataset 2, the bottom line re-
mains that incorporation of gaze data into CNN
consistently improves the performance over only-
text-based CNN variants.

6.2 Results for Sarcasm Detection Task

For sarcasm detection, our CNN model variants
outperform traditional systems by a maximum
margin of 11.27% (Table 2). However, the im-
provement by adding the gaze component to the
CNN network is just 1.34%, which is statisti-
cally insignificant over CNN with text component.
While inspecting the sarcasm dataset, we observe
a clear difference between the vocabulary of sar-
casm and non-sarcasm classes in our dataset. This,
perhaps, was captured well by the text component,
especially the variant with only non-static embed-
dings.

7 Discussion

In this section, some important observations from
our experiments are discussed.

7.1 Effect of Embedding Dimension
Variation

Embedding dimension has proven to have a deep
impact on the performance of neural systems (dos
Santos and Gatti, 2014; Collobert et al., 2011).

382

Configuration P R F

Traditional systems
based on

Näive Bayes 69.1 60.1 60.5
Multi-layered Perceptron 69.7 70.4 69.9

textual features SVM (Linear Kernel) 72.1 71.9 72
Systems by
Riloff et al. (2013)

Text based (Ordered) 49 46 47
Text + Gaze (Unordered) 46 41 42

System by
Joshi et al. (2015)

Text based (best) 70.7 69.8 64.2

Systems by
Mishra et al. (2016b)

Gaze based (Best) 73 73.8 73.1
Text based (Best) 72.1 71.9 72
Text + Gaze (Best) 76.5 75.3 75.7

CNN with only
text input (Kim, 2014)

STATICTEXT 67.17 66.38 66.77
NONSTATICTEXT 84.19 87.03 85.59
MULTICHANNELTEXT 84.28 87.03 85.63

CNN with only
gaze input

FIXATION 74.39 69.62 71.93
SACCADE 68.58 68.23 68.40
MULTICHANNELGAZE 67.93 67.72 67.82

CNN with both
text and
gaze Input

STATICTEXT + FIXATION 72.38 71.93 72.15
STATICTEXT + SACCADE 73.12 72.14 72.63
STATICTEXT + MULTICHANNELGAZE 71.41 71.03 71.22
NONSTATICTEXT + FIXATION 87.42 85.2 86.30
NONSTATICTEXT + SACCADE 84.84 82.68 83.75
NONSTATICTEXT + MULTICHANNELGAZE 84.98 82.79 83.87
MULTICHANNELTEXT + FIXATION 87.03 86.92 86.97
MULTICHANNELTEXT + SACCADE 81.98 81.08 81.53
MULTICHANNELTEXT + MULTICHANNELGAZE 83.11 81.69 82.39

Table 2: Results for different traditional feature based systems and CNN model variants for the task of
sarcasm detection on dataset 1. Abbreviations (P,R,F)→ Precision, Recall, F-score

We repeated our experiments by varying the em-
bedding dimensions in the range of [50-300]5 and
observed that reducing embedding dimension im-
proves the F-scores by a little margin. Small
embedding dimensions are probably reducing the
chances of over-fitting when the data size is small.
We also observe that for different embedding di-
mensions, performance of CNN with both gaze
and text components is consistently better than
that with only text component.

7.2 Effect of Static / Non-static Text Channels

Non-static embedding channel has a major role
in tuning embeddings for sentiment analysis by
bringing adjectives expressing similar sentiment
close to each other (e.g, good and nice), where as
static channel seems to prevent over-tuning of em-
beddings (over-tuning often brings verbs like love
closer to the pronoun I in embedding space, purely
due to higher co-occurrence of these two words in
sarcastic examples).

7.3 Effect of Fixation / Saccade Channels

For sentiment detection, saccade channel seems to
be handing text having semantic incongruity (due

5a standard range (Liu et al., 2015; Melamud et al., 2016)

to the presence of irony / sarcasm) better. Fixa-
tion channel does not help much, may be because
of higher variance in fixation duration. For sar-
casm detection, fixation and saccade channels per-
form with similar accuracy when employed sep-
arately. Accuracy reduces with gaze multichan-
nel, may be because of higher variation of both
fixations and saccades across sarcastic and non-
sarcastic classes, as opposed to sentiment classes.

7.4 Effectiveness of the CNN-learned
Features

To examine how good the features learned by the
CNN are, we analyzed the features for a few ex-
ample cases. Figure 4 presents some of the ex-
ample test cases for the task of sarcasm detection.
Example 1 contains sarcasm while examples 2, 3
and 4 are non-sarcastic. To see if there is any dif-
ference in the automatically learned features be-
tween text-only and combined text and gaze vari-
ants, we examine the feature vector (of dimen-
sion 150) for the examples obtained from different
model variants. Output of the hidden layer after
merge layer is considered as features learned by
the network. We plot the features, in the form of
color-bars, following Li et al. (2016) - denser col-

383

1. I would like to live in Manchester, England. The transition between Manchester and death would

be unnoticeable. (Sarcastic, Negative Sentiment)

2. We really did not like this camp. After a disappointing summer, we switched to another camp,

and all of us much happier on all fronts! (Non Sarcastic, Negative Sentiment)

3. Helped me a lot with my panics attack I take 6 mg a day for almost 20 years can't stop of

course but make me feel very comfortable (Non Sarcastic, Positive Sentiment)

4. Howard is the King and always will be, all others are weak clones. (Non Sarcastic, Positive Sentiment)

(a) MultichannelText + MultichannelGaze (b) MultichannelText

Figure 4: Visualization of representations learned by two variants of the network for sarcasm detection
task. The output of the Merge layer (of dimension 150) are plotted in the form of colour-bars. Plots with
thick red borders correspond to wrongly predicted examples.

ors representing feature with higher magnitude. In
Figure 4, we show only two representative model
variants viz., MULTICHANNELTEXT and MUL-
TICHANNELTEXT+ MULTICHANNELGAZE. As
one can see, addition of gaze information helps
to generate features with more subtle differences
(marked by blue rectangular boxes) for sarcastic
and non-sarcastic texts. It is also interesting to
note that in the marked region, features for the
sarcastic texts exhibit more intensity than the non-
sarcastic ones - perhaps capturing the notion that
sarcasm typically conveys an intensified negative
opinion. This difference is not clear in feature vec-
tors learned by text-only systems for instances like
example 2, which has been incorrectly classified
by MULTICHANNELTEXT. Example 4 is incor-
rectly classified by both the systems, perhaps due
to lack of context. In cases like this, addition of
gaze information does not help much in learning
more distinctive features, as it becomes difficult
for even humans to classify such texts.

8 Related Work

Sentiment and sarcasm classification are two im-
portant problems in NLP and have been the focus
of research for many communities for quite some
time. Popular sentiment and sarcasm detection
systems are feature based and are based on uni-
grams, bigrams etc. (Dave et al., 2003; Ng et al.,
2006), syntactic properties (Martineau and Finin,
2009; Nakagawa et al., 2010), semantic properties
(Balamurali et al., 2011). For sarcasm detection,
supervised approaches rely on (a) Unigrams and
Pragmatic features (González-Ibánez et al., 2011;
Barbieri et al., 2014; Joshi et al., 2015) (b) Stylis-
tic patterns (Davidov et al., 2010) and patterns re-
lated to situational disparity (Riloff et al., 2013)
and (c) Hastag interpretations (Liebrecht et al.,
2013; Maynard and Greenwood, 2014). Recent
systems are based on variants of deep neural net-
work built on the top of embeddings. A few rep-
resentative works in this direction for sentiment
analysis are based on CNNs (dos Santos and Gatti,
2014; Kim, 2014; Tang et al., 2014), RNNs (Dong
et al., 2014; Liu et al., 2015) and combined archi-

384

tecture (Wang et al., 2016). Few works exist on
using deep neural networks for sarcasm detection,
one of which is by (Ghosh and Veale, 2016) that
uses a combination of RNNs and CNNs.

Eye-tracking technology is a relatively new
NLP, with very few systems directly making use
of gaze data in prediction frameworks. Klerke
et al. (2016) present a novel multi-task learning
approach for sentence compression using labeled
data, while, Barrett and Søgaard (2015) discrim-
inate between grammatical functions using gaze
features. The closest works to ours are by Mishra
et al. (2016b) and Mishra et al. (2016c) that in-
troduce feature engineering based on both gaze
and text data for sentiment and sarcasm detection
tasks. These recent advancements motivate us to
explore the cognitive NLP paradigm.

9 Conclusion and Future Directions

In this work, we proposed a multimodal ensemble
of features, automatically learned using variants of
CNNs from text and readers’ eye-movement data,
for the tasks of sentiment and sarcasm classifica-
tion. On multiple published datasets for which
gaze information is available, our systems could
often achieve significant performance improve-
ments over (a) systems that rely on handcrafted
gaze and textual features and (b) CNN based sys-
tems that rely on text input alone. An analysis
of the learned features confirms that the combi-
nation of automatically learned features is indeed
capable of representing deep linguistic subtleties
in text that pose challenges to sentiment and sar-
casm classifiers. Our future agenda includes: (a)
optimizing the CNN framework hyper-parameters
(e.g., filter width, dropout, embedding dimen-
sions, etc.) to obtain better results, (b) exploring
the applicability of our technique for document-
level sentiment analysis and (c) applying our
framework to related problems, such as emo-
tion analysis, text summarization, and question-
answering, where considering textual clues alone
may not prove to be sufficient.

Acknowledgments

We thank Anoop Kunchukuttan, Joe Cheri Ross,
and Sachin Pawar, research scholars of the Cen-
ter for Indian Language Technology (CFILT), IIT
Bombay for their valuable inputs.

References
Cem Akkaya, Janyce Wiebe, and Rada Mihalcea. 2009.

Subjectivity word sense disambiguation. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 1-
Volume 1. ACL, pages 190–199.

AR Balamurali, Aditya Joshi, and Pushpak Bhat-
tacharyya. 2011. Harnessing wordnet senses for su-
pervised sentiment classification. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing. pages 1081–1091.

Francesco Barbieri, Horacio Saggion, and Francesco
Ronzano. 2014. Modelling sarcasm in twitter, a
novel approach. ACL 2014 page 50.

Maria Barrett and Anders Søgaard. 2015. Using read-
ing behavior to predict grammatical functions. In
Proceedings of the Sixth Workshop on Cognitive As-
pects of Computational Language Learning. Asso-
ciation for Computational Linguistics, Lisbon, Por-
tugal, pages 1–5.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Kushal Dave, Steve Lawrence, and David M Pennock.
2003. Mining the peanut gallery: Opinion extraction
and semantic classification of product reviews. In
Proceedings of the 12th international conference on
World Wide Web. ACM, pages 519–528.

Dmitry Davidov, Oren Tsur, and Ari Rappoport. 2010.
Semi-supervised recognition of sarcastic sentences
in twitter and amazon. In Proceedings of the
Fourteenth Conference on Computational Natural
Language Learning. Association for Computational
Linguistics, pages 107–116.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment clas-
sification. In ACL (2). pages 49–54.

Cı́cero Nogueira dos Santos and Maira Gatti. 2014.
Deep convolutional neural networks for sentiment
analysis of short texts. In Proceedings of COLING.

Aniruddha Ghosh and Tony Veale. 2016. Fracking
sarcasm using neural network. In Proceedings of
NAACL-HLT . pages 161–169.

Roberto González-Ibánez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: a closer look. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies:
short papers-Volume 2. Association for Computa-
tional Linguistics, pages 581–586.

385

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580 .

Aditya Joshi, Abhijit Mishra, Nivvedan Senthamilsel-
van, and Pushpak Bhattacharyya. 2014. Measuring
sentiment annotation complexity of text. In ACL
(Daniel Marcu 22 June 2014 to 27 June 2014). ACL.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity
for sarcasm detection. Proceedings of 53rd Annual
Meeting of the Association for Computational Lin-
guistics, Beijing, China page 757.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, Doha, Qatar, pages 1746–
1751.

Sigrid Klerke, Yoav Goldberg, and Anders Søgaard.
2016. Improving sentence compression by learning
to predict gaze. arXiv preprint arXiv:1604.03357 .

Reinhold Kliegl, Ellen Grabner, Martin Rolfs, and Ralf
Engbert. 2004. Length, frequency, and predictabil-
ity effects of words on eye movements in reading.
European Journal of Cognitive Psychology 16(1-
2):262–284.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. 2012. Imagenet classification with deep con-
volutional neural networks. In Advances in neural
information processing systems. pages 1097–1105.

Marta Kutas and Steven A Hillyard. 1980. Reading
senseless sentences: Brain potentials reflect seman-
tic incongruity. Science 207(4427):203–205.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in nlp. In Proceedings of NAACL-HLT . pages 681–
691.

Christine Liebrecht, Florian Kunneman, and Antal
van den Bosch. 2013. The perfect solution for
detecting sarcasm in tweets# not. WASSA 2013
page 29.

Bing Liu and Lei Zhang. 2012. A survey of opinion
mining and sentiment analysis. In Mining text data,
Springer, pages 415–463.

Pengfei Liu, Shafiq R Joty, and Helen M Meng. 2015.
Fine-grained opinion mining with recurrent neural
networks and word embeddings. In EMNLP. pages
1433–1443.

Titus Malsburg, Reinhold Kliegl, and Shravan Va-
sishth. 2015. Determinants of scanpath regularity
in reading. Cognitive science 39(7):1675–1703.

Justin Martineau and Tim Finin. 2009. Delta tfidf:
An improved feature space for sentiment analysis.
ICWSM 9:106.

Diana Maynard and Mark A Greenwood. 2014. Who
cares about sarcastic tweets? investigating the im-
pact of sarcasm on sentiment analysis. In Proceed-
ings of LREC.

Oren Melamud, David McClosky, Siddharth Patward-
han, and Mohit Bansal. 2016. The role of context
types and dimensionality in learning word embed-
dings. In NAACL HLT 2016. pages 1030–1040.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In HLT-NAACL. volume 13,
pages 746–751.

Abhijit Mishra, Diptesh Kanojia, and Pushpak Bhat-
tacharyya. 2016a. Predicting readers’ sarcasm un-
derstandability by modeling gaze behavior. In Pro-
ceedings of AAAI.

Abhijit Mishra, Diptesh Kanojia, Seema Nagar, Kuntal
Dey, and Pushpak Bhattacharyya. 2016b. Harness-
ing cognitive features for sarcasm detection. ACL
2016 page 156.

Abhijit Mishra, Diptesh Kanojia, Seema Nagar, Kun-
tal Dey, and Pushpak Bhattacharyya. 2016c. Lever-
aging cognitive features for sentiment analysis.
CoNLL 2016 page 156.

Tetsuji Nakagawa, Kentaro Inui, and Sadao Kurohashi.
2010. Dependency tree-based sentiment classifica-
tion using crfs with hidden variables. In NAACL-
HLT . Association for Computational Linguistics,
pages 786–794.

Vincent Ng, Sajib Dasgupta, and SM Arifin. 2006. Ex-
amining the role of linguistic knowledge sources in
the automatic identification and classification of re-
views. In Proceedings of the COLING/ACL on Main
conference poster sessions. Association for Compu-
tational Linguistics, pages 611–618.

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd Annual Meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 115–124.

Soujanya Poria, Erik Cambria, Gregoire Winterstein,
and Guang-Bin Huang. 2014. Sentic patterns:
Dependency-based rules for concept-level sentiment
analysis. Knowledge-Based Systems 69:45–63.

Keith Rayner and Susan A Duffy. 1986. Lexical com-
plexity and fixation times in reading: Effects of word
frequency, verb complexity, and lexical ambiguity.
Memory & Cognition 14(3):191–201.

386

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as contrast between a positive senti-
ment and negative situation. In Proceedings of Em-
pirical Methods in Natural Language Processing.
pages 704–714.

Raksha Sharma and Pushpak Bhattacharyya. 2013.
Detecting domain dedicated polar words. In Pro-
ceedings of the International Joint Conference on
Natural Language Processing.

Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato,
and Lior Wolf. 2014. Deepface: Closing the gap
to human-level performance in face verification. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. pages 1701–1708.

Duyu Tang, Furu Wei, Bing Qin, Ting Liu, and Ming
Zhou. 2014. Coooolll: A deep learning system for
twitter sentiment classification. In Proceedings of
the 8th International Workshop on Semantic Evalu-
ation (SemEval 2014). pages 208–212.

Jin Wang, Liang-Chih Yu, K. Robert Lai, and Xuejie
Zhang. 2016. Dimensional sentiment analysis using
a regional cnn-lstm model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). Asso-
ciation for Computational Linguistics, Berlin, Ger-
many, pages 225–230.

Erroll Wood and Andreas Bulling. 2014. Eyetab:
Model-based gaze estimation on unmodified tablet
computers. In Proceedings of the Symposium on Eye
Tracking Research and Applications. ACM, pages
207–210.

Michiya Yamamoto, Hironobu Nakagawa, Koichi
Egawa, and Takashi Nagamatsu. 2013. Devel-
opment of a mobile tablet pc with gaze-tracking
function. In Human Interface and the Manage-
ment of Information. Information and Interaction for
Health, Safety, Mobility and Complex Environments,
Springer, pages 421–429.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

387

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 388–397
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1036

An Unsupervised Neural Attention Model for Aspect Extraction

Ruidan He†‡, Wee Sun Lee†, Hwee Tou Ng†, and Daniel Dahlmeier‡
†Department of Computer Science, National University of Singapore

‡SAP Innovation Center Singapore
†{ruidanhe,leews,nght}@comp.nus.edu.sg

‡d.dahlmeier@sap.com

Abstract

Aspect extraction is an important and chal-
lenging task in aspect-based sentiment
analysis. Existing works tend to ap-
ply variants of topic models on this task.
While fairly successful, these methods
usually do not produce highly coherent as-
pects. In this paper, we present a novel
neural approach with the aim of discov-
ering coherent aspects. The model im-
proves coherence by exploiting the distri-
bution of word co-occurrences through the
use of neural word embeddings. Unlike
topic models which typically assume in-
dependently generated words, word em-
bedding models encourage words that ap-
pear in similar contexts to be located close
to each other in the embedding space.
In addition, we use an attention mech-
anism to de-emphasize irrelevant words
during training, further improving the co-
herence of aspects. Experimental results
on real-life datasets demonstrate that our
approach discovers more meaningful and
coherent aspects, and substantially outper-
forms baseline methods on several evalua-
tion tasks.

1 Introduction

Aspect extraction is one of the key tasks in senti-
ment analysis. It aims to extract entity aspects on
which opinions have been expressed (Hu and Liu,
2004; Liu, 2012). For example, in the sentence
“The beef was tender and melted in my mouth”,
the aspect term is “beef”. Two sub-tasks are per-
formed in aspect extraction: (1) extracting all as-
pect terms (e.g., “beef”) from a review corpus, (2)
clustering aspect terms with similar meaning into
categories where each category represents a single

aspect (e.g., cluster “beef”, “pork”, “pasta”, and
“tomato” into one aspect food).

Previous works for aspect extraction can be cat-
egorized into three approaches: rule-based, super-
vised, and unsupervised. Rule-based methods usu-
ally do not group extracted aspect terms into cate-
gories. Supervised learning requires data annota-
tion and suffers from domain adaptation problems.
Unsupervised methods are adopted to avoid re-
liance on labeled data needed for supervised learn-
ing.

In recent years, Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) and its variants (Titov
and McDonald, 2008; Brody and Elhadad, 2010;
Zhao et al., 2010; Mukherjee and Liu, 2012) have
become the dominant unsupervised approach for
aspect extraction. LDA models the corpus as a
mixture of topics (aspects), and topics as distri-
butions over word types. While the mixture of
aspects discovered by LDA-based models may de-
scribe a corpus fairly well, we find that the individ-
ual aspects inferred are of poor quality – aspects
often consist of unrelated or loosely-related con-
cepts. This may substantially reduce users’ con-
fidence in using such automated systems. There
could be two primary reasons for the poor qual-
ity. Conventional LDA models do not directly en-
code word co-occurrence statistics which are the
primary source of information to preserve topic
coherence (Mimno et al., 2011). They implicitly
capture such patterns by modeling word genera-
tion from the document level, assuming that each
word is generated independently. Furthermore,
LDA-based models need to estimate a distribution
of topics for each document. Review documents
tend to be short, thus making the estimation of
topic distributions more difficult.

In this work, we present a novel neural approach
to tackle the weaknesses of LDA-based methods.
We start with neural word embeddings that al-

388

https://doi.org/10.18653/v1/P17-1036

ready map words that usually co-occur within the
same context to nearby points in the embedding
space (Mikolov et al., 2013). We then filter the
word embeddings within a sentence using an at-
tention mechanism (Bahdanau et al., 2015) and
use the filtered words to construct aspect embed-
dings. The training process for aspect embed-
dings is analogous to autoencoders, where we use
dimension reduction to extract the common fac-
tors among embedded sentences and reconstruct
each sentence through a linear combination of as-
pect embeddings. The attention mechanism de-
emphasizes words that are not part of any aspect,
allowing the model to focus on aspect words. We
call our proposed model Attention-based Aspect
Extraction (ABAE).

In contrast to LDA-based models, our proposed
method explicitly encodes word-occurrence statis-
tics into word embeddings, uses dimension reduc-
tion to extract the most important aspects in the
review corpus, and uses an attention mechanism
to remove irrelevant words to further improve co-
herence of the aspects.

We have conducted extensive experiments on
large review data sets. The results show that
ABAE is effective in discovering meaningful and
coherent aspects. It substantially outperforms
baseline methods on multiple evaluation tasks. In
addition, ABAE is intuitive and structurally sim-
ple. It can also easily scale to a large amount of
training data. Therefore, it is a promising alterna-
tive to LDA-based methods proposed previously.

2 Related Work

The problem of aspect extraction has been well
studied in the past decade. Initially, methods were
mainly based on manually defined rules. Hu and
Liu (2004) proposed to extract different product
features through finding frequent nouns and noun
phrases. They also extracted opinion terms by
finding the synonyms and antonyms of opinion
seed words through WordNet. Following this, a
number of methods have been proposed based on
frequent item mining and dependency information
to extract product aspects (Zhuang et al., 2006; So-
masundaran and Wiebe, 2009; Qiu et al., 2011).
These models heavily depend on predefined rules
which work well only when the aspect terms are
restricted to a small group of nouns.

Supervised learning approaches generally
model aspect extraction as a standard sequence

labeling problem. Jin and Ho (2009) and Li et
al. (2010) proposed to use hidden Markov models
(HMM) and conditional random fields (CRF),
respectively with a set of manually-extracted fea-
tures. More recently, different neural models (Yin
et al., 2016; Wang et al., 2016) were proposed to
automatically learn features for CRF-based aspect
extraction. Rule-based models are usually not
refined enough to categorize the extracted aspect
terms. On the other hand, supervised learning
requires large amounts of labeled data for training
purposes.

Unsupervised approaches, especially topic
models, have been proposed subsequently to avoid
reliance on labeled data. Generally, the outputs
of those models are word distributions or rank-
ings for each aspect. Aspects are naturally ob-
tained without separately performing extraction
and categorization. Most existing works (Brody
and Elhadad, 2010; Zhao et al., 2010; Mukher-
jee and Liu, 2012; Chen et al., 2014) are based
on variants and extensions of LDA (Blei et al.,
2003). Recently, Wang et al. (2015) proposed a re-
stricted Boltzmann machine (RBM)-based model
to simultaneously extract aspects and relevant sen-
timents of a given review sentence, treating as-
pects and sentiments as separate hidden variables
in RBM. However, the RBM-based model pro-
posed in (Wang et al., 2015) relies on a substantial
amount of prior knowledge such as part-of-speech
(POS) tagging and sentiment lexicons. A biterm
topic model (BTM) that generates co-occurring
word pairs was proposed in (Yan et al., 2013).
We experimentally compare ABAE and BTM on
multiple tasks in this paper.

Attention models (Mnih et al., 2014) have re-
cently gained popularity in training neural net-
works and have been applied to various nat-
ural language processing tasks, including ma-
chine translation (Bahdanau et al., 2015; Luong
et al., 2015), sentence summarization (Rush et al.,
2015), sentiment classification (Chen et al., 2016;
Tang et al., 2016), and question answering (Her-
mann et al., 2015). Rather than using all available
information, attention mechanism aims to focus
on the most pertinent information for a task. Un-
like previous works, in this paper, we apply atten-
tion to an unsupervised neural model. Our experi-
mental results demonstrate its effectiveness under
an unsupervised setting for aspect extraction.

389

3 Model Description

We describe the Attention-based Aspect Extrac-
tion (ABAE) model in this section. The ultimate
goal is to learn a set of aspect embeddings, where
each aspect can be interpreted by looking at the
nearest words (representative words) in the em-
bedding space. We begin by associating each
word w in our vocabulary with a feature vector
ew ∈ Rd. We use word embeddings for the feature
vectors as word embeddings are designed to map
words that often co-occur in a context to points
that are close by in the embedding space (Mikolov
et al., 2013). The feature vectors associated with
the words correspond to the rows of a word em-
bedding matrix E ∈ RV×d, where V is the vo-
cabulary size. We want to learn embeddings of
aspects, where aspects share the same embedding
space with words. This requires an aspect embed-
ding matrix T ∈ RK×d, where K, the number
of aspects defined, is much smaller than V . The
aspect embeddings are used to approximate the
aspect words in the vocabulary, where the aspect
words are filtered through an attention mechanism.

Each input sample to ABAE is a list of indexes
for words in a review sentence. Given such an
input, two steps are performed as shown in Fig-
ure 1. First, we filter away non-aspect words by
down-weighting them using an attention mecha-
nism, and construct a sentence embedding zs from
weighted word embeddings. Then, we try to re-
construct the sentence embedding as a linear com-
bination of aspect embeddings from T. This pro-
cess of dimension reduction and reconstruction,
where ABAE aims to transform sentence embed-
dings of the filtered sentences (zs) into their re-
constructions (rs) with the least possible amount
of distortion, preserves most of the information of
the aspect words in the K embedded aspects. We
next describe the process in detail.

3.1 Sentence Embedding with Attention
Mechanism

We construct a vector representation zs for each
input sentence s in the first step. In general, we
want the vector representation to capture the most
relevant information with regards to the aspect
(topic) of the sentence. We define the sentence
embedding zs as the weighted summation of word
embeddings ewi , i = 1, ..., n corresponding to the

Figure 1: An example of the ABAE structure.

word indexes in the sentence.

zs =

n∑

i=1

aiewi . (1)

For each word wi in the sentence, we compute
a positive weight ai which can be interpreted as
the probability that wi is the right word to focus
on in order to capture the main topic of the sen-
tence. The weight ai is computed by an attention
model, which is conditioned on the embedding of
the word ewi as well as the global context of the
sentence:

ai =
exp(di)∑n
j=1 exp(dj)

(2)

di = e>wi
·M · ys (3)

ys =
1

n

n∑

i=1

ewi (4)

where ys is simply the average of the word em-
beddings, which we believe captures the global
context of the sentence. M ∈ Rd×d is a matrix
mapping between the global context embedding
ys and the word embedding ew and is learned as
part of the training process. We can think of the
attention mechanism as a two-step process. Given
a sentence, we first construct its representation by
averaging all the word representations. Then the
weight of a word is assigned by considering two
things. First, we filter the word through the trans-
formation M which is able to capture the rele-
vance of the word to the K aspects. Then we
capture the relevance of the filtered word to the
sentence by taking the inner product of the filtered
word to the global context ys.

390

3.2 Sentence Reconstruction with Aspect
Embeddings

We have obtained the sentence embedding. Now
we describe how to compute the reconstruction of
the sentence embedding. As shown in Figure 1,
the reconstruction process consists of two steps of
transitions, which is similar to an autoencoder. In-
tuitively, we can think of the reconstruction as a
linear combination of aspect embeddings from T:

rs = T> · pt (5)

where rs is the reconstructed vector representa-
tion, pt is the weight vector overK aspect embed-
dings, where each weight represents the probabil-
ity that the input sentence belongs to the related
aspect. pt can simply be obtained by reducing zs
from d dimensions to K dimensions and then ap-
plying a softmax non-linearity that yields normal-
ized non-negative weights:

pt = softmax (W · zs + b) (6)

where W, the weighted matrix parameter, and b,
the bias vector, are learned as part of the training
process.

3.3 Training Objective

ABAE is trained to minimize the reconstruction
error. We adopted the contrastive max-margin ob-
jective function used in previous work (Weston
et al., 2011; Socher et al., 2014; Iyyer et al., 2016).
For each input sentence, we randomly sample m
sentences from our training data as negative sam-
ples. We represent each negative sample as ni
which is computed by averaging its word embed-
dings. Our objective is to make the reconstructed
embedding rs similar to the target sentence em-
bedding zs while different from those negative
samples. Therefore, the unregularized objective
J is formulated as a hinge loss that maximize the
inner product between rs and zs and simultane-
ously minimize the inner product between rs and
the negative samples:

J(θ) =
∑

s∈D

m∑

i=1

max(0, 1− rszs + rsni) (7)

where D represents the training data set and θ =
{E,T,M,W,b} represents the model parame-
ters.

Domain #Reviews #Labeled sentences
Restaurant 52,574 3,400
Beer 1,586,259 9,245

Table 1: Dataset description.

3.4 Regularization Term
We hope to learn vector representations of the
most representative aspects for a review dataset.
However, the aspect embedding matrix T may suf-
fer from redundancy problems during training. To
ensure the diversity of the resulting aspect embed-
dings, we add a regularization term to the objective
function J to encourage the uniqueness of each as-
pect embedding:

U(θ) = ‖Tn ·T>n − I‖ (8)

where I is the identity matrix, and Tn is T with
each row normalized to have length 1. Any non-
diagonal element tij(i 6= j) in the matrix Tn ·T>n
corresponds to the dot product of two different as-
pect embeddings. U reaches its minimum value
when the dot product between any two different
aspect embeddings is zero. Thus the regularization
term encourages orthogonality among the rows of
the aspect embedding matrix T and penalizes re-
dundancy between different aspect vectors. Our
final objective function L is obtained by adding J
and U :

L(θ) = J(θ) + λU(θ) (9)

where λ is a hyperparameter that controls the
weight of the regularization term.

4 Experimental Setup

4.1 Datasets
We evaluate our method on two real-word
datasets. The detailed statistics of the datasets are
summarized in Table 1.

(1) Citysearch corpus: This is a restaurant
review corpus widely used by previous
works (Ganu et al., 2009; Brody and Elhadad,
2010; Zhao et al., 2010), which contains over
50,000 restaurant reviews from Citysearch
New York. Ganu et al. (2009) also provided
a subset of 3,400 sentences from the corpus
with manually labeled aspects. These anno-
tated sentences are used for evaluation of as-
pect identification. There are six manually
defined aspect labels: Food, Staff, Ambience,
Price, Anecdotes, and Miscellaneous.

391

(2) BeerAdvocate: This is a beer review corpus
introduced in (McAuley et al., 2012), con-
taining over 1.5 million reviews. A subset
of 1,000 reviews, corresponding to 9,245 sen-
tences, are annotated with five aspect labels:
Feel, Look, Smell, Taste, and Overall.

4.2 Baseline Methods
To validate the performance of ABAE, we com-
pare it against a number of baselines:

(1) LocLDA (Brody and Elhadad, 2010): This
method uses a standard implementation of
LDA. In order to prevent the inference of
global topics and direct the model towards
rateable aspects, each sentence is treated as a
separate document.

(2) k-means: We initialize the aspect matrix T
by using the k-means centroids of the word
embeddings. To show the power of ABAE,
we compare its performance with using the k-
means centroids directly.

(3) SAS (Mukherjee and Liu, 2012): This is a hy-
brid topic model that jointly discovers both
aspects and aspect-specific opinions. This
model has been shown to be competitive
among topic models in discovering meaning-
ful aspects (Mukherjee and Liu, 2012; Wang
et al., 2015).

(4) BTM (Yan et al., 2013): This is a biterm topic
model that is specially designed for short texts
such as texts from social media and review
sites. The major advantage of BTM over con-
ventional LDA models is that it alleviates the
problem of data sparsity in short documents by
directly modeling the generation of unordered
word-pair co-occurrences (biterms) over the
corpus. It has been shown to perform better
than conventional LDA models in discovering
coherent topics.

4.3 Experimental Settings
Review corpora are preprocessed by removing
punctuation symbols, stop words, and words ap-
pearing less than 10 times. For LocLDA, we use
the open-source implementation GibbsLDA++1

and for BTM, we use the implementation released
by (Yan et al., 2013)2. We tune the hyperparame-
ters of all topic model baselines on a held-out set

1http://gibbslda.sourceforge.net
2http://code.google.com/p/btm/

with grid search using the topic coherence metric
to be introduced later in Eq 10: for LocLDA, the
Dirichlet priors α = 0.05 and β = 0.1; for SAS
and BTM, α = 50/K and β = 0.1. We run 1,000
iterations of Gibbs sampling for all topic models.

For the ABAE model, we initialize the word
embedding matrix E with word vectors trained by
word2vec with negative sampling on each dataset,
setting the embedding size to 200, window size to
10, and negative sample size to 5. The parameters
we use for training word embeddings are standard
with no specific tuning to our data. We also initial-
ize the aspect embedding matrix T with the cen-
troids of clusters resulting from running k-means
on word embeddings. Other parameters are initial-
ized randomly. During the training process, we fix
the word embedding matrix E and optimize other
parameters using Adam (Kingma and Ba, 2014)
with learning rate 0.001 for 15 epochs and batch
size of 50. We set the number of negative samples
per input sample m to 20, and the orthogonality
penalty weight λ to 1 by tuning the hyperparam-
eters on a held-out set with grid search. The re-
sults reported for all models are the average over
10 runs.

Following (Brody and Elhadad, 2010; Zhao
et al., 2010), we set the number of aspects for the
restaurant corpus to 14. We experimented with
different number of aspects from 10 to 20 for the
beer corpus. The results showed no major dif-
ference, so we also set it to 14. As in previ-
ous work (Brody and Elhadad, 2010; Zhao et al.,
2010), we manually mapped each inferred aspect
to one of the gold-standard aspects according to its
top ranked representative words. In ABAE, repre-
sentative words of an aspect can be found by look-
ing at its nearest words in the embedding space
using cosine as the similarity metric.

5 Evaluation and Results

We describe the evaluation tasks and report the
experimental results in this section. We evaluate
ABAE on two criteria:

• Is it able to find meaningful and semantically
coherent aspects?

• Is it able to improve aspect identification per-
formance on real-world review datasets?

5.1 Aspect Quality Evaluation
Table 2 presents all 14 aspects inferred by ABAE
for the restaurant domain. Compared to gold-

392

Inferred Aspects Representative Words Gold Aspects
Main Dishes beef, duck, pork, mahi, filet, veal

Food
Dessert gelato, banana, caramel, cheesecake, pudding, vanilla
Drink bottle, selection, cocktail, beverage, pinot, sangria
Ingredient cucumber, scallion, smothered, stewed, chilli, cheddar
General cooking, homestyle, traditional, cuisine, authentic, freshness
Physical Ambience wall, lighting, ceiling, wood, lounge, floor AmbienceAdjectives intimate, comfy, spacious, modern, relaxing, chic
Staff waitstaff, server, staff, waitress, bartender, waiter StaffService unprofessional, response, condescending, aggressive, behavior, rudeness
Price charge, paid, bill, reservation, came, dollar Price
Anecdotes celebrate, anniversary, wife, fiance, recently, wedding Anecdotes
Location park, street, village, avenue, manhattan, brooklyn

Misc.General excellent, great, enjoyed, best, wonderful, fantastic
Other aged, reward, white, maison, mediocrity, principle

Table 2: List of inferred aspects for restaurant reviews (left), with top representative words for each
inferred aspect (middle), and the corresponding gold-standard aspect labels (right). Inferred aspect labels
(left) were assigned manually.

Figure 2: Average coherence score versus number
of top n terms for the restaurant domain (top) and
beer domain (bottom).

standard labels, the inferred aspects are more fine-
grained. For example, it can distinguish main
dishes from desserts, and drinks from food.

5.1.1 Coherence Score

In order to objectively measure the quality of as-
pects, we use coherence score as a metric which
has been shown to correlate well with human judg-
ment (Mimno et al., 2011). Given an aspect z and
a set of top N words of z, Sz = {wz1, ..., wzN}, the
coherence score is calculated as follows:

C(z;Sz) =
N∑

n=2

n−1∑

l=1

log
D2(w

z
n, w

z
l) + 1

D1(wzl)
(10)

where D1(w) is the document frequency of word
w and D2(w1, w2) is the co-document frequency
of words w1 and w2. A higher coherence score
indicates a better aspect interpretability, i.e., more
meaningful and semantically coherent.

Figure 2 shows the average coherence
score of each model which is computed as
1
K

∑K
k=1C(zk;S

zk) on both the restaurant do-
main and beer domain. From the results, we
make the following observations: (1) ABAE
outperforms previous models for all ranked
buckets. (2) BTM performs slightly better than
LocLDA and SAS. This may be because BTM
directly models the generation of biterms, while
conventional LDA just implicitly captures such
patterns by modeling word generation from the
document level. (3) It is interesting to note that
performing k-means on the word embeddings is
sufficient to perform better than all topic model
baselines, including BTM. This indicates that
neural word embedding is a better model for
capturing co-occurrence than LDA, even for
BTM which specifically models the generation of
co-occurring word pairs.

k-means LocLDA SAS BTM ABAE
Restaurant 11 8 9 9 11
Beer 9 8 8 9 10

Table 3: Number of coherent aspects. K (number
of aspects) = 14 for all models.

5.1.2 User Evaluation
As we want to discover a set of aspects that the
human user finds agreeable, it is also necessary

393

Figure 3: Average p@n over all coherent aspects for the restaurant domain (left) and beer domain (right).

to carry out user evaluation directly. Following
the experimental setting in (Chen et al., 2014), we
recruited three human judges. Each aspect is la-
beled as coherent if the majority of judges assess
that most of its top 50 terms coherently represent a
product aspect. The numbers of coherent aspects
discovered by each model are shown in Table 3.
ABAE discovers the most number of coherent as-
pects compared with other models.

For a coherent aspect, each of its top terms is
labeled as correct if and only if the majority of
judges assess that it reflects the related aspect. We
adopt precision@n (or p@n) to evaluate the re-
sults, which was also used in (Mukherjee and Liu,
2012; Chen et al., 2014). Figure 3 shows the aver-
age p@n results over all coherent aspects for each
domain. We can see that the user evaluation results
correlate well with the coherence scores shown in
Figure 2, where ABAE substantially outperforms
all other models for all ranked buckets, especially
for large values of n.

5.2 Aspect Identification

We evaluate the performance of sentence-level as-
pect identification on both domains using the an-
notated sentences shown in Table 1. The evalua-
tion criterion is to judge how well the predictions
match the true labels, measured by precision, re-
call, and F1 scores. The results4 are shown in Ta-
ble 4 and Table 5.

Given a review sentence, ABAE first assigns
an inferred aspect label which corresponds to the
highest weight in pt calculated as shown in Equa-
tion 6 . And we then assign the gold-standard label
to the sentence according to the mapping between
inferred aspects and gold-standard labels.

3k-means assigns a sentence an inferred aspect whose em-
bedding is the closest to the averaged word embeddings of the
sentence.

4Note that the values of P/R/F1 reported are the average
over 10 runs (except some values taken from published re-
sults in Table 4). Thus the F1 values cannot be computed
directly from corresponding P/R values

Aspect Method Precision Recall F1

LocLDA 0.898 0.648 0.753
ME-LDA 0.874 0.787 0.828

SAS 0.867 0.772 0.817
Food BTM 0.933 0.745 0.816

SERBM 0.891 0.854 0.872
k-means3 0.931 0.647 0.755

ABAE 0.953 0.741 0.828
LocLDA 0.804 0.585 0.677
ME-LDA 0.779 0.540 0.638

SAS 0.774 0.556 0.647
Staff BTM 0.828 0.579 0.677

SERBM 0.819 0.582 0.680
k-means 0.789 0.685 0.659
ABAE 0.802 0.728 0.757

LocLDA 0.603 0.677 0.638
ME-LDA 0.773 0.558 0.648

SAS 0.780 0.542 0.640
Ambience BTM 0.813 0.599 0.685

SERBM 0.805 0.592 0.682
k-means 0.730 0.637 0.677
ABAE 0.815 0.698 0.740

Table 4: Aspect identification results on the restau-
rant domain. The results of LocLDA and ME-
LDA are taken from (Zhao et al., 2010); the results
of SAS and SERBM are taken from (Wang et al.,
2015).

For the restaurant domain, we follow the exper-
imental settings of previous work (Brody and El-
hadad, 2010; Zhao et al., 2010; Wang et al., 2015)
to make our results comparable. To do that, (1)
we only used the single-label sentences for eval-
uation to avoid ambiguity (about 83% of labeled
sentences have a single label), and (2) we only
evaluated on three major aspects, namely Food,
Staff, and Ambience. The other aspects do not
show clear patterns in either word usage or writ-
ing style, which makes these aspects very hard
for even humans to identify. Besides the base-
line models, we also compare the results with
other published models, including MaxEnt-LDA
(ME-LDA) (Zhao et al., 2010) and SERBM (Wang
et al., 2015). SERBM has reported state-of-the-art
results for aspect identification on the restaurant
corpus to date. However, SERBM relies on a sub-
stantial amount of prior knowledge.

394

Aspect Method Precision Recall F1

Feel

k-means 0.720 0.815 0.737
LocLDA 0.938 0.537 0.675

SAS 0.783 0.695 0.730
BTM 0.892 0.687 0.772

ABAE 0.815 0.824 0.816

Taste

k-means 0.533 0.413 0.456
LocLDA 0.399 0.655 0.487

SAS 0.543 0.496 0.505
BTM 0.616 0.467 0.527

ABAE 0.637 0.358 0.456

Smell

k-means 0.844 0.295 0.422
LocLDA 0.560 0.488 0.489

SAS 0.336 0.673 0.404
BTM 0.541 0.549 0.527

ABAE 0.483 0.744 0.575

Taste+Smell

k-means 0.697 0.828 0.740
LocLDA 0.651 0.873 0.735

SAS 0.804 0.759 0.769
BTM 0.885 0.760 0.815

ABAE 0.897 0.853 0.866

Look

k-means 0.915 0.696 0.765
LocLDA 0.963 0.676 0.774

SAS 0.958 0.705 0.806
BTM 0.953 0.854 0.872

ABAE 0.969 0.882 0.905

Overall

k-means 0.693 0.648 0.639
LocLDA 0.558 0.690 0.603

SAS 0.618 0.664 0.619
BTM 0.699 0.715 0.700

ABAE 0.654 0.828 0.725

Table 5: Aspect identification results on the beer
domain.

We make the following observations from Ta-
ble 4: (1) ABAE outperforms all other models
on F1 score for aspects Staff and Ambience. (2)
The F1 score of ABAE for Food is worse than
SERBM while its precision is very high. We an-
alyzed the errors and found that most of the sen-
tences we failed to recognize as Food are general
descriptions without specific food words appear-
ing. For example, the true label for the sentence
“The food is prepared quickly and efficiently.” is
Food. ABAE assigns Staff to it as the highly fo-
cused words according to the attention mechanism
are quickly and efficiently which are more related
to Staff. In fact, although this sentence contains the
word food, we think it is a rather general descrip-
tion of service. (3) ABAE substantially outper-
forms k-means for this task although both meth-
ods perform well for extracting coherent aspects
as shown in Figure 2 and Figure 3. This shows the
power brought by the attention mechanism, which
is able to capture the main topic of a sentence by
only focusing on aspect-related words.

For the beer domain, in addition to the five gold-
standard aspect labels, we also combined Taste
and Smell to form a single aspect – Taste+Smell.
This is because these two aspects are very similar

Figure 4: Visualization of the attention layer.

and many words can be used to describe both as-
pects. For example, the words spicy, bitter, fresh,
sweet, etc. are top ranked representative words in
both aspects, which makes it very hard even for
humans to distinguish them. Since Taste and Smell
are highly correlated and difficult to separate in
real life, a natural way to evaluate is to treat them
as a single aspect.

We can see from Table 5 that due to the issue de-
scribed above, all models perform poorly on Taste
and Smell. ABAE outperforms previous models in
F1 scores on all aspects except for Taste. The re-
sults demonstrate the capability of ABAE in iden-
tifying separable aspects.

Aspect Method Precision Recall F1

Food ABAE− 0.898 0.739 0.791
ABAE 0.953 0.741 0.828

Staff ABAE− 0.784 0.669 0.693
ABAE 0.802 0.728 0.757

Ambience ABAE− 0.782 0.660 0.703
ABAE 0.815 0.698 0.740

Table 6: Comparison between ABAE and ABAE−

on aspect identification on the restaurant domain.

5.3 Validating the Effectiveness of Attention
Model

Figure 4 shows the weights of words assigned by
the attention model for some example sentences.
As we can see, the weights learned by the model
correspond very strongly with human intuition. In
order to evaluate how attention model affects the
overall performance of ABAE, we conduct exper-
iments to compare ABAE and ABAE− on aspect
identification, where ABAE− denotes the model
in which the attention layer is switched off and
sentence embedding is calculated by averaging its
word embeddings: zs = 1

n

∑n
i=1 ewi . The re-

sults on the restaurant domain are shown in Ta-
ble 6. ABAE achieves substantially higher pre-
cision and recall on all aspects compared with

395

ABAE−, which demonstrates the effectiveness of
the attention mechanism.

6 Conclusion

We have presented ABAE, a simple yet effective
neural attention model for aspect extraction. In
contrast to LDA models, ABAE explicitly cap-
tures word co-occurrence patterns and overcomes
the problem of data sparsity present in review cor-
pora. Our experimental results demonstrated that
ABAE not only learns substantially higher qual-
ity aspects, but also more effectively captures the
aspects of reviews than previous methods. To the
best of our knowledge, we are the first to propose
an unsupervised neural approach for aspect extrac-
tion. ABAE is intuitive and structurally simple,
and also scales up well. All these benefits make it
a promising alternative to LDA-based methods in
practice.

Acknowledgements

This research is partially funded by the Economic
Development Board and the National Research
Foundation of Singapore.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the 3rd International Conference on Learning Rep-
resentations.

David Blei, Andrew Ng, and Michael Jordan. 2003.
Latent Dirichlet allocation. Journal of Machine
Learning Research 3:993–1022.

Samuel Brody and Noemie Elhadad. 2010. An unsu-
pervised aspect-sentiment model for online reviews.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of
the Association for Computational Linguistics.

Huimin Chen, Maosong Sun, Cunchao Tu, Yankai Lin,
and Zhiyuan Liu. 2016. Neural sentiment classifi-
cation with user and product attention. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing.

Zhiyuan Chen, Arjun Mukherjee, and Bing Liu. 2014.
Aspect extraction with automated prior knowledge
learning. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics.

Gayatree Ganu, Noemie Elhadad, and Amélie Marian.
2009. Beyond the stars: Improving rating predic-
tions using review text content. In Proceedings of

the 12th International Workshop on the Web and
Databases.

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the Tenth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining.

Mohit Iyyer, Anupam Guha, Snigdha Chaturvedi, Jor-
dan Boyd-Graber, and Hal Daumé III. 2016. Feud-
ing families and former friends: Unsupervised learn-
ing for dynamic fictional relationship. In Proceed-
ings of the 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Wei Jin and Hung Hay Ho. 2009. A novel lexical-
ized HMM-based learning framework for web opin-
ion mining. In Proceedings of the 26th International
Conference on Machine Learning.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of the 2nd International Conference on Learning
Representations.

Fangtao Li, Chao Han, Minlie Huang, Xiaoyan Zhu,
Ying-Ju Xia, Shu Zhang, and Hao Yu. 2010.
Structure-aware review mining and summarization.
In Proceedings of the 23rd International Conference
on Computational Linguistics.

Bing Liu. 2012. Sentiment Analysis and Opinion Min-
ing. Morgan & Claypool publishers.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing.

Julian McAuley, Jure Leskovec, and Dan Jurafsky.
2012. Learning attitudes and attributes from multi-
aspect reviews. In Proceedings of the 12th IEEE In-
ternational Conference on Data Mining.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

David Mimno, Hanna M. Wallach, Edmund Talley,
Miriam Leenders, and Andrew McCallum. 2011.
Optimizing semantic coherence in topic models. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing.

396

Volodymyr Mnih, Nicolas Heess, Alex Graves, and Ko-
ray Kavukcuoglu. 2014. Recurrent models of visual
attention. In Advances in Neural Information Pro-
cessing Systems.

Arjun Mukherjee and Bing Liu. 2012. Aspect extrac-
tion through semi-supervised modeling. In Proceed-
ings of the 50th Annual Meeting of the Association
for Computational Linguistics.

Guang Qiu, Bing Liu, Jiajun Bu, and Chun Chen.
2011. Opinion word expansion and target extraction
through double propagation. Computational Lin-
guistics 37:9–27.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for sentence summa-
rization. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing.

Richard Socher, Andrej Karpathy, Quoc V Le, Christo-
pher D Manning, and Andrew Y Ng. 2014.
Grounded compositional semantics for finding and
describing images with sentences. Transactions of
the Association for Computational Linguistics 2.

Swapna Somasundaran and Janyce Wiebe. 2009. Rec-
ognizing stances in online debates. In Proceed-
ings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP.

Duyu Tang, Bing Qin, and Ting Liu. 2016. Aspect
level sentiment classification with deep memory net-
work. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Process-
ing.

Ivan Titov and Ryan McDonald. 2008. Modeling on-
line reviews with multi-grain topic models. In Pro-
ceedings of the 17th International World Wide Web
Conference.

Linlin Wang, Kang Liu, Zhu Cao, Jun Zhao, and Ger-
ard de Melo. 2015. Sentiment-aspect extraction
based on restricted Boltzmann machines. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing.

Wenya Wang, Sinno J. Pan, Daniel Dahlmeier, and Xi-
aokui Xiao. 2016. Recursive neural conditional ran-
dom fields for aspect-based sentiment analysis. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing.

Jason Weston, Samy Bengio, and Nicolas Usunier.
2011. Scaling up to large vocabulary image anno-
tation. In Proceedings of the Twenty-Second Inter-
national Joint Conference on Artificial Intelligence.

Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi
Cheng. 2013. A biterm topic model for short texts.
In Proceedings of the 22nd International World Wide
Web Conference.

Yichun Yin, Furu Wei, Li Dong, Kaiming Xu, Ming
Zhang, and Ming Zhou. 2016. Unsupervised word
and dependency path embeddings for aspect term
extraction. In Proceedings of the Twenty-Fifth Inter-
national Joint Conference on Artificial Intelligence.

Wayne Xin Zhao, Jing Jiang, Hongfei Yan, and Xiaom-
ing Li. 2010. Jointly modeling aspects and opinions
with a MaxEnt-LDA hybrid. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing.

Li Zhuang, Feng Jing, and Xiao-Yan Zhu. 2006. Movie
review mining and summarization. In Proceedings
of the 15th ACM International Conference on Infor-
mation and Knowledge Management.

397

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 398–408
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1037

Other Topics You May Also Agree or Disagree:
Modeling Inter-Topic Preferences using Tweets and Matrix Factorization

Akira Sasaki, Kazuaki Hanawa, Naoaki Okazaki, and Kentaro Inui
Graduate School of Information Sciences

Tohoku University
{aki-s, hanawa, okazaki, inui}@ecei.tohoku.ac.jp

Abstract

We present in this paper our approach for
modeling inter-topic preferences of Twit-
ter users: for example, those who agree
with the Trans-Pacific Partnership (TPP)
also agree with free trade. This kind of
knowledge is useful not only for stance
detection across multiple topics but also
for various real-world applications includ-
ing public opinion surveys, electoral pre-
dictions, electoral campaigns, and online
debates. In order to extract users’ prefer-
ences on Twitter, we design linguistic pat-
terns in which people agree and disagree
about specific topics (e.g., “A is com-
pletely wrong”). By applying these lin-
guistic patterns to a collection of tweets,
we extract statements agreeing and dis-
agreeing with various topics. Inspired by
previous work on item recommendation,
we formalize the task of modeling inter-
topic preferences as matrix factorization:
representing users’ preferences as a user-
topic matrix and mapping both users and
topics onto a latent feature space that ab-
stracts the preferences. Our experimental
results demonstrate both that our proposed
approach is useful in predicting missing
preferences of users and that the latent
vector representations of topics success-
fully encode inter-topic preferences.

1 Introduction

Social media have changed the way people shape
public opinion. The latest survey by the Pew
Research Center reported that a majority of US
adults (62%) obtain news via social media, and
of those, 18% do so often (Gottfried and Shearer,
2016). Given that news and opinions are shared

and amplified by friend networks of individu-
als (Jamieson and Cappella, 2008), individuals are
thereby isolated from information that does not fit
well with their opinions (Pariser, 2011). Ironi-
cally, cutting-edge social media technologies pro-
mote ideological groups even with its potential to
deliver diverse information.

A large number of studies already analyzed
discussions, interactions, influences, and commu-
nities on social media along the political spec-
trum from liberal to conservative (Adamic and
Glance, 2005; Zhou et al., 2011; Cohen and Ruths,
2013; Bakshy et al., 2015; Wong et al., 2016).
Even though these studies provide intuitive vi-
sualizations and interpretations along the liberal-
conservative axis, political analysts argue that the
axis is flawed and insufficient for representing
public opinion and ideologies (Kerlinger, 1984;
Maddox and Lilie, 1984).

A potential solution for analyzing multiple axes
of the political spectrum on social media is stance
detection (Thomas et al., 2006; Somasundaran
and Wiebe, 2009; Murakami and Raymond, 2010;
Anand et al., 2011; Walker et al., 2012; Moham-
mad et al., 2016; Johnson and Goldwasser, 2016),
whose task is to determine whether the author of
a text is for, neutral, or against a topic (e.g., free
trade, immigration, abortion). However, stance
detection across different topics is extremely dif-
ficult. Anand et al. (2011) reported that a so-
phisticated method with topic-dependent features
substantially improved the performance of stance
detection within a topic, but such an approach
could not outperform a baseline method with sim-
ple n-gram features when evaluated across topics.
More recently, all participants of SemEval 2016
Task 6A (with five topics) could not outperform
the baseline supervised method using n-gram fea-
tures (Mohammad et al., 2016).

In addition, stance detection encounters dif-

398

https://doi.org/10.18653/v1/P17-1037

1.0

1.0

1.0 0.5

0.7

-1.0

-1.0

-0.7

-0.5

User 1

User 2

User 3

User 4

Top
ic

1

Top
ic

2

Top
ic

3

Top
ic

4

～
～

R P T

×

Q

＝

0.9

0.9

1.0 0.5

0.7

-1.0

-1.0

-0.7

-0.5

User 1

User 2

User 3

User 4

Top
ic

1

Top
ic

2

Top
ic

3

Top
ic

4

R

-0.1

-0.1

-0.1

-0.7

0.3

-0.4

-0.9

 ^

Corpus (tweets) (User-topic matrix) (User vectors) (Topic vectors) (Low-rank approximation)

A good news. http://t.to/......
#TPPhantai

TPP ruins the future of our
country.

............

............

............
A ruins the future of our
country.

I support A
A is necessary
Welcome A
We should introduce A
......

I disagree A
A is completely wrong
A ruins the future of our
country
......

A good news. http://t.to/......
#TPPhantai

TPP ruins the future of our
country.

............

............

............

A good news. http://t.to/......
#TPPhantai

TPP ruins the future of our
country.

............

............

............

A good news.
http://t.to/...... #TPPhantai

TPP ruins the future of our
country.

............

............

............

Tweets posted by users
who have used pro/con hastags

A is completely wrong

to A

We should introduce A

This is A

Linguistic pro/con patternsPattern candidates in which
the users describe topics

Matrix factorization

Extraction of
topics, users, and
pattern candidates

Sort candidates
and select

useful patterns

Mine topic
preferences

pro

con

Figure 1: An overview of this study.

ficulties with different user types. Cohen and
Ruths (2013) observed that existing methods on
stance detection fail on “ordinary” users because
such methods primarily obtain training and test
data from politically vocal users (e.g., politicians);
for example, they found that a stance detector
trained on a dataset with politicians achieved 91%
accuracy on other politicians but only achieved
54% accuracy on “ordinary” users. Establishing
a bridge across different topics and users remains
a major challenge not only in stance detection, but
also in social media analytics.

An important component in establishing this
bridge is commonsense knowledge about topics.
For example, consider a topic a revision of Arti-
cle 96 of the Japanese Constitution. We infer that
the statement “we should maintain armed forces”
tends to favor this topic even without any lexical
overlap between the topic and the statement. This
inference is reasonable because: the writer of the
statement favors armed forces; those who favor
armed forces also favor a revision of Article 91;
and those who favor a revision of Article 9 also fa-
vor a revision of Article 962. In general, this kind
of commonsense knowledge can be expressed in

1Article 9 prohibits armed forces in Japan.
2Article 96 specifies high requirements for making

amendments to Constitution of Japan (including Article 9).

the format: those who agree/disagree with topic
A also agree/disagree with topic B. We call this
kind of knowledge inter-topic preference through-
out this paper.

We conjecture that previous work on stance
detection indirectly learns inter-topic preferences
within the same target through the use of n-gram
features on a supervision data. In contrast, in the
present paper, we directly acquire inter-topic pref-
erences from an unlabeled corpus of tweets. This
acquired knowledge regarding inter-topic prefer-
ences is useful not only for stance detection, but
also for various real-world applications including
public opinion survey, electoral campaigns, elec-
toral predictions, and online debates.

Figure 1 provides an overview of this work. In
our system, we extract linguistic patterns in which
people agree and disagree about specific topics
(e.g., “A is completely wrong”); to accomplish
this, as described in Section 2.1, we make use of
hashtags within a large collection of tweets. The
patterns are then used to extract instances of users’
preferences regarding various topics, as detailed in
Section 2.2. Inspired by previous work on item
recommendation, in Section 3, we formalize the
task of modeling inter-topic preferences as a ma-
trix factorization: representing a sparse user-topic
matrix (i.e., the extracted instances) with the prod-

399

uct of low-rank user and topic matrices. These
low-rank matrices provide latent vector represen-
tations of both users and topics. This approach
is also useful for completing preferences of “or-
dinary” (i.e., less vocal) users, which fills the gap
between different types of users.

The contributions of this paper are threefold.

1. To the best of our knowledge, this is the first
study that models inter-topic preferences for
unlimited targets on real-world data.

2. Our experimental results show that this ap-
proach can accurately predict missing topic
preferences of users accurately (80–94%).

3. Our experimental results also demonstrate
that the latent vector representations of topics
successfully encode inter-topic preferences,
e.g., those who agree with nuclear power
plants also agree with nuclear fuel cycles.

This study uses a Japanese Twitter corpus because
of its availability from the authors, but the core
idea is applicable to any language.

2 Mining Topic Preferences of Users

In this section, we describe how we collect state-
ments in which users agree or disagree with vari-
ous topics on Twitter, which then serves as source
data for modeling inter-topic preferences. More
formally, we are interested in acquiring a collec-
tion of tuples (u, t, v), where: u ∈ U is a user; U
is the set of all users on Twitter; t ∈ T is a topic;
T is the set of all topics; and v ∈ {+1,−1} is +1
when the user u agrees with the topic t and −1
otherwise (i.e., disagreement).

Throughout this work, we use a corpus consist-
ing of 35,328,745,115 Japanese tweets (7,340,730
users) crawled from February 6, 2013 to Septem-
ber 30, 2016. We removed retweets from the cor-
pus.

2.1 Mining Linguistic Patterns of Agreement
and Disagreement

We use linguistic patterns to extract tuples (u, t, v)
from the aforementioned corpus. More specifi-
cally, when a tweet message matches to one of
linguistic patterns of agreement (e.g., “t is nec-
essary”), we regard that the author u of the tweet
agrees with topic t. Conversely, a statement of dis-
agreement is identified by linguistic patterns for
disagreement (e.g., “t is unacceptable”).

In order to design linguistic patterns, we fo-
cus on hashtags appearing in the corpus that
have been popular clues for locating subjective
statements such as sentiments (Davidov et al.,
2010), emotions (Qadir and Riloff, 2014), and
ironies (Van Hee et al., 2016). Hashtags are
also useful for finding strong supporters and crit-
ics, as well as their target topics; for example,
#immigrantsWelcome indicates that the au-
thor favors immigrants; and #StopAbortion is
against abortion.

Based on this intuition, we design reg-
ular expressions for both pro hashtags
“#(.+)sansei”3 and con hashtags
“#(.+)hantai”4, where (.+) matches a
target topic. These regular expressions can find
users who have strong preferences to topics.
Using this approach, we extracted 31,068 occur-
rences of pro/con hashtags used by 18,582 users
for 4,899 topics. We regard the set of topics found
using this procedure as set of target topics T in
this study.

Each time we encounter a tweet containing a
pro/con hashtag, we searched for corresponding
textual statements as follows. Suppose that a
tweet includes a hashtag (e.g., #TPPsansei) for
a topic t (e.g., TPP). Assuming that the author of
the given tweet does not change their attitude to-
ward a topic over time, we search for other tweets
posted by the same author that also have the topic
keyword t. This process retrieves tweets like “I
support TPP.” Then, we replace the topic keyword
into a variable A to extract patterns, e.g., “I sup-
port A.” Here, the definition of the pattern unit is
language specific. For Japanese tweets, we simply
recognize a pattern that starts with a variable (i.e.,
topic) and ends at the end of the sentence5.

Because this procedure also extracts useless
patterns such as “to A” and “this is A”, we man-
ually choose useful patterns in a systematic way:
sort patterns in descending order of the number of
users who use the pattern; and check the sorted list
of patterns manually; and remove useless patterns.

3Unlike English hashtags, we systematically attach a noun
sansei, which stands for pro (agreement) in Japanese, to a
topic, for example, #TPPsansei. This paper uses the al-
phabetical expression sansei only for explanation; the ac-
tual pattern uses Chinese characters corresponding to sansei.

4A Japanese noun hantai stands for con (disagreement),
for example, #TPPhantai. This paper uses the alphabetical
expression hantai only for explanation; the actual pattern
uses Chinese characters corresponding to hantai.

5In English, this treatment roughly corresponds to extract-
ing a verb phrase with the variable A.

400

Using this approach, we obtained 100 pro patterns
(e.g., “welcome A” and “A is necessary”) and 100
con patterns (“do not letA” and “I don’t wantA”).

2.2 Extracting Instances of Topic Preferences
By using the pro and con patterns acquired using
the approach described in Section 2.1, we extract
instances of (u, t, v) as follows. When a sentence
in a tweet whose author is user u matches one of
the pro patterns (e.g., “t is necessary”) and the
topic t is included in the set of target topics T , we
recognize this as an instance of (u, t,+1). Sim-
ilarly, when a sentence matches one of the con
patterns (e.g., “I don’t want t”) and the topic t
is included in the set of target topics T , we rec-
ognize this as an instance of (u, t,−1). Using
this approach, we collected 25,805,909 tuples cor-
responding to 3,302,613 users and 4,899 topics.
Because these collected tuples included compar-
atively infrequent users and topics, we removed
users and topics that appeared less than five times.
In addition, there were also meaningless frequent
topics such as “of” and “it”. Therefore, we sorted
topics in descending order of their co-occurrence
frequencies with each of the pro patterns and con
patterns, and then removed meaningless topics in
the top 100 topics. This resulted in 9,961,509 tu-
ples regarding 273,417 users and 2,323 topics.

3 Matrix Factorization

Using the methods described in Section 2, from
the corpus, we collected a number of instances of
users’ preferences regarding various topics. How-
ever, Twitter users do not necessarily express pref-
erences for all topics. In addition, it is by nature
impossible to predict whether a new (i.e., nonexis-
tent in the data) user agrees or disagrees with given
topics. Therefore, in this section, we apply matrix
factorization (Koren et al., 2009) in order to pre-
dict missing values, inspired by research regard-
ing item recommendation (Bell and Koren, 2007;
Dror et al., 2011). In essence, matrix factorization
maps both users and topics onto a latent feature
space that abstracts topic preferences of users.

Here, letR be a sparse matrix of |U |×|T |. Only
when a user u expresses a preference for topic t do
we compute an element of the sparse matrix ru,t,

ru,t =
#(u, t,+1)−#(u, t,−1)
#(u, t,+1) + #(u, t,−1) (1)

Here, #(u, t,+1) and #(u, t,−1) represent the
numbers of occurrences of instances (u, t,+1)

and (u, t,−1), respectively. Thus, an element ru,t
approaches +1 as the user u favors the topic t,
and −1 otherwise. If the user u does not make
any statement regarding the topic t (i.e., neither
(u, t,+1) nor (u, t,−1) exists in the data), we do
not fill the corresponding element, leaving it as a
missing value.

Matrix factorization decomposes the sparse ma-
trix R into low-dimensional matrices P ∈ Rk×|U |
andQ ∈ Rk×|T |, where k is a parameter that spec-
ifies the number of dimensions of the latent space.
We minimize the following objective function to
find the matrices P and Q,

min
P,Q

∑

(u,t)∈R

(
(ru,t − puᵀqt)2

+λP ‖pu‖2 + λQ ‖qt‖2
)
. (2)

Here, (u, t) ∈ R is repeated for elements filled in
the sparse matrix R, pu ∈ Rk and qv ∈ Rk are
u column vectors of P and v column vectors of
Q, respectively, and λP ≥ 0 and λQ ≥ 0 repre-
sent coefficients of regularization terms. We call
pu and qt the user vector and topic vector, respec-
tively.

Using these user and topic vectors, we can pre-
dict an element r̂u,t that may be missing in the
original matrix R,

r̂u,t ' puᵀqt. (3)

We use libmf6 (Chin et al., 2015) to solve the
optimization problem in Equation 2. We set reg-
ularization coefficients λP = 0.1 and λQ = 0.1
and use default values for the other parameters of
libmf.

4 Evaluation

4.1 Determining the Dimension Parameter k
How good is the low-rank approximation found by
matrix factorization? And can we find the “sweet
spot” for the number of dimensions k of the la-
tent space? We investigate the reconstruction er-
ror of matrix factorization using different values
of k to answer these questions. We use Root Mean
Squared Error (RMSE) to measure error,

RMSE =

√∑
(u,t)∈R (puᵀqt − ru,t)2

N
. (4)

6https://github.com/cjlin1/libmf

401

k=1
k=2

k=5

k=10
k=30

k=50
k=100
k=300
k=500

Figure 2: Reconstruction error (RMSE) of matrix
factorization with different k.

Here, N is the number of elements in the sparse
matrix R (i.e., the number of known values).

Figure 2 shows RMSE values over iterations
of libmf with the dimension parameter k ∈
{1, 2, 5, 10, 30, 50, 100, 300, 500}. We observed
that the reconstruction error decreased as the itera-
tive method of libmf progressed. The larger the
number of dimensions k was, the smaller the re-
construction error became; the lowest reconstruc-
tion error was 0.3256 with k = 500. We also ob-
served the error with k = 1, which corresponds to
mapping users and topics onto one dimension sim-
ilarly to the political spectrum of liberal and con-
servative. Judging from the relatively high RMSE
values with k = 1, we conclude that it may be
difficult to represent everything in the data using
a one-dimensional axis. Based on this result, we
concluded that matrix factorization with k = 100
is sufficient for reconstructing the original matrix
R and therefore used this parameter value for the
rest of our experiments.

4.2 Predicting Missing Topic Preferences

How accurately can the user and topic vectors pre-
dict missing topic preferences? To answer this
question, we evaluate the accuracy in predicting
hidden preferences in the matrix R as follows.
First, we randomly selected 5% of existing ele-
ments in R and let Y represent the collection of
the selected elements (test set). We then perform
matrix factorization on the sparse matrix without
the selected elements of Y , that is, only with the
remaining 95% elements of R (training set). We
define the accuracy of the prediction as

1

|Y |
∑

u,t∈Y
1 (sign(r̂u,t) = sign(ru,t)) (5)

Matrix factorization

Majority baseline

Figure 3: Prediction accuracy when changing the
threshold for the number of known topic prefer-
ences of each user.

Here, ru,t denotes the actual (i.e., self-declared)
preference values, r̂u,t represents the preference
value predicted by Equation 3, sign(.) represents
the sign of the argument, and 1(.) yields 1 only
when the condition described in the argument
holds and 0 otherwise. In other words, Equation 5
computes the proportion of correct predictions to
all predictions, assuming zero to be the decision
boundary between pro and con.

Figure 3 plots prediction accuracy values cal-
culated from different sets of users. Here the x-
axis represents a threshold θ, which filters out
users whose declarations of topic preferences are
no greater than θ topics. In other words, Figure
3 shows prediction accuracy when we know user
preferences for at least θ topics. For comparison,
we also include the majority baseline that predicts
pro and con based on the majority of preferences
regarding each topic in the training set.

Our proposed method was able to predict miss-
ing preferences with an 82.1% accuracy for users
stating preferences for at least five topics. This ac-
curacy increased as our method received more in-
formation regarding the users, reaching a 94.0%
accuracy when θ = 100. This result again in-
dicates that our proposed method reasonably uti-
lizes known preferences to complete missing pref-
erences.

In contrast, the performance of the majority
baseline decreased as it received more informa-
tion regarding the users. Because this result was
rather counter-intuitive, we examined the cause of
this phenomenon. Consequently, this result turned
out to be reasonable because preferences of vo-
cal users deviated from those of the average users.
Figure 4 illustrates this finding, showing the mean
of variances of preference values ru,t across self-

402

0 20 40 60 80 100 120
Threshold for the number of topics mentioned by users

0.45

0.50

0.55

0.60

0.65

0.70
M

e
a
n
 v

a
ri

a
n
ce

 o
f

m
e
n
ti

o
n
e
d
 t

o
p
ic

s

Figure 4: Mean variance of preference values of
self-declared topics when changing the threshold
for the number of self-declared topics.

declared topics. In the figure, the x-axis repre-
sents a threshold θ, which filters out users whose
statements of topic preferences are no greater than
θ topics. We observe that the mean variance in-
creased as we focused on vocal users. Overall,
these results demonstrate the usefulness of user
and topic vectors in predicting missing prefer-
ences.

Table 1 shows examples in which missing pref-
erences of two users were predicted from known
statements of agreements and disagreements7. In
the table, predicted topics are accompanied by the
corresponding r̂u,t value in parentheses. As an
example, our proposed method predicted that the
user A, who is positive toward regime change but
negative toward Okinawa US military base, may
also be positive toward vote of non-confidence to
Cabinet but negative toward construction of a new
base.

4.3 Inter-topic Preferences

Do the topic vectors obtained by matrix fac-
torization capture inter-topic preferences, such as
“People who agree with A also agree with B”?

Because no dataset exists for this evaluation,
we created a dataset of pairwise inter-topic pref-
erences by using a crowdsourcing service8. Sam-
pling topic pairs randomly, we collected 150 topic
pairs whose cosine similarities of topic vectors

7We anonymized user names in these examples. In addi-
tion, we removed topics that are too discriminatory or aggres-
sive to other countries and races. Even though the experimen-
tal results of this paper do not necessarily reflect our idea, we
do not think it is a good idea to distribute politically incorrect
ideas through this paper.

8We used Yahoo! Crowdsourcing, a Japanese online ser-
vice for crowdsourcing.
http://crowdsourcing.yahoo.co.jp/

were below −0.6, 150 pairs whose cosine simi-
larities were between −0.6 and 0.6, and 150 pairs
whose cosine similarities were above 0.6. In this
way, we obtained 450 topic pairs for evaluation.

Given a pair of topics A and B, a crowd worker
was asked to choose a label from the following
three options: (a) those who agree/disagree with
topic A may also agree/disagree with topic B;
(b) those who agree/disagree with topic A may
conversely disagree/agree with topic B; (c) other-
wise (no association between A and B). Creating
twenty pairs of topics as gold data, we removed la-
beling results from workers whose accuracy is less
than 90%.

Consequently, we obtained 6–10 human judge-
ments for every topic pair. Regarding (a) as +1
point, (b) as −1 point, and (c) as 0 point, we com-
puted the mean of the points (i.e., average human
judgements) for each topic pair. Spearman’s rank
correlation coefficient (ρ) between cosine similar-
ity values of topic vectors and human judgements
was 0.2210. We could observe a moderate correla-
tion even though inter-topic preferences collected
in this manner were highly subjective.

In addition to the quantitative evaluation, as
summarized in Table 2, we also checked simi-
lar topics for three controversial topics, Liberal
Democratic Party (LDP), constitutional amend-
ment and right of foreigners to vote (Table 2).
Topics similar to LDP included synonymous ones
(e.g., Abe’s LDP and Abe administration) and
other topics promoted by the LDP (e.g., resuming
nuclear power plant operations, bus rapid tran-
sit (BRT) and hate speech countermeasure law).
Considering that people who support the LDP may
also tend to favor its policies, we found these re-
sults reasonable. As for the other example, consti-
tutional amendment had a feature vector that was
similar to that of amendment of Article 9, enforce-
ment of specific secret protection law and security
related law. From these results, we concluded that
topic vectors were able to capture inter-topic pref-
erences.

5 Related Work

In this section, we summarize the related work that
spreads across various research fields.

Social Science and Political Science A num-
ber of of studies analyze social phenomena re-
garding political activities, political thoughts, and
public opinions on social media. These studies

403

User Type Topic
A Agreement (declared) regime change, capital relocation

Disagreement (declared) Okinawa US military base, nuclear weapons, TPP, Abe Cabinet, Abe government,
nuclear cycle, right to collective defense, nuclear power plant, Abenomics

Agreement (predicted) same-sex partnership ordinance (0.9697), vote of non-confidence to Cabinet (0.9248),
national people’s government (0.9157), abolition of tax (0.8978)

Disagreement (predicted) steamrollering war bill (-1.0522), worsening dispatch law (-1.0301), Sendai nuclear
power plant (-1.0269), war bill (-1.0190), construction of a new base (-1.0186), Abe
administration (-1.0173), landfill Henoko (-1.0158), unreasonable arrest (-1.0113)

B Agreement (declared) visit shrine, marriage
Disagreement(declared) tax increase, conscription, amend Article 9
Agreement (predicted) national people’s government (0.8467), abolition of tax (0.8300), same-sex partner-

ship ordinance (0.7700), security bills (0.6736)
Disagreement (predicted) corporate tax cuts (-1.0439), Liberal Democratic Party’s draft constitution (-1.0396),

radioactivity (-1.0276), rubble (-1.0159), nuclear cycle (-1.0143)

Table 1: Examples of agreement/disagreement topics predicted for two sample users A and B, with
predicted score r̂u,v shown in parenthesis.

Topic Topics with a high degree of cosine similarity
Liberal Democratic Party (LDP) Abe’s LDP (0.3937), resuming nuclear power plant operations (0.3765), bus rapid

transit (BRT) (0.3410), hate speech countermeasure law (0.3373), Henoko relocation
(0.3353), C-130 (0.3338), Abe administration (0.3248), LDP & Komeito (0.2898),
Prime Minister Abe (0.2835)

constitutional amendment amendment of Article 9 (0.4520), enforcement of specific secret protection law
(0.4399), security related law (0.4242), specific confidentiality protection law (0.4022),
security bill amendment (0.3977), defense forces (0.3962), my number law (0.3874),
collective self-defense rights (0.3687), militarist revival (0.3567)

right of foreigners to vote human rights law (0.5405), anti-discrimination law (0.5376), hate speech countermea-
sure law (0.5080), foreigner’s life protection (0.4553), immigration refugee (0.4520),
co-organized Olympics (0.4379)

Table 2: Topics identified as being similar to the three controversial topics shown in the left column.

model the political spectrum from liberal to con-
servative (Adamic and Glance, 2005; Zhou et al.,
2011; Cohen and Ruths, 2013; Bakshy et al., 2015;
Wong et al., 2016), political parties (Tumasjan
et al., 2010; Boutet et al., 2013; Makazhanov
and Rafiei, 2013), and elections (O’Connor et al.,
2010; Conover et al., 2011).

Employing a single axis (e.g., liberal to conser-
vative) or a few axes (e.g., political parties and
candidates of elections), these studies provide in-
tuitive visualizations and interpretations along the
respective axes. In contrast, this study is the first
attempt to recognize and organize various axes of
topics on social media with no prior assumptions
regarding the axes. Therefore, we think our study
provides a new tool for computational social sci-
ence and political science that enables researchers
to analyze and interpret phenomena on social me-
dia.

Next, we describe previous research focused
on acquiring lexical knowledge of politics. Sim
et al. (2013) measured ideological positions of
candidates in US presidential elections from their

speeches. The study first constructs “cue lexicons”
from political writings labeled with ideologies
by domain experts, using sparse additive genera-
tive models (Eisenstein et al., 2011). These con-
structed cue lexicons were associated with such
ideologies as left, center, and right. Representing
each speech of a candidate with cue lexicons, they
inferred the proportions of ideologies of the candi-
date. The study requires a predefined set of labels
and text data associated with the labels.

Bamman and Smith (2015) presented an
unsupervised method for assessing the politi-
cal stance of a proposition, such as “global
warming is a hoax,” along the political spec-
trum of liberal to conservative. In their
work, a proposition was represented by a tu-
ple in the form 〈subject, predicate〉, for example,
〈global warming, hoax〉. They presented a gen-
erative model for users, subjects, and predicates
to find a one-dimensional latent space that corre-
sponded to the political spectrum.

Similar to our present work, their work (Bam-
man and Smith, 2015) did not require labeled data

404

to map users and topics (i.e., subjects) onto a la-
tent feature space. In their paper, they reported
that the generative model outperformed Principal
Component Analysis (PCA), which is a method
for matrix factorization. Empirical results here
probably reflected the underlying assumptions that
PCA treats missing elements as zero and not as
missing data. In contrast, in the present work,
we properly distinguish missing values from zero,
excluding missing elements of the original matrix
from the objective function of Equation 2. Further,
this work demonstrated the usefulness of the latent
space, that is, topic and user vectors, in predicting
missing topic preferences of users and inter-topic
preferences.

Fine-grained Opinion Analysis The method
presented in Section 2 is an instance of fine-
grained opinion analysis (Wiebe et al., 2005; Choi
et al., 2006; Johansson and Moschitti, 2010; Yang
and Cardie, 2013; Deng and Wiebe, 2015), which
extracts a tuple of a subjective opinion, a holder of
the opinion, and a target of the opinion from text.
Although these previous studies have the potential
to improve the quality of the user-topic matrix R,
unfortunately, no corpus or resource is available
for the Japanese language. We do not currently
have a large collection of English tweets, but com-
bining fine-grained opinion analysis with matrix
factorization is an immediate future work.

Causality Relation Some of inter-topic prefer-
ences in this work can be explained by causality
relation, for example, “TPP promotes free trade.”
A number of previous studies acquire instances of
causal relation (Girju, 2003; Do et al., 2011) and
promote/suppress relation (Hashimoto et al., 2012;
Fluck et al., 2015) from text. The causality knowl-
edge is useful for predicting (hypotheses of) future
events (Radinsky et al., 2012; Radinsky and Davi-
dovich, 2012; Hashimoto et al., 2015).

Inter-topic preferences, however, also include
pairs of topics in which causality relation hardly
holds. As an example, it is unreasonable to infer
that nuclear plant and railroading of bills have a
causal relation, but those who dislike nuclear plant
also oppose railroading of bills because presum-
ably they think the governing political parties rush
the bill for resuming a nuclear plant. In this study,
we model these inter-topic preferences based on
preferences of the public. That said, we have as a
promising future direction of our work plans to in-

corporate approaches to acquire causality knowl-
edge.

6 Conclusion

In this paper, we presented a novel approach for
modeling inter-topic preferences of users on Twit-
ter. Designing linguistic patterns for identifying
support and opposition statements, we extracted
users’ preferences regarding various topics from
a large collection of tweets. We formalized the
task of modeling inter-topic preferences as a ma-
trix factorization that maps both users and top-
ics onto a latent feature space that abstracts users’
preferences. Through our experimental results, we
demonstrated that our approach was able to accu-
rately predict missing topic preferences of users
(80–94%) and that our latent vector representa-
tions of topics properly encoded inter-topic pref-
erences.

For our immediate future work, we plan to em-
bed the topic and user vectors to create a cross-
topic stance detector. It is possible to generalize
our work to model heterogeneous signals, such
as interests and behaviors of people, for example,
“those who are interested in A also support B,”
and “those who favor A also vote for B”. There-
fore, we believe that our work will bring about new
applications in the field of NLP and other disci-
plines.

Acknowledgements

This work was supported by JSPS KAKENHI
Grant Number 15H05318 and JST CREST Grant
Number J130002054, Japan.

References
Lada A. Adamic and Natalie Glance. 2005. The

political blogosphere and the 2004 U.S. elec-
tion: Divided they blog. In Proceedings
of the 3rd International Workshop on Link
Discovery (LinkKDD 2005). pages 36–43.
https://doi.org/10.1145/1134271.1134277.

Pranav Anand, Marilyn Walker, Rob Abbott, Jean
E. Fox Tree, Robeson Bowmani, and Michael Mi-
nor. 2011. Cats rule and dogs drool!: Classifying
stance in online debate. In Proceedings of the 2nd
Workshop on Computational Approaches to Subjec-
tivity and Sentiment Analysis (WASSA 2011). pages
1–9.

Eytan Bakshy, Solomon Messing, and Lada A.
Adamic. 2015. Exposure to ideologi-
cally diverse news and opinion on face-

405

book. Science 348(6239):1130–1132.
https://doi.org/10.1126/science.aaa1160.

David Bamman and Noah A. Smith. 2015.
Open extraction of fine-grained political state-
ments. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2015). pages 76–85.
https://doi.org/10.18653/v1/D15-1008.

Robert M. Bell and Yehuda Koren. 2007. Lessons
from the Netflix prize challenge. ACM
SIGKDD Explorations Newsletter 9(2):75–79.
https://doi.org/10.1145/1345448.1345465.

Antoine Boutet, Hyoungshick Kim, and Eiko
Yoneki. 2013. What’s in Twitter, I know
what parties are popular and who you are
supporting now! Social Network Analysis
and Mining (SNAM 2012) 3(4):1379–1391.
https://doi.org/10.1109/ASONAM.2012.32.

Wei-Sheng Chin, Yong Zhuang, Yu-Chin Juan, and
Chih-Jen Lin. 2015. A fast parallel stochas-
tic gradient method for matrix factorization in
shared memory systems. ACM Transactions on
Intelligent Systems and Technology (TIST) 6(1):2.
https://doi.org/10.1145/2668133.

Yejin Choi, Eric Breck, and Claire Cardie. 2006.
Joint extraction of entities and relations for opin-
ion recognition. In Proceedings of the 2006 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2006). pages 431–439.
http://aclweb.org/anthology/W06-1651.

Raviv Cohen and Derek Ruths. 2013. Classifying po-
litical orientation on Twitter: It’s not easy! In
Proc. of the Seventh International AAAI Conference
on Weblogs and Social Media (ICWSM 2013). pages
91–99.

Michael D Conover, Bruno Gonçalves, Jacob
Ratkiewicz, Alessandro Flammini, and Filippo
Menczer. 2011. Predicting the political alignment
of twitter users. In Privacy, 2011 IEEE Third
International Conference on Security, Risk and
Trust and 2011 IEEE Third Inernational Conference
on Social Computing (PASSAT-SocialCom 2011).
IEEE, pages 192–199.

Dmitry Davidov, Oren Tsur, and Ari Rappoport.
2010. Enhanced sentiment learning using twit-
ter hashtags and smileys. In Proceedings of
the 23rd International Conference on Computa-
tional Linguistics (COLING 2010). pages 241–249.
http://aclweb.org/anthology/C10-2028.

Lingjia Deng and Janyce Wiebe. 2015. MPQA 3.0:
An entity/event-level sentiment corpus. In Pro-
ceedings of the 2015 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies (NAACL-HLT 2015). pages 1323–1328.
https://doi.org/10.3115/v1/N15-1146.

Quang Do, Yee Seng Chan, and Dan Roth. 2011.
Minimally supervised event causality identifica-
tion. In Proceedings of the 2011 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2011). pages 294–303.
http://aclweb.org/anthology/D11-1027.

Gideon Dror, Noam Koenigstein, Yehuda Koren, and
Markus Weimer. 2011. The Yahoo! Music dataset
and KDD-Cup’11. In Proceedings of the 2011 Inter-
national Conference on KDD Cup 2011 (KDDCUP
2011). pages 3–18.

Jacob Eisenstein, Amr Ahmed, and Eric P Xing. 2011.
Sparse additive generative models of text. In Pro-
ceedings of the 28th International Conference on
Machine Learning (ICML 2011).

Juliane Fluck, Sumit Madan, Tilia Renate Ellendorff,
Theo Mevissen, Simon Clematide, Adrian van der
Lek, and Fabio Rinaldi. 2015. Track 4 overview:
Extraction of causal network information in biolog-
ical expression language (BEL). In Proceedings of
the Fifth BioCreative Challenge Evaluation Work-
shop. pages 333–346.

Roxana Girju. 2003. Automatic detection of causal re-
lations for question answering. In Proceedings of
the ACL 2003 Workshop on Multilingual Summa-
rization and Question Answering - Volume 12. pages
76–83. https://doi.org/10.3115/1119312.1119322.

Jeffrey Gottfried and Elisa Shearer. 2016. News use
across social media platforms 2016. Technical re-
port, Pew Research Center.

Chikara Hashimoto, Kentaro Torisawa, Stijn
De Saeger, Jong-Hoon Oh, and Jun’ichi Kazama.
2012. Excitatory or inhibitory: A new semantic
orientation extracts contradiction and causality from
the web. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP-CoNLL 2012). Association
for Computational Linguistics, pages 619–630.
http://aclweb.org/anthology/D12-1057.

Chikara Hashimoto, Kentaro Torisawa, Julien Kloet-
zer, and Jong-Hoon Oh. 2015. Generating event
causality hypotheses through semantic relations. In
Proceedings of the Twenty-Ninth AAAI Conference
on Artificial Intelligence (AAAI 2015). pages 2396–
2403.

Kathleen Hall Jamieson and Joseph N. Cappella. 2008.
Echo Chamber: Rush Limbaugh and the Conserva-
tive Media Establishment. Oxford University Press.

Richard Johansson and Alessandro Moschitti. 2010.
Syntactic and semantic structure for opinion ex-
pression detection. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning (CoNLL 2010). pages 67–76.
http://aclweb.org/anthology/W10-2910.

406

Kristen Johnson and Dan Goldwasser. 2016. “All
I know about politics is what I read in Twitter”:
Weakly supervised models for extracting politi-
cians’ stances from twitter. In Proceedings of
the 26th International Conference on Computa-
tional Linguistics (COLING 2016). pages 2966–
2977. http://aclweb.org/anthology/C16-1279.

Fred N. Kerlinger. 1984. Liberalism and Conser-
vatism: The Nature and Structure of Social Atti-
tudes. Lawrence Erlbaum Associates.

Yehuda Koren, Robert Bell, and Chris Volinsky.
2009. Matrix factorization techniques for rec-
ommender systems. Computer 42(8):30–37.
https://doi.org/10.1109/MC.2009.263.

William S. Maddox and Stuart A. Lilie. 1984. Beyond
Liberal and Conservative: Reassessing the Political
Spectrum. Cato Inst.

Aibek Makazhanov and Davood Rafiei. 2013. Pre-
dicting political preference of twitter users. In
Proceedings of the 2013 IEEE/ACM International
Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM 2013). pages 298–305.
https://doi.org/10.1145/2492517.2492527.

Saif Mohammad, Svetlana Kiritchenko, Parinaz Sob-
hani, Xiaodan Zhu, and Colin Cherry. 2016.
Semeval-2016 task 6: Detecting stance in tweets. In
Proceedings of the 10th International Workshop on
Semantic Evaluation (SemEval-2016). pages 31–41.
https://doi.org/10.18653/v1/S16-1003.

Akiko Murakami and Rudy Raymond. 2010. Support
or oppose?: classifying positions in online debates
from reply activities and opinion expressions. In
Proceedings of the 23rd International Conference on
Computational Linguistics (COLING 2010). pages
869–875. http://aclweb.org/anthology/C10-2100.

Brendan O’Connor, Ramnath Balasubramanyan,
Bryan R. Routledge, and Noah A. Smith. 2010.
From tweets to polls: Linking text sentiment to
public opinion time series. In Proceedings of the
Fourth International AAAI Conference on Weblogs
and Social Media (ICWSM 2010). pages 122–129.

Eli Pariser. 2011. The Filter Bubble: How the New
Personalized Web Is Changing What We Read and
How We Think. Penguin Books.

Ashequl Qadir and Ellen Riloff. 2014. Learning
emotion indicators from tweets: Hashtags, hash-
tag patterns, and phrases. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014). pages 1203–
1209. https://doi.org/10.3115/v1/D14-1127.

Kira Radinsky and Sagie Davidovich. 2012. Learning
to predict from textual data. Journal of Artificial In-
telligence Research (JAIR) 45(1):641–684.

Kira Radinsky, Sagie Davidovich, and Shaul
Markovitch. 2012. Learning causality for
news events prediction. In Proceedings of
the 21st International Conference on World
Wide Web (WWW 2012). pages 909–918.
https://doi.org/10.1145/2187836.2187958.

Yanchuan Sim, Brice D. L. Acree, Justin H. Gross, and
Noah A. Smith. 2013. Measuring ideological pro-
portions in political speeches. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP 2013). pages 91–
101. http://aclweb.org/anthology/D13-1010.

Swapna Somasundaran and Janyce Wiebe. 2009. Rec-
ognizing stances in online debates. In Joint con-
ference of the 47th Annual Meeting of the Associ-
ation for Computational Linguistics and the 4th In-
ternational Joint Conference on Natural Language
Processing of the Asian Federation of Natural Lan-
guage Processing (ACL-IJCNLP 2009). pages 226–
234. http://aclweb.org/anthology/P09-1026.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from
congressional floor-debate transcripts. In Proceed-
ings of the 2006 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2006).
pages 327–335. http://aclweb.org/anthology/W06-
1639.

Andranik Tumasjan, Timm Oliver Sprenger, Philipp G
Sandner, and Isabell M Welpe. 2010. Predicting
elections with twitter: What 140 characters reveal
about political sentiment. In Fourth International
AAAI Conference on Weblogs and Social Media
(ICWSM 2010). pages 178–185.

Cynthia Van Hee, Els Lefever, and Veronique
Hoste. 2016. Monday mornings are my fave
:) #not exploring the automatic recognition of
irony in english tweets. In Proceedings of the
26th International Conference on Computational
Linguistics (COLING 2016). pages 2730–2739.
http://aclweb.org/anthology/C16-1257.

Marilyn A. Walker, Pranav Anand, Rob Ab-
bott, Jean E. Fox Tree, Craig Martell, and
Joseph King. 2012. That is your evidence?:
Classifying stance in online political debate.
Decision Support Systems 53(4):719–729.
https://doi.org/10.1016/j.dss.2012.05.032.

Janyce Wiebe, Theresa Wilson, and Claire
Cardie. 2005. Annotating expressions of opin-
ions and emotions in language. Language
Resources and Evaluation 39(2):165–210.
https://doi.org/10.1007/s10579-005-7880-9.

Felix Ming Fai Wong, Chee Wei Tan, Soumya
Sen, and Mung Chiang. 2016. Quantifying
political leaning from tweets, retweets, and
retweeters. IEEE Transactions on Knowl-
edge and Data Engineering 28(8):2158–2172.
https://doi.org/10.1109/TKDE.2016.2553667.

407

Bishan Yang and Claire Cardie. 2013. Joint infer-
ence for fine-grained opinion extraction. In Pro-
ceedings of the 51st Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2013).
pages 1640–1649. http://aclweb.org/anthology/P13-
1161.

Daniel Xiaodan Zhou, Paul Resnick, and Qiaozhu Mei.
2011. Classifying the political leaning of news ar-
ticles and users from user votes. In Fifth Interna-
tional AAAI Conference on Weblogs and Social Me-
dia (ICWSM 2011). pages 417–424.

408

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 409–419
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1038

Automatically Labeled Data Generation for Large Scale Event Extraction

Yubo Chen1,2, Shulin Liu1,2, Xiang Zhang1, Kang Liu1 and Jun Zhao1,2

1 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, 100190, China

2 University of Chinese Academy of Sciences, Beijing, 100049, China
{yubo.chen, shulin.liu, xiang.zhang, kliu, jzhao}@nlpr.ia.ac.cn

Abstract

Modern models of event extraction for
tasks like ACE are based on supervised
learning of events from small hand-labeled
data. However, hand-labeled training da-
ta is expensive to produce, in low cov-
erage of event types, and limited in size,
which makes supervised methods hard to
extract large scale of events for knowledge
base population. To solve the data label-
ing problem, we propose to automatically
label training data for event extraction vi-
a world knowledge and linguistic knowl-
edge, which can detect key arguments and
trigger words for each event type and em-
ploy them to label events in texts auto-
matically. The experimental results show
that the quality of our large scale automat-
ically labeled data is competitive with e-
laborately human-labeled data. And our
automatically labeled data can incorporate
with human-labeled data, then improve the
performance of models learned from these
data.

1 Introduction

Event Extraction (EE), a challenging task in In-
formation Extraction, aims at detecting and typ-
ing events (Event Detection), and extracting ar-
guments with different roles (Argument Identifi-
cation) from natural-language texts. For exam-
ple, in the sentence shown in Figure 1, an EE
system is expected to identify an Attack even-
t triggered by threw and extract the correspond-
ing five augments with different roles: Yesterday
(Role=Time), demonstrators (Role=Attacker), s-
tones (Role=Instrument), soldiers (Role=Target),
and Israeli (Role=Place).

To this end, so far most methods (Nguyen et al.,

In Baghdad , a cameraman died when an American tank fired on the Palestine Hotel.

prep_in

det nsubj nsubj

advcl
advmod

det
amod

prep_on

det
nn

In Baghdad , a cameraman died when an American tank fired on the Palestine Hotel.

Victim

Place InstrumentDie Attack Target

Target
Place

Michelle Obama and Barack Obama were on October 3, 1992.Marry
Person

Person
Time

Marry

Victim

Place
Instrument

Die Attack Target

Target

Place

In Baghdad , a cameraman died when an American tank fired on the Palestine Hotel.

Victim

Place InstrumentDie Attack Target

Target
Place

Figure 1: This sentence expresses an Attack event
triggered by threw and containing five arguments.

2016; Chen et al., 2015; Li et al., 2014; Hong et al.,
2011; Ji and Grishman, 2008) usually adopted su-
pervised learning paradigm which relies on elab-
orate human-annotated data, such as ACE 20051,
to train extractors. Although this paradigm was
widely studied, existing approaches still suffer
from high costs for manually labeling training da-
ta and low coverage of predefined event types. In
ACE 2005, all 33 event types are manually pre-
defined and the corresponding event information
(including triggers, event types, arguments and
their roles) are manually annotated only in 599
English documents since the annotation process
is extremely expensive. As Figure 2 shown, n-
early 60% of event types in ACE 2005 have less
than 100 labeled samples and there are even three
event types which have less than ten labeled sam-
ples. Moreover, those predefined 33 event types
are in low coverage for Natural Language Process-
ing (NLP) applications on large-scale data.

Therefore, for extracting large scale events, e-
specially in open domain scenarios, how to auto-
matically and efficiently generate sufficient train-
ing data is an important problem. This paper aim-
s to automatically generate training data for EE,
which involves labeling triggers, event types, ar-
guments and their roles. Figure 1 shows an ex-
ample of labeled sentence. Recent improvements
of Distant Supervision (DS) have been proven to
be effective to label training data for Relation Ex-
traction (RE), which aims to predict semantic re-

1http://projects.ldc.upenn.edu/ace/

409

https://doi.org/10.18653/v1/P17-1038

0

200

400

600

800

1000

1200

1400

1600

Figure 2: Statistics of ACE 2005 English Data.

lations between pairs of entities, formulated as
(entity1, relation, entity2). And DS for RE as-
sumes that if two entities have a relationship in
a known knowledge base, then all sentences that
mention these two entities will express that rela-
tionship in some way (Mintz et al., 2009). How-
ever, when we use DS for RE to EE, we meet fol-
lowing challenges:

Triggers are not given out in existing knowl-
edge bases. EE aims to detect an event instance
of a specific type and extract their arguments and
roles, formulated as (event instance, event type;
role1, argument1; role2, argument2; ...; rolen,
argumentn), which can be regarded as a kind
of multiple or complicated relational data. In
Figure 3, the right part shows an example of
spouse of relation between Barack Obama and
Michelle Obama, where two rectangles repre-
sent two entities and the edge connecting them
represents their relation. DS for RE uses t-
wo entities to automatically label training da-
ta; In comparison, the left part in Figure 3
shows a marriage event of Barack Obama
and Michelle Obama, where the dash cir-
cle represents the marriage event instance of
Barack Obama and Michelle Obama, rectan-
gles represent arguments of the event instance, and
each edge connecting an argument and the event
instance expresses the role of the argument. For
example, Barack Obama plays a Spouse role
in this marriage event instance. It seems that we
could use an event instance and an argument to
automatically generate training data for argumen-
t identification just like DS for RE. However, an
event instance is a virtual node in existing knowl-
edge bases and mentioned implicitly in texts. For
example, in Freebase, the aforementioned mar-
riage event instance is represented as m.02nqglv
(see details in Section 2). Thus we cannot direct-
ly use an event instance and an argument, like
m.02nqglv and Barack Obama, to label back

MarriageMichelle Obama

10/03/1992

Trinity United Church of Christ

Null

Spouse Spouse

location of ceremony

time_from time_to

Barack Obama Michelle Obama
Spouse_of

VS

An example of marriage event An example of spouse_of relation

MarriageMichelle Obama

10/03/1992

Trinity United Church of Christ

Null

Spouse Spouse

location of ceremony

time_from time_to

Barack Obama Michelle Obama
Spouse_of

An example of marriage event An example of spouse_of relation

MarriageMichelle Obama

10/03/1992

Trinity United Church of Christ

Null

Spouse Spouse

location of ceremony

time_from time_to

Barack Obama
Michelle Obama

Spouse_of

An example of marriage event An example of spouse_of relation

Michelle Obama

Figure 3: A comparison of events and relations.

in sentences. In ACE event extraction program,
an event instance is represented as a trigger word,
which is the main word that most clearly repre-
sents an event occurrence in sentences, like threw
in Figure 1. Following ACE, we can use trig-
ger words to represent event instance, like married
for people.marriage event instance. Unfortunate-
ly, triggers are not given out in existing knowledge
bases.

To resolve the trigger missing problem men-
tioned above, we need to discover trigger words
before employing distant supervision to automati-
cally label event arguments. Following DS in RE,
we could naturally assume that a sentence con-
tains all arguments of an event in the knowledge
base tend to express that event, and the verbs oc-
cur in these sentences tend to evoke this type of
events. However, arguments for a specific event
instance are usually mentioned in multiple sen-
tences. Simply employing all arguments in the
knowledge base to label back in sentences will
generate few sentences as training samples. As
shown in Table 1, only 0.02% of instances can find
all argument mentions in one sentence.

Event Type EI# A# S#
education.education 530,538 8 0
film.film crew gig 252,948 3 8
people.marriage 152,276 5 0

...
military.military service 27,933 6 0

olympics.olympic medal honor 20,790 5 4
sum of the selected 21 events 3,870,492 100 798

Table 1: Statistics of events in Freebase. EI# de-
notes number of event instances in Freebase. A#
denotes number of arguments for each event type-
s, and S# indicates number of sentences contain all
arguments of each event type in Wikipedia.

To solve above problems, we propose an ap-
proach to automatically generate labeled data for
large scale EE by jointly using world knowledge
(Freebase) and linguistic knowledge (FrameNet).
At first, we put forward an approach to prioritize

410

arguments and select key or representative argu-
ments (see details in Section 3.1) for each event
type by using Freebase; Secondly, we merely use
key arguments to label events and figure out trig-
ger words; Thirdly, an external linguistic knowl-
edge resource, FrameNet, is employed to filter
noisy trigger words and expand more triggers; Af-
ter that, we propose a Soft Distant Supervision
(SDS) for EE to automatically label training da-
ta, which assumes that any sentence containing al-
l key arguments in Freebase and a corresponding
trigger word is likely to express that event in some
way, and arguments occurring in that sentence are
likely to play the corresponding roles in that event.
Finally, we evaluate the quality of the automatical-
ly labeled training data by both manual and auto-
matic evaluations. In addition, we employ a CNN-
based EE approach with multi-instance learning
for the automatically labeled data as a baseline for
further research on this data. In summary, the con-
tributions of this paper are as follows:

• To our knowledge, it is the first work to au-
tomatically label data for large scale EE via
world knowledge and linguistic knowledge.
All the labeled data in this paper have been
released and can be downloaded freely2.

• We propose an approach to figure out key ar-
guments of an event by using Freebase, and
use them to automatically detect events and
corresponding trigger words. Moreover, we
employ FrameNet to filter noisy triggers and
expand more triggers.

• The experimental results show that the qual-
ity of our large scale automatically labeled
data is competitive with elaborately human-
annotated data. Also, our automatically la-
beled data can augment traditional human-
annotated data, which could significantly im-
prove the extraction performance.

2 Background

In this paper, we respectively use Freebase as our
world knowledge containing event instance and
FrameNet as the linguistic knowledge containing
trigger information. The articles in Wikipedia are
used as unstructured texts to be labeled. To under-
stand our method easily, we first introduce them as
follows:

2https://github.com/acl2017submission/event-data

Freebase is a semantic knowledge base (Bol-
lacker et al., 2008), which makes use of medi-
ators (also called compound value types, CVT-
s) to merge multiple values into a single value.
As shown in Figure 3, people.marriage is one
type of CVTs. There are many instances of peo-
ple.marriage and the marriage of Barack Obama
and Michelle Obama is numbered as m.02nqglv.
Spouse, from, to and location of ceremony are
roles of the people.marriage CVTs. Barack Oba-
ma, Michelle Obama, 10/3/1992 and Trinity U-
nited Church of Christ are the values of the in-
stances. In this paper, we regard these CVTs as
events, type of CVTs as event type, CVT instances
as event instances, values in CVTs as arguments
in events and roles of CVTs as the roles of ar-
guments play in the event, respectively. Accord-
ing to the statistics of the Freebase released on
23th April, 2015, there are around 1885 CVTs and
around 14 million CVTs instances. After filtering
out useless and meaningless CVTs, such as CVT-
s about user profiles and website information, we
select 21 types of CVTs with around 3.8 million
instances for experiments, which mainly involves
events about education, military, sports and so on.

FrameNet3 is a linguistic resource storing in-
formation about lexical and predicate argument se-
mantics (Baker et al., 1998). FrameNet contains
more than 1, 000 frames and 10, 000 Lexical Unit-
s (LUs). Each frame of FrameNet can be taken as
a semantic frame of a type of events (Liu et al.,
2016). Each frame has a set of lemmas with part
of speech tags that can evoke the frame, which are
called LUs. For example, appoint.v is a LU of Ap-
pointing frame in FrameNet, which can be mapped
to people.appointment events in Freebase. And a
LUs of the frame plays a similar role as the trig-
ger of an event. Thus we use FrameNet to detect
triggers in our automatically data labeling process.

Wikipedia4 that we used was released on Jan-
uary, 2016. All 6.3 million articles in it are used in
our experiments. We use Wikipedia because it is
relatively up-to-date, and much of the information
in Freebase is derived from Wikipedia.

3 Method of Generating Training Data

Figure 4 describes the architecture of automati-
cally labeling data, which primarily involves the
following four components: (i) Key argument de-

3http://framenet.icsi.berkeley.edu
4https://www.wikipedia.org/

411

Wikipedia

TrainingDS

Figure 4: The architecture of automatically label-
ing training data for large scale event extraction.

tection, which prioritizes arguments of each even-
t type and selects key arguments for each type
of event; (ii) Trigger word detection, which uses
key arguments to label sentences that may express
events preliminarily, and then detect triggers; (iii)
Trigger word filtering and expansion, which uses
FrameNet to filter noisy triggers and expand trig-
gers; (iv) Automatically labeled data generation,
which uses a SDS to label events in sentences.

3.1 Key Argument Detection
This section illustrates how to detect key argu-
ments for each event type via Freebase. Intuitively,
arguments of a type of event play different roles.
Some arguments play indispensable roles in an
event, and serve as vital clues when distinguishing
different events. For example, compared with ar-
guments like time, location and so on, spouses are
key arguments in a marriage event. We call these
arguments as key arguments. We propose to use
Key Rate (KR) to estimate the importance of an
argument to a type of event, which is decided by
two factors: Role Saliency and Event Relevance.

Role Saliency (RS) reflects the saliency of an
argument to represent a specific event instance of
a given event type. If we tend to use an argumen-
t to distinguish one event instance form other in-
stances of a given event type, this argument will
play a salient role in the given event type. We de-
fine RS as follows:

RSij =
Count(Ai, ETj)

Count(ETj)
(1)

where RSij is the role saliency of i-th argument
to j-th event type, Count(Ai , ETj) is the num-
ber of Arguemnti occurring in all instances of
eventTypej in Freebase and Count(ETj) is the
number of instances of eventTypej in Freebase.

Event Relevance (ER) reflects the ability in
which an argument can be used to discriminate d-

ifferent event types. If an argument occurs in ev-
ery event type, the argument will have a low event
relevance. We propose to compute ER as follows:

ERi = log
Sum(ET)

1 + Count(ETCi)
(2)

where ERi is the event relevance of i-th argumen-
t, Sum (ET) is the number of all event types in
knowledge base and Count(ETCi) is the number
of event types containing i-th argument. Finally,
KR is computed as follows:

KRij = RSij ∗ ERi (3)

We compute KR for all arguments of each even-
t type, and sort them according to KR. Then we
choose top K arguments as key arguments.

3.2 Trigger Word Detection

After detecting key arguments for every even-
t types, we use these key arguments to label sen-
tences that may express events in Wikipedia. At
first, we use Standford CoreNLP tool5 to converts
the raw Wikipedia texts into a sequence of sen-
tences, attaches NLP annotations (POS tag, NER
tag). Finally, we select sentences that contains all
key arguments of an event instance in Freebase as
sentences expressing corresponding events. Then
we use these labeled sentences to detect triggers.

In a sentence, a verb tend to express an occur-
rence of an event. For example, in ACE 2005 En-
glish data, there are 60% of events triggered by
verbs. As shown in Figure 1, threw is a trigger
of Attack event. Intuitively, if a verb occurs more
times than other verbs in the labeled sentences of
one event type , the verb tends to trigger this type
of event; and if a verb occurs in sentences of ev-
ery event types, like is, the verb will have a low
probability to trigger events. Thus we propose
Trigger Candidate Frequency (TCF) and Trigger
Event Type Frequency (TETF) to evaluate above t-
wo aspects. Finally we employ Trigger Rate (TR),
which is the product of TCF and TETF to estimate
the probability of a verb to be a trigger, which is
formulated as follows:

TRij = TCFij ∗ TETFi (4)

TCFij =
Count(Vi, ETSj)

Count(ETSj)
(5)

5http://stanfordnlp.github.io/CoreNLP/

412

TETFi = log
Sum(ET)

1 + Count(ETIi)
(6)

where TRij is the trigger rate of i-th verb to j-
th event type, Count(Vi, ETSj) is the number
of sentences, which express j-th type of even-
t and contain i-th verb, Count(ETSj) is the
number of sentences expressing j-th event type,
Count(ETIi) is the number of event types, which
have the labeled sentences containing i-th verb.
Finally, we choose verbs with high TR values as
the trigger words for each event type.

3.3 Trigger Word Filtering and Expansion
We can obtain an initial verbal trigger lexicon by
above trigger word detection. However, this initial
trigger lexicon is noisy and merely contains verbal
triggers. The nominal triggers like marriage are
missing. Because the number of nouns in one sen-
tence is usually larger than that of verbs, it is hard
to use TR to find nominal triggers. Thus, we pro-
pose to use linguistic resource FrameNet to filter
noisy verbal triggers and expand nominal triggers.
As the success of word embedding in capturing se-
mantics of words (Turian et al., 2010), we employ
word embedding to map the events in Freebase to
frames in FrameNet. Specifically, we use the aver-
age word embedding of all words in i-th Freebase
event type name ei and word embedding of k-th
lexical units of j-th frame ej,k to compute the se-
mantic similarity. Finally, we select the frame con-
tains max similarity of ei and ej,k as the mapped
frame, which can be formulated as follows:

frame(i) = argmax
j

(similarity(ei, ej,k)) (7)

Then, we filter the verb, which is in initial ver-
bal trigger word lexicon and not in the mapping
frame. And we use nouns with high confidence in
the mapped frame to expand trigger lexicon.

3.4 Automatically labeled data generation
Finally, we propose a Soft Distant Supervision
and use it to automatically generate training da-
ta, which assumes that any sentence containing al-
l key arguments in Freebase and a corresponding
trigger word is likely to express that event in some
way, and arguments occurring in that sentence are
likely to play the corresponding roles in that event.

4 Method of Event Extraction

In this paper, event extraction is formulated as
a two-stage, multi-class classification task. The

first stage is called Event Classification, which
aims to predict whether the key argument can-
didates participate in a Freebase event. If the
key arguments participate a Freebase event, the
second stage is conducted, which aims to assign
arguments to the event and identify their corre-
sponding roles. We call this stage as argumen-
t classification. We employ two similar Dynam-
ic Multi-pooling Convolutional Neural Network-
s with Multi-instance Learning (DMCNNs-MIL)
for above two stages. The Dynamic Multi-pooling
Convolutional Neural Networks (DMCNNs) is the
best reported CNN-based model for event extrac-
tion (Chen et al., 2015) by using human-annotated
training data. However, our automatically labeled
data face a noise problem, which is a intrinsic
problem of using DS to construct training data
(Hoffmann et al., 2011; Surdeanu et al., 2012). In
order to alleviate the wrong label problem, we use
Multi-instance Learning (MIL) for two DMCNNs.
Because the second stage is more complicated and
limited in space, we take the MIL used in argu-
ments classification as an example and describes
as follows:

We define all of the parameters for the stage
of argument classification to be trained in DM-
CNNs as θ. Suppose that there are T bags
{M1,M2, ...,MT } and that the i-th bag contains
qi instances (sentences) Mi =

{
m1
i ,m

2
i , ...,m

qi
i

}
,

the objective of multi-instance learning is to pre-
dict the labels of the unseen bags. In stage of ar-
gument classification, we take sentences contain-
ing the same argument candidate and triggers with
a same event type as a bag and all instances in a
bag are considered independently. Given an in-
put instance mj

i , the network with the parameter
θ outputs a vector O, where the r-th component
Or corresponds to the score associated with argu-
ment role r. To obtain the conditional probability
p(r|mj

i , θ), we apply a softmax operation over all
argument role types:

p(r|mj
i , θ) =

eor

n∑
k=1

eok
(8)

where, n is the number of roles. And the objective
of multi-instance learning is to discriminate bags
rather than instances. Thus, we define the objec-
tive function on the bags. Given all (T) training
bags (Mi, yi), we can define the objective function

413

Event Type Freebase
Size

Sentences
(KA)

Sentences
(KA+T) Examples of argument roles sorted by KR Examples of triggers

people.marriage 152,276 56,837 26,349 spouse, spouse, from, to, location marriage, marry, wed, wedding, couple,..., wife
music.group membership 239,813 90,617 20,742 group, member, start, role, end musician, singer, sing, sang, sung, concert,..., play

education.education 530,538 26,966 11,849 student, institution, degree,..., minor educate, education, graduate, learn, study,..., student
organization.leadership 43,610 5,429 3,416 organization, person, title,..., to CEO, charge, administer, govern, rule, boss,..., chair

olympics.olympic medal honor 20,790 4,056 2,605 medalist, olympics, event,..., country win, winner, tie, victor, gold, silver,..., bronze
...

sum of 21 selected events 3,870,492 421,602 72,611 argument1, argument2 ,..., argumentN trigger1, trigger2, trigger3, ... , triggerN

Table 2: The statistics of five largest automatically labeled events in selected 21 Freebase events, with
their size of instances in Freebase, sentences labeled with key argument (KA) and KA + Triggers(T),
examples of arguments roles sorted by KR and examples of triggers.

using cross-entropy at the bag level as follows:

J (θ) =
T∑

i=1

log p(yi|mj
i , θ) (9)

where j is constrained as follows:

j∗ = argmax
j
p(r|mj

i , θ) 1 ≤ j ≤ qi (10)

To compute the network parameter θ, we max-
imize the log likelihood J (θ) through stochas-
tic gradient descent over mini-batches with the
Adadelta (Zeiler, 2012) update rule.

5 Experiments

In this section, we first manually evaluate our auto-
matically labeled data. Then, we conduct automat-
ic evaluations for our labeled data based on ACE
corpus and analyze effects of different approach-
es to automatically label training data. Finally, we
shows the performance of DMCNNs-MIL on our
automatically labeled data.

5.1 Our Automatically Labeled Data
By using the proposed methods, a large set of la-
beled data could be generated automatically. Ta-
ble 2 shows the statistics of the five largest auto-
matically labeled events among selected 21 Free-
base events. Two hyper parameters, the number
of key arguments and the value of TR in our au-
tomatically data labeling, are set as 2 and 0.8, by
grid search respectively. When we merely use t-
wo key arguments to label data, we will obtain
421, 602 labeled sentences. However, these sen-
tences miss labeling triggers. Thus, we leverage
these rough labeled data and FrameNet to find trig-
gers and use SDS to generate labeled data. Finally,
72, 611 labeled sentences are generated automat-
ically. Compared with nearly 6, 000 human an-
notated labeled sentence in ACE, our method can
automatically generate large scale labeled training
data.

5.2 Manual Evaluations of Labeled Data

##001 He is the uncle of [Amal Clooney], [wife] of the actor [George Clooney].

Trigger: wife Event Type: Marriage MannalAnotate[Y/N]:

Argument: Amal Clooney Role:Spouse MannalAnotate[Y/N]:

Argument: George Clooney Role:Spouse MannalAnotate[Y/N]:

##002 She was [married] to the cinematographer [Theo Nischwitz] and was

sometimes credited as [Gertrud Hinz-Nischwitz].

Trigger: married Event Type: Marriage MannalAnotate[Y/N]:

Argument: Theo Nischwitz Role:Spouse MannalAnotate[Y/N]:

Argument: Gertrud Hinz-Nischwitz Role:Spouse MannalAnotate[Y/N]:

 Figure 5: Examples of manual evaluations.

We firstly manually evaluate the precision of
our automatically generated labeled data. We ran-
domly select 500 samples from our automatically
labeled data. Each selected sample is a sentence
with a highlighted trigger, labeled arguments and
corresponding event type and argument roles. Fig-
ure 5 gives some samples. Annotators are asked
to assign one of two labels to each sample. “Y”:
the word highlighted in the given sentence indeed
triggers an event of the corresponding type or the
word indeed plays the corresponding role in that
event. Otherwise “N” is labeled. It is very easy to
annotate a sample for annotators, thus the annotat-
ed results are expected to be of high quality. Each
sample is independently annotated by three anno-
tators6 (including one of the authors and two of
our colleagues who are familiar with event extrac-
tion task) and the final decision is made by voting.

Stage Average Precision
Trigger Labeling 88.9

Argument Labeling 85.4

Table 3: Manual Evaluation Results

We repeat above evaluation process on the final
72, 611 labeled data three times and the average
precision is shown in Table 3. Our automatically
generated data can achieve a precision of 88.9 and
85.4 for trigger labeling and argument labeling re-

6The inter-agreement rate is 87.5%

414

Methods Trigger
Identification(%)

Trigger Identification
+ Classification(%)

Argument
Identification(%)

Argument
Role(%)

P R F P R F P R F P R F
Li’s structure trained with ACE 76.9 65.0 70.4 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
Chen’s DMCNN trained with ACE 80.4 67.7 73.5 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5
Nguyen’s JRNN trained with ACE 68.5 75.7 71.9 66.0 73.0 69.3 61.4 64.2 62.8 54.2 56.7 55.4
DMCNN trained with ED Only 77.6 67.7 72.3 72.9 63.7 68.0 64.9 51.7 57.6 58.7 46.7 52.0
DMCNN trained with ACE+ED 79.7 69.6 74.3 75.7 66.0 70.5 71.4 56.9 63.3 62.8 50.1 55.7

Table 4: Overall performance on ACE blind test data

spectively, which demonstrates that our automati-
cally labeled data is of high quality.

5.3 Automatic Evaluations of Labeled Data

To prove the effectiveness of the proposed ap-
proach automatically, we add automatically gen-
erated labeled data into ACE dataset to expand
the training sets and see whether the performance
of the event extractor trained on such expanded
training sets is improved. In our automatically
labeled data, there are some event types that can
correspond to those in ACE dataset. For exam-
ple, our people.marriage events can be mapped
to life.marry events in ACE2005 dataset. We
mapped these types of events manually and we
add them into ACE training corpus in two ways.
(1) we delete the human annotated ACE data for
these mapped event types in ACE dataset and add
our automatically labeled data to remainder ACE
training data. We call this Expanded Data (ED) as
ED Only. (2) We directly add our automatically la-
beled data of mapped event types to ACE training
data and we call this training data as ACE+ED.
Then we use such data to train the same even-
t extraction model (DMCNN) and evaluate them
on the ACE testing data set. Following (Nguyen
et al., 2016; Chen et al., 2015; Li et al., 2013), we
used the same test set with 40 newswire articles
and the same development set with 30 documents
and the rest 529 documents are used for ACE train-
ing set. And we use the same evaluation metric P,
R, F as ACE task defined. We select three base-
lines trained with ACE data. (1) Li’s structure,
which is the best reported structured-based system
(Li et al., 2013). (2) Chen’s DMCNN, which is
the best reported CNN-based system (Chen et al.,
2015). (3) Nguyen’s JRNN, which is the state-of-
the-arts system (Nguyen et al., 2016).

The results are shown in Table 4. Compared
with all models, DMCNN trained with ACE+ED
achieves the highest performance. This demon-
strates that our automatically generated labeled

data could expand human annotated training data
effectively. Moreover, compared with Chen’s DM-
CNN trained with ACE, DMCNN trained with ED
Only achieves a competitive performance. This
demonstrates that our large scale automatically la-
beled data is competitive with elaborately human-
annotated data.

5.4 Discussion

Impact of Key Rate

In this section, we prove the effectiveness of KR to
find key arguments and explore the impact of dif-
ferent numbers of key arguments to automatically
generate data. We specifically select two methods
as baselines for comparison with our KR method:
ER and RS, which use the event relevance and role
salience to sort arguments of each type of events
respectively. Then we choose the same number of
key arguments in all methods and use these key
arguments to label data. After that we evaluate
these methods by using above automatic evalua-
tions based on ACE data. Results are shown in Ta-
ble 5. ACE+KR achieve the best performance in
both stages. This demonstrates the effectiveness
of our KR methods.

Feature Trigger Argument
F1 F1

ACE 69.1 53.5
ACE + RS 70.1 55.3
ACE + ER 69.5 54.2
ACE + KR 70.5 55.7

Table 5: Effects of ER, RS and KR

To explore the impact of different numbers of
key arguments, we sort all arguments of each type
of events according to KR value and select top k
arguments as the key arguments. Examples are
shown in Table 2. Then we automatically eval-
uate the performance by using automatic evalua-
tions proposed above. Figure 6 shows the results,
when we set k = 2, the method achieves a best

415

Figure 6: Effects of the number of key arguments

performance in both stages. Then, the F1 value re-
duces as k grows. The reason is that the heuristics
for data labeling are stricter as k grows. As a re-
sult, less training data is generated. For example,
if k = 2, we will get 25, 797 sentences labeled
as people.marriage events and we will get 534 la-
beled sentences, if k = 3. However, when we set
k = 1, although more labeled data are generated,
the precision could not be guaranteed.

Impact of Trigger Rate and FrameNet

In this section, we prove the effectiveness of TR
and FrameNet to find triggers. We specifically s-
elect two methods as baselines: TCF and TETF.
TCF, TETF and TR respectively use the trigger
candidate frequency, trigger event type frequen-
cy and trigger rate to sort trigger candidates of
each type of events. Then we generate initial trig-
ger lexicon by using all trigger candidates with
high TCF value, TETF value or TR value. We
set these hyper parameters as 0.8, 0.9 and 0.8, re-
spectively, which are determined by grid search
from (0.5, 0.6, 0.7, 0.8, 0.9, 1.0). FrameNet was
used to filter noisy verbal triggers and expand
nominal triggers. Trigger examples generated by
TR+Framenet are shown in Table 2. Then we
evaluate the performance of these methods by
using above automatic evaluations. Results are
shown in Table 6, Compared with ACE+TCF and
ACE+TETF, ACE+TR gains a higher performance
in both stages. It demonstrates the effectiveness of
our TR methods. When we use FrameNet to gen-
erate triggers, compared with ACE+TR, we get a
1.0 improvement on trigger classification and a 1.7
improvement on argument classification. Such im-
provements are higher than improvements gained
by other methods (TCF, IEF, TR), which demon-
strates the effectiveness of the usage of FrameNet.

Feature Trigger Argument
F1 F1

ACE 69.1 53.5
ACE + TCF 69.3 53.8

ACE + TETF 69.2 53.7
ACE + TR 69.5 54.0

ACE + TR + FrameNet 70.5 55.7

Table 6: Effects of TCF, TETF,TR and FrameNet

5.5 Performance of DMCNN-MIL
Following previous work (Mintz et al., 2009) in
distant supervised RE, we evaluate our method in
two ways: held-out and manual evaluation.

Held-out Evaluation
In the held-out evaluation, we hold out part of the
Freebase event data during training, and compare
newly discovered event instances against this held-
out data. We use the following criteria to judge
the correctness of each predicted event automati-
cally: (1) An event is correct if its key arguments
and event type match those of an event instance in
Freebase; (2) An argument is correctly classified
if its event type and argument role match those of
any of the argument instance in the corresponding
Freebase event. Figure 7 and Figure 8 show the
precision-recall (P-R) curves for each method in
the two stages of event extraction respectively. We
can see that multi-instance learning is effective to
alleviate the noise problem in our distant super-
vised event extraction.

Figure 7: P-R curves for
event classification.

Figure 8: P-R curves for
argument classification.

Human Evaluation
Because the incomplete nature of Freebase, held-
out evaluation suffers from false negatives prob-
lem. We also perform a manual evaluation to e-
liminate these problems. In the manual evaluation,
we manually check the newly discovered event in-
stances that are not in Freebase. Because the num-
ber of these event instances in the test data is un-
known, we cannot calculate the recall in this case.

416

Instead, we calculate the precision of the top n ex-
tracted event instances. The human evaluation re-
sults are presented in Table 7. We can see that
DMCNNs-MIL achieves the best performance.

Methods Event Classificaiton
Top 100 Top 300 Top 500 Average

DMCNNs 58.7 54.3 52.9 55.3
DMCNNs+MIL 70.6 67.2 64.3 67.4

Methods Argument Classificaiton
Top 100 Top 300 Top 500 Average

DMCNNs 43.5 40.6 36.7 40.3
DMCNNs+MIL 50.8 45.6 43.5 46.6

Table 7: Precision for top 100, 300, and 500 events

6 Related Work

Most of previous event extraction work focused
on supervised learning paradigm and trained even-
t extractors on human-annotated data which yield
relatively high performance. (Ahn, 2006; Ji and
Grishman, 2008; Hong et al., 2011; McClosky
et al., 2011; Li et al., 2013, 2014; Chen et al.,
2015; Nguyen and Grishman, 2015; Nguyen et al.,
2016). However, these supervised methods de-
pend on the quality of the training data and la-
beled training data is expensive to produce. Un-
supervised methods can extract large numbers of
events without using labeled data (Chambers and
Jurafsky, 2011; Cheung et al., 2013; Huang et al.,
2016). But extracted events may not be easy to be
mapped to events for a particular knowledge base.

Distant supervision have been used in relation
extraction for automatically labeling training da-
ta (Mintz et al., 2009; Hinton et al., 2012; Krause
et al., 2012; Krishnamurthy and Mitchell, 2012;
Berant et al., 2013; Surdeanu et al., 2012; Zeng
et al., 2015). But DS for RE cannot directly use
for EE. For the reasons that an event is more com-
plicated than a relation and the task of EE is more
difficult than RE. The best reported supervised RE
and EE system got a F1-score of 88.0% (Wang
et al., 2016) and 55.4% (Nguyen et al., 2016) re-
spectively. Reschke et al. (2014) extended the
distant supervision approach to fill slots in plane
crash. However, the method can only extract ar-
guments of one plane crash type and need flight
number strings as input. In other words, the ap-
proach cannot extract whole event with different
types automatically.

7 Conclusion and Future Work

In this paper, we present an approach to automati-
cally label training data for EE. The experimental

results show the quality of our large scale auto-
matically labeled data is competitive with elabo-
rately human-annotated data. Also, we provide a
DMCNN-MIL model for this data as a baseline
for further research. In the future, we will use
the proposed automatically data labeling method
to more event types and explore more models to
extract events by using automatically labeled data.

Acknowledgments

This work was supported by the Natural Science
Foundation of China (No. 61533018) and the
National Basic Research Program of China (No.
2014CB340503). And this research work was al-
so supported by Google through focused research
awards program.

References
David Ahn. 2006. The stages of event extraction.

In Proceedings of the Workshop on Annotating
and Reasoning About Time and Events. pages 1–8.
http://dl.acm.org/citation.cfm?id=1629235.1629236.

Collin F Baker, Charles J Fillmore, and John B Lowe.
1998. The berkeley framenet project. In Proceed-
ings of the 36th Annual Meeting of the Association
for Computational Linguistics and 17th Internation-
al Conference on Computational Linguistics. Asso-
ciation for Computational Linguistics, pages 86–90.
http://aclweb.org/anthology/C98-1013.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on free-
base from question-answer pairs. In Proceed-
ings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1533–1544.
http://aclweb.org/anthology/D13-1160.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a
collaboratively created graph database for struc-
turing human knowledge. In Proceedings of
the 2008 ACM SIGMOD international confer-
ence on Management of data. pages 1247–1250.
http://doi.acm.org/10.1145/1376616.1376746.

Nathanael Chambers and Dan Jurafsky. 2011.
Template-based information extraction without
the templates. In Proceedings of the 49th Annual
Meeting of the Association for Computational
Linguistics: Human Language Technologies. As-
sociation for Computational Linguistics, pages
976–986. http://aclweb.org/anthology/P11-1098.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng,
and Jun Zhao. 2015. Event extraction via dy-
namic multi-pooling convolutional neural network-
s. In Proceedings of the 53rd Annual Meet-

417

ing of the Association for Computational Lin-
guistics and the 7th International Joint Confer-
ence on Natural Language Processing. Associa-
tion for Computational Linguistics, pages 167–176.
https://doi.org/10.3115/v1/P15-1017.

Kit Jackie Chi Cheung, Hoifung Poon, and Lucy Van-
derwende. 2013. Probabilistic frame induction. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, pages
837–846. http://aclweb.org/anthology/N13-1104.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint arX-
iv:1207.0580 https://arxiv.org/pdf/1207.0580.

Raphael Hoffmann, Congle Zhang, Xiao Ling,
Luke Zettlemoyer, and S. Daniel Weld. 2011.
Knowledge-based weak supervision for information
extraction of overlapping relations. In Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies. Association for Computational Linguistic-
s, pages 541–550. http://aclweb.org/anthology/P11-
1055.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Us-
ing cross-entity inference to improve event extrac-
tion. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, pages 1127–1136.
http://aclweb.org/anthology/P11-1113.

Lifu Huang, Taylor Cassidy, Xiaocheng Feng, Heng Ji,
Clare R. Voss, Jiawei Han, and Avirup Sil. 2016.
Liberal event extraction and event schema induction.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics, pages 258–268.
http://www.aclweb.org/anthology/P16-1025.

Heng Ji and Ralph Grishman. 2008. Refining
event extraction through cross-document inference.
In Proceedings of ACL-08: HLT . Association
for Computational Linguistics, pages 254–262.
http://aclweb.org/anthology/P08-1030.

Sebastian Krause, Hong Li, Hans Uszkoreit, and
Feiyu Xu. 2012. Large-scale learning of relation-
extraction rules with distant supervision from
the web. In Proceedings of International Se-
mantic Web Conference, Springer, pages 263–
278. http://link.springer.com/chapter/10.1007/978-
3-642-35176-1 17.

Jayant Krishnamurthy and Tom Mitchell. 2012. Weak-
ly supervised training of semantic parsers. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and

Computational Natural Language Learning. Associ-
ation for Computational Linguistics, pages 754–765.
http://aclweb.org/anthology/D12-1069.

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014. Con-
structing information networks using one single
model. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 1846–1851. https://doi.org/10.3115/v1/D14-
1198.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics. As-
sociation for Computational Linguistics, pages 73–
82. http://aclweb.org/anthology/P13-1008.

Shulin Liu, Yubo Chen, Shizhu He, Kang Liu, and
Jun Zhao. 2016. Leveraging framenet to im-
prove automatic event detection. In Proceed-
ings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics. Association
for Computational Linguistics, pages 2134–2143.
http://www.aclweb.org/anthology/P16-1201.

David McClosky, Mihai Surdeanu, and Christopher
Manning. 2011. Event extraction as dependency
parsing. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, pages 1626–1635.
http://aclweb.org/anthology/P11-1163.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP. Asso-
ciation for Computational Linguistics, pages 1003–
1011. http://aclweb.org/anthology/P09-1113.

Huu Thien Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolution-
al neural networks. In Proceedings of the 53rd An-
nual Meeting of the Association for Computation-
al Linguistics and the 7th International Joint Con-
ference on Natural Language Processing. Associa-
tion for Computational Linguistics, pages 365–371.
https://doi.org/10.3115/v1/P15-2060.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph
Grishman. 2016. Joint event extraction via re-
current neural networks. In Proceedings of the
2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 300–309.
http://www.aclweb.org/anthology/N16-1034.

Kevin Reschke, Martin Jankowiak, Mihai Surdeanu,
Christopher D Manning, and Daniel Jurafsky.

418

2014. Event extraction using distant supervi-
sion. In Proceedings of the Ninth Internation-
al Conference on Language Resources and E-
valuation. pages 4527–4531. http://www.lrec-
conf.org/proceedings/lrec2014/pdf/1127 Paper.pdf.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and D. Christopher Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning. Associ-
ation for Computational Linguistics, pages 455–465.
http://aclweb.org/anthology/D12-1042.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Bengio.
2010. Word representations: A simple and gen-
eral method for semi-supervised learning. In Pro-
ceedings of the 48th Annual Meeting of the As-
sociation for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 384–394.
http://aclweb.org/anthology/P10-1040.

Linlin Wang, Zhu Cao, Gerard de Melo, and
Zhiyuan Liu. 2016. Relation classification vi-
a multi-level attention cnns. In Proceedings
of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics. Association
for Computational Linguistics, pages 1298–1307.
http://www.aclweb.org/anthology/P16-1123.

Matthew D Zeiler. 2012. Adadelta: An adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701
https://arxiv.org/pdf/1212.5701.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction vi-
a piecewise convolutional neural networks. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1753–1762.
https://doi.org/10.18653/v1/D15-1203.

419

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 420–429
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1039

Time Expression Analysis and Recognition
Using Syntactic Token Types and General Heuristic Rules

Xiaoshi Zhong, Aixin Sun, and Erik Cambria
School of Computer Science and Engineering
Nanyang Technological University, Singapore
{xszhong,axsun,cambria}@ntu.edu.sg

Abstract

Extracting time expressions from free text
is a fundamental task for many applica-
tions. We analyze time expressions from
four different datasets and find that only a
small group of words are used to express
time information and that the words in
time expressions demonstrate similar syn-
tactic behaviour. Based on the findings,
we propose a type-based approach named
SynTime1 for time expression recognition.
Specifically, we define three main syntac-
tic token types, namely time token, mod-
ifier, and numeral, to group time-related
token regular expressions. On the types
we design general heuristic rules to rec-
ognize time expressions. In recognition,
SynTime first identifies time tokens from
raw text, then searches their surroundings
for modifiers and numerals to form time
segments, and finally merges the time seg-
ments to time expressions. As a light-
weight rule-based tagger, SynTime runs
in real time, and can be easily expanded
by simply adding keywords for the text
from different domains and different text
types. Experiments on benchmark datasets
and tweets data show that SynTime out-
performs state-of-the-art methods.

1 Introduction

Time expression plays an important role in infor-
mation retrieval and many applications in natural
language processing (Alonso et al., 2011; Campos
et al., 2014). Recognizing time expressions from
free text has attracted considerable attention since
last decade (Verhagen et al., 2007, 2010; UzZa-
man et al., 2013).

1Source: https://github.com/zhongxiaoshi/syntime

We analyze time expressions in four datasets:
TimeBank (Pustejovsky et al., 2003b), Giga-
word (Parker et al., 2011), WikiWars (Mazur and
Dale, 2010), and Tweets. From the analysis we
make four findings about time expressions. First,
most time expressions are very short, with 80%
of time expressions containing no more than three
tokens. Second, at least 91.8% of time expres-
sions contain at least one time token. Third, the
vocabulary used to express time information is
very small, with a small group of keywords. Fi-
nally, words in time expressions demonstrate sim-
ilar syntactic behaviour. All the findings relate to
the principle of least effort (Zipf, 1949). That is,
people tend to act under the least effort in order
to minimize the cost of energy at both individual
level and collective level to language usage (Zipf,
1949). Time expression is part of language and
acts as an interface of communication. Short ex-
pressions, occurrence, small vocabulary, and sim-
ilar syntactic behaviour all reduce the cost of en-
ergy required to communicate.

According to the findings we propose a type-
based approach named SynTime (‘Syn’ stands for
syntactic) to recognize time expressions. Specif-
ically, we define three main token types, namely
time token, modifier, and numeral, to group time-
related token regular expressions. Time tokens are
the words that explicitly express time information,
such as time units (e.g., ‘year’). Modifiers mod-
ify time tokens; they appear before or after time
tokens, e.g., ‘several’ and ‘ago’ in ‘several years
ago.’ Numerals are ordinals and numbers. From
free text SynTime first identifies time tokens, then
recognizes modifiers and numerals.

Naturally, SynTime is a rule-based tagger. The
key difference between SynTime and other rule-
based taggers lies in the way of defining token
types and the way of designing rules. The defini-
tion of token type in SynTime is inspired by part-

420

https://doi.org/10.18653/v1/P17-1039

of-speech in which “linguists group some words
of language into classes (sets) which show sim-
ilar syntactic behaviour.” (Manning and Schutze,
1999) SynTime defines token types for tokens ac-
cording to their syntactic behaviour. Other rule-
based taggers define types for tokens based on
their semantic meaning. For example, SUTime
defines 5 semantic modifier types, such as fre-
quency modifiers;2 while SynTime defines 5 syn-
tactic modifier types, such as modifiers that appear
before time tokens. (See Section 4.1 for details.)
Accordingly, other rule-based taggers design de-
terministic rules based on their meanings of to-
kens themselves. SynTime instead designs gen-
eral rules on the token types rather than on the to-
kens themselves. For example, our general rules
do not work on tokens ‘February’ nor ‘1989’ but
on their token types ‘MONTH’ and ‘YEAR.’ That
is why we call SynTime a type-based approach.
More importantly, other rule-based taggers design
rules in a fixed method, including fixed length and
fixed position. In contrast, SynTime designs gen-
eral rules in a heuristic way, based on the idea of
boundary expansion. The general heuristic rules
are quite light-weight that it makes SynTime much
more flexible and expansible, and leads SynTime
to run in real time.

The heuristic rules are designed on token types
and are independent of specific tokens, SynTime
therefore is independent of specific domains, spe-
cific text types, and even specific languages that
consist of specific tokens. In this paper, we
test SynTime on specific domains and specific
text types in English. (The test for other lan-
guages needs only to construct a collection of to-
ken regular expressions in the target language un-
der our defined token types.) Specifically, we eval-
uate SynTime against three state-of-the-art meth-
ods (i.e., HeidelTime, SUTime, and UWTime)
on three datasets: TimeBank, WikiWars, and
Tweets.3 TimeBank and Tweets are comprehen-
sive datasets while WikiWars is a specific domain
dataset about war; TimeBank and WikiWars are
the datasets in formal text while Tweets dataset
is in informal text. Experiments show that Syn-
Time achieves comparable results on WikiWars
dataset, and significantly outperforms the three
state-of-the-art baselines on TimeBank and Tweets

2
https://github.com/stanfordnlp/CoreNLP/tree/

master/src/edu/stanford/nlp/time/rules
3Gigaword dataset is not used in our experiments because the labels in the

dataset are not the ground truth labels but instead are automatically generated
by other taggers.

datasets. More importantly, SynTime achieves the
best recalls on all three datasets and exceptionally
good results on Tweets dataset. To sum up, we
make the following contributions.
• We analyze time expressions from four

datasets and make four findings. The findings
provide evidence in terms of time expression
for the principle of least effort (Zipf, 1949).
• We propose a time tagger named SynTime

to recognize time expressions using syntactic
token types and general heuristic rules. Syn-
Time is independent of specific tokens, and
therefore independent of specific domains,
specific text types, and specific languages.
• We conduct experiments on three datasets,

and the results demonstrate the effectiveness
of SynTime against state-of-the-art baselines.

2 Related Work

Many research works on time expression identifi-
cation are reported in TempEval exercises (Verha-
gen et al., 2007, 2010; UzZaman et al., 2013). The
task is divided into two subtasks: recognition and
normalization.

Rule-based Time Expression Recognition.
Rule-based time taggers like GUTime, Heidel-
Time, and SUTime, predefine time-related words
and rules (Verhagen et al., 2005; Strötgen and
Gertz, 2010; Chang and Manning, 2012). Heidel-
Time (Strötgen and Gertz, 2010) hand-crafts rules
with time resources like weekdays and months,
and leverages language clues like part-of-speech
to identify time expression. SUTime (Chang
and Manning, 2012) designs deterministic rules
using a cascade finite automata (Hobbs et al.,
1997) on regular expressions over tokens (Chang
and Manning, 2014). It first identifies individual
words, then expands them to chunks, and finally
to time expressions. Rule-based taggers achieve
very good results in TempEval exercises.

SynTime is also a rule-based tagger while its
key difference from other rule-based taggers is that
between the rules and the tokens it introduces a
layer of token type; its rules work on token types
and are independent of specific tokens. Moreover,
SynTime designs rules in a heuristic way.

Machine Learning based Method. Machine
learning based methods extract features from the
text and apply statistical models on the features for
recognizing time expressions. Example features

421

include character features, word features, syntac-
tic features, semantic features, and gazetteer fea-
tures (Llorens et al., 2010; Filannino et al., 2013;
Bethard, 2013). The statistical models include
Markov logic network, logistic regression, sup-
port vector machines, maximum entropy, and con-
ditional random fields (Llorens et al., 2010; Uz-
Zaman and Allen, 2010; Filannino et al., 2013;
Bethard, 2013). Some models obtain good perfor-
mance, and even achieve the highest F1 of 82.71%
on strict match in TempEval-3 (Bethard, 2013).

Outside TempEval exercises, Angeli et al. lever-
age compositional grammar and employ a EM-
style approach to learn a latent parser for time
expression recognition (Angeli et al., 2012). In
the method named UWTime, Lee et al. handcraft
a combinatory categorial grammar (CCG) (Steed-
man, 1996) to define a set of lexicon with rules
and use L1-regularization to learn linguistic con-
text (Lee et al., 2014). The two methods explicitly
use linguistic information. In (Lee et al., 2014),
especially, CCG could capture rich structure in-
formation of language, similar to the rule-based
methods. Tabassum et al. focus on resolving the
dates in tweets, and use distant supervision to rec-
ognize time expressions (Tabassum et al., 2016).
They use five time types and assign one of them
to each word, which is similar to SynTime in the
way of defining types over tokens. However, they
focus only on the type of date, while SynTime
recoginizes all the time expressions and does not
involve learning and runs in real time.

Time Expression Normalization. Methods in
TempEval exercises design rules for time ex-
pression normalization (Verhagen et al., 2005;
Strötgen and Gertz, 2010; Llorens et al., 2010; Uz-
Zaman and Allen, 2010; Filannino et al., 2013;
Bethard, 2013). Because the rule systems have
high similarity, Llorens et al. suggest to construct
a large knowledge base as a public resource for the
task (Llorens et al., 2012). Some researchers treat
the normalization process as a learning task and
use machine learning methods (Lee et al., 2014;
Tabassum et al., 2016). Lee et al. (Lee et al., 2014)
use AdaGrad algorithm (Duchi et al., 2011) and
Tabassum et al. (Tabassum et al., 2016) use a log-
linear algorithm to normalize time expressions.

SynTime focuses only on the recognition task.
The normalization could be achieved by using
methods similar to the existing rule systems, be-
cause they are highly similar (Llorens et al., 2012).

Table 1: Statistics of the datasets (A tweet here is
a document.)

Dataset #Docs #Words #TIMEX
TimeBank 183 61,418 1,243
Gigaword 2,452 666,309 12,739
WikiWars 22 119,468 2,671
Tweets 942 18,199 1,127

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

C
u
m

u
la

ti
v
e
 p

e
rc

e
n

ta
g

e

Number of words in time expressions

TimeBank
Gigaword
Wikiwars

Tweets

Figure 1: Length distribution of time expressions

3 Time Expression Analysis

3.1 Dataset
We conduct an analysis on four datasets: Time-
Bank, Gigaword, WikiWars, and Tweets. Time-
Bank (Pustejovsky et al., 2003b) is a benchmark
dataset in TempEval series (Verhagen et al., 2007,
2010; UzZaman et al., 2013), consisting of 183
news articles. Gigaword (Parker et al., 2011) is
a large automatically labelled dataset with 2,452
news articles and used in TempEval-3. WikiWars
dataset is derived from Wikipedia articles about
wars (Mazur and Dale, 2010). Tweets is our man-
ually annotated dataset with 942 tweets of which
each contains at least one time expression. Table 1
summarizes the datasets.

3.2 Finding
From the four datasets, we analyze their time ex-
pressions and make four findings. We will see that
despite the four datasets vary in corpus sizes, in
text types, and in domains, their time expressions
demonstrate similar characteristics.

Finding 1 Time expressions are very short. More
than 80% of time expressions contain no more
than three words and more than 90% contain no
more than four words.

Figure 1 plots the length distribution of time ex-
pressions. Although the texts are collected from
different sources (i.e., news articles, Wikipedia ar-
ticles, and tweets) and vary in sizes, the length

422

Table 2: The percentage of time expressions that
contain at least one time token, and the average
length of time expressions

Dataset Percent Average Length
TimeBank 94.61 2.00
Gigaword 96.44 1.70
WikiWars 91.81 2.38
Tweets 96.01 1.51

Table 3: Number of distinct words and number of
distinct time tokens in time expressions

Dataset #Words #Time Tokens
TimeBank 130 64
Gigaword 214 80
WikiWars 224 74
Tweets 107 64

of time expressions follow a similar distribution.
In particular, the one-word time expressions range
from 36.23% in WikiWars to 62.91% in Tweets. In
informal communication people tend to use words
in minimum length to express time information.
The third column in Table 2 reports the average
length of time expressions. On average, time ex-
pressions contain about two words.

Finding 2 More than 91% of time expressions
contain at least one time token.

The second column in Table 2 reports the per-
centage of time expressions that contain at least
one time token. We find that at least 91.81% of
time expressions contain time token(s). (Some
time expressions have no time token but depend
on other time expressions; in ‘2 to 8 days,’ for ex-
ample, ‘2’ depends on ‘8 days.’) This suggests that
time tokens account for time expressions. There-
fore, to recognize time expressions, it is essential
to recognize their time tokens.

Finding 3 Only a small group of time-related key-
words are used to express time information.

From the time expressions in all four datasets,
we find that the group of keywords used to express
time information is small.

Table 3 reports the number of distinct words and
of distinct time tokens. The words/tokens are man-
ually normalized before counting and their vari-
ants are ignored. For example, ‘year’ and ‘5yrs’
are counted as one token ‘year.’ Numerals in the
counting are ignored. Despite the four datasets

vary in sizes, domains, and text types, the num-
bers of their distinct time tokens are comparable.

Across the four datasets, the number of distinct
words is 350, about half of the simply summing of
675; the number of distinct time tokens is 123, less
than half of the simply summing 282. Among the
123 distinct time tokens, 45 appear in all the four
datasets, and 101 appear in at least two datasets.
This indicates that time tokens, which account for
time expressions, are highly overlapped across the
four datasets. In other words, time expressions
highly overlap at their time tokens.

Finding 4 POS information could not distinguish
time expressions from common words, but within
time expressions, POS tags can help distinguish
their constituents.

For each dataset we list the top 10 POS tags that
appear in time expressions, and their percentages
over the whole text. Among the 40 tags (10 ×
4 datasets), 37 have percentage lower than 20%;
other 3 are CD. This indicates that POS could not
provide enough information to distinguish time
expressions from common words. However, the
most common POS tags in time expressions are
NN*, JJ, RB, CD, and DT. Within time expressions,
the time tokens usually have NN* and RB, the mod-
ifiers have JJ and RB, and the numerals have CD.
This finding indicates that for the time expres-
sions, their similar constituents behave in similar
syntactic way. When seeing this, we realize that
this is exactly how linguists define part-of-speech
for language.4 The definition of POS for language
inspires us to define a syntactic type system for the
time expression, part of language.

The four findings all relate to the principle of
least effort (Zipf, 1949). That is, people tend to
act with least effort so as to minimize the cost of
energy at both individual and collective levels to
the language usage (Zipf, 1949). Time expression
is part of language and acts as an interface of com-
munication. Short expressions, occurrence, small
vocabulary, and similar syntactic behaviour all re-
duce the cost of energy required to communicate.

To summarize: on average, a time expression
contains two tokens of which one is time token and
the other is modifier/numeral, and the size of time
tokens is small. To recognize a time expression,
therefore, we first recognize the time token, then
recognize the modifier/numeral.

4“linguists group some words of language into classes (sets) which show
similar syntactic behaviour.” (Manning and Schutze, 1999)

423

General Heuristic Rules

1989, February, 12:55, this year, 3 months ago, ...

Time Token, Modifier, Numeral

Rule level

Type level

Token level

Figure 2: Layout of SynTime. The layout consists
of three levels: token level, type level, and rule
level. Token types group the constituent tokens of
time expressions. Heuristic rules work on token
types, and are independent of specific tokens.

4 SynTime: Syntactic Token Types and
General Heuristic Rules

SynTime defines a syntactic type system for the
tokens of time expressions, and designs heuristic
rules working on the token types. Figure 2 shows
the layout of SynTime, consisting of three levels:
Token level, type level, and rule level. Token types
at the type level group the tokens of time expres-
sions. Heuristic rules lie at the rule level, work-
ing on token types rather than on tokens them-
selves. That is why the heuristic rules are gen-
eral. For example, the heuristic rules do not work
on tokens ‘1989’ nor ‘February,’ but on their to-
ken types ‘YEAR’ and ‘MONTH.’ The heuristic
rules are only relevant to token types, and are in-
dependent of specific tokens. For this reason, our
token types and heuristic rules are independent of
specific domains, specific text types, and even spe-
cific languages that consist of specific tokens. In
this paper, we test SynTime on specific domain
(i.e., war domain) and specific text types (i.e., for-
mal text and informal text) in English. The test
for other languages simply needs to construct a set
of token regular expressions in the target language
under our defined token types.

Figure 3 shows the overview of SynTime in
practice. Shown on the left-hand side, SynTime
is initialized with regular expressions over tokens.
After initialization, SynTime can be directly ap-
plied on text. On the other hand, SynTime can be
easily expanded by simply adding the time-related
token regular expressions from training text under
each defined token type. The expansion enables
SynTime to recognize time expressions in text
from different domains and different text types.

Shown on the right-hand side of Figure 3, Syn-
Time recognizes time expression through three
main steps. In the first step, SynTime identifies

Figure 3: Overview of SynTime. Left-hand side
shows the construction of SynTime, with initial-
ization using token regular expressions, and op-
tional expansion using training text. Right-hand
side shows the main steps of SynTime recogniz-
ing time expressions.

time tokens from the POS-tagged raw text. Then
around the time tokens SynTime searches for mod-
ifiers and numerals to form time segments. In the
last step, SynTime transforms the time segments
to time expressions.

4.1 SynTime Construction
We define a syntactic type system for time expres-
sion, specifically, 15 token types for time tokens,
5 token types for modifiers, and 1 token type for
numeral. Token types to tokens is like POS tags to
words; for example, ‘February’ has a POS tag of
NNP and a token type of MONTH.

Time Token. We define 15 token types for
the time tokens and use their names similar to
Joda-Time classes:5 DECADE (-), YEAR (-), SEA-
SON (5), MONTH (12), WEEK (7), DATE (-),
TIME (-), DAY TIME (27), TIMELINE (12), HOLIDAY
(20), PERIOD (9), DURATION (-), TIME UNIT (15),
TIME ZONE (6), and ERA (2). Number in ‘()’ indi-
cates the number of distinct tokens in this token
type. ‘-’ indicates that this token type involves
changing digits and cannot be counted.

Modifier. We define 3 token types for the modi-
fiers according to their possible positions relative
to time tokens. Modifiers that appear before time
tokens are PREFIX (48); modifiers after time to-
kens are SUFFIX (2). LINKAGE (4) link two time

5
http://www.joda.org/joda-time/

424

tokens. Besides, we define 2 special modifier
types, COMMA (1) for comma ‘,’ and IN ARTICLE
(2) for indefinite articles ‘a’ and ‘an.’

TimeML (Pustejovsky et al., 2003a) and Time-
Bank (Pustejovsky et al., 2003b) do not treat most
prepositions like ‘on’ as a part of time expressions.
Thus SynTime does not collect those prepositions.

Numeral. Number in time expressions can be a
time token e.g., ‘10’ in ‘October 10, 2016,’ or a
modifier e.g., ‘10’ in ‘10 days.’ We define NU-
MERAL (-) for the ordinals and numbers.

SynTime Initialization. The token regular ex-
pressions for initializing SynTime are collected
from SUTime,6 a state-of-the-art rule-based tag-
ger that achieved the highest recall in TempEval-
3 (Chang and Manning, 2012, 2013). Specifically,
we collect from SUTime only the tokens and the
regular expressions over tokens, and discard its
other rules of recognizing full time expressions.

4.2 Time Expression Recognition
On the token types, SynTime designs a small set of
heuristic rules to recognize time expressions. The
recognition process includes three main steps: (1)
time token identification, (2) time segment identi-
fication, and (3) time expression extraction.

4.2.1 Time Token Identification
Identifying time tokens is simple, through match-
ing of string and regular expressions. Some words
might cause ambiguity. For example, ‘May’ could
be a modal verb, or the fifth month of year. To
filter out the ambiguous words, we use POS infor-
mation. In implementation, we use Stanford POS
Tagger;7 and the POS tags for matching the in-
stances of token types in SynTime are based on
our Finding 4 in Section 3.2.

Besides time tokens are identified, in this step,
individual token is assigned with one token type
of either modifier or numeral if it is matched with
token regular expressions. In the next two steps,
SynTime works on those token types.

4.2.2 Time Segment Identification
The task of time segment identification is to search
the surrounding of each time token identified in
previous step for modifiers and numerals, then
gather the time token with its modifiers and nu-
merals to form a time segment. The searching is

6
https://github.com/stanfordnlp/CoreNLP/tree/

master/src/edu/stanford/nlp/time/rules
7
http://nlp.stanford.edu/software/tagger.shtml

PREFIX/the PREFIX/last TIME_UNIT/week … said WEEK/Friday
s1 s2

e1 s1

(a) Stand-alone time segment to time expression

s1 s2

s1

PREFIX/the NUMERAL/third TIME_UNIT/quarter PREFIX/of YEAR/1984

(b) Merge adjacent time segments

s1 s2

s1

MONTH/January NUMERAL/13 YEAR/1951

(c) Merge overlapping time segments

s1 s2

s1

MONTH/June NUMERAL/30 COMMA/, YEAR/1990

(d) Merge overlapping time segments

s1 s2

e1 s1

NUMERAL/8 LINKAGE/to NUMERAL/20 TIME_UNIT/days

(e) Dependent time segment and time segment

Figure 4: Example time segments and time ex-
pressions. The above labels are from time segment
identification; the below labels are for time expres-
sion extraction.

under simple heuristic rules in which the key idea
is to expand the time token’s boundaries.

At first, each time token is a time segment. If
it is either a PERIOD or DURATION, then no need
to further search. Otherwise, search its left and
its right for modifiers and numerals. For the left
searching, if encounter a PREFIX or NUMERAL or
IN ARTICLE, then continue searching. For the right
searching, if encounter a SUFFIX or NUMERAL,
then continue searching. Both the left and the right
searching stop when reaching a COMMA or LINK-
AGE or a non-modifier/numeral word. The left
searching does not exceed the previous time to-
ken; the right searching does not exceed the next
time token. A time segment consists of exactly one
time token, and zero or some modifiers/numerals.

A special kind of time segments do not contain
any time token; they depend on other time seg-
ments next to them. For example, in ‘8 to 20 days,’
‘to 20 days’ is a time segment, and ‘8 to’ forms a
dependent time segment. (See Figure 4(e).)

4.2.3 Time Expression Extraction
The task of time expression extraction is to extract
time expressions from the identified time segments
in which the core step is to determine whether to
merge two adjacent or overlapping time segments
into a new time segment.

425

We scan the time segments in a sentence from
beginning to the end. A stand-alone time segment
is a time expression. (See Figure 4(a).) The fo-
cus is to deal with two or more time segments that
are adjacent or overlapping. If two time segments
s1 and s2 are adjacent, merge them to form a new
time segment s1. (See Figure 4(b).) Consider that
s1 and s2 overlap at a shared boundary. Accord-
ing to our time segment identification, the shared
boundary could be a modifier or a numeral. If the
word at the shared boundary is neither a COMMA
nor a LINKAGE, then merge s1 and s2. (See Fig-
ure 4(c).) If the word is a LINKAGE, then extract s1
as a time expression and continue scanning. When
the shared boundary is a COMMA, merge s1 and s2
only if the COMMA’s previous token and its next
token satisfy the three conditions: (1) the previous
token is a time token or a NUMERAL; (2) the next
token is a time token; and (3) the token types of
the previous token and of the next token are not
the same. (See Figure 4(d).)

Although Figure 4 shows the examples as token
types together with the tokens, we should note that
the heuristic rules only work on the token types.
After the extraction step, time expressions are ex-
ported as a sequence of tokens from the sequence
of token types.

4.3 SynTime Expansion

SynTime could be expanded by simply adding
new words under each defined token type with-
out changing any rule. The expansion requires
the words to be added to be annotated manually.
We apply the initial SynTime on the time expres-
sions from training text and list the words that are
not covered. Whether the uncovered words are
added to SynTime is manually determined. The
rule for determination is that the added words can
not cause ambiguity and should be generic. Wiki-
Wars dataset contains a few examples like this:
‘The time Arnold reached Quebec City.’ Words
in this example are extremely descriptive, and we
do not collect them. In tweets, on the other hand,
people may use abbreviations and informal vari-
ants; for example, ‘2day’ and ‘tday’ are popular
spellings of ‘today.’ Such kind of abbreviations
and informal variants will be collected.

According to our findings, not many words are
used to express time information, the manual ad-
dition of keywords thus will not cost much. In
addition, we find that even in tweets people tend

to use formal words. In the Twitter word clus-
ters trained from 56 million English tweets,8 the
most often used words are the formal words, and
their frequencies are much greater than the infor-
mal words’. The cluster of ‘today,’9 for example,
its most often use is the formal one, ‘today,’ which
appears 1,220,829 times; while its second most of-
ten use ‘2day’ appears only 34,827 times. The
low rate of informal words (e.g., about 3% in ‘to-
day’ cluster) suggests that even in informal envi-
ronment the manual keyword addition costs little.

5 Experiments

We evaluate SynTime against three state-of-the-
art baselines (i.e., HeidelTime, SUTime, and UW-
Time) on three datasets (i.e., TimeBank, Wiki-
Wars, and Tweets). WikiWars is a specific domain
dataset about war; TimeBank and WikiWars are
the datasets in formal text while Tweets dataset is
in informal text. For SynTime we report the results
of its two versions: SynTime-I and SynTime-E.
SynTime-I is the initial version, and SynTime-E is
the expanded version of SynTime-I.

5.1 Experiment Setting

Datasets. We use three datasets of which
TimeBank and WikiWars are benchmark datasets
whose details are shown in Section 3.1; Tweets
is our manually labeled dataset that are collected
from Twitter. For Tweets dataset, we randomly
sample 4000 tweets and use SUTime to tag them.
942 tweets of which each contains at least one time
expression. From the remaining 3,058 tweets,
we randomly sample 500 and manually annotate
them, and find that only 15 tweets contain time ex-
pressions. We therefore roughly consider that SU-
Time misses about 3% time expressions in tweets.
Two annotators then manually annotate the 942
tweets with discussion to final agreement accord-
ing to the standards of TimeML and TimeBank.
We finally get 1,127 manually labeled time expres-
sions. For the 942 tweets, we randomly sample
200 tweets as test set, and the rest 742 as training
set, because a baseline UWTime requires training.

Baseline Methods. We compare SynTime with
methods: HeidelTime (Strötgen and Gertz, 2010),
SUTime (Chang and Manning, 2012), and UW-

8
http://www.cs.cmu.edu/˜ark/TweetNLP/cluster_

viewer.html
9
http://www.cs.cmu.edu/˜ark/TweetNLP/paths/

01111110010.html

426

Table 4: Overall performance. The best results are in bold face and the second best are underlined. Some
results are borrowed from their original papers and the papers are indicated by the references.

Dataset Method Strict Match Relaxed Match
Pr. Re. F1 Pr. Re. F1

TimeBank

HeidelTime(Strotgen et al., 2013) 83.85 78.99 81.34 93.08 87.68 90.30
SUTime(Chang and Manning, 2013) 78.72 80.43 79.57 89.36 91.30 90.32

UWTime(Lee et al., 2014) 86.10 80.40 83.10 94.60 88.40 91.40
SynTime-I 91.43 92.75 92.09 94.29 95.65 94.96
SynTime-E 91.49 93.48 92.47 93.62 95.65 94.62

WikiWars

HeidelTime(Lee et al., 2014) 85.20 79.30 82.10 92.60 86.20 89.30
SUTime 78.61 76.69 76.64 95.74 89.57 92.55

UWTime(Lee et al., 2014) 87.70 78.80 83.00 97.60 87.60 92.30
SynTime-I 80.00 80.22 80.11 92.16 92.41 92.29
SynTime-E 79.18 83.47 81.27 90.49 95.39 92.88

Tweets

HeidelTime 89.58 72.88 80.37 95.83 77.97 85.98
SUTime 76.03 77.97 76.99 88.43 90.68 89.54
UWTime 88.54 72.03 79.44 96.88 78.81 86.92

SynTime-I 89.52 94.07 91.74 93.55 98.31 95.87
SynTime-E 89.20 94.49 91.77 93.20 98.78 95.88

Time (Lee et al., 2014). HeidelTime and SU-
Time both are rule-based methods, and UWTime
is a learning method. When training UWTime on
Tweets, we try two settings: (1) train with only
Tweets training set; (2) train with TimeBank and
Tweets training set. The second setting achieves
slightly better result and we report that result.

Evaluation Metrics. We follow TempEval-3 and
use their evaluation toolkit10 to report Precision,
Recall, and F1 in terms of strict match and re-
laxed match (UzZaman et al., 2013).

5.2 Experiment Result

Table 4 reports the overall performance. Among
the 18 measures, SynTime-I and SynTime-E
achieve 12 best results and 13 second best re-
sults. Except the strict match on WikiWars dataset,
both SynTime-I and SynTime-E achieve F1 above
91%. For the relaxed match on all three datasets,
SynTime-I and SynTime-E achieve recalls above
92%. The high recalls are consistent with our
finding that at least 91.81% of time expressions
contain time token(s). (See Table 2.) This indi-
cates that SynTime covers most of time tokens.
On Tweets dataset, SynTime-I and SynTime-E
achieve exceptionally good performance. Their F1

reach 91.74% with 11.37% improvement in strict
match and 95.87% with 6.33% improvement in re-

10
http://www.cs.rochester.edu/˜naushad/tempeval3/

tools.zip

laxed match. The reasons are that in informal en-
vironment people tend to use time expressions in
minimum length, (62.91% of one-word time ex-
pressions in Tweets; see Figure 1.) the size of time
keywords is small, (only 60 distinct time tokens;
see Table 3.) and even in tweets people tend to
use formal words. (See Section 4.3 for our finding
from Twitter word clusters.) For precision, Syn-
Time achieves comparable results in strict match
and performs slightly poorer in relaxed match.

5.2.1 SynTime-I vs. Baseline Methods

On TimeBank dataset, SynTime-I achieves F1 of
92.09% in strict match and of 94.96% in relaxed
match. On Tweets, SynTime-I achieves 91.74%
and 95.87%, respectively. It outperforms all the
baseline methods. The reason is that for the rule-
based time taggers, their rules are designed in a
fixed way, lacking flexibility. For example, SU-
Time could recognize ‘1 year’ but not ‘year 1.’
For the machine learning based methods, some of
the features they used actually hurt the modelling.
Time expressions involve quite many changing
numbers which in themselves affect the pattern
recognition. For example, it is difficult to build
connection between ‘May 22, 1986’ and ‘Febru-
ary 01, 1989’ at the level of word or of character.
One suggestion is to consider a type-based learn-
ing method that could use type information. For
example, the above two time expressions refer to
the same pattern of ‘MONTH NUMERAL COMMA

427

Table 5: Number of time tokens and modifiers for
expansion

Dataset #Time Tokens #Modifiers
TimeBank 3 5
WikiWars 16 21
Tweets 3 2

YEAR’ at the level of token type. POS is a kind of
type information. But according to our analysis,
POS could not distinguish time expressions from
common words. Features need carefully design-
ing. On WikiWars, SynTime-I achieves competi-
tive results in both matches. Time expressions in
WikiWars include lots of prepositions and quite a
few descriptive time expressions. SynTime could
not fully recognize such kinds of time expressions
because it follows TimeML and TimeBank.

5.2.2 SynTime-E vs. SynTime-I
Table 5 lists the number of time tokens and modi-
fiers added to SynTime-I to get SynTime-E.

On TimeBank and Tweets datasets, only a few
tokens are added, the corresponding results are af-
fected slightly. This confirms that the size of time
words is small, and that SynTime-I covers most of
time words. On WikiWars dataset, relatively more
tokens are added, SynTime-E performs much bet-
ter than SynTime-I, especially in recall. It im-
proves the recall by 3.25% in strict match and by
2.98% in relaxed match. This indicates that with
more words added from specific domains (e.g.,
WikiWars dataset about war), SynTime can signif-
icantly improve the performance.

5.3 Limitations

SynTime assumes that words are tokenized and
POS tagged correctly. In reality, however, the tok-
enized and tagged words are not that perfect, due
to the limitation of used tools. For example, Stan-
ford POS Tagger assigns VBD to the word ‘sat’ in
‘friday or sat’ while whose tag should be NNP. The
incorrect tokens and POS tags affect the result.

6 Conclusion and future work

We conduct an analysis on time expressions from
four datasets, and find that time expressions in
general are very short and expressed by a small
vocabulary, and words in time expressions demon-
strate similar syntactic behavior. Our findings pro-
vide evidence in terms of time expression for the
principle of least effort (Zipf, 1949). Inspired by

part-of-speech, based on the findings, we define
a syntactic type system for the time expression,
and propose a type-based time expression tagger,
named by SynTime. SynTime defines syntactic
token types for tokens and on the token types it
designs general heuristic rules based on the idea
of boundary expansion. Experiments on three
datasets show that SynTime outperforms the state-
of-the-art baselines, including rule-based time tag-
gers and machine learning based time tagger. Be-
cause our heuristic rules are quite simple, Syn-
Time is light-weight and runs in real time.

Our token types and heuristic rules are indepen-
dent of specific tokens, SynTime therefore is in-
dependent of specific domains, specific text types,
and even specific languages that consist of specific
tokens. In this paper, we test SynTime on specific
domains and specific text types in English. The
test for other languages needs only to construct a
collection of token regular expressions in the tar-
get language under our defined token types.

Time expression is part of language and follows
the principle of least effort. Since language us-
age relates to human habits (Zipf, 1949; Chomsky,
1986; Pinker, 1995), we might expect that humans
would share some common habits, and therefore
expect that other parts of language would more or
less follow the same principle. In the future we
will try our analytical method on other parts of lan-
guage.

Acknowledgments

The authors would like to thank the three anony-
mous reviewers for their insightful comments and
constructive suggestions. This research is mainly
supported by the Singapore Ministry of Education
Research Fund MOE2014-T2-2-066.

References
Omar Alonso, Jannik Strotgen, Ricardo Baeza-Yates, and

Michael Gertz. 2011. Temporal information retrieval:
Challenges and opportunities. In Proceedings of 1st Inter-
national Temporal Web Analytics Workshop. pages 1–8.

Gabor Angeli, Christopher D. Manning, and Daniel Jurafsky.
2012. Parsing time: Learning to interpret time expres-
sions. In Proceedings of 2012 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies. pages 446–
455.

Steven Bethard. 2013. Cleartk-timeml: A minimalist ap-
proach to tempeval 2013. In Proceedings of the 7th Inter-
national Workshop on Semantic Evaluation. pages 10–14.

428

Ricardo Campos, Gael Dias, Alipio M. Jorge, and Adam Ja-
towt. 2014. Survey of temporal information retrieval and
related applications. ACM Computing Surveys 47(2):15.

Angel X. Chang and Christopher D. Manning. 2012. Sutime:
A library for recognizing and normalizing time expres-
sions. In Proceedings of 8th International Conference on
Language Resources and Evaluation. pages 3735–3740.

Angel X. Chang and Christopher D. Manning. 2013. Su-
time: Evaluation in tempeval-3. In Proceedings of second
Joint Conference on Lexical and Computational Seman-
tics (SEM). pages 78–82.

Angel X. Chang and Christopher D. Manning. 2014. To-
kensregex: Defining cascaded regular expressions over to-
kens. Technical report, Department of Computer Science,
Stanford University.

Noam Chomsky. 1986. Knowledge of Language: Its Nature,
Origin, and Use. New York: Prager.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive
subgradient methods for online learning and stochastic op-
timization. The Journal of Machine Learning Research
12:2121–2159.

Michele Filannino, Gavin Brown, and Goran Nenadic. 2013.
Mantime: Temporal expression identification and normal-
ization in the tempeval-3 challenge. In Proceedings of the
7th International Workshop on Semantic Evaluation.

Jerry R. Hobbs, Douglas E. Appelt, John Bear, David Israel,
Megumi Kameyama, Mark Stickel, and Mabry Tyson.
1997. Fastus: A cascaded finite-state transducer for ex-
tracting information from natrual-language text. In Finite
State Devices for Natural Language Processing. pages
383–406.

Kenton Lee, Yoav Artzi, Jesse Dodge, and Luke Zettlemoyer.
2014. Context-dependent semantic parsing for time ex-
pressions. In Proceedings of the 52th Annual Meeting
of the Association for Computational Linguistics. pages
1437–1447.

Hector Llorens, Leon Derczynski, Robert Gaizauskas, and
Estela Saquete. 2012. Timen: An open temporal expres-
sion normalisation resource. In Proceedings of 8th Inter-
national Conference on Language Resources and Evalua-
tion. pages 3044–3051.

Hector Llorens, Estela Saquete, and Borja Navarro. 2010.
Tipsem (english and spanish): Evaluating crfs and seman-
tic roles in tempeval-2. In Proceedings of the 5th Interna-
tional Workshop on Semantic Evaluation. pages 284–291.

Christopher Manning and Hinrich Schutze. 1999. Founda-
tions of Statistical Natural Language Processing. Cam-
bride: MIT Press.

Pawel Mazur and Robert Dale. 2010. Wikiwars: A new cor-
pus for research on temporal expressions. In Proceedings
of the 2010 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational
Linguistics, pages 913–922.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. Engilish gigaword fifth edition.

Steven Pinker. 1995. The language instinct: The new science
of language and mind, volume 7529. Penguin.

James Pustejovsky, Jose Castano, Robert Ingria, Roser Sauri,
Robert Gaizauskas, Andrea Setzer, Graham Katz, and
Dragomir Radev. 2003a. Timeml: Robust specification
of event and temporal expressions in text. New Directions
in Question Answering 3:28–34.

James Pustejovsky, Patrick Hanks, Roser Sauri, Andrew
See, Robert Gaizauskas, Andrea Setzer, Beth Sundheim,
Dragomir Radev, David Day, Lisa Ferro, and Marcia
Lazo. 2003b. The timebank corpus. Corpus Linguistics
2003:647–656.

Mark Steedman. 1996. Surface Structure and Interpretation.
The MIT Press.

Jannik Strötgen and Michael Gertz. 2010. Heideltime: High
quality rule-based extraction and normalization of tempo-
ral expressions. In Proceedings of the 5th International
Workshop on Semantic Evaluation (SemEval’10). Asso-
ciation for Computational Linguistics, Stroudsburg, PA,
USA, pages 321–324.

Jannik Strotgen, Julian Zell, and Michael Gertz. 2013. Hei-
deltime: Tuning english and developing spanish resources.
In Proceedings of second Joint Conference on Lexical and
Computational Semantics (SEM). pages 15–19.

Jeniya Tabassum, Alan Ritter, and Wei Xu. 2016. Tweet-
ime: A minimally supervised method for recognizing and
normalizing time expressions in twitter. In Proceedings
of the 2016 Conference on Empirical Methods in Natural
Language Processing. pages 307–318.

Naushad UzZaman and James F. Allen. 2010. Trips and trios
system for tempeval-2: Extracting temporal information
from text. In Proceedings of the 5th International Work-
shop on Semantic Evaluation. pages 276–283.

Naushad UzZaman, Hector Llorens, Leon Derczynski, Marc
Verhagen, James Allen, and James Pustejovsky. 2013.
Semeval-2013 task 1: Tempeval-3: Evaluating time ex-
pressions, events, and temporal relations. In Proceedings
of the 7th International Workshop on Semantic Evalua-
tion. pages 1–9.

Marc Verhagen, Robert Gaizauskas, Frank Schilder, Mark
Hepple, Graham Katz, and James Pustejovsky. 2007.
Semeval-2007 task 15: Tempeval temporal relation identi-
fication. In Proceedings of the 4th International Workshop
on Semantic Evaluation. pages 75–80.

Marc Verhagen, Inderjeet Mani, Roser Sauri, Robert Knip-
pen, Seok Bae Jang, Jessica Littman, Anna Rumshisky,
John Phillips, Inderjeet Mani, Roser Sauri, Robert Knip-
pen, Seok Bae Jang, Jessica Littman, Anna Rumshisky,
John Phillips, and James Pustejovsky. 2005. Automat-
ing temporal annotation with tarqi. In Proceedings of
the ACL Interactive Poster and Demonstration Sessions..
pages 81–84.

Marc Verhagen, Roser Sauri, Tommaso Caselli, and James
Pustejovsky. 2010. Semeval-2010 task 13: Tempeval-2.
In Proceedings of the 5th International Workshop on Se-
mantic Evaluation. pages 57–62.

George Zipf. 1949. Human Behavior and the Principle
of Least Effort: An Introduction to Human Ecology.
Addison-Wesley Press, Inc.

429

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 430–439
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1040

Learning with Noise: Enhance Distantly Supervised Relation Extraction
with Dynamic Transition Matrix

Bingfeng Luo1, Yansong Feng∗1, Zheng Wang2, Zhanxing Zhu3,
Songfang Huang4, Rui Yan1 and Dongyan Zhao1

1ICST, Peking University, China
2School of Computing and Communications, Lancaster University, UK

3Peking University, China
4IBM China Research Lab, China

{bf luo,fengyansong,zhanxing.zhu,ruiyan,zhaody}@pku.edu.cn
z.wang@lancaster.ac.uk
huangsf@cn.ibm.com

Abstract

Distant supervision significantly reduces
human efforts in building training data for
many classification tasks. While promis-
ing, this technique often introduces noise
to the generated training data, which can
severely affect the model performance. In
this paper, we take a deep look at the appli-
cation of distant supervision in relation ex-
traction. We show that the dynamic transi-
tion matrix can effectively characterize the
noise in the training data built by distant
supervision. The transition matrix can be
effectively trained using a novel curricu-
lum learning based method without any di-
rect supervision about the noise. We thor-
oughly evaluate our approach under a wide
range of extraction scenarios. Experimen-
tal results show that our approach consis-
tently improves the extraction results and
outperforms the state-of-the-art in various
evaluation scenarios.

1 Introduction

Distant supervision (DS) is rapidly emerging as a
viable means for supporting various classification
tasks – from relation extraction (Mintz et al., 2009)
and sentiment classification (Go et al., 2009) to
cross-lingual semantic analysis (Fang and Cohn,
2016). By using knowledge learned from seed ex-
amples to label data, DS automatically prepares
large scale training data for these tasks.

While promising, DS does not guarantee per-
fect results and often introduces noise to the gener-
ated data. In the context of relation extraction, DS
works by considering sentences containing both
the subject and object of a<subj, rel, obj> triple

as its supports. However, the generated data are
not always perfect. For instance, DS could match
the knowledge base (KB) triple, <Donald Trump,
born-in, New York> in false positive contexts
like Donald Trump worked in New York City. Prior
works (Takamatsu et al., 2012; Ritter et al., 2013)
show that DS often mistakenly labels real posi-
tive instances as negative (false negative) or versa
vice (false positive), and there could be confu-
sions among positive labels as well. These noises
can severely affect training and lead to poorly-
performing models.

Tackling the noisy data problem of DS is non-
trivial, since there usually lacks of explicit super-
vision to capture the noise. Previous works have
tried to remove sentences containing unreliable
syntactic patterns (Takamatsu et al., 2012), design
new models to capture certain types of noise or
aggregate multiple predictions under the at-least-
one assumption that at least one of the aligned
sentences supports the triple in KB (Riedel et al.,
2010; Surdeanu et al., 2012; Ritter et al., 2013;
Min et al., 2013). These approaches represent a
substantial leap forward towards making DS more
practical. however, are either tightly couple to cer-
tain types of noise, or have to rely on manual rules
to filter noise, thus unable to scale. Recent break-
through in neural networks provides a new way
to reduce the influence of incorrectly labeled data
by aggregating multiple training instances atten-
tively for relation classification, without explicitly
characterizing the inherent noise (Lin et al., 2016;
Zeng et al., 2015). Although promising, modeling
noise within neural network architectures is still in
its early stage and much remains to be done.

In this paper, we aim to enhance DS noise mod-
eling by providing the capability to explicitly char-
acterize the noise in the DS-style training data

430

https://doi.org/10.18653/v1/P17-1040

within neural networks architectures. We show
that while noise is inevitable, it is possible to char-
acterize the noise pattern in a unified framework
along with its original classification objective. Our
key insight is that the DS-style training data typi-
cally contain useful clues about the noise pattern.
For example, we can infer that since some peo-
ple work in their birthplaces, DS could wrongly la-
bel a training sentence describing a working place
as a born-in relation. Our novel approach to
noisy modeling is to use a dynamically-generated
transition matrix for each training instance to (1)
characterize the possibility that the DS labeled re-
lation is confused and (2) indicate its noise pat-
tern. To tackle the challenge of no direct guidance
over the noise pattern, we employ a curriculum
learning based training method to gradually model
the noise pattern over time, and utilize trace regu-
larization to control the behavior of the transition
matrix during training. Our approach is flexible –
while it does not make any assumptions about the
data quality, the algorithm can make effective use
of the data-quality prior knowledge to guide the
learning procedure when such clues are available.

We apply our method to the relation extraction
task and evaluate under various scenarios on two
benchmark datasets. Experimental results show
that our approach consistently improves both ex-
traction settings, outperforming the state-of-the-
art models in different settings.

Our work offers an effective way for tackling
the noisy data problem of DS, making DS more
practical at scale. Our main contributions are to
(1) design a dynamic transition matrix structure to
characterize the noise introduced by DS, and (2)
design a curriculum learning based framework to
adaptively guide the training procedure to learn
with noise.

2 Problem Definition

The task of distantly supervised relation extraction
is to extract knowledge triples, <subj, rel, obj>,
from free text with the training data constructed
by aligning existing KB triples with a large cor-
pus. Specifically, given a triple in KB, DS works
by first retrieving all the sentences containing both
subj and obj of the triple, and then constructing
the training data by considering these sentences as
support to the existence of the triple. This task
can be conducted in both the sentence and the bag
levels. The former takes a sentence s containing

Encoder
sentences embeddings

Prediction

Noise
Modeling

predicted distr.

transition matrix

Transformation

3
1

2

4 Observed distr.

Figure 1: Overview of our approach

both subj and obj as input, and outputs the rela-
tion expressed by the sentence between subj and
obj. The latter setting alleviates the noisy data
problem by using the at-least-one assumption that
at least one of the retrieved sentences containing
both subj and obj supports the <subj, rel, obj>
triple. It takes a bag of sentences S as input where
each sentence s ∈ S contains both subj and obj,
and outputs the relation between subj and obj ex-
pressed by this bag.

3 Our approach

In order to deal with the noisy training data ob-
tained through DS, our approach follows four steps
as depicted in Figure 1. First, each input sentence
is fed to a sentence encoder to generate an embed-
ding vector. Our model then takes the sentence
embeddings as input and produce a predicted re-
lation distribution, p, for the input sentence (or
the input sentence bag). At the same time, our
model dynamically produces a transition matrix,
T, which is used to characterize the noise pattern
of sentence (or the bag). Finally, the predicted
distribution is multiplied by the transition matrix
to produce the observed relation distribution, o,
which is used to match the noisy relation labels
assigned by DS while the predicted relation dis-
tribution p serves as output of our model during
testing. One of the key challenges of our approach
is on determining the element values of the transi-
tion matrix, which will be described in Section 4.

3.1 Sentence-level Modeling

Sentence Embedding and Prediction In this
work, we use a piecewise convolutional neural net-
work (Zeng et al., 2015) for sentence encoding,
but other sentence embedding models can also be
used. We feed the sentence embedding to a full
connection layer, and use softmax to generate the
predicted relation distribution, p.

Noise Modeling First, each sentence embedding
x, generated b sentence encoder, is passed to a full
connection layer as a non-linearity to obtain the
sentence embedding xn used specifically for noise
modeling. We then use softmax to calculate the

431

transition matrix T, for each sentence:

Tij =
exp(wT

ijxn + b)
∑|C|

j=1 exp(w
T
ijxn + b)

(1)

where Tij is the conditional probability for the in-
put sentence to be labeled as relation j by DS,
given i as the true relation, b is a scalar bias, |C| is
the number of relations, wij is the weight vector
characterizing the confusion between i and j.

Here, we dynamically produce a transition ma-
trix, T, specifically for each sentence, but with the
parameters (wij) shared across the dataset. By do-
ing so, we are able to adaptively characterize the
noise pattern for each sentence, with a few pa-
rameters only. In contrast, one could also pro-
duce a global transition matrix for all sentences,
with much less computation, where one need not
to compute T on the fly (see Section 6.1).

Observed Distribution When we characterize
the noise in a sentence with a transition matrix T,
if its true relation is i, we can assume that i might
be erroneously labeled as relation j by DS with
probability Tij . We can therefore capture the ob-
served relation distribution, o, by multiplying T
and the predicted relation distribution, p:

o = TT · p (2)

where o is then normalized to ensure
∑

i oi = 1.
Rather than using the predicted distribution p

to directly match the relation labeled by DS (Zeng
et al., 2015; Lin et al., 2016), here we utilize o to
match the noisy labels during training and still use
p as output during testing, which actually captures
the procedure of how the noisy label is produced
and thus protects p from the noise.

3.2 Bag Level Modeling

Bag Embedding and Prediction One of the key
challenges for bag level model is how to aggre-
gate the embeddings of individual sentences into
the bag level. In this work, we experiment two
methods, namely average and attention aggrega-
tion (Lin et al., 2016). The former calculates the
bag embedding, s, by averaging the embeddings of
each sentence, and then feed it to a softmax classi-
fier for relation classification.

The attention aggregation calculates an atten-
tion value, aij , for each sentence i in the bag with

respect to each relation j, and aggregates to the
bag level as sj , by the following equations1:

sj =
n∑

i

aijxi; aij =
exp(xTi rj)∑n
i′ exp(x

T
i′rj)

(3)

where xi is the embedding of sentence i, n the
number of sentences in the bag, and rj is the ran-
domly initialized embedding for relation j. In sim-
ilar spirit to (Lin et al., 2016), the resulting bag
embedding sj is fed to a softmax classifier to pre-
dict the probability of relation j for the given bag.

Noise Modeling Since the transition matrix ad-
dresses the transition probability with respect to
each true relation, the attention mechanism ap-
pears to be a natural fit for calculating the tran-
sition matrix in bag level. Similar to attention ag-
gregation above, we calculate the bag embedding
with respect to each relation using Equation 3, but
with a separate set of relation embeddings r′j . We
then calculate the transition matrix, T, by:

Tij =
exp(sTi r

′
j + bi)∑|C|

j=1 exp(s
T
i r
′
j + bi)

(4)

where si is the bag embedding regarding relation
i, and r′j is the embedding for relation j.

4 Curriculum Learning based Training

One of the key challenges of this work is on
how to train and produce the transition matrix
to model the noise in the training data without
any direct guidance and human involvement. A
straightforward solution is to directly align the ob-
served distribution, o, with respect to the noisy
labels by minimizing the sum of the two terms:
CrossEntropy(o)+Regularization. However,
doing so does not guarantee that the prediction dis-
tribution, p, will match the true relation distribu-
tion. The problem is at the beginning of the train-
ing, we have no prior knowledge about the noise
pattern, thus, both T and p are less reliable, mak-
ing the training procedure be likely to trap into
some poor local optimum. Therefore, we require
a technique to guide our model to gradually adapt
to the noisy training data, e.g., learning something
simple first, and then trying to deal with noises.

1While (Lin et al., 2016) use bilinear function to calcu-
late aij , we simply use dot product since we find these two
functions perform similarly in our experiments.

432

Fortunately, this is exactly what curriculum
learning can do. The idea of curriculum learn-
ing (Bengio et al., 2009) is simple: starting with
the easiest aspect of a task, and leveling up the dif-
ficulty gradually, which fits well to our problem.
We thus employ a curriculum learning framework
to guide our model to gradually learn how to char-
acterize the noise. Another advantage is to avoid
falling into poor local optimum.

With curriculum learning, our approach pro-
vides the flexibility to combine prior knowledge
of noise, e.g., splitting a dataset into reliable and
less reliable subsets, to improve the effectiveness
of the transition matrix and better model the noise.

4.1 Trace Regularization
Before proceeding to training details, we first dis-
cuss how we characterize the noise level of the
data by controlling the trace of its transition ma-
trix. Intuitively, if the noise is small, the transition
matrix T will tend to become an identity matrix,
i.e., given a set of annotated training sentences, the
observed relations and their true relations are al-
most identical. Since each row of T sums to 1,
the similarity between the transition matrix and
the identity matrix can be represented by its trace,
trace(T). The larger the trace(T) is, the larger
the diagonal elements are, and the more similar
the transition matrix T is to the identity matrix,
indicating a lower level of noise. Therefore, we
can characterize the noise pattern by controlling
the expected value of trace(T) in the form of reg-
ularization. For example, we will expect a larger
trace(T) for reliable data, but a smaller trace(T)
for less reliable data. Another advantage of em-
ploying trace regularization is that it could help re-
duce the model complexity and avoid overfitting.

4.2 Training
To tackle the challenge of no direct guidance over
the noise patterns, we implement a curriculum
learning based training method to first train the
model without considerations for noise. In other
words, we first focus on the loss from the predic-
tion distribution p , and then take the noise model-
ing into account gradually along the training pro-
cess, i.e., gradually increasing the importance of
the loss from the observed distribution o while de-
creasing the importance of p. In this way, the pre-
diction branch is roughly trained before the model
managing to characterize the noise, thus avoids be-
ing stuck into poor local optimum. We thus design

to minimize the following loss function:

L =

N∑

i=1

−((1− α)log(oiyi) + αlog(piyi))

− βtrace(Ti)

(5)

where 0<α≤1 and β>0 are two weighting param-
eters, yi is the relation assigned by DS for the i-th
instance, N the total number of training instances,
oiyi is the probability that the observed relation for
the i-th instance is yi, and piyi is the probability to
predict relation yi for the i-th instance.

Initially, we set α=1, and train our model com-
pletely by minimizing the loss from the prediction
distribution p. That is, we do not expect to model
the noise, but focus on the prediction branch at
this time. As the training progresses, the predic-
tion branch gradually learns the basic prediction
ability. We then decrease α and β by 0<ρ<1
(α∗=ρα and β∗=ρβ) every τ epochs, i.e., learning
more about the noise from the observed distribu-
tion o and allowing a relatively smaller trace(T)
to accommodate more noise. The motivation be-
hind is to put more and more effort on learning
the noise pattern as the training proceeds, with
the essence of curriculum learning. This gradu-
ally learning paradigm significantly distinguishes
from prior work on noise modeling for DS seen to
date. Moreover, as such a method does not rely on
any extra assumptions, it can serve as our default
training method for T.

With Prior Knowledge of Data Quality On the
other hand, if we happen to have prior knowledge
about which part of the training data is more re-
liable and which is less reliable, we can utilize
this knowledge as guidance to design the curricu-
lum. Specifically, we can build a curriculum by
first training the prediction branch on the reliable
data for several epochs, and then adding the less
reliable data to train the full model. In this way,
the prediction branch is roughly trained before ex-
posed to more noisy data, thus is less likely to fall
into poor local optimum.

Furthermore, we can take better control of
the training procedure with trace regularization,
e.g., encouraging larger trace(T) for reliable sub-
set and smaller trace(T) for less relaibale ones.
Specifically, we propose to minimize:

L =
M∑

m=1

Nm∑

i=1

−log(omi,ymi)− βmtrace(Tmi)

(6)

433

where βm is the regularization weight for them-th
data subset, M is the total number of subsets, Nm

the number of instances in m-th subset, and Tmi,
ymi and omi,ymi are the transition matrix, the re-
lation labeled by DS and the observed probability
of this relation for the i-th training instance in the
m-th subset, respectively. Note that different from
Equation 5, this loss function does not need to ini-
tiate training by minimizing the loss regarding the
prediction distribution p, since one can easily start
by learning from the most reliable split first.

We also use trace regularization for the most re-
liable subset, since there are still some noise anno-
tations inevitably appearing in this split. Specifi-
cally, we expect its trace(T) to be large (using a
positive β) so that the elements of T will be cen-
tralized to the diagonal and T will be more similar
to the identity matrix. As for the less reliable sub-
set, we expect the trace(T) to be small (using a
negative β) so that the elements of the transition
matrix will be diffusive and T will be less similar
to the identity matrix. In other words, the transi-
tion matrix is encouraged to characterize the noise.

Note that this loss function only works for sen-
tence level models. For bag level models, since
reliable and less reliable sentences are all aggre-
gated into a sentence bag, we can not determine
which bag is reliable and which is not. However,
bag level models can still build a curriculum by
changing the content of a bag, e.g., keeping re-
liable sentences in the bag first, then gradually
adding less reliable ones, and training with Equa-
tion 5, which could benefit from the prior knowl-
edge of data quality as well.

5 Evaluation Methodology

Our experiments aim to answer two main ques-
tions: (1) is it possible to model the noise in the
training data generated through DS, even when
there is no prior knowledge to guide us? and (2)
whether the prior knowledge of data quality can
help our approach better handle the noise.

We apply our approach to both sentence level
and bag level extraction models, and evaluate in
the situations where we do not have prior knowl-
edge of the data quality as well as where such prior
knowledge is available.

5.1 Datasets

We evaluate our approach on two datasets.

TIMERE We build TIMERE by using DS
to align time-related Wikidata (Vrandečić and
Krötzsch, 2014) KB triples to Wikipedia text. It
contains 278,141 sentences with 12 types of re-
lations between an entity mention and a time ex-
pression. We choose to use time-related relations
because time expressions speak for themselves in
terms of reliability. That is, given a KB triple
<e, rel, t> and its aligned sentences, the finer-
grained the time expression t appears in the sen-
tence, the more likely the sentence supports the
existence of this triple. For example, a sentence
containing both Alphabet and October-2-2015 is
very likely to express the inception-time of
Alphabet, while a sentence containing both Al-
phabet and 2015 could instead talk about many
events, e.g., releasing financial report of 2015, hir-
ing a new CEO, etc. Using this heuristics, we
can split the dataset into 3 subsets according to
different granularities of the time expressions in-
volved, indicating different levels of reliability.
Our criteria for determining the reliability are as
follows. Instances with full date expressions, i.e.,
Year-Month-Day, can be seen as the most re-
liable data, while those with partial date expres-
sions, e.g., Month-Year and Year-Only, are
considered as less reliable. Negative data are con-
structed heuristically that any entity-time pairs in
a sentence without corresponding triples in Wiki-
data are treated as negative data. During training,
we can access 184,579 negative and 77,777 pos-
itive sentences, including 22,214 reliable, 2,094
and 53,469 less reliable ones. The validation set
and test set are randomly sampled from the reli-
able (full-date) data for relatively fair evaluations
and contains 2,776, 2,771 positive sentences and
5,143, 5,095 negative sentences, respectively.

ENTITYRE is a widely-used entity relation ex-
traction dataset, built by aligning triples in Free-
base to the New York Times (NYT) corpus (Riedel
et al., 2010). It contains 52 relations, 136,947 pos-
itive and 385,664 negative sentences for training,
and 6,444 positive and 166,004 negative sentences
for testing. Unlike TIMERE, this dataset does not
contain any prior knowledge about the data qual-
ity. Since the sentence level annotations in EN-
TITYRE are too noisy to serve as gold standard,
we only evaluate bag-level models on ENTITYRE,
a standard practice in previous works (Surdeanu
et al., 2012; Zeng et al., 2015; Lin et al., 2016).

434

5.2 Experimental Setup

Hyper-parameters We use 200 convolution
kernels with widow size 3. During training, we
use stochastic gradient descend (SGD) with batch
size 20. The learning rates for sentence-level and
bag-level models are 0.1 and 0.01, respectively.

Sentence level experiments are performed on
TIMERE, using 100-d word embeddings pre-
trained using GloVe (Pennington et al., 2014) on
Wikipedia and Gigaword (Parker et al., 2011), and
20-d vectors for distance embeddings. Each of the
three subsets of TIMERE is added after the previ-
ous phase has run for 15 epochs. The trace regu-
larization weights are β1 = 0.01, β2 = −0.01 and
β3 = −0.1, respectively, from the reliable to the
most unreliable, with the ratio of β3 and β2 fixed
to 10 or 5 when tuning.

Bag level experiments are performed on both
TIMERE and ENTITYRE. For TIMERE, we use
the same parameters as above. For ENTITYRE,
we use 50-d word embeddings pre-trained on
the NYT corpus using word2vec (Mikolov et al.,
2013), and 5-d vectors for distance embedding.
For both datasets, α and β in Eq. 5 are initialized
to 1 and 0.1, respectively. We tried various decay
rates, {0.95, 0.9, 0.8}, and steps, {3, 5, 8}. We
found that using a decay rate of 0.9 with step of 5
gives best performance in most cases.

Evaluation Metric The performance is reported
using the precision-recall (PR) curve, which is a
standard evaluation metric in relation extraction.
Specifically, the extraction results are first ranked
decreasingly by their confidence scores, then the
precision and recall are calculated by setting the
threshold to be the score of each extraction result
one by one.

Naming Conventions We evaluate our ap-
proach under a wide range of settings for sentence
level (sent) and bag level (bag) models: (1)
mix: trained on all three subsets of TIMERE

mixed together; (2) reliable: trained using
the reliable subset of TIMERE only; (3) PR:
trained with prior knowledge of annotation qual-
ity, i.e., starting from the reliable data and then
adding the unreliable data; (4) TM: trained with
dynamic transition matrix; (5) GTM: trained with
a global transition matrix. In bag level, we also in-
vestigate the performance of average aggregation
(avg) and attention aggregation (att).

0 . 0 0 . 2 0 . 4 0 . 6 0 . 80 . 8 0

0 . 8 5

0 . 9 0

0 . 9 5

1 . 0 0
 s e n t _ m i x _ T M
 s e n t _ P R _ s e g 2 _ T M
 s e n t _ P R _ T M

Pre
cis

ion

R e c a l l

 s e n t _ m i x
 s e n t _ r e l i a b l e
 s e n t _ P R

Figure 2: Sentence Level Results on TIMERE

6 Experimental Results

6.1 Performance on TIMERE

Sentence Level Models The results of sentence
level models on TIMERE are shown in Figure
2. We can see that mixing all subsets together
(sent mix) gives the worst performance, signif-
icantly worse than using the reliable subset only
(sent reliable). This suggests the noisy na-
ture of the training data obtained through DS and
properly dealing with the noise is the key for
DS for a wider range of applications. When
getting help from our dynamic transition matrix,
the model (sent mix TM) significantly improves
sent mix, delivering the same level of perfor-
mance as sent reliable in most cases. This
suggests that our transition matrix can help to mit-
igate the bad influence of noisy training instances.

Now let us consider the PR scenario where one
can build a curriculum by first training on the reli-
able subset, then gradually moving to both reliable
and less reliable data. We can see that, this simple
curriculum learning based model (sent PR) fur-
ther outperforms sent reliable significantly,
indicating that the curriculum learning framework
not only reduces the effect of noise, but also helps
the model learn from noisy data. When apply-
ing the transition matrix approach into this cur-
riculum learning framework using one reliable
subset and one unreliable subset generated by
mixing our two less reliable subsets, our model
(sent PR seg2 TM) further improves sent PR
by utilizing the dynamic transition matrix to
model the noise. It is not surprising that when
we use all three subsets separately, our model
(sent PR TM) significantly outperforms all other
models by a large margin.

435

0 . 0 0 . 2 0 . 4 0 . 6 0 . 80 . 9 0

0 . 9 2

0 . 9 4

0 . 9 6

0 . 9 8

1 . 0 0

Pre
cis

ion

R e c a l l

 b a g _ a t t _ m i x
 b a g _ a t t _ r e l i a b l e
 b a g _ a t t _ P R
 b a g _ a t t _ m i x _ T M
 b a g _ a t t _ P R _ T M

(a) Attention Aggregation

0 . 0 0 . 2 0 . 4 0 . 6 0 . 80 . 9 0

0 . 9 2

0 . 9 4

0 . 9 6

0 . 9 8

1 . 0 0

Pre
cis

ion

R e c a l l

 b a g _ a v g _ m i x
 b a g _ a v g _ r e l i a b l e
 b a g _ a v g _ P R
 b a g _ a v g _ m i x _ T M
 b a g _ a v g _ P R _ T M

(b) Average Aggregation

Figure 3: Bag Level Results on TIMERE

Bag Level Models In this setting, we first look
at the performance of the bag level models with
attention aggregation. The results are shown in
Figure 3(a). Consider the comparison between
the model trained on the reliable subset only
(bag att reliable) and the one trained on
the mixed dataset (bag att mix). In contrast
to the sentence level, bag att mix outperforms
bag att reliable by a large margin, because
bag att mix has taken the at-least-one assump-
tion into consideration through the attention ag-
gregation mechanism (Eq. 3), which can be seen
as a denoising step within the bag. This may also
be the reason that when we introduce either our
dynamic transition matrix (bag att mix TM) or
the curriculum of using prior knowledge of data
quality (bag att PR) into the bag level models,
the improvement regarding bag att mix is not
as significant as in the sentence level.

However, when we apply our dynamic transi-
tion matrix into the curriculum built upon prior
knowledge of data quality (bag att PR TM), the
performance gets further improved. This hap-
pens especially in the high precision part com-
pared to bag att PR. We also note that the bag
level’s at-least-one assumption does not always
hold, and there are still false negative and false
positive problems. Therefore, using our transi-
tion matrix approach with or without prior knowl-
edge of data quality, i.e., bag att mix TM and
bag att PR TM, both improve the performance,
and bag att PR TM performs slightly better.

The results of bag level models with average ag-
gregation are shown in Figure 3(b), where the rel-
ative ranking of various settings is similar to those
with attention aggregation. A notable difference

0 . 0 0 . 2 0 . 4 0 . 6 0 . 80 . 9 0

0 . 9 2

0 . 9 4

0 . 9 6

0 . 9 8

1 . 0 0
 s e n t _ P R
 s e n t _ P R _ G T M
 s e n t _ P R _ T M
 b a g _ a t t _ P R
 b a g _ a t t _ P R _ G T M
 b a g _ a t t _ P R _ T M

Pre
cis

ion

R e c a l l

Figure 4: Global TM v.s. Dynamic TM

is that both bag avg PR and bag avg mix TM
improve bag avg mix by a larger margin com-
pared to that in the attention aggregation setting.
The reason may be that the average aggregation
mechanism is not as good as the attention aggre-
gation in denoising within the bag, which leaves
more space for our transition matrix approach or
curriculum learning with prior knowledge to im-
prove. Also note that bag avg reliable per-
forms best in the very-low-recall region but worst
in general. This is because that it ranks higher
the sentences expressing either birth-date or
death-date, the simplest but the most com-
mon relations in the dataset, but fails to learn other
relations with limited or noisy training instances,
given its relatively simple aggregation strategy.

Global v.s. Dynamic Transition Matrix We
also compare our dynamic transition matrix
method with the global transition matrix method,
which maintains only one transition matrix for all
training instances. Specifically, instead of dynam-

436

ically generating a transition matrix for each da-
tum, we first initialize an identity matrix T′ ∈
R|C|×|C|, where |C| is the number of relations (in-
cluding no-relation). Then the global transi-
tion matrix T is built by applying softmax to each
row of T′ so that

∑
j Tij = 1:

Tij =
eT

′
ij

∑|C|
j=1 e

T ′
ij

(7)

where Tij and T ′ij are the elements in the ith row
and jth column of T and T′. The element values
of matrix T′ are also updated via backpropagation
during training. As shown in Figure 4, using one
global transition matrix (GTM) is also beneficial
and improves both the sentence level (sent PR)
and bag level (bag att PR) models. However,
since the global transition matrix only captures the
global noise pattern, it fails to characterize individ-
uals with subtle differences, resulting in a perfor-
mance drop compared to the dynamic one (TM).

Case Study We find our transition matrix
method tends to obtain more significant im-
provement on noisier relations. For exam-
ple, time of spacecraft landing is noisier than
time of spacecraft launch since compared to the
launching of a spacecraft, there are fewer sen-
tences containing the landing time of a space-
craft that talks directly about the landing. Instead,
many of these sentences tend to talk about the
activities of the crew. Our sent PR TM model
improves the F1 of time of spacecraft landing
and time of spacecraft launch over sent PR by
9.09% and 2.78%, respectively. The transition
matrix makes more significant improvement on
time of spacecraft landing since there are more
noisy sentences for our method to handle, which
results in more significant improvement on the
quality of the training data.

6.2 Performance on ENTITYRE
We evaluate our bag level models on ENTI-
TYRE. As shown in Figure 5, it is not surpris-
ing that the basic model with attention aggrega-
tion (att) significantly outperforms the average
one (avg), where att in our bag embedding is
similar in spirit to (Lin et al., 2016), which has re-
ported the-state-of-the-art performance on ENTI-
TYRE. When injected with our transition matrix
approach, both att TM and avg TM clearly out-
perform their basic versions.

0 . 0 0 . 1 0 . 2 0 . 3 0 . 40 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7
0 . 8
0 . 9
1 . 0

Pre
cis

ion

R e c a l l

 a v g
 a t t
 a v g _ T M
 a t t _ T M

Figure 5: Results on ENTITYRE

Method P@R 10 P@R 20 P@R 30
Mintz 39.88 28.55 16.81

MultiR 60.94 36.41 -
MIML 60.75 33.82 -

avg 58.04 51.25 42.45
avg TM 58.56 52.35 43.59

att 61.51 56.36 45.63
att TM 67.24 57.61 44.90

Table 1: Comparison with feature-based methods.
P@R 10/20/30 refers to the precision when recall
equals 10%, 20% and 30%.

Similar to the situations in TIMERE, since att
has taken the at-least-one assumption into account
through its attention-based bag embedding mech-
anism, thus the improvement made by att TM is
not as large as by avg TM.

We also include the comparison with three
feature-based methods: Mintz (Mintz et al.,
2009) is a multiclass logistic regression model;
MultiR (Hoffmann et al., 2011) is a probabilistic
graphical model that can handle overlapping rela-
tions; MIML (Surdeanu et al., 2012) is also a prob-
abilistic graphical model but operates in the multi-
instance multi-label paradigm. As shown in Ta-
ble 1, although traditional feature-based methods
have reasonable results in the low recall region,
their performances drop quickly as the recall goes
up, and MultiR and MIML did not even reach
the 30% recall. This indicates that, while human-
designed featurs can effectively capture certain re-
lation patterns, their coverage is relatively low.
On the other hand, neural network models have
more stable performance across different recalls,
and att TM performs generally better than other
models, indicating again the effectiveness of our
transition matrix method.

437

7 Related Work

In addition to relation extraction, distant supervi-
sion (DS) is shown to be effective in generating
training data for various NLP tasks, e.g., tweet
sentiment classification (Go et al., 2009), tweet
named entity classifying (Ritter et al., 2011), etc.
However, these early applications of DS do not
well address the issue of data noise.

In relation extraction (RE), recent works have
been proposed to reduce the influence of wrongly
labeled data. The work presented by (Takamatsu
et al., 2012) removes potential noisy sentences
by identifying bad syntactic patterns at the pre-
processing stage. (Xu et al., 2013) use pseudo-
relevance feedback to find possible false nega-
tive data. (Riedel et al., 2010) make the at-least-
one assumption and propose to alleviate the noise
problem by considering RE as a multi-instance
classification problem. Following this assumption,
people further improves the original paradigm us-
ing probabilistic graphic models (Hoffmann et al.,
2011; Surdeanu et al., 2012), and neural network
methods (Zeng et al., 2015). Recently, (Lin et al.,
2016) propose to use attention mechanism to re-
duce the noise within a sentence bag. Instead
of characterizing the noise, these approaches only
aim to alleviate the effect of noise.

The at-least-one assumption is often too strong
in practice, and there are still chances that the sen-
tence bag may be false positive or false negative.
Thus it is important to model the noise pattern to
guide the learning procedure. (Ritter et al., 2013)
and (Min et al., 2013) try to employ a set of la-
tent variables to represent the true relation. Our
approach differs from them in two aspects. We tar-
get noise modeling in neutral networks while they
target probabilistic graphic models. We further ad-
vance their models by providing the capability to
model the fine-grained transition from the true re-
lation to the observed, and the flexibility to com-
bine indirect guidance.

Outside of NLP, various methods have been
proposed in computer vision to model the data
noise using neural networks. (Sukhbaatar et al.,
2015) utilize a global transition matrix with weight
decay to transform the true label distribution to the
observed. (Reed et al., 2014) use a hidden layer
to represent the true label distribution but try to
force it to predict both the noisy label and the in-
put. (Chen and Gupta, 2015; Xiao et al., 2015) first
estimate the transition matrix on a clean dataset

and apply to the noisy data. Our model shares
similar spirit with (Misra et al., 2016) in that we
all dynamically generate a transition matrix for
each training instance, but, instead of using vanilla
SGD, we train our model with a novel curriculum
learning training framework with trace regulariza-
tion to control the behavior of transition matrix.
In NLP, the only work in neural-network-based
noise modeling is to use one single global transi-
tion matrix to model the noise introduced by cross-
lingual projection of training data (Fang and Cohn,
2016). Our work advances them through gener-
ating a transition matrix dynamically for each in-
stance, to avoid using one single component to
characterize both reliable and unreliable data.

8 Conclusions

In this paper, we investigate the noise problem in-
herent in the DS-style training data. We argue that
the data speak for themselves by providing use-
ful clues to reveal their noise patterns. We thus
propose a novel transition matrix based method
to dynamically characterize the noise underlying
such training data in a unified framework along the
original prediction objective. One of our key inno-
vations is to exploit a curriculum learning based
training method to gradually learn to model the
underlying noise pattern without direct guidance,
and to provide the flexibility to exploit any prior
knowledge of the data quality to further improve
the effectiveness of the transition matrix. We eval-
uate our approach in two learning settings of the
distantly supervised relation extraction. The ex-
perimental results show that the proposed method
can better characterize the underlying noise and
consistently outperform start-of-the-art extraction
models under various scenarios.

Acknowledgement

This work is supported by the National High Tech-
nology R&D Program of China (2015AA015403);
the National Natural Science Foundation of
China (61672057, 61672058); KLSTSPI Key
Lab. of Intelligent Press Media Technol-
ogy; the UK Engineering and Physical Sciences
Research Council under grants EP/M01567X/1
(SANDeRs) and EP/M015793/1 (DIVIDEND);
and the Royal Society International Collaboration
Grant (IE161012).

438

References
Yoshua Bengio, Jérôme Louradour, Ronan Collobert,

and Jason Weston. 2009. Curriculum learning. In
ICML. ACM, pages 41–48.

Xinlei Chen and Abhinav Gupta. 2015. Webly super-
vised learning of convolutional networks. In ICCV .
pages 1431–1439.

Meng Fang and Trevor Cohn. 2016. Learning when
to trust distant supervision: An application to low-
resource pos tagging using cross-lingual projection.
In CONLL. pages 178–186.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford 1(12).

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of ACL.
pages 541–550.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In ACL. vol-
ume 1, pages 2124–2133.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS. pages 3111–3119.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang,
and David Gondek. 2013. Distant supervision for
relation extraction with an incomplete knowledge
base. In HLT-NAACL. pages 777–782.

Mike Mintz, Steven Bills, Rion Snow, and Dan Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In ACL. pages 1003–
1011.

Ishan Misra, C Lawrence Zitnick, Margaret Mitchell,
and Ross Girshick. 2016. Seeing through the human
reporting bias: Visual classifiers from noisy human-
centric labels. In CVPR. pages 2930–2939.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English gigaword fifth edi-
tion, linguistic data consortium. Technical report,
Linguistic Data Consortium, Philadelphia.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Scott Reed, Honglak Lee, Dragomir Anguelov, Chris-
tian Szegedy, Dumitru Erhan, and Andrew Rabi-
novich. 2014. Training deep neural networks on
noisy labels with bootstrapping. arXiv preprint
arXiv:1412.6596 .

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In Joint European Conference
on Machine Learning and Knowledge Discovery in
Databases. Springer, pages 148–163.

Alan Ritter, Alan Ritter, Sam Clark, Oren Etzioni, et al.
2011. Named entity recognition in tweets: an exper-
imental study. In EMNLP. Association for Compu-
tational Linguistics, pages 1524–1534.

Alan Ritter, Luke Zettlemoyer, Mausam, and Oren Et-
zioni. 2013. Modeling missing data in distant super-
vision for information extraction. TACL 1:367–378.

Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri,
Lubomir Bourdev, and Rob Fergus. 2015. Training
convolutional networks with noisy labels. In ICLR.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D Manning. 2012. Multi-instance
multi-label learning for relation extraction. In
EMNLP-CoNLL. pages 455–465.

Shingo Takamatsu, Issei Sato, and Hiroshi Nakagawa.
2012. Reducing wrong labels in distant supervision
for relation extraction. In ACL. pages 721–729.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: a free collaborative knowledgebase. Commu-
nications of the ACM 57(10):78–85.

Tong Xiao, Tian Xia, Yi Yang, Chang Huang, and Xi-
aogang Wang. 2015. Learning from massive noisy
labeled data for image classification. In CVPR.
pages 2691–2699.

Wei Xu, Raphael Hoffmann, Le Zhao, and Ralph Gr-
ishman. 2013. Filling knowledge base gaps for
distant supervision of relation extraction. In ACL.
pages 665–670.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction
via piecewise convolutional neural networks. In
EMNLP. pages 1753–1762.

439

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 440–450
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1041

A Syntactic Neural Model for General-Purpose Code Generation

Pengcheng Yin
Language Technologies Institute

Carnegie Mellon University
pcyin@cs.cmu.edu

Graham Neubig
Language Technologies Institute

Carnegie Mellon University
gneubig@cs.cmu.edu

Abstract

We consider the problem of parsing natu-
ral language descriptions into source code
written in a general-purpose programming
language like Python. Existing data-
driven methods treat this problem as a lan-
guage generation task without considering
the underlying syntax of the target pro-
gramming language. Informed by previ-
ous work in semantic parsing, in this pa-
per we propose a novel neural architecture
powered by a grammar model to explicitly
capture the target syntax as prior knowl-
edge. Experiments find this an effective
way to scale up to generation of complex
programs from natural language descrip-
tions, achieving state-of-the-art results that
well outperform previous code generation
and semantic parsing approaches.

1 Introduction

Every programmer has experienced the situation
where they know what they want to do, but do
not have the ability to turn it into a concrete im-
plementation. For example, a Python programmer
may want to “sort my list in descending order,”
but not be able to come up with the proper syn-
tax sorted(my list, reverse=True) to real-
ize his intention. To resolve this impasse, it is
common for programmers to search the web in
natural language (NL), find an answer, and mod-
ify it into the desired form (Brandt et al., 2009,
2010). However, this is time-consuming, and
thus the software engineering literature is ripe
with methods to directly generate code from NL
descriptions, mostly with hand-engineered meth-
ods highly tailored to specific programming lan-
guages (Balzer, 1985; Little and Miller, 2009;
Gvero and Kuncak, 2015).

In parallel, the NLP community has developed
methods for data-driven semantic parsing, which
attempt to map NL to structured logical forms ex-
ecutable by computers. These logical forms can be
general-purpose meaning representations (Clark
and Curran, 2007; Banarescu et al., 2013), for-
malisms for querying knowledge bases (Tang and
Mooney, 2001; Zettlemoyer and Collins, 2005;
Berant et al., 2013) and instructions for robots or
personal assistants (Artzi and Zettlemoyer, 2013;
Quirk et al., 2015; Misra et al., 2015), among oth-
ers. While these methods have the advantage of
being learnable from data, compared to the pro-
gramming languages (PLs) in use by program-
mers, the domain-specific languages targeted by
these works have a schema and syntax that is rela-
tively simple.

Recently, Ling et al. (2016) have proposed a
data-driven code generation method for high-level,
general-purpose PLs like Python and Java. This
work treats code generation as a sequence-to-
sequence modeling problem, and introduce meth-
ods to generate words from character-level mod-
els, and copy variable names from input descrip-
tions. However, unlike most work in semantic
parsing, it does not consider the fact that code has
to be well-defined programs in the target syntax.

In this work, we propose a data-driven syntax-
based neural network model tailored for genera-
tion of general-purpose PLs like Python. In or-
der to capture the strong underlying syntax of the
PL, we define a model that transduces an NL state-
ment into an Abstract Syntax Tree (AST; Fig. 1(a),
§ 2) for the target PL. ASTs can be deterministi-
cally generated for all well-formed programs us-
ing standard parsers provided by the PL, and thus
give us a way to obtain syntax information with
minimal engineering. Once we generate an AST,
we can use deterministic generation tools to con-
vert the AST into surface code. We hypothesize

440

https://doi.org/10.18653/v1/P17-1041

Production Rule Role Explanation
Call 7! expr[func] expr*[args] keyword*[keywords] Function Call . func: the function to be invoked . args: arguments

list . keywords: keyword arguments list
If 7! expr[test] stmt*[body] stmt*[orelse] If Statement . test: condition expression . body: statements in-

side the If clause . orelse: elif or else statements
For 7! expr[target] expr*[iter] stmt*[body] For Loop . target: iteration variable . iter: enumerable to iter-

ate over . body: loop body . orelse: else statementsstmt*[orelse]
FunctionDef 7! identifier[name] arguments*[args] Function Def. . name: function name . args: function arguments

. body: function bodystmt*[body]

Table 1: Example production rules for common Python statements (Python Software Foundation, 2016)

that such a structured approach has two benefits.
First, we hypothesize that structure can be used

to constrain our search space, ensuring generation
of well-formed code. To this end, we propose a
syntax-driven neural code generation model. The
backbone of our approach is a grammar model
(§ 3) which formalizes the generation story of a
derivation AST into sequential application of ac-
tions that either apply production rules (§ 3.1), or
emit terminal tokens (§ 3.2). The underlying syn-
tax of the PL is therefore encoded in the grammar
model a priori as the set of possible actions. Our
approach frees the model from recovering the un-
derlying grammar from limited training data, and
instead enables the system to focus on learning the
compositionality among existing grammar rules.
Xiao et al. (2016) have noted that this imposition
of structure on neural models is useful for seman-
tic parsing, and we expect this to be even more im-
portant for general-purpose PLs where the syntax
trees are larger and more complex.

Second, we hypothesize that structural informa-
tion helps to model information flow within the
neural network, which naturally reflects the recur-
sive structure of PLs. To test this, we extend a
standard recurrent neural network (RNN) decoder
to allow for additional neural connections which
reflect the recursive structure of an AST (§ 4.2).
As an example, when expanding the node ? in
Fig. 1(a), we make use of the information from
both its parent and left sibling (the dashed rectan-
gle). This enables us to locally pass information
of relevant code segments via neural network con-
nections, resulting in more confident predictions.

Experiments (§ 5) on two Python code gener-
ation tasks show 11.7% and 9.3% absolute im-
provements in accuracy against the state-of-the-art
system (Ling et al., 2016). Our model also gives
competitive performance on a standard semantic
parsing benchmark1.

1Implementation available at https://github.
com/neulab/NL2code

2 The Code Generation Problem

Given an NL description x, our task is to generate
the code snippet c in a modern PL based on the in-
tent of x. We attack this problem by first generat-
ing the underlying AST. We define a probabilistic
grammar model of generating an AST y given x:
p(y|x). The best-possible AST ŷ is then given by

ŷ = arg max
y

p(y|x). (1)

ŷ is then deterministically converted to the corre-
sponding surface code c.2 While this paper uses
examples from Python code, our method is PL-
agnostic.

Before detailing our approach, we first present
a brief introduction of the Python AST and its
underlying grammar. The Python abstract gram-
mar contains a set of production rules, and an
AST is generated by applying several production
rules composed of a head node and multiple child
nodes. For instance, the first rule in Tab. 1 is
used to generate the function call sorted(·) in
Fig. 1(a). It consists of a head node of type Call,
and three child nodes of type expr, expr* and
keyword*, respectively. Labels of each node are
noted within brackets. In an AST, non-terminal
nodes sketch the general structure of the target
code, while terminal nodes can be categorized into
two types: operation terminals and variable ter-
minals. Operation terminals correspond to basic
arithmetic operations like AddOp.Variable termi-
nal nodes store values for variables and constants
of built-in data types3. For instance, all terminal
nodes in Fig. 1(a) are variable terminal nodes.

3 Grammar Model

Before detailing our neural code generation
method, we first introduce the grammar model at
its core. Our probabilistic grammar model defines
the generative story of a derivation AST. We fac-

2We use astor library to convert ASTs into Python code.
3bool, float, int, str.

441

Expr

root

expr[value]

Call

expr*[args] keyword*[keywords]

Name

str(sorted)

expr[func]

expr

Name

str(my_list)

keyword

str(reverse) expr[value]

Name

str(True)

Action Flow
Parent Feeding

Apply Rule

Generate Token

GenToken with Copy

(a) (b)

Input: Code:

. . .

Figure 1: (a) the Abstract Syntax Tree (AST) for the given example code. Dashed nodes denote terminals. Nodes are labeled
with time steps during which they are generated. (b) the action sequence (up to t14) used to generate the AST in (a)

torize the generation process of an AST into se-
quential application of actions of two types:

• APPLYRULE[r] applies a production rule r to
the current derivation tree;

• GENTOKEN[v] populates a variable terminal
node by appending a terminal token v.

Fig. 1(b) shows the generation process of the tar-
get AST in Fig. 1(a). Each node in Fig. 1(b) in-
dicates an action. Action nodes are connected by
solid arrows which depict the chronological order
of the action flow. The generation proceeds in
depth-first, left-to-right order (dotted arrows rep-
resent parent feeding, explained in § 4.2.1).

Formally, under our grammar model, the prob-
ability of generating an AST y is factorized as:

p(y|x) =
TY

t=1

p(at|x, a<t), (2)

where at is the action taken at time step t, and
a<t is the sequence of actions before t. We will
explain how to compute the action probabilities
p(at|·) in Eq. (2) in § 4. Put simply, the gen-
eration process begins from a root node at t0,
and proceeds by the model choosing APPLYRULE

actions to generate the overall program structure
from a closed set of grammar rules, then at leaves
of the tree corresponding to variable terminals, the
model switches to GENTOKEN actions to gener-
ate variables or constants from the open set. We
describe this process in detail below.

3.1 APPLYRULE Actions
APPLYRULE actions generate program structure,
expanding the current node (the frontier node at

time step t: nft) in a depth-first, left-to-right
traversal of the tree. Given a fixed set of produc-
tion rules, APPLYRULE chooses a rule r from the
subset that has a head matching the type of nft ,
and uses r to expand nft by appending all child
nodes specified by the selected production. As an
example, in Fig. 1(b), the rule Call 7! expr. . .
expands the frontier node Call at time step t4, and
its three child nodes expr, expr* and keyword*

are added to the derivation.
APPLYRULE actions grow the derivation AST

by appending nodes. When a variable terminal
node (e.g., str) is added to the derivation and be-
comes the frontier node, the grammar model then
switches to GENTOKEN actions to populate the
variable terminal with tokens.

Unary Closure Sometimes, generating an AST
requires applying a chain of unary productions.
For instance, it takes three time steps (t9 � t11)
to generate the sub-structure expr* 7! expr 7!
Name 7! str in Fig. 1(a). This can be effectively
reduced to one step of APPLYRULE action by tak-
ing the closure of the chain of unary productions
and merging them into a single rule: expr* 7!⇤
str. Unary closures reduce the number of actions
needed, but would potentially increase the size of
the grammar. In our experiments we tested our
model both with and without unary closures (§ 5).

3.2 GENTOKEN Actions
Once we reach a frontier node nft that corresponds
to a variable type (e.g., str), GENTOKEN actions
are used to fill this node with values. For general-
purpose PLs like Python, variables and constants
have values with one or multiple tokens. For in-

442

stance, a node that stores the name of a function
(e.g., sorted) has a single token, while a node
that denotes a string constant (e.g., a=‘hello

world’) could have multiple tokens. Our model
copes with both scenarios by firing GENTOKEN

actions at one or more time steps. At each time
step, GENTOKEN appends one terminal token to
the current frontier variable node. A special </n>
token is used to “close” the node. The grammar
model then proceeds to the new frontier node.

Terminal tokens can be generated from a pre-
defined vocabulary, or be directly copied from the
input NL. This is motivated by the observation
that the input description often contains out-of-
vocabulary (OOV) variable names or literal values
that are directly used in the target code. For in-
stance, in our running example the variable name
my list can be directly copied from the the input
at t12. We give implementation details in § 4.2.2.

4 Estimating Action Probabilities
We estimate action probabilities in Eq. (2) using
attentional neural encoder-decoder models with an
information flow structured by the syntax trees.

4.1 Encoder
For an NL description x consisting of n words
{wi}n

i=1, the encoder computes a context sen-
sitive embedding hi for each wi using a bidi-
rectional Long Short-Term Memory (LSTM) net-
work (Hochreiter and Schmidhuber, 1997), simi-
lar to the setting in (Bahdanau et al., 2014). See
supplementary materials for detailed equations.

4.2 Decoder
The decoder uses an RNN to model the sequential
generation process of an AST defined as Eq. (2).
Each action step in the grammar model naturally
grounds to a time step in the decoder RNN. There-
fore, the action sequence in Fig. 1(b) can be in-
terpreted as unrolling RNN time steps, with solid
arrows indicating RNN connections. The RNN
maintains an internal state to track the generation
process (§ 4.2.1), which will then be used to com-
pute action probabilities p(at|x, a<t) (§ 4.2.2).

4.2.1 Tracking Generation States
Our implementation of the decoder resembles a
vanilla LSTM, with additional neural connections
(parent feeding, Fig. 1(b)) to reflect the topological
structure of an AST. The decoder’s internal hidden
state at time step t, st, is given by:

st = fLSTM([at�1 : ct : pt : nft], st�1), (3)

sort my_list in descending

ApplyRule[Call] Parent State

+

ApplyRule GenToken

type of ?

order

... ...

non­terminal variable terminal

embedding of node type

embedding of

Figure 2: Illustration of a decoder time step (t = 9)

where fLSTM(·) is the LSTM update function.
[:] denotes vector concatenation. st will then be
used to compute action probabilities p(at|x, a<t)
in Eq. (2). Here, at�1 is the embedding of the pre-
vious action. ct is a context vector retrieved from
input encodings {hi} via soft attention. pt is a
vector that encodes the information of the parent
action. nft denotes the node type embedding of
the current frontier node nft

4. Intuitively, feeding
the decoder the information of nft helps the model
to keep track of the frontier node to expand.
Action Embedding at We maintain two action
embedding matrices, WR and WG. Each row in
WR (WG) corresponds to an embedding vector
for an action APPLYRULE[r] (GENTOKEN[v]).
Context Vector ct The decoder RNN uses soft at-
tention to retrieve a context vector ct from the in-
put encodings {hi} pertain to the prediction of the
current action. We follow Bahdanau et al. (2014)
and use a Deep Neural Network (DNN) with a sin-
gle hidden layer to compute attention weights.
Parent Feeding pt Our decoder RNN uses ad-
ditional neural connections to directly pass infor-
mation from parent actions. For instance, when
computing s9, the information from its parent ac-
tion step t4 will be used. Formally, we define the
parent action step pt as the time step at which
the frontier node nft is generated. As an exam-
ple, for t9, its parent action step p9 is t4, since
nf9 is the node ?, which is generated at t4 by the
APPLYRULE[Call7!. . .] action.

We model parent information pt from two
sources: (1) the hidden state of parent action spt ,
and (2) the embedding of parent action apt . pt is
the concatenation. The parent feeding schema en-

4We maintain an embedding for each node type.

443

ables the model to utilize the information of par-
ent code segments to make more confident predic-
tions. Similar approaches of injecting parent in-
formation were also explored in the SEQ2TREE

model in Dong and Lapata (2016)5.

4.2.2 Calculating Action Probabilities
In this section we explain how action probabilities
p(at|x, a<t) are computed based on st.
APPLYRULE The probability of applying rule r
as the current action at is given by a softmax6:

p(at = APPLYRULE[r]|x, a<t) =

softmax(WR · g(st))
| · e(r) (4)

where g(·) is a non-linearity tanh(W ·st+b), and
e(r) the one-hot vector for rule r.
GENTOKEN As in § 3.2, a token v can be gener-
ated from a predefined vocabulary or copied from
the input, defined as the marginal probability:

p(at = GENTOKEN[v]|x, a<t) =

p(gen|x, a<t)p(v|gen, x, a<t)

+ p(copy|x, a<t)p(v|copy, x, a<t).

The selection probabilities p(gen|·) and p(copy|·)
are given by softmax(WS · st). The prob-
ability of generating v from the vocabulary,
p(v|gen, x, a<t), is defined similarly as Eq. (4),
except that we use the GENTOKEN embedding
matrix WG, and we concatenate the context vector
ct with st as input. To model the copy probability,
we follow recent advances in modeling copying
mechanism in neural networks (Gu et al., 2016;
Jia and Liang, 2016; Ling et al., 2016), and use a
pointer network (Vinyals et al., 2015) to compute
the probability of copying the i-th word from the
input by attending to input representations {hi}:

p(wi|copy, x, a<t) =
exp(!(hi, st, ct))Pn

i0=1 exp(!(hi0 , st, ct))
,

where !(·) is a DNN with a single hidden layer.
Specifically, if wi is an OOV word (e.g., the vari-
able name my list), which is represented by a
special <unk> token during encoding, we then di-
rectly copy the actual word wi from the input de-
scription to the derivation.

4.3 Training and Inference
Given a dataset of pairs of NL descriptions xi and
code snippets ci, we parse ci into its AST yi and

5SEQ2TREE generates tree-structured outputs by condi-
tioning on the hidden states of parent non-terminals, while
our parent feeding uses the states of parent actions.

6We do not show bias terms for all softmax equations.

Dataset HS DJANGO IFTTT

Train 533 16,000 77,495
Development 66 1,000 5,171
Test 66 1,805 758

Avg. tokens in description 39.1 14.3 7.4
Avg. characters in code 360.3 41.1 62.2
Avg. size of AST (# nodes) 136.6 17.2 7.0

Statistics of Grammar
w/o unary closure
productions 100 222 1009
node types 61 96 828
terminal vocabulary size 1361 6733 0
Avg. # actions per example 173.4 20.3 5.0

w/ unary closure
productions 100 237 –
node types 57 92 –
Avg. # actions per example 141.7 16.4 –

Table 2: Statistics of datasets and associated grammars

decompose yi into a sequence of oracle actions,
which explains the generation story of yi under the
grammar model. The model is then optimized by
maximizing the log-likelihood of the oracle action
sequence. At inference time, given an NL descrip-
tion, we use beam search to approximate the best
AST ŷ in Eq. (1). See supplementary materials for
the pseudo-code of the inference algorithm.

5 Experimental Evaluation
5.1 Datasets and Metrics

HEARTHSTONE (HS) dataset (Ling et al., 2016)
is a collection of Python classes that implement
cards for the card game HearthStone. Each card
comes with a set of fields (e.g., name, cost, and
description), which we concatenate to create the
input sequence. This dataset is relatively difficult:
input descriptions are short, while the target code
is in complex class structures, with each AST hav-
ing 137 nodes on average.
DJANGO dataset (Oda et al., 2015) is a collection
of lines of code from the Django web framework,
each with a manually annotated NL description.
Compared with the HS dataset where card imple-
mentations are somewhat homogenous, examples
in DJANGO are more diverse, spanning a wide va-
riety of real-world use cases like string manipula-
tion, IO operations, and exception handling.
IFTTT dataset (Quirk et al., 2015) is a domain-
specific benchmark that provides an interest-
ing side comparison. Different from HS and
DJANGO which are in a general-purpose PL, pro-
grams in IFTTT are written in a domain-specific
language used by the IFTTT task automation

444

App. Users of the App write simple instruc-
tions (e.g., If Instagram.AnyNewPhotoByYou

Then Dropbox.AddFileFromURL) with NL de-
scriptions (e.g., “Autosave your Instagram photos
to Dropbox”). Each statement inside the If or
Then clause consists of a channel (e.g., Dropbox)
and a function (e.g., AddFileFromURL)7. This
simple structure results in much more concise
ASTs (7 nodes on average). Because all examples
are created by ordinary Apps users, the dataset
is highly noisy, with input NL very loosely con-
nected to target ASTs. The authors thus provide a
high-quality filtered test set, where each example
is verified by at least three annotators. We use this
set for evaluation. Also note IFTTT’s grammar has
more productions (Tab. 2), but this does not imply
that its grammar is more complex. This is because
for HS and DJANGO terminal tokens are generated
by GENTOKEN actions, but for IFTTT, all the code
is generated directly by APPLYRULE actions.
Metrics As is standard in semantic parsing, we
measure accuracy, the fraction of correctly gen-
erated examples. However, because generating an
exact match for complex code structures is non-
trivial, we follow Ling et al. (2016), and use token-
level BLEU-4 with as a secondary metric, defined
as the averaged BLEU scores over all examples.8

5.2 Setup
Preprocessing All input descriptions are tok-
enized using NLTK. We perform simple canoni-
calization for DJANGO, such as replacing quoted
strings in the inputs with place holders. See sup-
plementary materials for details. We extract unary
closures whose frequency is larger than a thresh-
old k (k = 30 for HS and 50 for DJANGO).
Configuration The size of all embeddings is 128,
except for node type embeddings, which is 64.
The dimensions of RNN states and hidden layers
are 256 and 50, respectively. Since our datasets are
relatively small for a data-hungry neural model,
we impose strong regularization using recurrent

7Like Beltagy and Quirk (2016), we strip function param-
eters since they are mostly specific to users.

8These two metrics are not ideal: accuracy only measures
exact match and thus lacks the ability to give credit to seman-
tically correct code that is different from the reference, while
it is not clear whether BLEU provides an appropriate proxy
for measuring semantics in the code generation task. A more
intriguing metric would be directly measuring semantic/func-
tional code equivalence, for which we present a pilot study
at the end of this section (cf. Error Analysis). We leave ex-
ploring more sophisticated metrics (e.g. based on static code
analysis) as future work.

HS DJANGO

ACC BLEU ACC BLEU

Retrieval System† 0.0 62.5 14.7 18.6
Phrasal Statistical MT† 0.0 34.1 31.5 47.6
Hierarchical Statistical MT† 0.0 43.2 9.5 35.9

NMT 1.5 60.4 45.1 63.4
SEQ2TREE 1.5 53.4 28.9 44.6
SEQ2TREE–UNK 13.6 62.8 39.4 58.2
LPN† 4.5 65.6 62.3 77.6

Our system 16.2 75.8 71.6 84.5

Ablation Study
– frontier embed. 16.7 75.8 70.7 83.8
– parent feed. 10.6 75.7 71.5 84.3
– copy terminals 3.0 65.7 32.3 61.7
+ unary closure – 70.3 83.3
– unary closure 10.1 74.8 –

Table 3: Results on two Python code generation tasks.
†Results previously reported in Ling et al. (2016).

dropouts (Gal and Ghahramani, 2016) for all re-
current networks, together with standard dropout
layers added to the inputs and outputs of the de-
coder RNN. We validate the dropout probability
from {0, 0.2, 0.3, 0.4}. For decoding, we use a
beam size of 15.

5.3 Results
Evaluation results for Python code generation
tasks are listed in Tab. 3. Numbers for our sys-
tems are averaged over three runs. We compare
primarily with two approaches: (1) Latent Pre-
dictor Network (LPN), a state-of-the-art sequence-
to-sequence code generation model (Ling et al.,
2016), and (2) SEQ2TREE, a neural semantic pars-
ing model (Dong and Lapata, 2016). SEQ2TREE

generates trees one node at a time, and the tar-
get grammar is not explicitly modeled a priori,
but implicitly learned from data. We test both
the original SEQ2TREE model released by the au-
thors and our revised one (SEQ2TREE–UNK) that
uses unknown word replacement to handle rare
words (Luong et al., 2015). For completeness,
we also compare with a strong neural machine
translation (NMT) system (Neubig, 2015) using a
standard encoder-decoder architecture with atten-
tion and unknown word replacement9, and include
numbers from other baselines used in Ling et al.
(2016). On the HS dataset, which has relatively
large ASTs, we use unary closure for our model
and SEQ2TREE, and for DJANGO we do not.

9For NMT, we also attempted to find the best-scoring syn-
tactically correct predictions in the size-5 beam, but this did
not yield a significant improvement over the NMT results in
Tab. 3.

445

Figure 3: Performance w.r.t reference AST size on DJANGO

Figure 4: Performance w.r.t reference AST size on HS

System Comparison As in Tab. 3, our model
registers 11.7% and 9.3% absolute improvements
over LPN in accuracy on HS and DJANGO. This
boost in performance strongly indicates the impor-
tance of modeling grammar in code generation.
For the baselines, we find LPN outperforms NMT

and SEQ2TREE in most cases. We also note that
SEQ2TREE achieves a decent accuracy of 13.6%
on HS, which is due to the effect of unknown word
replacement, since we only achieved 1.5% with-
out it. A closer comparison with SEQ2TREE is
insightful for understanding the advantage of our
syntax-driven approach, since both SEQ2TREE

and our system output ASTs: (1) SEQ2TREE pre-
dicts one node each time step, and requires addi-
tional “dummy” nodes to mark the boundary of
a subtree. The sheer number of nodes in target
ASTs makes the prediction process error-prone. In
contrast, the APPLYRULE actions of our grammar
model allows for generating multiple nodes at a
single time step. Empirically, we found that in HS,
SEQ2TREE takes more than 300 time steps on av-
erage to generate a target AST, while our model
takes only 170 steps. (2) SEQ2TREE does not di-
rectly use productions in the grammar, which pos-
sibly leads to grammatically incorrect ASTs and
thus empty code outputs. We observe that the ra-
tio of grammatically incorrect ASTs predicted by
SEQ2TREE on HS and DJANGO are 21.2% and
10.9%, respectively, while our system guarantees
grammaticality.

Ablation Study We also ablated our best-
performing models to analyze the contribution of
each component. “–frontier embed.” removes the
frontier node embedding nft from the decoder
RNN inputs (Eq. (3)). This yields worse results on
DJANGO while gives slight improvements in ac-

CHANNEL FULL TREE

Classical Methods
posclass (Quirk et al., 2015) 81.4 71.0
LR (Beltagy and Quirk, 2016) 88.8 82.5

Neural Network Methods
NMT 87.7 77.7
NN (Beltagy and Quirk, 2016) 88.0 74.3
SEQ2TREE (Dong and Lapata, 2016) 89.7 78.4
Doubly-Recurrent NN 90.1 78.2(Alvarez-Melis and Jaakkola, 2017)

Our system 90.0 82.0
– parent feed. 89.9 81.1
– frontier embed. 90.1 78.7

Table 4: Results on the noise-filtered IFTTT test set of “>3
agree with gold annotations” (averaged over three runs), our
model performs competitively among neural models.

curacy on HS. This is probably because that the
grammar of HS has fewer node types, and thus
the RNN is able to keep track of nft without de-
pending on its embedding. Next, “–parent feed.”
removes the parent feeding mechanism. The ac-
curacy drops significantly on HS, with a marginal
deterioration on DJANGO. This result is interest-
ing because it suggests that parent feeding is more
important when the ASTs are larger, which will
be the case when handling more complicated code
generation tasks like HS. Finally, removing the
pointer network (“–copy terminals”) in GENTO-
KEN actions gives poor results, indicating that it
is important to directly copy variable names and
values from the input.

The results with and without unary closure
demonstrate that, interestingly, it is effective on
HS but not on DJANGO. We conjecture that this is
because on HS it significantly reduces the number
of actions from 173 to 142 (c.f., Tab. 2), with the
number of productions in the grammar remaining
unchanged. In contrast, DJANGO has a broader
domain, and thus unary closure results in more
productions in the grammar (237 for DJANGO

vs. 100 for HS), increasing sparsity.
Performance by the size of AST We further in-
vestigate our model’s performance w.r.t. the size
of the gold-standard ASTs in Figs. 3 and 4. Not
surprisingly, the performance drops when the size
of the reference ASTs increases. Additionally, on
the HS dataset, the BLEU score still remains at
around 50 even when the size of ASTs grows to
200, indicating that our proposed syntax-driven
approach is robust for long code segments.
Domain Specific Code Generation Although this
is not the focus of our work, evaluation on IFTTT

brings us closer to a standard semantic parsing set-

446

input <name> Brawl </name> <cost> 5 </cost> <desc>
Destroy all minions except one (chosen randomly)
</desc> <rarity> Epic </rarity> ...

pred. class Brawl(SpellCard):
def init (self):
super(). init (’Brawl’, 5, CHARACTER CLASS.

WARRIOR, CARD RARITY.EPIC)
def use(self, player, game):
super().use(player, game)
targets = copy.copy(game.other player.minions)
targets.extend(player.minions)
for minion in targets:
minion.die(self) A

ref. minions = copy.copy(player.minions)
minions.extend(game.other player.minions)
if len(minions) > 1:
survivor = game.random choice(minions)
for minion in minions:
if minion is not survivor: minion.die(self)

B

input join app config.path and string ’locale’ into a file
path, substitute it for localedir.

pred. localedir = os.path.join(
app config.path, ’locale’) 3

input self.plural is an lambda function with an argument
n, which returns result of boolean expression n not
equal to integer 1

pred. self.plural = lambda n: len(n) 7
ref. self.plural = lambda n: int(n!=1)

Table 5: Predicted examples from HS (1st) and DJANGO.
Copied contents (copy probability > 0.9) are highlighted.

ting, which helps to investigate similarities and
differences between generation of more compli-
cated general-purpose code and and more limited-
domain simpler code. Tab. 4 shows the results,
following the evaluation protocol in (Beltagy and
Quirk, 2016) for accuracies at both channel and
full parse tree (channel + function) levels. Our
full model performs on par with existing neu-
ral network-based methods, while outperforming
other neural models in full tree accuracy (82.0%).
This score is close to the best classical method
(LR), which is based on a logistic regression
model with rich hand-engineered features (e.g.,
brown clusters and paraphrase). Also note that the
performance between NMT and other neural mod-
els is much closer compared with the results in
Tab. 3. This suggests that general-purpose code
generation is more challenging than the simpler
IFTTT setting, and therefore modeling structural
information is more helpful.
Case Studies We present output examples in
Tab. 5. On HS, we observe that most of the
time our model gives correct predictions by fill-
ing learned code templates from training data with
arguments (e.g., cost) copied from input. This is in
line with the findings in Ling et al. (2016). How-
ever, we do find interesting examples indicating
that the model learns to generalize beyond trivial

copying. For instance, the first example is one that
our model predicted wrong — it generated code
block A instead of the gold B (it also missed a
function definition not shown here). However, we
find that the block A actually conveys part of the
input intent by destroying all, not some, of the
minions. Since we are unable to find code block
A in the training data, it is clear that the model has
learned to generalize to some extent from multiple
training card examples with similar semantics or
structure.

The next two examples are from DJANGO. The
first one shows that the model learns the usage
of common API calls (e.g., os.path.join), and
how to populate the arguments by copying from
inputs. The second example illustrates the dif-
ficulty of generating code with complex nested
structures like lambda functions, a scenario worth
further investigation in future studies. More exam-
ples are attached in supplementary materials.
Error Analysis To understand the sources of er-
rors and how good our evaluation metric (exact
match) is, we randomly sampled and labeled 100
and 50 failed examples (with accuracy=0) from
DJANGO and HS, respectively. We found that
around 2% of these examples in the two datasets
are actually semantically equivalent. These exam-
ples include: (1) using different parameter names
when defining a function; (2) omitting (or adding)
default values of parameters in function calls.
While the rarity of such examples suggests that our
exact match metric is reasonable, more advanced
evaluation metrics based on statistical code analy-
sis are definitely intriguing future work.

For DJANGO, we found that 30% of failed cases
were due to errors where the pointer network
failed to appropriately copy a variable name into
the correct position. 25% were because the gener-
ated code only partially implemented the required
functionality. 10% and 5% of errors were due to
malformed English inputs and pre-processing er-
rors, respectively. The remaining 30% of exam-
ples were errors stemming from multiple sources,
or errors that could not be easily categorized into
the above. For HS, we found that all failed card
examples were due to partial implementation er-
rors, such as the one shown in Table 5.

6 Related Work
Code Generation and Analysis Most works on
code generation focus on generating code for do-
main specific languages (DSLs) (Kushman and

447

Barzilay, 2013; Raza et al., 2015; Manshadi et al.,
2013), with neural network-based approaches re-
cently explored (Liu et al., 2016; Parisotto et al.,
2016; Balog et al., 2016). For general-purpose
code generation, besides the general framework
of Ling et al. (2016), existing methods often
use language and task-specific rules and strate-
gies (Lei et al., 2013; Raghothaman et al., 2016).
A similar line is to use NL queries for code re-
trieval (Wei et al., 2015; Allamanis et al., 2015).
The reverse task of generating NL summaries from
source code has also been explored (Oda et al.,
2015; Iyer et al., 2016). Finally, our work falls into
the broad field of probabilistic modeling of source
code (Maddison and Tarlow, 2014; Nguyen et al.,
2013). Our approach of factoring an AST using
probabilistic models is closely related to Allama-
nis et al. (2015), which uses a factorized model to
measure the semantic relatedness between NL and
ASTs for code retrieval, while our model tackles
the more challenging generation task.

Semantic Parsing Our work is related to the gen-
eral topic of semantic parsing, which aims to
transform NL descriptions into executable logical
forms. The target logical forms can be viewed
as DSLs. The parsing process is often guided
by grammatical formalisms like combinatory cate-
gorical grammars (Kwiatkowski et al., 2013; Artzi
et al., 2015), dependency-based syntax (Liang
et al., 2011; Pasupat and Liang, 2015) or task-
specific formalisms (Clarke et al., 2010; Yih et al.,
2015; Krishnamurthy et al., 2016; Mei et al.,
2016). Recently, there are efforts in designing
neural network-based semantic parsers (Misra and
Artzi, 2016; Dong and Lapata, 2016; Neelakantan
et al., 2016; Yin et al., 2016). Several approaches
have be proposed to utilize grammar knowledge
in a neural parser, such as augmenting the training
data by generating examples guided by the gram-
mar (Kociský et al., 2016; Jia and Liang, 2016).
Liang et al. (2016) used a neural decoder which
constrains the space of next valid tokens in the
query language for question answering. Finally,
the structured prediction approach proposed by
Xiao et al. (2016) is closely related to our model in
using the underlying grammar as prior knowledge
to constrain the generation process of derivation
trees, while our method is based on a unified gram-
mar model which jointly captures production rule
application and terminal symbol generation, and
scales to general purpose code generation tasks.

7 Conclusion
This paper proposes a syntax-driven neural code
generation approach that generates an abstract
syntax tree by sequentially applying actions from
a grammar model. Experiments on both code gen-
eration and semantic parsing tasks demonstrate the
effectiveness of our proposed approach.

Acknowledgment
We are grateful to Wang Ling for his generous help
with LPN and setting up the benchmark. We thank
I. Beltagy for providing the IFTTT dataset. We
also thank Li Dong for helping with SEQ2TREE

and insightful discussions.

References
Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gor-

don, and Yi Wei. 2015. Bimodal modelling of
source code and natural language. In Proceedings
of ICML. volume 37.

David Alvarez-Melis and Tommi S. Jaakkola. 2017.
Tree-structured decoding with doubly recurrent neu-
ral networks. In Proceedings of ICLR.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage CCG semantic parsing with AMR.
In Proceedings of EMNLP.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transaction of ACL 1(1).

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt,
Sebastian Nowozin, and Daniel Tarlow. 2016.
Deepcoder: Learning to write programs. CoRR
abs/1611.01989.

Robert Balzer. 1985. A 15 year perspective on au-
tomatic programming. IEEE Trans. Software Eng.
11(11).

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proceedings of LAW-ID@ACL.

I. Beltagy and Chris Quirk. 2016. Improved seman-
tic parsers for if-then statements. In Proceedings of
ACL.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of EMNLP.

448

Joel Brandt, Mira Dontcheva, Marcos Weskamp, and
Scott R. Klemmer. 2010. Example-centric program-
ming: integrating web search into the development
environment. In Proceedings of CHI.

Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. 2009. Two stud-
ies of opportunistic programming: interleaving web
foraging, learning, and writing code. In Proceedings
of CHI.

Stephen Clark and James R. Curran. 2007. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics 33(4).

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from the
world’s response. In Proceedings of CoNLL.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of ACL.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Proceedings of NIPS.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O. K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
ACL.

Tihomir Gvero and Viktor Kuncak. 2015. Interactive
synthesis using free-form queries. In Proceedings
of ICSE.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation 9(8).

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of
ACL.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of ACL.

Tomás Kociský, Gábor Melis, Edward Grefenstette,
Chris Dyer, Wang Ling, Phil Blunsom, and
Karl Moritz Hermann. 2016. Semantic parsing with
semi-supervised sequential autoencoders. In Pro-
ceedings of EMNLP.

Jayant Krishnamurthy, Oyvind Tafjord, and Aniruddha
Kembhavi. 2016. Semantic parsing to probabilistic
programs for situated question answering. In Pro-
ceedings of EMNLP.

Nate Kushman and Regina Barzilay. 2013. Using se-
mantic unification to generate regular expressions
from natural language. In Proceedings of NAACL.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and
Luke S. Zettlemoyer. 2013. Scaling semantic
parsers with on-the-fly ontology matching. In Pro-
ceedings of the EMNLP.

Tao Lei, Fan Long, Regina Barzilay, and Martin C. Ri-
nard. 2013. From natural language specifications to
program input parsers. In Proceedings of ACL.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D.
Forbus, and Ni Lao. 2016. Neural symbolic ma-
chines: Learning semantic parsers on freebase with
weak supervision. CoRR abs/1611.00020.

Percy Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of ACL.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomás Kociský, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of
ACL.

Greg Little and Robert C. Miller. 2009. Keyword pro-
gramming in java. Autom. Softw. Eng. 16(1).

Chang Liu, Xinyun Chen, Eui Chul Richard Shin,
Mingcheng Chen, and Dawn Xiaodong Song. 2016.
Latent attention for if-then program synthesis. In
Proceedings of NIPS.

Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol
Vinyals, and Wojciech Zaremba. 2015. Addressing
the rare word problem in neural machine translation.
In Proceedings of ACL.

Chris J. Maddison and Daniel Tarlow. 2014. Structured
generative models of natural source code. In Pro-
ceedings of ICML.

Mehdi Hafezi Manshadi, Daniel Gildea, and James F.
Allen. 2013. Integrating programming by example
and natural language programming. In Proceedings
of AAAI.

Hongyuan Mei, Mohit Bansal, and Matthew R. Wal-
ter. 2016. Listen, attend, and walk: Neural mapping
of navigational instructions to action sequences. In
Proceedings of AAAI.

Dipendra K. Misra and Yoav Artzi. 2016. Neural shift-
reduce CCG semantic parsing. In Proceedings of
EMNLP.

Dipendra Kumar Misra, Kejia Tao, Percy Liang, and
Ashutosh Saxena. 2015. Environment-driven lex-
icon induction for high-level instructions. In Pro-
ceedings of ACL.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever.
2016. Neural programmer: Inducing latent pro-
grams with gradient descent. In Proceedings of
ICLR.

Graham Neubig. 2015. lamtram: A toolkit for lan-
guage and translation modeling using neural net-
works. http://www.github.com/neubig/lamtram.

Tung Thanh Nguyen, Anh Tuan Nguyen, Hoan Anh
Nguyen, and Tien N. Nguyen. 2013. A statistical
semantic language model for source code. In Pro-
ceedings of ACM SIGSOFT .

449

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation (T). In Proceedings of ASE.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh
Singh, Lihong Li, Dengyong Zhou, and Pushmeet
Kohli. 2016. Neuro-symbolic program synthesis.
CoRR abs/1611.01855.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of ACL.

Python Software Foundation. 2016. Python abstract
grammar. https://docs.python.org/2/library/ast.html.

Chris Quirk, Raymond J. Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of ACL.

Mukund Raghothaman, Yi Wei, and Youssef Hamadi.
2016. SWIM: synthesizing what i mean: code
search and idiomatic snippet synthesis. In Proceed-
ings of ICSE.

Mohammad Raza, Sumit Gulwani, and Natasa Milic-
Frayling. 2015. Compositional program synthesis
from natural language and examples. In Proceed-
ings of IJCAI.

Lappoon R. Tang and Raymond J. Mooney. 2001. Us-
ing multiple clause constructors in inductive logic
programming for semantic parsing. In Proceedings
of ECML.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Proceedings of NIPS.

Yi Wei, Nirupama Chandrasekaran, Sumit Gul-
wani, and Youssef Hamadi. 2015. Build-
ing bing developer assistant. Techni-
cal report. https://www.microsoft.com/en-
us/research/publication/building-bing-developer-
assistant/.

Chunyang Xiao, Marc Dymetman, and Claire Gardent.
2016. Sequence-based structured prediction for se-
mantic parsing. In Proceedings of ACL.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of ACL.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2016. Neural enquirer: Learning to query tables in
natural language. In Proceedings of IJCAI.

Luke Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form structured clas-
sification with probabilistic categorial grammars. In
Proceedings of UAI.

450

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 451–462
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1042

Learning bilingual word embeddings with (almost) no bilingual data

Mikel Artetxe Gorka Labaka Eneko Agirre
IXA NLP group

University of the Basque Country (UPV/EHU)
{mikel.artetxe,gorka.labaka,e.agirre}@ehu.eus

Abstract

Most methods to learn bilingual word em-
beddings rely on large parallel corpora,
which is difficult to obtain for most lan-
guage pairs. This has motivated an ac-
tive research line to relax this requirement,
with methods that use document-aligned
corpora or bilingual dictionaries of a few
thousand words instead. In this work, we
further reduce the need of bilingual re-
sources using a very simple self-learning
approach that can be combined with any
dictionary-based mapping technique. Our
method exploits the structural similarity of
embedding spaces, and works with as little
bilingual evidence as a 25 word dictionary
or even an automatically generated list of
numerals, obtaining results comparable to
those of systems that use richer resources.

1 Introduction

Multilingual word embeddings have attracted a lot
of attention in recent times. In addition to having a
direct application in inherently crosslingual tasks
like machine translation (Zou et al., 2013) and
crosslingual entity linking (Tsai and Roth, 2016),
they provide an excellent mechanism for transfer
learning, where a model trained in a resource-rich
language is transferred to a less-resourced one, as
shown with part-of-speech tagging (Zhang et al.,
2016), parsing (Xiao and Guo, 2014) and docu-
ment classification (Klementiev et al., 2012).

Most methods to learn these multilingual word
embeddings make use of large parallel corpora
(Gouws et al., 2015; Luong et al., 2015), but there
have been several proposals to relax this require-
ment, given its scarcity in most language pairs. A
possible relaxation is to use document-aligned or
label-aligned comparable corpora (Søgaard et al.,

2015; Vulić and Moens, 2016; Mogadala and Ret-
tinger, 2016), but large amounts of such corpora
are not always available for some language pairs.

An alternative approach that we follow here is
to independently train the embeddings for each
language on monolingual corpora, and then learn
a linear transformation to map the embeddings
from one space into the other by minimizing the
distances in a bilingual dictionary, usually in the
range of a few thousand entries (Mikolov et al.,
2013a; Artetxe et al., 2016). However, dictio-
naries of that size are not readily available for
many language pairs, specially those involving
less-resourced languages.

In this work, we reduce the need of large bilin-
gual dictionaries to much smaller seed dictionar-
ies. Our method can work with as little as 25 word
pairs, which are straightforward to obtain assum-
ing some basic knowledge of the languages in-
volved. The method can also work with trivially
generated seed dictionaries of numerals (i.e. 1-1,
2-2, 3-3, 4-4...) making it possible to learn bilin-
gual word embeddings without any real bilingual
data. In either case, we obtain very competitive re-
sults, comparable to other state-of-the-art methods
that make use of much richer bilingual resources.

The proposed method is an extension of exist-
ing mapping techniques, where the dictionary is
used to learn the embedding mapping and the em-
bedding mapping is used to induce a new dictio-
nary iteratively in a self-learning fashion (see Fig-
ure 1). In spite of its simplicity, our analysis of
the implicit optimization objective reveals that the
method is exploiting the structural similarity of in-
dependently trained embeddings.

We analyze previous work in Section 2. Section
3 describes the self-learning framework, while
Section 4 presents the experiments. Section 5 an-
alyzes the underlying optimization objective, and
Section 6 presents an error analysis.

451

https://doi.org/10.18653/v1/P17-1042

Learn D
using

nearest
neighbor

D = 1-a, 2-b, 3-c, 4-x, 5-y

XW and Z in same space

W

Learn W
using D

and
rotate X

D =
1-a,
2-b,
3-c.

XWZX

Figure 1: A general schema of the proposed self-learning framework. Previous works learn a mapping
W based on the seed dictionary D, which is then used to learn the full dictionary. In our proposal we use
the new dictionary to learn a new mapping, iterating until convergence.

2 Related work

We will first focus on bilingual embedding map-
pings, which are the basis of our proposals, and
then on other unsupervised and weakly supervised
methods to learn bilingual word embeddings.

2.1 Bilingual embedding mappings

Methods to induce bilingual mappings work by in-
dependently learning the embeddings in each lan-
guage using monolingual corpora, and then learn-
ing a transformation from one embedding space
into the other based on a bilingual dictionary.

The first of such methods is due to Mikolov
et al. (2013a), who learn the linear transformation
that minimizes the sum of squared Euclidean dis-
tances for the dictionary entries. The same opti-
mization objective is used by Zhang et al. (2016),
who constrain the transformation matrix to be or-
thogonal. Xing et al. (2015) incorporate length
normalization in the training of word embeddings
and maximize the cosine similarity instead, en-
forcing the orthogonality constraint to preserve the
length normalization after the mapping. Finally,
Lazaridou et al. (2015) use max-margin optimiza-
tion with intruder negative sampling.

Instead of learning a single linear transforma-
tion from the source language into the target lan-
guage, Faruqui and Dyer (2014) use canonical cor-
relation analysis to map both languages to a shared
vector space. Lu et al. (2015) extend this work and
apply deep canonical correlation analysis to learn
non-linear transformations.

Artetxe et al. (2016) propose a general frame-
work that clarifies the relation between Mikolov
et al. (2013a), Xing et al. (2015), Faruqui and Dyer
(2014) and Zhang et al. (2016) as variants of the

same core optimization objective, and show that
a new variant is able to surpass them all. While
most of the previous methods use gradient descent,
Artetxe et al. (2016) propose an efficient analytical
implementation for those same methods, recently
extended by Smith et al. (2017) to incorporate di-
mensionality reduction.

A prominent application of bilingual embed-
ding mappings, with a direct application in ma-
chine translation (Zhao et al., 2015), is bilingual
lexicon extraction, which is also the main evalua-
tion method. More specifically, the learned map-
ping is used to induce the translation of source lan-
guage words that were missing in the original dic-
tionary, usually by taking their nearest neighbor
word in the target language according to cosine
similarity, although Dinu et al. (2015) and Smith
et al. (2017) propose alternative retrieval methods
to address the hubness problem.

2.2 Unsupervised and weakly supervised
bilingual embeddings

As mentioned before, our method works with as
little as 25 word pairs, while the methods dis-
cussed previously use thousands of pairs. The only
exception in this regard is the work by Zhang et al.
(2016), who only use 10 word pairs with good re-
sults on transfer learning for part-of-speech tag-
ging. Our experiments will show that, although
their method captures coarse-grained relations, it
fails on finer-grained tasks like bilingual lexicon
induction.

Bootstrapping methods similar to ours have
been previously proposed for traditional count-
based vector space models (Peirsman and Padó,
2010; Vulić and Moens, 2013). However, while
previous techniques incrementally build a high-

452

Algorithm 1 Traditional framework
Input: X (source embeddings)
Input: Z (target embeddings)
Input: D (seed dictionary)

1: W ← LEARN MAPPING(X , Z, D)
2: D ← LEARN DICTIONARY(X , Z, W)
3: EVALUATE DICTIONARY(D)

dimensional model where each axis encodes the
co-occurrences with a specific word and its equiv-
alent in the other language, our method works
with low-dimensional pre-trained word embed-
dings, which are more widely used nowadays.

A practical aspect for reducing the need of bilin-
gual supervision is on the design of the seed dic-
tionary. This is analyzed in depth by Vulić and
Korhonen (2016), who propose using document-
aligned corpora to extract the training dictionary.
A more common approach is to rely on shared
words and cognates (Peirsman and Padó, 2010;
Smith et al., 2017), eliminating the need of bilin-
gual data in practice. Our use of shared numer-
als exploits the same underlying idea, but relies on
even less bilingual evidence and should thus gen-
eralize better to distant language pairs.

Miceli Barone (2016) and Cao et al. (2016)
go one step further and attempt to learn bilingual
embeddings without any bilingual evidence. The
former uses adversarial autoencoders (Makhzani
et al., 2016), combining an encoder that maps
the source language embeddings into the target
language, a decoder that reconstructs the origi-
nal embeddings, and a discriminator that distin-
guishes mapped embeddings from real target lan-
guage embeddings, whereas the latter adds a regu-
larization term to the training of word embeddings
that pushes the mean and variance of each dimen-
sion in different languages close to each other.
Although promising, the reported performance in
both cases is poor in comparison to other methods.

Finally, the induction of bilingual knowledge
from monolingual corpora is closely related to the
decipherment scenario, for which models that in-
corporate word embeddings have also been pro-
posed (Dou et al., 2015). However, decipherment
is only concerned with translating text from one
language to another and relies on complex statis-
tical models that are designed specifically for that
purpose, while our approach is more general and
learns task-independent multilingual embeddings.

Algorithm 2 Proposed self-learning framework
Input: X (source embeddings)
Input: Z (target embeddings)
Input: D (seed dictionary)

1: repeat
2: W ← LEARN MAPPING(X , Z, D)
3: D ← LEARN DICTIONARY(X , Z, W)
4: until convergence criterion
5: EVALUATE DICTIONARY(D)

3 Proposed self-learning framework

As discussed in Section 2.1, a common evaluation
task (and practical application) of bilingual em-
bedding mappings is to induce bilingual lexicons,
that is, to obtain the translation of source words
that were missing in the training dictionary, which
are then compared to a gold standard test dictio-
nary for evaluation. This way, one can say that the
seed (train) dictionary is used to learn a mapping,
which is then used to induce a better dictionary (at
least in the sense that it is larger). Algorithm 1
summarizes this framework.

Following this observation, we propose to use
the output dictionary in Algorithm 1 as the input of
the same system in a self-learning fashion which,
assuming that the output dictionary was indeed
better than the original one, should serve to learn
a better mapping and, consequently, an even better
dictionary the second time. The process can then
be repeated iteratively to obtain a hopefully bet-
ter mapping and dictionary each time until some
convergence criterion is met. Algorithm 2 summa-
rizes this alternative framework that we propose.

Our method can be combined with any embed-
ding mapping and dictionary induction technique
(see Section 2.1). However, efficiency turns out
to be critical for a variety of reasons. First of all,
by enclosing the learning logic in a loop, the to-
tal training time is increased by the number of it-
erations. Even more importantly, our framework
requires to explicitly build the entire dictionary
at each iteration, whereas previous work tends
to induce the translation of individual words on-
demand later at runtime. Moreover, from the sec-
ond iteration onwards, it is this induced, full dic-
tionary that has to be used to learn the embedding
mapping, and not the considerably smaller seed
dictionary as it is typically done. In the follow-
ing two subsections, we respectively describe the
embedding mapping method and the dictionary in-

453

duction method that we adopt in our work with
these efficiency requirements in mind.

3.1 Embedding mapping
As discussed in Section 2.1, most previous meth-
ods to learn embedding mappings use variants of
gradient descent. Among the more efficient ex-
act alternatives, we decide to adopt the one by
Artetxe et al. (2016) for its simplicity and good
results as reported in their paper. We next present
their method, adapting the formalization to explic-
itly incorporate the dictionary as required by our
self-learning algorithm.

Let X and Z denote the word embedding ma-
trices in two languages so that Xi∗ corresponds to
the ith source language word embedding and Zj∗
corresponds to the jth target language embedding.
While Artetxe et al. (2016) assume these two ma-
trices are aligned according to the dictionary, we
drop this assumption and represent the dictionary
explicitly as a binary matrix D, so that Dij = 1
if the ith source language word is aligned with the
jth target language word. The goal is then to find
the optimal mapping matrixW ∗ so that the sum of
squared Euclidean distances between the mapped
source embeddings Xi∗W and target embeddings
Zj∗ for the dictionary entries Dij is minimized:

W ∗ = arg min
W

∑

i

∑

j

Dij ||Xi∗W − Zj∗||2

Following Artetxe et al. (2016), we length nor-
malize and mean center the embedding matrices
X and Z in a preprocessing step, and constrain
W to be an orthogonal matrix (i.e. WW T =
W TW = I), which serves to enforce monolingual
invariance, preventing a degradation in monolin-
gual performance while yielding to better bilin-
gual mappings. Under such orthogonality con-
straint, minimizing the squared Euclidean distance
becomes equivalent to maximizing the dot prod-
uct, so the above optimization objective can be re-
formulated as follows:

W ∗ = arg max
W

Tr
(
XWZTDT

)

where Tr (·) denotes the trace operator (the sum of
all the elements in the main diagonal). The opti-
mal orthogonal solution for this problem is given
by W ∗ = UV T , where XTDZ = UΣV T is the
singular value decomposition of XTDZ. Since
the dictionary matrix D is sparse, this can be effi-
ciently computed in linear time with respect to the
number of dictionary entries.

3.2 Dictionary induction

As discussed in Section 2.1, practically all previ-
ous work uses nearest neighbor retrieval for word
translation induction based on embedding map-
pings. In nearest neighbor retrieval, each source
language word is assigned the closest word in the
target language. In our work, we use the dot prod-
uct between the mapped source language embed-
dings and the target language embeddings as the
similarity measure, which is roughly equivalent to
cosine similarity given that we apply length nor-
malization followed by mean centering as a pre-
processing step (see Section 3.1). This way, fol-
lowing the notation in Section 3.1, we set Dij = 1
if j = argmaxk (Xi∗W) ·Zk∗ and Dij = 0 other-
wise1.

While we find that independently computing the
similarity measure between all word pairs is pro-
hibitively slow, the computation of the entire sim-
ilarity matrix XWZT can be easily vectorized us-
ing popular linear algebra libraries, obtaining big
performance gains. However, the resulting sim-
ilarity matrix is often too large to fit in memory
when using large vocabularies. For that reason,
instead of computing the entire similarity matrix
XWZT in a single step, we iteratively compute
submatrices of it using vectorized matrix multi-
plication, find their corresponding maxima each
time, and then combine the results.

4 Experiments and results

In this section, we experimentally test the pro-
posed method in bilingual lexicon induction and
crosslingual word similarity. Subsection 4.1 de-
scribes the experimental settings, while Subsec-
tions 4.2 and 4.3 present the results obtained in
each of the tasks. The code and resources nec-
essary to reproduce our experiments are avail-
able at https://github.com/artetxem/
vecmap.

4.1 Experimental settings

For easier comparison with related work, we eval-
uated our mappings on bilingual lexicon induc-
tion using the public English-Italian dataset by
Dinu et al. (2015), which includes monolingual
word embeddings in both languages together with
a bilingual dictionary split in a training set and a

1Note that we induce the dictionary entries starting from
the source language words. We experimented with other al-
ternatives in development, with minor differences.

454

test set2. The embeddings were trained with the
word2vec toolkit with CBOW and negative sam-
pling (Mikolov et al., 2013b)3, using a 2.8 billion
word corpus for English (ukWaC + Wikipedia +
BNC) and a 1.6 billion word corpus for Italian
(itWaC). The training and test sets were derived
from a dictionary built form Europarl word align-
ments and available at OPUS (Tiedemann, 2012),
taking 1,500 random entries uniformly distributed
in 5 frequency bins as the test set and the 5,000
most frequent of the remaining word pairs as the
training set.

In addition to English-Italian, we selected two
other languages from different language families
with publicly available resources. We thus cre-
ated analogous datasets for English-German and
English-Finnish. In the case of German, the em-
beddings were trained on the 0.9 billion word cor-
pus SdeWaC, which is part of the WaCky collec-
tion (Baroni et al., 2009) that was also used for
English and Italian. Given that Finnish is not in-
cluded in this collection, we used the 2.8 billion
word Common Crawl corpus provided at WMT
20164 instead, which we tokenized using the Stan-
ford Tokenizer (Manning et al., 2014). In addition
to that, we created training and test sets for both
pairs from their respective Europarl dictionaries
from OPUS following the exact same procedure
used for English-Italian, and the word embeddings
were also trained using the same configuration as
Dinu et al. (2015).

Given that the main focus of our work is on
small seed dictionaries, we created random sub-
sets of 2,500, 1,000, 500, 250, 100, 75, 50 and
25 entries from the original training dictionaries
of 5,000 entries. This was done by shuffling once
the training dictionaries and taking their first k en-
tries, so it is guaranteed that each dictionary is a
strict subset of the bigger dictionaries.

In addition to that, we explored using auto-
matically generated dictionaries as a shortcut to
practical unsupervised learning. For that purpose,
we created numeral dictionaries, consisting of
words matching the [0-9]+ regular expression in
both vocabularies (e.g. 1-1, 2-2, 3-3, 1992-1992

2http://clic.cimec.unitn.it/
˜georgiana.dinu/down/

3The context window was set to 5 words, the dimension
of the embeddings to 300, the sub-sampling to 1e-05 and the
number of negative samples to 10, and the vocabulary was
restricted to the 200,000 most frequent words

4http://www.statmt.org/wmt16/
translation-task.html

etc.). The resulting dictionary had 2772 entries
for English-Italian, 2148 for English-German, and
2345 for English-Finnish. While more sophisti-
cated approaches are possible (e.g. involving the
edit distance of all words), we believe that this
method is general enough that should work with
practically any language pair, as Arabic numerals
are often used even in languages with a different
writing system (e.g. Chinese and Russian).

While bilingual lexicon induction is a standard
evaluation task for seed dictionary based meth-
ods like ours, it is unsuitable for bilingual corpus
based methods, as statistical word alignment al-
ready provides a reliable way to derive dictionar-
ies from bilingual corpora and, in fact, this is how
the test dictionary itself is built in our case. For
that reason, we carried out some experiments in
crosslingual word similarity as a way to test our
method in a different task and allowing to com-
pare it to systems that use richer bilingual data.
There are no many crosslingual word similarity
datasets, and we used the RG-65 and WordSim-
353 crosslingual datasets for English-German and
the WordSim-353 crosslingual dataset for English-
Italian as published by Camacho-Collados et al.
(2015) 5.

As for the convergence criterion, we decide to
stop training when the improvement on the aver-
age dot product for the induced dictionary falls
below a given threshold from one iteration to the
next. After length normalization, the dot product
ranges from -1 to 1, so we decide to set this thresh-
old at 1e-6, which we find to be a very conserva-
tive value yet enough that training takes a reason-
able amount of time. The curves in the next sec-
tion confirm that this was a reasonable choice.

This convergence criterion is usually met in less
than 100 iterations, each of them taking 5 minutes
on a modest desktop computer (Intel Core i5-4670
CPU with 8GiB of RAM), including the induction
of a dictionary of 200,000 words at each iteration.

4.2 Bilingual lexicon induction

For the experiments on bilingual lexicon induc-
tion, we compared our method with those pro-
posed by Mikolov et al. (2013a), Xing et al.
(2015), Zhang et al. (2016) and Artetxe et al.
(2016), all of them implemented as part of the
framework proposed by the latter. The results ob-

5http://lcl.uniroma1.it/
similarity-datasets/

455

English-Italian English-German English-Finnish
5,000 25 num. 5,000 25 num. 5,000 25 num.

Mikolov et al. (2013a) 34.93 0.00 0.00 35.00 0.00 0.07 25.91 0.00 0.00
Xing et al. (2015) 36.87 0.00 0.13 41.27 0.07 0.53 28.23 0.07 0.56
Zhang et al. (2016) 36.73 0.07 0.27 40.80 0.13 0.87 28.16 0.14 0.42
Artetxe et al. (2016) 39.27 0.07 0.40 41.87 0.13 0.73 30.62 0.21 0.77
Our method 39.67 37.27 39.40 40.87 39.60 40.27 28.72 28.16 26.47

Table 1: Accuracy (%) on bilingual lexicon induction for different seed dictionaries

tained with the 5,000 entry, 25 entry and the nu-
merals dictionaries for all the 3 language pairs are
given in Table 1.

The results for the 5,000 entry dictionaries show
that our method is comparable or even better than
the other systems. As another reference, the
best published results using nearest-neighbor re-
trieval are due to Lazaridou et al. (2015), who re-
port an accuracy of 40.20% for the full English-
Italian dictionary, almost at pair with our system
(39.67%).

In any case, the main focus of our work is on
smaller dictionaries, and it is under this setting
that our method really stands out. The 25 en-
try and numerals columns in Table 1 show the
results for this setting, where all previous meth-
ods drop dramatically, falling below 1% accuracy
in all cases. The method by Zhang et al. (2016)
also obtains poor results with small dictionaries,
which reinforces our hypothesis in Section 2.2 that
their method can only capture coarse-grain bilin-
gual relations for small dictionaries. In contrast,
our proposed method obtains very competitive re-
sults for all dictionaries, with a difference of only
1-2 points between the full dictionary and both the
25 entry dictionary and the numerals dictionary in
all three languages. Figure 2 shows the curve of
the English-Italian accuracy for different seed dic-
tionary sizes, confirming this trend.

Finally, it is worth mentioning that, even if all
the three language pairs show the same general
behavior, there are clear differences in their abso-
lute accuracy numbers, which can be attributed to
the linguistic proximity of the languages involved.
In particular, the results for English-Finnish are
about 10 points below the rest, which is explained
by the fact that Finnish is a non-indoeuropean ag-
glutinative language, making the task considerably
more difficult for this language pair. In this regard,
we believe that the good results with small dictio-
naries are a strong indication of the robustness of
our method, showing that it is able to learn good
bilingual mappings from very little bilingual ev-

idence even for distant language pairs where the
structural similarity of the embedding spaces is
presumably weaker.

4.3 Crosslingual word similarity
In addition to the baseline systems in Section
4.2, in the crosslingual similarity experiments we
also tested the method by Luong et al. (2015),
which is the state-of-the-art for bilingual word
embeddings based on parallel corpora (Upadhyay
et al., 2016)6. As this method is an extension
of word2vec, we used the same hyperparameters
as for the monolingual embeddings when possible
(see Section 4.1), and leave the default ones oth-
erwise. We used Europarl as our parallel corpus
to train this method as done by the authors, which
consists of nearly 2 million parallel sentences.

As shown in the results in Table 2, our method
obtains the best results in all cases, surpassing the
rest of the dictionary-based methods by 1-3 points
depending on the dataset. But, most importantly,
it does not suffer from any significant degrada-
tion for using smaller dictionaries and, in fact, our
method gets better results using the 25 entry dic-
tionary or the numeral list as the only bilingual
evidence than any of the baseline systems using
much richer resources.

The relatively poor results of Luong et al.
(2015) can be attributed to the fact that the dic-
tionary based methods make use of much big-
ger monolingual corpora, while methods based on
parallel corpora are restricted to smaller corpora.
However, it is not clear how to introduce monolin-
gual corpora on those methods. We did run some
experiments with BilBOWA (Gouws et al., 2015),
which supports training in monolingual corpora in
addition to bilingual corpora, but obtained very
poor results7. All in all, our experiments show

6We also tested English-German pre-trained embeddings
from Klementiev et al. (2012) and Chandar A P et al. (2014).
They both had coverage problems that made the results hard
to compare, and, when considering the correlations for the
word pairs in their vocabulary, their performance was poor.

7Upadhyay et al. (2016) report similar problems using

456

●
●●

●●
●●

●
●

0

10

20

30

40

0 1000 2000 3000 4000 5000
Seed dictionary size

A
cc

ur
ac

y
(%

)

Method
● Our method

Artetxe et al. (2016)

Xing et al. (2015)

Zhang et al. (2016)

Mikolov et al. (2013a)

Figure 2: Accuracy on English-Italian bilingual
lexicon induction for different seed dictionaries

that it is better to use large monolingual corpora in
combination with very little bilingual data rather
than a bilingual corpus of a standard size alone.

5 Global optimization objective

It might seem somehow surprising at first that,
as seen in the previous section, our simple self-
learning approach is able to learn high quality
bilingual embeddings from small seed dictionar-
ies instead of falling in degenerated solutions. In
this section, we try to shed light on our approach,
and give empirical evidence supporting our claim.

More concretely, we argue that, for the em-
bedding mapping and dictionary induction meth-
ods described in Section 3, the proposed self-
learning framework is implicitly solving the fol-
lowing global optimization problem8:

W ∗ = arg max
W

∑

i

max
j

(Xi∗W) · Zj∗

s.t. WW T = W TW = I

Contrary to the optimization objective for W in
Section 3.1, the global optimization objective does
not refer to any dictionary, and maximizes the sim-
ilarity between each source language word and its
closest target language word. Intuitively, a ran-
dom solution would map source language embed-
dings to seemingly random locations in the target
language space, and it would thus be unlikely that

BilBOWA.
8While we restrict our formal analysis to the embedding

mapping and dictionary induction method that we use, the
general reasoning should be valid for other choices as well.

IT DE
Bi. data WS RG WS

Luong et al. (2015) Europarl .331 .335 .356
Mikolov et al. (2013a) 5k dict .627 .643 .528
Xing et al. (2015) 5k dict .614 .700 .595
Zhang et al. (2016) 5k dict .616 .704 .596
Artetxe et al. (2016) 5k dict .617 .716 .597

Our method
5k dict .624 .742 .616
25 dict .626 .749 .612
num. .628 .739 .604

Table 2: Spearman correlations on English-Italian
and English-German crosslingual word similarity

they have any target language word nearby, mak-
ing the optimization value small. In contrast, a
good solution would map source language words
close to their translation equivalents in the target
language space, and they would thus have their
corresponding embeddings nearby, making the op-
timization value large. While it is certainly possi-
ble to build degenerated solutions that take high
optimization values for small subsets of the vo-
cabulary, we think that the structural similarity be-
tween independently trained embedding spaces in
different languages is strong enough that optimiz-
ing this function yields to meaningful bilingual
mappings when the size of the vocabulary is much
larger than the dimensionality of the embeddings.

The reasoning for how the self-learning frame-
work is optimizing this objective is as follows. At
the end of each iteration, the dictionary D is up-
dated to assign, for the current mapping W , each
source language word to its closest target language
word. This way, when we update W to maximize
the average similarity of these dictionary entries
at the beginning of the next iteration, it is guar-
anteed that the value of the optimization objective
will improve (or at least remain the same). The
reason is that the average similarity between each
word and what were previously the closest words
will be improved if possible, as this is what the up-
dated W directly optimizes (see Section 3.1). In
addition to that, it is also possible that, for some
source words, some other target words get closer
after the update. Thanks to this, our self-learning
algorithm is guaranteed to converge to a local op-
timum of the above global objective, behaving like
an alternating optimization algorithm for it.

It is interesting to note that the above reasoning
is valid no matter what the the initial solution is,
and, in fact, the global optimization objective does
not depend on the seed dictionary nor any other

457

0.25

0.30

0.35

0.40

0.45

10 20 30 40
Iteration

O
bj

ec
tiv

e
fu

nc
tio

n

Seed dict.

5,000

2,500

1,000

500

250

100

75

50

25

num.

none

0

10

20

30

40

10 20 30 40
Iteration

A
cc

ur
ac

y
(%

)

Seed dict.

5,000

2,500

1,000

500

250

100

75

50

25

num.

none

Figure 3: Learning curve on English-Italian according to the global objective function (left) and the
accuracy on bilingual lexicon induction (right)

bilingual resource. For that reason, it should be
possible to use a random initialization instead of
a small seed dictionary. However, we empirically
observe that this works poorly in practice, as our
algorithm tends to get stuck in poor local optima
when the initial solution is not good enough.

The general behavior of our method is reflected
in Figure 3, which shows the learning curve for
different seed dictionaries according to both the
objective function and the accuracy on bilingual
lexicon induction. As it can be seen, the objective
function is improved from iteration to iteration and
converges to a local optimum just as expected. At
the same time, the learning curves show a strong
correlation between the optimization objective and
the accuracy, as it can be clearly observed that
improving the former leads to an improvement of
the latter, confirming our explanations. Regarding
random initialization, the figure shows that the al-
gorithm gets stuck in a poor local optimum of the
objective function, which is the reason of the bad
performance (0% accuracy) on bilingual lexicon
induction, but the proposed optimization objective
itself seems to be adequate.

Finally, we empirically observe that our algo-
rithm learns similar mappings no matter what the
seed dictionary was. We first repeated our exper-
iments on English-Italian bilingual lexicon induc-
tion for 5 different dictionaries of 25 entries, ob-
taining an average accuracy of 38.15% and a stan-
dard deviation of only 0.75%. In addition to that,
we observe that the overlap between the predic-
tions made when starting with the full dictionary
and the numerals dictionary is 76.00% (60.00%
for the 25 entry dictionary). At the same time,

37.00% of the test cases are correctly solved by
both instances, and it is only 5.07% of the test
cases that one of them gets right and the other
wrong (34.00% and 8.94% for the 25 entry dic-
tionary). This suggests that our algorithm tends to
converge to similar solutions even for disjoint seed
dictionaries, which is in line with our view that we
are implicitly optimizing an objective that is inde-
pendent from the seed dictionary, yet a seed dic-
tionary is necessary to build a good enough initial
solution to avoid getting stuck in poor local op-
tima. For that reason, it is likely that better meth-
ods to tackle this optimization problem would al-
low learning bilingual word embeddings without
any bilingual evidence at all and, in this regard, we
believe that our work opens exciting opportunities
for future research.

6 Error analysis

So as to better understand the behavior of our sys-
tem, we performed an error analysis of its out-
put in English-Italian bilingual lexicon induction
when starting with the 5,000 entry, the 25 entry
and the numeral dictionaries in comparison with
the baseline method of Artetxe et al. (2016) with
the 5,000 entry dictionary. For that purpose, we
took 100 random examples from the test set in the
[1-5K] frequency bin, another 100 from the [5K-
20K] frequency bin and 30 from the [100K-200K]
frequency bin, and manually analyzed each of the
errors made by all the 4 different variants.

Our analysis first reveals that, in all the cases,
about a third of the translations taken as erroneous
according to the gold standard are not so in real-

458

ity. This corresponds to both different morpho-
logical variants of the gold standard translations
(e.g. dichiarato/dichiarò) and other valid transla-
tions that were missing in the gold standard (e.g.
climb → salita instead of the gold standard sca-
lato). This phenomenon is considerably more pro-
nounced in the first frequency bins, which already
have a much higher accuracy according to the gold
standard.

As for the actual errors, we observe that nearly
a third of them correspond to named entities for all
the different variants. Interestingly, the vast major-
ity of the proposed translations in these cases are
also named entities (e.g. Ryan→ Jason, John→
Paolo), which are often highly related to the origi-
nal ones (e.g. Volvo→ BMW, Olympus→ Nikon).
While these are clear errors, it is understandable
that these methods are unable to discriminate be-
tween named entities to this degree based solely
on the distributional hypothesis, in particular when
it comes to common proper names (e.g. John,
Andy), and one could design alternative strategies
to address this issue like taking the edit distance as
an additional signal.

For the remaining errors, all systems tend to
propose translations that have some degree of re-
lationship with the correct ones, including near-
synonyms (e.g. guidelines → raccomandazioni),
antonyms (e.g. sender→ destinatario) and words
in the same semantic field (e.g. nominalism→ in-
tuizionismo / innatismo, which are all philosoph-
ical doctrines). However, there are also a few in-
stances where the relationship is weak or unclear
(e.g. loch→ giardini, sweep→ serrare). We also
observe a few errors that are related to multiwords
or collocations (e.g. carrier→ aereo, presumably
related to the multiword air carrier / linea aerea),
as well as some rare word that is repeated across
many translations (Ferruzzi), which could be at-
tributed to the hubness problem (Dinu et al., 2015;
Lazaridou et al., 2015).

All in all, our error analysis reveals that the
baseline method of Artetxe et al. (2016) and the
proposed algorithm tend to make the same kind
of errors regardless of the seed dictionary used by
the latter, which reinforces our interpretation in
the previous section regarding an underlying op-
timization objective that is independent from any
training dictionary. Moreover, it shows that the
quality of the learned mappings is much better
than what the raw accuracy numbers might sug-

gest, encouraging the incorporation of these tech-
niques in other applications.

7 Conclusions and future work

In this work, we propose a simple self-learning
framework to learn bilingual word embedding
mappings in combination with any embedding
mapping and dictionary induction technique. Our
experiments on bilingual lexicon induction and
crosslingual word similarity show that our method
is able to learn high quality bilingual embeddings
from as little bilingual evidence as a 25 word dic-
tionary or an automatically generated list of nu-
merals, obtaining results that are competitive with
state-of-the-art systems using much richer bilin-
gual resources like larger dictionaries or parallel
corpora. In spite of its simplicity, a more detailed
analysis shows that our method is implicitly opti-
mizing a meaningful objective function that is in-
dependent from any bilingual data which, with a
better optimization method, might allow to learn
bilingual word embeddings in a completely unsu-
pervised manner.

In the future, we would like to delve deeper into
this direction and fine-tune our method so it can
reliably learn high quality bilingual word embed-
dings without any bilingual evidence at all. In ad-
dition to that, we would like to explore non-linear
transformations (Lu et al., 2015) and alternative
dictionary induction methods (Dinu et al., 2015;
Smith et al., 2017). Finally, we would like to ap-
ply our model in the decipherment scenario (Dou
et al., 2015).

Acknowledgements

We thank the anonymous reviewers for their in-
sightful comments and Flavio Merenda for his
help with the error analysis.

This research was partially supported by a
Google Faculty Award, the Spanish MINECO
(TUNER TIN2015-65308-C5-1-R, MUSTER
PCIN-2015-226 and TADEEP TIN2015-70214-P,
cofunded by EU FEDER), the Basque Gov-
ernment (MODELA KK-2016/00082) and the
UPV/EHU (excellence research group). Mikel
Artetxe enjoys a doctoral grant from the Spanish
MECD.

459

References
Mikel Artetxe, Gorka Labaka, and Eneko Agirre.

2016. Learning principled bilingual mappings
of word embeddings while preserving monolin-
gual invariance. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2289–2294.
https://aclweb.org/anthology/D16-1250.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The WaCky wide web:
a collection of very large linguistically processed
web-crawled corpora. Language resources and
evaluation 43(3):209–226.

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2015. A framework for the
construction of monolingual and cross-lingual word
similarity datasets. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 1–7.
http://www.aclweb.org/anthology/P15-2001.

Hailong Cao, Tiejun Zhao, Shu Zhang, and Yao
Meng. 2016. A distribution-based model to
learn bilingual word embeddings. In Pro-
ceedings of COLING 2016, the 26th Interna-
tional Conference on Computational Linguistics:
Technical Papers. The COLING 2016 Organiz-
ing Committee, Osaka, Japan, pages 1818–1827.
http://aclweb.org/anthology/C16-1171.

Sarath Chandar A P, Stanislas Lauly, Hugo Larochelle,
Mitesh Khapra, Balaraman Ravindran, Vikas C
Raykar, and Amrita Saha. 2014. An autoencoder
approach to learning bilingual word representations.
In Advances in Neural Information Process-
ing Systems 27, Curran Associates, Inc., pages
1853–1861. http://papers.nips.cc/paper/5270-an-
autoencoder-approach-to-learning-bilingual-word-
representations.pdf.

Georgiana Dinu, Angeliki Lazaridou, and Marco Ba-
roni. 2015. Improving zero-shot learning by mitigat-
ing the hubness problem. In Proceedings of the 3rd
International Conference on Learning Representa-
tions (ICLR 2015), workshop track.

Qing Dou, Ashish Vaswani, Kevin Knight, and
Chris Dyer. 2015. Unifying bayesian infer-
ence and vector space models for improved de-
cipherment. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 836–845.
http://www.aclweb.org/anthology/P15-1081.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual

correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Gothenburg, Sweden, pages 462–
471. http://www.aclweb.org/anthology/E14-1049.

Stephan Gouws, Yoshua Bengio, and Greg Corrado.
2015. BilBOWA: Fast bilingual distributed repre-
sentations without word alignments. In Proceedings
of the 32nd International Conference on Machine
Learning. pages 748–756.

Alexandre Klementiev, Ivan Titov, and Binod Bhat-
tarai. 2012. Inducing crosslingual distributed
representations of words. In Proceedings of
COLING 2012. The COLING 2012 Organizing
Committee, Mumbai, India, pages 1459–1474.
http://www.aclweb.org/anthology/C12-1089.

Angeliki Lazaridou, Georgiana Dinu, and Marco
Baroni. 2015. Hubness and pollution: Delv-
ing into cross-space mapping for zero-shot learn-
ing. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 270–280.
http://www.aclweb.org/anthology/P15-1027.

Ang Lu, Weiran Wang, Mohit Bansal, Kevin Gim-
pel, and Karen Livescu. 2015. Deep mul-
tilingual correlation for improved word embed-
dings. In Proceedings of the 2015 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Denver, Colorado, pages 250–256.
http://www.aclweb.org/anthology/N15-1028.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Bilingual word representations with
monolingual quality in mind. In Proceedings of the
1st Workshop on Vector Space Modeling for Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Denver, Colorado, pages 151–
159. http://www.aclweb.org/anthology/W15-1521.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly,
Ian Goodfellow, and Brendan Frey. 2016. Adversar-
ial autoencoders. In Proceedings of the 4rd Inter-
national Conference on Learning Representations
(ICLR 2016), workshop track.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Nat-
ural Language Processing Toolkit. In Pro-
ceedings of 52nd Annual Meeting of the As-
sociation for Computational Linguistics: Sys-
tem Demonstrations. Association for Computational
Linguistics, Baltimore, Maryland, pages 55–60.
http://www.aclweb.org/anthology/P14-5010.

460

Antonio Valerio Miceli Barone. 2016. Towards cross-
lingual distributed representations without paral-
lel text trained with adversarial autoencoders. In
Proceedings of the 1st Workshop on Representa-
tion Learning for NLP. Association for Computa-
tional Linguistics, Berlin, Germany, pages 121–126.
http://anthology.aclweb.org/W16-1614.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013a.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168
.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013b. Distributed
representations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems 26, Curran Associates, Inc.,
pages 3111–3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.pdf.

Aditya Mogadala and Achim Rettinger. 2016. Bilin-
gual word embeddings from parallel and non-
parallel corpora for cross-language text classifica-
tion. In Proceedings of the 2016 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, San Diego, California, pages 692–702.
http://www.aclweb.org/anthology/N16-1083.

Yves Peirsman and Sebastian Padó. 2010. Cross-
lingual induction of selectional preferences with
bilingual vector spaces. In Human Language Tech-
nologies: The 2010 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Los Angeles, California, pages 921–
929. http://www.aclweb.org/anthology/N10-1135.

Samuel L. Smith, David H.P. Turban, Steven Ham-
blin, and Nils Y. Hammerla. 2017. Offline bilin-
gual word vectors, orthogonal transformations and
the inverted softmax. In Proceedings of the 5th
International Conference on Learning Representa-
tions (ICLR 2017), conference track.

Anders Søgaard, Željko Agić, Héctor Martı́nez Alonso,
Barbara Plank, Bernd Bohnet, and Anders Jo-
hannsen. 2015. Inverted indexing for cross-
lingual NLP. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 1713–
1722. http://www.aclweb.org/anthology/P15-1165.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eight Interna-
tional Conference on Language Resources and Eval-
uation (LREC’12). European Language Resources
Association (ELRA), Istanbul, Turkey.

Chen-Tse Tsai and Dan Roth. 2016. Cross-lingual
wikification using multilingual embeddings. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, San Diego, California, pages 589–598.
http://www.aclweb.org/anthology/N16-1072.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and
Dan Roth. 2016. Cross-lingual models of word
embeddings: An empirical comparison. In Pro-
ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1661–1670.
http://www.aclweb.org/anthology/P16-1157.

Ivan Vulić and Anna Korhonen. 2016. On the role
of seed lexicons in learning bilingual word embed-
dings. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 247–257.
http://www.aclweb.org/anthology/P16-1024.

Ivan Vulić and Marie-Francine Moens. 2013. A study
on bootstrapping bilingual vector spaces from non-
parallel data (and nothing else). In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Seattle, Washington, USA, pages
1613–1624. http://www.aclweb.org/anthology/D13-
1168.

Ivan Vulić and Marie-Francine Moens. 2016. Bilingual
distributed word representations from document-
aligned comparable data. Journal of Artificial In-
telligence Research 55(1):953–994.

Min Xiao and Yuhong Guo. 2014. Distributed
word representation learning for cross-lingual de-
pendency parsing. In Proceedings of the Eigh-
teenth Conference on Computational Natural Lan-
guage Learning. Association for Computational
Linguistics, Ann Arbor, Michigan, pages 119–129.
http://www.aclweb.org/anthology/W14-1613.

Chao Xing, Dong Wang, Chao Liu, and Yiye
Lin. 2015. Normalized word embedding and
orthogonal transform for bilingual word transla-
tion. In Proceedings of the 2015 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Denver, Colorado, pages 1006–1011.
http://www.aclweb.org/anthology/N15-1104.

Yuan Zhang, David Gaddy, Regina Barzilay, and
Tommi Jaakkola. 2016. Ten pairs to tag – multilin-
gual pos tagging via coarse mapping between em-
beddings. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language

461

Technologies. Association for Computational Lin-
guistics, San Diego, California, pages 1307–1317.
http://www.aclweb.org/anthology/N16-1156.

Kai Zhao, Hany Hassan, and Michael Auli. 2015.
Learning translation models from monolingual con-
tinuous representations. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 1527–
1536. http://www.aclweb.org/anthology/N15-1176.

Will Y. Zou, Richard Socher, Daniel Cer, and
Christopher D. Manning. 2013. Bilingual word
embeddings for phrase-based machine transla-
tion. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguis-
tics, Seattle, Washington, USA, pages 1393–1398.
http://www.aclweb.org/anthology/D13-1141.

462

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 463–472
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1043

Abstract Meaning Representation Parsing using LSTM Recurrent Neural
Networks

William R. Foland Jr.
Department of Computer Science

University of Colorado
Boulder, CO 80309

William.Foland@colorado.edu

James H. Martin
Department of Computer Science and

Institute of Cognitive Science
University of Colorado

Boulder, CO 80309
James.Martin@colorado.edu

Abstract

We present a system which parses sen-
tences into Abstract Meaning Representa-
tions, improving state-of-the-art results for
this task by more than 5%. AMR graphs
represent semantic content using linguistic
properties such as semantic roles, coref-
erence, negation, and more. The AMR
parser does not rely on a syntactic pre-
parse, or heavily engineered features, and
uses five recurrent neural networks as the
key architectural components for inferring
AMR graphs.

1 Introduction

Semantic analysis is the process of extracting
meaning from text, revealing key ideas such as
”who did what to whom, when, how, and where?”,
and is considered to be one of the most complex
tasks in natural language processing. Historically,
an important consideration has been the definition
of the output of the task - how can the concepts
in a sentence be captured in a general, consistent
and expressive manner that facilitates downstream
semantic processing? Over the years many for-
malisms have been proposed as suitable target rep-
resentations including variants of first order logic,
semantic networks, and frame-based slot-filler no-
tations. Such representations have found a place
in many semantic applications but there is no clear
consensus as to the best representation. However,
with the rise of supervised machine learning tech-
niques, a new requirement has come to the fore:
the ability of human annotators to quickly and reli-
ably generate semantic representations as training
data.

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2012)1 was developed to provide

1http://amr.isi.edu/language.html

a computationally useful and expressive repre-
sentation that could be reliably generated by hu-
man annotators. Sentence meanings in AMR are
represented in the form of graphs consisting of
concepts (nodes) connected by labeled relations
(edges). AMR graphs include a number of tra-
ditional NLP representations including named en-
tities (Nadeau and Sekine, 2007), word senses
(Banerjee and Pedersen, 2002), coreference rela-
tions, and predicate-argument structures (Kings-
bury and Palmer, 2002; Palmer et al., 2005). More
recent innovations include wikification of named
entities and normalization of temporal expressions
(Verhagen et al., 2010; Strötgen and Gertz, 2010).
(2016) provides an insightful discussion of the re-
lationship between AMR and other formal repre-
sentations including first order logic.

The process of creating AMR’s for sentences is
called AMR Parsing and was first introduced in
(Flanigan et al., 2014). A key factor driving the de-
velopment of AMR systems has been the increas-
ing availability of training resources in the form
of corpora where each sentence is paired with a
corresponding AMR representation 2. A consis-
tent framework for evaluating AMR parsers was
defined by the Semeval-2016 Meaning Represen-
tation Parsing Task3. Standard training, develop-
ment and test splits for the AMR Annotation Re-
lease 1 corpus are provided, as well as an addi-
tional out-of-domain test dataset, for system com-
parisons. 4

Viewed as a structured prediction task, AMR
parsing poses some difficult challenges not faced
by other related language processing tasks includ-
ing part of speech tagging, syntactic parsing or se-

2See amr.isi.edu for information on currently available re-
sources

3http://alt.qcri.org/semeval2016/task8/#
4Available from LDC as

LDC2015E86 DEFT Phase 2 AMR Annotation R1 dataset.

463

https://doi.org/10.18653/v1/P17-1043

degree
ARG0

ARG1

quant

mod

ARG1

plan-01
TOP

country

wiki:
"France"

name

op1:
france

further

country

numerous

nucleus
 ARG0

cooperate-01

name

(a) An AMR graphical depiction of the meaning of the sen-
tence France plans further nuclear cooperation with nu-
merous countries . Concepts are represented as ovals, and
relations are the directed connections between them. Pred-
icate concepts are labelled with their PropBank sense, and
semantic roles are indicated by ”Arg” relations. Non-Arg
relations like name or mod are called ”Nargs” in this pa-
per. Note the shaded section, which shows an example of a
subgraph, containing related concepts and relations. In the
example, the subgraph represents ”France” which includes
the category country and a shortened link to the France wiki
page.

Feature Extraction

Sentence

Subgraph Relation
Resolution

AMR

Subgraph Expansion and
AMR Construction

Args Nargs Attr NCat

UofI Wikifier

SG

Hard Max

Hard Max

Subgraph Spans

NER WikiCat[8]Word Features

PnargsPargs

relations category

Pattr

(b) General Architecture for the AMR Parser, which creates
an AMR based on the words in a sentence. The 5 B-LSTM
networks infer structures of the AMR. For example, the SG
network infers subgraphs, which are mostly single concept,
like ”plan-01” or ”further”, but can also be like the more
complex shaded ”France” subgraph in the example. Other
B-LSTM networks are used to infer predicate argument re-
lations (Args), other relations (Nargs), attributes like ”TOP”
(Attr) and name categories like ”country” for France (Ncat).

Figure 1: An example Abstract Meaning Representation and the architecture of the AMR parser, which produces an AMR from
a sentence.

mantic role labeling. The prediction task in these
settings can be cast as per-token labeling tasks
(i.e. IOB tags) or as a sequence of discrete parser
actions, as in transition-based (shift-reduce) ap-
proaches to dependency parsing.

The first challenge is that AMR representations
are by design abstracted away from their associ-
ated surface forms. AMR corpora pair sentences
with their corresponding representations, without
providing an explicit annotation, or alignment,
that links the parts of the representation to their
corresponding elements of the sentence. Not sur-
prisingly, this complicates training, decoding and
evaluation.

The second challenge is the fact that, as noted
earlier, the AMR parsing task is an amalgam of
predicate identification and classification, entity
recognition, co-reference, word sense disambigua-

tion and semantic role labeling — each of which
relies on the others for successful analysis. The
architecture and system presented in the follow-
ing sections is largely motivated by these two chal-
lenges.

2 Related Work

2.1 AMR Parsers

Most current AMR parsers are constructed using
some form of supervised machine learning that ex-
ploits existing AMR corpora. In general, these
systems make use of features derived from vari-
ous forms of syntactic analysis, ranging from part-
of-speech tagging to more complex dependency or
phrase-structure analysis. Currently, most systems
fall into two classes: (1) systems that incremen-
tally transform a dependency parse into an AMR

464

graph using transition-based systems (Wang et al.,
2015, 2016), and (2) graph-oriented approaches
that use syntactic features to score edges between
all concept pairs, and then use a maximum span-
ning connected subgraph (MSCG) algorithm to se-
lect edges that will constitute the graph (Flanigan
et al., 2014; Werling et al., 2015).

As expected, there are exceptions to these gen-
eral approaches. The largely rule-based approach
of (2015) converts logical forms from an exist-
ing semantic analyzer into AMR graphs. They
demonstrate the ability to use their existing system
to generate AMRs in German, French, Spanish
and Japanese without the need for a native AMR
corpus.

(2015) proposes a synchronous hyperedge re-
placement grammar solution, (2015) uses syntax-
based machine translation techniques to create tree
structures similar to AMR, while (2015) creates
logical form representations of sentences and then
converts these to AMR.

An exception to the use of heavily engineered
features is the deep learning approach of (2016),
which, following (Collobert et al., 2011), relies on
word embeddings and recurrent neural networks
to generate AMR graphs.

2.2 Bidirectional LSTM Neural Networks

Unlike relatively simple sequence processing tasks
like part-of-speech tagging and NER, semantic
analysis requires the ability to keep track of rel-
evant information that may be arbitrarily far away
from the words currently under consideration. Re-
current neural networks (RNNs) are a class of neu-
ral architecture that use a form of short-term mem-
ory in order to solve this semantic distance prob-
lem. Basic RNN systems have been enhanced
with the use of special memory cell units, referred
to as Long Short-Term Memory neural networks,
or LSTM’s (Hochreiter and Schmidhuber, 1997).
Such systems can effectively process information
dispersed over hundreds of words (Schmidhuber
et al., 2002; Gers et al., 2001).

Bidirectional LSTMs (B-LSTM) networks are
LSTMs that are connected so that both future and
past sequence context can be examined. (2015),
successfully used a bidirectional LSTM network
for semantic role labelling. We use the LSTM cell
as described in (Graves et al., 2013), configured in
a B-LSTM shown in Figure 2, as the core network
architecture in the system. Five B-LSTM Neural

output

Softmax and Concatenation

x0 x1 xT

output output

...

...

...

...

P

h
(f)
0 h

(f)
1 h

(f)
T

h
(r)
Th

(r)
0 h

(r)
1

Figure 2: A general diagram of a B-LSTM network,
showing the feature input vectors xi, the forward layer
(f) and the reverse layer (r). The network generates vec-
tors of log likelihoods which are converted to probability
vectors and then joined together to form an array of prob-
abilities.

Networks comprise the parser.

3 Parser Overview

Our parser5 will be explained using this example
sentence: France plans further nuclear coopera-
tion with numerous countries .

A graphical depiction of an AMR for this sen-
tence is shown in Figure 1a.

Given an input sentence, the approach taken
in our AMR parser is similar to (Flanigan et al.,
2014) in that it consists of two subtasks: (1) dis-
cover the concepts (nodes and sub-graphs) present
in the sentence, and (2) determine the relations
(arcs) that connect the concepts (relations cap-
ture both traditional predicate-argument structures
(ARGs), as well as additional modifier relations
that capture notions including quantification, po-
larity, and cardinality.) Neither of these tasks is
straightforward in the AMR context. Among the
complications are the fact that individual words
may contribute to more than one node (as in the
case of France), parts of the graph may be “reen-
trant”, participating in relations with multiple con-
cepts, and predicate-argument and modifier rela-
tions can be introduced by arbitrary parts of the
input.

At a high level, our system takes an input sen-
tence in form of a vector of word embeddings

5source at https://github.com/BillFoland/daisyluAMR

465

and uses a series of recurrent neural networks
to (1) discover the basic set of nodes and sub-
graphs that comprise the AMR, (2) discover the
set of predicate-argument relations among those
concepts, and (3) identifying any relevant modifier
relations that are present.

A high level block diagram of the parser is
shown in Figure 1b. The parser extracts fea-
tures from the sentence which are processed by
a bidirectional LSTM network (B-LSTM) to cre-
ate a set of AMR subgraphs, which contain one
or two concepts as well as their internal relations
to each other. Features based on the sentence and
these subgraphs are then processed by a pair of
B-LSTM networks to compute the probabilities of
relations between all subgraphs. All subgraphs
are then connected using an iterative, greedy algo-
rithm to compute a single component graph, with
all subgraphs connected by relations. Separately,
another two B-LSTM networks compute attribute
and name categories, which are then appended to
the graph. Finally, the subgraphs are expanded
into the most probable AMR concept and relation
primitives to create the final AMR.

4 Detailed Parser Architecture

4.1 AMR Spans, Subgraphs, and Subgraph
Decoding

Mapping the words in a sentence to AMR concepts
is a critical first step in the parsing process, and
can influence the performance of all subsequent
processing. Although the most common mapping
is one word to one concept, a series of consecu-
tive words, or span, can also be associated with an
AMR concept. Likewise, a span of words can be
mapped to a small connected subgraph, such as
the single word span France which is mapped to a
subgraph composed of two concepts connected by
a name relation. (see the shaded section of Figure
1a).

Training corpora provide sentences which are
annotated by humans with AMR graphs, not nec-
essarily including a reference span to subgraph
mapping. An automatic AMR aligner can be used
to predict relationships between words and gold
AMR’s. We use the alignments produced by the
aligner of (2014), along with the words and refer-
ence AMR graphs, to identify a subgraph type to
associate with each span. Each word in the sen-
tence is then associated with an IOBES subgraph
type tag. We call the algorithm which defines span

to subgraph mapping the Expert Span Identifier,
and use it to train the SG Network.

A convenient development detail stems from
the fact that during the AMR creation process,
the identified subgraphs must be expanded into
individual concepts and relations. For example,
the subgraph type ”Named”, along with the span
France, must be expanded to create the concepts,
relations, and attributes shown in Figure 1a. A
Subgraph Expander algorithm implements this
task, which is essentially the inverse of the Ex-
pert Span Identifier. The Expert Span Identifier
and Subgraph Expander were developed by cas-
cading the two in a test configuration as shown in
Figure 3a.

4.2 Features

All input features for the five networks correspond
to the sequence of words in the input sentence,
and are presented to the networks as indices into
lookup tables. With the exception of pre-trained
word embeddings, these lookup tables are ran-
domly initialized prior to training and representa-
tions are created during the training process.

4.2.1 Word Embeddings

The use of distributed word representations gener-
ated from large text corpora is pervasive in mod-
ern NLP. We start with 300 dimension GloVe rep-
resentations (Pennington et al., 2014) trained on
the 840 billion word common crawl (Smith et al.,
2013). We added two binary dimensions: one for
out of vocabulary words, and one for padding, re-
sulting in vectors with a width of 302. These em-
beddings are mapped from the words in the sen-
tence, and are then trained using back propagation
just like other parameters in the network.

4.2.2 Wikifier

The AMR standard was expanded to include the
annotation of named entities with a canonical
form, using Wikipedia as the standard (see France
in Figure 1a). The wiki link associated with
this ”wikification” is expressed using the :wiki at-
tribute, which requires some kind of global exter-
nal knowledge of the Wikipedia ontology. We use
the University of Illinois Wikifier (Ratinov et al.,
2011; Cheng and Roth, 2013) to identify the :link
directly, and use the possible categories output
from the wikifier as feature inputs to the NCat Net-
work.

466

Expert Span Identifier

Compare

Subgraph Expander

Sentence Alignment AMR

Subgraph
Accuracy

Subgraph
Spans

(a) Expert System and Subgraph Expander Development.
The alignment between the words in the sentence and ele-
ments of the AMR is provided by an automatic aligner. The
expert system uses the sentence, reference AMR, and align-
ment to identify spans of words which are related to con-
cepts within the AMR. These spans are also labelled with a
subgraph type. A ”subgraph expander” uses the words and
subgraph type to expand into AMR subgraphs.

Expert Span Identifier

AMR Alignment Sentence

Expert
Subgraph

Spans

Feature
Extraction

UofI
Wikifier

SG

NERWord
Features

Predicted
Subgraph

Spans Backpropagation

cross entropy

(b) SG Network Training. The SG Network uses just the
words in the sentence as input, and is trained to imitate the
output of the Expert System. This output defines spans of
words and their subgraph types, which are the nodes of the
AMR graph. Later stages of the system use this information
to infer other aspects of the AMR, like relations (edges).

Figure 3: SG Model Development Details.

Named Entity Recognition can be valuable in-
put to a parser, and state-of-the-art NER systems
can be created using convolutional neural net-
works (Collobert et al., 2011) or LSTM (Chiu
and Nichols, 2015) aided by information from
gazetteers. These gazetteers are large dictionaries
containing well known named entities (e.g., (Flo-
rian et al., 2003)).

Rather than add gazetteer features to our sys-
tem, we make use of the NER information already
calculated and provided by the Univ. of Illinois
Wikifier. We then encode the classified named en-
tities output from the wikifier as feature embed-
dings, which are used by the SG Network.

4.2.3 AMR Subgraph (SG) Network

The features used as input to the SG network are:

• word: 45Kx302, the word embeddings
• suffix: 430x5, embeddings based on the final

two letters of each word.
• caps: 5x5, embeddings based on the capital-

ization pattern of the word.
• NER: 5x5, embeddings indexed by NER

from the Wikifier, ’O’, ’LOC’, ’ORG’, ’PER’
or ’MISC’.

The SG Network produces probabilities for 46
BIOES tagged subgraph types, and the highest
probability tag is chosen for each word, as shown
for the example sentence in Table 1.

4.2.4 Predicate Argument Relations (Args)
Network

The AMR concepts (nodes) are connected by rela-
tions (arcs). We found it convenient to distinguish
predicate argument relations, or ”Args” from other
relations, which we call ”Nargs”. For example,
see ARG0 and ARG1 relations in Figure 1a are
”Args”, compared with the name, degree, mod, or
quant relations which are ”Nargs”.

The Args Network is run once for each predi-
cate subgraph, and produces a matrix Pargs which
defines the probability (prior to the identification
of any relations6) of a type of predicate argument
relation from a predicate subgraph to any other SG
identified subgraph. (For example, see ARG0 and
ARG1 relations in Figure 1a.) The matrix has di-
mensions 5 by s, where 5 is the number of predi-
cate arg relations identified by the network, and s
is the total number of subgraphs identified by the
SG Network for the sentence.

The Args features, calculated for each source
predicate subgraph, are:

• Word, Suffix and Caps as in the SG network.
• SG: 46x5, indexed by the SG network identi-

fied subgraph.
• PredWords[5], 45Kx302: The word embed-

dings of the word and surrounding 2 words
associated with the source predicate sub-
graph.

6relation probabilities change as hard decisions are made,
see section 4.3

467

words BIOES Prob kind

France S Named 0.995 Named subgraph
plans S Pred-01 0.997 plan-01
further S NonPred 0.931 further
nuclear S NonPred 0.990 nucleus
cooperation S Pred-01 0.986 cooperate-01
with O 1.000 O
numerous S NonPred 0.982 numerous
countries S NonPred 0.860 country
. O 0.999 O

Table 1: SG Network Example Output

feature width

Word[france] 302
Suffix[ce] 5
Caps[firstUp] 5
SG[S Named] 10
Word[further] 302
Word[nuclear] 302
Word[cooperation] 302
Word[with] 302
Word[numerous] 302
SG[S NonPred] 10
SG[S NonPred] 10
SG[S Pred-01] 10
SG[O] 10
SG[S NonPred] 10
Distance[4] 5

Table 2: Args Network Features for the word France
while evaluating outgoing args for the word cooperation,
associated with predicate cooperate-01

• PredSG[5], 46x10: The SG embedding of
the word and surrounding 2 words associated
with the source predicate subgraph.
• regionMark: 21x5, indexed by the distance in

words between the word and the word asso-
ciated with the source predicate subgraph.

Table 2 shows an example feature set for one
subgraph while evaluating a predicate subgraph.

4.2.5 Non-Predicate Relations (Nargs)
Network

The Nargs Network uses features similar to the
Args network. It is run once for each subgraph,
and produces a matrix Pnargs which defines the
probability of a type of relation from a subgraph
to any other subgraph, prior to the identification
of any relations.7 The matrix has dimensions 43
by s, where 43 is the number of non-arg relations
identified by the network, and s is the total number
of subgraphs identified by the SG Network for the
sentence.

4.2.6 Attributes (Attr) Network
The Attr Network determines a primary attribute
for each subgraph, if any.8 This network is sim-
plified to detect only one attribute (there could be

7Degree, mod, or quant are examples of Narg relations in
Figure 1a.

8(TOP: plan-01) and (op1: france) are attribute examples
shown in Figure 1a.

many) per subgraph, and only computes probabili-
ties for the two most common attributes: TOP and
polarity. Note that subgraph expansion also identi-
fies many attributes, for example the words associ-
ated with named entities, or the normalized quan-
tity and date representations. A known shortcom-
ing of this network is that the TOP and polarity at-
tributes are not mutually exclusive, but noting that
the cooccurrence of the two does not occur in the
training data, we chose to avoid adding a separate
network to allow the prediction of both attributes
for a single subgraph.

4.2.7 Named Category (NCat) Network

The NCat Network uses features similar to the SG
Network, along with the suggested categories (up
to eight) from the Wikifier, and produces prob-
abilities for each of 68 :instance roles, or cate-
gories, for named entities identified in the training
set AMR’s.

• Word, Suffix and Caps as in the SG network.
• WikiCat[8]: 108 x 5, indexed by suggested

categories from the Wikifier.

4.3 Relation Resolution

The generated Pargs and Pnargs for each SG iden-
tified subgraph are processed to determine the
most likely relation connections, using the con-
straints:

468

1. AMR’s are single component graphs without
cycles.

2. AMR’s are simple directed graphs, a max of
one relation between any two subgraphs is al-
lowed.

3. Outgoing predicate relations are limited to
one of each kind (i.e. can’t have two ARG0’s)

We initialize a graph description with all the
subgraphs identified by the SG network. Prob-
abilities for all possible edges are represented in
the Pargs and Pnargs matrices. The Subgraphs are
connected to one another by applying a greedy al-
gorithm, which repeatedly selects the most proba-
ble edge from the Pargs and Pnargs matrices and
adds the edge to the graph description. After an
edge is selected to be added to the graph, we ad-
just Pargs and Pnargs based on the constraints
(hard decisions change the probabilities), and re-
peat adding edges until all remaining edge proba-
bilities are below a threshold. (The optimum value
of this threshold, 0.55, was found by experiment-
ing with the development data set). From then on,
only the most probable edges which span graph
components are chosen, until the graph contains a
single component.

Expressed as a step by step procedure, we
first define pconnect as the probability threshold at
which to require graph component spanning, and
we repeat the following, until any two subgraphs
in the graph are connected by at least one path.

1. Select the most probable outgoing relation
from any of the identified subgraph probabil-
ity matrices. Denote this probability as pr.

2. If pr < pconnect, keep selecting most proba-
ble relations until a component spanning con-
nection is found.

3. Add the selected relation to the graph. If a
cycle is created, reverse the relation direction
and label.

4. Eliminate impossible relations based on the
constraints and re-normalize the affected
Pargs and Pnargs matrices.

4.4 AMR Construction
AMR Construction converts the connected sub-
graph AMR into the final AMR graph form, with
proper concepts, relations, and root, as follows:

1. The TOP attribute occurs exactly once in
each AMR, so the subgraph with highest TOP
probability produced by the Attr network is

identified. The AMR graph is adjusted so that
it is rooted with the most probable TOP sub-
graph. After graph adjustment, new cycles
are sometimes created, which are removed by
using -of relation reversal.

2. The subgraphs identified by the SG network,
which were considered to be single nodes
during relation resolution, are expanded to
basic AMR concepts and relations to form a
concept/relation AMR graph representation,
using the Subgraph Expander component de-
veloped as shown in Figure 3b. When a sub-
graph contains two concepts, the choice of
connecting to parent or child within the sub-
graph is made based on training data statistics
of each relation type (Arg or Narg) for each
subgraph type.

3. Nationalities are normalized (e.g. French to
France).

4. A very basic coreference resolution is per-
formed by merging all concepts representing
”I” into a single concept. Coreference reso-
lution was otherwise ignored due to develop-
ment time constraints.

5 Experimental Setup

Semantic graph comparison can be tricky because
direct graph alignment fails in the presence of just
a few miscompares. A practical graph comparison
program called Smatch (Cai and Knight, 2013) is
used to consistently evaluate AMR parsers. The
smatch python script provides an F1 evaluation
metric for whole-sentence semantic graph analysis
by comparing sets of triples which describe por-
tions of the graphs, and uses a hill climbing algo-
rithm for efficiency.

All networks, including SG, were trained us-
ing stochastic gradient descent (SGD) with a
fixed learning rate. We tried sentence level log-
likelihood, which trains a viterbi decoder, as a
training objective, but found no improvement over
word-level likelihood (cross entropy). After all
LSTM and linear layers, we added dropout to
minimize overfitting (Hinton et al., 2012) and
batch normalization to reduce sensitivity to learn-
ing rates and initialization (Ioffe and Szegedy,
2015).

For each of the five networks, we used the
LDC2015E86 training split to train parameters,
and periodically interrupted training to run the dev
split (forward) in order to monitor performance.

469

The model parameters which resulted in best dev
performance were saved as the final model. The
test split was used as the ”in domain” data set to
assess the fully assembled parser. The inferred
AMR’s were then evaluated using the smatch pro-
gram to produce an F1 score.

An evaluation dataset was provided for Semeval
2016 task 8, which is significantly different from
the LDC2015E86 split dataset. ((2016) describes
the eval dataset as ”quite difficult to parse, particu-
larly due to creative approaches to word represen-
tation in the web forum portion”).

6 Results

We report the statistics for smatch results of the
”test” and ”eval” datasets for 12 trained systems
in Table 3. The top five scores for Semeval 2016
task 8, representing the previous state-of-the-art,
are shown for context. With a smatch score of be-
tween 0.651 and 0.654, and a mean of 0.652, our
system improves the state-of-the-art AMR parser
performance by between 5.07% and 5.55%, and
by a mean of 5.22%. The best performing systems
for in-domain (dev and test) data correlated well
with the best ones for the out-of-domain (eval)
data, although the scores for the eval dataset were
lower overall.

6.1 Individual Network Results

The word spans tagged by the SG network are
used to determine the features for the other net-
works. In particular, every span identified as a
predicate will trigger the system to evaluate the
Args network in order to determine the probabil-
ities of outgoing predicate ARG relations. Like-
wise, all spans identified as subgraphs (other than
named subgraphs) will lead to a Nargs network
evaluation to determine outgoing non-Arg rela-
tions. The SG network identifies predicates with
0.93 F1, named subgraphs with 0.91 F1, and all
other subgraphs with 0.94 F1.

The Args network identifies ARG0 and ARG1
relations with 0.73 F1, but identification of ARG2,
ARG3, and ARG4 drops down to (0.53, 0.20, and
0.43). It is difficult for the system to generalize
among these relation tags because they differ sig-
nificantly between predicates.

7 Conclusion and Future Work

We have shown that B-LSTM neural networks can
be used as the basis for a graph based semantic

parser. Our AMR parser effectively exploits the
ability of B-LSTM networks to learn to selectively
extract information from words separated by long
distances in a sentence, and to build up higher
level representations by rejecting or remembering
important information during sequence process-
ing. There are changes which could be made to
eliminate all pre-processing and to further improve
parser performance.

Eliminating the need for syntactic pre-parsing
is valuable since a syntactic parser takes up sig-
nificant time and computational resources, and er-
rors in the generated syntax will propagate into an
AMR parser. Our approach avoids both of these
problems, while generating high quality results.

Wikification tasks are generally independent
from parsing, but wiki links are a requirement for
the latest AMR specification. Since our preferred
wikifier application generates NER information,
we used the generated NER tags as input to the
SG network. But it would also be fairly easy
to add gazetteer information to the network fea-
tures in order to remove the need for NER pre-
processing. Therefore, the wikification subtask is
the only portion of the parser which requires any
pre-processing at all. Incorporating wikification
gazetteers as B-LSTM features might allow a per-
formant, fully self contained parser to be created.

Sense disambiguation is not a very generaliz-
able task, senses other than 01 and 02 for dif-
ferent predicates may differ from each other in
ways which are very difficult to discern. A better
approach to disambiguation is to consider predi-
cates separately, solving for a set of coefficients
for each verb found in the training set. A gen-
eral set of model parameters could then be used
to handle unseen examples. Likewise, high level
ARGs like ARG2 and ARG3 don’t generalize very
well among different predicates, and ARG infer-
ence accuracy could be improved with predicate-
specific network parameters for the most common
cases.

The alignment between concepts and words is
not a reliable, direct mapping: some concepts can-
not be grounded to words, some are ambiguous,
and automatic aligners tend to have high error
rates relative to human aligning judgements. Im-
provements in the quality of the alignment in train-
ing data would improve parsing results.

470

System Description Test F1 Eval (OOD) F1

Our Parser
(summary of 12 trained systems)

mean 0.707 0.652
min 0.706 0.651
max 0.709 0.654

RIGA (Barzdins and Gosko, 2016) 0.6720 0.6196
Brandeis/cemantix.org/RPI (Wang et al., 2016) 0.6670 0.6195
CU-NLP (Foland Jr and Martin, 2016) 0.6610 0.6060
ICL-HD (Brandt et al., 2016) 0.6200 0.6005
UCL+Sheffield (Goodman et al., 2016) 0.6370 0.5983

Table 3: Smatch F1 results for our parser and top 5 parsers from semeval 2016 task 8.

References
Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.

Broad-coverage ccg semantic parsing with amr. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Màrquez,
Adam Meyers, Joakim Nivre, Sebastian Padó, Jan
Štepánek, Pavel Stranák, Mihai Surdeanu, Nianwen
Xue, and Yi Zhang.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2012. Abstract meaning representation
(amr) 1.0 specification. In Parsing on Freebase from
Question-Answer Pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing. Seattle: ACL. pages 1533–1544.

Satanjeev Banerjee and Ted Pedersen. 2002. An
adapted lesk algorithm for word sense disambigua-
tion using wordnet. In Computational linguistics
and intelligent text processing, Springer, pages 136–
145.

Guntis Barzdins and Didzis Gosko. 2016. Riga at
semeval-2016 task 8: Impact of smatch extensions
and character-level neural translation on amr pars-
ing accuracy. arXiv preprint arXiv:1604.01278 .

Johan Bos. 2016. Expressive power of abstract mean-
ing representations. Computational Linguistics
42(3):527–535.

Lauritz Brandt, David Grimm, Mengfei Zhou, and Yan-
nick Versley. 2016. Icl-hd at semeval-2016 task
8: Meaning representation parsing-augmenting amr
parsing with a preposition semantic role labeling
neural network. Proceedings of SemEval pages
1160–1166.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In ACL
(2). pages 748–752.

X. Cheng and D. Roth. 2013. Relational
inference for wikification. In EMNLP.
http://cogcomp.cs.illinois.edu/papers/ChengRo13.pdf.

Jason PC Chiu and Eric Nichols. 2015. Named en-
tity recognition with bidirectional lstm-cnns. arXiv
preprint arXiv:1511.08308 .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Research
12:2493–2537.

Jeffrey Flanigan, Sam Thomson, Jaime G Carbonell,
Chris Dyer, and Noah A Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation .

Radu Florian, Abe Ittycheriah, Hongyan Jing, and
Tong Zhang. 2003. Named entity recognition
through classifier combination. In Proceedings
of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003 - Volume 4. As-
sociation for Computational Linguistics, Strouds-
burg, PA, USA, CONLL ’03, pages 168–171.
https://doi.org/10.3115/1119176.1119201.

William R Foland Jr and James H Martin. 2016. Cu-
nlp at semeval-2016 task 8: Amr parsing using lstm-
based recurrent neural networks. Proceedings of Se-
mEval pages 1197–1201.

Felix A Gers, Douglas Eck, and Jürgen Schmidhu-
ber. 2001. Applying lstm to time series predictable
through time-window approaches. In Artificial Neu-
ral NetworksICANN 2001, Springer, pages 669–676.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. Ucl+ sheffield at semeval-2016 task 8:
Imitation learning for amr parsing with an α-bound.
Proceedings of SemEval pages 1167–1172.

Alex Graves, Abdel-rahman Mohamed, and Geof-
frey E. Hinton. 2013. Speech recognition with deep
recurrent neural networks. CoRR abs/1303.5778.
http://arxiv.org/abs/1303.5778.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors. CoRR
abs/1207.0580. http://arxiv.org/abs/1207.0580.

471

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Sergey Ioffe and Christian Szegedy. 2015. Batch
normalization: Accelerating deep network train-
ing by reducing internal covariate shift. CoRR
abs/1502.03167. http://arxiv.org/abs/1502.03167.

Paul Kingsbury and Martha Palmer. 2002. From tree-
bank to propbank. In LREC. Citeseer.

Jonathan May. 2016. Semeval-2016 task 8: Mean-
ing representation parsing. Proceedings of SemEval
pages 1063–1073.

David Nadeau and Satoshi Sekine. 2007. A sur-
vey of named entity recognition and classification.
Lingvisticae Investigationes 30(1):3–26.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational linguistics 31(1):71–
106.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A synchronous hyperedge replacement gram-
mar based approach for amr parsing. CoNLL 2015
page 32.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. Proceedings of the Empiricial Meth-
ods in Natural Language Processing (EMNLP 2014)
12.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob, and
Kevin Knight. 2014. Aligning english strings with
abstract meaning representation graphs. In EMNLP.
pages 425–429.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing english
into abstract meaning representation using syntax-
based machine translation. Training 10:218–021.

L. Ratinov, D. Roth, D. Downey, and M. An-
derson. 2011. Local and global algorithms
for disambiguation to wikipedia. In ACL.
http://cogcomp.cs.illinois.edu/papers/RRDA11.pdf.

Jürgen Schmidhuber, F Gers, and Douglas Eck. 2002.
Learning nonregular languages: A comparison of
simple recurrent networks and lstm. Neural Com-
putation 14(9):2039–2041.

Jason R Smith, Herve Saint-Amand, Magdalena Pla-
mada, Philipp Koehn, Chris Callison-Burch, and
Adam Lopez. 2013. Dirt cheap web-scale parallel
text from the common crawl. In ACL (1). pages
1374–1383.

Jannik Strötgen and Michael Gertz. 2010. Heideltime:
High quality rule-based extraction and normaliza-
tion of temporal expressions. In Proceedings of
the 5th International Workshop on Semantic Eval-
uation. Association for Computational Linguistics,
pages 321–324.

Lucy Vanderwende, Arul Menezes, and Chris Quirk.
2015. An amr parser for english, french, german,
spanish and japanese and a new amr-annotated cor-
pus. In Proceedings of NAACL-HLT . pages 26–30.

Marc Verhagen, Roser Sauri, Tommaso Caselli, and
James Pustejovsky. 2010. Semeval-2010 task 13:
Tempeval-2. In Proceedings of the 5th international
workshop on semantic evaluation. Association for
Computational Linguistics, pages 57–62.

Chuan Wang, Sameer Pradhan, Nianwen Xue, Xiao-
man Pan, and Heng Ji. 2016. Camr at semeval-2016
task 8: An extended transition-based amr parser.
Proceedings of SemEval pages 1173–1178.

Chuan Wang, Nianwen Xue, Sameer Pradhan, and
Sameer Pradhan. 2015. A transition-based algo-
rithm for amr parsing. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. pages 366–375.

Keenon Werling, Gabor Angeli, and Christopher Man-
ning. 2015. Robust subgraph generation improves
abstract meaning representation parsing. arXiv
preprint arXiv:1506.03139 .

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics.

472

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 473–483
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1044

Deep Semantic Role Labeling: What Works and What’s Next
Luheng He†, Kenton Lee†, Mike Lewis‡, and Luke Zettlemoyer†∗

† Paul G. Allen School of Computer Science & Engineering, Univ. of Washington, Seattle, WA
{luheng, kentonl, lsz}@cs.washington.edu

‡ Facebook AI Research, Menlo Park, CA
mikelewis0@fb.com

∗Allen Institute for Artificial Intelligence, Seattle, WA
lukez@allenai.org

Abstract

We introduce a new deep learning model
for semantic role labeling (SRL) that sig-
nificantly improves the state of the art,
along with detailed analyses to reveal its
strengths and limitations. We use a deep
highway BiLSTM architecture with con-
strained decoding, while observing a num-
ber of recent best practices for initializa-
tion and regularization. Our 8-layer en-
semble model achieves 83.2 F1 on the
CoNLL 2005 test set and 83.4 F1 on
CoNLL 2012, roughly a 10% relative er-
ror reduction over the previous state of the
art. Extensive empirical analysis of these
gains show that (1) deep models excel at
recovering long-distance dependencies but
can still make surprisingly obvious errors,
and (2) that there is still room for syntactic
parsers to improve these results.

1 Introduction

Semantic role labeling (SRL) systems aim to re-
cover the predicate-argument structure of a sen-
tence, to determine essentially “who did what to
whom”, “when”, and “where.” Recently break-
throughs involving end-to-end deep models for
SRL without syntactic input (Zhou and Xu, 2015;
Marcheggiani et al., 2017) seem to overturn the
long-held belief that syntactic parsing is a pre-
requisite for this task (Punyakanok et al., 2008).
In this paper, we show that this result can be
pushed further using deep highway bidirectional
LSTMs with constrained decoding, again signifi-
cantly moving the state of the art (another 2 points
on CoNLL 2005). We also present a careful em-
pirical analysis to determine what works well and
what might be done to progress even further.

Our model combines a number of best prac-
tices in the recent deep learning literature. Fol-

lowing Zhou and Xu (2015), we treat SRL as a
BIO tagging problem and use deep bidirectional
LSTMs. However, we differ by (1) simplifying
the input and output layers, (2) introducing high-
way connections (Srivastava et al., 2015; Zhang
et al., 2016), (3) using recurrent dropout (Gal
and Ghahramani, 2016), (4) decoding with BIO-
constraints, and (5) ensembling with a product of
experts. Our model gives a 10% relative error re-
duction over previous state of the art on the test
sets of CoNLL 2005 and 2012. We also report per-
formance with predicted predicates to encourage
future exploration of end-to-end SRL systems.

We present detailed error analyses to better un-
derstand the performance gains, including (1) de-
sign choices on architecture, initialization, and
regularization that have a surprisingly large im-
pact on model performance; (2) different types of
prediction errors showing, e.g., that deep models
excel at predicting long-distance dependencies but
still struggle with known challenges such as PP-
attachment errors and adjunct-argument distinc-
tions; (3) the role of syntax, showing that there
is significant room for improvement given oracle
syntax but errors from existing automatic parsers
prevent effective use in SRL.

In summary, our main contributions incluede:

• A new state-of-the-art deep network for end-
to-end SRL, supported by publicly available
code and models.1

• An in-depth error analysis indicating where
the model works well and where it still strug-
gles, including discussion of structural con-
sistency and long-distance dependencies.

• Experiments that point toward directions for
future improvements, including a detailed
discussion of how and when syntactic parsers
could be used to improve these results.

1https://github.com/luheng/deep_srl

473

https://doi.org/10.18653/v1/P17-1044

2 Model

Two major factors contribute to the success of our
deep SRL model: (1) applying recent advances
in training deep recurrent neural networks such as
highway connections (Srivastava et al., 2015) and
RNN-dropouts (Gal and Ghahramani, 2016),2 and
(2) using an A∗ decoding algorithm (Lewis and
Steedman, 2014; Lee et al., 2016) to enforce struc-
tural consistency at prediction time without adding
more complexity to the training process.

Formally, our task is to predict a sequence y
given a sentence-predicate pair (w, v) as input.
Each yi ∈ y belongs to a discrete set of BIO tags
T . Words outside argument spans have the tag O,
and words at the beginning and inside of argument
spans with role r have the tags Br and Ir respec-
tively. Let n = |w| = |y| be the length of the
sequence.

Predicting an SRL structure under our model
involves finding the highest-scoring tag sequence
over the space of all possibilities Y:

ŷ = argmax
y∈Y

f(w,y) (1)

We use a deep bidirectional LSTM (BiLSTM) to
learn a locally decomposed scoring function con-
ditioned on the input:

∑n
t=1 log p(yt | w).

To incorporate additional information (e.g.,
structural consistency, syntactic input), we aug-
ment the scoring function with penalization terms:

f(w,y) =
n∑

t=1

log p(yt | w)−
∑

c∈C
c(w, y1:t) (2)

Each constraint function c applies a non-negative
penalty given the input w and a length-t prefix
y1:t. These constraints can be hard or soft depend-
ing on whether the penalties are finite.

2.1 Deep BiLSTM Model
Our model computes the distribution over tags us-
ing stacked BiLSTMs, which we define as follows:

il,t = σ(Wl
i [hl,t+δl ,xl,t] + bli) (3)

ol,t = σ(Wl
o[hl,t+δl ,xl,t] + blo) (4)

fl,t = σ(Wl
f[hl,t+δl ,xl,t] + blf + 1) (5)

c̃l,t = tanh(Wl
c[hl,t+δl ,xl,t] + blc) (6)

cl,t = il,t ◦ c̃l,t + fl,t ◦ ct+δl (7)

hl,t = ol,t ◦ tanh(cl,t) (8)
2We thank Mingxuan Wang for suggesting highway con-

nections with simplified inputs and outputs. Part of our model
is extended from his unpublished implementation.

+

+

+

The 0

P (BARG0)

+

+

+

cats 0

P (IARG0)

+

+

+

love 1

P (BV)

+

+

+

hats 0

P (BARG1)

Softmax

Transform
Gates

LSTM

Word &
Predicate

Figure 1: Highway LSTM with four layers. The
curved connections represent highway connec-
tions, and the plus symbols represent transform
gates that control inter-layer information flow.

where xl,t is the input to the LSTM at layer l and
timestep t. δl is either 1 or −1, indicating the di-
rectionality of the LSTM at layer l.

To stack the LSTMs in an interleaving pattern,
as proposed by Zhou and Xu (2015), the layer-
specific inputs xl,t and directionality δl are ar-
ranged in the following manner:

xl,t =

{
[Wemb(wt),Wmask(t = v)] l = 1

hl−1,t l > 1
(9)

δl =

{
1 if l is even
−1 otherwise

(10)

The input vector x1,t is the concatenation of token
wt’s word embedding and an embedding of the bi-
nary feature (t = v) indicating whether wt word
is the given predicate.

Finally, the locally normalized distribution over
output tags is computed via a softmax layer:

p(yt | x) ∝ exp(Wy
taghL,t + btag) (11)

Highway Connections To alleviate the vanish-
ing gradient problem when training deep BiL-
STMs, we use gated highway connections (Zhang
et al., 2016; Srivastava et al., 2015). We include
transform gates rt to control the weight of lin-
ear and non-linear transformations between layers
(See Figure 1). The output hl,t is changed to:

rl,t = σ(Wl
r[hl,t−1,xt] + blr) (12)

h′l,t = ol,t ◦ tanh(cl,t) (13)

hl,t = rl,t ◦ h′
l,t + (1− rl,t) ◦Wl

hxl,t (14)

474

Recurrent Dropout To reduce over-fitting, we
use dropout as described in Gal and Ghahramani
(2016). A shared dropout mask zl is applied to the
hidden state:

h̃l,t = rl,t ◦ h′
l,t + (1− rl,t) ◦Wl

hxl,t (15)

hl,t = zl ◦ h̃l,t (16)

zl is shared across timesteps at layer l to avoid am-
plifying the dropout noise along the sequence.

2.2 Constrained A∗ Decoding
The approach described so far does not model any
dependencies between the output tags. To incor-
porate constraints on the output structure at decod-
ing time, we use A∗ search over tag prefixes for
decoding. Starting with an empty sequence, the
tag sequence is built from left to right. The score
for a partial sequence with length t is defined as:

f(w, y1:t) =
t∑

i=1

log p(yi | w)−
∑

c∈C
c(w, y1:i)

(17)
An admissible A∗ heuristic can be computed effi-
ciently by summing over the best possible tags for
all timesteps after t:

g(w, y1:t) =
n∑

i=t+1

max
yi∈T

log p(yi | w) (18)

Exploration of the prefixes is determined by
an agenda A which is sorted by f(w, y1:t) +
g(w, y1:t). In the worst case, A∗ explores expo-
nentially many prefixes, but because the distribu-
tion p(yt | w) learned by the BiLSTM models is
very peaked, the algorithm is efficient in practice.
We list some example constraints as follows:

BIO Constraints These constraints reject any
sequence that does not produce valid BIO transi-
tions, such as BARG0 followed by IARG1.

SRL Constraints Punyakanok et al. (2008);
Täckström et al. (2015) described a list of SRL-
specific global constraints:
• Unique core roles (U): Each core role

(ARG0-ARG5, ARGA) should appear at
most once for each predicate.
• Continuation roles (C): A continuation role

C-X can exist only when its base role X is
realized before it.
• Reference roles (R): A reference role R-X

can exist only when its base role X is realized
(not necessarily before R-X).

We only enforce U and C constraints, since the R
constraints are more commonly violated in gold
data and enforcing them results in worse perfor-
mance (see discussions in Section 4.3).

Syntactic Constraints We can enforce consis-
tency with a given parse tree by rejecting or penal-
izing arguments that are not constituents. In Sec-
tion 4.4, we will discuss the motivation behind us-
ing syntactic constraints and experimental results
using both predicted and gold syntax.

2.3 Predicate Detection

While the CoNLL 2005 shared task assumes gold
predicates as input (Carreras and Màrquez, 2005),
this information is not available in many down-
stream applications. We propose a simple model
for end-to-end SRL, where the system first pre-
dicts a set of predicate words v from the input sen-
tencew. Then each predicate in v is used as an in-
put to argument prediction. We independently pre-
dict whether each word in the sentence is a predi-
cate, using a binary softmax over the outputs of a
bidirectional LSTM trained to maximize the like-
lihood of the gold labels.

3 Experiments

3.1 Datasets

We measure the performance of our SRL sys-
tem on two PropBank-style, span-based SRL
datasets: CoNLL-2005 (Carreras and Màrquez,
2005) and CoNLL-2012 (Pradhan et al., 2013)3.
Both datasets provide gold predicates (their in-
dex in the sentence) as part of the input. There-
fore, each provided predicate corresponds to one
training/test tag sequence. We follow the train-
development-test split for both datasets and use
the official evaluation script from the CoNLL 2005
shared task for evaluation on both datasets.

3.2 Model Setup

Our network consists of 8 BiLSTM layers (4 for-
ward LSTMs and 4 reversed LSTMs) with 300-
dimensional hidden units, and a softmax layer for
predicting the output distribution.

Initialization All the weight matrices in BiL-
STMs are initialized with random orthonormal
matrices as described in Saxe et al. (2013).

3We used the version of OntoNotes downloaded at:
http://cemantix.org/data/ontonotes.html.

475

Development WSJ Test Brown Test Combined

Method P R F1 Comp. P R F1 Comp. P R F1 Comp. F1

Ours (PoE) 83.1 82.4 82.7 64.1 85.0 84.3 84.6 66.5 74.9 72.4 73.6 46.5 83.2
Ours 81.6 81.6 81.6 62.3 83.1 83.0 83.1 64.3 72.9 71.4 72.1 44.8 81.6

Zhou 79.7 79.4 79.6 - 82.9 82.8 82.8 - 70.7 68.2 69.4 - 81.1
FitzGerald (Struct.,PoE) 81.2 76.7 78.9 55.1 82.5 78.2 80.3 57.3 74.5 70.0 72.2 41.3 -
Täckström (Struct.) 81.2 76.2 78.6 54.4 82.3 77.6 79.9 56.0 74.3 68.6 71.3 39.8 -
Toutanova (Ensemble) - - 78.6 58.7 81.9 78.8 80.3 60.1 - - 68.8 40.8 -
Punyakanok (Ensemble) 80.1 74.8 77.4 50.7 82.3 76.8 79.4 53.8 73.4 62.9 67.8 32.3 77.9

Table 1: Experimental results on CoNLL 2005, in terms of precision (P), recall (R), F1 and percentage of
completely correct predicates (Comp.). We report results of our best single and ensemble (PoE) model.
The comparison models are Zhou and Xu (2015), FitzGerald et al. (2015), Täckström et al. (2015),
Toutanova et al. (2008) and Punyakanok et al. (2008).

Development Test

Method P R F1 Comp. P R F1 Comp.

Ours (PoE) 83.5 83.2 83.4 67.5 83.5 83.3 83.4 68.5
Ours 81.8 81.4 81.5 64.6 81.7 81.6 81.7 66.0

Zhou - - 81.1 - - - 81.3 -
FitzGerald (Struct.,PoE) 81.0 78.5 79.7 60.9 81.2 79.0 80.1 62.6
Täckström (Struct.) 80.5 77.8 79.1 60.1 80.6 78.2 79.4 61.8
Pradhan (revised) - - - - 78.5 76.6 77.5 55.8

Table 2: Experimental results on CoNLL 2012 in the same metrics as above. We compare our best
single and ensemble (PoE) models against Zhou and Xu (2015), FitzGerald et al. (2015), Täckström
et al. (2015) and Pradhan et al. (2013).

All tokens are lower-cased and initialized with
100-dimensional GloVe embeddings pre-trained
on 6B tokens (Pennington et al., 2014) and up-
dated during training. Tokens that are not covered
by GloVe are replaced with a randomly initialized
UNK embedding.

Training We use Adadelta (Zeiler, 2012) with
ε = 1e−6 and ρ = 0.95 and mini-batches of size
80. We set RNN-dropout probability to 0.1 and
clip gradients with norm larger than 1. All the
models are trained for 500 epochs with early stop-
ping based on development results. 4

Ensembling We use a product of experts (Hin-
ton, 2002) to combine predictions of 5 mod-
els, each trained on 80% of the training corpus
and validated on the remaining 20%. For the
CoNLL 2012 corpus, we split the training data
from each sub-genre into 5 folds, such that the
training data will have similar genre distributions.

Constrained Decoding We experimented with
different types of constraints on the CoNLL 2005

4Training the full model on CoNLL 2005 takes about 5
days on a single Titan X Pascal GPU.

and CoNLL 2012 development sets. Only the BIO
hard constraints significantly improve over the en-
semble model. Therefore, in our final results, we
only use BIO hard constraints during decoding. 5

3.3 Results

In Table 1 and 2, we compare our best single
and ensemble model with previous work. Our en-
semble (PoE) has an absolute improvement of 2.1
F1 on both CoNLL 2005 and CoNLL 2012 over
the previous state of the art. Our single model
also achieves more than a 0.4 improvement on
both datasets. In comparison with the best re-
ported results, our percentage of completely cor-
rect predicates improves by 5.9 points. While the
continuing trend of improving SRL without syn-
tax seems to suggest that neural end-to-end sys-
tems no longer needs parsers, our analysis in Sec-
tion 4.4 will show that accurate syntactic informa-
tion can improve these deep models.

5A∗ search in this setting finds the optimal sequence for
all sentences and is therefore equivalent to Viterbi decoding.

476

Predicate Detection End-to-end SRL (Single) End-to-end SRL (PoE)

Dataset P R F1 P R F1 P R F1 ∆ F1

CoNLL 2005 Dev. 97.4 97.4 97.4 80.3 80.4 80.3 81.8 81.2 81.5 -1.2
WSJ Test 94.5 98.5 96.4 80.2 82.3 81.2 82.0 83.4 82.7 -1.9
Brown Test 89.3 95.7 92.4 67.6 69.6 68.5 69.7 70.5 70.1 -3.5

CoNLL 2012 Dev. 88.7 90.6 89.7 74.9 76.2 75.5 76.5 77.8 77.2 -6.2
CoNLL 2012 Test 93.7 87.9 90.7 78.6 75.1 76.8 80.2 76.6 78.4 -5.0

Table 3: Predicate detection performance and end-to-end SRL results using predicted predicates. ∆ F1
shows the absolute performance drop compared to our best ensemble model with gold predicates.

100 200 300 400 500

65

70

75

80

Num. epochs

D
ev

.F
1

%

Our model
No highway connections
No dropout
No orthogonal initialization

Figure 2: Smoothed learning curve of various
ablations. The combination of highway layers,
orthonormal parameter initialization and recur-
rent dropout is crucial to achieving strong perfor-
mance. The numbers shown here are without con-
strained decoding.

3.4 Ablations

Figure 2 shows learning curves of our model ab-
lations on the CoNLL 2005 development set. We
ablate our full model by removing highway con-
nections, RNN-dropout, and orthonormal initial-
ization independently. Without dropout, the model
overfits at around 300 epochs at 78 F1. Or-
thonormal parameter initialization is surprisingly
important—without this, the model achieves only
65 F1 within the first 50 epochs. All 8 layer abla-
tions suffer a loss of more than 1.7 in absolute F1
compared to the full model.

3.5 End-to-end SRL

The network for predicate detection (Section 2.3)
contains 2 BiLSTM layers with 100-dimensional
hidden units, and is trained for 30 epochs. For
end-to-end evaluation, all arguments predicted for
the false positive predicates are counted as preci-
sion loss, and all arguments for the false negative
predicates are considered as recall loss.

Table 3 shows the predicate detection F1 as well
as end-to-end SRL results with predicted predi-

cates.6 On CoNLL 2005, the predicate detector
achieved over 96 F1, and the final SRL results only
drop 1.2-3.5 F1 compared to using the gold pred-
icates. However, on CoNLL 2012, the predicate
detector has only about 90 F1, and the final SRL
results decrease by up to 6.2 F1. This is at least
in part due to the fact that CoNLL 2012 contains
some nominal and copula predicates (Weischedel
et al., 2013), making predicate identification a
more challenging problem.

4 Analysis

To better understand our deep SRL model and its
relation to previous work, we address the follow-
ing questions with a suite of empirical analyses:
• What is the model good at and what kinds of

mistakes does it make?
• How well do LSTMs model global structural

consistency, despite conditionally indepen-
dent tagging decisions?
• Is our model implicitly learning syntax, and

could explicitly modeling syntax still help?
All the analysis in this section is done on the
CoNLL 2005 development set with gold predi-
cates, unless otherwise stated. We are also able
to compare to previous systems whose model pre-
dictions are available online (Punyakanok et al.,
2005; Pradhan et al., 2005).7

4.1 Error Types Breakdown

Inspired by Kummerfeld et al. (2012), we define a
set of oracle transformations that fix various pre-
diction errors sequentially and observe the relative
improvement after each operation (see Table 4).
Figure 3 shows how our work compares to the pre-

6The frame identification numbers reported in Pradhan
et al. (2013) are not comparable, due to errors in the original
release of the data, as mentioned in Täckström et al. (2015).

7Model predictions of CoNLL 2005 systems: http://
www.cs.upc.edu/˜srlconll/st05/st05.html

477

Orig. Fix
Labels

Move
Core
Arg.

Merge
Spans

Split
Spans

Fix
Span

Boundary

Drop
Arg.

Add
Arg.

75

80

85

90

95

100

F1
%

Ours
Pradhan

Punyakanok

Figure 3: Performance after doing each type of or-
acle transformation in sequence, compared to two
strong non-neural baselines. The gap is closed af-
ter the Add Arg. transformation, showing how our
approach is gaining from predicting more argu-
ments than traditional systems.

vious systems in terms of different types of mis-
takes. While our model makes a similar number
of labeling errors to traditional syntax-based sys-
tems, it has far fewer missing arguments (perhaps
due to parser errors making some arguments diffi-
cult to recover for syntax-based systems).

Label Confusion As shown in Table 4, our sys-
tem most commonly makes labeling errors, where
the predicted span is an argument but the role was
incorrectly labeled. Table 5 shows a confusion
matrix for the most frequent labels. The model of-
ten confuses ARG2 with AM-DIR, AM-LOC and
AM-MNR. These confusions can arise due to the
use of ARG2 in many verb frames to represent se-
mantic relations such as direction or location. For
example, ARG2 in the frame move.01 is defined as
Arg2-GOL: destination. 8 This type of argument-
adjunct distinction is known to be difficult (Kings-
bury et al., 2002), and it is not surprising that our
neural model has many such failure cases.

Attachment Mistakes A second common
source of error is reflected by the Merge Spans
transformation (10.6%) and the Split Spans trans-
formation (14.7%). These errors are closely tied
to prepositional phrase (PP) attachment errors,
which are also known to be some of the biggest
challenges for linguistic analysis (Kummerfeld
et al., 2012). Figure 4 shows the distribution of
syntactic span labels involved in an attachment
mistake, where 62% of the syntactic spans are
prepositional phrases. For example, in Sumitomo

8Source: Unified verb index: http://verbs.
colorado.edu.

Operation Description %

Fix Labels Correct the span label if its boundary
matches gold. 29.3

Move Arg. Move a unique core argument to its cor-
rect position. 4.5

Merge
Spans

Combine two predicted spans into a gold
span if they are separated by at most one
word.

10.6

Split
Spans

Split a predicted span into two gold
spans that are separated by at most one
word.

14.7

Fix
Boundary

Correct the boundary of a span if its la-
bel matches an overlapping gold span. 18.0

Drop Arg. Drop a predicted argument that does not
overlap with any gold span. 7.4

Add Arg. Add a gold argument that does not over-
lap with any predicted span. 11.0

Table 4: Oracle transformations paired with the
relative error reduction after each operation. All
the operations are permitted only if they do not
cause any overlapping arguments.

pred. \ gold A0 A1 A2 A3 ADV DIR LOC MNR PNC TMP
A0 - 55 11 13 4 0 0 0 0 0
A1 78 - 46 0 0 22 11 10 25 14
A2 11 23 - 48 15 56 33 41 25 0
A3 3 2 2 - 4 0 0 0 25 14

ADV 0 0 0 4 - 0 15 29 25 36
DIR 0 0 5 4 0 - 11 2 0 0

LOC 5 9 12 0 4 0 - 10 0 14
MNR 3 0 12 26 33 0 0 - 0 21
PNC 0 3 5 4 0 11 4 2 - 0
TMP 0 8 5 0 41 11 26 6 0 -

Table 5: Confusion matrix for labeling errors,
showing the percentage of predicted labels for
each gold label. We only count predicted argu-
ments that match gold span boundaries.

financed the acquisition from Sears, our model
mistakenly labels the prepositional phrase from
Sears as the ARG2 of financed, whereas it should
instead attach to acquisition.

4.2 Long-range Dependencies

To analyze the model’s ability to capture long-
range dependencies, we compute the F1 of our
model on arguments with various distances to the
predicate. Figure 5 shows that performance tends
to degrade, for all models, for arguments further
from the predicate. Interestingly, the gap between
shallow and deep models becomes much larger for
the long-distance predicate-argument structures.
The absolute gap between our 2 layer and 8 layer
models is 3-4 F1 for arguments that are within 2
words to the predicate, and 5-6 F1 for arguments
that are farther away from the predicate. Surpris-

478

PP VP NP SBAR ADVP Other

0

20

40

60

80

100

62

10 10 5 4 9%
of

la
be

ls

Figure 4: For cases where our model either splits
a gold span into two (Z → XY) or merges two
gold constituents (XY → Z), we show the distri-
bution of syntactic labels for the Y span. Results
show the major cause of these errors is inaccurate
prepositional phrase attachment.

0 1-2 3-6 7-max

55

60

65

70

75

80

85

Distance (num. words in between)

F1
% L8

L6
L4
L2
Punyakanok
Pradhan

Figure 5: F1 by surface distance between predi-
cates and arguments. Performance degrades least
rapidly on long-range arguments for the deeper
neural models.

ingly, the neural model performance deteriorates
less severely on long-range dependencies than tra-
ditional syntax-based models.

4.3 Structural Consistency

We can quantify two types of structural consis-
tencies: the BIO constraints and the SRL-specific
constraints. Via our ablation study, we show
that deeper BiLSTMs are better at enforcing these
structural consistencies, although not perfectly.

BIO Violations The BIO format requires argu-
ment spans to begin with a B tag. Any I tag di-
rectly following an O tag or a tag with different
label is considered a violation. Table 6 shows the
number of BIO violations per token for BiLSTMs
with different depths. The number of BIO viola-
tions decreases when we use a deeper model. The
gap is biggest between 2-layer and 4-layer models,
and diminishes after that.

It is surprising that although the deeper models
generate impressively accurate token-level predic-

Housing starts are expected to quicken a bit from August’s pace

ARG0

ARG1

ARG2ARG2

ARG1

V ARG2 ARG3

ARG2ARG0

V

V

Gold

Pred.

+SRL

Figure 6: Example where performance is hurt by
enforcing the constraint that core roles may only
occur once (+SRL).

tions, they still make enough BIO errors to signif-
icantly hurt performance—when these constraints
are simple enough to be enforced by trivial rules.
We compare the average entropy between tokens
involved in BIO violations with the averaged en-
tropy of all tokens. For the 8-layer model, the aver-
age entropy on these tokens is 30 times higher than
the averaged entropy on all tokens. This suggests
that BIO inconsistencies occur when there is some
ambiguity. For example, if the model is unsure
whether two consecutive words should belong to
an ARG0 or ARG1, it might generate inconsistent
BIO sequences such as BARG0, IARG1 when decod-
ing at the token level. Using BIO-constrained de-
coding can resolve this ambiguity and result in a
structurally consistent solution.

SRL Structure Violations The model predic-
tions can also violate the SRL-specific constraints
commonly used in prior work (Punyakanok et al.,
2008; Täckström et al., 2015). As shown in Ta-
ble 7, the model occasionally violates these SRL
constraints. With our constrained decoding algo-
rithm, it is straightforward to enforce the unique
core roles (U) and continuation roles (C) con-
straints during decoding. The constrained de-
coding results are shown with the model named
L8+PoE+SRL in Table 7.

Although the violations are eliminated, the per-
formance does not significantly improve. This is
mainly due to two factors: (1) the model often
already satisfies these constraints on its own, so
the number of violations to be fixed are relatively
small, and (2) the gold SRL structure sometimes
violates the constraints and enforcing hard con-
straints can hurt performance. Figure 6 shows
a sentence in the CoNLL 2005 development set.
Our original model produces two ARG2s for the
predicate quicken, and this violates the SRL con-
straints. When the A∗ decoder fixes this viola-
tion, it changes the first ARG1 into ARG2 because
ARG0,ARG1,ARG2 is a more frequent pattern in
the training data and has higher overall score.

479

Accuracy Violations Avg. Entropy

Model (no BIO) F1 Token BIO All BIO

L8+PoE 81.5 91.5 0.07 0.02 0.72
L8 80.5 90.9 0.07 0.02 0.73
L6 80.1 90.3 0.06 0.02 0.72
L4 79.1 90.2 0.08 0.02 0.70
L2 74.6 88.4 0.18 0.03 0.66

Table 6: Comparison of BiLSTM models without
BIO decoding. We compare F1 and token-level
accuracy (Token), averaged BIO violations per to-
ken (BIO), overall model entropy (All) model en-
tropy at tokens involved in BIO violations (BIO).
Increasing the depth of the model beyond 4 does
not produce more structurally consistent output,
emphasizing the need for constrained decoding.

4.4 Can Syntax Still Help SRL?

The Propbank-style SRL formalism is closely tied
to syntax (Bonial et al., 2010; Weischedel et al.,
2013). In Table 7, we show that 98.7% of the gold
SRL arguments match an unlabeled constituent in
the gold syntax tree. Similar to some recent work
(Zhou and Xu, 2015), our model achieves strong
performance without directly modeling syntax. A
natural question follows: are neural SRL mod-
els implicitly learning syntax? Table 7 shows the
trend of deeper models making predictions that are
more consistent with the gold syntax in terms of
span boundaries. With our best model (L8+PoE),
94.3% of the predicted arguments spans are part of
the gold parse tree. This consistency is on par with
previous CoNLL 2005 systems that directly model
constituency and use predicted parse trees as fea-
tures (Punyakanok, 95.3% and Pradhan, 93.0%).

Constrained Decoding with Syntax The above
analysis raises a further question: would improv-
ing consistency with syntax provide improvements
for SRL? Our constrained decoding algorithm de-
scribed in Section 2.2 enables us to inject syn-
tax as a decoding constraint without having to re-
train the model. Specifically, if the decoded se-
quence contains k arguments that do not match
any unlabeled syntactic constituent, it will receive
a penalty of kC, whereC is a single parameter dic-
tating how much the model should trust the pro-
vided syntax. In Figure 7, we compare the SRL
accuracy with syntactic constraints specified by
gold parse or automatic parses. When using gold
syntax, the predictions improve up to 2 F1 as the
penalty increases. A state-of-the-art parser (Choe

SRL-Violations

Model or Oracle F1 Syn % U C R

Gold 100.0 98.7 24 0 61

L8+PoE 82.7 94.3 37 3 68
L8 81.6 94.0 48 4 73
L6 81.4 93.7 39 3 85
L4 80.5 93.2 51 3 84
L2 77.2 91.3 96 5 72

L8+PoE+SRL 82.8 94.2 5 1 68
L8+PoE+AutoSyn 83.2 96.1 113 3 68
L8+PoE+GoldSyn 85.0 97.6 102 3 68

Punyakanok 77.4 95.3 0 0 0
Pradhan 78.3 93.0 84 3 58

Table 7: Comparison of models with different
depths and decoding constraints (in addition to
BIO) as well as two previous systems. We com-
pare F1, unlabeled agreement with gold con-
stituency (Syn%) and each type of SRL-constraint
violations (Unique core roles, Continuation roles
and Reference roles). Our best model produces a
similar number of constraint violations to the gold
annotation, explaining why deterministically en-
forcing these constraints is not helpful.

and Charniak, 2016) provides smaller gains, while
using the Charniak parser (Charniak, 2000) hurts
performance if the model places too much trust in
it. These results suggest that high-quality syntax
can still make a large impact on SRL.

A known challenge for syntactic parsers is ro-
bustness on out-of-domain data. Therefore we
provide experimental results in Table 8 for both
CoNLL 2005 and CoNLL 2012, which consists
of 8 different genres. The penalties are tuned on
the two development sets separately (C = 10000
on CoNLL 2005 and C = 20 on CoNLL 2012).
On the CoNLL 2005 development set, the pre-
dicted syntax gives a 0.5 F1 improvement over
our best model, while on in-domain test and out-
of-domain development sets, the improvement is
much smaller. As expected, on CoNLL 2012, syn-
tax improves most on the newswire (NW) domain.
These improvements suggest that while decoding
with hard constraints is beneficial, joint training or
multi-task learning could be even more effective
by leveraging full, labeled syntactic structures.

5 Related Work

Traditional approaches to semantic role labeling
have used syntactic parsers to identify constituents
and model long-range dependencies, and enforced

480

0 1 10 100 1000 10000 ∞

82

83

84

85

Penalty C

F1
%

Gold
Choe
Charniak

Figure 7: Performance of syntax-constrained de-
coding as the non-constituent penalty increases for
syntax from two parsers (from Choe and Charniak
(2016) and Charniak (2000)) and gold syntax. The
best existing parser gives a small improvement,
but the improvement from gold syntax shows that
there is still potential for syntax to help SRL.

CoNLL-05 CoNLL-2012 Dev.

Dev. Test BC BN NW MZ PT TC WB

L8+PoE 82.7 84.6 81.4 82.8 82.8 80.4 93.6 84.8 81.0
+AutoSyn 83.2 84.8 81.5 82.8 83.2 80.6 93.7 84.9 81.1

Table 8: F1 on CoNLL 2005, and the devel-
opment set of CoNLL 2012, broken down by
genres. Syntax-constrained decoding (+AutoSyn)
shows bigger improvement on in-domain data
(CoNLL 05 and CoNLL 2012 NW).

global consistency using integer linear program-
ming (Punyakanok et al., 2008) or dynamic pro-
grams (Täckström et al., 2015). More recently,
neural methods have been employed on top of syn-
tactic features (FitzGerald et al., 2015; Roth and
Lapata, 2016). Our experiments show that off-
the-shelf neural methods have a remarkable ability
to learn long-range dependencies, syntactic con-
stituency structure, and global constraints without
coding task-specific mechanisms for doing so.

An alternative line of work has attempted to re-
duce the dependency on syntactic input for seman-
tic role labeling models. Collobert et al. (2011)
first introduced an end-to-end neural-based ap-
proach with sequence-level training and uses a
convolutional neural network to model the con-
text window. However, their best system fell
short of traditional feature-based systems. Neu-
ral methods have also been used as classifiers in
transition-based SRL systems (Henderson et al.,
2013; Swayamdipta et al., 2016). Most re-
cently, several successful LSTM-based architec-

tures have achieved state-of-the-art results in En-
glish span-based SRL (Zhou and Xu, 2015), Chi-
nese SRL (Wang et al., 2015), and dependency-
based SRL (Marcheggiani et al., 2017) with little
to no syntactic input. Our techniques push results
to more than 3 F1 over the best syntax-based mod-
els. However, we also show that there is potential
for syntax to further improve performance.

6 Conclusion and Future Work

We presented a new deep learning model for span-
based semantic role labeling with a 10% rela-
tive error reduction over the previous state of the
art. Our ensemble of 8 layer BiLSTMs incorpo-
rated some of the recent best practices such as or-
thonormal initialization, RNN-dropout, and high-
way connections, and we have shown that they are
crucial for getting good results with deep models.

Extensive error analysis sheds light on the
strengths and limitations of our deep SRL model,
with detailed comparison against shallower mod-
els and two strong non-neural systems. While
our deep model is better at recovering long-
distance predicate-argument relations, we still ob-
serve structural inconsistencies, which can be al-
leviated by constrained decoding.

Finally, we posed the question of whether deep
SRL still needs syntactic supervision. Despite re-
cent success without syntactic input, we found that
our best neural model can still benefit from ac-
curate syntactic parser output via straightforward
constrained decoding. In our oracle experiment,
we observed a 3 F1 improvement by leveraging
gold syntax, showing the potential for high quality
parsers to further improve deep SRL models.

Acknowledgments

The research was supported in part by DARPA
under the DEFT program (FA8750-13-2-0019),
the ARO (W911NF-16-1-0121), the NSF (IIS-
1252835, IIS-1562364), gifts from Google and
Tencent, and an Allen Distinguished Investigator
Award. We are grateful to Mingxuan Wang for
sharing his highway LSTM implementation and
Sameer Pradhan for help with the CoNLL 2012
dataset. We thank Nicholas FitzGerald, Dan Gar-
rette, Julian Michael, Hao Peng, and Swabha
Swayamdipta for helpful comments, and the
anonymous reviewers for valuable feedback.

481

References

Claire Bonial, Olga Babko-Malaya, Jinho D Choi, Jena
Hwang, and Martha Palmer. 2010. Propbank anno-
tation guidelines. Center for Computational Lan-
guage and Education Research Institute of Cognitive
Science University of Colorado at Boulder .

Xavier Carreras and Lluı́s Màrquez. 2005. Introduc-
tion to the conll-2005 shared task: Semantic role la-
beling. In Proceedings of the Ninth Conference on
Computational Natural Language Learning. Associ-
ation for Computational Linguistics, pages 152–164.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proc. of the First North American chap-
ter of the Association for Computational Linguis-
tics conference (NAACL). Association for Compu-
tational Linguistics, pages 132–139.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proc. of the 2016 Con-
ference of Empirical Methods in Natural Language
Processing (EMNLP).

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12:2493–2537.

Nicholas FitzGerald, Oscar Täckström, Kuzman
Ganchev, and Dipanjan Das. 2015. Semantic role
labeling with neural network factors. In Proc. of the
2015 Conference on Empirical Methods in Natural
Language Processing (EMNLP). pages 960–970.

Yarin Gal and Zoubin Ghahramani. 2016. A theoret-
ically grounded application of dropout in recurrent
neural networks. In Advances in Neural Information
Processing Systems. pages 1019–1027.

James Henderson, Paola Merlo, Ivan Titov, and
Gabriele Musillo. 2013. Multilingual joint pars-
ing of syntactic and semantic dependencies with a
latent variable model. Computational Linguistics
39(4):949–998.

Geoffrey E Hinton. 2002. Training products of experts
by minimizing contrastive divergence. Neural com-
putation 14(8):1771–1800.

Paul Kingsbury, Martha Palmer, and Mitch Marcus.
2002. Adding semantic annotation to the penn tree-
bank. In Proceedings of the human language tech-
nology conference. pages 252–256.

Jonathan K. Kummerfeld, David Hall, James R. Cur-
ran, and Dan Klein. 2012. Parser showdown at the
wall street corral: An empirical investigation of er-
ror types in parser output. In Proc. of the 2012 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). pages 1048–1059.

Kenton Lee, Mike Lewis, and Luke Zettlemoyer. 2016.
Global neural ccg parsing with optimality guaran-
tees. In Proc. of the 2016 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP).

Mike Lewis and Mark Steedman. 2014. A* ccg pars-
ing with a supertag-factored model. In Proc. of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP). pages 990–1000.

Diego Marcheggiani, Anton Frolov, and Ivan Titov.
2017. A simple and accurate syntax-agnostic neural
model for dependency-based semantic role labeling.
arXiv preprint arXiv:1701.02593 .

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proc. of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). pages 1532–1543.

Sameer Pradhan, Kadri Hacioglu, Wayne Ward,
James H Martin, and Daniel Jurafsky. 2005. Seman-
tic role chunking combining complementary syntac-
tic views. In Proc. of the 2005 Conference on Com-
putational Natural Language Learning (CoNLL).
pages 217–220.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using ontonotes. In Proc.
of the 2013 Conference on Computational Natural
Language Learning (CoNLL). pages 143–152.

Vasin Punyakanok, Peter Koomen, Dan Roth, and
Wen-tau Yih. 2005. Generalized inference with
multiple semantic role labeling systems. In Proc.
of the 2005 Conference on Computational Natural
Language Learning (CoNLL).

Vasin Punyakanok, Dan Roth, and Wen-tau Yih. 2008.
The importance of syntactic parsing and inference in
semantic role labeling. Computational Linguistics
34(2):257–287.

Michael Roth and Mirella Lapata. 2016. Neural se-
mantic role labeling with dependency path embed-
dings. In Proc. of the Annual Meeting of the Associ-
ation for Computational Linguistics (ACL).

Andrew M Saxe, James L McClelland, and Surya Gan-
guli. 2013. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv
preprint arXiv:1312.6120 .

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmid-
huber. 2015. Training very deep networks. In Ad-
vances in neural information processing systems.
pages 2377–2385.

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer,
and Noah A Smith. 2016. Greedy, joint syntactic-
semantic parsing with stack lstms. In Proc. of the
2016 Conference on Computational Natural Lan-
guage Learning (CoNLL). page 187.

482

Oscar Täckström, Kuzman Ganchev, and Dipanjan
Das. 2015. Efficient inference and structured learn-
ing for semantic role labeling. Transactions of the
Association for Computational Linguistics 3:29–41.

Kristina Toutanova, Aria Haghighi, and Christopher D
Manning. 2008. A global joint model for semantic
role labeling. Computational Linguistics 34(2):161–
191.

Zhen Wang, Tingsong Jiang, Baobao Chang, and Zhi-
fang Sui. 2015. Chinese semantic role labeling with
bidirectional recurrent neural networks. In Proc. of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1626–
1631.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw,
Nianwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, et al. 2013. Ontonotes release 5.0
ldc2013t19. Linguistic Data Consortium, Philadel-
phia, PA .

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

Yu Zhang, Guoguo Chen, Dong Yu, Kaisheng Yaco,
Sanjeev Khudanpur, and James Glass. 2016. High-
way long short-term memory rnns for distant speech
recognition. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP). pages 5755–5759.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proc. of the Annual Meeting of the As-
sociation for Computational Linguistics (ACL).

483

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 484–495
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1045

Towards End-to-End Reinforcement Learning of
Dialogue Agents for Information Access

Bhuwan Dhingra? Lihong Li† Xiujun Li† Jianfeng Gao†
Yun-Nung Chen‡ Faisal Ahmed† Li Deng†

?Carnegie Mellon University, Pittsburgh, PA, USA
†Microsoft Research, Redmond, WA, USA
‡National Taiwan University, Taipei, Taiwan

?bdhingra@andrew.cmu.edu †{lihongli,xiul,jfgao}@microsoft.com ‡y.v.chen@ieee.org

Abstract

This paper proposes KB-InfoBot1 — a
multi-turn dialogue agent which helps
users search Knowledge Bases (KBs)
without composing complicated queries.
Such goal-oriented dialogue agents typ-
ically need to interact with an external
database to access real-world knowledge.
Previous systems achieved this by issuing
a symbolic query to the KB to retrieve en-
tries based on their attributes. However,
such symbolic operations break the differ-
entiability of the system and prevent end-
to-end training of neural dialogue agents.
In this paper, we address this limitation
by replacing symbolic queries with an in-
duced “soft” posterior distribution over the
KB that indicates which entities the user is
interested in. Integrating the soft retrieval
process with a reinforcement learner leads
to higher task success rate and reward in
both simulations and against real users.
We also present a fully neural end-to-end
agent, trained entirely from user feedback,
and discuss its application towards person-
alized dialogue agents.

1 Introduction

The design of intelligent assistants which interact
with users in natural language ranks high on the
agenda of current NLP research. With an increas-
ing focus on the use of statistical and machine
learning based approaches (Young et al., 2013),
the last few years have seen some truly remark-
able conversational agents appear on the market
(e.g. Apple Siri, Microsoft Cortana, Google Allo).
These agents can perform simple tasks, answer

1The source code is available at: https://github.
com/MiuLab/KB-InfoBot

factual questions, and sometimes also aimlessly
chit-chat with the user, but they still lag far be-
hind a human assistant in terms of both the va-
riety and complexity of tasks they can perform.
In particular, they lack the ability to learn from
interactions with a user in order to improve and
adapt with time. Recently, Reinforcement Learn-
ing (RL) has been explored to leverage user inter-
actions to adapt various dialogue agents designed,
respectively, for task completion (Gašić et al.,
2013), information access (Wen et al., 2016b), and
chitchat (Li et al., 2016a).

We focus on KB-InfoBots, a particular type of
dialogue agent that helps users navigate a Knowl-
edge Base (KB) in search of an entity, as illus-
trated by the example in Figure 1. Such agents
must necessarily query databases in order to re-
trieve the requested information. This is usually
done by performing semantic parsing on the input
to construct a symbolic query representing the be-
liefs of the agent about the user goal, such as Wen
et al. (2016b), Williams and Zweig (2016), and Li
et al. (2017)’s work. We call such an operation
a Hard-KB lookup. While natural, this approach
has two drawbacks: (1) the retrieved results do not
carry any information about uncertainty in seman-
tic parsing, and (2) the retrieval operation is non
differentiable, and hence the parser and dialog pol-
icy are trained separately. This makes online end-
to-end learning from user feedback difficult once
the system is deployed.

In this work, we propose a probabilistic frame-
work for computing the posterior distribution of
the user target over a knowledge base, which we
term a Soft-KB lookup. This distribution is con-
structed from the agent’s belief about the attributes
of the entity being searched for. The dialogue pol-
icy network, which decides the next system action,
receives as input this full distribution instead of a
handful of retrieved results. We show in our ex-

484

https://doi.org/10.18653/v1/P17-1045

Movie=?
Actor=Bill Murray

Release Year=1993

Find me the Bill Murray’s movie.

I think it came out in 1993.

When was it released?

Groundhog Day is a Bill Murray
movie which came out in 1993.

KB-InfoBotUser

Entity-Centric Knowledge Base

Movie Actor
Release

Year

Groundhog Day Bill Murray 1993

Australia Nicole Kidman X

Mad Max: Fury Road X 2015

Figure 1: An interaction between a user looking
for a movie and the KB-InfoBot. An entity-centric
knowledge base is shown above the KB-InfoBot
(missing values denoted by X).

periments that this framework allows the agent to
achieve a higher task success rate in fewer dia-
logue turns. Further, the retrieval process is dif-
ferentiable, allowing us to construct an end-to-end
trainable KB-InfoBot, all of whose components
are updated online using RL.

Reinforcement learners typically require an en-
vironment to interact with, and hence static dia-
logue corpora cannot be used for their training.
Running experiments on human subjects, on the
other hand, is unfortunately too expensive. A
common workaround in the dialogue community
(Young et al., 2013; Schatzmann et al., 2007b;
Scheffler and Young, 2002) is to instead use user
simulators which mimic the behavior of real users
in a consistent manner. For training KB-InfoBot,
we adapt the publicly available2 simulator de-
scribed in Li et al. (2016b).

Evaluation of dialogue agents has been the sub-
ject of much research (Walker et al., 1997; Möller
et al., 2006). While the metrics for evaluating an
InfoBot are relatively clear — the agent should re-
turn the correct entity in a minimum number of
turns — the environment for testing it not so much.
Unlike previous KB-based QA systems, our focus
is on multi-turn interactions, and as such there are
no publicly available benchmarks for this prob-
lem. We evaluate several versions of KB-InfoBot
with the simulator and on real users, and show
that the proposed Soft-KB lookup helps the re-
inforcement learner discover better dialogue poli-
cies. Initial experiments on the end-to-end agent
also demonstrate its strong learning capability.

2
https://github.com/MiuLab/TC-Bot

2 Related Work

Our work is motivated by the neural GenQA (Yin
et al., 2016a) and neural enquirer (Yin et al.,
2016b) models for querying KBs via natural lan-
guage in a fully “neuralized” way. However, the
key difference is that these systems assume that
users can compose a complicated, compositional
natural language query that can uniquely identify
the element/answer in the KB. The research task
is to parse the query, i.e., turning the natural lan-
guage query into a sequence of SQL-like opera-
tions. Instead we focus on how to query a KB
interactively without composing such complicated
queries in the first place. Our work is motivated
by the observations that (1) users are more used to
issuing simple queries of length less than 5 words
(Spink et al., 2001); (2) in many cases, it is unrea-
sonable to assume that users can construct com-
positional queries without prior knowledge of the
structure of the KB to be queried.

Also related is the growing body of literature
focused on building end-to-end dialogue systems,
which combine feature extraction and policy opti-
mization using deep neural networks. Wen et al.
(2016b) introduced a modular neural dialogue
agent, which uses a Hard-KB lookup, thus break-
ing the differentiability of the whole system. As a
result, training of various components of the di-
alogue system is performed separately. The in-
tent network and belief trackers are trained using
supervised labels specifically collected for them;
while the policy network and generation network
are trained separately on the system utterances.
We retain modularity of the network by keeping
the belief trackers separate, but replace the hard
lookup with a differentiable one.

Dialogue agents can also interface with the
database by augmenting their output action space
with predefined API calls (Williams and Zweig,
2016; Zhao and Eskenazi, 2016; Bordes and We-
ston, 2016; Li et al., 2017). The API calls modify
a query hypothesis maintained outside the end-to-
end system which is used to retrieve results from
this KB. This framework does not deal with uncer-
tainty in language understanding since the query
hypothesis can only hold one slot-value at a time.
Our approach, on the other hand, directly models
the uncertainty to construct the posterior over the
KB.

Wu et al. (2015) presented an entropy mini-
mization dialogue management strategy for In-

485

foBots. The agent always asks for the value of
the slot with maximum entropy over the remain-
ing entries in the database, which is optimal in
the absence of language understanding errors, and
serves as a baseline against our approach. Rein-
forcement learning neural turing machines (RL-
NTM) (Zaremba and Sutskever, 2015) also allow
neural controllers to interact with discrete external
interfaces. The interface considered in that work
is a one-dimensional memory tape, while in our
work it is an entity-centric KB.

3 Probabilistic KB Lookup

This section describes a probabilistic framework
for querying a KB given the agent’s beliefs over
the fields in the KB.

3.1 Entity-Centric Knowledge Base (EC-KB)

A Knowledge Base consists of triples of the form
(h, r, t), which denotes that relation r holds be-
tween the head h and tail t. We assume that
the KB-InfoBot has access to a domain-specific
entity-centric knowledge base (EC-KB) (Zwickl-
bauer et al., 2013) where all head entities are of
a particular type (such as movies or persons), and
the relations correspond to attributes of these head
entities. Such a KB can be converted to a table
format whose rows correspond to the unique head
entities, columns correspond to the unique relation
types (slots henceforth), and some entries may be
missing. An example is shown in Figure 1.

3.2 Notations and Assumptions

Let T denote the KB table described above and
Ti,j denote the jth slot-value of the ith entity.
1 ≤ i ≤ N and 1 ≤ j ≤M . We let V j denote the
vocabulary of each slot, i.e. the set of all distinct
values in the j-th column. We denote missing val-
ues from the table with a special token and write
Ti,j = Ψ. Mj = {i : Ti,j = Ψ} denotes the set
of entities for which the value of slot j is missing.
Note that the user may still know the actual value
of Ti,j , and we assume this lies in V j . We do not
deal with new entities or relations at test time.

We assume a uniform prior G ∼ U [{1, ...N}]
over the rows in the table T , and let binary ran-
dom variables Φj ∈ {0, 1} indicate whether the
user knows the value of slot j or not. The agent
maintains M multinomial distributions ptj(v) for
v ∈ V j denoting the probability at turn t that the
user constraint for slot j is v, given their utterances

U t1 till that turn. The agent also maintains M bi-
nomials qtj = Pr(Φj = 1) which denote the prob-
ability that the user knows the value of slot j.

We assume that column values are indepen-
dently distributed to each other. This is a strong
assumption but it allows us to model the user goal
for each slot independently, as opposed to model-
ing the user goal over KB entities directly. Typi-
cally maxj |V j | < N and hence this assumption
reduces the number of parameters in the model.

3.3 Soft-KB Lookup
Let ptT (i) = Pr(G = i|U t1) be the posterior prob-
ability that the user is interested in row i of the
table, given the utterances up to turn t. We as-
sume all probabilities are conditioned on user in-
puts U t1 and drop it from the notation below. From
our assumption of independence of slot values,
we can write ptT (i) ∝ ∏M

j=1 Pr(Gj = i), where
Pr(Gj = i) denotes the posterior probability of
user goal for slot j pointing to Ti,j . Marginalizing
this over Φj gives:

Pr(Gj = i) =

1∑

φ=0

Pr(Gj = i,Φj = φ) (1)

= qtj Pr(Gj = i|Φj = 1)+

(1− qtj) Pr(Gj = i|Φj = 0).

For Φj = 0, the user does not know the value of
the slot, and from the prior:

Pr(Gj = i|Φj = 0) =
1

N
, 1 ≤ i ≤ N (2)

For Φj = 1, the user knows the value of slot j, but
this may be missing from T , and we again have
two cases:

Pr(Gj = i|Φj = 1) =

{
1
N
, i ∈Mj

ptj(v)

Nj(v)

(
1− |Mj |

N

)
, i 6∈Mj

(3)

Here, Nj(v) is the count of value v in slot j. De-
tailed derivation for (3) is provided in Appendix A.
Combining (1), (2), and (3) gives us the procedure
for computing the posterior over KB entities.

4 Towards an End-to-End-KB-InfoBot

We claim that the Soft-KB lookup method has two
benefits over the Hard-KB method – (1) it helps
the agent discover better dialogue policies by pro-
viding it more information from the language un-
derstanding unit, (2) it allows end-to-end training
of both dialogue policy and language understand-
ing in an online setting. In this section we describe
several agents to test these claims.

486

Belief Trackers

Policy Network Beliefs Summary

Soft-KB
Lookup

KB-InfoBot

User

User
Utterance

System
Action

Figure 2: High-level overview of the end-to-end
KB-InfoBot. Components with trainable parame-
ters are highlighted in gray.

4.1 Overview

Figure 2 shows an overview of the components of
the KB-InfoBot. At each turn, the agent receives a
natural language utterance ut as input, and selects
an action at as output. The action space, denoted
byA, consists ofM+1 actions — request(slot=i)
for 1 ≤ i ≤ M will ask the user for the value of
slot i, and inform(I) will inform the user with an
ordered list of results I from the KB. The dialogue
ends once the agent chooses inform.

We adopt a modular approach, typical to goal-
oriented dialogue systems (Wen et al., 2016b),
consisting of: a belief tracker module for iden-
tifying user intents, extracting associated slots,
and tracking the dialogue state (Yao et al., 2014;
Hakkani-Tür et al., 2016; Chen et al., 2016b; Hen-
derson et al., 2014; Henderson, 2015); an inter-
face with the database to query for relevant results
(Soft-KB lookup); a summary module to summa-
rize the state into a vector; a dialogue policy which
selects the next system action based on current
state (Young et al., 2013). We assume the agent
only responds with dialogue acts. A template-
based Natural Language Generator (NLG) can
be easily constructed for converting dialogue acts
into natural language.

4.2 Belief Trackers

The InfoBot consists of M belief trackers, one for
each slot, which get the user input xt and produce
two outputs, ptj and qtj , which we shall collectively
call the belief state: ptj is a multinomial distribu-
tion over the slot values v, and qtj is a scalar prob-
ability of the user knowing the value of slot j. We
describe two versions of the belief tracker.

Hand-Crafted Tracker: We first identify men-
tions of slot-names (such as “actor”) or slot-values
(such as “Bill Murray”) from the user input ut, us-
ing token-level keyword search. Let {w ∈ x} de-

note the set of tokens in a string x3, then for each
slot in 1 ≤ j ≤ M and each value v ∈ V j , we
compute its matching score as follows:

stj [v] =
|{w ∈ ut} ∩ {w ∈ v}|

|{w ∈ v}| (4)

A similar score btj is computed for the slot-names.
A one-hot vector reqt ∈ {0, 1}M denotes the pre-
viously requested slot from the agent, if any. qtj is
set to 0 if reqt[j] is 1 but stj [v] = 0 ∀v ∈ V j , i.e.
the agent requested for a slot but did not receive a
valid value in return, else it is set to 1.

Starting from an prior distribution p0
j (based on

the counts of the values in the KB), ptj [v] is up-
dated as:

ptj [v] ∝ pt−1
j [v] + C

(
stj [v] + btj + 1(reqt[j] = 1)

)
(5)

Here C is a tuning parameter, and the normaliza-
tion is given by setting the sum over v to 1.

Neural Belief Tracker: For the neural tracker
the user input ut is converted to a vector repre-
sentation xt, using a bag of n-grams (with n = 2)
representation. Each element of xt is an integer
indicating the count of a particular n-gram in ut.
We let V n denote the number of unique n-grams,
hence xt ∈ NV n

0 .
Recurrent neural networks have been used for

belief tracking (Henderson et al., 2014; Wen et al.,
2016b) since the output distribution at turn t de-
pends on all user inputs till that turn. We use a
Gated Recurrent Unit (GRU) (Cho et al., 2014) for
each tracker, which, starting from h0

j = 0 com-
putes htj = GRU(x1, . . . , xt) (see Appendix B for
details). htj ∈ Rd can be interpreted as a summary
of what the user has said about slot j till turn t.
The belief states are computed from this vector as
follows:

ptj = softmax(W p
j h

t
j + bpj) (6)

qtj = σ(WΦ
j h

t
j + bΦj) (7)

Here W p
j ∈ RV j×d, bpj ∈ RV j

, WΦ
j ∈ Rd and

bΦj ∈ R, are trainable parameters.

4.3 Soft-KB Lookup + Summary
This module uses the Soft-KB lookup described
in section 3.3 to compute the posterior ptT ∈ RN
over the EC-KB from the belief states (ptj , q

t
j).

3We use the NLTK tokenizer available at http://www.
nltk.org/api/nltk.tokenize.html

487

Collectively, outputs of the belief trackers and the
soft-KB lookup can be viewed as the current dia-
logue state internal to the KB-InfoBot. Let st =
[pt1, p

t
2, ..., p

t
M , q

t
1, q

t
2, ..., q

t
M , p

t
T] be the vector of

size
∑

j V
j+M+N denoting this state. It is pos-

sible for the agent to directly use this state vector
to select its next action at. However, the large size
of the state vector would lead to a large number of
parameters in the policy network. To improve effi-
ciency we extract summary statistics from the be-
lief states, similar to (Williams and Young, 2005).

Each slot is summarized into an entropy statistic
over a distribution wtj computed from elements of
the KB posterior ptT as follows:

wtj(v) ∝
∑

i:Ti,j=v

ptT (i) + p0
j (v)

∑

i:Ti,j=Ψ

ptT (i) .

(8)
Here, p0

j is a prior distribution over the values of
slot j, estimated using counts of each value in the
KB. The probability mass of v in this distribu-
tion is the agent’s confidence that the user goal has
value v in slot j. This two terms in (8) correspond
to rows in KB which have value v, and rows whose
value is unknown (weighted by the prior probabil-
ity that an unknown might be v). Then the sum-
mary statistic for slot j is the entropy H(wtj). The
KB posterior ptT is also summarized into an en-
tropy statistic H(ptT).

The scalar probabilities qtj are passed as is to
the dialogue policy, and the final summary vector
is s̃t = [H(p̃t1), ...,H(p̃tM), qt1, ..., q

t
M , H(ptT)].

Note that this vector has size 2M + 1.

4.4 Dialogue Policy
The dialogue policy’s job is to select the next ac-
tion based on the current summary state s̃t and the
dialogue history. We present a hand-crafted base-
line and a neural policy network.

Hand-Crafted Policy: The rule based policy is
adapted from (Wu et al., 2015). It asks for the
slot ĵ = arg minH(p̃tj) with the minimum en-
tropy, except if – (i) the KB posterior entropy
H(ptT) < αR, (ii) H(p̃tj) < min(αT , βH(p̃0

j),
(iii) slot j has already been requestedQ times. αR,
αT , β,Q are tuned to maximize reward against the
simulator.

Neural Policy Network: For the neural ap-
proach, similar to (Williams and Zweig, 2016;
Zhao and Eskenazi, 2016), we use an RNN to al-
low the network to maintain an internal state of

dialogue history. Specifically, we use a GRU unit
followed by a fully-connected layer and softmax
nonlinearity to model the policy π over actions in
A (W π ∈ R|A|×d, bπ ∈ R|A|):

htπ = GRU(s̃1, ..., s̃t) (9)

π = softmax(W πhtπ + bπ) . (10)

During training, the agent samples its actions
from the policy to encourage exploration. If this
action is inform(), it must also provide an ordered
set of entities indexed by I = (i1, i2, . . . , iR) in
the KB to the user. This is done by sampling R
items from the KB-posterior ptT . This mimics a
search engine type setting, where R may be the
number of results on the first page.

5 Training

Parameters of the neural components (denoted by
θ) are trained using the REINFORCE algorithm
(Williams, 1992). We assume that the learner has
access to a reward signal rt throughout the course
of the dialogue, details of which are in the next
section. We can write the expected discounted
return of the agent under policy π as J(θ) =

Eπ

[∑H
t=0 γ

trt

]
(γ is the discounting factor). We

also use a baseline reward signal b, which is the
average of all rewards in a batch, to reduce the
variance in the updates (Greensmith et al., 2004).
When only training the dialogue policy π using
this signal, updates are given by (details in Ap-
pendix C):

∇θJ(θ) = Eπ

[H∑

k=0

∇θ log πθ(a
k)

H∑

t=0

γt(rt−b)
]
,

(11)
For end-to-end training we need to update both

the dialogue policy and the belief trackers using
the reinforcement signal, and we can view the re-
trieval as another policy µθ (see Appendix C). The
updates are given by:

∇θJ(θ) =Ea∼π,I∼µ
[(
∇θ logµθ(I)+

H∑

h=0

∇θ log πθ(ah)
) H∑

k=0

γk(rk − b)
]
,

(12)

In the case of end-to-end learning, we found that
for a moderately sized KB, the agent almost al-
ways fails if starting from random initialization.

488

In this case, credit assignment is difficult for the
agent, since it does not know whether the failure
is due to an incorrect sequence of actions or in-
correct set of results from the KB. Hence, at the
beginning of training we have an Imitation Learn-
ing (IL) phase where the belief trackers and pol-
icy network are trained to mimic the hand-crafted
agents. Assume that p̂tj and q̂tj are the belief states
from a rule-based agent, and ât its action at turn t.
Then the loss function for imitation learning is:

L(θ) = E
[
D(p̂tj ||ptj(θ))+H(q̂tj , q

t
j(θ))−log πθ(â

t)
]

D(p||q) and H(p, q) denote the KL divergence
and cross-entropy between p and q respectively.

The expectations are estimated using a mini-
batch of dialogues of size B. For RL we use
RMSProp (Hinton et al., 2012) and for IL we use
vanilla SGD updates to train the parameters θ.

6 Experiments and Results

Previous work in KB-based QA has focused on
single-turn interactions and is not directly compa-
rable to the present study. Instead we compare dif-
ferent versions of the KB-InfoBot described above
to test our claims.

6.1 KB-InfoBot versions
We have described two belief trackers – (A) Hand-
Crafted and (B) Neural, and two dialogue policies
– (C) Hand-Crafted and (D) Neural.

Rule agents use the hand-crafted belief track-
ers and hand-crafted policy (A+C). RL agents use
the hand-crafted belief trackers and the neural pol-
icy (A+D). We compare three variants of both sets
of agents, which differ only in the inputs to the
dialogue policy. The No-KB version only takes
entropy H(p̂tj) of each of the slot distributions.
The Hard-KB version performs a hard-KB lookup
and selects the next action based on the entropy of
the slots over retrieved results. This is the same
approach as in Wen et al. (2016b), except that
we take entropy instead of summing probabilities.
The Soft-KB version takes summary statistics of
the slots and KB posterior described in Section 4.
At the end of the dialogue, all versions inform the
user with the top results from the KB posterior ptT ,
hence the difference only lies in the policy for ac-
tion selection. Lastly, the E2E agent uses the neu-
ral belief tracker and the neural policy (B+D), with
a Soft-KB lookup. For the RL agents, we also ap-
pend q̂tj and a one-hot encoding of the previous

KB-split N M maxj |V j | |Mj |
Small 277 6 17 20%

Medium 428 6 68 20%
Large 857 6 101 20%

X-Large 3523 6 251 20%

Table 1: Movies-KB statistics for four splits. Re-
fer to Section 3.2 for description of columns.

agent action to the policy network input. Hyperpa-
rameter details for the agents are provided in Ap-
pendix D.

6.2 User Simulator
Training reinforcement learners is challenging be-
cause they need an environment to operate in. In
the dialogue community it is common to use sim-
ulated users for this purpose (Schatzmann et al.,
2007a,b; Cuayáhuitl et al., 2005; Asri et al., 2016).
In this work we adapt the publicly-available user
simulator presented in Li et al. (2016b) to fol-
low a simple agenda while interacting with the
KB-InfoBot, as well as produce natural language
utterances . Details about the simulator are in-
cluded in Appendix E. During training, the sim-
ulated user also provides a reward signal at the
end of each dialogue. The dialogue is a success
if the user target is in top R = 5 results re-
turned by the agent; and the reward is computed
as max(0, 2(1 − (r − 1)/R)), where r is the ac-
tual rank of the target. For a failed dialogue the
agent receives a reward of −1, and at each turn it
receives a reward of −0.1 to encourage short ses-
sions4. The maximum length of a dialogue is 10
turns beyond which it is deemed a failure.

6.3 Movies-KB
We use a movie-centric KB constructed using the
IMDBPy5 package. We constructed four differ-
ent splits of the dataset, with increasing number of
entities, whose statistics are given in Table 1. The
original KB was modified to reduce the number
of actors and directors in order to make the task
more challenging6. We randomly remove 20% of
the values from the agent’s copy of the KB to sim-
ulate a scenario where the KB may be incomplete.
The user, however, may still know these values.

4A turn consists of one user action and one agent action.
5http://imdbpy.sourceforge.net/
6We restricted the vocabulary to the first few unique val-

ues of these slots and replaced all other values with a random
value from this set.

489

Agent Small KB Medium KB Large KB X-Large KB
T S R T S R T S R T S R

No KB Rule 5.04 .64 .26±.02 5.05 .77 .74±.02 4.93 .78 .82±.02 4.84 .66 .43±.02
RL 2.65 .56 .24±.02 3.32 .76 .87±.02 3.71 .79 .94±.02 3.64 .64 .50±.02

Hard KB Rule 5.04 .64 .25±.02 3.66 .73 .75±.02 4.27 .75 .78±.02 4.84 .65 .42±.02
RL 3.36 .62 .35±.02 3.07 .75 .86±.02 3.53 .79 .98±.02 2.88 .62 .53±.02

Soft KB
Rule 2.12 .57 .32±.02 3.94 .76 .83±.02 3.74 .78 .93±.02 4.51 .66 .51±.02
RL 2.93 .63 .43±.02 3.37 .80 .98±.02 3.79 .83 1.05±.02 3.65 .68 .62±.02
E2E 3.13 .66 .48±.02 3.27 .83 1.10±.02 3.51 .83 1.10±.02 3.98 .65 .50±.02

Max 3.44 1.0 1.64 2.96 1.0 1.78 3.26 1.0 1.73 3.97 1.0 1.37

Table 2: Performance comparison. Average (±std error) for 5000 runs after choosing the best model
during training. T: Average number of turns. S: Success rate. R: Average reward.

6.4 Simulated User Evaluation

We compare each of the discussed versions along
three metrics: the average rewards obtained (R),
success rate (S) (where success is defined as pro-
viding the user target among top R results), and
the average number of turns per dialogue (T). For
the RL and E2E agents, during training we fix the
model every 100 updates and run 2000 simulations
with greedy action selection to evaluate its perfor-
mance. Then after training we select the model
with the highest average reward and run a further
5000 simulations and report the performance in
Table 2. For reference we also show the perfor-
mance of an agent which receives perfect informa-
tion about the user target without any errors, and
selects actions based on the entropy of the slots
(Max). This can be considered as an upper bound
on the performance of any agent (Wu et al., 2015).

In each case the Soft-KB versions achieve the
highest average reward, which is the metric all
agents optimize. In general, the trade-off between
minimizing average turns and maximizing success
rate can be controlled by changing the reward sig-
nal. Note that, except the E2E version, all versions
share the same belief trackers, but by re-asking
values of some slots they can have different pos-
teriors ptT to inform the results. This shows that
having full information about the current state of
beliefs over the KB helps the Soft-KB agent dis-
cover better policies. Further, reinforcement learn-
ing helps discover better policies than the hand-
crafted rule-based agents, and we see a higher re-
ward for RL agents compared to Rule ones. This is
due to the noisy natural language inputs; with per-
fect information the rule-based strategy is optimal.
Interestingly, the RL-Hard agent has the minimum
number of turns in 2 out of the 4 settings, at the
cost of a lower success rate and average reward.
This agent does not receive any information about
the uncertainty in semantic parsing, and it tends to

RL­Hard

Rule­Soft

RL­Soft

E2E­Soft
0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
uc

ce
ss

 R
at

e

p=0.01

ns

p=0.03

109

105 121

103

RL­Hard

Rule­Soft

RL­Soft

E2E­Soft
1

2

3

4

5

6

7

8

9

10

T

ur
ns

Figure 3: Performance of KB-InfoBot versions
when tested against real users. Left: Success rate,
with the number of test dialogues indicated on
each bar, and the p-values from a two-sided per-
mutation test. Right: Distribution of the number
of turns in each dialogue (differences in mean are
significant with p < 0.01).

inform as soon as the number of retrieved results
becomes small, even if they are incorrect.

Among the Soft-KB agents, we see that
E2E>RL>Rule, except for the X-Large KB. For
E2E, the action space grows exponentially with
the size of the KB, and hence credit assignment
gets more difficult. Future work should focus on
improving the E2E agent in this setting. The dif-
ficulty of a KB-split depends on number of enti-
ties it has, as well as the number of unique values
for each slot (more unique values make the prob-
lem easier). Hence we see that both the “Small”
and “X-Large” settings lead to lower reward for
the agents, since maxj |V j |

N is small for them.

6.5 Human Evaluation

We further evaluate the KB-InfoBot versions
trained using the simulator against real subjects,
recruited from the author’s affiliations. In each
session, in a typed interaction, the subject was first
presented with a target movie from the “Medium”
KB-split along with a subset of its associated slot-

490

Turn Dialogue Rank Dialogue Rank Dialogue Rank

1
can i get a movie directed by maiellaro

75
find a movie directed by hemecker

7
peter greene acted in a family comedy - what was it?

35
request actor request actor request actor

2
neal

2
i dont know

7
peter

28
request mpaa_rating request mpaa_rating request mpaa_rating

3
not sure about that

2
i dont know

7
i don't know that

28
request critic_rating request critic_rating request critic_rating

4
i don't remember

2
7.6

13
the critics rated it as 6.5

3
request genre request critic_rating inform

5
i think it's a crime movie

1
7.9

23
inform request critic_rating

6
7.7

41
inform

Figure 4: Sample dialogues between users and the KB-InfoBot (RL-Soft version). Each turn begins
with a user utterance followed by the agent response. Rank denotes the rank of the target movie in the
KB-posterior after each turn.

values from the KB. To simulate the scenario
where end-users may not know slot values cor-
rectly, the subjects in our evaluation were pre-
sented multiple values for the slots from which
they could choose any one while interacting with
the agent. Subjects were asked to initiate the con-
versation by specifying some of these values, and
respond to the agent’s subsequent requests, all in
natural language. We test RL-Hard and the three
Soft-KB agents in this study, and in each session
one of the agents was picked at random for test-
ing. In total, we collected 433 dialogues, around
20 per subject. Figure 3 shows a comparison of
these agents in terms of success rate and number of
turns, and Figure 4 shows some sample dialogues
from the user interactions with RL-Soft.

In comparing Hard-KB versus Soft-KB lookup
methods we see that both Rule-Soft and RL-Soft
agents achieve a higher success rate than RL-Hard,
while E2E-Soft does comparably. They do so in an
increased number of average turns, but achieve a
higher average reward as well. Between RL-Soft
and Rule-Soft agents, the success rate is similar,
however the RL agent achieves that rate in a lower
number of turns on average. RL-Soft achieves a
success rate of 74% on the human evaluation and
80% against the simulated user, indicating mini-
mal overfitting. However, all agents take a higher
number of turns against real users as compared to
the simulator, due to the noisier inputs.

The E2E gets the highest success rate against
the simulator, however, when tested against real
users it performs poorly with a lower success
rate and a higher number of turns. Since it has
more trainable components, this agent is also most
prone to overfitting. In particular, the vocabulary
of the simulator it is trained against is quite lim-
ited (V n = 3078), and hence when real users

1.0 1.5 2.0
NLG Temperature

0.2

0.4

0.6

0.8

1.0

1.2

A
ve

ra
ge

 R
ew

ar
d

RL­Hard
RL­Soft
End2End

Figure 5: Average rewards against simulator as
temperature of softmax in NLG output is in-
creased. Higher temperature leads to more noise
in output. Average over 5000 simulations after se-
lecting the best model during training.

provided inputs outside this vocabulary, it per-
formed poorly. In the future we plan to fix this
issue by employing a better architecture for the
language understanding and belief tracker com-
ponents Hakkani-Tür et al. (2016); Liu and Lane
(2016); Chen et al. (2016b,a), as well as by pre-
training on separate data.

While its generalization performance is poor,
the E2E system also exhibits the strongest learn-
ing capability. In Figure 5, we compare how dif-
ferent agents perform against the simulator as the
temperature of the output softmax in its NLG is in-
creased. A higher temperature means a more uni-
form output distribution, which leads to generic
simulator responses irrelevant to the agent ques-
tions. This is a simple way of introducing noise
in the utterances. The performance of all agents
drops as the temperature is increased, but less
so for the E2E agent, which can adapt its belief
tracker to the inputs it receives. Such adaptation

491

is key to the personalization of dialogue agents,
which motivates us to introduce the E2E agent.

7 Conclusions and Discussion

This work is aimed at facilitating the move to-
wards end-to-end trainable dialogue agents for in-
formation access. We propose a differentiable
probabilistic framework for querying a database
given the agent’s beliefs over its fields (or slots).
We show that such a framework allows the down-
stream reinforcement learner to discover better di-
alogue policies by providing it more information.
We also present an E2E agent for the task, which
demonstrates a strong learning capacity in simula-
tions but suffers from overfitting when tested on
real users. Given these results, we propose the
following deployment strategy that allows a dia-
logue system to be tailored to specific users via
learning from agent-user interactions. The system
could start off with an RL-Soft agent (which gives
good performance out-of-the-box). As the user in-
teracts with this agent, the collected data can be
used to train the E2E agent, which has a strong
learning capability. Gradually, as more experience
is collected, the system can switch from RL-Soft
to the personalized E2E agent. Effective imple-
mentation of this, however, requires the E2E agent
to learn quickly and this is the research direction
we plan to focus on in the future.

Acknowledgements

We would like to thank Dilek Hakkani-Tür and re-
viewers for their insightful comments on the pa-
per. We would also like to acknowledge the vol-
unteers from Carnegie Mellon University and Mi-
crosoft Research for helping us with the human
evaluation. Yun-Nung Chen is supported by the
Ministry of Science and Technology of Taiwan un-
der the contract number 105-2218-E-002-033, In-
stitute for Information Industry, and MediaTek.

References
Layla El Asri, Jing He, and Kaheer Suleman. 2016.

A sequence-to-sequence model for user simula-
tion in spoken dialogue systems. arXiv preprint
arXiv:1607.00070 .

Antoine Bordes and Jason Weston. 2016. Learn-
ing end-to-end goal-oriented dialog. arXiv preprint
arXiv:1605.07683 .

Yun-Nung Chen, Dilek Hakanni-Tür, Gokhan Tur, Asli
Celikyilmaz, Jianfeng Guo, and Li Deng. 2016a.

Syntax or semantics? knowledge-guided joint se-
mantic frame parsing.

Yun-Nung Chen, Dilek Hakkani-Tür, Gokhan Tur,
Jianfeng Gao, and Li Deng. 2016b. End-to-end
memory networks with knowledge carryover for
multi-turn spoken language understanding. In Pro-
ceedings of The 17th Annual Meeting of the Interna-
tional Speech Communication Association.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. EMNLP .

Heriberto Cuayáhuitl, Steve Renals, Oliver Lemon, and
Hiroshi Shimodaira. 2005. Human-computer dia-
logue simulation using hidden markov models. In
Automatic Speech Recognition and Understanding,
2005 IEEE Workshop on. IEEE, pages 290–295.

M Gašić, Catherine Breslin, Matthew Henderson,
Dongho Kim, Martin Szummer, Blaise Thomson,
Pirros Tsiakoulis, and Steve Young. 2013. On-
line policy optimisation of bayesian spoken dialogue
systems via human interaction. In 2013 IEEE Inter-
national Conference on Acoustics, Speech and Sig-
nal Processing. IEEE, pages 8367–8371.

Peter W Glynn. 1990. Likelihood ratio gradient esti-
mation for stochastic systems. Communications of
the ACM 33(10):75–84.

Evan Greensmith, Peter L Bartlett, and Jonathan Bax-
ter. 2004. Variance reduction techniques for gradi-
ent estimates in reinforcement learning. Journal of
Machine Learning Research 5(Nov):1471–1530.

Dilek Hakkani-Tür, Gokhan Tur, Asli Celikyilmaz,
Yun-Nung Chen, Jianfeng Gao, Li Deng, and Ye-
Yi Wang. 2016. Multi-domain joint semantic frame
parsing using bi-directional RNN-LSTM. In Pro-
ceedings of The 17th Annual Meeting of the Interna-
tional Speech Communication Association.

Matthew Henderson. 2015. Machine learning for dia-
log state tracking: A review. Machine Learning in
Spoken Language Processing Workshop .

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014. Word-based dialog state tracking with
recurrent neural networks. In Proceedings of the
15th Annual Meeting of the Special Interest Group
on Discourse and Dialogue (SIGDIAL). pages 292–
299.

Geoffrey Hinton, N Srivastava, and Kevin Swersky.
2012. Lecture 6a overview of mini–batch gradi-
ent descent. Coursera Lecture slides https://class.
coursera. org/neuralnets-2012-001/lecture,[Online .

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016a. Deep
reinforcement learning for dialogue generation.
EMNLP .

492

Xiujun Li, Zachary C Lipton, Bhuwan Dhingra, Lihong
Li, Jianfeng Gao, and Yun-Nung Chen. 2016b. A
user simulator for task-completion dialogues. arXiv
preprint arXiv:1612.05688 .

Xuijun Li, Yun-Nung Chen, Lihong Li, and Jianfeng
Gao. 2017. End-to-end task-completion neural dia-
logue systems. arXiv preprint arXiv:1703.01008 .

Bing Liu and Ian Lane. 2016. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. Interspeech 2016 pages 685–689.

Sebastian Möller, Roman Englert, Klaus-Peter Engel-
brecht, Verena Vanessa Hafner, Anthony Jameson,
Antti Oulasvirta, Alexander Raake, and Norbert Re-
ithinger. 2006. Memo: towards automatic usability
evaluation of spoken dialogue services by user error
simulations. In INTERSPEECH.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007a. Agenda-based
user simulation for bootstrapping a pomdp dialogue
system. In Human Language Technologies 2007:
The Conference of the North American Chapter
of the Association for Computational Linguistics;
Companion Volume, Short Papers. Association for
Computational Linguistics, pages 149–152.

Jost Schatzmann, Blaise Thomson, and Steve Young.
2007b. Statistical user simulation with a hidden
agenda. Proc SIGDial, Antwerp 273282(9).

Konrad Scheffler and Steve Young. 2002. Automatic
learning of dialogue strategy using dialogue simu-
lation and reinforcement learning. In Proceedings
of the second international conference on Human
Language Technology Research. Morgan Kaufmann
Publishers Inc., pages 12–19.

Amanda Spink, Dietmar Wolfram, Major BJ Jansen,
and Tefko Saracevic. 2001. Searching the web: The
public and their queries. Journal of the Association
for Information Science and Technology 52(3):226–
234.

Marilyn A Walker, Diane J Litman, Candace A Kamm,
and Alicia Abella. 1997. Paradise: A framework for
evaluating spoken dialogue agents. In Proceedings
of the eighth conference on European chapter of the
Association for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 271–280.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić,
Lina M. Rojas-Barahona, Pei-Hao Su, Stefan Ultes,
David Vandyke, and Steve Young. 2016a. Condi-
tional generation and snapshot learning in neural di-
alogue systems. EMNLP .

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić,
Lina M. Rojas-Barahona, Pei-Hao Su, Stefan Ultes,
David Vandyke, and Steve Young. 2016b. A
network-based end-to-end trainable task-oriented di-
alogue system. arXiv preprint arXiv:1604.04562 .

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems.
EMNLP .

Jason D Williams and Steve Young. 2005. Scaling
up POMDPs for dialog management: The “Sum-
mary POMDP” method. In IEEE Workshop on
Automatic Speech Recognition and Understanding,
2005.. IEEE, pages 177–182.

Jason D Williams and Geoffrey Zweig. 2016. End-
to-end lstm-based dialog control optimized with su-
pervised and reinforcement learning. arXiv preprint
arXiv:1606.01269 .

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4):229–256.

Ji Wu, Miao Li, and Chin-Hui Lee. 2015. A proba-
bilistic framework for representing dialog systems
and entropy-based dialog management through dy-
namic stochastic state evolution. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing
23(11):2026–2035.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Ge-
offrey Zweig, and Yangyang Shi. 2014. Spoken lan-
guage understanding using long short-term memory
neural networks. In Spoken Language Technology
Workshop (SLT), 2014 IEEE. IEEE, pages 189–194.

Jun Yin, Xin Jiang, Zhengdong Lu, Lifeng Shang,
Hang Li, and Xiaoming Li. 2016a. Neural gener-
ative question answering. International Joint Con-
ference on Artificial Intelligence .

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2016b. Neural enquirer: Learning to query tables.
International Joint Conference on Artificial Intelli-
gence .

Steve Young, Milica Gašić, Blaise Thomson, and Ja-
son D Williams. 2013. POMDP-based statistical
spoken dialog systems: A review. Proceedings of
the IEEE 101(5):1160–1179.

Wojciech Zaremba and Ilya Sutskever. 2015. Rein-
forcement learning neural Turing machines-revised.
arXiv preprint arXiv:1505.00521 .

Tiancheng Zhao and Maxine Eskenazi. 2016. To-
wards end-to-end learning for dialog state tracking
and management using deep reinforcement learning.
arXiv preprint arXiv:1606.02560 .

Stefan Zwicklbauer, Christin Seifert, and Michael
Granitzer. 2013. Do we need entity-centric knowl-
edge bases for entity disambiguation? In Pro-
ceedings of the 13th International Conference on
Knowledge Management and Knowledge Technolo-
gies. ACM, page 4.

493

A Posterior Derivation

Here, we present a derivation for equation 3, i.e.,
the posterior over the KB slot when the user knows
the value of that slot. For brevity, we drop Φj = 0
from the condition in all probabilities below. For
the case when i ∈Mj , we can write:

Pr(Gj = i)

= Pr(Gj ∈Mj) Pr(Gj = i|Gj ∈Mj)

=
|Mj |
N

1

|Mj |
=

1

N
, (13)

where we assume all missing values to be equally
likely, and estimate the prior probability of the
goal being missing from the count of missing val-
ues in that slot. For the case when i = v 6∈Mj :

Pr(Gj = i)

= Pr(Gj 6∈Mj) Pr(Gj = i|Gj 6∈Mj)

=

(
1− |Mj |

N

)
×
ptj(v)

Nj(v)
, (14)

where the second term comes from taking the
probability mass associated with v in the belief
tracker and dividing it equally among all rows with
value v.

We can also verify that the above distribution is
valid: i.e., it sums to 1:

∑

i

Pr(Gj = i)

=
∑

i∈Mj

Pr(Gj = i) +
∑

i 6∈Mj

Pr(Gj = i)

=
∑

i∈Mj

1

N
+
∑

i 6∈Mj

(
1− |Mj |

N

)
ptj(v)

#jv

=
|Mj |
N

+

(
1− |Mj |

N

) ∑

i 6∈Mj

ptj(v)

#jv

=
|Mj |
N

+

(
1− |Mj |

N

)∑

i∈V j

#jv
ptj(v)

#jv

=
|Mj |
N

+

(
1− |Mj |

N

)
× 1

= 1 .

B Gated Recurrent Units

A Gated Recurrent Unit (GRU) (Cho et al., 2014)
is a recurrent neural network which operates on an
input sequence x1, . . . , xt. Starting from an initial

state h0 (usually set to 0 it iteratively computes the
final output ht as follows:

rt = σ(Wrxt + Urht−1 + br)

zt = σ(Wzxt + Uzht−1 + bz)

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh)

ht = (1− zt)� ht−1 + zt � h̃t . (15)

Here σ denotes the sigmoid nonlinearity, and� an
element-wise product.

C REINFORCE updates

We assume that the learner has access to a reward
signal rt throughout the course of the dialogue, de-
tails of which are in the next section. We can write
the expected discounted return of the agent under
policy π as follows:

J(θ) = E

[
H∑

t=0

γtrt

]
(16)

Here, the expectation is over all possible trajecto-
ries τ of the dialogue, θ denotes the trainable pa-
rameters of the learner, H is the maximum length
of an episode, and γ is the discounting factor. We
can use the likelihood ratio trick (Glynn, 1990) to
write the gradient of the objective as follows:

∇θJ(θ) = E

[
∇θ log pθ(τ)

H∑

t=0

γtrt

]
, (17)

where pθ(τ) is the probability of observing a par-
ticular trajectory under the current policy. With a
Markovian assumption, we can write

pθ(τ) = p(s0)
H∏

k=0

p(sk+1|sk, ak)πθ(ak|sk),

(18)
where θ denotes dependence on the neural net-
work parameters. From 17,18 we obtain

∇θJ(θ) = Ea∼π
[H∑

k=0

∇θ log πθ(ak)

H∑

t=0

γtrt

]
,

(19)
If we need to train both the policy network and

the belief trackers using the reinforcement signal,
we can view the KB posterior ptT as another pol-
icy. During training then, to encourage explo-
ration, when the agent selects the inform action we

494

sampleR results from the following distribution to
return to the user:

µ(I) = ptT (i1)× ptT (i2)

1− ptT (i1)
× · · · . (20)

This formulation also leads to a modified ver-
sion of the episodic REINFORCE update rule
(Williams, 1992). Specifically, eq. 18 now be-
comes,

pθ(τ) =

[
p(s0)

H∏

k=0

p(sk+1|sk, ak)πθ(ak|sk)
]
µθ(I),

(21)
Notice the last term µθ above which is the poste-
rior of a set of results from the KB. From 17,21 we
obtain

∇θJ(θ) =Ea∼π,I∼µ
[(
∇θ logµθ(I)+

H∑

h=0

∇θ log πθ(ah)
) H∑

k=0

γkrk

]
,

(22)

D Hyperparameters

We use GRU hidden state size of d = 50 for the
RL agents and d = 100 for the E2E, a learning
rate of 0.05 for the imitation learning phase and
0.005 for the reinforcement learning phase, and
minibatch size 128. For the rule agents, hyperpa-
rameters were tuned to maximize the average re-
ward of each agent in simulations. For the E2E
agent, imitation learning was performed for 500
updates, after which the agent switched to rein-
forcement learning. The input vocabulary is con-
structed from the NLG vocabulary and bigrams in
the KB, and its size is 3078.

E User Simulator

At the beginning of each dialogue, the simulated
user randomly samples a target entity from the EC-
KB and a random combination of informable slots
for which it knows the value of the target. The re-
maining slot-values are unknown to the user. The
user initiates the dialogue by providing a subset
of its informable slots to the agent and requesting
for an entity which matches them. In subsequent
turns, if the agent requests for the value of a slot,
the user complies by providing it or informs the
agent that it does not know that value. If the agent
informs results from the KB, the simulator checks
whether the target is among them and provides the
reward.

We convert dialogue acts from the user into nat-
ural language utterances using a separately trained
natural language generator (NLG). The NLG is
trained in a sequence-to-sequence fashion, us-
ing conversations between humans collected by
crowd-sourcing. It takes the dialogue actions
(DAs) as input, and generates template-like sen-
tences with slot placeholders via an LSTM de-
coder. Then, a post-processing scan is performed
to replace the slot placeholders with their actual
values, which is similar to the decoder module in
(Wen et al., 2015, 2016a). In the LSTM decoder,
we apply beam search, which iteratively consid-
ers the top k best sentences up to time step t when
generating the token of the time step t+ 1. For the
sake of the trade-off between the speed and perfor-
mance, we use the beam size of 3 in the following
experiments.

There are several sources of error in user utter-
ances. Any value provided by the user may be cor-
rupted by noise, or substituted completely with an
incorrect value of the same type (e.g., “Bill Mur-
ray” might become just “Bill” or “Tom Cruise”).
The NLG described above is inherently stochas-
tic, and may sometimes generate utterances irrel-
evant to the agent request. By increasing the tem-
perature of the output softmax in the NLG we can
increase the noise in user utterances.

495

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 496–505
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1046

Sequential Matching Network: A New Architecture for Multi-turn
Response Selection in Retrieval-Based Chatbots

Yu Wu†, Wei Wu‡, Chen Xing♦, Zhoujun Li†∗, Ming Zhou‡
†State Key Lab of Software Development Environment, Beihang University, Beijing, China

♦College of Computer and Control Engineering, Nankai University, Tianjin, China
‡ Microsoft Research, Beijing, China

{wuyu,lizj}@buaa.edu.cn {wuwei,v-chxing,mingzhou}@microsoft.com

Abstract

We study response selection for multi-
turn conversation in retrieval-based chat-
bots. Existing work either concatenates ut-
terances in context or matches a response
with a highly abstract context vector fi-
nally, which may lose relationships among
utterances or important contextual infor-
mation. We propose a sequential match-
ing network (SMN) to address both prob-
lems. SMN first matches a response with
each utterance in the context on multiple
levels of granularity, and distills important
matching information from each pair as a
vector with convolution and pooling oper-
ations. The vectors are then accumulated
in a chronological order through a recur-
rent neural network (RNN) which models
relationships among utterances. The fi-
nal matching score is calculated with the
hidden states of the RNN. An empirical
study on two public data sets shows that
SMN can significantly outperform state-
of-the-art methods for response selection
in multi-turn conversation.

1 Introduction

Conversational agents include task-oriented dia-
log systems and non-task-oriented chatbots. Dia-
log systems focus on helping people complete spe-
cific tasks in vertical domains (Young et al., 2010),
while chatbots aim to naturally and meaningfully
converse with humans on open domain topics
(Ritter et al., 2011). Existing work on building
chatbots includes generation -based methods and
retrieval-based methods. Retrieval based chatbots
enjoy the advantage of informative and fluent re-
sponses, because they select a proper response for

∗ Corresponding Author

Context
utterance 1 Human: How are you doing?
utterance 2 ChatBot: I am going to hold a drum class in Shanghai.

Anyone wants to join? The location is near Lujiazui.
utterance 3 Human: Interesting! Do you have coaches who

can help me practice drum?
utterance 4 ChatBot: Of course.
utterance 5 Human: Can I have a free first lesson?

Response Candidates
response 1 Sure. Have you ever played drum before? X
response 2 What lessons do you want? 7

Table 1: An example of multi-turn conversation

the current conversation from a repository with re-
sponse selection algorithms. While most existing
work on retrieval-based chatbots studies response
selection for single-turn conversation (Wang et al.,
2013) which only considers the last input message,
we consider the problem in a multi-turn scenario.
In a chatbot, multi-turn response selection takes
a message and utterances in its previous turns as
input and selects a response that is natural and rel-
evant to the whole context.

The key to response selection lies in input-
response matching. Different from single-turn
conversation, multi-turn conversation requires
matching between a response and a conversation
context in which one needs to consider not only
the matching between the response and the input
message but also matching between responses and
utterances in previous turns. The challenges of the
task include (1) how to identify important infor-
mation (words, phrases, and sentences) in context,
which is crucial to selecting a proper response and
leveraging relevant information in matching; and
(2) how to model relationships among the utter-
ances in the context. Table 1 illustrates the chal-
lenges with an example. First, “hold a drum class”
and “drum” in context are very important. With-
out them, one may find responses relevant to the
message (i.e., the fifth utterance of the context)
but nonsense in the context (e.g., “what lessons
do you want?”). Second, the message highly de-
pends on the second utterance in the context, and

496

https://doi.org/10.18653/v1/P17-1046

the order of the utterances matters in response se-
lection: exchanging the third utterance and the
fifth utterance may lead to different responses. Ex-
isting work, however, either ignores relationships
among utterances when concatenating them to-
gether (Lowe et al., 2015), or loses important in-
formation in context in the process of converting
the whole context to a vector without enough su-
pervision from responses (e.g., by a hierarchical
RNN (Zhou et al., 2016)).

We propose a sequential matching network
(SMN), a new context based matching model that
can tackle both challenges in an end-to-end way.
The reason that existing models lose important in-
formation in the context is that they first represent
the whole context as a vector and then match the
context vector with a response vector. Thus, re-
sponses in these models connect with the context
until the final step in matching. To avoid informa-
tion loss, SMN matches a response with each ut-
terance in the context at the beginning and encodes
important information in each pair into a matching
vector. The matching vectors are then accumu-
lated in the utterances’ temporal order to model
their relationships. The final matching degree is
computed with the accumulation of the matching
vectors. Specifically, for each utterance-response
pair, the model constructs a word-word similarity
matrix and a sequence-sequence similarity matrix
by the word embeddings and the hidden states of a
recurrent neural network with gated recurrent units
(GRU) (Chung et al., 2014) respectively. The two
matrices capture important matching information
in the pair on a word level and a segment (word
subsequence) level respectively, and the informa-
tion is distilled and fused as a matching vector
through an alternation of convolution and pooling
operations on the matrices. By this means, impor-
tant information from multiple levels of granular-
ity in context is recognized under sufficient super-
vision from the response and carried into match-
ing with minimal loss. The matching vectors are
then uploaded to another GRU to form a match-
ing score for the context and the response. The
GRU accumulates the pair matching in its hidden
states in the chronological order of the utterances
in context. It models relationships and dependen-
cies among the utterances in a matching fashion
and has the utterance order supervise the accumu-
lation of pair matching. The matching degree of
the context and the response is computed by a logit

model with the hidden states of the GRU. SMN
extends the powerful “2D” matching paradigm in
text pair matching for single-turn conversation to
context based matching for multi-turn conversa-
tion, and enjoys the advantage of both important
information in utterance-response pairs and rela-
tionships among utterances being sufficiently pre-
served and leveraged in matching.

We test our model on the Ubuntu dialogue
corpus (Lowe et al., 2015) which is a large scale
publicly available English data set for research
in multi-turn conversation. The results show that
our model can significantly outperform state-of-
the-art methods, and improvement to the best
baseline model on R10@1 is over 6%. In addition
to the Ubuntu corpus, we create a human-labeled
Chinese data set, namely the Douban Conversa-
tion Corpus, and test our model on it. In contrast
to the Ubuntu corpus in which data is collected
from a specific domain and negative candidates
are randomly sampled, conversations in this
data come from the open domain, and response
candidates in this data set are collected from
a retrieval engine and labeled by three human
judges. On this data, our model improves the best
baseline model by 3% on R10@1 and 4% on P@1.
As far as we know, Douban Conversation Corpus
is the first human-labeled data set for multi-turn
response selection and could be a good comple-
ment to the Ubuntu corpus. We have released
Douban Conversation Corups and our source code
at https://github.com/MarkWuNLP/
MultiTurnResponseSelection

Our contributions in this paper are three-folds:
(1) the proposal of a new context based match-
ing model for multi-turn response selection in
retrieval-based chatbots; (2) the publication of a
large human-labeled data set to research commu-
nities; (3) empirical verification of the effective-
ness of the model on public data sets.

2 Related Work

Recently, building a chatbot with data driven ap-
proaches (Ritter et al., 2011; Ji et al., 2014) has
drawn significant attention. Existing work along
this line includes retrieval-based methods (Hu
et al., 2014; Ji et al., 2014; Wang et al., 2015; Yan
et al., 2016; Wu et al., 2016b; Zhou et al., 2016;
Wu et al., 2016a) and generation-based methods
(Shang et al., 2015; Serban et al., 2015; Vinyals
and Le, 2015; Li et al., 2015, 2016; Xing et al.,

497

Score

1 2,M M Convolution Pooling

()L

1u

1nu 

nu

r

Word
Embedding GRU1

GRU2

1v

1nv 

nv

1'nh 

Utterance-Response Matching
(First Layer)

Matching Accumulation
(Second Layer)

Segment PairsWord Pairs

Matching Prediction
(Third Layer)

1'h

'nh

Figure 1: Architecture of SMN

2016; Serban et al., 2016). Our work is a retrieval-
based method, in which we study context-based
response selection.

Early studies of retrieval-based chatbots focus
on response selection for single-turn conversation
(Wang et al., 2013; Ji et al., 2014; Wang et al.,
2015; Wu et al., 2016b). Recently, researchers
have begun to pay attention to multi-turn conver-
sation. For example, Lowe et al. (2015) match a
response with the literal concatenation of context
utterances. Yan et al. (2016) concatenate context
utterances with the input message as reformulated
queries and perform matching with a deep neural
network architecture. Zhou et al. (2016) improve
multi-turn response selection with a multi-view
model including an utterance view and a word
view. Our model is different in that it matches a
response with each utterance at first and accumu-
lates matching information instead of sentences by
a GRU, thus useful information for matching can
be sufficiently retained.

3 Sequential Matching Network

3.1 Problem Formalization

Suppose that we have a data set D =
{(yi, si, ri)}Ni=1, where si = {ui,1, . . . , ui,ni} rep-
resents a conversation context with {ui,k}ni

k=1 as
utterances. ri is a response candidate and yi ∈
{0, 1} denotes a label. yi = 1 means ri is a proper
response for si, otherwise yi = 0. Our goal is to
learn a matching model g(·, ·) with D. For any
context-response pair (s, r), g(s, r) measures the
matching degree between s and r.

3.2 Model Overview

We propose a sequential matching network (SMN)
to model g(·, ·). Figure 1 gives the architecture.

SMN first decomposes context-response match-
ing into several utterance-response pair matching
and then all pairs matching are accumulated as a
context based matching through a recurrent neu-
ral network. SMN consists of three layers. The
first layer matches a response candidate with each
utterance in the context on a word level and a
segment level, and important matching informa-
tion from the two levels is distilled by convolu-
tion, pooling and encoded in a matching vector.
The matching vectors are then fed into the sec-
ond layer where they are accumulated in the hid-
den states of a recurrent neural network with GRU
following the chronological order of the utterances
in the context. The third layer calculates the final
matching score with the hidden states of the sec-
ond layer.

SMN enjoys several advantages over existing
models. First, a response candidate can match
each utterance in the context at the very beginning,
thus matching information in every utterance-
response pair can be sufficiently extracted and car-
ried to the final matching score with minimal loss.
Second, information extraction from each utter-
ance is conducted on different levels of granular-
ity and under sufficient supervision from the re-
sponse, thus semantic structures that are useful for
response selection in each utterance can be well
identified and extracted. Third, matching and ut-
terance relationships are coupled rather than sepa-
rately modeled, thus utterance relationships (e.g.,
order), as a kind of knowledge, can supervise the
formation of the matching score.

By taking utterance relationships into account,
SMN extends the “2D” matching that has proven
effective in text pair matching for single-turn re-
sponse selection to sequential “2D” matching for

498

context based matching in response selection for
multi-turn conversation. In the following sections,
we will describe details of the three layers.

3.3 Utterance-Response Matching
Given an utterance u in a context s and a re-
sponse candidate r, the model looks up an em-
bedding table and represents u and r as U =
[eu,1, . . . , eu,nu] and R = [er,1, . . . , er,nr] respec-
tively, where eu,i, er,i ∈ Rd are the embeddings
of the i-th word of u and r respectively. U ∈
Rd×nu and R ∈ Rd×nr are then used to construct
a word-word similarity matrix M1 ∈ Rnu×nr

and a sequence-sequence similarity matrix M2

∈ Rnu×nr which are two input channels of a con-
volutional neural network (CNN). The CNN dis-
tills important matching information from the ma-
trices and encodes the information into a matching
vector v.

Specifically, ∀i, j, the (i, j)-th element of M1

is defined by

e1,i,j = e>u,i · er,j . (1)

M1 models the matching between u and r on a
word level.

To construct M2, we first employ a GRU to
transform U and R to hidden vectors. Suppose
that Hu = [hu,1, . . . , hu,nu] are the hidden vec-
tors of U, then ∀i, hu,i ∈ Rm is defined by

zi = σ(Wzeu,i +Uzhu,i−1)

ri = σ(Wreu,i +Urhu,i−1)

h̃u,i = tanh(Wheu,i +Uh(ri � hu,i−1))

hu,i = zi � h̃u,i + (1− zi)� hu,i−1, (2)

where hu,0 = 0, zi and ri are an update gate and a
reset gate respectively, σ(·) is a sigmoid function,
and Wz, Wh, Wr, Uz, Ur,Uh are parameters.
Similarly, we have Hr = [hr,1, . . . , hr,nr] as the
hidden vectors of R. Then, ∀i, j, the (i, j)-th ele-
ment of M2 is defined by

e2,i,j = h>u,iAhr,j , (3)

where A ∈ Rm×m is a linear transformation. ∀i,
GRU models the sequential relationship and the
dependency among words up to position i and en-
codes the text segment until the i-th word to a hid-
den vector. Therefore, M2 models the matching
between u and r on a segment level.
M1 and M2 are then processed by a CNN

to form v. ∀f = 1, 2, CNN regards Mf as

an input channel, and alternates convolution and
max-pooling operations. Suppose that z(l,f) =[
z
(l,f)
i,j

]
I(l,f)×J(l,f)

denotes the output of feature

maps of type-f on layer-l, where z(0,f) = Mf ,
∀f = 1, 2. On the convolution layer, we employ
a 2D convolution operation with a window size
r
(l,f)
w × r(l,f)h , and define z(l,f)i,j as

z
(l,f)
i,j = σ(

Fl−1∑

f ′=0

r
(l,f)
w∑

s=0

r
(l,f)
h∑

t=0

W
(l,f)
s,t · z(l−1,f ′)

i+s,j+t + bl,k), (4)

where σ(·) is a ReLU, W(l,f) ∈ Rr
(l,f)
w ×r(l,f)h and

bl,k are parameters, and Fl−1 is the number of fea-
ture maps on the (l − 1)-th layer. A max pooling
operation follows a convolution operation and can
be formulated as

z
(l,f)
i,j = max

p
(l,f)
w >s≥0

max
p
(l,f)
h

>t≥0

zi+s,j+t, (5)

where p(l,f)w and p(l,f)h are the width and the height
of the 2D pooling respectively. The output of the
final feature maps are concatenated and mapped to
a low dimensional space with a linear transforma-
tion as the matching vector v ∈ Rq.

According to Equation (1), (3), (4), and (5),
we can see that by learning word embedding and
parameters of GRU from training data, words or
segments in an utterance that are useful for rec-
ognizing the appropriateness of a response may
have high similarity with some words or segments
in the response and result in high value areas in
the similarity matrices. These areas will be trans-
formed and selected by convolution and pooling
operations and carry important information in the
utterance to the matching vector. This is how our
model identifies important information in context
and leverage it in matching under the supervision
of the response. We consider multiple channels
because we want to capture important matching
information on multiple levels of granularity of
text.

3.4 Matching Accumulation
Suppose that [v1, . . . , vn] is the output of the first
layer (corresponding to n pairs), at the second
layer, a GRU takes [v1, . . . , vn] as an input and en-
codes the matching sequence into its hidden states
Hm = [h′1, . . . , h

′
n] ∈ Rq×n with a detailed pa-

rameterization similar to Equation (2). This layer
has two functions: (1) it models the dependency
and the temporal relationship of utterances in the

499

context; (2) it leverages the temporal relationship
to supervise the accumulation of the pair match-
ing as a context based matching. Moreover, from
Equation (2), we can see that the reset gate (i.e.,
ri) and the update gate (i.e., zi) control how much
information from the previous hidden state and
the current input flows to the current hidden state,
thus important matching vectors (corresponding to
important utterances) can be accumulated while
noise in the vectors can be filtered out.

3.5 Matching Prediction and Learning

With [h′1, . . . , h
′
n], we define g(s, r) as

g(s, r) = softmax(W2L[h
′
1, . . . , h

′
n] + b2), (6)

where W2 and b2 are parameters. We con-
sider three parameterizations for L[h′1, . . . , h

′
n]:

(1) only the last hidden state is used. Then
L[h′1, . . . , h

′
n] = h′n. (2) the hidden states

are linearly combined. Then, L[h′1, . . . , h
′
n] =∑n

i=1wih
′
i, where wi ∈ R. (3) we follow (Yang

et al., 2016) and employ an attention mechanism
to combine the hidden states. Then, L[h′1, . . . , h

′
n]

is defined as

ti = tanh(W1,1hui,nu +W1,2h
′
i + b1),

αi =
exp(t>i ts)∑
i(exp(t

>
i ts))

,

L[h′1, . . . , h
′
n] =

n∑

i=1

αih
′
i, (7)

where W1,1 ∈ Rq×m,W1,2 ∈ Rq×q and b1 ∈
Rq are parameters. h′i and hui,nu are the i-th
matching vector and the final hidden state of the
i-th utterance respectively. ts ∈ Rq is a virtual
context vector which is randomly initialized and
jointly learned in training.

Both (2) and (3) aim to learn weights for
{h′1, . . . , h′n} from training data and highlight the
effect of important matching vectors in the final
matching. The difference is that weights in (2) are
static, because the weights are totally determined
by the positions of utterances, while weights in (3)
are dynamically computed by the matching vec-
tors and utterance vectors. We denote our model
with the three parameterizations of L[h′1, . . . , h

′
n]

as SMNlast, SMNstatic, and SMNdynamic, and
empirically compare them in experiments.

We learn g(·, ·) by minimizing cross entropy
withD. Let Θ denote the parameters of SMN, then
the objective function L(D,Θ) of learning can be

formulated as

−
N∑

i=1

[yilog(g(si, ri)) + (1− yi)log(1− g(si, ri))] . (8)

4 Response Candidate Retrieval

In practice, a retrieval-based chatbot, to apply
the matching approach to the response selection,
one needs to retrieve a number of response can-
didates from an index beforehand. While can-
didate retrieval is not the focus of the paper, it
is an important step in a real system. In this
work, we exploit a heuristic method to obtain re-
sponse candidates from the index. Given a mes-
sage un with {u1, . . . , un−1} utterances in its pre-
vious turns, we extract the top 5 keywords from
{u1, . . . , un−1} based on their tf-idf scores1 and
expand un with the keywords. Then we send the
expanded message to the index and retrieve re-
sponse candidates using the inline retrieval algo-
rithm of the index. Finally, we use g(s, r) to re-
rank the candidates and return the top one as a re-
sponse to the context.

5 Experiments

We tested our model on a publicly available En-
glish data set and a Chinese data set published with
this paper.

5.1 Ubuntu Corpus

The English data set is the Ubuntu Corpus (Lowe
et al., 2015) which contains multi-turn dialogues
collected from chat logs of the Ubuntu Forum.
The data set consists of 1 million context-response
pairs for training, 0.5 million pairs for valida-
tion, and 0.5 million pairs for testing. Positive re-
sponses are true responses from humans, and neg-
ative ones are randomly sampled. The ratio of the
positive and the negative is 1:1 in training, and 1:9
in validation and testing. We used the copy shared
by Xu et al. (2016) 2 in which numbers, urls, and
paths are replaced by special placeholders. We fol-
lowed (Lowe et al., 2015) and employed recall at
position k in n candidates (Rn@k) as evaluation
metrics.

1Tf is word frequency in the context, while idf is calcu-
lated using the entire index.

2https://www.dropbox.com/s/
2fdn26rj6h9bpvl/ubuntudata.zip?dl=0

500

5.2 Douban Conversation Corpus

The Ubuntu Corpus is a domain specific data set,
and response candidates are obtained from nega-
tive sampling without human judgment. To further
verify the efficacy of our model, we created a new
data set with open domain conversations, called
the Douban Conversation Corpus. Response can-
didates in the test set of the Douban Conversation
Corpus are collected following the procedure of a
retrieval-based chatbot and are labeled by human
judges. It simulates the real scenario of a retrieval-
based chatbot. We publish it to research communi-
ties to facilitate the research of multi-turn response
selection.

Specifically, we crawled 1.1 million dyadic dia-
logues (conversation between two persons) longer
than 2 turns from Douban group3 which is a pop-
ular social networking service in China. We ran-
domly sampled 0.5 million dialogues for creating
a training set, 25 thousand dialouges for creating a
validation set, and 1, 000 dialogues for creating a
test set, and made sure that there is no overlap be-
tween the three sets. For each dialogue in training
and validation, we took the last turn as a positive
response for the previous turns as a context and
randomly sampled another response from the 1.1
million data as a negative response. There are 1
million context-response pairs in the training set
and 50 thousand pairs in the validation set.

To create the test set, we first crawled 15 mil-
lion post-reply pairs from Sina Weibo4 which is
the largest microblogging service in China and in-
dexed the pairs with Lucene5. We took the last
turn of each Douban dyadic dialogue in the test
set as a message, retrieved 10 response candi-
dates from the index following the method in Sec-
tion 4, and finally formed a test set with 10, 000
context-response pairs. We recruited three label-
ers to judge if a candidate is a proper response to
the context. A proper response means the response
can naturally reply to the message given the whole
context. Each pair received three labels and the
majority of the labels were taken as the final deci-
sion. Table 2 gives the statistics of the three sets.
Note that the Fleiss’ kappa (Fleiss, 1971) of the
labeling is 0.41, which indicates that the three la-
belers reached a relatively high agreement.

Besides Rn@ks, we also followed the conven-

3https://www.douban.com/group
4http://weibo.com/
5https://lucenenet.apache.org/

train val test
context-response pairs 1M 50k 10k
candidates per context 2 2 10

positive candidates per context 1 1 1.18
Min. # turns per context 3 3 3
Max. # turns per context 98 91 45
Avg. # turns per context 6.69 6.75 6.45

Avg. # words per utterance 18.56 18.50 20.74

Table 2: Statistics of Douban Conversation Corpus

tion of information retrieval and employed mean
average precision (MAP) (Baeza-Yates et al.,
1999), mean reciprocal rank (MRR) (Voorhees
et al., 1999), and precision at position 1 (P@1) as
evaluation metrics. We did not calculate R2@1
because in Douban corpus one context could have
more than one correct responses, and we have to
randomly sample one for R2@1, which may bring
bias to evaluation. When using the labeled set,
we removed conversations with all negative re-
sponses or all positive responses, as models make
no difference with them. There are 6, 670 context-
response pairs left in the test set.

5.3 Baseline

We considered the following baselines:

Basic models: models in (Lowe et al., 2015)
and (Kadlec et al., 2015) including TF-IDF, RNN,
CNN, LSTM and BiLSTM.

Multi-view: the model proposed by Zhou et al.
(2016) that utilizes a hierarchical recurrent neural
network to model utterance relationships.

Deep learning to respond (DL2R): the model
proposed by Yan et al. (2016) that reformulates
the message with other utterances in the context.

Advanced single-turn matching models:
since BiLSTM does not represent the state-of-
the-art matching model, we concatenated the
utterances in a context and matched the long text
with a response candidate using more powerful
models including MV-LSTM (Wan et al., 2016)
(2D matching), Match-LSTM (Wang and Jiang,
2015), Attentive-LSTM (Tan et al., 2015) (two at-
tention based models), and Multi-Channel which
is described in Section 3.3. Multi-Channel is a
simple version of our model without considering
utterance relationships. We also appended the top
5 tf-idf words in context to the input message,
and computed the score between the expanded
message and a response with Multi-Channel,
denoted as Multi-Channelexp.

501

Ubuntu Corpus Douban Conversation Corpus
R2@1 R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5

TF-IDF 0.659 0.410 0.545 0.708 0.331 0.359 0.180 0.096 0.172 0.405
RNN 0.768 0.403 0.547 0.819 0.390 0.422 0.208 0.118 0.223 0.589
CNN 0.848 0.549 0.684 0.896 0.417 0.440 0.226 0.121 0.252 0.647
LSTM 0.901 0.638 0.784 0.949 0.485 0.527 0.320 0.187 0.343 0.720
BiLSTM 0.895 0.630 0.780 0.944 0.479 0.514 0.313 0.184 0.330 0.716
Multi-View 0.908 0.662 0.801 0.951 0.505 0.543 0.342 0.202 0.350 0.729
DL2R 0.899 0.626 0.783 0.944 0.488 0.527 0.330 0.193 0.342 0.705
MV-LSTM 0.906 0.653 0.804 0.946 0.498 0.538 0.348 0.202 0.351 0.710
Match-LSTM 0.904 0.653 0.799 0.944 0.500 0.537 0.345 0.202 0.348 0.720
Attentive-LSTM 0.903 0.633 0.789 0.943 0.495 0.523 0.331 0.192 0.328 0.718
Multi-Channel 0.904 0.656 0.809 0.942 0.506 0.543 0.349 0.203 0.351 0.709
Multi-Channelexp 0.714 0.368 0.497 0.745 0.476 0.515 0.317 0.179 0.335 0.691
SMNlast 0.923 0.723 0.842 0.956 0.526 0.571 0.393 0.236 0.387 0.729
SMNstatic 0.927 0.725 0.838 0.962 0.523 0.572 0.387 0.228 0.387 0.734
SMNdynamic 0.926 0.726 0.847 0.961 0.529 0.569 0.397 0.233 0.396 0.724

Table 3: Evaluation results on the two data sets. Numbers in bold mean that the improvement is statisti-
cally significant compared with the best baseline.

5.4 Parameter Tuning

For baseline models, if their results are available in
existing literature (e.g., those on the Ubuntu cor-
pus), we just copied the numbers, otherwise we
implemented the models following the settings in
the literatures. All models were implemented us-
ing Theano (Theano Development Team, 2016).
Word embeddings were initialized by the results
of word2vec (Mikolov et al., 2013) which ran on
the training data, and the dimensionality of word
vectors is 200. For Multi-Channel and layer one of
our model, we set the dimensionality of the hidden
states of GRU as 200. We tuned the window size
of convolution and pooling in {(2, 2), (3, 3)(4, 4)}
and chose (3, 3) finally. The number of feature
maps is 8. In layer two, we set the dimensionality
of matching vectors and the hidden states of GRU
as 50. The parameters were updated by stochastic
gradient descent with Adam algorithm (Kingma
and Ba, 2014) on a single Tesla K80 GPU. The
initial learning rate is 0.001, and the parameters
of Adam, β1 and β2 are 0.9 and 0.999 respec-
tively. We employed early-stopping as a regu-
larization strategy. Models were trained in mini-
batches with a batch size of 200, and the maximum
utterance length is 50. We set the maximum con-
text length (i.e., number of utterances) as 10, be-
cause the performance of models does not improve
on contexts longer than 10 (details are shown in
the Section 5.6). We padded zeros if the number
of utterances in a context is less than 10, otherwise
we kept the last 10 utterances.

5.5 Evaluation Results

Table 3 shows the evaluation results on the two
data sets. Our models outperform baselines

greatly in terms of all metrics on both data sets,
with the improvements being statistically signifi-
cant (t-test with p-value ≤ 0.01, except R10@5 on
Douban Corpus). Even the state-of-the-art single-
turn matching models perform much worse than
our models. The results demonstrate that one
cannot neglect utterance relationships and simply
perform multi-turn response selection by concate-
nating utterances together. Our models achieve
significant improvements over Multi-View, which
justified our “matching first” strategy. DL2R is
worse than our models, indicating that utterance
reformulation with heuristic rules is not a good
method for utilizing context information. Rn@ks
are low on the Douban Corpus as there are multi-
ple correct candidates for a context (e.g., if there
are 3 correct responses, then the maximumR10@1
is 0.33). SMNdynamic is only slightly better than
SMNstatic and SMNlast. The reason might be
that the GRU can select useful signals from the
matching sequence and accumulate them in the fi-
nal state with its gate mechanism, thus the efficacy
of an attention mechanism is not obvious for the
task at hand.

5.6 Further Analysis

Visualization: we visualize the similarity matri-
ces and the gates of GRU in layer two using an
example from the Ubuntu corpus to further clarify
how our model identifies important information in
the context and how it selects important matching
vectors with the gate mechanism of GRU as de-
scribed in Section 3.3 and Section 3.4. The exam-
ple is {u1: how can unzip many rar (number
for example) files at once; u2: sure you can do
that in bash; u3: okay how? u4: are the files all

502

Ubuntu Corpus Douban Conversation Corpus
R2@1 R10@1 R10@2 R10@5 MAP MRR P@1 R10@1 R10@2 R10@5

ReplaceM 0.905 0.661 0.799 0.950 0.503 0.541 0.343 0.201 0.364 0.729
ReplaceA 0.918 0.716 0.832 0.954 0.522 0.565 0.376 0.220 0.385 0.727
Only M1 0.919 0.704 0.832 0.955 0.518 0.562 0.370 0.228 0.371 0.737
Only M2 0.921 0.715 0.836 0.956 0.521 0.565 0.382 0.232 0.380 0.734
SMNlast 0.923 0.723 0.842 0.956 0.526 0.571 0.393 0.236 0.387 0.729

Table 4: Evaluation results of model ablation.

th
en th

e

co
m

m
an

d

gl
eb

ih
an

sh
ou

ld

ex
tra

ct

th
em al

l

fro
m

/toth
at

di
re

ct
or

y

how
can

unzip
many

rar
(

number
for

example
)

files
at

once

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

1.35

1.50

v
a
lu

e

(a) M1 of u1 and r

th
en th

e

co
m

m
an

d

gl
eb

ih
an

sh
ou

ld

ex
tr
ac

t

th
em al

l

fro
m

/toth
at

di
re

ct
or

y

okay

how 0.00
0.15
0.30
0.45
0.60
0.75
0.90
1.05
1.20
1.35
1.50

v
a
lu

e

(b) M1 of u3 and r

0 10 20 30 40

u_1

u_2

u_3

u_4

u_5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

v
a
lu

e

(c) Update gate

Figure 2: Model visualization. Darker areas mean larger value.

in the same directory? u5: yes they all are; r:
then the command glebihan should extract them
all from/to that directory}. It is from the test set
and our model successfully ranked the correct re-
sponse to the top position. Due to space limita-
tion, we only visualized M1, M2 and the update
gate (i.e. z) in Figure 2. We can see that in u1
important words including “unzip”, “rar”, “files”
are recognized and carried to matching by “com-
mand”, “extract”, and “directory” in r, while u3
is almost useless and thus little information is ex-
tracted from it. u1 is crucial to response selection
and nearly all information from u1 and r flows to
the hidden state of GRU, while other utterances
are less informative and the corresponding gates
are almost “closed” to keep the information from
u1 and r until the final state.

Model ablation: we investigate the effect of
different parts of SMN by removing them one by
one from SMNlast, shown in Table 4. First, replac-
ing the multi-channel “2D” matching with a neural
tensor network (NTN) (Socher et al., 2013) (de-
noted as ReplaceM) makes the performance drop
dramatically. This is because NTN only matches a
pair by an utterance vector and a response vector
and loses important information in the pair. To-
gether with the visualization, we can conclude that
“2D” matching plays a key role in the “matching
first” strategy as it captures the important match-
ing information in each pair with minimal loss.
Second, the performance drops slightly when re-
placing the GRU for matching accumulation with
a multi-layer perceptron (denoted as ReplaceA).
This indicates that utterance relationships are use-
ful. Finally, we left only one channel in matching

and found that M2 is a little more powerful than
M1 and we achieve the best results with both of
them (except on R10@5 on the Douban Corpus).

Performance across context length: we study
how our model (SMNlast) performs across the
length of contexts. Figure 3 shows the compar-
ison on MAP in different length intervals on the
Douban corpus. Our model consistently performs
better than the baselines, and when contexts be-
come longer, the gap becomes larger. The re-
sults demonstrate that our model can well capture
the dependencies, especially long dependencies,
among utterances in contexts.

(2,5] (5,10] (10,)
context length

40

45

50

55

60

M
A

P

LSTM
MV-LSTM
Multi-View
SMN

Figure 3: Comparison across context length
Maximum context length: we investigate the

influence of maximum context length for SMN.
Figure 4 shows the performance of SMN on
Ubuntu Corpus and Douban Corpus with respect
to maximum context length. From Figure 4, we
find that performance improves significantly when
the maximum context length is lower than 5, and
becomes stable after the context length reaches 10.
This indicates that context information is impor-
tant for multi-turn response selection, and we can
set the maximum context length as 10 to balance
effectiveness and efficiency.

Error analysis: although SMN outperforms
baseline methods on the two data sets, there are

503

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Maximum Context length

0.5

0.6

0.7

0.8

0.9

1.0

Sc
or

e

R_2@1

R_10@1

R_10@2

R_10@5

(a) Ubuntu Corpus

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Maximum context length

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Sc
or

e

MAP
MRR
P@1

(b) Douban Conversation Corpus

Figure 4: Performance of SMN across maximum context length

still several problems that cannot be handled per-
fectly.

(1) Logical consistency. SMN models the con-
text and response on the semantic level, but pays
little attention to logical consistency. This leads to
several DSATs in the Douban Corpus. For exam-
ple, given a context {a: Does anyone know New-
ton jogging shoes? b: 100 RMB on Taobao. a: I
know that. I do not want to buy it because that is
a fake which is made in Qingdao ,b: Is it the only
reason you do not want to buy it? }, SMN gives
a large score to the response { It is not a fake. I
just worry about the date of manufacture}. The
response is inconsistent with the context on logic,
as it claims that the jogging shoes are not fake. In
the future, we shall explore the logic consistency
problem in retrieval-based chatbots.

(2) No correct candidates after retrieval. In the
experiment, we prepared 1000 contexts for test-
ing, but only 667 contexts have correct candidates
after candidate response retrieval. This indicates
that there is still room for candidate retrieval com-
ponents to improve, and only expanding the input
message with several keywords in context may not
be a perfect approach for candidate retrieval. In
the future, we will consider advanced methods for
retrieving candidates.

6 Conclusion and Future Work

We present a new context based model for multi-
turn response selection in retrieval-based chatbots.
Experiment results on open data sets show that
the model can significantly outperform the state-
of-the-art methods. Besides, we publish the first
human-labeled multi-turn response selection data
set to research communities. In the future, we
shall study how to model logical consistency of
responses and improve candidate retrieval.

7 Acknowledgment

We appreciate valuable comments provided by
anonymous reviewers and our discussions with
Zhao Yan. This work was supported by the
National Natural Science Foundation of China
(Grand Nos. 61672081, U1636211, 61370126),
Beijing Advanced Innovation Center for Imag-
ing Technology (No.BAICIT-2016001), National
High Technology Research and Development Pro-
gram of China (No.2015AA016004), and the Fund
of the State Key Laboratory of Software Develop-
ment Environment (No.SKLSDE-2015ZX-16).

References
Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al.

1999. Modern information retrieval, volume 463.
ACM press New York.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Joseph L Fleiss. 1971. Measuring nominal scale agree-
ment among many raters. Psychological bulletin
76(5):378.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network archi-
tectures for matching natural language sentences.
In Advances in Neural Information Processing Sys-
tems. pages 2042–2050.

Zongcheng Ji, Zhengdong Lu, and Hang Li. 2014. An
information retrieval approach to short text conver-
sation. arXiv preprint arXiv:1408.6988 .

Rudolf Kadlec, Martin Schmid, and Jan Kleindienst.
2015. Improved deep learning baselines for ubuntu
corpus dialogs. arXiv preprint arXiv:1510.03753 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

504

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. arXiv
preprint arXiv:1510.03055 .

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A persona-based neural con-
versation model. arXiv preprint arXiv:1603.06155
.

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. arXiv preprint arXiv:1506.08909 .

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 583–593.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2015. Build-
ing end-to-end dialogue systems using generative hi-
erarchical neural network models. arXiv preprint
arXiv:1507.04808 .

Iulian Vlad Serban, Tim Klinger, Gerald Tesauro,
Kartik Talamadupula, Bowen Zhou, Yoshua Ben-
gio, and Aaron Courville. 2016. Multiresolu-
tion recurrent neural networks: An application
to dialogue response generation. arXiv preprint
arXiv:1606.00776 .

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. In ACL 2015, July 26-31, 2015, Beijing, China,
Volume 1: Long Papers. pages 1577–1586.

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In Ad-
vances in Neural Information Processing Systems.
pages 926–934.

Ming Tan, Bing Xiang, and Bowen Zhou. 2015. Lstm-
based deep learning models for non-factoid answer
selection. arXiv preprint arXiv:1511.04108 .

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869 .

Ellen M Voorhees et al. 1999. The trec-8 question an-
swering track report. In Trec. volume 99, pages 77–
82.

Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo,
Liang Pang, and Xueqi Cheng. 2016. Match-srnn:
Modeling the recursive matching structure with spa-
tial rnn. arXiv preprint arXiv:1604.04378 .

Hao Wang, Zhengdong Lu, Hang Li, and Enhong
Chen. 2013. A dataset for research on short-text
conversations. In EMNLP. pages 935–945.

Mingxuan Wang, Zhengdong Lu, Hang Li, and Qun
Liu. 2015. Syntax-based deep matching of short
texts. arXiv preprint arXiv:1503.02427 .

Shuohang Wang and Jing Jiang. 2015. Learning nat-
ural language inference with lstm. arXiv preprint
arXiv:1512.08849 .

Bowen Wu, Baoxun Wang, and Hui Xue. 2016a. Rank-
ing responses oriented to conversational relevance in
chat-bots. COLING16 .

Yu Wu, Wei Wu, Zhoujun Li, and Ming Zhou. 2016b.
Topic augmented neural network for short text con-
versation. CoRR abs/1605.00090.

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou
Huang, Ming Zhou, and Wei-Ying Ma. 2016.
Topic augmented neural response generation with
a joint attention mechanism. arXiv preprint
arXiv:1606.08340 .

Zhen Xu, Bingquan Liu, Baoxun Wang, Chengjie
Sun, and Xiaolong Wang. 2016. Incorporating
loose-structured knowledge into lstm with recall
gate for conversation modeling. arXiv preprint
arXiv:1605.05110 .

Rui Yan, Yiping Song, and Hua Wu. 2016. Learning
to respond with deep neural networks for retrieval-
based human-computer conversation system. In SI-
GIR 2016, Pisa, Italy, July 17-21, 2016. pages 55–
64. https://doi.org/10.1145/2911451.2911542.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and
Kai Yu. 2010. The hidden information state model:
A practical framework for pomdp-based spoken dia-
logue management. Computer Speech & Language
24(2):150–174.

Xiangyang Zhou, Daxiang Dong, Hua Wu, Shiqi Zhao,
R Yan, D Yu, Xuan Liu, and H Tian. 2016. Multi-
view response selection for human-computer con-

versation. EMNLP16 .

505

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 506–517
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1047

Learning word-like units from joint audio-visual analysis

David Harwath and James Glass
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

{dharwath,glass}@mit.edu

Abstract

Given a collection of images and spoken
audio captions, we present a method for
discovering word-like acoustic units in the
continuous speech signal and grounding
them to semantically relevant image re-
gions. For example, our model is able
to detect spoken instances of the words
“lighthouse” within an utterance and as-
sociate them with image regions contain-
ing lighthouses. We do not use any form
of conventional automatic speech recog-
nition, nor do we use any text transcrip-
tions or conventional linguistic annota-
tions. Our model effectively implements
a form of spoken language acquisition, in
which the computer learns not only to rec-
ognize word categories by sound, but also
to enrich the words it learns with seman-
tics by grounding them in images.

1 Introduction

1.1 Problem Statement and Motivation
Automatically discovering words and other el-
ements of linguistic structure from continuous
speech has been a longstanding goal in com-
putational linguists, cognitive science, and other
speech processing fields. Practically all humans
acquire language at a very early age, but this task
has proven to be an incredibly difficult problem for
computers. While conventional automatic speech
recognition (ASR) systems have a long history and
have recently made great strides thanks to the re-
vival of deep neural networks (DNNs), their re-
liance on highly supervised training paradigms has
essentially restricted their application to the ma-
jor languages of the world, accounting for a small
fraction of the more than 7,000 human languages
spoken worldwide (Lewis et al., 2016). The main

reason for this limitation is the fact that these su-
pervised approaches require enormous amounts of
very expensive human transcripts. Moreover, the
use of the written word is a convenient but limiting
convention, since there are many oral languages
which do not even employ a writing system. In
constrast, infants learn to communicate verbally
before they are capable of reading and writing - so
there is no inherent reason why spoken language
systems need to be inseparably tied to text.

The key contribution of this paper has two
facets. First, we introduce a methodology capable
of not only discovering word-like units from con-
tinuous speech at the waveform level with no ad-
ditional text transcriptions or conventional speech
recognition apparatus. Instead, we jointly learn
the semantics of those units via visual associa-
tions. Although we evaluate our algorithm on an
English corpus, it could conceivably run on any
language without requiring any text or associated
ASR capability. Second, from a computational
perspective, our method of speech pattern discov-
ery runs in linear time. Previous work has pre-
sented algorithms for performing acoustic pattern
discovery in continuous speech (Park and Glass,
2008; Jansen et al., 2010; Jansen and Van Durme,
2011) without the use of transcriptions or another
modality, but those algorithms are limited in their
ability to scale by their inherent O(n2) complex-
ity, since they do an exhaustive comparison of the
data against itself. Our method leverages corre-
lated information from a second modality - the vi-
sual domain - to guide the discovery of words and
phrases. This enables our method to run in O(n)
time, and we demonstrate it scalability by discov-
ering acoustic patterns in over 522 hours of audio.

1.2 Previous Work

A sub-field within speech processing that has
garnered much attention recently is unsupervised

506

https://doi.org/10.18653/v1/P17-1047

speech pattern discovery. Segmental Dynamic
Time Warping (S-DTW) was introduced by Park
and Glass (2008), which discovers repetitions of
the same words and phrases in a collection of un-
transcribed acoustic data. Many subsequent ef-
forts extended these ideas (Jansen et al., 2010;
Jansen and Van Durme, 2011; Dredze et al., 2010;
Harwath et al., 2012; Zhang and Glass, 2009).
Alternative approaches based on Bayesian non-
parametric modeling (Lee and Glass, 2012; On-
del et al., 2016) employed a generative model
to cluster acoustic segments into phoneme-like
categories, and related works aimed to segment
and cluster either reference or learned phoneme-
like tokens into higher-level units (Johnson, 2008;
Goldwater et al., 2009; Lee et al., 2015).

While supervised object detection is a stan-
dard problem in the vision community, several re-
cent works have tackled the problem of weakly-
supervised or unsupervised object localization
(Bergamo et al., 2014; Cho et al., 2015; Zhou
et al., 2015; Cinbis et al., 2016). Although the fo-
cus of this work is discovering acoustic patterns,
in the process we jointly associate the acoustic
patterns with clusters of image crops, which we
demonstrate capture visual patterns as well.

The computer vision and NLP communities
have begun to leverage deep learning to create
multimodal models of images and text. Many
works have focused on generating annotations or
text captions for images (Socher and Li, 2010;
Frome et al., 2013; Socher et al., 2014; Karpathy
et al., 2014; Karpathy and Li, 2015; Vinyals et al.,
2015; Fang et al., 2015; Johnson et al., 2016). One
interesting intersection between word induction
from phoneme strings and multimodal modeling
of images and text is that of Gelderloos and Chru-
paa (2016), who uses images to segment words
within captions at the phoneme string level. Other
work has taken these ideas beyond text, and at-
tempted to relate images to spoken audio captions
directly at the waveform level (Roy, 2003; Har-
wath and Glass, 2015; Harwath et al., 2016). The
work of (Harwath et al., 2016) is the most similar
to ours, in which the authors learned embeddings
at the entire image and entire spoken caption level
and then used the embeddings to perform bidirec-
tional retrieval. In this work, we go further by au-
tomatically segmenting and clustering the spoken
captions into individual word-like units, as well as
the images into object-like categories.

2 Experimental Data

We employ a corpus of over 200,000 spoken cap-
tions for images taken from the Places205 dataset
(Zhou et al., 2014), corresponding to over 522
hours of speech data. The captions were col-
lected using Amazon’s Mechanical Turk service,
in which workers were shown images and asked
to describe them verbally in a free-form manner.
The data collection scheme is described in detail
in Harwath et al. (2016), but the experiments in
this paper leverage nearly twice the amount of
data. For training our multimodal neural network
as well as the pattern discovery experiments, we
use a subset of 214,585 image/caption pairs, and
we hold out a set of 1,000 pairs for evaluating the
multimodal network’s retrieval ability. Because
we lack ground truth text transcripts for the data,
we used Google’s Speech Recognition public API
to generate proxy transcripts which we use when
analyzing our system. Note that the ASR was only
used for analysis of the results, and was not in-
volved in any of the learning.

3 Audio-Visual Embedding Neural
Networks

We first train a deep multimodal embedding net-
work similar in spirit to the one described in
Harwath et al. (2016), but with a more sophisti-
cated architecture. The model is trained to map
entire image frames and entire spoken captions
into a shared embedding space; however, as we
will show, the trained network can then be used
to localize patterns corresponding to words and
phrases within the spectrogram, as well as visual
objects within the image by applying it to small
sub-regions of the image and spectrogram. The
model is comprised of two branches, one which
takes as input images, and the other which takes as
input spectrograms. The image network is formed
by taking the off-the-shelf VGG 16 layer network
(Simonyan and Zisserman, 2014) and replacing
the softmax classification layer with a linear trans-
form which maps the 4096-dimensional activa-
tions of the second fully connected layer into our
1024-dimensional multimodal embedding space.
In our experiments, the weights of this projection
layer are trained, but the layers taken from the
VGG network below it are kept fixed. The sec-
ond branch of our network analyzes speech spec-
trograms as if they were black and white images.
Our spectrograms are computed using 40 log Mel

507

filterbanks with a 25ms Hamming window and
a 10ms shift. The input to this branch always
has 1 color channel and is always 40 pixels high
(corresponding to the 40 Mel filterbanks), but the
width of the spectrogram varies depending upon
the duration of the spoken caption, with each pixel
corresponding to approximately 10 milliseconds
worth of audio. The architecture we use is entirely
convolutional and shown below, where C denotes
the number of convolutional channels, W is filter
width, H is filter height, and S is pooling stride.

1. Convolution: C=128, W=1, H=40, ReLU
2. Convolution: C=256, W=11, H=1, ReLU
3. Maxpool: W=3, H=1, S=2
4. Convolution: C=512, W=17, H=1, ReLU
5. Maxpool: W=3, H=1, S=2
6. Convolution: C=512, W=17, H=1, ReLU
7. Maxpool: W=3, H=1, S=2
8. Convolution: C=1024, W=17, H=1, ReLU
9. Meanpool over entire caption

10. L2 normalization
In practice during training, we restrict the cap-
tion spectrograms to all be 1024 frames wide (i.e.,
10sec of speech) by applying truncation or zero
padding. Additionally, both the images and spec-
trograms are mean normalized before training.
The overall multimodal network is formed by ty-
ing together the image and audio branches with a
layer which takes both of their output vectors and
computes an inner product between them, repre-
senting the similarity score between a given im-
age/caption pair. We train the network to assign
high scores to matching image/caption pairs, and
lower scores to mismatched pairs.

Within a minibatch of B image/caption pairs,
let Spj , j = 1, . . . , B denote the similarity score of
the jth image/caption pair as output by the neural
network. Next, for each pair we randomly sam-
ple one impostor caption and one impostor image
from the same minibatch. Let Sij denote the simi-
larity score between the jth caption and its impos-
tor image, and Scj be the similarity score between
the jth image and its impostor caption. The total
loss for the entire minibatch is then computed as

L(θ) =
B∑

j=1

[max(0, Scj − Spj + 1)

+ max(0, Sij − Spj + 1)] (1)

We train the neural network with 50 epochs of
stochastic gradient descent using a batch size B =

128, a momentum of 0.9, and a learning rate of 1e-
5 which is set to geometrically decay by a factor
between 2 and 5 every 5 to 10 epochs.

4 Finding and Clustering Audio-Visual
Caption Groundings

Although we have trained our multimodal network
to compute embeddings at the granularity of entire
images and entire caption spectrograms, we can
easily apply it in a more localized fashion. In the
case of images, we can simply take any arbitrary
crop of an original image and resize it to 224x224
pixels. The audio network is even more trivial to
apply locally, because it is entirely convolutional
and the final mean pooling layer ensures that the
output will be a 1024-dim vector no matter the
extent of the input. The bigger question is where
to locally apply the networks in order to discover
meaningful acoustic and visual patterns.

Given an image and its corresponding spoken
audio caption, we use the term grounding to refer
to extracting meaningful segments from the cap-
tion and associating them with an appropriate sub-
region of the image. For example, if an image
depicted a person eating ice cream and its cap-
tion contained the spoken words “A person is en-
joying some ice cream,” an ideal set of ground-
ings would entail the acoustic segment contain-
ing the word “person” linked to a bounding box
around the person, and the segment containing the
word “ice cream” linked to a box around the ice
cream. We use a constrained brute force ranking
scheme to evaluate all possible groundings (with
a restricted granularity) between an image and its
caption. Specifically, we divide the image into
a grid, and extract all of the image crops whose
boundaries sit on the grid lines. Because we are
mainly interested in extracting regions of interest
and not high precision object detection boxes, to
keep the number of proposal regions under con-
trol we impose several restrictions. First, we use a
10x10 grid on each image regardless of its original
size. Second, we define minimum and maximum
aspect ratios as 2:3 and 3:2 so as not to introduce
too much distortion and also to reduce the num-
ber of proposal boxes. Third, we define a mini-
mum bounding width as 30% of the original image
width, and similarly a minimum height as 30% of
the original image height. In practice, this results
in a few thousand proposal regions per image.

To extract proposal segments from the audio

508

caption spectrogram, we similarly define a 1-dim
grid along the time axis, and consider all possible
start/end points at 10 frame (pixel) intervals. We
impose minimum and maximum segment length
constraints at 50 and 100 frames (pixels), implying
that our discovered acoustic patterns are restricted
to fall between 0.5 and 1 second in duration. The
number of proposal segments will vary depend-
ing on the caption length, and typically number
in the several thousands. Note that when learn-
ing groundings we consider the entire audio se-
quence, and do not incorporate the 10sec duration
constraint imposed during training.

Once we have extracted a set of proposed visual
bounding boxes and acoustic segments for a given
image/caption pair, we use our multimodal net-
work to compute a similarity score between each
unique image crop/acoustic segment pair. Each
triplet of an image crop, acoustic segment, and
similarity score constitutes a proposed grounding.
A naive approach would be to simply keep the top
N groundings from this list, but in practice we
ran into two problems with this strategy. First,
many proposed acoustic segments capture mostly
silence due to pauses present in natural speech. We
solve this issue by using a simple voice activity de-
tector (VAD) which was trained on the TIMIT cor-
pus(Garofolo et al., 1993). If the VAD estimates
that 40% or more of any proposed acoustic seg-
ment is silence, we discard that entire grounding.
The second problem we ran into is the fact that the
top of the sorted grounding list is dominated by
highly overlapping acoustic segments. This makes
sense, because highly informative content words
will show up in many different groundings with
slightly perturbed start or end times. To allevi-
ate this issue, when evaluating a grounding from
the top of the proposal list we compare the in-
terval intersection over union (IOU) of its acous-
tic segment against all acoustic segments already
accepted for further consideration. If the IOU
exceeds a threshold of 0.1, we discard the new
grounding and continue moving down the list. We
stop accumulating groundings once the scores fall
to below 50% of the top score in the “keep” list,
or when 10 groundings have been added to the
“keep” list. Figure 1 displays a pictorial example
of our grounding procedure.

Once we have completed the grounding proce-
dure, we are left with a small set of regions of
interest in each image and caption spectrogram.

We use the respective branches of our multimodal
network to compute embedding vectors for each
grounding’s image crop and acoustic segment. We
then employ k-means clustering separately on the
collection of image embedding vectors as well as
the collection of acoustic embedding vectors. The
last step is to establish an affinity score between
each image cluster I and each acoustic cluster A;
we do so using the equation

Affinity(I,A) =
∑

i∈I

∑

a∈A
i>a · Pair(i,a) (2)

where i is an image crop embedding vector, a is an
acoustic segment embedding vector, and Pair(i,a)
is equal to 1 when i and a belong to the same
grounding pair, and 0 otherwise. After clustering,
we are left with a set of acoustic pattern clusters, a
set of visual pattern clusters, and a set of linkages
describing which acoustic clusters are associated
with which image clusters. In the next section, we
investigate these clusters in more detail.

5 Experiments and Analysis

Table 1: Results for image search and annotation
on the Places audio caption data (214k training
pairs, 1k testing pairs). Recall is shown for the
top 1, 5, and 10 hits. The model we use in this
paper is compared against the meanpool variant of
the model architecture presented in Harwath et al.
(2016). For both training and testing, the captions
were truncated/zero-padded to 10 seconds.

Search
Model R@1 R@5 R@10

(Harwath et al., 2016) 0.090 0.261 0.372
This work (audio) 0.112 0.312 0.431
This work (text) 0.111 0.383 0.525

Annotation
Model R@1 R@5 R@10

(Harwath et al., 2016) 0.098 0.266 0.352
This work (audio) 0.120 0.307 0.438
This work (text) 0.113 0.341 0.493

We trained our multimodal network on a set of
214,585 image/caption pairs, and vetted it with an
image search (given caption, find image) and an-
notation (given image, find caption) task similar
to the one used in Harwath et al. (2016); Karpathy
et al. (2014); Karpathy and Li (2015). The im-
age annotation and search recall scores on a 1,000
image/caption pair held-out test set are shown in
Table 1. Also shown in this table are the scores

509

Figure 1: An example of our grounding method. The left image displays a grid defining the allowed
start and end coordinates for the bounding box proposals. The bottom spectrogram displays several
audio region proposals drawn as the families of stacked red line segments. The image on the right and
spectrogram on the top display the final output of the grounding algorithm. The top spectrogram also
displays the time-aligned text transcript of the caption, so as to demonstrate which words were captured
by the groundings. In this example, the top 3 groundings have been kept, with the colors indicating the
audio segment which is grounded to each bounding box.

Word Count Word Count

ocean 2150 castle 766
(silence) 127 (silence) 70
the ocean 72 capital 39
blue ocean 29 large castle 24
body ocean 22 castles 23

oceans 16 (noise) 21
ocean water 16 council 13

(noise) 15 stone castle 12
of ocean 14 capitol 10

oceanside 14 old castle 10

Table 2: Examples of the breakdown of
word/phrase identities of several acoustic clusters

achieved by a model which uses the ASR text tran-
scriptions for each caption instead of the speech
audio. The text captions were truncated/padded
to 20 words, and the audio branch of the network
was replaced with a branch with the following ar-
chitecture:

1. Word embedding layer of dimension 200

2. Temporal Convolution: C=512, W=3, ReLU
3. Temporal Convolution: C=1024, W=3
4. Meanpool over entire caption
5. L2 normalization

One would expect that access to ASR hypotheses
should improve the recall scores, but the perfor-
mance gap is not enormous. Access to the ASR
hypotheses provides a relative improvement of ap-
proximately 21.8% for image search R@10 and
12.5% for annotation R@10 compared to using no
transcriptions or ASR whatsoever.

We performed the grounding and pattern clus-
tering steps on the entire training dataset, which
resulted in a total of 1,161,305 unique ground-
ing pairs. For evaluation, we wish to assign a la-
bel to each cluster and cluster member, but this is
not completely straightforward since each acous-
tic segment may capture part of a word, a whole
word, multiple words, etc. Our strategy is to force-
align the Google recognition hypothesis text to the
audio, and then assign a label string to each acous-
tic segment based upon which words it overlaps
in time. The alignments are created with the help
of a Kaldi (Povey et al., 2011) speech recognizer

510

Table 3: Top 50 clusters with k = 500 sorted by increasing variance. Legend: |Cc| is acoustic cluster
size, |Ci| is associated image cluster size, Pur. is acoustic cluster purity, σ2 is acoustic cluster variance,
and Cov. is acoustic cluster coverage. A dash (-) indicates a cluster whose majority label is silence.

Trans |Cc| |Ci| Pur. σ2 Cov. Trans |Cc| |Ci| Pur. σ2 Cov.

- 1059 3480 0.70 0.26 - snow 4331 3480 0.85 0.26 0.45
desert 1936 2896 0.82 0.27 0.67 kitchen 3200 2990 0.88 0.28 0.76

restaurant 1921 2536 0.89 0.29 0.71 mountain 4571 2768 0.86 0.30 0.38
black 4369 2387 0.64 0.30 0.17 skyscraper 843 3205 0.84 0.30 0.84
bridge 1654 2025 0.84 0.30 0.25 tree 5303 3758 0.90 0.30 0.16
castle 1298 2887 0.72 0.31 0.74 bridge 2779 2025 0.81 0.32 0.41

- 2349 2165 0.31 0.33 - ocean 2913 3505 0.87 0.33 0.71
table 3765 2165 0.94 0.33 0.23 windmill 1458 3752 0.71 0.33 0.76

window 1890 2795 0.85 0.34 0.21 river 2643 3204 0.76 0.35 0.62
water 5868 3204 0.90 0.35 0.27 beach 1897 2964 0.79 0.35 0.64
flower 3906 2587 0.92 0.35 0.67 wall 3158 3636 0.84 0.35 0.23

sky 4306 6055 0.76 0.36 0.34 street 2602 2385 0.86 0.36 0.49
golf course 1678 3864 0.44 0.36 0.63 field 3896 3261 0.74 0.36 0.37

tree 4098 3758 0.89 0.36 0.13 lighthouse 1254 1518 0.61 0.36 0.83
forest 1752 3431 0.80 0.37 0.56 church 2503 3140 0.86 0.37 0.72
people 3624 2275 0.91 0.37 0.14 baseball 2777 1929 0.66 0.37 0.86
field 2603 3922 0.74 0.37 0.25 car 3442 2118 0.79 0.38 0.27

people 4074 2286 0.92 0.38 0.17 shower 1271 2206 0.74 0.38 0.82
people walking 918 2224 0.63 0.38 0.25 wooden 3095 2723 0.63 0.38 0.28

mountain 3464 3239 0.88 0.38 0.29 tree 3676 2393 0.89 0.39 0.11
- 1976 3158 0.28 0.39 - snow 2521 3480 0.79 0.39 0.24

water 3102 2948 0.90 0.39 0.14 rock 2897 2967 0.76 0.39 0.26
- 2918 3459 0.08 0.39 - night 3027 3185 0.44 0.39 0.59

station 2063 2083 0.85 0.39 0.62 chair 2589 2288 0.89 0.39 0.22
building 6791 3450 0.89 0.40 0.21 city 2951 3190 0.67 0.40 0.50

Figure 2: Scatter plot of audio cluster purity
weighted by log cluster size vs variance for k =
500 (least-squares line superimposed).

based on the standard WSJ recipe and trained us-
ing the Google ASR hypothesis as a proxy for the
transcriptions. Any word whose duration is over-
lapped 30% or more by the acoustic segment is in-
cluded in the label string for the segment. We then
employ a majority vote scheme to derive the over-
all cluster labels. When computing the purity of a

cluster, we count a cluster member as matching the
cluster label as long as the overall cluster label ap-
pears in the member’s label string. In other words,
an acoustic segment overlapping the words “the
lighthouse” would receive credit for matching the
overall cluster label “lighthouse”. A breakdown of
the segments captured by two clusters is shown in
Table 2. We investigated some simple schemes for
predicting highly pure clusters, and found that the
empirical variance of the cluster members (aver-
age squared distance to the cluster centroid) was
a good indicator. Figure 2 displays a scatter plot
of cluster purity weighted by the natural log of the
cluster size against the empirical variance. Large,
pure clusters are easily predicted by their low em-
pirical variance, while a high variance is indicative
of a garbage cluster.

Ranking a set of k = 500 acoustic clusters by
their variance, Table 3 displays some statistics for
the 50 lowest-variance clusters. We see that most
of the clusters are very large and highly pure, and
their labels reflect interesting object categories be-
ing identified by the neural network. We addi-
tionally compute the coverage of each cluster by
counting the total number of instances of the clus-

511

sky grass sunset ocean river

castle couch wooden lighthouse train

Figure 3: The 9 most central image crops from several image clusters, along with the majority-vote label
of their most associated acoustic pattern cluster

Table 4: Clustering statistics of the acoustic clusters for various values of k and different settings of the
variance-based cluster pruning threshold. Legend: |C| = number of clusters remaining after pruning, |X |
= number of datapoints after pruning, Pur = purity, |L| = number of unique cluster labels, AC = average
cluster coverage

σ2 < 0.9 σ2 < 0.65
k |C| |X | Pur |L| AC |C| |X | Pur |L| AC

250 249 1081514 .364 149 .423 128 548866 .575 108 .463
500 499 1097225 .396 242 .332 278 623159 .591 196 .375
750 749 1101151 .409 308 .406 434 668771 .585 255 .450

1000 999 1103391 .411 373 .336 622 710081 .568 318 .382
1500 1496 1104631 .429 464 .316 971 750162 .566 413 .366
2000 1992 1106418 .431 540 .237 1354 790492 .546 484 .271

ter label anywhere in the training data, and then
compute what fraction of those instances were
captured by the cluster. There are many examples
of high coverage clusters, e.g. the “skyscraper”
cluster captures 84% of all occurrences of the
word “skyscraper”, while the “baseball” cluster
captures 86% of all occurrences of the word “base-
ball”. This is quite impressive given the fact
that no conventional speech recognition was em-
ployed, and neither the multimodal neural network
nor the grounding algorithm had access to the text
transcripts of the captions.

To get an idea of the impact of the k parameter
as well as a variance-based cluster pruning thresh-
old based on Figure 2, we swept k from 250 to
2000 and computed a set of statistics shown in
Table 4. We compute the standard overall clus-
ter purity evaluation metric in addition to the aver-
age coverage across clusters. The table shows the
natural tradeoff between cluster purity and redun-

dancy (indicated by the average cluster coverage)
as k is increased. In all cases, the variance-based
cluster pruning greatly increases both the overall
purity and average cluster coverage metrics. We
also notice that more unique cluster labels are dis-
covered with a larger k.

Next, we examine the image clusters. Figure
3 displays the 9 most central image crops for a
set of 10 different image clusters, along with the
majority-vote label of each image cluster’s asso-
ciated audio cluster. In all cases, we see that the
image crops are highly relevant to their audio clus-
ter label. We include many more example image
clusters in Appendix A.

In order to examine the semantic embedding
space in more depth, we took the top 150 clusters
from the same k = 500 clustering run described
in Table 3 and performed t-SNE (van der Maaten
and Hinton, 2008) analysis on the cluster centroid
vectors. We projected each centroid down to 2 di-

512

Figure 4: t-SNE analysis of the 150 lowest-variance audio pattern cluster centroids for k = 500. Dis-
played is the majority-vote transcription of the each audio cluster. All clusters shown contained a mini-
mum of 583 members and an average of 2482, with an average purity of .668.

mensions and plotted their majority-vote labels in
Figure 4. Immediately we see that different clus-
ters which capture the same label closely neigh-
bor one another, indicating that distances in the
embedding space do indeed carry information dis-
criminative across word types (and suggesting that
a more sophisticated clustering algorithm than k-
means would perform better). More interestingly,
we see that semantic information is also reflected
in these distances. The cluster centroids for “lake,”
“river,” “body,” “water,” “waterfall,” “pond,” and
“pool” all form a tight meta-cluster, as do “restau-
rant,” “store,” “shop,” and “shelves,” as well as
“children,” “girl,” “woman,” and “man.” Many
other semantic meta-clusters can be seen in Figure
4, suggesting that the embedding space is captur-
ing information that is highly discriminative both
acoustically and semantically.

Because our experiments revolve around the
discovery of word and object categories, a key
question to address is the extent to which the
supervision used to train the VGG network
constrains or influences the kinds of objects
learned. Because the 1,000 object classes from
the ILSVRC2012 task (Russakovsky et al., 2015)
used to train the VGG network were derived from
WordNet synsets (Fellbaum, 1998), we can mea-
sure the semantic similarity between the words

learned by our network and the ILSVRC2012
class labels by using synset similarity measures
within WordNet. We do this by first building a
list of the 1,000 WordNet synsets associated with
the ILSVRC2012 classes. We then take the set
of unique majority-vote labels associated with the
discovered word clusters for k = 500, filtered by
setting a threshold on their variance (σ2 ≤ 0.65)
so as to get rid of garbage clusters, leaving us with
197 unique acoustic cluster labels. We then look
up each cluster label in WordNet, and compare all
noun senses of the label to every ILSVRC2012
class synset according to the path similarity mea-
sure. This measure describes the distance between
two synsets in a hyponym/hypernym hierarchy,
where a score of 1 represents identity and lower
scores indicate less similarity. We retain the high-
est score between any sense of the cluster label and
any ILSVRC2012 synset. Of the 197 unique clus-
ter labels, only 16 had a distance of 1 from any
ILSVRC12 class, which would indicate an exact
match. A path similarity of 0.5 indicates one de-
gree of separation in the hyponym/hypernym hier-
archy - for example, the similarity between “desk”
and “table” is 0.5. 47 cluster labels were found to
have a similarity of 0.5 to some ILSVRC12 class,
leaving 134 cluster labels whose highest similar-
ity to any ILSVRC12 class was less than 0.5. In

513

other words, more than two thirds of the highly
pure pattern clusters learned by our network were
dissimilar to all of the 1,000 ILSVRC12 classes
used to pretrain the VGG network, indicating that
our model is able to generalize far beyond the set
of classes found in the ILSVRC12 data. We dis-
play the labels of the 40 lowest variance acoustic
clusters labels along with the name and similarity
score of their closest ILSVRC12 synset in Table 5.

Cluster ILSVRC synset Similarity
snow cliff.n.01 0.14
desert cliff.n.01 0.12

kitchen patio.n.01 0.25
restaurant restaurant.n.01 1.00
mountain alp.n.01 0.50

black pool table.n.01 0.25
skyscraper greenhouse.n.01 0.33

bridge steel arch bridge.n.01 0.50
tree daisy.n.01 0.14

castle castle.n.02 1.00
ocean cliff.n.01 0.14
table desk.n.01 0.50

windmill cash machine.n.01 0.20
window screen.n.03 0.33

river cliff.n.01 0.12
water menu.n.02 0.25
beach cliff.n.01 0.33
flower daisy.n.01 0.50
wall cliff.n.01 0.33
sky cliff.n.01 0.11

street swing.n.02 0.14
golf course swing.n.02 0.17

field cliff.n.01 0.20
lighthouse beacon.n.03 1.00

forest cliff.n.01 0.20
church church.n.02 1.00
people street sign.n.01 0.17

baseball baseball.n.02 1.00
car freight car.n.01 0.50

shower swing.n.02 0.17
people walking (none) 0.00

wooden (none) 0.00
rock toilet tissue.n.01 0.20
night street sign.n.01 0.14

station swing.n.02 0.20
chair barber chair.n.01 0.50

building greenhouse.n.01 0.50
city cliff.n.01 0.12

white jean.n.01 0.33
sunset street sign.n.01 0.11

Table 5: The 40 lowest variance, uniquely-labeled
acoustic clusters paired with their most similar
ILSVRC2012 synset.

6 Conclusions and Future Work

In this paper, we have demonstrated that a neu-
ral network trained to associate images with the
waveforms representing their spoken audio cap-
tions can successfully be applied to discover and

cluster acoustic patterns representing words or
short phrases in untranscribed audio data. An
analogous procedure can be applied to visual im-
ages to discover visual patterns, and then the two
modalities can be linked, allowing the network
to learn, for example, that spoken instances of
the word “train” are associated with image re-
gions containing trains. This is done without the
use of a conventional automatic speech recogni-
tion system and zero text transcriptions, and there-
fore is completely agnostic to the language in
which the captions are spoken. Further, this is
done in O(n) time with respect to the number
of image/caption pairs, whereas previous state-
of-the-art acoustic pattern discovery algorithms
which leveraged acoustic data alone run in O(n2)
time. We demonstrate the success of our method-
ology on a large-scale dataset of over 214,000 im-
age/caption pairs comprising over 522 hours of
spoken audio data, which is to our knowledge
the largest scale acoustic pattern discovery exper-
iment ever performed. We have shown that the
shared multimodal embedding space learned by
our model is discriminative not only across visual
object categories, but also acoustically and seman-
tically across spoken words.

The future directions in which this research
could be taken are incredibly fertile. Because our
method creates a segmentation as well as an align-
ment between images and their spoken captions,
a generative model could be trained using these
alignments. The model could provide a spoken
caption for an arbitrary image, or even synthe-
size an image given a spoken description. Mod-
eling improvements are also possible, aimed at
the goal of incorporating both visual and acous-
tic localization into the neural network itself. The
same framework we use here could be extended
to video, enabling the learning of actions, verbs,
environmental sounds, and the like. Additionally,
by collecting a second dataset of captions for our
images in a different language, such as Spanish,
our model could be extended to learn the acous-
tic correspondences for a given object category in
both languages. This paves the way for creating a
speech-to-speech translation model not only with
absolutely zero need for any sort of text transcrip-
tions, but also with zero need for directly parallel
linguistic data or manual human translations.

514

References
Alessandro Bergamo, Loris Bazzani, Dragomir Anguelov,

and Lorenzo Torresani. 2014. Self-taught object lo-
calization with deep networks. CoRR abs/1409.3964.
http://arxiv.org/abs/1409.3964.

Minsu Cho, Suha Kwak, Cordelia Schmid, and Jean Ponce.
2015. Unsupervised object discovery and localization in
the wild: Part-based matching with bottom-up region pro-
posals. In Proceedings of CVPR.

Ramazan Cinbis, Jakob Verbeek, and Cordelia Schmid. 2016.
Weakly supervised object localization with multi-fold
multiple instance learning. In IEEE Transactions on Pat-
tern Analysis and Machine Intelligence.

Mark Dredze, Aren Jansen, Glen Coppersmith, and Kenneth
Church. 2010. NLP on spoken documents without ASR.
In Proceedings of EMNLP.

Hao Fang, Saurabh Gupta, Forrest Iandola, Srivastava Ru-
pesh, Li Deng, Piotr Dollar, Jianfeng Gao, Xiaodong He,
Margaret Mitchell, Platt John C., C. Lawrence Zitnick,
and Geoffrey Zweig. 2015. From captions to visual con-
cepts and back. In Proceedings of CVPR.

Christiane Fellbaum. 1998. WordNet: An Electronic Lexical
Database. Bradford Books.

Andrea Frome, Greg S. Corrado, Jonathon Shlens, Samy
Bengio, Jeffrey Dean, Marc’Aurelio Ranzato, and Tomas
Mikolov. 2013. Devise: A deep visual-semantic embed-
ding model. In Proceedings of the Neural Information
Processing Society.

John Garofolo, Lori Lamel, William Fisher, Jonathan Fiscus,
David Pallet, Nancy Dahlgren, and Victor Zue. 1993. The
TIMIT acoustic-phonetic continuous speech corpus.

Lieke Gelderloos and Grzegorz Chrupaa. 2016. From
phonemes to images: levels of representation in a recur-
rent neural model of visually-grounded language learning.
In arXiv:1610.03342.

Sharon Goldwater, Thomas Griffiths, and Mark Johnson.
2009. A Bayesian framework for word segmentation:
exploring the effects of context. In Cognition, vol. 112
pp.21-54.

David Harwath and James Glass. 2015. Deep multimodal
semantic embeddings for speech and images. In Proceed-
ings of the IEEE Workshop on Automatic Speech Recogni-
tion and Understanding.

David Harwath, Timothy J. Hazen, and James Glass. 2012.
Zero resource spoken audio corpus analysis. In Proceed-
ings of ICASSP.

David Harwath, Antonio Torralba, and James R. Glass. 2016.
Unsupervised learning of spoken language with visual
context. In Proceedings of NIPS.

Aren Jansen, Kenneth Church, and Hynek Hermansky. 2010.
Toward spoken term discovery at scale with zero re-
sources. In Proceedings of Interspeech.

Aren Jansen and Benjamin Van Durme. 2011. Efficient spo-
ken term discovery using randomized algorithms. In Pro-
ceedings of IEEE Workshop on Automatic Speech Recog-
nition and Understanding.

Justin Johnson, Andrej Karpathy, and Li Fei-Fei. 2016.
Densecap: Fully convolutional localization networks for
dense captioning. In Proceedings of CVPR.

Mark Johnson. 2008. Unsupervised word segmentation for
sesotho using adaptor grammars. In Proceedings of ACL
SIG on Computational Morphology and Phonology.

Andrej Karpathy, Armand Joulin, and Fei-Fei Li. 2014. Deep
fragment embeddings for bidirectional image sentence
mapping. In Proceedings of the Neural Information Pro-
cessing Society.

Andrej Karpathy and Fei-Fei Li. 2015. Deep visual-semantic
alignments for generating image descriptions. In Proceed-
ings of CVPR.

Chia-Ying Lee and James Glass. 2012. A nonparametric
Bayesian approach to acoustic model discovery. In Pro-
ceedings of the 2012 meeting of the Association for Com-
putational Linguistics.

Chia-Ying Lee, Timothy J. O’Donnell, and James Glass.
2015. Unsupervised lexicon discovery from acoustic in-
put. In Transactions of the Association for Computational
Linguistics.

M. Paul Lewis, Gary F. Simon, and Charles D. Fen-
nig. 2016. Ethnologue: Languages of the World,
Nineteenth edition. SIL International. Online version:
http://www.ethnologue.com.

Lucas Ondel, Lukas Burget, and Jan Cernocky. 2016. Vari-
ational inference for acoustic unit discovery. In 5th
Workshop on Spoken Language Technology for Under-
resourced Language.

Alex Park and James Glass. 2008. Unsupervised pattern dis-
covery in speech. In IEEE Transactions on Audio, Speech,
and Language Processing vol. 16, no.1, pp. 186-197.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Bur-
get, Ondrej Glembek, Nagendra Goel, Mirko Hannemann,
Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan Silovsky,
Georg Stemmer, and Karel Vesely. 2011. The Kaldi
speech recognition toolkit. In IEEE 2011 Workshop on
Automatic Speech Recognition and Understanding.

Deb Roy. 2003. Grounded spoken language acquisition: Ex-
periments in word learning. In IEEE Transactions on Mul-
timedia.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. 2015. ImageNet Large
Scale Visual Recognition Challenge. International
Journal of Computer Vision (IJCV) 115(3):211–252.
https://doi.org/10.1007/s11263-015-0816-y.

Karen Simonyan and Andrew Zisserman. 2014. Very deep
convolutional networks for large-scale image recognition.
CoRR abs/1409.1556.

Richard Socher, Andrej Karpathy, Quoc V. Le, Christo-
pher D. Manning, and Andrew Y. Ng. 2014. Grounded
compositional semantics for finding and describing im-
ages with sentences. In Transactions of the Association
for Computational Linguistics.

515

Richard Socher and Fei-Fei Li. 2010. Connecting modalities:
Semi-supervised segmentation and annotation of images
using unaligned text corpora. In Proceedings of CVPR.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visu-
alizing high-dimensional data using t-sne. In Journal of
Machine Learning Research.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dimitru
Erhan. 2015. Show and tell: A neural image caption gen-
erator. In Proceedings of CVPR.

Yaodong Zhang and James Glass. 2009. Unsupervised spo-
ken keyword spotting via segmental DTW on Gaussian
posteriorgrams. In Proceedings ASRU.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
and Antonio Torralba. 2015. Object detectors emerge in
deep scene CNNs. In Proceedings of ICLR.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Tor-
ralba, and Aude Oliva. 2014. Learning deep features for
scene recognition using places database. In Proceedings
of the Neural Information Processing Society.

516

A Additional Cluster Visualizations

beach cliff pool desert field

chair table staircase statue stone

church forest mountain skyscraper trees

waterfall windmills window city bridge

flowers man wall archway baseball

boat shelves cockpit girl children

building rock kitchen plant hallway

517

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 518–529
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1048

Joint CTC/attention decoding for end-to-end speech recognition

Takaaki Hori, Shinji Watanabe, John R. Hershey
Mitsubishi Electric Research Laboratories (MERL)
{thori,watanabe,hershey}@merl.com

Abstract

End-to-end automatic speech recognition
(ASR) has become a popular alterna-
tive to conventional DNN/HMM sys-
tems because it avoids the need for
linguistic resources such as pronuncia-
tion dictionary, tokenization, and context-
dependency trees, leading to a greatly
simplified model-building process. There
are two major types of end-to-end archi-
tectures for ASR: attention-based meth-
ods use an attention mechanism to per-
form alignment between acoustic frames
and recognized symbols, and connection-
ist temporal classification (CTC), uses
Markov assumptions to efficiently solve
sequential problems by dynamic program-
ming. This paper proposes a joint de-
coding algorithm for end-to-end ASR
with a hybrid CTC/attention architecture,
which effectively utilizes both advantages
in decoding. We have applied the pro-
posed method to two ASR benchmarks
(spontaneous Japanese and Mandarin Chi-
nese), and showing the comparable per-
formance to conventional state-of-the-art
DNN/HMM ASR systems without lin-
guistic resources.

1 Introduction

Automatic speech recognition (ASR) is currently
a mature set of technologies that have been widely
deployed, resulting in great success in interface
applications such as voice search. A typical ASR
system is factorized into several modules includ-
ing acoustic, lexicon, and language models based
on a probabilistic noisy channel model (Jelinek,
1976). Over the last decade, dramatic improve-
ments in acoustic and language models have been

driven by machine learning techniques known as
deep learning (Hinton et al., 2012).

However, current systems lean heavily on the
scaffolding of complicated legacy architectures
that grew up around traditional techniques. For
example, when we build an acoustic model from
scratch, we have to first build hidden Markov
model (HMM) and Gaussian mixture model
(GMM) followed by deep neural networks (DNN).
In addition, the factorization of acoustic, lexicon,
and language models is derived by conditional in-
dependence assumptions (especially Markov as-
sumptions), although the data do not necessarily
follow such assumptions leading to model mis-
specification. This factorization form also yields
a local optimum since the above modules are
optimized separately. Further, to well factorize
acoustic and language models, the system requires
linguistic knowledge based on a lexicon model,
which is usually based on a hand-crafted pronun-
ciation dictionary to map word to phoneme se-
quence. In addition to the pronunciation dictio-
nary issue, some languages, which do not ex-
plicitly have a word boundary, need language-
specific tokenization modules (Kudo et al., 2004;
Bird, 2006) for language modeling. Finally, in-
ference/decoding has to be performed by integrat-
ing all modules resulting in complex decoding.
Consequently, it is quite difficult for non-experts
to use/develop ASR systems for new applications,
especially for new languages.

End-to-end ASR has the goal of simplifying
the above module-based architecture into a single-
network architecture within a deep learning frame-
work, in order to address the above issues. There
are two major types of end-to-end architectures
for ASR: attention-based methods use an attention
mechanism to perform alignment between acous-
tic frames and recognized symbols, and connec-
tionist temporal classification (CTC), uses Markov

518

https://doi.org/10.18653/v1/P17-1048

assumptions to efficiently solve sequential prob-
lems by dynamic programming (Chorowski et al.,
2014; Graves and Jaitly, 2014).

The attention-based end-to-end method solves
the ASR problem as a sequence mapping from
speech feature sequences to text by using encoder-
decoder architecture. The decoder network uses
an attention mechanism to find an alignment be-
tween each element of the output sequence and
the hidden states generated by the acoustic en-
coder network for each frame of acoustic input
(Chorowski et al., 2014, 2015; Chan et al., 2015;
Lu et al., 2016). This basic temporal attention
mechanism is too flexible in the sense that it allows
extremely non-sequential alignments. This may be
fine for applications such as machine translation
where input and output word order are different
(Bahdanau et al., 2014; Wu et al., 2016). How-
ever, in speech recognition, the feature inputs and
corresponding letter outputs generally proceed in
the same order. Another problem is that the input
and output sequences in ASR can have very dif-
ferent lengths, and these vary greatly from case to
case, depending on the speaking rate and writing
system, making it more difficult to track the align-
ment.

However, an advantage is that the attention
mechanism does not require any conditional in-
dependence assumptions, and could address all
the problems cited above. Although the align-
ment problems of attention-based mechanisms
have been partially addressed in (Chorowski et al.,
2014; Chorowski and Jaitly, 2016) using various
mechanisms, here we propose more rigorous con-
straints by using CTC-based alignment to guide
the decoding.

CTC permits an efficient computation of a
strictly monotonic alignment using dynamic pro-
gramming (Graves et al., 2006; Graves and Jaitly,
2014) although it requires language models and
graph-based decoding (Miao et al., 2015) except
in the case of huge training data (Amodei et al.,
2015; Soltau et al., 2016). We propose to take ad-
vantage of the constrained CTC alignment in a hy-
brid CTC/attention based system during decoding.
The proposed method adopts a CTC/attention hy-
brid architecture, which was originally designed
to regularize an attention-based encoder network
by additionally using a CTC during training (Kim
et al., 2017). The proposed method extends the ar-
chitecture to perform one-pass/rescoring joint de-

coding, where hypotheses of attention-based ASR
are boosted by scores obtained by using CTC out-
puts. This greatly reduces irregular alignments
without any heuristic search techniques.

The proposed method is applied to Japanese
and Mandarin ASR tasks, which require extra
linguistic resources including morphological an-
alyzer (Kudo et al., 2004) or word segmentation
(Xue et al., 2003) in addition to pronunciation dic-
tionary to provide accurate lexicon and language
models in conventional DNN/HMM ASR. Sur-
prisingly, the method achieved performance com-
parable to, and in some cases superior to, several
state-of-the-art DNN/HMM ASR systems, with-
out using the above linguistic resources.

2 From DNN/HMM to end-to-end ASR

This section briefly provides a formulation of con-
ventional DNN/HMM ASR and CTC or attention
based end-to-end ASR.

2.1 Conventional DNN/HMM ASR
ASR deals with a sequence mapping from T -
length speech feature sequence X = {xt ∈
RD|t = 1, · · · , T} to N -length word sequence
W = {wn ∈ V|n = 1, · · · , N}. xt is a D
dimensional speech feature vector (e.g., log Mel
filterbanks) at frame t and wn is a word at posi-
tion n in vocabulary V . ASR is mathematically
formulated with the Bayes decision theory, where
the most probable word sequence Ŵ is estimated
among all possible word sequences V∗ as follows:

Ŵ = arg max
W∈V∗

p(W |X). (1)

The posterior distribution p(W |X) is factorized
into the following three distributions by using the
Bayes theorem and introducing HMM state se-
quence S = {st ∈ {1, · · · , J}|t = 1, · · · , T}:

Eq. (1) ≈ arg max
W

∑

S

p(X|S)p(S|W)p(W).

The three factors, p(X|S), p(S|W), and p(W),
are acoustic, lexicon, and language models, re-
spectively. These are further factorized by using
a probabilistic chain rule and conditional indepen-
dence assumption as follows:




p(X|S) ≈∏t
p(st|xt)
p(st)

,

p(S|W)≈∏t p(st|st−1,W),

p(W) ≈∏n p(wn|wn−1, . . . , wn−m−1),

519

where the acoustic model is replaced with
the product of framewise posterior distributions
p(st|xt) computed by powerful DNN classi-
fiers by using so-called pseudo likelihood trick
(Bourlard and Morgan, 1994). p(st|st−1,W) is
represented by an HMM state transition given W ,
and the conversion from W to HMM states is de-
terministically performed by using a pronuncia-
tion dictionary through a phoneme representation.
p(wn|wn−1, . . . , wn−m−1) is obtained based on
an (m − 1)th-order Markov assumption as a m-
gram model.

These conditional independence assumptions
are often regarded as too strong assumption, lead-
ing to model mis-specification. Also, to train the
framewise posterior p(st|xt), we have to provide
a framewise state alignment st as a target, which
is often provided by a GMM/HMM system. Thus,
conventional DNN/HMM systems make the ASR
problem formulated with Eq. (1) feasible by us-
ing factorization and conditional independence as-
sumptions, at the cost of the problems discussed in
Section 1.

2.2 Connectionist Temporal Classification
(CTC)

The CTC formulation also follows from Bayes de-
cision theory (Eq. (1)). Note that the CTC formu-
lation uses L-length letter sequence C = {cl ∈
U|l = 1, · · · , L} with a set of distinct letters U .
Similarly to Section 2.1, by introducing frame-
wise letter sequence with an additional ”blank”
(< b >) symbol Z = {zt ∈ U ∪ < b >|t =
1, · · · , T}, and by using the probabilistic chain
rule and conditional independence assumption, the
posterior distribution p(C|X) is factorized as fol-
lows:

p(C|X) ≈
∑

Z

∏

t

p(zt|zt−1, C)p(zt|X)

︸ ︷︷ ︸
,pctc(C|X)

p(C)

p(Z)

(2)

As a result, CTC has three distribution com-
ponents similar to the DNN/HMM case, i.e.,
framewise posterior distribution p(zt|X), tran-
sition probability p(zt|zt−1, C)1, and prior dis-
tributions of letter and hidden-state sequences,

1Note that in the implementation, the transition value is
not normalized (i.e., not a probabilistic value) (Graves and
Jaitly, 2014; Miao et al., 2015), similar to the HMM state
transition implementation (Povey et al., 2011)

p(C) and p(Z), respectively. We also define
the CTC objective function pctc(C|X) used in
the later formulation. The framewise posterior
distribution p(zt|X) is conditioned on all in-
puts X , and it is quite natural to be modeled
by using bidirectional long short-term memory
(BLSTM): p(zt|X) = Softmax(Lin(ht)) and
ht = BLSTM(X). Softmax(·) is a sofmax activa-
tion function, and Lin(·) is a linear layer to convert
hidden vector ht to a (|U|+ 1) dimensional vector
(+1 means a blank symbol introduced in CTC).

Although Eq. (2) has to deal with a summa-
tion over all possible Z, it is efficiently computed
by using dynamic programming (Viterbi/forward-
backward algorithm) thanks to the Markov prop-
erty. In summary, although CTC and DNN/HMM
systems are similar to each other due to condi-
tional independence assumptions, CTC does not
require pronunciation dictionaries and omits an
GMM/HMM construction step.

2.3 Attention mechanism
Compared with hybrid and CTC approaches, the
attention-based approach does not make any con-
ditional independence assumptions, and directly
estimates the posterior p(C|X) based on a prob-
abilistic chain rule, as follows:

p(C|X) =
∏

l

p(cl|c1, · · · , cl−1, X)

︸ ︷︷ ︸
,patt(C|X)

, (3)

where patt(C|X) is an attention-based objective
function. p(cl|c1, · · · , cl−1, X) is obtained by

p(cl|c1, · · · , cl−1, X) = Decoder(rl,ql−1, cl−1)

ht = Encoder(X) (4)

alt = Attention({al−1}t,ql−1,ht) (5)

rl =
∑

t

altht. (6)

Eq. (4) converts input feature vectors X into a
framewise hidden vector ht in an encoder net-
work based on BLSTM, i.e., Encoder(X) ,
BLSTM(X). Attention(·) in Eq. (5) is based on
a content-based attention mechanism with convo-
lutional features, as described in (Chorowski et al.,
2015) (see Appendix A). alt is an attention weight,
and represents a soft alignment of hidden vector ht
for each output cl based on the weighted summa-
tion of hidden vectors to form letter-wise hidden
vector rl in Eq. (6). A decoder network is another

520

recurrent network conditioned on previous output
cl−1 and hidden vector ql−1, similar to RNNLM,
in addition to letter-wise hidden vector rl. We use
Decoder(·) , Softmax(Lin(LSTM(·))).

Attention-based ASR does not explicitly sep-
arate each module, and potentially handles the
all issues pointed out in Section 1. It implic-
itly combines acoustic models, lexicon, and lan-
guage models as encoder, attention, and decoder
networks, which can be jointly trained as a single
deep neural network.

Compared with DNN/HMM and CTC, which
are based on a transition form from t − 1 to t due
to the Markov assumption, the attention mecha-
nism does not maintain this constraint, and often
provides irregular alignments. A major focus of
this paper is to address this problem by using joint
CTC/attention decoding.

3 Joint CTC/attention decoding

This section explains a hybrid CTC/attention net-
work, which potentially utilizes both benefits of
CTC and attention in ASR.

3.1 Hybrid CTC/attention architecture
Kim et al. (2017) uses a CTC objective function as
an auxiliary task to train the attention model en-
coder within the multitask learning (MTL) frame-
work, and this paper also uses the same archi-
tecture. Figure 1 illustrates the overall architec-
ture of the framework, where the same BLSTM is
shared with CTC and attention encoder networks,
respectively). Unlike the sole attention model, the
forward-backward algorithm of CTC can enforce
monotonic alignment between speech and label
sequences during training. That is, rather than
solely depending on data-driven attention meth-
ods to estimate the desired alignments in long se-
quences, the forward-backward algorithm in CTC
helps to speed up the process of estimating the de-
sired alignment. The objective to be maximized is
a logarithmic linear combination of the CTC and
attention objectives, i.e., pctc(C|X) in Eq. (2) and
patt(C|X) in Eq. (3):

LMTL = λ log pctc(C|X) + (1− λ) log patt(C|X),
(7)

with a tunable parameter λ : 0 ≤ λ ≤ 1.

3.2 Decoding strategies
The inference step of our joint CTC/attention-
based end-to-end speech recognition is performed

ㅡ ㅡㅡz2 …

sos eosc1

q0

r0 r1 rL

H

h2 h4

q1 qL

hT

x1 x2 x3 x4 x5 x6 xT

Shared
Encoder

CTC

Attention
Decoder

x7 x8

z4

h6 h8

…

c2

r2

q2

…c1 c2 …

c1 c2 …

Figure 1: Joint CTC/attention based end-to-end
framework: the shared encoder is trained by both
CTC and attention model objectives simultane-
ously. The shared encoder transforms our input
sequence {xt · · ·xT } into high level featuresH =
{ht · · ·hT }, and the attention decoder generates
the letter sequence {c1 · · · cL}.

by label synchronous decoding with a beam
search similar to conventional attention-based
ASR. However, we take the CTC probabilities into
account to find a hypothesis that is better aligned
to the input speech, as shown in Figure 1. Here-
after, we describe the general attention-based de-
coding and conventional techniques to mitigate the
alignment problem. Then, we propose joint de-
coding methods with a hybrid CTC/attention ar-
chitecture.

3.2.1 Attention-based decoding in general
End-to-end speech recognition inference is gener-
ally defined as a problem to find the most probable
letter sequence Ĉ given the speech input X , i.e.

Ĉ = arg max
C∈U∗

log p(C|X). (8)

In attention-based ASR, p(C|X) is computed by
Eq. (3), and Ĉ is found by a beam search tech-
nique.

Let Ωl be a set of partial hypotheses of the
length l. At the beginning of the beam search,
Ω0 contains only one hypothesis with the start-
ing symbol <sos> and the hypothesis score
α(<sos>, X) is set to 0. For l = 1 to Lmax, each
partial hypothesis in Ωl−1 is expanded by append-
ing possible single letters, and the new hypothe-
ses are stored in Ωl, where Lmax is the maximum

521

length of the hypotheses to be searched. The score
of each new hypothesis is computed in the log do-
main as

α(h,X) = α(g,X) + log p(c|g,X), (9)

where g is a partial hypothesis in Ωl−1, c is a letter
appended to g, and h is the new hypothesis such
that h = g · c. If c is a special symbol that repre-
sents the end of a sequence, <eos>, h is added to
Ω̂ but not Ωl, where Ω̂ denotes a set of complete
hypotheses. Finally, Ĉ is obtained by

Ĉ = arg max
h∈Ω̂

α(h,X). (10)

In the beam search process, Ωl is allowed to hold
only a limited number of hypotheses with higher
scores to improve the search efficiency.

Attention-based ASR, however, may be prone
to include deletion and insertion errors because
of its flexible alignment property, which can at-
tend to any portion of the encoder state sequence
to predict the next label, as discussed in Section
2.3. Since attention is generated by the decoder
network, it may prematurely predict the end-of-
sequence label, even when it has not attended to
all of the encoder frames, making the hypothesis
too short. On the other hand, it may predict the
next label with a high probability by attending to
the same portions as those attended to before. In
this case, the hypothesis becomes very long and
includes repetitions of the same letter sequence.

3.2.2 Conventional decoding techniques
To alleviate the alignment problem, a length
penalty term is commonly used to control the hy-
pothesis length to be selected (Chorowski et al.,
2015; Bahdanau et al., 2016). With the length
penalty, the decoding objective in Eq. (8) is
changed to

Ĉ = arg max
C∈U∗

{log p(C|X) + γ|C|} , (11)

where |C| is the length of the sequence C, and γ is
a tunable parameter. However, it is actually diffi-
cult to completely exclude hypotheses that are too
long or too short even if γ is carefully tuned. It
is also effective to control the hypothesis length
by the minimum and maximum lengths to some
extent, where the minimum and maximum are se-
lected as fixed ratios to the length of the input
speech. However, since there are exceptionally
long or short transcripts compared to the input

speech, it is difficult to balance saving such excep-
tional transcripts and preventing hypotheses with
irrelevant lengths.

Another approach is the coverage term re-
cently proposed in (Chorowski and Jaitly, 2016),
which is incorporated in the decoding objective in
Eq. (11) as

Ĉ = arg max
C∈U∗

{log p(C|X) + γ|C|

+η · coverage(C|X)} , (12)

where the coverage term is computed by

coverage(C|X) =
T∑

t=1

[
L∑

l=1

alt > τ

]
. (13)

η and τ are tunable parameters. The coverage term
represents the number of frames that have received
a cumulative attention greater than τ . Accord-
ingly, it increases when paying close attention to
some frames for the first time, but does not in-
crease when paying attention again to the same
frames. This property is effective for avoiding
looping of the same label sequence within a hy-
pothesis. However, it is still difficult to obtain a
common parameter setting for γ, η, τ , and the op-
tional min/max lengths so that they are appropriate
for any speech data from different tasks.

3.2.3 Joint decoding
Our joint CTC/attention approach combines the
CTC and attention-based sequence probabilities in
the inference step, as well as the training step.
Suppose pctc(C|X) in Eq. (2) and patt(C|X) in
Eq. (3) are the sequence probabilities given by
CTC and the attention model. The decoding ob-
jective is defined similarly to Eq. (7) as

Ĉ = arg max
C∈U∗

{λ log pctc(C|X)

+(1− λ) log patt(C|X)} . (14)

The CTC probability enforces a monotonic align-
ment that does not allow large jumps or looping
of the same frames. Accordingly, it is possible
to choose a hypothesis with a better alignment
and exclude irrelevant hypotheses without relying
on the coverage term, length penalty, or min/max
lengths.

In the beam search process, the decoder needs
to compute a score for each partial hypothesis us-
ing Eq. (9). However, it is nontrivial to combine
the CTC and attention-based scores in the beam

522

search, because the attention decoder performs it
output-label-synchronously while CTC performs
it frame-synchronously. To incorporate the CTC
probabilities in the hypothesis score, we propose
two methods.

Rescoring
The first method is a two-pass approach, in which
the first pass obtains a set of complete hypotheses
using the beam search, where only the attention-
based sequence probabilities are considered. The
second pass rescores the complete hypotheses us-
ing the CTC and attention probabilities, where the
CTC probabilities are obtained by the forward al-
gorithm for CTC (Graves et al., 2006). The rescor-
ing pass obtains the final result according to

Ĉ = arg max
h∈Ω̂
{λαctc(h,X) + (1− λ)αatt(h,X)} ,

(15)

where
{
αctc(h,X) , log pctc(h|X)

αatt(h,X) , log patt(h|X)
. (16)

One-pass decoding
The second method is one-pass decoding, in which
we compute the probability of each partial hypoth-
esis using CTC and an attention model. Here, we
utilize the CTC prefix probability (Graves, 2008)
defined as the cumulative probability of all label
sequences that have the partial hypothesis h as
their prefix:

pctc(h, . . . |X) =
∑

ν∈(U∪{<eos>})+

pctc(h · ν|X),

and we define the CTC score as

αctc(h,X) , log pctc(h, . . . |X), (17)

where ν represents all possible label sequences ex-
cept the empty string. The CTC score cannot be
obtained recursively as in Eq. (9), but it can be
computed efficiently by keeping the forward prob-
abilities over the input frames for each partial hy-
pothesis. Then it is combined with αatt(h,X).

The beam search algorithm for one-pass decod-
ing is shown in Algorithm 1. Ωl and Ω̂ are ini-
tialized in lines 2 and 3 of the algorithm, which
are implemented as queues that accept partial hy-
potheses of the length l and complete hypothe-
ses, respectively. In lines 4–25, each partial hy-
pothesis g in Ωl−1 is extended by each label c

Algorithm 1 Joint CTC/attention one-pass decod-
ing
1: procedure ONEPASSBEAMSEARCH(X ,Lmax)
2: Ω0 ← {<sos>}
3: Ω̂← ∅
4: for l = 1 . . . Lmax do
5: Ωl ← ∅
6: while Ωl−1 6= ∅ do
7: g ← HEAD(Ωl−1)
8: DEQUEUE(Ωl−1)
9: for each c ∈ U ∪ {<eos>} do

10: h← g · c
11: α(h,X)←λαctc(h,X)+(1−λ)αatt(h,X)
12: if c = <eos> then
13: ENQUEUE(Ω̂, h)
14: else
15: ENQUEUE(Ωl, h)
16: if |Ωl| > beamWidth then
17: REMOVEWORST(Ωl)
18: end if
19: end if
20: end for
21: end while
22: if ENDDETECT(Ω̂, l) = true then
23: break . exit for loop
24: end if
25: end for
26: return arg maxh∈Ω̂ α(h,X)
27: end procedure

in the label set U . Each extended hypothesis h
is scored in line 11, where CTC and attention-
based scores are obtained by αctc() and αatt(). Af-
ter that, if c = <eos>, the hypothesis h is as-
sumed to be complete and stored in Ω̂ in line 13.
If c 6= <eos>, h is stored in Ωl in line 15, where
the number of hypotheses in Ωl is checked in line
16. If the number exceeds the beam width, the hy-
pothesis with the worst score in Ωl is removed by
REMOVEWORST() in line 17.

In line 11, the CTC and attention model scores
are computed for each partial hypothesis. The at-
tention score is easily obtained in the same man-
ner as Eq. (9), whereas the CTC score requires
a modified forward algorithm that computes it
label-synchronously. The algorithm to compute
the CTC score is summarized in Appendix B. By
considering the attention and CTC scores during
the beam search, partial hypotheses with irregu-
lar alignments can be excluded, and the number of
search errors is reduced.

We can optionally apply an end detection tech-
nique to reduce the computation by stopping the
beam search before l reaches Lmax. Function
ENDDETECT(Ω̂, l) in line 22 returns true if
there is little chance of finding complete hypothe-
ses with higher scores as l increases in the future.

523

In our implementation, the function returns true
if

M−1∑

m=0

[
max

h∈Ω̂:|h|=l−m
α(h,X)−max

h′∈Ω̂
α(h′, X)<Dend

]
=M,

(18)
where Dend and M are predetermined thresholds.
This equation becomes true if complete hypothe-
ses with smaller scores are generated M times
consecutively. This technique is also available in
attention-based decoding and rescoring methods
described in Sections 3.2.1–3.2.3.

4 Experiments

We used Japanese and Mandarin Chinese ASR
benchmarks to show the effectiveness of the pro-
posed joint CTC/attention decoding approach.
The main reason for choosing these two languages
is that those ideogram languages have relatively
shorter lengths for letter sequences than those in
alphabet languages, which reduces computational
complexities greatly, and makes it easy to handle
context information in a decoder network. Our
preliminary investigation shows that Japanese and
Mandarin Chinese end-to-end ASR can be eas-
ily scaled up, and shows state-of-the-art perfor-
mance without using various tricks developed in
English tasks. Also, we would like to emphasize
that the system did not use language-specific pro-
cessing (e.g., morphological analyzer, Pinyin dic-
tionary), and simply used all appeared characters
in their transcriptions including Japanese syllable
and Kanji, Chinese, Arabic number, and alphabet
characters, as they are.

4.1 Corpus of Spontaneous Japanese (CSJ)

We demonstrated ASR experiments by using the
Corpus of Spontaneous Japanese (CSJ) (Maekawa
et al., 2000). CSJ is a standard Japanese ASR task
based on a collection of monologue speech data
including academic lectures and simulated presen-
tations. It has a total of 581 hours of training
data and three types of evaluation data, where each
evaluation task consists of 10 lectures (totally 5
hours). As input features, we used 40 mel-scale
filterbank coefficients, with their first and second
order temporal derivatives to obtain a total of 120-
dimensional feature vector per frame. The encoder
was a 4-layer BLSTM with 320 cells in each layer
and direction, and linear projection layer is fol-
lowed by each BLSTM layer. The 2nd and 3rd

bottom layers of the encoder read every second
hidden state in the network below, reducing the
utterance length by the factor of 4. We used the
content-based attention mechanism (Chorowski
et al., 2015), where the 10 centered convolution
filters of width 100 were used to extract the con-
volutional features. The decoder network was a
1-layer LSTM with 320 cells. The AdaDelta algo-
rithm (Zeiler, 2012) with gradient clipping (Pas-
canu et al., 2012) was used for the optimization.
Dend and M in Eq (18) were set as log 1e−10 and
3, respectively. The hybrid CTC/attention ASR
was implemented by using the Chainer deep learn-
ing toolkit (Tokui et al., 2015).

Table 1 first compares the character error rate
(CER) for conventional attention and MTL based
end-to-end ASR without the joint decoding. λ in
Eq. (7) was set to 0.1. When decoding, we man-
ually set the minimum and maximum lengths of
output sequences by 0.025 and 0.15 times input
sequence lengths, respectively. The length penalty
γ in Eq. (11) was set to 0.1. Multitask learning
(MTL) significantly outperformed attention-based
ASR in the all evaluation tasks, which confirms
the effectiveness of a hybrid CTC/attention archi-
tecture. Table 1 also shows that joint decoding,
described in Section 3.2, further improved the per-
formance without setting any search parameters
(maximum and minimum lengths, length penalty),
but only setting a weight parameter λ = 0.1 in
Eq. (15) similar to the MTL case. Figure 2 also
compares the dependency of λ on the CER for the
CSJ evaluation tasks, and showing that λ was not
so sensitive to the performance if we set λ around
the value we used at MTL (i.e., 0.1).

We also compare the performance of the
proposed MTL-large, which has a larger net-
work (5-layer encoder network), with the con-
ventional state-of-the-art techniques obtained by
using linguistic resources. The state-of-the-art
CERs of GMM discriminative training and DNN-
sMBR/HMM systems are obtained from the Kaldi
recipe (Moriya et al., 2015) and a system based on
syllable-based CTC with MAP decoding (Kanda
et al., 2016). The Kaldi recipe systems use aca-
demic lectures (236h) for AM training and all
training-data transcriptions for LM training. Un-
like the proposed method, these methods use lin-
guistic resources including a morphological an-
alyzer, pronunciation dictionary, and language
model. Note that since the amount of training

524

Table 1: Character error rate (CER) for conventional attention and hybrid CTC/attention end-to-end
ASR. Corpus of Spontaneous Japanese speech recognition (CSJ) task.

Model Hour Task1 Task2 Task3
Attention 581 11.4 7.9 9.0
MTL 581 10.5 7.6 8.3
MTL + joint decoding (rescoring) 581 10.1 7.1 7.8
MTL + joint decoding (one pass) 581 10.0 7.1 7.6
MTL-large + joint decoding (rescoring) 581 8.4 6.2 6.9
MTL-large + joint decoding (one pass) 581 8.4 6.1 6.9
GMM-discr. (Moriya et al., 2015) 236 for AM, 581 for LM 11.2 9.2 12.1
DNN/HMM (Moriya et al., 2015) 236 for AM, 581 for LM 9.0 7.2 9.6
CTC-syllable (Kanda et al., 2016) 581 9.4 7.3 7.5

6.0	

7.0	

8.0	

9.0	

10.0	

11.0	

12.0	

13.0	

0.0	
 0.1	
 0.2	
 0.3	
 0.4	
 0.5	
 0.6	
 0.7	
 0.8	
 0.9	
 1.0	

Ch
ar
ac
te
r	
 E

rr
or
	
 R
at
e	

(%

)	

CTC	
 weight	

Task1	
 Task2	
 Task3	

Figure 2: The effect of weight parameter λ in
Eq. (14) on the CSJ evaluation tasks (The CERs
were obtained by one-pass decoding).

data and experimental configurations of the pro-
posed and reference methods are different, it is
difficult to compare the performance listed in the
table directly. However, since the CERs of the
proposed method are superior to those of the best
reference results, we can state that the proposed
method achieves the state-of-the-art performance.

4.2 Mandarin telephone speech

We demonstrated ASR experiments on HKUST
Mandarin Chinese conversational telephone
speech recognition (MTS) (Liu et al., 2006).
It has 5 hours recording for evaluation, and
we extracted 5 hours from training data as a
development set, and used the rest (167 hours)
as a training set. All experimental conditions
were same as those in Section 4.1 except that
we used the λ = 0.5 in training and decoding
instead of 0.1 based on our preliminary investi-
gation and 80 mel-scale filterbank coefficients
with pitch features as suggested in (Miao et al.,
2016). In decoding, we also added a result of
the coverage-term based decoding (Chorowski
and Jaitly, 2016), as discussed in Section 3.2

(η = 1.5, τ = 0.5, γ = −0.6 for attention model
and η = 1.0, τ = 0.5, γ = −0.1 for MTL),
since it was difficult to eliminate the irregular
alignments during decoding by only tuning the
maximum and minimum lengths and length
penalty (we set the minimum and maximum
lengths of output sequences by 0.0 and 0.1 times
input sequence lengths, respectively and set
γ = 0.6 in Table 2).

Table 2 shows the effectiveness of MTL and
joint decoding over the attention-based approach,
especially showing the significant improvement of
the joint CTC/attention decoding. Similar to the
CSJ experiments in Section 4.1, we did not use
the length-penalty term or the coverage term in
joint decoding. This is an advantage of joint de-
coding over conventional approaches that require
many tuning parameters. We also generated more
training data by linearly scaling the audio lengths
by factors of 0.9 and 1.1 (speed perturb.). The fi-
nal model achieved 29.9% without using linguistic
resources, which defeats moderate state-of-the-art
systems including CTC-based methods2.

4.3 Decoding speed

We evaluated the speed of the joint decoding meth-
ods described in Section 3.2.3. ASR decoding was
performed with different beam widths of 1, 3, 5,
10, and 20, and the processing time and CER were
measured using a computer with Intel(R) Xeon(R)
processors, E5-2690 v3, 2.6 GHz. Although the
processors were multicore CPUs and the computer
had GPUs, we ran the decoding program as a

2 Although the proposed method did not reach the perfor-
mance obtained by a time delayed neural network (TDNN)
with lattice-free sequence discriminative training (Povey
et al., 2016), our recent work scored 28.0%, and outper-
formed the lattice-free MMI result with advanced network
architectures.

525

Table 2: Character error rate (CER) for conventional attention and hybrid CTC/attention end-to-end
ASR. HKUST Mandarin Chinese conversational telephone speech recognition (MTS) task.

Model dev eval
Attention 40.3 37.8
MTL 38.7 36.6
Attention + coverage 39.4 37.6
MTL + coverage 36.9 35.3
MTL + joint decoding (rescoring) 35.9 34.2
MTL + joint decoding (one pass) 35.5 33.9
MTL-large (speed perturb.) + joint decoding (rescoring) 31.1 30.1
MTL-large (speed perturb.) + joint decoding (one pass) 31.0 29.9
DNN/HMM – 35.9
LSTM/HMM (speed perturb.) – 33.5
CTC with language model (Miao et al., 2016) – 34.8
TDNN/HMM, lattice-free MMI (speed perturb.) (Povey et al., 2016) – 28.2

single-threaded process on a CPU to investigate its
basic computational cost.

Table 3: RTF versus CER for the one-pass and
rescoring methods.

Beam Rescoring One passTask
width RTF CER RTF CER

1 0.66 10.9 0.66 10.7
CSJ 3 1.11 10.3 1.02 10.1

Task1 5 1.50 10.2 1.31 10.0
10 2.46 10.1 2.07 10.0
20 5.02 10.1 3.76 10.0
1 0.68 37.1 0.65 35.9

HKUST 3 0.89 34.9 0.86 34.4
Eval set 5 1.04 34.6 1.03 34.2

10 1.55 34.4 1.50 34.0
20 2.66 34.2 2.55 33.9

Table 3 shows the relationships between the
real-time factor (RTF) and the CER for the CSJ
and HKUST tasks. We evaluated the rescoring and
one-pass decoding methods when using the end
detection in Eq. (18). In every beam width, we
can see that the one-pass method runs faster with
an equal or lower CER than the rescoring method.
This result demonstrates that the one-pass decod-
ing is effective for reducing search errors. Finally,
we achieved 1xRT with one-pass decoding when
using a beam width around 3 to 5, even though it
was a single-threaded process on a CPU. However,
the decoding process has not yet achieved real-
time ASR since CTC and the attention mechanism
need to access all of the frames of the input utter-
ance even when predicting the first label. This is
an essential problem of most end-to-end ASR ap-
proaches and will be solved in future work.

5 Summary and discussion

This paper proposes end-to-end ASR by us-
ing joint CTC/attention decoding, which outper-
formed ordinary attention-based end-to-end ASR
by solving the misalignment issues. The joint de-
coding methods actually reduced most of the ir-
regular alignments, which can be confirmed from
the examples of recognition errors and alignment
plots shown in Appendix C.

The proposed end-to-end ASR does not re-
quire linguistic resources, such as morphological
analyzer, pronunciation dictionary, and language
model, which are essential components of conven-
tional Japanese and Mandarin Chinese ASR sys-
tems. Nevertheless, the method achieved com-
parable/superior performance to the state-of-the-
art conventional systems for the CSJ and MTS
tasks. In addition, the proposed method does not
require GMM/HMM construction for initial align-
ments, DNN pre-training, lattice generation for se-
quence discriminative training, complex search in
decoding (e.g., FST decoder or lexical tree search
based decoder). Thus, the method greatly simpli-
fies the ASR building process, reducing code size
and complexity.

Future work will apply this technique to the
other languages including English, where we have
to solve an issue of long sequence lengths, which
requires heavy computation cost and makes it dif-
ficult to train a decoder network. Actually, neu-
ral machine translation handles this issue by us-
ing a sub word unit (concatenating several letters
to form a new sub word unit) (Wu et al., 2016),
which would be a promising direction for end-to-
end ASR.

526

References
Dario Amodei, Rishita Anubhai, Eric Battenberg, Carl

Case, Jared Casper, Bryan Catanzaro, Jingdong
Chen, Mike Chrzanowski, Adam Coates, Greg Di-
amos, et al. 2015. Deep speech 2: End-to-end
speech recognition in english and mandarin. arXiv
preprint arXiv:1512.02595 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk,
Philemon Brakel, and Yoshua Bengio. 2016. End-
to-end attention-based large vocabulary speech
recognition. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
pages 4945–4949.

Steven Bird. 2006. NLTK: the natural language toolkit.
In Joint conference of the International Committee
on Computational Linguistics and the Association
for Computational Linguistics (COLING/ACL) on
Interactive presentation sessions. pages 69–72.

Hervé Bourlard and Nelson Morgan. 1994. Con-
nectionist speech recognition: A hybrid approach.
Kluwer Academic Publishers.

William Chan, Navdeep Jaitly, Quoc V Le, and Oriol
Vinyals. 2015. Listen, attend and spell. arXiv
preprint arXiv:1508.01211 .

Jan Chorowski, Dzmitry Bahdanau, Kyunghyun Cho,
and Yoshua Bengio. 2014. End-to-end continuous
speech recognition using attention-based recurrent
NN: First results. arXiv preprint arXiv:1412.1602
.

Jan Chorowski and Navdeep Jaitly. 2016. Towards
better decoding and language model integration
in sequence to sequence models. arXiv preprint
arXiv:1612.02695 .

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy
Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
2015. Attention-based models for speech recogni-
tion. In Advances in Neural Information Processing
Systems (NIPS). pages 577–585.

Alex Graves. 2008. Supervised sequence labelling
with recurrent neural networks. PhD thesis, Tech-
nische Universität München .

Alex Graves, Santiago Fernández, Faustino Gomez,
and Jürgen Schmidhuber. 2006. Connectionist
temporal classification: labelling unsegmented se-
quence data with recurrent neural networks. In
International Conference on Machine learning
(ICML). pages 369–376.

Alex Graves and Navdeep Jaitly. 2014. Towards end-
to-end speech recognition with recurrent neural net-
works. In International Conference on Machine
Learning (ICML). pages 1764–1772.

Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl,
Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N
Sainath, et al. 2012. Deep neural networks for
acoustic modeling in speech recognition: The shared
views of four research groups. IEEE Signal Process-
ing Magazine 29(6):82–97.

Frederick Jelinek. 1976. Continuous speech recogni-
tion by statistical methods. Proceedings of the IEEE
64(4):532–556.

Naoyuki Kanda, Xugang Lu, and Hisashi Kawai. 2016.
Maximum a posteriori based decoding for CTC
acoustic models. In Interspeech 2016. pages 1868–
1872.

Suyoun Kim, Takaaki Hori, and Shinji Watanabe.
2017. Joint CTC-attention based end-to-end speech
recognition using multi-task learning. In IEEE In-
ternational Conference on Acoustics, Speech and
Signal Processing (ICASSP). pages 4835–4839.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying conditional random fields to
japanese morphological analysis. In Conference on
Empirical Methods on Natural Language Process-
ing (EMNLP). volume 4, pages 230–237.

Yi Liu, Pascale Fung, Yongsheng Yang, Christopher
Cieri, Shudong Huang, and David Graff. 2006.
HKUST/MTS: A very large scale mandarin tele-
phone speech corpus. In Chinese Spoken Language
Processing, Springer, pages 724–735.

Liang Lu, Xingxing Zhang, and Steve Renals. 2016.
On training the recurrent neural network encoder-
decoder for large vocabulary end-to-end speech
recognition. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
pages 5060–5064.

Kikuo Maekawa, Hanae Koiso, Sadaoki Furui, and Hi-
toshi Isahara. 2000. Spontaneous speech corpus of
japanese. In International Conference on Language
Resources and Evaluation (LREC). volume 2, pages
947–952.

Yajie Miao, Mohammad Gowayyed, and Florian
Metze. 2015. EESEN: End-to-end speech recogni-
tion using deep RNN models and WFST-based de-
coding. In IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU). pages
167–174.

Yajie Miao, Mohammad Gowayyed, Xingyu Na, Tom
Ko, Florian Metze, and Alexander Waibel. 2016.
An empirical exploration of ctc acoustic mod-
els. In IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). pages
2623–2627.

Takafumi Moriya, Takahiro Shinozaki, and Shinji
Watanabe. 2015. Kaldi recipe for Japanese sponta-
neous speech recognition and its evaluation. In Au-
tumn Meeting of ASJ. 3-Q-7.

527

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2012. On the difficulty of training recurrent neural
networks. arXiv preprint arXiv:1211.5063 .

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, Jan Silovsky, Georg Stemmer, and Karel
Vesely. 2011. The kaldi speech recognition toolkit.
In IEEE Workshop on Automatic Speech Recogni-
tion and Understanding (ASRU).

Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pe-
gah Ghahrmani, Vimal Manohar, Xingyu Na, Yim-
ing Wang, and Sanjeev Khudanpur. 2016. Purely
sequence-trained neural networks for asr based on
lattice-free MMI. In Interspeech. pages 2751–2755.

Hagen Soltau, Hank Liao, and Hasim Sak. 2016. Neu-
ral speech recognizer: Acoustic-to-word lstm model
for large vocabulary speech recognition. arXiv
preprint arXiv:1610.09975 .

Seiya Tokui, Kenta Oono, Shohei Hido, and Justin
Clayton. 2015. Chainer: a next-generation open
source framework for deep learning. In Proceedings
of Workshop on Machine Learning Systems (Learn-
ingSys) in NIPS.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144 .

Nianwen Xue et al. 2003. Chinese word segmentation
as character tagging. Computational Linguistics and
Chinese Language Processing 8(1):29–48.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

A Location-based attention mechanism

This section provides the equations of a location-
based attention mechanism Attention(·) in Eq. (5).

alt = Attention({al−1}t,ql−1,ht),

where {al−1}t = [al−1,1, · · · , al−1,T]>. To obtain
alt, we use the following equations:

{ft}t = K ∗ al−1 (19)

elt = g>tanh(Gqql−1 + Ghht + Gfft + b)
(20)

alt =
exp(etl)∑
t exp(etl)

(21)

K, Gq, Gh, Gf are matrix parameters. b and g are
vector parameters. ∗ denotes convolution along in-
put feature axis twith matrix K to produce feature
{ft}t.

Algorithm 2 CTC hypothesis score
1: function αCTC(h,X)
2: g, c← h . split h into the last label c and the rest g
3: if c = <eos> then
4: return log{γ(n)

T (g) + γ
(b)
T (g)}

5: else
6: γ

(n)
1 (h)←

{
p(z1 = c|X) if g = <sos>
0 otherwise

7: γ
(b)
1 (h)← 0

8: Ψ← γ
(n)
1 (h)

9: for t = 2 . . . T do
10: Φ← γ

(b)
t−1(g) +

{
0 if last(g)=c

γ
(n)
t−1(g) otherwise

11: γ
(n)
t (h)←

(
γ

(n)
t−1(h) + Φ

)
p(zt = c|X)

12: γ
(b)
t (h) ←

(
γ

(b)
t−1(h) + γ

(n)
t−1(h)

)
p(zt =

|X)
13: Ψ← Ψ + Φ · p(zt = c|X)
14: end for
15: return log(Ψ)
16: end if
17: end function

B CTC-based hypothesis score

The CTC score αctc(h,X) in Eq. (17) is computed
as shown in Algorithm 2. Let γ(n)

t (h) and γ(b)
t (h)

be the forward probabilities of the hypothesis h
over the time frames 1 . . . t, where the superscripts
(n) and (b) denote different cases in which all
CTC paths end with a nonblank or blank sym-
bol, respectively. Before starting the beam search,
γ

(n)
t () and γ(b)

t () are initialized for t = 1, . . . , T
as

γ
(n)
t (<sos>) = 0, (22)

γ
(b)
t (<sos>)=

t∏

τ=1

γ
(b)
τ−1(<sos>)p(zτ =|X),

(23)

where we assume that γ(b)
0 (<sos>) = 1 and

is a blank symbol. Note that the time index t and
input length T may differ from those of the input
utterance X owing to the subsampling technique
for the encoder (Povey et al., 2016; Chan et al.,
2015).

In Algorithm 2, the hypothesis h is first split
into the last label c and the rest g in line 2. If c
is <eos>, it returns the logarithm of the forward
probability assuming that h is a complete hypothe-
sis in line 4. The forward probability of h is given
by

pctc(h|X) = γ
(n)
T (g) + γ

(b)
T (g) (24)

according to the definition of γ(n)
t () and γ(b)

t (). If
c is not <eos>, it computes the forward proba-

528

bilities γ(n)
t (h) and γ(b)

t (h), and the prefix proba-
bility Ψ = pctc(h, . . . |X) assuming that h is not
a complete hypothesis. The initialization and re-
cursion steps for those probabilities are described
in lines 6–14. In this function, we assume that
whenever we compute the probabilities γ(n)

t (h),
γ

(b)
t (h) and Ψ, the forward probabilities γ(n)

t (g)

and γ
(b)
t (g) have already been obtained through

the beam search process because g is a prefix of
h such that |g| < |h|.

C Examples of irregular alignments

We list examples of irregular alignments caused by
attention-based ASR. Figure 3 shows an example
of repetitions of word chunks. The first chunk of
blue characters in attention-based ASR (MTL) is
appeared again, and the whole second chunk part
becomes insertion errors. Figure 4 shows an ex-
ample of deletion errors. The latter half of the
sentence in attention-based ASR (MTL) is bro-
ken, which causes deletion errors. The hybrid
CTC/attention with both multitask learning and
joint decoding avoids these issues. Figures 5 and 6
show alignment plots corresponding to Figs. 3 and
4, respectively, where X-axis shows time frames
and Y-axis shows the character sequence hypoth-
esis. These visual plots also demonstrate that the
proposed joint decoding approach can suppress ir-
regular alignments.

id: (20040717_152947_A010409_B010408-A-057045-057837)
Reference
但 是 如 果 你 想 想 如 果 回 到 了 过 去 你 如 果 带 着 这 个 现 在 的 记
忆 是 不 是 很 痛 苦 啊

MTL
Scores: (#Correctness #Substitution #Deletion #Insertion) 28 2 3 45
但 是 如 果 你 想 想 如 果 回 到 了 过 去 你 如 果 带 着 这 个 现 在 的 节
如 果 你 想 想 如 果 回 到 了 过 去 你 如 果 带 着 这 个 现 在 的 节 如 果
你 想 想 如 果 回 到 了 过 去 你 如 果 带 着 这 个 现 在 的 机 是 不 是 很
・ ・ ・

Joint decoding
Scores: (#Correctness #Substitution #Deletion #Insertion) 31 1 1 0
HYP: 但 是 如 果 你 想 想 如 果 回 到 了 过 去 你 如 果 带 着 这 个 现
在 的 ・ 机 是 不 是 很 痛 苦 啊

Figure 3: Example of insertion errors appeared in
attention-based ASR with MTL and joint decod-
ing.

id: (A01F0001_0844951_0854386)
Reference
ま	
 た	
 え	
 飛	
 行	
 時	
 の	
 エ	
 コ	
 ー	
 ロ	
 ケ	
 ー	
 シ	
 ョ	
 ン	
 機	
 能	
 を	
 よ	
 り	

詳	
 細	
 に	
 解	
 明	
 す	
 る	
 為	
 に	
 超	
 小	
 型	
 マ	
 イ	
 ク	
 ロ	
 ホ	
 ン	
 お	
 よ	
 び	

生	
 体	
 ア	
 ン	
 プ	
 を	
 コ	
 ウ	
 モ	
 リ	
 に	
 搭	
 載	
 す	
 る	
 こ	
 と	
 を	
 考	
 え	
 て	

お	
 り	
 ま	
 す	
 そ	
 う	
 す	
 る	
 こ	
 と	
 に	
 よ	
 っ	
 て

MTL
Scores: (#Correctness #Substitution #Deletion #Insertion) 30 0 47 0
ま	
 た	
 え	
 飛	
 行	
 時	
 の	
 エ	
 コ	
 ー	
 ロ	
 ケ	
 ー	
 シ	
 ョ	
 ン	
 機	
 能	
 を	
 よ	
 り	

詳	
 細	
 に	
 解	
 明	
 す	
 る	
 為	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	

・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	

・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 ・	
 に	
 ・	
 ・	
 ・

Joint decoding
Scores: (#Correctness #Substitution #Deletion #Insertion) 67 9 1 0
ま	
 た	
 え	
 飛	
 行	
 時	
 の	
 エ	
 コ	
 ー	
 ロ	
 ケ	
 ー	
 シ	
 ョ	
 ン	
 機	
 能	
 を	
 よ	
 り	

詳	
 細	
 に	
 解	
 明	
 す	
 る	
 為	
 に	
 長	
 国	
 型	
 マ	
 イ	
 ク	
 ロ	
 ホ	
 ン	
 お	
 ・	
 い	

く	
 声	
 単	
 位	
 方	
 を	
 コ	
 ウ	
 モ	
 リ	
 に	
 登	
 載	
 す	
 る	
 こ	
 と	
 を	
 考	
 え	
 て	

お	
 り	
 ま	
 す	
 そ	
 う	
 す	
 る	
 こ	
 と	
 に	
 よ	
 っ	
 て	

Figure 4: Example of deletion errors appeared in
attention-based ASR with MTL and joint decod-
ing.

(a) MTL (b) Joint decoding

Figure 5: Example of alignments includ-
ing insertion errors in attention-based ASR
with MTL and joint decoding (Utterance
id: 20040717 152947 A010409 B010408-A-
057045-057837).

(a) MTL (b) Joint decoding

Figure 6: Example of alignments includ-
ing deletion errors in attention-based ASR
with MTL and joint decoding (Utterance id:
A01F0001 0844951 0854386).

529

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 530–540
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1049

Found in Translation:
Reconstructing Phylogenetic Language Trees from Translations

Ella RabinovichM? Noam Ordan† Shuly Wintner?
MIBM Research Haifa, Israel

?Department of Computer Science, University of Haifa, Israel
†The Arab College for Education, Haifa, Israel

{ellarabi,noam.ordan}@gmail.com, shuly@cs.haifa.ac.il

Abstract

Translation has played an important role
in trade, law, commerce, politics, and lit-
erature for thousands of years. Transla-
tors have always tried to be invisible; ideal
translations should look as if they were
written originally in the target language.
We show that traces of the source lan-
guage remain in the translation product to
the extent that it is possible to uncover the
history of the source language by looking
only at the translation. Specifically, we au-
tomatically reconstruct phylogenetic lan-
guage trees from monolingual texts (trans-
lated from several source languages). The
signal of the source language is so power-
ful that it is retained even after two phases
of translation. This strongly indicates that
source language interference is the most
dominant characteristic of translated texts,
overshadowing the more subtle signals of
universal properties of translation.

1 Introduction

Translation has played a major role in human civ-
ilization since the rise of law, religion, and trade
in multilingual societies. Evidence of scribe trans-
lations goes as far back as four millennia ago, to
the time of Hammurabi; this practice is also men-
tioned in the Bible (Esther 1:22; 8:9). For thou-
sands of years, translators have tried to remain in-
visible, setting a standard according to which the
act of translation should be seamless, and its prod-
uct should look as if it were written originally in
the target language. Cicero (106-43 BC) com-
mented on his translation ethics, “I did not hold
it necessary to render word for word, but I pre-
served the general style and force of the language.”
These words were echoed 500 years later by St.

Jerome (347-420 CE), also known as the patron
saint of translators, who wrote, “I render, not word
for word, but sense for sense.” Translator tendency
for invisibility has peaked in the past 150 years
in the English speaking world (Venuti, 2008), in
spite of some calls for “foreignization” in trans-
lations, e.g., the German Romanticists, especially
the translations from Greek by Friedrich Hölderlin
(Steiner, 1975) and Nabokov’s translation of Eu-
gene Onegin. These, however, as both Steiner
(1975) and Venuti (2008) argue, are the exception
to the rule. In fact, in recent years, the quality of
translations has been standardized (ISO 17100).
Importantly, the translations we studied in our
work conform to this standard.

Despite the continuous efforts of translators,
translations are known to feature unique character-
istics that set them apart from non-translated texts,
referred to as originals here (Toury, 1980, 1995;
Frawley, 1984; Baker, 1993). This is not the re-
sult of poor translation, but rather a statistical phe-
nomenon: various features distribute differently in
originals than in translations (Gellerstam, 1986).

Several factors may account for the differences
between originals and translations; many are clas-
sified as universal features of translation. Cog-
nitively speaking, all translations, regardless of
the source and target language, are susceptible to
the same constraints. Therefore, translation prod-
ucts are expected to share similar artifacts. Such
universals include simplification: the tendency to
make complex source structures simpler in the tar-
get (Blum-Kulka and Levenston, 1983; Vander-
auwerea, 1985); standardization: the tendency to
over-conform to target language standards (Toury,
1995); and explicitation: the tendency to render
implicit source structures more explicit in the tar-
get language (Blum-Kulka, 1986; Øverås, 1998).

In contrast to translation universals, interfer-
ence reflects the “fingerprints” of the source lan-

530

https://doi.org/10.18653/v1/P17-1049

guage on the translation product. Toury (1995)
defines interference as “phenomena pertaining to
the make-up of the source text tend to be trans-
ferred to the target text”. Interference, by def-
inition, is a language-pair specific phenomenon;
isomorphic structures shared by the source and
target languages can easily replace one another,
thereby manifesting the underlying process of
cross-linguistic influence of the source language
on the translation outcome. Pym (2008) points out
that interference is a set of both segmentational
and macrostructural features.

Our main hypothesis is that, due to interference,
languages with shared isomorphic structures are
likely to share more features in the target language
of a translation. Consequently, the distance be-
tween two languages, when assessed using such
features, can be retained to some extent in trans-
lations from these two languages to a third one.
Furthermore, we hypothesize that by extracting
structures from translated texts, we can generate a
phylogenetic tree that reflects the “true” distances
among the source languages. Finally, we conjec-
ture that the quality of such trees will improve
when constructed using features that better corre-
spond to interference phenomena, and will deteri-
orate using more universal features of translation.

The main contribution of this paper is thus
the demonstration that interference phenomena in
translation are powerful to an extent that facilitates
clustering source languages into families and (par-
tially) reconstructing intra-families ties; so much
so, that these results hold even after two rounds of
translation. Moreover, we perform analysis of var-
ious linguistic phenomena in the source languages,
laying out quantitative grounds for the language
typology reconstruction results.

2 Related work

A number of works in historical linguistics have
applied methods from the field of bioinformat-
ics, in particular algorithms for generating phylo-
genetic trees (Ringe et al., 2002; Nakhleh et al.,
2005a,b; Ellison and Kirby, 2006; Boc et al.,
2010). Most of them rely on lists of cognates,
words in multiple languages with a common origin
that share a similar meaning and a similar pronun-
ciation (Dyen et al., 1992; Rexová et al., 2003).
These works all rely on multilingual data, whereas
we construct phylogenetic trees from texts in a sin-
gle language.

The claim that translations exhibit unique prop-
erties is well established in translation studies lit-
erature (Toury, 1980; Frawley, 1984; Baker, 1993;
Toury, 1995). Based on this assumption, sev-
eral works use text classification techniques em-
ploying supervised, and recently also unsuper-
vised, machine learning approaches, to distinguish
between originals and translations (Baroni and
Bernardini, 2006; Ilisei et al., 2010; Koppel and
Ordan, 2011; Volansky et al., 2015; Rabinovich
and Wintner, 2015; Avner et al., 2016). The fea-
tures used in these studies reflect both universal
and interference-related traits. Along the way, in-
terference was proven to be a robust phenomenon,
operating in every single sentence, even on the
morpheme level (Avner et al., 2016). Interference
can also be studied on pairs of source- and target
languages and focus, for example, on word order
(Eetemadi and Toutanova, 2014).

The powerful signal of interference is evident,
e.g., by the finding that a classifier trained to dis-
tinguish between originals and translations from
one language, exhibits lower accuracy when tested
on translations from another language, and this ac-
curacy deteriorates proportionally to the distance
between the source and target languages (Koppel
and Ordan, 2011). Consequently, it is possible
to accurately distinguish among translations from
various source languages (van Halteren, 2008).

A related task, identifying the native tongue
of English language students based only on their
writing in English, has been the subject of recent
interest (Tetreault et al., 2013). The relations be-
tween this task and identification of the source lan-
guage of translation has been emphazied, e.g., by
Tsvetkov et al. (2013). English texts produced
by native speakers of a variety of languages have
been used to reconstruct phylogenetic trees, with
varying degrees of success (Nagata and Whittaker,
2013; Berzak et al., 2014). In contrast to lan-
guage learners, however, translators translate into
their mother tongue, so the texts we studied were
written by highly competent native speakers. Our
work is the first to construct phylogenetic trees
from translations.

3 Methodology

3.1 Dataset

This corpus-based study uses Europarl (Koehn,
2005), the proceedings of the European Parlia-
ment and their translations into all the official Eu-

531

ropean Union (EU) languages. Europarl is one of
the most popular parallel resources in natural lan-
guage processing, and has been used extensively
in machine translation. We use a version of Eu-
roparl spanning the years 1999 through 2011, in
which the direction of translation has been estab-
lished through a comprehensive cross-lingual val-
idation of the speakers’ original language (Rabi-
novich et al., 2015).

All parliament speeches were translated1 from
the original language into all other EU languages
(21 at the time) using English as an intermediate,
pivot language. We thus refer to translations into
English as direct, while translations into all other
languages, via English as a third language, are in-
direct. We hypothesize that indirect translation
will obscure the markers of the original language
in the final translation. Nevertheless, we expect
(weakened) fingerprints of the source language to
be identifiable in the target despite the pivot, pre-
sumably resulting in somewhat poorer phyloge-
netic trees.

We focus on 17 source languages, grouped into
3 language families: Germanic, Romance, and
Balto-Slavic.2 These include translations to En-
glish and to French from Bulgarian (BG), Czech
(CS), Danish (DA), Dutch (NL), English (EN),
French (FR), German (DE), Italian (IT), Latvian
(LV), Lithuanian (LT), Polish (PL), Portuguese
(PT), Romanian (RO), Slovak (SK), Slovenian
(SL), Spanish (ES), and Swedish (SV). We also
included texts written originally in English and
French.

All datasets were split on sentence boundary,
cleaned (empty lines removed), tokenized, and an-
notated for part-of-speech (POS) using the Stan-
ford tools (Manning et al., 2014). In all the tree re-
construction experiments, we sampled equal-sized
chunks from each source language, using as much
data as available for all languages. This yielded
27, 000 tokens from translations to English, and
30, 000 tokens from translations into French.

1The common practice is that one translates into one’s na-
tive language; in particular, this practice is strictly imposed in
the EU parliament where a translator must have perfect profi-
ciency in the target language, meeting very high standards of
accuracy.

2We excluded source languages with insufficient amounts
of data, along with Greek, which is the only representative of
the Hellenic family.

3.2 Features

Following standard practice (Volansky et al.,
2015; Rabinovich and Wintner, 2015), we repre-
sented both original and translated texts as fea-
ture vectors, where the choice of features de-
termines the extent to which we expect source-
language interference to be present in the transla-
tion product. Crucially, the features abstract away
from the contents of the texts and focus on their
structure, reflecting, among other things, morpho-
logical and syntactic patterns. We use the fol-
lowing feature sets: 1. The top-1,000 most fre-
quent POS trigrams, reflecting shallow syntactic
structure. 2. Function words (FW), words known
to reflect grammar of texts in numerous classifi-
cation tasks, as they include non-content words
such as articles, prepositions, etc. (Koppel and Or-
dan, 2011).3 3. Cohesive markers (Hinkel, 2001);
these words and phrases are assumed to be over-
represented in translated texts, where, for exam-
ple, an implicit contrast in the original is made ex-
plicit in the target text with words such as ‘but’ or
‘however’.4 Note that the first two feature sets are
strongly associated with interference, whereas the
third is assumed to be universal and an instance
of explicitation. We therefore expect trees based
on the first two feature sets to be much better than
those based on the third.

3.3 The Indo-European phylogenetic tree

The last few decades produced a large body of re-
search on the evolution of individual languages
and language families. While the existence of
the Indo-European (IE) family of languages is
an established fact, its history and origins are
still a matter of much controversy (Pereltsvaig
and Lewis, 2015). Furthermore, the actual sub-
groupings of languages within this family are not
clear-cut (Ringe et al., 2002). Consequently, algo-
rithms that attempt to reconstruct the IE languages
tree face a serious evaluation challenge (Ringe
et al., 2002; Rexová et al., 2003; Nakhleh et al.,
2005a).

To evaluate the quality of the reconstructed
trees, we define a metric to accurately assess their
distance from the “true” tree. The tree that we
use as ground truth (Serva and Petroni, 2008) has

3For French we used the list of FW available at https:
//code.google.com/archive/p/stop-words/.

4For French we used http://utilisateurs.
linguist.univ-paris-diderot.fr/˜croze/D/
Lexconn.xml.

532

several advantages. First, it is similar to a well-
accepted tree (Gray and Atkinson, 2003) (which
is not insusceptible to criticism (Pereltsvaig and
Lewis, 2015)). The differences between the two
are mostly irrelevant for the group of languages
that we address in this research. Second, it is a bi-
nary tree, facilitating comparison with the trees we
produce, which are also binary branching. Third,
its branches are decorated with the approximate
year in which splitting occurred. This provides a
way to induce the distance between two languages,
modeled as lengths of paths in the tree, based on
chronological information.

We projected the gold tree (Serva and Petroni,
2008) onto the set of 17 languages we considered
in this work, preserving branch lengths. Figure 1
depicts the resulting gold-standard subtree.

Figure 1: Gold standard tree, pruned

We reconstructed phylogenetic language trees
by performing agglomerative (hierarchical) clus-
tering of feature vectors extracted separately from
English and French translations. We performed
clustering using the variance minimization algo-
rithm (Ward Jr, 1963) with Euclidean distance (the
implementation available in the Python SciPy li-
brary). All feature values were normalized to a
zero-one scale prior to clustering.

3.4 Evaluation methodology

To evaluate the quality of the trees we generate, we
compute their similarity to the gold standard via
two metrics: unweighted, assessing only structural
(topological) similarity, and weighted, estimating
similarity based on both structure and branching
length.

Several methods have been proposed for eval-
uating the quality of phylogenetic language trees
(Pompei et al., 2011; Wichmann and Grant, 2012;
Nouri and Yangarber, 2016). A popular metric is
the Robinson-Foulds (RF) methodology (Robin-
son and Foulds, 1981), which is based on the sym-
metric difference in the number of bi-partitions,
the ways in which an edge can split the leaves of a
tree into two sets. The distance between two trees
is then defined as the number of splits induced by
one of the trees, but not the other. Despite its
popularity, the RF metric has well-known short-
comings; for example, relocating a single leaf can
result in a tree maximally distant from the origi-
nal one (Böcker et al., 2013). Additional method-
ologies for evaluating phylogenetic trees include
branch score distance (Kuhner and Felsenstein,
1994), enhancing RF with branch lengths, purity
score (Heller and Ghahramani, 2005), and subtree
score (Teh et al., 2009). The latter two ignore
branch lengths and only consider structural simi-
larities for evaluation.

We opted for a simple yet powerful adaptation
of the L2-norm to leaf-pair distance, inherently
suitable for both unweighted and weighted eval-
uation. Given a tree of N leaves, li, i ∈ [1..N],
the weighted distance between two leaves li, lj in a
tree τ , denotedDτ (li, lj), is the sum of the weights
of all edges on the shortest path between li and lj .
The unweighted distance sums up the number of
the edges in this path (i.e., all weights are equal
to 1). The distance Dist(τ, g) between a gener-
ated tree τ and the gold tree g is then calculated by
summing the square differences between all leaf-
pair distances (whether weighted or unweighted)
in the two trees:

Dist(τ, g) =
∑

i,j∈[1..N];i 6=j
(Dτ (li, lj)−Dg(li, lj))

2

4 Detection of Translations and their
Source Language

4.1 Identification of translation
We first reconfirmed that originals and translations
are easily separable, extending results of super-
vised classification of O vs. T (where O refers to
original English texts, and T to translated English)
(Baroni and Bernardini, 2006; van Halteren, 2008;
Volansky et al., 2015) to the 16 original languages
considered in this work. We also conducted sim-
ilar experiments with French originals and trans-
lations. We used 200 chunks of approximately 2K

533

tokens (respecting sentence boundaries) from both
O and T, and normalized the values of lexical fea-
tures by the number of tokens in each chunk. For
classification, we used Platt’s sequential minimal
optimization algorithm (Keerthi et al., 2001; Hall
et al., 2009) to train support vector machine clas-
sifiers with the default linear kernel. We evaluated
the results with 10-fold cross-validation.

Table 1 presents the classification accuracy of
(English and French) O vs. T using each feature
set. In line with previous works (Ilisei et al.,
2010; Volansky et al., 2015; Rabinovich and Wint-
ner, 2015), the binary classification results are
highly accurate, achieving over 95% accuracy us-
ing POS-trigrams and function words for both En-
glish and French, and above 85% using cohesive
markers.

Feature English French
POS-trigrams 97.60 98.40
Function words 96.45 95.15
Cohesive markers 86.50 85.25

Table 1: Classification accuracy (%) of English
and French O vs. T

4.2 Identification of source language
Identifying the source language of translated texts
is a task in which machines clearly outperform
humans (Baroni and Bernardini, 2006). Koppel
and Ordan (2011) performed 5-way classification
of texts translated from Italian, French, Span-
ish, German, and Finnish, achieving an accuracy
of 92.7%. Furthermore, misclassified instances
were more frequently assigned to genetically re-
lated languages.

We extended this experiment to 14 languages
representing 3 language families (the number of
languages was limited by the amount of data avail-
able). We extracted 100 chunks of 1,000 tokens
each from each source language and classified the
translated English (and, separately, French) texts
into 14 classes using the best performing POS-
trigrams feature set. Cross-validation evaluation
yielded an accuracy of 75.61% on English transla-
tions (note that the baseline is 100/14 = 7.14%).

The corresponding confusion matrix, presented
in Figure 2 (left), reveals interesting phenomena:
much of the confusion resides within language
families, framed by the bold line in the figure. For
example, instances of Germanic languages are al-
most perfectly classified as Germanic, with only

a few chunks assigned to other language fami-
lies. The evident intra-family linguistic ties ex-
posed by this experiment support the intuition that
cross-linguistic transfer in translation is governed
by typological properties of the source language.
That is, translations from related sources tend to
resemble each other to a greater extent than trans-
lations from more distant languages.

This observation is further supported by the
evaluation of a three-way classification task,
where the goal is to only identify the language
family (Germanic, Romance, or Balto-Slavic): the
accuracy of this task is 90.62%. Note also that
the mis-classified instances of both Romance and
Germanic languages are nearly never attributed to
Balto-Slavic languages, since Germanic and Ro-
mance are much closer to each other than to Balto-
Slavic.

Figure 2 (right) displays a similar confusion ma-
trix, the only difference being that French trans-
lations are classified. We attribute the lower
cross-validation accuracy (48.92%, reflected also
by the lower number of correctly assigned in-
stances on the matrix diagonal, compared to En-
glish) to the intervention of the pivot language
in the translation process. Nevertheless, the con-
fusion is still mainly constrained to intra-family
boundaries.

5 Reconstruction of Phylogenetic
Language Trees

5.1 Reconstructing language typology

Inspired by the results reported in Section 4.2, we
generated phylogenetic language trees from both
English and French texts translated from the other
European languages. We hypothesized that inter-
ference from the source language was present in
the translation product to an extent that would fa-
cilitate the construction of a tree sufficiently simi-
lar to the gold IE tree (Figure 1).

The best trees, those closest to the gold stan-
dard, were generated using POS-trigrams: these
are the features that are most closely associ-
ated with source-language interference (see Sec-
tion 3.2). Figure 3 depicts the trees produced
from English and French translations using POS-
trigrams. Both trees reasonably group individual
languages into three language-family branches. In
particular, they cluster the Germanic and Romance
languages closer than the Balto-Slavic. Capturing
the more subtle intra-family ties turned out to be

534

Figure 2: Confusion matrix of 14-way classification of English (left) and French (right) translations. The
actual class is represented by rows and the predicted one by columns.

Figure 3: Phylogenetic language trees generated with English (left) and French (right) translations

more challenging, although English outperformed
its French counterpart on this task by almost per-
fectly reconstructing the Germanic sub-tree.

We repeated the clustering experiments with
various feature sets. For each feature set, we
randomly sampled equally-sized subsets of the
dataset (translated from each of the source lan-
guages), represented the data as feature vectors,
generated a tree by clustering the feature vectors,
and then computed the weighted and unweighted
distances between the generated tree and the gold
standard. We repeated this procedure 50 times for
each feature set, and then averaged the resulting
distances. We report this average and the standard
deviation.5

5All the trees, both cladograms (with branches of equal
length) and phylograms (with branch lengths proportional to

5.2 Evaluation results

The unweighted evaluation results are listed in Ta-
ble 2. For comparison, we also present the dis-
tance obtained for a random tree, generated by
sampling a random distance matrix from the uni-
form (0, 1) distribution. The reported random tree
evaluation score is averaged over 1000 experi-
ments. Similarly, we present weighted evaluation
results in Table 3. All distances are normalized to
a zero-one scale, where the bounds – zero and one
– represent the identical and the most distant tree
w.r.t. the gold standard, respectively.

The results reveal several interesting observa-
tions. First, as expected, POS-trigrams induce

the distance between two nodes), can be found at http://
cl.haifa.ac.il/projects/translationese/
acl2017_found-in-translation_trees.pdf

535

Target language English French
Feature AVG STD AVG STD
POS-trigrams + FW 0.362 0.07 0.367 0.06
POS-trigrams 0.353 0.06 0.399 0.08
Function words 0.429 0.07 0.450 0.08
Cohesive markers 0.626 0.16 0.678 0.14
Random tree 0.724 0.07 0.724 0.07

Table 2: Unweighted evaluation of generated
trees. AVG represents the average distance of a
tree from the gold standard. The lowest distance
in a column is boldfaced.

Target language English French
Feature AVG STD AVG STD
POS-trigrams + FW 0.278 0.03 0.348 0.02
POS-trigrams 0.301 0.03 0.351 0.03
Function words 0.304 0.03 0.376 0.05
Cohesive markers 0.598 0.12 0.636 0.07
Random tree 0.676 0.10 0.676 0.10

Table 3: Weighted evaluation of generated trees.
AVG represents the average distance of a tree from
the gold standard. The lowest distance in a column
is boldfaced.

trees closest to the gold standard among distinct
feature sets. This corroborates our hypothesis that
this feature set carries over interference of the
source language to a considerable extent (see Sec-
tion 1). Furthermore, function words achieve more
moderate results, but still much better than ran-
dom. This reflects the fact that these features carry
over some grammatical constructs of the source
language into the translation product.

Finally, in all cases, the least accurate tree,
nearly random, is produced by cohesive mark-
ers; this is an evidence that this feature is source-
language agnostic and reflects the universal ef-
fect of explicitation (see Section 3.2). While co-
hesive markers are a good indicator of transla-
tions, they reflect properties that are not indica-
tive of the source language. The combination of
POS-trigrams and FW yields the best tree in three
out of four cases, implying that these feature sets
capture different, complementary aspects of the
source-language interference.

Surprisingly, reasonably good trees were also
generated from French translations; yet, these
trees are systematically worse than their English
counterparts. The original signal of the source lan-
guage is distorted twice: first via a Germanic lan-
guage (English) and then via a Romance language
(French). However, the signal is strong enough to

yield a clear phylogenetic tree of the source lan-
guages. Interference is thus revealed to be an ex-
tremely powerful force, partially resistant to inter-
mediate distortions.

6 Analysis

We demonstrated that source-language traces are
dominant in translation products to an extent that
facilitates reconstruction of the history of the
source languages. We now inspect some of these
phenomena in more detail to better understand the
prominent characteristics of interference. For each
phenomenon, we computed the frequencies of pat-
terns that reflect it in texts translated to English
from each individual language, and averaged the
measures over each language family (Germanic,
Romance, and Balto-Slavic). Figure 4 depicts the
results.

6.1 Definite articles

Languages vary greatly in their use of articles.
Like other Germanic languages, English has both
definite (‘a’) and indefinite (‘the’) articles. How-
ever, many languages only have definite articles
and some only have indefinite articles. Romance
languages, and in particular the five Romance lan-
guages of our dataset, have definite articles that
can sometimes be omitted, but not as commonly
as in English. Balto-Slavic languages typically do
not have any articles.

Mastering the use of articles in English is noto-
riously hard, leading to errors in non-native speak-
ers (Han et al., 2006). For example, native speak-
ers of Slavic languages tend to overuse definite ar-
ticles in German (Hirschmann et al., 2013). Sim-
ilarly, we expect translations from Balto-Slavic
languages to overuse ‘the’. We computed the fre-
quencies of ‘the’ in translations to English from
each of the three language families. The results
show a significant overuse of ‘the’ in translations
from Balto-Slavic languages, and some overuse in
translations from Romance languages.

6.2 Possessive constructions

Languages also vary in the way they mark posses-
sion. English marks it in three ways: with the clitic
‘’s’ (‘the guest’s room’), with a prepositional
phrase containing ‘of’ (‘the room of the guest’),
and, like in other Germanic languages, with noun
compounds (‘guest room’). Compounds are con-
siderably less frequent in Romance languages

536

definite articles
(per 10 tokens)

‘of’ constructions
(per 25 tokens)

verb–particle
(per 250 tokens)

perfect
(per 100 tokens)

progressive
(per 500 tokens)

0

0.2

0.4

0.6

0.8
Fr

eq
ue

nc
y

Germanic Romance Balto-Slavic

Figure 4: Frequencies reflecting various linguistic phenomena (Sections 6.1– 6.4) in English translations

(Swan and Smith, 2001); Balto-Slavic indicates
possession using case-marking. Languages also
vary with respect to whether or not possession is
head-marked. In Balto-Slavic languages, the geni-
tive case is head-marked, which reverses the order
of the two nouns with respect to the common En-
glish ‘’s’ construction. Since copying word order,
if possible across languages, is one of the major
features of interference (Eetemadi and Toutanova,
2014), we anticipated that Balto-Slavic languages
will exhibit the highest rate of noun-‘of’ -NP con-
structions. This would be followed by Romance
languages, in which this construction is highly
common, and then by Germanic languages, where
noun compounds can often be copied as such. The
results are consistent with our expectations.

6.3 Verb-particle constructions
Verb-particle constructions (e.g., ‘turn down’)
consist of verbs that combine with a particle to cre-
ate a new meaning (Dehé et al., 2002). Such con-
structions are much more common in Germanic
languages (Iacobini and Masini, 2005), hence we
expect to encounter their equivalents in English
translations more frequently. We computed the
frequencies of these constructions in the data;
the results show a clear overuse of verb-particle
constructions in translations from Germanic, and
an underuse of such constructions in translations
from Balto-Slavic.

6.4 Tense and aspect
Tense and aspect are expressed in different ways
across languages. English, like other Germanic
languages, uses a full system of aspectual dis-
tinctions, expressed via perfect and progressive
forms (with the auxiliary verbs ‘have’ or ‘be’).
Balto-Slavic, in contrast, has no such system, and
the distinction is marked lexically, by having two

types of verbs. Romance languages are in be-
tween, with both lexical and grammatical distinc-
tions. We computed the frequencies of perfect
forms (defined as the auxiliary ‘have’ followed
by the past participle form), and the progressive
forms (defined as the auxiliary ‘be’ plus a present
participle form). Indeed, Germanic overuses the
perfect aspect significantly; the use of the pro-
gressive aspect also varies across language fam-
ilies, exhibiting the lowest frequency in transla-
tions from Balto-Slavic.

7 Conclusion

Translations may be considered distortions of the
original text, but this distortion is far from ran-
dom. It depicts a very clear picture, reflecting lan-
guage typology to the extent that disregarding the
sources altogether, a phylogenetic tree can be re-
constructed from a monolingual corpus consisting
of multiple translations. This holds for the prod-
uct of highly professional translators, who con-
form to a common standard, and whose products
are edited by native speakers, like themselves. It
even holds after two phases of translations. We are
presently trying to extend these results to transla-
tions in a different domain (literary texts) into a
very different language (Hebrew).

Postulated universals in linguistics (Greenberg,
1963) were confronted with much contradicting
evidence in recent years (Evans and Levinson,
2009), and the long quest for translation univer-
sals (Mauranen and Kujamäki, 2004) should now
be viewed in light of our finding: more than any-
thing else, translations are typified by interference.
This does not undermine the force of translation
universals: we demonstrated how explicitation, in
the form of cohesive markers, can help identify
translations. It may be possible to define classi-

537

fiers implementing other universal facets of trans-
lation, e.g., simplification, which will yield good
separation between O and T. However, explicita-
tion fails in the reproduction of language typology,
whereas interference-based features produce trees
of considerable quality.

Remarkably, translations to contemporary En-
glish and French capture part of the millennium-
old history of the source languages from which
the translations were made. Our trees reflect some
of the historical connections among the languages,
but of course they are related in other ways, too
(whether incidental, areal, etc.). This may explain
the case of Romanian in our reconstructed trees: it
has been isolated for many years from other Ro-
mance languages and was under heavy influence
from Balto-Slavic languages.

Very little research has been done in historical
linguistics on how translations impact the evolve-
ment of languages. The major trends relate to loan
translations (Jahr, 1999), or the impact of canoni-
cal texts, such as Luther’s translation of the Bible
to German (Russ, 1994) or the case of the King
James translation to English (Crystal, 2010). It
has been attested that for certain languages, up to
30% of published materials are mediated through
translation (Pym and Chrupała, 2005). Given the
fingerprints left on target language texts, transla-
tions very likely play a role in language change.
We leave this as a direction for future research.

Acknowledgements

We wish to thank the three ACL anonymous re-
viewers for their constructive feedback. We are
grateful to Sergiu Nisioi and Oren Weimann for
their advice and helpful suggestions. We are also
thankful to Yonatan Belinkov and Michael Katz
for insightful and valuable comments.

References
Ehud Alexander Avner, Noam Ordan, and Shuly

Wintner. 2016. Identifying translationese
at the word and sub-word level. Digital
Scholarship in the Humanities 31(1):30–54.
http://dx.doi.org/10.1093/llc/fqu047.

Mona Baker. 1993. Corpus linguistics and translation
studies: Implications and applications. In Mona
Baker, Gill Francis, and Elena Tognini-Bonelli, ed-
itors, Text and technology: in honour of John Sin-
clair, John Benjamins, Amsterdam, pages 233–252.

Marco Baroni and Silvia Bernardini. 2006. A new

approach to the study of Translationese: Machine-
learning the difference between original and trans-
lated text. Literary and Linguistic Computing
21(3):259–274.

Yevgeni Berzak, Roi Reichart, and Boris Katz.
2014. Reconstructing native language typol-
ogy from foreign language usage. In Pro-
ceedings of the Eighteenth Conference on Com-
putational Natural Language Learning. pages
21–29. http://aclweb.org/anthology/W/W14/W14-
1603.pdf.

Shoshana Blum-Kulka. 1986. Shifts of cohesion and
coherence in translation. In Juliane House and
Shoshana Blum-Kulka, editors, Interlingual and in-
tercultural communication Discourse and cognition
in translation and second language acquisition stud-
ies, Gunter Narr Verlag, volume 35, pages 17–35.

Shoshana Blum-Kulka and Eddie A. Levenston. 1983.
Universals of lexical simplification. In Claus Faerch
and Gabriele Kasper, editors, Strategies in Interlan-
guage Communication, Longman, pages 119–139.

Alix Boc, Anna Maria Di Sciullo, and Vladimir
Makarenkov. 2010. Classification of the Indo-
European languages using a phylogenetic network
approach. In Hermann Locarek-Junge and Claus
Weihs, editors, Classification as a Tool for Re-
search: Proceedings of the 11th IFCS Biennial
Conference and 33rd Annual Conference of the
Gesellschaft für Klassifikation e.V., Dresden, March
13-18, 2009. Springer Berlin Heidelberg, Berlin,
Heidelberg, pages 647–655.

Sebastian Böcker, Stefan Canzar, and Gunnar W Klau.
2013. The generalized Robinson-Foulds metric. In
International Workshop on Algorithms in Bioinfor-
matics. Springer, pages 156–169.

David Crystal. 2010. Begat: The King James Bible and
the English Language. Oxford University Press.

Nicole Dehé, Ray Jackendoff, Andrew McIntyre, and
Silke Urban, editors. 2002. Verb-particle Explo-
rations. Interface explorations. Mouton de Gruyter.

Isidore Dyen, Joseph B. Kruskal, and Paul Black. 1992.
An Indoeuropean classification. a lexicostatistical
experiment. Transactions of the American Philo-
sophical Society 82(5):iii–132.

Sauleh Eetemadi and Kristina Toutanova. 2014.
Asymmetric features of human generated trans-
lation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for
Computational Linguistics, pages 159–164.
http://www.aclweb.org/anthology/D14-1018.

T. Mark Ellison and Simon Kirby. 2006. Measur-
ing language divergence by intra-lexical compari-
son. In Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th

538

Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics, Stroudsburg, PA, USA, pages 273–280.
https://doi.org/10.3115/1220175.1220210.

Nicholas Evans and Stephen Levinson. 2009. The
myth of language universals: Language diversity
and its importance for cognitive science. Behavioral
and Brain Sciences 32(5):429–494.

William Frawley. 1984. Prolegomenon to a theory of
translation. In William Frawley, editor, Translation.
Literary, Linguistic and Philosophical Perspectives,
University of Delaware Press, Newark, pages 159–
175.

Martin Gellerstam. 1986. Translationese in Swedish
novels translated from English. In Lars Wollin
and Hans Lindquist, editors, Translation Studies in
Scandinavia, CWK Gleerup, Lund, pages 88–95.

Russell D. Gray and Quentin D. Atkinson. 2003.
Language-tree divergence times support the Ana-
tolian theory of Indo-European origin. Nature
426:435–439.

Joseph H. Greenberg, editor. 1963. Universals of Hu-
man Language. MIT Press, Cambridge, Mass.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Wit-
ten. 2009. The WEKA data mining software:
an update. SIGKDD Explorations 11(1):10–18.
https://doi.org/10.1145/1656274.1656278.

Na-Rae Han, Martin Chodorow, and Claudia Leacock.
2006. Detecting errors in English article usage by
non-native speakers. Natural Language Engineer-
ing 12(02):115–129.

Katherine A Heller and Zoubin Ghahramani. 2005.
Bayesian hierarchical clustering. In Proceedings
of the 22nd international conference on Machine
learning. ACM, pages 297–304.

Eli Hinkel. 2001. Matters of cohesion in L2 academic
texts. Applied Language Learning 12(2):111–132.

Hagen Hirschmann, Anke Lüdeling, Ines Rehbein,
Marc Reznicek, and Amir Zeldes. 2013. Under-
use of syntactic categories in Falko. a case study
on modification. In Sylviane Granger, Gaëtanelle
Gilquin, and Fanny Meunier, editors, 20 Years of
Learner Corpus Research. Looking Back, Moving
Ahead., Presses Universitaires de Louvain, Louvain
la Neuve, pages 223–234.

Claudio Iacobini and Francesca Masini. 2005. Verb-
particle constructions and prefixed verbs in Italian:
typology, diachrony and semantics. In Mediter-
ranean Morphology Meetings. volume 5, pages
157–184.

Iustina Ilisei, Diana Inkpen, Gloria Corpas Pas-
tor, and Ruslan Mitkov. 2010. Identification
of translationese: A machine learning approach.

In Alexander F. Gelbukh, editor, Proceedings
of CICLing-2010: 11th International Confer-
ence on Computational Linguistics and Intelligent
Text Processing. Springer, volume 6008 of Lec-
ture Notes in Computer Science, pages 503–511.
http://dx.doi.org/10.1007/978-3-642-12116-6.

Ernst Håkon Jahr. 1999. Language change: advances
in historical sociolinguistics, volume 114. Walter de
Gruyter.

S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, and
K.R.K. Murthy. 2001. Improvements to Platt’s SMO
algorithm for SVM classifier design. Neural Com-
putation 13(3):637–649.

Philipp Koehn. 2005. Europarl: A parallel corpus for
statistical machine translation. MT Summit.

Moshe Koppel and Noam Ordan. 2011. Transla-
tionese and its dialects. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, Portland, Oregon, USA, pages 1318–1326.
http://www.aclweb.org/anthology/P11-1132.

Mary K Kuhner and Joseph Felsenstein. 1994. A sim-
ulation comparison of phylogeny algorithms under
equal and unequal evolutionary rates. Molecular Bi-
ology and Evolution 11(3):459–468.

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J. Bethard, and
David McClosky. 2014. The Stanford CoreNLP
natural language processing toolkit. In Pro-
ceedings of 52nd Annual Meeting of the As-
sociation for Computational Linguistics: Sys-
tem Demonstrations. Association for Computational
Linguistics, Baltimore, Maryland, pages 55–60.
http://www.aclweb.org/anthology/P/P14/P14-5010.

Anna Mauranen and Pekka Kujamäki, editors. 2004.
Translation universals: Do they exist?. John Ben-
jamins.

Ryo Nagata and Edward W. D. Whittaker. 2013. Re-
constructing an Indo-European family tree from
non-native English texts. In Proceedings of
the 51st Annual Meeting of the Association
for Computational Linguistics. pages 1137–1147.
http://aclweb.org/anthology/P/P13/P13-1112.pdf.

Luay Nakhleh, Don Ringe, and Tandy Warnow. 2005a.
Perfect phylogenetic networks: A new methodology
for reconstructing the evolutionary history of natural
languages. Language 81(2):382–420.

Luay Nakhleh, Tandy Warnow, Don Ringe, and
Steven N. Evans. 2005b. A comparison of phyloge-
netic reconstruction methods on an Indo-European
dataset. Transactions of the Philological Soci-
ety 103(2):171–192. https://doi.org/10.1111/j.1467-
968X.2005.00149.x.

539

Javad Nouri and Roman Yangarber. 2016. Modeling
language evolution with codes that utilize context
and phonetic features. CoNLL 2016 page 136.

Lin Øverås. 1998. In search of the third code: An in-
vestigation of norms in literary translation. Meta
43(4):557–570.

Asya Pereltsvaig and Martin W. Lewis. 2015. The
Indo-European Controversy. Cambridge University
Press, Cambridge.

Simone Pompei, Vittorio Loreto, and Francesca Tria.
2011. On the accuracy of language trees. PloS one
6(6):e20109.

Anthony Pym. 2008. On Toury’s laws of how trans-
lators translate. BENJAMINS TRANSLATION LI-
BRARY 75:311.

Anthony Pym and Grzegorz Chrupała. 2005. The
quantitative analysis of translation flows in the age
of an international language. In Albert Branchadell
and Lovell M. West, editors, Less Translated Lan-
guages, John Benjamins, Amsterdam, pages 27–38.

Ella Rabinovich and Shuly Wintner. 2015. Unsuper-
vised identification of translationese. Transactions
of the Association for Computational Linguistics
3:419–432.

Ella Rabinovich, Shuly Wintner, and Ofek Luis
Lewinsohn. 2015. The Haifa corpus of
translationese. Unpublished manuscript.
http://arxiv.org/abs/1509.03611.

Kateřina Rexová, Daniel Frynta, and Jan Zrzavỳ. 2003.
Cladistic analysis of languages: Indo-European
classification based on lexicostatistical data. Cladis-
tics 19(2):120–127.

Kater̆ina Rexová, Daniel Frynta, and Jan Zrzavý.
2003. Cladistic analysis of languages: Indo-
European classification based on lexicostatistical
data. Cladistics-the International Journal of the
Willi Hennig Society 19(2):120–127.

Don Ringe, Tandy Warnow, and Ann Taylor. 2002.
Indo-European and computational cladistics. Trans-
actions of the Philological Society 100(1):59–129.
https://doi.org/10.1111/1467-968X.00091.

David F Robinson and Leslie R Foulds. 1981. Com-
parison of phylogenetic trees. Mathematical bio-
sciences 53(1):131–147.

Charles VJ Russ. 1994. The German language today:
A linguistic introduction. Psychology Press.

Maurizio Serva and Filippo Petroni. 2008. Indo-
European languages tree by Levenshtein
distance. Europhysics Letters 81(6):68005.
http://stacks.iop.org/0295-5075/81/i=6/a=68005.

George Steiner. 1975. After Babel. University Press.

Michael Swan and Bernard Smith. 2001. Learner En-
glish. Cambridge University Press, Cambridge, sec-
ond edition.

Yee Whye Teh, Hal Daumé III, and Daniel Roy. 2009.
Bayesian agglomerative clustering with coalescents.
arXiv preprint arXiv:0907.0781 .

Joel Tetreault, Daniel Blanchard, and Aoife Cahill.
2013. A report on the first native language iden-
tification shared task. In Proceedings of the Eighth
Workshop on Building Educational Applications Us-
ing NLP. Association for Computational Linguis-
tics.

Gideon Toury. 1980. In Search of a Theory of Transla-
tion. The Porter Institute for Poetics and Semiotics,
Tel Aviv University, Tel Aviv.

Gideon Toury. 1995. Descriptive Translation Stud-
ies and beyond. John Benjamins, Amsterdam /
Philadelphia.

Yulia Tsvetkov, Naama Twitto, Nathan Schnei-
der, Noam Ordan, Manaal Faruqui, Victor
Chahuneau, Shuly Wintner, and Chris Dyer.
2013. Identifying the L1 of non-native writers:
the CMU-Haifa system. In Proceedings of the
Eighth Workshop on Innovative Use of NLP for
Building Educational Applications. Association
for Computational Linguistics, pages 279–287.
http://www.aclweb.org/anthology/W13-1736.

Hans van Halteren. 2008. Source language mark-
ers in EUROPARL translations. In Donia Scott
and Hans Uszkoreit, editors, COLING 2008, 22nd
International Conference on Computational Lin-
guistics, Proceedings of the Conference, 18-22
August 2008, Manchester, UK. pages 937–944.
http://www.aclweb.org/anthology/C08-1118.

Ria Vanderauwerea. 1985. Dutch novels translated
into English: the transformation of a ‘minority’ lit-
erature. Rodopi, Amsterdam.

Lawrence Venuti. 2008. The translator’s invisibility: A
history of translation. Routledge.

Vered Volansky, Noam Ordan, and Shuly Wintner.
2015. On the features of translationese. Digital
Scholarship in the Humanities 30(1):98–118.

Joe H Ward Jr. 1963. Hierarchical grouping to opti-
mize an objective function. Journal of the American
statistical association 58(301):236–244.

Søren Wichmann and Anthony P Grant. 2012. Quanti-
tative approaches to linguistic diversity: commemo-
rating the centenary of the birth of Morris Swadesh,
volume 46. John Benjamins Publishing.

540

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 541–551
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1050

Predicting Native Language from Gaze

Yevgeni Berzak
MIT CSAIL

berzak@mit.edu

Chie Nakamura
MIT Linguistics

chienak@mit.edu

Suzanne Flynn
MIT Linguistics

sflynn@mit.edu

Boris Katz
MIT CSAIL

boris@mit.edu

Abstract

A fundamental question in language learn-
ing concerns the role of a speaker’s
first language in second language acqui-
sition. We present a novel methodol-
ogy for studying this question: analysis
of eye-movement patterns in second lan-
guage reading of free-form text. Using this
methodology, we demonstrate for the first
time that the native language of English
learners can be predicted from their gaze
fixations when reading English. We pro-
vide analysis of classifier uncertainty and
learned features, which indicates that dif-
ferences in English reading are likely to
be rooted in linguistic divergences across
native languages. The presented frame-
work complements production studies and
offers new ground for advancing research
on multilingualism.1

1 Introduction

The influence of a speaker’s native language on
learning and performance in a foreign language,
also known as cross-linguistic transfer, has been
studied for several decades in linguistics and psy-
chology (Odlin, 1989; Martohardjono and Flynn,
1995; Jarvis and Pavlenko, 2008; Berkes and
Flynn, 2012; Alonso, 2015). The growing avail-
ably of learner corpora has also sparked interest
in cross-linguistic influence phenomena in NLP,
where studies have explored the task of Native
Language Identification (NLI) (Tetreault et al.,
2013), as well as analysis of textual features in
relation to the author’s native language (Jarvis
and Crossley, 2012; Swanson and Charniak, 2013;
Malmasi and Dras, 2014). Despite these advances,

1The experimental data collected in this study will be
made publicly available.

the extent and nature of first language influence in
second language processing remains far from be-
ing established. Crucially, most prior work on this
topic focused on production, while little is cur-
rently known about cross-linguistic influence in
language comprehension.

In this work, we present a novel framework
for studying cross-linguistic influence in language
comprehension using eyetracking for reading and
free-form native English text. We collect and ana-
lyze English newswire reading data from 182 par-
ticipants, including 145 English as Second Lan-
guage (ESL) learners from four different native
language backgrounds: Chinese, Japanese, Por-
tuguese and Spanish, as well as 37 native English
speakers. Each participant reads 156 English sen-
tences, half of which are shared across all partic-
ipants, and the remaining half are individual to
each participant. All the sentences are manually
annotated with part-of-speech (POS) tags and syn-
tactic dependency trees.

We then introduce the task of Native Language
Identification from Reading (NLIR), which re-
quires predicting a subject’s native language from
gaze while reading text in a second language. Fo-
cusing on ESL participants and using a log-linear
classifier with word fixation times normalized for
reading speed as features, we obtain 71.03 NLIR
accuracy in the shared sentences regime. We fur-
ther demonstrate that NLIR can be generalized
effectively to the individual sentences regime, in
which each subject reads a different set of sen-
tences, by grouping fixations according to linguis-
tically motivated clustering criteria. In this regime,
we obtain an NLIR accuracy of 51.03.

Further on, we provide classification and feature
analyses, suggesting that the signal underlying
NLIR is likely to be related to linguistic charac-
teristics of the respective native languages. First,
drawing on previous work on ESL production, we

541

https://doi.org/10.18653/v1/P17-1050

observe that classifier uncertainty in NLIR corre-
lates with global linguistic similarities across na-
tive languages. In other words, the more similar
are the languages, the more similar are the read-
ing patterns of their native speakers in English.
Second, we perform feature analysis across na-
tive and non-native English speakers, and discuss
structural and lexical factors that could potentially
drive some of the non-native reading patterns in
each of our native languages. Taken together, our
results provide evidence for a systematic influence
of native language properties on reading, and by
extension, on online processing and comprehen-
sion in a second language.

To summarize, we introduce a novel frame-
work for studying cross-linguistic influence in lan-
guage learning by using eyetracking for reading
free-form English text. We demonstrate the util-
ity of this framework in the following ways. First,
we obtain the first NLIR results, addressing both
the shared and the individual textual input scenar-
ios. We further show that reading preserves lin-
guistic similarities across native languages of ESL
readers, and perform feature analysis, highlight-
ing key distinctive reading patterns in each native
language. The proposed framework complements
and extends production studies, and can inform
linguistic inquiry on cross-linguistic influence.

This paper is structured as follows. In sec-
tion 2 we present the data and our experimental
setup. Section 3 describes our approach to NLIR
and summarizes the classification results. We ana-
lyze cross-linguistic influence in reading in section
4. In section 4.1 we examine NLIR classification
uncertainty in relation to linguistic similarities be-
tween native languages. In section 4.2 we discuss
several key fixation features associated with dif-
ferent native languages. Section 5 surveys related
work, and section 6 concludes.

2 Experimental Setup

Participants

We recruited 182 adult participants. Of those, 37
are native English speakers and 145 are ESL learn-
ers from four native language backgrounds: Chi-
nese, Japanese, Portuguese and Spanish. All the
participants in the experiment are native speakers
of only one language. The ESL speakers were
tested for English proficiency using the grammar
and listening sections of the Michigan English test
(MET), which consist of 50 multiple choice ques-

tions. The English proficiency score was calcu-
lated as the number of correctly answered ques-
tions on these modules. The majority of the par-
ticipants scored in the intermediate-advanced pro-
ficiency range. Table 1 presents the number of par-
ticipants and the mean English proficiency score
for each native language group. Additionally, we
collected metadata on gender, age, level of ed-
ucation, duration of English studies and usage,
time spent in English speaking countries and pro-
ficiency in any additional language spoken.

Participants English Score
Chinese 36 42.0
Japanese 36 40.3
Portuguese 36 41.1
Spanish 37 42.4
English 37 NA

Table 1: Number of participants and mean MET
English score by native language group.

Reading Materials

We utilize 14,274 randomly selected sentences
from the Wall Street Journal part of the Penn Tree-
bank (WSJ-PTB) (Marcus et al., 1993). To sup-
port reading convenience and measurement preci-
sion, the maximal sentence length was set to 100
characters, leading to an average sentence length
of 11.4 words. Word boundaries are defined as
whitespaces. From this sentence pool, 78 sen-
tences (900 words) were presented to all partic-
ipants (henceforth shared sentences) and the re-
maining 14,196 sentences were split into 182 in-
dividual batches of 78 sentences (henceforth indi-
vidual sentences, averaging 880 words per batch).

All the sentences include syntactic annotations
from the Universal Dependency Treebank project
(UDT) (McDonald et al., 2013). The annotations
include PTB POS tags (Santorini, 1990), Google
universal POS tags (Petrov et al., 2012) and depen-
dency trees. The dependency annotations of the
UDT are converted automatically from the manual
phrase structure tree annotations of the WSJ-PTB.

Gaze Data Collection

Each participant read 157 sentences. The first
sentence was presented to familiarize participants
with the experimental setup and was discarded
during analysis. The following 156 sentences
consisted of 78 shared and 78 individual sen-

542

tences. The shared and the individual sentences
were mixed randomly and presented to all partic-
ipants in the same order. The experiment was di-
vided into three parts, consisting of 52 sentences
each. Participants were allowed to take a short
break between experimental parts.

Each sentence was presented on a blank screen
as a one-liner. The text appeared in Times font,
with font size 23. To encourage attentive reading,
upon completion of sentence reading participants
answered a simple yes/no question about its con-
tent, and were subsequently informed if they an-
swered the question correctly. Both the sentences
and the questions were triggered by a 300ms gaze
on a fixation target (fixation circle for sentences
and the letter “Q” for questions) which appeared
on a blank screen and was co-located with the be-
ginning of the text in the following screen.

Throughout the experiment, participants held a
joystick with buttons for indicating completion of
sentence reading and answering the comprehen-
sion questions. Eye-movement of participants’
dominant eye was recorded using a desktop mount
Eyelink 1000 eyetracker, at a sampling rate of
1000Hz. Further details on the experimental setup
are provided in appendix A.

3 Native Language Identification from
Reading

Our first goal is to determine whether the native
language of ESL learners can be decoded from
their gaze patterns while reading English text. We
address this question in two regimes, correspond-
ing to our division of reading input into shared and
individual sentences. In the shared regime, all the
participants read the same set of sentences. Nor-
malizing over the reading input, this regime facil-
itates focusing on differences in reading behavior
across readers. In the individual regime, we use
the individual batches from our data to address
the more challenging variant of the NLIR task in
which the reading material given to each partici-
pant is different.

3.1 Features

We seek to utilize features that can provide robust,
simple and interpretable characterizations of read-
ing patterns. To this end, we use speed normalized
fixation duration measures over word sequences.

Fixation Measures
We utilize three measures of word fixation dura-
tion:

• First Fixation duration (FF) Duration of the
first fixation on a word.

• First Pass duration (FP) Time spent from
first entering a word to first leaving it (includ-
ing re-fixations within the word).

• Total Fixation duration (TF) The sum of all
fixation times on a word.

We experiment with fixations over un-
igram, bigram and trigram sequences
seqi,k = wi, ..., wi+k−1, k ∈ {1, 2, 3}, where for
each metric M ∈ {FF, FP, TF} the fixation
time for a sequence Mseqi,k is defined as the
sum of fixations on individual tokens Mw in the
sequence2.

Mseqi,k =
∑

w′∈seqi,k
Mw′ (1)

Importantly, we control for variation in reading
speeds across subjects by normalizing each sub-
jects’s sequence fixation times. For each metric
M and sequence seqi,k we normalize the sequence
fixation time Mseqi,k relative to the subject’s se-
quence fixation times in the textual context of the
sequence. The context C is defined as the sen-
tence in which the sequence appears for the Words
in Fixed Context feature-set and the entire textual
input for the Syntactic and Information clusters
feature-sets (see definitions of feature-sets below).
The normalization term SM,C,k is accordingly de-
fined as the metric’s fixation time per sequence of
length k in the context:

SM,C,k =
1

|C|
∑

seqk∈C
Mseqk (2)

We then obtain a normalized fixation time
Mnormseqi,k as:

Mnormseqi,k =
Mseqi,k

SM,C,k
(3)

2Note that for bigrams and trigrams, one could also mea-
sure FF and FP for interest regions spanning the sequence,
instead, or in addition to summing these fixation times over
individual tokens.

543

Feature Types
We use the above presented speed normalized fix-
ation metrics to extract three feature-sets, Words in
Fixed Context (WFC), Syntactic Clusters (SC) and
Information Clusters (IC). WFC is a token-level
feature-set that presupposes a fixed textual input
for all participants. It is thus applicable only in
the shared sentences regime. SC and IC are type-
level features which provide abstractions over se-
quences of words. Crucially, they can also be ap-
plied when participants read different sentences.

• Words in Fixed Context (WFC) The WFC
features capture fixation times on word se-
quences in a specific sentence. This feature-
set consists of FF, FP and TF times for each
of the 900 unigram, 822 bigram, and 744 tri-
gram word sequences comprising the shared
sentences. The fixation times of each metric
are normalized for each participant relative
to their fixations on sequences of the same
length in the surrounding sentence. As noted
above, the WFC feature-set is not applicable
in the individual regime, as it requires identi-
cal sentences for all participants.

• Syntactic Clusters (SC) CS features are av-
erage globally normalized FF, FP and TF
times for word sequences clustered by our
three types of syntactic labels: universal
POS, PTB POS, and syntactic relation labels.
An example of such a feature is the average
of speed-normalized TF times spent on the
PTB POS bigram sequence DT NN. We take
into account labels that appear at least once
in the reading input of all participants. On
the four non-native languages, considering all
three label types, we obtain 104 unigram, 636
bigram and 1,310 trigram SC features per fix-
ation metric in the shared regime, and 56 un-
igram, 95 bigram and 43 trigram SC features
per fixation metric in the individual regime.

• Information Clusters (IC) We also obtain
average FF, FP and TF for words clustered
according to their length, measured in num-
ber of characters. Word length was previ-
ously shown to be a strong predictor of infor-
mation content (Piantadosi et al., 2011). As
such, it provides an alternative abstraction to
the syntactic clusters, combining both syntac-
tic and lexical information. As with SC fea-
tures, we take into account features that ap-

pear at least once in the textual input of all
participants. For our set of non-native lan-
guages, we obtain for each fixation metric 15
unigram, 21 bigram and 23 trigram IC fea-
tures in the shared regime, and 12 unigram,
18 bigram and 18 trigram IC features in the
individual regime. Notably, this feature-set is
very compact, and differently from the syn-
tactic clusters, does not rely on the availabil-
ity of external annotations.

In each feature-set, we perform a final prepro-
cessing step for each individual feature, in which
we derive a zero mean unit variance scaler from
the training set feature values, and apply it to trans-
form both the training and the test values of the
feature to Z scores.

3.2 Model
The experiments are carried out using a log-linear
model:

p(y|x; θ) = exp(θ · f(x, y))∑
y′∈Y exp(θ · f(x, y′)) (4)

where y is the reader’s native language, x is the
reading input and θ are the model parameters. The
classifier is trained with gradient descent using L-
BFGS (Byrd et al., 1995).

3.3 Experimental Results
In table 2 we report 10-fold cross-validation re-
sults on NLIR in the shared and the individual ex-
perimental regimes for native speakers of Chinese,
Japanese, Portuguese and Spanish. We introduce
two baselines against which we compare the per-
formance of our feature-sets. The majority base-
line selects the native language with the largest
number of participants. The random clusters base-
line clusters words into groups randomly, with the
number of groups set to the number of syntactic
categories in our data.

In the shared regime, WFC fixations yield the
highest classification rates, substantially outper-
forming the cluster feature-sets and the two base-
lines. The strongest result using this feature-
set, 71.03, is obtained by combining unigram, bi-
gram and trigram fixation times. In addition to
this outcome, we note that training binary classi-
fiers in this setup yields accuracies ranging from
68.49 for the language pair Portuguese and Span-
ish, to 93.15 for Spanish and Japanese. These re-
sults confirm the effectiveness of the shared input

544

Shared Sentences Regime Individual Sentences Regime
Majority Class 25.52 25.52
Random Clusters 22.76 22.07

unigrams +bigrams +trigrams unigrams +bigrams +trigrams
Information Clusters (IC) 41.38 44.14 46.21 38.62 32.41 32.41
Syntactic Clusters (SC) 45.52 57.24 58.62 48.97 43.45 48.28
SC+IC 51.72 57.24 60.0 51.03 46.21 49.66
Words in Fixed Context (WFC) 64.14 68.28 71.03 NA

Table 2: Native Language Identification from Reading results with 10-fold cross-validation for native
speakers of Chinese, Japanese, Portuguese and Spanish. In the Shared regime all the participants read
the same 78 sentences. In the Individual regime each participant reads a different set of 78 sentences.

regime for performing reliable NLIR, and suggest
a strong native language signal in non-native read-
ing fixation times.

SC features yield accuracies of 45.52 to 58.62
on the shared sentences, while IC features exhibit
weaker performance in this regime, with accura-
cies of 41.38 to 46.21. Both results are well above
chance, but lower than WFC fixations due to the
information loss imposed by the clustering step.
Crucially, both feature-sets remain effective in the
individual input regime, with 43.45 to 48.97 accu-
racy for SC features and 32.41 to 38.62 accuracy
for IC features. The strongest result in the individ-
ual regime is 51.03, obtained by concatenating IC
and SC features over unigrams. We also note that
using this setup in a binary classification scheme
yields results ranging from chance level 49.31 for
Portuguese versus Spanish, to 84.93 on Spanish
versus Japanese.

Generally, we observe that adding bigram and
trigram fixations in the shared regime leads to per-
formance improvements compared to using un-
igram features only. This trend does not hold
for the individual sentences, presumably due to a
combination of feature sparsity and context vari-
ation in this regime. We also note that IC and
SC features tend to perform better together than
in separation, suggesting that the information en-
coded using these feature-sets is to some extent
complementary.

The generalization power of our cluster based
feature-sets has both practical and theoretical con-
sequences. Practically, they provide useful ab-
stractions for performing NLIR over arbitrary tex-
tual input. That is, they enable performing this
task using any textual input during both training
and testing phases. Theoretically, the effectiveness
of linguistically motivated features in discerning
native languages suggests that linguistic factors

play an important role in the ESL reading process.
The analysis presented in the following sections
will further explore this hypothesis.

4 Analysis of Cross-Linguistic Influence
in ESL Reading

As mentioned in the previous section, the ability to
perform NLIR in general, and the effectiveness of
linguistically motivated features in particular, sug-
gest that linguistic factors in the native and sec-
ond languages are pertinent to ESL reading. In
this section we explore this hypothesis further, by
analyzing classifier uncertainty and the features
learned in the NLIR task.

4.1 Preservation of Linguistic Similarity

Previous work in NLP suggested a link between
textual patterns in ESL production and linguistic
similarities of the respective native languages (Na-
gata and Whittaker, 2013; Nagata, 2014; Berzak
et al., 2014, 2015). In particular, Berzak et al.
(2014) has demonstrated that NLI classification
uncertainty correlates with similarities between
languages with respect to their typological fea-
tures. Here, we extend this framework and exam-
ine if preservation of native language similarities
in ESL production is paralleled in reading.

Similarly to Berzak et al. (2014) we define the
classification uncertainty for a pair of native lan-
guages y and y′ in our data collection D, as the
average probability assigned by the NLIR classi-
fier to one language given the other being the true
native language. This approach provides a robust
measure of classification confusion that does not
rely on the actual performance of the classifier. We
interpret the classifier uncertainty as a similarity
measure between the respective languages and de-

545

note it as English Reading Similarity ERS.

ERSy,y′ =

∑
(x,y)∈Dy

p(y′|x;θ)+ ∑
(x,y′)∈Dy′

p(y|x;θ)

|Dy |+|Dy′ |
(5)

We compare these reading similarities to the lin-
guistic similarities between our native languages.
To approximate these similarities, we utilize fea-
ture vectors from the URIEL Typological Com-
pendium (Littel et al., 2016) extracted using the
lang2vec tool (Littell et al., 2017). URIEL ag-
gregates, fuses and normalizes typological, phy-
logenetic and geographical information about the
world’s languages.

We obtain all the 103 available morpho-
syntactic features in URIEL, which are derived
from the World Atlas of Language Structures
(WALS) (Dryer and Haspelmath, 2013), Syntac-
tic Structures of the World’s Languages (SSWL)
(Collins and Kayne, 2009) and Ethnologue (Lewis
et al., 2015). Missing feature values are completed
with a KNN classifier. We also extract URIEL’s
3,718 language family features derived from Glot-
tolog (Hammarström et al., 2015). Each of these
features represents membership in a branch of
Glottolog’s world language tree. Truncating fea-
tures with the same value for all our languages, we
remain with 76 features, consisting of 49 syntactic
features and 27 family tree features. The linguistic
similarity LS between a pair of languages y and y′

is then determined by the cosine similarity of their
URIEL feature vectors.

LSy,y′ =
vy · vy′
‖vy‖‖vy′‖

(6)

Figure 1 presents the URIEL based linguistic
similarities for our set of non-native languages
against the average NLIR classification uncertain-
ties on the cross-validation test samples. The re-
sults presented in this figure are based on the un-
igram IC+SC feature-set in the individual sen-
tences regime. We also provide a graphical il-
lustration of the language similarities for each
measure, using the Ward clustering algorithm
(Ward Jr, 1963). We observe a correlation be-
tween the two measures which is also reflected
in similar hierarchies in the two language trees.
Thus, linguistically motived features in English re-
veal linguistic similarities across native languages.
This outcome supports the hypothesis that English

reading differences across native languages are re-
lated to linguistic factors.

0.0 0.2 0.4 0.6 0.8 1.0
Linguistic Similarity

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

NL
IR
 C
la
ss

ifi
ca

tio
n
Un

ce
rt
ai
nt
y

Chinese
Japanese

Chinese
Portuguese

Chinese
Spanish

Japanese
Portuguese

Japanese
Spanish

Portuguese
Spanish

(a) Linguistic similarities against mean NLIR classification
uncertainty. Error bars denote standard error.

Portuguese Spanish Chinese Japanese
0.0

0.5

1.0

1.5

(b) Linguistic tree

Portuguese Spanish Chinese Japanese
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(c) English reading tree

Figure 1: (a) Linguistic versus English reading
language similarities. The horizontal axis repre-
sents typological and phylogenetic similarity be-
tween languages, obtained by vectorizing linguis-
tic features form URIEL, and measuring their co-
sine similarity. The vertical axis represents the av-
erage uncertainty of the NLIR classifier in distin-
guishing ESL readers of each language pair. (b)
Ward hierarchical clustering of linguistic similar-
ities between languages. (c) Ward hierarchical
clustering of NLIR average pairwise classification
uncertainties.

We note that while comparable results are ob-
tained for the IC and SC feature-sets, together and
in separation in the shared regime, WFC features
in the shared regime do not exhibit a clear un-
certainty distinction when comparing across the
pairs Japanese and Spanish, Japanese and Por-
tuguese, Chinese and Spanish, and Chinese and
Portuguese. Instead, this feature-set yields very
low uncertainty, and correspondingly very high
performance ranging from 90.41 to 93.15, for all
four language pairs.

546

4.2 Feature Analysis

Our framework enables not only native language
classification, but also exploratory analysis of na-
tive language specific reading patterns in English.
The basic question that we examine in this respect
is on which features do readers of different native
language groups spend more versus less time. We
also discuss several potential relations of the ob-
served reading time differences to usage patterns
and grammatical errors committed by speakers of
our four native languages in production. We obtain
this information by extracting grammatical error
counts from the CLC FCE corpus (Yannakoudakis
et al., 2011), and from the ngram frequency anal-
ysis in Nagata and Whittaker (2013).

In order to obtain a common benchmark
for reading time comparisons across non-native
speakers, in this analysis we also consider our
group of native English speakers. In this context,
we train four binary classifiers that discern each of
the non-native groups from native English speak-
ers based on TF times over unigram PTB POS
tags in the shared regime. The features with the
strongest positive and negative weights learned by
these classifiers are presented in table 3. These
features serve as a reference point for selecting the
case studies discussed below.

Interestingly, some of the reading features that
are most predictive of each native language lend
themselves to linguistic interpretation with respect
to structural factors. For example, in Japanese and
Chinese we observe shorter reading times for de-
terminers (DT), which do not exist in these lan-
guages. Figure 2a presents the mean TF times for
determiners in all five native languages, suggest-
ing that native speakers of Portuguese and Span-
ish, which do have determiners, do not exhibit re-
duced reading times on this structure compared to
natives. In ESL production, missing determiner
errors are the most frequent error for native speak-
ers of Japanese and third most common error for
native speakers of Chinese.

In figure 2b we present the mean TF read-
ing times for pronouns (PRP), where we also see
shorter reading times by natives of Japanese and
Chinese as compared to English natives. In both
languages pronouns can be omitted both in object
and subject positions. Portuguese and Spanish, in
which pronoun omission is restricted to the subject
position present similar albeit weaker tendency.

Negative (Fast) Positive (Slow)
Chinese DT JJR

PRP NN
Japanese DT NN

CD VBD
Portuguese NNS NN-POS

PRP VBZ
Spanish NNS MD

PRP RB

Table 3: PTB POS features with the strongest
weights learned in non-native versus native clas-
sification for each native language in the shared
regime. Feature types presented in figure 2 are
highlighted in bold.

Chinese English Japanese Portuguese Spanish0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(a) Determiners (DT)

Chinese English Japanese Portuguese Spanish0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b) Pronouns (PRP)

Chinese English Japanese Portuguese Spanish0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(c) Possessives (NN+POS)

Chinese English Japanese Portuguese Spanish0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(d) Nouns (NN)

Figure 2: Mean speed-normalized Total Fixation
duration for Determiners (DT), Pronouns (PRP),
singular noun possessives (NN+POS), and singu-
lar nouns (NN) appearing in the shared sentences.
Error bars denote standard error.

In figure 2c we further observe that differ-
ently from natives of Chinese and Japanese, native
speakers of Portuguese and Spanish spend more
time on NN+POS in head final possessives such as
“the public’s confidence”. While similar construc-
tions exist in Chinese and Japanese, the NN+POS
combination is expressed in Portuguese and Span-
ish as a head initial NN of NN. This form exists in
English (e.g. “the confidence of the public”) and
is preferred by speakers of these languages in ESL
writing (Nagata and Whittaker, 2013). As an ad-
ditional baseline for this construction, we provide
the TF times for NN in figure 2d. There, relative to
English natives, we observe longer reading times
for Japanese and Chinese and comparable times
for Portuguese and Spanish.

The reading times of NN in figure 2d also give

547

rise to a second, potentially competing interpreta-
tion of differences in ESL reading times, which
highlights lexical rather than structural factors.
According to this interpretation, increased read-
ing times of nouns are the result of substantially
smaller lexical sharing with English by Chinese
and Japanese as compared to Spanish and Por-
tuguese. Given the utilized speed normalization,
lexical effects on nouns could in principle account
for reduced reading times on determiners and pro-
nouns. Conversely, structural influence leading
to reduced reading times on determiners and pro-
nouns could explain longer dwelling on nouns. A
third possibility consistent with the observed read-
ing patterns would allow for both structural and
lexical effects to impact second language reading.
Importantly, in each of these scenarios, ESL read-
ing patterns are related to linguistic factors of the
reader’s native language.

We note that the presented analysis is prelimi-
nary in nature, and warrants further study in future
research. In particular, reading times and classi-
fier learned features may in some cases differ be-
tween the shared and the individual regimes. In the
examples presented above, similar results are ob-
tained in the individual sentences regime for DT,
PRP and NN. The trend for the NN+POS construc-
tion, however, diminishes in that setup with simi-
lar reading times for all languages. On the other
hand, one of the strongest features for predicting
Portuguese and Spanish in the individual regime
are longer reading times for prepositions (IN), an
outcome that holds in the shared regime only rel-
ative to Chinese and Japanese, but not relative to
native speakers of English.

Despite these caveats, our results suggest that
reading patterns can potentially be related to lin-
guistic factors of the reader’s native language.
This analysis can be extended in various ways,
such as inclusion of additional feature types and
fixation metrics, as well as utilization of other
comparative methodologies. Combined with ev-
idence from language production, this line of in-
vestigation can be instrumental for informing lin-
guistic theory of cross-linguistic influence.

5 Related Work

Eyetracking and second language reading Sec-
ond language reading has been studied using eye-
tracking, with much of the work focusing on
processing of syntactic ambiguities and analysis

of specific target word classes such as cognates
(Dussias, 2010; Roberts and Siyanova-Chanturia,
2013). In contrast to our work, such studies typ-
ically use controlled, rather than free-form sen-
tences. Investigation of global metrics in free-
form second language reading was introduced
only recently by Cop et al. (2015). This study
compared ESL and native reading of a novel by
native speakers of Dutch, observing longer sen-
tence reading times, more fixations and shorter
saccades in ESL reading. Differently from this
study, our work focuses on comparison of reading
patterns between different native languages. We
also analyze a related, but different metric, namely
speed normalized fixation durations on word se-
quences.

Eyetracking for NLP tasks Recent work in
NLP has demonstrated that reading gaze can serve
as a valuable supervision signal for standard NLP
tasks. Prominent examples of such work include
POS tagging (Barrett and Søgaard, 2015a; Barrett
et al., 2016), syntactic parsing (Barrett and Sø-
gaard, 2015b) and sentence compression (Klerke
et al., 2016). Our work also tackles a traditional
NLP task with free-form text, but differs from this
line of research in that it addresses this task only
in comprehension. Furthermore, while these stud-
ies use gaze recordings of native readers, our work
focuses on non-native readers.

NLI in production NLI was first introduced
in Koppel et al. (2005) and has been drawing
considerable attention in NLP, including a recent
shared-task challenge with 29 participating teams
(Tetreault et al., 2013). NLI has also been driving
much of the work on identification of native lan-
guage related features in writing (Tsur and Rap-
poport, 2007; Jarvis and Crossley, 2012; Brooke
and Hirst, 2012; Tetreault et al., 2012; Swanson
and Charniak, 2013, 2014; Malmasi and Dras,
2014; Bykh and Meurers, 2016). Several studies
have also linked usage patterns and grammatical
errors in production to linguistic properties of the
writer’s native language (Nagata and Whittaker,
2013; Nagata, 2014; Berzak et al., 2014, 2015).
Our work departs from NLI in writing and intro-
duces NLI and related feature analysis in reading.

6 Conclusion and Outlook

We present a novel framework for studying cross-
linguistic influence in multilingualism by measur-
ing gaze fixations during reading of free-form En-

548

glish text. We demonstrate for the first time that
this signal can be used to determine a reader’s na-
tive language. The effectiveness of linguistically
motivated criteria for fixation clustering and our
subsequent analysis suggest that the ESL reading
process is affected by linguistic factors. Specifi-
cally, we show that linguistic similarities between
native languages are reflected in similarities in
ESL reading. We also identify several key fea-
tures that characterize reading in different native
languages, and discuss their potential connection
to structural and lexical properties of the native
langauge. The presented results demonstrate that
eyetracking data can be instrumental for develop-
ing predictive and explanatory models of second
language reading.

While this work is focused on NLIR from fix-
ations, our general framework can be used to ad-
dress additional aspects of reading, such as anal-
ysis of saccades and gaze trajectories. In future
work, we also plan to explore the role of native
and second language writing system characteris-
tics in second language reading. More broadly,
our methodology introduces parallels with produc-
tion studies in NLP, creating new opportunities for
integration of data, methodologies and tasks be-
tween production and comprehension. Further-
more, it holds promise for formulating language
learning theory that is supported by empirical find-
ings in naturalistic setups across language process-
ing domains.

Acknowledgements

We thank Amelia Smith, Emily Weng, Run Chen
and Lila Jansen for contributions to stimuli prepa-
ration and data collection. We also thank An-
drei Barbu, Guy Ben-Yosef, Yen-Ling Kuo, Roger
Levy, Jonathan Malmaud, Karthik Narasimhan
and the anonymous reviewers for valuable feed-
back on this work. This material is based upon
work supported by the Center for Brains, Minds,
and Machines (CBMM), funded by NSF STC
award CCF-1231216.

References
Rosa Alonso Alonso. 2015. Crosslinguistic Influence

in Second Language Acquisition, volume 95. Multi-
lingual Matters.

Maria Barrett, Joachim Bingel, Frank Keller, and An-
ders Søgaard. 2016. Weakly supervised part-of-

speech tagging using eye-tracking data. In ACL. vol-
ume 2, pages 579–584.

Maria Barrett and Anders Søgaard. 2015a. Reading
behavior predicts syntactic categories. In CoNLL.
pages 345–349.

Maria Barrett and Anders Søgaard. 2015b. Using read-
ing behavior to predict grammatical functions. In
Proceedings of the Sixth Workshop on Cognitive As-
pects of Computational Language Learning. pages
1–5.

Éva Berkes and Suzanne Flynn. 2012. Multilingual-
ism: New perspectives on syntactic development.
The Handbook of Bilingualism and Multilingualism,
Second Edition pages 137–167.

Yevgeni Berzak, Roi Reichart, and Boris Katz. 2014.
Reconstructing native language typology from for-
eign language usage. In Eighteenth Confer-
ence on Computational Natural Language Learning
(CoNLL).

Yevgeni Berzak, Roi Reichart, and Boris Katz. 2015.
Contrastive analysis with predictive power: Typol-
ogy driven estimation of grammatical error distribu-
tions in esl. In Conference on Computational Natu-
ral Language Learning (CoNLL).

Julian Brooke and Graeme Hirst. 2012. Measuring in-
terlanguage: Native language identification with l1-
influence metrics. In LREC. pages 779–784.

Serhiy Bykh and Detmar Meurers. 2016. Advanc-
ing linguistic features and insights by label-informed
feature grouping: An exploration in the context of
native language identification. In COLING.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and
Ciyou Zhu. 1995. A limited memory algorithm for
bound constrained optimization. SIAM Journal on
Scientific Computing 16(5):1190–1208.

Chris Collins and Richard Kayne. 2009. Syn-
tactic Structures of the world’s languages.
http://sswl.railsplayground.net.

Uschi Cop, Denis Drieghe, and Wouter Duyck. 2015.
Eye movement patterns in natural reading: A com-
parison of monolingual and bilingual reading of a
novel. PLOS ONE 10(8):1–38.

Matthew S. Dryer and Martin Haspelmath, editors.
2013. WALS Online. Max Planck Institute for Evo-
lutionary Anthropology, Leipzig. http://wals.info/.

Paola E Dussias. 2010. Uses of eye-tracking data in
second language sentence processing research. An-
nual Review of Applied Linguistics 30:149–166.

Harald Hammarström, Robert Forkel, Martin Haspel-
math, and Sebastian Bank. 2015. Glottolog 2.6.
Leipzig: Max Planck Institute for Evolutionary An-
thropology. http://glottolog.org.

549

Scott Jarvis and Scott A Crossley. 2012. Approach-
ing Language Transfer Through Text Classification:
Explorations in the Detection-based Approach, vol-
ume 64. Multilingual Matters.

Scott Jarvis and Aneta Pavlenko. 2008. Crosslinguistic
influence in language and cognition. Routledge.

Sigrid Klerke, Yoav Goldberg, and Anders Søgaard.
2016. Improving sentence compression by learning
to predict gaze. NAACL-HLT .

Moshe Koppel, Jonathan Schler, and Kfir Zigdon.
2005. Determining an author’s native language by
mining a text for errors. In Proceedings of the
eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining. ACM, pages
624–628.

Paul M. Lewis, Gary F. Simons, and Charles D.
Fennig, editors. 2015. Ethnologue: Languages
of the World. SIL International, Dallas, Texas.
http://www.ethnologue.com.

Patrick Littel, David Mortensen, and Lori Levin,
editors. 2016. URIEL Typological Database.
Pittsburgh: Carnegie Mellon University.
http://www.cs.cmu.edu/ dmortens/uriel.html.

Patrick Littell, David Mortensen, Ke Lin, Katherine
Kairis, Carlisle Turner, and Lori Levin. 2017. Uriel
and lang2vec: Representing languages as typologi-
cal, geographical, and phylogenetic vectors. EACL
2017 page 8.

Shervin Malmasi and Mark Dras. 2014. Language
transfer hypotheses with linear svm weights. In
EMNLP. pages 1385–1390.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional linguistics 19(2):313–330.

Gita Martohardjono and Suzanne Flynn. 1995. Lan-
guage transfer: what do we really mean. In L. Eu-
bank, L. Selinker, and M. Sharwood Smith, edi-
tors, The current state of Interlanguage: studies in
honor of William E. Rutherford, John Benjamins:
The Netherlands, pages 205–219.

Ryan T McDonald, Joakim Nivre, Yvonne Quirmbach-
Brundage, Yoav Goldberg, Dipanjan Das, Kuzman
Ganchev, Keith B Hall, Slav Petrov, Hao Zhang, Os-
car Täckström, et al. 2013. Universal dependency
annotation for multilingual parsing. In ACL. pages
92–97.

Ryo Nagata. 2014. Language family relationship pre-
served in non-native english. In COLING. pages
1940–1949.

Ryo Nagata and Edward W. D. Whittaker. 2013. Re-
constructing an indo-european family tree from non-
native english texts. In ACL. pages 1137–1147.

Terence Odlin. 1989. Language transfer: Cross-
linguistic influence in language learning. Cam-
bridge University Press.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In LREC.

Steven T Piantadosi, Harry Tily, and Edward Gibson.
2011. Word lengths are optimized for efficient com-
munication. Proceedings of the National Academy
of Sciences 108(9):3526–3529.

Leah Roberts and Anna Siyanova-Chanturia. 2013.
Using eye-tracking to investigate topics in l2 acqui-
sition and l2 processing. Studies in Second Lan-
guage Acquisition 35(02):213–235.

Beatrice Santorini. 1990. Part-of-speech tagging
guidelines for the penn treebank project (3rd revi-
sion). Technical Reports (CIS) .

Ben Swanson and Eugene Charniak. 2013. Extracting
the native language signal for second language ac-
quisition. In HLT-NAACL. pages 85–94.

Ben Swanson and Eugene Charniak. 2014. Data driven
language transfer hypotheses. EACL page 169.

Joel Tetreault, Daniel Blanchard, and Aoife Cahill.
2013. A report on the first native language identi-
fication shared task. In Proceedings of the Eighth
Workshop on Innovative Use of NLP for Building
Educational Applications. Citeseer, pages 48–57.

Joel R Tetreault, Daniel Blanchard, Aoife Cahill, and
Martin Chodorow. 2012. Native tongues, lost and
found: Resources and empirical evaluations in na-
tive language identification. In COLING. pages
2585–2602.

Oren Tsur and Ari Rappoport. 2007. Using classifier
features for studying the effect of native language
on the choice of written second language words. In
Proceedings of the Workshop on Cognitive Aspects
of Computational Language Acquisition. Associa-
tion for Computational Linguistics, pages 9–16.

Joe H Ward Jr. 1963. Hierarchical grouping to opti-
mize an objective function. Journal of the American
statistical association 58(301):236–244.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In ACL. pages 180–189.

A Supplemental Material

Eyetracking Setup We use a 44.5x30cm screen
with 1024x768px resolution to present the read-
ing materials, and a desktop mount Eyelink 1000
eyetracker (1000Hz) to record gaze. The screen,
eyetracker camera and chinrest are horizontally
aligned on a table surface. The screen center
(x=512, y=384) is 79cm away from the center of

550

the forehead bar, and 13cm below it. The eye-
tracker camera knob is 65cm away from forehead
bar. Throughout the experiment participants hold
a joystick with a button for indicating sentence
completion, and two buttons for answering yes/no
questions. We record gaze of the participant’s
dominant eye.

Text Parameters All the textual material in the
experiment is presented using Times font, normal
style, with font size 23. In our setup, this cor-
responds to 0.36 degrees (11.3px) average lower
case letter width, and 0.49 degrees (15.7px) av-
erage upper case letter width. We chose a non-
monospace font, as such fonts are generally more
common in reading. They are also more com-
pact compared to monospace fonts, allowing to
substantially increase the upper limit for sentence
length.

Calibration We use 3H line calibration with
point repetition on the central horizontal line
(y=384), using 16px outer circle, 6px inner circle,
fixation points. At least three calibrations are per-
formed during the experiment, one at the begin-
ning of each experimental section. We also recali-
brate upon failure to produce a 300ms fixation on
any fixation trigger preceding a sentence or a ques-
tion within 4 seconds after its appearance. The
mean validation error for calibrations across sub-
jects is 0.146 degrees (std 0.038).

551

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 552–561
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1051

MORSE: Semantic-ally Drive-n MORpheme SEgment-er

Tarek Sakakini
University of Illinois

Urbana, IL 61820
sakakini@illinois.edu

Suma Bhat
University of Illinois

Urbana, IL 61820
spbhat2@illinois.edu

Pramod Viswanath
University of Illinois

Urbana, IL 61820
pramodv@illinois.edu

Abstract

In this paper we present a novel frame-
work for morpheme segmentation which
uses the morpho-syntactic regularities pre-
served by word representations, in addi-
tion to orthographic features, to segment
words into morphemes. This framework
is the first to consider vocabulary-wide
syntactico-semantic information for this
task. We also analyze the deficiencies of
available benchmarking datasets and intro-
duce our own dataset that was created on
the basis of compositionality. We validate
our algorithm across different datasets and
languages and present new state-of-the-art
results.

1 Introduction

Morpheme segmentation is a core natural lan-
guage processing (NLP) task used as an inte-
gral component in related-fields such as infor-
mation retrieval (IR) (Zieman and Bleich, 1997;
Kurimo et al., 2007), automatic speech recog-
nition (ASR) (Bilmes and Kirchhoff, 2003; Ku-
rimo et al., 2006), and machine translation (MT)
(Lee, 2004; Virpioja et al., 2007). Most previ-
ous works have relied solely on orthographic fea-
tures (Harris, 1970; Goldsmith, 2000; Creutz and
Lagus, 2002, 2005, 2007), neglecting the under-
lying semantic information. This has led to an
over-segmentation of words because a change of
the surface form pattern is a necessary but insuffi-
cient indication of a morphological change. For
example, the surface form of “freshman”, hints
that it should be segmented to “fresh-man”, al-
though “freshman” does not describe semantically
the compositional meaning of “fresh” and “man”.

To compensate for this lack of semantic knowl-
edge, previous works (Schone and Jurafsky,

2000; Baroni et al., 2002; Narasimhan et al.,
2015) have incorporated semantic knowledge lo-
cally by checking the semantic relatedness of
possibly morphologically related pair of words.
Narasimhan et al. (2015) check for semantic relat-
edness using cosine similarity in word represen-
tations (Mikolov et al., 2013a; Pennington et al.,
2014). A limitation of such an approach is the
inherent “sample noise” in specific word repre-
sentations (exacerbated in the case of rare words).
Moreover, limitation to local comparison enforces
modeling morphological relations via semantic re-
latedness, although it has been shown that differ-
ence vectors model morphological relations more
accurately (Mikolov et al., 2013b). To address this
issue, we introduce a new framework (MORSE),
the first to bring semantics into morpheme seg-
mentation both on a local and a vocabulary-wide
level. That is, when checking for the morpho-
logical relation between two words, we not only
check for the semantic relatedness of the pair at
hand (local), but also check if the difference vec-
tors of pairs showing similar orthographic change
are consistent (vocabulary-wide).

In summary, MORSE clusters pairs of words
which only vary by an affix; for example, pairs
such as (“quick”, “quickly”) and (“hopeful”,
“hopefully”) get clustered together. To verify the
cluster of a specific affix from a semantic corpus-
wide standpoint, we check for the consistency of
the difference vectors (Mikolov et al., 2013b). To
evaluate it from an orthographic corpus-wide per-
spective, we check for the size of each cluster of
an affix. To evaluate each pair in a cluster locally
from a semantic standpoint, we check if a pair of
words in a valid affix cluster are morphologically
related by checking if its difference vector is con-
sistent with other members in the cluster and if
the words in the pair are semantically related (i.e.
close in the vector space). The reason for local

552

https://doi.org/10.18653/v1/P17-1051

evaluations is exemplified by (“on”,“only”) which
belongs to the cluster of a valid affix (“ly”), al-
though they are not (obviously) morphologically
related. We would expect such a pair to fail the
last two local evaluation methods.

Our proposed segmentation algorithm is evalu-
ated using benchmarking datasets from the Mor-
pho Challenge (MC) for multiple languages and a
newly introduced dataset for English which com-
pensates for lack of discriminating capabilities in
the MC dataset. Experiments reveal that our pro-
posed framework not only outperforms the widely
used approach, but also performs better than pub-
lished state-of-the-art results.

The central contribution of this work is a novel
framework that performs morpheme segmentation
resulting in new state-of-the-art results. To the
best of our knowledge this is the first unsupervised
approach to consider the vocabulary-wide seman-
tic knowledge of words and their affixes in addi-
tion to relying on their surface forms. Moreover
we point out the deficiencies in the MC datasets
with respect to the compositionality of morphemes
and introduce our own dataset free of these defi-
ciencies.

2 Related Work

Extensive work has been done in morphology
learning, with tasks such as morphological anal-
ysis (Baayen et al., 1993), morphological reinflec-
tion (Cotterell et al., 2016), and morpheme seg-
mentation. Given the less complex nature of mor-
pheme segmentation in comparison to the other
tasks, most systems developed for morpheme seg-
mentation have been unsupervised or minimally
supervised (mostly for parameter tuning).

Unsupervised morpheme segmentation traces
back to (Harris, 1970), which falls under the
framework of Letter Successor Variety (LSV)
which builds on the hypothesis that predictabil-
ity of successor letters is high within morphemes
and low otherwise. The most dominant pieces
of work on unsupervised morpheme segmentation,
Morfessor (Creutz and Lagus, 2002, 2005, 2007)
and Linguistica (Goldsmith, 2000) adopt the Min-
imum Description Length (MDL) principle (Ris-
sanen, 1998): they aim to minimize describing
the lexicon of morphs as well as minimizing the
description of an input corpus. Morfessor has a
widely used API and has inspired a large body of
following work (Kohonen et al., 2010; Grönroos

et al., 2014).

The unsupervised original implementation was
later adapted (Kohonen et al., 2010; Grönroos
et al., 2014) to allow for minimal supervision. An-
other work on minimally supervised morpheme
segmentation is (Sirts and Goldwater, 2013) which
relies on Adaptor Grammars (AGs) (Johnson et al.,
2006). AGs learn latent tree structures over an in-
put corpus using a nonparametric Bayesian model
(Sirts and Goldwater, 2013).

(Lafferty et al., 2001) use Conditional Random
Fields (CRF) for morpheme segmentation. In this
supervised method, the morpheme segmentation
task is modeled as a sequence-to-sequence learn-
ing problem, whereby the sequence of labels de-
fines the boundaries of morphemes (Ruokolainen
et al., 2013, 2014). In contrast to the previ-
ously mentioned generative approaches of MDL
and AG, this method takes a discriminative ap-
proach and allows for the inclusion of a larger set
of features. In this approach, CRF learns a condi-
tional probability of a segmentation given a word
(Ruokolainen et al., 2013, 2014).

All these morpheme segmenters rely solely on
orthographic features of morphemes. Semantics
were initially introduced to morpheme segmenters
by (Schone and Jurafsky, 2000), using LSA to
generate word representations and then evaluate
if two words are morphologically related based
on semantic relatedness, as well as deterministic
orthographic methods. Similarly, (Baroni et al.,
2002) use edit distance and mutual information as
metrics for semantic and orthographic validity of
a morphological relation between two words. Re-
cent work in (Narasimhan et al., 2015), inspired by
the log-linear model in (Poon et al., 2009) incorpo-
rates semantic relatedness into the model via word
representations. Other systems such as (Üstün and
Can, 2016) rely solely on evaluating two words
from a semantic standpoint by the use of a two-
layer neural network.

MORSE introduces semantic information into
its morpheme segmenters via distributed word rep-
resentations while also relying on orthographic
features. Inspired by the work of (Soricut and Och,
2015), instead of merely evaluating semantic relat-
edness, we are the first to evaluate the morpholog-
ical relationship via the difference vector of mor-
phologically related words. Comparing the differ-
ence vectors of multiple pairs across the corpus
following the same morphological relation, gives

553

MORSE a vocabulary-wide evaluation of morpho-
logical relations learned.

3 System

The key limitation of previous frameworks that
rely solely on orthographic features is the result-
ing over-segmentation. As an example, MDL-
based frameworks segment “sing” to “s-ing” due
to the high frequency of the morphemes: “s” and
“ing”. Our framework combines semantic relat-
edness with orthographic relatedness to eliminate
such error. For the example mentioned, MORSE
validates morphemes such as “s” and “ing” from
an orthographic perspective, yet invalidates the re-
lation between “s” and “sing” from a local and
vocabulary-wide semantic perspective. Hence,
MORSE will segment “jumping” as “jump-ing”,
and perform no segmentations on “sing”.

To bring in semantic understanding into
MORSE, we rely on word representations
(Mikolov et al., 2013a; Pennington et al., 2014).
These word representations capture the semantics
of the vocabulary through statistics over the con-
text in which they appear. Moreover, morpho-
syntactic regularities have been shown over these
word representations, whereby pairs of words
sharing the same relationship exhibit equivalent
difference vectors (Mikolov et al., 2013b). For ex-
ample, it is expected in the vector space of word
representations that ~wjumping ´ ~wjump « ~wplaying ´
~wplay, but ~wsing ´ ~ws ff ~wplaying ´ ~wplay.

As a high level description, we first learn
all possible affix transformations (morphological
rules) in the language from pairs of words from
an orthographic standpoint. For example, the pair
(“jump”, “jumping”) corresponds to the valid affix
transformation φ suffixÝÝÝÑ “ing” (where φ represents
the empty string), and the pair (“slow”, “slogan”)
corresponds to the invalid rule “w” suffixÝÝÝÑ “gan”.
Then we invalidate the rules, such as “w” suffixÝÝÝÑ
“gan”, that do not conform to the linear relation
in the vector space. We also invalidate pairs of
words which, due to randomness, are orthograph-
ically related via a valid rule although they are not
morphologically related, such as (“on”, “only”).

Now we formalize the objects we learn in
MORSE and the scores (orthographic and se-
mantic) used for validation. This constitutes the
training stage. Finally, we formalize the inference
stage, where we use these objects and scores to
perform morpheme segmentation.

3.1 Training Stage

Objects:

• Rule set R made of all possible affix trans-
formations in a language. R is populated via
the following definition: Rsuffix = {aff1

suffixÝÝÝÑ
aff2: D (w1, w2) P V2, stem(w1) = stem(w2),
w1 = stem(w1) + aff1, w2 = stem(w2) + aff2},
Rprefix is defined similarly for prefixes, and R
= Rsuffix Y Rprefix. An example R would be

equal to {φ suffixÝÝÝÑ “ly”, φ
prefixÝÝÝÑ “un”, “ing”

suffixÝÝÝÑ “ed”,. . . }.

• Support set SSr for a rule r P R consists
of all pairs of words related via r on a sur-
face level. SSr is populated via the follow-
ing definition: SSr = {(w1, w2): w1, w2 P V,
w1

rÝÑ w2}. An example support set of the
rule “ing” suffixÝÝÝÑ “ed” would be {(“playing”,
“played”), (“crafting”, “crafted”),. . .}.

Scores:

• scorer orth(r) is a vocabulary-wide ortho-
graphic confidence score for rule r P R. It
reflects the validity of an affix transformation
in a language from an orthographic perspec-
tive. This score is evaluated as scorer orth(r)
= |SSr|.
• scorer sem(r) is a vocabulary-wide seman-

tic confidence score for rule r P R. It re-
flects the validity of an affix transformation
in a language from a semantic perspective.
This score is evaluated as: scorer sem(r) =
|clusterr|/|SSr|2 where clusterr = {((w1, w2),
(w3, w4)): (w1, w2), (w3, w4) P SSr, ~w1 ´
~w2 « ~w3 ´ ~w4 }. We consider ~w1 ´ ~w2 «
~w3 ´ ~w4 if cos(~w4, ~w2 ´ ~w1 ` ~w3) ą 0.1.

• scorew sem((w1, w2) P SSr) is a vocabulary-
wide semantic confidence score for a pair of
words (w1, w2). The pair of words is related
via r on an orthographic level, but the score
reflects the validity of the morphological re-
lation via r on a semantic level. This score
is evaluated as: scorew sem((w1, w2) P SSr)
= |{(w3, w4): (w3, w4) P SSr, ~w1 ´ ~w2 «
~w3´ ~w4}|/|SSr|. In other words, it is the frac-
tion of pairs of words in the support set that
exhibit a similar linear relation as (w1, w2) in
the vector space.

554

• scoreloc sem((w1, w2) P SSr) is a local seman-
tic confidence score for a pair of words (w1,
w2). The pair of words is related via r on an
orthographic level, but the score reflects the
semantic relatedness between the pair. The
score is evaluated as: scoreloc sem((w1, w2) P
SSr) = cos(~w1, ~w2).

3.2 Inference Stage
In this stage we perform morpheme segmentation
using the knowledge gained from the first stage.
We begin with some notation: let Radd = {r : r P
R, r = aff1

rÝÑ aff2, aff1 = φ, aff2 ‰ φ }, Rrep =
{r : r P R, r = aff1

rÝÑ aff2, aff1 ‰ φ, aff2 ‰ φ }.
In other words, we divide the rules to those where
an affix is added (Radd) and to those where an affix
is replaced (Rrep).

Given a word w to segment, we search for r˚,
the solution to the following optimization prob-
lem1. The search space is limited to the rules that
include w in their support set, a fairly small search
space and the corresponding computation readily
tractable:

max
r

ÿ

t1

scoret1ppw1, wq P SSrq `
ÿ

t2

scoret2prq

s. t. r P Radd

scorer semprq ą tr sem

scorer orthprq ą tr orth

scorew semppw1, wq P SSrq ą tw sem

scoreloc semppw1, wq P SSrq ą tloc sem

Where t1 = {w sem, loc sem}, t2 = {r sem,
r orth}, and tr sem, tr orth, tw sem, tloc sem are hyper-
parameters of the system. Now given r˚ = φ suffixÝÝÝÑ
suf, w1 is defined as w1 r˚ÝÑ w. Thus the algorithm
segments w Ñ w1-suf. We treat prefixes simi-
larly. Next, the algorithm iterates over w1. Figure
1 shows the segmentation process of the word “un-
healthy” based on the sequentially retrieved r˚.

The reason we restrict our rule set to Radd in the
optimization problem is to avoid rules such as “er”
suffixÝÝÝÑ “ing” like in (“player”, “playing”) leading to
false segmentations such as “playing” Ñ “player-
ing”. Yet we cannot completely restrict our search
to Radd due to rules such as “y” Ñ “ies” in words
like (“sky”, “skies”). To be able to segment words
such as “skies”, we’d have to consider rules in Rrep

1r and w uniquely identify w1, and thus the search space
is defined only over r.

Figure 1: Illustration of the iterative process of
segmentation in MORSE

but only after searching in Radd. Thus if the first
optimization problem was unfeasible, we repeat it
while replacing Radd with Rrep. The program ter-
minates when both optimization problems are in-
feasible.

4 Experiments

We conduct a variety of experiments to assess
the performance of MORSE, and compare it with
prior works. First, the performance is assessed in-
trinsically on the task of morpheme segmentation
and against the most widely used morpheme seg-
menter: Morfessor 2.0. We evaluate the perfor-
mance across three languages of varying morphol-
ogy levels: English, Turkish, Finnish, with Finnish
being the richest in morphology and English be-
ing the poorest. Second, we show the inadequa-
cies of benchmarking gold datasets for this task
and describe a new dataset that we create to ad-
dress the inadequacy. Third, in order to highlight
the effect of including semantic information, we
compare MORSE against Morfessor on a set of
words which should not be segmented from a se-
mantic perspective although orthographically they
seem to be segmentable (such as “freshman”).

In all of our experiments (unless specified oth-
erwise), we report precision and recall (and corre-
sponding F1 scores) with locations of morpheme
boundaries being considered positives and the rest
of the locations considered negatives. It should be
noted that we disregard starting and ending posi-
tions of words, since they form trivial boundaries
(Virpioja et al., 2011).

4.1 Setup

Both systems, Morfessor and MORSE, were
trained on the same monolingual corpus:
Wikipedia2 (as of September 20, 2016) to con-
trol for affecting factors within the experiment.
For each language considered, the respective
Wikipedia dump was preprocessed using an
available code3. We use Word2Vec (Mikolov

2https://dumps.wikimedia.org
3https://github.com/bwbaugh/

wikipedia-extractor

555

Dataset En Fi Tr
Tuning Data 1000 1000 971

Test Data 686 760 809

Table 1: Morpho Challenge 2010 Dataset Sizes.

et al., 2013a) to train word representations of
300 dimensions and based on a context window
of size 5. Also, for computational efficiency,
MORSE was limited to a vocabulary of size 1M,
a restriction not enforced on Morfessor.

MORSE’s hyperparameters are tuned based on
a tuning set of gold morpheme segmentations. We
have publicly released the source code of a pre-
trained MORSE4 as described in this paper.

4.2 Morpho Challenge Dataset

As our first intrinsic experiment, we consider
the Morpho Challenge (MC) gold segmentations
available online5. For every language, two
datasets are supplied: training and development.
For the purpose of our experiments, all systems
use the development dataset as a test dataset, and
the training dataset is used for tuning MORSE’s
hyperparameters. MC dataset sizes are reported in
Table 1.

4.3 Semantically Driven Dataset

There are a variety of weaknesses in the MC
dataset, specifically related to whether the seg-
mentation is semantically appropriate or not.
We introduce a new semantically driven dataset
(SD17) for morpheme segmentation along with
the methodology used for creation; this new
dataset is publicly available in the canonical6

and non-canonical7 versions (Cotterell and Vieira,
2016).
Non-compositional segmentation: One of the
key requirements of morpheme segmentation is
the compositionality of the meaning of the word
from the meaning of its morphemes. This require-
ment is violated on multiple occasions in the MC
dataset. One example from Table 2 is segment-
ing the word “business” into “busi-ness”, which
falsely assumes that “business” means the act of
being busy. Such a segmentation might be consis-
tent with the historic origin of the word, but with

4https://goo.gl/w4r7vP
5http://research.ics.aalto.fi/events/

morphochallenge2010
6https://goo.gl/MgKfG1
7https://goo.gl/0vTXVt

Word Gold Segmentation
freshman fresh man

airline air line
business’ busi ness ’

ahead a head
adultery adult ery

Table 2: Examples of gold morpheme segmen-
tations from the Morpho Challenge 2010 dataset
deemed invalid from a compositionality view-
point.

radical semantic changes over time, the segmenta-
tion no longer semantically represents the compo-
sitionality of the words’ components (Wijaya and
Yeniterzi, 2011). Not only does such a weakness
contribute to false segmentations, but it also favors
segmentation methods following the MDL princi-
ple.
Trivial instances: The second weakness in the
MC dataset is due to abundance of trivial in-
stances. These instances lack discriminating ca-
pability since all methods can easily predict them
(Baker, 2001). These instances are comprised of
genetive cases (such as teacher’s) as well as hy-
phenated words (such as turning-point). For gene-
tive cases, segmenting at the apostrophe leads to
perfect precision and recall, and thus such in-
stances are deemed trivial. In the case of hyphen-
ated words, segmenting at the hyphen is a correct
segmentation with a very high probability. In the
MC tuning dataset, in 43 times out of 46, the hy-
phen was a correct indication of segmentation.
Other issues exist in the Morpho Challenge
dataset although less abundantly. There are in-
stances of wrong segmentations possibly due to
human error. One example of such instance is
“turning-point” segmented to “turning - point” in-
stead of “turn ing - point”. Another issue, which
is hard to avoid, is ambiguity of segmentation
boundaries. Take for example the word “strafed”,
the segmentations “straf-ed” and “strafe-d” are
equally justified. In such situations, the MC
dataset favors complete affixes rather than com-
plete lemmas. This also favors MDL-based seg-
menters. We note that the MC dataset also pro-
vides segmentations in a canonical version such
as “strafe-ed”, yet for the sake of a fair compar-
ison with Morfessor and all previously evaluated
systems on the MC dataset, we consider only the
former version of segmentations.

556

English Turkish Finnish
P R F1 P R F1 P R F1

Morfessor 74.46 56.66 64.35 40.81 25.00 31.01 43.09 28.16 34.06
MORSE 81.98 61.57 70.32 49.90 30.78 38.07 36.26 9.44 14.98

Table 3: Performance of MORSE on the MC dataset across three languages: English, Turkish, Finnish.

Due to these reasons, we create a new dataset
SD17 for English gold morpheme segmentations
with compositionality guiding the annotations. We
select 2000 words randomly from the 10K most
frequent words in the English Wikipedia dump
and have them annotated by two proficient English
speakers. The segmentation criterion was to seg-
ment the word to the largest extent possible while
preserving its compositionality from the segments.
The inter-annotator agreement reached 91% on a
word level. Based on post annotation discussions,
annotators agreed on 99% of the words, and words
not agreed on were eliminated along with words
containing non-alpha characters to avoid trivial in-
stances.

SD17 is used to evaluate the performance of
both Morfessor and MORSE. We claim that the
performance on SD17 is a better indication of the
performance of a morpheme segmenter. By the
use of SD17 we expect to gain insights on the ex-
tent to which morpheme segmentation is a func-
tion of semantics in addition to orthography.

4.4 Handling Compositionality

We have hypothesized that following the MDL
principle (such as Morfessor) leads to over-
segmentation. This over-segmentation happens
specifically when the meaning of the word does
not follow from the meaning of its morphemes.
Examples include words such as “red head”,
“duck face”, “how ever”, “s ing”. A subset of
these words are defined by linguists as exocentric
compounds (Bauer, 2008). MORSE does not suf-
fer from this issue owing to its use of a semantic
model.

We use a collection of 100 English words which
appear to be segmentable but actually are not (ex-
ample: “however”). Such a collection will high-
light a system’s capability of distinguishing fre-
quent letter sequences from the semantic contri-
bution of this letter sequence in a word. We make
this collection publicly available8.

8https://goo.gl/EFbacj

En Tr Fi
Candidate Rules 27.5M 14.9M 10.8M

Candidate Rel. Pairs 53.3M 25.1M 18.6M

Table 4: Number of candidate rules and candidate
related word pairs detected per language.

5 Results

We compare MORSE with Morfessor, and place
the performance alongside the state-of-the-art
published results.

5.1 Morpho Challenge Dataset

As demonstrated in Table 3, MORSE performs
better than Mofessor on English and Turkish, and
worse on Finnish. Considering English first, us-
ing MORSE instead of Morfessor, resulted in a
6% absolute increase in F1 scores. This sup-
ports our claim for the need of semantic cues in
morpheme segmentation, and also validates the
method used in this paper. Since English is a less
systematic language in terms of the orthographic
structure of words, semantic cues are of greater
need, and hence a system which relies on seman-
tic cues is expected to perform better; indeed this
is the case. Similarly, MORSE performs better
on Turkish with a 7% absolute margin in terms
of F1 score. On the other hand, Morfessor sur-
passes MORSE in performance on Finnish by a
large margin as well, especially in terms of recall.

5.1.1 Discussion
We hypothesize that the richness of morphol-
ogy in Finnish led to suboptimal performance of
MORSE. This is because richness in morphology
leads to word level sparsity which directly leads
to: (1) Degradation of quality of word represen-
tations (2) Increased vocabulary size exacerbat-
ing the issue of limited vocabulary (recall MORSE
was limited to a vocabulary of 1M). In a language
with productive morphology, limiting its vocabu-
lary results in a lower chance of finding morpho-
logically related word pairs. This negatively im-

557

pacts the training stage of MORSE which relies on
the availability of such pairs. In order to detect the
suffix “ly” from the word “cheerfully” MORSE
needs to come across “cheerful” as well. Coming
across “cheerful” is now a lower probability event
due to high sparsity. This is not as much of an is-
sue for Morfessor under the MDL principle, since
it might detect “ly” just by coming across multi-
ple words ending with “ly” even without encoun-
tering the base forms of those words. We show
how the detection of rules is affected by consid-
ering the number of candidate rules detected as
well as the number of candidate morphologically
related word pairs detected. As shown in Table 4,
the number of detected candidate rules and candi-
date related words decreases with the increase in
morphology in a language. This confirms our hy-
pothesis; we note that this issue can be directly at-
tributed to the limited vocabulary size in MORSE.
With the increase in processing power, and thus
larger vocabulary coverage, MORSE is expected
to perform better.

5.2 Semantically Driven Dataset

The performance of MORSE and Morfessor on
SD17 is shown in Table 5. The use of MC
data (which does not adhere to the composition-
ality principle) to tune MORSE to be evaluated
on SD17 (which does adhere to the composition-
ality principle) is not optimal. Thus, we evalu-
ate MORSE on SD17 using 5-fold cross valida-
tion, where 80% of the dataset is used to tune and
20% is used to evaluate. Precision, Recall, and F1
scores are averaged and reported in Table 5 using
the label MORSE-CV.

Based on the results in Table 5, we make the
following observations. Comparing MORSE-CV
to MORSE reflects the fundamental difference be-
tween SD17 and MC datasets. Knowing the ba-
sis of construction of SD17 and the fundamen-
tal weaknesses in MC datasets, we attribute the
performance increase to the lack of composition-
ality in MC dataset. Comparing MORSE-CV to
Morfessor, we observe a significant jump in per-
formance (an increase of 24%). In comparison,
the increase on the MC dataset (6%) shows that
the Morpho Challenge dataset underestimates the
performance gap between Morfessor and MORSE
due its inherent weaknesses.

Since MORSE is equipped with the capability
to retrieve full morphemes even when not present

P R F1
Morfessor 65.95 51.13 57.60
MORSE 75.35 83.60 79.26

MORSE-CV 84.6 78.36 81.29

Table 5: Performance of MORSE against Morfes-
sor on the non-canonical version of SD17

P R F1
Morfessor 65.61 50.87 57.31
MORSE 79.70 82.37 81.01

MORSE-CV 85.08 82.90 83.96

Table 6: Performance of MORSE against Morfes-
sor on the canonical version of SD17

in full orthographically, a capability that Morfes-
sor lacks, we evaluated both systems on the canon-
ical version of SD17. The results are reported in
Table 6. We notice that evaluating on the canoni-
cal form of SD17 gives a further edge for MORSE
over Morfessor. For evaluation on the canonical
version of SD17, we switch to morpheme-level
evaluation instead of boundary-level as a more
suitable method for Morfessor. Morpheme-level
evaluation is distinguished from boundary-level
evaluation in that we evaluate the detection of mor-
phemes instead of the boundary locations in the
segmented word.

We next compare MORSE against published
state-of-the-art results9. As one can see in Ta-
ble 7 MORSE significantly performs better than
published state-of-the-art results, most notably
(Narasimhan et al., 2015) referred to as LLSM in
the Table. Comparison is also made against the top
results in the latest Morpho Challenge: Morfes-
sor S+W and Morfessor S+W+L (Kohonen et al.,
2010), and Base Inference (Lignos, 2010).

P R F1
MORSE 84.6 78.36 81.29
LLSM 80.70 72.20 76.2

Morfessor S+W 65.62 69.28 67.40
Morfessor S+W+L 67.87 66.43 67.14

Base Inference 80.77 53.76 64.55

Table 7: Performance of MORSE against pub-
lished state-of-the-art results

558

Figure 2: Precision (left) and Recall (right) of MORSE as a function of the hyperparameters: tr sem, tw sem

5.3 Handling Compositionality

We compare the performance of MORSE and
Morfessor on a set of words made up of mor-
phemes which don’t compose the meaning of the
word. Since all the boundaries in this dataset are
negative, to evaluate both systems (with MORSE
tuned on SD17), we only report the number of seg-
ments generated. The more segments a system
generates, the worse is its performance.

We find that MORSE generates 7 false mor-
phemes whereas Morfessor generates 43 false
morphemes. This shows MORSE’s robustness
to such examples through its semantic knowl-
edge and validates our claim that Morfessor over-
segments on such examples.

6 Discussion

One of the benefits of MORSE against other
frameworks such as MDL is its ability to identify
the lemma within the segmentation. The lemma
would be the last non-segmented word in the iter-
ative process of segmentation. Hence, an advan-
tage of our framework is its easy adaptability into
a lemmatizer and even a stemmer.

Another key aspect which is not present in some
of the competitive systems is the need for a small
tuning dataset. This is a point in favor of com-
pletely unsupervised systems such as Morfessor.
On the other hand, these hyperparameters could
allow for flexibility. Figure 2 shows how preci-
sion and recall changes as a function of the hy-
perparameter selection10. As one would expect,
increasing the hyperparameters, in general, leads

9The five published state-of-the-art results are on different
datasets

10Only a subset of the hyperparameters is used for display
purposes

to a stricter search space and thus increases preci-
sion and decreases recall. Putting these results in
perspective, the user of MORSE is given the capa-
bility of controlling for precision and recall based
on the needs of the downstream task.

Moreover, to check for the level of dependency
of MORSE on a set of gold morpheme segmen-
tations for tuning, we check for the variation in
performance with respect to size of tuning data.
For the purpose of this experiment we take an 80-
20 split of SD17 and vary the size of the tuning
set. We notice that the performance (81.90% F1)
reaches a steady state at 20% (« 300 gold seg-
mentations) of the tuning data. This reflects the
minimal dependency on a tuning dataset.

Regarding the training stage, homomorphs are
treated as one rule and allomorphs are treated
as separate rules. For example, (“tall”, “taller”)
and (“fast”, “faster”) are wrongly considered to
have the same morphological relation, besides
(“cat”, “cats”) and (“butterfly”, “butterflies”) are
wrongly considered to have different morpholog-
ical relations. The separate clustering of the dif-
ferent forms of a homomorph leads to the under-
estimation of the respective orthographic scores.
Moreover, the clustering of allomorphs together
would lead to the underestimation of the seman-
tic score of the rule as well as the underestimation
of the vocabulary-wide semantic score of word
pairs in the support set of this rule. This does not
significantly affect the performance of MORSE,
since the tuned thresholds are able to distinguish
between the low scores of an invalid rule and
the mediocre underestimated scores of allomorphs
and homomorphs.

As for the inference stage of MORSE, the
greedy inference approach limits its performance.
In other words, a wrong segmentation at the be-

559

ginning will propagate and result in consequent
wrong segmentations. Also, MORSE’s limitation
to concatenative morphology decreases its effi-
cacy on languages that include non-concatenative
morphology. This opens the stage for further re-
search on a more optimal inference stage and a
more global modeling of orthographic morpholog-
ical transformations.

7 Conclusions and Future Work

In this paper, we have presented MORSE, a first
morpheme segmenter to consider semantic struc-
ture at this scale (local and vocabulary-wide).
We show its superiority over state-of-the-art algo-
rithms using intrinsic evaluation on a variety of
languages. We also pinpointed the weaknesses
in current benchmarking datasets, and presented a
new dataset free of these weaknesses. With a rel-
ative increase in performance reaching 24% abso-
lute increase over Morfessor, this work proves the
significance of semantic cues as well as validates
a new state-of-the-art morpheme segmenter. For
future work, we plan to address the limitations of
MORSE: minimal supervision, greedy inference,
and concatenative orthographic model. Moreover,
we plan to computationally optimize the training
stage for the sake of wider adoption by the com-
munity.

Acknowledgements

This work is supported in part by IBM-ILLINOIS
Center for Cognitive Computing Systems Re-
search (C3SR) - a research collaboration as part
of the IBM Cognitive Horizons Network.

References
RH Baayen, R Piepenbrock, and H Van Rijn. 1993.

The CELEX lexical database [cd-rom] Philadelphia:
University of Pennsylvania. Linguistic Data Con-
sortium .

Frank B Baker. 2001. The basics of item response the-
ory. ERIC.

Marco Baroni, Johannes Matiasek, and Harald Trost.
2002. Unsupervised discovery of morphologically
related words based on orthographic and semantic
similarity. In Proceedings of the ACL-02 Work-
shop on Morphological and Phonological Learning-
Volume 6. Association for Computational Linguis-
tics, pages 48–57.

Laurie Bauer. 2008. Exocentric compounds. Morphol-
ogy 18(1):51–74.

Jeff A Bilmes and Katrin Kirchhoff. 2003. Factored
language models and generalized parallel backoff.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Compu-
tational Linguistics on Human Language Technol-
ogy: companion volume of the Proceedings of HLT-
NAACL 2003–short papers-Volume 2. Association
for Computational Linguistics, pages 4–6.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON. Association for
Computational Linguistics, Berlin, Germany.

Ryan Cotterell and Tim Vieira. 2016. A joint model
of orthography and morphological segmentation. In
Proceedings of NAACL-HLT . pages 664–669.

Mathias Creutz and Krista Lagus. 2002. Unsupervised
discovery of morphemes. In Proceedings of the
ACL-02 Workshop on Morphological and Phonolog-
ical Learning-Volume 6. Association for Computa-
tional Linguistics, pages 21–30.

Mathias Creutz and Krista Lagus. 2005. Unsupervised
morpheme segmentation and morphology induction
from text corpora using Morfessor 1.0. Helsinki
University of Technology.

Mathias Creutz and Krista Lagus. 2007. Unsupervised
models for morpheme segmentation and morphol-
ogy learning. ACM Transactions on Speech and
Language Processing (TSLP) 4(1):3.

John Goldsmith. 2000. Linguistica: An automatic mor-
phological analyzer. In Proceedings of 36th meeting
of the Chicago Linguistic Society.

Stig-Arne Grönroos, Sami Virpioja, Peter Smit, and
Mikko Kurimo. 2014. Morfessor Flatcat: An
HMM-based method for unsupervised and semi-
supervised learning of morphology. In COLING.
pages 1177–1185.

Zellig S Harris. 1970. From phoneme to morpheme. In
Papers in Structural and Transformational Linguis-
tics, Springer, pages 32–67.

Mark Johnson, Thomas L Griffiths, and Sharon Gold-
water. 2006. Adaptor grammars: A framework for
specifying compositional nonparametric bayesian
models. In Advances in neural information process-
ing systems. pages 641–648.

Oskar Kohonen, Sami Virpioja, and Krista Lagus.
2010. Semi-supervised learning of concatenative
morphology. In Proceedings of the 11th Meeting of
the ACL Special Interest Group on Computational
Morphology and Phonology. Association for Com-
putational Linguistics, pages 78–86.

Mikko Kurimo, Mathias Creutz, and Ville T Turunen.
2007. Unsupervised morpheme analysis evalua-
tion by IR experiments-Morpho Challenge 2007. In
CLEF (Working Notes).

560

Mikko Kurimo, Mathias Creutz, Matti Varjokallio,
Ebru Arisoy, and Murat Saraçlar. 2006. Unsu-
pervised segmentation of words into morphemes–
challenge 2005: An introduction and evaluation re-
port. In Proceedings of the PASCAL Challenge
Workshop on Unsupervised Segmentation of Words
into Morphemes.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the eighteenth Inter-
national Conference on Machine Learning, ICML.
volume 1, pages 282–289.

Young-Suk Lee. 2004. Morphological analysis for sta-
tistical machine translation. In Proceedings of HLT-
NAACL 2004: Short Papers. Association for Com-
putational Linguistics, pages 57–60.

Constantine Lignos. 2010. Learning from unseen
data. In Proceedings of the Morpho Challenge 2010
Workshop. pages 35–38.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In HLT-NAACL. volume 13,
pages 746–751.

Karthik Narasimhan, Regina Barzilay, and Tommi
Jaakkola. 2015. An unsupervised method for un-
covering morphological chains. Transactions of the
Association for Computational Linguistics 3.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Hoifung Poon, Colin Cherry, and Kristina Toutanova.
2009. Unsupervised morphological segmentation
with log-linear models. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, pages 209–217.

Jorma Rissanen. 1998. Stochastic complexity in statis-
tical inquiry, volume 15. World scientific.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2013. Supervised morphologi-
cal segmentation in a low-resource learning setting
using conditional random fields. In CoNLL. pages
29–37.

Teemu Ruokolainen, Oskar Kohonen, Sami Virpioja,
and Mikko Kurimo. 2014. Painless semi-supervised
morphological segmentation using conditional ran-
dom fields. In EACL. pages 84–89.

Patrick Schone and Daniel Jurafsky. 2000.
Knowledge-free induction of morphology us-
ing latent semantic analysis. In Proceedings of
the 2nd workshop on Learning language in logic
and the 4th conference on Computational Natural
Language Learning-Volume 7. Association for
Computational Linguistics, pages 67–72.

Kairit Sirts and Sharon Goldwater. 2013. Minimally-
supervised morphological segmentation using adap-
tor grammars. Transactions of the Association for
Computational Linguistics 1:255–266.

Radu Soricut and Franz Josef Och. 2015. Unsu-
pervised morphology induction using word embed-
dings. In HLT-NAACL. pages 1627–1637.

Ahmet Üstün and Burcu Can. 2016. Unsupervised
morphological segmentation using neural word em-
beddings. In International Conference on Statistical
Language and Speech Processing. Springer, pages
43–53.

Sami Virpioja, Ville T Turunen, Sebastian Spiegler, Os-
kar Kohonen, and Mikko Kurimo. 2011. Empirical
comparison of evaluation methods for unsupervised
learning of morphology. TAL 52(2):45–90.

Sami Virpioja, Jaakko J Väyrynen, Mathias Creutz, and
Markus Sadeniemi. 2007. Morphology-aware statis-
tical machine translation based on morphs induced
in an unsupervised manner. Machine Translation
Summit XI 2007:491–498.

Derry Tanti Wijaya and Reyyan Yeniterzi. 2011. Un-
derstanding semantic change of words over cen-
turies. In Proceedings of the 2011 Interna-
tional Workshop on DETecting and Exploiting Cul-
tural diversiTy on the Social Web. ACM, New
York, NY, USA, DETECT ’11, pages 35–40.
https://doi.org/10.1145/2064448.2064475.

Yuri L Zieman and Howard L Bleich. 1997. Concep-
tual mapping of user’s queries to medical subject
headings. In Proceedings of the AMIA Annual Fall
Symposium. American Medical Informatics Associ-
ation, page 519.

561

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 562–570
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1052

Deep Pyramid Convolutional Neural Networks for Text Categorization

Rie Johnson
RJ Research Consulting

Tarrytown, NY, USA
riejohnson@gmail.com

Tong Zhang
Tencent AI Lab

Shenzhen, China
bradymzhang@tencent.com

Abstract

This paper proposes a low-complexity
word-level deep convolutional neural net-
work (CNN) architecture for text catego-
rization that can efficiently represent long-
range associations in text. In the literature,
several deep and complex neural networks
have been proposed for this task, assum-
ing availability of relatively large amounts
of training data. However, the associated
computational complexity increases as the
networks go deeper, which poses serious
challenges in practical applications. More-
over, it was shown recently that shallow
word-level CNNs are more accurate and
much faster than the state-of-the-art very
deep nets such as character-level CNNs
even in the setting of large training data.
Motivated by these findings, we carefully
studied deepening of word-level CNNs to
capture global representations of text, and
found a simple network architecture with
which the best accuracy can be obtained
by increasing the network depth without
increasing computational cost by much.
We call it deep pyramid CNN. The pro-
posed model with 15 weight layers out-
performs the previous best models on six
benchmark datasets for sentiment classifi-
cation and topic categorization.

1 Introduction

Text categorization is an important task whose ap-
plications include spam detection, sentiment clas-
sification, and topic classification. In recent years,
neural networks that can make use of word or-
der have been shown to be effective for text cat-
egorization. While simple and shallow convolu-
tional neural networks (CNNs) (Kim, 2014; John-

son and Zhang, 2015a) were proposed for this
task earlier, more recently, deep and more com-
plex neural networks have also been studied, as-
suming availability of relatively large amounts of
training data (e.g., one million documents). Exam-
ples are deep character-level CNNs (Zhang et al.,
2015; Conneau et al., 2016), a complex combi-
nation of CNNs and recurrent neural networks
(RNNs) (Tang et al., 2015), and RNNs in a word-
sentence hierarchy (Yang et al., 2016).

A CNN is a feedforward network with convo-
lution layers interleaved with pooling layers. Es-
sentially, a convolution layer converts to a vector
every small patch of data (either the original data
such as text or image or the output of the pre-
vious layer) at every location (e.g., 3-word win-
dows around every word), which can be processed
in parallel. By contrast, an RNN has connec-
tions that form a cycle. In its typical application
to text, a recurrent unit takes words one by one
as well as its own output on the previous word,
which is parallel-processing unfriendly. While
both CNNs and RNNs can take advantage of word
order, the simple nature and parallel-processing
friendliness of CNNs make them attractive partic-
ularly when large training data causes computa-
tional challenges.

There have been several recent studies of CNN
for text categorization in the large training data
setting. For example, in (Conneau et al., 2016),
very deep 32-layer character-level CNNs were
shown to outperform deep 9-layer character-level
CNNs of (Zhang et al., 2015). However, in
(Johnson and Zhang, 2016), very shallow 1-layer
word-level CNNs were shown to be more accu-
rate and much faster than the very deep character-
level CNNs of (Conneau et al., 2016). Although
character-level approaches have merit in not hav-
ing to deal with millions of distinct words, shallow
word-level CNNs turned out to be superior even

562

https://doi.org/10.18653/v1/P17-1052

when used with only a manageable number (30K)
of the most frequent words. This demonstrates the
basic fact – knowledge of word leads to a powerful
representation. These results motivate us to pur-
sue an effective and efficient design of deep word-
level CNNs for text categorization. Note, however,
that it is not as simple as merely replacing charac-
ters with words in character-level CNNs; doing so
rather degraded accuracy in (Zhang et al., 2015).

We carefully studied deepening of word-level
CNNs in the large-data setting and found a deep
but low-complexity network architecture with
which the best accuracy can be obtained by in-
creasing the depth but not the order of computation
time – the total computation time is bounded by a
constant. We call it deep pyramid CNN (DPCNN),
as the computation time per layer decreases ex-
ponentially in a ‘pyramid shape’. After convert-
ing discrete text to continuous representation, the
DPCNN architecture simply alternates a convo-
lution block and a downsampling layer over and
over1, leading to a deep network in which inter-
nal data size (as well as per-layer computation)
shrinks in a pyramid shape. The network depth
can be treated as a meta-parameter. The computa-
tional complexity of this network is bounded to be
no more than twice that of one convolution block.
At the same time, as described later, the ‘pyramid’
enables efficient discovery of long-range associa-
tions in the text (and so more global information),
as the network is deepened. This is why DPCNN
can achieve better accuracy than the shallow CNN
mentioned above (hereafter ShallowCNN), which
can use only short-range associations. Moreover,
DPCNN can be regarded as a deep extension of
ShallowCNN, which we proposed in (Johnson and
Zhang, 2015b) and later tested with large datasets
in (Johnson and Zhang, 2016).

We show that DPCNN with 15 weight lay-
ers outperforms the previous best models on six
benchmark datasets for sentiment classification
and topic classification.

2 Word-level deep pyramid CNN
(DPCNN) for text categorization

Overview of DPCNN: DPCNN is illustrated in
Figure 1a. The first layer performs text region em-
bedding, which generalizes commonly used word

1Previous deep CNNs (either on image or text) tend to
be more complex and irregular, having occasional increase of
the number of feature maps.

embedding to the embedding of text regions cov-
ering one or more words. It is followed by stack-
ing of convolution blocks (two convolution lay-
ers and a shortcut) interleaved with pooling layers
with stride 2 for downsampling. The final pool-
ing layer aggregates internal data for each docu-
ment into one vector. We use max pooling for all
pooling layers. The key features of DPCNN are as
follows.

• Downsampling without increasing the num-
ber of feature maps (dimensionality of layer
output, 250 in Figure 1a). Downsampling
enables efficient representation of long-range
associations (and so more global informa-
tion) in the text. By keeping the same num-
ber of feature maps, every 2-stride downsam-
pling reduces the per-block computation by
half and thus the total computation time is
bounded by a constant.

• Shortcut connections with pre-activation and
identity mapping (He et al., 2016) for en-
abling training of deep networks.

• Text region embedding enhanced with un-
supervised embeddings (embeddings trained
in an unsupervised manner) (Johnson and
Zhang, 2015b) for improving accuracy.

2.1 Network architecture
Downsampling with the number of feature
maps fixed After each convolution block, we
perform max-pooling with size 3 and stride 2.
That is, the pooling layer produces a new inter-
nal representation of a document by taking the
component-wise maximum over 3 contiguous in-
ternal vectors, representing 3 overlapping text re-
gions, but it does this only for every other possible
triplet (stride 2) instead of all the possible triplets
(stride 1). This 2-stride downsampling reduces the
size of the internal representation of each docu-
ment by half.

A number of models (Simonyan and Zisser-
man, 2015; He et al., 2015, 2016; Conneau et al.,
2016) increase the number of feature maps when-
ever downsampling is performed, causing the to-
tal computational complexity to be a function of
the depth. In contrast, we fix the number of fea-
ture maps, as we found that increasing the num-
ber of feature maps only does harm – increasing
computation time substantially without accuracy
improvement, as shown later in the experiments.

563

3 conv, 250

Region embedding

3 conv, 250

3 conv, 250

Pooling, /2

3 conv, 250

+

Pooling

+

Downsampling

Repeat

Unsupervised
embeddings

conv:W

pre-activation

optional

“A good buy !”

Downsampling

Repeat

W σ(x)+b

activation

optional

(a) Our proposed model DPCNN

Pooling

Region embedding

Unsupervised
embeddings

“A good buy !”

(b) cf. ShallowCNN [JZ15b]

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

+

3x3 conv,128

3x3 conv, 128

+

3x3 conv, 256, /2

3x3 conv, 256

+

+

R
ep

eat

snipped

R
ep

eat

7x7 conv, 64, /2

pooling, /2

image

R
ep

eat

(c) cf. ResNet for image [HZRS15]

Figure 1: (a) Our proposed model DPCNN. (b,c) Previous models for comparison. ⊕ indicates addition.
The dotted red shortcuts in (c) perform dimension matching. DPCNN is dimension-matching free.

With the number of feature maps fixed, the compu-
tation time for each convolution layer is halved (as
the data size is halved) whenever 2-stride down-
sampling is performed, thus, forming a ‘pyramid’.

Computation per layer is halved
after every pooling.
Computation per layer is halved
after every pooling.

Therefore, with DPCNNs, the total computation
time is bounded by a constant – twice the com-
putation time of a single block, which makes our
deep pyramid networks computationally attrac-
tive.

In addition, downsampling with stride 2 essen-
tially doubles the effective coverage (i.e., cover-
age in the original document) of the convolution
kernel; therefore, after going through downsam-
pling L times, associations among words within
a distance in the order of 2L can be represented.
Thus, deep pyramid CNN is computationally effi-
cient for representing long-range associations and
so more global information.

Shortcut connections with pre-activation To
enable training of deep networks, we use additive
shortcut connections with identity mapping, which
can be written as z + f(z) where f represents
the skipped layers (He et al., 2016). In DPCNN,
the skipped layers f(z) are two convolution layers
with pre-activation. Here, pre-activation refers to
activation being done before weighting instead of
after as is typically done. That is, in the convolu-

tion layer of DPCNN, Wσ(x) +b is computed at
every location of each document where a column
vector x represents a small region (overlapping
with each other) of input at each location, σ(·) is a
component-wise nonlinear activation, and weights
W and biases b (unique to each layer) are the pa-
rameters to be trained. The number of W’s rows is
the number of feature maps (also called the num-
ber of filters (He et al., 2015)) of this layer. We set
activation σ(·) to the rectifier σ(x) = max(x, 0).
In our implementation, we fixed the number of
feature maps to 250 and the kernel size (the size
of the small region covered by x) to 3, as shown in
Figure 1a.

With pre-activation, it is the results of linear
weighting (Wσ(x) + b) that travel through the
shortcut, and what is added to them at a ⊕ (Figure
1a) is also the results of linear weighting, instead
of the results of nonlinear activation (σ(Wx +
b)). Intuitively, such ‘linearity’ eases training of
deep networks, similar to the role of constant er-
ror carousels in LSTM (Hochreiter and Schmid-
huder, 1997). We empirically observed that pre-
activation indeed outperformed ‘post-activation’,
which is in line with the image results (He et al.,
2016).

No need for dimension matching Although the
shortcut with pre-activation was adopted from the
improved ResNet of (He et al., 2016), our model
is simpler than ResNet (Figure 1c), as all the

564

shortcuts are exactly simple identity mapping (i.e.,
passing data exactly as it is) without any compli-
cation for dimension matching. When a shortcut
meets the ‘main street’, the data from two paths
need to have the same dimensionality so that they
can be added; therefore, if a shortcut skips a layer
that changes the dimensionality, e.g., by down-
sampling or by use of a different number of fea-
ture maps, then a shortcut must perform dimen-
sion matching. Dimension matching for increased
number of feature maps, in particular, is typically
done by projection, introducing more weight pa-
rameters to be trained. We eliminate the compli-
cation of dimension matching by not letting any
shortcut skip a downsampling layer, and by fixing
the number of feature maps throughout the net-
work. The latter also substantially saves compu-
tation time as mentioned above, and we will show
later in our experiments that on our tasks, we do
not sacrifice anything for such a substantial effi-
ciency gain.

2.2 Text region embedding

A CNN for text categorization typically starts with
converting each word in the text to a word vec-
tor (word embedding). We take a more general
viewpoint as in (Johnson and Zhang, 2015b) and
consider text region embedding – embedding of a
region of text covering one or more words.

Basic region embedding We start with the ba-
sic setting where there is no unsupervised embed-
ding. In the region embedding layer we compute
Wx + b for each word of a document where in-
put x represents a k-word region (i.e., window)
around the word in some straightforward manner,
and weights W and bias b are trained with the
parameters of other layers. Activation is delayed
to the pre-activation of the next layer. Now let
v be the size of vocabulary, and let us consider
the following three types of straightforward rep-
resentation of a k-word region for x: (1) sequen-
tial input: the kv-dimensional concatenation of k
one-hot vectors; (2) bow input: a v-dimensional
bag-of-word (bow) vector; and (3) bag-of-n-gram
input: e.g., a bag of word uni, bi, and trigrams con-
tained in the region. Setting the region size k = 1,
they all become word embedding.

A region embedding layer with the sequential
input is equivalent to a convolution layer applied
to a sequence of one-hot vectors representing a
document, and this viewpoint was taken to de-

scribe the first layer of ShallowCNN in (Johnson
and Zhang, 2015a,b). From the region embedding
viewpoint, ShallowCNN is DPCNN’s special case
in which a region embedding layer is directly fol-
lowed by the final pooling layer (Figure 1b).

A region embedding layer with region size k >
1 seeks to capture more complex concepts than
single words in one weight layer, whereas a net-
work with word embedding uses multiple weight
layers to do this, e.g., word embedding followed
by a convolution layer. In general, having fewer
layers has a practical advantage of easier optimiza-
tion. Beyond that, the optimum input type and
the optimum region size can only be determined
empirically. Our preliminary experiments indi-
cated that when used with DPCNN (but not Shal-
lowCNN), the sequential input has no advantage
over the bow input – comparable accuracy with k
times more weight parameters; therefore, we ex-
cluded the sequential input from our experiments2.
The n-gram input turned out to be prone to over-
fitting in the supervised setting, likely due to its
high representation power, but it is very useful as
the input to unsupervised embeddings, which we
discuss next.

Enhancing region embedding with unsuper-
vised embeddings In (Johnson and Zhang,
2015b, 2016), it was shown that accuracy was
substantially improved by extending ShallowCNN
with unsupervised embeddings obtained by tv-
embedding training (‘tv’ stands for two views). We
found that accuracy of DPCNN can also be im-
proved in this manner. Below we briefly review
tv-embedding training and then describe how we
use the resulting unsupervised embeddings with
DPCNN.

The tv-embedding training requires two views.
For text categorization, we define a region of text
as view-1 and its adjacent regions as view-2. Then
using unlabeled data, we train a neural network
of one hidden layer with an artificial task of pre-
dicting view-2 from view-1. The obtained hidden
layer, which is an embedding function that takes
view-1 as input, serves as an unsupervised embed-
ding function in the model for text categorization.
In (Johnson and Zhang, 2015b), we showed theo-
retical conditions on views and labels under which

2This differs from ShallowCNN where the sequential in-
put is often superior to bow input. We conjecture that when
bow input is used in DPCNN, convolution layers following
region embedding make up for the loss of local word order
caused by bow input, as they use word order.

565

AG Sogou Dbpedia Yelp.p Yelp.f Yahoo Ama.f Ama.p
of training documents 120K 450K 560K 560K 650K 1.4M 3M 3.6M
of test documents 7.6K 60K 70K 38K 50K 60K 650K 400K
of classes 4 5 14 2 5 10 5 2
Average #words 45 578 55 153 155 112 93 91

Table 1: Data. Note that Yelp.f is a balanced subset of Yelp 2015. The results on these two datasets are
not comparable.

unsupervised embeddings obtained this way are
useful for classification.

For use with DPCNN, we train several unsu-
pervised embeddings in this manner, which dif-
fer from one another in the region size and the
vector representations of view-1 (input region) so
that we can benefit from diversity. The region
embedding layer of DPCNN computes Wx +∑

u∈U W(u)z(u) + b , where x is the discrete in-
put as in the basic region embedding, and z(u) is
the output of an unsupervised embedding function
indexed by u. We will show below that use of
unsupervised embeddings in this way consistently
improves the accuracy of DPCNN.

3 Experiments

We report the experiments with DPCNNs in com-
parison with previous models and alternatives.
The code is publicly available on the internet.

3.1 Experimental setup
Data and data preprocessing To facilitate com-
parisons with previous results, we used the eight
datasets compiled by Zhang et al. (2015), summa-
rized in Table 1. AG and Sogou are news. Db-
pedia is an ontology. Yahoo consists of questions
and answers from the ‘Yahoo! Answers’ website.
Yelp and Amazon (‘Ama’) are reviews where ‘.p’
(polarity) in the names indicates that labels are bi-
nary (positive/negative), and ‘.f’ (full) indicates
that labels are the number of stars. Sogou is in
Romanized Chinese, and the others are in English.
Classes are balanced on all the datasets. Data pre-
processing was done as in (Johnson and Zhang,
2016). That is, upper-case letters were converted
to lower-case letters. Unlike (Kim, 2014; Zhang
et al., 2015; Conneau et al., 2016), variable-sized
documents were handled as variable-sized without
any shortening or padding; however, the vocabu-
lary size was limited to 30K words. For example,
as also mentioned in (Johnson and Zhang, 2016),
the complete vocabulary of the Ama.p training set

contains 1.3M words. A vocabulary of 30K words
is only a small portion of it, but it covers about
98% of the text and produced good accuracy as
reported below.

Training protocol We held out 10K documents
from the training data for use as a validation set on
each dataset, and meta-parameter tuning was done
based on the performance on the validation set.

To minimize a log loss with softmax, mini-
batch SGD with momentum 0.9 was conducted for
n epochs (nwas fixed to 50 for AG, 30 for Yelp.f/p
and Dbpedia, and 15 for the rest) while the learn-
ing rate was set to η for the first 4

5n epochs and
then 0.1η for the rest3. The initial learning rate η
was considered to be a meta-parameter. The mini-
batch size was fixed to 100. Regularization was
done by weight decay with the parameter 0.0001
and by optional dropout (Hinton et al., 2012) with
0.5 applied to the input to the top layer. In some
cases overfitting was observed, and so we per-
formed early stopping, based on the validation per-
formance, after reducing the learning rate to 0.1η.
Weights were initialized by the Gaussian distribu-
tion with zero mean and standard deviation 0.01.
The discrete input to the region embedding layer
was fixed to the bow input, and the region size was
chosen from {1,3,5}, while fixing output dimen-
sionality to 250 (same as convolution layers).

Details of unsupervised embedding training
To facilitate comparison with ShallowCNN, we
matched our unsupervised embedding setting ex-
actly with that of (Johnson and Zhang, 2016).
That is, we trained the same four types of tv-
embeddings, which are embeddings of 5- and 9-
word regions, each of which represents the in-
put regions by either 30K-dim bow or 200K-dim

3This learning rate scheduling method was used also in
(Johnson and Zhang, 2015a,b, 2016). It was meant to reduce
learning rate when error plateaus, as is often done on image
tasks, e.g., (He et al., 2015), though for simplicity, the timing
of reduction was fixed for each dataset.

566

Models Deep
Unsup.

Yelp.p Yelp.f Yahoo Ama.f Ama.p
embed.

1 DPCNN + unsupervised embed. X tv 2.64 30.58 23.90 34.81 3.32
2 ShallowCNN + unsup. embed. [JZ16] tv 2.90 32.39 24.85 36.24 3.79
3 Hierarchical attention net [YYDHSH16] X w2v – – 24.2 36.4 –
4 [CSBL16]’s char-level CNN: best X 4.28 35.28 26.57 37.00 4.28
5 fastText bigrams (Joulin et al., 2016) 4.3 36.1 27.7 39.8 5.4
6 [ZZL15]’s char-level CNN: best X 4.88 37.95 28.80 40.43 4.93
7 [ZZL15]’s word-level CNN: best X (w2v) 4.60 39.58 28.84 42.39 5.51
8 [ZZL15]’s linear model: best 4.36 40.14 28.96 44.74 7.98

Table 2: Error rates (%) on larger datasets in comparison with previous models. The previous results are
roughly sorted in the order of error rates (best to worst). The best results and the second best are shown
in bold and italic, respectively. ‘tv’ stands for tv-embeddings. ‘w2v’ stands for word2vec. ‘(w2v)’ in
row 7 indicates that the best results among those with and without word2vec pretraining are shown. Note
that ‘best’ in rows 4&6–8 indicates that we are giving an ‘unfair’ advantage to these models by choosing
the best test error rate among a number of variations presented in the respective papers.
[JZ16]: Johnson and Zhang (2016), [YYDHSH16]: Yang et al. (2016), [CSBL16]: Conneau et al. (2016), [ZZL15]: Zhang

et al. (2015)

bags of {1,2,3}-grams, retaining only the most fre-
quent 30K words or 200K {1,2,3}-grams. Train-
ing was done on the labeled data (disregarding the
labels), setting the training objectives to the pre-
diction of adjacent regions of the same size as the
input region (i.e., 5 or 9). Weighted square loss∑

i,j αi,j(zi[j] − pi[j])
2 was minimized where i

goes through instances, z represents the target re-
gions by bow, p is the model output, and the
weights αi,j were set to achieve the negative sam-
pling effect. The dimensionality of unsupervised
embeddings was set to 300 unless otherwise spec-
ified. Unsupervised embeddings were fixed during
the supervised training – no fine-tuning.

3.2 Results

In the results below, the depth of DPCNN was
fixed to 15 unless otherwise specified. Making
it deeper did not substantially improve or degrade
accuracy. Note that we count as depth the number
of hidden weight layers including the region em-
bedding layer but excluding unsupervised embed-
dings, therefore, 15 means 7 convolution blocks of
2 layers plus 1 layer for region embedding.

3.2.1 Main results

Large data results We first report the error rates
of our full model (DPCNN with 15 weight lay-
ers plus unsupervised embeddings) on the larger
five datasets (Table 2). To put it into perspective,
we also show the previous results in the literature.

The previous results are roughly sorted in the or-
der of error rates from best to worst. On all the
five datasets, DPCNN outperforms all of the pre-
vious results, which validates the effectiveness of
our approach.

DPCNN can be regarded as a deep extension
of ShallowCNN (row 2), sharing region embed-
ding enhancement with diverse unsupervised em-
beddings. Note that ShallowCNN enhanced with
unsupervised embeddings (row 2) was originally
proposed in (Johnson and Zhang, 2015b) as a
semi-supervised extension of (Johnson and Zhang,
2015a), and then it was tested on the large datasets
in (Johnson and Zhang, 2016). The performance
improvements of DPCNN over ShallowCNN indi-
cates that the added depth is indeed useful, captur-
ing more global information. Yang et al. (2016)’s
hierarchical attention network (row 3) consists of
RNNs in the word level and the sentence level.
It is more complex than DPCNN due to the use
of RNNs and linguistic knowledge for sentence
segmentation. Similarly, Tang et al. (2015) pro-
posed to use CNN or LSTM to represent each sen-
tence in documents and then use RNNs. Although
we do not have direct comparison with Tang et
al.’s model, Yang et al. (2016) reports that their
model outperformed Tang et al.’s model. Conneau
et al. (2016) and Zhang et al. (2015) proposed deep
character-level CNNs (row 4&6). Their models
underperform our DPCNN with relatively large
differences in spite of their deepness. Our mod-

567

30

31

32

33

34

35

36

0 25 50 75

E
rr

o
r

ra
te

 (
%

)

Computation time

Yelp.f character-leve CNN [CSBL16]

ShallowCNN [JZ16]

ShallowCNN+100-dim u.embed.

ShallowCNN+300-dim u.embed.

DPCNN

DPCNN+100-dim u.embed.

DPCNN+300-dim u.embed.

leve CNN [CSBL16]

dim u.embed.

dim u.embed.

dim u.embed.

dim u.embed.
30

31

32

33

34

35

0 5 10 15 20

E
rr

o
r

ra
te

 (
%

)

Computation time

Yelp.f

Figure 2: Error rates and computation time. DPCNN, ShallowCNN, and Conneau et al. (2016)’s
character-level CNN. The x-axis is the time in seconds spent for categorizing 10K documents using
our implementation on Tesla M2070. The right figure is a close-up of x ∈ [0, 20] of the left figure.
Though shown on one particular dataset Yelp.f, the trend is the same on the other four large datasets.

els are word-level and therefore use the knowledge
of word boundaries which character-level mod-
els have no access to. While this is arguably not
an apple-to-apple comparison, since word bound-
aries can be obtained for free in many languages,
we view our model as much more useful in prac-
tice. Row 7 shows the performance of deep word-
level CNN from (Zhang et al., 2015), which was
designed to match their character-level models in
complexity. Its relatively poor performance shows
that it is not easy to design a high-performance
deep word-level CNN.

Computation time In Figure 2, we plot error
rates in relation to the computation time – the time
spent for categorizing 10K documents using our
implementation on a GPU. The right figure is a
close-up of x ∈ [0, 20] of the left figure. It stands
out in the left figure that the character-level CNN
of (Conneau et al., 2016) is much slower than
DPCNNs. This is partly because it increases the
number of feature maps with downsampling (i.e.,
no pyramid) while it is deeper (32 weight layers),
and partly because it deals with characters – there
are more characters than words in each document.
DPCNNs are more accurate than ShallowCNNs at
the expense of more computation time due to the
depth (15 layers vs. 1 layer). Nevertheless, their
computation time is comparable – the points of
both fit in the same range [0, 20]. The efficiency
of DPCNNs is due to the exponential decrease of
per-layer computation due to downsampling with
the number of feature maps being fixed.

Comparison with non-pyramid variants Fur-
thermore, we tested the following two ‘non-
pyramid’ models for comparison. The first model
doubles the number of feature maps at every other
downsampling so that per-layer computation is

31.5

32

32.5

33

0 10 20 30

E
rr

o
r

ra
te

 (
%

)

Computation time

Yelp.f

No downsampling

Increase #feature maps

DPCNN

Increase #feature maps

Figure 3: Comparison with non-pyramid models.
Models of depth 11 and 15 are shown. No unsu-
pervised embeddings.

kept approximately constant4. The second model
performs no downsampling. Otherwise, these
two models are the same as DPCNN. We show
in Figure 3 the error rates of these two varia-
tions (labeled as ‘Increase #feature maps’ and ‘No
downsampling’, respectively) in comparison with
DPCNN. The x-axis is the computation time, mea-
sured by the seconds spent for categorizing 10K
documents. For all types, the models of depth 11
and 15 are shown. Clearly, DPCNN is more ac-
curate and computes faster than the others. Figure
3 is on Yelp.f, and we observed the same perfor-
mance trend on the other four large datasets.

Small data results Now we turn to the results
on the three smaller datasets in Table 3. Again,
the previous models are roughly sorted from best
to worst. For these small datasets, the DPCNN
performances with 100-dim unsupervised embed-

4Note that if we double the number of feature maps, it
would increase the computation cost of the next layer by 4
times as it doubles the dimensionality of both input and out-
put. On image, downsampling with stride 2 cancels it out
as it makes data 4 times smaller by shrinking both horizon-
tally and vertically, but text is one dimensional, and so down-
sampling with stride 2 merely halves data. That is why we
doubled the number of feature maps at every other downsam-
pling instead of at every downsampling to avoid exponential
increase of computation time.

568

Models Deep
Unsup.

AG Sogou Dbpedia
embed.

1 DPCNN + unsupervised embed. X tv 6.87 1.84 0.88
2 ShallowCNN + unsup. embed. [JZ16] tv 6.57 1.89 0.84
3 [ZZL15]’s linear model: best 7.64 2.81 1.31
4 [CSBL16]’s deep char-level CNN: best X 8.67 3.18 1.29
5 fastText bigrams (Joulin et al., 2016) 7.5 3.2 1.4
6 [ZZL15]’s word-level CNN : best X (w2v) 8.55 4.39 1.37
7 [ZZL15]’s deep char-level CNN: best X 9.51 4.88 1.55

Table 3: Error rates (%) on smaller datasets in comparison with previous models. The previous results
are roughly sorted in the order of error rates (best to worst). Notation follows that of Table 2.

3.2

3.3

3.4

3.5

0 2 4 6 8

E
rr

o
r

ra
te

 (
%

)

Time

Yelp.p

31

32

33

34

0 2 4 6 8
Time

Yelpf

24.5

25

25.5

26

0 2 4
Time

Yahoo

6

Yahoo

35.5

36

36.5

37

37.5

0 1 2 3 4 5
Time

Ama.f

3.6

3.8

4

4.2

0 1 2 3 4 5
Time

Ama.p

ShallowCNN

DPCNN

Figure 4: Error rates of DPCNNs with various depths (3, 7, and 15). The x-axis is computation time.
No unsupervised embeddings.

dings are shown, which turned out to be as good
as those with 300-dim unsupervised embeddings.
One difference from the large dataset results is
that the strength of shallow models stands out.
ShallowCNN (row 2) rivals DPCNN (row 1), and
Zhang et al.’s best linear model (row 3) moved
up from the worst performer to the third best per-
former. The results are in line with the general fact
that more complex models require more training
data, and with the paucity of training data, simpler
models can outperform more complex ones.

3.2.2 Empirical studies
We present some empirical results to validate the
design choices. For this purpose, the larger five
datasets were used to avoid the paucity of training
data.

Depth Figure 4 shows error rates of DPCNNs
with 3, 7, and 15 weight layers (blue circles
from left to right). For comparison, the Shal-
lowCNN results (green ‘x’) from (Johnson and
Zhang, 2016) are also shown. The x-axis repre-
sents the computation time (seconds for catego-
rizing 10K documents on a GPU). For simplicity,
the results without unsupervised embeddings are
shown for all. The error rate improves as the depth
increases. The results confirm the effectiveness of
our strategy of deepening the network.

Unsupervised embeddings To study the effec-
tiveness of unsupervised embeddings, we experi-
mented with variations of DPCNN that differ only
in whether/how to use unsupervised embeddings
(Table 4). First, we compare DPCNNs with and
without unsupervised embeddings. The model
with unsupervised embeddings (row 1, copied
from Table 2 for easy comparison) clearly outper-
forms the one without them (row 4), which con-
firms the effectiveness of the use of unsupervised
embeddings. Second, in the proposed model (row
1), a region embedding layer receives two types
of input, the output of unsupervised embedding
functions and the high-dimensional discrete input
such as a bow vector. Row 2 shows the results ob-
tained by using unsupervised embeddings to pro-
duce sole input (i.e., no discrete vectors provided
to the region embedding layer). Degradations of
error rates are up to 0.32%, small but consistent.
Since the discrete input add almost no computa-
tion cost due to its sparseness, its use is desir-
able. Third, a number of previous studies used
unsupervised word embedding to initialize word
embedding in neural networks and then fine-tune
it as training proceeds (pretraining). The model
in row 3 does this with DPCNN using word2vec
(Mikolov et al., 2013). The word2vec training
was done on the training data (ignoring the labels),

569

Unsupervised embeddings Yelp.p Yelp.f Yahoo Ama.f Ama.p
1 tv-embed. (additional input) 2.64 30.58 23.90 34.81 3.32
2 tv-embed. (sole input) 2.68 30.66 24.09 35.13 3.45
3 word2vec (pretraining) 2.93 32.08 24.11 35.30 3.65
4 – 3.30 31.61 24.64 35.61 3.64

Table 4: Error rates (%) of DPCNN variations that differ in use of unsupervised embeddings. The rows
are roughly sorted from best to worst.

same as tv-embedding training. This model (row
3) underperformed our proposed model (row 1).
We attribute the superiority of the proposed model
to its use of richer information than a word embed-
ding. These results support our approach.

4 Conclusion

This paper tackled the problem of designing high-
performance deep word-level CNNs for text cat-
egorization in the large training data setting. We
proposed a deep pyramid CNN model which has
low computational complexity, and can efficiently
represent long-range associations in text and so
more global information. It was shown to outper-
form the previous best models on six benchmark
datasets.

References
Alexis Conneau, Holger Schwenk, Loı̈c Barrault,

and Yann LeCun. 2016. Very deep convolu-
tional networks for natural language processing.
arXiv:1606.01781v1 (6 June 2016 version) .

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. arXiv:1512.03385 .

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Identity mappings in deep residual net-
works. arXiv:1603.05027 .

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors.
arXiv:1207.0580 .

Sepp Hochreiter and Jürgen Schmidhuder. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Rie Johnson and Tong Zhang. 2015a. Effective use
of word order for text categorization with convolu-
tional neural networks. In Proceedings of the North
American Chapter of the Association for Computa-
tional Linguistics Human Language Technologies
(NAACL HLT).

Rie Johnson and Tong Zhang. 2015b. Semi-supervised
convolutional neural networks for text categoriza-
tion via region embedding. In Advances in Neural
Information Processing Systems 28 (NIPS 2015).

Rie Johnson and Tong Zhang. 2016. Con-
volutional neural networks for text categoriza-
tion: Shallow word-level vs. deep character-level.
arXiv:1609.00718 .

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient
text classification. arXiv:1607.01795v3 (9 Aug 2016
version) .

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of Em-
pirical Methods in Natural Language Processing
(EMNLP). pages 1746–1751.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Advances in Neural Information Processing
Systems 26 (NIPS 2013).

Karen Simonyan and Andrew Zisserman. 2015. Very
deep convolutional networks for large-scale image
recognition. In Proceedings of International Con-
ference on Learning Representations (ICLR).

Duyu Tang, Bing Qin, and Ting Liu. 2015. Docu-
ment modeling with gated recurrent neural network
for sentiment classification. In Proceedings of Em-
pirical Methods in Natural Language Processing
(EMNLP).

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the North American Chapter of the
Association for Computational Linguistics Human
Language Technologies (NAACL HLT).

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems 28 (NIPS 2015).

570

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 571–581
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1053

Improved Neural Relation Detection for Knowledge Base Question
Answering

Mo Yu† Wenpeng Yin? Kazi Saidul Hasan‡ Cicero dos Santos†

Bing Xiang‡ Bowen Zhou†
†AI Foundations, IBM Research, USA

?Center for Information and Language Processing, LMU Munich
‡IBM Watson, USA

{yum,kshasan,cicerons,bingxia,zhou}@us.ibm.com, wenpeng@cis.lmu.de

Abstract

Relation detection is a core component of
many NLP applications including Knowl-
edge Base Question Answering (KBQA).
In this paper, we propose a hierarchi-
cal recurrent neural network enhanced by
residual learning which detects KB re-
lations given an input question. Our
method uses deep residual bidirectional
LSTMs to compare questions and rela-
tion names via different levels of abstrac-
tion. Additionally, we propose a sim-
ple KBQA system that integrates entity
linking and our proposed relation detec-
tor to make the two components enhance
each other. Our experimental results show
that our approach not only achieves out-
standing relation detection performance,
but more importantly, it helps our KBQA
system achieve state-of-the-art accuracy
for both single-relation (SimpleQuestions)
and multi-relation (WebQSP) QA bench-
marks.

1 Introduction

Knowledge Base Question Answering (KBQA)
systems answer questions by obtaining informa-
tion from KB tuples (Berant et al., 2013; Yao et al.,
2014; Bordes et al., 2015; Bast and Haussmann,
2015; Yih et al., 2015; Xu et al., 2016). For an
input question, these systems typically generate a
KB query, which can be executed to retrieve the
answers from a KB. Figure 1 illustrates the process
used to parse two sample questions in a KBQA
system: (a) a single-relation question, which can
be answered with a single <head-entity, relation,
tail-entity> KB tuple (Fader et al., 2013; Yih et al.,
2014; Bordes et al., 2015); and (b) a more complex
case, where some constraints need to be handled

for multiple entities in the question. The KBQA
system in the figure performs two key tasks: (1)
entity linking, which links n-grams in questions
to KB entities, and (2) relation detection, which
identifies the KB relation(s) a question refers to.

The main focus of this work is to improve the
relation detection subtask and further explore how
it can contribute to the KBQA system. Although
general relation detection1 methods are well stud-
ied in the NLP community, such studies usually
do not take the end task of KBQA into considera-
tion. As a result, there is a significant gap between
general relation detection studies and KB-specific
relation detection. First, in most general relation
detection tasks, the number of target relations is
limited, normally smaller than 100. In contrast, in
KBQA even a small KB, like Freebase2M (Bor-
des et al., 2015), contains more than 6,000 relation
types. Second, relation detection for KBQA often
becomes a zero-shot learning task, since some test
instances may have unseen relations in the training
data. For example, the SimpleQuestions (Bordes
et al., 2015) data set has 14% of the golden test
relations not observed in golden training tuples.
Third, as shown in Figure 1(b), for some KBQA
tasks like WebQuestions (Berant et al., 2013), we
need to predict a chain of relations instead of a
single relation. This increases the number of tar-
get relation types and the sizes of candidate rela-
tion pools, further increasing the difficulty of KB
relation detection. Owing to these reasons, KB re-
lation detection is significantly more challenging
compared to general relation detection tasks.

This paper improves KB relation detection to
cope with the problems mentioned above. First, in
order to deal with the unseen relations, we propose
to break the relation names into word sequences
for question-relation matching. Second, noticing

1In the information extraction field such tasks are usually
called relation extraction or relation classification.

571

https://doi.org/10.18653/v1/P17-1053

Question: what episode was mike kelley the writer of

Knowledge
Base

Mike	Kelley
(American	television	
writer/producer)

Mike	Kelley
(American	baseball	

player)

…

Entity Linking

Love	Will	Find	a	Way

USA

…

First	baseman
…

episodes_written

position_played

Relation Detection

(a) (b)

Question: what tv show did grant show play on in 2008

Mike	Kelley ?
episodes_written

Entity Linking Relation
Detection

Grant Show

?
starring_roles

series

(date) from 2008

Constraint
Detection

Grant Show	
(American	actor)

SwingTown

Big Love

episodes

Scoundrels
series

2011
from

2010

2008

Figure 1: KBQA examples and its three key components. (a) A single relation example. We first identify the topic entity with
entity linking and then detect the relation asked by the question with relation detection (from all relations connecting the topic
entity). Based on the detected entity and relation, we form a query to search the KB for the correct answer “Love Will Find a
Way”. (b) A more complex question containing two entities. By using “Grant Show” as the topic entity, we could detect a chain
of relations “starring roles-series” pointing to the answer. An additional constraint detection takes the other entity “2008” as
a constraint, to filter the correct answer “SwingTown” from all candidates found by the topic entity and relation.

that original relation names can sometimes help
to match longer question contexts, we propose
to build both relation-level and word-level rela-
tion representations. Third, we use deep bidirec-
tional LSTMs (BiLSTMs) to learn different levels
of question representations in order to match the
different levels of relation information. Finally, we
propose a residual learning method for sequence
matching, which makes the model training easier
and results in more abstract (deeper) question rep-
resentations, thus improves hierarchical matching.

In order to assess how the proposed improved
relation detection could benefit the KBQA end
task, we also propose a simple KBQA implemen-
tation composed of two-step relation detection.
Given an input question and a set of candidate enti-
ties retrieved by an entity linker based on the ques-
tion, our proposed relation detection model plays a
key role in the KBQA process: (1) Re-ranking the
entity candidates according to whether they con-
nect to high confident relations detected from the
raw question text by the relation detection model.
This step is important to deal with the ambigui-
ties normally present in entity linking results. (2)
Finding the core relation (chains) for each topic
entity2 selection from a much smaller candidate
entity set after re-ranking. The above steps are
followed by an optional constraint detection step,
when the question cannot be answered by single
relations (e.g., multiple entities in the question).
Finally the highest scored query from the above

2Following Yih et al. (2015), here topic entity refers to
the root of the (directed) query tree; and core-chain is the
directed path of relation from root to the answer node.

steps is used to query the KB for answers.
Our main contributions include: (i) An im-

proved relation detection model by hierarchical
matching between questions and relations with
residual learning; (ii) We demonstrate that the im-
proved relation detector enables our simple KBQA
system to achieve state-of-the-art results on both
single-relation and multi-relation KBQA tasks.

2 Related Work

Relation Extraction Relation extraction (RE) is
an important sub-field of information extraction.
General research in this field usually works on a
(small) pre-defined relation set, where given a text
paragraph and two target entities, the goal is to
determine whether the text indicates any types of
relations between the entities or not. As a result
RE is usually formulated as a classification task.
Traditional RE methods rely on large amount of
hand-crafted features (Zhou et al., 2005; Rink and
Harabagiu, 2010; Sun et al., 2011). Recent re-
search benefits a lot from the advancement of deep
learning: from word embeddings (Nguyen and Gr-
ishman, 2014; Gormley et al., 2015) to deep net-
works like CNNs and LSTMs (Zeng et al., 2014;
dos Santos et al., 2015; Vu et al., 2016) and atten-
tion models (Zhou et al., 2016; Wang et al., 2016).

The above research assumes there is a fixed
(closed) set of relation types, thus no zero-shot
learning capability is required. The number
of relations is usually not large: The widely
used ACE2005 has 11/32 coarse/fine-grained rela-
tions; SemEval2010 Task8 has 19 relations; TAC-

572

KBP2015 has 74 relations although it considers
open-domain Wikipedia relations. All are much
fewer than thousands of relations in KBQA. As a
result, few work in this field focuses on dealing
with large number of relations or unseen relations.
Yu et al. (2016) proposed to use relation embed-
dings in a low-rank tensor method. However their
relation embeddings are still trained in supervised
way and the number of relations is not large in the
experiments.

Relation Detection in KBQA Systems Rela-
tion detection for KBQA also starts with feature-
rich approaches (Yao and Van Durme, 2014; Bast
and Haussmann, 2015) towards usages of deep
networks (Yih et al., 2015; Xu et al., 2016; Dai
et al., 2016) and attention models (Yin et al., 2016;
Golub and He, 2016). Many of the above re-
lation detection research could naturally support
large relation vocabulary and open relation sets
(especially for QA with OpenIE KB like ParaLex
(Fader et al., 2013)), in order to fit the goal of
open-domain question answering.

Different KBQA data sets have different levels
of requirement about the above open-domain ca-
pacity. For example, most of the gold test relations
in WebQuestions can be observed during train-
ing, thus some prior work on this task adopted the
close domain assumption like in the general RE re-
search. While for data sets like SimpleQuestions
and ParaLex, the capacity to support large relation
sets and unseen relations becomes more necessary.
To the end, there are two main solutions: (1) use
pre-trained relation embeddings (e.g. from TransE
(Bordes et al., 2013)), like (Dai et al., 2016); (2)
factorize the relation names to sequences and for-
mulate relation detection as a sequence match-
ing and ranking task. Such factorization works
because that the relation names usually comprise
meaningful word sequences. For example, Yin
et al. (2016) split relations to word sequences for
single-relation detection. Liang et al. (2016) also
achieve good performance on WebQSP with word-
level relation representation in an end-to-end neu-
ral programmer model. Yih et al. (2015) use char-
acter tri-grams as inputs on both question and rela-
tion sides. Golub and He (2016) propose a gener-
ative framework for single-relation KBQA which
predicts relation with a character-level sequence-
to-sequence model.

Another difference between relation detection
in KBQA and general RE is that general RE re-

search assumes that the two argument entities
are both available. Thus it usually benefits from
features (Nguyen and Grishman, 2014; Gormley
et al., 2015) or attention mechanisms (Wang et al.,
2016) based on the entity information (e.g. entity
types or entity embeddings). For relation detec-
tion in KBQA, such information is mostly missing
because: (1) one question usually contains single
argument (the topic entity) and (2) one KB entity
could have multiple types (type vocabulary size
larger than 1,500). This makes KB entity typing
itself a difficult problem so no previous used en-
tity information in the relation detection model.3

3 Background: Different Granularity in
KB Relations

Previous research (Yih et al., 2015; Yin et al.,
2016) formulates KB relation detection as a se-
quence matching problem. However, while the
questions are natural word sequences, how to rep-
resent relations as sequences remains a challeng-
ing problem. Here we give an overview of two
types of relation sequence representations com-
monly used in previous work.

(1) Relation Name as a Single Token (relation-
level). In this case, each relation name is treated
as a unique token. The problem with this ap-
proach is that it suffers from the low relation cov-
erage due to limited amount of training data, thus
cannot generalize well to large number of open-
domain relations. For example, in Figure 1, when
treating relation names as single tokens, it will be
difficult to match the questions to relation names
“episodes written” and “starring roles” if these
names do not appear in training data – their rela-
tion embeddings hrs will be random vectors thus
are not comparable to question embeddings hqs.

(2) Relation as Word Sequence (word-level). In
this case, the relation is treated as a sequence of
words from the tokenized relation name. It has
better generalization, but suffers from the lack
of global information from the original relation
names. For example in Figure 1(b), when doing
only word-level matching, it is difficult to rank the
target relation “starring roles” higher compared
to the incorrect relation “plays produced”. This
is because the incorrect relation contains word
“plays”, which is more similar to the question

3Such entity information has been used in KBQA systems
as features for the final answer re-rankers.

573

Relation Token Question 1 Question 2
what tv episodes were <e> the writer of what episode was written by <e>

relation-level episodes written tv episodes were <e> the writer of episode was written by <e>

word-level episodes tv episodes episode
written the writer of written

Table 1: An example of KB relation (episodes written) with two types of relation tokens (relation names
and words), and two questions asking this relation. The topic entity is replaced with token <e> which
could give the position information to the deep networks. The italics show the evidence phrase for each
relation token in the question.

(containing word “play”) in the embedding space.
On the other hand, if the target relation co-occurs
with questions related to “tv appearance” in train-
ing, by treating the whole relation as a token (i.e.
relation id), we could better learn the correspon-
dence between this token and phrases like “tv
show” and “play on”.

The two types of relation representation con-
tain different levels of abstraction. As shown
in Table 1, the word-level focuses more on lo-
cal information (words and short phrases), and
the relation-level focus more on global informa-
tion (long phrases and skip-grams) but suffer from
data sparsity. Since both these levels of granu-
larity have their own pros and cons, we propose
a hierarchical matching approach for KB relation
detection: for a candidate relation, our approach
matches the input question to both word-level and
relation-level representations to get the final rank-
ing score. Section 4 gives the details of our pro-
posed approach.

4 Improved KB Relation Detection

This section describes our hierarchical sequence
matching with residual learning approach for rela-
tion detection. In order to match the question to
different aspects of a relation (with different ab-
straction levels), we deal with three problems as
follows on learning question/relation representa-
tions.

4.1 Relation Representations from Different
Granularity

We provide our model with both types of re-
lation representation: word-level and relation-
level. Therefore, the input relation becomes r =
{rword

1 , · · · , rword
M1

} [{rrel
1 , · · · , rrel

M2
}, where the

first M1 tokens are words (e.g. {episode, writ-
ten}), and the last M2 tokens are relation names,
e.g., {episode written} or {starring roles, series}
(when the target is a chain like in Figure 1(b)).
We transform each token above to its word embed-

ding then use two BiLSTMs (with shared parame-
ters) to get their hidden representations [Bword

1:M1
:

Brel
1:M2

] (each row vector �i is the concatena-
tion between forward/backward representations at
i). We initialize the relation sequence LSTMs
with the final state representations of the word se-
quence, as a back-off for unseen relations. We ap-
ply one max-pooling on these two sets of vectors
and get the final relation representation hr.

4.2 Different Abstractions of Questions
Representations

From Table 1, we can see that different parts of a
relation could match different contexts of question
texts. Usually relation names could match longer
phrases in the question and relation words could
match short phrases. Yet different words might
match phrases of different lengths.

As a result, we hope the question representa-
tions could also comprise vectors that summa-
rize various lengths of phrase information (differ-
ent levels of abstraction), in order to match rela-
tion representations of different granularity. We
deal with this problem by applying deep BiL-
STMs on questions. The first-layer of BiLSTM
works on the word embeddings of question words
q = {q1, · · · , qN} and gets hidden representations
�

(1)
1:N = [�

(1)
1 ; · · · ;�

(1)
N]. The second-layer BiL-

STM works on �
(1)
1:N to get the second set of hid-

den representations �
(2)
1:N . Since the second BiL-

STM starts with the hidden vectors from the first
layer, intuitively it could learn more general and
abstract information compared to the first layer.

Note that the first(second)-layer of question rep-
resentations does not necessarily correspond to the
word(relation)-level relation representations, in-
stead either layer of question representations could
potentially match to either level of relation repre-
sentations. This raises the difficulty of matching
between different levels of relation/question rep-
resentations; the following section gives our pro-
posal to deal with such problem.

574

…

… …

max-pooling

max-pooling

Question
Representation

Relation
Representation

(cosine similarity)

Shortcut
connections

Point-wise
summation

Bi-LSTM 2

Bi-LSTM 1!"
#

!"
$

Relation-Level Word-Level

what	 tv show						 did						 <e>								…				 starring_role series starring				 role series

%&' %()
…
.

…
.

...

…

...

Question Relation

Figure 2: The proposed Hierarchical Residual BiLSTM (HR-BiLSTM) model for relation detection.
Note that without the dotted arrows of shortcut connections between two layers, the model will only
compute the similarity between the second-layer of questions representations and the relation, thus is not
doing hierarchical matching.

4.3 Hierarchical Matching between Relation
and Question

Now we have question contexts of different
lengths encoded in �

(1)
1:N and �

(2)
1:N . Unlike the

standard usage of deep BiLSTMs that employs
the representations in the final layer for prediction,
here we expect that two layers of question repre-
sentations can be complementary to each other and
both should be compared to the relation represen-
tation space (Hierarchical Matching). This is im-
portant for our task since each relation token can
correspond to phrases of different lengths, mainly
because of syntactic variations. For example in Ta-
ble 1, the relation word written could be matched
to either the same single word in the question or a
much longer phrase be the writer of.

We could perform the above hierarchical match-
ing by computing the similarity between each
layer of � and hr separately and doing the
(weighted) sum between the two scores. How-
ever this does not give significant improvement
(see Table 2). Our analysis in Section 6.2 shows
that this naive method suffers from the training
difficulty, evidenced by that the converged train-
ing loss of this model is much higher than that
of a single-layer baseline model. This is mainly
because (1) Deep BiLSTMs do not guarantee that
the two-levels of question hidden representations
are comparable, the training usually falls to local
optima where one layer has good matching scores
and the other always has weight close to 0. (2)

The training of deeper architectures itself is more
difficult.

To overcome the above difficulties, we adopt the
idea from Residual Networks (He et al., 2016) for
hierarchical matching by adding shortcut connec-
tions between two BiLSTM layers. We proposed
two ways of such Hierarchical Residual Match-
ing: (1) Connecting each �(1)

i and �(2)
i , resulting

in a �
0
i = �

(1)
i +�

(2)
i for each position i. Then the

final question representation hq becomes a max-
pooling over all �

0
is, 1iN . (2) Applying max-

pooling on �
(1)
1:N and �

(2)
1:N to get h(1)

max and h
(2)
max,

respectively, then setting hq = h
(1)
max + h

(2)
max. Fi-

nally we compute the matching score of r given q
as srel(r;q) = cos(hr,hq).

Intuitively, the proposed method should benefit
from hierarchical training since the second layer is
fitting the residues from the first layer of matching,
so the two layers of representations are more likely
to be complementary to each other. This also en-
sures the vector spaces of two layers are compara-
ble and makes the second-layer training easier.

During training we adopt a ranking loss to max-
imizing the margin between the gold relation r+

and other relations r� in the candidate pool R.

lrel = max{0, � � srel(r
+;q) + srel(r

�;q)}
where � is a constant parameter. Fig 2 sum-

marizes the above Hierarchical Residual BiLSTM
(HR-BiLSTM) model.

575

Remark: Another way of hierarchical matching
consists in relying on attention mechanism, e.g.
(Parikh et al., 2016), to find the correspondence
between different levels of representations. This
performs below the HR-BiLSTM (see Table 2).

5 KBQA Enhanced by Relation
Detection

This section describes our KBQA pipeline system.
We make minimal efforts beyond the training of
the relation detection model, making the whole
system easy to build.

Following previous work (Yih et al., 2015; Xu
et al., 2016), our KBQA system takes an existing
entity linker to produce the top-K linked entities,
ELK(q), for a question q (“initial entity linking”).
Then we generate the KB queries for q following
the four steps illustrated in Algorithm 1.

Algorithm 1: KBQA with two-step relation detection
Input : Question q, Knowledge Base KB, the initial

top-K entity candidates ELK(q)
Output: Top query tuple (ê, r̂, {(c, rc)})

1 Entity Re-Ranking (first-step relation detection): Use
the raw question text as input for a relation detector to
score all relations in the KB that are associated to the
entities in ELK(q); use the relation scores to re-rank
ELK(q) and generate a shorter list EL0

K0(q)
containing the top-K0 entity candidates (Section 5.1)

2 Relation Detection: Detect relation(s) using the
reformatted question text in which the topic entity is
replaced by a special token <e> (Section 5.2)

3 Query Generation: Combine the scores from step 1
and 2, and select the top pair (ê, r̂) (Section 5.3)

4 Constraint Detection (optional): Compute similarity
between q and any neighbor entity c of the entities
along r̂ (connecting by a relation rc) , add the high
scoring c and rc to the query (Section 5.4).

Compared to previous approaches, the main dif-
ference is that we have an additional entity re-
ranking step after the initial entity linking. We
have this step because we have observed that entity
linking sometimes becomes a bottleneck in KBQA
systems. For example, on SimpleQuestions the
best reported linker could only get 72.7% top-1
accuracy on identifying topic entities. This is usu-
ally due to the ambiguities of entity names, e.g. in
Fig 1(a), there are TV writer and baseball player
“Mike Kelley”, which is impossible to distinguish
with only entity name matching.

Having observed that different entity candidates
usually connect to different relations, here we pro-
pose to help entity disambiguation in the initial en-
tity linking with relations detected in questions.

Sections 5.1 and 5.2 elaborate how our relation
detection help to re-rank entities in the initial en-
tity linking, and then those re-ranked entities en-
able more accurate relation detection. The KBQA
end task, as a result, benefits from this process.

5.1 Entity Re-Ranking

In this step, we use the raw question text as input
for a relation detector to score all relations in the
KB with connections to at least one of the entity
candidates in ELK(q). We call this step relation
detection on entity set since it does not work on
a single topic entity as the usual settings. We use
the HR-BiLSTM as described in Sec. 4. For each
question q, after generating a score srel(r; q) for
each relation using HR-BiLSTM, we use the top
l best scoring relations (Rl

q) to re-rank the origi-
nal entity candidates. Concretely, for each entity
e and its associated relations Re, given the origi-
nal entity linker score slinker, and the score of the
most confident relation r 2 Rl

q\Re, we sum these
two scores to re-rank the entities:

srerank(e; q) =↵ · slinker(e; q)

+(1� ↵) · max
r2Rl

q\Re

srel(r; q).

Finally, we select top K 0 < K entities according to
score srerank to form the re-ranked list EL

0
K0(q).

We use the same example in Fig 1(a) to illustrate
the idea. Given the input question in the exam-
ple, a relation detector is very likely to assign high
scores to relations such as “episodes written”,
“author of ” and “profession”. Then, according
to the connections of entity candidates in KB,
we find that the TV writer “Mike Kelley” will
be scored higher than the baseball player “Mike
Kelley”, because the former has the relations
“episodes written” and “profession”. This method
can be viewed as exploiting entity-relation collo-
cation for entity linking.

5.2 Relation Detection

In this step, for each candidate entity e 2
EL0K(q), we use the question text as the input to a
relation detector to score all the relations r 2 Re

that are associated to the entity e in the KB.4 Be-
cause we have a single topic entity input in this
step, we do the following question reformatting:
we replace the the candidate e’s entity mention in

4Note that the number of entities and the number of rela-
tion candidates will be much smaller than those in the previ-
ous step.

576

q with a token “<e>”. This helps the model bet-
ter distinguish the relative position of each word
compared to the entity. We use the HR-BiLSTM
model to predict the score of each relation r 2 Re:
srel(r; e, q).

5.3 Query Generation
Finally, the system outputs the <entity, relation (or
core-chain)> pair (ê, r̂) according to:

s(ê, r̂; q) = max
e2EL

0
K0 (q),r2Re

(� · srerank(e; q)

+(1� �) · srel(r; e, q)) ,

where � is a hyperparameter to be tuned.

5.4 Constraint Detection
Similar to (Yih et al., 2015), we adopt an ad-
ditional constraint detection step based on text
matching. Our method can be viewed as entity-
linking on a KB sub-graph. It contains two steps:
(1) Sub-graph generation: given the top scored
query generated by the previous 3 steps5, for each
node v (answer node or the CVT node like in Fig-
ure 1(b)), we collect all the nodes c connecting to
v (with relation rc) with any relation, and generate
a sub-graph associated to the original query. (2)
Entity-linking on sub-graph nodes: we compute
a matching score between each n-gram in the input
question (without overlapping the topic entity) and
entity name of c (except for the node in the orig-
inal query) by taking into account the maximum
overlapping sequence of characters between them
(see Appendix A for details and B for special rules
dealing with date/answer type constraints). If the
matching score is larger than a threshold ✓ (tuned
on training set), we will add the constraint entity c
(and rc) to the query by attaching it to the corre-
sponding node v on the core-chain.

6 Experiments

6.1 Task Introduction & Settings
We use the SimpleQuestions (Bordes et al., 2015)
and WebQSP (Yih et al., 2016) datasets. Each
question in these datasets is labeled with the gold
semantic parse. Hence we can directly evaluate
relation detection performance independently as
well as evaluate on the KBQA end task.

5Starting with the top-1 query suffers more from error
propagation. However we still achieve state-of-the-art on We-
bQSP in Sec.6, showing the advantage of our relation detec-
tion model. We leave in future work beam-search and feature
extraction on beam for final answer re-ranking like in previ-
ous research.

SimpleQuestions (SQ): It is a single-relation
KBQA task. The KB we use consists of a Freebase
subset with 2M entities (FB2M) (Bordes et al.,
2015), in order to compare with previous research.
Yin et al. (2016) also evaluated their relation ex-
tractor on this data set and released their proposed
question-relation pairs, so we run our relation de-
tection model on their data set. For the KBQA
evaluation, we also start with their entity linking
results6. Therefore, our results can be compared
with their reported results on both tasks.
WebQSP (WQ): A multi-relation KBQA task.
We use the entire Freebase KB for evaluation
purposes. Following Yih et al. (2016), we use
S-MART (Yang and Chang, 2015) entity-linking
outputs.7 In order to evaluate the relation detec-
tion models, we create a new relation detection
task from the WebQSP data set.8 For each ques-
tion and its labeled semantic parse: (1) we first
select the topic entity from the parse; and then (2)
select all the relations and relation chains (length
 2) connected to the topic entity, and set the core-
chain labeled in the parse as the positive label and
all the others as the negative examples.

We tune the following hyper-parameters on de-
velopment sets: (1) the size of hidden states for
LSTMs ({50, 100, 200, 400})9; (2) learning rate
({0.1, 0.5, 1.0, 2.0}); (3) whether the shortcut
connections are between hidden states or between
max-pooling results (see Section 4.3); and (4) the
number of training epochs.

For both the relation detection experiments and
the second-step relation detection in KBQA, we
have entity replacement first (see Section 5.2
and Figure 1). All word vectors are initialized
with 300-d pretrained word embeddings (Mikolov
et al., 2013). The embeddings of relation names
are randomly initialized, since existing pre-trained
relation embeddings (e.g. TransE) usually support
limited sets of relation names. We leave the usage
of pre-trained relation embeddings to future work.

6.2 Relation Detection Results
Table 2 shows the results on two relation detec-
tion tasks. The AMPCNN result is from (Yin
et al., 2016), which yielded state-of-the-art scores
by outperforming several attention-based meth-

6The two resources have been downloaded from https:
//github.com/Gorov/SimpleQuestions-EntityLinking

7https://github.com/scottyih/STAGG
8The dataset is available at https://github.com/Gorov/

SimpleQuestions-EntityLinking.
9For CNNs we double the size for fair comparison.

577

Accuracy
Model Relation Input Views SimpleQuestions WebQSP
AMPCNN (Yin et al., 2016) words 91.3 -
BiCNN (Yih et al., 2015) char-3-gram 90.0 77.74
BiLSTM w/ words words 91.2 79.32
BiLSTM w/ relation names rel names 88.9 78.96
Hier-Res-BiLSTM (HR-BiLSTM) words + rel names 93.3 82.53

w/o rel name words 91.3 81.69
w/o rel words rel names 88.8 79.68
w/o residual learning (weighted sum on two layers) words + rel names 92.5 80.65
replacing residual with attention (Parikh et al., 2016) words + rel names 92.6 81.38
single-layer BiLSTM question encoder words + rel names 92.8 78.41
replacing BiLSTM with CNN (HR-CNN) words + rel names 92.9 79.08

Table 2: Accuracy on the SimpleQuestions and WebQSP relation detection tasks (test sets). The top
shows performance of baselines. On the bottom we give the results of our proposed model together with
the ablation tests.

ods. We re-implemented the BiCNN model from
(Yih et al., 2015), where both questions and rela-
tions are represented with the word hash trick on
character tri-grams. The baseline BiLSTM with
relation word sequence appears to be the best base-
line on WebQSP and is close to the previous best
result of AMPCNN on SimpleQuestions. Our pro-
posed HR-BiLSTM outperformed the best base-
lines on both tasks by margins of 2-3% (p < 0.001
and 0.01 compared to the best baseline BiLSTM w/
words on SQ and WQ respectively).

Note that using only relation names instead
of words results in a weaker baseline BiLSTM
model. The model yields a significant per-
formance drop on SimpleQuestions (91.2% to
88.9%). However, the drop is much smaller on
WebQSP, and it suggests that unseen relations
have a much bigger impact on SimpleQuestions.

Ablation Test: The bottom of Table 2 shows ab-
lation results of the proposed HR-BiLSTM. First,
hierarchical matching between questions and both
relation names and relation words yields improve-
ment on both datasets, especially for SimpleQues-
tions (93.3% vs. 91.2/88.8%). Second, residual
learning helps hierarchical matching compared to
weighted-sum and attention-based baselines (see
Section 4.3). For the attention-based baseline,
we tried the model from (Parikh et al., 2016) and
its one-way variations, where the one-way model
gives better results10. Note that residual learn-
ing significantly helps on WebQSP (80.65% to

10We also tried to apply the same attention method on deep
BiLSTM with residual connections, but it does not lead to
better results compared to HR-BiLSTM. We hypothesize that
the idea of hierarchical matching with attention mechanism
may work better for long sequences, and the new advanced
attention mechanisms (Wang and Jiang, 2016; Wang et al.,
2017) might help hierarchical matching. We leave the above
directions to future work.

82.53%), while it does not help as much on Sim-
pleQuestions. On SimpleQuestions, even remov-
ing the deep layers only causes a small drop in per-
formance. WebQSP benefits more from residual
and deeper architecture, possibly because in this
dataset it is more important to handle larger scope
of context matching.

Finally, on WebQSP, replacing BiLSTM with
CNN in our hierarchical matching framework re-
sults in a large performance drop. Yet on Sim-
pleQuestions the gap is much smaller. We believe
this is because the LSTM relation encoder can bet-
ter learn the composition of chains of relations in
WebQSP, as it is better at dealing with longer de-
pendencies.

Analysis Next, we present empirical evidences,
which show why our HR-BiLSTM model achieves
the best scores. We use WebQSP for the analy-
sis purposes. First, we have the hypothesis that
training of the weighted-sum model usually falls
to local optima, since deep BiLSTMs do not guar-
antee that the two-levels of question hidden rep-
resentations are comparable. This is evidenced
by that during training one layer usually gets a
weight close to 0 thus is ignored. For exam-
ple, one run gives us weights of -75.39/0.14 for
the two layers (we take exponential for the final
weighted sum). It also gives much lower train-
ing accuracy (91.94%) compared to HR-BiLSTM
(95.67%), suffering from training difficulty.

Second, compared to our deep BiLSTM with
shortcut connections, we have the hypothesis that
for KB relation detection, training deep BiLSTMs
is more difficult without shortcut connections. Our
experiments suggest that deeper BiLSTM does not
always result in lower training accuracy. In the
experiments a two-layer BiLSTM converges to
94.99%, even lower than the 95.25% achieved by a

578

single-layer BiLSTM. Under our setting the two-
layer model captures the single-layer model as a
special case (so it could potentially better fit the
training data), this result suggests that the deep
BiLSTM without shortcut connections might suf-
fers more from training difficulty.

Finally, we hypothesize that HR-BiLSTM is
more than combination of two BiLSTMs with
residual connections, because it encourages the
hierarchical architecture to learn different levels
of abstraction. To verify this, we replace the deep
BiLSTM question encoder with two single-layer
BiLSTMs (both on words) with shortcut connec-
tions between their hidden states. This decreases
test accuracy to 76.11%. It gives similar training
accuracy compared to HR-BiLSTM, indicating a
more serious over-fitting problem. This proves
that the residual and deep structures both con-
tribute to the good performance of HR-BiLSTM.

6.3 KBQA End-Task Results

Table 3 compares our system with two published
baselines (1) STAGG (Yih et al., 2015), the state-
of-the-art on WebQSP11 and (2) AMPCNN (Yin
et al., 2016), the state-of-the-art on SimpleQues-
tions. Since these two baselines are specially de-
signed/tuned for one particular dataset, they do not
generalize well when applied to the other dataset.
In order to highlight the effect of different rela-
tion detection models on the KBQA end-task, we
also implemented another baseline that uses our
KBQA system but replaces HR-BiLSTM with our
implementation of AMPCNN (for SimpleQues-
tions) or the char-3-gram BiCNN (for WebQSP)
relation detectors (second block in Table 3).

Compared to the baseline relation detector (3rd
row of results), our method, which includes an im-
proved relation detector (HR-BiLSTM), improves
the KBQA end task by 2-3% (4th row). Note that
in contrast to previous KBQA systems, our sys-
tem does not use joint-inference or feature-based
re-ranking step, nevertheless it still achieves better
or comparable results to the state-of-the-art.

The third block of the table details two ablation
tests for the proposed components in our KBQA
systems: (1) Removing the entity re-ranking step
significantly decreases the scores. Since the re-
ranking step relies on the relation detection mod-
els, this shows that our HR-BiLSTM model con-
tributes to the good performance in multiple ways.

11The STAGG score on SQ is from (Bao et al., 2016).

Accuracy
System SQ WQ
STAGG 72.8 63.9
AMPCNN (Yin et al., 2016) 76.4 -
Baseline: Our Method w/

75.1 60.0
baseline relation detector

Our Method 77.0 63.0
w/o entity re-ranking 74.9 60.6
w/o constraints - 58.0

Our Method (multi-detectors) 78.7 63.9
Table 3: KBQA results on SimpleQuestions (SQ)
and WebQSP (WQ) test sets. The numbers in
green color are directly comparable to our results
since we start with the same entity linking results.

Appendix C gives the detailed performance of the
re-ranking step. (2) In contrast to the conclusion
in (Yih et al., 2015), constraint detection is crucial
for our system12. This is probably because our
joint performance on topic entity and core-chain
detection is more accurate (77.5% top-1 accuracy),
leaving a huge potential (77.5% vs. 58.0%) for the
constraint detection module to improve.

Finally, like STAGG, which uses multiple rela-
tion detectors (see Yih et al. (2015) for the three
models used), we also try to use the top-3 rela-
tion detectors from Section 6.2. As shown on the
last row of Table 3, this gives a significant perfor-
mance boost, resulting in a new state-of-the-art re-
sult on SimpleQuestions and a result comparable
to the state-of-the-art on WebQSP.

7 Conclusion

KB relation detection is a key step in KBQA and
is significantly different from general relation ex-
traction tasks. We propose a novel KB relation
detection model, HR-BiLSTM, that performs hier-
archical matching between questions and KB rela-
tions. Our model outperforms the previous meth-
ods on KB relation detection tasks and allows our
KBQA system to achieve state-of-the-arts. For fu-
ture work, we will investigate the integration of
our HR-BiLSTM into end-to-end systems. For ex-
ample, our model could be integrated into the de-
coder in (Liang et al., 2016), to provide better se-
quence prediction. We will also investigate new
emerging datasets like GraphQuestions (Su et al.,
2016) and ComplexQuestions (Bao et al., 2016) to
handle more characteristics of general QA.

12Note that another reason is that we are evaluating on ac-
curacy here. When evaluating on F1 the gap will be smaller.

579

References
Junwei Bao, Nan Duan, Zhao Yan, Ming Zhou, and

Tiejun Zhao. 2016. Constraint-based question an-
swering with knowledge graph. In Proceedings of
COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers.
The COLING 2016 Organizing Committee, Osaka,
Japan, pages 2503–2514.

Hannah Bast and Elmar Haussmann. 2015. More ac-
curate question answering on freebase. In Proceed-
ings of the 24th ACM International on Conference
on Information and Knowledge Management. ACM,
pages 1431–1440.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Seattle, Washington, USA, pages 1533–
1544.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075 .

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems. pages 2787–2795.

Zihang Dai, Lei Li, and Wei Xu. 2016. Cfo: Condi-
tional focused neural question answering with large-
scale knowledge bases. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, Berlin, Ger-
many, pages 800–810.

Cicero dos Santos, Bing Xiang, and Bowen Zhou.
2015. Classifying relations by ranking with con-
volutional neural networks. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 626–634.

Anthony Fader, Luke S Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In ACL (1). Citeseer, pages 1608–1618.

David Golub and Xiaodong He. 2016. Character-level
question answering with attention. arXiv preprint
arXiv:1604.00727 .

Matthew R. Gormley, Mo Yu, and Mark Dredze. 2015.
Improved relation extraction with feature-rich com-
positional embedding models. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1774–
1784.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pages
770–778.

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D
Forbus, and Ni Lao. 2016. Neural symbolic ma-
chines: Learning semantic parsers on freebase with
weak supervision. arXiv preprint arXiv:1611.00020
.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Thien Huu Nguyen and Ralph Grishman. 2014. Em-
ploying word representations and regularization for
domain adaptation of relation extraction. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers). Association for Computational Linguistics,
Baltimore, Maryland, pages 68–74.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages
2249–2255.

Bryan Rink and Sanda Harabagiu. 2010. Utd: Clas-
sifying semantic relations by combining lexical and
semantic resources. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation. Associ-
ation for Computational Linguistics, Uppsala, Swe-
den, pages 256–259.

Yu Su, Huan Sun, Brian Sadler, Mudhakar Sri-
vatsa, Izzeddin Gur, Zenghui Yan, and Xifeng Yan.
2016. On generating characteristic-rich question
sets for qa evaluation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Austin, Texas, pages 562–572.
https://aclweb.org/anthology/D16-1054.

Ang Sun, Ralph Grishman, and Satoshi Sekine. 2011.
Semi-supervised relation extraction with large-scale
word clustering. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies. Associa-
tion for Computational Linguistics, Portland, Ore-
gon, USA, pages 521–529.

Ngoc Thang Vu, Heike Adel, Pankaj Gupta, and Hin-
rich Schütze. 2016. Combining recurrent and con-
volutional neural networks for relation classifica-
tion. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, San Diego, California, pages 534–539.

580

Linlin Wang, Zhu Cao, Gerard de Melo, and Zhiyuan
Liu. 2016. Relation classification via multi-level at-
tention cnns. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, Berlin, Germany, pages
1298–1307.

Shuohang Wang and Jing Jiang. 2016. Learning
natural language inference with lstm. In Pro-
ceedings of the 2016 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, San Diego, California, pages 1442–1451.
http://www.aclweb.org/anthology/N16-1170.

Zhiguo Wang, Wael Hamza, and Radu Florian. 2017.
Bilateral multi-perspective matching for natural lan-
guage sentences. arXiv preprint arXiv:1702.03814
.

Kun Xu, Siva Reddy, Yansong Feng, Songfang Huang,
and Dongyan Zhao. 2016. Question answering on
freebase via relation extraction and textual evidence.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Berlin, Germany, pages 2326–2336.

Yi Yang and Ming-Wei Chang. 2015. S-mart: Novel
tree-based structured learning algorithms applied to
tweet entity linking. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Beijing, China, pages 504–513.

Xuchen Yao, Jonathan Berant, and Benjamin
Van Durme. 2014. Freebase qa: Information
extraction or semantic parsing? ACL 2014 page 82.

Xuchen Yao and Benjamin Van Durme. 2014. Infor-
mation extraction over structured data: Question an-
swering with freebase. In ACL (1). Citeseer, pages
956–966.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Association for Computational
Linguistics (ACL).

Wen-tau Yih, Xiaodong He, and Christopher Meek.
2014. Semantic parsing for single-relation ques-
tion answering. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Association
for Computational Linguistics, Baltimore, Mary-
land, pages 643–648.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question

answering. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 201–206.

Wenpeng Yin, Mo Yu, Bing Xiang, Bowen Zhou, and
Hinrich Schütze. 2016. Simple question answering
by attentive convolutional neural network. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers. The COLING 2016 Organizing Commit-
tee, Osaka, Japan, pages 1746–1756.

Mo Yu, Mark Dredze, Raman Arora, and Matthew R.
Gormley. 2016. Embedding lexical features via low-
rank tensors. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, San Diego, California, pages 1019–1029.
http://www.aclweb.org/anthology/N16-1117.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
and Jun Zhao. 2014. Relation classification via con-
volutional deep neural network. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers.
Dublin City University and Association for Com-
putational Linguistics, Dublin, Ireland, pages 2335–
2344.

GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang.
2005. Exploring various knowledge in relation ex-
traction. In Association for Computational Linguis-
tics. pages 427–434.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-
based bidirectional long short-term memory net-
works for relation classification. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers).
Association for Computational Linguistics, Berlin,
Germany, pages 207–212.

581

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 582–592
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1054

Deep Keyphrase Generation

Rui Meng, Sanqiang Zhao, Shuguang Han, Daqing He∗, Peter Brusilovsky, Yu Chi
School of Computing and Information

University of Pittsburgh
Pittsburgh, PA, 15213

{rui.meng, saz31, shh69, daqing, peterb, yuc73}@pitt.edu

Abstract

Keyphrase provides highly-summative
information that can be effectively used
for understanding, organizing and retriev-
ing text content. Though previous studies
have provided many workable solutions
for automated keyphrase extraction, they
commonly divided the to-be-summarized
content into multiple text chunks, then
ranked and selected the most meaningful
ones. These approaches could neither
identify keyphrases that do not appear
in the text, nor capture the real semantic
meaning behind the text. We propose a
generative model for keyphrase prediction
with an encoder-decoder framework,
which can effectively overcome the above
drawbacks. We name it as deep keyphrase
generation since it attempts to capture the
deep semantic meaning of the content with
a deep learning method. Empirical analy-
sis on six datasets demonstrates that our
proposed model not only achieves a sig-
nificant performance boost on extracting
keyphrases that appear in the source text,
but also can generate absent keyphrases
based on the semantic meaning of the
text. Code and dataset are available
at https://github.com/memray/seq2seq-
keyphrase.

1 Introduction

A keyphrase or keyword is a piece of short, sum-
mative content that expresses the main semantic
meaning of a longer text. The typical use of a
keyphrase or keyword is in scientific publications
to provide the core information of a paper. We use

∗Corresponding author

the term “keyphrase” interchangeably with “key-
word” in the rest of this paper, as both terms
have an implication that they may contain mul-
tiple words. High-quality keyphrases can facili-
tate the understanding, organizing, and accessing
of document content. As a result, many studies
have focused on ways of automatically extracting
keyphrases from textual content (Liu et al., 2009;
Medelyan et al., 2009a; Witten et al., 1999). Due
to public accessibility, many scientific publication
datasets are often used as test beds for keyphrase
extraction algorithms. Therefore, this study also
focuses on extracting keyphrases from scientific
publications.

Automatically extracting keyphrases from a
document is called keypharase extraction, and
it has been widely used in many applications,
such as information retrieval (Jones and Staveley,
1999), text summarization (Zhang et al., 2004),
text categorization (Hulth and Megyesi, 2006),
and opinion mining (Berend, 2011). Most of
the existing keyphrase extraction algorithms have
addressed this problem through two steps (Liu
et al., 2009; Tomokiyo and Hurst, 2003). The
first step is to acquire a list of keyphrase candi-
dates. Researchers have tried to use n-grams or
noun phrases with certain part-of-speech patterns
for identifying potential candidates (Hulth, 2003;
Le et al., 2016; Liu et al., 2010; Wang et al., 2016).
The second step is to rank candidates on their
importance to the document, either through su-
pervised or unsupervised machine learning meth-
ods with a set of manually-defined features (Frank
et al., 1999; Liu et al., 2009, 2010; Kelleher and
Luz, 2005; Matsuo and Ishizuka, 2004; Mihalcea
and Tarau, 2004; Song et al., 2003; Witten et al.,
1999).

There are two major drawbacks in the above
keyphrase extraction approaches. First, these
methods can only extract the keyphrases that ap-

582

https://doi.org/10.18653/v1/P17-1054

pear in the source text; they fail at predicting
meaningful keyphrases with a slightly different se-
quential order or those that use synonyms. How-
ever, authors of scientific publications commonly
assign keyphrases based on their semantic mean-
ing, instead of following the written content in
the publication. In this paper, we denote phrases
that do not match any contiguous subsequence of
source text as absent keyphrases, and the ones
that fully match a part of the text as present
keyphrases. Table 1 shows the proportion of
present and absent keyphrases from the docu-
ment abstract in four commonly-used datasets,
from which we can observe large portions of ab-
sent keyphrases in all the datasets. The absent
keyphrases cannot be extracted through previous
approaches, which further prompts the develop-
ment of a more powerful keyphrase prediction
model.

Second, when ranking phrase candidates, pre-
vious approaches often adopted machine learning
features such as TF-IDF and PageRank. However,
these features only target to detect the importance
of each word in the document based on the statis-
tics of word occurrence and co-occurrence, and
are unable to reveal the full semantics that underlie
the document content.

Table 1: Proportion of the present keyphrases and
absent keyphrases in four public datasets

Dataset # Keyphrase % Present % Absent
Inspec 19,275 55.69 44.31

Krapivin 2,461 44.74 52.26
NUS 2,834 67.75 32.25

SemEval 12,296 42.01 57.99

To overcome the limitations of previous stud-
ies, we re-examine the process of keyphrase pre-
diction with a focus on how real human annotators
would assign keyphrases. Given a document, hu-
man annotators will first read the text to get a ba-
sic understanding of the content, then they try to
digest its essential content and summarize it into
keyphrases. Their generation of keyphrases relies
on an understanding of the content, which may not
necessarily use the exact words that occur in the
source text. For example, when human annota-
tors see “Latent Dirichlet Allocation” in the text,
they might write down “topic modeling” and/or
“text mining” as possible keyphrases. In addition
to the semantic understanding, human annotators

might also go back and pick up the most impor-
tant parts, based on syntactic features. For exam-
ple, the phrases following “we propose/apply/use”
could be important in the text. As a result, a better
keyphrase prediction model should understand the
semantic meaning of the content, as well as cap-
ture the contextual features.

To effectively capture both the semantic and
syntactic features, we use recurrent neural net-
works (RNN) (Cho et al., 2014; Gers and Schmid-
huber, 2001) to compress the semantic informa-
tion in the given text into a dense vector (i.e., se-
mantic understanding). Furthermore, we incorpo-
rate a copying mechanism (Gu et al., 2016) to al-
low our model to find important parts based on
positional information. Thus, our model can gen-
erate keyphrases based on an understanding of
the text, regardless of the presence or absence of
keyphrases in the text; at the same time, it does
not lose important in-text information.

The contribution of this paper is three-fold.
First, we propose to apply an RNN-based gen-
erative model to keyphrase prediction, as well
as incorporate a copying mechanism in RNN,
which enables the model to successfully pre-
dict phrases that rarely occur. Second, this is
the first work that concerns the problem of ab-
sent keyphrase prediction for scientific publica-
tions, and our model recalls up to 20% of absent
keyphrases. Third, we conducted a comprehen-
sive comparison against six important baselines
on a broad range of datasets, and the results show
that our proposed model significantly outperforms
existing supervised and unsupervised extraction
methods.

In the remainder of this paper, we first review
the related work in Section 2. Then, we elaborate
upon the proposed model in Section 3. After that,
we present the experiment setting in Section 4 and
results in Section 5, followed by our discussion in
Section 6. Section 7 concludes the paper.

2 Related Work

2.1 Automatic Keyphrase Extraction

A keyphrase provides a succinct and accurate
way of describing a subject or a subtopic in a
document. A number of extraction algorithms
have been proposed, and the process of extracting
keyphrases can typically be broken down into two
steps.

The first step is to generate a list of phrase can-

583

didates with heuristic methods. As these candi-
dates are prepared for further filtering, a consid-
erable number of candidates are produced in this
step to increase the possibility that most of the
correct keyphrases are kept. The primary ways
of extracting candidates include retaining word se-
quences that match certain part-of-speech tag pat-
terns (e.g., nouns, adjectives) (Liu et al., 2011;
Wang et al., 2016; Le et al., 2016), and extracting
important n-grams or noun phrases (Hulth, 2003;
Medelyan et al., 2008).

The second step is to score each candidate
phrase for its likelihood of being a keyphrase in the
given document. The top-ranked candidates are
returned as keyphrases. Both supervised and un-
supervised machine learning methods are widely
employed here. For supervised methods, this task
is solved as a binary classification problem, and
various types of learning methods and features
have been explored (Frank et al., 1999; Witten
et al., 1999; Hulth, 2003; Medelyan et al., 2009b;
Lopez and Romary, 2010; Gollapalli and Caragea,
2014). As for unsupervised approaches, primary
ideas include finding the central nodes in text
graph (Mihalcea and Tarau, 2004; Grineva et al.,
2009), detecting representative phrases from topi-
cal clusters (Liu et al., 2009, 2010), and so on.

Aside from the commonly adopted two-step
process, another two previous studies realized the
keyphrase extraction in entirely different ways.
Tomokiyo and Hurst (2003) applied two language
models to measure the phraseness and informa-
tiveness of phrases. Liu et al. (2011) share the
most similar ideas to our work. They used a word
alignment model, which learns a translation from
the documents to the keyphrases. This approach
alleviates the problem of vocabulary gaps between
source and target to a certain degree. However,
this translation model is unable to handle seman-
tic meaning. Additionally, this model was trained
with the target of title/summary to enlarge the
number of training samples, which may diverge
from the real objective of generating keyphrases.

Zhang et al. (2016) proposed a joint-layer recur-
rent neural network model to extract keyphrases
from tweets, which is another application of deep
neural networks in the context of keyphrase ex-
traction. However, their work focused on se-
quence labeling, and is therefore not able to pre-
dict absent keyphrases.

2.2 Encoder-Decoder Model
The RNN Encoder-Decoder model (which is also
referred as sequence-to-sequence Learning) is an
end-to-end approach. It was first introduced by
Cho et al. (2014) and Sutskever et al. (2014) to
solve translation problems. As it provides a pow-
erful tool for modeling variable-length sequences
in an end-to-end fashion, it fits many natural lan-
guage processing tasks and can rapidly achieve
great successes (Rush et al., 2015; Vinyals et al.,
2015; Serban et al., 2016).

Different strategies have been explored to im-
prove the performance of the Encoder-Decoder
model. The attention mechanism (Bahdanau et al.,
2014) is a soft alignment approach that allows the
model to automatically locate the relevant input
components. In order to make use of the impor-
tant information in the source text, some stud-
ies sought ways to copy certain parts of content
from the source text and paste them into the target
text (Allamanis et al., 2016; Gu et al., 2016; Zeng
et al., 2016). A discrepancy exists between the
optimizing objective during training and the met-
rics during evaluation. A few studies attempted
to eliminate this discrepancy by incorporating
new training algorithms (Marc’Aurelio Ranzato
et al., 2016) or by modifying the optimizing ob-
jectives (Shen et al., 2016).

3 Methodology

This section will introduce our proposed deep
keyphrase generation method in detail. First,
the task of keyphrase generation is defined, fol-
lowed by an overview of how we apply the RNN
Encoder-Decoder model. Details of the frame-
work as well as the copying mechanism will be
introduced in Sections 3.3 and 3.4.

3.1 Problem Definition
Given a keyphrase dataset that consists of N
data samples, the i-th data sample (x(i),p(i))
contains one source text x(i), and Mi tar-
get keyphrases p(i) = (p(i,1),p(i,2), . . . ,p(i,Mi)).
Both the source text x(i) and keyphrase p(i,j) are
sequences of words:

x(i) = x
(i)
1 , x

(i)
2 , . . . , x

(i)
L
xi

p(i,j) = y
(i,j)
1 , y

(i,j)
2 , . . . , y

(i,j)
L
p(i,j)

Lx(i) and Lp(i,j)denotes the length of word se-
quence of x(i) and p(i,j) respectively.

584

Each data sample contains one source text
sequence and multiple target phrase sequences.
To apply the RNN Encoder-Decoder model, the
data need to be converted into text-keyphrase pairs
that contain only one source sequence and one
target sequence. We adopt a simple way, which
splits the data sample (x(i),p(i)) into Mi pairs:
(x(i),p(i,1)), (x(i),p(i,2)), . . . , (x(i),p(i,Mi)).
Then the Encoder-Decoder model is ready to be
applied to learn the mapping from the source
sequence to target sequence. For the purpose
of simplicity, (x,y) is used to denote each data
pair in the rest of this section, where x is the
word sequence of a source text and y is the word
sequence of its keyphrase.

3.2 Encoder-Decoder Model
The basic idea of our keyphrase generation model
is to compress the content of source text into a hid-
den representation with an encoder and to generate
corresponding keyphrases with the decoder, based
on the representation . Both the encoder and de-
coder are implemented with recurrent neural net-
works (RNN).

The encoder RNN converts the variable-length
input sequence x = (x1, x2, ..., xT) into a set of
hidden representation h = (h1, h2, . . . , hT), by
iterating the following equations along time t:

ht = f (xt,ht−1) (1)

where f is a non-linear function. We get the con-
text vector c acting as the representation of the
whole input x through a non-linear function q.

c = q(h1, h2, ..., hT) (2)

The decoder is another RNN; it decompresses
the context vector and generates a variable-length
sequence y = (y1, y2, ..., yT ′) word by word,
through a conditional language model:

st = f(yt−1, st−1, c)

p(yt|y1,...,t−1,x) = g(yt−1, st, c)
(3)

where st is the hidden state of the decoder RNN
at time t. The non-linear function g is a softmax
classifier, which outputs the probabilities of all the
words in the vocabulary. yt is the predicted word
at time t, by taking the word with largest probabil-
ity after g(·).

The encoder and decoder networks are trained
jointly to maximize the conditional probability of

the target sequence, given a source sequence. Af-
ter training, we use the beam search to generate
phrases and a max heap is maintained to get the
predicted word sequences with the highest proba-
bilities.

3.3 Details of the Encoder and Decoder
A bidirectional gated recurrent unit (GRU) is ap-
plied as our encoder to replace the simple recur-
rent neural network. Previous studies (Bahdanau
et al., 2014; Cho et al., 2014) indicate that it can
generally provide better performance of language
modeling than a simple RNN and a simpler struc-
ture than other Long Short-Term Memory net-
works (Hochreiter and Schmidhuber, 1997). As a
result, the above non-linear function f is replaced
by the GRU function (see in (Cho et al., 2014)).

Another forward GRU is used as the decoder.
In addition, an attention mechanism is adopted to
improve performance. The attention mechanism
was firstly introduced by Bahdanau et al. (2014) to
make the model dynamically focus on the impor-
tant parts in input. The context vector c is com-
puted as a weighted sum of hidden representation
h = (h1, . . . , hT):

ci =

T∑

j=1

αijhj

αij =
exp(a(si−1, hj))∑T
k=1 exp(a(si−1, hk))

(4)

where a(si−1, hj) is a soft alignment function
that measures the similarity between si−1 and hj ;
namely, to which degree the inputs around posi-
tion j and the output at position i match.

3.4 Copying Mechanism
To ensure the quality of learned representation and
reduce the size of the vocabulary, typically the
RNN model considers a certain number of fre-
quent words (e.g. 30,000 words in (Cho et al.,
2014)), but a large amount of long-tail words
are simply ignored. Therefore, the RNN is not
able to recall any keyphrase that contains out-of-
vocabulary words. Actually, important phrases
can also be identified by positional and syntactic
information in their contexts, even though their ex-
act meanings are not known. The copying mecha-
nism (Gu et al., 2016) is one feasible solution that
enables RNN to predict out-of-vocabulary words
by selecting appropriate words from the source
text.

585

By incorporating the copying mechanism, the
probability of predicting each new word yt con-
sists of two parts. The first term is the probability
of generating the term (see Equation 3) and the
second one is the probability of copying it from
the source text:

p(yt|y1,...,t−1,x)
= pg(yt|y1,...,t−1,x) + pc(yt|y1,...,t−1,x)

(5)

Similar to attention mechanism, the copying
mechanism weights the importance of each word
in source text with a measure of positional atten-
tion. But unlike the generative RNN which pre-
dicts the next word from all the words in vocabu-
lary, the copying part pc(yt|y1,...,t−1,x) only con-
siders the words in source text. Consequently, on
the one hand, the RNN with copying mechanism
is able to predict the words that are out of vocab-
ulary but in the source text; on the other hand, the
model would potentially give preference to the ap-
pearing words, which caters to the fact that most
keyphrases tend to appear in the source text.

pc(yt|y1,...,t−1,x) =
1

Z

∑

j:xj=yt

exp(ψc(xj)), y ∈ χ

ψc(xj) = σ(hTj Wc)st
(6)

where χ is the set of all of the unique words in
the source text x, σ is a non-linear function and
Wc ∈ R is a learned parameter matrix. Z is the
sum of all the scores and is used for normalization.
Please see (Gu et al., 2016) for more details.

4 Experiment Settings

This section begins by discussing how we de-
signed our evaluation experiments, followed by
the description of training and testing datasets.
Then, we introduce our evaluation metrics and
baselines.

4.1 Training Dataset
There are several publicly-available datasets for
evaluating keyphrase generation. The largest one
came from Krapivin et al. (2008), which con-
tains 2,304 scientific publications. However, this
amount of data is unable to train a robust recur-
rent neural network model. In fact, there are mil-
lions of scientific papers available online, each of
which contains the keyphrases that were assigned
by their authors. Therefore, we collected a large
amount of high-quality scientific metadata in the

computer science domain from various online dig-
ital libraries, including ACM Digital Library, Sci-
enceDirect, Wiley, and Web of Science etc. (Han
et al., 2013; Rui et al., 2016). In total, we ob-
tained a dataset of 567,830 articles, after remov-
ing duplicates and overlaps with testing datasets,
which is 200 times larger than the one of Krapivin
et al. (2008). Note that our model is only trained
on 527,830 articles, since 40,000 publications are
randomly held out, among which 20,000 articles
were used for building a new test dataset KP20k.
Another 20,000 articles served as the validation
dataset to check the convergence of our model, as
well as the training dataset for supervised base-
lines.

4.2 Testing Datasets
For evaluating the proposed model more compre-
hensively, four widely-adopted scientific publica-
tion datasets were used. In addition, since these
datasets only contain a few hundred or a few thou-
sand publications, we contribute a new testing
dataset KP20k with a much larger number of sci-
entific articles. We take the title and abstract as
the source text. Each dataset is described in detail
below.

– Inspec (Hulth, 2003): This dataset provides
2,000 paper abstracts. We adopt the 500 test-
ing papers and their corresponding uncon-
trolled keyphrases for evaluation, and the re-
maining 1,500 papers are used for training
the supervised baseline models.

– Krapivin (Krapivin et al., 2008): This
dataset provides 2,304 papers with full-text
and author-assigned keyphrases. However,
the author did not mention how to split test-
ing data, so we selected the first 400 papers
in alphabetical order as the testing data, and
the remaining papers are used to train the su-
pervised baselines.

– NUS (Nguyen and Kan, 2007): We use the
author-assigned keyphrases and treat all 211
papers as the testing data. Since the NUS
dataset did not specifically mention the ways
of splitting training and testing data, the re-
sults of the supervised baseline models are
obtained through a five-fold cross-validation.

– SemEval-2010 (Kim et al., 2010): 288 ar-
ticles were collected from the ACM Digital

586

Library. 100 articles were used for testing
and the rest were used for training supervised
baselines.

– KP20k: We built a new testing dataset that
contains the titles, abstracts, and keyphrases
of 20,000 scientific articles in computer sci-
ence. They were randomly selected from our
obtained 567,830 articles. Due to the mem-
ory limits of implementation, we were not
able to train the supervised baselines on the
whole training set. Thus we take the 20,000
articles in the validation set to train the su-
pervised baselines. It is worth noting that we
also examined their performance by enlarg-
ing the training dataset to 50,000 articles, but
no significant improvement was observed.

4.3 Implementation Details

In total, there are 2,780,316 〈text, keyphrase〉 pairs
for training, in which text refers to the concate-
nation of the title and abstract of a publication,
and keyphrase indicates an author-assigned key-
word. The text pre-processing steps including to-
kenization, lowercasing and replacing all digits
with symbol 〈digit〉 are applied. Two encoder-
decoder models are trained, one with only at-
tention mechanism (RNN) and one with both at-
tention and copying mechanism enabled (Copy-
RNN). For both models, we choose the top 50,000
frequently-occurred words as our vocabulary, the
dimension of embedding is set to 150, the di-
mension of hidden layers is set to 300, and the
word embeddings are randomly initialized with
uniform distribution in [-0.1,0.1]. Models are op-
timized using Adam (Kingma and Ba, 2014) with
initial learning rate = 10−4, gradient clipping = 0.1
and dropout rate = 0.5. The max depth of beam
search is set to 6, and the beam size is set to 200.
The training is stopped once convergence is de-
termined on the validation dataset (namely early-
stopping, the cross-entropy loss stops dropping for
several iterations).

In the generation of keyphrases, we find that
the model tends to assign higher probabilities for
shorter keyphrases, whereas most keyphrases con-
tain more than two words. To resolve this problem,
we apply a simple heuristic by preserving only the
first single-word phrase (with the highest generat-
ing probability) and removing the rest.

4.4 Baseline Models
Four unsupervised algorithms (Tf-Idf, Tex-
tRank (Mihalcea and Tarau, 2004), SingleR-
ank (Wan and Xiao, 2008), and ExpandRank (Wan
and Xiao, 2008)) and two supervised algorithms
(KEA (Witten et al., 1999) and Maui (Medelyan
et al., 2009a)) are adopted as baselines. We set up
the four unsupervised methods following the opti-
mal settings in (Hasan and Ng, 2010), and the two
supervised methods following the default setting
as specified in their papers.

4.5 Evaluation Metric
Three evaluation metrics, the macro-averaged pre-
cision, recall and F-measure (F1) are employed
for measuring the algorithm’s performance. Fol-
lowing the standard definition, precision is defined
as the number of correctly-predicted keyphrases
over the number of all predicted keyphrases, and
recall is computed by the number of correctly-
predicted keyphrases over the total number of data
records. Note that, when determining the match of
two keyphrases, we use Porter Stemmer for pre-
processing.

5 Results and Analysis

We conduct an empirical study on three different
tasks to evaluate our model.

5.1 Predicting Present Keyphrases
This is the same as the keyphrase extraction task
in prior studies, in which we analyze how well our
proposed model performs on a commonly-defined
task. To make a fair comparison, we only con-
sider the present keyphrases for evaluation in this
task. Table 2 provides the performances of the six
baseline models, as well as our proposed models
(i.e., RNN and CopyRNN). For each method, the
table lists its F-measure at top 5 and top 10 pre-
dictions on the five datasets. The best scores are
highlighted in bold and the underlines indicate the
second best performances.

The results show that the four unsupervised
models (Tf-idf, TextTank, SingleRank and Ex-
pandRank) have a robust performance across dif-
ferent datasets. The ExpandRank fails to return
any result on the KP20k dataset, due to its high
time complexity. The measures on NUS and Se-
mEval here are higher than the ones reported in
(Hasan and Ng, 2010) and (Kim et al., 2010),
probably because we utilized the paper abstract
instead of the full text for training, which may

587

Method
Inspec Krapivin NUS SemEval KP20k

F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10 F1@5 F1@10

Tf-Idf 0.221 0.313 0.129 0.160 0.136 0.184 0.128 0.194 0.102 0.126
TextRank 0.223 0.281 0.189 0.162 0.195 0.196 0.176 0.187 0.175 0.147

SingleRank 0.214 0.306 0.189 0.162 0.140 0.173 0.135 0.176 0.096 0.119
ExpandRank 0.210 0.304 0.081 0.126 0.132 0.164 0.139 0.170 N/A N/A

Maui 0.040 0.042 0.249 0.216 0.249 0.268 0.044 0.039 0.270 0.230
KEA 0.098 0.126 0.110 0.152 0.069 0.084 0.025 0.026 0.171 0.154

RNN 0.085 0.064 0.135 0.088 0.169 0.127 0.157 0.124 0.179 0.189
CopyRNN 0.278 0.342 0.311 0.266 0.334 0.326 0.293 0.304 0.333 0.262

Table 2: The performance of predicting present keyphrases of various models on five benchmark datasets

filter out some noisy information. The perfor-
mance of the two supervised models (i.e., Maui
and KEA) were unstable on some datasets, but
Maui achieved the best performances on three
datasets among all the baseline models.

As for our proposed keyphrase prediction ap-
proaches, the RNN model with the attention mech-
anism did not perform as well as we expected. It
might be because the RNN model is only con-
cerned with finding the hidden semantics behind
the text, which may tend to generate keyphrases
or words that are too general and may not neces-
sarily refer to the source text. In addition, we ob-
serve that 2.5% (70,891/2,780,316) of keyphrases
in our dataset contain out-of-vocabulary words,
which the RNN model is not able to recall, since
the RNN model can only generate results with
the 50,000 words in vocabulary. This indicates
that a pure generative model may not fit the ex-
traction task, and we need to further link back to
the language usage within the source text. The
CopyRNN model, by considering more contextual
information, significantly outperforms not only
the RNN model but also all baselines, exceed-
ing the best baselines by more than 20% on av-
erage. This result demonstrates the importance
of source text to the extraction task. Besides,
nearly 2% of all correct predictions contained out-
of-vocabulary words.

The example in Figure 1(a) shows the result of
predicted present keyphrases by RNN and Copy-
RNN for an article about video search. We see
that both models can generate phrases that relate to
the topic of information retrieval and video. How-
ever most of RNN predictions are high-level ter-
minologies, which are too general to be selected
as keyphrases. CopyRNN, on the other hand,

predicts more detailed phrases like “video meta-
data” and “integrated ranking”. An interesting bad
case, “rich content” coordinates with a keyphrase
“video metadata”, and the CopyRNN mistakenly
puts it into prediction.

5.2 Predicting Absent Keyphrases
As stated, one important motivation for this work
is that we are interested in the proposed model’s
capability for predicting absent keyphrases based
on the “understanding” of content. It is worth
noting that such prediction is a very challenging
task, and, to the best of our knowledge, no existing
methods can handle this task. Therefore, we only
provide the RNN and CopyRNN performances in
the discussion of the results of this task. Here, we
evaluate the performance within the recall of the
top 10 and top 50 results, to see how many absent
keyphrases can be correctly predicted. We use the
absent keyphrases in the testing datasets for eval-
uation.

Dataset RNN CopyRNN
R@10 R@50 R@10 R@50

Inspec 0.031 0.061 0.047 0.100
Krapivin 0.095 0.156 0.113 0.202

NUS 0.050 0.089 0.058 0.116
SemEval 0.041 0.060 0.043 0.067
KP20k 0.083 0.144 0.125 0.211

Table 3: Absent keyphrases prediction perfor-
mance of RNN and CopyRNN on five datasets

Table 3 presents the recall results of the top
10/50 predicted keyphrases for our RNN and
CopyRNN models, in which we observe that the
CopyRNN can, on average, recall around 8%

588

(15%) of keyphrases at top 10 (50) predictions.
This indicates that, to some extent, both models
can capture the hidden semantics behind the tex-
tual content and make reasonable predictions. In
addition, with the advantage of features from the
source text, the CopyRNN model also outperforms
the RNN model in this condition, though it does
not show as much improvement as the present
keyphrase extraction task. An example is shown
in Figure 1(b), in which we see that two absent
keyphrases, “video retrieval” and “video index-
ing”, are correctly recalled by both models. Note
that the term “indexing” does not appear in the
text, but the models may detect the information
“index videos” in the first sentence and paraphrase
it to the target phrase. And the CopyRNN success-
fully predicts another two keyphrases by capturing
the detailed information from the text (highlighted
text segments).

Model F1 Model F1

Tf-Idf 0.270 ExpandRank 0.269
TextRank 0.097 KeyCluster 0.140
SingleRank 0.256 CopyRNN 0.164

Table 4: Keyphrase prediction performance of
CopyRNN on DUC-2001. The model is trained
on scientific publication and evaluated on news.

5.3 Transferring the Model to the News
Domain

RNN and CopyRNN are supervised models, and
they are trained on data in a specific domain and
writing style. However, with sufficient training on
a large-scale dataset, we expect the models to be
able to learn universal language features that are
also effective in other corpora. Thus in this task,
we will test our model on another type of text, to
see whether the model would work when being
transferred to a different environment.

We use the popular news article dataset DUC-
2001 (Wan and Xiao, 2008) for analysis. The
dataset consists of 308 news articles and 2,488
manually annotated keyphrases. The result of this
analysis is shown in Table 4, from which we could
see that the CopyRNN can extract a portion of cor-
rect keyphrases from a unfamiliar text. Compared
to the results reported in (Hasan and Ng, 2010),
the performance of CopyRNN is better than Tex-
tRank (Mihalcea and Tarau, 2004) and KeyClus-
ter (Liu et al., 2009), but lags behind the other

three baselines.
As it is transferred to a corpus in a completely

different type and domain, the model encounters
more unknown words and has to rely more on
the positional and syntactic features within the
text. In this experiment, the CopyRNN recalls
766 keyphrases. 14.3% of them contain out-of-
vocabulary words, and many names of persons and
places are correctly predicted.

6 Discussion
Our experimental results demonstrate that the
CopyRNN model not only performs well on pre-
dicting present keyphrases, but also has the abil-
ity to generate topically relevant keyphrases that
are absent in the text. In a broader sense, this
model attempts to map a long text (i.e., paper ab-
stract) with representative short text chunks (i.e.,
keyphrases), which can potentially be applied
to improve information retrieval performance by
generating high-quality index terms, as well as as-
sisting user browsing by summarizing long docu-
ments into short, readable phrases.

Thus far, we have tested our model with sci-
entific publications and news articles, and have
demonstrated that our model has the ability to cap-
ture universal language patterns and extract key in-
formation from unfamiliar texts. We believe that
our model has a greater potential to be general-
ized to other domains and types, like books, online
reviews, etc., if it is trained on a larger data cor-
pus. Also, we directly applied our model, which
was trained on a publication dataset, into generat-
ing keyphrases for news articles without any adap-
tive training. We believe that with proper training
on news data, the model would make further im-
provement.

Additionally, this work mainly studies the prob-
lem of discovering core content from textual mate-
rials. Here, the encoder-decoder framework is ap-
plied to model language; however, such a frame-
work can also be extended to locate the core infor-
mation on other data resources, such as summariz-
ing content from images and videos.

7 Conclusions and Future Work
In this paper, we proposed an RNN-based gen-
erative model for predicting keyphrases in scien-
tific text. To the best of our knowledge, this is
the first application of the encoder-decoder model
to a keyphrase prediction task. Our model sum-
marizes phrases based the deep semantic meaning

589

Figure 1: An example of predicted keyphrase by RNN and CopyRNN. Phrases shown in bold are correct
predictions.

of the text, and is able to handle rarely-occurred
phrases by incorporating a copying mechanism.
Comprehensive empirical studies demonstrate the
effectiveness of our proposed model for generat-
ing both present and absent keyphrases for differ-
ent types of text. Our future work may include the
following two directions.

– In this work, we only evaluated the perfor-
mance of the proposed model by conducting
off-line experiments. In the future, we are in-
terested in comparing the model to human an-
notators and using human judges to evaluate
the quality of predicted phrases.

– Our current model does not fully consider
correlation among target keyphrases. It
would also be interesting to explore the
multiple-output optimization aspects of our
model.

Acknowledgments

We would like to thank Jiatao Gu and Miltiadis
Allamanis for sharing the source code and giv-
ing helpful advice. We also thank Wei Lu, Yong
Huang, Qikai Cheng and other IRLAB members
at Wuhan University for the assistance of dataset
development. This work is partially supported
by the National Science Foundation under Grant
No.1525186.

References
M. Allamanis, H. Peng, and C. Sutton. 2016. A Con-

volutional Attention Network for Extreme Summa-
rization of Source Code. ArXiv e-prints .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Gábor Berend. 2011. Opinion expression mining by
exploiting keyphrase extraction. In IJCNLP. Cite-
seer, pages 1162–1170.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Eibe Frank, Gordon W Paynter, Ian H Witten,
Carl Gutwin, and Craig G Nevill-Manning. 1999.
Domain-specific keyphrase extraction .

Felix A Gers and E Schmidhuber. 2001. Lstm recur-
rent networks learn simple context-free and context-
sensitive languages. IEEE Transactions on Neural
Networks 12(6):1333–1340.

Sujatha Das Gollapalli and Cornelia Caragea. 2014.
Extracting keyphrases from research papers us-
ing citation networks. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intel-
ligence. AAAI Press, AAAI’14, pages 1629–1635.
http://dl.acm.org/citation.cfm?id=2892753.2892779.

Maria Grineva, Maxim Grinev, and Dmitry Lizorkin.
2009. Extracting key terms from noisy and multi-
theme documents. In Proceedings of the 18th In-
ternational Conference on World Wide Web. ACM,
New York, NY, USA, WWW ’09, pages 661–670.
https://doi.org/10.1145/1526709.1526798.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393 .

590

Shuguang Han, Daqing He, Jiepu Jiang, and Zhen Yue.
2013. Supporting exploratory people search: a study
of factor transparency and user control. In Pro-
ceedings of the 22nd ACM international conference
on Information & Knowledge Management. ACM,
pages 449–458.

Kazi Saidul Hasan and Vincent Ng. 2010. Conundrums
in unsupervised keyphrase extraction: making sense
of the state-of-the-art. In Proceedings of the 23rd In-
ternational Conference on Computational Linguis-
tics: Posters. Association for Computational Lin-
guistics, pages 365–373.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the 2003 conference on Empirical meth-
ods in natural language processing. Association for
Computational Linguistics, pages 216–223.

Anette Hulth and Beáta B Megyesi. 2006. A study
on automatically extracted keywords in text catego-
rization. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th annual meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 537–544.

Steve Jones and Mark S Staveley. 1999. Phrasier:
a system for interactive document retrieval using
keyphrases. In Proceedings of the 22nd annual in-
ternational ACM SIGIR conference on Research and
development in information retrieval. ACM, pages
160–167.

Daniel Kelleher and Saturnino Luz. 2005. Automatic
hypertext keyphrase detection. In Proceedings of
the 19th International Joint Conference on Artificial
Intelligence. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, IJCAI’05, pages 1608–1609.
http://dl.acm.org/citation.cfm?id=1642293.1642576.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. Semeval-2010 task 5: Au-
tomatic keyphrase extraction from scientific articles.
In Proceedings of the 5th International Workshop
on Semantic Evaluation. Association for Computa-
tional Linguistics, pages 21–26.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Mikalai Krapivin, Aliaksandr Autayeu, and Maur-
izio Marchese. 2008. Large dataset for keyphrases
extraction. Technical Report DISI-09-055, DISI,
Trento, Italy.

Tho Thi Ngoc Le, Minh Le Nguyen, and Akira Shi-
mazu. 2016. Unsupervised Keyphrase Extraction:
Introducing New Kinds of Words to Keyphrases,
Springer International Publishing, Cham, pages
665–671.

Zhiyuan Liu, Xinxiong Chen, Yabin Zheng, and
Maosong Sun. 2011. Automatic keyphrase extrac-
tion by bridging vocabulary gap. In Proceedings of
the Fifteenth Conference on Computational Natural
Language Learning. Association for Computational
Linguistics, pages 135–144.

Zhiyuan Liu, Wenyi Huang, Yabin Zheng, and
Maosong Sun. 2010. Automatic keyphrase extrac-
tion via topic decomposition. In Proceedings of
the 2010 conference on empirical methods in nat-
ural language processing. Association for Compu-
tational Linguistics, pages 366–376.

Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong
Sun. 2009. Clustering to find exemplar terms for
keyphrase extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing: Volume 1-Volume 1. Association
for Computational Linguistics, pages 257–266.

Patrice Lopez and Laurent Romary. 2010. Humb:
Automatic key term extraction from scientific
articles in grobid. In Proceedings of the 5th
International Workshop on Semantic Evaluation.
Association for Computational Linguistics, Strouds-
burg, PA, USA, SemEval ’10, pages 248–251.
http://dl.acm.org/citation.cfm?id=1859664.1859719.

Sumit Chopra Marc’Aurelio Ranzato, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. ICLR, San Juan,
Puerto Rico .

Yutaka Matsuo and Mitsuru Ishizuka. 2004. Key-
word extraction from a single document using word
co-occurrence statistical information. International
Journal on Artificial Intelligence Tools 13(01):157–
169.

Olena Medelyan, Eibe Frank, and Ian H Witten.
2009a. Human-competitive tagging using automatic
keyphrase extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing: Volume 3-Volume 3. Association
for Computational Linguistics, pages 1318–1327.

Olena Medelyan, Eibe Frank, and Ian H. Witten.
2009b. Human-competitive tagging using auto-
matic keyphrase extraction. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing: Volume 3 - Volume 3.
Association for Computational Linguistics, Strouds-
burg, PA, USA, EMNLP ’09, pages 1318–1327.
http://dl.acm.org/citation.cfm?id=1699648.1699678.

Olena Medelyan, Ian H Witten, and David Milne. 2008.
Topic indexing with wikipedia. In Proceedings of
the AAAI WikiAI workshop. volume 1, pages 19–24.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into texts. Association for Computational
Linguistics.

591

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
International Conference on Asian Digital Li-
braries. Springer, pages 317–326.

Meng Rui, Han Shuguang, Huang Yun, He Daqing,
and Brusilovsky Peter. 2016. Knowledge-based
content linking for online textbooks. In 2016
IEEE/WIC/ACM International Conference on Web
Intelligence. The Institute of Electrical and Electron-
ics Engineers, pages 18–25.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for abstrac-
tive sentence summarization. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2015, Lisbon,
Portugal, September 17-21, 2015. pages 379–389.
http://aclweb.org/anthology/D/D15/D15-1044.pdf.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Proceedings of
the 30th AAAI Conference on Artificial Intelligence
(AAAI-16).

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Mini-
mum risk training for neural machine translation.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1683–1692.
http://www.aclweb.org/anthology/P16-1159.

Min Song, Il-Yeol Song, and Xiaohua Hu. 2003.
Kpspotter: a flexible information gain-based
keyphrase extraction system. In Proceedings of the
5th ACM international workshop on Web informa-
tion and data management. ACM, pages 50–53.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Takashi Tomokiyo and Matthew Hurst. 2003. A
language model approach to keyphrase ex-
traction. In Proceedings of the ACL 2003
Workshop on Multiword Expressions: Analy-
sis, Acquisition and Treatment - Volume 18.
Association for Computational Linguistics,
Stroudsburg, PA, USA, MWE ’03, pages 33–
40. https://doi.org/10.3115/1119282.1119287.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems. pages 2773–2781.

Xiaojun Wan and Jianguo Xiao. 2008. Single doc-
ument keyphrase extraction using neighborhood
knowledge.

Minmei Wang, Bo Zhao, and Yihua Huang. 2016.
PTR: Phrase-Based Topical Ranking for Automatic
Keyphrase Extraction in Scientific Publications,
Springer International Publishing, Cham, pages
120–128.

Ian H Witten, Gordon W Paynter, Eibe Frank, Carl
Gutwin, and Craig G Nevill-Manning. 1999. Kea:
Practical automatic keyphrase extraction. In Pro-
ceedings of the fourth ACM conference on Digital
libraries. ACM, pages 254–255.

Wenyuan Zeng, Wenjie Luo, Sanja Fidler, and Raquel
Urtasun. 2016. Efficient summarization with
read-again and copy mechanism. arXiv preprint
arXiv:1611.03382 .

Qi Zhang, Yang Wang, Yeyun Gong, and Xuanjing
Huang. 2016. Keyphrase extraction using deep re-
current neural networks on twitter. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages
836–845. https://aclweb.org/anthology/D16-1080.

Yongzheng Zhang, Nur Zincir-Heywood, and Evange-
los Milios. 2004. World wide web site summariza-
tion. Web Intelligence and Agent Systems: An Inter-
national Journal 2(1):39–53.

592

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 593–602
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1055

Attention-over-Attention Neural Networks for Reading Comprehension

Yiming Cui†, Zhipeng Chen†, Si Wei†, Shijin Wang†, Ting Liu‡ and Guoping Hu†
†Joint Laboratory of HIT and iFLYTEK, iFLYTEK Research, Beijing, China

‡Research Center for Social Computing and Information Retrieval,
Harbin Institute of Technology, Harbin, China

†{ymcui,zpchen,siwei,sjwang3,gphu}@iflytek.com
‡tliu@ir.hit.edu.cn

Abstract

Cloze-style reading comprehension is a
representative problem in mining relation-
ship between document and query. In this
paper, we present a simple but novel model
called attention-over-attention reader for
better solving cloze-style reading compre-
hension task. The proposed model aims
to place another attention mechanism over
the document-level attention and induces
“attended attention” for final answer pre-
dictions. One advantage of our model is
that it is simpler than related works while
giving excellent performance. In addition
to the primary model, we also propose an
N-best re-ranking strategy to double check
the validity of the candidates and further
improve the performance. Experimental
results show that the proposed methods
significantly outperform various state-of-
the-art systems by a large margin in pub-
lic datasets, such as CNN and Children’s
Book Test.

1 Introduction

To read and comprehend the human languages are
challenging tasks for the machines, which requires
that the understanding of natural languages and the
ability to do reasoning over various clues. Read-
ing comprehension is a general problem in the real
world, which aims to read and comprehend a given
article or context, and answer the questions based
on it. Recently, the cloze-style reading compre-
hension problem has become a popular task in the
community. The cloze-style query (Taylor, 1953)
is a problem that to fill in an appropriate word in
the given sentences while taking the context infor-
mation into account.

To teach the machine to do cloze-style reading

comprehensions, large-scale training data is nec-
essary for learning relationships between the given
document and query. To create large-scale training
data for neural networks, Hermann et al. (2015)
released the CNN/Daily Mail news dataset, where
the document is formed by the news articles and
the queries are extracted from the summary of the
news. Hill et al. (2015) released the Children’s
Book Test dataset afterwards, where the training
samples are generated from consecutive 20 sen-
tences from books, and the query is formed by
21st sentence. Following these datasets, a vast va-
riety of neural network approaches have been pro-
posed (Kadlec et al., 2016; Cui et al., 2016; Chen
et al., 2016; Dhingra et al., 2016; Sordoni et al.,
2016; Trischler et al., 2016; Seo et al., 2016; Xiong
et al., 2016), and most of them stem from the
attention-based neural network (Bahdanau et al.,
2014), which has become a stereotype in most of
the NLP tasks and is well-known by its capability
of learning the “importance” distribution over the
inputs.

In this paper, we present a novel neural net-
work architecture, called attention-over-attention
model. As we can understand the meaning lit-
erally, our model aims to place another attention
mechanism over the existing document-level at-
tention. Unlike the previous works, that are us-
ing heuristic merging functions (Cui et al., 2016),
or setting various pre-defined non-trainable terms
(Trischler et al., 2016), our model could automat-
ically generate an “attended attention” over vari-
ous document-level attentions, and make a mutual
look not only from query-to-document but also
document-to-query, which will benefit from the
interactive information.

To sum up, the main contributions of our work
are listed as follows.

• To our knowledge, this is the first time that

593

https://doi.org/10.18653/v1/P17-1055

the mechanism of nesting another attention
over the existing attentions is proposed, i.e.
attention-over-attention mechanism.

• Unlike the previous works on introducing
complex architectures or many non-trainable
hyper-parameters to the model, our model is
much more simple but outperforms various
state-of-the-art systems by a large margin.

• We also propose an N-best re-ranking strat-
egy to re-score the candidates in various as-
pects and further improve the performance.

The following of the paper will be organized
as follows. In Section 2, we will give a brief in-
troduction to the cloze-style reading comprehen-
sion task as well as related public datasets. Then
the proposed attention-over-attention reader will
be presented in detail in Section 3 and N-best re-
ranking strategy in Section 4. The experimental
results and analysis will be given in Section 5 and
Section 6. Related work will be discussed in Sec-
tion 7. Finally, we will give a conclusion of this
paper and envisions on future work.

2 Cloze-style Reading Comprehension

In this section, we will give a brief introduction
to the cloze-style reading comprehension task at
the beginning. And then, several existing public
datasets will be described in detail.

2.1 Task Description
Formally, a general Cloze-style reading compre-
hension problem can be illustrated as a triple:

〈D,Q,A〉

The triple consists of a documentD, a queryQ and
the answer to the queryA. Note that the answer is
usually a single word in the document, which re-
quires the human to exploit context information in
both document and query. The type of the answer
word varies from predicting a preposition given
a fixed collocation to identifying a named entity
from a factual illustration.

2.2 Existing Public Datasets
Large-scale training data is essential for training
neural networks. Several public datasets for the
cloze-style reading comprehension has been re-
leased. Here, we introduce two representative and
widely-used datasets.

• CNN / Daily Mail
Hermann et al. (2015) have firstly published two
datasets: CNN and Daily Mail news data 1. They
construct these datasets with web-crawled CNN
and Daily Mail news data. One of the charac-
teristics of these datasets is that the news arti-
cle is often associated with a summary. So they
first regard the main body of the news article as
the Document, and the Query is formed by the
summary of the article, where one entity word
is replaced by a special placeholder to indicate
the missing word. The replaced entity word will
be the Answer of the Query. Apart from releas-
ing the dataset, they also proposed a methodol-
ogy that anonymizes the named entity tokens in
the data, and these tokens are also re-shuffle in
each sample. The motivation is that the news arti-
cles are containing limited named entities, which
are usually celebrities, and the world knowledge
can be learned from the dataset. So this methodol-
ogy aims to exploit general relationships between
anonymized named entities within a single docu-
ment rather than the common knowledge. The fol-
lowing research on these datasets showed that the
entity word anonymization is not as effective as
expected (Chen et al., 2016).

• Children’s Book Test
There was also a dataset called the Children’s
Book Test (CBTest) released by Hill et al. (2015),
which is built on the children’s book story
through Project Gutenberg 2. Different from the
CNN/Daily Mail datasets, there is no summary
available in the children’s book. So they pro-
posed another way to extract query from the orig-
inal data. The document is composed of 20 con-
secutive sentences in the story, and the 21st sen-
tence is regarded as the query, where one word is
blanked with a special placeholder. In the CBTest
datasets, there are four types of sub-datasets avail-
able which are classified by the part-of-speech and
named entity tag of the answer word, contain-
ing Named Entities (NE), Common Nouns (CN),
Verbs and Prepositions. In their studies, they have
found that the answering of verbs and preposi-
tions are relatively less dependent on the content
of document, and the humans can even do preposi-

1The pre-processed CNN and Daily Mail datasets are
available at http://cs.nyu.edu/˜kcho/DMQA/

2The CBTest datasets are available at http:
//www.thespermwhale.com/jaseweston/babi/
CBTest.tgz

594

tion blank-filling without the presence of the doc-
ument. The studies shown by Hill et al. (2015),
answering verbs and prepositions are less depen-
dent with the presence of document. Thus, most
of the related works are focusing on solving NE
and CN types.

3 Attention-over-Attention Reader

In this section, we will give a detailed introduction
to the proposed Attention-over-Attention Reader
(AoA Reader). Our model is primarily motivated
by Kadlec et al., (2016), which aims to directly
estimate the answer from the document-level at-
tention instead of calculating blended representa-
tions of the document. As previous studies by Cui
et al. (2016) showed that the further investigation
of query representation is necessary, and it should
be paid more attention to utilizing the information
of query. In this paper, we propose a novel work
that placing another attention over the primary at-
tentions, to indicate the “importance” of each at-
tentions.

Now, we will give a formal description of our
proposed model. When a cloze-style training
triple 〈D,Q,A〉 is given, the proposed model will
be constructed in the following steps.

• Contextual Embedding

We first transform every word in the document D
and queryQ into one-hot representations and then
convert them into continuous representations with
a shared embedding matrix We. By sharing word
embedding, both the document and query can par-
ticipate in the learning of embedding and both of
them will benefit from this mechanism. After that,
we use two bi-directional RNNs to get contextual
representations of the document and query indi-
vidually, where the representation of each word
is formed by concatenating the forward and back-
ward hidden states. After making a trade-off be-
tween model performance and training complex-
ity, we choose the Gated Recurrent Unit (GRU)
(Cho et al., 2014) as recurrent unit implementa-
tion.

e(x) =We · x, where x ∈ D,Q (1)
−−−→
hs(x) =

−−−→
GRU(e(x)) (2)

←−−−
hs(x) =

←−−−
GRU(e(x)) (3)

hs(x) = [
−−−→
hs(x);

←−−−
hs(x)] (4)

We take hdoc ∈ R|D|∗2d and hquery ∈ R|Q|∗2d to
denote the contextual representations of document
and query, where d is the dimension of GRU (one-
way).

• Pair-wise Matching Score
After obtaining the contextual embeddings of the
document hdoc and query hquery, we calculate a
pair-wise matching matrix, which indicates the
pair-wise matching degree of one document word
and one query word. Formally, when given ith
word of the document and jth word of query, we
can compute a matching score by their dot prod-
uct.

M(i, j) = hdoc(i)
T · hquery(j) (5)

In this way, we can calculate every pair-wise
matching score between each document and query
word, forming a matrix M ∈ R|D|∗|Q|, where
the value of ith row and jth column is filled by
M(i, j).

• Individual Attentions
After getting the pair-wise matching matrixM , we
apply a column-wise softmax function to get prob-
ability distributions in each column, where each
column is an individual document-level attention
when considering a single query word. We denote
α(t) ∈ R|D| as the document-level attention re-
garding query word at time t, which can be seen
as a query-to-document attention.

α(t) = softmax(M(1, t), ...,M(|D|, t)) (6)

α = [α(1), α(2), ..., α(|Q|)] (7)

• Attention-over-Attention
Different from Cui et al. (2016), instead of using
naive heuristics (such as summing or averaging) to
combine these individual attentions into a final at-
tention, we introduce another attention mechanism
to automatically decide the importance of each in-
dividual attention.

First, we calculate a reversed attention, that is,
for every document word at time t, we calculate
the “importance” distribution on the query, to indi-
cate which query words are more important given
a single document word. We apply a row-wise
softmax function to the pair-wise matching ma-
trix M to get query-level attentions. We denote
β(t) ∈ R|Q| as the query-level attention regarding
document word at time t, which can be seen as a

595

� � �

Document

Query

�

� � �

� � �

��

!(“$%&'”|*,,) = / 01 = 02 + 04
�

1∈7(“89:;”,<)
Mary

sits

beside

him
...

he

loves

Mary

he

loves

X

dot
product

Column-wise
softmax

Row-wise
softmax

Column-wise
Average

dot
product

Embedding
Layer

bi-GRU
Layer

Individual ATT
Layer

ATT-over-ATT
Layer

Sum ATT
Layer

Figure 1: Neural network architecture of the proposed Attention-over-Attention Reader (AoA Reader).

document-to-query attention.

β(t) = softmax(M(t, 1), ...,M(t, |Q|)) (8)

So far, we have obtained both query-to-
document attention α and document-to-query at-
tention β. Our motivation is to exploit mutual in-
formation between the document and query. How-
ever, most of the previous works are only relying
on query-to-document attention, that is, only cal-
culate one document-level attention when consid-
ering the whole query.

Then we average all the β(t) to get an averaged
query-level attention β. Note that, we do not ap-
ply another softmax to the β, because averaging
individual attentions do not break the normalizing
condition.

β =
1

n

|D|∑

t=1

β(t) (9)

Finally, we calculate dot product of α and β to
get the “attended document-level attention” s ∈
R|D|, i.e. the attention-over-attention mechanism.
Intuitively, this operation is calculating a weighted
sum of each individual document-level attention
α(t) when looking at query word at time t. In

this way, the contributions by each query word
can be learned explicitly, and the final decision
(document-level attention) is made through the
voted result by the importance of each query word.

s = αTβ (10)

• Final Predictions
Following Kadlec et al. (2016), we use sum atten-
tion mechanism to get aggregated results. Note
that the final output should be reflected in the vo-
cabulary space V , rather than document-level at-
tention |D|, which will make a significant dif-
ference in the performance, though Kadlec et al.
(2016) did not illustrate this clearly.

P (w|D,Q) =
∑

i∈I(w,D)
si, w ∈ V (11)

where I(w,D) indicate the positions that word
w appears in the document D. As the training ob-
jectives, we seek to maximize the log-likelihood
of the correct answer.

L =
∑

i

log(p(x)) , x ∈ A (12)

596

CNN News CBT NE CBT CN
Train Valid Test Train Valid Test Train Valid Test

Query 380,298 3,924 3,198 108,719 2,000 2,500 120,769 2,000 2,500
Max # candidates 527 187 396 10 10 10 10 10 10
Avg # candidates 26 26 25 10 10 10 10 10 10
Avg # tokens 762 763 716 433 412 424 470 448 461
Vocabulary 118,497 53,063 53,185

Table 1: Statistics of cloze-style reading comprehension datasets: CNN news and CBTest NE / CN.

The proposed neural network architecture is de-
picted in Figure 1. Note that, as our model mainly
adds limited steps of calculations to the AS Reader
(Kadlec et al., 2016) and does not employ any ad-
ditional weights, the computational complexity is
similar to the AS Reader.

4 N-best Re-ranking Strategy

Intuitively, when we do cloze-style reading com-
prehensions, we often refill the candidate into the
blank of the query to double-check its appropri-
ateness, fluency and grammar to see if the candi-
date we choose is the most suitable one. If we do
find some problems in the candidate we choose,
we will choose the second possible candidate and
do some checking again.

To mimic the process of double-checking, we
propose to use N-best re-ranking strategy after
generating answers from our neural networks. The
procedure can be illustrated as follows.

• N-best Decoding
Instead of only picking the candidate that has the
highest possibility as answer, we can also ex-
tract follow-up candidates in the decoding process,
which forms an N-best list.

• Refill Candidate into Query
As a characteristic of the cloze-style problem,
each candidate can be refilled into the blank of the
query to form a complete sentence. This allows us
to check the candidate according to its context.

• Feature Scoring
The candidate sentences can be scored in many as-
pects. In this paper, we exploit three features to
score the N-best list.

• Global N-gram LM: This is a fundamental
metric in scoring sentence, which aims to
evaluate its fluency. This model is trained on
the document part of training data.

• Local N-gram LM: Different from global
LM, the local LM aims to explore the in-
formation with the given document, so the
statistics are obtained from the test-time doc-
ument. It should be noted that the local LM is
trained sample-by-sample, it is not trained on
the entire test set, which is not legal in the real
test case. This model is useful when there are
many unknown words in the test sample.

• Word-class LM: Similar to global LM, the
word-class LM is also trained on the docu-
ment part of training data, but the words are
converted to its word class ID. The word class
can be obtained by using clustering meth-
ods. In this paper, we simply utilized the
mkcls tool for generating 1000 word classes
(Josef Och, 1999).

• Weight Tuning
To tune the weights among these features,
we adopt the K-best MIRA algorithm (Cherry
and Foster, 2012) to automatically optimize the
weights on the validation set, which is widely used
in statistical machine translation tuning procedure.

• Re-scoring and Re-ranking
After getting the weights of each feature, we cal-
culate the weighted sum of each feature in the N-
best sentences and then choose the candidate that
has the lowest cost as the final answer.

5 Experiments

5.1 Experimental Setups

The general settings of our neural network model
are listed below in detail.

• Embedding Layer: The embedding weights
are randomly initialized with the uniformed
distribution in the interval [−0.05, 0.05].

597

CNN News CBTest NE CBTest CN
Valid Test Valid Test Valid Test

Deep LSTM Reader (Hermann et al., 2015) 55.0 57.0 - - - -
Attentive Reader (Hermann et al., 2015) 61.6 63.0 - - - -
Human (context+query) (Hill et al., 2015) - - - 81.6 - 81.6
MemNN (window + self-sup.) (Hill et al., 2015) 63.4 66.8 70.4 66.6 64.2 63.0
AS Reader (Kadlec et al., 2016) 68.6 69.5 73.8 68.6 68.8 63.4
CAS Reader (Cui et al., 2016) 68.2 70.0 74.2 69.2 68.2 65.7
Stanford AR (Chen et al., 2016) 72.4 72.4 - - - -
GA Reader (Dhingra et al., 2016) 73.0 73.8 74.9 69.0 69.0 63.9
Iterative Attention (Sordoni et al., 2016) 72.6 73.3 75.2 68.6 72.1 69.2
EpiReader (Trischler et al., 2016) 73.4 74.0 75.3 69.7 71.5 67.4
AoA Reader 73.1 74.4 77.8 72.0 72.2 69.4
AoA Reader + Reranking - - 79.6 74.0 75.7 73.1
MemNN (Ensemble) 66.2 69.4 - - - -
AS Reader (Ensemble) 73.9 75.4 74.5 70.6 71.1 68.9
GA Reader (Ensemble) 76.4 77.4 75.5 71.9 72.1 69.4
EpiReader (Ensemble) - - 76.6 71.8 73.6 70.6
Iterative Attention (Ensemble) 74.5 75.7 76.9 72.0 74.1 71.0
AoA Reader (Ensemble) - - 78.9 74.5 74.7 70.8
AoA Reader (Ensemble + Reranking) - - 80.3 75.6 77.0 74.1

Table 2: Results on the CNN news, CBTest NE and CN datasets. The best baseline results are depicted
in italics, and the overall best results are in bold face.

For regularization purpose, we adopted l2-
regularization to 0.0001 and dropout rate of
0.1 (Srivastava et al., 2014). Also, it should
be noted that we do not exploit any pre-
trained embedding models.

• Hidden Layer: Internal weights of GRUs are
initialized with random orthogonal matrices
(Saxe et al., 2013).

• Optimization: We adopted ADAM optimizer
for weight updating (Kingma and Ba, 2014),
with an initial learning rate of 0.001. As the
GRU units still suffer from the gradient ex-
ploding issues, we set the gradient clipping
threshold to 5 (Pascanu et al., 2013). We used
batched training strategy of 32 samples.

Dimensions of embedding and hidden layer for
each task are listed in Table 3. In re-ranking step,
we generate 5-best list from the baseline neural
network model, as we did not observe a significant
variance when changing the N-best list size. All
language model features are trained on the train-
ing proportion of each dataset, with 8-gram word-
based setting and Kneser-Ney smoothing (Kneser

and Ney, 1995) trained by SRILM toolkit (Stol-
cke, 2002). The results are reported with the best
model, which is selected by the performance of
validation set. The ensemble model is made up
of four best models, which are trained using dif-
ferent random seed. Implementation is done with
Theano (Theano Development Team, 2016) and
Keras (Chollet, 2015), and all models are trained
on Tesla K40 GPU.

Embed. # units Hidden # units

CNN News 384 256
CBTest NE 384 384
CBTest CN 384 256

Table 3: Embedding and hidden layer dimensions
for each task.

5.2 Overall Results
Our experiments are carried out on public datasets:
CNN news datasets (Hermann et al., 2015) and
CBTest NE/CN datasets (Hill et al., 2015). The
statistics of these datasets are listed in Table 1, and
the experimental results are given in Table 2.

598

As we can see that, our AoA Reader outper-
forms state-of-the-art systems by a large margin,
where 2.3% and 2.0% absolute improvements over
EpiReader in CBTest NE and CN test sets, which
demonstrate the effectiveness of our model. Also
by adding additional features in the re-ranking
step, there is another significant boost 2.0% to
3.7% over AoA Reader in CBTest NE/CN test
sets. We have also found that our single model
could stay on par with the previous best ensemble
system, and even we have an absolute improve-
ment of 0.9% beyond the best ensemble model
(Iterative Attention) in the CBTest NE validation
set. When it comes to ensemble model, our AoA
Reader also shows significant improvements over
previous best ensemble models by a large margin
and set up a new state-of-the-art system.

To investigate the effectiveness of employing
attention-over-attention mechanism, we also com-
pared our model to CAS Reader, which used pre-
defined merging heuristics, such as sum or avg etc.
Instead of using pre-defined merging heuristics,
and letting the model explicitly learn the weights
between individual attentions results in a signif-
icant boost in the performance, where 4.1% and
3.7% improvements can be made in CNN valida-
tion and test set against CAS Reader.

5.3 Effectiveness of Re-ranking Strategy
As we have seen that the re-ranking approach is ef-
fective in cloze-style reading comprehension task,
we will give a detailed ablations in this section to
show the contributions by each feature. To have
a thorough investigation in the re-ranking step,
we listed the detailed improvements while adding
each feature mentioned in Section 4.

From the results in Table 4, we found that the
NE and CN category both benefit a lot from the
re-ranking features, but the proportions are quite
different. Generally speaking, in NE category,
the performance is mainly boosted by the LMlocal

feature. However, on the contrary, the CN cat-
egory benefits from LMglobal and LMwc rather
than the LMlocal.

Also, we listed the weights of each feature in
Table 5. The LMglobal and LMwc are all trained
by training set, which can be seen as Global Fea-
ture. However, the LMlocal is only trained within
the respective document part of test sample, which
can be seen as Local Feature.

η =
LMglobal + LMwc

LMlocal
(13)

CBTest NE CBTest CN
Valid Test Valid Test

AoA Reader 77.8 72.0 72.2 69.4
+Global LM 78.3 72.6 73.9 71.2
+Local LM 79.4 73.8 74.7 71.7
+Word-class LM 79.6 74.0 75.7 73.1

Table 4: Detailed results of 5-best re-ranking on
CBTest NE/CN datasets. Each row includes all
of the features from previous rows. LMglobal de-
notes the global LM, LMlocal denotes the local
LM, LMwc denotes the word-class LM.

CBTest NE CBTest CN

NN 0.64 0.20
Global LM 0.16 0.10
Word-class LM 0.04 0.39
Local LM 0.16 0.31
RATIO η 1.25 1.58

Table 5: Weight of each feature in N-best re-
ranking step. NN denotes the feature (probability)
produced by baseline neural network model.

We calculated the ratio between the global and
local features and found that the NE category
is much more dependent on local features than
CN category. Because it is much more likely to
meet a new named entity than a common noun
in the test phase, so adding the local LM pro-
vides much more information than that of common
noun. However, on the contrary, answering com-
mon noun requires less local information, which
can be learned in the training data relatively.

6 Quantitative Analysis

In this section, we will give a quantitative anal-
ysis to our AoA Reader. The following analyses
are carried out on CBTest NE dataset. First, we
investigate the relations between the length of the
document and corresponding accuracy. The result
is depicted in Figure 2.

As we can see that the AoA Reader shows con-
sistent improvements over AS Reader on the dif-
ferent length of the document. Especially, when
the length of document exceeds 700, the improve-
ments become larger, indicating that the AoA
Reader is more capable of handling long docu-
ments.

599

18 486 758 525 370 262 61

AoA Reader
AS Reader

Ac
cu

ra
cy

0.65

0.70

0.75

0.80

0.85

0.90

Length of Document
100 200 300 400 500 600 700 800

Figure 2: Test accuracy against the length of the
document. The bar below the figure indicates the
number of samples in each interval.

1071 588 354 264 127 59 28 8 1 1

AoA Reader
AS Reader

Ac
cu

ra
cy

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Rank of the answer
1 2 3 4 5 6 7 8 9 10

Figure 3: Test accuracy against the frequency
rank of the answer. The bar below the figure in-
dicates the number of samples in each rank.

Furthermore, we also investigate if the model
tends to choose a high-frequency candidate than
a lower one, which is shown in Figure 3. Not sur-
prisingly, we found that both models do a good job
when the correct answer appears more frequent in
the document than the other candidates. This is
because that the correct answer that has the high-
est frequency among the candidates takes up over
40% of the test set (1071 out of 2500). But in-
terestingly we have also found that, when the fre-
quency rank of correct answer exceeds 7 (less fre-
quent among candidates), these models also give
a relatively high performance. Empirically, we
think that these models tend to choose extreme
cases in terms of candidate frequency (either too
high or too low). One possible reason is that it is

hard for the model to choose a candidate that has a
neutral frequency as the correct answer, because of
its ambiguity (neutral choices are hard to made).

7 Related Work

Cloze-style reading comprehension tasks have
been widely investigated in recent studies. We will
take a brief revisit to the related works.

Hermann et al. (2015) have proposed a method
for obtaining large quantities of 〈D,Q,A〉 triples
through news articles and its summary. Along
with the release of cloze-style reading comprehen-
sion dataset, they also proposed an attention-based
neural network to handle this task. Experimental
results showed that the proposed neural network is
effective than traditional baselines.

Hill et al. (2015) released another dataset, which
stems from the children’s books. Different from
Hermann et al. (2015)’s work, the document and
query are all generated from the raw story without
any summary, which is much more general than
previous work. To handle the reading comprehen-
sion task, they proposed a window-based memory
network, and self-supervision heuristics is also ap-
plied to learn hard-attention.

Unlike previous works, that using blended rep-
resentations of document and query to estimate
the answer, Kadlec et al. (2016) proposed a sim-
ple model that directly pick the answer from the
document, which is motivated by the Pointer Net-
work (Vinyals et al., 2015). A restriction of this
model is that the answer should be a single word
and appear in the document. Results on various
public datasets showed that the proposed model is
effective than previous works.

Liu et al. (2016) proposed to exploit reading
comprehension models to other tasks. They first
applied the reading comprehension model into
Chinese zero pronoun resolution task with au-
tomatically generated large-scale pseudo training
data. The experimental results on OntoNotes 5.0
data showed that their method significantly outper-
forms various state-of-the-art systems.

Our work is primarily inspired by Cui et al.
(2016) and Kadlec et al. (2016) , where the lat-
ter model is widely applied to many follow-up
works (Sordoni et al., 2016; Trischler et al., 2016;
Cui et al., 2016). Unlike the CAS Reader (Cui
et al., 2016), we do not assume any heuristics to
our model, such as using merge functions: sum,
avg etc. We used a mechanism called “attention-

600

over-attention” to explicitly calculate the weights
between different individual document-level atten-
tions, and get the final attention by computing the
weighted sum of them. Also, we find that our
model is typically general and simple than the re-
cently proposed model, and brings significant im-
provements over these cutting edge systems.

8 Conclusion

We present a novel neural architecture, called
attention-over-attention reader, to tackle the cloze-
style reading comprehension task. The proposed
AoA Reader aims to compute the attentions not
only for the document but also the query side,
which will benefit from the mutual information.
Then a weighted sum of attention is carried out
to get an attended attention over the document
for the final predictions. Among several public
datasets, our model could give consistent and sig-
nificant improvements over various state-of-the-
art systems by a large margin.

The future work will be carried out in the fol-
lowing aspects. We believe that our model is gen-
eral and may apply to other tasks as well, so firstly
we are going to fully investigate the usage of this
architecture in other tasks. Also, we are interested
to see that if the machine really “comprehend” our
language by utilizing neural networks approaches,
but not only serve as a “document-level” language
model. In this context, we are planning to inves-
tigate the problems that need comprehensive rea-
soning over several sentences.

Acknowledgments

We would like to thank all three anonymous re-
viewers for their thorough reviewing and provid-
ing thoughtful comments to improve our paper.
This work was supported by the National 863
Leading Technology Research Project via grant
2015AA015409.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Danqi Chen, Jason Bolton, and D. Christopher Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long

Papers). Association for Computational Linguistics,
pages 2358–2367. https://doi.org/10.18653/v1/P16-
1223.

Colin Cherry and George Foster. 2012. Batch
tuning strategies for statistical machine transla-
tion. In Proceedings of the 2012 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Montréal, Canada, pages 427–436.
http://www.aclweb.org/anthology/N12-1047.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 1724–1734.
http://aclweb.org/anthology/D14-1179.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Yiming Cui, Ting Liu, Zhipeng Chen, Shijin Wang,
and Guoping Hu. 2016. Consensus attention-
based neural networks for chinese reading com-
prehension. In Proceedings of COLING 2016,
the 26th International Conference on Computa-
tional Linguistics: Technical Papers. The COL-
ING 2016 Organizing Committee, pages 1777–
1786. http://aclweb.org/anthology/C16-1167.

Bhuwan Dhingra, Hanxiao Liu, William W Cohen,
and Ruslan Salakhutdinov. 2016. Gated-attention
readers for text comprehension. arXiv preprint
arXiv:1606.01549 .

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1684–
1692.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. arXiv preprint arXiv:1511.02301 .

Franz Josef Och. 1999. An efficient method
for determining bilingual word classes. In
Ninth Conference of the European Chapter of
the Association for Computational Linguistics.
http://aclweb.org/anthology/E99-1010.

Rudolf Kadlec, Martin Schmid, Ondřej Bajgar, and Jan
Kleindienst. 2016. Text understanding with the at-
tention sum reader network. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, pages 908–
918. https://doi.org/10.18653/v1/P16-1086.

601

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In In-
ternational Conference on Acoustics, Speech, and
Signal Processing. pages 181–184 vol.1.

Ting Liu, Yiming Cui, Qingyu Yin, Shijin Wang,
Weinan Zhang, and Guoping Hu. 2016. Gen-
erating and exploiting large-scale pseudo training
data for zero pronoun resolution. arXiv preprint
arXiv:1606.01603 .

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3) 28:1310–1318.

Andrew M Saxe, James L McClelland, and Surya Gan-
guli. 2013. Exact solutions to the nonlinear dynam-
ics of learning in deep linear neural networks. arXiv
preprint arXiv:1312.6120 .

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hananneh Hajishirzi. 2016. Bi-directional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

Alessandro Sordoni, Phillip Bachman, and Yoshua
Bengio. 2016. Iterative alternating neural at-
tention for machine reading. arXiv preprint
arXiv:1606.02245 .

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Andreas Stolcke. 2002. Srilm — an extensible lan-
guage modeling toolkit. In Proceedings of the 7th
International Conference on Spoken Language Pro-
cessing (ICSLP 2002). pages 901–904.

Wilson L Taylor. 1953. Cloze procedure: a new tool for
measuring readability. Journalism and Mass Com-
munication Quarterly 30(4):415.

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

Adam Trischler, Zheng Ye, Xingdi Yuan, Philip Bach-
man, Alessandro Sordoni, and Kaheer Suleman.
2016. Natural language comprehension with the
epireader. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 128–137. http://aclweb.org/anthology/D16-
1013.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems. pages 2692–2700.

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .

602

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 603–612
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1056

Alignment at Work: Using Language to Distinguish the Internalization
and Self-Regulation Components of Cultural Fit in Organizations

Gabriel Doyle
Department of Psychology

Stanford University
gdoyle@stanford.edu

Amir Goldberg
Graduate School of Business

Stanford University
amirgo@stanford.edu

Sameer B. Srivastava
Haas School of Business

UC Berkeley
srivastava@haas.berkeley.edu

Michael C. Frank
Department of Psychology

Stanford University
mcfrank@stanford.edu

Abstract

Cultural fit is widely believed to affect the
success of individuals and the groups to
which they belong. Yet it remains an elu-
sive, poorly measured construct. Recent
research draws on computational linguis-
tics to measure cultural fit but overlooks
asymmetries in cultural adaptation. By
contrast, we develop a directed, dynamic
measure of cultural fit based on linguis-
tic alignment, which estimates the influ-
ence of one person’s word use on another’s
and distinguishes between two encultura-
tion mechanisms: internalization and self-
regulation. We use this measure to trace
employees’ enculturation trajectories over
a large, multi-year corpus of corporate
emails and find that patterns of alignment
in the first six months of employment are
predictive of individuals downstream out-
comes, especially involuntary exit. Fur-
ther predictive analyses suggest referential
alignment plays an overlooked role in lin-
guistic alignment.

1 Introduction

Entering a new group is rarely easy. Adjusting to
unfamiliar behavioral norms and donning a new
identity can be cognitively and emotionally taxing,
and failure to do so can lead to exclusion. But suc-
cessful enculturation to the group often yields sig-
nificant rewards, especially in organizational con-
texts. Fitting in has been tied to positive career
outcomes such as faster time-to-promotion, higher
performance ratings, and reduced risk of being
fired (O’Reilly et al., 1991; Goldberg et al., 2016).

A major challenge for enculturation research
is distinguishing between internalization and self-

regulation. Internalization, a more inwardly fo-
cused process, involves identifying as a group
member and accepting group norms, while self-
regulation, a more outwardly oriented process, en-
tails deciphering the group’s normative code and
adjusting one’s behavior to comply with it. Ex-
isting approaches, which generally rely on self-
reports, are subject to various forms of reporting
bias and typically yield only static snapshots of
this process. Recent computational approaches
that use language as a behavioral signature of
group integration uncover dynamic traces of en-
culturation but cannot distinguish between inter-
nalization and self-regulation.

To overcome these limitations, we introduce a
dynamic measure of directed linguistic accommo-
dation between a newcomer and existing group
members. Our approach differentiates between
an individual’s (1) base rate of word use and (2)
linguistic alignment to interlocutors. The former
corresponds to internalization of the group’s lin-
guistic norms, whereas the latter reflects the ca-
pacity to regulate one’s language in response to
peers’ language use. We apply this language
model to a corpus of internal email communica-
tions and personnel records, spanning a seven-year
period, from a mid-sized technology firm. We
show that changes in base rates and alignment,
especially with respect to pronoun use, are con-
sistent with successful assimilation into a group
and can predict eventual employment outcomes—
continued employment, involuntary exit, or volun-
tary exit—at levels above chance. We use this pre-
dictive problem to investigate the nature of linguis-
tic alignment. Our results suggest that the com-
mon formulation of alignment as a lexical-level
phenomenon is incomplete.

603

https://doi.org/10.18653/v1/P17-1056

2 Linguistic Alignment and Group Fit

Linguistic alignment Linguistic alignment is
the tendency to use the same or similar words
as one’s conversational partner. Alignment is
an instance of a widespread and socially impor-
tant human behavior: communication accommo-
dation, the tendency of two interacting people
to nonconsciously adopt similar behaviors. Ev-
idence of accommodation appears in many be-
havioral dimensions, including gestures, postures,
speech rate, self-disclosure, and language or di-
alect choice (see Giles et al. (1991) for a review).
More accommodating people are rated by their
interlocutors as more intelligible, attractive, and
cooperative (Feldman, 1968; Ireland et al., 2011;
Triandis, 1960). These perceptions have mate-
rial consequences—for example, high accommo-
dation requests are more likely to be fulfilled, and
pairs who accommodate more in how they ex-
press uncertainty perform better in lab-based tasks
(Buller and Aune, 1988; Fusaroli et al., 2012).

Although accommodation is ubiquitous, indi-
viduals vary in their levels of accommodation in
ways that are socially informative. Notably, more
powerful people are accommodated more strongly
in many settings, including trials (Gnisci, 2005),
online forums (Danescu-Niculescu-Mizil et al.,
2012), and Twitter (Doyle et al., 2016). Most rel-
evant for this work, speakers may increase their
accommodation to signal camaraderie or decrease
it to differentiate from the group. For example,
Bourhis and Giles (1977) found that Welsh En-
glish speakers increased their use of the Welsh
accent and language in response to an English
speaker who dismissed it.

Person-group fit and linguistic alignment
These findings suggest that linguistic alignment is
a useful avenue for studying how people assimi-
late into a group. Whereas traditional approaches
to studying person-group fit rely on self-reports
that are subject to various forms of reporting bias
and cannot feasibly be collected with high gran-
ularity across many points in time, recent stud-
ies have proposed language-based measures as a
means to tracing the dynamics of person-group fit
without having to rely on self-reports. Building on
Danescu-Niculescu-Mizil et al. (2013)’s research
into language use similarities as a proxy for so-
cial distance between individuals, Srivastava et al.
(forthcoming) and Goldberg et al. (2016) devel-

oped a measure of cultural fit based on the sim-
ilarity in linguistic style between individuals and
their colleagues in an organization. Their time-
varying measure highlights linguistic compatibil-
ity as an important facet of cultural fit and reveals
distinct trajectories of enculturation for employees
with different career outcomes.

While this approach can help uncover the dy-
namics and consequences of an individual’s fit
with her colleagues in an organization, it cannot
disentangle the underlying reasons for this align-
ment. For two primary reasons, it cannot distin-
guish between fit that arises from internalization
and fit produced by self-regulation. First, Gold-
berg et al. (2016) and Srivastava et al. (forthcom-
ing) define fit using a symmetric measure, the
Jensen-Shannon divergence, which does not take
into account the direction of alignment. Yet the
distinction between an individual adapting to peers
versus peers adapting to the individual would ap-
pear to be consequential. Second, this prior work
considers fit across a wide range of linguistic cate-
gories but does not interrogate the role of particu-
lar categories, such as pronouns, that can be espe-
cially informative about enculturation. For exam-
ple, a person’s base rate use of the first-person sin-
gular (I) or plural (we) might indicate the degree
of group identity internalization, whereas adjust-
ment to we usage in response to others’ use of the
pronoun might reveal the degree of self-regulation
to the group’s normative expectations.

Modeling fit with WHAM To address these
limitations, we build upon and extend the WHAM
alignment framework (Doyle and Frank, 2016) to
analyze the dynamics of internalization and self-
regulation using the complete corpus of email
communications and personnel records from a
mid-sized technology company over a seven-year
period. WHAM uses a conditional measure of
alignment, separating overall homophily (uncon-
ditional similarity in people’s language use, driven
by internalized similarity) from in-the-moment
adaptation (adjusting to another’s usage, corre-
sponding to self-regulation). WHAM also pro-
vides a directed measure of alignment, in that it
estimates a replier’s adaptation to the other con-
versational participant separately from the partici-
pant’s adaptation to the replier.

Level(s) of alignment The convention within
linguistic alignment research, dating back to early

604

work on Linguistic Style Matching (Niederhoffer
and Pennebaker, 2002), is to look at lexical align-
ment: the repetition of the same or similar words
across conversation participants. From a commu-
nication accommodation standpoint, this is justi-
fied by assuming that one’s choice of words repre-
sents a stylistic signal that is partially independent
of the meaning one intends to express—similar to
the accommodation on paralinguistic signals dis-
cussed above. The success of previous linguistic
alignment research shows that this is valid.

However, words are difficult to divorce from
their meanings, and sometimes repeating a word
conflicts with repeating its referent. In particular,
pronouns often refer to different people depending
on who uses the pronoun. While there is evidence
that one person using a first-person singular pro-
noun increases the likelihood that her conversa-
tion partner will as well (Chung and Pennebaker,
2007), we may also expect that one person us-
ing first-person singular pronouns may cause the
other to use more second-person pronouns, so
that both people are referring to the same per-
son. This is especially important under the In-
teractive Alignment Model view (Pickering and
Garrod, 2004), where conversants align their en-
tire mental representations, which predicts both
lexical and referential alignment behaviors will
be observed. Discourse-strategic explanations for
alignment also predict alignment at multiple levels
(Doyle and Frank, 2016).

Since we have access to a high-quality corpus
with meaningful outcome measures, we can inves-
tigate the relative importance of these two types
of alignment. We will show that referential align-
ment is more predictive of employment outcomes
than is lexical alignment, suggesting a need for
alignment research to consider both levels rather
than just the latter.

3 Data: Corporate Email Corpus

We use the complete corpus of internal emails
exchanged among full-time employees at a mid-
sized US-based technology company between
2009 to 2014 (Srivastava et al., forthcoming).
Each email was summarized as a count of word
categories in its text. These categories are a sub-
set of the Linguistic Information and Word Count
system (Pennebaker et al., 2007). The categories
were chosen because they are likely to be indica-

tive of one’s standing/role within a group.1

We divided email chains into message-reply
pairs to investigate conditional alignment between
a message and its reply. To limit these pairs to
cases where the reply was likely related to the pre-
ceding message, we removed all emails with more
than one sender or recipient (including CC/BCC),
identical sender and recipient, or where the sender
or recipient was an automatic notification system
or any other mailbox that was not specific to a sin-
gle employee. We also excluded emails with no
body text or more than 500 words in the body text,
and pairs with more than a week’s latency between
message and reply.

Finally, because our analyses involve encultura-
tion dynamics over the first six months of employ-
ment, we excluded replies sent by an employee
whose overall tenure was less than six months.
This resulted in a collection of 407,779 message-
reply pairs, with 485 distinct replying employ-
ees. We combined this with monthly updates of
employees joining and leaving the company and
whether they left voluntarily or involuntarily. Of
the 485, 66 left voluntarily, 90 left involuntarily,
and 329 remained employed at the end of the ob-
servation period.

Privacy protections and ethical considerations
Research based on employees’ archived electronic
communications in organizational settings poses
potential threats to employee privacy and com-
pany confidentiality. To address these concerns,
and following established ethical guidelines for
the conduct of such research (Borgatti and Molina,
2003), we implemented the following procedures:
(a) raw data were stored on secure research servers
behind the company’s firewall; (b) messages ex-
changed with individuals outside the firm were
eliminated; (c) all identifying information such
as email addresses was transformed into hashed
identifiers, with the company retaining access to
the key code linking identifying information to
hashed identifiers; and (d) raw message content
was transformed into linguistic categories so that
identities could not be inferred from message con-
tent. Per terms of the non-disclosure agreement
we signed with the firm, we are not able to share
the data underlying the analyses reported below.

1Six pronoun categories (first singular (I), first plural (we),
second (you), third singular personal (he, she), third sin-
gular impersonal (it, this), and third plural (they)) and five
time/certainty categories (past tense, present tense, future
tense, certainty, and tentativity).

605

We can, however, share the code and dummy test
data, both of which can be accessed at http:
//github.com/gabedoyle/acl2017.

4 Model: An Extended WHAM
Framework

To assess alignment, we use the Word-Based Hi-
erarchical Alignment Model (WHAM) framework
(Doyle and Frank, 2016). The core principle of
WHAM is that alignment is a change, usually an
increase, in the frequency of using a word category
in a reply when the word category was used in the
preceding message. For instance, a reply to the
message What will we discuss at the meeting?, is
likely to have more instances of future tense than
a reply to the message What did we discuss at the
meeting? Under this definition, alignment is the
log-odds shift from the baseline reply frequency,
the frequency of the word in a reply when the pre-
ceding message did not contain the word.

WHAM is a hierarchical generative modeling
framework, so it uses information from related ob-
servations (e.g., multiple repliers with similar de-
mographics) to improve its robustness on sparse
data (Doyle et al., 2016). There are two key pa-
rameters, shown in Figure 2: ηbase, the log-odds of
a given word category c when the preceding mes-
sage did not contain c, and ηalign, the increase in
the log-odds of c when the preceding message did
contain c.

A dynamic extension To understand encultura-
tion, we need to track changes in both the align-
ment and baseline over time. We add a month-by-
month change term to WHAM, yielding a piece-
wise linear model of these factors over the course
of an employee’s tenure. Each employee’s tenure
is broken into two or three segments: their first six
months after being hired, their last six months be-
fore leaving (if they leave), and the rest of their
tenure.2 The linear segments for their alignment
are fit as an intercept term ηalign, based at their
first month (for the initial period) or their last
month (for the final period), and per-month slopes
α. Baseline segments are fit similarly, with pa-
rameters ηbase and β.3 To visualize the align-

2Within each segment, the employee’s alignment model
is similar to that of Yurovsky et al. (2016), who introduced
a constant by-month slope parameter to model changes in
parent-child alignment during early linguistic development.

3The six month timeframe was chosen as previous re-
search has found it to be a critical period for early encultura-
tion (Bauer et al., 1998). Pilot investigations into the change

align
base

0.1

0.2

0.3

0.4

0.5

−2.7

−2.6

−2.5

−2.4

Time

Lo
g−

od
ds

 p
ar

am
et

er
 e

st
im

at
es

ηalign
start

ηalign
mid

ηalign
end

α
end

α sta
rt

β sta
rt

β
end

ηbase
mid

ηbase
start

ηbase
end

Figure 1: Sample sawhorse plot with key variables
labelled. The η point parameters (first month,
last month, and middle average) and α (or β) by-
month slope (start, end) parameters are estimated
by WHAM for each word category and employee
group.

ment behaviors and the parameter values, we cre-
ate “sawhorse” plots, with an example in Figure
1.

In our present work, we are focused on changes
in cultural fit during the transitions into or out of
the group, so we collapse observations outside the
first/last six months into a stable point estimate,
constraining their slopes to be zero. This simplifi-
cation also circumvents the issue of different em-
ployees having different middle-period lengths.4

Model structure The graphical model for our
instantiation of WHAM is shown in Figure 2.
For each word category c, WHAM’s generative
model represents each reply as a series of token-
by-token independent draws from a binomial dis-
tribution. The binomial probability µ is dependent
on whether the preceding message did (µalign)
or did not (µbase) contain a word from category
c, and the inferred alignment value is the differ-
ence between these probabilities in log-odds space
(ηalign).

The specific values of these variables depend
on three hierarchical features: the word category
c, the group g that a given employee falls into,
and the time period t (a piece of the piece-wise

in baseline usage over time showed roughly linear changes
over the first/last six months, but our linearity assumption
may mask interesting variation in the enculturation trajecto-
ries.

4As shown in Figure 1, the pieces do not need to de-
fine a continuous function. Alignment behaviors continue
to change in the middle of an employee’s tenure (Srivastava
et al., forthcoming), so alignment six months in to the job is
unlikely to be equal to alignment six months from leaving, or
the average alignment over the middle tenure.

606

C

N

N

N αg,t αc,g,t

ηalignc ηalignc,g,t ηalignc,g,t,m µalignc,g,t,m Calign
c,g,t,m

ηbasec ηbasec,g,t ηbasec,g,t,m µbasec,g,t,m Cbase
c,g,t,m

βg,t βc,g,t
N

N

N N logit−1

Binom

N N

logit−1

Binom

Nbase
c,g,t,m

N align
c,g,t,m

m

month

group, time

category

Figure 2: The Word-Based Hierarchical Alignment Model (WHAM). Hierarchical chains of normal
distributions capture relationships between word categories, individuals, outcome groups, and time, and
generate linear predictors η, which are converted into probabilities µ for binomial draws of the words in
replies.

linear function: beginning, middle, or end). Note
that the hierarchical ordering is different for the η
chains and the α/β chains; c is above g and t for
the η chains, but below them for the α/β chains.
This is because we expect the static (η) values for
a given word category to be relatively consistent
across different groups and at different times, but
we expect the values to be independent across the
different word categories. Conversely, we expect
that the enculturation trajectories across word cat-
egories (α/β) will be similar, while the trajecto-
ries may vary substantially across different groups
and different times. Lastly, the month m in which
a reply is written (measured from the start of the
time period t) has a linear effect on the η value, as
described below.

To estimate alignment, we first divide the
replies up by group, time period, and calendar
month. We separate the replies into two sets based
on whether the preceding message contained the
category c (the “alignment” set) or not (the “base-
line” set). All replies within a set are then aggre-
gated in a single bag-of-words representation, with
category token counts Calignc,g,t,m and Cbasec,g,t,m, and
total token counts N base

c,g,t,m and N base
c,g,t,m compris-

ing the observed variables on the far right of the
model. Moving from right to left, these counts are
assumed to come from binomial draws with prob-

ability µalignc,g,t,m or µbasec,g,t,m. The µ values are then
in turn generated from η values in log-odds space
by an inverse-logit transform, similar to linear pre-
dictors in logistic regression.

The ηbase variables are representations of the
baseline frequency of a marker in log-odds space,
and µbase is simply a conversion of ηbase to proba-
bility space, the equivalent of an intercept term in
a logistic regression. ηalign is an additive value,
with µalign = logit−1(ηbase + ηalign), the equiv-
alent of a binary feature coefficient in a logistic
regression. The specific month’s η variables are
calculated as a linear function: ηalignc,g,t,m = ηalignc,g,t +
mαc,g,t, and similarly with β for the baseline.

The remainder of the model is a hierarchy of
normal distributions that integrate social structure
into the analysis. In the present work, we have
three levels in the hierarchy: category, group, and
time period. In Analysis 1, employees are grouped
by their employment outcome (stay, leave volun-
tarily, leave involuntarily); in Analyses 2 & 3,
where we predict the employment outcomes, each
group is a single employee. The normal distri-
butions that connect these levels have identical
standard deviations σ2 = .25.5 The hierarchies

5The deviation is not a theoretically motivated choice, and
was chosen as a good empirical balance between reasonable
parameter convergence (improved by smaller σ2) and good
model log-probability (improved by larger σ2).

607

are headed by a normal distribution centered at
0, except for the ηbase hierarchy, which has a
Cauchy(0, 2.5) distribution.6

Message and reply length can affect alignment
estimates; the WHAM model was developed in
part to reduce this effect. As different employees
had different email length distributions, we further
accounted for length by dividing all replies into
five quintile length bins, and treated each bin as
separate observations for each employee. This de-
sign choice adds an additional control factor, but
results were qualitatively similar without it. All
of our analyses are based on parameter estimates
from RStan fits of WHAM with 500 iterations over
four chains.

While previous research on cultural fit has em-
phasized either its internalization (O’Reilly et al.,
1991) or self-regulation (Goldberg et al., 2016)
components, our extension to the WHAM frame-
work helps disentangle them by estimating them
as separate baseline and alignment trajectories.
For example, we can distinguish between an
archetypal individual who initially aligns to her
colleagues and then internalizes this style of com-
munication such that her baseline use also shifts
and another archetypal person who aligns to her
colleagues but does not change her baseline usage.
The former exhibits high correspondence between
internalization and self-regulation, whereas the
latter demonstrates an ability to decouple them.

5 Analyses

We perform three analyses on this data. First,
we examine the qualitative behaviors of pro-
noun alignment and how they map onto employee
outcomes in the data. Second, we show that
these qualitative differences in early encultura-
tion are meaningful, with alignment behaviors
predicting employment outcome above chance.
Lastly, we consider lexical versus referential lev-
els of alignment and show that predictions are im-
proved under the referential formulation, suggest-
ing that alignment is not limited to low-level word-
repetition effects.

6As ηbase is the log-odds of each word in a reply being a
part of the category c, it is expected to be substantially nega-
tive. For example, second person pronouns (you), are around
2% of the words in replies, approximately −4 in log-odds
space. We follow Gelman et al. (2008)’s recommendation of
the Cauchy prior as appropriate for parameter estimation in
logistic regression.

I You We

align
base

0.0

0.2

0.4

0.6

−4.5

−4.0

−3.5

Time

Lo
g−

od
ds

 p
ar

am
et

er
 e

st
im

at
es

Figure 3: Sawhorse plots showing the dynam-
ics of pronoun alignment behavior across employ-
ees. Vertical axis shows log-odds for baseline and
alignment. Top row shows estimated alignment,
highest for we and smallest for you. Bottom row
shows baseline dynamics, with employees shifting
toward the average usage as they enculturate. The
shaded region is one standard deviation over pa-
rameter samples.

5.1 Analysis 1: Dynamic Qualitative Changes

We begin with descriptive analyses of the behav-
ior of pronouns, which are likely to reflect incor-
poration into the company. In particular, we look
at first-person singular (I), first-person plural (we),
and second-person pronouns (you). We expect that
increases in we usage will occur as the employee
is integrated into the group, while I and you us-
age will decrease, and want to understand whether
these changes manifest on baseline usage (i.e., in-
ternalization), alignment (i.e., self-regulation), or
both.

Design We divided each employee’s emails by
calendar month, and separated them into the em-
ployee’s first six months, their last six months (if
an employee left the company within the observa-
tion period), and the middle of their tenure. Em-
ployees with fewer than twelve months at the com-
pany were excluded from this analysis, so that
their first and last months did not overlap.

We fit two WHAM models in this analysis. The
first aggregated all employees, regardless of em-
ployment outcome, to minimize noise; the second
separated them by outcome to analyze cultural fit
differences.

Outcome-aggregated model We start with the
aggregated behavior of all employees, shown in
Figure 3. For baselines, we see decreased use of I

608

I You We

align
base

−0.2

0.0

0.2

0.4

0.6

0.8

−5.0

−4.5

−4.0

−3.5

Time

Lo
g−

od
ds

 p
ar

am
et

er
 e

st
im

at
es

Outcome: invol stay vol

Figure 4: Sawhorse plots split by employment out-
come. Mid-tenure points are jittered for improved
readability.

and you over the first six months, with we usage
increasing over the same period, confirming the
expected result that incorporating into the group
is accompanied by more inclusive pronoun usage.
Despite the baseline changes, alignment is fairly
stable through the first six months. Alignment on
first-person singular and second-person pronouns
is lower than first-person plural pronouns, likely
due to the fact that I or you have different referents
when used by the two conversants, while both con-
versants could use we to refer to the same group.
We will consider this referential alignment in more
detail in Analysis 3. Since employees with dif-
ferent outcomes have much different experiences
over their last six months, we will not discuss them
in aggregate, aside from noting the sharp decline
in we alignment near the end of the employees’
tenures.

Outcome-separated model Figure 4 shows
outcome-specific trajectories, with green lines
showing involuntary leavers (i.e., those who are
fired or downsized), blue showing voluntary
leavers, and orange showing employees who re-
mained at the company through the final month of
the data. The use of I and you is similar to the
aggregates in Figure 3, regardless of group. The
last six months of I usage show an interesting dif-
ference, where involuntary leavers align more on I
but retain a stable baseline while voluntary leavers
retain a stable alignment but increase I overall,
which is consistent with group separation.

The most compelling result we see here, though,
is the changes in we usage by different groups of
employees. Employees who eventually leave the

company involuntarily show signs of more self-
regulation than internalization over the first six
months, increasing their alignment while decreas-
ing their baseline use (though they return to more
similar levels as other employees later in their
tenure). Employees who stay at the company, as
well as those who later leave voluntarily, show
signs of internalization, increasing their baseline
usage to the company average, as well as adapting
their alignment levels to the mean. This finding
suggests that how quickly the employees internal-
ize culturally-standard language use predicts their
eventual employment outcome, even if they even-
tually end up near the average.

5.2 Analysis 2: Predicting Outcomes

This analysis tests the hypothesis that there are
meaningful differences in employees’ initial en-
culturation, captured by alignment behaviors. We
examine the first six months of communications
and attempt to predict whether the employee will
leave the company. We find that, even with a sim-
ple classifier, alignment behaviors are predictive
of employment outcome.

Design We fit the WHAM model to only the first
six months of email correspondence for all em-
ployees who had at least six months of email. The
model estimated the initial level of baseline use
(ηbase) and alignment (ηalign) for each employee,
as well as the slope (α, β) for baseline and align-
ment over those first six months, over all 11 word
categories mentioned in Section 3.

We then created logistic regression classifiers,
using the parameter estimates to predict whether
an employee would leave the company. We fit
separate classifiers for leaving voluntarily or in-
voluntarily. Our results show that early alignment
behaviors are better at identifying employees who
will leave involuntarily than voluntarily, consistent
with Srivastava et al.’s (forthcoming) findings that
voluntary leavers are similar to stayers until late in
their tenure. We fit separate classifiers using the
alignment parameters and the baseline parameters
to investigate their relative informativity.

For each model, we report the area under
the curve (AUC). This value is estimated from
the receiver operating characteristic (ROC) curve,
which plots the true positive rate against the false
positive rate over different classification thresh-
olds. An AUC of 0.5 represents chance per-
formance. We use balanced, stratified cross-

609

validation to reduce AUC misestimation due to
unbalanced outcome frequencies and high noise
(Parker et al., 2007).

Results The left column of Figure 5 shows the
results over 10 runs of 10-fold balanced logis-
tic classifiers with stratified cross-validation in R.
The alignment-based classifiers are both above
chance at predicting that an employee will leave
the company, whether involuntarily or voluntarily.
The baseline-based classifiers perform worse, es-
pecially on voluntary leavers. This finding is con-
sistent with the idea that voluntary leavers resem-
ble stayers (who form the bulk of the employees)
until late in their tenure when their cultural fit de-
clines.

We fit a model using both alignment and base-
line parameters, but this model yielded an AUC
value below the alignment-only classifier. This
suggests that where alignment and baseline be-
haviors are both predictive, they do not provide
substantially different predictive power and lead
to overfitting. A more sophisticated classifier may
overcome these challenges; our goal here was not
to achieve maximal classification performance but
to test whether alignment provided any useful in-
formation about employment outcomes.

5.3 Analysis 3: Types of Alignment

Our final analysis investigates the nature of lin-
guistic alignment: specifically, whether there is an
effect of referential alignment beyond that of the
more commonly used lexical alignment.

Testing this hypothesis requires a small change
to the alignment calculations. Lexical alignment is
based on the conditional probability of the replier
using a word category c given that the preceding
message used that same category c. For referential
alignment, we examine the conditional probability
of the replier using a word category cj given that
the preceding message used the category ci, where
ci and cj are likely to be referentially linked. We
also consider cases where ci is likely to transition
to cj throughout the course of the conversation,
such as present tense verbs turning into past tense
as the event being described recedes into the past.
The pairs of categories that are likely to be refer-
entially or transitionally linked are: (you, I); (we,
I); (you, we); (past, present); (present, future); and
(certainty, tentativity). We include both directions
of these pairs, so this provides approximately the
same number of predictor variables for both situa-

lexical referential

invol
vol

align base align base

0.50

0.54

0.58

0.62

0.50

0.54

0.58

0.62

Parameter set

C
la

ss
ifi

er
 A

U
C

Figure 5: AUC values for 10 runs of 10-fold cross-
validated logistic classifiers, with 95% confidence
intervals on the mean AUC. Both lexical (left col-
umn) and referential (right column) alignment pa-
rameters lead to above chance classifier perfor-
mance, but referential alignment outperforms lex-
ical alignment at predicting both voluntary and in-
voluntary departures.

tions to maximize comparability (12 for the refer-
ential alignments, 11 for the lexical). This modifi-
cation does not change the structure of the WHAM
model, but rather changes its C and N counts by
reclassifying replies between the baseline or align-
ment pathways.

Results Figure 5 plots the differences in predic-
tive model performance using lexical versus ref-
erential alignment parameters. We find that the
semantic parameters provide more accurate clas-
sification than the lexical both for voluntarily and
involuntarily-leaving employees. This suggests
that while previous work looking at lexical align-
ment successfully captures social structure, refer-
ential alignment may reflect a deeper and more
accurate representation of the social structure. It
is unclear if this behavior holds in less formal
situations or with weaker organizational structure
and shared goals, but these results suggest that the
traditional alignment approach of only measuring
lexical alignment should be augmented with ref-
erential alignment measures for a more complete
analysis.

6 Discussion

A key finding from this work is that pronoun
usage behaviors in employees’ email communi-
cation are consistent with social integration into
the group; employees use “I” pronouns less and

610

“we” pronouns more as they integrate. Further-
more, we see the importance of using an align-
ment measure such as WHAM for distinguish-
ing the base rate and alignment usage of words.
Employees who leave the company involuntarily
show increased “we” usage through greater align-
ment, using “we” more when prompted by a col-
league, but introducing it less of their own ac-
cord. This suggests that these employees do not
feel fully integrated into the group, although they
are willing to identify as a part of it when a more
fully-integrated group member includes them, cor-
responding to self-regularization over internaliza-
tion. The fact that these alignment measures alone,
without any job productivity or performance met-
rics, have some predictive capability for employ-
ees’ leaving the company suggests the potential
for support or intervention programs to help high-
performing but poorly-integrated employees inte-
grate into the company better.

More generally, the prominence of
pronominally-driven communication changes
suggest that alignment analyses can provide
insight into a range of social integration settings.
This may be especially helpful in cases where
there is great pressure to integrate smoothly, and
people would be likely to adopt a self-regulating
approach even if they do not internalize their
group membership. Such settings not only include
the high-stakes situation of keeping one’s job, but
of transitioning from high school to college or
moving to a new country or region. Maximizing
the chances for new members to become comfort-
able within a group is critical both for spreading
useful aspects of the group’s existing culture
to new members and for integrating new ideas
from the new members’ knowledge and practices.
Alignment-based approaches can be a useful tool
in separating effective interventions that cause
internalization of the group dynamics from those
that lead to more superficial self-regularization
changes.

7 Conclusions

This paper described an effort to use directed
linguistic alignment as a measure of cultural fit
within an organization. We adapted a hierarchical
alignment model from previous work to estimate
fit within corporate email communications, focus-
ing on changes in language during employees’ en-
try to and exit from the company. Our results

showed substantial changes in the use of pronouns,
with pronoun patterns varying by employees’ out-
comes within the company.The use of the first-
person plural “we” during an employee’s first six
months is particularly instructive. Whereas stay-
ers exhibited increased baseline use, indicating in-
ternalization, those eventually departing involun-
tarily were on the one hand decreasingly likely
to introduce “we” into conversation, but increas-
ingly responsive to interlocutors’ use of the pro-
noun. While not internalizing a shared identity
with their peers, involuntarily departed employees
were overly self-regulating in response to its invo-
cation by others.

Quantitatively, rates of usage and alignment in
the first six months of employment carried infor-
mation about whether employees left involuntar-
ily, pointing towards fit within the company cul-
ture early on as an indicator of eventual employ-
ment outcomes. Finally, we saw ways in which
the application of alignment to cultural fit might
help to refine ideas about alignment itself: prelimi-
nary analysis suggested that referential, rather than
lexical, alignment was more predictive of employ-
ment outcomes. More broadly, these results sug-
gest ways that quantitative methods can be used to
make precise application of concepts like “cultural
fit” at scale.

8 Acknowledgments

This work was supported by NSF Grant
#1456077; The Garwood Center for Corpo-
rate Innovation at the Haas School of Business,
University of California, Berkeley; the Stanford
Data Science Initiative; and the Stanford Graduate
School of Business.

611

References
Talya N. Bauer, Elizabeth Wolfe Morrison, and

Ronda Roberts Callister. 1998. Socialization re-
search: A review and directions for future research.
In Research in Personnel and Human Resources
Management, Emerald Group, Bingley, UK, vol-
ume 16, pages 149–214.

Stephen P. Borgatti and José Luis Molina. 2003. Ethi-
cal and strategic issues in organizational social net-
work analysis. The Journal of Applied Behavioral
Science 39(3):337–349.

Richard Y. Bourhis and Howard Giles. 1977. The lan-
guage of intergroup distinctiveness. In H Giles, ed-
itor, Language, Ethnicity, and Intergroup Relations,
Academic Press, London, pages 119–135.

David B. Buller and R. Kelly Aune. 1988. The effects
of vocalics and nonverbal sensitivity on compliance:
A speech accommodation theory explanation. Hu-
man Communication Research 14:301–32.

Cindy Chung and James W. Pennebaker. 2007. The
psychological functions of function words. In
K Fiedler, editor, Social communication, Psychol-
ogy Press, New York, chapter 12, pages 343–359.

Cristian Danescu-Niculescu-Mizil, Lillian Lee,
Bo Pang, and Jon Kleinberg. 2012. Echoes of
power: Language effects and power differences
in social interaction. In Proceedings of the 21st
international conference on World Wide Web. page
699. https://doi.org/10.1145/2187836.2187931.

Cristian Danescu-Niculescu-Mizil, Robert West, Dan
Jurafsky, Jure Leskovec, and Christopher Potts.
2013. No country for old members: user lifecy-
cle and linguistic change in online communities. In
Proceedings of the 22nd International Conference
on World Wide Web. pages 307–318.

Gabriel Doyle and Michael C. Frank. 2016. Investigat-
ing the sources of linguistic alignment in conversa-
tion. In Proceedings of ACL.

Gabriel Doyle, Dan Yurovsky, and Michael C. Frank.
2016. A robust framework for estimating linguistic
alignment in Twitter conversations. In Proceeedings
of WWW.

R. E. Feldman. 1968. Response to compatriots and
foriegners who seek assistance. Journal of Person-
ality and Social Psychology 10:202–14.

Riccardo Fusaroli, Bahador Bahrami, Karsten Olsen,
Andreas Roepstorff, Geraint Rees, Chris Frith,
and Kristian Tylén. 2012. Coming to Terms:
Quantifying the Benefits of Linguistic Coordi-
nation. Psychological Science 23(8):931–939.
https://doi.org/10.1177/0956797612436816.

Andrew Gelman, Aleks Jakulin, Maria Grazia Pittau,
and Yu-Sung Su. 2008. A weakly informative de-
fault prior distribution for logistic and other regres-
sion models. The Annals of Applied Statistics .

Howard Giles, Nikolas Coupland, and Justine Coup-
land. 1991. Accommodation theory: Communica-
tion, context, and consequences. In Howard Giles,
Justine Coupland, and Nikolas Coupland, editors,
Contexts of accommodation: Developments in ap-
plied sociolinguistics, Cambridge University Press,
Cambridge.

Augusto Gnisci. 2005. Sequential strategies of accom-
modation: A new method in courtroom. British
Journal of Social Psychology 44(4):621–643.

Amir Goldberg, Sameer B. Srivastava, V. Govind Ma-
nian, and Christopher Potts. 2016. Fitting in or
standing out? The tradeoffs of structural and cul-
tural embeddedness. American Sociological Review
.

Molly E. Ireland, Richard B. Slatcher, Paul W.
Eastwick, Lauren E. Scissors, Eli J. Finkel,
and James W. Pennebaker. 2011. Language
style matching predicts relationship initiation
and stability. Psychological Science 22:39–44.
https://doi.org/10.1177/0956797610392928.

Kate G. Niederhoffer and James W. Pennebaker. 2002.
Linguistic style matching in social interaction. Jour-
nal of Language and Social Psychology 21(4):337–
360. http://jls.sagepub.com/content/21/4/337.short.

Charles A. O’Reilly, Jennifer Chatman, and David F.
Caldwell. 1991. People and organizational culture:
a profile comparison approach to assessing person-
organization fit. Academy of Management Journal
34(3):487–516.

Brian J Parker, Simon Günter, and Justin Bedo. 2007.
Stratification bias in low signal microarray studies.
BMC bioinformatics 8(1):1.

James W. Pennebaker, Cindy K. Chung, Molly Ireland,
Amy Gonzalez, and Roger J. Booth. 2007. The de-
velopment and psychometric properties of liwc2007.
Technical report, LIWC.net.

Martin J. Pickering and Simon Garrod. 2004. To-
ward a mechanistic psychology of dialogue.
Behavioral and brain sciences 27(2):169–190.
https://doi.org/10.1017/S0140525X04000056.

Sameer B. Srivastava, Amir Goldberg, V. Govind Ma-
nian, and Christopher Potts. forthcoming. Encul-
turation trajectories: Language, cultural adaptation,
and individual outcomes in organizations. Manage-
ment Science .

Harry C. Triandis. 1960. Cognitive similarity and com-
munication in a dyad. Human Relations 13:175–
183.

Dan Yurovsky, Gabriel Doyle, and Michael C. Frank.
2016. Linguistic input is tuned to children’s devel-
opmental level. In Proceedings of the 38th Annual
Meeting of the Cognitive Science Society.

612

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 613–622
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1057

Representations of language in a model of visually grounded speech signal

Grzegorz Chrupała
Tilburg University

g.chrupala@uvt.nl

Lieke Gelderloos
Tilburg University

l.j.gelderloos@uvt.nl

Afra Alishahi
Tilburg University

a.alishahi@uvt.nl

Abstract

We present a visually grounded model of
speech perception which projects spoken
utterances and images to a joint seman-
tic space. We use a multi-layer recurrent
highway network to model the temporal
nature of spoken speech, and show that it
learns to extract both form and meaning-
based linguistic knowledge from the input
signal. We carry out an in-depth analy-
sis of the representations used by different
components of the trained model and show
that encoding of semantic aspects tends
to become richer as we go up the hierar-
chy of layers, whereas encoding of form-
related aspects of the language input tends
to initially increase and then plateau or de-
crease.

1 Introduction

Speech recognition is one of the success stories
of language technology. It works remarkably well
in a range of practical settings. However, this
success relies on the use of very heavy supervi-
sion where the machine is fed thousands of hours
of painstakingly transcribed audio speech signal.
Humans are able to learn to recognize and under-
stand speech from notably weaker and noisier su-
pervision: they manage to learn to extract struc-
ture and meaning from speech by simply being ex-
posed to utterances situated and grounded in their
daily sensory experience. Modeling and emulat-
ing this remarkable skill has been the goal of nu-
merous studies; however in the overwhelming ma-
jority of cases researchers used severely simplified
settings where either the language input or the ex-
tralinguistic sensory input, or both, are small scale
and symbolically represented. Section 2 provides
a brief overview of this research.

More recently several lines of work have moved
towards more realistic inputs while modeling or
emulating language acquisition in a grounded set-
ting. Gelderloos and Chrupała (2016) use the
image captioning dataset MS COCO (Lin et al.,
2014) to mimic the setting of grounded language
learning: the sensory input consists of images of
natural scenes, while the language input are pho-
netically transcribed descriptions of these scenes.
The use of such moderately large and low-level
data allows the authors to train a multi-layer re-
current neural network model, and to explore the
nature and localization of the emerging hierarchy
of linguistic representations learned in the process.
Furthermore, in a series of recent studies Harwath
and Glass (2015); Harwath et al. (2016); Harwath
and Glass (2017) use image captioning datasets
to model learning to understand spoken language
from visual context with convolutional neural net-
work models. Finally, there is a small but grow-
ing body of work dedicated to elucidating the na-
ture of representations learned by neural networks
from language data (see Section 2.2 for a brief
overview). In the current work we build on these
three strands of research and contribute the follow-
ing advances:
• We use a multi-layer gated recurrent neural

network to properly model the temporal na-
ture of speech signal and substantially im-
prove performance compared to the convolu-
tional architecture from Harwath and Glass
(2015);
• We carry out an in-depth analysis of the rep-

resentations used by different components of
the trained model and correlate them to repre-
sentations learned by a text-based model and
to human patterns of judgment on linguistic
stimuli. This analysis is especially novel for
a model with speech signal as input.

The general pattern of findings in our analysis is

613

https://doi.org/10.18653/v1/P17-1057

as follows: The model learns to extract from the
acoustic input both form-related and semantics-
related information, and encodes it in the activa-
tions of the hidden layers. Encoding of semantic
aspects tends to become richer as we go up the hi-
erarchy of layers. Meanwhile, encoding of form-
related aspects of the language input, such as ut-
terance length or the presence of specific words,
tends to initially increase and then decay.

We release the code for our models
and analyses as open source, available at
https://github.com/gchrupala/visually-grounded-
speech. We also release a dataset of synthetically
spoken image captions based on MS COCO, avail-
able at https://doi.org/10.5281/zenodo.400926.

2 Related work

Children learn to recognize and assign meaning
to words from continuous perceptual data in ex-
tremely noisy context. While there have been
many computational studies of human word mean-
ing acquisition, they typically make strong sim-
plifying assumptions about the nature of the in-
put. Often language input is given in the form
of word symbols, and the context consists of a
set of symbols representing possible referents (e.g.
Siskind, 1996; Frank et al., 2007; Fazly et al.,
2010). In contrast, several studies presented mod-
els that learn from sensory rather than symbolic in-
put, which is rich with regards to the signal itself,
but very limited in scale and variation (e.g. Roy
and Pentland, 2002; Yu and Ballard, 2004; Lazari-
dou et al., 2016).

2.1 Multimodal language acquisition

Chrupała et al. (2015) introduce a model that
learns to predict the visual context from image
captions. The model is trained on image-caption
pairs from MSCOCO (Lin et al., 2014), captur-
ing both rich visual input as well as larger scale
input, but the language input still consists of word
symbols. Gelderloos and Chrupała (2016) propose
a similar architecture that instead takes phoneme-
level transcriptions as language input, thereby in-
corporating the word segmentation problem into
the learning task. In this work, we introduce an ar-
chitecture that learns from continuous speech and
images directly.

This work is related to research on visual
grounding of language. The field is large and
growing, with most work dedicated to the ground-

ing of written text, particularly in image cap-
tioning tasks (see Bernardi et al. (2016) for an
overview). However, learning to ground language
to visual information is also interesting from an
automatic speech recognition point of view. Po-
tentially, ASR systems could be trained from nat-
urally co-occurring visual context information,
without the need for extensive manual annota-
tion – a particularly promising prospect for speech
recognition in low-resource languages. There
have been several attempts along these lines. Syn-
naeve et al. (2014) present a method of learning
to recognize spoken words in isolation from co-
occurrence with image fragments. Harwath and
Glass (2015) present a model that learns to map
pre-segmented spoken words in sequence to as-
pects of the visual context, while in Harwath and
Glass (2017) the model also learns to recognize
words in the unsegmented signal.

Most closely related to our work is that of Har-
wath et al. (2016), as it presents an architecture
that learns to project images and unsegmented
spoken captions to the same embedding space.
The sentence representation is obtained by feed-
ing the spectrogram to a convolutional network.
The architecture is trained on crowd-sourced spo-
ken captions for images from the Places dataset
(Zhou et al., 2014), and evaluated on image search
and caption retrieval. Unfortunately this dataset is
not currently available and we were thus unable to
directly compare the performance of our model to
Harwath et al. (2016). We do compare to Harwath
and Glass (2015) which was tested on a public
dataset. We make different architectural choices,
as our models are based on recurrent highway net-
works (Zilly et al., 2016). As in human cognition,
speech is processed incrementally. This also al-
lows our architecture to integrate information se-
quentially from speech of arbitrary duration.

2.2 Analysis of neural representations

While analysis of neural methods in NLP is of-
ten limited to evaluation of the performance on
the training task, recently methods have been in-
troduced to peek inside the black box and explore
what it is that enables the model to perform the
task. One approach is to look at the contribution
of specific parts of the input, or specific units in the
model, to final representations or decisions. Kádár
et al. (2016) propose omission scores, a method to
estimate the contribution of input tokens to the fi-

614

nal representation by removing them from the in-
put and comparing the resulting representations to
the ones generated by the original input. In a sim-
ilar approach, Li et al. (2016) study the contribu-
tion of individual input tokens as well as hidden
units and word embedding dimensions by erasing
them from the representation and analyzing how
this affects the model.

Miao et al. (2016) and Tang et al. (2016) use vi-
sualization techniques for fine-grained analysis of
GRU and LSTM models for ASR. Visualization
of input and forget gate states allows Miao et al.
(2016) to make informed adaptations to gated re-
current architectures, resulting in more efficiently
trainable models. Tang et al. (2016) visualize
qualitative differences between LSTM- and GRU-
based architectures, regarding the encoding of in-
formation, as well as how it is processed through
time.

We specifically study linguistic properties of the
information encoded in the trained model. Adi
et al. (2016) introduce prediction tasks to ana-
lyze information encoded in sentence embeddings
about word order, sentence length, and the pres-
ence of individual words. We use related tech-
niques to explore encoding of aspects of form and
meaning within components of our stacked archi-
tecture.

3 Models

We use a multi-layer, gated recurrent neural net-
work (RHN) to model the temporal nature of
speech signal. Recurrent neural networks are de-
signed for modeling sequential data, and gated
variants (GRUs, LSTMs) are widely used with
speech and text in both cognitive modeling and
engineering contexts. RHNs are a simple gener-
alization of GRU networks such that the transform
between time points can consist of several steps.

Our multimodal model projects spoken utter-
ances and images to a joint semantic space. The
idea of projecting different modalities to a shared
semantic space via a pair of encoders has been
used in work on language and vision (among them
Vendrov et al. (2015)). The core idea is to en-
courage inputs representing the same meaning in
different modalities to end up nearby, while main-
taining a distance from unrelated inputs.

The model consists of two parts: an utterance
encoder, and an image encoder. The utterance en-
coder starts from MFCC speech features, while

the image encoder starts from features extracted
with a VGG-16 pre-trained on ImageNet. Our loss
function attempts to make the cosine distance be-
tween encodings of matching utterances and im-
ages greater than the distance between encodings
of mismatching utterance/image pairs, by a mar-
gin:

(1)

∑

u,i

(∑

u′
max[0, α+d(u, i)−d(u′, i)]

+
∑

i′
max[0, α+ d(u, i)− d(u, i′)]

)

where d(u, i) is the cosine distance between the
encoded utterance u and encoded image i. Here
(u, i) is the matching utterance-image pair, u′

ranges over utterances not describing i and i′

ranges over images not described by u.
The image encoder enci is a simple linear pro-

jection, followed by normalization to unit L2
norm:

enci(i) = unit(Ai+ b) (2)

where unit(x) = x
(xT x)0.5

and with (A, b) as
learned parameters. The utterance encoder encu
consists of a 1-dimensional convolutional layer of
length s, size d and stride z, whose output feeds
into a Recurrent Highway Network with k lay-
ers and L microsteps, whose output in turn goes
through an attention-like lookback operator, and
finally L2 normalization:

encu(u) = unit(Attn(RHNk,L(Convs,d,z(u))))
(3)

The main function of the convolutional layer
Convs,d,z is to subsample the input along the tem-
poral dimension. We use a 1-dimensional convo-
lution with full border mode padding. The atten-
tion operator simply computes a weighted sum of
the RHN activation at all timesteps:

Attn(x) =
∑

t

αtxt (4)

where the weights αt are determined by learned
parameters U and W, and passed through the
timewise softmax function:

αt =
exp(U tanh(Wxt))∑
t′ exp(U tanh(Wxt′))

(5)

The main component of the utterance encoder is a
recurrent network, specifically a Recurrent High-
way Network (Zilly et al., 2016). The idea behind

615

RHN is to increase the depth of the transform be-
tween timesteps, or the recurrence depth. Other-
wise they are a type of gated recurrent networks.
The transition from timestep t − 1 to t is then de-
fined as:

rhn(xt, s
(L)
t−1) = s

(L)
t (6)

where xt stands for input at time t, and s
(l)
t de-

notes the state at time t at recurrence layer l, with
L being the top layer of recurrence. Furthermore,

s
(l)
t = h

(l)
t � t

(l)
t + s

(l−1)
t �

(
1− t

(l)
t

)
(7)

where � is elementwise multiplication, and

h
(l)
t = tanh

(
I[l = 1]WHxt +UHl

s
(l−1)
t

)
(8)

t
(l)
t = σ

(
I[l = 1]WTxt +UTls

(l−1)
)

(9)

Here I is the indicator function: input is only in-
cluded in the computation for the first layer of re-
currence l = 1. By applying the rhn function re-
peatedly, an RHN layer maps a sequence of inputs
to a sequence of states:

(10)
RHN(X, s0)

= rhn(xn, . . . , rhn(x2, rhn(x1, s
(L)
0)))

Two or more RHN layers can be composed into a
stack:

RHN2(RHN1(X, s1
(L)
0), s2

(L)
0), (11)

where sn
(l)
t stands for the state vector of layer n of

the stack, at layer l of recurrence, at time t. In our
version of the Stacked RHN architecture we use
residualized layers:

RHNres(X, s0) = RHN(X, s0) +X (12)

This formulation tends to ease optimization in
multi-layer models (cf. He et al., 2015; Oord et al.,
2016).

In addition to the speech model described
above, we also define a comparable text model.
As it takes a sequence of words as input, we re-
place the convolutional layer with a word embed-
ding lookup table. We found the text model did
not benefit from the use of the attention mecha-
nism, and thus the sentence embedding is simply
the L2-normalized activation vector of the topmost
layer, at the last timestep.

4 Experiments

Our main goal is to analyze the emerging repre-
sentations from different components of the model
and to examine the linguistic knowledge they en-
code. For this purpose, we employ a number of
tasks that cover the spectrum from fully form-
based to fully semantic.

In Section 4.2 we assess the effectiveness of our
architecture by evaluating it on the task of rank-
ing images given an utterance. Sections 4.3 to 4.6
present our analyses. In Sections 4.3 and 4.4 we
define auxiliary tasks to investigate to what extent
the network encodes information about the surface
form of an utterance from the speech input. In Sec-
tion 4.5 and 4.6 we focus on where semantic infor-
mation is encoded in the model. In the analyses,
we use the following features:
Utterance embeddings: the weighted sum of the

unit activations on the last layer, as calculated
by Equation (3).

Average unit activations: hidden layer activa-
tions averaged over time and L2-normalized
for each hidden layer.

Average input vectors: the MFCC vectors aver-
aged over time. We use this feature to exam-
ine how much information can be extracted
from the input signal only.

4.1 Data

For the experiments reported in the remainder of
the paper we use two datasets of images with spo-
ken captions.

4.1.1 Flickr8K
The Flickr8k Audio Caption Corpus was con-
structed by having crowdsource workers read
aloud the captions in the original Flickr8K cor-
pus (Hodosh et al., 2013). For details of the
data collection procedure refer to Harwath and
Glass (2015). The datasets consist of 8,000 im-
ages, each image with five descriptions. One
thousand images are held out for validation, and
another one thousand for the final test set. We
use the splits provided by (Karpathy and Fei-Fei,
2015). The image features come from the final
fully connect layer of VGG-16 (Simonyan and
Zisserman, 2014) pre-trained on Imagenet (Rus-
sakovsky et al., 2014).

We generate the input signal as follows: we ex-
tract 12-dimensional mel-frequency cepstral coef-
ficients (MFCC) plus log of the total energy. We

616

then compute and add first order and second order
differences (deltas) for a total of 37 dimensions.
We use 25 milisecond windows, sampled every 10
miliseconds.1

4.1.2 Synthetically spoken COCO
We generated synthetic speech for the captions
in the MS COCO dataset (Lin et al., 2014) via
the Google Text-to-Speech API.2 The audio and
the corresponding MFCC features are released as
Chrupała et al. (2017)3. This TTS system we used
produces high-quality realistic-sounding speech.
It is nevertheless much simpler than real human
speech as it uses a single voice, and lacks tempo
variation or ambient noise. The data consists of
over 300,000 images, each with five spoken cap-
tions. Five thousand images each are held out for
validation and test. We use the splits and image
features provided by Vendrov et al. (2015).4 The
image features also come from the VGG-16 net-
work, but are averages of feature vectors for ten
crops of each image. For the MS COCO captions
we extracted only plain MFCC and total energy
features, and did not add deltas in order to keep
the amount of computation manageable given the
size of the dataset.

4.2 Image retrieval

We evaluate our model on the task of ranking im-
ages given a spoken utterance, such that highly
ranked images contain scenes described by the ut-
terance. The performance on this task on valida-
tion data is also used to choose the best variant
of the model architecture and to tune the hyperpa-
rameters. We compare the speech models to mod-
els trained on written sentences split into words.
The best settings found for the four models were
the following:
Flickr8K Text RHN 300-dimensional word em-

beddings, 1 hidden layer with 1024 dimen-
sions, 1 microstep, initial learning rate 0.001.

Flick8K Speech RHN convolutional layer with
length 6, size 64, stride 2, 4 hidden layers
with 1024 dimensions, 2 microsteps, atten-

1We noticed that for a number of utterances the audio sig-
nal was very long: on inspection it turned out that most of
these involved failure to switch off the microphone on the
part of the workers, and the audio contained ambient noise or
unrelated speech. We thus trucated all audio for this dataset
at 10,000 miliseconds.

2Available at https://github.com/pndurette/gTTS.
3Available at https://doi.org/10.5281/zenodo.400926.
4See https://github.com/ivendrov/order-embedding.

tion MLP with 128 hidden units, initial learn-
ing rate 0.0002

COCO Text RHN 300-dimensional word em-
beddings, 1 hidden layer with 1024 dimen-
sions, 1 microstep, initial learning rate 0.001

COCO Speech RHN convolutional layer with
length 6, size 64, stride 3, 5 hidden layers
with 512 dimensions, 2 microsteps, attention
MLP with 512 hidden units, initial learning
rate 0.0002

All models were optimized with Adam
(Kingma and Ba, 2014) with early stopping: we
kept the parameters for the epoch which showed
the best recall@10 on validation data.

Model R@1 R@5 R@10 r̃

Speech RHN4,2 0.055 0.163 0.253 48
Spectr. CNN - - 0.179 -
Text RHN1,1 0.127 0.364 0.494 11

Table 1: Image retrieval performance on Flickr8K.
R@N stands for recall at N; r̃ stands for median
rank of the correct image.

Model R@1 R@5 R@10 r̃

Speech RHN5,2 0.111 0.310 0.444 13
Text RHN1,1 0.169 0.421 0.565 8

Table 2: Image retrieval performance on
MS COCO. R@N stands for recall at N; r̃ stands
for median rank of the correct image.

Table 1 shows the results for the human speech
from the Flickr8K dataset. The Speech RHN
model scores substantially higher than model of
Harwath and Glass (2015) on the same data. How-
ever the large gap between its perfomance and the
scores of the text model suggests that Flickr8K
is rather small for the speech task. In Table 2
we present the results on the dataset of synthetic
speech from MS COCO. Here the text model is
still better, but the gap is much smaller than for
Flickr8K. We attribute this to the much larger size
of dataset, and to the less noisy and less variable
synthetic speech.

While the MS COCO text model is overall bet-
ter than the speech model, there are cases where
it outperforms the text model. We listed the top
hundred cases where the ratio of the ranks of the
correct image according to the two models was the
smallest, as well as another hundred cases where
it was the largest. Manual inspection did not turn

617

up any obvious patterns for the cases of text be-
ing better than speech. For the cases where speech
outperformed text, two patterns stood out: (i) sen-
tences with spelling mistakes, (ii) unusually long
sentences. For example for the sentence a yellow

Figure 1: Images returned for utterance a yellow
and white birtd is in flight by the text (left) and
speech (right) models.

and white birtd is in flight the text model misses
the misspelled word birtd and returns an irrelevant
image, while the speech model seems robust to
some degree of variation in pronunciation and re-
turns the target image at rank 1 (see Figure 1). In
an attempt to quantify this effect we counted the
number of unique words with training set frequen-
cies below 5 in the top 100 utterances with lowest
and highest rank ratio: for the utterances where
text was better there were 16 such words; for ut-
terances where speech was better there were 28,
among them misspellings such as streeet, scears
(for skiers), contryside, scull, birtd, devise.

The distribution of utterance lengths in Fig-
ure 2 confirms pattern (ii): the set of 100 sen-
tences where speech beats text by a large margin
are longer on average and there are extremely long
outliers among them. One of them is the 36-word-

●● ●●speech

text

10 20 30 40
Length

be
tte

r

Figure 2: Length distribution for sentences where
one model performs much better than the other.

long utterance depicted in Figure 3, with ranks 470
and 2 for text and speech respectively. We suspect
that the speech model’s attention mechanism en-
ables it to cherry pick key fragments of such mon-
ster utterances, while the text model lacking this
mechanism may struggle. Figure 3 shows the plot
of the attention weights for this utterance from the

speech model.

4.3 Predicting utterance length

Our first auxiliary task is to predict the length of
the utterance, using the features explained at the
beginning of Section 4. Since the length of an ut-
terance directly corresponds to how long it takes to
articulate, we also use the number of time steps5 as
a feature and expect it to provide the upper bound
for our task, especially for synthetic speech. We
use a Ridge Regression model for predicting utter-
ance length using each set of features. The model
is trained on 80% of the sentences in the validation
set, and tested on the remaining 20%. For all fea-
tures regularization penalty α = 1.0 gave the best
results.

Figure 4 shows the results for this task on hu-
man speech from Flickr8K and synthetic speech
from COCO. With the exception of the average in-
put vectors for Flickr8K, all features can explain
a high proportion of variance in the predicted ut-
terance length. The pattern observed for the two
datasets is slightly different: due to the systematic
conversion of words to synthetic speech in COCO,
using the number of time steps for this dataset
yields the highest R2. However, this feature is not
as informative for predicting the utterance length
in Flickr8K due to noise and variation in human
speech, and is in fact outperformed by some of the
features extracted from the model. Also, the input
vectors from COCO are much more informative
than Flickr8K due to larger quantity and simpler
structure of the speech signal. However, in both
datasets the best (non-ceiling) performance is ob-
tained by using average unit activations from the
hidden layers (layer 2 for COCO, and layers 3 and
4 for Flickr8K). These features outperform utter-
ance embeddings, which are optimized according
to the visual grounding objective of the model and
most probably learn to ignore the superficial char-
acteristics of the utterance that do not contribute to
matching the corresponding image.

Note that the performance on COCO plateaus
after the second layer, which might suggest that
form-based knowledge is learned by lower layers.
Since Flickr8K is much smaller in size, the stabil-
ising happens later in layer 3.

5This is approximately duration in milliseconds
10×stride .

618

Figure 3: Attention weight distribution for a long utterance.

Figure 4: R2 values for predicting utterance length
for Flickr8K and COCO. Layers 1–5 represent
(normalized) average unit activation, whereas the
first (#0) and last point represent average input
vectors and utterance embeddings, respectively.

4.4 Predicting word presence

Results from the previous experiment suggest that
our model acquires information about higher level
building blocks (words) in the continuous speech
signal. Here we explore whether it can detect the
presence or absence of individual words in an ut-
terance. We formulate detecting a word in an ut-
terance as a binary classification task, for which
we use a multi-layer perceptron with a single hid-
den layer of size 1024, optimized by Adam. The
input to the model is a concatenation of the fea-
ture vector representing an utterance and the one
representing a target word. We again use utter-
ance embeddings, average unit activations on each
layer, and average input vectors as features, and
represent each target word as a vector of MFCC
features extracted from the audio signal syntheti-
cally produced for that word.

For each utterance in the validation set, we ran-
domly pick one positive and one negative target
(i.e., one word that does and one that does not ap-
pear in the utterance) that is not a stop word. To
balance the probability of a word being positive
or negative, we use each positive target as a neg-
ative target for another utterance in the validation

set. The MLP model is trained on the positive and
negative examples corresponding to 80% of the ut-
terances in the validation set of each dataset, and
evaluated on the remaining 20%.

Figure 5 shows the mean accuracy of the MLP
on Flickr8K and COCO. All results using features
extracted from the model are above chance (0.5),
with the average unit activations of the hidden lay-
ers yielding the best results (0.65 for Flickr8K on
layer 3, and 0.79 for COCO on layer 4). These
numbers show that the speech model infers re-
liable information about word-level blocks from
the low-level audio features it receives as input.
The observed trend is similar to the previous task:
average unit activations on the higher-level hid-
den layers are more informative for this task than
the utterance embeddings, but the performance
plateaus before the topmost layer.

Figure 5: Mean accuracy values for predicting the
presence of a word in an utterance for Flickr8K
and COCO. Layers 1–5 represent the (normalized)
average unit activations, whereas the first (#0) and
last point represent average input vectors and ut-
terance embeddings, respectively.

4.5 Sentence similarity
Next we explore to what extent the model’s rep-
resentations correspond to those of humans. We
employ the Sentences Involving Compositional
Knowledge (SICK) dataset (Marelli et al., 2014).
SICK consists of image descriptions taken from

619

Figure 6: Pearson’s r of cosine similarities of aver-
aged input MFCCs and COCO Speech RHN hid-
den layer activation vectors and embeddings of
sentence pairs with relatedness scores from SICK,
cosine similarity of COCO Text RHN embed-
dings, and edit similarity.

Flickr8K and video captions from the SemEval
2012 STS MSRVideo Description data set (STS)
(Agirre et al., 2012). Captions were paired at ran-
dom, as well as modified to obtain semantically
similar and contrasting counterparts, and the re-
sulting pairs were rated for semantic similarity.

For all sentence pairs in SICK, we generate
synthetic spoken sentences and feed them to the
COCO Speech RHN, and calculate the cosine sim-
ilarity between the averaged MFCC input vectors,
the averaged hidden layer activation vectors, and
the sentence embeddings. Z-score transformation
was applied before calculating the cosine similar-
ities. We then correlate these cosine similarities
with
• semantic relatedness according to human rat-

ings
• cosine similarities according to z-score trans-

formed embeddings from COCO Text RHN
• edit similarities, a measure of how sim-

ilar the sentences are in form, specifi-
cally, 1−normalized Levenshtein distance
over character sequences

Figure 6 shows a boxplot over 10,000 bootstrap
samples for all correlations. We observe that (i)
correlation with edit similarity initially increases,
then decreases; (ii) correlation with human re-
latedness scores and text model embeddings in-
creases until layer 4, but decreases for hidden layer
5. The initially increasing and then decreasing cor-
relation with edit similarity is consistent with the
findings that information about form is encoded
by lower layers. The overall growing correlation
with both human semantic similarity ratings and

0.00

0.25

0.50

0.75

1.00

0 2 4 6
layer

R
E

R

words

peaking/peeking
great/grate
mantle/mantel
peer/pier
tale/tail
wit/whit
weight/wait

isle/aisle
sight/site
pic/pick
sun/son
wears/wares
pause/paws
tied/tide

ware/wear
sales/sails
boarder/border
plane/plain
lapse/laps
rose/rows
stares/stairs

seen/scene
plains/planes
see/sea
main/mane
rains/reins
tea/tee
stair/stare

waist/waste
hole/whole
suite/sweet
pairs/pears
cole/coal
sale/sail

log(mincount) 4 5 6 7

Figure 7: Disambiguation performance per layer.
Points #0 and #6 (connected via dotted lines) rep-
resent the input vectors and utterance embeddings,
respectively. The black line shows the overall
mean RER.

the COCO Text RHN indicate that higher layers
learn to represent semantic knowledge. We were
somewhat surprised by the pattern for the correla-
tion with human ratings and the Text model simi-
larities which drops for layer 5. We suspect it may
be caused by the model at this point in the layer
hierarchy being strongly tuned to the specifics of
the COCO dataset. To test this, we checked the
correlations with COCO Text embeddings on val-
idation sentences from the COCO dataset instead
of SICK. These increased monotonically, in sup-
port of our conjecture.

4.6 Homonym disambiguation

Next we simulate the task of distinguishing be-
tween pairs of homonyms, i.e. words with the
same acoustic form but different meaning. We
group the words in the union of the training and
validation data of the COCO dataset by their pho-
netic transcription. We then pick pairs of words
which have the same pronunciation but different
spelling, for example suite/sweet. We impose the
following conditions: (a) both forms appear more
than 20 times, (b) the two forms have different
meaning (i.e. they are not simply variant spellings
like theater/theatre), (c) neither form is a func-
tion word, and (d) the more frequent form con-
stitutes less than 95% of the occurrences. This

620

gives us 34 word pairs. For each pair we gener-
ate a binary classification task by taking all the ut-
terances where either form appears, using average
input vectors, utterance embeddings, and average
unit activations as features. Instances for all fea-
ture sets are normalized to unit L2 norm.

For each task and feature set we run strati-
fied 10-fold cross validation using Logistic Re-
gression to predict which of the two words the
utterance contains. Figure 7 shows, for each
pair, the relative error reduction of each feature
set with respect to the majority baseline. There
is substantial variation across word pairs, but
overall the task becomes easier as the features
come from higher layers in the network. Some
forms can be disambiguated with very high accu-
racy (e.g. sale/sail, cole/coal, pairs/pears), while
some others cannot be distinguished at all (peak-
ing/peeking, great/grate, mantle/mantel). We ex-
amined the sentences containing the failing forms,
and found out that almost all occurrences of peak-
ing and mantle were misspellings of peeking and
mantel, which explains the impossibility of disam-
biguating these cases.

5 Conclusion

We present a multi-layer recurrent highway net-
work model of language acquisition from visually
grounded speech signal. Through detailed analy-
sis we uncover how information in the input sig-
nal is transformed as it flows through the network:
formal aspects of language such as word identities
that not directly present in the input are discovered
and encoded low in the layer hierarchy, while se-
mantic information is most strongly expressed in
the topmost layers.

Going forward we would like to compare the
representations learned by our model to the brain
activity of people listening to speech in order to
determine to what extent the patterns we found
correspond to localized processing in the human
cortex. This will hopefully lead to a better under-
standing of language learning and processing by
both artificial and neural networks.

Acknowledgements

We would like to thank David Harwath for mak-
ing the Flickr8k Audio Caption Corpus publicly
available.

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2016. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. arXiv preprint arXiv:1608.04207 .

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor
Gonzalez-Agirre. 2012. Semeval-2012 task 6: A pi-
lot on semantic textual similarity. In Proceedings of
the First Joint Conference on Lexical and Compu-
tational Semantics. Association for Computational
Linguistics, volume 2, pages 385–393.

Raffaella Bernardi, Ruket Cakici, Desmond Elliott,
Aykut Erdem, Erkut Erdem, Nazli Ikizler-Cinbis,
Frank Keller, Adrian Muscat, and Barbara Plank.
2016. Automatic description generation from im-
ages: A survey of models, datasets, and evaluation
measures. arXiv preprint arXiv:1601.03896 .

Grzegorz Chrupała, Akos Kádár, and Afra Alishahi.
2015. Learning language through pictures. In Pro-
ceedings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics.

Grzegorz Chrupała, Lieke Gelderloos, and Afra
Alishahi. 2017. Synthetically spoken COCO.
https://doi.org/10.5281/zenodo.400926.

Afsaneh Fazly, Afra Alishahi, and Suzanne Steven-
son. 2010. A probabilistic computational model of
cross-situational word learning. Cognitive Science:
A Multidisciplinary Journal 34(6):1017–1063.

Michael C. Frank, Noah D. Goodman, and Joshua B.
Tenenbaum. 2007. A Bayesian framework for cross-
situational word-learning. In Advances in Neural In-
formation Processing Systems. volume 20.

Lieke Gelderloos and Grzegorz Chrupała. 2016. From
phonemes to images: levels of representation in
a recurrent neural model of visually-grounded lan-
guage learning. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers.

David Harwath and James Glass. 2015. Deep multi-
modal semantic embeddings for speech and images.
In IEEE Automatic Speech Recognition and Under-
standing Workshop.

David Harwath and James R Glass. 2017. Learn-
ing word-like units from joint audio-visual analysis.
arXiv preprint arXiv:1701.07481 .

David Harwath, Antonio Torralba, and James Glass.
2016. Unsupervised learning of spoken language
with visual context. In Advances in Neural Infor-
mation Processing Systems. pages 1858–1866.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. arXiv:1512.03385 .

621

Micah Hodosh, Peter Young, and Julia Hockenmaier.
2013. Framing image description as a ranking task:
Data, models and evaluation metrics. Journal of Ar-
tificial Intelligence Research 47:853–899.

Ákos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2016. Representation of linguistic form and
function in recurrent neural networks. CoRR
abs/1602.08952.

Andrej Karpathy and Li Fei-Fei. 2015. Deep visual-
semantic alignments for generating image descrip-
tions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pages
3128–3137.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980.

Angeliki Lazaridou, Grzegorz Chrupała, Raquel
Fernández, and Marco Baroni. 2016. Multimodal
semantic learning from child-directed input. In
The 15th Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. Un-
derstanding neural networks through representation
erasure. arXiv preprint arXiv:1612.08220 .

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. 2014. Microsoft coco:
Common objects in context. In Computer Vision–
ECCV 2014, Springer, pages 740–755.

Marco Marelli, Stefano Menini, Marco Baroni, Luisa
Bentivogli, Raffaella Bernardi, and Roberto Zam-
parelli. 2014. A sick cure for the evaluation of com-
positional distributional semantic models. In LREC.
pages 216–223.

Yajie Miao, Jinyu Li, Yongqiang Wang, Shi-Xiong
Zhang, and Yifan Gong. 2016. Simplifying long
short-term memory acoustic models for fast training
and decoding. In IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP).
IEEE, pages 2284–2288.

Aaron van den Oord, Nal Kalchbrenner, and Koray
Kavukcuoglu. 2016. Pixel recurrent neural net-
works. arXiv preprint arXiv:1601.06759 .

Deb K Roy and Alex P Pentland. 2002. Learning words
from sights and sounds: a computational model.
Cognitive Science 26(1):113 – 146.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, An-
drej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C. Berg, and Li Fei-Fei. 2014. ImageNet
Large Scale Visual Recognition Challenge.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. CoRR abs/1409.1556.

Jeffrey M. Siskind. 1996. A computational study of
cross-situational techniques for learning word-to-
meaning mappings. Cognition 61(1-2):39–91.

Gabriel Synnaeve, Maarten Versteegh, and Emmanuel
Dupoux. 2014. Learning words from images and
speech. In NIPS Workshop on Learning Semantics,
Montreal, Canada.

Zhiyuan Tang, Ying Shi, Dong Wang, Yang Feng,
and Shiyue Zhang. 2016. Memory visualization for
gated recurrent neural networks in speech recogni-
tion. arXiv preprint arXiv:1609.08789 .

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and Raquel
Urtasun. 2015. Order-embeddings of images and
language. arXiv preprint arXiv:1511.06361 .

Chen Yu and Dana H Ballard. 2004. A multimodal
learning interface for grounding spoken language in
sensory perceptions. ACM Transactions on Applied
Perception (TAP) 1(1):57–80.

Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Anto-
nio Torralba, and Aude Oliva. 2014. Learning deep
features for scene recognition using places database.
In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, Cur-
ran Associates, Inc., pages 487–495.

Julian Georg Zilly, Rupesh Kumar Srivastava,
Jan Koutnı́k, and Jürgen Schmidhuber. 2016.
Recurrent highway networks. arXiv preprint
arXiv:1607.03474 .

622

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 623–633
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1058

Spectral Analysis of Information Density in Dialogue
Predicts Collaborative Task Performance

Yang Xu and David Reitter
College of Information Sciences and Technology

The Pennsylvania State University
University Park, PA 16802, USA

yang.xu@psu.edu, reitter@psu.edu

Abstract

We propose a perspective on dialogue that
focuses on relative information contribu-
tions of conversation partners as a key to
successful communication. We predict the
success of collaborative task in English
and Danish corpora of task-oriented dia-
logue. Two features are extracted from the
frequency domain representations of the
lexical entropy series of each interlocutor,
power spectrum overlap (PSO) and rela-
tive phase (RP). We find that PSO is a neg-
ative predictor of task success, while RP is
a positive one. An SVM with these fea-
tures significantly improved on previous
task success prediction models. Our find-
ings suggest that the strategic distribution
of information density between interlocu-
tors is relevant to task success.

1 Introduction

What factors affect whether information is con-
veyed effectively and reliably in conversations?
Several theoretical frameworks have emerged that
model dialogical behavior at different granularity
levels. Can we use them to measure communica-
tive effectiveness?

Grounding theory (Clark and Brennan, 1991)
models a successful communication as a pro-
cess during which “common ground” (i.e., mu-
tual knowledge, beliefs etc.) is jointly built among
interlocutors. The interactive alignment model
(IAM) (Pickering and Garrod, 2004) proposes that
the ultimate goal of dialogue is the alignment of
interlocutors’ situational model, which is helped
by alignment at all other lower representation lev-
els (e.g., lexical, syntactic etc.), driven by the psy-
chologically well-documented priming effects.

Recently, empirical studies have verified the
explanatory powers of the above-mentioned the-
ories, especially the IAM, utilizing dialogues
recorded and transcribed from various collabora-
tive tasks conducted in laboratory settings (Reit-
ter and Moore, 2007; Reitter and Moore, 2014;
Fusaroli et al., 2012; Fusaroli and Tylén, 2016).
In those studies, the quality of communication is
directly reflected in the collaborative performance
of interlocutors, i.e., how successful they are in ac-
complishing the task. Although they do not come
to fully agree on which theoretical accounts of di-
alogue (e.g., interactive alignment vs. interper-
sonal synergy) provides better explanations (see
Section 2.1 for details), the majority of these stud-
ies have confirmed that the alignment of certain
linguistic markers, lexical items, or syntactic rules
between interlocutors correlates with task success.

What is missing from the picture, however, is
the computational understanding of how strategies
of interaction and the mix of information contribu-
tions to the conversation facilitate successful com-
munication. This is understandable because those
higher level concepts do not directly map onto
the atomic linguistic elements and thus are much
more difficult to define and operationalize. In the
present study, we intend to explore this missing
part of work by characterizing how the interaction
between interlocutors in terms of their informa-
tion contributions affects the quality of communi-
cation.

1.1 An information-based approach

Recent work has already used information theory
to study the dynamics of dialogue. Xu and Reit-
ter (2016b) observed that the amount of lexical in-
formation (measured by entropy) from interlocu-
tors of different roles, converges within the span of
topic episodes in natural spoken dialogue. Anon
(2017) interpret this converging pattern as a re-

623

https://doi.org/10.18653/v1/P17-1058

flection of the dynamic process in which the infor-
mation contributed by two interlocutors fluctuates
in a complementary way at the early stage, and
gradually reaches an equilibrium status. Xu and
Reitter (2016b) also correlated this entropy con-
verging pattern with the topic shift phenomenon
that frequently occurs in natural conversation (Ng
and Bradac, 1993), and proposed that it reflects
the process of interlocutors building the common
ground that is necessary for the ongoing topics of
conversation.

Based on Xu and Reitter’s (2016) finding
that entropy converging pattern repeatedly occurs
within dialogue (though not necessarily at strictly
regular intervals), it is reasonable to expect that
after applying some spectral analysis techniques
(time space to frequency space conversion) to the
entropy series of dialogue, the frequency space
representations should demonstrate some patterns
that are distinct from white noise, because the pe-
riodicity properties in time space are captured.

Furthermore, we expect that how the frequency
representations of two interlocutors correlate pro-
vides some information about the higher level
properties of dialogue, e.g., the task performance
etc. The thought is intuitive: If we imagine the
entropy series from two interlocutors as two ideal
sinusoidal signals s1 and s2 (supposedly of dif-
ferent frequencies, f1 and f2) (Figure 1), then
the observed converging pattern can be thought of
as a segment from the full spans of the signals.
Then the frequency space properties, such as how
close f1 and f2 are, and the phase difference φ
between them, will definitely affect the shape of
the converging pattern (solid lines in Figure 1).
As Xu and Reitter (2016b) argues that the con-
verging segment reflects the grounding process be-
tween interlocutors, it is reasonable to expect that
the shape and length of this segment are reflective
of how well interlocutors understand each other,
and the overall collaborative performance as well.

Based on the above considerations, the goal of
the present study is to explore how the frequency
space representations of the entropy series of dia-
logue are correlated with the collaborative perfor-
mance of task. We first demonstrate that entropy
series satisfy the prerequisites of spectral analy-
sis techniques in Section 4. Then we use two fre-
quency space statistics, power spectrum overlap
(PSO) and relative phase (RP), to predict task suc-
cess. The reasons of using these two specific in-

φ

Time

E
nt

ro
py

Signal

s1

s2

Figure 1: Analogizing the entropy converging pat-
terns reported by Xu and Reitter (2016b) to a
segment from two periodic signals. The shad-
owed area and the solid lines indicate the observed
entropy convergence between interlocutors. The
dashed lines are the imaginary parts of the ideal
signals.

dices are discussed in Section 2.3, and their def-
initions are given in Section 3.3. The results are
shown in Sections 5 to 7, and the implications are
discussed.

2 Related Work

2.1 The success of dialogue
The interactive-alignment model (IAM) (Picker-
ing and Garrod, 2004) stipulates that communica-
tion is successful to the extent that communicators
“understand relevant aspects of the world in the
same way as each other” (Garrod and Pickering,
2009). Qualitative and quantitative studies (Gar-
rod and A. Anderson, 1987; Pickering and Gar-
rod, 2006; Reitter and Moore, 2014) have revealed
that the alignment of linguistic elements at differ-
ent representation levels between interlocutors fa-
cilitates the success of task-oriented dialogues.

More recently, different theoretical accounts
other than IAM, such as interpersonal synergy
(Fusaroli et al., 2014) and complexity matching
(Abney et al., 2014) have been proposed to ex-
plain the mechanism of successful dialogue from
the perspective of dynamic systems. Fusaroli and
Tylén (2016) compare the approaches of interac-
tive alignment and interpersonal synergy in terms
of how well they predict the collective perfor-
mance in a joint task. They find that the syn-
ergy approach is a better predictor than the align-
ment approach. Abney et al. (2014) differentiate
the concepts of behavior matching and complexity
matching in dyadic interaction. They demonstrate
the acoustic onset events in speech signals exhibit
power law clustering across timescales, and the

624

complexity matching in these power law functions
is reflective of whether the conversation is affilia-
tive or argumentative.

The perspective taken by the present study has
some common places with Fusaroli and Tylén
(2016) and Abney et al.’s (2014) work: we view
dialogue as an interaction of two dynamic sys-
tems. The joint decision-making task used by
Fusaroli and Tylén (2016) resulted in a small cor-
pus of dialogue in Danish, which we will use for
the present study.

2.2 Information density in natural language

Information Theory (Shannon, 1948) predicts that
the optimal way to communicate is to send infor-
mation at a constant rate, a.k.a. the principle of
entropy rate constancy (ERC). The way humans
use natural language to communicate also follows
this principle: by computing the local per-word
entropy of the sentence (which, under the predic-
tion of ERC, will increase with sentence position),
ERC is confirmed in both written text (Genzel
and Charniak, 2002; Genzel and Charniak, 2003;
Keller, 2004; Qian and Jaeger, 2011) and spoken
dialogue (Xu and Reitter, 2016b; Xu and Reitter,
2016a). The theory of uniform information den-
sity (UID) extends ERC to syntactic representa-
tions (Jaeger, 2010) and beyond.

The information density in language, i.e., the
distribution of entropy (predictability), reveal the
discourse structure to some extent. For exam-
ple, entropy drops at the boundaries between top-
ics (Genzel and Charniak, 2003; Qian and Jaeger,
2011), and increases within a topic episode in di-
alogue (Xu and Reitter, 2016b) (see Section 1.1).
The entropy of microblog text reflects changes in
contextual information (e.g., an unexpected event
in a sports game) (Doyle and Frank, 2015).

In sum, per-word entropy quantifies the amount
of lexical information in natural language, and
therefore fulfills the needs of modeling the infor-
mation contribution from interlocutors.

2.3 Spectral analysis methodology

Spectral analysis, also referred to as frequency do-
main analysis, is a pervasively used technique in
physics, engineering, economics and social sci-
ences. The key idea of it is to decompose a com-
plex signal in time space into simpler components
in frequency space, using mathematical operations
such as Fourier transform (Bracewell, 1986).

The application of spectral analysis in human
language technology mainly focuses on process-
ing the acoustic signals of human voice, and cap-
turing the para-linguistics features relevant to cer-
tain tasks (Schuller et al., 2013). For example,
Bitouk et al. (2010) find that utterance-level spec-
tral features are useful for emotion recognition.
Gregory Jr and Gallagher (2002) demonstrate that
spectral information beneath 0.5 kHz can predict
US president election outcomes. However, we
are not aware of the usage of spectral analysis in
studying linguistic phenomena at higher represen-
tation levels than the acoustic level.

For our study, we are looking for some tech-
niques that can capture the coupling between two
signals at frequency space. The nature of the sig-
nal (whether it is language-related or not) should
not be the first concern from the perspective of
methodology. Therefore, studies outside the field
of speech communication and linguistics could
also be enlightening to our work.

After searching the literature, we find that the
spectral analysis techniques that Oullier et al.
(2002) and Oullier et al. (2008) use to study
the physical and social functions of human body
movement are useful to our research goal. In Oul-
lier et al.’s (2002) work, subjects stood in a mov-
ing room and were to track a target attached to the
wall. A frequency space statistics, power spec-
trum overlap (PSO), was used to demonstrate the
coupling between motion of the room and motion
of the subject’s head. Stronger coupling effect
(higher PSO) was found in the tracking task than
a no-tracking baseline. PSO in nature quantifies
how much the frequency space representations of
two signals (power spectrum density) overlap. It
allows us to explore the frequency space coupling
of two interlocutors’ entropy series in dialogue.

Similarly, Oullier et al. (2008) used the metrics
of peak-to-peak relative phase (RP) and PSO to
study the spontaneous synchrony in behavior that
emerges between interactants as a result of infor-
mation exchange. The signals to be analyzed were
the flexion-extension movement of index fingers
of two subjects sitting in front of each other. Both
metrics showed different patterns when the partici-
pants see each other or not. RP, in their work, mea-
sures the magnitude of delay between two signals,
and it corresponds to the notion of φ in Section 1.1.

625

3 Methods

3.1 Corpus data
Two corpora are examined in this study: the
HCRC Map Task Corpus (A. H. Anderson et al.,
1991) and a smaller corpus in Danish from a
joint decision-making study (Fusaroli et al., 2012),
henceforth DJD.

Map Task contains a set of 128 dialogues be-
tween two subjects, who accomplished a cooper-
ative task together. They were given two slightly
different maps of imaginary landmarks. One of
them plays as the instruction giver, who has routes
marked on her map, and the other plays as the in-
struction follower, who does not have routes. The
task for them is to reproduce the giver’s route on
the follower’s map. The participants are free to
speak, but they cannot see each other’s map. The
whole conversations were recorded, transcribed
and properly annotated. The collaborative perfor-
mance in the task is measured by the PATHDEV
variable, which quantifies the deviation between
the paths drawn by interlocutors. Larger values
indicate poorer task performance.

DJD contains a set of 16 dialogues from na-
tive speakers of Danish (11,100 utterances and
56,600 words). In Fusaroli et al.’s (2012) original
study the participants were to accomplish a series
of visual perception task trials, by discussing the
stimuli they saw and reaching a joint decision for
each trial. The collaborative performance is mea-
sured by the CollectivePerformance vari-
able, which is based on a psychometric function
that measures the sensitivity of the dyad’s joint de-
cision to the actual contrast difference of the trial
(Fusaroli et al., 2012). Higher value of this vari-
able indicates better task performance.

The Switchboard Corpus (Godfrey et al., 1992)
is used to train the language model for estimating
the sentence entropy in Map Task. The Copen-
hagen Dependency Treebanks Corpus1 is used for
the same purpose for DJD.

3.2 Estimating information density in
dialogue

The information density of language is estimated
at the sentence level, by computing the per-word
entropy of each sentence using a trigram language
model trained from a different corpus. We con-
sider a sentence to be a sequence of words, S =

1http://mbkromann.github.io/
copenhagen-dependency-treebank/

{w1, w2, . . . , wn}, and the per-word entropy is es-
timated by:

H(w1 ...wn) = −
1

n

∑

wi∈W
logP (wi|w1 ...wi−1)

(1)
whereP (wi|w1 . . . wi−1) is estimated by a trigram
model that is trained from an outside corpus. The
SRILM software (Stolcke, 2002) is used to train
the language model and to compute sentence en-
tropy.

Dialogue is a sequence of utterances contributed
by two interlocutors. For the k th dialogue whose
total utterance number is Nk, we mark it as Dk =
{uki | i = 1, 2, . . . , Nk}, in which uki is the i th
utterance. Map Task contains annotations of sen-
tence structure in utterances, and one utterance
could consist of several sentences that are syn-
tactically independent. Thus we further split Dk

into a sequence of sentence, Dk = {ski | i =
1, 2, . . . , N ′k}, in whichN ′k is number of sentences
in Dk. Since DJD lacks the sentence annotations,
we do not further split the utterance sequence, and
simply treat an utterance as a complete sentence.

Given a sequence {ski } (Map Task), or {uki }
(DJD), we calculate the per-word entropy for each
item in the sequence:

Hk = {H(ski) orH(uki) | i = 1, 2, . . . , N ′k(orNk)}
(2)

where H(ski) or H(uki) is computed according
to Equation 1.

Then we split the entropy series Hk into two
sub-series by the source of utterances (i.e., who
speaks them), resulting in HA

k for interlocutor A,
and HB

k for interlocutor B. For Map Task, the two
interlocutors have distinct roles, instruction giver
and follower. Thus the resulting two entropy series
are Hg

k and Hf
k . These per-interlocutor entropy

series will be the input of our next-step spectral
analysis.

3.3 Computing power spectrum overlap and
relative phase

The time intervals between utterances (or sen-
tences) vary, but since we care about the aver-
age information contribution within a complete se-
mantic unit, we treat entropy series as regular time
series. The time scale is not measured in seconds
but in turns (or sentences).

For a given dialogue Dk, we apply the fast
Fourier transform (FFT) on its two entropy se-

626

ries HA
k and HB

k , and obtain the power spectra
(or, power spectral density plots) of them, PAk and
PBk . The power spectra are estimated with the pe-
riodogram method provided by the open source R
software. The Y axis of a power spectrum is the
squared amplitude of signal (or power), and X axis
ranges from 0 to π/2 (we do not have sampling
frequency, thus the X axis is in angular frequency
but not in Hz).

The power spectrum overlap, PSOk, is calcu-
lated by computing the common area under the
curves of PAk and PBk is calculated, and normal-
izing by the total area of the two curves (see Fig-
ure 2). PSOk ranges from 0 to 1, and a larger value
indicates higher similarity between PAk and PBk .

Common area
0

2

4

6

8

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

P
ow

er

Spectrum

Pk
A

Pk
B

Figure 2: How PSO is computed. The blue
shadow is the common area under two spectrums.

The relative phase (RP) between HA
k and HB

k

is directly returned by the spectrum function in
R. It is a vector of real numbers that range from 0
to π, and each element represent the phase differ-
ence between two signals at a particular frequency
position of the spectrum.

4 Prerequisites of Spectral Analysis

Before proceeding to the actual analysis, we first
examine whether the data we use satisfy some of
the prerequisites of spectral analysis techniques.
One common assumption of Fourier transforms
is that the signals (time series) are stationary
(Dwivedi and Subba Rao, 2011). Stationarity
means that the mean, variance and other distri-
butional properties do not change over time (Na-
trella, 2010). Another presumption we hold is that
the entropy series contain some periodic patterns
(see Section 1.1), which means their power spec-
trum should differ from that of white noise.

4.1 Examine stationarity
We use three pervasively used statistical tests to
test the stationarity of our entropy series data: the

Table 1: Percentage stationary data

Corpus ADF KPSS PP

Map Task 82.4% 95.5% 100%
DJD 100% 81.3% 100%

augmented Dickey-Fuller (ADF) test (Dickey and
Fuller, 1979), the Kwiatkowski-Phillips-Schmidt-
Shin (KPSS) test (Kwiatkowski et al., 1992), and
the Phillips-Perron (PP) test (Phillips and Perron,
1988). The percentage of entropy series that pass
the stationarity tests are shown in Table 1. We
can see that the majority of our data satisfy the
assumption of stationarity, and thus it is valid to
conduct Fourier transform on the entropy series.

The stationarity property seems contradictory
to the previous findings about entropy increase
in written text and spoken dialogue (Genzel and
Charniak, 2002; Genzel and Charniak, 2003; Xu
and Reitter, 2016b), because stationarity predicts
that the mean entropy stays constant over time. We
examine this in our data by fitting a simple linear
model with entropy as the dependent, and sentence
position as the independent variable, which yields
significant (marginal) effects of the latter: For
Map Task, β = 2.3× 10−3, p < .05, Adj-R2 =
1.7× 10−4; For DJD, β = 7.2× 10−5, p =
.06, Adj-R2 = 2.2× 10−4. It indicates that the
stationarity of entropy series does not conflict with
the entropy increasing trend predicted by the prin-
ciple of ERC (Shannon, 1948). We conjecture
that stationarity satisfies because the effect size
(Adj-R2) of entropy increase is very small.

4.2 Comparison with white noise
Power spectra for all entropy series are obtained
with an FFT. We compare them with those of
white noise. The white noise data are simulated
with i.i.d. random data points that are generated
from normal distributions (same means and stan-
dard deviations as the actual data). Figure 3 shows
the smoothed average spectrums of the actual en-
tropy data and the simulated white noise data.

White noise signals should demonstrate a con-
stant power spectral density (Narasimhan and
Veena, 2005), and if the entropy series is not
completely random, then their average spectrum
should be flat. Linear models show that the aver-
age spectrums of the entropy data have slopes that
are significantly larger than zero (For Map Task,

627

200

250

300

350

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

P
ow

er

Type

Actual data

White noise

(a) Map Task

0.29

0.30

0.31

0.32

0.0 0.1 0.2 0.3 0.4 0.5

Frequency

P
ow

er

Type

Actual data

White noise

(b) DJD

Figure 3: Comparing the average power spectra of
the actual entropy data and white noise. There are
significant linear correlations between power (Y
axis) and frequency (X axis) for the actual entropy
data, which means the data are not completely ran-
dom. Shadowed areas are 95% C.I.

β = 2.3× 10−2, SE = 9.4× 10−3, p < .05; for
DJD, β = 314.1, SE = 19.8, p < .001), while
the slopes of the white noise data are not signifi-
cantly different from zero. This confirms our pre-
sumption that the entropy series of dialogue con-
tains some periodic patterns that are identifiable in
frequency space.

We also conduct Ljung-Box test (Ljung and
Box, 1978) to examine how the entropy series is
different from white noise. The null hypothesis
is that the time series being tested is independent
of the lagged sequence of itself. The test on a
white noise series will give big p-values, for any
lags greater than 0, because of its randomness na-
ture. We try several lags on each entropy series,
and pick the smallest p-value. Consequently, we
obtain a mean p-value of .23 on MapTask, and a
mean p-value of .27 on DJD. Therefore, we cannot
reject the null hypothesis for all the entropy series
data, but the Type-I error of considering them as
different form white noise is pretty low.

5 PSO Predicts Task Success

5.1 Results of linear models
We compute PSO for all the dialogues in
Map Task and DJD and fit two linear mod-
els using PSO as predictor, with PATHDEV and
CollectivePerformance as dependent vari-
ables respectively.

PSO is a reliable predictor in both models (p <
.05). The coefficients are shown in Table 2. Since
PATHDEV is a measure of failure, but collabora-
tive task performance is a measure of success, the
negative correlation between PSO and collabora-

tive task performance is consistent. Regression
lines with residuals are plotted in Figure 4.

Table 2: Coefficients of PSO in predict-
ing PATHDEV (Map Task) and Collective-
Performance (DJD). * indicates p < .05.

Dependent β SE F Adj-R2

PATHDEV 124.8 49.4 6.39* .045
Collective-
Performance

-40.9 15.9 6.60* .271

Figure 4 (a) suggests a heteroscedasticity prob-
lem, because the right half of data points seem
to stretch up along the y axis. This was con-
firmed by a Breush-Pagan test (Breusch and Pa-
gan, 1979) (BP = 5.62, p < .05). To rec-
tify this issue, we adopt a Box-Cox transformation
(Box and Cox, 1964) on the dependent variable,
PATHDEV, which is a typical way of handling het-
eroscedasticity. The new model that uses PSO to
predict the Box-Cox transformed PATHDEV also
yields significant coefficients: β = 3.85, SE =
1.67, F (1, 113) = 5.32, p < .05. Therefore,
the correlation between PSO and PATHDEV is re-
liable.

As for DJD, due to the lack of data (we only
have 16 dialogues), we do not run further diagnos-
tics analysis on the regression model.

5.2 Discussion

The coupling of entropy series in frequency space
is negatively correlated with task success. In other
words, synchrony between interlocutors in terms
of their information distribution hinders the suc-
cess of collaboration. By “synchrony”, we mean
an overlap in the frequencies at which they choose
to inject novel information into the conversation.

This conclusion seems contradictory to the per-
spective of interactive alignment at the first glance.
However, here we are starting with a very high-
level model of dialogue that has does not refer to
linguistic devices. Instead, we utilize the concept
of “information density” and the entropy metric of
natural language, to paint the picture of a system
in which communicators inject novelty into the di-
alogue, and that each communicator does so reg-
ularly and with a set of overlapping frequencies.
We assume that the rapid change of sentence en-
tropy, i.e., the high frequency components in the
spectrum, correspond to the moments in conversa-

628

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

0

50

100

150

200

0.1 0.2 0.3 0.4 0.5

PSO

PA
T

H
D

E
V

(a) Map Task

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

3

4

5

6

7

0.275 0.300 0.325 0.350 0.375

PSO

C
ol

le
ct

iv
eP

er
fo

rm
an

ce

(b) DJD

Figure 4: Regression lines of linear models using PSO to predict PATHDEV in Map Task (a) and
CollectivePerformance in DJD (b). Shadowed areas are 95% C.I.

tion where one interlocutor brings relatively novel
content to the table, such as a detailed instruc-
tion, a strange question, an unexpected response
etc. This assumption is reasonable because pre-
vious work has shown that sudden change in en-
tropy predicts topic change in dialogue (Genzel
and Charniak, 2003; Qian and Jaeger, 2011; Xu
and Reitter, 2016b).

We argue that higher synchrony (larger overlap
in frequency space) in terms of how much nov-
elty each interlocutor contributes, does not neces-
sarily leads to better outcomes of communication.
Rather, we would expect the correlation to be op-
posite (and our empirical results confirm this), be-
cause dialogue is a joint activity, in which a tak-
ing on different roles as interlocutors (e.g., the one
who gives orders versus the one who follows) is
often required to push the activity along (Clark,
1996). A dialogue with maximal synchrony or fre-
quency overlap would be one where partners take
turns at regular intervals. Perhaps because such
regularity in turn-taking assigns no special roles
to interlocutors, and because they engage in turn-
taking with no regard for content, it is not strange
that such synchrony is disadvantageous.

Let’s look at several scenarios of different syn-
chrony levels between interlocutors: First, high
synchrony due to both interlocutors contributing
large amount of new information, which means
there is more overlap near the high frequency band
of spectrums. In this case, they are more likely to
have difficulty in comprehending each other due

to the potential information overload. Situations
such as arguing, or both speakers asking a lot of
questions are good examples. Second, high syn-
chrony due to both interlocutors providing ineffec-
tive information, which indicates overlap in spec-
trums near the low frequency band. Obviously this
type of ineffective communication is not helpful
to the collaborative task. Third, low synchrony
due to one interlocutor providing more informa-
tion and the other one providing less, which means
the overlap in spectrums is minimum. An example
of this case is that one interlocutor is saying some-
thing important, while the other one is produc-
ing short utterances such “uh-huh”, “yes”, or short
questions to make sure that they are on the same
page, which is known as the back-channel mecha-
nism in conversation (Oreström, 1983). This com-
plementary style of communication allows them to
build mutual understand of each other’s intention,
and thus reaches better collaborative performance.

6 RP Predicts Task Success

6.1 Results of linear models

We obtain the relative phase (RP) vector (absolute
values) of all frequency components, and fit linear
models using the mean of RP as predictor, and task
performance as the dependent variable. We get
non-significant coefficients for both models: For
Map Task, F (1, 113) = .004, p > .05; for DJD,
F (1, 14) = .772, p > .05. This suggests that the
phase information of all frequency components in
spectrum is not very indicative of task success.

629

The power spectra describe the distribution of
energy across the span of frequency components
that compose the signal. The frequency com-
ponents with higher energy (peaks in spectrum)
are more dominant than those with lower energy
(troughs) in determining the nature of the signal.
Therefore it makes sense to only include the peak
frequencies into the model, because they are more
“representative” of the signal, and so the “noise”
from the low energy frequencies are filtered out.
Thus we obtain RP from the local peak frequency
components, and use the mean, median, and max-
imum values of them as predictors. It turns out
that for Map Task, the maximum of RP is a sig-
nificant predictor (the mean and median are left
out via stepwise analysis). For DJD, the mean of
RP is a significant predictor of task success (when
median and maximum are included in the model).
(see Table 3).

Table 3: Coefficients of the linear models using the
mean, median, and maximum values of RP from
peak frequency components to predict task perfor-
mance. ∗ p < .05, † p < .1.

Corpus Predictor β SE t score

Map Task max -64.9 30.3 -2.14*

DJD
mean 15.6 5.7 2.76*
median -7.4 3.6 -2.06†

max -11.5 7.2 -1.60

From the significant effect of maximum RP in
Map Task and mean RP in DJD, it is safe to
state that RP is positively correlated with task per-
formance. However, this relationship is not as
straight-forward as PSO, because of the marginal
effect at the opposite direction. A more fine-
grained analysis is required, but it is outside the
scope of this study.

6.2 Discussion

The relative phase in frequency space can be un-
derstood as the “lag” between signals in time
space. Imagine that we align the two entropy se-
ries from one dialogue onto the same time scale
(just like Figure 1), the distance between the en-
tropy “peaks” is proportionate to the relative phase
in frequency space. Then, the positive correlation
between relative phase and task performance sug-
gests that relatively large delays between entropy

Table 4: R2 performance on the HCRC MapTask
task success prediction task (percentage of vari-
ance explained). 10-fold cross-validated by dia-
logue; same folds for each model. Reitter and
Moore (2007) (R&M) contained length and lexi-
cal and syntactic repetition features.

Model R2

R&M .17
R&M LENGTH only .09
R&M LENGTH only (C=.5) .1260
R&M (C=.5) .1771
R&M + PSO + RP .2826
R&M + PSO*RP .2435
R&M LENGTH only + PSO*RP .2494

“surges” seen in each interlocutor are beneficial to
collaborative performance.

The delay of entropy surges can be understood
as a strategy for an interlocutor to distribute in-
formation in his or her own utterance accordingly
with the information received. For example, after
interlocutor A contributes a big piece of informa-
tion, the other one, B, does not rush to make new
substantial contributions, but instead keeps her ut-
terances at low entropy until it is the proper time
to take a turn to contribute. This does not have to
coincide with dialogic turn-taking.

This delay gives B more time to “digest” the
information provided by A, which could be an
instruction that needs to be comprehended, or a
question that needs to be thought about and so on.
A relatively long delay guarantees enough time for
interlocutors to reach mutual understanding. On
the contrary, if B rushes to speak a lot shortly after
the A’s input, then it will probably cause informa-
tion overload and be harmful to communication.

Therefore, we believe that the RP statistic cap-
tures the extent to which interlocutors manage
the proper “timing” of information contribution to
maintain effective communication.

7 Prediction Task

Here we explore whether the frequency domain
features, PSO and RP, can help with an existing
framework that utilizes alignment features, such
as the repetition of lexical and syntactic elements,
to predict the success of dialogue in MapTask (Re-
itter and Moore, 2007).

630

R&M described an SVM model that takes into
the repetition count of lexicons (LEXREP) and syn-
tax structures (SYNREP), and the length of di-
alogues (LENGTH) as features. The full model
achieves an R2 score of .17, which means that it
can account for 17% of the variance of task suc-
cess.

We add the new PSO and RP (mean, median and
maximum RP features per dialogue are included)
covariates to the original SVM model. An RBF
kernel (γ = 5) was used. The cost parameter C
was (coarsely) tuned on different cross-validation
folds to reduce overfitting on this relatively small
dataset, and the R&M’s original full model was re-
calculated (shown in Table 4 as R&M). Two mod-
els with PSO and RP interactions (once without
the alignment/repetition features) are shown for
comparison. (See Table 4).

Significant improvement in the model’s ex-
planatory power, i.e., R2, is gained after the PSO
and RP features are added. The best model we
have is by adding PSO and RP as predictors with-
out the interaction term (bold number in Table 4),
which gives about 60% increase of R2 compared
to R&M’s full model. Note that even if we ex-
clude the alignment features, and include only
(LENGTH) and the frequency features (last row in
Table 4), the performance also exceeds R&M’s
full model.

The results indicate that the frequency domain
features (PSO and RP) of the sentence informa-
tion density can capture some hidden factors of
task success that are unexplained by the alignment
approach. It is not surprising that how people
coordinate their information contribution matters
a lot to the success of the collaboration. What
we show here is that regular, repeated patterns
of information-dense and information-sparse turns
seem to make speakers more or less compatible
with each other. Whether individuals have typi-
cal patterns (frequency distributions) of informa-
tion density, or whether this is a result of dynamic
interaction in each particular dialogue, remains to
be seen.

8 Conclusions

The empirical results of the present study suggest
that examining how the information contribution
from interlocutors co-develops can provide a way
to understand dialogue from a higher-level per-
spective, which has been missing in existing work.

Our work adds a brick to the series of endeavors
on studying the linguistic and behavioral factors of
successful dialogue, and for the first time (as far as
we know) demonstrates quantitatively that the dy-
namics of not just “what” and “how” we say, but
also “how much” we say and the “timing” of dis-
tributing what we say in dialogue, are relevant to
the quality of communication. Although the way
we model information in language is simply the
entropy at lexical level, we believe the findings
still reveal the nature of information production
and processing in dialogue. We hope that by com-
paring and combining our methodology with other
approaches of studying dialogue, we can reach a
more comprehensive and holistic understanding of
this common yet mysterious human practice.

Acknowledgments

We thank Riccardo Fusaroli for providing the DJD
dataset. We have received very helpful input from
Gesang Zeren in developing the initial ideas of this
project. The work leading to this paper was funded
by the National Science Foundation (IIS-1459300
and BCS-1457992).

References

Abney, D. H., Paxton, A., Dale, R., & Kello, C. T.
(2014). Complexity matching in dyadic
conversation. Journal of Experimental Psy-
chology: General, 143(6), 2304.

Anderson, A. H., Bader, M., Bard, E. G., Boyle,
E., Doherty, G., Garrod, S., . . . Miller, J.
et al. (1991). The HCRC map task corpus.
Language and Speech, 34(4), 351–366.

Bitouk, D., Verma, R., & Nenkova, A. (2010).
Class-level spectral features for emotion
recognition. Speech Communication, 52(7),
613–625.

Box, G. E. & Cox, D. R. (1964). An analysis of
transformations. Journal of the Royal Sta-
tistical Society. Series B (Methodological),
211–252.

Bracewell, R. N. (1986). The Fourier transform
and its applications. New York: McGraw-
Hill.

Breusch, T. S. & Pagan, A. R. (1979). A simple
test for heteroscedasticity and random coef-
ficient variation. Econometrica: Journal of
the Econometric Society, 1287–1294.

Clark, H. H. (1996). Using language. Cambridge
University Press.

631

Clark, H. H. & Brennan, S. E. (1991). Grounding
in communication. Perspectives on Socially
Shared Cognition, 13(1991), 127–149.

Dickey, D. A. & Fuller, W. A. (1979). Distribution
of the estimators for autoregressive time se-
ries with a unit root. Journal of the Ameri-
can Statistical Association, 74(366a), 427–
431.

Doyle, G. & Frank, M. C. (2015). Shared com-
mon ground influences information density
in microblog texts. In Proceedings of the
North American Chapter of the Associa-
tion for Computational Linguistics - Human
Language Technologies (naacl-hlt). Denver,
DO.

Dwivedi, Y. & Subba Rao, S. (2011). A test
for second-order stationarity of a time se-
ries based on the discrete Fourier transform.
Journal of Time Series Analysis, 32(1), 68–
91.

Fusaroli, R., Bahrami, B., Olsen, K., Roepstorff,
A., Rees, G., Frith, C., & Tylén, K. (2012).
Coming to terms quantifying the benefits of
linguistic coordination. Psychological Sci-
ence, 23(8), 931–939.

Fusaroli, R., Raczaszek-Leonardi, J., & Tylén,
K. (2014). Dialog as interpersonal synergy.
New Ideas in Psychology, 32, 147–157.

Fusaroli, R. & Tylén, K. (2016). Investigating
conversational dynamics: interactive align-
ment, interpersonal synergy, and collective
task performance. Cognitive Science, 40(1),
145–171.

Garrod, S. & Anderson, A. (1987). Saying what
you mean in dialogue: a study in concep-
tual and semantic co-ordination. Cognition,
27(2), 181–218.

Garrod, S. & Pickering, M. J. (2009). Joint action,
interactive alignment, and dialog. Topics in
Cognitive Science, 1(2), 292–304.

Genzel, D. & Charniak, E. (2002). Entropy rate
constancy in text. In Proc. 40th Annual
Meeting on Association for Computational
Linguistics (pp. 199–206). Philadelphia, PA.

Genzel, D. & Charniak, E. (2003). Variation of en-
tropy and parse trees of sentences as a func-
tion of the sentence number. In Proceed-
ings of the 2003 Conference on Empirical
Methods in Natural Language Processing
(pp. 65–72). Association for Computational
Linguistics.

Godfrey, J. J., Holliman, E. C., & McDaniel, J.
(1992). Switchboard: telephone speech cor-
pus for research and development. In Inter-
national Conference on Acoustics, Speech,
and Signal Processing (Vol. 1, pp. 517–
520). IEEE. San Francisco, CA.

Gregory Jr, S. W. & Gallagher, T. J. (2002). Spec-
tral analysis of candidates’ nonverbal vo-
cal communication: predicting us presiden-
tial election outcomes. Social Psychology
Quarterly, 298–308.

Jaeger, T. F. (2010). Redundancy and reduction:
speakers manage syntactic information den-
sity. Cognitive Psychology, 61(1), 23–62.

Keller, F. (2004). The entropy rate principle as
a predictor of processing effort: an eval-
uation against eye-tracking data. In Proc.
conference on Empirical Methods in Nat-
ural Language Processing (pp. 317–324).
Barcelona, Spain.

Kwiatkowski, D., Phillips, P. C., Schmidt, P., &
Shin, Y. (1992). Testing the null hypoth-
esis of stationarity against the alternative
of a unit root: how sure are we that eco-
nomic time series have a unit root? Journal
of Econometrics, 54(1-3), 159–178.

Ljung, G. M. & Box, G. E. (1978). On a mea-
sure of lack of fit in time series models.
Biometrika, 297–303.

Narasimhan, S. & Veena, S. (2005). Signal pro-
cessing: principles and implementation. Al-
pha Science Int’l Ltd.

Natrella, M. (2010). Nist/sematech e-handbook of
statistical methods. NIST/SEMATECH.

Ng, S. H. & Bradac, J. J. (1993). Power in lan-
guage: Verbal communication and social in-
fluence. Sage.

Oreström, B. (1983). Turn-taking in english con-
versation. Lund: CWK Gleerup.

Oullier, O., Bardy, B. G., Stoffregen, T. A., &
Bootsma, R. J. (2002). Postural coordina-
tion in looking and tracking tasks. Human
Movement Science, 21(2), 147–167.

Oullier, O., De Guzman, G. C., Jantzen, K. J., La-
garde, J., & Kelso, S. J. (2008). Social coor-
dination dynamics: measuring human bond-
ing. Social Neuroscience, 3(2), 178–192.

Phillips, P. C. & Perron, P. (1988). Testing
for a unit root in time series regression.
Biometrika, 335–346.

632

Pickering, M. J. & Garrod, S. (2004). Toward a
mechanistic psychology of dialogue. Behav-
ioral and Brain Sciences, 27(02), 169–190.

Pickering, M. J. & Garrod, S. (2006). Alignment
as the basis for successful communication.
Research on Language and Computation,
4(2-3), 203–228.

Qian, T. & Jaeger, T. F. (2011). Topic shift in ef-
ficient discourse production. In Proceedings
of the 33rd Annual Conference of the Cog-
nitive Science Society (pp. 3313–3318).

Reitter, D. & Moore, J. D. (2007). Predicting suc-
cess in dialogue. In Proc. 45th Annual Meet-
ing of the Association of Computational
Linguistics (pp. 808–815). Prague, Czech
Republic.

Reitter, D. & Moore, J. D. (2014). Alignment and
task success in spoken dialogue. Journal of
Memory and Language, 76, 29–46.

Schuller, B., Steidl, S., Batliner, A., Burkhardt,
F., Devillers, L., Müller, C., & Narayanan,
S. (2013). Paralinguistics in speech and
language-state-of-the-art and the challenge.
Computer Speech and Language, 27(1), 4–
39.

Shannon, C. E. (1948). A mathematical theory of
communication. The Bell System Technical
Journal, 27, 379–423.

Stolcke, A. (2002). SRILM - an extensible lan-
guage modeling toolkit. In The 7th Interna-
tional Conference on Spoken Language Pro-
cessing. Denver, Colorado.

Xu, Y. & Reitter, D. (2016a). Convergence of syn-
tactic complexity in conversation. In Proc.
54th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short
Papers) (pp. 443–448). Berlin, Germany.

Xu, Y. & Reitter, D. (2016b, August). En-
tropy Converges Between Dialogue Partic-
ipants: Explanations from an Information-
Theoretic Perspective. In Proceedings of the
54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long
Papers) (pp. 537–546). Berlin, Germany:
Association for Computational Linguistics.

633

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 634–642
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1059

Affect-LM: A Neural Language Model for Customizable Affective Text
Generation

Sayan Ghosh1, Mathieu Chollet1, Eugene Laksana1, Louis-Philippe Morency2 and Stefan Scherer1

1Institute for Creative Technologies, University of Southern California, CA, USA
2Language Technologies Institute, Carnegie Mellon University, PA, USA

1{sghosh,chollet,elaksana,scherer}@ict.usc.edu
2morency@cs.cmu.edu

Abstract

Human verbal communication includes
affective messages which are conveyed
through use of emotionally colored words.
There has been a lot of research in this
direction but the problem of integrat-
ing state-of-the-art neural language mod-
els with affective information remains
an area ripe for exploration. In this
paper, we propose an extension to an
LSTM (Long Short-Term Memory) lan-
guage model for generating conversa-
tional text, conditioned on affect cate-
gories. Our proposed model, Affect-LM
enables us to customize the degree of
emotional content in generated sentences
through an additional design parameter.
Perception studies conducted using Ama-
zon Mechanical Turk show that Affect-
LM generates naturally looking emotional
sentences without sacrificing grammatical
correctness. Affect-LM also learns affect-
discriminative word representations, and
perplexity experiments show that addi-
tional affective information in conversa-
tional text can improve language model
prediction.

1 Introduction

Affect is a term that subsumes emotion and longer
term constructs such as mood and personality
and refers to the experience of feeling or emo-
tion (Scherer et al., 2010). Picard (1997) provides
a detailed discussion of the importance of affect
analysis in human communication and interaction.
Within this context the analysis of human affect
from text is an important topic in natural language
understanding, examples of which include senti-
ment analysis from Twitter (Nakov et al., 2016),
affect analysis from poetry (Kao and Jurafsky,

Affect-LM“I feel so …”

Context Words

“… great about this.”

“… good about this.”

“… awesome about this.”

Affect Strength

Low High

Mid

Affect Category

!

"
#

$

%

Au
to

m
at

ic

In
fe

re
nc

e
(o

pt
io

na
l)

et�1

ct�1

�

Figure 1: Affect-LM is capable of generating
emotionally colored conversational text in five
specific affect categories (et−1) with varying
affect strengths (β). Three generated example

sentences for happy affect category are shown in
three distinct affect strengths.

2012) and studies of correlation between function
words and social/psychological processes (Pen-
nebaker, 2011). People exchange verbal messages
which not only contain syntactic information, but
also information conveying their mental and emo-
tional states. Examples include the use of emo-
tionally colored words (such as furious and joy)
and swear words. The automated processing of
affect in human verbal communication is of great
importance to understanding spoken language sys-
tems, particularly for emerging applications such
as dialogue systems and conversational agents.

Statistical language modeling is an integral
component of speech recognition systems, with
other applications such as machine translation and
information retrieval. There has been a resur-
gence of research effort in recurrent neural net-
works for language modeling (Mikolov et al.,
2010), which have yielded performances far supe-
rior to baseline language models based on n-gram
approaches. However, there has not been much
effort in building neural language models of text
that leverage affective information. Current liter-
ature on deep learning for language understand-
ing focuses mainly on representations based on

634

https://doi.org/10.18653/v1/P17-1059

word semantics (Mikolov et al., 2013), encoder-
decoder models for sentence representations (Cho
et al., 2015), language modeling integrated with
symbolic knowledge (Ahn et al., 2016) and neural
caption generation (Vinyals et al., 2015), but to the
best of our knowledge there has been no work on
augmenting neural language modeling with affec-
tive information, or on data-driven approaches to
generate emotional text.

Motivated by these advances in neural language
modeling and affective analysis of text, in this pa-
per we propose a model for representation and
generation of emotional text, which we call the
Affect-LM. Our model is trained on conversational
speech corpora, common in language modeling
for speech recognition applications (Bulyko et al.,
2007). Figure 1 provides an overview of our
Affect-LM and its ability to generate emotionally
colored conversational text in a number of affect
categories with varying affect strengths. While
these parameters can be manually tuned to gener-
ate conversational text, the affect category can also
be automatically inferred from preceding context
words. Specifically for model training, the affect
category is derived from features generated using
keyword spotting from a dictionary of emotional
words, such as the LIWC (Linguistic Inquiry and
Word Count) tool (Pennebaker et al., 2001). Our
primary research questions in this paper are:
Q1:Can Affect-LM be used to generate affective
sentences for a target emotion with varying de-
grees of affect strength through a customizable
model parameter?
Q2:Are these generated sentences rated as emo-
tionally expressive as well as grammatically cor-
rect in an extensive crowd-sourced perception ex-
periment?
Q3:Does the automatic inference of affect cate-
gory from the context words improve language
modeling performance of the proposed Affect-LM
over the baseline as measured by perplexity?

The remainder of this paper is organized as fol-
lows. In Section 2, we discuss prior work in the
fields of neural language modeling, and generation
of affective conversational text. In Section 3 we
describe the baseline LSTM model and our pro-
posed Affect-LM model. Section 4 details the ex-
perimental setup, and in Section 5, we discuss re-
sults for customizable emotional text generation,
perception studies for each affect category, and
perplexity improvements over the baseline model

before concluding the paper in Section 6.

2 Related Work

Language modeling is an integral component of
spoken language systems, and traditionally n-
gram approaches have been used (Stolcke et al.,
2002) with the shortcoming that they are unable to
generalize to word sequences which are not in the
training set, but are encountered in unseen data.
Bengio et al. (2003) proposed neural language
models, which address this shortcoming by gen-
eralizing through word representations. Mikolov
et al. (2010) and Sundermeyer et al. (2012) extend
neural language models to a recurrent architecture,
where a target word wt is predicted from a con-
text of all preceding words w1, w2, ..., wt−1 with
an LSTM (Long Short-Term Memory) neural net-
work. There also has been recent effort on build-
ing language models conditioned on other modali-
ties or attributes of the data. For example, Vinyals
et al. (2015) introduced the neural image caption
generator, where representations learnt from an in-
put image by a CNN (Convolutional Neural Net-
work) are fed to an LSTM language model to gen-
erate image captions. Kiros et al. (2014) used
an LBL model (Log-Bilinear language model) for
two applications - image retrieval given sentence
queries, and image captioning. Lower perplexity
was achieved on text conditioned on images rather
than language models trained only on text.

In contrast, previous literature on affective lan-
guage generation has not focused sufficiently on
customizable state-of-the-art neural network tech-
niques to generate emotional text, nor have they
quantitatively evaluated their models on multiple
emotionally colored corpora. Mahamood and Re-
iter (2011) use several NLG (natural language gen-
eration) strategies for producing affective medi-
cal reports for parents of neonatal infants under-
going healthcare. While they study the difference
between affective and non-affective reports, their
work is limited only to heuristic based systems and
do not include conversational text. Mairesse and
Walker (2007) developed PERSONAGE, a sys-
tem for dialogue generation conditioned on ex-
traversion dimensions. They trained regression
models on ground truth judge’s selections to au-
tomatically determine which of the sentences se-
lected by their model exhibit appropriate extrover-
sion attributes. In Keshtkar and Inkpen (2011), the
authors use heuristics and rule-based approaches

635

for emotional sentence generation. Their gener-
ation system is not training on large corpora and
they use additional syntactic knowledge of parts
of speech to create simple affective sentences. In
contrast, our proposed approach builds on state-of-
the-art approaches for neural language modeling,
utilizes no syntactic prior knowledge, and gener-
ates expressive emotional text.

3 Model

3.1 LSTM Language Model

Prior to providing a formulation for our pro-
posed model, we briefly describe a LSTM lan-
guage model. We have chosen this model as
a baseline since it has been reported to achieve
state-of-the-art perplexities compared to other ap-
proaches, such as n-gram models with Kneser-Ney
smoothing (Jozefowicz et al., 2016). Unlike an
ordinary recurrent neural network, an LSTM net-
work does not suffer from the vanishing gradient
problem which is more pronounced for very long
sequences (Hochreiter and Schmidhuber, 1997).
Formally, by the chain rule of probability, for a
sequence of M words w1, w2, ..., wM , the joint
probability of all words is given by:

P (w1, w2, ..., wM) =
t=M∏

t=1

P (wt|w1, w2,, wt−1)

(1)
If the vocabulary consists of V words, the condi-
tional probability of word wt as a function of its
context ct−1 = (w1, w2,, wt−1) is given by:

P (wt = i|ct−1) =
exp(Ui

T f(ct−1) + bi)∑V
j=1 exp(Uj

T f(ct−1) + bj)
(2)

f(.) is the output of an LSTM network which
takes in the context words w1, w2, ..., wt−1 as in-
puts through one-hot representations, U is a ma-
trix of word representations which on visualiza-
tion we have found to correspond to POS (Part of
Speech) information, while bi is a bias term cap-
turing the unigram occurrence of word i. Equa-
tion 2 expresses the word wt as a function of its
context for a LSTM language model which does
not utilize any additional affective information.

3.2 Proposed Model: Affect-LM

The proposed model Affect-LM has an additional
energy term in the word prediction, and can be de-

scribed by the following equation:

P (wt = i|ct−1, et−1) =
exp (Ui

T f(ct−1) + βVi
Tg(et−1) + bi)∑V

j=1 exp(Uj
T f(ct−1) + βVj

Tg(et−1) + bj)

(3)

et−1 is an input vector which consists of affect
category information obtained from the words in
the context during training, and g(.) is the output
of a network operating on et−1.Vi is an embed-
ding learnt by the model for the i-th word in the
vocabulary and is expected to be discriminative of
the affective information conveyed by each word.
In Figure 4 we present a visualization of these af-
fective representations.
The parameter β defined in Equation 3, which
we call the affect strength defines the influence
of the affect category information (frequency of
emotionally colored words) on the overall predic-
tion of the target word wt given its context. We
can consider the formulation as an energy based
model (EBM), where the additional energy term
captures the degree of correlation between the pre-
dicted word and the affective input (Bengio et al.,
2003).

3.3 Descriptors for Affect Category
Information

Our proposed model learns a generative model of
the next word wt conditioned not only on the pre-
vious words w1, w2, ..., wt−1 but also on the af-
fect category et−1 which is additional informa-
tion about emotional content. During model train-
ing, the affect category is inferred from the con-
text data itself. Thus we define a suitable feature
extractor which can utilize an affective lexicon to
infer emotion in the context. For our experiments,
we have utilized the Linguistic Inquiry and Word
Count (LIWC) text analysis program for feature
extraction through keyword spotting. Introduced
by Pennebaker et al. (2001), LIWC is based on a
dictionary, where each word is assigned to a pre-
defined LIWC category. The categories are cho-
sen based on their association with social, affec-
tive, and cognitive processes. For example, the
dictionary word worry is assigned to LIWC cat-
egory anxiety. In our work, we have utilized all
word categories of LIWC corresponding to affec-
tive processes: positive emotion, angry, sad, anx-
ious, and negative emotion. Thus the descriptor
et−1 has five features with each feature denoting

636

Corpus Name Conversations Words % Colored Words Content
Fisher 11700 21167581 3.79 Conversations
DAIC 688 677389 5.13 Conversations
SEMAINE 959 23706 6.55 Conversations
CMU-MOSI 93 26121 6.54 Monologues

Table 1: Summary of corpora used in this paper. CMU-MOSI and SEMAINE are observed to have
higher emotional content than Fisher and DAIC corpora.

presence or absence of a specific emotion, which
is obtained by binary thresholding of the features
extracted from LIWC. For example, the affective
representation of the sentence i will fight in the war
is et−1 ={“sad”:0, “angry”:1, “anxiety”:0, “neg-
ative emotion”:1, “positive emotion”:0}.

3.4 Affect-LM for Emotional Text Generation

Affect-LM can be used to generate sentences con-
ditioned on the input affect category, the affect
strength β, and the context words. For our exper-
iments, we have chosen the following affect cate-
gories - positive emotion, anger, sad, anxiety, and
negative emotion (which is a superclass of anger,
sad and anxiety). As described in Section 3.2, the
affect strength β defines the degree of dominance
of the affect-dependent energy term on the word
prediction in the language model, consequently af-
ter model training we can change β to control the
degree of how “emotionally colored” a generated
utterance is, varying from β = 0 (neutral; base-
line model) to β = ∞ (the generated sentences
only consist of emotionally colored words, with
no grammatical structure).

When Affect-LM is used for generation, the af-
fect categories could be either (1) inferred from
the context using LIWC (this occurs when we
provide sentence beginnings which are emotion-
ally colored themselves), or (2) set to an input
emotion descriptor e (this is obtained by setting
e to a binary vector encoding the desired emo-
tion and works even for neutral sentence begin-
nings). Given an initial starting set of M words
w1, w2, ..., wM to complete, affect strength β,
and the number of words N to generate each i-
th generated word is obtained by sampling from
P (wi|w1, w2, ..., wi−1, e;β) for i ∈ {M+1,M+
2, ...,M +N}.

4 Experimental Setup

In Section 1, we have introduced three primary
research questions related to the ability of the
proposed Affect-LM model to generate emotion-
ally colored conversational text without sacrific-

ing grammatical correctness, and to obtain lower
perplexity than a baseline LSTM language model
when evaluated on emotionally colored corpora.
In this section, we discuss our experimental setup
to address these questions, with a description of
Affect-LM’s architecture and the corpora used for
training and evaluating the language models.

4.1 Speech Corpora

The Fisher English Training Speech Corpus is the
main corpus used for training the proposed model,
in addition to which we have chosen three emo-
tionally colored conversational corpora. A brief
description of each corpus is given below, and in
Table 1, we report relevant statistics, such as the
total number of words, along with the fraction of
emotionally colored words (those belonging to the
LIWC affective word categories) in each corpus.
Fisher English Training Speech Parts 1 & 2:
The Fisher dataset (Cieri et al., 2004) consists of
speech from telephonic conversations of 10 min-
utes each, along with their associated transcripts.
Each conversation is between two strangers who
are requested to speak on a randomly selected
topic from a set. Examples of conversation top-
ics are Minimum Wage, Time Travel and Comedy.
Distress Assessment Interview Corpus (DAIC):
The DAIC corpus introduced by Gratch (2014)
consists of 70+ hours of dyadic interviews be-
tween a human subject and a virtual human, where
the virtual human asks questions designed to di-
agnose symptoms of psychological distress in the
subject such as depression or PTSD (Post Trau-
matic Stress Disorder).
SEMAINE dataset: SEMAINE (McKeown et al.,
2012) is a large audiovisual corpus consisting
of interactions between subjects and an operator
simulating a SAL (Sensitive Artificial Listener).
There are a total of 959 conversations which are
approximately 5 minutes each, and are transcribed
and annotated with affective dimensions.
Multimodal Opinion-level Sentiment Intensity
Dataset (CMU-MOSI): (Zadeh et al., 2016) This
is a multimodal annotated corpus of opinion

637

videos where in each video a speaker expresses
his opinion on a commercial product. The cor-
pus consist of speech from 93 videos from 89 dis-
tinct speakers (41 male and 48 female speakers).
This corpus differs from the others since it con-
tains monologues rather than conversations.

While we find that all corpora contain spoken
language, they have the following characteristics
different from the Fisher corpus: (1) More emo-
tional content as observed in Table 1, since they
have been generated through a human subject’s
spontaneous replies to questions designed to gen-
erate an emotional response, or from conversa-
tions on emotion-inducing topics (2) Domain mis-
match due to recording environment (for example,
the DAIC corpus was created in a mental health
setting, while the CMU-MOSI corpus consisted of
opinion videos uploaded online). (3) Significantly
smaller than the Fisher corpus, which is 25 times
the size of the other corpora combined. Thus, we
perform training in two separate stages - training
of the baseline and Affect-LM models on the Fisher
corpus, and subsequent adaptation and fine-tuning
on each of the emotionally colored corpora.

4.2 Affect-LM Neural Architecture
For our experiments, we have implemented
a baseline LSTM language model in Ten-
sorflow (Abadi et al., 2016), which follows
the non-regularized implementation as described
in Zaremba et al. (2014) and to which we have
added a separate energy term for the affect cate-
gory in implementing Affect-LM. We have used a
vocabulary of 10000 words and an LSTM network
with 2 hidden layers and 200 neurons per hidden
layer. The network is unrolled for 20 time steps,
and the size of each minibatch is 20. The affect
category et−1 is processed by a multi-layer per-
ceptron with a single hidden layer of 100 neurons
and sigmoid activation function to yield g(et−1).
We have set the output layer size to 200 for both
f(ct−1) and g(et−1). We have kept the network
architecture constant throughout for ease of com-
parison between the baseline and Affect-LM.

4.3 Language Modeling Experiments
Affect-LM can also be used as a language model
where the next predicted word is estimated from
the words in the context, along with an affect cate-
gory extracted from the context words themselves
(instead of being encoded externally as in gener-
ation). To evaluate whether additional emotional

information could improve the prediction perfor-
mance, we train the corpora detailed in Section 4.1
in two stages as described below:
(1) Training and validation of the language
models on Fisher dataset- The Fisher corpus is
split in a 75:15:10 ratio corresponding to the train-
ing, validation and evaluation subsets respectively,
and following the implementation in Zaremba
et al. (2014), we train the language models (both
the baseline and Affect-LM) on the training split
for 13 epochs, with a learning rate of 1.0 for the
first four epochs, and the rate decreasing by a fac-
tor of 2 after every subsequent epoch. The learn-
ing rate and neural architecture are the same for
all models. We validate the model over the affect
strength β ∈ [1.0, 1.5, 1.75, 2.0, 2.25, 2.5, 3.0].
The best performing model on the Fisher valida-
tion set is chosen and used as a seed for subsequent
adaptation on the emotionally colored corpora.
(2) Fine-tuning the seed model on other cor-
pora- Each of the three corpora - CMU-MOSI,
DAIC and SEMAINE are split in a 75:15:10 ratio
to create individual training, validation and eval-
uation subsets. For both the baseline and Affect-
LM, the best performing model from Stage 1 (the
seed model) is fine-tuned on each of the train-
ing corpora, with a learning rate of 0.25 which
is constant throughout, and a validation grid of
β ∈ [1.0, 1.5, 1.75, 2.0]. For each model adapted
on a corpus, we compare the perplexities obtained
by Affect-LM and the baseline model when evalu-
ated on that corpus.

4.4 Sentence Generation Perception Study

We assess Affect-LM’s ability to generate emo-
tionally colored text of varying degrees without
severely deteriorating grammatical correctness, by
conducting an extensive perception study on Ama-
zon’s Mechanical Turk (MTurk) platform. The
MTurk platform has been successfully used in
the past for a wide range of perception experi-
ments and has been shown to be an excellent re-
source to collect human ratings for large stud-
ies (Buhrmester et al., 2011). Specifically, we
generated more than 200 sentences for four sen-
tence beginnings (namely the three sentence be-
ginnings listed in Table 2 as well as an end of
sentence token indicating that the model should
generate a new sentence) in five affect categories
happy(positive emotion), angry, sad, anxiety, and
negative emotion. The Affect-LM model trained

638

Beginning Affect Category Completed sentence
I feel so Happy good because i think that it’s important to have a relationship with a friend

Angry bad that i hate it and i hate that because they they kill themselves and then they fight
Sad sad to miss because i i miss the feelings of family members who i lost feelings with
Anxious horrible i mean i think when we’re going to you know war and alert alert and we’re actually gonna die
Neutral bad if i didn’t know that the decision was going on

I told him to Happy be honest and i said well i hope that i ’m going to be a better person
Angry see why he was fighting with my son
Sad leave the house because i hurt one and i lost his leg and hurt him
Anxious be afraid of him and he he just he just didn’t care about the death penalty
Neutral do this position i think he is he’s got a lot of money he has to pay himself a lot of money

Why did you Happy have a best friend
Angry say it was only a criminal being killed at a war or something
Sad miss your feelings
Anxious worry about fear factor
Neutral believe in divorce

Table 2: Example sentences generated by the model conditioned on different affect categories

on the Fisher corpus was used for sentence gen-
eration. Each sentence was evaluated by two hu-
man raters that have a minimum approval rating
of 98% and are located in the United States. The
human raters were instructed that the sentences
should be considered to be taken from a conver-
sational rather than a written context: repetitions
and pause fillers (e.g., um, uh) are common and
no punctuation is provided. The human raters
evaluated each sentence on a seven-point Likert
scale for the five affect categories, overall affec-
tive valence as well as the sentence’s grammati-
cal correctness and were paid 0.05USD per sen-
tence. We measured inter-rater agreement using
Krippendorffs α and observed considerable agree-
ment between raters across all categories (e.g., for
valence α = 0.510 and grammatical correctness
α = 0.505).

For each target emotion (i.e., intended emo-
tion of generated sentences) we conducted an ini-
tial MANOVA, with human ratings of affect cat-
egories the DVs (dependent variables) and the
affect strength parameter β the IV (independent
variable). We then conducted follow-up univariate
ANOVAs to identify which DV changes signifi-
cantly with β. In total we conducted 5 MANOVAs
and 30 follow-up ANOVAs, which required us to
update the significance level to p<0.001 following
a Bonferroni correction.

5 Results

5.1 Generation of Emotional Text

In Section 3.4 we have described the process of
sampling text from the model conditioned on in-
put affective information (research question Q1).
Table 2 shows three sentences generated by the
model for input sentence beginnings I feel so ...,
Why did you ... and I told him to ... for each of five

affect categories - happy(positive emotion), angry,
sad anxiety, and neutral(no emotion). They have
been selected from a pool of 20 generated sen-
tences for each category and sentence beginning.

5.2 MTurk Perception Experiments

In the following we address research question Q2
by reporting the main statistical findings of our
MTurk study, which are visualized in Figures 2
and 3.

Positive Emotion Sentences. The multi-
variate result was significant for positive emo-
tion generated sentences (Pillai’s Trace=.327,
F(4,437)=6.44, p<.0001). Follow up ANOVAs
revealed significant results for all DVs except an-
gry with p<.0001, indicating that both affective
valence and happy DVs were successfully manip-
ulated with β, as seen in Figure 2(a). Grammat-
ical correctness was also significantly influenced
by the affect strength parameter β and results show
that the correctness deteriorates with increasing β
(see Figure 3). However, a post-hoc Tukey test
revealed that only the highest β value shows a sig-
nificant drop in grammatical correctness at p<.05.

Negative Emotion Sentences. The multi-
variate result was significant for negative emo-
tion generated sentences (Pillai’s Trace=.130,
F(4,413)=2.30, p<.0005). Follow up ANOVAs
revealed significant results for affective valence
and happy DVs with p<.0005, indicating that the
affective valence DV was successfully manipu-
lated with β, as seen in Figure 2(b). Further,
as intended there were no significant differences
for DVs angry, sad and anxious, indicating that
the negative emotion DV refers to a more gen-
eral affect related concept rather than a specific
negative emotion. This finding is in concordance
with the intended LIWC category of negative af-
fect that forms a parent category above the more

639

1

2

3

4

5

6

7
(a) Positive Emotion (b) Negative Emotion (c) Angry (d) Sad (e) Anxious

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

AnxiousHappy Angry
Emotional Strength (beta)

Em
ot

io
n

R
at

in
gs

Sad Affect Valence

Figure 2: Amazon Mechanical Turk study results for generated sentences in the target affect categories
positive emotion, negative emotion, angry, sad, and anxious (a)-(e). The most relevant human rating

curve for each generated emotion is highlighted in red, while less relevant rating curves are visualized
in black. Affect categories are coded via different line types and listed in legend below figure.

specific emotions, such as angry, sad, and anxious
(Pennebaker et al., 2001). Grammatical correct-
ness was also significantly influenced by the affect
strength β and results show that the correctness de-
teriorates with increasing β (see Figure 3). As for
positive emotion, a post-hoc Tukey test revealed
that only the highest β value shows a significant
drop in grammatical correctness at p<.05.
Angry Sentences. The multivariate result was
significant for angry generated sentences (Pillai’s
Trace=.199, F(4,433)=3.76, p<.0001). Follow
up ANOVAs revealed significant results for affec-
tive valence, happy, and angry DVs with p<.0001,
indicating that both affective valence and angry
DVs were successfully manipulated with β, as
seen in Figure 2(c). Grammatical correctness was
not significantly influenced by the affect strength
parameter β, which indicates that angry sentences
are highly stable across a wide range of β (see Fig-
ure 3). However, it seems that human raters could
not successfully distinguish between angry, sad,
and anxious affect categories, indicating that the
generated sentences likely follow a general nega-
tive affect dimension.

Sad Sentences. The multivariate result was
significant for sad generated sentences (Pillai’s
Trace=.377, F(4,425)=7.33, p<.0001). Follow
up ANOVAs revealed significant results only for
the sad DV with p<.0001, indicating that while
the sad DV can be successfully manipulated with
β, as seen in Figure 2(d). The grammatical cor-
rectness deteriorates significantly with β. Specifi-
cally, a post-hoc Tukey test revealed that only the
two highest β values show a significant drop in
grammatical correctness at p<.05 (see Figure 3).

0 1 2 3 4 5
Emotional Strength (beta)

1

2

3

4

5

6

7

G
ra

m
m

at
ic

al
 C

or
re

ct
ne

ss
 R

at
in

gs

Grammatical Evaluation

Happy

Angry

Sad

Anxious

Negative
Affect

Figure 3: Mechanical Turk study results for
grammatical correctness for all generated target
emotions. Perceived grammatical correctness for

each affect categories are color-coded.

A post-hoc Tukey test for sad reveals that β = 3 is
optimal for this DV, since it leads to a significant
jump in the perceived sadness scores at p<.005 for
β ∈ {0, 1, 2}.

Anxious Sentences. The multivariate result
was significant for anxious generated sentences
(Pillai’s Trace=.289, F(4,421)=6.44, p<.0001).
Follow up ANOVAs revealed significant results
for affective valence, happy and anxious DVs with
p<.0001, indicating that both affective valence
and anxiety DVs were successfully manipulated
with β, as seen in Figure 2(e). Grammatical
correctness was also significantly influenced by
the affect strength parameter β and results show
that the correctness deteriorates with increasing β.
Similarly for sad, a post-hoc Tukey test revealed
that only the two highest β values show a signif-
icant drop in grammatical correctness at p<.05
(see Figure 3). Again, a post-hoc Tukey test for
anxious reveals that β = 3 is optimal for this DV,
since it leads to a significant jump in the perceived

640

Training (Fisher) Adaptation
Perplexity Baseline Affect-LM Baseline Affect-LM
Fisher 37.97 37.89 - -
DAIC 65.02 64.95 55.86 55.55
SEMAINE 88.18 86.12 57.58 57.26
CMU-MOSI 104.74 101.19 66.72 64.99
Average 73.98 72.54 60.05 59.26

Table 3: Evaluation perplexity scores obtained by
the baseline and Affect-LM models when trained
on Fisher and subsequently adapted on DAIC,

SEMAINE and CMU-MOSI corpora

anxiety scores at p<.005 for β ∈ {0, 1, 2}.

5.3 Language Modeling Results

In Table 3, we address research question Q3 by
presenting the perplexity scores obtained by the
baseline model and Affect-LM, when trained on the
Fisher corpus and subsequently adapted on three
emotional corpora (each adapted model is indi-
vidually trained on CMU-MOSI, DAIC and SE-
MAINE). The models trained on Fisher are eval-
uated on all corpora while each adapted model is
evaluated only on it’s respective corpus. For all
corpora, we find that Affect-LM achieves lower
perplexity on average than the baseline model, im-
plying that affect category information obtained
from the context words improves language model
prediction. The average perplexity improvement is
1.44 (relative improvement 1.94%) for the model
trained on Fisher, while it is 0.79 (1.31%) for the
adapted models. We note that larger improve-
ments in perplexity are observed for corpora with
higher content of emotional words. This is sup-
ported by the results in Table 3, where Affect-
LM obtains a larger reduction in perplexity for the
CMU-MOSI and SEMAINE corpora, which re-
spectively consist of 2.76% and 2.75% more emo-
tional words than the Fisher corpus.

5.4 Word Representations

In Equation 3, Affect-LM learns a weight ma-
trix V which captures the correlation between the
predicted word wt, and the affect category et−1.
Thus, each row of the matrix Vi is an emotion-
ally meaningful embedding of the i-th word in the
vocabulary. In Figure 4, we present a t-SNE vi-
sualization of these embeddings, where each data
point is a separate word, and words which ap-
pear in the LIWC dictionary are colored based on
which affect category they belong to (we have la-
beled only words in categories positive emotion,
negative emotion, anger, sad and anxiety since

Figure 4: Embeddings learnt by Affect-LM

these categories contain the most frequent words).
Words colored grey are those not in the LIWC
dictionary. In Figure 4, we observe that the em-
beddings contain affective information, where the
positive emotion is highly separated from the neg-
ative emotions (sad, angry, anxiety) which are
clustered together.
6 Conclusions and Future Work
In this paper, we have introduced a novel language
model Affect-LM for generating affective conver-
sational text conditioned on context words, an af-
fective category and an affective strength parame-
ter. MTurk perception studies show that the model
can generate expressive text at varying degrees of
emotional strength without affecting grammatical
correctness. We also evaluate Affect-LM as a lan-
guage model and show that it achieves lower per-
plexity than a baseline LSTM model when the af-
fect category is obtained from the words in the
context. For future work, we wish to extend this
model by investigating language generation con-
ditioned on other modalities such as facial images
and speech, and to applications such as dialogue
generation for virtual agents.

Acknowledgments
This material is based upon work supported by
the U.S. Army Research Laboratory under con-
tract number W911NF-14-D-0005. Any opinions,
findings, and conclusions or recommendations ex-
pressed in this material are those of the author(s)
and do not necessarily reflect the views of the
Government, and no official endorsement should
be inferred. Sayan Ghosh also acknowledges the
Viterbi Graduate School Fellowship for funding
his graduate studies.

641

References
Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and

Yoshua Bengio. 2016. A neural knowledge lan-
guage model. arXiv preprint arXiv:1608.00318 .

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research
3(Feb):1137–1155.

Michael Buhrmester, Tracy Kwang, and Samuel D
Gosling. 2011. Amazon’s mechanical turk a new
source of inexpensive, yet high-quality, data? Per-
spectives on psychological science 6(1):3–5.

Ivan Bulyko, Mari Ostendorf, Manhung Siu, Tim Ng,
Andreas Stolcke, and Özgür Çetin. 2007. Web
resources for language modeling in conversational
speech recognition. ACM Transactions on Speech
and Language Processing (TSLP) 5(1):1.

Kyunghyun Cho, Aaron Courville, and Yoshua Ben-
gio. 2015. Describing multimedia content using
attention-based encoder-decoder networks. IEEE
Transactions on Multimedia 17(11):1875–1886.

Christopher Cieri, David Miller, and Kevin Walker.
2004. The fisher corpus: a resource for the next
generations of speech-to-text. In LREC. volume 4,
pages 69–71.

Martı́n Abadi et al. 2016. Tensorflow: A system for
large-scale machine learning. In Proceedings of the
12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI). Savannah, Geor-
gia, USA.

Jonathan et al. Gratch. 2014. The distress analysis in-
terview corpus of human and computer interviews.
In LREC. Citeseer, pages 3123–3128.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring
the limits of language modeling. arXiv preprint
arXiv:1602.02410 .

Justine Kao and Dan Jurafsky. 2012. A computational
analysis of style, affect, and imagery in contempo-
rary poetry.

Fazel Keshtkar and Diana Inkpen. 2011. A pattern-
based model for generating text to express emotion.
In Affective Computing and Intelligent Interaction,
Springer, pages 11–21.

Ryan Kiros, Ruslan Salakhutdinov, and Richard S
Zemel. 2014. Multimodal neural language models.

Saad Mahamood and Ehud Reiter. 2011. Generating
affective natural language for parents of neonatal in-
fants. In Proceedings of the 13th European Work-
shop on Natural Language Generation. Association
for Computational Linguistics, pages 12–21.

François Mairesse and Marilyn Walker. 2007. Person-
age: Personality generation for dialogue.

Gary McKeown, Michel Valstar, Roddy Cowie, Maja
Pantic, and Marc Schroder. 2012. The semaine
database: Annotated multimodal records of emo-
tionally colored conversations between a person and
a limited agent. IEEE Transactions on Affective
Computing 3(1):5–17.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech. volume 2, page 3.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Preslav Nakov, Alan Ritter, Sara Rosenthal, Fabrizio
Sebastiani, and Veselin Stoyanov. 2016. Semeval-
2016 task 4: Sentiment analysis in twitter. Proceed-
ings of SemEval pages 1–18.

James W Pennebaker. 2011. The secret life of pro-
nouns. New Scientist 211(2828):42–45.

James W Pennebaker, Martha E Francis, and Roger J
Booth. 2001. Linguistic inquiry and word count:
Liwc 2001. Mahway: Lawrence Erlbaum Asso-
ciates 71(2001):2001.

Rosalind Picard. 1997. Affective computing, volume
252. MIT press Cambridge.

Klaus R Scherer, Tanja Bänziger, and Etienne Roesch.
2010. A Blueprint for Affective Computing: A
sourcebook and manual. Oxford University Press.

Andreas Stolcke et al. 2002. Srilm-an extensible lan-
guage modeling toolkit. In Interspeech. volume
2002, page 2002.

Martin Sundermeyer, Ralf Schlüter, and Hermann Ney.
2012. Lstm neural networks for language modeling.
In Interspeech. pages 194–197.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-
Philippe Morency. 2016. Multimodal sentiment in-
tensity analysis in videos: Facial gestures and verbal
messages. IEEE Intelligent Systems 31(6):82–88.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 .

642

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 643–653
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1060

Domain Attention with an Ensemble of Experts

Young-Bum Kim† Karl Stratos‡ Dongchan Kim†

†Microsoft AI and Research
‡Bloomberg L. P.

{ybkim, dongchan.kim}@microsoft.com
me@karlstratos.com

Abstract

An important problem in domain adapta-
tion is to quickly generalize to a new do-
main with limited supervision givenK ex-
isting domains. One approach is to re-
train a global model across all K + 1 do-
mains using standard techniques, for in-
stance Daumé III (2009). However, it is
desirable to adapt without having to re-
estimate a global model from scratch each
time a new domain with potentially new
intents and slots is added. We describe a
solution based on attending an ensemble
of domain experts. We assume K domain-
specific intent and slot models trained on
respective domains. When given domain
K + 1, our model uses a weighted combi-
nation of the K domain experts’ feedback
along with its own opinion to make predic-
tions on the new domain. In experiments,
the model significantly outperforms base-
lines that do not use domain adaptation
and also performs better than the full re-
training approach.

1 Introduction

An important problem in domain adaptation is to
quickly generalize to a new domain with limited
supervision given K existing domains. In spo-
ken language understanding, new domains of in-
terest for categorizing user utterances are added
on a regular basis1. For instance, we may

1A scenario frequently arising in practice is having a re-
quest for creating a new virtual domain targeting a specific
application. One typical use case is that of building natural
language capability through intent and slot modeling (with-
out actually building a domain classifier) targeting a specific
application.

add ORDERPIZZA domain and desire a domain-
specific intent and semantic slot tagger with a lim-
ited amount of training data. Training only on the
target domain fails to utilize the existing resources
in other domains that are relevant (e.g., labeled
data for PLACES domain with place name,
location as the slot types), but naively training
on the union of all domains does not work well
since different domains can have widely varying
distributions.

Domain adaptation offers a balance between
these extremes by using all data but simultane-
ously distinguishing domain types. A common
approach for adapting to a new domain is to re-
train a global model across all K + 1 domains us-
ing well-known techniques, for example the fea-
ture augmentation method of Daumé III (2009)
which trains a single model that has one domain-
invariant component along with K + 1 domain-
specific components each of which is specialized
in a particular domain. While such a global model
is effective, it requires re-estimating a model from
scratch on all K + 1 domains each time a new do-
main is added. This is burdensome particularly in
our scenario in which new domains can arise fre-
quently.

In this paper, we present an alternative solu-
tion based on attending an ensemble of domain
experts. We assume that we have already trained
K domain-specific models on respective domains.
Given a new domainK+1 with a small amount of
training data, we train a model on that data alone
but queries the K experts as part of the training
procedure. We compute an attention weight for
each of these experts and use their combined feed-
back along with the model’s own opinion to make
predictions. This way, the model is able to selec-
tively capitalize on relevant domains much like in

643

https://doi.org/10.18653/v1/P17-1060

standard domain adaptation but without explicitly
re-training on all domains together.

In experiments, we show clear gains in a do-
main adaptation scenario across 7 test domains,
yielding average error reductions of 44.97% for
intent classification and 32.30% for slot tagging
compared to baselines that do not use domain
adaptation. Moreover we have higher accuracy
than the full re-training approach of Kim et al.
(2016c), a neural analog of Daumé III (2009).

2 Related Work

2.1 Domain Adaptation

There is a venerable history of research on do-
main adaptation (Daume III and Marcu, 2006;
Daumé III, 2009; Blitzer et al., 2006, 2007; Pan
et al., 2011) which is concerned with the shift
in data distribution from one domain to another.
In the context of NLP, a particularly successful
approach is the feature augmentation method of
Daumé III (2009) whose key insight is that if we
partition the model parameters to those that handle
common patterns and those that handle domain-
specific patterns, the model is forced to learn from
all domains yet preserve domain-specific knowl-
edge. The method is generalized to the neu-
ral paradigm by Kim et al. (2016c) who jointly
use a domain-specific LSTM and also a global
LSTM shared across all domains. In the con-
text of SLU, Jaech et al. (2016) proposed K
domain-specific feedforward layers with a shared
word-level LSTM layer across domains; Kim
et al. (2016c) instead employed K + 1 LSTMs.
Hakkani-Tür et al. (2016) proposed to employ a
sequence-to-sequence model by introducing a fic-
titious symbol at the end of an utterance of which
tag represents the corresponding domain and in-
tent.

All these methods require one to re-train a
model from scratch to make it learn the correlation
and invariance between domains. This becomes
difficult to scale when there is a new domain com-
ing in at high frequency. We address this problem
by proposing a method that only calls K trained
domain experts; we do not have to re-train these
domain experts. This gives a clear computational
advantage over the feature augmentation method.

2.2 Spoken Language Understanding

Recently, there has been much investment on the
personal digital assistant (PDA) technology in in-

dustry (Sarikaya, 2015; Sarikaya et al., 2016). Ap-
ples Siri, Google Now, Microsofts Cortana, and
Amazons Alexa are some examples of personal
digital assistants. Spoken language understanding
(SLU) is an important component of these exam-
ples that allows natural communication between
the user and the agent (Tur, 2006; El-Kahky et al.,
2014). PDAs support a number of scenarios in-
cluding creating reminders, setting up alarms, note
taking, scheduling meetings, finding and consum-
ing entertainment (i.e. movie, music, games), find-
ing places of interest and getting driving directions
to them (Kim et al., 2016a).

Naturally, there has been an extensive line of
prior studies for domain scaling problems to eas-
ily scale to a larger number of domains: pre-
training (Kim et al., 2015c), transfer learning (Kim
et al., 2015d), constrained decoding with a sin-
gle model (Kim et al., 2016a), multi-task learn-
ing (Jaech et al., 2016), neural domain adap-
tation (Kim et al., 2016c), domainless adapta-
tion (Kim et al., 2016b), a sequence-to-sequence
model (Hakkani-Tür et al., 2016), adversary do-
main training (Kim et al., 2017) and zero-shot
learning(Chen et al., 2016; Ferreira et al., 2015).

There are also a line of prior works on enhanc-
ing model capability and features: jointly mod-
eling intent and slot predictions (Jeong and Lee,
2008; Xu and Sarikaya, 2013; Guo et al., 2014;
Zhang and Wang, 2016; Liu and Lane, 2016a,b),
modeling SLU models with web search click logs
(Li et al., 2009; Kim et al., 2015a) and enhancing
features, including representations (Anastasakos
et al., 2014; Sarikaya et al., 2014; Celikyilmaz
et al., 2016, 2010; Kim et al., 2016d) and lexicon
(Liu and Sarikaya, 2014; Kim et al., 2015b).

3 Method

We use an LSTM simply as a mapping φ : Rd ×
Rd′ → Rd′ that takes an input vector x and a state
vector h to output a new state vector h′ = φ(x, h).
See Hochreiter and Schmidhuber (1997) for a de-
tailed description. At a high level, the individ-
ual model consists of builds on several ingredients
shown in Figure 1: character and word embed-
ding, a bidirectional LSTM (BiLSTM) at a charac-
ter layer, a BiLSTM at word level, and feedfoward
network at the output.

644

…𝑔1
𝑡

𝑦1
𝑡

Feedforward
𝑔2
𝑡

𝑦2
𝑡 𝑦𝑛

𝑡

𝑔𝑛
𝑡𝑔𝑖

Character

embedding
Word

embedding

…

Utterance

𝑤1

…

𝑐1,1 𝑐1,2 𝑐1,𝑚

𝑤2

…

𝑐2,1 𝑐2,2 𝑐2,𝑚

𝑤𝑛

…

𝑐𝑛,1 𝑐𝑛,2 𝑐𝑛,𝑚

…

Char-level

Bidirectional

LSTM…
𝜙𝑓
𝑐

𝜙𝑏
𝑐

𝜙𝑓
𝑐

𝜙𝑏
𝑐

𝜙𝑓
𝑐

𝜙𝑏
𝑐

…
𝜙𝑓
𝑐

𝜙𝑏
𝑐

𝜙𝑓
𝑐

𝜙𝑏
𝑐

𝜙𝑓
𝑐

𝜙𝑏
𝑐

…
𝜙𝑓
𝑐

𝜙𝑏
𝑐

𝜙𝑓
𝑐

𝜙𝑏
𝑐

𝜙𝑓
𝑐

𝜙𝑏
𝑐

𝑦𝑖

𝜙𝑓
𝑤

𝜙𝑏
𝑤

Word-level

Bidirectional

LSTM

…
𝜙𝑓
𝑤

𝜙𝑏
𝑤

𝜙𝑓
𝑤

𝜙𝑏
𝑤

𝜙𝑓
𝑖

𝜙𝑏
𝑖

Figure 1: The overall network architecture of the individual model.

3.1 Individual Model Architecture
Let C denote the set of character types and W
the set of word types. Let ⊕ denote the vector
concatenation operation. A wildly successful ar-
chitecture for encoding a sentence (w1 . . . wn) ∈
Wn is given by bidirectional LSTMs (BiLSTMs)
(Schuster and Paliwal, 1997; Graves, 2012). Our
model first constructs a network over an utterance
closely following Lample et al. (2016). The model
parameters Θ associated with this BiLSTM layer
are

• Character embedding ec ∈ R25 for each c ∈
C

• Character LSTMs φCf , φ
C
b : R25×R25 → R25

• Word embedding ew ∈ R100 for each w ∈ W

• Word LSTMs φWf , φ
W
b : R150×R100 → R100

Letw1 . . . wn ∈ W denote a word sequence where
word wi has character wi(j) ∈ C at position j.
First, the model computes a character-sensitive
word representation vi ∈ R150 as

fCj = φCf
(
ewi(j), f

C
j−1
)

∀j = 1 . . . |wi|
bCj = φCb

(
ewi(j), b

C
j+1

)
∀j = |wi| . . . 1

vi = fC|wi| ⊕ b
C
1 ⊕ ewi

for each i = 1 . . . n.2 Next, the model computes

fWi = φWf
(
vi, f

W
i−1
)

∀i = 1 . . . n

bWi = φWb
(
vi, b

W
i+1

)
∀i = n . . . 1

and induces a character- and context-sensitive
word representation hi ∈ R200 as

hi = fWi ⊕ bWi (1)

for each i = 1 . . . n. These vectors can be used to
perform intent classification or slot tagging on the
utterance.

Intent Classification We can predict the intent
of the utterance using (h1 . . . hn) ∈ R200 in (1)
as follows. Let I denote the set of intent types.
We introduce a single-layer feedforward network
gi : R200 → R|I| whose parameters are denoted
by Θi. We compute a |I|-dimensional vector

µi = gi

(
n∑

i=1

hi

)

and define the conditional probability of the cor-
rect intent τ as

p(τ |h1 . . . hn) ∝ exp
(
µiτ
)

(2)

2For simplicity, we assume some random initial state vec-
tors such as fC0 and bC|wi|+1 when we describe LSTMs.

645

The intent classification loss is given by the nega-
tive log likelihood:

Li
(
Θ,Θi

)
= −

∑

l

log p
(
τ (l)|h(l)

)
(3)

where l iterates over intent-annotated utterances.

Slot Tagging We predict the semantic slots of
the utterance using (h1 . . . hn) ∈ R200 in (1) as
follows. Let S denote the set of semantic types and
L the set of corresponding BIO label types 3 that
is, L = {B-e : e ∈ E}∪{I-e : e ∈ E}∪{O}. We
add a transition matrix T ∈ R|L|×|L| and a single-
layer feedforward network gt : R200 → R|L| to
the network; denote these additional parameters
by Θt. The conditional random field (CRF) tag-
ging layer defines a joint distribution over label
sequences of y1 . . . yn ∈ L of w1 . . . wn as

p(y1 . . .yn|h1 . . . hn)

∝ exp

(
n∑

i=1

Tyi−1,yi × gtyi(hi)
)

(4)

The tagging loss is given by the negative log like-
lihood:

Lt
(
Θ,Θt

)
= −

∑

l

log p
(
y(l)|h(l)

)
(5)

where l iterates over tagged sentences in the data.
Alternatively, we can optimize the local loss:

Lt−loc
(
Θ,Θt

)
= −

∑

l

∑

i

log p
(
y
(l)
i |h

(l)
i

)

(6)

where p(yi|hi) ∝ exp
(
gtyi(hi)

)
.

4 Method

4.1 Domain Attention Architecture

Now we assume that for each of theK domains we
have an individual model described in Section 3.1.
Denote these domain experts by Θ(1) . . .Θ(K).
We now describe our model for a new domain
K + 1. Given an utterance w1 . . . wn, it uses a
BiLSTM layer to induce a feature representation
h1 . . . hn as specified in (1). It further invokes K
domain experts Θ(1) . . .Θ(K) on this utterance to
obtain the feature representations h(k)1 . . . h

(k)
n for

3For example, to/O San/B-Source Fran-
cisco/I-Source airport/O.

Figure 2: The overall network architecture of the
domain attention, which consists of three compo-
nents: (1) K domain experts + 1 target BiLSTM
layer to induce a feature representation, (2) K do-
main experts + 1 target feedfoward layer to out-
put pre-trained label embedding (3) a final feedfor-
ward layer to output an intent or slot. We have two
separate attention mechanisms to combine feed-
back from domain experts.

k = 1 . . .K. For each word wi, the model com-
putes an attention weight for each domain k =
1 . . .K domains as

qdot
i,k = h>i h

(k) (7)

in the simplest case. We also experiment with the
bilinear function

qbi
i,k = h>i Bh

(k) (8)

where B is an additional model parameter, and
also the feedforward function

qfeed
i,k = W tanh

(
Uh>i + V h(k) + b1

)
+ b2 (9)

where U, V,W, b1, b2 are additional model param-
eters. The final attention weights a(1)i . . . a

(1)
i are

obtained by using a softmax layer

ai,k =
exp(qi,k)∑K
k=1 exp(qi,k)

(10)

The weighted combination of the experts’ feed-
back is given by

hexperts
i =

K∑

k=1

ai,kh
(k)
i (11)

646

and the model makes predictions by using
h̄1 . . . h̄n where

h̄i = hi ⊕ hexperts
i (12)

These vectors replace the original feature vectors
hi in defining the intent or tagging losses.

4.2 Domain Attention Variants

We also consider two variants of the domain atten-
tion architecture in Section 4.1.

Label Embedding In addition to the state vec-
tors h(1) . . . h(K) produced by K experts, we fur-
ther incorporate their final (discrete) label predic-
tions using pre-trained label embeddings. We in-
duce embeddings ey for labels y from all domains
using the method of Kim et al. (2015d). At the i-th
word, we predict the most likely label y(k) under
the k-th expert and compute an attention weight as

q̄dot
i,k = h>i e

y(k) (13)

Then we compute an expectation over the experts’
predictions

āi,k =
exp(q̄i,k)∑K
k=1 exp(q̄i,k)

(14)

hlabel
i =

K∑

k=1

āi,ke
y(k)

i (15)

and use it in conjunction with h̄i. Note that this
makes the objective a function of discrete decision
and thus non-differentiable, but we can still opti-
mize it in a standard way treating it as learning a
stochastic policy.

Selective Attention Instead of computing atten-
tion over all K experts, we only consider the top
K ′ ≤ K that predict the highest label scores. We
only compute attention over these K ′ vectors. We
experiment with various values of K ′

5 Experiments

In this section, we describe the set of experi-
ments conducted to evaluate the performance of
our model. In order to fully assess the contri-
bution of our approach, we also consider several
baselines and variants besides our primary expert
model.

Domain |I| |S| Description
EVENTS 10 12 Buy event tickets
FITNESS 10 9 Track health
M-TICKET 8 15 Buy movie tickets
ORDERPIZZA 19 27 Order pizza
REMINDER 19 20 Remind task

TAXI 8 13 Find/book an cab
TV 7 5 Control TV

Table 1: The number of intent types (|I|), the num-
ber of slot types (|S|), and a short description of
the test domains.

Overlapping
Domain Intents Slots
EVENTS 70.00% 75.00%
FITNESS 30.00% 77.78%
M-TICKET 37.50% 100.00%

ORDERPIZZA 47.37% 74.07%
REMINDER 68.42% 85.00%

TAXI 50.00% 100.00%
TV 57.14% 60.00%
AVG 51.49% 81.69%

Table 2: The overlapping percentage of intent
types and slot types with experts or source do-
mains.

5.1 Test domains and Tasks

To test the effectiveness of our proposed approach,
we apply it to a suite of 7 Microsoft Cortana do-
mains with 2 separate tasks in spoken language un-
derstanding: (1) intent classification and (2) slot
(label) tagging. The intent classification task is
a multi-class classification problem with the goal
of determining to which one of the |I| intents a
user utterance belongs within a given domain. The
slot tagging task is a sequence labeling problem
with the goal of identifying entities and chunk-
ing of useful information snippets in a user utter-
ance. For example, a user could say “reserve a
table at joeys grill for thursday at seven pm for
five people”. Then the goal of the first task would
be to classify this utterance as “make reservation”
intent given the places domain, and the goal of
the second task would be to tag “joeys grill” as
restaurant, “thursday” as date, “seven pm”
as time, and “five” as number people.

The short descriptions on the 7 test domains are
shown in Table 1. As the table shows, the test
domains have different granularity and diverse se-
mantics. For each personal assistant test domain,

647

we only used 1000 training utterances to simulate
scarcity of newly labeled data. The amount of de-
velopment and test utterance was 100 and 10k re-
spectively.

The similarities of test domains, represented
by overlapping percentage, with experts or source
domains are represented in Table 2. The in-
tent overlapping percentage ranges from 30% on
FITNESS domain to 70% on EVENTS, which av-
erages out at 51.49%. And the slots for test do-
mains overlaps more with those of source domains
ranging from 60% on TV domain to 100% on both
M-TICKET and TAXI domains, which averages
out at 81.69%.

5.2 Experimental Setup

Category |D| Example
Trans. 4 BUS, FLIGHT
Time 4 ALARM, CALENDAR
Media 5 MOVIE, MUSIC
Action 5 HOMEAUTO, PHONE
Loc. 3 HOTEL, BUSINESS
Info 4 WEATHER, HEALTH

TOTAL 25

Table 3: Overview of experts or source domains:
Domain categories which have been created based
on the label embeddings. These categorizations
are solely for the purpose of describing domains
because of the limited space and they are com-
pletely unrelated to the model. The number of
sentences in each domain is in the range of 50k
to 660k and the number of unique intents and slots
are 200 and 500 respectively. In total, we have 25
domain-specific expert models. For the average
performance, intent accuracy is 98% and slot F1
score is 96%.

In testing our approach, we consider a domain
adaptation (DA) scenario, where a target domain
has a limited training data and the source domain
has a sufficient amount of labeled data. We further
consider a scenario, creating a new virtual domain
targeting a specific scenario given a large inven-
tory of intent and slot types and underlying models
build for many different applications and scenar-
ios. One typical use case is that of building natural
language capability through intent and slot model-
ing (without actually building a domain classifier)
targeting a specific application. Therefore, our ex-
perimental settings are rather different from previ-

ously considered settings for domain adaptation in
two aspects:

• Multiple source domains: In most previous
works, only a pair of domains (source vs. tar-
get) have been considered, although they can
be easily generalized to K > 2. Here, we
experiment with K = 25 domains shown in
Table 3.

• Variant output: In a typical setting for do-
main adaptation, the label space is invariant
across all domains. Here, the label space can
be different in different domains, which is
a more challenging setting. See Kim et al.
(2015d) for details of this setting.

For this DA scenario, we test whether our ap-
proach can effectively make a system to quickly
generalize to a new domain with limited supervi-
sion given K existing domain experts shown in 3
.

In summary, our approach is tested with 7 Mi-
crosoft Cortana personal assistant domains across
2 tasks of intent classification and slot tagging.
Below shows more detail of our baselines and vari-
ants used in our experiments.

Baselines: All models below use same underly-
ing architecture described in Section 3.1

• TARGET: a model trained on a targeted do-
main without DA techniques.

• UNION: a model trained on the union of a tar-
geted domain and 25 domain experts.

• DA: a neural domain adaptation method of
Kim et al. (2016c) which trains domain spe-
cific K LSTMs with a generic LSTM on all
domain training data.

Domain Experts (DE) variants: All models be-
low are based on attending on an ensemble of
25 domain experts (DE) described in Section 4.1,
where a specific set of intent and slots models are
trained for each domain. We have two feedback
from domain experts: (1) feature representation
from LSTM, and (2) label embedding from feed-
foward described in Section 4.1 and Section 4.2,
respectively.

• DEB: DE without domain attention mecha-
nism. It uses the unweighted combination of
first feedback from experts like bag-of-word
model.

648

• DE1: DE with domain attention with the
weighted combination of the first feedbacks
from experts.

• DE2: DE1 with additional weighted combina-
tion of second feedbacks.

• DES2: DE2 with selected attention mecha-
nism, described in Section 4.2.

In our experiments, all the models were imple-
mented using Dynet (Neubig et al., 2017) and
were trained using Stochastic Gradient Descent
(SGD) with Adam (Kingma and Ba, 2015)—an
adaptive learning rate algorithm. We used the ini-
tial learning rate of 4× 10−4 and left all the other
hyper parameters as suggested in Kingma and Ba
(2015). Each SGD update was computed with-
out a minibatch with Intel MKL (Math Kernel Li-
brary)4. We used the dropout regularization (Sri-
vastava et al., 2014) with the keep probability of
0.4 at each LSTM layer.

To encode user utterances, we used bidirec-
tional LSTMs (BiLSTMs) at the character level
and the word level, along with 25 dimensional
character embedding and 100 dimensional word
embedding. The dimension of both the input and
output of the character LSTMs were 25, and the
dimensions of the input and output of the word
LSTMs were 1505 and 100, respectively. The di-
mension of the input and output of the final feed-
forward network for intent, and slot were 200 and
the number of their corresponding task. Its activa-
tion was rectified linear unit (ReLU).

To initialize word embedding, we used word
embedding trained from (Lample et al., 2016). In
the following sections, we report intent classifica-
tion results in accuracy percentage and slot results
in F1-score. To compute slot F1-score, we used
the standard CoNLL evaluation script6

5.3 Results

We show our results in the DA setting where we
had a sufficient labeled dataset in the 25 source
domains shown in Table 3, but only 1000 labeled
data in the target domain. The performance of the
baselines and our domain experts DE variants are
shown in Table 4. The top half of the table shows

4https://software.intel.com/en-us/articles/intelr-mkl-and-
c-template-libraries

5We concatenated last two outputs from the character
LSTM and word embedding, resulting in 150 (25+25+100)

6http://www.cnts.ua.ac.be/conll2000/chunking/output.html

the results of intent classification and the results of
slot tagging is in the bottom half.

The baseline which trained only on the target
domain (TARGET) shows a reasonably good per-
formance, yielding on average 87.7% on the in-
tent classification and 83.9% F1-score on the slot
tagging. Simply training a single model with ag-
gregated utterance across all domains (UNION)
brings the performance down to 77.4% and 75.3%.
Using DA approach of Kim et al. (2016c) shows
a significant increase in performance in all 7 do-
mains, yielding on average 90.3% intent accuracy
and 86.2%.

The DE without domain attention (DEB) shows
similar performance compared to DA. Using DE
model with domain attention (DE1) shows an-
other increase in performance, yielding on aver-
age 90.9% intent accuracy and 86.9%. The per-
formance increases again when we use both fea-
ture representation and label embedding (DE2),
yielding on average 91.4% and 88.2% and observe
nearly 93.6% and 89.1% when using selective at-
tention (DES2). Note that DES2 selects the appro-
priate number of experts per layer by evaluation
on a development set.

The results show that our expert variant ap-
proach (DES2) achieves a significant performance
gain in all 7 test domains, yielding average er-
ror reductions of 47.97% for intent classification
and 32.30% for slot tagging. The results suggest
that our expert approach can quickly generalize to
a new domain with limited supervision given K
existing domains by having only a handful more
data of 1k newly labeled data points. The poor
performance of using the union of both source
and target domain data might be due to the rela-
tively very small size of the target domain data,
overwhelmed by the data in the source domain.
For example, a word such as “home” can be la-
beled as place type under the TAXI domain,
but in the source domains can be labeled as ei-
ther home screen under the PHONE domain or
contact name under the CALENDAR domain.

5.4 Training Time

The Figure 3 shows the time required for training
DES2 and DA of Kim et al. (2016c). The training
time for DES2 stays almost constant as the number
of source domains increases. However, the train-
ing time for DA grows exponentially in the num-
ber of source domains. Specifically, when trained

649

Task Domain TARGET UNION DA DEB DE1 DE2 DES2

Intent

EVENTS 88.3 78.5 89.9 93.1 92.5 92.7 94.5
FITNESS 88.0 77.7 92.0 92.0 91.2 91.8 94.0
M-TICKET 88.2 79.2 91.9 94.4 91.5 92.7 93.4
ORDERPIZZA 85.8 76.6 87.8 89.3 89.4 90.8 92.8
REMINDER 87.2 76.3 91.2 90.0 90.5 90.2 93.1

TAXI 87.3 76.8 89.3 89.9 89.6 89.2 93.7
TV 88.9 76.4 90.3 81.5 91.5 92.0 94.0

AVG 87.7 77.4 90.3 90.5 90.9 91.4 93.6

Slot

EVENTS 84.8 76.1 87.1 87.4 88.1 89.4 90.2
FITNESS 84.0 75.6 86.4 86.3 87.0 88.1 88.9
M-TICKET 84.2 75.6 86.4 86.1 86.8 88.4 89.7
ORDERPIZZA 82.3 73.6 84.2 84.4 85.0 86.3 87.1
REMINDER 83.5 75.0 85.9 86.3 87.0 88.3 89.2

TAXI 83.0 74.6 85.6 85.5 86.3 87.5 88.6
TV 85.4 76.7 87.7 87.6 88.3 89.3 90.1

AVG 83.9 75.3 86.2 86.2 86.9 88.2 89.1

Table 4: Intent classification accuracy (%) and slot tagging F1-score (%) of our baselines and variants of
DE. The numbers in boldface indicate the best performing methods.

Figure 3: Comparison of training time between
our DES2 model and DA model of Kim et al.
(2016c) as the number of domains increases. The
horizontal axis means the number of domains, the
vertical axis is training time per epoch in seconds.
Here we use CALENDAR as the target domain,
which has 1k training data.

with 1 source or expert domain, both took around a
minute per epoch on average. When training with
full 25 source domains, DES2 took 3 minutes per
epoch while DA took 30 minutes per epoch. Since
we need to iterate over all 25+1 domains to re-train
the global model, the net training time ratio could
be over 250.

EVENTS

FITNESS

M-TICKET

ORDERPIZZA

REMINDER

TAXI

TV

Number of Experts

In
te

n
t A

cc
u

ra
cy

 (
%

)

Figure 4: Learning curves in accuracy across all
seven test domains as the number of expert do-
mains increases.

5.5 Learning Curve

We also measured the performance of our methods
as a function of the number of domain experts. For
each test domain, we consider all possible sizes
of experts ranging from 1 to 25 and we then take
the average of the resulting performances obtained
from the expert sets of all different sizes. Figure 4
shows the resulting learning curves for each test
domain. The overall trend is clear: as the more ex-
pert domains are added, the more the test perfor-
mance improves. With ten or more expert domains
added, our method starts to get saturated achiev-

650

REMINDER

TAXI

M-TICKET

0.92

0.84

0.93

Figure 5: Heatmap visualizing attention weights.

ing more than 90% in accuracy across all seven
domains.

5.6 Attention weights
From the heatmap shown in Figure 5, we can see
that the attention strength generally agrees with
common sense. For example, the M-TICKET and
TAXI domain selected MOVIE and PLACES as
their top experts, respectively.

5.7 Oracle Expert

Domain TARGET DE2 Top 1
ALARM 70.1 98.2 ALARM (.99)
HOTEL 65.2 96.9 HOTEL (.99)

Table 5: Intent classification accuracy with an or-
acle expert in the expert pool.

The results in Table 5 show the intent classi-
fication accuracy of DE2 when we already have
the same domain expert in the expert pool. To
simulate such a situation, we randomly sampled
1,000, 100, and 100 utterances from each domain
as training, development and test data, respec-
tively. In both ALARM and HOTEL domains, the
trained models only on the 1,000 training utter-
ances (TARGET) achieved only 70.1%and 65.2%
in accuracy, respectively. Whereas, with our
method (DE2) applied, we reached almost the
full training performance by selectively paying at-
tention to the oracle expert, yielding 98.2% and
96.9%, respectively. This result again confirms
that the behavior of the trained attention network
indeed matches the semantic closeness between
different domains.

5.8 Selective attention
The results in Table 6 examines how the intent pre-
diction accuracy of DES2 varies with respect to the

Domain Top 1 Top 3 Top 5 Top 25
EVENTS 98.1 98.8 99.2 96.4

TV 81.4 82.0 81.7 80.9
AVG 89.8 90.4 90.5 88.7

Table 6: Accuracies of DES2 using different num-
ber of experts.

number of experts in the pool. The rationale be-
hind DES2 is to alleviate the downside of soft at-
tention, namely distributing probability mass over
all items even if some are bad items. To deal with
such issues, we apply a hard cut-off at top k do-
mains. From the result, a threshold at top 3 or 5
yielded better results than that of either 1 or 25 ex-
perts. This matches our common sense that their
are only a few of domains that are close enough to
be of help to a test domain. Thus it is advisable to
find the optimal k value through several rounds of
experiments on a development dataset.

6 Conclusion

In this paper, we proposed a solution for scal-
ing domains and experiences potentially to a large
number of use cases by reusing existing data la-
beled for different domains and applications. Our
solution is based on attending an ensemble of do-
main experts. When given a new domain, our
model uses a weighted combination of domain
experts’ feedback along with its own opinion to
make prediction on the new domain. In both in-
tent classification and slot tagging tasks, the model
significantly outperformed baselines that do not
use domain adaptation and also performed better
than the full re-training approach. This approach
enables creation of new virtual domains through
a weighted combination of domain experts’ feed-
back reducing the need to collect and annotate the
similar intent and slot types multiple times for dif-
ferent domains. Future work can include an exten-
sion of domain experts to take into account dialog
history aiming for a holistic framework that can
handle contextual interpretation as well.

651

References
Tasos Anastasakos, Young-Bum Kim, and Anoop De-

oras. 2014. Task specific continuous word repre-
sentations for mono and multi-lingual spoken lan-
guage understanding. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2014 IEEE International
Conference on. IEEE, pages 3246–3250.

John Blitzer, Mark Dredze, Fernando Pereira, et al.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classi-
fication. In ACL. volume 7, pages 440–447.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 confer-
ence on empirical methods in natural language pro-
cessing. Association for Computational Linguistics,
pages 120–128.

Asli Celikyilmaz, Ruhi Sarikaya, Minwoo Jeong, and
Anoop Deoras. 2016. An empirical investiga-
tion of word class-based features for natural lan-
guage understanding. IEEE/ACM Transactions on
Audio, Speech and Language Processing (TASLP)
24(6):994–1005.

Asli Celikyilmaz, Silicon Valley, and Dilek Hakkani-
Tur. 2010. Convolutional neural network based se-
mantic tagging with entity embeddings. genre .

Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong
He. 2016. Zero-shot learning of intent embed-
dings for expansion by convolutional deep struc-
tured semantic models. In Acoustics, Speech and
Signal Processing (ICASSP), 2016 IEEE Interna-
tional Conference on. IEEE, pages 6045–6049.

Hal Daumé III. 2009. Frustratingly easy domain adap-
tation. arXiv preprint arXiv:0907.1815 .

Hal Daume III and Daniel Marcu. 2006. Domain adap-
tation for statistical classifiers. Journal of Artificial
Intelligence Research 26:101–126.

Ali El-Kahky, Derek Liu, Ruhi Sarikaya, Gokhan Tur,
Dilek Hakkani-Tur, and Larry Heck. 2014. Ex-
tending domain coverage of language understand-
ing systems via intent transfer between domains us-
ing knowledge graphs and search query click logs.
IEEE, Proceedings of the ICASSP.

Emmanuel Ferreira, Bassam Jabaian, and Fabrice
Lefèvre. 2015. Zero-shot semantic parser for spoken
language understanding. In Sixteenth Annual Con-
ference of the International Speech Communication
Association.

Alex Graves. 2012. Neural networks. In Super-
vised Sequence Labelling with Recurrent Neural
Networks, Springer, pages 15–35.

Daniel Guo, Gokhan Tur, Wen-tau Yih, and Geoffrey
Zweig. 2014. Joint semantic utterance classifica-
tion and slot filling with recursive neural networks.

In Spoken Language Technology Workshop (SLT),
2014 IEEE. IEEE, pages 554–559.

Dilek Hakkani-Tür, Gokhan Tur, Asli Celikyilmaz,
Yun-Nung Chen, Jianfeng Gao, Li Deng, and Ye-
Yi Wang. 2016. Multi-domain joint semantic frame
parsing using bi-directional rnn-lstm. In Proceed-
ings of The 17th Annual Meeting of the International
Speech Communication Association.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Aaron Jaech, Larry Heck, and Mari Ostendorf. 2016.
Domain adaptation of recurrent neural networks for
natural language understanding. arXiv preprint
arXiv:1604.00117 .

Minwoo Jeong and Gary Geunbae Lee. 2008.
Triangular-chain conditional random fields. IEEE
Transactions on Audio, Speech, and Language Pro-
cessing 16(7):1287–1302.

Young-Bum Kim, Minwoo Jeong, Karl Stratos, and
Ruhi Sarikaya. 2015a. Weakly supervised slot tag-
ging with partially labeled sequences from web
search click logs. In Proceedings of the NAACL. As-
sociation for Computational Linguistics.

Young-Bum Kim, Alexandre Rochette, and Ruhi
Sarikaya. 2016a. Natural language model re-
usability for scaling to different domains. Pro-
ceedings of the Empiricial Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics .

Young-Bum Kim, Karl Stratos, and Dongchan Kim.
2017. Adversarial adaptation of synthetic or stale
data. In Annual Meeting of the Association for Com-
putational Linguistics.

Young-Bum Kim, Karl Stratos, Xiaohu Liu, and Ruhi
Sarikaya. 2015b. Compact lexicon selection with
spectral methods. In Proc. of Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2015c. Pre-training of hidden-unit crfs. In Proc.
of Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies.
pages 192–198.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016b. Domainless adaptation by constrained de-
coding on a schema lattice. Proceedings of the
26th International Conference on Computational
Linguistics (COLING) .

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016c. Frustratingly easy neural domain adaptation.
Proceedings of the 26th International Conference on
Computational Linguistics (COLING) .

652

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016d. Scalable semi-supervised query classifica-
tion using matrix sketching. In The 54th Annual
Meeting of the Association for Computational Lin-
guistics. page 8.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and
Minwoo Jeong. 2015d. New transfer learning tech-
niques for disparate label sets. ACL. Association for
Computational Linguistics .

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. The Inter-
national Conference on Learning Representations
(ICLR). .

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360 .

Xiao Li, Ye-Yi Wang, and Alex Acero. 2009. Extract-
ing structured information from user queries with
semi-supervised conditional random fields. In Pro-
ceedings of the 32nd international ACM SIGIR con-
ference on Research and development in information
retrieval.

Bing Liu and Ian Lane. 2016a. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. In Interspeech 2016. pages 685–689.

Bing Liu and Ian Lane. 2016b. Joint online spoken lan-
guage understanding and language modeling with
recurrent neural networks. In Proceedings of the
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue. Association for Com-
putational Linguistics, Los Angeles.

Xiaohu Liu and Ruhi Sarikaya. 2014. A discrimi-
native model based entity dictionary weighting ap-
proach for spoken language understanding. In Spo-
ken Language Technology Workshop (SLT). IEEE,
pages 195–199.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, et al. 2017. Dynet: The
dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and
Qiang Yang. 2011. Domain adaptation via transfer
component analysis. IEEE Transactions on Neural
Networks 22(2):199–210.

Ruhi Sarikaya. 2015. The technology powering per-
sonal digital assistants. Keynote at Interspeech,
Dresden, Germany.

Ruhi Sarikaya, Asli Celikyilmaz, Anoop Deoras, and
Minwoo Jeong. 2014. Shrinkage based features for
slot tagging with conditional random fields. In IN-
TERSPEECH. pages 268–272.

Ruhi Sarikaya, Paul Crook, Alex Marin, Minwoo
Jeong, Jean-Philippe Robichaud, Asli Celikyilmaz,
Young-Bum Kim, Alexandre Rochette, Omar Zia
Khan, Xiuahu Liu, et al. 2016. An overview of end-
to-end language understanding and dialog manage-
ment for personal digital assistants. In IEEE Work-
shop on Spoken Language Technology.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673–2681.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Gokhan Tur. 2006. Multitask learning for spoken
language understanding. In In Proceedings of the
ICASSP. Toulouse, France.

Puyang Xu and Ruhi Sarikaya. 2013. Convolutional
neural network based triangular crf for joint in-
tent detection and slot filling. In Automatic Speech
Recognition and Understanding (ASRU), 2013 IEEE
Workshop on. IEEE, pages 78–83.

Xiaodong Zhang and Houfeng Wang. 2016. A joint
model of intent determination and slot filling for
spoken language understanding. IJCAI.

653

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 654–664
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1061

Learning Discourse-level Diversity for Neural Dialog Models using
Conditional Variational Autoencoders

Tiancheng Zhao, Ran Zhao and Maxine Eskenazi
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

{tianchez,ranzhao1,max+}@cs.cmu.edu

Abstract
While recent neural encoder-decoder
models have shown great promise in mod-
eling open-domain conversations, they
often generate dull and generic responses.
Unlike past work that has focused on
diversifying the output of the decoder
at word-level to alleviate this problem,
we present a novel framework based on
conditional variational autoencoders that
captures the discourse-level diversity in
the encoder. Our model uses latent vari-
ables to learn a distribution over potential
conversational intents and generates
diverse responses using only greedy de-
coders. We have further developed a novel
variant that is integrated with linguistic
prior knowledge for better performance.
Finally, the training procedure is improved
by introducing a bag-of-word loss. Our
proposed models have been validated
to generate significantly more diverse
responses than baseline approaches and
exhibit competence in discourse-level
decision-making.

1 Introduction
The dialog manager is one of the key components
of dialog systems, which is responsible for mod-
eling the decision-making process. Specifically, it
typically takes a new utterance and the dialog con-
text as input, and generates discourse-level deci-
sions (Bohus and Rudnicky, 2003; Williams and
Young, 2007). Advanced dialog managers usu-
ally have a list of potential actions that enable
them to have diverse behavior during a conver-
sation, e.g. different strategies to recover from
non-understanding (Yu et al., 2016). However,
the conventional approach of designing a dialog
manager (Williams and Young, 2007) does not

scale well to open-domain conversation models
because of the vast quantity of possible decisions.
Thus, there has been a growing interest in applying
encoder-decoder models (Sutskever et al., 2014)
for modeling open-domain conversation (Vinyals
and Le, 2015; Serban et al., 2016a). The basic ap-
proach treats a conversation as a transduction task,
in which the dialog history is the source sequence
and the next response is the target sequence. The
model is then trained end-to-end on large conver-
sation corpora using the maximum-likelihood esti-
mation (MLE) objective without the need for man-
ual crafting.

However recent research has found that
encoder-decoder models tend to generate generic
and dull responses (e.g., I don’t know), rather
than meaningful and specific answers (Li et al.,
2015; Serban et al., 2016b). There have been
many attempts to explain and solve this limita-
tion, and they can be broadly divided into two cat-
egories (see Section 2 for details): (1) the first cat-
egory argues that the dialog history is only one of
the factors that decide the next response. Other
features should be extracted and provided to the
models as conditionals in order to generate more
specific responses (Xing et al., 2016; Li et al.,
2016a); (2) the second category aims to improve
the encoder-decoder model itself, including de-
coding with beam search and its variations (Wise-
man and Rush, 2016), encouraging responses that
have long-term payoff (Li et al., 2016b), etc.

Building upon the past work in dialog managers
and encoder-decoder models, the key idea of this
paper is to model dialogs as a one-to-many prob-
lem at the discourse level. Previous studies indi-
cate that there are many factors in open-domain
dialogs that decide the next response, and it is non-
trivial to extract all of them. Intuitively, given
a similar dialog history (and other observed in-
puts), there may exist many valid responses (at the

654

https://doi.org/10.18653/v1/P17-1061

discourse-level), each corresponding to a certain
configuration of the latent variables that are not
presented in the input. To uncover the potential re-
sponses, we strive to model a probabilistic distri-
bution over the distributed utterance embeddings
of the potential responses using a latent variable
(Figure 1). This allows us to generate diverse re-
sponses by drawing samples from the learned dis-
tribution and reconstruct their words via a decoder
neural network.

Figure 1: Given A’s question, there exists many
valid responses from B for different assumptions
of the latent variables, e.g., B’s hobby.

Specifically, our contributions are three-fold:
1. We present a novel neural dialog model
adapted from conditional variational autoencoders
(CVAE) (Yan et al., 2015; Sohn et al., 2015),
which introduces a latent variable that can cap-
ture discourse-level variations as described above
2. We propose Knowledge-Guided CVAE (kgC-
VAE), which enables easy integration of expert
knowledge and results in performance improve-
ment and model interpretability. 3. We develop
a training method in addressing the difficulty of
optimizing CVAE for natural language genera-
tion (Bowman et al., 2015). We evaluate our
models on human-human conversation data and
yield promising results in: (a) generating appro-
priate and discourse-level diverse responses, and
(b) showing that the proposed training method is
more effective than the previous techniques.

2 Related Work

Our work is related to both recent advancement
in encoder-decoder dialog models and generative
models based on CVAE.

2.1 Encoder-decoder Dialog Models
Since the emergence of the neural dialog model,
the problem of output diversity has received much
attention in the research community. Ideal out-
put responses should be both coherent and diverse.
However, most models end up with generic and
dull responses. To tackle this problem, one line
of research has focused on augmenting the in-
put of encoder-decoder models with richer con-
text information, in order to generate more spe-

cific responses. Li et al., (2016a) captured speak-
ers’ characteristics by encoding background infor-
mation and speaking style into the distributed em-
beddings, which are used to re-rank the generated
response from an encoder-decoder model. Xing et
al., (2016) maintain topic encoding based on La-
tent Dirichlet Allocation (LDA) (Blei et al., 2003)
of the conversation to encourage the model to out-
put more topic coherent responses.

On the other hand, many attempts have also
been made to improve the architecture of encoder-
decoder models. Li et al,. (2015) proposed to opti-
mize the standard encoder-decoder by maximizing
the mutual information between input and output,
which in turn reduces generic responses. This ap-
proach penalized unconditionally high frequency
responses, and favored responses that have high
conditional probability given the input. Wiseman
and Rush (2016) focused on improving the de-
coder network by alleviating the biases between
training and testing. They introduced a search-
based loss that directly optimizes the networks
for beam search decoding. The resulting model
achieves better performance on word ordering,
parsing and machine translation. Besides improv-
ing beam search, Li et al., (2016b) pointed out that
the MLE objective of an encoder-decoder model
is unable to approximate the real-world goal of
the conversation. Thus, they initialized a encoder-
decoder model with MLE objective and leveraged
reinforcement learning to fine tune the model by
optimizing three heuristic rewards functions: in-
formativity, coherence, and ease of answering.

2.2 Conditional Variational Autoencoder
The variational autoencoder (VAE) (Kingma and
Welling, 2013; Rezende et al., 2014) is one of the
most popular frameworks for image generation.
The basic idea of VAE is to encode the input x
into a probability distribution z instead of a point
encoding in the autoencoder. Then VAE applies a
decoder network to reconstruct the original input
using samples from z. To generate images, VAE
first obtains a sample of z from the prior distribu-
tion, e.g. N (0, I), and then produces an image via
the decoder network. A more advanced model, the
conditional VAE (CVAE), is a recent modification
of VAE to generate diverse images conditioned on
certain attributes, e.g. generating different human
faces given skin color (Yan et al., 2015; Sohn et al.,
2015). Inspired by CVAE, we view the dialog con-
texts as the conditional attributes and adapt CVAE

655

to generate diverse responses instead of images.
Although VAE/CVAE has achieved impressive

results in image generation, adapting this to natu-
ral language generators is non-trivial. Bowman et
al., (2015) have used VAE with Long-Short Term
Memory (LSTM)-based recognition and decoder
networks to generate sentences from a latent Gaus-
sian variable. They showed that their model is able
to generate diverse sentences with even a greedy
LSTM decoder. They also reported the difficulty
of training because the LSTM decoder tends to ig-
nore the latent variable. We refer to this issue as
the vanishing latent variable problem. Serban et
al., (2016b) have applied a latent variable hierar-
chical encoder-decoder dialog model to introduce
utterance-level variations and facilitate longer re-
sponses. To improve upon the past models, we
firstly introduce a novel mechanism to leverage
linguistic knowledge in training end-to-end neural
dialog models, and we also propose a novel train-
ing technique that mitigates the vanishing latent
variable problem.

3 Proposed Models

Figure 2: Graphical models of CVAE (a) and kgC-
VAE (b)

3.1 Conditional Variational Autoencoder
(CVAE) for Dialog Generation

Each dyadic conversation can be represented via
three random variables: the dialog context c (con-
text window size k − 1), the response utterance x
(the kth utterance) and a latent variable z, which
is used to capture the latent distribution over the
valid responses. Further, c is composed of the dia-
log history: the preceding k-1 utterances; conver-
sational floor (1 if the utterance is from the same
speaker of x, otherwise 0) and meta features m
(e.g. the topic). We then define the conditional dis-
tribution p(x, z|c) = p(x|z, c)p(z|c) and our goal
is to use deep neural networks (parametrized by θ)
to approximate p(z|c) and p(x|z, c). We refer to
pθ(z|c) as the prior network and pθ(x, |z, c) as the

response decoder. Then the generative process of
x is (Figure 2 (a)):

1. Sample a latent variable z from the prior net-
work pθ(z|c).

2. Generate x through the response decoder
pθ(x|z, c).

CVAE is trained to maximize the conditional
log likelihood of x given c, which involves an in-
tractable marginalization over the latent variable
z. As proposed in (Sohn et al., 2015; Yan et al.,
2015), CVAE can be efficiently trained with the
Stochastic Gradient Variational Bayes (SGVB)
framework (Kingma and Welling, 2013) by maxi-
mizing the variational lower bound of the condi-
tional log likelihood. We assume the z follows
multivariate Gaussian distribution with a diago-
nal covariance matrix and introduce a recognition
network qφ(z|x, c) to approximate the true poste-
rior distribution p(z|x, c). Sohn and et al,. (2015)
have shown that the variational lower bound can
be written as:

L(θ, φ;x, c) = −KL(qφ(z|x, c)‖pθ(z|c))
+Eqφ(z|c,x)[log pθ(x|z, c)] (1)

≤ log p(x|c)

Figure 3 demonstrates an overview of our model.
The utterance encoder is a bidirectional recurrent
neural network (BRNN) (Schuster and Paliwal,
1997) with a gated recurrent unit (GRU) (Chung
et al., 2014) to encode each utterance into fixed-
size vectors by concatenating the last hidden states
of the forward and backward RNN ui = [~hi, ~hi].
x is simply uk. The context encoder is a 1-layer
GRU network that encodes the preceding k-1 ut-
terances by taking u1:k−1 and the corresponding
conversation floor as inputs. The last hidden state
hc of the context encoder is concatenated with
meta features and c = [hc,m]. Since we assume z
follows isotropic Gaussian distribution, the recog-
nition network qφ(z|x, c) ∼ N (µ, σ2I) and the
prior network pθ(z|c) ∼ N (µ′, σ′2I), and then we
have:

[
µ

log(σ2)

]
=Wr

[
x
c

]
+ br (2)

[
µ′

log(σ′2)

]
= MLPp(c) (3)

We then use the reparametrization trick (Kingma
and Welling, 2013) to obtain samples of z either

656

Figure 3: The neural network architectures for the baseline and the proposed CVAE/kgCVAE models.⊕
denotes the concatenation of the input vectors. The dashed blue connections only appear in kgCVAE.

from N (z;µ, σ2I) predicted by the recognition
network (training) or N (z;µ′, σ′2I) predicted by
the prior network (testing). Finally, the response
decoder is a 1-layer GRU network with initial state
s0 =Wi[z, c]+bi. The response decoder then pre-
dicts the words in x sequentially.

3.2 Knowledge-Guided CVAE (kgCVAE)
In practice, training CVAE is a challenging opti-
mization problem and often requires large amount
of data. On the other hand, past research in spo-
ken dialog systems and discourse analysis has sug-
gested that many linguistic cues capture crucial
features in representing natural conversation. For
example, dialog acts (Poesio and Traum, 1998)
have been widely used in the dialog managers (Lit-
man and Allen, 1987; Raux et al., 2005; Zhao
and Eskenazi, 2016) to represent the propositional
function of the system. Therefore, we conjecture
that it will be beneficial for the model to learn
meaningful latent z if it is provided with explicitly
extracted discourse features during the training.

In order to incorporate the linguistic features
into the basic CVAE model, we first denote the set
of linguistic features as y. Then we assume that
the generation of x depends on c, z and y. y re-
lies on z and c as shown in Figure 2. Specifically,
during training the initial state of the response de-
coder is s0 = Wi[z, c, y] + bi and the input at ev-
ery step is [et, y] where et is the word embedding
of tth word in x. In addition, there is an MLP to
predict y′ = MLPy(z, c) based on z and c. In the
testing stage, the predicted y′ is used by the re-
sponse decoder instead of the oracle decoders. We
denote the modified model as knowledge-guided

CVAE (kgCVAE) and developers can add desired
discourse features that they wish the latent vari-
able z to capture. KgCVAE model is trained by
maximizing:

L(θ, φ;x, c, y) = −KL(qφ(z|x, c, y)‖Pθ(z|c))
+Eqφ(z|c,x,y)[log p(x|z, c, y)]
+Eqφ(z|c,x,y)[log p(y|z, c)] (4)

Since now the reconstruction of y is a part of the
loss function, kgCVAE can more efficiently en-
code y-related information into z than discovering
it only based on the surface-level x and c. Another
advantage of kgCVAE is that it can output a high-
level label (e.g. dialog act) along with the word-
level responses, which allows easier interpretation
of the model’s outputs.

3.3 Optimization Challenges
A straightforward VAE with RNN decoder fails
to encode meaningful information in z due to the
vanishing latent variable problem (Bowman et al.,
2015). Bowman et al., (2015) proposed two solu-
tions: (1) KL annealing: gradually increasing the
weight of the KL term from 0 to 1 during training;
(2) word drop decoding: setting a certain percent-
age of the target words to 0. We found that CVAE
suffers from the same issue when the decoder is
an RNN. Also we did not consider word drop de-
coding because Bowman et al,. (2015) have shown
that it may hurt the performance when the drop
rate is too high.

As a result, we propose a simple yet novel tech-
nique to tackle the vanishing latent variable prob-
lem: bag-of-word loss. The idea is to introduce

657

an auxiliary loss that requires the decoder network
to predict the bag-of-words in the response x as
shown in Figure 3(b). We decompose x into two
variables: xo with word order and xbow without
order, and assume that xo and xbow are condi-
tionally independent given z and c: p(x, z|c) =
p(xo|z, c)p(xbow|z, c)p(z|c). Due to the condi-
tional independence assumption, the latent vari-
able is forced to capture global information about
the target response. Let f = MLPb(z, x) ∈ RV
where V is vocabulary size, and we have:

log p(xbow|z, c) = log

|x|∏

t=1

efxt
∑V

j e
fj

(5)

where |x| is the length of x and xt is the word
index of tth word in x. The modified variational
lower bound for CVAE with bag-of-word loss is
(see Appendix A for kgCVAE):

L′(θ, φ;x, c) = L(θ, φ;x, c)
+Eqφ(z|c,x,y)[log p(xbow|z, c)] (6)

We will show that the bag-of-word loss in Equa-
tion 6 is very effective against the vanishing latent
variable and it is also complementary to the KL
annealing technique.

4 Experiment Setup
4.1 Dataset
We chose the Switchboard (SW) 1 Release 2 Cor-
pus (Godfrey and Holliman, 1997) to evaluate the
proposed models. SW has 2400 two-sided tele-
phone conversations with manually transcribed
speech and alignment. In the beginning of the
call, a computer operator gave the callers recorded
prompts that define the desired topic of discus-
sion. There are 70 available topics. We ran-
domly split the data into 2316/60/62 dialogs for
train/validate/test. The pre-processing includes (1)
tokenize using the NLTK tokenizer (Bird et al.,
2009); (2) remove non-verbal symbols and re-
peated words due to false starts; (3) keep the
top 10K frequent word types as the vocabulary.
The final data have 207, 833/5, 225/5, 481 (c, x)
pairs for train/validate/test. Furthermore, a sub-
set of SW was manually labeled with dialog
acts (Stolcke et al., 2000). We extracted dia-
log act labels based on the dialog act recognizer
proposed in (Ribeiro et al., 2015). The features
include the uni-gram and bi-gram of the utter-
ance, and the contextual features of the last 3 ut-
terances. We trained a Support Vector Machine

(SVM) (Suykens and Vandewalle, 1999) with lin-
ear kernel on the subset of SW with human anno-
tations. There are 42 types of dialog acts and the
SVM achieved 77.3% accuracy on held-out data.
Then the rest of SW data are labelled with dialog
acts using the trained SVM dialog act recognizer.

4.2 Training

We trained with the following hyperparameters
(according to the loss on the validate dataset):
word embedding has size 200 and is shared
across everywhere. We initialize the word embed-
ding from Glove embedding pre-trained on Twit-
ter (Pennington et al., 2014). The utterance en-
coder has a hidden size of 300 for each direc-
tion. The context encoder has a hidden size of
600 and the response decoder has a hidden size
of 400. The prior network and the MLP for pre-
dicting y both have 1 hidden layer of size 400 and
tanh non-linearity. The latent variable z has a
size of 200. The context window k is 10. All
the initial weights are sampled from a uniform
distribution [-0.08, 0.08]. The mini-batch size is
30. The models are trained end-to-end using the
Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 0.001 and gradient clipping at 5.
We selected the best models based on the varia-
tional lower bound on the validate data. Finally,
we use the BOW loss along with KL annealing of
10,000 batches to achieve the best performance.
Section 5.4 gives a detailed argument for the im-
portance of the BOW loss.

5 Results
5.1 Experiments Setup

We compared three neural dialog models: a strong
baseline model, CVAE, and kgCVAE. The base-
line model is an encoder-decoder neural dialog
model without latent variables similar to (Serban
et al., 2016a). The baseline model’s encoder uses
the same context encoder to encode the dialog his-
tory and the meta features as shown in Figure 3.
The encoded context c is directly fed into the de-
coder networks as the initial state. The hyperpa-
rameters of the baseline are the same as the ones
reported in Section 4.2 and the baseline is trained
to minimize the standard cross entropy loss of the
decoder RNN model without any auxiliary loss.

Also, to compare the diversity introduced by the
stochasticity in the proposed latent variable ver-
sus the softmax of RNN at each decoding step, we
generate N responses from the baseline by sam-

658

pling from the softmax. For CVAE/kgCVAE, we
sample N times from the latent z and only use
greedy decoders so that the randomness comes en-
tirely from the latent variable z.

5.2 Quantitative Analysis
Automatically evaluating an open-domain gen-
erative dialog model is an open research chal-
lenge (Liu et al., 2016). Following our one-to-
many hypothesis, we propose the following met-
rics. We assume that for a given dialog context c,
there existMc reference responses rj , j ∈ [1,Mc].
Meanwhile a model can generateN hypothesis re-
sponses hi, i ∈ [1, N]. The generalized response-
level precision/recall for a given dialog context is:

precision(c) =

∑N
i=1maxj∈[1,Mc]d(rj , hi)

N

recall(c) =

∑Mc
j=1maxi∈[1,N]d(rj , hi))

Mc

where d(rj , hi) is a distance function which lies
between 0 to 1 and measures the similarities be-
tween rj and hi. The final score is averaged over
the entire test dataset and we report the perfor-
mance with 3 types of distance functions in or-
der to evaluate the systems from various linguistic
points of view:

1. Smoothed Sentence-level BLEU (Chen and
Cherry, 2014): BLEU is a popular metric that
measures the geometric mean of modified n-
gram precision with a length penalty (Pap-
ineni et al., 2002; Li et al., 2015). We use
BLEU-1 to 4 as our lexical similarity metric
and normalize the score to 0 to 1 scale.

2. Cosine Distance of Bag-of-word Embed-
ding: a simple method to obtain sentence
embeddings is to take the average or ex-
trema of all the word embeddings in the sen-
tences (Forgues et al., 2014; Adi et al., 2016).
The d(rj , hi) is the cosine distance of the two
embedding vectors. We used Glove embed-
ding described in Section 4 and denote the av-
erage method as A-bow and extrema method
as E-bow.

3. Dialog Act Match: to measure the similar-
ity at the discourse level, the same dialog-
act tagger from 4.1 is applied to label all the
generated responses of each model. We set
d(rj , hi) = 1 if rj and hi have the same dia-
log acts, otherwise d(rj , hi) = 0.

One challenge of using the above metrics is that
there is only one, rather than multiple reference
responses/contexts. This impacts reliability of our
measures. Inspired by (Sordoni et al., 2015), we
utilized information retrieval techniques (see Ap-
pendix A) to gather 10 extra candidate reference
responses/context from other conversations with
the same topics. Then the 10 candidate references
are filtered by two experts, which serve as the
ground truth to train the reference response classi-
fier. The result is 6.69 extra references in average
per context. The average number of distinct refer-
ence dialog acts is 4.2. Table 1 shows the results.

Metrics Baseline CVAE kgCVAE
perplexity (KL) 35.4

(n/a)
20.2
(11.36)

16.02
(13.08)

BLEU-1 prec 0.405 0.372 0.412
BLEU-1 recall 0.336 0.381 0.411
BLEU-2 prec 0.300 0.295 0.350
BLEU-2 recall 0.281 0.322 0.356
BLEU-3 prec 0.272 0.265 0.310
BLEU-3 recall 0.254 0.292 0.318
BLEU-4 prec 0.226 0.223 0.262
BLEU-4 recall 0.215 0.248 0.272
A-bow prec 0.387 0.389 0.373
A-bow recall 0.337 0.361 0.336
E-bow prec 0.701 0.705 0.711
E-bow recall 0.684 0.709 0.712
DA prec 0.736 0.704 0.721
DA recall 0.514 0.604 0.598

Table 1: Performance of each model on automatic
measures. The highest score in each row is in
bold. Note that our BLEU scores are normalized
to [0, 1].

The proposed models outperform the baseline
in terms of recall in all the metrics with statis-
tical significance. This confirms our hypothesis
that generating responses with discourse-level di-
versity can lead to a more comprehensive cov-
erage of the potential responses than promoting
only word-level diversity. As for precision, we
observed that the baseline has higher or similar
scores than CVAE in all metrics, which is expected
since the baseline tends to generate the mostly
likely and safe responses repeatedly in the N hy-
potheses. However, kgCVAE is able to achieve
the highest precision and recall in the 4 metrics at
the same time (BLEU1-4, E-BOW). One reason

659

for kgCVAE’s good performance is that the pre-
dicted dialog act label in kgCVAE can regularize
the generation process of its RNN decoder by forc-
ing it to generate more coherent and precise words.
We further analyze the precision/recall of BLEU-
4 by looking at the average score versus the num-
ber of distinct reference dialog acts. A low num-
ber of distinct dialog acts represents the situation
where the dialog context has a strong constraint
on the range of the next response (low entropy),
while a high number indicates the opposite (high-
entropy). Figure 4 shows that CVAE/kgCVAE
achieves significantly higher recall than the base-
line in higher entropy contexts. Also it shows
that CVAE suffers from lower precision, espe-
cially in low entropy contexts. Finally, kgCVAE
gets higher precision than both the baseline and
CVAE in the full spectrum of context entropy.

Figure 4: BLEU-4 precision/recall vs. the number
of distinct reference dialog acts.

5.3 Qualitative Analysis

Table 2 shows the outputs generated from the
baseline and kgCVAE. In example 1, caller A be-
gins with an open-ended question. The kgCVAE
model generated highly diverse answers that cover
multiple plausible dialog acts. Further, we notice
that the generated text exhibits similar dialog acts
compared to the ones predicted separately by the
model, implying the consistency of natural lan-
guage generation based on y. On the contrary, the
responses from the baseline model are limited to
local n-gram variations and share a similar prefix,
i.e. ”I’m”. Example 2 is a situation where caller
A is telling B stories. The ground truth response
is a back-channel and the range of valid answers is
more constrained than example 1 since B is play-
ing the role of a listener. The baseline successfully
predicts ”uh-huh”. The kgCVAE model is also
able to generate various ways of back-channeling.
This implies that the latent z is able to capture
context-sensitive variations, i.e. in low-entropy di-
alog contexts modeling lexical diversity while in
high-entropy ones modeling discourse-level diver-
sity. Moreover, kgCVAE is occasionally able to

generate more sophisticated grounding (sample 4)
beyond a simple back-channel, which is also an
acceptable response given the dialog context.

In addition, past work (Kingma and Welling,
2013) has shown that the recognition network is
able to learn to cluster high-dimension data, so
we conjecture that posterior z outputted from the
recognition network should cluster the responses
into meaningful groups. Figure 5 visualizes the
posterior z of responses in the test dataset in 2D
space using t-SNE (Maaten and Hinton, 2008).
We found that the learned latent space is highly
correlated with the dialog act and length of re-
sponses, which confirms our assumption.

Figure 5: t-SNE visualization of the posterior z for
test responses with top 8 frequent dialog acts. The
size of circle represents the response length.

5.4 Results for Bag-of-Word Loss
Finally, we evaluate the effectiveness of bag-of-
word (BOW) loss for training VAE/CVAE with the
RNN decoder. To compare with past work (Bow-
man et al., 2015), we conducted the same lan-
guage modelling (LM) task on Penn Treebank us-
ing VAE. The network architecture is same ex-
cept we use GRU instead of LSTM. We compared
four different training setups: (1) standard VAE
without any heuristics; (2) VAE with KL anneal-
ing (KLA); (3) VAE with BOW loss; (4) VAE
with both BOW loss and KLA. Intuitively, a well
trained model should lead to a low reconstruction
loss and small but non-trivial KL cost. For all
models with KLA, the KL weight increases lin-
early from 0 to 1 in the first 5000 batches.

Table 3 shows the reconstruction perplexity and
the KL cost on the test dataset. The standard VAE
fails to learn a meaningful latent variable by hav-

660

Example 1-Topic: Recycling Context: A: are they doing a lot of recycling out in Georgia? Target-B (statement): well
at my workplace we have palaces for aluminium cans and we have a separate trash can for recyclable paper
Baseline+Sampling kgCVAE+Greedy
1. well I’m a graduate student and have two kids 1. (non-understand) pardon
2. well I was in last year and so we’ve had lots of recycling 2. (statement) oh you’re not going to have a curbside pick

up here
3. I’m not sure 3. (statement) okay I am sure about a recycling center
4. well I don’t know I just moved here in new york 4. (yes-answer) yeah so

Example 2-Topic: Child Care Context: A: you know a private home to take their children to when they’re young until
they hit the preschool age and they Target-B (backchannel): uh-huh
Baseline+Sampling kgCVAE+Greedy
1. um - hum 1. (backchannel) uh-huh
2. yeah 2. (turn-exit) um-hum
3. um - hum 3. (backchannel) yeah
4. uh-huh 4. (statement) oh yeah I think that’s part of the problem

Table 2: Generated responses from the baselines and kgCVAE in two examples. KgCVAE also provides
the predicted dialog act for each response. The context only shows the last utterance due to space limit
(the actual context window size is 10).

ing a KL cost close to 0 and a reconstruction per-
plexity similar to a small LSTM LM (Zaremba
et al., 2014). KLA helps to improve the recon-
struction loss, but it requires early stopping since
the models will fall back to the standard VAE after
the KL weight becomes 1. At last, the models with
BOW loss achieved significantly lower perplexity
and larger KL cost.

Model Perplexity KL cost
Standard 122.0 0.05
KLA 111.5 2.02
BOW 97.72 7.41
BOW+KLA 73.04 15.94

Table 3: The reconstruction perplexity and KL
terms on Penn Treebank test set.

Figure 6 visualizes the evolution of the KL cost.
We can see that for the standard model, the KL
cost crashes to 0 at the beginning of training and
never recovers. On the contrary, the model with
only KLA learns to encode substantial informa-
tion in latent z when the KL cost weight is small.
However, after the KL weight is increased to 1 (af-
ter 5000 batch), the model once again decides to
ignore the latent z and falls back to the naive im-
plementation. The model with BOW loss, how-
ever, consistently converges to a non-trivial KL
cost even without KLA, which confirms the im-
portance of BOW loss for training latent vari-
able models with the RNN decoder. Last but not
least, our experiments showed that the conclusions
drawn from LM using VAE also apply to training
CVAE/kgCVAE, so we used BOW loss together
with KLA for all previous experiments.

Figure 6: The value of the KL divergence during
training with different setups on Penn Treebank.

6 Conclusion and Future Work
In conclusion, we identified the one-to-many na-
ture of open-domain conversation and proposed
two novel models that show superior performance
in generating diverse and appropriate responses at
the discourse level. While the current paper ad-
dresses diversifying responses in respect to dia-
logue acts, this work is part of a larger research
direction that targets leveraging both past linguis-
tic findings and the learning power of deep neural
networks to learn better representation of the la-
tent factors in dialog. In turn, the output of this
novel neural dialog model will be easier to ex-
plain and control by humans. In addition to di-
alog acts, we plan to apply our kgCVAE model
to capture other different linguistic phenomena in-
cluding sentiment, named entities,etc. Last but
not least, the recognition network in our model
will serve as the foundation for designing a data-
driven dialog manager, which automatically dis-
covers useful high-level intents. All of the above
suggest a promising research direction.

661

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2016. Fine-grained anal-
ysis of sentence embeddings using auxiliary predic-
tion tasks. arXiv preprint arXiv:1608.04207 .

Steven Bird, Ewan Klein, and Edward Loper. 2009.
Natural language processing with Python. ”
O’Reilly Media, Inc.”.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. Journal of ma-
chine Learning research 3(Jan):993–1022.

Dan Bohus and Alexander I Rudnicky. 2003. Raven-
claw: Dialog management using hierarchical task
decomposition and an expectation agenda .

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2015. Generating sentences from a continuous
space. arXiv preprint arXiv:1511.06349 .

Boxing Chen and Colin Cherry. 2014. A systematic
comparison of smoothing techniques for sentence-
level bleu. ACL 2014 page 362.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Gabriel Forgues, Joelle Pineau, Jean-Marie
Larchevêque, and Réal Tremblay. 2014. Boot-
strapping dialog systems with word embeddings.
In NIPS, Modern Machine Learning and Natural
Language Processing Workshop.

John J Godfrey and Edward Holliman. 1997.
Switchboard-1 release 2. Linguistic Data Consor-
tium, Philadelphia .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Diederik P Kingma and Max Welling. 2013. Auto-
encoding variational bayes. arXiv preprint
arXiv:1312.6114 .

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. arXiv
preprint arXiv:1510.03055 .

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A persona-based neural con-
versation model. arXiv preprint arXiv:1603.06155
.

Jiwei Li, Will Monroe, Alan Ritter, and Dan Jurafsky.
2016b. Deep reinforcement learning for dialogue
generation. arXiv preprint arXiv:1606.01541 .

Diane J Litman and James F Allen. 1987. A plan
recognition model for subdialogues in conversa-
tions. Cognitive science 11(2):163–200.

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. arXiv preprint
arXiv:1603.08023 .

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research 9(Nov):2579–2605.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 311–318.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
43.

Massimo Poesio and David Traum. 1998. Towards an
axiomatization of dialogue acts. In Proceedings of
the Twente Workshop on the Formal Semantics and
Pragmatics of Dialogues (13th Twente Workshop on
Language Technology. Citeseer.

Antoine Raux, Brian Langner, Dan Bohus, Alan W
Black, and Maxine Eskenazi. 2005. Lets go pub-
lic! taking a spoken dialog system to the real world.
In in Proc. of Interspeech 2005. Citeseer.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan
Wierstra. 2014. Stochastic backpropagation and
approximate inference in deep generative models.
arXiv preprint arXiv:1401.4082 .

Eugénio Ribeiro, Ricardo Ribeiro, and David Mar-
tins de Matos. 2015. The influence of con-
text on dialogue act recognition. arXiv preprint
arXiv:1506.00839 .

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval.
Information processing & management 24(5):513–
523.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673–2681.

Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016a. Building
end-to-end dialogue systems using generative hier-
archical neural network models. In Proceedings of
the 30th AAAI Conference on Artificial Intelligence
(AAAI-16).

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville,
and Yoshua Bengio. 2016b. A hierarchical latent
variable encoder-decoder model for generating di-
alogues. arXiv preprint arXiv:1605.06069 .

662

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. 2015.
Learning structured output representation using
deep conditional generative models. In Advances
in Neural Information Processing Systems. pages
3483–3491.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. arXiv preprint
arXiv:1506.06714 .

Andreas Stolcke, Noah Coccaro, Rebecca Bates, Paul
Taylor, Carol Van Ess-Dykema, Klaus Ries, Eliza-
beth Shriberg, Daniel Jurafsky, Rachel Martin, and
Marie Meteer. 2000. Dialogue act modeling for au-
tomatic tagging and recognition of conversational
speech. Computational linguistics 26(3):339–373.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Johan AK Suykens and Joos Vandewalle. 1999. Least
squares support vector machine classifiers. Neural
processing letters 9(3):293–300.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869 .

Jason D Williams and Steve Young. 2007. Partially
observable markov decision processes for spoken
dialog systems. Computer Speech & Language
21(2):393–422.

Sam Wiseman and Alexander M Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. arXiv preprint arXiv:1606.02960 .

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou
Huang, Ming Zhou, and Wei-Ying Ma. 2016.
Topic augmented neural response generation with
a joint attention mechanism. arXiv preprint
arXiv:1606.08340 .

Xinchen Yan, Jimei Yang, Kihyuk Sohn, and Honglak
Lee. 2015. Attribute2image: Conditional image
generation from visual attributes. arXiv preprint
arXiv:1512.00570 .

Zhou Yu, Ziyu Xu, Alan W Black, and Alex I Rud-
nicky. 2016. Strategy and policy learning for non-
task-oriented conversational systems. In 17th An-
nual Meeting of the Special Interest Group on Dis-
course and Dialogue. volume 2, page 7.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals.
2014. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329 .

Tiancheng Zhao and Maxine Eskenazi. 2016. To-
wards end-to-end learning for dialog state tracking
and management using deep reinforcement learning.
arXiv preprint arXiv:1606.02560 .

A Supplemental Material

Variational Lower Bound for kgCVAE
We assume that even with the presence of linguis-
tic feature y regarding x, the prediction of xbow
still only depends on the z and c. Therefore, we
have:

L(θ, φ;x, c, y) = −KL(qφ(z|x, c, y)‖Pθ(z|c))
+Eqφ(z|c,x,y)[log p(x|z, c, y)]
+Eqφ(z|c,x,y)[log p(y|z, c)]
+Eqφ(z|c,x,y)[log p(xbow|z, c)]

(7)

Collection of Multiple Reference Responses
We collected multiple reference responses for each
dialog context in the test set by information re-
trieval techniques combining with traditional a
machine learning method. First, we encode the di-
alog history using Term Frequency-Inverse Doc-
ument Frequency (TFIDF) (Salton and Buckley,
1988) weighted bag-of-words into vector repre-
sentation h. Then we denote the topic of the con-
versation as t and denote f as the conversation
floor, i.e. if the speakers of the last utterance in
the dialog history and response utterance are the
same f = 1 otherwise f = 0. Then we com-
puted the similarity d(ci, cj) between two dialog
contexts using:

d(ci, cj) = 1(ti = tj)1(ti = tj)
hi · hj
||hi||||hj ||

(8)

Unlike past work (Sordoni et al., 2015), this sim-
ilarity function only cares about the distance in
the context and imposes no constraints on the re-
sponse, therefore is suitbale for finding diverse re-
sponses regarding to the same dialog context. Sec-
ondly, for each dialog context in the test set, we
retrieved the 10 nearest neighbors from the train-
ing set and treated the responses from the training
set as candidate reference responses. Thirdly, we
further sampled 240 context-responses pairs from
5481 pairs in the total test set and post-processed
the selected candidate responses by two human
computational linguistic experts who were told to
give a binary label for each candidate response
about whether the response is appropriate regard-
ing its dialog context. The filtered lists then served
as the ground truth to train our reference response
classifier. For the next step, we extracted bigrams,
part-of-speech bigrams and word part-of-speech

663

pairs from both dialogue contexts and candidate
reference responses with rare threshold for feature
extraction being set to 20. Then L2-regularized
logistic regression with 10-fold cross validation
was applied as the machine learning algorithm.
Cross validation accuracy on the human-labelled
data was 71%. Finally, we automatically anno-
tated the rest of test set with this trained classifier
and the resulting data were used for model evalu-
ation.

664

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 665–677
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1062

Hybrid Code Networks: practical and efficient end-to-end dialog control
with supervised and reinforcement learning

Jason D. Williams
Microsoft Research

jason.williams@microsoft.com

Kavosh Asadi
Brown University
kavosh@brown.edu

Geoffrey Zweig∗
Microsoft Research
g2zweig@gmail.com

Abstract

End-to-end learning of recurrent neural
networks (RNNs) is an attractive solu-
tion for dialog systems; however, cur-
rent techniques are data-intensive and re-
quire thousands of dialogs to learn sim-
ple behaviors. We introduce Hybrid
Code Networks (HCNs), which combine
an RNN with domain-specific knowledge
encoded as software and system action
templates. Compared to existing end-to-
end approaches, HCNs considerably re-
duce the amount of training data required,
while retaining the key benefit of inferring
a latent representation of dialog state. In
addition, HCNs can be optimized with su-
pervised learning, reinforcement learning,
or a mixture of both. HCNs attain state-
of-the-art performance on the bAbI dialog
dataset (Bordes and Weston, 2016), and
outperform two commercially deployed
customer-facing dialog systems.

1 Introduction

Task-oriented dialog systems help a user to ac-
complish some goal using natural language, such
as making a restaurant reservation, getting techni-
cal support, or placing a phonecall. Historically,
these dialog systems have been built as a pipeline,
with modules for language understanding, state
tracking, action selection, and language genera-
tion. However, dependencies between modules in-
troduce considerable complexity – for example, it
is often unclear how to define the dialog state and
what history to maintain, yet action selection re-
lies exclusively on the state for input. Moreover,
training each module requires specialized labels.

∗Currently at JPMorgan Chase

Recently, end-to-end approaches have trained
recurrent neural networks (RNNs) directly on text
transcripts of dialogs. A key benefit is that the
RNN infers a latent representation of state, obviat-
ing the need for state labels. However, end-to-end
methods lack a general mechanism for injecting
domain knowledge and constraints. For example,
simple operations like sorting a list of database re-
sults or updating a dictionary of entities can ex-
pressed in a few lines of software, yet may take
thousands of dialogs to learn. Moreover, in some
practical settings, programmed constraints are es-
sential – for example, a banking dialog system
would require that a user is logged in before they
can retrieve account information.

This paper presents a model for end-to-end
learning, called Hybrid Code Networks (HCNs)
which addresses these problems. In addition to
learning an RNN, HCNs also allow a developer
to express domain knowledge via software and ac-
tion templates. Experiments show that, compared
to existing recurrent end-to-end techniques, HCNs
achieve the same performance with considerably
less training data, while retaining the key benefit
of end-to-end trainability. Moreover, the neural
network can be trained with supervised learning
or reinforcement learning, by changing the gradi-
ent update applied.

This paper is organized as follows. Section 2
describes the model, and Section 3 compares the
model to related work. Section 4 applies HCNs
to the bAbI dialog dataset (Bordes and Weston,
2016). Section 5 then applies the method to real
customer support domains at our company. Sec-
tion 6 illustrates how HCNs can be optimized with
reinforcement learning, and Section 7 concludes.

665

https://doi.org/10.18653/v1/P17-1062

What’s the weather
this week in Seattle?

Choose
action

template

Entity
output

Action
type?

Anything else? text

Dense +
softmaxRNN

Entity
tracking

Bag of words vector Forecast() 0.93

Normal-
ization.

X

Anything else? 0.07

<city>, right? 0.00
API call

API

WeatherBot

Utterance embedding

2

3

4

7 9

11

14

15

18

6

1213

17

Action
mask

Context
features

Fully-formed
action

API
result

1

5

Entity
extraction

t+1

t+1

8

10

t+1
16

Figure 1: Operational loop. Trapezoids refer to programmatic code provided by the software developer,
and shaded boxes are trainable components. Vertical bars under “6” represent concatenated vectors
which form the input to the RNN.

2 Model description

At a high level, the four components of a Hy-
brid Code Network are a recurrent neural net-
work; domain-specific software; domain-specific
action templates; and a conventional entity extrac-
tion module for identifying entity mentions in text.
Both the RNN and the developer code maintain
state. Each action template can be a textual com-
municative action or an API call. The HCN model
is summarized in Figure 1.

The cycle begins when the user provides an ut-
terance, as text (step 1). The utterance is featurized
in several ways. First, a bag of words vector is
formed (step 2). Second, an utterance embedding
is formed, using a pre-built utterance embedding
model (step 3). Third, an entity extraction module
identifies entity mentions (step 4) – for example,
identifying “Jennifer Jones” as a <name> entity.
The text and entity mentions are then passed to
“Entity tracking” code provided by the developer
(step 5), which grounds and maintains entities –
for example, mapping the text “Jennifer Jones” to
a specific row in a database. This code can option-
ally return an “action mask”, indicating actions
which are permitted at the current timestep, as a
bit vector. For example, if a target phone number
has not yet been identified, the API action to place
a phone call may be masked. It can also option-
ally return “context features” which are features
the developer thinks will be useful for distinguish-

ing among actions, such as which entities are cur-
rently present and which are absent.

The feature components from steps 1-5 are con-
catenated to form a feature vector (step 6). This
vector is passed to an RNN, such as a long short-
term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) or gated recurrent unit (GRU) (Chung
et al., 2014). The RNN computes a hidden state
(vector), which is retained for the next timestep
(step 8), and passed to a dense layer with a soft-
max activation, with output dimension equal to the
number of distinct system action templates (step
9).1 Thus the output of step 9 is a distribution over
action templates. Next, the action mask is applied
as an element-wise multiplication, and the result is
normalized back to a probability distribution (step
10) – this forces non-permitted actions to take on
probability zero. From the resulting distribution
(step 11), an action is selected (step 12). When RL
is active, exploration is required, so in this case an
action is sampled from the distribution; when RL
is not active, the best action should be chosen, and
so the action with the highest probability is always
selected.

The selected action is next passed to “Entity
output” developer code that can substitute in en-
tities (step 13) and produce a fully-formed action
– for example, mapping the template “<city>,

1Implementation details for the RNN such as size, loss,
etc. are given with each experiment in Sections 4-6.

666

right?” to “Seattle, right?”. In step 14, control
branches depending on the type of the action: if it
is an API action, the corresponding API call in the
developer code is invoked (step 15) – for example,
to render rich content to the user. APIs can act as
sensors and return features relevant to the dialog,
so these can be added to the feature vector in the
next timestep (step 16). If the action is text, it is
rendered to the user (step 17), and cycle then re-
peats. The action taken is provided as a feature to
the RNN in the next timestep (step 18).

3 Related work

Broadly there are two lines of work applying ma-
chine learning to dialog control. The first de-
composes a dialog system into a pipeline, typ-
ically including language understanding, dialog
state tracking, action selection policy, and lan-
guage generation (Levin et al., 2000; Singh et al.,
2002; Williams and Young, 2007; Williams, 2008;
Hori et al., 2009; Lee et al., 2009; Griol et al.,
2008; Young et al., 2013; Li et al., 2014). Specifi-
cally related to HCNs, past work has implemented
the policy as feed-forward neural networks (Wen
et al., 2016), trained with supervised learning fol-
lowed by reinforcement learning (Su et al., 2016).
In these works, the policy has not been recur-
rent – i.e., the policy depends on the state tracker
to summarize observable dialog history into state
features, which requires design and specialized la-
beling. By contrast, HCNs use an RNN which au-
tomatically infers a representation of state. For
learning efficiency, HCNs use an external light-
weight process for tracking entity values, but the
policy is not strictly dependent on it: as an illustra-
tion, in Section 5 below, we demonstrate an HCN-
based dialog system which has no external state
tracker. If there is context which is not apparent in
the text in the dialog, such as database status, this
can be encoded as a context feature to the RNN.

The second, more recent line of work applies
recurrent neural networks (RNNs) to learn “end-
to-end” models, which map from an observable
dialog history directly to a sequence of output
words (Sordoni et al., 2015; Shang et al., 2015;
Vinyals and Le, 2015; Yao et al., 2015; Serban
et al., 2016; Li et al., 2016a,c; Luan et al., 2016;
Xu et al., 2016; Li et al., 2016b; Mei et al., 2016;
Lowe et al., 2017; Serban et al., 2017). These
systems can be applied to task-oriented domains
by adding special “API call” actions, enumerating

database output as a sequence of tokens (Bordes
and Weston, 2016), then learning an RNN using
Memory Networks (Sukhbaatar et al., 2015), gated
memory networks (Liu and Perez, 2016), query
reduction networks (Seo et al., 2016), and copy-
augmented networks (Eric and Manning, 2017).
In each of these architectures, the RNN learns to
manipulate entity values, for example by saving
them in a memory. Output is produced by gen-
erating a sequence of tokens (or ranking all pos-
sible surface forms), which can also draw from
this memory. HCNs also use an RNN to accu-
mulate dialog state and choose actions. However,
HCNs differ in that they use developer-provided
action templates, which can contain entity refer-
ences, such as “<city>, right?”. This design re-
duce learning complexity, and also enable the soft-
ware to limit which actions are available via an ac-
tion mask, at the expense of developer effort. To
further reduce learning complexity in a practical
system, entities are tracked separately, outside the
the RNN, which also allows them to be substituted
into action templates. Also, past end-to-end re-
current models have been trained using supervised
learning, whereas we show how HCNs can also be
trained with reinforcement learning.

4 Supervised learning evaluation I

In this section we compare HCNs to existing ap-
proaches on the public “bAbI dialog” dataset (Bor-
des and Weston, 2016). This dataset includes two
end-to-end dialog learning tasks, in the restaurant
domain, called task5 and task6.2 Task5 consists of
synthetic, simulated dialog data, with highly regu-
lar user behavior and constrained vocabulary. Di-
alogs include a database access action which re-
trieves relevant restaurants from a database, with
results included in the dialog transcript. We test on
the “OOV” variant of Task5, which includes en-
tity values not observed in the training set. Task6
draws on human-computer dialog data from the
second dialog state tracking challenge (DSTC2),
where usability subjects (crowd-workers) inter-
acted with several variants of a spoken dialog sys-
tem (Henderson et al., 2014a). Since the database
from DSTC2 was not provided, database calls
have been inferred from the data and inserted into
the dialog transcript. Example dialogs are pro-
vided in the Appendix Sections A.2 and A.3.

To apply HCNs, we wrote simple domain-
2Tasks 1-4 are sub-tasks of Task5.

667

specific software, as follows. First, for entity
extraction (step 4 in Figure 1), we used a sim-
ple string match, with a pre-defined list of entity
names – i.e., the list of restaurants available in
the database. Second, in the context update (step
5), we wrote simple logic for tracking entities:
when an entity is recognized in the user input, it
is retained by the software, over-writing any pre-
viously stored value. For example, if the price
“cheap” is recognized in the first turn, it is retained
as price=cheap. If “expensive” is then recog-
nized in the third turn, it over-writes “cheap” so
the code now holds price=expensive. Third,
system actions were templatized: for example,
system actions of the form “prezzo is a nice restau-
rant in the west of town in the moderate price
range” all map to the template “<name> is a nice
restaurant in the <location> of town in the
<price> price range”. This results in 16 tem-
plates for Task5 and 58 for Task6.3 Fourth, when
database results are received into the entity state,
they are sorted by rating. Finally, an action mask
was created which encoded common-sense depen-
dencies. These are implemented as simple if-then
rules based on the presence of entity values: for
example, only allow an API call if pre-conditions
are met; only offer a restaurant if database results
have already been received; do not ask for an en-
tity if it is already known; etc.

For Task6, we noticed that the system can say
that no restaurants match the current query with-
out consulting the database (for an example dia-
log, see Section A.3 in the Appendix). In a prac-
tical system this information would be retrieved
from the database and not encoded in the RNN.
So, we mined the training data and built a table
of search queries known to yield no results. We
also added context features that indicated the state
of the database – for example, whether there were
any restaurants matching the current query. The
complete set of context features is given in Ap-
pendix Section A.4. Altogether this code con-
sisted of about 250 lines of Python.

We then trained an HCN on the training set,
employing the domain-specific software described
above. We selected an LSTM for the recurrent
layer (Hochreiter and Schmidhuber, 1997), with
the AdaDelta optimizer (Zeiler, 2012). We used
the development set to tune the number of hid-

3A handful of actions in Task6 seemed spurious; for these,
we replaced them with a special “UNK” action in the training
set, and masked this action at test time.

den units (128), and the number of epochs (12).
Utterance embeddings were formed by averaging
word embeddings, using a publicly available 300-
dimensional word embedding model trained us-
ing word2vec on web data (Mikolov et al., 2013).4

The word embeddings were static and not updated
during LSTM training. In training, each dialog
formed one minibatch, and updates were done on
full rollouts (i.e., non-truncated back propagation
through time). The training loss was categorical
cross-entropy. Further low-level implementation
details are in the Appendix Section A.1.

We ran experiments with four variants of our
model: with and without the utterance embed-
dings, and with and without the action mask (Fig-
ure 1, steps 3 and 6 respectively).

Following past work, we report average turn ac-
curacy – i.e., for each turn in each dialog, present
the (true) history of user and system actions to the
network and obtain the network’s prediction as a
string of characters. The turn is correct if the string
matches the reference exactly, and incorrect if not.
We also report dialog accuracy, which indicates if
all turns in a dialog are correct.

We compare to four past end-to-end approaches
(Bordes and Weston, 2016; Liu and Perez, 2016;
Eric and Manning, 2017; Seo et al., 2016). We em-
phasize that past approaches have applied purely
sequence-to-sequence models, or (as a baseline)
purely programmed rules (Bordes and Weston,
2016). By contrast, Hybrid Code Networks are a
hybrid of hand-coded rules and learned models.

Results are shown in Table 1. Since Task5 is
synthetic data generated using rules, it is possi-
ble to obtain perfect accuracy using rules (line 1).
The addition of domain knowledge greatly simpli-
fies the learning task and enables HCNs to also at-
tain perfect accuracy. On Task6, rules alone fare
poorly, whereas HCNs outperform past learned
models.

We next examined learning curves, training
with increasing numbers of dialogs. To guard
against bias in the ordering of the training set, we
averaged over 5 runs, randomly permuting the or-
der of the training dialogs in each run. Results are
in Figure 2. In Task5, the action mask and utter-
ance embeddings substantially reduce the number
of training dialogs required (note the horizontal
axis scale is logarithmic). For Task6, the bene-

4Google News 100B model from https://github.
com/3Top/word2vec-api

668

Task5-OOV Task6
Model Turn Acc. Dialog Acc. Turn Acc. Dialog Acc.
Rules 100% 100% 33.3% 0.0%

Bordes and Weston (2016) 77.7% 0.0% 41.1% 0.0%
Liu and Perez (2016) 79.4% 0.0% 48.7% 1.4%

Eric and Manning (2017) — — 48.0% 1.5%
Seo et al. (2016) 96.0% — 51.1% —

HCN 100% 100% 54.0% 1.2%
HCN+embed 100% 100% 55.6% 1.3%
HCN+mask 100% 100% 53.1% 1.9%

HCN+embed+mask 100% 100% 52.7% 1.5%

Table 1: Results on bAbI dialog Task5-OOV and Task6 (Bordes and Weston, 2016). Results for “Rules”
taken from Bordes and Weston (2016). Note that, unlike cited past work, HCNs make use of domain-
specific procedural knowledge.

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 5 10 20 50 100 200 500 1000

Tu
rn

 a
cc

ur
ac

y

Supervised learning training dialogs

HCN+mask+embed
HCN+mask
HCN+embed
HCN

(a) bAbI dialog Task5-OOV.

0%

10%

20%

30%

40%

50%

60%

1 2 5 10 20 50 100 200 500 1000 1618

Tu
rn

 a
cc

ur
ac

y

Supervised learning training dialogs

HCN+mask+embed
HCN+mask
HCN+embed
HCN

(b) bAbI dialog Task6.

Figure 2: Training dialog count vs. turn accuracy for bAbI dialog Task5-OOV and Task6. “embed”
indicates whether utterance embeddings were included; “mask” indicates whether the action masking
code was active.

fits of the utterance embeddings are less clear. An
error analysis showed that there are several sys-
tematic differences between the training and test-
ing sets. Indeed, DSTC2 intentionally used differ-
ent dialog policies for the training and test sets,
whereas our goal is to mimic the policy in the
training set.

Nonetheless, these tasks are the best public
benchmark we are aware of, and HCNs exceed
performance of existing sequence-to-sequence
models. In addition, they match performance of
past models using an order of magnitude less data
(200 vs. 1618 dialogs), which is crucial in practi-
cal settings where collecting realistic dialogs for a
new domain can be expensive.

5 Supervised learning evaluation II

We now turn to comparing with purely hand-
crafted approaches. To do this, we obtained logs
from our company’s text-based customer support
dialog system, which uses a sophisticated rule-
based dialog manager. Data from this system is
attractive for evaluation because it is used by real
customers – not usability subjects – and because
its rule-based dialog manager was developed by
customer support professionals at our company,
and not the authors. This data is not publicly
available, but we are unaware of suitable human-
computer dialog data in the public domain which
uses rules.

Customers start using the dialog system by en-
tering a brief description of their problem, such

669

as “I need to update my operating system”. They
are then routed to one of several hundred domains,
where each domain attempts to resolve a particu-
lar problem. In this study, we collected human-
computer transcripts for the high-traffic domains
“reset password” and “cannot access account”.

We labeled the dialog data as follows. First,
we enumerated unique system actions observed in
the data. Then, for each dialog, starting from the
beginning, we examined each system action, and
determined whether it was “correct”. Here, cor-
rect means that it was the most appropriate action
among the set of existing system actions, given the
history of that dialog. If multiple actions were ar-
guably appropriate, we broke ties in favor of the
existing rule-based dialog manager. Example di-
alogs are provided in the Appendix Sections A.5
and A.6.

If a system action was labeled as correct, we left
it as-is and continued to the next system action. If
the system action was not correct, we replaced it
with the correct system action, and discarded the
rest of the dialog, since we do not know how the
user would have replied to this new system action.
The resulting dataset contained a mixture of com-
plete and partial dialogs, containing only correct
system actions. We partitioned this set into train-
ing and test dialogs. Basic statistics of the data are
shown in Table 2.

In this domain, no entities were relevant to the
control flow, and there was no obvious mask logic
since any question could follow any question.
Therefore, we wrote no domain-specific software
for this instance of the HCN, and relied purely on
the recurrent neural network to drive the conver-
sation. The architecture and training of the RNN
was the same as in Section 4, except that here we
did not have enough data for a validation set, so
we instead trained until we either achieved 100%
accuracy on the training set or reached 200 epochs.

To evaluate, we observe that conventional mea-
sures like average dialog accuracy unfairly penal-
ize the system used to collect the dialogs – in our
case, the rule-based system. If the system used
for collection makes an error at turn t, the labeled
dialog only includes the sub-dialog up to turn t,
and the system being evaluated off-line is only
evaluated on that sub-dialog. In other words, in
our case, reporting dialog accuracy would favor
the HCN because it would be evaluated on fewer
turns than the rule-based system. We therefore

Forgot Account
password Access

Av. sys. turns/dialog 2.2 2.2
Max. sys. turns/dialog 5 9

Av. words/user turn 7.7 5.4
Unique sys. actions 7 16

Train dialogs 422 56
Test dialogs 148 60

Test acc. (rules) 64.9% 42.1%

Table 2: Basic statistics of labeled customer sup-
port dialogs. Test accuracy refers to whole-dialog
accuracy of the existing rule-based system.

use a comparative measure that examines which
method produces longer continuous sequences of
correct system actions, starting from the begin-
ning of the dialog. Specifically, we report ∆P =
C(HCN-win)−C(rule-win)

C(all) , where C(HCN-win) is the
number of test dialogs where the rule-based ap-
proach output a wrong action before the HCN;
C(rule-win) is the number of test dialogs where
the HCN output a wrong action before the rule-
based approach; and C(all) is the number of di-
alogs in the test set. When ∆P > 0, there are
more dialogs in which HCNs produce longer con-
tinuous sequences of correct actions starting from
the beginning of the dialog. We run all experi-
ments 5 times, each time shuffling the order of the
training set. Results are in Figure 3. HCNs exceed
performance of the existing rule-based system af-
ter about 30 dialogs.

In these domains, we have a further source of
knowledge: the rule-based dialog managers them-
selves can be used to generate example “sunny-
day” dialogs, where the user provides purely ex-
pected inputs. From each rule-based controller,
synthetic dialogs were sampled to cover each ex-
pected user response at least once, and added to
the set of labeled real dialogs. This resulted in
75 dialogs for the “Forgot password” domain, and
325 for the “Can’t access account” domain. Train-
ing was repeated as described above. Results are
also included in Figure 3, with the suffix “sam-
pled”. In the “Can’t access account” domain, the
sampled dialogs yield a large improvement, proba-
bly because the flow chart for this domain is large,
so the sampled dialogs increase coverage. The
gain in the “forgot password” domain is present
but smaller.

In summary, HCNs can out-perform

670

-40%

-30%

-20%

-10%

0%

10%

20%

0 20 40 60 80 100

ΔP

Labeled supervised learning training dialogs

HCN+embed+sampled

HCN+sampled

HCN+embed

HCN

(a) “Forgot password” domain.

-40%

-30%

-20%

-10%

0%

10%

20%

30%

0 10 20 30 40 50

ΔP

Labeled supervised learning training dialogs

HCN+embed+sampled

HCN+sampled

HCN+embed

HCN

(b) “Can’t access account” domain.

Figure 3: Training dialogs vs. ∆P , where ∆P is the fraction of test dialogs where HCNs produced
longer initial correct sequences of system actions than the rules, minus the fraction where rules produced
longer initial correct sequences than the HCNs. “embed” indicates whether utterance embeddings were
included; “sampled” indicates whether dialogs sampled from the rule-based controller were included in
the training set.

production-grade rule-based systems with a
reasonable number of labeled dialogs, and
adding synthetic “sunny-day” dialogs improves
performance further. Moreover, unlike existing
pipelined approaches to dialog management that
rely on an explicit state tracker, this HCN used no
explicit state tracker, highlighting an advantage of
the model.

6 Reinforcement learning illustration

In the previous sections, supervised learning (SL)
was applied to train the LSTM to mimic dialogs
provided by the system developer. Once a system
operates at scale, interacting with a large number
of users, it is desirable for the system to continue
to learn autonomously using reinforcement learn-
ing (RL). With RL, each turn receives a measure-
ment of goodness called a reward; the agent ex-
plores different sequences of actions in different
situations, and makes adjustments so as to max-
imize the expected discounted sum of rewards,
which is called the return, denoted G.

For optimization, we selected a policy gradient
approach (Williams, 1992), which has been suc-
cessfully applied to dialog systems (Jurčı́ček et al.,
2011), robotics (Kohl and Stone, 2004), and the
board game Go (Silver et al., 2016). In policy
gradient-based RL, a model π is parameterized by
w and outputs a distribution from which actions
are sampled at each timestep. At the end of a tra-
jectory – in our case, dialog – the return G for

that trajectory is computed, and the gradients of
the probabilities of the actions taken with respect
to the model weights are computed. The weights
are then adjusted by taking a gradient step propor-
tional to the return:

w← w+α(
∑

t

Ow log π(at|ht;w))(G−b) (1)

where α is a learning rate; at is the action taken at
timestep t; ht is the dialog history at time t; G is
the return of the dialog; OxF denotes the Jacobian
of F with respect to x; b is a baseline described be-
low; and π(a|h;w) is the LSTM – i.e., a stochastic
policy which outputs a distribution over a given
a dialog history h, parameterized by weights w.
The baseline b is an estimate of the average return
of the current policy, estimated on the last 100 di-
alogs using weighted importance sampling.5 Intu-
itively, “better” dialogs receive a positive gradient
step, making the actions selected more likely; and
“worse” dialogs receive a negative gradient step,
making the actions selected less likely.

SL and RL correspond to different methods of
updating weights, so both can be applied to the
same network. However, there is no guarantee that
the optimal RL policy will agree with the SL train-
ing set; therefore, after each RL gradient step, we

5The choice of baseline does not affect the long-term con-
vergence of the algorithm (i.e., the bias), but can dramatically
affect the speed of convergence (i.e., the variance) (Williams,
1992).

671

check whether the updated policy reconstructs the
training set. If not, we re-run SL gradient steps
on the training set until the model reproduces the
training set. Note that this approach allows new
training dialogs to be added at any time during RL
optimization.

We illustrate RL optimization on a simulated
dialog task in the name dialing domain. In this
system, a contact’s name may have synonyms
(“Michael” may also be called “Mike”), and a con-
tact may have more than one phone number, such
as “work” or “mobile”, which may in turn have
synonyms like “cell” for “mobile”. This domain
has a database of names and phone numbers taken
from the Microsoft personnel directory, 5 entity
types – firstname, nickname, lastname,
phonenumber, and phonetype – and 14 ac-
tions, including 2 API call actions. Simple en-
tity logic was coded, which retains the most re-
cent copy of recognized entities. A simple action
mask suppresses impossible actions, such as plac-
ing a phonecall before a phone number has been
retrieved from the database. Example dialogs are
provided in Appendix Section A.7.

To perform optimization, we created a simu-
lated user. At the start of a dialog, the simulated
user randomly selected a name and phone type, in-
cluding names and phone types not covered by the
dialog system. When speaking, the simulated user
can use the canonical name or a nickname; usually
answers questions but can ignore the system; can
provide additional information not requested; and
can give up. The simulated user was parameter-
ized by around 10 probabilities, set by hand.

We defined the reward as being 1 for success-
fully completing the task, and 0 otherwise. A dis-
count of 0.95 was used to incentivize the system to
complete dialogs faster rather than slower, yield-
ing return 0 for failed dialogs, and G = 0.95T−1

for successful dialogs, where T is the number of
system turns in the dialog. Finally, we created a
set of 21 labeled dialogs, which will be used for
supervised learning.

For the RNN in the HCN, we again used an
LSTM with AdaDelta, this time with 32 hidden
units. RL policy updates are made after each dia-
log. Since a simulated user was employed, we did
not have real user utterances, and instead relied on
context features, omitting bag-of-words and utter-
ance embedding features.

We first evaluate RL by randomly initializing an

0%

10%

20%

30%

40%

50%

60%

70%

D
ia

lo
g

su
cc

es
s r

at
e

Reinforcement learning training dialogs

10 interleaved
10 initial
5 initial
3 initial
1 initial
0

Figure 4: Dialog success rate vs. reinforcement
learning training dialogs. Curve marked “0” be-
gins with a randomly initialized LSTM. Curves
marked “N initial” are pre-trained with N labeled
dialogs. Curve marked “10, interleaved” adds one
SL training dialog before RL dialog 0, 100, 200,
... 900.

LSTM, and begin RL optimization. After 10 RL
updates, we freeze the policy, and run 500 dialogs
with the user simulation to measure task comple-
tion. We repeat all of this for 100 runs, and report
average performance. In addition, we also report
results by initializing the LSTM using supervised
learning on the training set, consisting of 1, 2, 5,
or 10 dialogs sampled randomly from the training
set, then running RL as described above.

Results are in Figure 4. Although RL alone can
find a good policy, pre-training with just a hand-
ful of labeled dialogs improves learning speed dra-
matically. Additional experiments, not shown for
space, found that ablating the action mask slowed
training, agreeing with Williams (2008).

Finally, we conduct a further experiment where
we sample 10 training dialogs, then add one to
the training set just before RL dialog 0, 100, 200,
... , 900. Results are shown in Figure 4. This
shows that SL dialogs can be introduced as RL is
in progress – i.e., that it is possible to interleave
RL and SL. This is an attractive property for prac-
tical systems: if a dialog error is spotted by a de-
veloper while RL is in progress, it is natural to add
a training dialog to the training set.

7 Conclusion

This paper has introduced Hybrid Code Networks
for end-to-end learning of task-oriented dialog

672

systems. HCNs support a separation of concerns
where procedural knowledge and constraints can
be expressed in software, and the control flow
is learned. Compared to existing end-to-end ap-
proaches, HCNs afford more developer control
and require less training data, at the expense of a
small amount of developer effort.

Results in this paper have explored three differ-
ent dialog domains. On a public benchmark in the
restaurants domain, HCNs exceeded performance
of purely learned models. Results in two trou-
bleshooting domains exceeded performance of a
commercially deployed rule-based system. Fi-
nally, in a name-dialing domain, results from di-
alog simulation show that HCNs can also be opti-
mized with a mixture of reinforcement and super-
vised learning.

In future work, we plan to extend HCNs by
incorporating lines of existing work, such as in-
tegrating the entity extraction step into the neu-
ral network (Dhingra et al., 2017), adding richer
utterance embeddings (Socher et al., 2013), and
supporting text generation (Sordoni et al., 2015).
We will also explore using HCNs with automatic
speech recognition (ASR) input, for example by
forming features from n-grams of the ASR n-best
results (Henderson et al., 2014b). Of course, we
also plan to deploy the model in a live dialog sys-
tem. More broadly, HCNs are a general model
for stateful control, and we would be interested
to explore applications beyond dialog systems –
for example, in NLP medical settings or human-
robot NL interaction tasks, providing domain con-
straints are important for safety; and in resource-
poor settings, providing domain knowledge can
amplify limited data.

References
Antoine Bordes and Jason Weston. 2016. Learn-

ing end-to-end goal-oriented dialog. CoRR
abs/1605.07683. http://arxiv.org/abs/1605.07683.

Franois Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. In Proc NIPS 2014 Deep Learning and Repre-
sentation Learning Workshop.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2017.

Towards end-to-end reinforcement learning of dia-
logue agents for information access. In Proc As-
sociation for Computational Linguistics, Vancouver,
Canada.

Mihail Eric and Christopher D Manning. 2017.
A copy-augmented sequence-to-sequence ar-
chitecture gives good performance on task-
oriented dialogue. CoRR abs/1701.04024.
https://arxiv.org/abs/1701.04024.

David Griol, Llus F. Hurtado, Encarna Segarra, and
Emilio Sanchis. 2008. A statistical approach to spo-
ken dialog systems design and evaluation. Speech
Communication 50(8–9).

Matthew Henderson, Blaise Thomson, and Jason
Williams. 2014a. The second dialog state tracking
challenge. In Proc SIGdial Workshop on Discourse
and Dialogue, Philadelphia, USA.

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014b. Word-based Dialog State Tracking
with Recurrent Neural Networks. In Proc SIGdial
Workshop on Discourse and Dialogue, Philadel-
phia, USA.

Sepp Hochreiter and Jurgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Chiori Hori, Kiyonori Ohtake, Teruhisa Misu, Hideki
Kashioka, and Satoshi Nakamura. 2009. Sta-
tistical dialog management applied to WFST-
based dialog systems. In Acoustics, Speech and
Signal Processing, 2009. ICASSP 2009. IEEE
International Conference on. pages 4793–4796.
https://doi.org/10.1109/ICASSP.2009.4960703.

Filip Jurčı́ček, Blaise Thomson, and Steve Young.
2011. Natural actor and belief critic: Reinforcement
algorithm for learning parameters of dialogue sys-
tems modelled as pomdps. ACM Transactions on
Speech and Language Processing (TSLP) 7(3):6.

Nate Kohl and Peter Stone. 2004. Policy gradient re-
inforcement learning for fast quadrupedal locomo-
tion. In Robotics and Automation, 2004. Proceed-
ings. ICRA’04. 2004 IEEE International Conference
on. IEEE, volume 3, pages 2619–2624.

Cheongjae Lee, Sangkeun Jung, Seokhwan Kim, and
Gary Geunbae Lee. 2009. Example-based dialog
modeling for practical multi-domain dialog system.
Speech Communication 51(5):466–484.

Esther Levin, Roberto Pieraccini, and Wieland Eckert.
2000. A stochastic model of human-machine inter-
action for learning dialogue strategies. IEEE Trans
on Speech and Audio Processing 8(1):11–23.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A diversity-promoting ob-
jective function for neural conversation models. In
Proc HLT-NAACL, San Diego, California, USA.

673

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016b. A
persona-based neural conversation model. In Proc
Association for Computational Linguistics, Berlin,
Germany.

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley,
Jianfeng Gao, and Dan Jurafsky. 2016c. Deep rein-
forcement learning for dialogue generation. In Proc
Conference on Empirical Methods in Natural Lan-
guage Processing, Austin, Texas, USA.

Lihong Li, He He, and Jason D. Williams. 2014. Tem-
poral supervised learning for inferring a dialog pol-
icy from example conversations. In Proc IEEE
Workshop on Spoken Language Technologies (SLT),
South Lake Tahoe, Nevada, USA.

Fei Liu and Julien Perez. 2016. Gated end-to-
end memory networks. CoRR abs/1610.04211.
http://arxiv.org/abs/1610.04211.

Ryan Thomas Lowe, Nissan Pow, Iulian Vlad Serban,
Laurent Charlin, Chia-Wei Liu, and Joelle Pineau.
2017. Training end-to-end dialogue systems with
the ubuntu dialogue corpus. Dialogue and Dis-
course 8(1).

Yi Luan, Yangfeng Ji, and Mari Ostendorf. 2016.
LSTM based conversation models. CoRR
abs/1603.09457. http://arxiv.org/abs/1603.09457.

Hongyuan Mei, Mohit Bansal, and Matthew R. Wal-
ter. 2016. Coherent dialogue with attention-
based language models. CoRR abs/1611.06997.
http://arxiv.org/abs/1611.06997.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proc Advances in Neural Information Pro-
cessing Systems, Lake Tahoe, USA. pages 3111–
3119.

Min Joon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. 2016. Query-regression networks for
machine comprehension. CoRR abs/1606.04582.
http://arxiv.org/abs/1606.04582.

Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative
hierarchical neural network models. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intel-
ligence. AAAI Press, AAAI’16, pages 3776–3783.
http://dl.acm.org/citation.cfm?id=3016387.3016435.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2017. A hierarchical latent variable
encoder-decoder model for generating dialogues.

Lifeng Shang, Zhengdong Lu, , and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. In Proc Association for Computational Lin-
guistics, Beijing, China.

David Silver, Aja Huang, Chris J. Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of Go with deep neural networks and tree
search. Nature 529(7587):484–489.

Satinder Singh, Diane J Litman, Michael Kearns, and
Marilyn A Walker. 2002. Optimizing dialogue man-
agement with reinforcement leaning: experiments
with the NJFun system. Journal of Artificial Intelli-
gence 16:105–133.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Chris Manning, Andrew Ng, and Chris
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proc
Conference on Empirical Methods in Natural Lan-
guage Processing, Seattle, Washington, USA.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Meg Mitchell, Jian-Yun
Nie, Jianfeng Gao, and Bill Dolan. 2015. A neu-
ral network approach to context-sensitive generation
of conversational responses. In Proc HLT-NAACL,
Denver, Colorado, USA.

Pei-Hao Su, Milica Gašić, Nikola Mrkšić, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016. Continuously
learning neural dialogue management. In arXiv
preprint: 1606.02689.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston,
and Rob Fergus. 2015. End-to-end memory net-
works. In Proc Advances in Neural Information
Processing Systems (NIPS), Montreal, Canada.

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. In Proc ICML Deep Learning Work-
shop.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic,
Lina Maria Rojas-Barahona, Pei-Hao Su, Ste-
fan Ultes, David Vandyke, and Steve J. Young.
2016. A network-based end-to-end trainable task-
oriented dialogue system. CoRR abs/1604.04562.
http://arxiv.org/abs/1604.04562.

Jason D. Williams. 2008. The best of both worlds: Uni-
fying conventional dialog systems and POMDPs. In
Proc Intl Conf on Spoken Language Processing (IC-
SLP), Brisbane, Australia.

Jason D. Williams and Steve Young. 2007. Partially
observable Markov decision processes for spoken
dialog systems. Computer Speech and Language
21(2):393–422.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4):229–256.

674

Zhen Xu, Bingquan Liu, Baoxun Wang, Chengjie Sun,
and Xiaolong Wang. 2016. Incorporating loose-
structured knowledge into LSTM with recall gate
for conversation modeling. CoRR abs/1605.05110.
http://arxiv.org/abs/1605.05110.

Kaisheng Yao, Geoffrey Zweig, and Baolin Peng.
2015. Attention with intention for a neural network
conversation model. In Proc NIPS workshop on Ma-
chine Learning for Spoken Language Understanding
and Interaction.

Steve Young, Milica Gasic, Blaise Thomson, and Ja-
son D. Williams. 2013. POMDP-based Statistical
Spoken Dialogue Systems: a Review. Proceedings
of the IEEE PP(99):1–20.

Matthew D. Zeiler. 2012. ADADELTA: an adap-
tive learning rate method. CoRR abs/1212.5701.
http://arxiv.org/abs/1212.5701.

A Supplemental Material

A.1 Model implementation details
The RNN was specified using Keras version 0.3.3,
with back-end computation in Theano version
0.8.0.dev0 (Theano Development Team, 2016;
Chollet, 2015). The Keras model specification is
given below. The input variable obs includes all
features from Figure 1 step 6 except for the previ-
ous action (step 18) and the action mask (step 6,
top-most vector).

Given:
obs_size, action_size, nb_hidden

g = Graph()
g.add_input(

name=’obs’,
input_shape=(None, obs_size)

)
g.add_input(

name=’prev_action’,
input_shape=(None, action_size)

)
g.add_input(

name=’avail_actions’,
input_shape=(None, action_size)

)
g.add_node(

LSTM(
n_hidden,
return_sequences=True,
activation=’tanh’,

),
name=’h1’,
inputs=[
’obs’,
’prev_action’,
’avail_actions’

]
)
g.add_node(

TimeDistributedDense(
action_size,

activation=’softmax’,
),
name=’h2’,
input=’h1’

)
g.add_node(
Activation(

activation=normalize,
),
name=’action’,
inputs=[’h2’,’avail_actions’],
merge_mode=’mul’,
create_output=True

)
g.compile(
optimizer=Adadelta(clipnorm=1.),
sample_weight_modes={

’action’: ’temporal’
},
loss={

’action’:’categorical_crossentropy’
}

)

Model sizes are given in Table 3. Example di-
alogs are given below for each of the 5 dialog sys-
tems. For space and readability, the entity tags
that appear in the user and system sides of the
dialogs have been removed – for example, Call
<name>Joan</name> is shown as Call Joan.

A.2 bAbI Task5 example dialog

good morning
hello what can i help you with today
i’d like to book a table with italian food
i’m on it
[silence]
where should it be
in paris
how many people would be in your party
for six people please
which price range are looking for
in a cheap price range please
ok let me look into some options for you
[silence]
api_call italian paris six cheap
[database results returned]
[silence]
what do you think of this option:
resto madrid cheap spanish 8stars
no this does not work for me
sure let me find an other option for you
[silence]
what do you think of this option:
resto madrid cheap spanish 6stars
do you have something else
sure let me find an other option for you
[silence]
what do you think of this option:
resto madrid cheap spanish 1stars
it’s perfect
great let me do the reservation
may i have the phone number of the restaurant
here it is resto madrid cheap spanish 1stars phone

675

bAbI Task5 bAbI Task6 Reset password Account access Dialer
Utterance embed. 300 300 300 300 0
Bag of words 85 523 1124 278 0
Context features 4 14 0 0 17

obs_size 389 837 1424 578 17
action_size 16 58 7 16 14
nb_hidden 128 128 128 128 32

Table 3: Dimensions of the 5 HCNs in this paper.

thanks
is there anything i can help you with
no thank you
you’re welcome

A.3 bAbI Task6 example dialog
In the system turn marked [*], the system pro-
vided venue information without first making an
API call.

Hello , welcome to the Cambridge restaurant sys-
tem . You can ask for restaurants by area , price
range or food type . How may I help you ?
im looking for canapes food in any price range
I am sorry but there is no canapes restaurant that
matches your request [*]
how about european
api_call european R_location R_price
[database results returned]
[silence]
michaelhouse cafe is a great restaurant serving
european food and it is in the expensive price
range
food an
What part of town do you have in mind?
any any part of town
michaelhouse cafe serves european food .
may i have the address and phone number please
The phone number of michaelhouse cafe is
michaelhouse cafe phone
thank you good bye
you are welcome

A.4 Task5 and Task6 context features
Context features used in Section 4 are in Table 4.

A.5 Forgot password example dialog
Some system actions have been shortened for
space.

How do I recover my password
Okay, you don’t need to remember your password,
we can reset it. Would you like to try that?
Yes
To reset your password, please see this URL ...
Was that helpful?

I don’t have a flashdrive
Let’s connect you to a person who can help you

A.6 Account access example dialog

Some system actions have been shortened for
space.

cannot sign in to my email
Please check caps lock is off, and that your email
is spelled correctly. Are you able to access your
account now?
no
If you still can’t sign in, please go the the following
page and check that the email server is running
ok... Is everything up and running?
yes
You need to reset your password - here’s how ...
Did this solve your problem?
still cannot get in
Did you receive the security code?
yes
Check you entered the right numbers. Did this
solve your problem?
no
Have you seen a message that your profile is tem-
porarily blocked?
just your message of update on sept 15
Did you turn on two-step verification recently?
whats that?
Sorry, I can’t help. Rephrase your question, or click
below to talk to a person.

A.7 Name dialing example dialogs

How can I help you?
Call Joe
There’s more than one person named Joe. Can
you say their full name?
Call Joe Adamson
SavePhonetypeavail()
Calling Joe Adamson, work
PlaceCall()

How can I help you?
Call Sally on her home

676

Feature bAbI Task5 bAbI Task6
Presence of each entity in dialog state 4 3
Presence of each entity in current utterance – 3
Whether DB has been queried yet – 1
Whether DB results are empty – 1
Whether DB results are non-empty – 1
Whether any DB results have been presented – 1
Whether all DB results have been presented – 1
Whether any DB results are available to present – 1
Whether curent query yields no results in training set – 1
Whether cuisine in current query yields no results in training set – 1
Total context features 4 14

Table 4: Binary context features used to convey entity and database state in Section 4.

Sorry, I don’t have a home number for Sally Smith.
I only have a work phone. Do you want to call that
number?
no
Oh, sorry about that. Goodbye.

677

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 678–687
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1063

Generating Contrastive Referring Expressions

Martı́n Villalba and Christoph Teichmann and Alexander Koller
Department of Language Science and Technology

Saarland University, Germany
{villalba|cteichmann|koller}@coli.uni-saarland.de

Abstract

The referring expressions (REs) produced
by a natural language generation (NLG)
system can be misunderstood by the
hearer, even when they are semantically
correct. In an interactive setting, the NLG
system can try to recognize such misun-
derstandings and correct them. We present
an algorithm for generating corrective REs
that use contrastive focus (“no, the BLUE
button”) to emphasize the information the
hearer most likely misunderstood. We
show empirically that these contrastive
REs are preferred over REs without con-
trast marking.

1 Introduction

Interactive natural language generation (NLG)
systems face the task of detecting when they have
been misunderstood, and reacting appropriately to
fix the problem. For instance, even when the sys-
tem generated a semantically correct referring ex-
pression (RE), the user may still misunderstand it,
i.e. resolve it to a different object from the one the
system intended. In an interactive setting, such as
a dialogue system or a pedestrian navigation sys-
tem, the system can try to detect such misunder-
standings – e.g. by predicting what the hearer un-
derstood from their behavior (Engonopoulos et al.,
2013) – and to produce further utterances which
resolve the misunderstanding and get the hearer to
identify the intended object after all.

When humans correct their own REs, they rou-
tinely employ contrastive focus (Rooth, 1992;
Krifka, 2008) to clarify the relationship to the orig-
inal RE. Say that we originally described an object
b as “the blue button”, but the hearer approaches a
button b′ which is green, thus providing evidence
that they misunderstood the RE to mean b′. In this

case, we would like to say “no, the BLUE button”,
with the contrastive focus realized by an appropri-
ate pitch accent on “BLUE”. This utterance alerts
the hearer to the fact that they misunderstood the
original RE; it reiterates the information from the
original RE; and it marks the attribute “blue” as
a salient difference between b′ and the object the
original RE was intended to describe.

In this paper, we describe an algorithm for gen-
erating REs with contrastive focus. We start from
the modeling assumption that misunderstandings
arise because the RE rs the system uttered was
corrupted by a noisy channel into an RE ru which
the user “heard” and then resolved correctly; in
the example above, we assume the user literally
heard “the green button”. We compute this (hypo-
thetical) RE ru as the RE which refers to b′ and
has the lowest edit distance from rs. Based on
this, we mark the contrastive words in rs, i.e. we
transform “the blue button” into “the BLUE but-
ton”. We evaluate our system empirically on REs
from the GIVE Challenge (Koller et al., 2010) and
the TUNA Challenge (van der Sluis et al., 2007),
and show that the contrastive REs generated by our
system are preferred over a number of baselines.

The paper is structured as follows. We first re-
view related work in Section 2 and define the prob-
lem of generating contrastive REs in Section 3.
Section 4 sketches the general architecture for RE
generation on which our system is based. In Sec-
tion 5, we present the corruption model and show
how to use it to reconstruct ru. Section 6 de-
scribes how we use this information to generate
contrastive markup in rs, and in Section 7 we eval-
uate our approach.

2 Related Work

The notion of focus has been extensively studied
in the literature on theoretical semantics and prag-

678

https://doi.org/10.18653/v1/P17-1063

matics, see e.g. Krifka (2008) and Rooth (1997)
for overview papers. Krifka follows Rooth (1992)
in taking focus as “indicat(ing) the presence of al-
ternatives that are relevant for the interpretation
of linguistic expressions”; focus then establishes
a contrast between an object and these alterna-
tives. Bornkessel and Schlesewsky (2006) find
that corrective focus can even override syntactic
requirements, on the basis of “its extraordinarily
high communicative saliency”. This literature is
purely theoretical; we offer an algorithm for auto-
matically generating contrastive focus.

In speech, focus is typically marked through
intonation and pitch accents (Levelt, 1993; Pier-
rehumbert and Hirschberg, 1990; Steube, 2001),
while concepts that can be taken for granted are
deaccented and/or deleted. Developing systems
which realize precise pitch contours for focus in
text-to-speech settings is an ongoing research ef-
fort. We therefore realize focus in written lan-
guage in this paper, by capitalizing the focused
word. We also experiment with deletion of back-
ground words.

There is substantial previous work on interac-
tive systems that detect and respond to misun-
derstandings. Misu et al. (2014) present an er-
ror analysis of an in-car dialogue system which
shows that more than half the errors can only be
resolved through further clarification dialogues, as
opposed to better sensors and/or databases; that is,
by improved handling of misunderstandings. En-
gonopoulos et al. (2013) detect misunderstandings
of REs in interactive NLG through the use of a sta-
tistical model. Their model also predicts the object
to which a misunderstood RE was incorrectly re-
solved. Moving from misunderstanding detection
to error correction, Zarrieß and Schlangen (2016)
present an interactive NLG algorithm which is ca-
pable of referring in installments, in that it can
generate multiple REs that are designed to correct
misunderstandings of earlier REs to the same ob-
ject. The interactive NLG system developed by
Akkersdijk et al. (2011) generates both reflective
and anticipative feedback based on what a user
does and sees. Their error detection and correction
strategy distinguishes a fixed set of possible sit-
uations where feedback is necessary, and defines
custom, hard-coded RE generation sub-strategies
for each one. None of these systems generate REs
marked for focus.

We are aware of two items of previous work that

address the generation of contrastive REs directly.
Milosavljevic and Dale (1996) outline strategies
for generating clarificatory comparisons in ency-
clopedic descriptions. Their surface realizer can
generate contrastive REs, but the attributes that
receive contrastive focus have to be specified by
hand. Krahmer and Theune (2002) extend the In-
cremental Algorithm (Dale and Reiter, 1995) so it
can mark attributes as contrastive. This is a fully
automatic algorithm for contrastive REs, but it in-
herits all the limitations of the Incremental Algo-
rithm, such as its reliance on a fixed attribute or-
der. Neither of these two approaches evaluates the
quality of the contrastive REs it generates.

Finally, some work has addressed the issue of
generating texts that realize the discourse relation
contrast. For instance, Howcroft et al. (2013)
show how to choose contrastive discourse connec-
tives (but, while, . . .) when generating restau-
rant descriptions, thus increasing human ratings
for naturalness. Unlike their work, the research
presented in this paper is not about discourse rela-
tions, but about assigning focus in contrastive REs.

3 Interactive NLG

We start by introducing the problem of generating
corrective REs in an interactive NLG setting. We
use examples from the GIVE Challenge (Koller
et al., 2010) throughout the paper; however, the
algorithm itself is domain-independent.

GIVE is a shared task in which an NLG system
(the instruction giver, IG) must guide a human user
(the instruction follower, IF) through a virtual 3D
environment. The IF needs to open a safe and steal
a trophy by clicking on a number of buttons in the
right order without triggering alarms. The job of
the NLG system is to generate natural-language
instructions which guide the IF to complete this
task successfully.

The generation of REs has a central place in the
GIVE Challenge because the system frequently
needs to identify buttons in the virtual environ-
ment to the IF. Figure 1 shows a screenshot of a
GIVE game in progress; here b1 and b4 are blue
buttons, b2 and b3 are yellow buttons, and w1 is a
window. If the next button the IF needs to press is
b4 – the intended object, os – then one good RE for
b4 would be “the blue button below the window”,
and the system should utter:

(1) Press the blue button below the window.

After uttering this sentence, the system can

679

Figure 1: Example scene from the GIVE Chal-
lenge.

track the IF’s behavior to see whether the IF has
understood the RE correctly. If the wrong but-
ton is pressed, or if a model of IF’s behavior sug-
gests that they are about to press the wrong but-
ton (Engonopoulos et al., 2013), the original RE
has been misunderstood. However, the system still
gets a second chance, since it can utter a corrective
RE, with the goal of identifying b4 to the IF after
all. Examples include simply repeating the origi-
nal RE, or generating a completely new RE from
scratch. The system can also explicitly take into
account which part of the original RE the IF mis-
understood. If it has reason to believe that the IF
resolved the RE to b3, it could say:

(2) No, the BLUE button below the window.

This use of contrastive focus distinguishes the
attributes the IF misunderstood (blue) from those
that they understood correctly (below the win-
dow), and thus makes it easier for the IF to resolve
the misunderstanding. In speech, contrastive focus
would be realized with a pitch accent; we approx-
imate this accent in written language by capitaliz-
ing the focused word. We call an RE that uses con-
trastive focus to highlight the difference between
the misunderstood and the intended object, a con-
trastive RE. The aim of this paper is to present an
algorithm for computing contrastive REs.

4 Generating Referring Expressions

While we make no assumptions on how the orig-
inal RE rs was generated, our algorithm for re-
constructing the corrupted RE ru requires an RE
generation algorithm that can represent all seman-
tically correct REs for a given object compactly in
a chart. Here we sketch the RE generation of En-
gonopoulos and Koller (2014), which satisfies this
requirement.

NPb4,{b4}

Nb4,{b4}

PPb4,{b3,b4}

NPw1,{w1}

Nw1,{w1}

window

Dw1,

the

Pb4,below

below

Nb4,{b1,b4}

Nb4,{b1,b2,b3,b4}

button

ADJb4,{b1,b4}

blue

Db4,

the

Figure 2: Example syntax tree for an RE for b4.

This algorithm assumes a synchronous gram-
mar which relates strings with the sets of objects
they refer to. Strings and their referent sets are
constructed in parallel from lexicon entries and
grammar rules; each grammar rule specifies how
the referent set of the parent is determined from
those of the children. For the scene in Figure 1,
we assume lexicon entries which express, among
other things, that the word “blue” denotes the set
{b1, b4} and the word “below” denotes the relation
{(w1, b1), (w1, b2), (b3, w1), (b4, w1)}. We com-
bine these lexicons entries using rules such as

“N→ button() |button |{b1, b2, b3, b4}”
which generates the string “button” and asso-

ciates it with the set of all buttons or

“N→ N1(N,PP) |w1 • w2 |R1 ∩R2”

which states that a phrase of type noun can be
combined with a prepositional phrase and their de-
notations will be intersected. Using these rules we
can determine that “the window” denotes {w1},
that “below the window” can refer to {b3, b4} and
that “blue button below the window” uniquely
refers to {b4}. The syntax tree in Fig. 2 represents
a complete derivation of an RE for {b4}.

The algorithm of Engonopoulos and Koller
computes a chart which represents the set of all
possible REs for a given set of input objects, such
as {b4}, according to the grammar. This is done
by building a chart containing all derivations of
the grammar which correspond to the desired set.
They represent this chart as a finite tree automa-
ton (Comon et al., 2007). Here we simply write
the chart as a Context-Free Grammar. The strings
produced by this Context-Free Grammar are then
exactly the REs for the intended object. For ex-
ample, the syntax tree in Fig. 2 is generated by the
parse chart for the set {b4}. Its nonterminal sym-
bols consist of three parts: a syntactic category

680

intended
object: os

referring
expression: rs

heard referring
expression: ru

user resolved
object: ou

Contrastive RE

b4 b2

the blue button
below the window

the yellow button
above the window

Instruction
Giver (IG)

Corruption

Instruction
Follower (IF)

Figure 3: The corruption model.

(given by the synchronous grammar), the referent
for which an RE is currently being constructed,
and the set of objects to which the entire subtree
refers. The grammar may include recursion and
therefore allow for an infinite set of possible REs.
If it is weighted, one can use the Viterbi algorithm
to compute the best RE from the chart.

5 Listener Hypotheses and Edit Distance

5.1 Corruption model

Now let us say that the system has generated and
uttered an RE rs with the intention of referring to
the object os, but it has then found that the IF has
misunderstood the RE and resolved it to another
object, ou (see Fig. 3). We assume for the pur-
poses of this paper that such a misunderstanding
arises because rs was corrupted by a noisy chan-
nel when it was transmitted to the IF, and the IF
“heard” a different RE, ru. We further assume that
the IF then resolved ru correctly, i.e. the corrup-
tion in the transmission is the only source of mis-
understandings.

In reality, there are of course many other rea-
sons why the IF might misunderstand rs, such as
lack of attention, discrepancies in the lexicon or
the world model of the IG and IF, and so on. We
make a simplifying assumption in order to make
the misunderstanding explicit at the level of the
RE strings, while still permitting meaningful cor-
rections for a large class of misunderstandings.

An NLG system that builds upon this idea in
order to generate a corrective RE has access to
the values of os, rs and ou; but it needs to in-
fer the most likely corrupted RE ru. To do this,
we model the corruption using the edit operations
used for the familiar Levenshtein edit distance
(Mohri, 2003) over the alphabet Σ: Sa, substitu-
tion of a word with a symbol a ∈ Σ; D, deletion
of a word; Ia, insertion of the symbol a ∈ Σ; or
K, keeping the word. The noisy channel passes

over each word in rs and applies either D, K or
one of the S operations to it. It may also apply I
operations before or after a word. We call any se-
quence s of edit operations that could apply to rs
an edit sequence for rs.

An example for an edit sequence which cor-
rupts rs = “the blue button below the window”
into ru = “the yellow button above the window”
is shown in Figure 4. The same ru could also have
been generated by the edit operation sequence
K Syellow K Sabove KK, and there is generally a
large number of edit sequences that could trans-
form between any two REs. If an edit sequence s
maps x to y, we write apply(s, x) = y.

We can now define a probability distribution
P (s | rs) over edit sequences s that the noisy
channel might apply to the string rs, as follows:

P (s | rs) =
1

Z

∏

si∈s
exp(−c(si)),

where c(si) is a cost for using the edit operation
si. We set c(K) = 0, and for any a in our alpha-
bet we set c(Sa) = c(Ia) = c(D) = C, for some
fixed C > 0. Z is a normalizing constant which is
independent of s and ensures that the probabilities
sum to 1. It is finite for sufficiently high values
of C, because no sequence for rs can ever contain
more K, S and D operations than there are words
in rs, and the total weight of sequences generated
by adding more and more I operations will con-
verge.

Finally, let L be the set of referring expressions
that the IF would resolve to ou, i.e. the set of candi-
dates for ru. Then the most probable edit sequence
for rs which generates an ru ∈ L is given by

s∗ = arg max
s : apply(s,rs)∈L

P (s | rs)

= arg mins
∑

si∈s c(si),

i.e. s∗ is the edit sequence that maps rs to an RE
in L with minimal cost. We will assume that s∗ is
the edit sequence that corrupted rs, i.e. that ru =
apply(s∗, rs).

5.2 Finding the most likely corruption
It remains to compute s∗; we will then show in
Section 6 how it can be used to generate a cor-
rective RE. Attempting to find s∗ by enumeration
is impractical, as the set of edit sequences for a
given rs and ru may be large and the set of pos-
sible ru for a given ou may be infinite. Instead

681

rs the blue button below the window
edit operation sequence K D Iyellow K Sabove K K

ru the yellow button above the window

Figure 4: Example edit sequence for a given corruption.

we will use the algorithm from Section 4 to com-
pute a chart for all the possible REs for ou, rep-
resented as a context-free grammar G whose lan-
guage L = L(G) consists of these REs. We
will then intersect it with a finite-state automa-
ton which keeps track of the edit costs, obtaining
a second context-free grammar G′. These opera-
tions can be performed efficiently, and s∗ can be
read off of the minimum-cost syntax tree of G′.

Edit automaton. The possible edit sequences
for a given rs can be represented compactly in the
form of a weighted finite-state automaton F (rs)
(Mohri, 2003). Each run of the automaton on a
string w corresponds to a specific edit sequence
that transforms rs intow, and the sum of transition
weights of the run is the cost of that edit sequence.
We call F (rs) the edit automaton. It has a state qi
for every position i in rs; the start state is q0 and
the final state is q|rs|. For each i, it has a “keep”
transition from qi to qi+1 that reads the word at
position i with cost 0. In addition, there are tran-
sitions from qi to qi+1 with cost C that read any
symbol in Σ (for substitution) and ones that read
the empty string ε (for deletion). Finally, there is a
loop with cost C from each qi to itself and for any
symbol in Σ, implementing insertion.

An example automaton for rs =
“the blue button below the window” is shown
in Figure 5. The transitions are written in the
form 〈word in w : associated cost〉. Note that
every path through the edit transducer corre-
sponds to a specific edit sequence s, and the
sum of the costs along the path corresponds to
− logP (s | rs)− logZ.

Combining G and F (rs). Now we can com-
bine G with F (rs) to obtain G′, by intersecting
them using the Bar-Hillel construction (Bar-Hillel
et al., 1961; Hopcroft and Ullman, 1979). For the
purposes of our presentation we assume that G is
in Chomsky Normal Form, i.e. all rules have the
form A → a, where a is a word, or A → B C,
where both symbols on the right hand side are non-
terminals. The resulting grammar G′ uses non-
terminal symbols of the form Nb,A,〈qi,qk〉, where

b, A are as in Section 4, and qi, qk indicate that the
string derived by this nonterminal was generated
by editing the substring of rs from position i to k.

Let Nb,A → a be a production rule of G with a
word a on the right-hand side; as explained above,
b is the object to which the subtree should refer,
and A is the set of objects to which the subtree
actually might refer. Let t = qi → 〈a:c〉qk be a
transition in F (rs), where q, q′ are states of F (rs)
and c is the edit cost. From these two, we create
a context-free rule Nb,A,〈qi,qk〉 → a with weight c
and add it to G′. If k = i + 1, these rules repre-
sent K and S operations; if k = i, they represent
insertions.

Now let Nb,A → Xb1,A1 Yb2,A2 be a binary rule
in G, and let qi, qj , qk be states of F (rs) with
i ≤ j ≤ k. We then add a rule Nb,A,〈qi,qk〉 →
Xb1,A1,〈qi,qj〉 Yb2,A2,〈qj ,qk〉 to G′. These rules are
assigned weight 0, as they only combine words ac-
cording to the grammar structure of G and do not
encode any edit operations.

Finally, we deal with deletion. Let Nb,A be a
nonterminal symbol in G and let qh, qi, qj , qk be
states of F (rs) with h ≤ i ≤ j ≤ k. We then
add a rule Nb,A,〈qh,qk〉 → Nb,A,〈qi,qj〉 to G′. This
rule deletes the substrings from positions h to i
and j to k from rs; thus we assign it the cost ((i−
h) + (k − j))C, i.e. the cost of the corresponding
ε transitions.

If the start symbol of G is Sb,A, then the start
symbol of G′ is Sb,A,〈q0,q|rs|〉. This construction
intersects the languages of G and F (rs), but be-
cause F (rs) accepts all strings over the alpha-
bet, the languages of G′ and G will be the same
(namely, all REs for ou). However, the weights
in G′ are inherited from F (rs); thus the weight of
each RE in L(G′) is the edit cost from rs.

Example. Fig. 6 shows an example tree
for the G′ we obtain from the automaton
in Fig. 5. We can read the string w =
“the yellow button above the window” off of the
leaves; by construction, this is an RE for ou. Fur-
thermore, we can reconstruct the edit sequence
that maps from rs to w from the rules of G′ that

682

q0start q1 q2 q3 q4 q5 q6
the:0
Σ:C

ε:C

Σ:C

blue:0
Σ:C

ε:C

Σ:C

button:0

Σ:C

ε:C

Σ:C

below:0

Σ:C

ε:C

Σ:C

the:0
Σ:C

ε:C

Σ:C

window:0

Σ:C
Σ:C

ε:C

Σ:C

Figure 5: Edit automaton F (rs) for rs = “the blue button below the window”.

Tree

NPb2,{b2}, 〈q0, q6〉

Nb2,{b2},〈q1,q6〉

PPb2,{b1,b2},〈q3,q6〉

NPw1,{w1},〈q4,q6〉

Nw1,{w1},〈q5,q6〉

window

Dw1, ,〈q4,q5〉

the

Pb2,above,〈q3,q4〉

above

Nb2,{b2,b3},〈q1,q3〉

Nb2,{b2,b3},〈q2,q3〉

Nb2,{b1,b2,b3,b4},〈q2,q3〉

button

ADJb2,{b2,b3},〈q2,q2〉

yellow

Db2, ,〈q0,q1〉

the

s K D Iyellow K Sabove KK

Emphasis No, press the BLUE button BELOW the window

Figure 6: A syntax tree described by G′, together with its associated edit sequence and contrastive RE.

were used to derive w. We can see that “yellow”
was created by an insertion because the two states
of F (rs) in the preterminal symbol just above it
are the same. If the two states are different, then
the word was either substituted (“above”, if the
rule had weight C) or kept (“the”, if the rule had
weight 0). By contrast, unary rules indicate dele-
tions, in that they make “progress” in rs without
adding new words to w.

We can compute the minimal-cost tree ofG′ us-
ing the Viterbi algorithm. Thus, to summarize, we
can calculate s∗ from the intersection of a context-
free grammar G representing the REs to ou with
the automaton F (rs) representing the edit distance
to rs. From this, we obtain ru = apply(s∗, rs).
This is efficient in practice.

6 Generating Contrastive REs

6.1 Contrastive focus

We are now ready to generate a contrastive RE
from rs and s∗. We assign focus to the words
in rs which were changed by the corruption –
that is, the ones to which s∗ applied Substitute or
Delete operations. For instance, the edit sequence
in Fig. 6 deleted “blue” and substituted “below”
with “above”. Thus, we mark these words with
focus, and obtain the contrastive RE “the BLUE
button BELOW the window”. We call this strat-
egy Emphasis, and write rsE for the RE obtained

by applying the Emphasis strategy to the RE rs.

6.2 Shortening
We also investigate a second strategy, which gen-
erates more succinct contrastive REs than the Em-
phasis strategy. Most research on RE genera-
tion (e.g. Dale and Reiter (1995)) has assumed
that hearers should prefer succinct REs, which in
particular do not violate the Maxim of Quantity
(Grice, 1975). When we utter a contrastive RE,
the user has previously heard the RE rs, so some
of the information in rsE is redundant. Thus we
might obtain a more succinct, and possibly better,
RE by dropping such redundant information from
the RE.

For the grammars we consider here, rsE often
combines an NP and a PP, e.g. “[blue button]NP
[below the window]PP ”. If errors occur only in
one of these constituents, then it might be suffi-
cient to generate a contrastive RE using only that
constituent. We call this strategy Shortening and
define it as follows.

If all the words that are emphasized in rs
E

are in the NP, the Shortening RE is “the” plus
the NP, with emphasis as in rs

E . So if rs is
“the [blue button] [above the window]” and s∗ =
K SyellowKKKK, corresponding to a rsE of
“the [BLUE button] [above the window]”, then the
RE would be “the [BLUE button]”.

If all the emphasis in rsE is in the PP, we use

683

We wanted our player to select this button:

So we told them: press the red button to the right
of the blue button.

But they selected this button instead:

Which correction is better for this scene?
◦ No, press the red BUTTON to the right of

the BLUE BUTTON
◦ No, press the red button to the RIGHT of

the blue button

Figure 7: A sample scene from Experiment 1.

“the one” plus the PP and again capitalize as in
rs
E . So if we have s∗ = KKK SbelowKK,

where rsE is “the [blue button] [ABOVE the win-
dow]”, we obtain “the one [ABOVE the window].”
If there is no PP or if rsE emphasizes words in
both the NP and the PP, then we just use rsE .

7 Evaluation

To test whether our algorithm for contrastive REs
assigns contrastive focus correctly, we evaluated
it against several baselines in crowdsourced pair-
wise comparison overhearer experiments. Like
Buß et al. (2010), we opted for an overhearer ex-
periment to focus our evaluation on the effects of
contrastive feedback, as opposed to the challenges
presented by the navigational and timing aspects
of a fully interactive system.

7.1 Domains and stimuli

We created the stimuli for our experiments from
two different domains. We performed a first ex-
periment with scenes from the GIVE Challenge,
while a second experiment replaced these scenes
with stimuli from the “People” domain of the
TUNA Reference Corpus (van der Sluis et al.,
2007). This corpus consists of photographs of men
annotated with nine attributes, such as whether the

We wanted our player to select the person circled
in green:

So we told them: the light haired old man in a
suit looking straight.

But they selected the person circled in red instead.
Which correction is better for this scene?

◦ No, the light haired old man IN A SUIT
LOOKING STRAIGHT
◦ No, the LIGHT HAIRED OLD man in a

suit looking straight

Figure 8: A sample scene from Experiment 2.

person has a beard, a tie, or is looking straight.
Six of these attributes were included in the cor-
pus to better reflect human RE generation strate-
gies. Many human-generated REs in the corpus
are overspecific, in that they contain attributes that
are not necessary to make the RE semantically
unique.

We chose the GIVE environment in order to test
REs referring both to attributes of an object, i.e.
color, and to its spatial relation to other visible ob-
jects in the scene. The TUNA Corpus was chosen
as a more challenging domain, due to the greater
number of available properties for each object on
a scene.

Each experimental subject was presented with
screenshots containing a marked object and an RE.
Subjects were told that we had previously referred
to the marked object with the given RE, but an
(imaginary) player misunderstood this RE and se-
lected a different object, shown in a second screen-
shot. They were then asked to select which one
of two corrections they considered better, where
“better” was intentionally left unspecific. Figs. 7
and 8 show examples for each domain. The full set
of stimuli is available as supplementary material.

To maintain annotation quality in our crowd-
sourcing setting, we designed test items with a

684

clearly incorrect answer, such as REs referring to
the wrong target or a nonexistent one. These test
items were randomly interspersed with the real
stimuli, and only subjects with a perfect score on
the test items were taken into account. Experimen-
tal subjects were asked to rate up to 12 compar-
isons, shown in groups of 3 scenes at a time, and
were automatically disqualified if they evaluated
any individual scene in less than 10 seconds. The
order in which the pairs of strategies were shown
was randomized, to avoid effects related to the or-
der in which they were presented on screen.

7.2 Experiment 1

Our first experiment tested four strategies against
each other. Each experimental subject was pre-
sented with two screenshots of 3D scenes with a
marked object and an RE (see Fig. 7 for an exam-
ple). Each subject was shown a total of 12 scenes,
selected at random from 16 test scenes. We col-
lected 10 judgments for each possible combina-
tion of GIVE scene and pair of strategies, yielding
a total of 943 judgements from 142 subjects after
removing fake answers.

We compared the Emphasis and Shortening
strategies from Section 6 against two baselines.
The Repeat strategy simply presented rs as a “con-
trastive” RE, without any capitalization. Com-
parisons to Repeat test the hypothesis that sub-
jects prefer explicit contrastive focus. The Ran-
dom strategy randomly capitalized adjectives, ad-
verbs, and/or prepositions that were not capital-
ized by the Emphasis strategy. Comparisons to
Random verify that any preference for Emphasis is
not only due to the presence of contrastive focus,
but also because our method identifies precisely
where that focus should be.

Table 1a shows the results of all pairwise com-
parisons. For each row strategy StratR and each
column strategy StratC , the table value corre-
sponds to
(#StratR pref. over StratC)−(#StratC pref. over StratR)

(# tests between StratR and StratC)

Significance levels are taken from a two-tailed
binomial test over the counts of preferences for
each strategy. We find a significant preference for
the Emphasis strategy over all others, providing
evidence that our algorithm assigns contrastive fo-
cus to the right words in the corrective RE.

While the Shortening strategy is numerically
preferred over both baselines, the difference is
not significant, and it is significantly worse than

the Emphasis strategy. This is surprising, given
our initial assumption that listeners prefer succinct
REs. It is possible that a different strategy for
shortening contrastive REs would work better; this
bears further study.

7.3 Experiment 2
In our second experiment, we paired the Empha-
sis, Repeat, and Random strategies against each
other, this time evaluating each strategy in the
TUNA people domain. Due to its poor perfor-
mance in Experiment 1, which was confirmed in
pilot experiments for Experiment 2, the Shorten-
ing strategy was not included.

The experimental setup for the TUNA domain
used 3x4 grids of pictures of people chosen at
random from the TUNA Challenge, as shown in
Fig. 8. We generated 8 such grids, along with REs
ranging from two to five attributes and requiring
one or two attributes to establish the correct con-
trast. The larger visual size of objects in the the
TUNA scenes allowed us to mark both os and ou
in a single picture without excessive clutter.

The REs for Experiment 2 were designed to
only include attributes from the referred objects,
but no information about its position in relation to
other objects. The benefit is twofold: we avoid
taxing our subjects’ memory with extremely long
REs, and we ensure that the overall length of the
second set of REs is comparable to those in the
previous experiment.

We obtained 240 judgements from 65 subjects
(after removing fake answers). Table 1b shows
the results of all pairwise comparisons. We find
that even in the presence of a larger number of at-
tributes, our algorithm assigns contrastive focus to
the correct words of the RE.

7.4 Discussion
Our experiments confirm that the strategy for com-
puting contrastive REs presented in this paper
works in practice. This validates the corruption
model, which approximates semantic mismatches
between what the speaker said and what the lis-
tener understood as differences at the level of
words in strings. Obviously, this model is still an
approximation, and we will test its limits in future
work.

We find that users generally prefer REs with
an emphasis over simple repetitions. In the more
challenging scenes of the TUNA corpus, users
even have a significant preference of Random over

685

Repeat Random Emphasis Shortening
Repeat – 0.041 -0.570*** -0.141

Random -0.041 – -0.600*** -0.109
Emphasis 0.570*** 0.600*** – 0.376***

Shortening 0.141 0.109 -0.376*** –

(a) Results for Experiment 1

Repeat Random Emphasis
Repeat – -0.425*** -0.575***

Random 0.425*** – -0.425***
Emphasis 0.575*** 0.425*** –

(b) Results for Experiment 2

Table 1: Pairwise comparisons between feedback strategies for experiments 1 and 2. A positive value
shows preference for the row strategy, significant at *** p < 0.001.

Repeat, although this makes no semantic sense.
This preference may be due to the fact that em-
phasizing anything at least publically acknowl-
edges the presence of a misunderstanding that re-
quires correction. It will be interesting to explore
whether this preference holds up in an interac-
tive setting, rather than an overhearer experiment,
where listeners will have to act upon the corrective
REs.

The poor performance of the Shortening strat-
egy is a surprising negative result. We would ex-
pect a shorter RE to always be preferred, follow-
ing the Gricean Maxim of Quantity (Grice, 1975).
This may because our particular Shortening strat-
egy can be improved, or it may be because listen-
ers interpret the shortened REs not with respect to
the original instructions, but rather with respect to
a “refreshed” context (as observed, for instance, in
Gotzner et al. (2016)). In this case the shortened
REs would not be unique with respect to the re-
freshed, wider context.

8 Conclusion

In this paper, we have presented an algorithm for
generating contrastive feedback for a hearer who
has misunderstood a referring expression. Our
technique is based on modeling likely user misun-
derstandings and then attempting to give feedback
that contrasts with the most probable incorrect un-
derstanding. Our experiments show that this tech-
nique accurately predicts which words to mark as
focused in a contrastive RE.

In future work, we will complement the over-
hearer experiment presented here with an end-to-
end evaluation in an interactive NLG setting. This
will allow us to further investigate the quality of
the correction strategies and refine the Shortening
strategy. It will also give us the opportunity to in-
vestigate empirically the limits of the corruption
model. Furthermore, we could use this data to re-
fine the costs c(D), c(Ia) etc. for the edit opera-
tions, possibly assigning different costs to differ-
ent edit operations.

Finally, it would be interesting to combine our
algorithm with a speech synthesis system. In this
way, we will be able to express focus with actual
pitch accents, in contrast to the typographic ap-
proximation we made here.

References
Saskia Akkersdijk, Marin Langenbach, Frieder Loch,

and Mariët Theune. 2011. The thumbs up! twente
system for give 2.5. In The 13th European Workshop
on Natural Language Generation (ENLG 2011).

Yehoshua Bar-Hillel, Micha Perles, and Eli Shamir.
1961. On formal properties of simple phrase struc-
ture grammars. Zeitschrift für Phonetik, Sprachwis-
senschaft und Kommunikationsforschung 14:143–
172.

Ina Bornkessel and Matthias Schlesewsky. 2006. The
role of contrast in the local licensing of scrambling
in german: Evidence from online comprehension.
Journal of Germanic Linguistics 18(01):1–43.

Okko Buß, Timo Baumann, and David Schlangen.
2010. Collaborating on utterances with a spoken di-
alogue system using an isu–based approach to incre-
mental dialogue management. In Proceedings of the
Special Interests Group on Discourse and Dialogue
Conference (SIGdial 2010).

Hubert Comon, Max Dauchet, Rémi Gilleron, Flo-
rent Jacquemard, Denis Lugiez, Sophie Tison, Marc
Tommasi, and Christof Löding. 2007. Tree Au-
tomata techniques and applications. published
online - http://tata.gforge.inria.fr/.
http://tata.gforge.inria.fr/.

Robert Dale and Ehud Reiter. 1995. Computational
interpretations of the Gricean maxims in the gen-
eration of referring expressions. Cognitive Science
19(2):233–263.

Nikos Engonopoulos and Alexander Koller. 2014.
Generating effective referring expressions using
charts. In Proceedings of the INLG and SIGdial
2014 Joint Session.

Nikos Engonopoulos, Martı́n Villalba, Ivan Titov, and
Alexander Koller. 2013. Predicting the resolution
of referring expressions from user behavior. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2013).

686

Nicole Gotzner, Isabell Wartenburger, and Katharina
Spalek. 2016. The impact of focus particles on the
recognition and rejection of contrastive alternatives.
Language and Cognition 8(1):59–95.

H. Paul Grice. 1975. Logic and conversation. In
P. Cole and J. L. Morgan, editors, Syntax and Seman-
tics: Vol. 3: Speech Acts, Academic Press, pages
41–58.

John Edward Hopcroft and Jeffrey Ullman. 1979. In-
troduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

David Howcroft, Crystal Nakatsu, and Michael White.
2013. Enhancing the expression of contrast in
the SPaRKy restaurant corpus. In Proceedings of
the 14th European Workshop on Natural Language
Generation (ENLG 2013).

Alexander Koller, Kristina Striegnitz, Andrew Gargett,
Donna Byron, Justine Cassell, Robert Dale, Johanna
Moore, and Jon Oberlander. 2010. Report on the
Second NLG Challenge on Generating Instructions
in Virtual Environments (GIVE-2). In Proceedings
of the Sixth International Natural Language Gen-
eration Conference (Special session on Generation
Challenges).

E. Krahmer and M. Theune. 2002. Efficient context-
sensitive generation of referring expressions. In
K. van Deemter and R. Kibble, editors, Information
Sharing: Reference and Presupposition in Language
Generation and Interpretation, Center for the Study
of Language and Information-Lecture Notes, CSLI
Publications, volume 143, pages 223–263.

Manfred Krifka. 2008. Basic notions of information
structure. Acta Linguistica Hungarica 55:243–276.

Willem J.M. Levelt. 1993. Speaking: From Intention
to Articulation. MIT University Press Group.

Maria Milosavljevic and Robert Dale. 1996. Strate-
gies for comparison in encyclopædia descriptions.
In Proceedings of the 8th International Natural Lan-
guage Generation Workshop (INLG 1996).

Teruhisa Misu, Antoine Raux, Rakesh Gupta, and Ian
Lane. 2014. Situated language understanding at 25
miles per hour. In Proceedings of the 15th Annual
Meeting of the Special Interest Group on Discourse
and Dialogue (SIGdial 2014).

Mehryar Mohri. 2003. Edit-distance of weighted au-
tomata: General definitions and algorithms. Inter-
national Journal of Foundations of Computer Sci-
ence 14(6):957–982.

Janet B. Pierrehumbert and Julia Hirschberg. 1990.
The meaning of intonational contours in the inter-
pretation of discourse. In Philip R. Cohen, Jerry
Morgan, and Martha E. Pollack, editors, Intentions
in Communication, MIT University Press Group,
chapter 14.

Mats Rooth. 1992. A theory of focus interpretation.
Natural Language Semantics 1:75–116.

Mats Rooth. 1997. Focus. In Shalom Lappin, editor,
The Handbook of Contemporary Semantic Theory,
Blackwell Publishing, chapter 10, pages 271–298.

Anita Steube. 2001. Correction by contrastive focus.
Theoretical Linguistics 27(2-3):215–250.

Ielka van der Sluis, Albert Gatt, and Kees van Deemter.
2007. Evaluating algorithms for the generation of
referring expressions: Going beyond toy domains.
In Proceedings of the International Conference on
Recent Advances in Natural Language Processing
(RANLP 2007).

Sina Zarrieß and David Schlangen. 2016. Easy Things
First: Installments Improve Referring Expression
Generation for Objects in Photographs. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (ACL 2016).

687

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 688–697
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1064

Modeling Source Syntax for Neural Machine Translation

Junhui Li† Deyi Xiong† Zhaopeng Tu‡∗
Muhua Zhu‡ Min Zhang† Guodong Zhou†

†School of Computer Science and Technology,
Soochow University, Suzhou, China

{lijunhui, dyxiong, minzhang, gdzhou}@suda.edu.cn
‡Tencent AI Lab, Shenzhen, China

tuzhaopeng@gmail.com, muhuazhu@tencent.com

Abstract

Even though a linguistics-free sequence to
sequence model in neural machine trans-
lation (NMT) has certain capability of im-
plicitly learning syntactic information of
source sentences, this paper shows that
source syntax can be explicitly incorpo-
rated into NMT effectively to provide fur-
ther improvements. Specifically, we lin-
earize parse trees of source sentences to
obtain structural label sequences. On the
basis, we propose three different sorts of
encoders to incorporate source syntax into
NMT: 1) Parallel RNN encoder that learns
word and label annotation vectors paral-
lelly; 2) Hierarchical RNN encoder that
learns word and label annotation vectors in
a two-level hierarchy; and 3) Mixed RNN
encoder that stitchingly learns word and
label annotation vectors over sequences
where words and labels are mixed. Exper-
imentation on Chinese-to-English transla-
tion demonstrates that all the three pro-
posed syntactic encoders are able to im-
prove translation accuracy. It is interesting
to note that the simplest RNN encoder, i.e.,
Mixed RNN encoder yields the best perfor-
mance with an significant improvement of
1.4 BLEU points. Moreover, an in-depth
analysis from several perspectives is pro-
vided to reveal how source syntax benefits
NMT.

1 Introduction

Recently the sequence to sequence model
(seq2seq) in neural machine translation (NMT)
has achieved certain success over the state-of-
the-art of statistical machine translation (SMT)

∗Work done at Huawei Noah’s Ark Lab, HongKong.

NP2NP1 VV

tokoyo stock exchange approves new listing bank

input:

output:

reference: tokyo exchange approves shinsei bank 's application for listing

(a). An example of discontinuous translation

 ,

NP

they came from six families with two girls and two girls .

they came from six families and two girls are without parents .

(b). An example of over translation

input:

output:

reference:

Figure 1: Examples of NMT translation that fail to
respect source syntax.

on various language pairs (Bahdanau et al., 2015;
Jean et al., 2015; Luong et al., 2015; Luong and
Manning, 2015). However, Shi et al. (2016)
show that the seq2seq model still fails to capture
a lot of deep structural details, even though it is
capable of learning certain implicit source syntax
from sentence-aligned parallel corpus. Moreover,
it requires an additional parsing-task-specific
training mechanism to recover the hidden syntax
in NMT. As a result, in the absence of explicit
linguistic knowledge, the seq2seq model in NMT
tends to produce translations that fail to well
respect syntax. In this paper, we show that syntax
can be well exploited in NMT explicitly by taking
advantage of source-side syntax to improve the
translation accuracy.

In principle, syntax is a promising avenue for
translation modeling. This has been verified
by tremendous encouraging studies on syntax-
based SMT that substantially improves translation
by integrating various kinds of syntactic knowl-
edge (Liu et al., 2006; Marton and Resnik, 2008;

688

https://doi.org/10.18653/v1/P17-1064

Shen et al., 2008; Li et al., 2013). While it is yet to
be seen how syntax can benefit NMT effectively,
we find that translations of NMT sometimes fail
to well respect source syntax. Figure 1 (a) shows a
Chinese-to-English translation example of NMT.
In this example, the NMT seq2seq model incor-
rectly translates the Chinese noun phrase (i.e., 新
生/xinsheng 银行/yinhang) into a discontinuous
phrase in English (i.e., new ... bank) due to the
failure of capturing the internal syntactic structure
in the input Chinese sentence. Statistics on our de-
velopment set show that one forth of Chinese noun
phrases are translated into discontinuous phrases
in English, indicating the substantial disrespect of
syntax in NMT translation.1 Figure 1 (b) shows
another example with over translation, where the
noun phrase 两/liang 个/ge 女孩/nvhai is trans-
lated twice in English. Similar to discontinuous
translation, over translation usually happens along
with the disrespect of syntax which results in the
repeated translation of the same source words in
multiple positions of the target sentence.

In this paper we are not aiming at solving any
particular issue, either the discontinuous transla-
tion or the over translation. Alternatively, we ad-
dress how to incorporate explicitly the source syn-
tax to improve the NMT translation accuracy with
the expectation of alleviating the issues above in
general. Specifically, rather than directly assign-
ing each source word with manually designed syn-
tactic labels, as Sennrich and Haddow (2016) do,
we linearize a phrase parse tree into a structural
label sequence and let the model automatically
learn useful syntactic information. On the basis,
we systematically propose and compare several
different approaches to incorporating the label se-
quence into the seq2seq NMT model. Experimen-
tation on Chinese-to-English translation demon-
strates that all proposed approaches are able to im-
prove the translation accuracy.

2 Attention-based NMT

As a background and a baseline, in this section,
we briefly describe the NMT model with an atten-
tion mechanism by Bahdanau et al. (2015), which
mainly consists of an encoder and a decoder, as
shown in Figure 2.

Encoder The encoding of a source sentence is for-

1Manually examining 200 random such discontinuously
translated noun phrases, we find that 90% of them should be
continuously translated according to the reference translation.

h1 

h1

h1 

h1

hm 

hm

x1 x2 ….. xm

h

Attenh
si-1

ci

RNN

MLP
yi

yi-1

si

(a) encoder (b) decoder

Figure 2: Attention-based NMT model.

mulated using a pair of neural networks, i.e., two
recurrent neural networks (denoted bi-RNN): one
reads an input sequence x = (x1, ..., xm) from left
to right and outputs a forward sequence of hid-
den states (

−→
h1, ...,

−→
hm), while the other operates

from right to left and outputs a backward sequence
(
←−
h1, ...,

←−
hm). Each source word xj is represented

as hj (also referred to as word annotation vector):
the concatenation of hidden states

−→
hj and

←−
hj . Such

bi-RNN encodes not only the word itself but also
its left and right context, which can provide impor-
tant evidence for its translation.

Decoder The decoder is also an RNN that pre-
dicts a target sequence y = (y1, ..., yn). Each tar-
get word yi is predicted via a multi-layer percep-
tron (MLP) component which is based on a recur-
rent hidden state si, the previous predicted word
yi−1, and a source-side context vector ci. Here,
ci is calculated as a weighted sum over source an-
notation vectors (h1, ..., hm). The weight vector
αi ∈ Rm over source annotation vectors is ob-
tained by an attention model, which captures the
correspondences between the source and the target
languages. The attention weight αij is computed
based on the previous recurrent hidden state si−1
and source annotation vector hj .

3 NMT with Source Syntax

The conventional NMT models treat a sentence as
a sequence of words and ignore external knowl-
edge, failing to effectively capture various kinds
of inherent structure of the sentence. To lever-
age external knowledge, specifically the syntax in
the source side, we focus on the parse tree of a
sentence and propose three different NMT mod-
els that explicitly consider the syntactic structure
into encoding. Our purpose is to inform the NMT
model the structural context of each word in its
corresponding parse tree with the goal that the
learned annotation vectors (h1, ..., hm) encode not

689

I love dogs

w1 w2 w3

(a) word sequence

S

NP

PRN

VP

VBP NP

NNSI love

dogs
(b) phrase parse tree

S NP PRN VP VBP NP NNS

l1 l2 l3 l4 l5 l6 l7
(c) structural label sequence

Figure 3: An example of an input sentence (a), its
parse tree (b), and the parse tree’s sequential form
(c).

only the information of words and their surround-
ings, but also structural context in the parse tree. In
the rest of this section, we use English sentences
as examples to explain our methods.

3.1 Syntax Representation

To obtain the structural context of a word in its
parse tree, ideally the model should not only cap-
ture and remember the whole parse tree structure,
but also discriminate the contexts of any two dif-
ferent words. However, considering the lack of
efficient way to directly model structural informa-
tion, an alternative way is to linearize the phrase
parse tree into a sequence of structural labels and
learn the structural context through the sequence.
For example, Figure 3(c) shows the structural la-
bel sequence of Figure 3(b) in a simple way fol-
lowing a depth-first traversal order. Note that lin-
earizing a parse tree in a depth-first traversal or-
der into a sequence of structural labels has also
been widely adopted in recent advances in neural
syntactic parsing (Vinyals et al., 2015; Choe and
Charniak, 2016), suggesting that the linearized se-
quence can be viewed as an alternative to its tree
structure.2

2We have also tried to include the ending brackets in the
structural label sequence, as what (Vinyals et al., 2015; Choe

hw1 

hw1

hw2 

hw2

hw3 

hw3

 I love dogs S NP PRN VP VBP NP NNS

hl1 

hl1

… 

…

hl7 

hl7
… 

…

… 

…

… 

…

… 

…

(a) Parallel RNN encoder

+ + +

word RNN structural label RNN

hw1 

hw1

hl3

hl3

hw2 

hw2

hl5

hl5

hw3 

hw3

hl7

hl7

word RNN

S NP PRN VP VBP NP NNS

hl1 

hl1

… 

…

hl7 

hl7
… 

…

… 

…

… 

…

… 

…

hw1 

hw1

hw2 

hw2

hw3 

hw3

ew1 

+
ew2 

+

ew3 

+

I Iove dogs

structural label  
RNN

(b) Hierarchical RNN encoder

Figure 4: The graphical illustration of the Parallel
RNN encoder (a) and the Hierarchical RNN en-
coder (b). Here,

−−→
hwj and

←−−
hwj are the forward and

backward hidden states for word wj ,
−→
hli and

←−
hli

are for structural label li, ewj is the word embed-
ding for word wj , and

⊕
is for concatenation op-

erator.

There is no doubt that the structural label se-
quence is much longer than its word sequence.
In order to obtain the structural label annotation
vector for wi in word sequence, we simply look
for wi’s part-of-speech (POS) tag in the label se-
quence and view the tag’s annotation vector as
wi’s label annotation vector. This is because wi’s
POS tag location can also represent wi’s location
in the parse tree. For example, in Figure 3, word
w1 in (a) maps to l3 in (c) since l3 is the POS tag
of w1. Likewise, w2 maps to l5 and w3 to l7. That
is to say, we use l3’s learned annotation vector as
w1’s label annotation vector.

and Charniak, 2016) do. However, the performance gap is
very small by adding the ending brackets or not.

690

3.2 RNN Encoders with Source Syntax
In the next, we first propose two different encoders
to augment word annotation vector with its corre-
sponding label annotation vector, each of which
consists of two RNNs 3: in one encoder, the two
RNNs work independently (i.e., Parallel RNN En-
coder) while in another encoder the two RNNs
work in a hierarchical way (i.e., Hierarchical RNN
Encoder). The difference between the two en-
coders lies in how the two RNNs interact. Then,
we propose the third encoder with a single RNN,
which learns word and label annotation vectors
stitchingly (i.e., Mixed RNN Encoder). Since any
of the above three approaches focuses only on the
encoder as to generate source annotation vectors
along with structural information, we keep the rest
part of the NMT models unchanged.

Parallel RNN Encoder Figure 4 (a) illustrates
our Parallel RNN encoder, which includes two
parallel RNNs: i.e., a word RNN and a structural
label RNN. On the one hand, the word RNN, as in
conventional NMT models, takes a word sequence
as input and output a word annotation vector
for each word. On the other hand, the structural
label RNN takes the structural label sequence of
the word sequence as input and obtains a label
annotation vector for each label. Besides, we
concatenate each word’s word annotation vector
and its POS tag’s label annotation vector as the
final annotation vector for the word. For example,
the final annotation vector for word love in
Figure 4 (a) is [

−−→
hw2;

←−−
hw2;

−→
hl5;
←−
hl5], where the first

two subitems [
−−→
hw2;

←−−
hw2] are the word annotation

vector and the rest two subitems [
−→
hl5;
←−
hl5] are its

POS tag VBP’s label annotation vector.

Hierarchical RNN Encoder Partially inspired
by the model architecture of GNMT (Wu et al.,
2016) which consists of multiple layers of LSTM
RNNs, we propose a two-layer model architec-
ture in which the lower layer is the structural label
RNN while the upper layer is the word RNN, as
shown in Figure 4 (b). We put the word RNN in
the upper layer because each item in the word se-
quence can map into an item in the structural label
sequence, while this does not hold if the order of
the two RNNs is reversed. As shown in Figure 4
(b), for example, the POS tag VBP’s label anno-
tation vector [

−→
hl5,
←−
hl5] is concatenated with word

3Hereafter, we simplify bi-RNN as RNN.

S NP PRN I VP VBP love NP NNS dogs

h1 

h1

h2 

h2

h3 

h3

h4 

h4

h5 

h5

h6 

h6

h7 

h7

h8 

h8

h9 

h9

h10 

h10

Figure 5: The graphical illustration of the Mixed
RNN encoder. Here,

−→
hj and

←−
hj are the forward and

backward hidden annotation vectors for j-th item,
which can be either a word or a structural label.

love’s word embedding ew2 to feed as the input to
the word RNN.

Mixed RNN Encoder Figure 5 presents our
Mixed RNN encoder. Similarly, the sequence of
input is the linearization of its parse tree (as in
Figure 3 (b)) following a depth-first traversal or-
der, but being mixed with both words and struc-
tural labels in a stitching way. It shows that the
RNN learns annotation vectors for both the words
and the structural labels, though only the annota-
tion vectors of words are further fed to decoding
(e.g., ([

−→
h4,
←−
h4], [

−→
h7,
←−
h7], [

−→
h10,
←−
h10])). Even though

the annotation vectors of structural labels are not
directly fed forward for decoding, the error signal
is back propagated along the word sequence and
allows the annotation vectors of structural labels
being updated accordingly.

3.3 Comparison of RNN Encoders with
Source Syntax

Though all the three encoders model both word
sequence and structural label sequence, the dif-
ferences lie in their respective model architecture
with respect to the degree of coupling the two se-
quences:

• In the Parallel RNN encoder, the word RNN
and structural label RNN work in a parallel
way. That is to say, the error signal back
propagated from the word sequence would
not affect the structural label RNN, and vice
versa. In contrast, in the Hierarchical RNN
encoder, the error signal back propagated
from the word sequence has a direct impact
on the structural label annotation vectors, and
thus on the structural label embeddings. Fi-
nally, the Mixed RNN encoder ties the struc-
tural label sequence and word sequence to-
gether in the closest way. Therefore, the
degrees of coupling the word and structural

691

label sequences in these three encoders are
like this: Mixed RNN encoder > Hierarchi-
cal RNN encoder > Parallel RNN encoder.

• Figure 4 and Figure 5 suggest that the Mixed
RNN encoder is the simplest. Moreover,
comparing to conventional NMT encoders,
the difference lies only in the length of the in-
put sequence. Statistics on our training data
reveal that the Mixed RNN encoder approxi-
mately triples the input sequence length com-
pared to conventional NMT encoders.

4 Experimentation

We have presented our approaches to incorporat-
ing the source syntax into NMT encoders. In
this section, we evaluate their effectiveness on
Chinese-to-English translation.

4.1 Experimental Settings

Our training data for the translation task consists
of 1.25M sentence pairs extracted from LDC cor-
pora, with 27.9M Chinese words and 34.5M En-
glish words respectively.4 We choose NIST MT
06 dataset (1664 sentence pairs) as our develop-
ment set, and NIST MT 02, 03, 04, and 05 datasets
(878, 919, 1788 and 1082 sentence pairs, respec-
tively) as our test sets.5 To get the source syn-
tax for sentences on the source-side, we parse the
Chinese sentences with Berkeley Parser 6 (Petrov
and Klein, 2007) trained on Chinese TreeBank
7.0 (Xue et al., 2005). We use the case insensitive
4-gram NIST BLEU score (Papineni et al., 2002)
for the translation task.

For efficient training of neural networks, we
limit the maximum sentence length on both source
and target sides to 50. We also limit both the
source and target vocabularies to the most frequent
16K words in Chinese and English, covering ap-
proximately 95.8% and 98.2% of the two corpora
respectively. All the out-of-vocabulary words are
mapped to a special token UNK. Besides, the word
embedding dimension is 620 and the size of a hid-
den layer is 1000. All the other settings are the
same as in Bahdanau et al.(2015).

4The corpora include LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07,
LDC2004T08 and LDC2005T06.

5http://www.itl.nist.gov/iad/mig/
tests/mt/

6https://github.com/slavpetrov/
berkeleyparser

The inventory of structural labels includes 16
phrase labels and 32 POS tags. In both our Paral-
lel RNN encoder and Hierarchical RNN encoder,
we set the embedding dimension of these labels as
100 and the size of a hidden layer as 100. Besides,
the maximum structural label sequence length is
set to 100. In our Mixed RNN encoder, since we
only have one input sequence, we equally treat the
structural labels and words (i.e., a structural label
is also initialized with 620 dimension embedding).
Compared to the baseline NMT model, the only
different setting is that we increase the maximum
sentence length on source-side from 50 to 150.

We compare our method with two state-of-the-
art models of SMT and NMT:

• cdec (Dyer et al., 2010): an open source hi-
erarchical phrase-based SMT system (Chi-
ang, 2007) with default configuration and a
4-gram language model trained on the target
portion of the training data.7

• RNNSearch: a re-implementation of the at-
tentional NMT system (Bahdanau et al.,
2015) with slight changes taken from dl4mt
tutorial.8 For the activation function f of an
RNN, RNNSearch uses the gated recurrent
unit (GRU) recently proposed by (Cho et al.,
2014b). It incorporates dropout (Hinton
et al., 2012) on the output layer and improves
the attention model by feeding the lastly gen-
erated word. We use AdaDelta (Zeiler, 2012)
to optimize model parameters in training with
the mini-batch size of 80. For translation, a
beam search with size 10 is employed.

4.2 Experiment Results

Table 1 shows the translation performances mea-
sured in BLEU score. Clearly, all the proposed
NMT models with source syntax improve the
translation accuracy over all test sets, although
there exist considerable differences among differ-
ent variants.

Parameters The three proposed models introduce
new parameters in different ways. As a baseline
model, RNNSearch has 60.6M parameters. Due to
the infrastructure similarity, the Parallel RNN sys-
tem and the Hierarchical RNN system introduce

7https://github.com/redpony/cdec
8https://github.com/nyu-dl/

dl4mt-tutorial

692

System #Params Time MT06 MT02 MT03 MT04 MT05 All
1 cdec - - 33.4 34.8 33.0 35.7 32.1 34.2
2 RNNSearch 60.6M 153m 34.0 36.9 33.7 37.0 34.1 35.6
3 Parallel RNN +1.1M +9m 34.8† 37.8‡ 34.2 38.3‡ 34.6 36.6‡
4 Hierarchical RNN +1.2M +9m 35.2‡ 37.2 34.7† 38.7‡ 34.7† 36.7‡
5 Mixed RNN +0 +40m 35.6‡ 37.7† 34.9‡ 38.6‡ 35.5‡ 37.0‡

Table 1: Evaluation of the translation performance. † and ‡: significant over RNNSearch at 0.05/0.01,
tested by bootstrap resampling (Koehn, 2004). “+” is the additional number of parameters or training
time on the top of the baseline system RNNSearch. Column Time indicates the training time in minutes
per epoch for different NMT models

the similar size of additional parameters, result-
ing from the RNN model for structural label se-
quences (about 0.1M parameters) and catering ei-
ther the augmented annotation vectors (as shown
in Figure 4 (a)) or the augmented word embed-
dings (as shown in Figure 4 (b)) (the remain pa-
rameters). It is not surprising that the Mixed RNN
system does not require any additional parameters
since though the input sequence becomes longer,
we keep the vocabulary size unchanged, resulting
in no additional parameters.

Speed Introducing the source syntax slightly
slows down the training speed. When running on
a single GPU GeForce GTX 1080, the baseline
model speeds 153 minutes per epoch with 14K
updates while the proposed structural label RNNs
in both Parallel RNN and Hierarchical RNN sys-
tems only increases the training time by about 6%
(thanks to the small size of structural label embed-
dings and annotation vectors), and the Mixed RNN
system spends 26% more training time to cater the
triple sized input sequence.

Comparison with the baseline NMT model
(RNNSearch) While all the three proposed NMT
models outperform RNNSearch, the Parallel RNN
system and the Hierarchical RNN system achieve
similar accuracy (e.g., 36.6 v.s. 36.7). Besides,
the Mixed RNN system achieves the best accu-
racy overall test sets with the only exception of
NIST MT 02. Over all test sets, it outperforms
RNNSearch by 1.4 BLEU points and outperforms
the other two improved NMT models by 0.3∼0.4
BLEU points, suggesting the benefits of high de-
gree of coupling the word sequence and the struc-
tural label sequence. This is very encouraging
since the Mixed RNN encoder is the simplest,
without introducing new parameters and with only
slight additional training time.

Figure 6: Performance of the generated transla-
tions with respect to the lengths of the input sen-
tences.

Comparison with the SMT model (cdec) Ta-
ble 1 also shows that all NMT systems outper-
form the SMT system. This is very consistent
with other studies on Chinese-to-English transla-
tion (Mi et al., 2016; Tu et al., 2017b; Wang et al.,
2017).

5 Analysis

As the proposed Mixed RNN system achieves
the best performance, we further look at the
RNNSearch system and the Mixed RNN system to
explore more on how syntactic information helps
in translation.

5.1 Effects on Long Sentences

Following Bahdanau et al. (2015), we group sen-
tences of similar lengths together and compute
BLEU scores. Figure 6 presents the BLEU scores
over different lengths of input sentences. It shows
that Mixed RNN system outperforms RNNSearch
over sentences with all different lengths. It also
shows that the performance drops substantially

693

System AER
RNNSearch 50.1
Mixed RNN 47.9

Table 2: Evaluation of alignment quality. The
lower the score, the better the alignment quality.

when the length of input sentences increases. This
performance trend over the length is consistent
with the findings in (Cho et al., 2014a; Tu et al.,
2016, 2017a). We also observe that the NMT sys-
tems perform surprisingly bad on sentences over
50 in length, especially compared to the perfor-
mance of SMT system (i.e., cdec). We think that
the bad behavior of NMT systems towards long
sentences (e.g., length of 50) is due to the fol-
lowing two reasons: (1) the maximum source sen-
tence length limit is set as 50 in training, 9 making
the learned models not ready to translate sentences
over the maximum length limit; (2) NMT systems
tend to stop early for long input sentences.

5.2 Analysis on Word Alignment

Due to the capability of carrying syntactic infor-
mation in source annotation vectors, we conjec-
ture that our model with source syntax is also
beneficial for alignment. To test this hypothe-
sis, we carry out experiments of the word align-
ment task on the evaluation dataset from Liu and
Sun (2015), which contains 900 manually aligned
Chinese-English sentence pairs. We force the de-
coder to output reference translations, as to get au-
tomatic alignments between input sentences and
their reference translations. To evaluate alignment
performance, we report the alignment error rate
(AER) (Och and Ney, 2003) in Table 2.

Table 2 shows that source syntax information
improves the attention model as expected by main-
taining an annotation vector summarizing struc-
tural information on each source word.

5.3 Analysis on Phrase Alignment

The above subsection examines the alignment per-
formance at the word level. In this subsection, we
turn to phrase alignment analysis by moving from
word unit to phrase unit. Given a source phrase
XP, we use word alignments to examine if the
phrase is translated continuously (Cont.), or dis-

9Though the maximum source length limit in Mixed RNN
system is set to 150, it approximately contains 50 words in
maximum.

System XP Cont. Dis. Un.

RNNSearch

PP 57.3 33.6 9.1
NP 59.8 25.5 14.7
CP 47.3 44.6 8.1
QP 54.0 22.2 23.8

ALL 58.1 27.1 14.8

Mixed RNN

PP 63.3 27.5 9.2
NP 63.1 23.1 13.8
CP 54.5 36.6 8.9
QP 56.2 19.7 24.1

ALL 60.4 25.0 14.6

Table 3: Percentages (%) of syntactic phrases in
our test sets being translated continuously, discon-
tinuously, or not being translated. Here PP is for
prepositional phrase, NP for noun phrase, CP for
clause headed by a complementizer, QP for quain-
ter phrase.

continuously (Dis.), or if it is not translated at all
(Un.).

There are some phrases, such as noun phrases
(NPs), prepositional phrases (PPs) that we usu-
ally expect to have a continuous translation. With
respect to several such types of phrases, Table 3
shows how these phrases are translated. From
the table, we see that translations of RNNSearch
system do not respect source syntax very well.
For example, in RNNSearch translations, 57.3%,
33.6%, and 9.1% of PPs are translated continu-
ously, discontinuously, and untranslated, respec-
tively. Fortunately, our Mixed RNN system is
able to have more continuous translation for those
phrases. Table 3 also suggests that there is still
much room for NMT to show more respect to syn-
tax.

5.4 Analysis on Over Translation
To estimate the over translation generated by
NMT, we propose ratio of over translation (ROT):

ROT =

∑
wi
t(wi)

|w| (1)

where |w| is the number of words in consider-
ation, t(wi) is the times of over translation for
word wi. Given a word w and its translation
e = e1e2 . . . en, we have:

t(w) = |e| − |uniq(e)| (2)

where |e| is the number of words in w’s transla-
tion e, while |uniq(e)| is the number of unique
words in e. For example, if a source word 香

694

System POS ROT (%)

RNNSearch

NR 15.7
CD 7.4
DT 4.9
NN 8.0

ALL 5.5

Mixed RNN

NR 12.3
CD 5.1
DT 2.4
NN 6.8

ALL 4.5

Table 4: Ratio of over translation (ROT) on test
sets. Here NR is for proper noun, CD for cardi-
nal number, DT for determiner, and NN for nouns
except proper nouns and temporal nouns.

港/xiangkang is translated as hong kong hong
kong, we say it being over translated 2 times.

Table 4 presents ROT grouped by some typical
POS tags. It is not surprising that RNNSearch sys-
tem has high ROT with respect to POS tags of NR
(proper noun) and CD (cardinal number): this is
due to the fact that the two POS tags include high
percentage of unknown words which tend to be
translated multiple times in translation. Words of
DT (determiner) are another source of over trans-
lation since they are usually translated to multiple
the in English. It also shows that by introducing
source syntax, Mixed RNN system alleviates the
over translation issue by 18%: ROT drops from
5.5% to 4.5%.

5.5 Analysis on Rare Word Translation

We analyze the translation of source-side rare
words that are mapped to a special token UNK.
Given a rare word w, we examine if it is translated
into a non-UNK word (non-UNK), UNK (UNK),
or if it is not translated at all (Un.).

Table 5 shows how source-side rare words are
translated. The four POS tags listed in the table
account for about 90% of all rare words in the test
sets. It shows that in Mixed RNN system is more
likely to translate source-side rare words into UNK
on the target side. This is reasonable since the
source side rare words tends to be translated into
rare words in the target side. Moreover, it is hard
to obtain its correct non-UNK translation when a
source-side rare word is replaced as UNK.

Note that our approach is compatible with with
approaches of open vocabulary. Taking the sub-

System POS non-UNK UNK Un.

RNNSearch

NN 27.2 40.4 32.4
NR 22.9 58.5 18.6
VV 34.5 32.9 32.7
CD 10.7 63.4 25.9

ALL 27.2 40.4 32.4

Mixed RNN

NN 24.8 41.4 33.8
NR 17.0 64.5 18.6
VV 33.6 34.0 32.3
CD 9.6 68.7 21.7

ALL 23.9 47.5 28.7

Table 5: Percentages (%) of rare words in our test
sets being translated into a non-UNK word (non-
UNK), UNK (UNK), or if it is not translated at all
(Un.).

word approach (Sennrich et al., 2016) as an exam-
ple, for a word on the source side which is divided
into several subword units, we can synthesize sub-
POS nodes that cover these units. For example, if
misunderstand/VB is divided into units of mis and
understand, we construct substructure (VB (VB-F
mis) (VB-I understand)).

6 Related Work

While there has been substantial work on lin-
guistically motivated SMT, approaches that lever-
age syntax for NMT start to shed light very re-
cently. Generally speaking, NMT can provide a
flexible mechanism for adding linguistic knowl-
edge, thanks to its strong capability of automati-
cally learning feature representations.

Eriguchi et al. (2016) propose a tree-to-
sequence model that learns annotation vectors not
only for terminal words, but also for non-terminal
nodes. They also allow the attention model to
align target words to non-terminal nodes. Our ap-
proach is similar to theirs by using source-side
phrase parse tree. However, our Mixed RNN sys-
tem, for example, incorporates syntax informa-
tion by learning annotation vectors of syntactic la-
bels and words stitchingly, but is still a sequence-
to-sequence model, with no extra parameters and
with less increased training time.

Sennrich and Haddow (2016) define a few lin-
guistically motivated features that are attached to
each individual words. Their features include lem-
mas, subword tags, POS tags, dependency labels,
etc. They concatenate feature embeddings with
word embeddings and feed the concatenated em-

695

beddings into the NMT encoder. On the contrast,
we do not specify any feature, but let the model
implicitly learn useful information from the struc-
tural label sequence.

Shi et al. (2016) design a few experiments to in-
vestigate if the NMT system without external lin-
guistic input is capable of learning syntactic infor-
mation on the source-side as a by-product of train-
ing. However, their work is not focusing on im-
proving NMT with linguistic input. Moreover, we
analyze what syntax is disrespected in translation
from several new perspectives.

Garcı́a-Martı́nez et al. (2016) generalize NMT
outputs as lemmas and morphological factors in
order to alleviate the issues of large vocabulary
and out-of-vocabulary word translation. The lem-
mas and corresponding factors are then used to
generate final words in target language. Though
they use linguistic input on the target side, they are
limited to the word level features. Phrase level, or
even sentence level linguistic features are harder
to obtain for a generation task such as machine
translation, since this would require incremental
parsing of the hypotheses at test time.

7 Conclusion

In this paper, we have investigated whether and
how source syntax can explicitly help NMT to im-
prove its translation accuracy.

To obtain syntactic knowledge, we linearize a
parse tree into a structural label sequence and
let the model automatically learn useful infor-
mation through it. Specifically, we have de-
scribed three different models to capture the syn-
tax knowledge, i.e., Parallel RNN, Hierarchi-
cal RNN, and Mixed RNN. Experimentation on
Chinese-to-English translation shows that all pro-
posed models yield improvements over a state-of-
the-art baseline NMT system. It is also interesting
to note that the simplest model (i.e., Mixed RNN)
achieves the best performance, resulting in obtain-
ing significant improvements of 1.4 BLEU points
on NIST MT 02 to 05.

In this paper, we have also analyzed the transla-
tion behavior of our improved system against the
state-of-the-art NMT baseline system from several
perspectives. Our analysis shows that there is still
much room for NMT translation to be consistent
with source syntax. In our future work, we expect
several developments that will shed more light on
utilizing source syntax, e.g., designing novel syn-

tactic features (e.g., features showing the syntactic
role that a word is playing) for NMT, and employ-
ing the source syntax to constrain and guild the
attention models.

Acknowledgments

The authors would like to thank three anony-
mous reviewers for providing helpful comments,
and also acknowledge Xing Wang, Xiangyu Duan,
Zhengxian Gong for useful discussions. This work
was supported by National Natural Science Foun-
dation of China (Grant No. 61525205, 61331011,
61401295).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR 2015.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Computational Linguistics 33(2):201–228.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machinetranslation: Encoder-decoder
approaches. In Proceedings of SSST 2014. pages
103–111.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Proceedings
of EMNLP 2014. pages 1724–1734.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of EMNLP
2016. pages 2331–2336.

Chris Dyer, Adam Lopez, Juri Ganitkevitch, Jonathan
Weese, Ferhan Ture, Phil Blunsom, Hendra Seti-
awan, Vladimir Eidelman, and Philip Resnik. 2010.
cdec: A decoder, alignment, and learning framework
for finite-state and context-free translation models.
In Proceedings of ACL 2010 System Demonstra-
tions. pages 7–12.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neu-
ral machine translation. In Proceedings of ACL
2016. pages 823–833.

Mercedes Garcı́a-Martı́nez, Loic Barrault, and Fethi
Bougares. 2016. Factored neural machine transla-
tion. In arXiv:1609.04621.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R. Salakhut-
dinov. 2012. Improving neural networks by

696

preventing co-adaptation of feature detectors. In
arXiv:1207.0580.

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2015. Montreal
neural machine translation systems for wmt’15. In
Proceedings of WMT 2015. pages 134–140.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
EMNLP 2004. pages 388–395.

Junhui Li, Philip Resnik, and Hal Daumé III. 2013.
Modeling syntactic and semantic structures in hier-
archical phrase-based translation. In Proceedings of
HLT-NAACL 2013. pages 540–549.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment template for statistical machine
translation. In Proceedings of ACL-COLING 2006.
pages 609–616.

Yang Liu and Maosong Sun. 2015. Contrastive unsu-
pervised word alignment with non-local features. In
Proceedings of AAAI 2015. pages 857–868.

Minh-Thang Luong and Christopher D. Manning.
2015. Stanford neural machine translation systems
for spoken language domains. In Proceedings of
IWSLT 2015. pages 76–79.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
EMNLP 2015. pages 1412–1421.

Yuval Marton and Philip Resnik. 2008. Soft syntac-
tic constraints for hierarchical phrased-based trans-
lation. In Proceedings of ACL-HLT 2008. pages
1003–1011.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Supervised attentions for neural machine translation.
In Proceedings of EMNLP 2016. pages 2283–2288.

Franz J. Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of ACL 2002. pages 311–318.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proceedings of HLT-
NAACL 2007. pages 404–411.

Rico Sennrich and Barry Haddow. 2016. Linguistic
input features improve neural machine translation.
In Proceedings of the First Conference on Machine
Translation. pages 83–91.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of ACL 2016. pages
1715–1725.

Libin Shen, Jinxi Xu, and Ralph Weischedel. 2008. A
new string-to-dependency machine translation algo-
rithm with a target dependency language model. In
Proceedings of ACL-HLT 2008. pages 577–585.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016. Does
string-based neural MT learn source syntax? In Pro-
ceedings of EMNLP 2016. pages 1526–1534.

Zhaopeng Tu, Yang Liu, Zhengdong Lu, Xiaohua Liu,
and Hang Li. 2017a. Context gates for neural ma-
chine translation. Transactions of the Association
for Computational Linguistics 5:87–99.

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu,
and Hang Li. 2017b. Neural machine translation
with reconstruction. In Proceedings of AAAI 2017.
pages 3097–3103.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of ACL 2016.
pages 76–85.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Proceedings of NIPS
2015.

Xing Wang, Zhengdong Lu, Zhaopeng Tu, Hang Li,
Deyi Xiong, and Min Zhang. 2017. Neural machine
translation advised by statistical machine transla-
tion. In Proceedings of AAAI 2017. pages 3330–
3336.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. In arXiv
preprint arXiv:1609.08144.

Nianwen Xue, Fei Xia, Fu-Dong Chiou, and Martha
Palmer. 2005. The Penn Chinese Treebank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering 11(2):207–238.

Matthew D. Zeiler. 2012. ADADELTA: An adaptive
learning rate method. In arXiv:1212.5701.

697

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 698–707
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1065

Sequence-to-Dependency Neural Machine Translation

Shuangzhi Wu†∗, Dongdong Zhang‡ , Nan Yang‡ , Mu Li‡ , Ming Zhou‡
†Harbin Institute of Technology, Harbin, China

‡Microsoft Research
{v-shuawu, dozhang, nanya, muli, mingzhou}@microsoft.com

Abstract

Nowadays a typical Neural Machine
Translation (NMT) model generates trans-
lations from left to right as a linear
sequence, during which latent syntactic
structures of the target sentences are not
explicitly concerned. Inspired by the suc-
cess of using syntactic knowledge of tar-
get language for improving statistical ma-
chine translation, in this paper we propose
a novel Sequence-to-Dependency Neural
Machine Translation (SD-NMT) method,
in which the target word sequence and its
corresponding dependency structure are
jointly constructed and modeled, and this
structure is used as context to facilitate
word generations. Experimental results
show that the proposed method signifi-
cantly outperforms state-of-the-art base-
lines on Chinese-English and Japanese-
English translation tasks.

1 Introduction

Recently, Neural Machine Translation (NMT)
with the attention-based encoder-decoder frame-
work (Bahdanau et al., 2015) has achieved sig-
nificant improvements in translation quality of
many language pairs (Bahdanau et al., 2015; Lu-
ong et al., 2015a; Tu et al., 2016; Wu et al., 2016).
In a conventional NMT model, an encoder reads
in source sentences of various lengths, and trans-
forms them into sequences of intermediate hidden
vector representations. After weighted by atten-
tion operations, combined hidden vectors are used
by the decoder to generate translations. In most of
cases, both encoder and decoder are implemented
as recurrent neural networks (RNNs).

∗Contribution during internship at Microsoft Research.

Many methods have been proposed to further
improve the sequence-to-sequence NMT model
since it was first proposed by Sutskever et al.
(2014) and Bahdanau et al. (2015). Previous work
ranges from addressing the problem of out-of-
vocabulary words (Jean et al., 2015), designing at-
tention mechanism (Luong et al., 2015a), to more
efficient parameter learning (Shen et al., 2016),
using source-side syntactic trees for better encod-
ing (Eriguchi et al., 2016) and so on. All these
NMT models employ a sequential recurrent neu-
ral network for target generations. Although in
theory RNN is able to remember sufficiently long
history, we still observe substantial incorrect trans-
lations which violate long-distance syntactic con-
straints. This suggests that it is still very challeng-
ing for a linear RNN to learn models that effec-
tively capture many subtle long-range word de-
pendencies. For example, Figure 1 shows an in-
correct translation related to the long-distance de-
pendency. The translation fragment in italic is lo-
cally fluent around the word is, but from a global
view the translation is ungrammatical. Actually,
this part of translation should be mostly affected
by the distant plural noun foreigners rather than
words Venezuelan government nearby.

Fortunately, such long-distance word corre-
spondence can be well addressed and modeled by
syntactic dependency trees. In Figure 1, the head
word foreigners in the partial dependency tree (top
dashed box) can provide correct structural con-
text for the next target word, with this informa-
tion it is more likely to generate the correct word
will rather than is. This structure has been suc-
cessfully applied to significantly improve the per-
formance of statistical machine translation (Shen
et al., 2008). On the NMT side, introducing tar-
get syntactic structures could help solve the prob-
lem of ungrammatical output because it can bring
two advantages over state-of-the-art NMT models:

698

https://doi.org/10.18653/v1/P17-1065

a) syntactic trees can be used to model the gram-
matical validity of translation candidates; b) par-
tial syntactic structures can be used as additional
context to facilitate future target word prediction.

Source : 他还说 , 来委外国人若攻击委内瑞拉政府
会面临严重后果 , 将被驱逐出境 .

partial tree

decoder

Ref : He added that foreign visitors to Venezuela who criticize
the Venezuelan government will face serious consequences
and will be deported .

NMT : He also said that foreigners to Venezuela who attack
the Venezuelan government is facing serious consequences,
will be deported .

…

foreigners to Venezuela who attack the Venezuelan government

attack the Venezuelan government

…

is

ungrammatical structure

Figure 1: Dependency trees help the prediction of
the next target word. “NMT” refers to the trans-
lation result from a conventional NMT model,
which fails to capture the long distance word re-
lation denoted by the dashed arrow.

However, it is not trivial to build and leverage
syntactic structures on the target side in current
NMT framework. Several practical challenges
arise:

(1) How to model syntactic structures such as
dependency parse trees with recurrent neural net-
work;

(2) How to efficiently perform both target word
generation and syntactic structure construction
tasks simultaneously in a single neural network;

(3) How to effectively leverage target syntactic
context to help target word generation.

To address these issues, we propose and empir-
ically evaluate a novel Sequence-to-Dependency
Neural Machine Translation (SD-NMT) model in
our paper. An SD-NMT model encodes source in-
puts with bi-directional RNNs and associates them
with target word prediction via attention mecha-
nism as in most NMT models, but it comes with
a new decoder which is able to jointly generate
target translations and construct their syntactic de-
pendency trees. The key difference from conven-
tional NMT decoders is that we use two RNNs,
one for translation generation and the other for de-
pendency parse tree construction, in which incre-
mental parsing is performed with the arc-standard
shift-reduce algorithm proposed by Nivre (2004).

We will describe in detail how these two RNNs
work interactively in Section 3.

We evaluate our method on publicly avail-
able data sets with Chinese-English and Japanese-
English translation tasks. Experimental results
show that our model significantly improves trans-
lation accuracy over the conventional NMT and
SMT baseline systems.

2 Background

2.1 Neural Machine Translation

As a new paradigm to machine translation, NMT
is an end-to-end framework (Sutskever et al.,
2014; Bahdanau et al., 2015) which directly mod-
els the conditional probability P (Y |X) of target
translation Y = y1,y2,...,yn given source sentence
X = x1,x2,...,xm. An NMT model consists of two
parts: an encoder and a decoder. Both of them
utilize recurrent neural networks which can be a
Gated Recurrent Unit (GRU) (Cho et al., 2014)
or a Long Short-Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) in practice. The en-
coder bidirectionally encodes a source sentence
into a sequence of hidden vectorsH = h1,h2,...,hm
with a forward RNN and a backward RNN. Then
the decoder predicts target words one by one with
probability

P (Y |X) =
n∏

j=1

P (yj|y<j, H) (1)

Typically, for the jth target word, the probability
P (yj |y<j , H) is computed as

P (yj|y<j, H) = g(sj, yj−1, cj) (2)

where g is a nonlinear function that outputs the
probability of yj , and sj is the RNN hidden state.
The context cj is calculated at each timestamp j
based on H by the attention network

cj =
m∑

k=1

ajkhk (3)

ajk =
exp(ejk)∑m
i=1 exp(eji)

(4)

ejk = vTa tanh(Wasj−1 + Uahk) (5)

where va, Wa, Ua are the weight matrices. The
attention mechanism is effective to model the cor-
respondences between source and target.

699

2.2 Dependency Tree Construction
We use a shift-reduce transition-based dependency
parser to build the syntactic structure for the target
language in our work. Specially, we adopt the arc-
standard algorithm (Nivre, 2004) to perform incre-
mental parsing during the translation process. In
this algorithm, a stack and a buffer are maintained
to store the parsing state over which three kinds of
transition actions are applied. Let w0 and w1 be
two topmost words in the stack, and w̄ be the cur-
rent new word in a sequence of input, three transi-
tion actions are described as below.

• Shift(SH) : Push w̄ to the stack.

• Left-Reduce(LR(d)) : Link w0 and w1 with
dependency label d as w0

d−→w1, and reduce
them to the head w0.

• Right-Reduce(RR(d)) : Link w0 andw1 with
dependency label d as w0

d←−w1, and reduce
them to the head w1.

During parsing, an specific structure is used to
record the dependency relationship between dif-
ferent words of input sentence. The parsing fin-
ishes when the stack is empty and all input words
are consumed. As each word must be pushed to
the stack once and popped off once, the number
of actions needed to parse a sentence is always
2n, where n is the length of the sentence (Nivre,
2004). Because each valid transition action se-
quence corresponds to a unique dependency tree,
a dependency tree can also be equivalently repre-
sented by a sequence of transition actions.

3 Sequence-to-Dependency Neural
Machine Translation

An SD-NMT model is an extension to the con-
ventional NMT model augmented with syntactic
structural information of target translation. Given
a source sentenceX = x1,x2,..,xm, its target trans-
lation Y = y1,y2,..,yn and Y ’s dependency parse
tree T , the goal of the extension is to enable us to
compute the joint probability P (Y, T |X). As in
most structural learning tasks, the full prediction
of Y and T is further decomposed into a chain of
smaller predictions. For translation Y , it is gen-
erated in the left-to-right order as y1, y2, .., yn fol-
lowing the way in a normal sequence-to-sequence
model. For Y ’s parse tree T , instead of directly
modeling the tree itself, we predict a parsing ac-
tion sequence A which can map Y to T . Thus at

top level our SD-NMT model can be formulated
as

P (Y, T |X) = P (Y,A|X)

= P (y1y2..yn, a1, a2..al|X)(6)

where A = a1,a2,..,aj ,..,al 1 with length l (l =
2n), aj ∈ {SH,RR(d),LR(d)}2.

Two recurrent neural networks, Word-RNN and
Action-RNN, are used to model generation pro-
cesses of translation sequence Y and parsing ac-
tion sequence A respectively. Figure 2 shows an
example how translation Y and its parsing actions
are predicted step by step.

<s>

Word RNN

Action RNN

𝑎𝑟𝑒 𝑦𝑜𝑢

SH

𝑤ℎ𝑜 𝑎𝑟𝑒

<s> SH SH

LR

LR

RRSH

SH

𝑤ℎ𝑜

𝑎𝑟𝑒

𝑦𝑜𝑢

SH

𝑤ℎ𝑜

…

…

Figure 2: Decoding example of our SD-NMT
model for target sentence “who are you” with tran-
sition action sequence “SH SH LR SH RR”. The
ending symbol EOS is omitted.

Because the lengths of Word-RNN and Action-
RNN are different, they are designed to work in
a mutually dependent way: a target word is only
allowed to be generated when the SH action is
predicted in the action sequence. In this way, we
can perform incremental dependency parsing for
translation Y and at the same time track the par-
tial parsing status through the translation genera-
tion process.

For notational clarity, we introduce a virtual
translation sequence Ŷ =ŷ1,ŷ2,..,ŷj ,..,ŷl for Word-
RNN which has the same length l with transition
action sequence. ŷj is defined as

ŷj =

{
yvj δ(SH, aj) = 1

yvj−1 δ(SH, aj) = 0

where δ(SH, aj) is 1 when aj = SH, otherwise
0. vj is the index of Y , computed by vj =∑j

i=1 δ(SH, ai). Apparently the mapping from Ŷ

1In the rest of this paper, aj represents the transition ac-
tion, rather than the attention weight in Equation 4.

2RR(d) refers to a set of RR actions augmented with de-
pendency labels so as to LR(d).

700

a

…𝐸𝑤0 𝑏0𝑙

𝐾𝑗

𝐸𝑤1

𝐸𝑤0 𝐸𝑤0𝑙

𝑏1𝑟

𝐸𝑤1 𝐸𝑤1𝑟

𝑤0𝑤1
… stack

parsing configuation

… 𝑤1𝑙 … 𝑤1𝑟 … 𝑤0𝑙 … 𝑤0𝑟

𝑢𝑛𝑖𝑔𝑟𝑎𝑚

𝑏𝑖𝑔𝑟𝑎𝑚

construction of 𝐾𝑗

Attention

partial tree

 𝑦1 𝑦2 𝑦3 𝑦4 … 𝑦𝑗−1

𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 1 2 3 4 𝑗 − 1

𝑎𝑗−1

𝑎𝑗

𝑎1 𝑎2 𝑎3 𝑎𝑗−2

⊕

δ

𝑎1 𝑎2 𝑎3 𝑎4 … 𝑎𝑗−1

 𝑦0

𝑎0

𝑥1 𝑥2 𝑥3 … 𝑥𝑚

0

1Word RNN

Action RNN

Encoder

𝑦1 𝑦2 𝑦3 … 𝑦𝑣𝑗−1

…

…

…

 𝑦1 𝑦3 𝑦𝑗−2 𝑦𝑗−1 𝑦2

𝑌

 𝑌

𝐾𝑗

 𝑦𝑗

𝑦𝑣𝑗

𝒋

(𝑎) (𝑏)

Figure 3: (a) is the overview of SD-NMT model. The dashed arrows mean copying previous recurrent
state or word. The two RNNs use the same source context for prediction. aj ∈ {SH,RR(d),LR(d)}. The
bidirection arrow refers to the interaction between two RNNs. (b) shows the construction of syntactic
context. The gray box means the concatenation of vectors

to Y is deterministic, and Y can be easily derived
given Ŷ and A.

With the notation of Ŷ , the sequence probability
of Y and A can be written as

P (A|X, Ŷ<l) =
l∏

j=1

P (aj|a<j, X, Ŷ<j) (7)

P (Ŷ |X,A≤l) =
l∏

j=1

P (ŷj|ŷ<j, X,A≤j)δ(SH,aj)

(8)

where Ŷ<j refers to the subsequence
ŷ1, ŷ2, .., ŷj−1, and A≤j to a1, a2, .., aj . Based on
Equation 7 and 8, the overall joint model can be
computed as

P (Y, T |X) = P (A|X, Ŷ<l)× P (Ŷ |X,A≤l)
(9)

As we have two RNNs in our model, the termina-
tion condition is also different from a conventional
NMT model. In decoding, we maintain a stack
to track the parsing configuration, and our model
terminates once the Word-RNN predicts a special
ending symbol EOS and all the words in the stack
have been reduced.

Figure 3 (a) gives an overview of our SD-NMT
model. Due to space limitation, the detailed inter-
connections between two RNNs are only illus-
trated at timestamp j. The encoder of our model

follows standard bidirectional RNN configuration.
At timestamp j during decoding, our model first
predicts an action aj by Action-RNN, then Word-
RNN checks the condition gate δ according to aj .
If aj = SH, the Word-RNN will generate a new
state (solid arrow) and predict a new target word
yvj , otherwise it just copies previous state (dashed
arrow) to the current state. For example, at times-
tamp 3, a3 6= SH, the state of Word-RNN is copied
from its previous one. Meanwhile, ŷ3 = y2 is used
as the immediate proceeding word in translation
history.

When computing attention scores, we extend
Equation 5 by replacing the decoder hidden state
with the concatenation of Word-RNN hidden state
s and Action-RNN hidden state s′ (gray boxes in
Figure 3). The new attention score is then updated
as

ejk = vTa tanh(Wa[sj−1; s
′
j−1] + Uahk) (10)

3.1 Syntactic Context for Target Word
Prediction

Syntax has been proven useful for sentence gen-
eration task (Dyer et al., 2016). We propose to
leverage target syntax to help translation genera-
tion. In our model, the syntactic context Kj at
timestamp j is defined as a vector which is com-
puted by a feed-forward network based on current

701

parsing configuration of Action-RNN. Denote that
w0 and w1 are two topmost words in the stack, w0l

and w1l are their leftmost modifiers in the partial
tree,w0r andw1r their rightmost modifiers respec-
tively. We define two unigram features and four
bigram features. The unigram features are w0 and
w1 which are represented by the word embedding
vectors. The bigram features are w0w0l, w0w0r,
w1w1l and w1w1r. Each of them is computed by
bhc = tanh(WbEwh + UbEwhc), h ∈ {0, 1},
c ∈ {l, r}. These kinds of feature template have
beeb proven effective in dependency parsing task
(Zhang and Clark, 2008). Based on these features,
the syntactic context vector Kj is computed as

Kj = tanh(Wk[Ew0;Ew1] + Uk[b0l; b0r; b1l; b1r])
(11)

where Wk, Uk, Wb, Ub are the weight matrices,
E stands for the embedding matrix. Figure 2 (b)
gives an overview of the construction of Kj . Note
that zero vector is used for padding the words
which are not available in the partial tree, so that
all the K vectors have the same input size in com-
putation.

Adding Kj to Equation 2, the probabilities of
transition action and word in Equation 7 and 8 are
then updated as

P (aj|a<j, X, Ŷ<j) = g(s′j, aj−1, cj,Kj) (12)

P (ŷj|ŷ<j, X,A≤j) = g(sj, ŷj−1, cj,Kj) (13)

After each prediction step in Word-RNN and
Action-RNN, the syntax context vector K will be
updated accordingly. Note that K is not used to
calculate the recurrent states s in this work.

3.2 Model Training and Decoding
For SD-NMT model, we use the sum of log-
likelihoods of word sequence and action sequence
as objective function for training algorithm, so that
the joint probability of target translations and their
parsing trees can be maximized:

J(θ) =
∑

(X,Y,A)∈D
log P (A|X, Ŷ<l)+

log P (Ŷ |X,A≤l) (14)

We also use mini-batch for model training. As
the target dependency trees are known in the bilin-
gual corpus during training, we pre-compute the
partial tree state and syntactic context at each time

stamp for each training instance. Thus it is easy for
the model to process multiple trees in one batch.

In the decoding process of an SD-NMT model,
the score of each search path is the sum of log
probabilities of target word sequence and transi-
tion action sequence normalized by the sequence
length:

score =
1

l

l∑

j=1

log P (aj |a<j , X, Ŷ<j)+

1

n

l∑

j=1

δ(SH, aj) log P (ŷj |ŷ<j , X,A≤j) (15)

where n is word sequence length and l is action
sequence length.

4 Experiments

The experiments are conducted on the Chinese-
English task as well as the Japanese-English trans-
lation tasks where the same data set from WAT
2016 ASPEC corpus (Nakazawa et al., 2016) 3

is used for a fair comparison with other work. In
addition to evaluate translation performance, we
also investigate the quality of dependency parsing
as a by-product and the effect of parsing quality
against translation quality.

4.1 Setup
In the Chinese-English task, the bilingual training
data consists of a set of LDC datasets, 4 which
has around 2M sentence pairs. We use NIST2003
as the development set, and the testsets contain
NIST2005, NIST2006, NIST2008 and NIST2012.
All English words are lowercased.

In the Japanese-English task, we use top 1M
sentence pairs from ASPEC Japanese-English cor-
pus. The development data contains 1,790 sen-
tences, and the test data contains 1,812 sentences
with single reference per source sentence.

To train SD-NMT model, the target dependency
tree references are needed. As there is no golden
annotation of parse trees over the target training
data, we use pseudo parsing results as the tar-
get dependency references, which are got from an
in-house developed arc-eager dependency parser
based on work in (Zhang and Nivre, 2011).

3http://orchid.kuee.kyoto-u.ac.jp/ASPEC/
4LDC2003E14, LDC2005T10, LDC2005E83,

LDC2006E26, LDC2006E34, LDC2006E85, LDC2006E92,
LDC2003E07, LDC2002E18, LDC2005T06, LDC2003E07,
LDC2004T07, LDC2004T08, LDC2005T06

702

Settings NIST 2005 NIST 2006 NIST 2008 NIST 2012 Average
HPSMT 35.34 33.56 26.06 27.47 30.61
RNNsearch 38.07 38.95 31.61 28.95 34.39
SD-NMT\K 38.83 39.23 31.92 29.72 34.93
SD-NMT 39.38 41.81 33.06 31.43 36.42

Table 1: Evaluation results on Chinese-English translation task with BLEU% metric. The “Average”
column is the averaged result of all test sets. The numbers in bold indicate statistically significant differ-
ence (p < 0.05) from baselines.

In the neural network training, the vocabulary
size is limited to 30K high frequent words for
both source and target languages. All low fre-
quent words are normalized into a special token
unk and post-processed by following the work in
(Luong et al., 2015b). The size of word embed-
ding and transition action embedding is set to 512.
The dimensions of the hidden states for all RNNs
are set to 1024. All model parameters are initial-
ized randomly with Gaussian distribution (Glorot
and Bengio, 2010) and trained on a NVIDIA Tesla
K40 GPU. The stochastic gradient descent (SGD)
algorithm is used to tune parameters with a learn-
ing rate of 1.0. The batch size is set to 96. In the
update procedure, Adadelta (Zeiler, 2012) algo-
rithm is used to automatically adapt the learning
rate. The beam sizes for both word prediction and
transition action prediction are set to 12 in decod-
ing.

The baselines in our experiments are a phrasal
system and a neural translation system, denoted
by HPSMT and RNNsearch respectively. HPSMT
is an in-house implementation of the hierarchical
phrase-based model (Chiang, 2005), where a 4-
gram language model is trained using the mod-
ified Kneser-Ney smoothing (Kneser and Ney,
1995) algorism over the English Gigaword corpus
(LDC2009T13) plus the target data from the bilin-
gual corpus. RNNsearch is an in-house implemen-
tation of the attention-based neural machine trans-
lation model (Bahdanau et al., 2015) using the
same parameter settings as our SD-NMT model
including word embedding size, hidden vector di-
mension, beam size, as well as the same mecha-
nism for OOV word processing.

The evaluation results are reported with the
case-insensitive IBM BLEU-4 (Papineni et al.,
2002). A statistical significance test is performed
using the bootstrap resampling method proposed
by Koehn (2004) with a 95% confidence level.
For Japanese-English task, we use the official eval-

uation procedure provided by WAT 2016.5, where
both BLEU and RIBES (Isozaki et al., 2010) are
used for evaluation.

4.2 Evaluation on Chinese-English
Translation

We evaluate our method on the Chinese-English
translation task. The evaluation results over all
NIST test sets against baselines are listed in Table
1. Generally, RNNsearch outperforms HPSMT
by 3.78 BLEU points on average while SD-NMT
surpasses RNNsearch 2.03 BLUE point gains on
average, which shows that NMT models usually
achieve better results than SMT models, and our
proposed sequence-to-dependency NMT model
performs much better than traditional sequence-to-
sequence NMT model.

We also investigate the effect of syntactic
knowledge context by excluding its computation
in Equation 12 and 13. The alternative model
is denoted by SD-NMT\K. According to Table
1, SD-NMT\K outperforms RNNsearch by 0.54
BLEU points but degrades SD-NMT by 1.49
BLEU points on average, which demonstrates that
the long distance dependencies captured by the
target syntactic knowledge context, such as left-
most/rightmost children together with their depen-
dency relationships, really bring strong positive
effects on the prediction of target words.

In addition to translation quality, we compare
the perplexity (PPL) changes on the development
set in terms of numbers of training mini-batches
for RNNsearch and SD-NMT in Figure 4. We can
see that the PPL of SD-NMT is initially higher
than that of RNNsearch, but decreased to be lower
over time. This is mainly because the quality
of parse tree is too poor at the beginning which
degrades translation quality and leads to higher
PPL. After some training iterations, the SD-NMT

5http://lotus.kuee.kyoto-u.ac.jp/WAT/evaluation/index
.html

703

BLEU RIBES System Description
SMT Hiero 18.72 0.6511 Moses’ Hierarchical Phrase-based SMT
SMT Phrase 18.45 0.6451 Moses’ Phrase-based SMT
SMT S2T 20.36 0.6782 Moses’ String-to-Tree Syntax-based SMT
Cromieres (2016)(Single model) 22.86 - Single-layer NMT model without ensemble
Cromieres (2016)(Self-ensemble) 24.71 0.7508 Self-ensemble of 2-layer NMT model
Cromieres (2016)(4-Ensemble) 26.22 0.7566 Ensemble of 4 single-layer NMT models
RNNsearch 23.50 0.7459 Single-layer NMT model
SD-NMT 25.93 0.7540 Single-layer SD-NMT model

Table 2: Evaluation results on Japanese-English translation task.

model learns reasonable inferences of parse trees
which begins to help target word generation and
leads to lower PPL.

iter RNNsearch SD-NMT

1 39.39 46.57

2 37.78 42.5

3 33.73 37.43

4 27.4 29.21

5 27.5 26.67

6 25.09 24.22

7 24.99 23.7

8 24.1 23.5

9 23.94 24.66

10 25.92 23.19

11 24.41 23.35

12 25.67 20.38

13 24.28 21

14 23.14 18.49

15 23.73 19.57

16 20.51 17.58

17 19.58 16.43

18 20.98 17.13

19 18.43 17

20 19.25 17.31

21 18.87 16.75

22 20.18 17.57

23 19.27 16.6

24 17.8 15.2

25 17.26 15.74

26 18.76 16.58

27 17.62 15.88

14

16.5

19

21.5

24

26.5

29

31.5

34

36.5

39

41.5

44

46.5

49

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

P
P
L

Mini-batches(×2000)

RNNsearch

SD-NMT

Figure 4: Perplexity (PPL) changes in terms of
numbers of training mini-batches.

In our experiments, the time cost of SD-NMT
is two times of that for RNNsearch due to a more
complicated model structure. But we think it is a
worthy trade to pursue high quality translations.

4.3 Evaluation on Japanese-English
Translation

In this section, we report results on the Japanese-
English translation task. To ensure fair compar-
isons, we use the same training data and follow the
pre-processing steps recommended in WAT 20166.
Table 2 shows the comparison results from 8 sys-
tems with the evaluation metrics of BLEU and
RIBES. The results in the first 3 rows are pro-
duced by SMT systems taken from the official
WAT 2016. The remaining results are produced by
NMT systems, among which the bottom two row
results are taken from our in-house NMT systems
and others refer to the work in (Cromieres, 2016;

6http://lotus.kuee.kyoto-u.ac.jp/WAT/baseline/data
PreparationJE.html

Cromieres et al., 2016) that are the competitive
NMT results on WAT 2016. According to Table
2, NMT results still outperform SMT results simi-
lar to our Chinese-English evaluation results. The
SD-NMT model significantly outperforms most
other NMT models, which shows that our pro-
posed approach to modeling target dependency
tree benefit NMT systems since our RNNsearch
baseline achieves comparable performance with
the single layer attention-based NMT system in
(Cromieres, 2016). Note that our SD-NMT gets
comparable results with the 4 single-layer ensem-
ble model in (Cromieres, 2016; Cromieres et al.,
2016). We believe SD-NMT can get more im-
provements with an ensemble of multiple models
in future experiments.

4.4 Effect of the Parsing Accuracy upon
Translation Quality

The interaction effect between dependency tree
conduction and target word generation is investi-
gated in this section. The experiments are con-
ducted on the Chinese-English task over multiple
test sets. We evaluate how the quality of depen-
dency trees affect the performance of translation.
In the decoding phase of SD-NMT, beam search
is applied to the generations of both transition and
actions as illustrated in Equation 15. Intuitively,
the larger the beam size of action prediction is, the
better the dependency tree quality is. We fix the
beam size for generating target words to 12, and
change the beam size for action prediction to see
the difference. Figure 5 shows the evaluation re-
sults of all test sets. There is a tendency for BLEU
scores to increase with the growth of action pre-
diction beam size. The reason is that the transla-
tion quality increases as the quality of dependency
tree improves, which shows the construction of de-
pendency trees can boost the generation of target

704

beamsize NIST2005 NIST2006 NIST2008 NIST2012

2 37.56 39.3 30.69 29.41

4 38.77 40.64 32.06 30.63

6 38.93 41.32 32.63 31.07

8 39.34 41.52 32.88 31.32

10 39.32 41.65 32.82 31.41

12 39.38 41.81 33.06 31.43

37.56

38.77
38.93

39.34 39.32 39.38

37

37.5

38

38.5

39

39.5

2 4 6 8 10 12

B
LE

U
(%

)

Beam size of action prediction

NIST2005

39.3

40.64

41.32
41.52 41.65

41.81

39

39.5

40

40.5

41

41.5

42

2 4 6 8 10 12

B
LE

U
(%

)

Beam size of action prediction

NIST2006

30.69

32.06

32.63
32.88 32.82

33.06

30

30.5

31

31.5

32

32.5

33

33.5

2 4 6 8 10 12

B
LE

U
(%

)

Beam size of action prediction

NIST2008

29.41

30.63

31.07
31.32 31.41 31.43

29

29.5

30

30.5

31

31.5

2 4 6 8 10 12

B
LE

U
(%

)

Beam size of action prediction

NIST2012

Figure 5: Translation performance against the
beam size of action prediction.

words, and vice versa we believe.

4.5 Quality Estimation of Dependency Tree
Construction

As a by-product, the quality of dependency trees
not only affects the performance of target word
generation, but also influences the possible down-
stream processors or tasks such as text analyses.
The direct evaluation of tree quality is not feasible
due to the unavailable golden references. So we
resort to estimating the consistency between the
by-products and the parsing results of our stand-
alone dependency parser with state-of-the-art per-
formance. The higher the consistency is, the closer
the performance of by-product is to the stand-
alone parser. To reduce the influence of ill-formed
data as much as possible, we build the evaluation
data set by heuristically selecting 360 SD-NMT
translation results together with their dependency
trees from NIST test sets where both source- and
target-side do not contain unk and have a length
of 20-30. We then take the parsing results of the
stand-alone parser for these translations as ref-
erences to indirectly estimate the quality of by-
products. We get a UAS (unlabeled attachment
score) of 94.96% and a LAS (labeled attachment
score) of 93.92%, which demonstrates that the de-
pendency trees produced by SD-NMT are much
similar with the parsing results from the stand-
alone parser.

4.6 Translation Example

In this section, we give a case study to explain
how our method works. Figure 6 shows a trans-
lation example from the NIST testsets. SMT and
RNNsearch refer to the translation results from the

baselines HPSMT and NMT. For our SD-NMT
model, we list both the generated translation and
its corresponding dependency tree. We find that
the translation of SMT is disfluent and ungram-
matical, whereas RNNsearch is better than SMT.
Although the translation of RNNsearch is locally
fluent around word “have” in the rectangle, both
its grammar is incorrect and its meaning is inaccu-
rate from a global view. The word “have” should
be in a singular form as its subject is “safety”
rather than “workers”. For our SD-NMT model,
we can see that the translation is much better than
baselines and the dependency tree is reasonable.
The reason is that after generating the word “work-
ers”, the previous subtree in the gray region is
transformed to the syntactic context which can
guide the generation of the next word as illustrated
by the dashed arrow. Thus our model is more
likely to generate the correct verb “is” with sin-
gular form. In addition, the global structure helps
the model correctly identify the inverted sentence
pattern of the former translated part and make bet-
ter choices for the future translation (“only when
.. can ..” in our translation, “only when .. will ..”
in the reference), which remains a challenge for
conventional NMT model.

5 Related Work

Incorporating linguistic knowledge into machine
translation has been extensively studied in Statistic
Machine Translation (SMT) (Galley et al., 2006;
Shen et al., 2008; Liu et al., 2006). Liu et al.
(2006) proposed a tree-to-string alignment tem-
plate for SMT to leverage source side syntactic in-
formation. Shen et al. (2008) proposed a target
dependency language model for SMT to employ
target-side structured information. These methods
show promising improvement for SMT.

Recently, neural machine translation (NMT)
has achieved better performance than SMT in
many language pairs (Luong et al., 2015a; Zhang
et al., 2016; Shen et al., 2016; Wu et al., 2016;
Neubig, 2016). In a vanilla NMT model, source
and target sentences are treated as sequences
where the syntactic knowledge of both sides is
neglected. Some effort has been done to incor-
porate source syntax into NMT. Eriguchi et al.
(2016) proposed a tree-to-sequence attentional
NMT model where source-side parse tree was
used and achieved promising improvement. In-
tuitively, adding source syntactic information to

705

[Source] 只有施工人员的安全得到了保证 , 才能继续施工 .
[Reference] only when the safety of the workers is guaranteed will they continue with the project .
[HPSMT] only safety is assured of construction personnel , to continue construction .
[RNNsearch] only when the safety of construction workers have been guaranteed to continue construction .
[SD-NMT] only when the safety of the workers is guaranteed can we continue to work .

nsubjpass

nsubj

auxpass punctadvmod

pobj

auxprep xcomp

the of

workers

safety is continue

guaranteed

can workwe

.only when

the

to

dep

aux

det

det

ccomp

Figure 6: Translation examples of SMT, RNNsearch and our SD-NMT on Chinese-English transla-
tion task. The italic words on the arrows are dependency labels. The ending symbol EOS is omitted.
RNNsearch fails to capture the long dependency which leads to an ungrammatical result. Whereas with
the help of the syntactic tree, our SD-NMT can get a much better translation.

NMT is straightforward, because the source sen-
tence is definitive and easy to attach extra informa-
tion. However, it is non-trivial to add target syn-
tax as target words are uncertain in decoding pro-
cess. Up to now, there is few work that attempts to
build and leverage target syntactic information for
NMT.

There has been work that incorporates syntactic
information into NLP tasks with neural networks.
Dyer et al. (2016) presented a RNN grammar for
parsing and language modeling. They replaced SH
with a set of generative actions to generate words
under a Stack LSTM framework (Dyer et al.,
2015), which achieves promising results for lan-
guage modeling on the Penn Treebank data. In
our work, we propose to involve target syntactic
trees into NMT model to jointly learn target trans-
lation and dependency parsing where target syn-
tactic context over the parse tree is used to improve
the translation quality.

6 Conclusion and Future Work

In this paper, we propose a novel string-to-
dependency translation model over NMT. Our
model jointly performs target word generation and
arc-standard dependency parsing. Experimental
results show that our method can boost the two
procedures and achieve significant improvements
on the translation quality of NMT systems.

In future work, along this research direction, we
will try to integrate other prior knowledge, such as

semantic information, into NMT systems. In addi-
tion, we will apply our method to other sequence-
to-sequence tasks, such as text summarization, to
verify the effectiveness.

Acknowledgments

We are grateful to the anonymous reviewers for
their insightful comments. We also thank Shujie
Liu and Zhirui Zhang for the helpful discussions.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. ICLR 2015 .

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of ACL 2005.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings
of ENMLP 2014.

Fabien Cromieres. 2016. Kyoto-nmt: a neural machine
translation implementation in chainer. In Proceed-
ings of COLING 2016.

Fabien Cromieres, Chenhui Chu, Toshiaki Nakazawa,
and Sadao Kurohashi. 2016. Kyoto university par-
ticipation to wat 2016. In Proceedings of the 3rd
Workshop on Asian Translation (WAT2016). pages
166–174.

706

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of ACL 2015.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the NAACL 2016.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neu-
ral machine translation. In Proceedings of ACL
2016.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In Pro-
ceedings of ACL 2006.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Aistats. volume 9, pages 249–256.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8).

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic eval-
uation of translation quality for distant language
pairs. In Proceedings of EMNLP.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
Proceedings of ACL 2015.

Reinhard Kneser and Hermann Ney. 1995. Im-
proved backing-off for m-gram language model-
ing. In Acoustics, Speech, and Signal Processing,
1995. ICASSP-95., 1995 International Conference
on. IEEE, volume 1, pages 181–184.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In EMNLP. Cite-
seer, pages 388–395.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment template for statistical machine
translation. In Proceedings of ACL 2006.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015a. Effective approaches to attention-
based neural machine translation. In Proceedings
of EMNLP 2015.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015b. Addressing the rare
word problem in neural machine translation. In Pro-
ceedings of ACL 2015.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016. Aspec:
Asian scientific paper excerpt corpus. In Nico-
letta Calzolari (Conference Chair), Khalid Choukri,

Thierry Declerck, Marko Grobelnik, Bente Mae-
gaard, Joseph Mariani, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association (ELRA), Portoroz,
Slovenia, pages 2204–2208.

Graham Neubig. 2016. Lexicons and minimum risk
training for neural machine translation: NAIST-
CMU at WAT2016. In Proceedings of the 3nd
Workshop on Asian Translation (WAT2016). Osaka,
Japan.

Joakim Nivre. 2004. Incrementality in deterministic
dependency parsing. In Proceedings of the Work-
shop on Incremental Parsing: Bringing Engineering
and Cognition Together.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of ACL
2002.

Libin Shen, Jinxi Xu, and Ralph M Weischedel. 2008.
A new string-to-dependency machine translation al-
gorithm with a target dependency language model.
In ACL. pages 577–585.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of ACL 2016.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of ACL 2016.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144 .

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

Biao Zhang, Deyi Xiong, jinsong su, Hong Duan, and
Min Zhang. 2016. Variational neural machine trans-
lation. In Proceedings of EMNLP 2016.

Yue Zhang and Stephen Clark. 2008. A tale of
two parsers: Investigating and combining graph-
based and transition-based dependency parsing. In
EMNLP2008.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of ACL 2011.

707

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 708–717
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1066

Detect Rumors in Microblog Posts Using Propagation Structure via
Kernel Learning

Jing Ma1, Wei Gao2, Kam-Fai Wong1,3

1The Chinese University of Hong Kong, Hong Kong SAR
2Qatar Computing Research Institute, Doha, Qatar

3MoE Key Laboratory of High Confidence Software Technologies, China
1{majing,kfwong}@se.cuhk.edu.hk, 2wgao@qf.org.qa

Abstract

How fake news goes viral via social me-
dia? How does its propagation pattern dif-
fer from real stories? In this paper, we
attempt to address the problem of identi-
fying rumors, i.e., fake information, out
of microblog posts based on their prop-
agation structure. We firstly model mi-
croblog posts diffusion with propagation
trees, which provide valuable clues on how
an original message is transmitted and de-
veloped over time. We then propose a
kernel-based method called Propagation
Tree Kernel, which captures high-order
patterns differentiating different types of
rumors by evaluating the similarities be-
tween their propagation tree structures.
Experimental results on two real-world
datasets demonstrate that the proposed
kernel-based approach can detect rumors
more quickly and accurately than state-of-
the-art rumor detection models.

1 Introduction

On November 9th, 2016, Eric Tucker, a grass-
roots user who had just about 40 followers on
Twitter, tweeted his unverified observations about
paid protesters being bused to attend anti-Trump
demonstration in Austin, Texas. The tweet, which
was proved false later, was shared over 16 thou-
sand times on Twitter and 350 thousand times
on Facebook within a couple of days, fueling a
nation-wide conspiracy theory1. The diffusion of
the story is illustrated as Figure 1 which gives the
key spreading points of the story along the time
line. We can see that after the initial post, the tweet

1https://www.nytimes.com/2016/11/20/
business/media/how-fake-news-spreads.
html

was shared or promoted by some influential online
communities and users (including Trump himself),
resulting in its wide spread.

A widely accepted definition of rumor is “un-
verified and instrumentally relevant information
statements in circulation” (DiFonzo and Bordia,
2007). This unverified information may eventu-
ally turn out to be true, or partly or entirely false.
In today’s ever-connected world, rumors can arise
and spread at lightening speed thanks to social me-
dia platforms, which could not only be wrong, but
be misleading and dangerous to the public society.
Therefore, it is crucial to track and debunk such
rumors in timely manner.

Journalists and fact-checking websites such as
snopes.com have made efforts to track and de-
tect rumors. However, such endeavor is man-
ual, thus prone to poor coverage and low speed.
Feature-based methods (Castillo et al., 2011; Yang
et al., 2012; Ma et al., 2015) achieved certain suc-
cess by employing large feature sets crafted from
message contents, user profiles and holistic statis-
tics of diffusion patterns (e.g., number of retweets,
propagation time, etc.). But such an approach was
over simplified as they ignored the dynamics of
rumor propagation. Existing studies considering
propagation characteristics mainly focused on the
temporal features (Kwon et al., 2013, 2017) rather
than the structure of propagation.

So, can the propagation structure make any
difference for differentiating rumors from non-
rumors? Recent studies showed that rumor spread-
ers are persons who want to get attention and pop-
ularity (Sunstein, 2014). However, popular users
who get more attention on Twitter (e.g., with more
followers) are actually less likely to spread rumor
in a sense that the high audience size might hinder
a user from participating in propagating unverified
information (Kwon et al., 2017). Intuitively, for
“successful” rumors being propagated as widely

708

https://doi.org/10.18653/v1/P17-1066

Figure 1: An illustration of how the rumor about “buses used to ship in paid anti-Trump protesters to
Austin, Texas” becomes viral, where ‘*’ indicates the level of influence.

as popular real news, initial spreaders (typically
lack of popularity) must attract certain amount of
broadcasting power, e.g., attention of influential
users or communities that have a lot of audiences
joining in promoting the propagation. We refer
to this as a constrained mode propagation, rela-
tive to the open mode propagation of normal mes-
sages that everyone is open to share. Such differ-
ent modes of propagation may imply some distinct
propagation structures between rumors and non-
rumors and even among different types of rumors.

Due to the complex nature of information dif-
fusion, explicitly defining discriminant features
based on propagation structure is difficult and bi-
ased. Figure 2 exemplifies the propagation struc-
tures of two Twitter posts, a rumor and a non-
rumor, initiated by two users shown as the root
nodes (in green color). The information flows here
illustrate that the rumorous tweet is first posted by
a low-impact user, then some popular users joining
in who boost the spreading, but the non-rumorous
tweet is initially posted by a popular user and
directly spread by many general users; content-
based signal like various users’ stance (Zhao et al.,
2015) and edge-based signal such as relative influ-
ence (Kwon et al., 2017) can also suggest the dif-
ferent nature of source tweets. Many of such im-
plicit distinctions throughout message propagation
are hard to hand craft specifically using flat sum-
mary of statistics as previous work did. In addi-
tion, unlike representation learning for plain text,
learning for representation of structures such as
networks is not well studied in general. Therefore,
traditional and latest text-based models (Castillo

(a) A rumor (b) A non-rumor

Figure 2: Fragments of the propagation for two
source tweets. Node size: denotes the popularity
of the user who tweet the post (represented by #
of followers); Red, black, blue node: content-wise
the user express doubt/denial, support, neutrality
in the tweet, respectively; Solid (dotted) edge: in-
formation flow from a more (less) popular user to
a less (more) popular user; Dashed concentric cir-
cles: time stamps.

et al., 2011; Ma et al., 2015, 2016) cannot be ap-
plied easily on such complex, dynamic structures.

To capture high-order propagation patterns for
rumor detection, we firstly represent the propaga-
tion of each source tweet with a propagation tree
which is formed by harvesting user’s interactions
to one another triggered by the source tweet. Then,
we propose a kernel-based data-driven method
called Propagation Tree Kernel (PTK) to generate
relevant features (i.e., subtrees) automatically for
estimating the similarity between two propagation
trees. Unlike traditional tree kernel (Moschitti,
2006; Zhang et al., 2008) for modeling syntac-
tic structure based on parse tree, our propagation
tree consists of nodes corresponding to microblog

709

posts, each represented as a continuous vector, and
edges representing the direction of propagation
and providing the context to individual posts. The
basic idea is to find and capture the salient sub-
structures in the propagation trees indicative of ru-
mors. We also extend PTK into a context-enriched
PTK (cPTK) to enhance the model by considering
different propagation paths from source tweet to
the roots of subtrees, which capture the context
of transmission. Extensive experiments on two
real-world Twitter datasets show that the proposed
methods outperform state-of-the-art rumor detec-
tion models with large margin.

Moreover, most existing approaches regard ru-
mor detection as a binary classification problem,
which predicts a candidate hypothesis as rumor
or not. Since a rumor often begins as unverified
and later turns out to be confirmed as true or false,
or remains unverified (Zubiaga et al., 2016), here
we consider a set of more practical, finer-grained
classes: false rumor, true rumor, unverified ru-
mor, and non-rumor, which becomes an even more
challenging problem.

2 Related Work

Tracking misinformation or debunking rumors
has been a hot research topic in multiple disci-
plines (DiFonzo and Bordia, 2007; Morris et al.,
2012; Rosnow, 1991). Castillo et al. (2011) stud-
ied information credibility on Twitter using a wide
range of hand-crafted features. Following that,
various features corresponding to message con-
tents, user profiles and statistics of propagation
patterns were proposed in many studies (Yang
et al., 2012; Wu et al., 2015; Sun et al., 2013; Liu
et al., 2015). Zhao et al. (2015) focused on early
rumor detection by using regular expressions for
finding questing and denying tweets as the key for
debunking rumor. All such approaches are over
simplistic because they ignore the dynamic prop-
agation patterns given the rich structures of social
media data.

Some studies focus on finding temporal pat-
terns for understanding rumor diffusion. Kown
et al. (2013; 2017) introduced a time-series fitting
model based on the temporal properties of tweet
volume. Ma et al. (2015) extended the model
using time series to capture the variation of fea-
tures over time. Friggeri et al. (2014) and Hannak
et al. (2014) studied the structure of misinforma-
tion cascades by analyzing comments linking to

rumor debunking websites. More recently, Ma et
al. (2016) used recurrent neural networks to learn
the representations of rumor signals from tweet
text at different times. Our work will consider
temporal, structural and linguistic signals in a uni-
fied framework based on propagation tree kernel.

Most previous work formulated the task as clas-
sification at event level where an event is com-
prised of a number of source tweets, each being
associated with a group of retweets and replies.
Here we focus on classifying a given source tweet
regarding a claim which is a finer-grained task.
Similar setting was also considered in (Wu et al.,
2015; Qazvinian et al., 2011).

Kernel methods are designed to evaluate the
similarity between two objects, and tree kernel
specifically addresses structured data which has
been successfully applied for modeling syntac-
tic information in many natural language tasks
such as syntactic parsing (Collins and Duffy,
2001), question-answering (Moschitti, 2006), se-
mantic analysis (Moschitti, 2004), relation extrac-
tion (Zhang et al., 2008) and machine transla-
tion (Sun et al., 2010). These kernels are not suit-
able for modeling the social media propagation
structures because the nodes are not given as dis-
crete values like part-of-speech tags, but are rep-
resented as high dimensional real-valued vectors.
Our proposed method is a substantial extension of
tree kernel for modeling such structures.

3 Representation of Tweets Propagation

On microblogging platforms, the follower/friend
relationship embeds shared interests among the
users. Once a user has posted a tweet, all his fol-
lowers will receive the tweet. Furthermore, Twit-
ter allows a user to retweet or comment another
user’s post, so that the information could reach be-
yond the network of the original creator.

We model the propagation of each source tweet
as a tree structure T (r) = 〈V,E〉, where r is the
source tweet as well as the root of the tree, V refers
to a set of nodes each representing a responsive
post (i.e., retweet or reply) of a user at a certain
time to the source tweet r which initiates the cir-
culation, and E is a set of directed edges corre-
sponding to the response relation among the nodes
in V . If there exists a directed edge from vi to vj ,
it means vj is a direct response to vi.

More specifically, each node v ∈ V is repre-
sented as a tuple v = (uv, cv, tv), which provides

710

the following information: uv is the creator of the
post, cv represents the text content of the post, and
tv is the time lag between the source tweet r and v.
In our case, uv contains attributes of the user such
as # of followers/friends, verification status, # of
history posts, etc., cv is a vector of binary features
based on uni-grams and/or bi-grams representing
the post’s content.

4 Propagation Tree Kernel Modeling

In this section, we describe our rumor detection
model based on propagation trees using kernel
method called Propagation Tree Kernel (PTK).
Our task is, given a propagation tree T (r) of a
source tweet r, to predict the label of r.

4.1 Background of Tree Kernel
Before presenting our proposed algorithm, we
briefly present the traditional tree kernel, which
our PTK model is based on.

Tree kernel was designed to compute the syn-
tactic and semantic similarity between two natu-
ral language sentences by implicitly counting the
number of common subtrees between their corre-
sponding parse trees. Given a syntactic parse tree,
each node with its children is associated with a
grammar production rule. Figure 3 illustrates the
syntactic parse tree of “cut a tree” and its sub-
trees. A subtree is defined as any subgraph which
has more than one nodes, with the restriction that
entire (not partial) rule productions must be in-
cluded. For example, the fragment [NP [D a]] is
excluded because it contains only part of the pro-
duction NP→ D N (Collins and Duffy, 2001).

Following Collins and Duffy (2001), given
two parse trees T1 and T2, the kernel function
K(T1, T2) is defined as:

∑

vi∈V1

∑

vj∈V2
∆(vi, vj) (1)

where V1 and V2 are the sets of all nodes respec-
tively in T1 and T2, and each node is associated
with a production rule, and ∆(vi, vj) evaluates the
common subtrees rooted at vi and vj . ∆(vi, vj)
can be computed using the following recursive
procedure (Collins and Duffy, 2001):

1) if the production rules at vi and vj are differ-
ent, then ∆(vi, vj) = 0;

2) else if the production rules at vi and vj are
same, and vi and vj have only leaf children

Figure 3: A syntactic parse tree and subtrees.

(i.e., they are pre-terminal symbols), then
∆(vi, vj) = λ;

3) else ∆(vi, vj) = λ
∏min(nc(vi),nc(vj))
k=1 (1 +

∆(ch(vi, k), ch(vj , k))).

where nc(v) is the number of children of node
v, ch(v, k) is the k-th child of node v, and λ
(0 < λ ≤ 1) is a decay factor. λ = 1 yields the
number of common subtrees; λ < 1 down weighs
the contribution of larger subtrees to make the ker-
nel value less variable with respect to subtree size.

4.2 Our PTK Model
To classify propagation trees, we can calculate the
similarity between the trees, which is supposed
to reflect the distinction of different types of ru-
mors and non-rumors based on structural, linguis-
tic and temporal properties. However, existing tree
kernels cannot be readily applied on propagation
trees because 1) unlike parse tree where the node
is represented by enumerable nominal value (e.g.,
part-of-speech tag), the propagation tree node is
given as a vector of continuous numerical values
representing the basic properties of the node; 2)
the similarity of two parse trees is based on the
count of common subtrees, for which the com-
monality of subtrees is evaluated by checking if
the same production rules and the same children
are associated with the nodes in two subtrees being
compared, whereas in our context the similarity
function should be defined softly since hardly two
nodes from different propagation trees are same.

With the representation of propagation tree, we
first define a function f to evaluate the similarity
between two nodes vi and vj (we simplify the node
representation for instance vi = (ui, ci, ti)) as the
following:

f(vi, vj) = e−t (αE(ui, uj) + (1− α)J (ci, cj))

where t = |ti − tj | is the absolute difference be-
tween the time lags of vi and vj , E and J are

711

user-based similarity and content-based similar-
ity, respectively, and α is the trade-off parameter.
The intuition of using exponential function of t to
scale down the similarity is to capture the discrim-
inant signals or patterns at the different stages of
propagation. For example, a questioning message
posted very early may signal a false rumor while
the same posted far later from initial post may in-
dicate the rumor is still unverified, despite that the
two messages are semantically similar.

The user-based similarity is defined as an Eu-
clidean distance E(ui, uj) = ||ui − uj ||2, where
ui and uj are the user vectors of node vi and vj
and || • ||2 is the 2-norm of a vector. Here E is
used to capture the characteristics of users partici-
pating in spreading rumors as discriminant signals,
throughout the entire stage of propagation.

Contentwise, we use Jaccard coefficient to mea-
sure the similarity of post content:

J (ci, cj) =
|Ngram(ci) ∩Ngram(cj)|
|Ngram(ci) ∪Ngram(cj)|

where ci and cj are the sets of content words in two
nodes. For n-grams here, we adopt both uni-grams
and bi-grams. It can capture cue terms e.g., ‘false’,
‘debunk’, ‘not true’, etc. commonly occurring in
rumors but not in non-rumors.

Given two propagation trees T1 = 〈V1, E1〉 and
T2 = 〈V2, E2〉, PTK aims to compute the simi-
larity between T1 and T2 iteratively based on enu-
merating all pairs of most similar subtrees. First,
for each node vi ∈ V1, we obtain v′i ∈ V2, the most
similar node of vi from V2:

v′i = arg max
vj∈V2

f(vi, vj)

Similarly, for each vj ∈ V2, we obtain v′j ∈ V1:

v′j = arg max
vi∈V1

f(vi, vj)

Then, the propagation tree kernel KP (T1, T2) is
defined as:

∑

vi∈V1
Λ(vi, v

′
i) +

∑

vj∈V2
Λ(v′j , vj) (2)

where Λ(v, v′) evaluates the similarity of two sub-
trees rooted at v and v′, which is computed recur-
sively as follows:

1) if v or v′ are leaf nodes, then Λ(v, v′) =
f(v, v′);

2) else
Λ(v, v′) = f(v, v′)

∏min(nc(v),nc(v′))
k=1 (1 +

Λ(ch(v, k), ch(v′, k)))

Note that unlike traditional tree kernel, in PTK the
node similarity f ∈ [0, 1] is used for softly count-
ing similar subtrees instead of common subtrees.
Also, λ in tree kernel is not needed as subtree size
is not an issue here thanks to node similarity f .

PTK aims to capture discriminant patterns from
propagation trees inclusive of user, content and
temporal traits, which is inspired by prior analyses
on rumors spreading, e.g., user information can be
a strong clue in the initial broadcast, content fea-
tures are important throughout entire propagation
periods, and structural and temporal patterns help
for longitudinal diffusion (Zubiaga et al., 2016;
Kwon et al., 2017).

4.3 Context-Sensitive Extension of PTK
One defect of PTK is that it ignores the clues out-
side the subtrees, e.g., how the information propa-
gates from source post to the current subtree. Intu-
itively, propagation paths provide further clue for
determining the truthfulness of information since
they embed the route and context of how the prop-
agation happens. Therefore, we propose context-
sensitive PTK (cPTK) by considering the propa-
gation paths from the root of the tree to the roots
of subtrees, which shares similar intuition with the
context-sensitive tree kernel (Zhou et al., 2007).

For a propagation tree node v ∈ T (r), let Lrv be
the length (i.e., # of nodes) of the propagation path
from root r to v, and v[x] be the x-th ancestor of
v on the path starting from v (0 ≤ x < Lrv, v[0] =
v, v[Lrv − 1] = r). cPTK evaluates the similarity
between two trees T1(r1) and T2(r2) as follows:

∑

vi∈V1

L
r1
vi
−1∑

x=0

Λx(vi, v
′
i) +

∑

vj∈V2

L
r2
vj
−1∑

x=0

Λx(v′j , vj)

(3)
where Λx(v, v′) measures the similarity of sub-
trees rooted at v[x] and v′[x] for context-sensitive
evaluation, which is computed as follows:

1) if x > 0, Λx(v, v′) = f(v[x], v′[x]), where
v[x] and v′[x] are the x-th ancestor nodes of
v and v′ on the respective propagation path.

2) else Λx(v, v′) = Λ(v, v′), namely PTK.

Clearly, PTK is a special case of cPTK when
x = 0 (see equation 3). cPTK evaluates the oc-

712

currence of both context-free (without consider-
ing ancestors on propagation paths) and context-
sensitive cases.

4.4 Rumor Detection via Kernel Learning
The advantage of kernel-based method is that we
can avoid painstakingly engineering the features.
This is possible because the kernel function can
explore an implicit feature space when calculating
the similarity between two objects (Culotta and
Sorensen, 2004).

We incorporate the proposed tree kernel func-
tions, i.e., PTK (equation 2) or cPTK (equation 3),
into a supervised learning framework, for which
we utilize a kernel-based SVM classifier. We treat
each tree as an instance, and its similarity values
with all training instances as feature space. There-
fore, the kernel matrix of training set is m × m
and that of test set is n×m where m and n are the
sizes of training and test sets, respectively.

For our multi-class task, we perform a one-vs-
all classification for each label and then assign the
one with the highest likelihood among the four,
i.e., non-rumor, false rumor, true rumor or unver-
ified rumor. We choose this method due to in-
terpretability of results, similar to recent work on
occupational class classification (Preotiuc-Pietro
et al., 2015; Lukasik et al., 2015).

5 Experiments and Results

5.1 Data Sets
To our knowledge, there is no public large dataset
available for classifying propagation trees, where
we need a good number of source tweets, more
accurately, the tree roots together with the cor-
responding propagation structure, to be appropri-
ately annotated with ground truth.

We constructed our datasets based on a cou-
ple of reference datasets, namely Twitter15 (Liu
et al., 2015) and Twitter16 (Ma et al., 2016). The
original datasets were released and used for binary
classification of rumor and non-rumor with respect
to given events that contain their relevant tweets.

First, we extracted the popular source tweets2

that are highly retweeted or replied. We then col-
lected all the propagation threads (i.e., retweets
and replies) for these source tweets. Because Twit-
ter API cannot retrieve the retweets or replies, we
gathered the retweet users for a given tweet from

2Though unpopular tweets could be false, we ignore them
as they do not draw much attention and are hardly impactful

Table 1: Statistics of the datasets
Statistic Twitter15 Twitter16
of users 276,663 173,487
of source tweets 1,490 818
of threads 331,612 204,820
of non-rumors 374 205
of false rumors 370 205
of true rumors 372 205
of unverified rumors 374 203
Avg. time length / tree 1,337 Hours 848 Hours
Avg. # of posts / tree 223 251
Max # of posts / tree 1,768 2,765
Min # of posts / tree 55 81

Twrench3 and crawled the replies through Twit-
ter’s web interface.

Finally, we annotated the source tweets by refer-
ring to the labels of the events they are from. We
first turned the label of each event in Twitter15 and
Twitter16 from binary to quaternary according to
the veracity tag of the article in rumor debunking
websites (e.g., snopes.com, Emergent.info, etc).
Then we labeled the source tweets by following
these rules: 1) Source tweets from unverified ru-
mor events or non-rumor events are labeled the
same as the corresponding event’s label; 2) For a
source tweet in false rumor event, we flip over the
label and assign true to the source tweet if it ex-
presses denial type of stance; otherwise, the label
is assigned as false; 3) The analogous flip-over/no-
change rule applies to the source tweets from true
rumor events.

We make the datasets produced publicly acces-
sible4. Table 1 gives statistics on the resulting
datasets.

5.2 Experimental Setup

We compare our kernel-based method against the
following baselines:

SVM-TS: A linear SVM classification model
that uses time-series to model the variation of a
set of hand-crafted features (Ma et al., 2015).

DTR: A Decision-Tree-based Ranking method
to identify trending rumors (Zhao et al., 2015),
which searches for enquiry phrases and clusters
disputed factual claims, and ranked the clustered
results based on statistical features.

DTC and SVM-RBF: The Twitter informa-
tion credibility model using Decision Tree Clas-
sifier (Castillo et al., 2011) and the SVM-based

3https://twren.ch
4https://www.dropbox.com/s/

7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0

713

model with RBF kernel (Yang et al., 2012), re-
spectively, both using hand-crafted features based
on the overall statistics of the posts.

RFC: The Random Forest Classifier proposed
by Kwon et al. (2017) using three parameters to
fit the temporal properties and an extensive set of
hand-crafted features related to the user, linguistic
and structure characteristics.

GRU: The RNN-based rumor detection model
proposed by Ma et al. (2016) with gated recurrent
unit for representation learning of high-level fea-
tures from relevant posts over time.

BOW: A naive baseline we worked by repre-
senting the text in each tree using bag-of-words
and building the rumor classifier with linear SVM.

Our models: PTK and cPTK are our full PTK
and cPTK models, respectively; PTK- and cPTK-
are the setting of only using content while ignoring
user properties.

We implemented DTC and RFC with Weka5,
SVM models with LibSVM6 and GRU with
Theano7. We held out 10% of the trees in each
dataset for model tuning, and for the rest of the
trees, we performed 3-fold cross-validation. We
used accuracy, F1 measure as evaluation metrics.

5.3 Experimental Results

Table 2 shows that our proposed methods outper-
form all the baselines on both datasets.

Among all baselines, GRU performs the best,
which learns the low-dimensional representation
of responsive tweets by capturing the textual and
temporal information. This indicates the effec-
tiveness of complex signals indicative of rumors
beyond cue words or phrases (e.g., “what?”, “re-
ally?”, “not sure”, etc.). This also justifies the
good performance of BOW even though it only
uses uni-grams for representation. Although DTR
uses a set of regular expressions, we found only
19.59% and 22.21% tweets in our datasets con-
taining these expressions. That is why the results
of DTR are not satisfactory.

SVM-TS and RFC are comparable because
both of them utilize an extensive set of features
especially focusing on temporal traits. But none
of the models can directly incorporate structured
propagation patterns for deep similarity compar-

5http://www.cs.waikato.ac.nz/ml/weka/
6https://www.csie.ntu.edu.tw/˜cjlin/

libsvm/
7http://deeplearning.net/software/

theano/

Table 2: Rumor detection results (NR: Non-
Rumor; FR: False Rumor; TR: True Rumor; UR:
Unverified Rumor)

(a) Twitter15 Dataset

Method NR FR TR UR
Acc. F1 F1 F1 F1

DTR 0.409 0.501 0.311 0.364 0.473
SVM-RBF 0.318 0.455 0.037 0.218 0.225

DTC 0.454 0.733 0.355 0.317 0.415
SVM-TS 0.544 0.796 0.472 0.404 0.483

RFC 0.565 0.810 0.422 0.401 0.543
GRU 0.646 0.792 0.574 0.608 0.592
BOW 0.548 0.564 0.524 0.582 0.512
PTK- 0.657 0.734 0.624 0.673 0.612

cPTK- 0.697 0.760 0.645 0.696 0.689
PTK 0.710 0.825 0.685 0.688 0.647

cPTK 0.750 0.804 0.698 0.765 0.733

(b) Twitter16 Dataset

Method NR FR TR UR
Acc. F1 F1 F1 F1

DTR 0.414 0.394 0.273 0.630 0.344
SVM-RBF 0.321 0.423 0.085 0.419 0.037

DTC 0.465 0.643 0.393 0.419 0.403
SVM-TS 0.574 0.755 0.420 0.571 0.526

RFC 0.585 0.752 0.415 0.547 0.563
GRU 0.633 0.772 0.489 0.686 0.593
BOW 0.585 0.553 0.556 0.655 0.578
PTK- 0.653 0.673 0.640 0.722 0.567

cPTK- 0.702 0.711 0.664 0.816 0.608
PTK 0.722 0.784 0.690 0.786 0.644

cPTK 0.732 0.740 0.709 0.836 0.686

ison between propagation trees. SVM-RBF, al-
though using a non-linear kernel, is based on tra-
ditional hand-crafted features instead of the struc-
tural kernel like ours. So, they performed obvi-
ously worse than our approach.

Representation learning methods like GRU
cannot easily utilize complex structural informa-
tion for learning important features from our net-
worked data. In contrast, our models can cap-
ture complex propagation patterns from structured
data rich of linguistic, user and temporal signals.
Therefore, the superiority of our models is clear:
PTK- which only uses text is already better than
GRU, demonstrating the importance of propaga-
tion structures. PTK that combines text and user
yields better results on both datasets, implying that
both properties are complementary and PTK in-
tegrating flat and structured information is obvi-
ously more effective.

It is also observed that cPTK outperforms PTK
except for non-rumor class. This suggests the
context-sensitive modeling based on PTK is ef-
fective for different types of rumors, but for non-

714

(a) Twitter15 Dataset (b) Twitter16 Dataset

Figure 4: Results of rumor early detection

Figure 5: The example subtree of a rumor captured by the algorithm at early stage of propagation

rumors, it seems that considering context of prop-
agation path is not always helpful. This might be
due to the generally weak signals originated from
node properties on the paths during non-rumor’s
diffusion since user distribution patterns in non-
rumors do not seem as obvious as in rumors. This
is not an issue in cPTK- since user information
is not considered at all. Over all classes, cPTK
achieves the highest accuracies on both datasets.

Furthermore, we observe that all the baseline
methods perform much better on non-rumors than
on rumors. This is because the features of exist-
ing methods were defined for a binary (rumor vs.
non-rumor) classification problem. So, they do not
perform well for finer-grained classes. Our ap-

proach can differentiate various classes much bet-
ter by deep, detailed comparison of different pat-
terns based on propagation structure.

5.4 Early Detection Performance

Detecting rumors at an early stage of propaga-
tion is very important so that preventive measures
could be taken as quickly as possible. In early de-
tection task, all the posts after a detection deadline
are invisible during test. The earlier the deadline,
the less propagation information can be available.

Figure 4 shows the performances of our PTK
and cPTK models versus RFC (the best system
based on feature engineering), GRU (the best sys-
tem based on RNN) and DTR (an early-detection-

715

specific algorithm) against various deadlines. In
the first few hours, our approach demonstrates
superior early detection performance than other
models. Particularly, cPTK achieve 75% accu-
racy on Twitter15 and 73% on Twitter16 within
24 hours, that is much faster than other models.

Our analysis shows that rumors typically
demonstrate more complex propagation substruc-
tures especially at early stage. Figure 5 shows
a detected subtree of a false rumor spread in its
first few hours, where influential users are some-
how captured to boost its propagation and the in-
formation flows among the users with an obvious
unpopular-to-popular-to-unpopular trend in terms
of user popularity, but such pattern was not wit-
nessed in non-rumors in early stage. Many textual
signals (underlined) can also be observed in that
early period. Our method can learn such structures
and patterns naturally, but it is difficult to know
and hand-craft them in feature engineering.

6 Conclusion and Future Work

We propose a novel approach for detecting ru-
mors in microblog posts based on kernel learn-
ing method using propagation trees. A propa-
gation tree encodes the spread of a hypothesis
(i.e., a source tweet) with complex structured pat-
terns and flat information regarding content, user
and time associated with the tree nodes. En-
lightened by tree kernel techniques, our kernel
method learns discriminant clues for identifying
rumors of finer-grained levels by directly mea-
suring the similarity among propagation trees via
kernel functions. Experiments on two Twitter
datasets show that our approach outperforms state-
of-the-art baselines with large margin for both
general and early rumor detection tasks.

Since kernel-based approach covers more struc-
tural information than feature-based methods, it
allows kernel to further incorporate information
from a high dimensional space for possibly better
discrimination. In the future, we will focus on im-
proving the rumor detection task by exploring net-
work representation learning framework. More-
over, we plan to investigate unsupervised mod-
els considering massive unlabeled rumorous data
from social media.

Acknowledgment

This work is partly supported by General Research
Fund of Hong Kong (14232816). We would like

to thank anonymous reviewers for the insightful
comments.

References
Carlos Castillo, Marcelo Mendoza, and Barbara

Poblete. 2011. Information credibility on twitter. In
Proceedings of WWW.

Michael Collins and Nigel Duffy. 2001. Convolution
kernels for natural language. In Advances in neural
information processing systems. pages 625–632.

Aron Culotta and Jeffrey Sorensen. 2004. Dependency
tree kernels for relation extraction. In Proceed-
ings of the 42nd annual meeting on association for
computational linguistics. Association for Compu-
tational Linguistics, page 423.

Nicholas DiFonzo and Prashant Bordia. 2007. Rumor,
gossip and urban legends. Diogenes 54(1):19–35.

Adrien Friggeri, Lada A Adamic, Dean Eckles, and
Justin Cheng. 2014. Rumor cascades. In Proceed-
ings of ICWSM.

Aniko Hannak, Drew Margolin, Brian Keegan, and In-
gmar Weber. 2014. Get back! you don’t know me
like that: The social mediation of fact checking in-
terventions in twitter conversations. In ICWSM.

Sejeong Kwon, Meeyoung Cha, and Kyomin Jung.
2017. Rumor detection over varying time windows.
PLOS ONE 12(1):e0168344.

Sejeong Kwon, Meeyoung Cha, Kyomin Jung, Wei
Chen, and Yajun Wang. 2013. Prominent features of
rumor propagation in online social media. In Pro-
ceedings of ICDM.

Xiaomo Liu, Armineh Nourbakhsh, Quanzhi Li, Rui
Fang, and Sameena Shah. 2015. Real-time rumor
debunking on twitter. In Proceedings of CIKM.

Michal Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Classifying tweet level judgements
of rumours in social media. arXiv preprint
arXiv:1506.00468 .

Jing Ma, Wei Gao, Prasenjit Mitra, Sejeong Kwon,
Bernard J Jansen, Kam-Fai Wong, and Meeyoung
Cha. 2016. Detecting rumors from microblogs with
recurrent neural networks. In Proceedings of IJCAI.

Jing Ma, Wei Gao, Zhongyu Wei, Yueming Lu, and
Kam-Fai Wong. 2015. Detect rumors using time se-
ries of social context information on microblogging
websites. In Proceedings of CIKM.

Meredith Ringel Morris, Scott Counts, Asta Roseway,
Aaron Hoff, and Julia Schwarz. 2012. Tweeting
is believing?: understanding microblog credibility
perceptions. In Proceedings of the ACM 2012 con-
ference on Computer Supported Cooperative Work.
ACM, pages 441–450.

716

Alessandro Moschitti. 2004. A study on convolution
kernels for shallow semantic parsing. In Proceed-
ings of the 42nd Annual Meeting on Association for
Computational Linguistics. Association for Compu-
tational Linguistics, page 335.

Alessandro Moschitti. 2006. Efficient convolution
kernels for dependency and constituent syntactic
trees. In European Conference on Machine Learn-
ing. Springer, pages 318–329.

Daniel Preotiuc-Pietro, Vasileios Lampos, and Niko-
laos Aletras. 2015. An analysis of the user occupa-
tional class through twitter content. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics (ACL 2015). Association
for Computational Linguistics, pages 1754–1764.

Vahed Qazvinian, Emily Rosengren, Dragomir R
Radev, and Qiaozhu Mei. 2011. Rumor has it: Iden-
tifying misinformation in microblogs. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, pages 1589–1599.

Ralph L Rosnow. 1991. Inside rumor: A personal jour-
ney. American Psychologist 46(5):484.

Jun Sun, Min Zhang, and Chew Lim Tan. 2010.
Exploring syntactic structural features for sub-tree
alignment using bilingual tree kernels. In Proceed-
ings of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, pages 306–315.

Shengyun Sun, Hongyan Liu, Jun He, and Xiaoyong
Du. 2013. Detecting event rumors on sina weibo au-
tomatically. In Web Technologies and Applications,
Springer, pages 120–131.

Cass R Sunstein. 2014. On rumors: How falsehoods
spread, why we believe them, and what can be done.
Princeton University Press.

Ke Wu, Song Yang, and Kenny Q Zhu. 2015. False ru-
mors detection on sina weibo by propagation struc-
tures. In 2015 IEEE 31st International Conference
on Data Engineering (ICDE). IEEE, pages 651–662.

Fan Yang, Yang Liu, Xiaohui Yu, and Min Yang. 2012.
Automatic detection of rumor on sina weibo. In Pro-
ceedings of the ACM SIGKDD Workshop on Mining
Data Semantics.

Min Zhang, GuoDong Zhou, and Aiti Aw. 2008. Ex-
ploring syntactic structured features over parse trees
for relation extraction using kernel methods. Infor-
mation processing & management 44(2):687–701.

Zhe Zhao, Paul Resnick, and Qiaozhu Mei. 2015. En-
quiring minds: Early detection of rumors in social
media from enquiry posts. In Proceedings of WWW.

GuoDong Zhou, Min Zhang, Dong Hong Ji, and
QiaoMing Zhu. 2007. Tree kernel-based relation ex-
traction with context-sensitive structured parse tree
information. EMNLP-CoNLL 2007 page 728.

Arkaitz Zubiaga, Maria Liakata, Rob Procter, Geral-
dine Wong Sak Hoi, and Peter Tolmie. 2016.
Analysing how people orient to and spread rumours
in social media by looking at conversational threads.
PLOS ONE 11(3):e0150989.

717

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 718–728
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1067

EmoNet: Fine-Grained Emotion Detection with Gated Recurrent Neural
Networks

Muhammad Abdul-Mageed
School of Library, Archival &

Information Studies
University of British Columbia
muhammad.mageed@ubc.ca

Lyle Ungar
Computer and Information Science

University of Pennsylvania
ungar@cis.upenn.edu

Abstract

Accurate detection of emotion from natu-
ral language has applications ranging from
building emotional chatbots to better un-
derstanding individuals and their lives.
However, progress on emotion detection
has been hampered by the absence of large
labeled datasets. In this work, we build
a very large dataset for fine-grained emo-
tions and develop deep learning models
on it. We achieve a new state-of-the-art
on 24 fine-grained types of emotions (with
an average accuracy of 87.58%). We also
extend the task beyond emotion types to
model Robert Plutchik’s 8 primary emo-
tion dimensions, acquiring a superior ac-
curacy of 95.68%.

1 Introduction

According to the Oxford English Dictionary, emo-
tion is defined as “[a] strong feeling deriving
from one’s circumstances, mood, or relationships
with others.” 1 This “standard” definition identifies
emotions as constructs involving something innate
that is often invoked in social interactions and that
aids in communicating with others(Hwang and
Matsumoto, 2016). It is no exaggeration that hu-
mans are emotional beings: Emotions are an in-
tegral part of human life, and affect our decision
making as well as our mental and physical health.
As such, developing emotion detection models is
important; they have a wide array of applications,
ranging from building nuanced virtual assistants
that cater for the emotions of their users to de-
tecting the emotions of social media users in order
to understand their mental and/or physical health.

1https://en.oxforddictionaries.com/
definition/emotion.

However, emotion detection has remained a chal-
lenging task, partly due to the limited availabil-
ity of labeled data and partly due the controversial
nature of what emotions themselves are (Aaron
C. Weidman and Tracy, 2017).

Recent advances in machine learning for natu-
ral language processing (NLP) suggest that, given
enough labeled data, there should be an oppor-
tunity to build better emotion detection models.
Manual labeling of data, however, is costly and
so it is desirable to develop labeled emotion data
without annotators. While the proliferation of
social media has made it possible for us to ac-
quire large datasets with implicit labels in the form
of hashtags (Mohammad and Kiritchenko, 2015),
such labels are noisy and reliable.

In this work, we seek to enable deep learning
by creating a large dataset of fine-grained emo-
tions using Twitter data. More specifically, we
harness cues in Twitter data in the form of emo-
tion hashtags as a way to build a labeled emotion
dataset that we then exploit using distant supervi-
sion (Mintz et al., 2009) (the use of hashtags as a
surrogate for annotator-generated emotion labels)
to build emotion models grounded in psychology.
We construct such a dataset and exploit it using
powerful deep learning methods to build accu-
rate, high coverage models for emotion prediction.
Overall, we make the following contributions: 1)
Grounded in psychological theory of emotions, we
build a large-scale, high quality dataset of tweets
labeled with emotions. Key to this are methods to
ensure data quality, 2) we validate the data collec-
tion method using human annotations, 3) we de-
velop powerful deep learning models using a gated
recurrent network to exploit the data, yielding new
state-of-the-art on 24 fine-grained types of emo-
tions, and 4) we extend the task beyond these emo-
tion types to model Plutick’s 8 primary emotion
dimensions.

718

https://doi.org/10.18653/v1/P17-1067

Our emotion modeling relies on distant supervi-
sion (Read, 2005; Mintz et al., 2009), the approach
of using cues in data (e.g., hashtags or emoticons)
as a proxy for “ground truth” labels as we ex-
plained above. Distant supervision has been in-
vestigated by a number of researchers for emotion
detection (Tanaka et al., 2005; Mohammad, 2012;
Purver and Battersby, 2012; Wang et al., 2012;
Pak and Paroubek, 2010; Yang et al., 2007) and
for other semantic tasks such as sentiment anal-
ysis (Read, 2005; Go et al., 2009) and sarcasm
detection (González-Ibánez et al., 2011). In these
works, authors successfully use emoticons and/or
hashtags as marks to label data after performing
varying degrees of data quality assurance. We
take a similar approach, using a larger collection
of tweets, richer emotion definitions, and stronger
filtering for tweet quality.

The remainder of the paper is organized as fol-
lows: We first overview related literature in Sec-
tion 2, describe our data collection in Section 3.1,
and the annotation study we performed to validate
our distant supervision method in Section 4. We
then describe our methods in Section 5, provide
results in Section 6, and conclude in Section 8.

2 Related Work

2.1 Computational Treatment of Emotion

The SemEval-2007 Affective Text task (Strappa-
rava and Mihalcea, 2007) [SEM07] focused on
classification of emotion and valence (i.e., posi-
tive and negative texts) in news headlines. A to-
tal of 1,250 headlines were manually labeled with
the 6 basic emotions of Ekman (Ekman, 1972) and
made available to participants. Similarly, (Aman
and Szpakowicz, 2007) describe an emotion anno-
tation task of identifying emotion category, emo-
tion intensity and the words/phrases that indicate
emotion in blog post data of 4,090 sentences and a
system exploiting the data. Our work differs from
both that of SEM07 (Strapparava and Mihalcea,
2007) and (Aman and Szpakowicz, 2007) in that
we focus on a different genre (i.e., Twitter) and in-
vestigate distant supervision as a way to acquire a
significantly larger labeled dataset.

Our work is similar to (Mohammad, 2012; Mo-
hammad and Kiritchenko, 2015), (Wang et al.,
2012), and (Volkova and Bachrach, 2016) who use
distant supervision to acquire Twitter data with
emotion hashtags and report analyses and exper-
iments to validate the utility of this approach. For

example, (Mohammad, 2012) shows that by using
a simple domain adaptation method to train a clas-
sifier on their data they are able to improve both
precision and recall on the SemEval-2007 (Strap-
parava and Mihalcea, 2007) dataset. As the author
points out, this is another premise that the self-
labeled hashtags acquired from Twitter are con-
sistent, to some degree, with the emotion labels
given by the trained human judges who labeled
the SemEval-2007 data. As pointed out earlier,
(Wang et al., 2012) randomly sample a set of 400
tweets from their data and human-label as rele-
vant/irrelevant, as a way to verify the distant super-
vision approach with the quality assurance heuris-
tics they employ. The authors found that the pre-
cision on a test set is 93.16%, thus confirming
the utility of the heuristics. (Wang et al., 2012)
provide a number of important observations, as
conclusions based on their work. These include
that since they are provided by the tweets’ writers,
the emotion hashtags are more natural and reli-
able than the emotion labels traditionally assigned
by annotators to data by a few annotators. This
is the case since in the lab-condition method an-
notators need to infer the writers emotions from
text, which may not be accurate. Additionally,
(Volkova and Bachrach, 2016) follow the same
distant supervision approach and find correlations
of users’ emotional tone and the perceived demo-
graphics of these users’ social networks exploit-
ing the emotion hashtag-labeled data. Our dataset
is more than an order of magnitude larger than
(Mohammad, 2012) and (Volkova and Bachrach,
2016) and the range of emotions we target is much
more fine grained than (Mohammad, 2012; Wang
et al., 2012; Volkova and Bachrach, 2016) since
we model 24 emotion types, rather than focus on
≤ 7 basic emotions.

(Yan et al., 2016; Yan and Turtle, 2016a,b) de-
velop a dataset of 15,553 tweets labeled with 28
emotion types and so target a fine-grained range
as we do. The authors instruct human annotators
under lab conditions to assign any emotion they
feel is expressed in the data, allowing them to as-
sign more than one emotion to a given tweet. A set
of 28 chosen emotions was then decided upon and
further annotations were performed using Ama-
zon Mechanical Turk (AMT). The authors cite an
agreement of 0.50 Krippendorff’s alpha (α) be-
tween the lab/expert annotators, and an (α) of 0.28
between experts and AMT workers. EmoTweet-

719

28 is a useful resource. However, the agreement
between annotators is not high and the set of as-
signed labels do not adhere to a specific theory of
emotion. We use a much larger dataset and report
an accuracy of the hashtag approach at 90% based
on human judgement as reported in Section 4.

2.2 Mood
A number of studies have also been performed
to analyze and/or model mood in social media
data. (De Choudhury et al., 2012) identify more
than 200 moods frequent on Twitter as extracted
from psychological literature and filtered by AMT
workers. They then collect tweets which have one
of the moods in their mood lexicon in the form of
a hashtag. To verify the quality of the mood data,
the authors run AMT studies where they ask work-
ers whether a tweet displayed the respective mood
hashtag or not and find that in 83% of the cases
hashtagged moods at the end of posts did cap-
ture users’ moods, whereas for posts with mood
hashtags anywhere in the tweet, only 58% of the
cases capture the mood of users. Although they
did not build models for mood detection, the an-
notation studies (De Choudhury et al., 2012) per-
form further support our specific use of hashtags
to label emotions. (Mishne and De Rijke, 2006)
collect user-labeled mood from blog post text on
LiveJournal and exploit them for predicting the in-
tensity of moods over a time span rather than at
the post level. Similarly, (Nguyen, 2010) builds
models to infer patterns of moods in a large col-
lection of LiveJournal posts. Some of the moods
in these LiveJournal studies (e.g., hungry, cold),
as (De Choudhury et al., 2012) explain, would not
fit any psychological theory. Our work is differ-
ent in that it is situated in psychological theory of
emotion.

2.3 Deep Learning for NLP
In spite of the effectiveness of feature engineering
for NLP, it is a labor intensive task that also needs
domain expertise. More importantly, feature engi-
neering falls short of extracting and organizing all
the discriminative information from data (LeCun
et al., 2015; Goodfellow et al., 2016). Neural net-
works (Goodfellow et al., 2016) have emerged as
a successful class of methods that has the power
of automatically discovering the representations
needed for detection or classification and has been
successfully applied to multiple NLP tasks. A line
of studies in the literature (e.g., (Labutov and Lip-

son, 2013; Maas et al., 2011; Tang et al., 2014b,a)
aim to learn sentiment-specific word embeddings
(Bengio et al., 2003; Mikolov et al., 2013) from
neighboring text. Another thread of research fo-
cuses on learning semantic composition (Mitchell
and Lapata, 2010), including extensions to phrases
and sentences with recursive neural networks (a
class of syntax-tree models) (Socher et al., 2013;
Irsoy and Cardie, 2014; Li et al., 2015) and to
documents with distributed representations of sen-
tences and paragraphs (Le and Mikolov, 2014;
Tang et al., 2015) for modeling sentiment.

Long-short term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) and Gated Recur-
rent Neural Nets (GRNNs) (Cho et al., 2014;
Chung et al., 2015), variations of recurrent neu-
ral networks (RNNs), a type of networks suitable
for handling time-series data like speech (Graves
et al., 2013) or handwriting recognition (Graves,
2012; Graves and Schmidhuber, 2009), have also
been used successfully for sentiment analysis (Ren
et al., 2016; Liu et al., 2015; Tai et al., 2015; Tang
et al., 2015; Zhang et al., 2016). Convolutional
neural networks (CNNs) have also been quite suc-
cessful in NLP, and have been applied to a range of
sentence classification tasks, including sentiment
analysis (Blunsom et al., 2014; Kim, 2014; Zhang
et al., 2015). Other architectures have also been
recently proposed (e.g., (Bradbury et al., 2016)).
A review of neural network methods for NLP can
be found in (Goldberg, 2016).

3 Data

3.1 Collection of a Large-Scale Dataset

To be able to use deep learning for modeling
emotion, we needed a large dataset of labeled
tweets. Since there is no such human-labeled
dataset publicly available, we follow (Mohammad,
2012; Mintz et al., 2009; Purver and Battersby,
2012; González-Ibánez et al., 2011; Wang et al.,
2012) in adopting distant supervision: We col-
lect tweets with emotion-carrying hashtags as a
surrogate for emotion labels. To be able to col-
lect enough tweets to serve our need, we devel-
oped a list of hashtags representing each of the 24
emotions proposed by Robert Plutchick (Plutchik,
1980, 1985, 1994). Plutchik (Plutchik, 2001) orga-
nizes emotions in a three-dimensional circumplex
model analogous to the colors on a color wheel.
The cone’s vertical dimension represents intensity,
and the 3 circle represent degrees of similarity

720

Figure 1: Plutchik’s wheel of emotion.

among the various emotion types. The eight sec-
tors are meant to capture that there are eight pri-
mary emotion dimensions arranged as four pairs
of opposites. Emotions in the blank spaces are
the primary emotion dyads (i.e., emotions that are
mixtures of two of the primary emotions). For this
work, we exclude the dyads in the exploded model
from our treatment. For simplicity, we refer to
the circles as plutchik-1: with the emotions
{admiration, amazement, ecstasy, grief, loathing,
rage, terror, vigilance}, plutchik-2: with the
emotions {joy, trust, fear, surprise, sadness, dis-
gust, anger, anticipation}, and plutchik-3:
with the emotions {acceptance, annoyance, ap-
prehension, boredom, distraction, interest, pen-
siveness, serenity}. The wheel is shown in Figure
1.

For each emotion type, we prepared a seed
set of hashtags representing the emotion. We
used Google synonyms and other online dic-
tionaries and thesauri (e.g., www.thesaurus.
com) to expand the initial seed set of each emo-
tion. We acquire a total of 665 emotion hash-
tags across the 24 emotion types. For exam-
ple, for the joy emotion, a subset of the seeds
in our expanded set is {“happy”, “happiness”,
“joy”, “joyful”, “joyfully”, “delighted”, “feel-
ingsunny”, “blithe”, “beatific”, “exhilarated”,
“blissful”, “walkingonair”, “jubilant”}. We then
used the expanded set to extract tweets with hash-
tags from the set from a number of massive-scale
in-house Twitter datasets. We also used Twitter
API to crawl Twitter with hashtags from the ex-
panded set. Using this method, we were able to
acquire a dataset of about 1/4 billion tweets cov-
ering an extended time span from July 2009 till
January 2017.

3.2 Preprocessing and Quality Assurance

Twitter data are very noisy, not only because of
use of non-standard typography (which is less of
a problem here) but due to the many duplicate
tweets and the fact that tweets often have multiple
emotion hashtags. Since these reduce our ability
to build accurate models, we need to clean the data
and remove duplicates. Starting with > 1/4 billion
tweets, we employ a rigorous and strict pipeline.
This results in a vastly smaller set of about 1.6 mil-
lion dependable labeled tweets.

Since our goal is to create non-overlapping cat-
egories at the level of a tweet, we first removed
all tweets with hashtags belonging to more than
one emotion of the 24 emotion categories. Since
it was observed (e.g., (Mohammad, 2012; Wang
et al., 2012)) and also confirmed by our annota-
tion study as described in Section 4, that hash-
tags in tweets with URLs are less likely to cor-
relate with a true emotion label, we remove all
tweets with URLs from our data. We filter out
duplicates using a two-step procedure: 1) we
remove all retweets (based on existence of the
token “RT” regardless of case) and 2) we use
the Python library pandas http://pandas.
pydata.org/ “drop duplicates” method to
compare the tweet texts of all the tweets after
normalizing character repetitions [all consecutive
characters of > 2 to 2] and user mentions (as de-
tected by a string starting with an “@” sign). We
then performed a manual inspection of a random
sample of 1,000 tweets from the data and found
no evidence of any remaining tweet duplicates.

Next, even though the emotion hashtags them-
selves are exclusively in English, we observe the
data do have tweets in languages other than En-
glish. This is due to code-switching, but also
to the fact that our data dates back to 2009
and Twitter did not allow use of hashtags for
several non-English languages until 2012. To
filter out non-English, we use the langid (Lui
and Baldwin, 2012) (https://github.com/
saffsd/langid.py) library to assign lan-
guage tags to the tweets. Since the common wis-
dom in the literature (e.g., (Mohammad, 2012;
Wang et al., 2012)) is to restrict data to hash-
tags occurring in final position of a tweet, we in-
vestigate correlations between a tweet’s relevance
and emotion hashtag location in Section 4 and test
models exclusively on data with hashtags occur-
ring in final position. We also only use tweets con-

721

taining at least 5 words.
Table 2 shows statistics of the data after apply-

ing our cleaning, filtering, language identification,
and deduplication pipeline. Since our focus is on
English, we only show statistics for tweets tagged
with an “en” (for “English”) label by langid. Ta-
ble 2 provides three types of relevant statistics: 1)
counts of all tweets, 2) counts of tweets with at
least 5 words and the emotion hashtags occurring
in the last quarter of the tweet text (based on char-
acter count), and 3) counts of tweets with at least
5 words and the emotion hashtags occurring as the
final word in the tweet text. As the last column in
Table 2 shows, employing our most strict criterion
where an emotion hashtag must occur finally in
a tweet of a minimal length 5 words, we acquire
a total of 1,608,233 tweets: 205,125 tweets for
plutchik-1, 790,059 for plutchik-2, and
613,049 for plutchik-3. 2

Emotion ct ct@lq ct@end
admiration 292,153 150,509 112,694
amazement 568,255 358,472 34,826
ecstasy 54,174 34,307 23,856
grief 102,980 33,141 12,568
loathing 90,465 41,787 456
rage 30,994 11,777 4,749
terror 84,827 25,908 15,268
vigilance 6,171 1,028 708
plutchik-1 1,230,019 656,929 205,125
anger 131,082 82,447 56,472
anticipation 67,175 36,846 26,655
disgust 212,770 145,052 52,067
fear 302,989 153,513 98,657
joy 974,226 522,689 330,738
sadness 1,252,192 762,901 142,300
surprise 143,755 78,570 53,915
trust 198,619 103,332 29,255
plutchik-2 3,282,808 1,885,350 790,059
acceptance 138,899 54,706 16,522
annoyance 954,027 791,869 364,135
apprehension 29,174 11,650 7,828
boredom 872,246 583,994 152,105
distraction 122,009 52,633 617
interest 113,555 67,216 56,659
pensiveness 11,751 5,012 3,513
serenity 97,467 36,817 11,670
plutchik-3 2,339,128 1,603,897 613,049
ALL 6,851,955 4,146,176 1,608,233

Table 2: Data statistics.

4 Annotation Study

In their work, (Wang et al., 2012) manually label a
random sample of 400 tweets extracted with hash-

2The data can be acquired by emailing the first author.
The distribution is in the form of tweet ids and labels, to ad-
here to Twitter conditions.

tags in a similar way as we acquire our data and
find that human annotators agree 93% of the time
with the hashtag emotion type if the hashtag oc-
curs as the last word in the tweet. We wanted to
validate our use of hashtags in a similar fashion
and on a bigger random sample. We had human
annotators label a random sample of 5,600 tweets
that satisfy our preprocessing pipeline. Manual in-
spection during annotation resulted in further re-
moving a negligible 16 tweets that were found to
have problems. For each of the remaining 5,584
tweets, the annotators assign a binary tag from
the set {relevant, irrelevant} to indicate whether a
tweet carries an emotion category as assigned us-
ing our distant supervision method or not. Annota-
tors assigned 61.37% (n = 3, 427) “relevant” tags
and 38.63% (n = 2, 157) “irrelevant” tags. Our
analysis of this manually labeled dataset also sup-
ports the findings of (Wang et al., 2012): When
we limit position of the emotion hashtag to the
end of a tweet, we acquire 90.57% relevant data.
We also find that if we relax the constraint on the
hashtag position such that we allow the hashtag
to occur in the last quarter of a tweet (based on a
total tweet character count), we acquire 85.43%
relevant tweets. We also find that only 23.20%
(n = 795 out of 3, 427) of the emotion carrying
tweets have the emotion hashtags occurring in fi-
nal position, whereas 31.75% (n = 1, 088 out of
3, 427) of the tweets have the emotion hashtags in
the last quarter of the tweet string. This shows
how enforcing a final hashtag location results in
loss of a considerable number of emotion tweets.
As shown in Table 2, only 1, 608, 233 tweets out
of a total of 6, 851, 955 tweets (% = 23, 47) in our
bigger dataset have emotion hashtags occurring in
final position. Overall, we agree with (Moham-
mad, 2012; Wang et al., 2012) that the accuracy
acquired by enforcing a strict pipeline and limit-
ing to emotion hashtags to final position is a rea-
sonable measure for warranting good-quality data
for training supervised systems, an assumption we
have also validated with our empirical findings
here.

One advantage of using distant supervision un-
der these conditions for labeling emotion data, as
(Wang et al., 2012) also notes, is that the label is
assigned by the writer of the tweet himself/herself
rather than an annotator who could wrongly de-
cide what category a tweet is. After all, emotion
is a fuzzy concept and > 90% agreement as we

722

report here is higher than the human agreement
usually acquired on many NLP tasks. Another ad-
vantage of this method is obviously that it enables
us to acquire a sufficiently large training set to use
deep learning. We now turn to describing our deep
learning methods.

5 Methods

For our core modeling, we use Gated Recurrent
Neural Networks (GRNNs), a modern variation of
recurrent neural networks (RNNs), which we now
turn to introduce. For notation, we denote scalars
with italic lowercase (e.g., x), vectors with bold
lowercase (e.g.,x), and matrices with bold upper-
case (e.g.,W).

Recurrent Neural Network A recurrent neu-
ral network (RNN) is one type of neural network
architecture that is particularly suited for model-
ing sequential information. At each time step t, an
RNN takes an input vector xt ε IRn and a hidden
state vector h t−1 ε IRm and produces the next hid-
den state h t by applying the recursive operation:

ht = f (Wxt + Uht−1 + b) (1)

Where the input to hidden matrix W ε IRmxn,
the hidden to hidden matrix U ε IRmxm, and the
bias vector b ε IRm are parameters of an affine
transformation and f is an element-wise nonlin-
earity. While an RNN can in theory summa-
rize all historical information up to time step ht,
in practice it runs into the problem of vanish-
ing/exploding gradients (Bengio et al., 1994; Pas-
canu et al., 2013) while attempting to learn long-
range dependencies.

LSTM Long short-term memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) ad-
dresses this exact problem of learning long-term
dependencies by augmenting an RNN with a
memory cell ct ε IRn at each time step. As such, in
addition to the input vector xt, the hiddent vector
ht−1, an LSTM takes a cell state vector ct−1 and
produces ht and ct via the following calculations:

it = σ
(
Wixt + Uiht−1 + bi

)

ft = σ
(

Wfxt + Ufht−1 + bf
)

ot = σ (Woxt + Uoht−1 + bo)
gt = tanh (Wgxt + Ught−1 + bg)
ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

(2)

Where σ(·) and tanh(·) are the element-wise
sigmoid and hyperbolic tangent functions, � the
element-wise multiplication operator, and it, ft, ot
are the input, forget, and output gates. The gt is a
new memory cell vector with candidates that could
be added to the state. The LSTM parameters Wj ,
Uj , and bj are for j ε {i, f, o, g}.

GRNNs (Cho et al., 2014; Chung et al., 2015)
propose a variation of LSTM with a reset gate rt,
an update state zt, and a new simpler hidden unit
ht, as follows:

rt = σ (Wrxt + Urht−1 + br)
zt = σ (Wzxt + Uzht−1 + bz)

h̃t = tanh
(

Wxt + rt ∗ Uh̃ht−1 + bh̃
)

ht = zt ∗ ht−1 + (1− zt) ∗ h̃t

(3)

The GRNN parameters Wj , Uj , and bj are for j ε
{r, z, h̃}. In this set up, the hidden state is forced
to ignore a previous hidden state when the reset
gate is close to 0, thus enabling the network to
forget or drop irrelevant information. Addition-
ally, the update gate controls how much informa-
tion carries over from a previous hidden state to
the current hidden state (similar to an LSTM mem-
ory cell). We use GRNNs as they are simpler and
faster than LSTM. For GRNNs, we use Theano
(Theano Development Team, 2016).

Online Classifiers We compare the perfor-
mance of the GRNNs to four online classifiers that
are capable of handling the data size: Stochas-
tic Gradient Descent (SGD), Multinomial Naive
Bayes (MNB), Perceptron, and the Passive Agres-
sive Classifier (PAC). These classifiers learn on-
line from mini-batches of data. We use mini-
batches of 10,000 instances with all the four clas-
sifiers. We use the scikit-learn implementation
of these classifiers (http://scikit-learn.
org).

Settings We aim to model Plutchik’s 24 fine-
grained emotions as well as his 8 primary emotion
dimensions where each 3 related types of emotion
(perceived as varying in intensity) are combined
in one dimension. We now turn to describing our
experiments experiments.

6 Experiments

6.1 Predicting Fine-Grained Emotions
As explained earlier, Plutchik organizes the 24
emotion types in the 3 main circles that we will
refer to as plutchik-1, plutchik-2, and plutchik-3.

723

Emotion Qadir (2013) Roberts (2012) MD (2015) Wang (2012) Volkova (2016) This work
anger 400 0.44 583 0.64 1,555 0.28 457,972 0.72 4,963 0.80 56,472 0.75
anticip - - - - - - - - - - 26,655 0.70
disgust - - 922 0.67 761 0.19 - - 12,948 0.92 52,067 0.82
fear 592 0.54 222 0.74 2,816 0.51 11,156 0.44 9,097 0.77 98,657 0.74
joy 1,005 0.59 716 0.68 8,240 0.62 567,487 0.72 15,559 0.79 330,738 0.91
sadness 560 0.46 493 0.69 3,830 0.39 489,831 0.65 4,232 0.62 142,300 0.73
surprise - - 324 0.61 3849 0.45 1,991 0.14 8,244 0.64 53,915 0.86
trust - - - - - - - - - - 29,255 0.82
ALL 4,500 0.53 3,777 0.67 21,051 0.49 1,991,184 - 52,925 0.78 790,059 0.83

Table 6: Comparison (in F-score) of our results with GRNNs to published literature. MD = Mohammad
(2015). Note: For space restrictions, we take the liberty of using the last name of only the first author of
each work.

Emotion SGD MNB PRCPTN PAC
baseline 60.00 60.00 60.00 60.00
admiration 78.30 78.01 74.24 79.86
amazement 37.57 35.71 42.51 46.69
ecstasy 51.53 51.89 47.37 53.53
grief 38.64 36.94 37.33 48.10
loathing 0.00 0.00 2.09 2.99
rage 3.47 4.49 14.02 17.04
terror 33.23 44.12 40.48 47.00
vigilance 2.53 2.56 5.52 8.42
plutchik-1 60.26 60.54 59.11 64.86
anger 19.41 13.84 24.54 29.26
anticipation 7.46 12.63 17.29 26.70
disgust 29.51 29.87 31.83 36.60
fear 21.45 25.49 30.41 33.59
joy 72.83 72.96 72.32 75.50
sadness 50.04 51.72 39.58 49.21
surprise 8.46 4.75 17.34 19.54
trust 42.09 38.52 44.48 47.51
plutchik-2 48.05 48.33 48.60 53.30
acceptance 0.12 2.74 13.98 13.04
annoyance 80.28 80.71 78.80 81.47
apprehension 0.80 0.00 9.72 10.66
boredom 49.53 51.27 52.02 57.84
distraction 0.00 2.99 3.42 0.00
interest 21.69 30.45 34.85 44.14
pensiveness 2.61 8.08 11.22 12.27
serenity 8.87 19.57 27.23 38.59
plutchik-3 62.20 64.00 64.04 68.14
ALL 56.84 57.62 57.25 62.10

Table 3: Results in F-score with traditional online
classifiers.

We model the set of emotions belonging to each
of the 3 circles independently, thus casting each
as an 8-way classification task. Inspired by ob-
servations from the literature and our own annota-
tion study, we limit our data to tweets of at least
5 words with an emotional hashtag occurring at
the end. We then split the data representing each
of the 3 circles into 80% training (TRAIN), 10%
development (DEV), and 10% testing (TEST). As
mentioned above, we run experiments with a range
of online, out-of-core classifiers as well as the

GRNNs. To train the GRNNs, we optimize the
hyper-parameters of the network on a development
set as we describe below, choosing a vocabulary
size of 80K words (a vocabulary size we also use
for the out-of-core classifiers), a word embedding
vector of size 300 dimensions learnt directly from
the training data, an input maximum length of 30
words, 7 epochs, and the Adam (Kingma and Ba,
2014) optimizer with a learning rate of 0.001. We
use 3 dense layers each with 1, 000 units. We use
dropout (Hinton et al., 2012) for regularization,
with a dropout rate of 0.5. For our loss function,
we use categorical cross-entropy. We use a mini-
batch (Cotter et al., 2011) size of 128. We found
this architecture to work best with almost all the
settings and so we fix it across the board for all
experiments with GRNNs.

Results with Traditional Classifiers Results
with the online classifiers are presented in terms
of F-score in Table 3. As the table shows, among
this group of classifiers, the Passive Agressive
classifier (PAC) acquires the best performance.
PAC achieves an overall F-score of 64.86% on
plutchik-1, 53.30% on plutchik-2, and
68.14% on plutchik-3, two of which are
higher than an arbitrary baseline3 of 60%.

Results with GRNNs Table 4 presents re-
sults with GRNNs, compared with the best re-
sults using the traditional classifiers as acquired
with PAC. As the table shows, the GRNN mod-
els are very successful across all the 3 classifica-
tion tasks. With GRNNs, we acquire an overall
F-scores of: 91.21% on plutchik-1, 82.32%
on plutchik-2, and 87.47% on plutchik-3.
These results are 26.35%, 29.02%, and 25.37%
higher than PAC, respectively.

Negative Results We experiment with aug-

3The arbitrary baseline is higher than the majority class in
the training data in any of the 3 cases.

724

PAC GRNNs
Emotion f-score prec rec f-score
admiration 79.86 94.53 95.28 94.91
amazement 46.69 90.44 89.02 89.73
ecstasy 53.53 83.49 90.01 86.62
grief 48.10 85.07 81.13 83.05
loathing 2.99 83.87 54.17 65.82
rage 17.04 80.00 75.11 77.48
terror 47.00 91.15 84.01 87.44
vigilance 8.42 71.93 70.69 71.30
plutchik-1 64.86 91.26 91.24 91.21
anger 29.26 74.95 69.20 71.96
anticipation 26.70 70.05 69.00 69.52
disgust 36.60 82.18 68.84 74.92
fear 33.59 73.74 72.51 73.12
joy 75.50 90.96 93.88 92.40
sadness 49.21 73.20 82.04 77.37
surprise 19.54 85.60 67.40 75.42
trust 47.51 82.43 76.83 79.53
plutchik-2 53.30 82.53 82.46 82.32
acceptance 13.04 77.10 71.76 74.33
annoyance 81.47 91.46 95.01 93.20
apprehension 10.66 80.40 61.07 69.41
boredom 57.84 85.95 84.40 85.16
distraction 0.00 87.50 25.00 38.89
interest 44.14 86.79 78.38 82.37
pensiveness 12.27 91.87 43.24 58.80
serenity 38.59 82.15 78.16 80.11
plutchik-3 68.14 88.94 89.08 88.89
ALL 62.10 87.58 87.59 87.47

Table 4: Results with GRNNs across Plutchik’s
24 emotion categories. We compare to best-
performing traditional classifier (i.e. Passive Ag-
gressive).

menting training data reported here in two ways:
1) For each emotion type, we concatenate the
training data with training data of tweets that
are more (or less) intense from the same sec-
tor/dimension in the wheel, and 2) for each emo-
tion type, we add tweets where emotion hashtags
occur in the last quarter of a tweet (which were
originally filtered out from TRAIN). However, we
gain no improvements based on either of these
methods, thus reflecting the importance of using
high-quality training data and the utility of our
strict pipeline.

6.2 Predicting 8 Primary Dimensions

We now investigate the task of predicting each
of the 8 primary emotion dimensions represented
by the sectors of the wheel (where the three de-
grees of intensity of a given emotion are reduced
to a single emotion dimension [e.g., {ecstasy, joy,
serenity} are reduced to the joy dimension]). We
concatenate the 80% training data (TRAIN) from
each of the 3 circles’ data into a single training set

Dimension prec rec f-score
anger 97.40 97.72 97.56
anticipation 91.18 89.95 90.56
disgust 96.20 93.94 95.06
fear 94.97 94.38 94.68
joy 94.61 96.40 95.50
sadness 95.52 95.25 95.39
surprise 94.99 91.62 93.27
trust 96.36 97.58 96.96
All 95.68 95.68 95.68

Table 5: GRNNs results across 8 emotion dimen-
sions. Each dimension represents three different
emotions. For example, the joy dimension repre-
sents serenity, joy and ecstasy.

Emotion Volkova (2016) model This work
anger 12.38 74.95
disgust 5.71 82.18
fear 11.18 73.74
joy 44.57 90.96
sadness 18.04 73.20
surprise 5.33 85.60
ALL 26.95 80.12

Table 7: Comparison (in acc) to (Volkova and
Bachrach, 2016)’s model.

(TRAIN-ALL), the 10% DEV to form DEV-ALL,
and the 10% TEST to form TEST-ALL. We test a
number of hyper-parameters on DEV and find the
ones we have identified on the fine-grained pre-
diction to work best and so we adopt them as is
with the exception of limiting to only 2 epochs.
We believe that with a wider exploration of hyper-
parameters, improvements could be possible. As
Table 5 shows, we are able to model the 8 dimen-
sions with an overall superior accuracy of 95.68%.
As far as we know, this is the first work on model-
ing these dimensions.

7 Comparisons to Other Systems

We compare our results on the 8 basic emotions
to the published literature. As Table 6 shows, on
this subset of emotions, our system is 4.53% (acc)
higher than the best published results (Volkova and
Bachrach, 2016), facilitated by the fact that we
have an order of magnitude more training data.
As shown in Table 7, we also apply (Volkova and
Bachrach, 2016)’s pre-trained model on our test
set of the 6 emotions they predict (which belong
to plutchik-2), and acquire an overall accu-
racy of 26.95%, which is significantly lower than
our accuracy.

725

8 Conclusion

In this paper, we built a large, automatically cu-
rated dataset for emotion detection using distant
supervision and then used GRNNs to model fine-
grained emotion, achieving a new state-of-the-art
performance. We also extended the classification
to 8 primary emotion dimensions situated in psy-
chological theory of emotion.

References
Conor M. Steckler Aaron C. Weidman and Jessica L.

Tracy. 2017. The jingle and jangle of emotion as-
sessment: Imprecise measurement, casual scale us-
age, and conceptual fuzziness in emotion research.
Emotion .

Saima Aman and Stan Szpakowicz. 2007. Identifying
expressions of emotion in text. In Text, Speech and
Dialogue. Springer, pages 196–205.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research
3(Feb):1137–1155.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks 5(2):157–166.

Phil Blunsom, Edward Grefenstette, and Nal Kalch-
brenner. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics. Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics.

James Bradbury, Stephen Merity, Caiming Xiong, and
Richard Socher. 2016. Quasi-recurrent neural net-
works. arXiv preprint arXiv:1611.01576 .

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Junyoung Chung, Caglar Gülçehre, Kyunghyun Cho,
and Yoshua Bengio. 2015. Gated feedback recurrent
neural networks. In ICML. pages 2067–2075.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik
Sridharan. 2011. Better mini-batch algorithms via
accelerated gradient methods. In Advances in neural
information processing systems. pages 1647–1655.

Munmun De Choudhury, Scott Counts, and Michael
Gamon. 2012. Not all moods are created equal! ex-
ploring human emotional states in social media.

P. Ekman. 1972. Universal and cultural differences in
facial expression of emotion. Nebraska Symposium
on Motivation pages 207–283.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N Project Report, Stanford 1(12).

Yoav Goldberg. 2016. A primer on neural network
models for natural language processing. Journal of
Artificial Intelligence Research 57:345–420.

Roberto González-Ibánez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: a closer look. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies:
Short Papers-Volume 2. Association for Computa-
tional Linguistics, pages 581–586.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep learning. MIT Press.

Alex Graves. 2012. Supervised sequence labelling. In
Supervised Sequence Labelling with Recurrent Neu-
ral Networks, Springer, pages 5–13.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on. IEEE, pages 6645–6649.

Alex Graves and Jürgen Schmidhuber. 2009. Offline
handwriting recognition with multidimensional re-
current neural networks. In Advances in neural in-
formation processing systems. pages 545–552.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky,
Ilya Sutskever, and Ruslan R Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors. arXiv preprint
arXiv:1207.0580 .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Hyisung C Hwang and David Matsumoto. 2016. Emo-
tional expression. The Expression of Emotion:
Philosophical, Psychological and Legal Perspec-
tives page 137.

Ozan Irsoy and Claire Cardie. 2014. Deep recursive
neural networks for compositionality in language.
In Advances in Neural Information Processing Sys-
tems. pages 2096–2104.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

726

Igor Labutov and Hod Lipson. 2013. Re-embedding
words. In ACL (2). pages 489–493.

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML.
volume 14, pages 1188–1196.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature 521(7553):436–444.

Jiwei Li, Minh-Thang Luong, Dan Jurafsky, and Eu-
dard Hovy. 2015. When are tree structures necessary
for deep learning of representations? arXiv preprint
arXiv:1503.00185 .

Pengfei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu, and
Xuanjing Huang. 2015. Multi-timescale long short-
term memory neural network for modelling sen-
tences and documents. In EMNLP. Citeseer, pages
2326–2335.

Marco Lui and Timothy Baldwin. 2012. langid. py: An
off-the-shelf language identification tool. In Pro-
ceedings of the ACL 2012 system demonstrations.
Association for Computational Linguistics, pages
25–30.

Andrew L Maas, Raymond E Daly, Peter T Pham, Dan
Huang, Andrew Y Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1. Association for Com-
putational Linguistics, pages 142–150.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013. Linguistic regularities in continuous space
word representations. In Hlt-naacl. volume 13,
pages 746–751.

Mike Mintz, Steven Bills, Rion Snow, and Dan Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP:
Volume 2-Volume 2. Association for Computational
Linguistics, pages 1003–1011.

Gilad Mishne and Maarten De Rijke. 2006. Capturing
global mood levels using blog posts. In AAAI spring
symposium: computational approaches to analyzing
weblogs. pages 145–152.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive sci-
ence 34(8):1388–1429.

Saif M Mohammad. 2012. #emotional tweets. In Pro-
ceedings of the First Joint Conference on Lexical
and Computational Semantics-Volume 1: Proceed-
ings of the main conference and the shared task, and
Volume 2: Proceedings of the Sixth International
Workshop on Semantic Evaluation. Association for
Computational Linguistics, pages 246–255.

Saif M Mohammad and Svetlana Kiritchenko. 2015.
Using hashtags to capture fine emotion cate-
gories from tweets. Computational Intelligence
31(2):301–326.

Thin Nguyen. 2010. Mood patterns and affective lex-
icon access in weblogs. In Proceedings of the ACL
2010 Student Research Workshop. Association for
Computational Linguistics, pages 43–48.

Alexander Pak and Patrick Paroubek. 2010. Twitter as
a corpus for sentiment analysis and opinion mining.
In LREc. volume 10.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3) 28:1310–1318.

Robert Plutchik. 1980. Emotion: A psychoevolution-
ary synthesis. Harpercollins College Division.

Robert Plutchik. 1985. On emotion: The chicken-
and-egg problem revisited. Motivation and Emotion
9(2):197–200.

Robert Plutchik. 1994. The psychology and biology of
emotion.. HarperCollins College Publishers.

Robert Plutchik. 2001. The nature of emotions human
emotions have deep evolutionary roots, a fact that
may explain their complexity and provide tools for
clinical practice. American scientist 89(4):344–350.

Matthew Purver and Stuart Battersby. 2012. Experi-
menting with distant supervision for emotion clas-
sification. In Proceedings of the 13th Conference of
the European Chapter of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, pages 482–491.

Jonathon Read. 2005. Using emoticons to reduce de-
pendency in machine learning techniques for senti-
ment classification. In Proceedings of the ACL stu-
dent research workshop. Association for Computa-
tional Linguistics, pages 43–48.

Yafeng Ren, Yue Zhang, Meishan Zhang, and
Donghong Ji. 2016. Context-sensitive twitter sen-
timent classification using neural network. In AAAI.
pages 215–221.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
Christopher Potts, et al. 2013. Recursive deep
models for semantic compositionality over a senti-
ment treebank. In Proceedings of the conference on
empirical methods in natural language processing
(EMNLP). Citeseer, volume 1631, page 1642.

Carlo Strapparava and Rada Mihalcea. 2007. Semeval-
2007 task 14: Affective text. In Proceedings of
the 4th International Workshop on Semantic Eval-
uations. Association for Computational Linguistics,
pages 70–74.

727

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075 .

Yuki Tanaka, Hiroya Takamura, and Manabu Okumura.
2005. Extraction and classification of facemarks. In
Proceedings of the 10th international conference on
Intelligent user interfaces. ACM, pages 28–34.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing. pages 1422–1432.

Duyu Tang, Furu Wei, Bing Qin, Ming Zhou, and Ting
Liu. 2014a. Building large-scale twitter-specific
sentiment lexicon: A representation learning ap-
proach. In COLING. pages 172–182.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014b. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In ACL (1). pages 1555–1565.

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

Svitlana Volkova and Yoram Bachrach. 2016. Inferring
perceived demographics from user emotional tone
and user-environment emotional contrast. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics, ACL.

Wenbo Wang, Lu Chen, Krishnaprasad Thirunarayan,
and Amit P Sheth. 2012. Harnessing twitter”
big data” for automatic emotion identification. In
Privacy, Security, Risk and Trust (PASSAT), 2012
International Conference on and 2012 Interna-
tional Confernece on Social Computing (Social-
Com). IEEE, pages 587–592.

Jasy Liew Suet Yan and Howard R Turtle. 2016a. Ex-
ploring fine-grained emotion detection in tweets. In
Proceedings of NAACL-HLT . pages 73–80.

Jasy Liew Suet Yan and Howard R Turtle. 2016b. Ex-
posing a set of fine-grained emotion categories from
tweets. In 25th International Joint Conference on
Artificial Intelligence. page 8.

Jasy Liew Suet Yan, Howard R Turtle, and Elizabeth D
Liddy. 2016. Emotweet-28: A fine-grained emotion
corpus for sentiment analysis .

Changhua Yang, Kevin Hsin-Yih Lin, and Hsin-Hsi
Chen. 2007. Emotion classification using web blog
corpora. In Web Intelligence, IEEE/WIC/ACM In-
ternational Conference on. IEEE, pages 275–278.

Meishan Zhang, Yue Zhang, and Duy-Tin Vo. 2016.
Gated neural networks for targeted sentiment analy-
sis. In AAAI. pages 3087–3093.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems. pages 649–657.

728

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 729–740
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1068

Beyond Binary Labels: Political Ideology Prediction of Twitter Users
Daniel Preoţiuc-Pietro

Positive Psychology Center
University of Pennsylvania

danielpr@sas.upenn.edu

Ye Liu∗
School of Computing

National University of Singapore
liuye@comp.nus.edu.sg

Daniel J. Hopkins
Political Science Department
University of Pennsylvania
danhop@sas.upenn.edu

Lyle Ungar
Computing & Information Science

University of Pennsylvania
ungar@cis.upenn.edu

Abstract

Automatic political preference prediction
from social media posts has to date proven
successful only in distinguishing between
publicly declared liberals and conserva-
tives in the US. This study examines
users’ political ideology using a seven-
point scale which enables us to identify
politically moderate and neutral users –
groups which are of particular interest to
political scientists and pollsters. Using
a novel data set with political ideology
labels self-reported through surveys, our
goal is two-fold: a) to characterize the po-
litical groups of users through language
use on Twitter; b) to build a fine-grained
model that predicts political ideology of
unseen users. Our results identify differ-
ences in both political leaning and engage-
ment and the extent to which each group
tweets using political keywords. Finally,
we demonstrate how to improve ideology
prediction accuracy by exploiting the rela-
tionships between the user groups.

1 Introduction

Social media is used by people to share their opin-
ions and views. Unsurprisingly, an important part
of the population shares opinions and news related
to politics or causes they support, thus offering
strong cues about their political preferences and
ideologies. In addition, political membership is
also predictable purely from one’s interests or de-
mographics — it is much more likely for a reli-
gious person to be conservative or for a younger
person to lean liberal (Ellis and Stimson, 2012).

∗ Work carried out during a research visit at the Univer-
sity of Pennsylvania

User trait prediction from text is based on the as-
sumption that language use reflects a user’s de-
mographics, psychological states or preferences.
Applications include prediction of age (Rao et al.,
2010; Flekova et al., 2016b), gender (Burger et al.,
2011; Sap et al., 2014), personality (Schwartz
et al., 2013; Preoţiuc-Pietro et al., 2016), socio-
economic status (Preoţiuc-Pietro et al., 2015a,b;
Liu et al., 2016c), popularity (Lampos et al., 2014)
or location (Cheng et al., 2010).

Research on predicting political orientation has
focused on methodological improvements (Pen-
nacchiotti and Popescu, 2011) and used data sets
with publicly stated dichotomous political orien-
tation labels due to their easy accessibility (Syl-
wester and Purver, 2015). However, these data
sets are not representative samples of the entire
population (Cohen and Ruths, 2013) and do not
accurately reflect the variety of political attitudes
and engagement (Kam et al., 2007).

For example, we expect users who state their
political affiliation in their profile description,
tweet with partisan hashtags or appear in public
party lists to use social media as a means of popu-
larizing and supporting their political beliefs (Bar-
berASa, 2015). Many users may choose not to
publicly post about their political preference for
various social goals or perhaps this preference
may not be strong or representative enough to be
disclosed online. Dichotomous political prefer-
ence also ignores users who do not have a political
ideology. All of these types of users are very im-
portant for researchers aiming to understand group
preferences, traits or moral values (Lewis and Rei-
ley, 2014; Hersh, 2015).

The most common political ideology spectrum
in the US is the conservative – liberal (Ellis and
Stimson, 2012). We collect a novel data set of
Twitter users mapped to this seven-point spectrum
which allows us to:

729

https://doi.org/10.18653/v1/P17-1068

1. Uncover the differences in language use be-
tween ideological groups;

2. Develop a user-level political ideology predic-
tion algorithm that classifies all levels of en-
gagement and leverages the structure in the po-
litical ideology spectrum.
First, using a broad range of language features

including unigrams, word clusters and emotions,
we study the linguistic differences between the
two ideologically extreme groups, the two ideo-
logically moderate groups and between both ex-
tremes and moderates in order to provide insight
into the content they post on Twitter. In addition,
we examine the extent to which the ideological
groups in our data set post about politics and com-
pare it to a data set obtained similarly to previous
work.

In prediction experiments, we show how accu-
rately we can distinguish between opposing ideo-
logical groups in various scenarios and that previ-
ous binary political orientation prediction has been
oversimplified. Then, we measure the extent to
which we can predict the two dimensions of polit-
ical leaning and engagement. Finally, we build an
ideology classifier in a multi-task learning setup
that leverages the relationships between groups.1

2 Related Work

Automatically inferring user traits from their on-
line footprints is a prolific topic of research, en-
abled by the increasing availability of user gen-
erated data and advances in machine learning.
Beyond its research oriented goals, user profil-
ing has important industry applications in online
marketing, personalization or large-scale audience
profiling. To this end, researchers have used a
wide range of types of online footprints, includ-
ing video (Subramanian et al., 2013), audio (Alam
and Riccardi, 2014), text (Preoţiuc-Pietro et al.,
2015a), profile images (Liu et al., 2016a), social
data (Van Der Heide et al., 2012; Hall et al., 2014),
social networks (Perozzi and Skiena, 2015; Rout
et al., 2013), payment data (Wang et al., 2016) and
endorsements (Kosinski et al., 2013).

Political orientation prediction has been studied
in two related, albeit crucially different scenarios,
as also identified in (Zafar et al., 2016). First, re-
searchers aimed to identify and quantify orienta-
tion of words (Monroe et al., 2008), hashtags (We-
ber et al., 2013) or documents (Iyyer et al., 2014),

1Data is available at http://www.preotiuc.ro

or to detect bias (Yano et al., 2010) or impartial-
ity (Zafar et al., 2016) at a document level.

Our study belongs to the second category, where
political orientation is inferred at a user-level. All
previous studies study labeling US conservatives
vs. liberals using either text (Rao et al., 2010),
social network connections (Zamal et al., 2012),
platform-specific features (Conover et al., 2011)
or a combination of these (Pennacchiotti and
Popescu, 2011; Volkova et al., 2014), with very
high reported accuracies of up to 94.9% (Conover
et al., 2011).

However, all previous work on predicting user-
level political preferences are limited to a binary
prediction between liberal/democrat and conser-
vative/republican, disregarding any nuances in po-
litical ideology. In addition, as the focus of the
studies is more on the methodological or inter-
pretation aspects of the problem, another down-
side is that the user labels were obtained in sim-
ple, albeit biased ways. These include users who
explicitly state their political orientation on user
lists of party supporters (Zamal et al., 2012; Pen-
nacchiotti and Popescu, 2011), supporting par-
tisan causes (Rao et al., 2010), by following
political figures (Volkova et al., 2014) or party
accounts (Sylwester and Purver, 2015) or that
retweet partisan hashtags (Conover et al., 2011).
As also identified in (Cohen and Ruths, 2013) and
further confirmed later in this study, these data sets
are biased: most people do not clearly state their
political preference online – fewer than 5% ac-
cording to Priante et al. (2016) – and those that
state their preference are very likely to be political
activists. Cohen and Ruths (2013) demonstrated
that predictive accuracy of classifiers is signifi-
cantly lower when confronted with users that do
not explicitly mention their political orientation.
Despite this, their study is limited because in their
hardest classification task, they use crowdsourced
political orientation labels, which may not corre-
spond to reality and suffer from biases (Flekova
et al., 2016a; Carpenter et al., 2016). Further, they
still only look at predicting binary political orien-
tation. To date, no other research on this topic has
taken into account these findings.

3 Data Set

The main data set used in this study consists of
3,938 users recruited through the Qualtrics plat-
form (D1). Each participant was compensated

730

1 2 3 4 5 6 7
0

250

500

750

1000 Political Orientation

Figure 1: Distribution of political ideology in our data set,
from 1 – Very Conservative through 7 – Very Liberal.

with 3 USD for 15 minutes of their time. All
participants first answered the same demographic
questions (including political ideology), then were
directed to one of four sets of psychological ques-
tionnaires unrelated to the political ideology ques-
tion. They were asked to self-report their politi-
cal ideology on a seven point scale: Very conser-
vative (1), Conservative (2), Moderately conser-
vative (3), Moderate (4), Moderately liberal (5),
Liberal (6), Very liberal (7). In addition, partic-
ipants had the option of choosing Apathetic and
Other, which have ambiguous fits on the conserva-
tive – liberal spectrum and were removed from our
analysis (399 users). We also asked participants to
self-report their gender (2322 female, 1205 male,
12 other) and age. Participants were all from the
US in order to limit the impact of cultural and po-
litical factors. The political ideology distribution
in our sample is presented in Figure 1.

We asked users their Twitter handle and down-
loaded their most recent 3,200 tweets, leading to
a total of 4,833,133 tweets. Before adding users
to our 3,938 user data set, we performed the fol-
lowing checks to ensure that the Twitter handle
was the user’s own: 1) after compensation, users
were if they were truthful in reporting their handle
and if not, we removed their data from analysis;
2) we manually examined all handles marked as
verified by Twitter or that had over 2000 followers
and eliminated them if they were celebrities or cor-
porate/news accounts, as these were unlikely the
users who participated in the survey. This study
received approval from the Institutional Review
Board (IRB) of the University of Pennsylvania.

In addition, to facilitate comparison to previ-
ous work, we also use a data set of 13,651 users
with overt political orientation (D2). We se-
lected popular political figures unambiguously as-
sociated with US liberal politics (@SenSanders,

@JoeBiden, @CoryBooker, @JohnKerry) or US
conservative politics (@marcorubio, @tedcruz,
@RandPaul, @RealBenCarson). Liberals in our
set (Nl = 7417) had to follow on Twitter all of
the liberal political figures and none of the con-
servative figures. Likewise, conservative users
(Nc = 6234) had to follow all of the conservative
figures and no liberal figures. We downloaded up
to 3,200 of each user’s most recent tweets, leading
to a total of 25,493,407 tweets. All tweets were
downloaded around 10 August 2016.

4 Features

In our analysis, we use a broad range of linguistic
features described below.
Unigrams We use the bag-of-words representa-
tion to reduce each user’s posting history to a nor-
malised frequency distribution over the vocabulary
consisting of all words used by at least 10% of the
users (6,060 words).
LIWC Traditional psychological studies use a
dictionary-based approach to representing text.
The most popular method is based on Linguis-
tic Inquiry and Word Count (LIWC) (Pennebaker
et al., 2001), and automatically counts word fre-
quencies for 64 different categories manually con-
structed based on psychological theory. These in-
clude different parts-of-speech, topical categories
and emotions. Each user is thereby represented as
a frequency distribution over these categories.
Word2Vec Topics An alternative to LIWC is to
use automatically generated word clusters i.e.,
groups of words that are semantically and/or syn-
tactically similar. The clusters help reducing
the feature space and provides additional inter-
pretability.

To create these groups of words, we use an au-
tomatic method that leverages word co-occurrence
patterns in large corpora by making use of the dis-
tributional hypothesis: similar words tend to co-
occur in similar contexts (Harris, 1954). Based
on co-occurrence statistics, each word is repre-
sented as a low dimensional vector of numbers
with words closer in this space being more simi-
lar (Deerwester et al., 1990). We use the method
from (Preoţiuc-Pietro et al., 2015a) to compute
topics using word2vec similarity (Mikolov et al.,
2013a,b) and spectral clustering (Shi and Malik,
2000; von Luxburg, 2007) of different sizes (from
30 to 2000). We have tried other alternatives to
building clusters: using other word similarities to

731

generate clusters – such as NPMI (Lampos et al.,
2014) or GloVe (Pennington et al., 2014) as pro-
posed in (Preoţiuc-Pietro et al., 2015a) – or us-
ing standard topic modelling approached to create
soft clusters of words e.g., Latent Dirichlet Allo-
cation (Blei et al., 2003). For brevity, we present
experiments with the best performing feature set
containing 500 Word2Vec clusters. We aggregate
all the words posted in a users’ tweets and repre-
sent each user as a distribution of the fraction of
words belonging to each cluster.
Sentiment & Emotions We hypothesise that dif-
ferent political ideologies differ in the type and
amount of emotions the users express through
their posts. The most studied model of dis-
crete emotions is the Ekman model (Ekman,
1992; Strapparava and Mihalcea, 2008; Strappa-
rava et al., 2004) which posits the existence of
six basic emotions: anger, disgust, fear, joy, sad-
ness and surprise. We automatically quantify these
emotions from our Twitter data set using a publicly
available crowd-sourcing derived lexicon of words
associated with any of the six emotions, as well as
general positive and negative sentiment (Moham-
mad and Turney, 2010, 2013). Using these lexi-
cons, we assign a predicted emotion to each mes-
sage and then average across all users’ posts to ob-
tain user level emotion expression scores.
Political Terms In order to select unigrams per-
taining to politics, we assigned the most frequent
12,000 unigrams in our data set to three categories:
• Political words: mentions of political terms

(234);
• Political NEs: mentions of politician proper

names out of the political terms (39);
• Media NEs: mentions of political media

sources and pundits out of the political terms
(20).

This coding was initially performed by a re-
search assistant studying political science with
good knowledge of US politics and were further
filtered and checked by one of the authors.

5 Analysis

First, we explore the relationships between lan-
guage use and political ideological groups within
each feature set and pairs of opposing user
groups. To illustrate differences between ideolog-
ical groups we compare the two political extremes
(Very Conservative – Very Liberal) and the politi-
cal moderates (Moderate Conservative – Moderate

Liberal). We further compare outright moderates
with a group combining the two political extremes
to study if we can uncover differences in politi-
cal engagement and extremity, regardless of the
conservative–liberal leaning.

We use univariate partial linear correlations
with age and gender as co-variates to factor out
the influence of basic demographics. For ex-
ample, in D1, users who reported themselves as
very conservative are older and more likely males
(µage = 35.1, pctmale = 44%) than the data av-
erage (µage = 31.2, pctmale = 35%). Addi-
tionally, prior to combining the two ideologically
extreme groups, we sub-sampled the larger class
(Very Liberal) to match the smaller class (Very
Conservative) in age and gender. In the later pre-
diction experiments, we do not perform match-
ing, as this represents useful signal for classifica-
tion (Ellis and Stimson, 2012). Results with uni-
grams are presented in Figure 2 and with the other
features in Table 1. These are selected using stan-
dard statistical significance tests.

5.1 Very Conservatives vs. Very Liberals
The comparison between the extreme categories
reveals the largest number of significant differ-
ences. The unigrams and Word2Vec clusters
specific to conservatives are dominated by re-
ligion specific terms (‘praying’, ‘god’, W2V-
485, W2V-018, W2V-099, L-RELIG), confirming
a well-documented relationship (Gelman, 2009)
and words describing family relationships (‘un-
cle’, ‘son’, L-FAMILY), another conservative
value (Lakoff, 1997). The emphasis on reli-
gious terms among conservatives is consistent
with the claim that many Americans associate
‘conservative’ with ‘religious’ (Ellis and Stim-
son, 2012). Extreme liberals show a tendency to
use more adjectives (W2V-075, W2V-110), ad-
verbs (L-ADVERB), conjunctions (L-CONJ) and
comparisons (L-COMPARE) which indicate more
nuanced and complex posts. Extreme conser-
vatives post tweets higher in all positive emo-
tions than liberals (L-POSEMO, Emot-Joy, Emot-
Positive), confirming a previously hypothesised
relationship (Napier and Jost, 2008). However, ex-
treme liberals are not associated with posting neg-
ative emotions either, only using words that reflect
more anxiety (L-ANX), which is related to neu-
roticism in which the liberals are higher (Gerber
et al., 2010).

Political term analysis reveals the partisan terms

732

(a) V.Con.(1) vs. V.Lib.(7) (c) M.Con.(3) vs. M.Lib.(5) (e) Moderates (4) vs. V.Con.(1) + V.Lib.(7)

(b) V.Con.(1) vs. V.Lib.(7) (d) M.Con.(3) vs. M.Lib.(5) (f) Moderates (4) vs. V.Con.(1) + V.Lib.(7)

Figure 2: Unigrams with the highest 80 Pearson correlations shown as word clouds in three vertical panels with a binary
variable representing the two ideological groups compared. The size of the unigram is scaled by its correlation with the
ideological group in bold. The color indexes relative frequency, from light blue (rarely used) to dark blue (frequently used). All
correlations are significant at p < .05 and controlled for age and gender.

r Category Words r Category Words
V.Con.(1) vs. V.Lib.(7) V.Con.(1) vs. V.Lib.(7)
.249 W2V–485 god, peace, thankful, pray, bless, blessed, prayers, praying .236 W2V–075 bad, kind, weird, kinda, horrible, creepy, strange, extremely
.180 W2V–018 jesus, lord, christ, sin, grace, god’s, praise, gods, glory, thou .195 W2V–238 an, excuse, actual, idiot, asshole, example, absolute
.156 W2V–099 church, bible, serve, worship, preach, christians, pastor .192 W2V–487 into, through, must, myself, decided, completely, upon
.140 W2V–491 soooo, soo, sooooo, soooooo, tooo, sooooooo, toooo .191 W2V–110 quite, awful, exciting, brilliant, perfectly, usual
.119 W2V–027 kno, yu, abt, tht, dnt, wut, tru, somethin, ion, wen .186 W2V–448 off, almost, whole, literally, entire, basically, ridiculous
.204 L–RELIG god, hell, holy, soul, pray, angel, praying, christ, sin, amen .175 L–ANX awkward, worry, scared, fear, afraid, horrible, scary, upset
.145 L–POSEMO love, good, lol, :), great, happy, best, thanks, win, free .164 L–ADVERB just, so, when, about, now, how, too, why, back, really
.127 L–FAMILY baby, family, mom, dad, son, bro, mother, babies, fam, folks .161 L–CONJ and, so, but, if, when, how, as, or, because, then
.118 L–NETSPEAK rt, u, lol, :), twitter, gonna, yo, ur, omg, ya .147 L–COMPARE like, more, as, best, than, better, after, most, before, same
.101 L–YOU you, your, u, you’re, ur, ya, yourself, youre, you’ll, you’ve .138 L–DIFFER not, but, if, or, really, can’t, than, other, didn’t, actually
.152 Emot–Joy love, good, happy, hope, god, birthday, fun, favorite, pretty
.086 Emot–Positive love, good, happy, hope, god, birthday, real, fun, favorite
.107 Emot–Surprise good, hope, birthday, excited, money, finally, chance, guess
.132→

.068
Political Terms #pjnet, #tcot, @foxnews, polls, @realdonaldtrump, @ted-

cruz, @yahoonews

.161→

.090
Political Terms

gay, sanders, racism, racist, rape, @barackobama, democ-
racy, feminist, democratic, protesting, protest, bernie, femi-
nism, protesters, transgender

M.Con.(3) vs. M.Lib.(5) M.Con.(3) vs. M.Lib.(5)
.108 W2V–485 god, peace, thankful, pray, bless, blessed, prayers, praying .116 W2V–458 hilarious, celeb, capaldi, corrie, chatty, corden, barrowman
.088 W2V–018 jesus, lord, christ, sin, grace, god’s, praise, gods, glory, thou .106 W2V–373 photo, art, pictures, photos, instagram, photoset, image
.085 W2V–214 frank, savage, brad, ken, kane, pitt, watson, leonardo .106 W2V–316 hot, sex, naked, adult, teen, porn, lesbian, tube, tits
.085 W2V–436 luck, lucky, boss, sir, c’mon, mate, bravo, ace, pal, keeper .087 W2V–024 turn, accidentally, barely, constantly, onto, bug, suddenly

.086 W2V–389 ha, ooo, uh, ohhh, ohhhh, ma’am, gotcha, gee, ohhhhh
.096 L–RELIG god, hell, holy, soul, pray, angel, praying, christ, sin, amen .104 L–SEXUAL fuck, gay, sex, sexy, dick, naked, fucks, cock, aids, cum
.093 L–DRIVES love, good, lol, :), great, happy, best, thanks, win, free .088 L–ANGER hate, fuck, hell, stupid, mad, sucks, suck, war, dumb, ugly
.093 L–WE we, our, us, let’s, we’re, lets, we’ll, we’ve, ourselves, we’d
.087 L–AFFILIATION love, we, our, use, help, twitter, friends, family, join, friend
.086 Emot–Joy love, good, happy, hope, god, birthday, fun, favorite, pretty .097 Emot–Disgust bad, hate, shit, finally, damn, feeling, hell, bitch, boy, sick
.096 Political Terms islamic .136 Political Terms rape

.086 rights
Moderates (4) vs. V.Con.(1)+V.Lib.(7) Moderates (4) vs. V.Con.(1)+V.Lib.(7)
.084 W2V–098 girls, boys, em, ladies, bitches, hoes, grown, dudes, dem .191 W2V–309 obama, president, scott, hillary, romney, clinton, ed, sarah

.188 W2V–237 freedom, violence, revolution, muslim, muslims, terrorists

.184 W2V–269 bill, rights, congress, gop, republicans, republican, passes

.174 W2V–296 justice, rule, crusade, civil, pope, plot, humanity, terror

.160 W2V–288 law, general, legal, safety, officer, emergency, agent

.120 L–POWER up, best, over, win, down, help, god, big, high, top

.103 L–RELIG god, hell, holy, soul, pray, angel, praying, christ, sin, amen

.100 L–ARTICLE the, a, an

.089 L–DEATH dead, die, died, war, alive, dying, wars, dies, buried, bury

.083 L–RISK bad, stop, wrong, worst, lose, trust, safe, worse, losing

.118 Emot–Fear watch, bad, god, hate, change, feeling, hell, crazy, bitch, die

.094 Emot–Disgust bad, hate, shit, finally, damn, feeling, hell, bitch, boy, sick

.086 Emot–Negative wait, bad, hate, shit, black, damn, ass, wrong, vote, feeling

.084 Emot–Sadness bad, hate, music, black, vote, feeling, hell, crazy, lost, bitch

.181→

.103
Political Terms

obama, liberal, president, government, senators, bernie,
law, #demdebate, same-sex, feminist, congress, republi-
cans, clinton, gay, #p2, iran, activists, bush, sanders, oba-
macare, terrorists, justice, debate, republican, #obamacare,
@moveon, @barackobama, #tcot, democrats, politics, ...

Table 1: Pearson correlations between political ideology groups and text features, split into Word2Vec clusters (W2V), LIWC
categories (L), emotions (Emot) and political terms (maximum 5 categories per group). All correlations are significant at
p < .01, two-tailed t-test and are controlled for age and gender. Words in a category are sorted by frequency in our data set.

employed by both sides. For example, conserva-
tives retweet or mention politicians such as Don-
ald Trump or Ted Cruz, while liberals mention

Barack Obama. Extreme conservatives also ref-
erence known partisan conservative media sources
(@foxnews, @yahoonews) and hashtags (#pjnet,

733

#tcot), while extreme liberals focus on issues
(‘gay’, ‘racism’, ‘feminism’, ‘transgender’). This
perhaps reflects the desire for conservatives on
Twitter to identify like-minded individuals, as ex-
treme conservatives are a minority on the plat-
form. Liberals, by contrast, use the platform to
discuss and popularize their causes.

5.2 Moderate Conservatives vs. Moderate
Liberals

Comparing the two sides of moderate users re-
veals a slightly more nuanced view of the two
ideologies. While moderate conservatives still
make heavy use of religious terms and express
positive emotions (Emot-Joy, L-DRIVES), they
also use affiliative language (L-AFFILIATION)
and plural pronouns (L-WE). Moderate liberals
are identified by very different features compared
to their more extreme counterparts. Most striking
is the use of swear and sex words (L-SEXUAL,
L-ANGER, W2V-316), also highlighted by Syl-
wester and Purver (2015). Two word clusters re-
lating to British culture (W2V-458) and art (W2V-
373) reflect that liberals are more inclined towards
arts (Dollinger, 2007). Statistically significant po-
litical terms are very few compared to the previ-
ous comparison, probably due to their lower over-
all usage, which we further investigate later.

5.3 Moderates vs. Extremists
Our final comparison looks at outright moder-
ates compared to the two extreme groups com-
bined, as we hypothesise the existence of a dif-
ference in overall political engagement. Moder-
ates are not characterized by many features be-
sides a topic of casual words (W2V-098), indicat-
ing the heterogeneity of this group of users. How-
ever, regardless of their orientation, the ideologi-
cal extremists stand out from moderates. They use
words and word clusters related to political actors
(W2V-309), issues (W2V-237) and laws (W2V-
296, W2V-288). LIWC analysis uncovers differ-
ences in article use (L-ARTICLE) or power words
(L-POWER) specific of political tweets. The over-
all sentiment of these users is negative (Emot-Fear,
Emot-Disgust, Emot-Sadness, L-DEATH) com-
pared to moderates. This reveals – combined with
the finding from the first comparison – that while
extreme conservatives are overall more positive
than liberals, both groups share negative expres-
sion. Political terms are almost all significantly
correlated with the extreme ideological groups,

2.64

0.76

0.55
0.42

0.36
0.46 0.51

0.76

2.95

0.73

0.24
0.14

0.07 0.07 0.09 0.12
0.19

0.79

0.11 0.03 0.03 0.02 0.02 0.03 0.03 0.04 0.18
0.00

0.50

1.00

1.50

2.00

2.50

3.00

D2: Con. V.Con.(1) Con.(2) M.Con.(3) Mod.(4) M.Lib.(5) Lib.(6) V.Lib.(7) D2: Lib.

Political words

Political NEs

Media NEs

Figure 3: Distribution of political word and entity usage
across political categories in % from the total words used.
Users from data setD2 who are following the accounts of the
four political figures are prefixed with D2. The rest of the
categories are from data set D1.

confirming the existence of a difference in polit-
ical engagement which we study in detail next.

5.4 Political Terms

Figure 3 presents the use of the three types of po-
litical terms across the 7 ideological groups in D1

and the two political groups from D2. We notice
the following:
• D2 has a huge skew towards political words,

with an average of more than three times more
political terms across all three categories than
our extreme classes from D1;
• Within the groups in D1, we observe an almost

perfectly symmetrical U-shape across all three
types of political terms, confirming our hypoth-
esis about political engagement;
• The difference between 1–2/6–7 is larger than

2–3/5–6. The extreme liberals and conserva-
tives are disproportionately political, and have
the potential to give Twitter’s political discus-
sions an unrepresentative, extremist hue (Fio-
rina, 1999). It is also possible, however, that
characterizing one as an extreme liberal or con-
servative indicates as much about her level of
political engagement as it does about her place-
ment on a left-right scale (Converse, 1964;
Broockman, 2016).

6 Prediction

In this section we build predictive models of po-
litical ideology and compare them to data sets ob-
tained using previous work.

734

6.1 Cross-Group Prediction

First, we experiment with classifying between
conservatives and liberals across various levels of
political engagement in D1 and between the two
polarized groups in D2. We use logistic regres-
sion classification to compare three setups in Ta-
ble 2 with results measured with ROC AUC as the
classes are slightly inbalanced:
• 10-fold cross-validation where training is per-

formed on the same task as the testing (principal
diagonal);
• A train–test setup where training is performed

on one task (presented in rows) and testing is
performed on another (presented in columns);
• A domain adaptation setup (results in brack-

ets) where on each of the 10 folds, the 9 train-
ing folds (presented in rows) are supplemented
with all the data from a different task (pre-
sented in columns) using the EasyAdapt algo-
rithm (Daumé III, 2007) as a proof on concept
on the effects of using additional distantly su-
pervised data. Data pooling lead to worse re-
sults than EasyAdapt.

Each of the three tasks from D1 have a similar
number of training samples, hence we do not ex-
pect that data set size has any effects in comparing
the results across tasks.

The results with both sets of features show that:
• Prediction performance is much higher for D2

than for D1, with the more extreme groups in
D1 being easier to predict than the moderate
groups. This confirms that the very high accu-
racies reported by previous research are an arti-
fact of user label collection and that on regular
users, the expected accuracy is much lower (Co-
hen and Ruths, 2013). We further show that, as
the level of political engagement decreases, the
classification problem becomes even harder;
• The model trained on D2 and Word2Vec word

clusters performs significantly worse on D1

tasks even if the training data is over 10 times
larger. When using political words, the D2

trained classifier performs relatively well on all
tasks from D1;
• Overall, using political words as features per-

forms better than Word2Vec clusters in the bi-
nary classification tasks;
• Domain adaptation helps in the majority of

cases, leading to improvements of up to .03 in
AUC (predicting 2v6 supplemented with 3v5
data).

Train Test
1v7 2v6 3v5 D2

1v7 .785 .639 (.681) .575 (.598) .705 (.887)
2v6 .729 (.789) .662 .574 (.586) .663 (.889)
3v5 .618 (.778) .617 (.690) .581 .684 (.887)
D2 .708 (.764) .627 (.644) .571 (.574) .891

(a) Word2Vec 500

Train Test
1v7 2v6 3v5 D2

1v7 .785 .657 (.679) .589 (.616) .928 (.976)
2v6 .739 (.773) .679 .593 (.612) .920 (.976)
3v5 .727 (.766) .636 (.670) .590 .891 (.976)
D2 .766 (.789) .677 (.683) .625 (.613) .972

(b) Political Terms

Table 2: Prediction results of the logistic regression classi-
fication in ROC AUC when discriminating between two po-
litical groups across different levels of engagement and both
data sets. The binary classifier from data set D2 is repre-
sented by D2, the rest of the categories are from data set
D1. Results on the principal diagonal represent 10-fold cross-
validation results (training in-domain). Results off-diagonal
represent training the classifier from the column and testing
on the problem indicated in the row (training out-of-domain).
Numbers in brackets indicate performance when the training
data was added in the 10-fold cross-validation setup using the
EasyAdapt algorithm (domain adaptation). Best results with-
out domain adaptation are in bold, while the best results with
domain adaptation are in italics.

6.2 Political Leaning and Engagement
Prediction

Political leaning (Conservative – Liberal, exclud-
ing the Moderate group) can be considered an or-
dinal variable and the prediction problem framed
as one of regression. In addition to the political
leaning prediction, based on analysis and previous
prediction results, we hypothesize the existence of
a separate dimension of political engagement re-
gardless of the partisan side. Thus, we merge users
from classes 3–5, 2–6, 1–7 and create a variable
with four values, where the lowest value is repre-
sented by moderate users (4) and the highest value
is represented by either very conservative (1) or
very liberal (7) users.

We use a linear regression algorithm with an
Elastic Net regularizer (Zou and Hastie, 2005)
as implemented in ScikitLearn (Pedregosa et al.,
2011). To evaluate our results, we split our
data into 10 stratified folds and performed cross-
validation on one held-out fold at a time. For all
our methods we tune the parameters of our models
on a separate validation fold. The overall perfor-
mance is assessed using Pearson correlation be-
tween the set of predicted values and the user-
reported score. Results are presented in Table 3.

735

The same patterns hold when evaluating the results
with Root Mean Squared Error (RMSE).

Features #
Feat.

Political
Leaning

Political
Engagement

Unigrams 6060 .294 .165
LIWC 73 .286 .149
Word2Vec Clusters 500 .300 .169
Emotions 8 .145 .079
Political Terms 234 .256 .169
All (Ensemble) 5 .369 .196

Table 3: Pearson correlations between the predictions and
self-reported ideologies using linear regression with each fea-
ture category and a linear combination of their predictions in
a 10-fold cross-validation setup. Political leaning is repre-
sented on the 1–7 scale removing the moderates (4). Political
engagement is a scale ranging from 4 through 3–5 and 2–6 to
1–7.

The results show that both dimensions can
be predicted well above chance, with political
leaning being easier to predict than engagement.
Word2Vec clusters obtain the highest predictive
accuracy for political leaning, even though they
did not perform as well in the previous classifi-
cation tasks. For political engagement, political
terms and Word2Vec clusters obtain similar pre-
dictive accuracy. This result is expected based on
the results from Figure 3, which showed how po-
litical term usage varies across groups, and how
it is especially dependent on political engagement.
While political terms are very effective at distin-
guishing between two opposing political groups,
they can not discriminate as well between levels
of engagement within the same ideological orien-
tation. Combining all classifiers’ predictions in
a linear ensemble obtains best results when com-
pared to each individual category.

6.3 Encoding Class Structure
In our previous experiments, we uncovered that
certain relationships exist between the seven
groups. For example, extreme conservatives and
liberals both demonstrate strong political engage-
ment. Therefore, this class structure can be ex-
ploited to improve classification performance. To
this end, we deploy the sparse graph regularized
approach (Argyriou et al., 2007; Zhou et al., 2011)
to encode the structure of the seven classes as a
graph regularizer in a logistic regression frame-
work.

In particular, we employed a multi-task learn-
ing paradigm, where each task is a one-vs-all clas-
sification. Multi-task learning (MTL) is a learn-
ing paradigm that jointly learns multiple related

Method Accuracy
Baseline 19.6%

LR 22.2%
GR–Engagement 24.2%

GR–Leaning 26.2%
GR–Learnt 27.6%

Table 4: Experimental results for seven-way classification
using multi-task learning (GR–Engagement, GR–Leaning,
GR-Learnt) and 500 Word2Vec clusters as features.

tasks and can achieve better generalization per-
formance than learning each task individually, es-
pecially when presented with insufficient training
samples (Liu et al., 2015, 2016b,d). The group
structure is encoded into a matrix R which codes
the groups which are considered similar. The ob-
jective of the sparse graph regularized multi-task
learning problem is:

min
W,c

τ∑

t=1

N∑

i=1

log(1 + exp(−Yt,i(WT
i,tXt,i + ct)))

+ γ‖WR‖2F + λ‖W‖1,

where τ is the number of tasks, |N | the number
of samples, X the feature matrix, Y the outcome
matrix, Wi,t and ct is the model for task t and R is
the structure matrix.

We define three R matrices: (1) codes that
groups with similar political engagement are sim-
ilar (i.e. 1–7, 2–6, 3–5); (2) codes that groups
from each ideological side are similar (i.e. 1–2,
1–3, 2–3, 5–6, 5–7, 6–7); (3) learnt from the data.
Results are presented in Table 4. Regular logistic
regression performs slightly better than the major-
ity class baseline, which demonstrates that the 7-
class classification is a very hard problem although
most miss-classifications are within one ideology
point. The graph regularization (GR) improves
the classification performance over logistic regres-
sion (LR) in all cases, with political leaning based
matrix (GR–Leaning) obtaining 2% in accuracy
higher than the political engagement one (GR–
Engagement) and the learnt matrix (GR–Learnt)
obtaining best results.

7 Conclusions

This study analyzed user-level political ideology
through Twitter posts. In contrast to previous
work, we made use of a novel data set where fine-
grained user political ideology labels are obtained
through surveys as opposed to binary self-reports.
We showed that users in our data set are far less

736

likely to post about politics and real-world fine-
grained political ideology prediction is harder and
more nuanced than previously reported. We ana-
lyzed language differences between the ideologi-
cal groups and uncovered a dimension of political
engagement separate from political leaning.

Our work has implications for pollsters or mar-
keters, who are most interested to identify and
persuade moderate users. With respect to polit-
ical conclusions, researchers commonly concep-
tualize ideology as a single, left-right dimension
similar to what we observe in the U.S. Congress
(Ansolabehere et al., 2008; Bafumi and Herron,
2010). Our results suggest a different direction:
self-reported political extremity is more an indi-
cation of political engagement than of ideological
self-placement (Abramowitz, 2010). In fact, only
self-reported extremists appear to devote much of
their Twitter activity to politics at all.

While our study focused solely on text posted
by the user, follow-up work can use other modal-
ities such as images or social network analysis
to improve prediction performance. In addition,
our work on user-level modeling can be integrated
with work on message-level political bias to study
how this is revealed across users with various lev-
els of engagement. Another direction of future
study will look at political ideology prediction in
other countries and cultures, where ideology has
different or multiple dimensions.

Acknowledgments

The authors acknowledge the support of the Tem-
pleton Religion Trust, grant TRT-0048. We wish
to thank Prof. David S. Rosenblum for supporting
the research visit of Ye Liu.

References

Alan I Abramowitz. 2010. The Disappearing Cen-
ter: Engaged Citizens, Polarization, and American
Democracy. Yale University Press.

Firoj Alam and Giuseppe Riccardi. 2014. Predicting
Personality Traits using Multimodal Information. In
Workshop on Computational Personality Recogni-
tion (WCPR). MM, pages 15–18.

Stephen Ansolabehere, Jonathan Rodden, and James M
Snyder. 2008. The strength of issues: Using multi-
ple measures to gauge preference stability, ideologi-
cal constraint, and issue voting. American Political
Science Review 102(02):215–232.

Andreas Argyriou, Theodoros Evgeniou, and Massi-
miliano Pontil. 2007. Multi-task Feature Learning.
In Advances in Neural Information Processing Sys-
tems. NIPS, pages 41–49.

Joseph Bafumi and Michael C Herron. 2010. Leapfrog
Representation and Extremism: A Study of Ameri-
can Voters and their Members in Congress. Ameri-
can Political Science Review 104(03):519–542.

Pablo BarberASa. 2015. Birds of the Same Feather
Tweet Together: Bayesian Ideal Point Estimation us-
ing Twitter Data. Political Analysis 23(1):76–91.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet Allocation. Journal of Ma-
chine Learning Research 3:993–1022.

David E Broockman. 2016. Approaches to Studying
Policy Representation. Legislative Studies Quar-
terly 41(1):181–215.

D. John Burger, John Henderson, George Kim, and
Guido Zarrella. 2011. Discriminating Gender on
Twitter. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing. EMNLP, pages 1301–1309.

Jordan Carpenter, Daniel Preoţiuc-Pietro, Lucie
Flekova, Salvatore Giorgi, Courtney Hagan, Mar-
garet Kern, Anneke Buffone, Lyle Ungar, and Mar-
tin Seligman. 2016. Real Men don’t say ’Cute’: Us-
ing Automatic Language Analysis to Isolate Inaccu-
rate Aspects of Stereotypes. Social Psychological
and Personality Science .

Zhiyuan Cheng, James Caverlee, and Kyumin Lee.
2010. You are where you Tweet: A Content-Based
Approach to Geo-Locating Twitter Users. In Pro-
ceedings of the 19th ACM Conference on Infor-
mation and Knowledge Management. CIKM, pages
759–768.

Raviv Cohen and Derek Ruths. 2013. Classifying Po-
litical Orientation on Twitter: It’s Not Easy! In Pro-
ceedings of the Seventh International AAAI Confer-
ence on Weblogs and Social Media. ICWSM, pages
91–99.

Michael D Conover, Bruno Gonçalves, Jacob
Ratkiewicz, Alessandro Flammini, and Filippo
Menczer. 2011. Predicting the Political Alignment
of Twitter Users. In IEEE Third International
Conference on Privacy, Security, Risk and Trust
(PASSAT) and the IEEE Third Inernational Con-
ference on Social Computing (SocialCom). pages
192–199.

Philip E Converse. 1964. The Nature of Belief Systems
in Mass Publics. In David Apter, editor, Ideology
and Discontent, Free Press, New York.

Hal Daumé III. 2007. Frustratingly Easy Domain
Adaptation. In Proceedings of the 45th Annual
Meeting of the Association for Computational Lin-
guistics. ACL, pages 256–263.

737

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by Latent Semantic Analysis. Jour-
nal of the American Society for Information Science
41(6):391–407.

Stephen J Dollinger. 2007. Creativity and Conser-
vatism. Personality and Individual Differences
43(5):1025–1035.

Paul Ekman. 1992. An Argument for Basic Emotions.
Cognition & Emotion 6(3-4):169–200.

Christopher Ellis and James A Stimson. 2012. Ideol-
ogy in America. Cambridge University Press.

Morris P Fiorina. 1999. Extreme Voices: A Dark
Side of Civic Engagement. In Morris P. Fiorina and
Theda Skocpol, editors, Civic engagement in Amer-
ican democracy, Washington, DC: Brookings Insti-
tution Press, pages 405–413.

Lucie Flekova, Jordan Carpenter, Salvatore Giorgi,
Lyle Ungar, and Daniel Preoţiuc-Pietro. 2016a. An-
alyzing Biases in Human Perception of User Age
and Gender from Text. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics. ACL, pages 843–854.

Lucie Flekova, Lyle Ungar, and Daniel Preoctiuc-
Pietro. 2016b. Exploring Stylistic Variation with
Age and Income on Twitter. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics. ACL, pages 313–319.

Andrew Gelman. 2009. Red State, Blue State, Rich
State, Poor State: Why Americans Vote the Way they
Do. Princeton University Press.

Alan S Gerber, Gregory A Huber, David Doherty,
Conor M Dowling, and Shang E Ha. 2010. Person-
ality and Political Attitudes: Relationships across Is-
sue Domains and Political Contexts. American Po-
litical Science Review 104(01):111–133.

Jeffrey A Hall, Natalie Pennington, and Allyn Lueders.
2014. Impression Management and Formation on
Facebook: A Lens Model Approach. New Media &
Society 16(6):958–982.

Z. Harris. 1954. Distributional Structure. Word
10(23):146 – 162.

Eitan D Hersh. 2015. Hacking the Electorate: How
Campaigns Perceive Voters. Cambridge University
Press.

Mohit Iyyer, Peter Enns, Jordan Boyd-Graber, and
Philip Resnik. 2014. Political Ideology Detection
using Recursive Neural Networks. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics. ACL, pages 1113–1122.

Cindy D Kam, Jennifer R Wilking, and Elizabeth J
Zechmeister. 2007. Beyond the Narrow Data base:
Another Convenience Sample for Experimental Re-
search. Political Behavior 29(4):415–440.

Michal Kosinski, David Stillwell, and Thore Graepel.
2013. Private Traits and Attributes are Predictable
from Digital Records of Human Behavior. PNAS
110(15):5802–5805.

George Lakoff. 1997. Moral Politics: What Conser-
vatives Know that Liberals Don’t. University of
Chicago Press.

Vasileios Lampos, Nikolaos Aletras, Daniel Preoţiuc-
Pietro, and Trevor Cohn. 2014. Predicting and Char-
acterising User Impact on Twitter. In Proceedings of
the 14th Conference of the European Chapter of the
Association for Computational Linguistics. EACL,
pages 405–413.

Randall A Lewis and David H Reiley. 2014. On-
line Ads and Offline Sales: Measuring the Effect
of Retail Advertising via a Controlled Experiment
on Yahoo! Quantitative Marketing and Economics
12(3):235–266.

Leqi Liu, Daniel Preoţiuc-Pietro, Zahra Riahi Samani,
Mohsen E. Moghaddam, and Lyle Ungar. 2016a.
Analyzing Personality through Social Media Profile
Picture Choice. In Proceedings of the Tenth Inter-
national AAAI Conference on Weblogs and Social
Media. ICWSM, pages 211–220.

Ye Liu, Liqiang Nie, Lei Han, Luming Zhang, and
David S Rosenblum. 2015. Action2Activity: Rec-
ognizing Complex Activities from Sensor Data. In
Proceedings of the International Joint Conference
on Artificial Intelligence. IJCAI, pages 1617–1623.

Ye Liu, Liqiang Nie, Li Liu, and David S Rosenblum.
2016b. From Action to Activity: Sensor-based Ac-
tivity Recognition. Neurocomputing 181:108–115.

Ye Liu, Luming Zhang, Liqiang Nie, Yan Yan, and
David S Rosenblum. 2016c. Fortune Teller: Predict-
ing your Career Path. In Proceedings of the AAAI
Conference on Artificial Intelligence. AAAI, pages
201–207.

Ye Liu, Yu Zheng, Yuxuan Liang, Shuming Liu, and
David S. Rosenblum. 2016d. Urban Water Quality
Prediction Based on Multi-task Multi-view Learn-
ing. In Proceedings of the International Joint
Conference on Artificial Intelligence. IJCAI, pages
2576–2582.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013a. Distributed Repre-
sentations of Words and Phrases and their Compo-
sitionality. In Advances in Neural Information Pro-
cessing Systems. NIPS, pages 3111–3119.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig.
2013b. Linguistic Regularities in Continuous Space
Word Representations. In Proceedings of the 2010
annual Conference of the North American Chap-
ter of the Association for Computational Linguistics.
NAACL, pages 746–751.

738

Saif M. Mohammad and Peter D. Turney. 2010. Emo-
tions Evoked by Common Words and Phrases: Us-
ing Mechanical Turk to Create an Emotion Lexicon.
In Proceedings of the Workshop on Computational
Approaches to Analysis and Generation of Emotion
in Text. NAACL, pages 26–34.

Saif M. Mohammad and Peter D. Turney. 2013.
Crowdsourcing a Word-Emotion Association Lexi-
con. Computational Intelligence 29(3):436–465.

Burt L Monroe, Michael P Colaresi, and Kevin M
Quinn. 2008. Fightin’ Words: Lexical Feature Se-
lection and Evaluation for Identifying the Content of
Political Conflict. Political Analysis 16(4):372–403.

Jaime L Napier and John T Jost. 2008. Why are Con-
servatives Happier than Liberals? Psychological
Science 19(6):565–572.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine Learning in Python. JMLR 12.

Marco Pennacchiotti and Ana-Maria Popescu. 2011. A
Machine Learning Approach to Twitter User Classi-
fication. In Proceedings of the Fifth International
AAAI Conference on Weblogs and Social Media.
ICWSM, pages 281–288.

James W. Pennebaker, Martha E. Francis, and Roger J.
Booth. 2001. Linguistic Inquiry and Word Count.
Mahway: Lawrence Erlbaum Associates.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global Vectors for
Word Representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing. EMNLP, pages 1532–1543.

Bryan Perozzi and Steven Skiena. 2015. Exact Age
Prediction in Social Networks. In Proceedings of
the 24th International Conference on World Wide
Web. WWW, pages 91–92.

Daniel Preoţiuc-Pietro, Jordan Carpenter, Salvatore
Giorgi, and Lyle Ungar. 2016. Studying the Dark
Triad of Personality using Twitter Behavior. In
Proceedings of the 25th ACM Conference on Infor-
mation and Knowledge Management. CIKM, pages
761–770.

Daniel Preoţiuc-Pietro, Vasileios Lampos, and Niko-
laos Aletras. 2015a. An Analysis of the User Oc-
cupational Class through Twitter Content. In Pro-
ceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing. ACL, pages 1754–1764.

Daniel Preoţiuc-Pietro, Svitlana Volkova, Vasileios
Lampos, Yoram Bachrach, and Nikolaos Aletras.
2015b. Studying User Income through Language,
Behaviour and Affect in Social Media. PLoS ONE .

Anna Priante, Djoerd Hiemstra, Tijs van den Broek,
Aaqib Saeed, Michel Ehrenhard, and Ariana Need.
2016. #WhoAmI in 160 Characters? Classifying
Social Identities Based on Twitter. In Proceedings
of the Workshop on Natural Language Processing
and Computational Social Science. EMNLP, pages
55–65.

Delip Rao, David Yarowsky, Abhishek Shreevats, and
Manaswi Gupta. 2010. Classifying Latent User At-
tributes in Twitter. In Proceedings of the 2nd In-
ternational Workshop on Search and Mining User-
generated Contents. SMUC, pages 37–44.

Dominic Rout, Daniel Preoţiuc-Pietro, Bontcheva
Kalina, and Trevor Cohn. 2013. Where’s @wally: A
Classification Approach to Geolocating Users based
on their Social Ties. In Proceedings of the 24th
ACM Conference on Hypertext and Social Media.
HT, pages 11–20.

Maarten Sap, Gregory Park, Johannes C. Eichstaedt,
Margaret L. Kern, David J. Stillwell, Michal Kosin-
ski, Lyle H. Ungar, and Hansen Andrew Schwartz.
2014. Developing Age and Gender Predictive Lex-
ica over Social Media. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing. EMNLP, pages 1146–1151.

H Andrew Schwartz, Johannes C Eichstaedt, Mar-
garet L Kern, Lukasz Dziurzynski, Stephanie M Ra-
mones, Megha Agrawal, Achal Shah, Michal Kosin-
ski, David Stillwell, and Martin EP Seligman. 2013.
Personality, Gender, and Age in the Language of So-
cial Media: The Open-vocabulary Approach. PloS
ONE 8(9).

Jianbo Shi and Jitendra Malik. 2000. Normalized Cuts
and Image Segmentation. Transactions on Pattern
Analysis and Machine Intelligence 22(8):888–905.

Carlo Strapparava and Rada Mihalcea. 2008. Learn-
ing to Identify Emotions in Text. In Proceedings of
the 2008 ACM Symposium on Applied Computing.
pages 1556–1560.

Carlo Strapparava, Alessandro Valitutti, et al. 2004.
WordNet Affect: an Affective Extension of Word-
Net. In Proceedings of the Fourth International
Conference on Language Resources and Evaluation.
volume 4 of LREC, pages 1083–1086.

Ramanathan Subramanian, Yan Yan, Jacopo Staiano,
Oswald Lanz, and Nicu Sebe. 2013. On the Rela-
tionship between Head Pose, Social Attention and
Personality Prediction for Unstructured and Dy-
namic Group Interactions. In Proceedings of the
15th ACM on International Conference on Multi-
modal Interaction. ICMI, pages 3–10.

Karolina Sylwester and Matthew Purver. 2015. Twitter
Language Use Reflects Psychological Differences
between Democrats and Republicans. PLoS ONE
10(9).

739

Brandon Van Der Heide, Jonathan D D’Angelo, and
Erin M Schumaker. 2012. The Effects of Verbal ver-
sus Photographic Self-presentation on Impression
Formation in Facebook. Journal of Communication
62(1):98–116.

Svitlana Volkova, Glen Coppersmith, and Benjamin
Van Durme. 2014. Inferring User Political Pref-
erences from Streaming Communications. In Pro-
ceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics. ACL, pages
186–196.

Ulrike von Luxburg. 2007. A Tutorial on Spectral
Clustering. Statistics and Computing 17(4):395–
416.

Pengfei Wang, Jiafeng Guo, Yanyan Lan, Jun Xu, and
Xueqi Cheng. 2016. Your Cart tells You: Infer-
ring Demographic Attributes from Purchase Data.
In Proceedings of the Ninth ACM International Con-
ference on Web Search and Data Mining. WSDM,
pages 173–182.

Ingmar Weber, Venkata Rama Kiran Garimella, and
Asmelash Teka. 2013. Political Hashtag Trends.
In European Conference on Information Retrieval.
ECIR, pages 857–860.

Tae Yano, Philip Resnik, and Noah A Smith. 2010.
Shedding (a Thousand Points of) Light on Biased
Language. In Proceedings of the NAACL HLT 2010
Workshop on Creating Speech and Language Data
with Amazon’s Mechanical Turk. NAACL, pages
152–158.

Muhammad Bilal Zafar, Krishna P Gummadi, and
Cristian Danescu-Niculescu-Mizil. 2016. Message
Impartiality in Social Media Discussions. In Pro-
ceedings of the Tenth International AAAI Confer-
ence on Weblogs and Social Media. ICWSM, pages
466–475.

Faiyaz Al Zamal, Wendy Liu, and Derek Ruths. 2012.
Homophily and Latent Attribute Inference: Infer-
ring Latent Attributes of Twitter Users from Neigh-
bors. In Proceedings of the Sixth International AAAI
Conference on Weblogs and Social Media. ICWSM,
pages 387–390.

Jiayu Zhou, Jianhui Chen, and Jieping Ye. 2011. MAL-
SAR: Multi-Task Learning via Structural Regular-
ization. Arizona State University .

Hui Zou and Trevor Hastie. 2005. Regularization and
Variable Selection via the Elastic Net. Journal of the
Royal Statistical Society, Series B .

740

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 741–752
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1069

Leveraging Behavioral and Social Information for Weakly Supervised
Collective Classification of Political Discourse on Twitter

Kristen Johnson, Di Jin, Dan Goldwasser
Department of Computer Science

Purdue University, West Lafayette, IN 47907
{john1187, jind, dgoldwas}@purdue.edu

Abstract

Framing is a political strategy in which
politicians carefully word their statements
in order to control public perception of
issues. Previous works exploring polit-
ical framing typically analyze frame us-
age in longer texts, such as congres-
sional speeches. We present a collec-
tion of weakly supervised models which
harness collective classification to predict
the frames used in political discourse on
the microblogging platform, Twitter. Our
global probabilistic models show that by
combining both lexical features of tweets
and network-based behavioral features of
Twitter, we are able to increase the aver-
age, unsupervised F1 score by 21.52 points
over a lexical baseline alone.

1 Introduction

The importance of understanding political dis-
course on social media platforms is becoming in-
creasingly clear. In recent U.S. presidential elec-
tions, Twitter was widely used by all candidates
to promote their agenda, interact with supporters,
and attack their opponents. Social interactions on
such platforms allow politicians to quickly react
to current events and gauge interest in and sup-
port for their actions. These dynamic settings em-
phasize the importance of constructing automated
tools for analyzing this content. However, these
same dynamics make constructing such tools dif-
ficult, as the language used to discuss new events
and political agendas continuously changes. Con-
sequently, the rich social interactions on Twitter
can be leveraged to help support such analysis by
providing alternatives to direct supervision.

In this paper we focus on political framing, a
very nuanced political discourse analysis task, on

a variety of issues frequently discussed on Twit-
ter. Framing (Entman, 1993; Chong and Druck-
man, 2007) is employed by politicians to bias
the discussion towards their stance by emphasiz-
ing specific aspects of the issue. For example,
the debate around increasing the minimum wage
can be framed as a quality of life issue or as an
economic issue. While the first frame supports
increasing minimum wage because it improves
workers’ lives, the second frame, by conversely
emphasizing the costs involved, opposes the in-
crease. Using framing to analyze political dis-
course has gathered significant interest over the
last few years (Tsur et al., 2015; Card et al., 2015;
Baumer et al., 2015) as a way to automatically an-
alyze political discourse in congressional speeches
and political news articles. Different from previ-
ous works which focus on these longer texts or sin-
gle issues, our dataset includes tweets authored by
all members of the U.S. Congress from both par-
ties, dealing with several policy issues (e.g., immi-
gration, ACA, etc.). These tweets were annotated
by adapting the annotation guidelines developed
by Boydstun et al. (2014) for Twitter.

Twitter issue framing is a challenging multil-
abel prediction task. Each tweet can be labeled
as using one or more frames, out of 17 possibil-
ities, while only providing 140 characters as in-
put to the classifier. The main contribution of this
work is to evaluate whether the social and behav-
ioral information available on Twitter is sufficient
for constructing a reliable classifier for this task.
We approach this framing prediction task using
a weakly supervised collective classification ap-
proach which leverages the dependencies between
tweet frame predictions based on the interactions
between their authors.

These dependencies are modeled by connecting
Twitter users who have social connections or be-
havioral similarities. Social connections are di-

741

https://doi.org/10.18653/v1/P17-1069

rected dependencies that represent the followers
of each user as well as retweeting behavior (i.e.,
user A retweets user B’s content). Interestingly,
such social connections capture the flow of influ-
ence within political parties; however, the number
of connections that cross party lines is extremely
low. Instead, we rely on capturing behavioral sim-
ilarity between users to provide this information.
For example, users whose Twitter activity peaks
at similar times tend to discuss issues in similar
ways, providing indicators of their frame usage for
those issues. In addition to using social and behav-
ioral information, our approach also incorporates
each politician’s party affiliation and the frequent
phrases (e.g., bigrams and trigrams) used by politi-
cians on Twitter.

These lexical, social, and behavioral features
are extracted from tweets via weakly supervised
models and then declaratively compiled into a
graphical model using Probabilistic Soft Logic
(PSL), a recently introduced probabilistic model-
ing framework.1 As described in Section 4, PSL
specifies high level rules over a relational repre-
sentation of these features. These rules are then
compiled into a graphical model called a hinge-
loss Markov random field (Bach et al., 2013),
which is used to make the frame prediction. In-
stead of direct supervision we take a bootstrap-
ping approach by providing a small seed set of
keywords adapted from Boydstun et al. (2014), for
each frame.

Our experiments show that modeling social and
behavioral connections improves F1 prediction
scores in both supervised and unsupervised set-
tings, with double the increase in the latter. We
apply our unsupervised model to our entire dataset
of tweets to analyze framing patterns over time by
both party and individual politicians. Our analysis
provides insight into the usage of framing for iden-
tification of aisle-crossing politicians, i.e., those
politicians who vote against their party.

2 Related Work

Issue framing is related to the broader challenges
of biased language analysis (Recasens et al., 2013;
Choi et al., 2012; Greene and Resnik, 2009) and
subjectivity (Wiebe et al., 2004). Several previ-
ous works have explored framing in public state-
ments, congressional speeches, and news arti-
cles (Fulgoni et al., 2016; Tsur et al., 2015; Card

1http://psl.cs.umd.edu

et al., 2015; Baumer et al., 2015). Our approach
builds upon the previous work on frame analysis
of Boydstun et al. (2014), by adapting and apply-
ing their annotation guidelines for Twitter.

In recent years there has been growing inter-
est in analyzing political discourse. Most previ-
ous work focuses on opinion mining and stance
prediction (Sridhar et al., 2015; Hasan and Ng,
2014; Abu-Jbara et al., 2013; Walker et al., 2012;
Abbott et al., 2011; Somasundaran and Wiebe,
2010, 2009). Analyzing political tweets has also
attracted considerable interest: a recent SemEval
task looked into stance prediction,2 and more re-
lated to our work, Tan et al. (2014) have shown
how wording choices can affect message propa-
gation on Twitter. Two recent works look into
predicting stance (at user and tweet levels respec-
tively) on Twitter using PSL (Johnson and Gold-
wasser, 2016; Ebrahimi et al., 2016). Frame clas-
sification, however, has a finer granularity than
stance classification and describes how someone
expresses their view on an issue, not whether they
support the issue. Other works focus on iden-
tifying and measuring political ideologies (Iyyer
et al., 2014; Bamman and Smith, 2015; Sim et al.,
2013), policies (Nguyen et al., 2015), and voting
patterns (Gerrish and Blei, 2012).

Exploiting social interactions and group struc-
ture for prediction has also been explored (Sridhar
et al., 2015; Abu-Jbara et al., 2013; West et al.,
2014). Works focusing on inferring signed so-
cial networks (West et al., 2014), stance classifi-
cation (Sridhar et al., 2015), social group model-
ing (Huang et al., 2012), and collective classifi-
cation using PSL (Bach et al., 2015) are closest
to our approach. Unsupervised and weakly su-
pervised models of Twitter data for several var-
ious tasks have been suggested, including: pro-
file (Li et al., 2014b) and life event extraction (Li
et al., 2014a), conversation modeling (Ritter et al.,
2010), and methods for dealing with the unique
language used in microblogs (Eisenstein, 2013).

Predicting political affiliation and other
characteristics of Twitter users has been ex-
plored (Volkova et al., 2015, 2014; Yano et al.,
2013; Conover et al., 2011). Others have fo-
cused on sentiment analysis (Pla and Hurtado,
2014; Bakliwal et al., 2013), predicting ide-
ology (Djemili et al., 2014), automatic polls

2http://alt.qcri.org/semeval2016/
task6/

742

based on Twitter sentiment and political forecast-
ing using Twitter (Bermingham and Smeaton,
2011; O’Connor et al., 2010; Tumasjan et al.,
2010), as well as distant supervision applica-
tions (Marchetti-Bowick and Chambers, 2012).

Several works from political and social science
research have studied the role of Twitter and fram-
ing in shaping public opinion of certain events,
e.g. the Vancouver riots (Burch et al., 2015)
and the Egyptian protests (Harlow and Johnson,
2011; Meraz and Papacharissi, 2013). Others have
covered framing and sentiment analysis of oppo-
nents (Groshek and Al-Rawi, 2013) and network
agenda modeling (Vargo et al., 2014) in the 2012
U.S. presidential election. Jang and Hart (2015)
studied frames used by the general population spe-
cific to global warming. In contrast to these works,
we predict the issue-independent general frames
of tweets, by U.S. politicians, which discuss six
different policy issues.

3 Data Collection and Annotation

Data Collection and Preprocessing: We col-
lected 184,914 of the most recent tweets of mem-
bers of the U.S. Congress (both the House of Rep-
resentatives and Senate). Using an average of ten
keywords per issue, we filtered out tweets not re-
lated to the following six issues of interest: (1)
limiting or gaining access to abortion, (2) debates
concerning the Affordable Care Act (i.e., ACA or
Obamacare), (3) the issue of gun rights versus gun
control, (4) effects of immigration policies, (5)
acts of terrorism, and (6) issues concerning the
LGBTQ community. Forty politicians (10 Repub-
licans and 10 Democrats, from both the House and
Senate), were chosen randomly for annotation. Ta-
ble 1 presents the statistics of our congressional
tweets dataset, which is available for the commu-
nity.3 Appendix A contains more details of our
dataset and preprocessing steps.

Data Annotation: Two graduate students were
trained in the use of the Policy Frames Codebook
developed by Boydstun et al. (2014) for annotat-
ing each tweet with a frame. The general aspects
of each frame are shown in Table 2. Frames are
designed to generalize across issues and overlap
of multiple frames is possible. Additionally, the
Codebook is typically applied to newspaper ar-

3The dataset and PSL scripts are available at:
http://purduenlp.cs.purdue.edu/projects/
twitterframing.

ticles where discussion of policy can encompass
other frames in the text. Consequently, annotators
using the Codebook are advised to be careful when
assigning Frame 13 to a text.

Based on this guidance and the difficulty of la-
beling tweets (as discussed in Card et al. (2015)),
annotators were instructed to use the following
procedure: (1) attempt to assign a primary frame
to the tweet if possible, (2) if not possible, assign
two frames to the tweet where the first frame is
chosen as the more accurate of the two frames,
(3) when assigning frames 12 through 17, dou-
ble check that the tweet cannot be assigned to any
other frames. Annotators spent one month label-
ing the randomly chosen tweets. For all tweets
with more than one frame, annotators met to come
to a consensus on whether the tweet should have
one frame or both. The labeled dataset has an
inter-annotator agreement, calculated using Co-
hen’s Kappa statistic, of 73.4%.

Extensions of the Codebook for Twitter Use:
The first 14 frames outlined in Table 2 are directly
applicable to the tweets of U.S. politicians. In
our labeled set, Frame 15 (Other) was never used.
Therefore, we drop its analysis from this paper.
From our observations, we propose the addition of
the 3 frames at the bottom of Table 2 for Twitter
analysis: Factual, (Self) Promotion, and Personal
Sympathy and Support. Tweets that present a fact,
with no detectable political spin or twists, are la-
beled as having the Factual frame (15). Tweets
that discuss a politician’s appearances, speeches,
statements, or refer to political friends are consid-
ered to have the (Self) Promotion frame. Finally,
tweets where a politician offers their “thoughts
and prayers”, condolences, or stands in support of
others, are considered to have the Personal frame.

We find that for many tweets, one frame is not
enough. This is caused by the compound nature
of many tweets, e.g., some tweets are two separate
sentences, with each sentence having a different
frame or tweets begin with one frame and end with
another. A final problem, that may also be relevant
to longer text articles, is that of subframes within
a larger frame. For example, the tweet “We must
bolster the security of our borders and craft an
immigration policy that grows our economy.” has
two frames: Security & Defense and Economic.
However, both frames could fall under Frame 13
(Policy), if this tweet as a whole was a rebuttal
point about an immigration policy. The lack of

743

Tweets BY PARTY BY ISSUE
REP DEM ABORTION ACA GUNS IMMIGRATION TERRORISM LGBTQ

ENTIRE DATASET 48504 43953 6467 35854 15532 13442 15205 6046
LABELED SUBSET 894 1156 170 564 543 233 446 183

Table 1: Statistics of Collected Tweets. REP stands for Republican and DEM for Democrats.

FRAME NUMBER, FRAME NAME, AND BRIEF DESCRIPTION OF FRAME
1. ECONOMIC: Pertains to the economic impacts of a policy
2. CAPACITY & RESOURCES: Pertains to lack of or availability of resources
3. MORALITY & ETHICS: Motivated by religious doctrine, righteousness, sense of responsibility
4. FAIRNESS & EQUALITY: Of how laws, punishments, resources, etc. are distributed among groups
5. LEGALITY, CONSTITUTIONALITY, & JURISDICTION: Including court cases, restriction and expressions of rights
6. CRIME & PUNISHMENT: Policy violation and consequences
7. SECURITY & DEFENSE: Threats or defenses/preemptive actions to protect against threats
8. HEALTH & SAFETY: Includes care access and effectiveness
9. QUALITY OF LIFE: Effects on individual and community life
10. CULTURAL IDENTITY: Culture’s norms, trends, customs
11. PUBLIC SENTIMENT: Pertains to opinions, polling, and demographics
12. POLITICAL FACTORS & IMPLICATIONS: Efforts, stances, filibusters, lobbying, references to other politicians
13. POLICY DESCRIPTION, PRESCRIPTION, & EVALUATION: Discusses effectiveness of current or proposed policies
14. EXTERNAL REGULATION AND REPUTATION: Interstate and international relationships of the U.S.
15. FACTUAL: Expresses a pure fact, with no detectable political spin
16. (SELF) PROMOTION: Promotes another person or the author in some way, e.g. television appearances
17. PERSONAL SYMPATHY & SUPPORT: Expresses sympathy, emotional response, or solidarity with others

Table 2: Frames and Descriptions. The first 14 are Boydstun’s frames and the last 3 are our proposed
Twitter-specific frames. Boydstun’s original Frame 15 (Other) is omitted from this study.

available context for short tweets can make it dif-
ficult to determine if a tweet should have one pri-
mary frame or is more accurately represented by
multiple frames.

4 Global Models of Twitter Language
and Activity

Due to the dynamic nature of political discourse
on Twitter, our approach is designed to require
as little supervision as possible. We imple-
ment 6 weakly supervised models which are data-
dependent and used to extract and format infor-
mation from tweets into input for PSL predicates.
These predicates are then combined into the prob-
abilistic rules of each model as shown in Table 3.
The only sources of supervision these models re-
quire includes: unigrams related to the issues, un-
igrams adapted from the Boydstun et al. (2014)
Codebook for frames, and political party of the au-
thor of the tweets.

4.1 Global Modeling Using PSL
PSL is a declarative modeling language which can
be used to specify weighted, first-order logic rules.
These rules are compiled into a hinge-loss Markov
random field which defines a probability distribu-
tion over possible continuous value assignments to
the random variables of the model (Bach et al.,

2015).4 This probability density function is rep-
resented as:

P (Y | X) =
1

Z
exp

�

MX

r=1

�r�r(Y , X)

!

where Z is a normalization constant, � is the
weight vector, and

�r(Y, X) = (max{lr(Y, X), 0})⇢r

is the hinge-loss potential specified by a linear
function lr. The exponent ⇢r 2 1, 2 is optional.
Each potential represents the instantiation of a
rule, which takes the following form:

�1 : P1(x) ^ P2(x, y)! P3(y)

�2 : P1(x) ^ P4(x, y)! ¬P3(y)

P1, P2, P3, and P4 are predicates (e.g., political
party, issue, frame, and presence of n-grams) and
x, y are variables. Each rule has a weight � which
reflects that rule’s importance and is learned using
the Expectation-Maximization algorithm in our
unsupervised experiments. Using concrete con-
stants a, b (e.g., tweets and words) which instan-
tiate the variables x, y, model atoms are mapped

4Unlike other probabilistic logical models, e.g. MLNs, in
which the model’s random variables are strictly true or false.

744

to continuous [0,1] assignments. More important
rules (i.e., those with larger weights) are given
preference by the model.

4.2 Language Based Models
Unigrams: Using the guidelines provided in the
Policy Frames Codebook (Boydstun et al., 2014),
we adapted a list of expected unigrams for each
frame. For example, unigrams that should be re-
lated to Frame 12 (Political Factors & Implica-
tions) include: filibuster, lobby, Democrats, Re-
publicans. We expect that if a tweet and frame
contain a matching unigram, then that frame is
likely present in that tweet. The information that
tweet T has expected unigram U of frame F is rep-
resented with the PSL predicate: UNIGRAMF (T,
U). This knowledge is then used as input to
PSL Model 1 via the rule: UNIGRAMF (T, U)
!FRAME(T, F) (shown in line 1 of Table 3).

However, not every tweet will have a unigram
that matches those in this list. Under the intuition
that at least one unigram in a tweet should be sim-
ilar to a unigram in the list, we designed the fol-
lowing MaxSim metric to compute the maximum
similarity between a word in a tweet and a word
from the list of unigrams.

MAXSIM(T, F) = arg max
u2F,w2T

SIMILARITY(W,U)

(1)
T is a tweet, W is each word in T, and U is each un-
igram in the list of expected unigrams (per frame).
SIMILARITY is the computed word2vec similar-
ity (using pretrained embeddings) of each word in
the tweet with every unigram in the list of uni-
grams for each frame. The frame F of the max-
imum scoring unigram is input to the PSL predi-
cate: MAXSIMF (T, F), which indicates that tweet
T has the highest similarity to frame F.

Bigrams and Trigrams: In addition to uni-
grams, we also explored the effects of political
party slogans on frame prediction. Slogans are
common catch phrases or sayings that people typ-
ically associate with different U.S. political par-
ties. For example, Republicans are known for us-
ing the phrase “repeal and replace” when they dis-
cuss the ACA. Similarly, in the 2016 U.S. presi-
dential election, Secretary Hillary Clinton’s cam-
paign slogan became “Love Trumps Hate”. To
visualize slogan usage by parties for different is-
sues, we used the entire tweets dataset, including
all unlabeled tweets, to extract the top bigrams

0

2000

4000

6000

8000

10000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Fr
eq

ue
nc

y
of

 O
cc

ur
en

ce
s

Bigrams

Democrat Top 100 Bigrams

Abortion ACA Guns Immigration Terrorism LGBTQ

(a) Democrat Bigrams

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Fr
eq

ue
nc

y
of

 O
cc

ur
en

ce
s

Bigrams

Republican Top 100 Bigrams

Abortion ACA Guns Immigration Terrorism LGBTQ

(b) Republican Bigrams

0

500

1000

1500

2000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Fr
eq

ue
nc

y
of

 O
cc

ur
en

ce
s

Trigrams

Democrat Top 100 Trigrams

Abortion ACA Guns Immigration Terrorism LGBTQ

(c) Democrat Trigrams

0

200

400

600

800

1000

1200

1400

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Fr
eq

ue
nc

y
of

 O
cc

ur
en

ce
s

Trigrams

Republican Top 100 Trigrams

Abortion ACA Guns Immigration Terrorism LGBTQ

(d) Republican Trigrams

Figure 1: Distributions of Bigrams and Trigrams
by Party.

and trigrams per party for each issue. The his-
tograms in Figure 1 show these distributions for
the top 100 bigrams and trigrams. Based on these
results, we use the top 20 bigrams (e.g., women’s
healthcare and immigration reform) and trigrams
(e.g. prevent gun violence) as input to PSL
predicates BIGRAMIP (T, B) and TRIGRAMIP (T,
TG). These rules represent that tweet T has bi-
gram B or trigram TG from the respective issue I
phrase lists of either party P.

4.3 Twitter Behavior Based Models

In addition to language based features of tweets,
we also exploit the behavioral and social features
of Twitter including similarities between temporal
activity and network relationships.

Temporal Similarity: We construct a temporal
histogram for each politician which captures their
Twitter activity over time. When an event happens
politicians are most likely to tweet about that event
within hours of its occurrence. Similarly, most
politicians tweet about the event most frequently
the day of the event and this frequency decreases
over time. From these temporal histograms, we
observed that the frames used the day of an event
were similar and gradually changed over time. For
example, once the public is notified of a shoot-
ing, politicians respond with Frame 17 to offer
sympathy to the victims and their families. Over
the next days or weeks, both parties slowly tran-
sition to using additional frames, e.g. Democrats
use Frame 7 to argue for gun control legislation.
To capture this behavior we use the PSL pred-
icate SAMETIME(T1, T2). This indicates that
tweet T1 occurs around the same time as tweet

745

TYPES OF
MODELS

MODEL
NUMBER

BASIS OF
MODEL

EXAMPLE OF PSL RULES

LANGUAGE
BASED

1 Unigrams UNIGRAMF (T, U)!FRAME(T, F)
2 Bigrams UNIGRAMF (T, U) ^BIGRAMIP (T, B)!FRAME(T, F)
3 Trigrams UNIGRAMF (T, U) ^TRIGRAMIP (T, TG)!FRAME(T, F)

BEHAVIOR
BASED

4 Temporal Activity SAMETIME(T1, T2) ^FRAME(T1, F)!FRAME(T2, F)
5 Retweet Patterns RETWEETS(T1, T2) ^FRAME(T1, F)!FRAME(T2, F)
6 Following Network FOLLOWS(T1, T2) ^FRAME(T1, F)!FRAME(T2, F)

Table 3: Examples of PSL Model Rules. Each model adds to the rules of the previous model. The full
list of rule combinations for each model is available with our dataset.

T2.5 This information is used in Model 4 via rules
such as: SAMETIME(T1, T2) & FRAME(T1, F)
!FRAME(T2, F), as shown in line 4 of Table 3.

Network Similarity: Finally, we expect that
politicians who share ideologies, and thus are
likely to frame issues similarly, will retweet and/or
follow each other on Twitter. Due to the com-
pound nature of tweets, retweeting with addi-
tional comments can add more frames to the orig-
inal tweet. Additionally, politicians on Twit-
ter are more likely to follow members of their
own party or similar non-political entities than
those of the opposing party. To capture this
network-based behavior we use two PSL predi-
cates: RETWEETS(T1, T2) and FOLLOWS(T1,
T2). These predicates indicate that the content
of tweet T1 includes a retweet of tweet T2 and
that the author of T1 follows the author of T2 on
Twitter, respectively. The last two lines of Table 3
show examples of how network similarity is incor-
porated into PSL rules.

5 Experiments

Evaluation Metrics: Since each tweet can have
more than one frame, our prediction task is a mul-
tilabel classification task. The precision of a mul-
tilabel model is the ratio of how many predicted
labels are correct:

Precision =
1

T

TX

t=1

|Yt \ h(xt)|
|h(xt)|

(2)

The recall of this model is the ratio of how many
of the actual labels were predicted:

Recall =
1

T

TX

t=1

|Yt \ h(xt)|
|Yt|

(3)

5We conducted experiments with different hour and day
limits and found that using a time frame of one hour results
in the best accuracy while limiting noise.

In both formulas, T is the number of tweets, Yt is
the true label for tweet t, xt is a tweet example, and
h(xt) are the predicted labels for that tweet. The
F1 score is computed as the harmonic mean of the
precision and recall. Additionally, in Tables 4, 5,
and 6 the reported average is the micro-weighted
average F1 scores over all frames.

Experimental Settings: We provide an analysis
of our PSL models under both supervised and un-
supervised settings. In the PSL supervised experi-
ments, we used five-fold cross validation with ran-
domly chosen splits.

Previous works typically use an SVM, with bag-
of-words features, which is not used in a multi-
label prediction, i.e., each frame is predicted in-
dividually. The results of this approach on our
dataset are shown in column 2 of Table 4. In
this scenario, the SVM tends to prefer the major-
ity class, which results in many incorrect labels.
Column 3 shows the results of using an SVM with
bag-of-words features to perform multilabel clas-
sification. This approach decreases the F1 score
for a majority of frames. Both SVMs also result
in F1 scores of 0 for some frames, further lower-
ing the overall performance. Finally, columns 4
and 5 show the results of using our worst and best
PSL models, respectively. PSL Model 1, which
uses our adapted unigram features instead of the
bag-of-words features for multilabel classification,
serves as our baseline to improve upon. Addition-
ally, Model 6 of the supervised, collective network
setting represents the best results we can achieve.

We also explore the results of our PSL mod-
els in an unsupervised setting because the highly
dynamic nature of political discourse on Twitter
makes it unrealistic to expect annotated data to
generalize to future discussions. The only source
of supervision comes from the initial unigrams
lists and party information as described in Sec-
tion 4. The labeled tweets are used for evaluation
only. As seen in Table 4, we are able to improve

746

SETTING SVM
INDIV.

SVM
MULTI.

PSL
M1

PSL
M6

SUP. 28.67 18.90 66.02 77.79
UNSUP. —– —– 37.14 58.66

Table 4: Baseline and Skyline Micro-weighted
Average F1 Scores. SVM INDIV. is the SVM
trained to predict one frame. SVM MULTI. is the
multiclass SVM. PSL M1 is the adapted unigram
PSL Model 1. PSL M6 is the collective network.

the best unsupervised model to within an F1 score
of 7.36 points of the unigram baseline of 66.02,
and 19.13 points of the best supervised score of
77.79.

Analysis of Supervised Experiments: Table 5
shows the results of our supervised experiments.
Here we can see that by adding Twitter be-
havior (beginning with Model 4), our behavior-
based models achieve the best F1 scores across
all frames. Model 4 achieves the highest results
on two frames, suggesting retweeting and network
follower information do not help improve the pre-
diction score for these frames. Similarly, Model 5
achieves the highest prediction for 5 of the frames,
suggesting network follower information cannot
further improve the score for these frames. Over-
all, the Twitter behavior based models are able to
outperform language based models alone, includ-
ing the best performing language model (Model 3)
which combines unigrams, bigrams, and trigrams
together to collectively infer the correct frames.

Analysis of Unsupervised Experiments: In the
unsupervised setting, Model 6, the combination of
language and Twitter behavior features achieves
the best results on 16 of the 17 issues, as shown
in Table 6. There are a few interesting aspects of
the unsupervised setting which differ from the su-
pervised setting. Six of the frame predictions do
worse in Model 2, which is double that of the su-
pervised version. This is likely due to the presence
of overlapping bigrams across frames and issues,
e.g., “women’s healthcare” could appear in both
Frames 4 and 8 and the issues of ACA and abor-
tion. However, all six are able to improve with
the addition of trigrams (Model 3), whereas only
1 of 3 frames improves in the supervised setting.
This suggests that bigrams may not be as useful
as trigrams in an unsupervised setting. Finally, in
Model 5, which adds retweet behaviors, we notice
that 5 of the frames decrease in F1 score and 11

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
u

m
b

er
 o

f
Tw

ee
ts

Frames

Democrat ACA Tweets

2014 2015 2016

(a) Democrat ACA Frames

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
u

m
b

er
 o

f
Tw

ee
ts

Frames

Democrat Terrorism Tweets

2014 2015 2016

(b) Dem. Terrorism Frames

0

200

400

600

800

1000

1200

1400

1600

1800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
u

m
b

er
 o

f
Tw

ee
ts

Frames

Republican ACA Tweets

2014 2015 2016

(c) Republican ACA Frames

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
u

m
b

er
 o

f
Tw

ee
ts

Frames

Republican Terrorism Tweets

2014 2015 2016

(d) Rep. Terrorism Frames

Figure 2: Predicted Frames for Tweets from 2014
to 2016 by Party for ACA and Terrorism Issues.

of the frames have the same score as the previous
model. These results suggest that retweet behav-
iors are not as useful as the follower network rela-
tionships in an unsupervised setting.

6 Qualitative Analysis

To explore the usefulness of frame identification in
political discourse analysis, we apply our best per-
forming model (Model 6) on the unlabeled dataset
to determine framing patterns over time, both by
party and individual. Figure 2 shows the results of
our frame analysis for both parties over time for
two issues: ACA and terrorism.6 We compiled the
predicted frames for tweets from 2014 to 2016 for
each party. Figure 3 presents the results of frame
prediction for 2015 tweets of aisle-crossing indi-
vidual politicians for these two issues.

Party Frames: From Figure 2(a) we can see that
Democrats mainly use Frames 1, 4, 8, 9, and 15
to discuss ACA, while Figure 2(c) shows that Re-
publicans predominantly use Frames 1, 8, 9, 12,
and 13. Though the parties use similar frames,
they are used to express different agendas. For
example, Democrats use Frame 8 to indicate the
positive effect that the ACA has had in granting
more Americans health care access. Republicans,
however, use Frame 8 (and Frame 13) to indicate
their party’s agenda to replace the ACA with ac-
cess to different options for health care. Addition-
ally, Democrats use the Fairness & Equality Frame
(Frame 4) to convey that the ACA gives minor-
ity groups a better chance at accessing health care.

6Due to space, we omit the other 4 issues. These 2 were
chosen because they are among the most frequently discussed
issues in our dataset.

747

Frame
Number

Frame RESULTS OF SUPERVISED PSL MODEL FRAME PREDICTIONS
MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5 MODEL 6

1 ECONOMIC 85.19 85.19 86.73 87.72 87.72 89.88
2 CAPACITY & RESOURCES 55.38 61.54 76.71 77.11 77.11 79.55
3 MORALITY 73.39 80.52 86.95 87.5 87.43 87.43
4 FAIRNESS 63.56 67.83 65.19 69.91 79.53 82.35
5 LEGALITY 80.41 80.78 80.79 83.33 81.79 82.16
6 CRIME 54.55 54.55 66.67 76.92 76.92 76.92
7 SECURITY 84.40 82.14 84.10 86.67 86.67 88.48
8 HEALTH 73.50 75.76 75.59 77.46 79.71 79.71
9 QUALITY OF LIFE 69.39 68.00 69.39 72.34 72.34 82.93
10 CULTURAL 75.86 78.57 81.25 81.25 81.25 85.71
11 PUBLIC SENTIMENT 12.25 15.25 24.62 24.24 26.24 29.41
12 POLITICAL 54.21 63.31 74.33 74.42 74.52 74.52
13 POLICY 55.75 58.87 60.25 61.54 64.06 65.06
14 EXTERNAL REGULATION 60.71 59.15 64.71 74.35 74.35 85.71
15 FACTUAL 66.56 68.00 71.43 81.82 80.82 82.85
16 (SELF) PROMOTION 85.71 86.46 86.58 87.34 87.33 91.76
17 PERSONAL 71.79 71.71 74.73 75.00 77.55 77.55

WEIGHTED AVERAGE 66.02 68.78 72.49 74.40 75.71 77.79

Table 5: F1 Scores of Supervised PSL Models. The highest prediction per frame is marked in bold.

Frame
Number

Frame RESULTS OF UNSUPERVISED PSL MODEL FRAME PREDICTIONS
MODEL 1 MODEL 2 MODEL 3 MODEL 4 MODEL 5 MODEL 6

1 ECONOMIC 31.82 31.52 69.57 72.22 72.22 73.23
2 CAPACITY & RESOURCES 23.38 28.51 40.00 41.18 41.18 41.18
3 MORALITY 28.63 29.41 47.67 53.98 43.06 53.99
4 FAIRNESS 33.49 47.19 59.15 63.50 63.50 64.74
5 LEGALITY 44.58 46.93 58.02 60.64 60.63 64.54
6 CRIME 7.89 7.62 73.33 75.00 75.00 76.92
7 SECURITY 42.50 40.24 51.83 62.09 61.68 64.09
8 HEALTH 48.36 48.79 79.43 86.49 86.49 86.67
9 QUALITY OF LIFE 17.82 21.99 48.89 52.63 52.63 54.35
10 CULTURAL 15.38 15.67 51.22 52.63 52.63 55.56
11 PUBLIC SENTIMENT 15.22 15.72 50.79 53.97 41.03 54.69
12 POLITICAL 49.06 48.20 50.29 46.99 46.99 47.23
13 POLICY 39.88 39.39 37.02 42.77 42.77 43.79
14 EXTERNAL REGULATION 12.66 14.22 44.44 66.67 66.67 71.43
15 FACTUAL 24.64 19.21 70.95 70.37 70.41 78.95
16 (SELF) PROMOTION 40.11 46.41 48.16 50.96 50.96 52.89
17 PERSONAL 45.36 46.15 59.66 62.99 62.13 71.20

WEIGHTED AVERAGE 37.14 38.79 53.13 56.49 55.54 58.66

Table 6: F1 Scores of Unsupervised PSL Models. The highest prediction per frame is marked in bold.

They also use Frame 15 to express statistics about
enrollment of Americans under the ACA. Finally,
Republicans use Frames 12 and 13 to bring atten-
tion to their own party’s actions to “repeal and re-
place” the ACA with different policies.

Figures 2(b) and 2(d) show the party-based
framing patterns over time for terrorism related
tweets. For this issue both parties use similar
frames: 3, 7, 10, 14, 16, and 17, but to express dif-
ferent views. For example, Democrats use Frame
3 to indicate a moral responsibility to fight ISIS.
Republicans use Frame 3 to frame terrorists or
their attacks as a result of “radical Islam”. An in-
teresting pattern to note is seen in Frames 10 and
14 for both parties. In 2015 there is a large in-

crease in the usage of this frame. This seems to
indicate that parties possibly adopt new frames si-
multaneously or in response to the opposing party,
perhaps in an effort to be in control of the way the
message is delivered through that frame.

Individual Frames: In addition to entire party
analysis, we were interested in seeing if frames
could shed light on the behavior of aisle-crossing
politicians. These are politicians who do not vote
the same as the majority vote of their party (i.e.,
they vote the same as the opposing party). Iden-
tifying such politicians can be useful in govern-
ments which are heavily split by party, i.e., gov-
ernments such as the recent U.S. Congress (2015
to 2017), where politicians tend to vote the same

748

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Nu
m

be
r o

f T
w

ee
ts

Frames

ACA Vote Aisle-Crossing Republicans

Dold Buck Meadows Walker Salmon Poliquin Hanna Jones

(a) Aisle-Crossing Republicans on ACA Votes.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

N
u

m
b

er
 o

f
Tw

ee
ts

Frames

Terrorism Vote Aisle-Crossing Democrats

Clyburn Carson Lee
Watson Coleman Cleaver Moore
McDermott Lewis Fudge
Kaptur Richmond

(b) Aisle-Crossing Democrats on Terrorism Votes.

Figure 3: Predicted Frames for Tweets of Aisle-
Crossing Politicians in 2015.

as the rest of their party members. For this analy-
sis, we collected five 2015 votes from the House of
Representatives on both issues and compiled a list
of the politicians who voted opposite to their party.
The most important descriptor we noticed was that
all aisle-crossing politicians tweet less frequently
on the issue than their fellow party members. This
is true for both parties. This behavior could indi-
cate lack of desire to draw attention to one’s stance
on the particular issue.

Figure 3(a) shows the framing patterns of aisle-
crossing Republicans on ACA votes from 2015.
Recall from Figure 2 that Democrats mostly use
Frames 1, 4, 8, 9, and 15, while Republicans
mainly use Frames 1, 8, and 9. In this ex-
ample, these Republicans are considered aisle-
crossing votes because they have voted the same
as Democrats on this issue. The most interest-
ing pattern to note here is that these Republicans
use the same framing patterns as the Republicans
(Frames 1, 8, and 9), but they also use the frames
that are unique to Democrats: Frames 4 and 15.
These latter two frames appear significantly less in
the Republican tweets of our entire dataset as well.
These results suggest that to predict aisle-crossing

Republicans it would be useful to check for us-
age of typically Democrat-associated frames, es-
pecially if those frames are infrequently used by
Republicans.

Figure 3(b) shows the predicted frames for
aisle-crossing Democrats on terrorism-related
votes. We see here that there are very few tweets
from these Democrats on this issue and that over-
all they use the same framing patterns as seen pre-
viously: Frames 3, 7, 10, 14, 16, and 17. How-
ever, given the small scale of these tweets, we can
also consider Frames 12 and 13 to show peaks for
this example. This suggests that for aisle-crossing
Democrats the use of additional frames not often
used by their party for discussing an issue might
indicate potentially different voting behaviors.

7 Conclusion

In this paper we present the task of collective
classification of Twitter data for framing predic-
tion. We show that by incorporating Twitter be-
haviors such as similar activity times and similar
networks, we can increase F1 score prediction. We
provide an analysis of our approach in both su-
pervised and unsupervised settings, as well as a
real world analysis of framing patterns over time.
Finally, our global PSL models can be applied to
other domains, such as politics in other countries,
simply by changing the initial unigram keywords
to reflect the politics of those countries.

Acknowledgments

We thank the anonymous reviewers for their
thoughtful comments and suggestions.

References
Rob Abbott, Marilyn Walker, Pranav Anand, Jean E.

Fox Tree, Robeson Bowmani, and Joseph King.
2011. How can you say such things?!?: Recogniz-
ing disagreement in informal political argument. In
Proc. of the Workshop on Language in Social Media.

Amjad Abu-Jbara, Ben King, Mona Diab, and
Dragomir Radev. 2013. Identifying opinion sub-
groups in arabic online discussions. In Proc. of ACL.

Stephen H Bach, Matthias Broecheler, Bert Huang,
and Lise Getoor. 2015. Hinge-loss markov random
fields and probabilistic soft logic. arXiv preprint
arXiv:1505.04406 .

Stephen H. Bach, Bert Huang, Ben London, and Lise
Getoor. 2013. Hinge-loss Markov random fields:

749

Convex inference for structured prediction. In Proc.
of UAI.

Akshat Bakliwal, Jennifer Foster, Jennifer van der Puil,
Ron O’Brien, Lamia Tounsi, and Mark Hughes.
2013. Sentiment analysis of political tweets: To-
wards an accurate classifier. In Proc. of ACL.

David Bamman and Noah A Smith. 2015. Open extrac-
tion of fine-grained political statements. In Proc. of
EMNLP.

Eric Baumer, Elisha Elovic, Ying Qin, Francesca Pol-
letta, and Geri Gay. 2015. Testing and comparing
computational approaches for identifying the lan-
guage of framing in political news. In Proc. of
NAACL.

Adam Bermingham and Alan F Smeaton. 2011. On us-
ing twitter to monitor political sentiment and predict
election results .

Amber Boydstun, Dallas Card, Justin H. Gross, Philip
Resnik, and Noah A. Smith. 2014. Tracking the de-
velopment of media frames within and across policy
issues.

Lauren M. Burch, Evan L. Frederick, and Ann Pego-
raro. 2015. Kissing in the carnage: An examina-
tion of framing on twitter during the vancouver ri-
ots. Journal of Broadcasting & Electronic Media
59(3):399–415.

Dallas Card, Amber E. Boydstun, Justin H. Gross,
Philip Resnik, and Noah A. Smith. 2015. The media
frames corpus: Annotations of frames across issues.
In Proc. of ACL.

Eunsol Choi, Chenhao Tan, Lillian Lee, Cristian
Danescu-Niculescu-Mizil, and Jennifer Spindel.
2012. Hedge detection as a lens on framing in the
gmo debates: A position paper. In Proc. of ACL
Workshops.

Dennis Chong and James N Druckman. 2007. Framing
theory. Annu. Rev. Polit. Sci. 10:103–126.

Michael D Conover, Bruno Gonçalves, Jacob
Ratkiewicz, Alessandro Flammini, and Filippo
Menczer. 2011. Predicting the political alignment
of twitter users. In Proc. of PASSAT .

Sarah Djemili, Julien Longhi, Claudia Marinica, Dim-
itris Kotzinos, and Georges-Elia Sarfati. 2014. What
does twitter have to say about ideology? In NLP 4
CMC.

Javid Ebrahimi, Dejing Dou, and Daniel Lowd. 2016.
Weakly supervised tweet stance classification by re-
lational bootstrapping. In Proc. of EMNLP.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In Proc. of NAACL.

Robert M Entman. 1993. Framing: Toward clarifica-
tion of a fractured paradigm. Journal of communi-
cation 43(4):51–58.

Dean Fulgoni, Jordan Carpenter, Lyle Ungar, and
Daniel Preotiuc-Pietro. 2016. An empirical explo-
ration of moral foundations theory in partisan news
sources. In Proc. of LREC.

Sean Gerrish and David M Blei. 2012. How they vote:
Issue-adjusted models of legislative behavior. In Ad-
vances in Neural Information Processing Systems.
pages 2753–2761.

Stephan Greene and Philip Resnik. 2009. More than
words: Syntactic packaging and implicit sentiment.
In Proc. of NAACL.

Jacob Groshek and Ahmed Al-Rawi. 2013. Public sen-
timent and critical framing in social media content
during the 2012 u.s. presidential campaign. Social
Science Computer Review 31(5):563–576.

Summer Harlow and Thomas Johnson. 2011. The arab
spring— overthrowing the protest paradigm? how
the new york times, global voices and twitter cov-
ered the egyptian revolution. International Journal
of Communication 5(0).

Kazi Saidul Hasan and Vincent Ng. 2014. Why are
you taking this stance? identifying and classifying
reasons in ideological debates. In Proc. of EMNLP.

Bert Huang, Stephen H. Bach, Eric Norris, Jay Pujara,
and Lise Getoor. 2012. Social group modeling with
probabilistic soft logic. In NIPS Workshops.

Iyyer, Enns, Boyd-Graber, and Resnik. 2014. Political
ideology detection using recursive neural networks.
In Proc. of ACL.

S. Mo Jang and P. Sol Hart. 2015. Polarized frames
on ”climate change” and ”global warming” across
countries and states: Evidence from twitter big data.
Global Environmental Change 32:11–17.

Kristen Johnson and Dan Goldwasser. 2016. All i
know about politics is what i read in twitter: Weakly
supervised models for extracting politicians’ stances
from twitter. In Proc. of COLING.

Jiwei Li, Alan Ritter, Claire Cardie, and Eduard H
Hovy. 2014a. Major life event extraction from
twitter based on congratulations/condolences speech
acts. In Proc. of EMNLP.

Jiwei Li, Alan Ritter, and Eduard H Hovy. 2014b.
Weakly supervised user profile extraction from twit-
ter. In Proc. of ACL.

Micol Marchetti-Bowick and Nathanael Chambers.
2012. Learning for microblogs with distant super-
vision: Political forecasting with twitter. In Proc. of
EACL.

Sharon Meraz and Zizi Papacharissi. 2013. Networked
gatekeeping and networked framing on #egypt. The
International Journal of Press/Politics 18(2):138–
166.

750

Viet-An Nguyen, Jordan Boyd-Graber, Philip Resnik,
and Kristina Miler. 2015. Tea party in the house: A
hierarchical ideal point topic model and its applica-
tion to republican legislators in the 112th congress.
In Proc. of ACL.

Brendan O’Connor, Ramnath Balasubramanyan,
Bryan R Routledge, and Noah A Smith. 2010. From
tweets to polls: Linking text sentiment to public
opinion time series. In Proc. of ICWSM.

Ferran Pla and Lluı́s F Hurtado. 2014. Political ten-
dency identification in twitter using sentiment anal-
ysis techniques. In Proc. of COLING.

Marta Recasens, Cristian Danescu-Niculescu-Mizil,
and Dan Jurafsky. 2013. Linguistic models for an-
alyzing and detecting biased language. In Proc. of
ACL.

Alan Ritter, Colin Cherry, and Bill Dolan. 2010. Unsu-
pervised modeling of twitter conversations. In Proc.
of NAACL.

Sim, Acree, Gross, and Smith. 2013. Measuring ideo-
logical proportions in political speeches. In Proc. of
EMNLP.

Swapna Somasundaran and Janyce Wiebe. 2009. Rec-
ognizing stances in online debates. In Proc. of ACL.

Swapna Somasundaran and Janyce Wiebe. 2010. Rec-
ognizing stances in ideological on-line debates. In
Proc. of NAACL Workshops.

Dhanya Sridhar, James Foulds, Bert Huang, Lise
Getoor, and Marilyn Walker. 2015. Joint models of
disagreement and stance in online debate. In Proc.
of ACL.

Chenhao Tan, Lillian Lee, and Bo Pang. 2014. The
effect of wording on message propagation: Topic-
and author-controlled natural experiments on twitter.
In Proc. of ACL.

Oren Tsur, Dan Calacci, and David Lazer. 2015. A
frame of mind: Using statistical models for detection
of framing and agenda setting campaigns. In Proc.
of ACL.

Andranik Tumasjan, Timm Oliver Sprenger, Philipp G
Sandner, and Isabell M Welpe. 2010. Predicting
elections with twitter: What 140 characters reveal
about political sentiment. In Proc. of ICWSM.

Chris J. Vargo, Lei Guo, Maxwell McCombs, and Don-
ald L. Shaw. 2014. Network issue agendas on twitter
during the 2012 u.s. presidential election. Journal of
Communication 64(2):296–316.

Svitlana Volkova, Yoram Bachrach, Michael Arm-
strong, and Vijay Sharma. 2015. Inferring latent
user properties from texts published in social media.
In Proc. of AAAI.

Svitlana Volkova, Glen Coppersmith, and Benjamin
Van Durme. 2014. Inferring user political prefer-
ences from streaming communications. In Proc. of
ACL.

Marilyn A. Walker, Pranav Anand, Robert Abbott, and
Ricky Grant. 2012. Stance classification using dia-
logic properties of persuasion. In Proc. of NAACL.

Robert West, Hristo S Paskov, Jure Leskovec, and
Christopher Potts. 2014. Exploiting social network
structure for person-to-person sentiment analysis.
TACL .

Janyce Wiebe, Theresa Wilson, Rebecca Bruce,
Matthew Bell, and Melanie Martin. 2004. Learn-
ing subjective language. Computational linguistics
.

Tae Yano, Dani Yogatama, and Noah A Smith. 2013. A
penny for your tweets: Campaign contributions and
capitol hill microblogs. In Proc. of ICWSM.

A Supplementary Material

In this section we provide additional information
about our congressional tweets dataset, as well as
the lists of keywords and phrases used to filter
tweets by issue and the unigrams used to extract
information used for the Unigram and MaxSim
PSL predicates. It is important to note that
during preprocessing capitalization, stop words,
URLs, and punctuation have been removed from
tweets in our dataset. Additional word lists along
with our PSL scripts and dataset are available
at: http://purduenlp.cs.purdue.edu/
projects/twitterframing.

Figure 4: Coverage of Frames by Party.

Dataset Statistics: Figure 4 shows the coverage
of the labeled frames by party. From this, general
patterns can be observed. For example, Republi-
cans use Frames 12 and 17 more frequently than
Democrats, while Democrats tend to use Frames
4, 9, 10, and 11. Table 7 shows the count of each
type of frame that appears in each issue in our la-
beled dataset.

751

ISSUE
FRAMES

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Abortion 4 7 23 55 40 0 2 32 10 0 4 46 20 0 1 13 8
ACA 65 9 6 28 24 0 3 128 21 3 18 116 174 2 21 100 15
Guns 2 2 37 16 30 21 93 8 36 14 49 166 65 0 5 55 147
Immigration 16 7 6 6 42 3 15 0 29 19 7 81 52 1 1 32 2
LGBTQ 0 0 9 99 23 2 2 3 10 17 7 39 14 1 2 11 48
Terrorism 6 4 46 3 11 10 115 1 6 13 14 69 68 35 6 99 57

Table 7: Count of Each Type of Frame Per Issue in Labeled Dataset.

ISSUE AND KEYWORDS OR PHRASES
ABORTION: abortion, pro-life, pro-choice, Planned Parenthood, StandWithPP, Hobby Lobby, birth control, women’s choice,
women’s rights, women’s health
ACA: patient protection, affordable care act, ACA, obamacare, health care, healthcare, Burwell, Medicare, Medicaid, repeal
and replace
GUNS: Charleston, gun, shooting, Emanuel, Second Amendment, Oregon, San Bernadino, gun violence, gun control, 2A,
NRA, Orlando, Pulse
IMMIGRATION: immigration, immigrants, illegal immigrants, border, amnesty, wall, Dreamers, Dream Act
LGBTQ: equality, marriage, gay, transgender, marriage equality, same sex, gay marriage, religious freedom, RFRA,
bathroom bill
TERRORISM: terrorism, terrorists, terror network, ISIS, ISIL, Al Qaeda, Boko Haram, extremist

Table 8: Keywords or Phrases Used to Filter Tweets for Issue.

FRAME NUMBER, FRAME, AND ADAPTED UNIGRAMS
1. ECONOMIC: premium(s), small, business(es), tax(es), economy, economic, cost(s), employment, market, spending,
billion(s), million(s), company, companies, funding, regulation, benefit(s), health
2. CAPACITY & RESOURCES: resource(s), housing, infrastructure, IRS, national, provide(s), providing, fund(s), funding,
natural, enforcement
3. MORALITY & ETHICS: moral, religion(s), religious, honor(able), responsible, responsibility, illegal, protect, god(s),
sanctity, Islam, Muslim, Christian, radical, violence, victim(s), church
4. FAIRNESS & EQUALITY: fair(ness), equal(ity), inequality, law(s), right(s), race, gender, class, access, poor, civil, justice,
social, women(s), LGBT, LGBTQ, discrimination, decision(s)
5. LEGALITY, CONSTITUTIONALITY, & JURISDICTION: right(s), law(s), executive, ruling, constitution(al), amnesty,
decision(s), reproductive, legal, legality, court, SCOTUS, immigration, amendment(s), judge, authority, precedent, legislation
6. CRIME & PUNISHMENT: crime(s), criminal(s), gun(s), violate(s), enforce(s), enforced, enforcement, civil, tribunals,
justice, victim(s), civilian(s), kill, murder, hate, genocide, consequences
7. SECURITY & DEFENSE: security, secure, defense, defend, threat(s), terror, terrorism, terrorist(s), gun(s), attack(s), wall,
border, safe, safety, violent, violence, ISIS, ISIL, suspect(s), domestic, prevent, protect
8. HEALTH & SAFETY: health(y), care, healthcare, obamacare, access, disease(s), mental, physical, affordable, coverage,
quality, (un)insured, disaster, relief, unsafe, cancer, abortion
9. QUALITY OF LIFE: quality, happy, social, community, life, benefit(s), adopt, fear, deportation, living, job(s), activities,
family, families, health, support
10. CULTURAL IDENTITY: identity, social, value(s), Reagan, Lincoln, conservative(s), liberal(s), nation, America,
American(s), community, communities, country, dreamers, immigrants, refugees, history, historical
11. PUBLIC SENTIMENT: public, sentiment, opinion, poll(s), turning, survey, support, American(s), reform, action, want,
need, vote
12. POLITICAL FACTORS & IMPLICATIONS: politic(s), political, stance, view, (bi)partisan, filibuster, lobby, Republican(s),
Democrat(s), House, Senate, Congress, committee, party, POTUS, SCOTUS, administration, GOP
13. POLICY DESCRIPTION, PRESCRIPTION, & EVALUATION: policy, fix(ing), work(s), working, propose(d), proposing,
proposal, solution, solve, outcome(s), bill, law, amendment, plan, support, repeal, reform
14. EXTERNAL REGULATION AND REPUTATION: regulation, US, ISIS, ISIL, relations, international, national, trade,
foreign, state, border, visa, ally, allies, united, refugees, leadership, issues, Iraq, Iran, Syria, Russia, Europe, Mexico, Canada
15. FACTUAL: health, insurance, affordable, deadline, enroll, sign, signed, program, coverage
16. (SELF) PROMOTION: statement, watch, discuss, hearing, today, tonight, live, read, floor, talk, tune, opinion, TV, oped
17. PERSONAL SYMPATHY & SUPPORT: victims, thoughts, prayer(s), pray(ing), family, stand, support, tragedy, senseless,
heartbroken, people, condolences, love, remember, forgive(ness), saddened

Table 9: Frame and Corresponding Unigrams Used for Initial Supervision.

Word Lists: Table 8 lists the keywords or
phrases used to filter the entire dataset to only
tweets related to the six issues studied in this pa-
per. Table 9 lists the unigrams that were designed
based on the descriptions for Frames 1 through 14

provided in the Policy Frames Codebook (Boyd-
stun et al., 2014). These unigrams provide the
initial supervision for our models as described in
Section 4.

752

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 753–762
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1070

A Nested Attention Neural Hybrid Model for Grammatical Error
Correction

Jianshu Ji†, Qinlong Wang†, Kristina Toutanova‡∗,
Yongen Gong†, Steven Truong†, Jianfeng Gao§

†Microsoft AI & Research ‡Google Research §Microsoft Research, Redmond
†§{jianshuj,qinlwang,yongeg,stevetr,jfgao}@microsoft.com

‡kristout@google.com

Abstract

Grammatical error correction (GEC) sys-
tems strive to correct both global errors in
word order and usage, and local errors in
spelling and inflection. Further develop-
ing upon recent work on neural machine
translation, we propose a new hybrid neural
model with nested attention layers for GEC.
Experiments show that the new model can
effectively correct errors of both types by
incorporating word and character-level in-
formation, and that the model significantly
outperforms previous neural models for
GEC as measured on the standard CoNLL-
14 benchmark dataset. Further analysis
also shows that the superiority of the pro-
posed model can be largely attributed to
the use of the nested attention mechanism,
which has proven particularly effective in
correcting local errors that involve small
edits in orthography.

1 Introduction

One of the most successful approaches to grammat-
ical error correction (GEC) is to cast the problem as
(monolingual) machine translation (MT), where we
translate from possibly ungrammatical English sen-
tences to corrected ones (Brockett et al., 2006; Gao
et al., 2010; Junczys-Dowmunt and Grundkiewicz,
2016). Such systems, which are based on phrase-
based MT models that are typically trained on large
sets of sentence-correction pairs, can correct global
errors such as word order and usage and local er-
rors in spelling and inflection. The approach has
proven superior to systems based on local classi-
fiers that can only fix focused errors in prepositions,
determiners, or inflected forms (Rozovskaya and
Roth, 2016).

∗This work was conducted while the third author worked
at Microsoft Research.

Recently, neural machine translation (NMT) sys-
tems have achieved substantial improvements in
translation quality over phrase-based MT systems
(Sutskever et al., 2014; Bahdanau et al., 2015).
Thus, there is growing interest in applying neu-
ral systems to GEC (Yuan and Briscoe, 2016; Xie
et al., 2016). In this paper, we significantly extend
previous work, and explore new neural models to
meet the unique challenges of GEC.

The core component of most NMT systems is a
sequence-to-sequence (S2S) model which encodes
a sequence of source words into a vector and then
generates a sequence of target words from the vec-
tor. Unlike the phrase-based MT models, the S2S
model can capture long-distance, or even global,
word dependencies, which are crucial to correct-
ing global grammatical errors and helping users
achieve native speaker fluency (Sakaguchi et al.,
2016). Thus, the S2S model is expected to perform
better on GEC than phrase-based models. However,
as we will show in this paper, to achieve the best
performance on GEC, we still need to extend the
standard S2S model to address several task-specific
challenges, which we will describe below.

First, a GEC model needs to deal with an ex-
tremely large vocabulary that consists of a large
number of words and their (mis)spelling variations.
Second, the GEC model needs to capture structure
at different levels of granularity in order to correct
errors of different types. For example, while cor-
recting spelling and local grammar errors requires
only word-level or sub-word level information, e.g.,
violets→ violates (spelling) or violate→ violates
(verb form), correcting errors in word order or us-
age requires global semantic relationships among
phrases and words.

Standard approaches in neural machine transla-
tion, also applied to grammatical error correction
by Yuan and Briscoe (2016), address the large vo-
cabulary problem by restricting the vocabulary to
a limited number of high-frequency words and re-

753

https://doi.org/10.18653/v1/P17-1070

sorting to standard word translation dictionaries
to provide translations for the words that are out
of the vocabulary (OOV). However, this approach
often fails to take into account the OOVs in con-
text for making correction decisions, and does not
generalize well to correcting words that are un-
seen in the parallel training data. An alternative
approach, proposed by Xie et al. (2016), applies a
character-level sequence to sequence neural model.
Although the model eliminates the OOV issue, it
cannot effectively leverage word-level information
for GEC, even if it is used together with a separate
word-based language model.

Our solution to the challenges mentioned above
is a novel, hybrid neural model with nested at-
tention layers that infuse both word-level and
character-level information. The architecture of
the model is illustrated in Figure 1. The word-level
information is used for correcting global grammar
and fluency errors while the character-level infor-
mation is used for correcting local errors in spelling
or inflected forms. Contextual information is cru-
cial for GEC. Using the proposed model, by com-
bining embedding vectors and attention at both
word and character levels, we model all contextual
words, including OOVs, in a unified context vector
representation. In particular, as we will discuss in
Section 5, the character-level attention layer cap-
tures most useful information for correcting local
errors that involve small edits in orthography.

Our model differs substantially from the word-
level S2S model of Yuan and Briscoe (2016) and
the character-level S2S model of Xie et al. (2016)
in the way we infuse information at both the word
level and the character level. We extend the word-
character hybrid model of Luong and Manning
(2016), which was originally developed for ma-
chine translation, by introducing a character atten-
tion layer. This allows the model to learn substi-
tution patterns at both the character level and the
word level in an end-to-end fashion, using sentence-
correction pairs.

We validate the effectiveness of our model on
the CoNLL-14 benchmark dataset (Ng et al., 2014).
Results show that the proposed model outperforms
all previous neural models for GEC, including the
hybrid model of Luong and Manning (2016), which
we apply to GEC for the first time. When inte-
grated with a large word-based n-gram language
model, our GEC system achieves an F0.5 of 45.15
on CoNLL-14, substantially exceeding the previ-

Figure 1: Architecture of Nested Attention Hybrid
Model

ously reported top performance of 40.56 achieved
by using a neural model and an external language
model (Xie et al., 2016).

2 Related Work

A variety of classifier-based and MT-based tech-
niques have been applied to grammatical error cor-
rection. The CoNLL-14 shared task overview paper
of Ng et al. (2014) provides a comparative evalu-
ation of approaches. Two notable advances after
the shared task have been in the areas of combining
classifiers and phrase-based MT (Rozovskaya and
Roth, 2016) and adapting phrase-based MT to the
GEC task (Junczys-Dowmunt and Grundkiewicz,
2016). The latter work has reported the highest per-
formance to date on the task of 49.5 in F0.5 score on
the CoNLL-14 test set. This method integrates dis-
criminative training toward the task-specific evalu-
ation function, a rich set of features, and multiple
large language models. Neural approaches to the
task are less explored. We believe that the advances
from Junczys-Dowmunt and Grundkiewicz (2016)
are complementary to the ones we propose for neu-
ral MT, and could be integrated with neural models
to achieve even higher performance.

Two prior works explored sequence to sequence
neural models for GEC (Xie et al., 2016; Yuan and
Briscoe, 2016), while Chollampatt et al. (2016) in-
tegrated neural features in a phrase-based system
for the task. Neural models were also applied to the
related sub-task of grammatical error identification
(Schmaltz et al., 2016). Yuan and Briscoe (2016)
demonstrated the promise of neural MT for GEC
but did not adapt the basic sequence-to-sequence
with attention to its unique challenges, falling back
to traditional word-alignment models to address vo-
cabulary coverage with a post-processing heuristic.
Xie et al. (2016) built a character-level sequence

754

to sequence model, which achieves open vocabu-
lary and character-level modeling, but has difficulty
with global word-level decisions.

The primary focus of our work is integration of
character and word-level reasoning in neural mod-
els for GEC, to capture global fluency errors and
local errors in spelling and closely related morpho-
logical variants, while obtaining open vocabulary
coverage. This is achieved with the help of charac-
ter and word-level encoders and decoders with two
nested levels of attention. Our model is inspired
by advances in sub-word level modeling in neural
machine translation. We build mostly on the hybrid
model of Luong and Manning (2016) to expand
its capability to correct rare words by fine-grained
character-level attention. We directly compare our
model to the one of Luong and Manning (2016) on
the grammar correction task. Alternative methods
for MT include modeling of word pieces to achieve
open vocabulary (Sennrich et al., 2016), and more
recently, fully character-level modeling (Lee et al.,
2017). None of these models integrate two nested
levels of attention although an empirical evalua-
tion of these approaches for GEC would also be
interesting.

3 Nested Attention Hybrid Model

Our model is hybrid, and uses both word-level
and character-level representations. It consists of a
word-based sequence-to-sequence model as a back-
bone, and additional character-level encoder, de-
coder, and attention components, which focus on
words that are outside the word-level model’s vo-
cabulary.

3.1 Word-based sequence-to-sequence model
as backbone

The word-based backbone closely follows the basic
neural sequence-to-sequence architecture with at-
tention as proposed by Bahdanau et al. (2015) and
applied to grammatical error correction by Yuan
and Briscoe (2016). For completeness, we give a
sketch here. It uses recurrent neural networks to
encode the input sentence and to decode the output
sentence.

Given a sequence of embedding vectors, corre-
sponding to a sequence of input words x:

x = (x1, . . . , xT), (1)

the encoder creates a corresponding context-

specific sequence of hidden state vectors e:

e = (h1, . . . , hT)

The hidden state ht at time t is computed as:
ft = GRUencf (ft−1, xt) , bt = GRUencb(bt+1, xt),
ht = [ft; bt], where GRUencf and GRUencb stand
for gated recurrent unit functions as described in
Cho et al. (2014). We use the symbol GRU with
different subscripts to represent GRU functions us-
ing different sets of parameters (for example, we
used the encf and encb subscripts to denote the pa-
rameters of the forward and backward word-level
encoder units.)

The decoder network is also an RNN using
GRU units, and defines a sequence of hidden states
d̄1, . . . , d̄S used to define the probability of an out-
put sequence y1, . . . , yS as follows:

The context vector cs at time step s is computed
as follows:

cs =
T∑

j=1

αsjhj (2)

where:
αsk =

usk∑T
j=1 usj

(3)

usk = φ1(ds)
Tφ2(hk) (4)

Here φ1 and φ2 denote feedforward linear trans-
formations followed by a tanh nonlinearity. The
next hidden state d̄s is then defined as:

ds = GRUdec(¯ds−1, ys−1),

d̄s = ReLU(W [cs; ds])

where ys−1 is the embedding of the output token
at time s-1. ReLU indicates rectified linear units
(Hahnloser et al., 2000).

The probability of each target word ys is com-
puted as: p(ys|y<s,x) = softmax(g(d̄s)), where
g is a function that maps the decoder state into
a vector of size the dimensionality of the target
vocabulary.

The model is trained by minimizing the cross-
entropy loss, which for a given (x,y) pair is:

Loss(x,y) = −
S∑

s=1

log p(ys|y<s,x) (5)

For parallel training data C, the loss is:

Loss = −
∑

(x,y)∈C

S∑

s=1

log p(ys|y<s,x)

755

3.2 Hybrid encoder and decoder with two
nested levels of attention

The word-level backbone models a limited vocab-
ulary of source and target words, and represents
out-of-vocabulary tokens with special UNK sym-
bols. In the standard word-level NMT approach,
valuable information is lost for source OOV words
and target OOV words are predicted using post-
processing heuristics.

Hybrid encoder

Our hybrid architecture overcomes the loss of
source information in the word-level backbone by
building up compositional representations of the
source OOV words using a character-level recur-
rent neural network with GRU units. These repre-
sentations are used in place of the special source
UNK embeddings in the backbone, and contribute
to the contextual encoding of all source tokens.

For example, a three word input sentence where
the last term is out-of-vocabulary will be repre-
sented as the following vector of embeddings in
the word-level model: x = (x1, x2, x3), where x3
would be the embedding for the UNK symbol.

The hybrid encoder builds up a word embedding
for the third word based on its character sequence:
xc1, . . . , x

c
M . The encoder computes a sequence

of hidden states ec for this character sequence, by
a forward character-level GRU network:

ec = (hc1, . . . , h
c
M), (6)

The last state hcM is used as an embedding of
the unknown word. The sequence of embeddings
for our example three-word sequence becomes:
x = (x1, x2, h

c
M). We use the same dimensional-

ity for word embedding vectors xi and composed
character sequence vectors hcM to ensure the two
ways to define embeddings are compatible. Our
hybrid source encoder architecture is similar to the
one proposed by Luong and Manning (2016).

Nested attention hybrid decoder

In traditional word-based sequence-to-sequence
models special target UNK tokens are used to rep-
resent outputs that are outside the target vocabu-
lary. A post-processing UNK-replacement method
is then used (Cho et al., 2015; Yuan and Briscoe,
2016) to replace these special tokens with target
words. The hybrid model of (Luong and Manning,
2016) uses a jointly trained character-level decoder

to generate target words corresponding to UNK to-
kens, and outperforms the traditional approach in
the machine translation task.

However, unlike machine translation, models for
grammar correction conduct “translation” in the
same language, and often need to apply a small
number of local edits to the character sequence of a
source word corresponding to the target UNK word.
For example, rare but correct words such as entity
names need to be copied as is, and local spelling
errors or errors in inflection need to be corrected.
The architecture of Luong and Manning (2016)
does not have direct access to a source character se-
quence, but only uses a single fixed-dimensionality
embedding of source unknown words aggregated
with additional contextual information from the
source.

To address the needs of the grammatical error
correction task, we propose a novel hybrid decoder
with two nested levels of attention: word level
and character-level. The character-level attention
serves to provide the decoder with direct access to
the relevant source character sequence.

More specifically, the probability of each target
word is defined as follows: For words in the target
vocabulary, the probability is defined by the word-
level backbone. For words outside the vocabulary,
the probability of each token is the probability of
UNK according to the backbone, multiplied by the
probability of the word’s character sequence.

The probability of the target character sequence
corresponding to an UNK token at position s in the
target is defined using a character-level decoder. As
in Luong and Manning (2016), the “separate path”
architecture is used to capture the relevant context
and define the initial state for the character-level
decoder:

d̂s = ReLU(Ŵ [cs; ds])

where Ŵ are parameters different from W , and d̂s
is not used by the word-level model in predicting
the subsequent tokens, but is only used to initialize
the character-level decoder.

To be able to attend to the relevant source charac-
ter sequence when generating the target character
sequence, we use the concept of hard attention (Xu
et al., 2015), but use an arg-max approximation for
inference instead of sampling. A similar approach
to represent discrete hidden structure in a variety
of architectures is used in Kong et al. (2017).

The source index zs corresponding to the target

756

position s is defined according to the word-level
attention model:

zs = arg max
k∈0...T−1

αsk

where αsk are the intermediate outputs of the
word-level attention model we described in Eq.(3).

The character-level decoder generates a charac-
ter sequence yc = (yc1, . . . , y

c
N), conditioned on

the initial vector d̂s and the source index zs. The
characters are generated using a hidden state vec-
tor dcn at each time step, via a softmax(gc(dcn)),
where gc maps the state to the target character vo-
cabulary space.

If the source word xzs is in the source vocabu-
lary, the model is analogous to the one of Luong
and Manning (2016) and does not use character-
level attention: the source context is available only
in aggregated form to initialize the state of the de-
coder. The state dcn for step n in the character-
level decoder is defined as follows, where GRUc

dec
are parameters for the gated recurrent cell of this
decoder:

dcn =

{
GRUc

dec(d̂s, y
c
n−1) n = 0

GRUc
dec(d

c
n−1, ycn−1) n > 0

In contrast, if the corresponding token in the
source xzs is also an out-of-vocabulary word, we
define a second nested level of character atten-
tion and use it in the character-level decoder. The
character-level attention focuses on individual char-
acters from the source word xzs . If ec are the
source character hidden vectors computed as in
Eq.(6), the recurrence equations for the character-
level decoder with nested attention are:

¯dcn = ReLU(Wc[c
c
n; dcn])

dcn =

{
GRUc

decNested(d̂s, y
c
n−1) n = 0

GRUc
decNested(¯dcn−1, ycn−1) n > 0

where ccn is the context vector obtained using
character-level attention on the sequence ec and
the last state of the character-level decoder dcn,
computed following equations 2, 3 and 4, but using
a different set of parameters.

These equations show that the character-level de-
coder with nested attention can use both the word-
level state d̂s, and the character-level context ccn

and hidden state dcn to perform global and local
editing operations.

Since we introduced two architectures for the
character-level decoder depending on whether the
source word xzs is OOV, the combined loss func-
tion is defined as follows for end-to-end training:

Losstotal = Lossw + αLossc1 + βLossc2

Here Lossw is the standard word-level loss in
Eq.(5); character level losses Lossc1 and Lossc2
are losses for target OOV words corresponding to
source known and unknown tokens, respectively.
α and β are hyper-parameters to balance the loss
terms.

As seen, our proposed nested attention hybrid
model uses character-level attention only when
both a predicted target word and its correspond-
ing source input word are OOV. While the model
can be naturally generalized to integrate character-
level attention for known words, the original hybrid
model proposed by Luong and Manning (2016)
does not use any character-level information for
known words. Thus for a controlled evaluation
of the impact of the addition of character-level at-
tention only, in this paper we limit character-level
attention to OOV words, which already use charac-
ters as a basis for building their embedding vectors.
A thorough investigation of the impact of character-
level information in the encoder, attention, and
decoder for known words as well is an interesting
topic for future research.

Decoding for word-level and hybrid models
Beam-search is used to decode hypotheses accord-
ing to the word-level backbone model. For the
hybrid model architecture, word-level beam search
is conducted first; for each target UNK token,
character-level beam-search is used to generate a
corresponding target word.

4 Experiments

4.1 Dataset and Evaluation
We use standard publicly available datasets for
training and evaluation. One data source is the NUS
Corpus of Learner English (NUCLE) (Dahlmeier
et al., 2013), which is provided as a training set for
the CoNLL-13 and CoNLL-14 shared tasks. From
the original corpus of size about 60K parallel sen-
tences, we randomly selected close to 5K sentence
pairs for use as a validation set, and 45K parallel
sentences for use in training. A second data source

757

Training Validation Development Test
#Sent pairs 2,608,679 4,771 1,381 1,312

Table 1: Overview of the datasets used.

Source #Sent pairs
NUCLE 45,422
CLC 1,517,174
lang-8 1,046,083
Total 2,608,679

Table 2: Training data by source.

is the Cambridge Learner Corpus (CLC) (Nicholls,
2003), from which we extracted a substantially
larger set of parallel sentences. Finally, we used
additional training examples from the Lang-8 Cor-
pus of Learner English v1.0 (Tajiri et al., 2012). As
Lang-8 data is crowd-sourced, we used heuristics
to filter out noisy examples: we removed sentences
longer than 100 words and sentence pairs where
the correction was substantially shorter than the
input text. Table 2 shows the number of sentence
pairs from each source used for training.

We evaluate the performance of the models on
the standard sets from the CoNLL-14 shared task
(Ng et al., 2014). We report final performance on
the CoNLL-14 test set without alternatives, and an-
alyze model performance on the CoNLL-13 devel-
opment set (Dahlmeier et al., 2013). We use the de-
velopment and validation sets for model selection.
The sizes of all datasets in number of sentences
are shown in Table 1. We report performance in
F0.5-measure, as calculated by the m2scorer—
the official implementation of the scoring metric
in the shared task. 1 Given system outputs and
gold-standard edits, m2scorer computes the F0.5

measure of a set of system edits against a set of
gold-standard edits.

4.2 Baseline

We evaluate our model in comparison to the
strong baseline of a word-based neural sequence-
to-sequence model with attention, with post-
processing for handling out-of-vocabulary words
(Yuan and Briscoe, 2016); we refer to this model
as word NMT+UNK replacement. Like Yuan
and Briscoe (2016), we use a traditional word-
alignment model (GIZA++) to derive a word-
correction lexicon from the parallel training set.
However, in decoding, we don’t use GIZA++ to
find the corresponding source word for each tar-

1http://www.comp.nus.edu.sg/˜nlp/sw/
m2scorer.tar.gz

get OOV, but follow Cho et al. (2015), Section
3.3 to use the NMT system’s attention weights in-
stead. The target OOV is then replaced by the most
likely correction of the source word from the word-
correction lexicon, or by the source word itself if
there are no available corrections.

4.3 Training Details and Results

The embedding size for all word and character-
level encoders and decoders is set to 1000, and the
hidden unit size is also 1000. To reproduce the
model of Yuan and Briscoe (2016), we selected
the word vocabulary for the baseline by choosing
the 30K most frequent words in the source and
target respectively to form the source and target
vocabularies. In preliminary experiments for the
hybrid models, we found that selecting the same
vocabulary of 30K words for the source and target
based on combined frequency was better (.003 in
F0.5) and use that method for vocabulary selection
instead. However, there was no gain observed by
using such a vocabulary selection method in the
baseline. Although the source and target vocabu-
laries in the hybrid models are the same, like in the
word-level model, the embedding parameters for
source and target words are not shared.

The hyper-parameters for the losses in our mod-
els are selected based on the development set and
set as follows: α = β = 0.5. All models are
trained with mini-batch size of 128 (batches are
shuffled), initial learning rate of 0.0003 and a 0.95
decay ratio if the cost increases in two consecutive
100 iterations. The gradient is rescaled whenever
its norm exceeds 10, and dropout is used with a
probability of 0.15. Parameters are uniformly ini-

tialized in [−
√

(3)√
1000

,

√
(3)√

1000
].

We perform inference on the validation set every
5000 iterations to log word-level cost and character-
level costs; we save parameter values for the model
every 10000 iterations as well as the end of each
epoch. The stopping point for training is selected
based on development set F0.5 among the top 20
parameter sets with best validation set value of
the loss function. Training of the nested attention
hybrid model takes approximately five days on a
Tesla k40m GPU. The basic hybrid model trains
in around four days and the word-level backbone
trains in approximately three days.

Table 3 shows the performance of the baseline
and our nested attention hybrid model on the devel-
opment and test sets. In addition to the word-level

758

Model Performance
Dev Test

Word NMT + UNK replacement 26.17 38.77
Hybrid model 28.49 40.44
Nested Attention Hybrid Model 28.61 41.53

Table 3: F0.5 results on the CoNLL-13 and
CoNLL-14 test sets of main model architectures.

baseline, we include the performance of a hybrid
model with a single level of attention, which fol-
lows the work of Luong and Manning (2016) for
machine translation, and is the first application of a
hybrid word/character-level model to grammatical
error correction. Based on hyper-parameter selec-
tion, the character-level component weight of the
loss is α = 1 for the basic hybrid model.

As shown in Table 3, our implementation of
the word NMT+UNK replacement baseline ap-
proaches the performance of the one reported in
Yuan and Briscoe (2016) (38.77 versus 39.9). We
attribute the difference to differences in the train-
ing set and the word-alignment methods used. Our
reimplementation serves to provide a controlled
experimental evaluation of the impact of hybrid
models and nested attention on the GEC task. As
seen, our nested attention hybrid model substan-
tially improves upon the baseline, achieving a gain
of close to 3 points on the test set. The hybrid
word/character model with a single level of atten-
tion brings a large improvement as well, showing
the importance of character-level information for
this task. We delve deeper into the impact of nested
attention for the hybrid model in Section 5.

4.4 Integrating a Web-scale Language Model

The value of large language models for grammati-
cal error correction is well known, and such mod-
els have been used in classifier and MT-based sys-
tems. To establish the potential of such models
in word-based neural sequence-to-sequence sys-
tems, we integrate a web-scale count-based lan-
guage model. In particular, we use the modified
Kneser-Ney 5-gram language model trained from
Common Crawl (Buck et al., 2014), made available
for download by Junczys-Dowmunt and Grund-
kiewicz (2016).

Candidates generated by neural models are re-
ranked using the following linear interpolation
of log probabilities: sy|x = logPNN (y|x) +
λ logPLM (y). Here λ is a hyper-parameter that
balances the weights of the neural network model
and the language model. We tuned λ separately

Model Performance
Dev Test

Character-based NMT + LM (Xie et al., 2016) 40.56
Word NMT + UNK replacement + LM 31.73 42.82
Hybrid model + LM 33.21 44.99
Nested Attention Hybrid Model + LM 33.47 45.15

Table 4: F0.5 results on the CoNLL-13 and
CoNLL-14 test sets of main model architectures,
when combined with a large language model.

for each neural model variant, by exploring val-
ues in the range [0.0, 2.0] with step size 0.1, and
selecting according to development set F0.5. The
selected values of λ are: 1.6 for word NMT + UNK
replacement and 1.0 for the nested attention model.

Table 4 shows the impact of the LM when com-
bined with the neural models implemented in this
work. The table also lists the results reported by
Xie et al. (2016), for their character-level neural
model combined with a large word-level language
model. Our best results exceed the ones reported
in the prior work by more than 4 points, although
we should note that Xie et al. (2016) used a smaller
parallel data set for training.

5 Analysis

We analyze the impact of sub-word level informa-
tion and the two nested levels of attention in more
detail by looking at the performance of the mod-
els on different segments of the data. In particular,
we analyze the performance of the models on sen-
tences containing OOV source words versus ones
without OOV words, and corrections to orthograph-
ically similar versus dissimilar word forms.

5.1 Performance by Segment: OOV versus
Non-OOV

We present a comparative performance analysis of
models on the CoNLL-13 development set. First,
we divide the set into two segments: OOV and
NonOOV, based on whether there is at least one
OOV word in the given source input. Table 5 shows
that both hybrid architectures substantially outper-
form the word-level model in both segments of the
data. The additional nested character-level atten-
tion of our hybrid model brings a sizable improve-
ment over the basic hybrid model in the OOV seg-
ment and a small degradation in the non-OOV seg-
ment. We should note that in future work character-
level attention can be added for non-OOV source
words in the nested attention model, which could
improve performance on this segment as well.

759

Model NonOOV OOV Overall

Word NMT + UNK replacement 27.61 21.57 26.17
Hybrid model 29.36 25.92 28.49
Nested Attention Hybrid Model 29.00 27.39 28.61

Table 5: F0.5 results on the CoNLL-13 set of main
model architectures, on different segments of the
set according to whether the input contains OOVs.

source This greatly violets the rights
of people .

gold This greatly violates the
rights of people .

word NMT + UNK
replacement

This greatly violets the rights
of people .

Nested Attention
Hybrid Model

This greatly violates the
rights of people .

Table 6: An example sentence from the OOV
segment where the nested attention hybrid model
improves performance.

Table 6 shows an example where the nested at-
tention hybrid model successfully corrects a mis-
spelling resulting in an OOV word on the source,
whereas the baseline word-level system simply
copies the source word without fixing the error
(since this particular error is not observed in the
parallel training set).

5.2 Impact of Nested Attention on Different
Error Types

To analyze more precisely the impact of the addi-
tional character-level attention introduced by our
design, we continue to investigate the OOV seg-
ment in more detail.

The concept of edit, which is also used by the of-
ficial M2 score metric, is defined as a minimal pair
of corresponding sub-strings in a source sentence
and a correction. For example, in the sentence frag-
ment pair: “Even though there is a risk of causing
harms to someone, people still are prefers to keep
their pets without a leash.” → “Even though there
is a risk of causing harm to someone, people still
prefer to keep their pets without a leash.”, the min-
imal edits are “harms→ harm” and “are prefers→
prefer”. The F0.5 score is computed using weighted
precision and recall of the set of a system’s edits
against one or more sets of reference edits.

For our in-depth analysis, we classify edits in
the OOV segment into two types: small changes
and large changes, based on whether the source and
target phrase of the edit are orthographically similar
or not. More specifically, we say that the target and

Model Performance
P R F0.5

Small Changes Portion
Hybrid model 43.86 16.29 32.77
Nested Attention Hybrid Model 48.25 17.92 36.04

Large Changes Portion
Hybrid model 32.52 8.32 20.56
Nested Attention Hybrid Model 33.05 8.11 20.46

Table 7: Precision, Recall and F0.5 results on
CoNLL-13,on the ”small changes” and “large
changes” portions of the OOV segment.

source phrases are orthographically similar, iff: the
character edit distance is at most 2 and the source or
target is at most 8 characters long, or edit ratio <
0.25, where edit ratio = character edit distance

min(len(src),len(tar))+0.1 ,
len(∗) denotes number of characters in ∗, and src
and tgt denote the pairs in the edit. There are 307
gold edits in the “small changes” portion of the
CoNLL-13 OOV segment, and 481 gold edits in
the “large changes” portion.

Our hypothesis is that the additional character-
level attention layer is particularly useful to model
edits among orthographically similar words. Table
7 contrasts the impact of character-level attention
on the two portions of the data. We can see that
the gains in the “small changes” portion are in-
deed quite large, indicating that the fine-grained
character-level attention empowers the model to
more accurately correct confusions among phrases
with high character-level similarity. The impact
in the “large changes” portion is slightly positive
in precision and slightly negative in recall. Thus
most of the benefit of the additional character-level
attention stems from improvements in the “small
changes” portion.

Table 8 shows an example input which illustrates
the precision gain of the nested attention hybrid
model. The input sentence has a source OOV word
which is correct. The hybrid model introduces an
error in this word, because it uses only a single
source context vector, aggregating the character-
level embedding of the source OOV word together
with other source words. The additional character-
level attention layer in the nested hybrid model en-
ables the correct copying of this long source OOV
word, without employing the heuristic mechanism
of the word-level NMT system.

760

source Population ageing : A more
and more attention-getting
topic

gold Population ageing : A more
and more attention-getting
topic

Word NMT + UNK
replacement

Population ageing : A more
and more attention-getting
topic

Hybrid Model Population ageing : A more
and more attention-teghting
topic

Nested Attention
Hybrid Model

Population ageing : A more
and more attention-getting
topic

Table 8: An example where the nested attention
hybrid model outperforms the non-nested model.

6 Conclusions

We have introduced a novel hybrid neural model
with two nested levels of attention: word-level and
character-level. The model addresses the unique
challenges of the grammatical error correction
task and achieves the best reported results on the
CoNLL-14 benchmark among fully neural systems.
Our nested attention hybrid model deeply com-
bines the strengths of word and character level in-
formation in all components of an end-to-end neu-
ral model: the encoder, the attention layers, and the
decoder. This enables it to correct both global word-
level and local character-level errors in a unified
way. The new architecture contributes substantial
improvement in correction of confusions among
rare or orthographically similar words compared to
word-level sequence-to-sequence and non-nested
hybrid models.

Acknowledgements

We would like to thank the ACL reviewers for their
insightful suggestions, Victoria Zayats for her help
with reproducing the baseline word-level NMT sys-
tem and Yu Shi, Daxin Jiang and Michael Zeng for
the helpful discussions.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Chris Brockett, William B Dolan, and Michael Gamon.
2006. Correcting ESL errors using phrasal SMT
techniques. In Proceedings of the 21st International

Conference on Computational Linguistics and the
44th annual meeting of the Association for Compu-
tational Linguistics. pages 249–256.

Christian Buck, Kenneth Heafield, and Bas Van Ooyen.
2014. N-gram counts and language models from the
Common Crawl. In LREC.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP).

Sébastien Jean Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
Proceedings of ACL.

Shamil Chollampatt, Kaveh Taghipour, and Hwee Tou
Ng. 2016. Neural network translation models for
grammatical error correction. In Proceedings of IJ-
CAI.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In
Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications.
pages 22–31.

Jianfeng Gao, Xiaolong(Shiao-Long) Li, Daniel Micol,
Chris Quirk, and Xu Sun. 2010. A large scale ranker-
based system for search query spelling correction.
In The 23rd International Conference on Computa-
tional Linguistics.

Richard HR Hahnloser, Rahul Sarpeshkar, Misha A
Mahowald, Rodney J Douglas, and H Sebastian Se-
ung. 2000. Digital selection and analogue amplifica-
tion coexist in a cortex-inspired silicon circuit. Na-
ture 405(6789):947–951.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2016. Phrase-based machine translation is state-of-
the-art for automatic grammatical error correction.
In EMNLP.

Lingpeng Kong, Chris Alberti, Daniel Andor, Ivan Bo-
gatyy, and David Weiss. 2017. Dragnn: A transition-
based framework for dynamically connected neural
networks.

Jason Lee, Kyunghyun Cho, and Thomas Hofmann.
2017. Fully character-level neural machine transla-
tion without explicit segmentation. TACL 5.

Minh-Thang Luong and Christopher D. Manning. 2016.
Achieving open vocabulary neural machine transla-
tion with hybrid word-character models. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers).

761

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 shared task
on grammatical error correction. In CoNLL Shared
Task. pages 1–14.

Diane Nicholls. 2003. The Cambridge Learner Corpus:
Error coding and analysis for lexicography and ELT.
In Proceedings of the Corpus Linguistics 2003 con-
ference. volume 16, pages 572–581.

Alla Rozovskaya and Dan Roth. 2016. Grammatical
error correction: Machine translation and classifiers.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). pages 2205–2215.

Keisuke Sakaguchi, Courtney Napoles, Matt Post, and
Joel Tetreault. 2016. Reassessing the goals of gram-
matical error correction: Fluency instead of gram-
maticality. Transactions of the Association for Com-
putational Linguistics 4:169–182.

Allen Schmaltz, Yoon Kim, Alexander M Rush, and
Stuart M Shieber. 2016. Sentence-level grammati-
cal error identification as sequence-to-sequence cor-
rection. arXiv preprint arXiv:1604.04677 .

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers).

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems. pages 3104–3112.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
ESL learners using global context. In Proceedings
of the 50th Annual Meeting of the Association for
Computational Linguistics: Short Papers-Volume 2.
pages 198–202.

Ziang Xie, Anand Avati, Naveen Arivazhagan, Dan Ju-
rafsky, and Andrew Y. Ng. 2016. Neural language
correction with character-based attention. CoRR
abs/1603.09727. http://arxiv.org/abs/1603.09727.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In ICML. volume 14, pages 77–81.

Zheng Yuan and Ted Briscoe. 2016. Grammatical error
correction using neural machine translation. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies.

762

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 763–772
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1071

TextFlow: A Text Similarity Measure based on Continuous Sequences

Yassine Mrabet
mrabety@mail.nih.gov

Halil Kilicoglu
kilicogluh@mail.nih.gov

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine

8600 Rockville Pike, 20894, Bethesda, MD, USA

Dina Demner-Fushman
ddemner@mail.nih.gov

Abstract

Text similarity measures are used in multi-
ple tasks such as plagiarism detection, in-
formation ranking and recognition of para-
phrases and textual entailment. While re-
cent advances in deep learning highlighted
further the relevance of sequential mod-
els in natural language generation, existing
similarity measures do not fully exploit
the sequential nature of language. Exam-
ples of such similarity measures include n-
grams and skip-grams overlap which rely
on distinct slices of the input texts. In
this paper we present a novel text sim-
ilarity measure inspired from a common
representation in DNA sequence align-
ment algorithms. The new measure, called
TextFlow, represents input text pairs as
continuous curves and uses both the actual
position of the words and sequence match-
ing to compute the similarity value. Our
experiments on eight different datasets
show very encouraging results in para-
phrase detection, textual entailment recog-
nition and ranking relevance.

1 Background

The number of pages required to print the content
of the World Wide Web was estimated to 305 bil-
lion in a 2015 article1. While a big part of this
content consists of visual information such as pic-
tures and videos, texts also continue growing at a
very high pace. A recent study shows that the av-
erage webpage weights 1,200 KB with plain text
accounting for up to 16% of that size2.

While efficient distribution of textual data and
computations are the key to deal with the increas-

1http://goo.gl/p9lt7V
2http://goo.gl/c41wpa

ing scale of textual search, similarity measures
still play an important role in refining search re-
sults to more specific needs such as the recognition
of paraphrases and textual entailment, plagiarism
detection and fine-grained ranking of information.
These tasks are also often performed on dedicated
document collections for domain-specific applica-
tions where text similarity measures can be di-
rectly applied.

Finding relevant approaches to compute text
similarity motivated a lot of research in the last
decades (Sahami and Heilman, 2006; Hatzivas-
siloglou et al., 1999), and more recently with deep
learning methods (Socher et al., 2011; Yih et al.,
2011; Severyn and Moschitti, 2015). However,
most of the recent advances focused on designing
high performance classification methods, trained
and tested for specific tasks and did not offer a
standalone similarity measure that could be ap-
plied (i) regardless of the application domain and
(ii) without requiring training corpora.

For instance, Yih and Meek (2007) presented
an approach to improve text similarity measures
for web search queries with a length ranging from
one word to short sequences of words. The pro-
posed method is tailored to this specific task, and
the training models are not expected to perform
well on different kinds of data such as sentences,
questions or paragraphs. In a more general study,
Achananuparp et al. (2008) compared several text
similarity measures for paraphrase recognition,
textual entailment, and the TREC 9 question vari-
ants task. In their experiments the best perfor-
mance was obtained with a linear combination
of semantic and lexical similarities, including a
word order similarity proposed in (Li et al., 2006).
This word order similarity is computed by con-
structing first two vectors representing the com-
mon words between two given sentences and using
their respective positions in the sentences as term

763

https://doi.org/10.18653/v1/P17-1071

weights. The similarity value is then obtained by
subtracting the two vectors and taking the absolute
value. While such representation takes into ac-
count the actual positions of the words, it does not
allow detecting sub-sequence matches and takes
into account missing words only by omission.

More generally, existing standalone (or tradi-
tional) text similarity measures rely on the inter-
sections between token sets and/or text sizes and
frequency, including measures such as the Co-
sine similarity, Euclidean distance, Levenshtein
(Sankoff and Kruskal, 1983), Jaccard (Jain and
Dubes, 1988) and Jaro (Jaro, 1989). The se-
quential nature of natural language is taken into
account mostly through word n-grams and skip-
grams which capture distinct slices of the analysed
texts but do not preserve the order in which they
appear.

In this paper, we use intuitions from a common
representation in DNA sequence alignment to de-
sign a new standalone similarity measure called
TextFlow (XF). The proposed measure uses at the
same time the full sequence of input texts in a
natural sub-sequence matching approach together
with individual token matches and mismatches.
Our contributions can be detailed further as fol-
lows:

• A novel standalone similarity measure
which:

– exploits the full sequence of words in
the compared texts.

– is asymmetric in a way that allows it
to provide the best performance on dif-
ferent tasks (e.g., paraphrase detection,
textual entailment and ranking).

– when required, it can be trained with a
small set of parameters controlling the
impact of sub-sequence matching, posi-
tion gaps and unmatched words.

– provides consistent high performance
across tasks and datasets compared to
traditional similarity measures.

• A neural network architecture to train
TextFlow parameters for specific tasks.

• An empirical study on both performance con-
sistency and standard evaluation measures,
performed with eight datasets from three dif-
ferent tasks.

Figure 1: Dot matrix example for 2 DNA se-
quences (Mount, 2004)

• A new evaluation measure, called CORE,
used to better show the consistency of a sys-
tem at high performance using both its rank
average and rank variance when compared to
competing systems over a set of datasets.

2 The TextFlow Similarity

XF is inspired from a dot matrix representation
commonly used in pairwise DNA sequence align-
ment (cf. figure 1). We use a similar dot matrix
representation for text pairs and draw a curve os-
cillating around the diagonal (cf. figure 2). The
area under the curve is considered to be the dis-
tance between the two text pairs which is then
normalized with the matrix surface. For practical
computation, we transform this first intuitive rep-
resentation using the delta of positions as in figure
3. In this setting, the Y axis is the delta of posi-
tions of a word occurring in the two texts being
compared. If the word does not occur in the tar-
get text, the delta is considered to be a maximum
reference value (l in figure 2).

The semantics are: the bigger the area un-
der curve is, the lower the similarity between the
compared texts. XF values are real numbers
in the [0,1] interval, with 1 indicating a perfect
match, and 0 indicating that the compared texts
do not have any common tokens. With this rep-
resentation, we are able to take into account all
matched words and sub-sequences at the same
time. The exact value for the XF similarity be-
tween two texts X = {x1, x2, .., xn} and Y =
{y1, y2, .., ym} is therefore computed as:

764

Figure 2: Illustration of TextFlow Intuition

Figure 3: Practical TextFlow Computation

XF (X,Y) = 1− 1

nm

n∑

i=2

1

Si
Ti,i−1(X,Y)

− 1

nm

n∑

i=2

1

Si
Ri,i−1(X,Y)

(1)

With Ti,i−1(X,Y) corresponding to the triangu-
lar area in the [i − 1, i] step (cf. figure 3)
and Ri,i−1(X,Y) corresponding to the rectangu-
lar component. They are expressed as:

Ti,i−1(X,Y) =
|∆P (xi, X, Y)−∆P (xi−1, X, Y)|

2
(2)

and:

Ri,i−1(X,Y) = Min(∆P (xi, X, Y),∆P (xi−1, X, Y))
(3)

With:

• ∆P (xi, X, Y) the minimum difference be-
tween xi positions in X and Y . xi position
in X is multiplied by the factor |Y ||X| for nor-
malization. If xi /∈ X ∩ Y , ∆P (xi, X, Y)

is set to the same reference value equal to m,
(i.e., the cost of a missing word is set by de-
fault to the length of the target text), and:

• Si is the length of the longest matching se-
quence between X and Y including the word
xi, if xi ∈ X ∩ Y , or 1 otherwise.

XF computation is performed in O(nm) in the
worst case where we have to check all tokens in the
target text Y for all tokens in the input textX . XF
is an asymmetric similarity measure. Its asymmet-
ric aspect has interesting semantic applications as
we show in the example below (cf. figure 2). The
minimum value of XF provided the best differ-
entiation between positive and negative text pairs
when looking for semantic equivalence (i.e., para-
phrases), the maximum value was among the top
three for the textual entailment example. We con-
duct this comparison at a larger scale in the evalu-
ation section.

We add 3 parameters to XF in order to repre-
sent the importance that should be given to posi-
tion deltas (Position factor α), missing words (sen-
sitivity factor β), and sub-sequence matching (se-
quence factor γ), such that:

XFα,β,γ(X,Y) = 1− 1

βnm

n∑

i=2

α

Sγi
T βi,i−1(X,Y)

− 1

βnm

n∑

i=2

α

Sγi
Rβi,i−1(X,Y)

(4)

With:

T βi,i−1(X,Y) =
|∆βP (xi, X, Y)−∆βP (xi−1, X, Y)|

2
(5)

Rβi,i−1(X,Y) = Min(∆βP (xi, X, Y),∆βP (xi−1, X, Y))
(6)

and:

• ∆βP (xi, X, Y) = βm, if xi /∈ X ∩ Y

• α < β: forces missing words to always cost
more than matched words.

• Sγi =
{

1ifSi = 1orxi /∈ X ∩ Y
γ SiforSi > 1

The γ factor increases or decreases the impact
of sub-sequence matching, α applies to individ-
ual token matches whether inside or outside a se-
quence, and β increases or decreases the impact of

765

Positive Entailment
E1 Under a blue sky with white clouds, a child reaches up to touch the propeller of a plane

standing parked on a field of grass.
E2 A child is reaching to touch the propeller of a plane.

Negative Entailment
E3 Two men on bicycles competing in a race.
E4 Men are riding bicycles on the street.

Positive Paraphrase
P1 The most serious breach of royal security in recent years occurred in 1982 when 30-

year-old Michael Fagan broke into the queen’s bedroom at Buckingham Palace.
P2 It was the most serious breach of royal security since 1982 when an intruder, Michael

Fagan, found his way into the Queen’s bedroom at Buckingham Palace.

Negative Paraphrase
P3 “Americans don’t cut and run, we have to see this misadventure through,” she said.
P4 She also pledged to bring peace to Iraq: “Americans don’t cut and run, we have to see

this misadventure through.”

Task Entailment Recognition Paraphrase Detection
Sentence Pair (E1, E2) (E3, E4) (E1, E2) - (E3, E4) (P1, P2) (P3, P4) (P1, P2) - (P3, P4)
Example class (Pos/Neg) (Pos) (Neg) (Gap) (Pos) (Neg) (Gap)
Jaro-Winkler 0.629 0.712* -0.083** 0.884 0.738 0.146
Levenshtein 0.351 0.259 0.092 0.708 0.577 0.130
Jaccard 0.250* 0.143 0.107 0.571* 0.583 -0.012
Cosine 0.462 0.250 0.212 0.730 0.746** -0.016
Word Overlap 0.800 0.250 0.550 0.800 0.875* -0.075
MIN(XF (x,y), XF(y,x)) 0.260** 0.563** -0.303* 0.693** 0.497 0.196
MAX(XF(x,y), XF(y,x)) 0.707 0.563** 0.144 0.832 0.739 0.093

Figure 4: Example sentences and similarity values. The best value per column is highlighted. The
second best is underlined. Worst and second worst values are followed by one and two stars. Entailment
examples are taken from SNLI (Bowman et al., 2015). Paraphrase examples are taken from MSRP 4.

missing tokens as well as the normalization quan-
tity βnm in equation 4 to keep the similarity val-
ues in the [0,1] range.

2.1 Parameter Training

By default XF has canonical parameters set to 1.
However, when needed, α, β, and γ can be learned
on training data for a specific task. We designed a
neural network to perform this task, with a hidden
layer dedicated to compute the exact XF value. To
do so we compute, for each input text pair, the co-
efficients vector that would lead exactly to the XF
value when multiplied by the vector< α

β ,
α
βγ , 1 >.

Figure 5) presents the training neural network con-
sidering several types of sequences (or transla-
tions) of the input text pairs (e.g., lemmas, words,
synsets).

We use identity as activation function in the
dedicated XF layer in order to have a correct com-
parison with the other similarity measures, includ-
ing canonical XF where the similarity value is pro-
vided in the input layer (cf. figure 6).

3 Evaluation

Datasets. This evaluation was performed on 8
datasets from 3 different classification tasks: Tex-

tual Entailment Recognition, Paraphrase Detec-
tion, and ranking relevance. The datasets are as
follows:

• RTE 1, 2, and 3: the first three datasets from
the Recognizing Textual Entailment (RTE)
challenge (Dagan et al., 2006). Each dataset
consists of sentence pairs which are anno-
tated with 2 labels: entailment, and non-
entailment. They contain respectively (200,
800), (800, 800), and (800, 800) (train, test)
pairs.

• Guardian: an RTE dataset collected from
78,696 Guardian articles5 published from
January 2004 onwards and consisting of 32K
pairs which we split randomly in 90%/10%
training/test sets. Positive examples were
collected from the titles and first sentences.
Negative examples were collected from the
same source by selecting consecutive sen-
tences and random sentences.

• SNLI: a recent RTE dataset consisting of
560K training sentence pairs annotated with

5https://github.com/daoudclarke/
rte-experiment

766

Figure 5: NN architecture A1 for XF Parameter Training

3 labels: entailment, neutral and contradic-
tion (Bowman et al., 2015). We discarded the
contradiction pairs as they do not necessarily
represent dissimilar sentences and are there-
fore a random noise w.r.t. our similarity mea-
sure evaluation.

• MSRP: the Microsoft Research Paraphrase
corpus, consisting of 5,800 sentence pairs
annotated with a binary label indicating
whether the two sentences are paraphrases or
not.

• Semeval-16-3B: a dataset of question-
question similarity collected from Stack-
Overflow (Nakov et al., 2016). The dataset
contains 3,169 training pairs and 700 test
pairs. Three labels are considered: ”Perfect
Match”, ”Relevant” or ”Irrelevant”. We com-
bined the first two into the same positive cat-
egory for our evaluation.

• Semeval-14-1: a corpus of Sentences Involv-
ing Compositional Knowledge (Marelli et al.,
2014) consisting of 10,000 English sentence
pairs annotated with both similarity scores
and relevance labels.

Features. After a preprocessing step where we
removed stopwords, we computed the similarity
values using 7 different types of sequences con-
structed, respectively, with the following value
from each token:

• Word (plain text value)

• Lemma

• Part-Of-Speech (POS) tag

• WordNet Synset6 OR Lemma

• WordNet Synset OR Lemma for Nouns

• WordNet Synset OR Lemma for Verbs

• WordNet Synset OR Lemma for Nouns and
Verbs.

In the last 4 types of sequences the lemma is
used when there is no corresponding WordNet
synset. In a first experiment we compare differ-
ent aggregation functions on top of XF (minimum,
maximum and average) in table 1. We used the Li-
bLinear7 SVM classifier for this task.

In the second part of the evaluation, we use neu-
ral networks to compare the efficiency of XFc,
XFt and other similarity measures with in the
same setting. We use the neural net described in
figure 5 for the trained versionXFt and the equiv-
alent architecture presented in figure 6 for all other
similarity measures. For canonical XFc we use
by default the best aggregation for the task as ob-
served in table 3.

6https://wordnet.princeton.edu/
7https://www.csie.ntu.edu.tw/˜cjlin/

liblinear/

767

Task Entailment Recognition Paraphrase Detection Ranking Relevance
Datasets RTE 1 RTE 2 RTE 3 Guardian SNLI MSRP Semeval16-t3B Semeval12-t17
XF MIN 55.3 53.8 60.0 77.3 58.0 72.1 77.4 77.8
XF AVG 51.4 1 57.2 62.5 84.9 62.0 72.0 77.6 79.5
XF MAX 53.9 61.3 64.7 86.7 64.3 71.4 76.7 77.7

Table 1: Accuracy evaluation with different aggregations of XF using an SVM classifier.

Figure 6: NN Architecture A2 for the equivalent
evaluation of other similarity measures.

Similarity Measures. We considered nine tra-
ditional similarity measures included in the Sim-
metrics distribution8: Cosine, Euclidean dis-
tance, Word Overlap, Dice coefficient (Dice,
1945), Jaccard(Jain and Dubes, 1988), Damerau,
Jaro-Winkler (JW) (Porter et al., 1997), Leven-
shtein (LEV) (Sankoff and Kruskal, 1983), and
Longest Common Subsequence (LCS) (Friedman
and Sideli, 1992).
Implementation. XF was implemented in Java
as an extension of the Simmetrics package, made
available at this address9. The neural networks
were implemented in Python with TensorFlow10.
We also share the training sets used for both pa-
rameter training and evaluation. The evaluation
was performed on a 4-core laptop with 32GB of
RAM. The initial parameters for XFt were cho-
sen with a random function.
Evaluation Measures. We use the standard ac-
curacy values and F1, precision and recall for the

8https://github.com/Simmetrics/
simmetrics

9https://github.com/ymrabet/TextFlow
10https://www.tensorflow.org/

positive class (i.e., entailment, paraphrase, and
ranking relevance). We also study the relative rank
in performance of each similarity measure across
all datasets using the average rank, the rank vari-
ance and a new evaluation measure called Con-
sistent peRformancE (CORE), computed as fol-
lows for a system m, a set of datasets D, a set
of systems S, and an evaluation measure E ∈
{F1, P recision,Recall, Accuracy}:

CORE
D,S,E

(m) =

MIN
p∈S

(
AVG
d∈D

(RS(Ed(p)) + Vd∈D(RS(Ed(p)))

)

AVG
d∈D

(
RS(Ed(m))

)
+ Vd∈D

(
RS(Ed(m))

) (7)

With RS(Ed(m)) the rank of m according to
the evaluation measure E on dataset d w.r.t. com-
peting systems S. Vd∈D(RS(Ed(m))) is the rank
variance of m over datasets. The results in tables
2, 3, and 4 demonstrate the intuition. Basically,
CORE tells us how consistent a system/method
is in having high performance, relatively to the set
of competing systems S. The maximum value of
CORE is 1 for the best performing system ac-
cording to its rank. It also allows quantifying how
consistently a system achieves high performance
for the remaining systems.

TextFlow outperformed the results obtained
with a combination of word order similarity
and semantic similarities tested in (Achananuparp
et al., 2008), with gaps of +1.0 in F1 and +6.1 ac-
curacy on MSRP and +4.2 F1 and +2.7% accuracy
on RTE 3.

4 Discussion

4.1 Canonical Text Flow
TFc had the best average and micro-average accu-
racy on the 8 classification datasets, with a gap of
+0.4 to +6.3 when compared to the state-of-the-art
measures. It also reached the best precision aver-
age with a gap of +1.8 to +6.3. On the F1 score
level XFc achieved the second best performance
with a gap of -1.7, mainly caused by its under-
performance in recall, where it had the third best
performance with a gap of -6.3 (cf. table 3). On
a rank level, XFc had the best consistent rank for

768

Cosine Euc Overlap Dice Jaccard Damerau JW LEV LCS XFC XFT

RTE 1 .561 .564 .550 .504 .511 .557 .532 .561 .568 .550 .575
RTE 2 .575 .555 .598 .566 .572 .548 .541 .551 .548 .597 .612
RTE 3 .652 .562 .636 .637 .630 .567 .538 .567 .562 .627 .647
Guardian .748 .750 .820 .778 .780 .847 .726 .847 .848 .867 .876
SNLI .621 .599 .665 .612 .608 .631 .556 .630 .619 .641 .656
MSRP .719 .689 .720 .729 .731 .687 .699 .685 .717 .724 .732
Semeval-16-3B .756 .734 .769 .781 .780 .759 .751 .759 .737 .777 .782
Semeval-14-1 .790 .756 .779 .783 .786 .749 .719 .749 .757 .783 .798
AVG .678 .651 .692 .674 .675 .668 .633 .669 .670 .696 .710
Micro Avg .699 .675 .725 .700 .700 .701 .646 .701 .701 .726 .739
RANK Avg 5.1 8.2 4.5 5.6 5.5 6.9 10.1 6.7 6.7 4.1 1.2
RANK Var. 9.0 5.9 4.3 10.0 8.6 5.3 1.6 6.2 8.2 2.7 0.2
CORE 0.104 0.103 0.167 0.094 0.104 0.121 0.125 0.113 0.098 0.215 1.000

Table 2: Accuracy values using. The best result is highlighted, the second best is underlined.

Cosine Euc Overlap Dice Jaccard Damerau JW LEV LCS XFC XFT

RTE 1 .612 .564 .636 .512 .523 .578 .513 .583 .494 .565 .599
RTE 2 .579 .590 .662 .565 .558 .549 .516 .551 .555 .616 .646
RTE 3 .705 .598 .682 .695 .682 .608 .556 .607 .603 .665 .690
Guardian .742 .749 .816 .774 .776 .849 .713 .849 .850 .862 .873
SNLI .582 .576 .641 .562 .564 .627 .479 .627 .611 .594 .585
MSRP .808 .797 .812 .814 .813 .784 .802 .783 .804 .804 .810
Semeval-16-3B .632 .462 .625 .648 .644 .544 .545 .547 .508 .633 .662
Semeval-14-1 .764 .707 .748 .753 .746 .706 .680 .706 .714 .744 .673
AVG .678 .630 .702 .665 .663 .655 .600 .656 .642 .685 .692
Micro Avg .684 .656 .716 .679 .677 .691 .608 .692 .688 .702 .687
RANK Avg 4.5 8.12 3.12 5.12 5.5 6.89 9.88 6.62 7.12 4.62 3.88
RANK Var. 9.7 4.7 4.4 14.7 6.6 8.7 1.8 9.1 8.1 2.3 11.0
CORE 0.485 0.538 0.915 0.348 0.571 0.443 0.588 0.438 0.452 1.000 0.464

Table 3: F1 scores. The best result is highlighted, the second best is underlined.

Cosine Euc Overlap Dice Jaccard Damerau JW LEV LCS XFC XFT

RTE 1 .548 .564 .534 .503 .510 .552 .535 .555 .596 .546 .566
RTE 2 .574 .547 .571 .567 .578 .547 .546 .551 .546 .588 .594
RTE 3 .624 .565 .618 .611 .610 .568 .547 .568 .564 .616 .627
Guardian .759 .753 .836 .789 .789 .839 .749 .840 .839 .891 .894
SNLI .644 .608 .690 .642 .632 .631 .577 .630 .621 .679 .735
MSRP .740 .705 .732 .749 .755 .723 .713 .722 .743 .760 .765
Semeval-16-3B .634 .708 .678 .698 .698 .732 .698 .729 .674 .700 .686
Semeval-14-1 .745 .738 .738 .743 .769 .716 .672 .716 .727 .762 .740
AVG .659 .649 .675 .663 .668 .664 .630 .664 .664 .693 .701
Micro Avg .693 .674 .721 .699 .704 .694 .645 .693 .693 .737 .752
RANK Avg. 5.6 7.5 5.9 5.9 5.1 6.1 9.6 6.1 7.1 3.2 2.5
RANK Var. 9.4 10.0 6.4 5.3 7.8 7.0 4.6 7.6 11.6 3.1 6.9
CORE 0.420 0.361 0.515 0.567 0.488 0.482 0.446 0.462 0.338 1.000 0.676

Table 4: Precision values. The best result is highlighted, the second best is underlined.

769

Cosine Euc Overlap Dice Jaccard Damerau JW LEV LCS XFC XFT

RTE 1 .693 .564 .786 .521 .536 .607 .493 .614 .421 .585 .635
RTE 2 .585 .640 .787 .562 .540 .550 .490 .550 .565 .647 .707
RTE 3 .810 .634 .761 .805 .773 .654 .566 .651 .649 .724 .768
Guardian .726 .744 .797 .758 .764 .858 .681 .858 .862 .835 .853
SNLI .531 .548 .600 .499 .510 .624 .409 .625 .601 .527 .486
MSRP .890 .916 .912 .890 .881 .857 .915 .856 .876 .854 .860
Semeval-16 .631 .343 .579 .605 .597 .433 .446 .438 .408 .579 .639
SICK .784 .678 .759 .763 .724 .696 .688 .695 .701 .727 .616
AVG .706 .633 .748 .675 .665 .660 .586 .661 .635 .685 .696
Micro Avg .683 649 .720 .668 .659 .695 .587 .695 .688 .677 .645
RANK Avg. 3.9 7.1 3.5 5.5 6.4 6.1 9.0 6.1 6.6 5.9 5.4
RANK Var. 9.6 12.4 3.4 9.4 5.4 8.1 10.0 11.0 11.7 5.8 14.3
CORE 0.516 0.355 1.000 0.464 0.588 0.486 0.365 0.405 0.378 0.591 0.353

Table 5: Recall values. The best result is highlighted, the second best is underlined.

accuracy, F1 and precision, and the second best for
recall.

4.2 Trained Text Flow

When compared to state-of-the-art measures
and to canonical XF, the trained version, XFt,
obtained the best accuracy with a gap ranging
from +1.4 to +7.8. XFt also obtained the second
best F1 average with a -1.0 gap, but with clear
inconsistencies according to the dataset. XFt
obtained the best precision with a gap ranging
from +0.8 to +7.1. XFt did not perform well
on recall with 64.5% micro-average compared to
WordOverlap with 72%. Both its recall and F1
performance can be explained by the fact that the
measure was trained to optimize accuracy, and
not the F1 score for the positive class; which also
suggests that the approach could be adapted to F1
optimization if needed.

4.3 Synthesis

Canonical XF was more consistent than trained
XF on all dimensions except accuracy, for which
XFt was optimized. We argue that this consis-
tency was made possible through the asymmetry
of XF which allowed it to adapt to different kinds
of similarities (i.e., equivalence/paraphrase, in-
ference/entailment, and mutual distance/ranking).
These results also show that the actual position
difference is a relevant factor for text similarity.
We explain it mainly by the natural flow of lan-
guage where the important entities and relations
are often expressed first, in contrast with a purely
logical-driven approach which has to consider, for
instance, that active forms and passive forms are

equivalent in meaning. The difference in positions
is also not read literally, both because of the higher
impact associated to missed words and to the α
parameter which allows leveraging their impact in
the trained version.

4.4 Additional Experiments

In additional experiments, we compared TFc and
TFt with the other similarity measures when ap-
plied to bi-grams and tri-grams instead of individ-
ual tokens. The results were significantly lower on
all datasets (between 3 and 10 points loss in accu-
racy) for both the soa measures and TextFlow vari-
ants. This result could be explained by the fact that
n-grams are too rigid when a sub-sequence varies
even slightly, e.g., the insertion of a new word in-
side a 3-words sequence leads to a tri-gram mis-
match and reduces bi-gram overlap from 100% to
50% for the considered sub-sequence. This issue
is not encountered with TextFlow as it relies on the
token level, and such an insertion will not cancel
or reduce significantly the gains from the correct
ordering of the words. It must be noted here that
not all languages grant the same level of impor-
tance to sequences and that additional multilingual
tests have to be carried out.

In addition to binary classification output such
as textual entailment and paraphrase recognition,
text similarity measures can be evaluated more
precisely when we consider the correlation of their
values for ranking purposes.

We conducted ranking correlation experiments
on three test datasets provided at the semantic
text similarity task at Semeval 2012, with gold
score values for their text pairs. The datasets have
750 sentence pairs each, and are extracted from

770

the Microsoft Research video descriptions corpus,
MSRP and the SMTeuroparl11. When compared
to the traditional similarity measures, TextFlow
had the best correlation on the first two datasets
with, for instance, 0.54 and 0.46 pearson correla-
tion on the lemmas sequences and the second best
on the MSRP extract where the Cosine similarity
had the best performance with 0.71 vs 0.68, not-
ing that the Cosine similarity uses word frequen-
cies when the evaluated version of TextFlow did
not use word-level weights.

Including word weights is one of the promis-
ing perspectives in line with this work as it could
be done simply by making the deltas vary accord-
ing to the weight/importance of the (un)matched
word. Also, in such a setting, the impact of a
sequence of N words will naturally increase or
decrease according to the word weights (cf. fig-
ure 3). We conducted a preliminary test using the
inverse document frequency of the words as ex-
tracted from Wikipedia with Gensim12, which led
to an improvement of up to 2% for most datasets,
with performance decreasing slightly on two of
them. Other kinds of weights could also be in-
cluded just as easily, such as contextual word re-
latedness using embeddings or other semantic re-
latedness factors such as WordNet distances (Ped-
ersen et al., 2004).

5 Conclusion

We presented a novel standalone similarity mea-
sure that takes into account continuous word se-
quences. An evaluation on eight datasets show
promising results for textual entailment recogni-
tion, paraphrase detection and ranking. Among
the potential extensions of this work are the inclu-
sion of different kinds of weights such as TF-IDF,
embedding relatedness and semantic relatedness.
We also intend to test other variants around the
same concept, including considering the matched
words and sequences to have a negative weight to
balance further the weight of missing words.

Acknowledgements

This work was supported in part by the Intramural
Research Program of the NIH, National Library of
Medicine.

11goo.gl/NVnybD
12https://radimrehurek.com/gensim/

References
Palakorn Achananuparp, Xiaohua Hu, and Xiajiong

Shen. 2008. The evaluation of sentence similarity
measures. In Data warehousing and knowledge dis-
covery, Springer, pages 305–316.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
arXiv preprint arXiv:1508.05326 .

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The pascal recognising textual entailment
challenge. In Machine learning challenges. evalu-
ating predictive uncertainty, visual object classifica-
tion, and recognising tectual entailment, Springer,
pages 177–190.

Lee R Dice. 1945. Measures of the amount of ecologic
association between species. Ecology 26(3):297–
302.

Carol Friedman and Robert Sideli. 1992. Tolerating
spelling errors during patient validation. Computers
and Biomedical Research 25(5):486–509.

Vasileios Hatzivassiloglou, Judith L Klavans, and
Eleazar Eskin. 1999. Detecting text similarity over
short passages: Exploring linguistic feature combi-
nations via machine learning. In Proceedings of the
1999 joint sigdat conference on empirical methods
in natural language processing and very large cor-
pora. Citeseer, pages 203–212.

Anil K Jain and Richard C Dubes. 1988. Algorithms
for clustering data. Prentice-Hall, Inc.

Matthew A Jaro. 1989. Advances in record-linkage
methodology as applied to matching the 1985 cen-
sus of tampa, florida. Journal of the American Sta-
tistical Association 84(406):414–420.

Yuhua Li, David McLean, Zuhair A Bandar, James D
O’shea, and Keeley Crockett. 2006. Sentence sim-
ilarity based on semantic nets and corpus statistics.
IEEE transactions on knowledge and data engineer-
ing 18(8):1138–1150.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. Semeval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. SemEval-2014 .

David W Mount. 2004. Bioinformatics: sequence and
genome analysis. Cold Spring Harbor Laboratory
Press.

Preslav Nakov, Lluı́s Màrquez, Alessandro Mos-
chitti, Walid Magdy, Hamdy Mubarak, Abed Al-
hakim Freihat, Jim Glass, and Bilal Randeree.
2016. Semeval-2016 task 3: Community
question answering. In Proceedings of the

771

10th International Workshop on Semantic Evalu-
ation, SemEval@NAACL-HLT 2016, San Diego,
CA, USA, June 16-17, 2016. pages 525–545.
http://aclweb.org/anthology/S/S16/S16-1083.pdf.

Ted Pedersen, Siddharth Patwardhan, and Jason Miche-
lizzi. 2004. Wordnet:: Similarity: measuring the re-
latedness of concepts. In Demonstration papers at
HLT-NAACL 2004. Association for Computational
Linguistics, pages 38–41.

Edward H Porter, William E Winkler, et al. 1997. Ap-
proximate string comparison and its effect on an ad-
vanced record linkage system. In Advanced record
linkage system. US Bureau of the Census, Research
Report. Citeseer.

Mehran Sahami and Timothy D Heilman. 2006. A
web-based kernel function for measuring the simi-
larity of short text snippets. In Proceedings of the
15th international conference on World Wide Web.
AcM, pages 377–386.

David Sankoff and Joseph B Kruskal. 1983. Time
warps, string edits, and macromolecules: the the-
ory and practice of sequence comparison. Read-
ing: Addison-Wesley Publication, 1983, edited by
Sankoff, David; Kruskal, Joseph B. 1.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
pages 373–382.

Richard Socher, Eric H Huang, Jeffrey Pennington,
Andrew Y Ng, and Christopher D Manning. 2011.
Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In NIPS. vol-
ume 24, pages 801–809.

Wen-Tau Yih and Christopher Meek. 2007. Improving
similarity measures for short segments of text. In
AAAI. volume 7, pages 1489–1494.

Wen-tau Yih, Kristina Toutanova, John C Platt, and
Christopher Meek. 2011. Learning discriminative
projections for text similarity measures. In Proceed-
ings of the Fifteenth Conference on Computational
Natural Language Learning. Association for Com-
putational Linguistics, pages 247–256.

772

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 773–783
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1072

Friendships, Rivalries, and Trysts:
Characterizing Relations between Ideas in Texts

Chenhao Tan∗ Dallas Card† Noah A. Smith∗
∗Paul G. Allen School of Computer Science & Engineering †School of Computer Science

University of Washington Carnegie Mellon University
Seattle, WA 98195, USA Pittsburgh, PA 15213, USA

chenhao@chenhaot.com dcard@cmu.edu nasmith@cs.washington.edu

Abstract

Understanding how ideas relate to each
other is a fundamental question in many
domains, ranging from intellectual his-
tory to public communication. Because
ideas are naturally embedded in texts, we
propose the first framework to systemat-
ically characterize the relations between
ideas based on their occurrence in a cor-
pus of documents, independent of how
these ideas are represented. Combining
two statistics—cooccurrence within doc-
uments and prevalence correlation over
time—our approach reveals a number of
different ways in which ideas can cooper-
ate and compete. For instance, two ideas
can closely track each other’s prevalence
over time, and yet rarely cooccur, almost
like a “cold war” scenario. We observe
that pairwise cooccurrence and prevalence
correlation exhibit different distributions.
We further demonstrate that our approach
is able to uncover intriguing relations be-
tween ideas through in-depth case studies
on news articles and research papers.

1 Introduction

Ideas exist in the mind, but are made manifest in
language, where they compete with each other for
the scarce resource of human attention. Milton
(1644) used the “marketplace of ideas” metaphor
to argue that the truth will win out when ideas
freely compete; Dawkins (1976) similarly likened
the evolution of ideas to natural selection of genes.
We propose a framework to quantitatively charac-
terize competition and cooperation between ideas
in texts, independent of how they might be repre-
sented.

By “ideas”, we mean any discrete conceptual

units that can be identified as being present or ab-
sent in a document. In this work, we consider
representing ideas using keywords and topics ob-
tained in an unsupervised fashion, but our way of
characterizing the relations between ideas could
be applied to many other types of textual repre-
sentations, such as frames (Card et al., 2015) and
hashtags.

What does it mean for two ideas to compete in
texts, quantitatively? Consider, for example, the
issue of immigration. There are two strongly com-
peting narratives about the roughly 11 million peo-
ple1 who are residing in the United States without
permission. One is “illegal aliens”, who “steal”
jobs and deny opportunities to legal immigrants;
the other is “undocumented immigrants”, who are
already part of the fabric of society and deserve a
path to citizenship (Merolla et al., 2013).

Although prior knowledge suggests that these
two narratives compete, it is not immediately ob-
vious what measures might reveal this competition
in a corpus of writing about immigration. One
question is whether or not these two ideas cooc-
cur in the same documents. In the example above,
these narratives are used by distinct groups of peo-
ple with different ideologies. The fact that they
don’t cooccur is one clue that they may be in com-
petition with each other.

However, cooccurrence is insufficient to express
the selection process of ideas, i.e., some ideas fade
out over time, while others rise in popularity, anal-
ogous to the populations of species in nature. Of
the two narratives on immigration, we may expect
one to win out at the expense of another as pub-
lic opinion shifts. Alternatively, we might expect
to see these narratives reinforcing each other, as
both sides intensify their messaging in response
to growing opposition, much like the U.S.S.R. and

1As of 2014, according to the most recent numbers from
the Center for Migration Studies (Warren, 2016).

773

https://doi.org/10.18653/v1/P17-1072

anti-correlated correlated

lik
el

y
to

co
oc

cu
r tryst friendship

1980 1990 2000 2010

immigration, deportation
detainee, detention

1980 1990 2000 2010

immigrant,
undocumented
obama, president

un
lik

el
y

to
co

oc
cu

r head-to-head arms-race

1980 1990 2000 2010

immigrant,
undocumented
illegal, alien

1980 1990 2000 2010

immigration, deportation
republican, party

Figure 1: Relations between ideas in the space of cooccurrence and prevalence correlation (prevalence
correlation is shown explicitly and cooccurrence is encoded in row captions). We use topics from LDA
(Blei et al., 2003) to represent ideas. Each topic is named with a pair of words that are most strongly
associated with the topic in LDA. Subplots show examples of relations between topics found in U.S.
newspaper articles on immigration from 1980 to 2016, color coded to match the description in text. The
y-axis represents the proportion of news articles in a year (in our corpus) that contain the corresponding
topic. All examples are among the top 3 strongest relations in each type except (“immigrant, undocumented”,
“illegal, alien”), which corresponds to the two competing narratives. We explain the formal definition of
strength in §2.

the U.S. during the cold war. To capture these pos-
sibilities, we use prevalence correlation over time.

Building on these insights, we propose a frame-
work that combines cooccurrence within docu-
ments and prevalence correlation over time. This
framework gives rise to four possible types of rela-
tion that correspond to the four quadrants in Fig. 1.
We explain each type using examples from news
articles in U.S. newspapers on immigration from
1980 to 2016. Here, we have used LDA to iden-
tify ideas in the form of topics, and we denote each
idea with a pair of words most strongly associated
with the corresponding topic.

Friendship (correlated over time, likely to cooc-
cur). The “immigrant, undocumented” topic tends
to cooccur with “obama, president” and both topics
have been rising during the period of our dataset,
likely because the “undocumented immigrants”
narrative was an important part of Obama’s fram-
ing of the immigration issue (Haynes et al., 2016).

Head-to-head (anti-correlated over time, unlikely
to cooccur). “immigrant, undocumented” and “ille-
gal, alien” are in a head-to-head competition: these
two topics rarely cooccur, and “immigrant, undocu-

mented” has been growing in prevalence, while the
usage of “illegal, alien” in newspapers has been de-
clining. This observation agrees with a report from
Pew Research Center (Guskin, 2013).

Tryst (anti-correlated over time, likely to cooc-
cur). The two off-diagonal examples use topics
related to law enforcement. Overall, “immigration,
deportation” and “detention, jail” often cooccur but
“detention, jail” has been declining, while “immigra-
tion, deportation” has been rising. This possibly re-
lates to the promises to overhaul the immigration
detention system (Kalhan, 2010).2

Arms-race (correlated over time, unlikely to
cooccur). One of the above law enforcement top-
ics (“immigration, deportation”) and a topic on the
Republican party (“republican, party”) hold an arms-
race relation: they are both growing in prevalence
over time, but rarely cooccur, perhaps suggesting
an underlying common cause.

2The tryst relation is the least intuitive, yet is nevertheless
observed. The pattern of being anti-correlated yet likely to
cooccur is typically found when two ideas exhibit a friend-
ship pattern (cooccurring and correlated), but only briefly,
and then diverge.

774

Note that our terminology describes the rela-
tions between ideas in texts, not necessarily be-
tween the entities to which the ideas refer. For
example, we find that the relation between “Is-
rael” and “Palestine” is “friendship” in news ar-
ticles on terrorism, based on their prevalence cor-
relation and cooccurrence in that corpus.

We introduce the formal definition of our frame-
work in §2 and apply it to news articles on five
issues and research papers from ACL Anthology
and NIPS as testbeds. We operationalize ideas us-
ing topics (Blei et al., 2003) and keywords (Mon-
roe et al., 2008).

To explore whether the four relation types exist
and how strong these relations are, we first exam-
ine the marginal and joint distributions of cooccur-
rence and prevalence correlation (§3). We find that
cooccurrence shows a unimodal normal-shaped
distribution but prevalence correlation demon-
strates more diverse distributions across corpora.
As we would expect, there are, in general, more
and stronger friendship and head-to-head relations
than arms-race and tryst relations.

Second, we demonstrate the effectiveness of our
framework through in-depth case studies (§4). We
not only validate existing knowledge about some
news issues and research areas, but also identify
hypotheses that require further investigation. For
example, using keywords to represent ideas, a top
pair with the tryst relation in news articles on ter-
rorism is “arab” and “islam”; they are likely to
cooccur, but “islam” is rising in relative prevalence
while “arab” is declining. This suggests a conjec-
ture that the news media have increasingly linked
terrorism to a religious group rather than an ethnic
group. We also show relations between topics in
ACL that center around machine translation.

Our work is a first step towards understanding
relations between ideas from text corpora, a com-
plex and important research question. We provide
some concluding thoughts in §6.

2 Computational Framework

The aim of our computational framework is to
explore relations between ideas. We thus as-
sume that the set of relevant ideas has been iden-
tified, and those expressed in each document have
been tabulated. Our open-source implementation
is at https://github.com/Noahs-ARK/
idea_relations/. In the following, we in-
troduce our formal definitions and datasets.

∀x, y ∈ I, P̂MI(x, y) = log
P̂ (x, y)

P̂ (x)P̂ (y)

= C + log
1+
∑

t

∑
k 1{x∈dtk}·1{y∈dtk}

(1+
∑

t

∑
k 1{x∈dtk})·(1+

∑
t

∑
k 1{y∈dtk})

(1)

r̂(x, y) =

∑
t

(
P̂ (x|t)−P̂ (x|t)

)(
P̂ (y|t)−P̂ (y|t)

)

√
∑

t

(
P̂ (x|t)−P̂ (x|t)

)2√∑
t

(
P̂ (y|t)−P̂ (y|t)

)2

(2)

Figure 2: Eq. 1 is the empirical pointwise mutual
information for two ideas, our measure of cooccur-
rence of ideas; note that we use add-one smooth-
ing in estimating PMI. Eq. 2 is the Pearson corre-
lation between two ideas’ prevalence over time.

2.1 Cooccurrence and Prevalence
Correlation

As discussed in the introduction, we focus on two
dimensions to quantify relations between ideas:

1. cooccurrence reveals to what extent two ideas
tend to occur in the same contexts;

2. similarity between the relative prevalence of
ideas over time reveals how two ideas relate
in terms of popularity or coverage.

Our input is a collection of documents, each rep-
resented by a set of ideas and indexed by time. We
denote a static set of ideas as I and a text corpus
that consists of these ideas asC = {D1, . . . , DT },
where Dt = {dt1 , . . . , dtNt

} gives the collection
of documents at timestep t, and each document,
dtk , is represented as a subset of ideas in I. Here
T is the total number of timesteps, and Nt is the
number of documents at timestep t. It follows that
the total number of documents N =

∑T
t=1Nt.

In order to formally capture the two dimensions
above, we employ two commonly-used statistics.
First, we use empirical pointwise mutual informa-
tion (PMI) to capture the cooccurrence of ideas
within the same document (Church and Hanks,
1990); see Eq. 1 in Fig. 2. Positive P̂MI indi-
cates that ideas occur together more frequently
than would be expected if they were independent,
while negative P̂MI indicates the opposite.

Second, we compute the correlation between
normalized document frequency of ideas to cap-
ture the relation between the relative prevalence
of ideas across documents over time; see Eq. 2 in
Fig. 2. Positive r̂ indicates that two ideas have
similar prevalence over time, while negative r̂ sug-

775

gests two anti-correlated ideas (i.e., when one goes
up, the other goes down).

The four types of relations in the introduction
can now be obtained using P̂MI and r̂, which cap-
ture cooccurrence and prevalence correlation re-
spectively. We further define the strength of the
relation between two ideas as the absolute value
of the product of their P̂MI and r̂ scores:

∀x, y ∈ I, strength(x, y) = |P̂MI(x, y)×r̂(x, y)|.
(3)

2.2 Datasets and Representation of Ideas
We use two types of datasets to validate our frame-
work: news articles and research papers. We
choose these two domains because competition
between ideas has received significant interest in
history of science (Kuhn, 1996) and research on
framing (Chong and Druckman, 2007; Entman,
1993; Gitlin, 1980; Lakoff, 2014). Furthermore,
interesting differences may exist in these two do-
mains as news evolves with external events and
scientific research progresses through innovations.
• News articles. We follow the strategy in Card

et al. (2015) to obtain news articles from Lex-
isNexis on five issues: abortion, immigration,
same-sex marriage, smoking, and terrorism. We
search for relevant articles using LexisNexis
subject terms in U.S. newspapers from 1980 to
2016. Each of these corpora contains more than
25,000 articles. Please refer to the supplemen-
tary material for details.

• Research papers. We consider full texts of pa-
pers from two communities: our own ACL com-
munity captured by papers from ACL, NAACL,
EMNLP, and TACL from 1980 to 2014 (Radev
et al., 2009); and the NIPS community from
1987 to 2016.3 There are 4.8K papers from
the ACL community and 6.6K papers from
the NIPS community. The processed datasets
are available at https://chenhaot.com/
pages/idea-relations.html.

In order to operationalize ideas in a text corpus,
we consider two ways to represent ideas.
• Topics. We extract topics from each document

by running LDA (Blei et al., 2003) on each cor-
pus C. In all datasets, we set the number of top-
ics to 50.4 Formally, I is the 50 topics learned
3 http://papers.nips.cc/.
4We chose 50 topics based on past experience, though

this could be tuned for particular applications. Recall that

from the corpus, and each document is repre-
sented as the set of topics that are present with
greater than 0.01 probability in the topic distri-
bution for that document.

• Keywords. We identify a list of distinguish-
ing keywords for each corpus by comparing its
word frequencies to the background frequencies
found in other corpora using the informative
Dirichlet prior model in Monroe et al. (2008).
We set the number of keywords to 100 for all
corpora. For news articles, the background cor-
pus for each issue is comprised of all articles
from the other four issues. For research papers,
we use NIPS as the background corpus for ACL
and vice versa to identify what are the core con-
cepts for each of these research areas. Formally,
I is the 100 top distinguishing keywords in the
corpus and each document is represented as the
set of keywords within I that are present in the
document. Refer to the supplementary material
for a list of example keywords in each corpus.

In both procedures, we lemmatize all words and
add common bigram phrases to the vocabulary fol-
lowing Mikolov et al. (2013). Note that in our
analysis, ideas are only present or absent in a doc-
ument, and a document can in principle be mapped
to any subset of ideas in I. In our experiments
90% of documents are marked as containing be-
tween 7 and 14 ideas using topics, 8 and 33 ideas
using keywords.

3 Characterizing the Space of Relations

To provide an overview of the four relation types
in Fig. 1, we first examine the empirical distribu-
tions of the two statistics of interest across pairs of
ideas. In most exploratory studies, however, we
are most interested in pairs that exemplify each
type of relation, i.e., the most extreme points in
each quadrant. We thus look at these pairs in
each corpus to observe how the four types differ
in salience across datasets.

3.1 Empirical Distribution Properties

To the best of our knowledge, the distributions of
pairwise cooccurrence and prevalence correlation
have not been examined in previous literature. We
thus first investigate the marginal distributions of
cooccurrence and prevalence correlation and then

our framework is to analyze relations between ideas, so this
choice is not essential in this work.

776

-1.0 -0.5 0.0 0.5 1.0
prevalence correlation

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8

co
oc

cu
rr

en
ce

pearsonr = 0.37

(a) Terrorism topics

-1.0 -0.5 0.0 0.5 1.0
prevalence correlation

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

co
oc

cu
rr

en
ce

pearsonr = 0.55

(b) Immigration topics

-1.0 -0.5 0.0 0.5 1.0
prevalence correlation

-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5

co
oc

cu
rr

en
ce

pearsonr = 0.5

(c) ACL topics

Figure 3: Overall distributions of cooccurrence and prevalence correlation. In the main plot, each point
represents a pair of ideas: color density shows the kernel density estimation of the joint distribution
(Scott, 2015). The plots along the axes show the marginal distribution of the corresponding dimension.
In each plot, we give the Pearson correlation, and all Pearson correlations’ p-values are less than 10−40.
In these plots, we use topics to represent ideas.

their joint distribution. Fig. 3 shows three exam-
ples: two from news articles and one from re-
search papers. We will also focus our case studies
on these three corpora in §4. The corresponding
plots for keywords have been relegated to supple-
mentary material due to space limitations.
Cooccurrence tends to be unimodal but not
normal. In all of our datasets, pairwise cooccur-
rence (P̂MI) presents a unimodal distribution that
somewhat resembles a normal distribution, but it
is rarely precisely normal. We cannot reject the
hypothesis that it is unimodal for any dataset (us-
ing topics or keywords) using the dip test (Harti-
gan and Hartigan, 1985), though D’Agostino’sK2

test (D’Agostino et al., 1990) rejects normality in
almost all cases.
Prevalence correlation exhibits diverse distri-
butions. Pairwise prevalence correlation fol-
lows different distributions in news articles com-
pared to research papers: they are unimodal in
news articles, but not in ACL or NIPS. The dip
test only rejects the unimodality hypothesis in
NIPS. None follow normal distributions based on
D’Agostino’s K2 test.
Cooccurrence is positively correlated with
prevalence correlation. In all of our datasets,
cooccurrence is positively correlated with preva-
lence correlation whether we use topics or key-
words to represent ideas, although the Pearson
correlation coefficients vary. This suggests that
there are more friendship and head-to-head rela-
tions than tryst and arms-race relations. Based on
the results of kernel density estimation, we also
observe that this correlation is often loose, e.g., in

ACL topics, cooccurrence spreads widely at each
mode of prevalence correlation.

3.2 Relative Strength of Extreme Pairs
We are interested in how our framework can iden-
tify intriguing relations between ideas. These po-
tentially interesting pairs likely correspond to the
extreme points in each quadrant instead of the ones
around the origin, where PMI and prevalence cor-
relation are both close to zero. Here we com-
pare the relative strength of extreme pairs in each
dataset. We will discuss how these extreme pairs
confirm existing knowledge and suggest new hy-
potheses via case studies in §4.

For each relation type, we average the strengths
of the 25 pairs with the strongest relations in that
type, with strength defined in Eq. 3. This heuristic
(henceforth collective strength) allows us to col-
lectively compare the strengths of the most promi-
nent friendship, tryst, arms-race, and head-to-head
relations. The results are not sensitive to the
choice of 25.

Fig. 4 shows the collective strength of the four
types in all of our datasets. The most common
ordering is:

friendship > head-to-head > arms-race > tryst.

The fact that friendship and head-to-head relations
are strong is consistent with the positive correla-
tion between cooccurrence and prevalence corre-
lation. In news, friendship is the strongest relation
type, but head-to-head is the strongest in ACL top-
ics and NIPS topics. This suggests, unsurprisingly,
that there are stronger head-to-head competitions

777

terrorism
abortion

marriage

immigration
tobacco ACL NIPS news

research
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

co
lle

ct
iv

e
st

re
ng

th

friends
tryst
head-to-head
arms-race

(a) Topics

terrorism
abortion

marriage

immigration
tobacco ACL NIPS news

research
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

co
lle

ct
iv

e
st

re
ng

th

friends
tryst
head-to-head
arms-race

(b) Keywords

Figure 4: Collective strength of the four relation types in each dataset (news is the average of the news
corpora and research is for ACL and NIPS). Fig. 4a uses topics to represent ideas, while Fig. 4b uses
keywords to represent ideas. Each bar presents the average strength of the top 25 pairs in a relation type
in the corresponding dataset. Error bars represent standard errors calculated in the usual way, but note
that since the top 25 pairs are not random samples, they cannot be interpreted in the usual way.

(i.e., one idea takes over another) between ideas in
scientific research than in news. We also see that
topics show greater strength in our scientific arti-
cle collections, while keywords dominate in news,
especially in friendship. We conjecture that terms
in scientific literature are often overloaded (e.g., a
tree could be a parse tree or a decision tree), neces-
sitating some abstraction when representing ideas.
In contrast, news stories are more self-contained
and seek to employ consistent usage.

4 Exploratory Studies

We present case studies based on strongly re-
lated pairs of ideas in the four types of relation.
Throughout this section, “rank” refers to the rank
of the relation strength between a pair of ideas in
its corresponding relation type.

4.1 International Relations in Terrorism

Following a decade of declining violence in the
90s, the events of September 11, 2001 precipi-
tated a dramatic increase in concern about ter-
rorism, and a major shift in how it was framed
(Kern et al., 2003). As a showcase, we consider
a topic which encompasses much of the U.S. gov-
ernment’s response to terrorism: “federal, state”.5

We observe two topics engaging in an “arms race”
with this one: “afghanistan, taliban” and “pakistan, in-
dia”. These correspond to two geopolitical regions
closely linked to the U.S. government’s concern
with terrorism, and both were sites of U.S. mili-
tary action during the period of our dataset. Events
abroad and the U.S. government’s responses fol-
low the arms-race pattern, each holding increasing

5As in §1, we summarize each topic using a pair of
strongly associated words, instead of assigning a name.

1980 1990 2000 2010
0

0.1

0.2

0.3

fre
qu

en
cy

arab
islam

Figure 6: Tryst relation between arab and islam us-
ing keywords to represent ideas (#2 in tryst): these
two words tend to cooccur but are anti-correlated
in prevalence over time. In particular, islam was
rarely used in coverage of terrorism in the 1980s.

attention with the other, likely because they share
the same underlying cause.

We also observe two head-to-head rivals to the
“federal, state” topic: “iran, libya” and “israel, pales-
tinian”. While these topics correspond to regions
that are hotly debated in the U.S., their coverage
in news tends not to correlate temporally with the
U.S. government’s responses to terrorism, at least
during the time period of our corpus. Discussion
of these regions was more prevalent in the 80s
and 90s, with declining media coverage since then
(Kern et al., 2003).

The relations between these topics are consis-
tent with structural balance theory (Cartwright
and Harary, 1956; Heider, 1946), which suggests
that the enemy of an enemy is a friend. The
“afghanistan, taliban” topic has the strongest friend-
ship relation with the “pakistan, india” topic, i.e.,
they are likely to cooccur and are positively corre-
lated in prevalence. Similarly, the “iran, libya” topic
is a close “friend” with the “israel, palestinian” topic
(ranked 8th in friendship).

778

pakistan, india

federal, state

afghanistan, taliban

israel, palestinian

iran, libya

arms-race (#5)

fr
ie

nd
s

(#
1)

head-to-head (#2)friends
(#8)

arms-ra
ce (#2)

head-to-head (#11)

(a) Relations between a United States topic and
international topics.

1980 1990 2000 2010
0.0

0.1

0.2

0.3

fre
qu

en
cy

federal, state
afghanistan, taliban

(b) (“federal, state”,
“afghanistan, taliban”)

1980 1990 2000 2010
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

fre
qu

en
cy

federal, state
iran, libya

(c) (“federal, state”, “iran,
libya”)

Figure 5: Fig. 5a shows the relations between the “federal, state” topic and four international topics. Edge
colors indicate relation types and the number in an edge label presents the ranking of its strength in the
corresponding relation type. Fig. 5b and Fig. 5c represent concrete examples in Fig. 5a: “federal, state”
and “afghanistan, taliban” follow similar trends, although “afghanistan, taliban” fluctuates over time due to
significant events such as the September 11 attacks in 2001 and the death of Bin Laden in 2011; while
“iran, lybia” is negatively correlated with “federal, state”. In fact, more than 70% of terrorism news in the
80s contained the “iran, lybia” topic.

When using keywords to represent ideas, we
observe similar relations between the term home-
land security and terms related to the above foreign
countries. In addition, we highlight an interest-
ing but unexpected tryst relation between arab and
islam (Fig. 6). It is not surprising that these two
words tend to cooccur in the same news articles,
but the usage of islam in the news is increasing
while arab is declining. The increasing prevalence
of islam and decreasing prevalence of arab over this
time period can also be seen, for example, using
Google’s n-gram viewer, but it of course provides
no information about cooccurrence.

This trend has not been previously noted to the
best of our knowledge, although an article in the
Huffington Post called for news editors to distin-
guish Muslim from Arab.6 Our observation sug-
gests a conjecture that the news media have in-
creasingly linked terrorism to a religious group
rather than an ethnic group, perhaps in part due to
the tie between the events of 9/11 and Afghanistan,
which is not an Arab or Arabic-speaking country.
We leave it to further investigation to confirm or
reject this hypothesis.

To further demonstrate the effectiveness of our
approach, we compare a pair’s rank using only
cooccurrence or prevalence correlation with its
rank in our framework. Table 1 shows the results
for three pairs above. If we had looked at only
cooccurrence or prevalence correlation, we would
probably have missed these interesting pairs.

6http://www.huffingtonpost.com/
haroon-moghul/even-the-new-york-times-d_
b_766658.html

PMI Corr

“federal, state”, “afghanistan, taliban”
(#2 in arms-race) 43 99
“federal, state”, “iran, lybia”
(#2 in head-to-head) 36 56
arab, islam (#2 in tryst) 106 1,494

Table 1: Ranks of pairs by using the absolute value
of only cooccurrence or prevalence correlation.

4.2 Ethnicity Keywords in Immigration

In addition to results on topics in §1, we observe
unexpected patterns about ethnicity keywords in
immigration news. Our observation starts with
a top tryst relation between latino and asian. Al-
though these words are likely to cooccur, their
prevalence trajectories differ, with the discussion
of Asian immigrants in the 1990s giving way to a
focus on the word latino from 2000 onward. Pos-
sible theories to explain this observation include
that undocumented immigrants are generally per-
ceived as a Latino issue, or that Latino voters are
increasingly influential in U.S. elections.

Furthermore, latino holds head-to-head relations
with two subgroups of Latin American immi-
grants: haitian and cuban. In particular, the strength
of the relation with haitian is ranked #18 in head-
to-head relations. Meanwhile, haitian and cuban
have a friendship relation, which is again consis-
tent with structural balance theory. The decreas-
ing prevalence of haitian and cuban perhaps speaks
to the shifting geographical focus of recent immi-
gration to the U.S., and issues of the Latino pan-
ethnicity. In fact, a majority of Latinos prefer to
identify with their national origin relative to the

779

latino

asian cuban

haitian

tryst (#8) HtH (#305)
H

tH
(#

18
) friendship

(#19)

(a) Relations graph.

1980 1990 2000 2010
0.0

0.1

0.2

0.3

fre
qu

en
cy

latino
asian

(b) (latino, asian)

1980 1990 2000 2010
0.0

0.1

0.2

0.3

fre
qu

en
cy

latino
haitian

(c) (latino, haitian)

1980 1990 2000 2010
0.0

0.1

0.2

0.3

fre
qu

en
cy

cuban
haitian

(d) (cuban, haitian)

Figure 7: Relations between ethnicity keywords in immigration news (HtH for head-to-head): latino holds
a tryst relation with asian and head-to-head relations with two subgroups from Latin America, haitian and
cuban. We do not show the relations between asian and haitian, cuban, because their strength is close to 0.

machine translation

rule,forest methods

word alignment

sentiment analysis

discourse (coherence)

tryst (#5)

frie
ndship (#1)

arms-race (#1)

head-to-head (#1)

head-to-head (#38)

ar
m

s-
ra

ce
(#

23
) arm

s-race
(#2)

head-to-head (#7)

Figure 8: Top relations between the topics in ACL
Anthology. The top 10 words for the rule, forest
methods topic are rule, grammar, derivation, span,
algorithm, forest, parsing, figure, set, string.

pan-ethnic terms (Taylor et al., 2012). However,
we should also note that much of this coverage re-
lates to a set of specific refugee crises, temporarily
elevating the political importance of these nations
in the U.S. Nevertheless, the underlying social and
political reasons behind these head-to-head rela-
tions are worth further investigation.

4.3 Relations between Topics in ACL

Finally, we analyze relations between topics in the
ACL Anthology. It turns out that “machine transla-
tion” is at a central position among top ranked re-
lations in all the four types (Fig. 8).7 It is part of
the strongest relation in all four types except tryst
(ranked #5).

The full relation graph presents further patterns.
Friendship demonstrates transitivity: both “ma-
chine translation” and “word alignment” have similar
relations with other topics. But such transitiv-
ity does not hold for tryst: although the preva-
lence of “rule, forest methods” is anti-correlated with
both “machine translation” and “sentiment analysis”,
“sentiment analysis” seldom cooccurs with “rule, for-

7In the ranking, we filtered a topic where the top words
are ion, ing, system, process, language, one, input, natural
language, processing, grammar. For the purposes of this cor-
pus, this is effectively a stopword topic.

est methods” because “sentiment analysis” is seldom
built on parsing algorithms. Similarly, “rule, forest
methods” and “discourse (coherence)” hold an arms-
race relation: they do not tend to cooccur and both
decline in relative prevalence as “machine transla-
tion” rises.

The prevalence of each of these ideas in com-
parison to machine translation is shown in in Fig. 9,
which reveals additional detail.

5 Related Work

We present two strands of related studies in addi-
tion to what we have discussed.
Trends in ideas. Most studies have so far exam-
ined the trends of ideas individually (Michel et al.,
2011; Hall et al., 2008; Rule et al., 2015). For in-
stance, Hall et al. (2008) present various trends in
our own computational linguistics community, in-
cluding the rise of statistical machine translation.
More recently, rhetorical framing has been used to
predict these sorts of patterns (Prabhakaran et al.,
2016). An exception is that Shi et al. (2010) use
prevalence correlation to analyze lag relations be-
tween topics in publications and research grants.
Anecdotally, Grudin (2009) observes a “head-to-
head” relation between artificial intelligence and
human-computer interaction in research funding.
However, to our knowledge, our work is the first
study to systematically characterize relations be-
tween ideas.
Representation of ideas. In addition to topics and
keywords, studies have also sought to operational-
ize the “memes” metaphor using quotes and text
reuse in the media (Leskovec et al., 2009; Nic-
ulae et al., 2015; Smith et al., 2013; Wei et al.,
2013). In topic modeling literature, Blei and Laf-
ferty (2006) also point out that topics do not cooc-
cur independently and explicitly model the cooc-
currence within documents.

780

anti-correlated correlated

lik
el

y
to

co
oc

cu
r tryst friendship

1980 1990 2000 2010

machine translation
rule,forest methods

1980 1990 2000 2010

machine translation
word alignment

un
lik

el
y

to
co

oc
cu

r head-to-head arms-race

1980 1990 2000 2010

machine translation
discourse (coherence)

1980 1990 2000 2010

machine translation
sentiment analysis

Figure 9: Relations between topics in ACL Anthology in the space of cooccurrence and prevalence
correlation (prevalence correlation is shown explicitly and cooccurrence is encoded in row captions),
color coded to match the text. The y-axis represents the relative proportion of papers in a year that
contain the corresponding topic. The top 10 words for the rule, forest methods topic are rule, grammar,
derivation, span, algorithm, forest, parsing, figure, set, string.

6 Concluding Discussion

We proposed a method to characterize relations
between ideas in texts through the lens of cooc-
currence within documents and prevalence corre-
lation over time. For the first time, we observe that
the distribution of pairwise cooccurrence is uni-
modal, while the distribution of pairwise preva-
lence correlation is not always unimodal, and
show that they are positively correlated. This com-
bination suggests four types of relations between
ideas, and these four types are all found to varying
extents in our experiments.

We illustrate our computational method by ex-
ploratory studies on news corpora and scientific
research papers. We not only confirm existing
knowledge but also suggest hypotheses around the
usage of arab and islam in terrorism and latino and
asian in immigration.

It is important to note that the relations found
using our approach depend on the nature of the
representation of ideas and the source of texts. For
instance, we cannot expect relations found in news
articles to reflect shifts in public opinion if news
articles do not effectively track public opinion.

Our method is entirely observational. It remains
as a further stage of analysis to understand the un-
derlying reasons that lead to these relations be-

tween ideas. In scientific research, for example, it
could simply be the progress of science, i.e., newer
ideas overtake older ones deemed less valuable at
a given time; on the other hand, history suggests
that it is not always the correct ideas that are most
expressed, and many other factors may be impor-
tant. Similarly, in news coverage, underlying so-
ciological and political situations have significant
impact on which ideas are presented, and how.

There are many potential directions to improve
our method to account for complex relations be-
tween ideas. For instance, we assume that both
ideas and relations are statically grounded in key-
words or topics. In reality, ideas and relations both
evolve over time: a tryst relation might appear as
friendship if we focus on a narrower time period.
Similarly, new ideas show up and even the same
idea may change over time and be represented by
different words.
Acknowledgments. We thank Amber Boydstun,
Justin Gross, Lillian Lee, anonymous reviewers,
and all members of Noah’s ARK for helpful com-
ments and discussions. This research was made
possible by a Natural Sciences and Engineering
Research Council of Canada Postgraduate Schol-
arship (to D.C.) and a University of Washington
Innovation Award.

781

References
David M. Blei and John Lafferty. 2006. Correlated

topic models. In NIPS.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan.
2003. Latent Dirichlet allocation. Journal of Ma-
chine Learning Research 3:993–1022.

Dallas Card, Amber E. Boydstun, Justin H. Gross,
Philip Resnik, and Noah A. Smith. 2015. The Me-
dia Frames Corpus: Annotations of frames across
issues. In Proceedings of ACL.

Dorwin Cartwright and Frank Harary. 1956. Structural
balance: A generalization of Heider’s theory. Psy-
chological Review 63(5):277.

Dennis Chong and James N. Druckman. 2007. A the-
ory of framing and opinion formation in competi-
tive elite environments. Journal of Communication
57(1):99–118.

Kenneth W. Church and Patrick Hanks. 1990. Word
association norms, mutual information, and lexicog-
raphy. Computational Linguistics 16(1):22–29.

Ralph B. D’Agostino, Albert Belanger, and Ralph B.
D’Agostino Jr. 1990. A suggestion for using power-
ful and informative tests of normality. The American
Statistician 44(4):316–321.

Richard Dawkins. 1976. The Selfish Gene. Oxford
University Press.

Robert M. Entman. 1993. Framing: Toward clarifica-
tion of a fractured paradigm. Journal of Communi-
cation 43(4):51–58.

Todd Gitlin. 1980. The Whole World is Watching:
Mass Media in the Making and Unmaking of the
New Left. Berkeley: University of California Press.

Jonathan Grudin. 2009. AI and HCI: Two fields di-
vided by a common focus. AI Magazine 30(4):48.

Emily Guskin. 2013. ‘Illegal’, ‘undocumented’, ‘unau-
thorized’: News media shift language on immigra-
tion. Pew Research Center.

David Hall, Daniel Jurafsky, and Christopher D. Man-
ning. 2008. Studying the history of ideas using topic
models. In Proceedings of EMNLP.

John A. Hartigan and P. M. Hartigan. 1985. The dip
test of unimodality. The Annals of Statistics pages
70–84.

Chris Haynes, Jennifer L. Merolla, and S. Karthick
Ramakrishnan. 2016. Framing Immigrants: News
Coverage, Public Opinion, and Policy. Russell Sage
Foundation.

Fritz Heider. 1946. Attitudes and cognitive organiza-
tion. The Journal of Psychology 21(1):107–112.

Anil Kalhan. 2010. Rethinking immigration detention.
Columbia Law Review Sidebar 110:42.

Montague Kern, Marion Just, and Pippa Norris. 2003.
The lessons of framing terrorism. In Pippa Norris,
Montague Kern, and Marion Just, editors, Framing
Terrorism: The News Media, the Government and
the Public, Routledge.

Thomas S. Kuhn. 1996. The Structure of Scientific Rev-
olutions. University of Chicago Press.

George Lakoff. 2014. The All New Don’t Think of an
Elephant!: Know your Values and Frame the De-
bate. Chelsea Green Publishing.

Jure Leskovec, Lars Backstrom, and Jon M. Kleinberg.
2009. Meme-tracking and the dynamics of the news
cycle. In Proceedings of KDD.

Jennifer Merolla, S. Karthick Ramakrishnan, and Chris
Haynes. 2013. “Illegal,”, “undocumented,” or
“unauthorized”: Equivalency frames, issue frames,
and public opinion on immigration. Perspectives on
Politics 11(03):789–807.

Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser
Aiden, Adrian Veres, Matthew K. Gray, The
Google Books Team, Joseph P. Pickett, Dale
Hoiberg, Dan Clancy, Peter Norvig, Jon Orwant,
Steven Pinker, Martin A. Nowak, and Erez Lieber-
man Aiden. 2011. Quantitative analysis of cul-
ture using millions of digitized books. Science
331(6014):176–182.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS.

John Milton. 1644. Areopagitica, A speech of Mr. John
Milton for the Liberty of Unlicenc’d Printing to the
Parliament of England.

Burt L. Monroe, Michael P. Colaresi, and Kevin M.
Quinn. 2008. Fightin’ words: Lexical feature se-
lection and evaluation for identifying the content of
political conflict. Political Analysis 16(4):372–403.

Vlad Niculae, Caroline Suen, Justine Zhang, Cristian
Danescu-Niculescu-Mizil, and Jure Leskovec. 2015.
Quotus: The structure of political media coverage
as revealed by quoting patterns. In Proceedings of
WWW.

Vinodkumar Prabhakaran, William L. Hamilton, Dan
McFarland, and Dan Jurafsky. 2016. Predicting the
rise and fall of scientific topics from trends in their
rhetorical framing. In Proceedings of ACL.

Dragomir R. Radev, Pradeep Muthukrishnan, and Va-
hed Qazvinian. 2009. The ACL anthology network
corpus. In Proceedings of ACL Workshop on Natu-
ral Language Processing and Information Retrieval
for Digital Libraries.

Alix Rule, Jean-Philippe Cointet, and Peter S. Bear-
man. 2015. Lexical shifts, substantive changes, and

782

continuity in state of the union discourse, 1790-
2014. Proceedings of the National Academy of Sci-
ences 112(35):10837–10844.

David W. Scott. 2015. Multivariate Density Estima-
tion: Theory, Practice, and Visualization. John Wi-
ley & Sons.

Xiaolin Shi, Ramesh Nallapati, Jure Leskovec, Dan
McFarland, and Dan Jurafsky. 2010. Who leads
whom: Topical lead-lag analysis across corpora. In
Proceedings of NIPS Workshop on Computational
Social Science.

David A. Smith, Ryan Cordell, and Elizabeth M. Dil-
lon. 2013. Infectious texts: Modeling text reuse in
nineteenth-century newspapers. In Proceedings of
the Workshop on Big Humanities.

Paul Taylor, Mark H. Lopez, Jessica Martı́nez, and
Gabriel Velasco. 2012. When labels don’t fit: His-
panics and their views of identity. Washington, DC:
Pew Hispanic Center .

Robert Warren. 2016. US undocumented population
drops below 11 million in 2014, with continued
declines in the Mexican undocumented population.
Journal on Migration and Human Security 4(1):1–
15.

Xuetao Wei, Nicholas Valler, B. Aditya Prakash, Iulian
Neamtiu, Michalis Faloutsos, and Christos Falout-
sos. 2013. Competing memes propagation on net-
works: A network science perspective. IEEE Jour-
nal on Selected Areas in Communications 31:1049–
1060.

783

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 784–792
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1073

Polish evaluation dataset
for compositional distributional semantics models

Alina Wróblewska Katarzyna Krasnowska-Kieraś
Institute of Computer Science, Polish Academy of Sciences

alina@ipipan.waw.pl kasia.krasnowska@gmail.com

Abstract

The paper presents a procedure of building
an evaluation dataset1. for the validation
of compositional distributional semantics
models estimated for languages other than
English. The procedure generally builds
on steps designed to assemble the SICK
corpus, which contains pairs of English
sentences annotated for semantic related-
ness and entailment, because we aim at
building a comparable dataset. However,
the implementation of particular building
steps significantly differs from the orig-
inal SICK design assumptions, which is
caused by both lack of necessary extra-
neous resources for an investigated lan-
guage and the need for language-specific
transformation rules. The designed proce-
dure is verified on Polish, a fusional lan-
guage with a relatively free word order,
and contributes to building a Polish evalu-
ation dataset. The resource consists of 10K
sentence pairs which are human-annotated
for semantic relatedness and entailment.
The dataset may be used for the evaluation
of compositional distributional semantics
models of Polish.

1 Introduction and related work

1.1 Distributional semantics

The basic idea of distributional semantics, i.e. de-
termining the meaning of a word based on its
co-occurrence with other words, is derived from
the empiricists – Harris (1954) and Firth (1957).
John R. Firth drew attention to the context-
dependent nature of meaning especially with his

1The dataset is obtainable at:
http://zil.ipipan.waw.pl/Scwad/CDSCorpus

famous maxim “You shall know a word by
the company it keeps” (Firth, 1957, p. 11).

Nowadays, distributional semantics models are
estimated with various methods, e.g. word em-
bedding techniques (Bengio et al., 2003, 2006;
Mikolov et al., 2013). To ascertain the purport
of a word, e.g. bath, you can use the context
of other words that surround it. If we assume that
the meaning of this word expressed by its lexical
context is associated with a distributional vector,
the distance between distributional vectors of two
semantically similar words, e.g bath and shower,
should be smaller than between vectors represent-
ing semantically distinct words, e.g. bath and tree.

1.2 Compositional distributional semantics
Based on empirical observations that distribu-
tional vectors encode certain aspects of word
meaning, it is expected that similar aspects
of the meaning of phrases and sentences can also
be represented with vectors obtained via composi-
tion of distributional word vectors. The idea of se-
mantic composition is not new. It is well known
as the principle of compositionality:2 “The mean-
ing of a compound expression is a function
of the meaning of its parts and of the way they are
syntactically combined.” (Janssen, 2012, p. 19).

Modelling the meaning of textual units larger
than words using compositional and distribu-
tional information is the main subject of compo-
sitional distributional semantics (Mitchell and La-
pata, 2010; Baroni and Zamparelli, 2010; Grefen-
stette and Sadrzadeh, 2011; Socher et al., 2012, to
name a few studies). The fundamental principles
of compositional distributional semantics, hence-
forth referred to as CDS, are mainly propagated
with papers written on the topic. Apart from the
papers, it was the SemEval-2014 Shared Task 1

2As the principle of compositionality is attributed to Got-
tlob Frege, it is often called Frege’s principle.

784

https://doi.org/10.18653/v1/P17-1073

(Marelli et al., 2014) that essentially contributed
to the expansion of CDS and increased an interest
in this domain. The goal of the task was to evaluate
CDS models of English in terms of semantic relat-
edness and entailment on proper sentences from
the SICK corpus.

1.3 The SICK corpus

The SICK corpus (Bentivogli et al., 2014) con-
sists of 10K pairs of English sentences contain-
ing multiple lexical, syntactic, and semantic phe-
nomena. It builds on two external data sources
– the 8K ImageFlickr dataset (Rashtchian et al.,
2010) and SemEval-2012 Semantic Textual Simi-
larity dataset (Agirre et al., 2012). Each sentence
pair is human-annotated for relatedness in mean-
ing and entailment.

The relatedness score corresponds to the degree
of semantic relatedness between two sentences
and is calculated as the average of ten human rat-
ings collected for this sentence pair on the 5-point
Likert scale. This score indicates the extent to
which the meanings of two sentences are related.

The entailment relation between two sentences,
in turn, is labelled with entailment, contradic-
tion, or neutral. According to the SICK guidelines,
the label assigned by the majority of human anno-
tators is selected as the valid entailment label.

1.4 Motivation and organisation of the paper

Studying approaches to various natural language
processing (henceforth NLP) problems, we have
observed that the availability of language re-
sources (e.g. training or testing data) stimulates
the development of NLP tools and the estimation
of NLP models. English is undoubtedly the most
prominent in this regard and English resources are
the most numerous. Therefore, NLP methods are
mostly designed for English and tested on English
data, even if there is no guarantee that they are
universal. In order to verify whether an NLP al-
gorithm is adequate, it is not enough to evaluate
it solely for English. It is also valuable to have
high-quality resources for languages typologically
different to English. Hence, we aim at building
datasets for the evaluation of CDS models in lan-
guages other than English, which are often under-
resourced. We strongly believe that the availability
of test data will encourage development of CDS
models in these languages and allow to better test
the universality of CDS methods.

We start with a high-quality dataset for Pol-
ish, which is a completely different language than
English in at least two dimensions. First, it is
a rather under-resourced language in contrast to
the resource-rich English. Second, it is a fusional
language with a relatively free word order in con-
trast to the isolated English with a relatively fixed
word order. If some heuristics is tested on e.g. Pol-
ish, the evaluation results can be approximately
generalised to other Slavic languages. We hope the
Slavic NLP community will be interested in de-
signing and evaluating methods of semantic mod-
elling for Slavic languages.

The procedure of building an evaluation dataset
for validating compositional distributional seman-
tics models of Polish generally builds on steps de-
signed to assemble the SICK corpus (described in
Section 1.3) because we aim at building an eval-
uation dataset which is comparable to the SICK
corpus. However, the implementation of particular
building steps significantly differs from the orig-
inal SICK design assumptions, which is caused
by both lack of necessary extraneous resources
for Polish (see Section 2.1) and the need for
Polish-specific transformation rules (see Section
2.2). Furthermore, the rules of arranging sentences
into pairs (see Section 2.3) are defined anew tak-
ing into account the characteristic of data and bi-
directional entailment annotations, since an entail-
ment relation between two sentences must not be
symmetric. Even if our assumptions of annotating
sentence pairs coincide with the SICK principles
to a certain extent (see Section 3.1), the annotation
process differs from the SICK procedure, in par-
ticular by introducing an element of human verifi-
cation of correctness of automatically transformed
sentences (see Section 3.2) and some additional
post-corrections (see Section 3.3). Finally, a sum-
mary of the dataset is provided in Section 4.1 and
the dataset evaluation is given in Section 4.2.

2 Procedure of collecting data

2.1 Selection and description of images

The first step of building the SICK corpus con-
sisted in the random selection of English sentence
pairs from existing datasets (Rashtchian et al.,
2010; Agirre et al., 2012). Since we are not aware
of accessibility of analogous resources for Polish,
we have to select images first and then describe
the selected images.

Images are selected from the 8K ImageFlickr

785

dataset (Rashtchian et al., 2010). At first we
wanted to take only these images the descriptions
of which were selected for the SICK corpus. How-
ever, a cursory check shows that these images are
quite homogeneous, with a predominant number
of dogs depictions. Therefore, we independently
extract 1K images and split them into 46 thematic
groups (e.g. children, musical instruments, mo-
torbikes, football, dogs). The numbers of images
within individual thematic groups vary from 6 im-
ages in the volleyball and telephoning groups to
94 images in the various people group. The sec-
ond largest groups are children and dogs with 50
images each.

The chosen images are given to two authors
who independently of each other formulate their
descriptions based on a short instruction. The au-
thors are instructed to write one single sentence
(with a sentence predicate) describing the ac-
tion in a displayed image. They should not de-
scribe an imaginable context or an interpretation
of what may lie behind the scene in the picture. If
some details in the picture are not obvious, they
should not be described either. Furthermore, the
authors should avoid multiword expressions, such
as idioms, metaphors, and named entities, because
those are not compositional linguistic phenomena.
Finally, descriptions should contain Polish diacrit-
ics and proper punctuation.

2.2 Transformation of descriptions
The second step of building the SICK corpus
consisted in pre-processing extracted sentences,
i.e. normalisation and expansion (Bentivogli et al.,
2014, p. 3–4). Since the authors of Polish descrip-
tions are asked to follow the guidelines (presented
in Section 2.1), the normalisation step is not essen-
tial for our data. The expansion step, in turn, is im-
plemented and the sentences provided by the au-
thors are lexically and syntactically transformed
in order to obtain derivative sentences with sim-
ilar, contrastive, or neutral meanings. The follow-
ing transformations are implemented:

1. dropping conjunction concerns sentences
with coordinated predicates sharing a sub-
ject, e.g. Rowerzysta odpoczywa i obserwuje
morze. (Eng. ‘A cyclist is resting and watch-
ing the sea.’). The finite form of one of the co-
ordinated predicates is transformed into:

• an active adjectival participle, e.g.
Odpoczywający rowerzysta obserwuje

morze. (Eng. ‘A resting cyclist is watch-
ing the sea.’) or Obserwujący morze
rowerzysta odpoczywa. (Eng. ‘A cyclist,
who is watching the sea, is resting.’),
• a contemporary adverbial participle,

e.g. Rowerzysta, odpoczywając, obser-
wuje morze. (Eng. ‘A cyclist is watch-
ing the sea, while resting.’) or Row-
erzysta odpoczywa, obserwując morze.
(Eng. ‘A cyclist is resting, while watch-
ing the sea.’).

2. removing conjunct in adjuncts, i.e. the dele-
tion of one of coordinated elements of an ad-
junct, e.g. Mały, ale zwinny kot miauczy.
(Eng. ‘A small but agile cat miaows.’) can
be changed into either Mały kot miauczy.
(Eng. ‘A small cat miaows.’) or Zwinny kot
miauczy. (Eng. ‘An agile cat miaows.’).

3. passivisation, e.g. Człowiek ujeżdża byka.
(Eng. ‘A man is breaking a bull in.’) can
be transformed into Byk jest ujeżdżany przez
człowieka. (Eng. ‘A bull is being broken in by
a man.’).

4. removing adjuncts, e.g. Dwa białe króliki
siedzą na trawie. (Eng. ‘Two small rabbits
are sitting on the grass.’) can be changed
into Króliki siedzą. (Eng. ‘The rabbits are sit-
ting.’).

5. swapping relative clause for participles,
i.e. a relative clause swaps with a participle
(and vice versa), e.g. Kobieta przytula psa,
którego trzyma na smyczy. (Eng. ‘A woman
hugs a dog which she keeps on a leash.’).
The relative clause is interchanged for a par-
ticiple construction, e.g. Kobieta przytula
trzymanego na smyczy psa. (Eng. ‘A woman
hugs a dog kept on a leash.’).

6. negation, e.g. Mężczyźni w turbanach na
głowach siedzą na słoniach. (Eng. ‘Men in
turbans on their heads are sitting on ele-
phants.’) can be transformed into Nikt nie
siedzi na słoniach. (Eng. ‘Nobody is sitting
on elephants.’), Żadni mężczyźni w turbanach
na głowach nie siedzą na słoniach. (Eng. ‘No
men in turbans on their heads are sitting on
elephants.’), and Mężczyźni w turbanach na
głowach nie siedzą na słoniach. (Eng. ‘Men
in turbans on their heads are not sitting on
elephants.’).

786

7. constrained mixing of dependents from var-
ious sentences, e.g. Dwoje dzieci siedzi
na wielbłądach w pobliżu wysokich gór.
(Eng. ‘Two children are sitting on camels
near high mountains.’) can be changed into
Dwoje dzieci siedzi przy zastawionym stole
w pobliżu wysokich gór. (Eng. ‘Two children
are sitting at the table laid with food near high
mountains.’).

The first five transformations are designed to pro-
duce sentences with a similar meaning, the sixth
transformation outputs sentences with a contra-
dictory meaning, and the seventh transformation
should generate sentences with a neutral (or unre-
lated) meaning. All transformations are performed
on the dependency structures of input sentences
(Wróblewska, 2014).

Some of the transformations are very produc-
tive (e.g. mixing dependents). Other, in turn, are
sparsely represented in the output (e.g. dropping
conjunction). The number of transformed sen-
tences randomly selected to build the dataset is in
the second column of Table 1.

transformation selected
dropping conjunction 139 2.0%
removing conjunct in adjunct 485 6.9%
passivisation 893 12.8%
removing adjuncts 1013 14.5%
swapping rc↔ptcp 1291 18.4%
negation 1304 18.6%
mixing dependents 1878 26.8%

Table 1: Numbers of transformed sentences se-
lected for annotation.

2.3 Data ensemble

The final step of building the SICK corpus
consisted in arranging normalised and expanded
sentences into pairs. Since our data diverges
from SICK data, the process of arranging Pol-
ish sentences into pairs also differs from pair-
ing in the SICK corpus. The general idea be-
hind the pair-ensembling procedure was to intro-
duce sentence pairs with different levels of relat-
edness into the dataset. Apart from pairs connect-
ing two sentences originally written by humans
(as described in Section 2.1), there are also pairs
in which an original sentence is connected with

a transformed sentence. For each of the 1K im-
ages, the following 10 pairs are constructed (for
A being the set of all sentences originally written
by the first author, B being the set of all sentences
originally written by the second author, a ∈ A and
b ∈ B being the original descriptions of the pic-
ture):

1. (a,b)

2. (a,a1), where a1 ∈ t(a), and t(a) is the set
of all transformations of the sentence a

3. (b,b1), where b1 ∈ t(b)

4. (a,b2), where b2 ∈ t(b)

5. (b,a2), where a2 ∈ t(a)

6. (a,a3), where a3 ∈ t(a′),a′ ∈ A, T (a′) =
T (a),a′ 6= a, for T (a) being the thematic
group3 of a

7. (b,b3), where b3 ∈ t(b′),b′ ∈ B, T (b′) =
T (b),b′ 6= b

8. (a,a4), where a4 ∈ A, T (a4) 6= T (a)4

9. (b,b4), where b4 ∈ B, T (b4) 6= T (b)

10. (a,a5), where a5 ∈ t(a),a5 6= a1 for
50% images, (b,b5) (analogously) for other
50%.5

For each sentence pair (a,b) created according
to this procedure, its reverse (b,a) is also included
in our corpus. As a result, the working set consists
of 20K sentence pairs.

3 Corpus annotation

3.1 Annotation assumptions

The degree of semantic relatedness between two
sentences is calculated as the average of all human
ratings on the Likert scale with the range from 0 to
5. Since we do not want to excessively influence

3The thematic group of a sentence a corresponds to the
thematic group of an image being the source of a (as de-
scribed in Section 2.1).

4The pairs (a,a4) of the same authors’ descriptions of
two images from different thematic groups are expected to be
unrelated. The same applies to (b,b4).

5A repetition of point 2 with a restriction that a different
pair is created (pairs of very related sentences are expected).
We alternate between authors A and B to obtain equal author
proportions in the final ensemble of pairs.

787

the annotations, the guidelines given to annotators
are mainly example-based:6

• 5 (very related): Kot siedzi na płocie.
(Eng. ‘A cat is sitting on the fence.’) vs. Na
płocie jest duży kot. (Eng. ‘There is a large
cat on the fence.’),

• 1–4 (more or less related):
Kot siedzi na płocie. (Eng. ‘A cat is sitting
on the fence.’) vs. Kot nie siedzi na płocie.
(Eng. ‘A cat is not sitting on the fence.’);
Kot siedzi na płocie. (Eng. ‘A cat is sitting on
the fence.’) vs. Właściciel dał kotu chrupki.
(Eng. ‘The owner gave kibble to his cat.’);
Kot siedzi na płocie. (Eng. ‘A cat is sitting
on the fence.’) vs. Kot miauczy pod płotem.
(Eng. ‘A cat miaows by the fence.’).

• 0 (unrelated): Kot siedzi na płocie.
(Eng. ‘A cat is sitting on the fence.’) vs.
Zaczął padać deszcz. (Eng. ‘It started to
rain.’).

Apart from these examples, there is a note in
the annotation guidelines indicating that the de-
gree of semantic relatedness is not equivalent to
the degree of semantic similarity. Semantic sim-
ilarity is only a special case of semantic related-
ness, semantic relatedness is thus a more general
term than the other one.

Polish entailment labels correspond directly to
the SICK labels (i.e. entailment, contradiction,
neutral). The entailment label assigned by the ma-
jority of human judges is selected as the gold label.
The entailment labels are defined as follows:

• a wynika z b (b entails a) – if a situation
or an event described by sentence b occurs,
it is recognised that a situation or an event
described by a occurs as well, i.e. a and b
refer to the same event or the same situation,

• a jest zaprzeczeniem b (a is the negation
of b) – if a situation or an event described
by b occurs, it is recognised that a situation
or an event described by a may not occur at
the same time,

6We realise that the boundary between semantic percep-
tion of a sentence by various speakers is fuzzy (it depends
on speakers’ education, origin, age, etc.). It was thus our well-
thought-out decision to draw only general annotation frames
and to enable annotators to rely on their feel for language.

• a jest neutralne wobec b (a is neutral to b) –
the truth of a situation described by a cannot
be determined on the basis of b.

3.2 Annotation procedure
Similar to the SICK corpus, each Polish sentence
pair is human-annotated for semantic relatedness
and entailment by 3 human judges experienced in
Polish linguistics.7 Since for each annotated pair
(a,b), its reverse (b,a) is also subject to anno-
tation, the entailment relation is in practice deter-
mined ‘in both directions’ for 10K sentence pairs.
For the task of relatedness annotation, the order of
sentences within pairs seems to be irrelevant, we
can thus assume to obtain 6 relatedness scores for
10K unique pairs.

Since the transformation process is fully auto-
matic and to a certain extent based on imperfect
dependency parsing, we cannot ignore errors in
the transformed sentences. In order to avoid anno-
tating erroneous sentences, the annotation process
is divided into two stages:

1. a sentence pair is sent to a judge with
the leader role, who is expected to edit and
to correct the transformed sentence from this
pair before annotation, if necessary,

2. the verified and possibly enhanced sentence
pair is sent to the other two judges, who can
only annotate it.

The leader judges should correct incomprehen-
sible and ungrammatical sentences with a mini-
mal number of necessary changes. Unusual sen-
tences which could be accepted by Polish speakers
should not be modified. Moreover, the modified
sentence may not be identical with the other sen-
tence in the pair. The classification and statistics
of distinct corrections made by the leader judges
are provided in Table 2.

A strict classification of error types is quite hard
to provide because some sentences contain more
than one error. We thus order the error types from
the most serious errors (i.e. ‘sense’ errors) to the
redundant corrections (i.e. ‘other’ type). If a sen-
tence contains several errors, it is qualified for the
higher order error type.

In the case of sentences with ‘sense’ errors,
the need for correction is uncontroversial and

7Our annotators have relatively strong linguistic back-
ground. Five of them have PhD in linguistics, five are PhD
students, one is a graduate, and one is an undergraduate.

788

error type # of errors % of errors
sense 171 12.3
semantic 407 29.2
grammatical 243 17.4
word order 141 10.1
punctuation 366 26.2
other 68 4.9

Table 2: Classification and statistics of correc-
tions.

arises from an internal logical contradiction.8

The sentences with ‘semantic’ changes are syn-
tactically correct, but deemed unacceptable by the
leader annotators from the semantic or pragmatic
point of view.9 The ‘grammatical’ errors mostly
concern missing agreement.10 The majority of
‘word order’ corrections are unnecessary, but we
found some examples which can be classified as
actual word or phrase order errors.11 The correc-
tion of punctuation consists in adding or deleting
a comma.12 The sentences in the ‘other’ group, in
turn, could as well have been left unchanged be-
cause they are proper Polish sentences, but were
apparently considered odd by the leader annota-
tors.

8An example of ‘sense’ error: the sentence Chłopak w
zielonej bluzie i czapce zjeżdża na rolkach na leżąco. (Eng.
‘A boy in a green sweatshirt and a cap roller-skates down-
hill in a lying position.’) is corrected into Chłopak w zielonej
bluzie i czapce zjeżdża na rolkach. (Eng. ‘A boy in a green
sweatshirt and a cap roller-skates downhill.’).

9An example of ‘semantic’ correction: the sentence
Dziewczyna trzyma w pysku patyk. (Eng. ‘A girl holds a stick
in her muzzle.’) is corrected into Dziewczyna trzyma w us-
tach patyk. (Eng. ‘A girl holds a stick in her mouth.’).

10An example of ‘grammatical’ error: the sentence
Grupasg.nom uśmiechających się ludzi tańcząpl. (Eng.
*‘A group of smiling people are dancing.’) is corrected
into Grupasg.nom uśmiechających się ludzi tańczysg . (Eng.
‘A group of smiling people is dancing.’).

11An example of word order error: the sentence Samochód,
który jest uszkodzony, koloru białego stoi na lawecie dużego
auta. (lit. ‘A car that is damaged, of the white color stands
on the trailer of a large car.’, Eng. ‘A white car that is dam-
aged is standing on the trailer of a large car.’) is corrected
into Samochód koloru białego, który jest uszkodzony, stoi na
lawecie dużego auta.

12An example of punctuation correction: the wrong comma
in the sentence Nad brzegiem wody, stoją dwaj mężczyźni z
wędkami. (lit. ‘On the water’s edge, two men are standing
with rods.’; Eng. ‘Two men with rods are standing on the wa-
ter’s edge.’) should be deleted, i.e. Nad brzegiem wody stoją
dwaj mężczyźni z wędkami.

3.3 Impromptu post-corrections
During the annotation process it came out that sen-
tences accepted by some human annotators are un-
acceptable for other annotators. We thus decided
to garner annotators’ comments and suggestions
for improving sentences. After validation of these
suggestions by an experienced linguist, it turns out
that most of these proposals concern punctuation
errors (e.g. missing comma) and typos in 312 dis-
tinct sentences. These errors are fixed directly in
the corpus because they should not impact the an-
notations of sentence pairs. The other suggestions
concern more significant changes in 29 distinct
sentences (mostly minor grammatical or seman-
tic problems overlooked by the leader annotators).
The annotations of pairs with modified sentences
are resent to the annotators so that they can verify
and update them.

4 Corpus summary and evaluation

4.1 Corpus statistics
Tables 3 and 4 summarise the annotations
of the resulting 10K sentence pairs corpus. Table
3 aggregates the occurrences of 6 possible related-
ness scores, calculated as the mean of all 6 indi-
vidual annotations, rounded to an integer.

relatedness # of pairs
0 1978
1 1428
2 1082
3 2159
4 2387
5 966

Table 3: Final relatedness scores rounded to inte-
gers (total: 10K pairs).

Table 4 shows the number of the particular en-
tailment labels in the corpus. Since each sentence
pair is annotated for entailment in both directions,
the final entailment label is actually a pair of two
labels:

• entailment+neutral points to ‘one-way’ en-
tailment,

• contradiction+neutral points to ‘one-way’
contradiction,

• entailment+entailment, contradiction+con-
tradiction, and neutral+neutral point to
equivalence.

789

While the actual corpus labels are ordered
in the sense that there is a difference between
e.g. entailment+neutral and neutral+entailment
(the entailment occurs in different directions),
we treat all labels as unordered for the purpose
of this summary (e.g. entailment+neutral covers
neutral+entailment as well, representing the same
type of relation between two sentences).

entailment # of pairs
neutral+neutral 6483
entailment+neutral 1748
entailment+entailment 933
contradiction+contradiction 721
contradiction+neutral 115

Table 4: Final entailment labels (total: 10K pairs).

4.2 Inter-annotator agreement

The standard measure of inter-annotator agree-
ment in various natural language labelling tasks is
Cohen’s kappa (Cohen, 1960). However, this coef-
ficient is designed to measure agreement between
two annotators only. Since there are three annota-
tors of each pair of ordered sentences, we decided
to apply Fleiss’ kappa13 (Fleiss, 1971) designed
for measuring agreement between multiple raters
who give categorical ratings to a fixed number
of items. An additional advantage of this measure
is that different items can be rated by different hu-
man judges, which doesn’t impact measurement.
The normalised Fleiss’ measure of inter-annotator
agreement is:

κ =
P̄ − P̄e
1− P̄e

where the quantity P̄ − P̄e measures the degree
of agreement actually attained in excess of chance,
while “[t]he quantity 1 − P̄e measures the de-
gree of agreement attainable over and above what
would be predicted by chance” (Fleiss, 1971,
p. 379).

We recognise Fleiss’ kappa as particularly use-
ful for measuring inter-annotator agreement with
respect to entailment labelling in our evaluation
dataset. First, there are more than two raters. Sec-
ond, entailment labels are categorically. Measured

13As Fleiss’ kappa is actually the generalisation of Scott’s
π (Scott, 1955), it is sometimes referred to as Fleiss’ multi-π,
cf. Artstein and Poesio (2008).

with Fleiss’ kappa, there is an inter-annotator
agreement of κ = 0.734 for entailment labels in
Polish evaluation dataset, which is quite satisfac-
tory as for a semantic labelling task.

Relative to semantic relatedness, the distinc-
tion in meaning of two sentences made by human
judges is often very subtle. This is also reflected
in the inter-annotator agreement scores measured
with Fleiss’ kappa. Inter-annotator agreement
measured for six semantic relatedness groups
corresponding to points on the Likert scale is
quite low: κ = 0.337. If we measure inter-
annotator agreement for three classes correspond-
ing to the three relatedness groups from the an-
notation guidelines (see Section 3.1), i.e. <0>,
<1, 2, 3, 4>, and <5>, the Fleiss’ score is sig-
nificantly higher: κ = 0.543. Hence, we con-
clude that Fleiss’ kappa is not a reliable measure
of inter-annotator agreement in relation to related-
ness scores. Therefore, we decided to use Krippen-
dorff’s α instead.

Krippendorff’s α (Krippendorff, 1980, 2013) is
a coefficient appropriate for measuring the inter-
annotator agreement of a dataset which is anno-
tated with multiple judges and characterised by
different magnitudes of disagreement and miss-
ing values. Krippendorff proposes distance met-
rics suitable for various scales: binary, nominal,
interval, ordinal, and ratio. In ordinal measure-
ment14 the attributes can be rank-ordered, but dis-
tances between them do not have any meaning.
Measured with Krippendorff’s ordinal α, there is
an inter-annotator agreement of α = 0.780 for re-
latedness scores in the Polish evaluation dataset,
which is quite satisfactory as well. Hence, we con-
clude that our dataset is a reliable resource for
the purpose of evaluating compositional distribu-
tional semantics model of Polish.

5 Conclusions

The goal of this paper is to present the proce-
dure of building a Polish evaluation dataset for
the validation of compositional distributional se-
mantics models. As we aim at building an evalua-

14Nominal measurement is useless for measuring agree-
ment between relatedness scores (α = 0.340 is the identi-
cal value as Fleiss’ kappa, since all disagreements are con-
sidered equal). We also test interval measurement, in which
the distance between the attributes does have meaning and
an average of an interval variable is computed. The inter-
val score measured for relatedness annotations is quite high
α = 0.785, but we doubt whether the distance between relat-
edness scores is meaningful in this case.

790

tion dataset which is comparable to the SICK cor-
pus, the general assumptions of our procedure cor-
respond to the design principles of the SICK cor-
pus. However, the procedure of building the SICK
corpus cannot be adapted without modifications.
First, the Polish seed-sentences have to be written
based on the images which are selected from 8K
ImageFlickr dataset and split into thematic groups,
since usable datasets are not publicly available.
Second, since the process of transforming sen-
tences seems to be language-specific, the linguistic
transformation rules appropriate for Polish have to
be defined from scratch. Third, the process of ar-
ranging Polish sentences into pairs is defined anew
taking into account the data characteristic and bi-
directional entailment annotations. The discrepan-
cies relative to the SICK procedure also concern
the annotation process itself. Since an entailment
relation between two sentences must not be sym-
metric, each sentence pair is annotated for entail-
ment in both directions. Furthermore, we intro-
duce an element of human verification of correct-
ness of automatically transformed sentences and
some additional post-corrections.

The presented procedure of building a dataset
was tested on Polish. However, it is very likely
that the annotation framework will work for other
Slavic languages (e.g. Czech with an excellent de-
pendency parser).

The presented procedure results in building
the Polish test corpus of relatively high quality,
confirmed by the inter-annotator agreement coeffi-
cients of κ = 0.734 (measured with Fleiss’ kappa)
for entailment labels and of α = 0.780 (measured
with Krippendorff’s ordinal alpha) for relatedness
scores.

Acknowledgments

We would like to thank the reliable and tena-
cious annotators of our dataset: Alicja Dziedzic-
Rawska, Bożena Itoya, Magdalena Król, Anna La-
tusek, Justyna Małek, Małgorzata Michalik, Ag-
nieszka Norwa, Małgorzata Szajbel-Keck, Alicja
Walichnowska, Konrad Zieliński, and some other.
The research presented in this paper was supported
by SONATA 8 grant no 2014/15/D/HS2/03486
from the National Science Centre Poland.

References

Eneko Agirre, Daniel Cer, Mona Diab, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 Task 6: A
Pilot on Semantic Textual Similarity. In Proceed-
ings of the First Joint Conference on Lexical and
Computational Semantics (*SEM). pages 385–393.

Ron Artstein and Massimo Poesio. 2008. Inter-Coder
Agreement for Computational Linguistics. Compu-
tational Linguistics 34:557–596.

Marco Baroni and Roberto Zamparelli. 2010. Nouns
are vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space. In
Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing. pages
1183–1193.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A Neural Probabilistic Lan-
guage Model. Journal of Machine Learning Re-
search 3:1137–1155.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien
Senécal, Fréderic Morin, and Jean-Luc Gauvain.
2006. Neural Probabilistic Language Models. In
D.E. Holmes and L.C. Jain, editors, Innovations
in Machine Learning. Theory and Applications,
Springer-Verlag, Berlin Heidelberg, volume 194 of
Studies in Fuzziness and Soft Computing, pages
137–186.

Luisa Bentivogli, Raffaella Bernardi, Marco Marelli,
Stefano Menini, Marco Baroni, and Roberto Zam-
parelli. 2014. SICK through the SemEval Glasses.
Lesson learned from the evaluation of composi-
tional distributional semantic models on full sen-
tences through semantic relatedness and textual en-
tailment. Journal of Language Resources and Eval-
uation 50:95–124.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological
Measurement 20:37–46.

John Rupert Firth. 1957. A synopsis of linguistic the-
ory, 1930-1955. Studies in Linguistic Analysis. Spe-
cial volume of the Philological Society pages 1–32.

Joseph L. Fleiss. 1971. Measuring nominal scale
agreement among many raters. Psychological Bul-
letin 75:378–382.

Edward Grefenstette and Mehrnoosh Sadrzadeh. 2011.
Experimental Support for a Categorical Composi-
tional Distributional Model of Meaning. In Pro-
ceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2011). pages 1394–1404.

Zellig Harris. 1954. Distributional structure. Word
10:146–162.

791

Theo M. V. Janssen. 2012. Compositionality: its his-
toric context. In Wolfram Hinzen, Edouard Mach-
ery, and Markus Werning, editors, The Oxford Hand-
book of Compositionality, Oxford University Press,
Studies in Fuzziness and Soft Computing, pages 19–
46.

Klaus Krippendorff. 1980. Content Analysis: An In-
troduction to Its Methodology. Sage Publications,
Beverly Hills.

Klaus Krippendorff. 2013. Content Analysis: An Intro-
duction to Its Methodology. Sage Publication, Thou-
sand Oaks, 3rd edition.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. SemEval-2014 Task 1: Evaluation of
Compositional Distributional Semantic Models on
Full Sentences through Semantic Relatedness and
Textual Entailment. In Proceedings of the 8th In-
ternational Workshop on Semantic Evaluation (Se-
mEval 2014). pages 1–8.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed Represen-
tations of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing
Systems 26. Proceedings of Neural Information Pro-
cessing Systems 2013. pages 3111–3119.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in Distributional Models of Semantics. Cognitive
Science 34:1388–1429.

Cyrus Rashtchian, Peter Young, Micah Hodosh, and
Julia Hockenmaier. 2010. Collecting Image Anno-
tations Using Amazon’s Mechanical Turk. In Pro-
ceedings of the NAACL HLT 2010 Workshop on Cre-
ating Speech and Language Data with Amazon’s
Mechanical Turk. pages 139–147.

William A. Scott. 1955. Reliability of Content Anal-
ysis: The Case of Nominal Scale Coding. Public
Opinion Quarterly 19:321–325.

Richard Socher, Brody Huval, Christopher Manning,
and Andrew Ng. 2012. Semantic Compositionality
through Recursive Matrix-Vector Spaces. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning. pages
1201–1211.

Alina Wróblewska. 2014. Polish Dependency Parser
Trained on an Automatically Induced Dependency
Bank. Ph.D. dissertation, Institute of Computer Sci-
ence, Polish Academy of Sciences, Warsaw.

792

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 793–805
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1074

Automatic Annotation and Evaluation of Error Types
for Grammatical Error Correction

Christopher Bryant Mariano Felice Ted Briscoe
ALTA Institute

Computer Laboratory
University of Cambridge

Cambridge, UK
{cjb255, mf501, ejb}@cl.cam.ac.uk

Abstract

Until now, error type performance for
Grammatical Error Correction (GEC) sys-
tems could only be measured in terms of
recall because system output is not anno-
tated. To overcome this problem, we in-
troduce ERRANT, a grammatical ERRor
ANnotation Toolkit designed to automat-
ically extract edits from parallel original
and corrected sentences and classify them
according to a new, dataset-agnostic, rule-
based framework. This not only facilitates
error type evaluation at different levels of
granularity, but can also be used to reduce
annotator workload and standardise exist-
ing GEC datasets. Human experts rated
the automatic edits as “Good” or “Accept-
able” in at least 95% of cases, so we ap-
plied ERRANT to the system output of the
CoNLL-2014 shared task to carry out a de-
tailed error type analysis for the first time.

1 Introduction

Grammatical Error Correction (GEC) systems are
often only evaluated in terms of overall perfor-
mance because system hypotheses are not anno-
tated. This can be misleading however, and a sys-
tem that performs poorly overall may in fact out-
perform others at specific error types. This is sig-
nificant because a robust specialised system is ac-
tually more desirable than a mediocre general sys-
tem. Without an error type analysis however, this
information is completely unknown.

The main aim of this paper is hence to rec-
tify this situation and provide a method by which
parallel error correction data can be automatically
annotated with error type information. This not
only facilitates error type evaluation, but can also
be used to provide detailed error type feedback

to non-native learners. Given that different cor-
pora are also annotated according to different stan-
dards, we also attempted to standardise existing
datasets under a common error type framework.

Our approach consists of two main steps. First,
we automatically extract the edits between paral-
lel original and corrected sentences by means of a
linguistically-enhanced alignment algorithm (Fe-
lice et al., 2016) and second, we classify them ac-
cording to a new, rule-based framework that re-
lies solely on dataset-agnostic information such as
lemma and part-of-speech. We demonstrate the
value of our approach, which we call the ERRor
ANnotation Toolkit (ERRANT)1, by carrying out
a detailed error type analysis of each system in
the CoNLL-2014 shared task on grammatical er-
ror correction (Ng et al., 2014).

It is worth mentioning that despite an in-
creased interest in GEC evaluation in recent years
(Dahlmeier and Ng, 2012; Felice and Briscoe,
2015; Bryant and Ng, 2015; Napoles et al., 2015;
Grundkiewicz et al., 2015; Sakaguchi et al., 2016),
ERRANT is the only toolkit currently capable of
producing error types scores.

2 Edit Extraction

The first stage of automatic annotation is edit ex-
traction. Specifically, given an original and cor-
rected sentence pair, we need to determine the start
and end boundaries of any edits. This is funda-
mentally an alignment problem:

We took a guide tour on center city .
We took a guided tour of the city center .

Table 1: A sample alignment between an original
and corrected sentence (Felice et al., 2016).

1https://github.com/chrisjbryant/errant

793

https://doi.org/10.18653/v1/P17-1074

The first attempt at automatic edit extraction
was made by Swanson and Yamangil (2012), who
simply used the Levenshtein distance to align par-
allel original and corrected sentences. As the
Levenshtein distance only aligns individual to-
kens however, they also merged all adjacent non-
matches in an effort to capture multi-token edits.
Xue and Hwa (2014) subsequently improved on
Swanson and Yamangil’s work by training a max-
imum entropy classifier to predict whether edits
should be merged or not.

Most recently, Felice et al. (2016) pro-
posed a new method of edit extraction using a
linguistically-enhanced alignment algorithm sup-
ported by a set of merging rules. More specifi-
cally, they incorporated various linguistic informa-
tion, such as part-of-speech and lemma, into the
cost function of the Damerau-Levenshtein2 algo-
rithm to make it more likely that tokens with sim-
ilar linguistic properties aligned. This approach
ultimately proved most effective at approximating
human edits in several datasets (80-85% F1), and
so we use it in the present study.

3 Automatic Error Typing

Having extracted the edits, the next step is to as-
sign them error types. While Swanson and Ya-
mangil (2012) did this by means of maximum
entropy classifiers, one disadvantage of this ap-
proach is that such classifiers are biased towards
their particular training corpora. For example, a
classifier trained on the First Certificate in English
(FCE) corpus (Yannakoudakis et al., 2011) is un-
likely to perform as well on the National Univer-
sity of Singapore Corpus of Learner English (NU-
CLE) (Dahlmeier and Ng, 2012) or vice versa, be-
cause both corpora have been annotated according
to different standards (cf. Xue and Hwa (2014)).
Instead, a dataset-agnostic error type classifier is
much more desirable.

3.1 A Rule-Based Error Type Framework

To solve this problem, we took inspiration from
Swanson and Yamangil’s (2012) observation that
most error types are based on part-of-speech
(POS) categories, and wrote a rule to classify an
edit based only on its automatic POS tags. We
then added another rule to similarly differenti-
ate between Missing, Unnecessary and Replace-

2Damerau-Levenshtein is an extension of Levenshtein
that also handles transpositions; e.g. AB→BA

ment errors depending on whether tokens were
inserted, deleted or substituted. Finally, we ex-
tended our approach to classify errors that are
not well-characterised by POS, such as Spelling
or Word Order, and ultimately assigned all error
types based solely on automatically-obtained, ob-
jective properties of the data.

In total, we wrote roughly 50 rules. While many
of them are very straightforward, significant atten-
tion was paid to discriminating between different
kinds of verb errors. For example, despite all hav-
ing the same correction, the following sentences
contain different types of common learner errors:

(a) He IS asleep now. [IS→ is]: orthography

(b) He iss asleep now. [iss→ is]: spelling

(c) He has asleep now. [has→ is]: verb

(d) He being asleep now. [being→ is]: form

(e) He was asleep now. [was→ is]: tense

(f) He are asleep now. [are→ is]: SVA

To handle these cases, we hence wrote the fol-
lowing ordered rules:

1. Are the lower case forms of both sides of the
edit the same? (a)

2. Is the original token a real word? (b)

3. Do both sides of the edit have the same
lemma? (c)

4. Is one side of the edit a gerund (VBG) or par-
ticiple (VBN)? (d)

5. Is one side of the edit in the past tense
(VBD)? (e)

6. Is one side of the edit in the 3rd person
present tense (VBZ)? (f)

While the final three rules could certainly be re-
ordered, we informally found the above sequence
performed best during development. It is also
worth mentioning that this is a somewhat simpli-
fied example and that there are additional rules to
discriminate between auxiliary verbs, main verbs
and multi verb expressions. Nevertheless, the
above case exemplifies our approach, and a more
complete description of all rules is provided with
the software.

794

Code Meaning Description / Example
ADJ Adjective big→ wide

ADJ:FORM Adjective Form
Comparative or superlative adjective errors.
goodest→ best, bigger→ biggest, more easy→ easier

ADV Adverb speedily→ quickly
CONJ Conjunction and→ but
CONTR Contraction n’t→ not
DET Determiner the→ a

MORPH Morphology
Tokens have the same lemma but nothing else in common.
quick (adj)→ quickly (adv)

NOUN Noun person→ people

NOUN:INFL Noun Inflection
Count-mass noun errors.
informations→ information

NOUN:NUM Noun Number cat→ cats
NOUN:POSS Noun Possessive friends→ friend’s

ORTH Orthography
Case and/or whitespace errors.
Bestfriend→ best friend

OTHER Other
Errors that do not fall into any other category (e.g. paraphrasing).
at his best→ well, job→ professional

PART Particle (look) in→ (look) at
PREP Preposition of→ at
PRON Pronoun ours→ ourselves
PUNCT Punctuation ! → .
SPELL Spelling genectic→ genetic, color→ colour
UNK Unknown The annotator detected an error but was unable to correct it.
VERB Verb ambulate→ walk

VERB:FORM Verb Form
Infinitives (with or without “to”), gerunds (-ing) and participles.
to eat→ eating, dancing→ danced

VERB:INFL Verb Inflection
Misapplication of tense morphology.
getted→ got, fliped→ flipped

VERB:SVA Subject-Verb Agreement (He) have→ (He) has

VERB:TENSE Verb Tense
Includes inflectional and periphrastic tense, modal verbs and passivization.
eats→ ate, eats→ has eaten, eats→ can eat, eats→ was eaten

WO Word Order only can→ can only

Table 2: The list of 25 main error categories in our new framework with examples and explanations.

3.2 A Dataset-Agnostic Classifier

One of the key strengths of a rule-based ap-
proach is that by being dependent only on auto-
matic mark-up information, our classifier is en-
tirely dataset independent and does not require la-
belled training data. This is in contrast with ma-
chine learning approaches which not only learn
dataset specific biases, but also presuppose the ex-
istence of sufficient quantities of training data.

A second significant advantage of our approach
is that it is also always possible to determine
precisely why an edit was assigned a particular
error category. In contrast, human and machine
learning classification decisions are often much
less transparent.

Finally, by being fully deterministic, our ap-
proach bypasses bias effects altogether and should
hence be more consistent.

3.3 Automatic Markup

The prerequisites for our rule-based classifier are
that each token in both the original and corrected

sentence is POS tagged, lemmatized, stemmed and
dependency parsed. We use spaCy3 v1.7.3 for all
but the stemming, which is performed by the Lan-
caster Stemmer in NLTK.4 Since fine-grained POS
tags are often too detailed for the purposes of error
evaluation, we also map spaCy’s Penn Treebank
style tags to the coarser set of Universal Depen-
dency tags.5 We use the latest Hunspell GB-large
word list6 to help classify non-word errors. The
marked-up tokens in an edit span are then input to
the classifier and an error type is returned.

3.4 Error Categories
The complete list of 25 error types in our new
framework is shown in Table 2. Note that most
of them can be prefixed with ‘M:’, ‘R:’ or ‘U:’,
depending on whether they describe a Missing,
Replacement, or Unnecessary edit, to enable

3https://spacy.io/
4http://www.nltk.org/
5http://universaldependencies.org/tagset-conversion/

en-penn-uposf.html
6https://sourceforge.net/projects/wordlist/files/speller/

2017.01.22/

795

evaluation at different levels of granularity (see
Appendix A for all valid combinations). This
means we can choose to evaluate, for exam-
ple, only replacement errors (anything prefixed
by ‘R:’), only noun errors (anything suffixed
with ‘NOUN’) or only replacement noun errors
(‘R:NOUN’). This flexibility allows us to make
more detailed observations about different aspects
of system performance.

One caveat concerning error scheme design is
that it is always possible to add new categories
for increasingly detailed error types; for instance,
we currently label [could→ should] a tense error,
when it might otherwise be considered a modal
error. The reason we do not call it a modal er-
ror, however, is because it would then become
less clear how to handle other cases such as [can
→ should] and [has eaten → should eat], which
might be considered a more complex combination
of modal and tense error. As it is impractical to
create new categories and rules to differentiate be-
tween such narrow distinctions however, our final
framework aims to be a compromise between in-
formativeness and practicality.

3.5 Classifier Evaluation

As our new error scheme is based solely on au-
tomatically obtained properties of the data, there
are no gold standard labels against which to evalu-
ate classifier performance. For this reason, we in-
stead carried out a small-scale manual evaluation,
where we simply asked 5 GEC researchers to rate
the appropriateness of the predicted error types for
200 randomly chosen edits in context (100 from
FCE-test and 100 from CoNLL-2014) as “Good”,
“Acceptable” or “Bad”. “Good’ meant the chosen
type was the most appropriate for the given edit,
“Acceptable” meant the chosen type was appropri-
ate, but probably not optimum, while “Bad” meant
the chosen type was not appropriate for the edit.
Raters were warned that the edit boundaries had
been determined automatically and hence might
be unusual, but that they should focus on the
appropriateness of the error type regardless of
whether they agreed with the boundary or not.

It is worth stating that the main purpose of
this evaluation was not to evaluate the specific
strengths and weaknesses of the classifier, but
rather ascertain how well humans believed the pre-
dicted error types characterised each edit. GEC is
known to be a highly subjective task (Bryant and

Rater Good Acceptable Bad
1 92.0% 4.0% 4.0%
2 89.5% 6.5% 4.0%
3 83.0% 13.0% 4.0%
4 84.5% 11.0% 4.5%
5 82.5% 15.5% 2.0%

OVERALL 86.3% 10.0% 3.7%

Table 3: The percent distribution for how each ex-
pert rated the appropriateness of the predicted er-
ror types. E.g. Rater 3 considered 83% of all pre-
dicted types to be “Good”.

Ng, 2015) and so we were more interested in over-
all judgements than specific disagreements.

The results from this evaluation are shown in
Table 3. Significantly, all 5 raters considered at
least 95% of the predicted error types to be ei-
ther “Good” or “Acceptable”, despite the degree
of noise introduced by automatic edit extraction.
Furthermore, whenever raters judged an edit as
“Bad”, this could usually be traced back to a
POS or parse error; e.g. [ring → rings] might
be considered a NOUN:NUM or VERB:SVA er-
ror depending on whether the POS tagger consid-
ered both sides of the edit nouns or verbs. Inter-
annotator agreement was also good at 0.724 κfree
(Randolph, 2005).

In contrast, although incomparable on account
of the different metric and error scheme, the best
results using machine learning were between 50-
70% F1 (Felice et al., 2016). Ultimately however,
we believe the high scores awarded by the raters
validates the efficacy of our rule-based approach.

4 Error Type Scoring

Having described how to automatically annotate
parallel sentences with ERRANT, we now also
have a method to annotate system hypotheses; this
is the first step towards an error type evaluation.
Since no scorer is currently capable of calculating
error type performance however (Dahlmeier and
Ng, 2012; Felice and Briscoe, 2015; Napoles et al.,
2015), we instead built our own.

Fortunately, one benefit of explicitly annotat-
ing system hypotheses is that it makes evaluation
much more straightforward. In particular, for each
sentence, we only need to compare the edits in the
hypothesis against the edits in each respective ref-
erence and measure the overlap. Any edit with the
same span and correction in both files is hence a

796

true positive (TP), while unmatched edits in the
hypothesis and references are false positives (FP)
and false negatives (FN) respectively. These re-
sults can then be grouped by error type for the pur-
poses of error type evaluation.

Finally, it is worth noting that this scorer is
much simpler than other scorers in GEC which
typically incorporate edit extraction or alignment
directly into their algorithms. Our approach, on
the other hand, treats edit extraction and evalua-
tion as separate tasks.

4.1 Gold Reference vs. Auto Reference

Before evaluating an automatically annotated hy-
pothesis against its reference, we must also ad-
dress another mismatch: namely that hypothe-
sis edits must be extracted and classified auto-
matically, while reference edits are typically ex-
tracted and classified manually using a different
framework. Since evaluation is now reduced to
a straightforward comparison between two files
however, it is especially important that the hypoth-
esis and references are both processed in the same
way. For instance, a hypothesis edit [have eating
→ has eaten] will not match the reference edits
[have → has] and [eating → eaten] because the
former is one edit while the latter is two edits, even
though they equate to the same thing.

To solve this problem, we can reprocess the ref-
erences in the same way as the hypotheses. In
other words, we can apply ERRANT to the refer-
ences such that each reference edit is subject to the
same automatic extraction and classification crite-
ria as each hypothesis edit. While it may seem un-
orthodox to discard gold reference information in
favour of automatic reference information, this is
necessary to minimise the difference between hy-
pothesis and reference edits and also standardise
error type annotations.

To show that automatic references are feasible
alternatives to gold references, we evaluated each
team in the CoNLL-2014 shared task using both
types of reference with the M2 scorer (Dahlmeier
and Ng, 2012), the de facto standard of GEC
evaluation, and our own scorer. Table 4 hence
shows that there is little difference between the
overall scores for each team, and we formally
validated this hypothesis for precision, recall
and F0.5 by means of bootstrap significance
testing (Efron and Tibshirani, 1993). Ultimately,
we found no statistically significant difference

M2 Scorer Our Scorer
Team Gold Auto Gold Auto
AMU 35.01 35.05 31.95 32.25
CAMB 37.33 37.34 33.39 34.01
CUUI 36.79 37.59 33.32 34.64
IITB 5.90 5.96 5.67 5.74
IPN 7.09 7.68 5.86 6.14
NTHU 29.92 29.77 25.62 25.66
PKU 25.32 25.38 23.40 23.60
POST 30.88 31.01 27.54 27.99
RAC 26.68 26.88 22.83 23.15
SJTU 15.19 15.22 14.85 14.89
UFC 7.84 7.89 7.84 7.89
UMC 25.37 25.45 23.08 23.52

Table 4: Overall scores for each team in CoNLL-
2014 using gold and auto references with both the
M2 scorer and our simpler edit comparison ap-
proach. All scores are in terms of F0.5.

between automatic and gold references (1,000
iterations, p > .05) which leads us to conclude
that our automatic references are qualitatively as
good as human references.

4.2 Comparison with the M2 Scorer

Despite using the same metric, Table 4 also shows
that the M2 scorer tends to produce slightly higher
F0.5 scores than our own. This initially led us to
believe that our scorer was underestimating per-
formance, but we subsequently found that instead
the M2 scorer tends to overestimate performance
(cf. Felice and Briscoe (2015) and Napoles et al.
(2015)).

In particular, given a choice between matching
[have eating → has eaten] from Annotator 1 or
[have → has] and [eating → eaten] from Anno-
tator 2, the M2 scorer will always choose Anno-
tator 2 because two true positives (TP) are worth
more than one. Similarly, whenever the scorer
encounters two false positives (FP) within a cer-
tain distance of each other,7 it merges them and
treats them as one false positive; e.g. [is a cat
→ are a cats] is selected over [is→ are] and [cat
→ cats] even though these edits are best handled
separately. In other words, the M2 scorer exploits
its dynamic edit boundary prediction to artificially
maximise true positives and minimise false posi-
tives and hence produce slightly inflated scores.

7The distance is controlled by the max unchanged words
parameter which is set to 2 by default.

797

AMU CAMB CUUI IITB
Type P R F0.5 P R F0.5 P R F0.5 P R F0.5

Missing 43.94 14.32 31.08 45.96 29.71 41.43 26.37 18.16 24.18 15.38 0.59 2.56
Replacement 37.22 26.92 34.57 37.53 28.12 35.18 45.90 22.98 38.27 29.85 1.49 6.22
Unnecessary - - - 25.51 27.47 25.88 34.20 33.33 34.02 46.15 1.53 6.77

IPN NTHU PKU POST
Type P R F0.5 P R F0.5 P R F0.5 P R F0.5

Missing 2.86 0.29 1.04 34.33 11.39 24.47 33.33 4.37 14.34 31.14 13.13 24.44
Replacement 9.87 3.86 7.53 27.61 19.15 25.37 29.62 18.33 26.37 33.16 19.33 29.01
Unnecessary 0.00 0.00 0.00 34.76 15.97 28.14 0.00 0.00 0.00 26.32 32.84 27.40

RAC SJTU UFC UMC
Type P R F0.5 P R F0.5 P R F0.5 P R F0.5

Missing 1.52 0.27 0.79 62.50 4.44 17.28 - - - 40.08 23.57 35.16
Replacement 29.41 20.82 27.17 50.54 3.43 13.47 72.00 2.64 11.52 34.71 9.70 22.90
Unnecessary 0.00 0.00 0.00 17.65 11.36 15.89 - - - 16.86 17.17 16.92

Table 5: Precision, recall and F0.5 for Missing, Unnecessary, and Replacement errors for each team.
A dash indicates the team’s system did not attempt to correct the given error type (TP+FP = 0).

5 CoNLL-2014 Shared Task Analysis

To demonstrate the value of ERRANT, we applied
it to the data produced in the CoNLL-2014 shared
task (Ng et al., 2014). Specifically, we automati-
cally annotated all the system hypotheses and offi-
cial reference files.8 Although ERRANT can be
applied to any dataset of parallel sentences, we
chose to evaluate on CoNLL-2014 because it rep-
resents the largest collection of publicly available
GEC system output. For more information about
the systems in CoNLL-2014, we refer the reader
to the shared task paper.

5.1 Edit Operation

In our first category experiment, we simply inves-
tigated the performance of each system in terms
of Missing, Replacement and Unnecessary edits.
The results are shown in Table 5 with additional
information in Appendix B, Table 10.

The most surprising result is that five teams
(AMU, IPN, PKU, RAC, UFC) failed to correct
any unnecessary token errors at all. This is note-
worthy because unnecessary token errors account
for roughly 25% of all errors in the CoNLL-2014
test data and so failing to address them signifi-
cantly limits a system’s maximum performance.
While the reason for this is clear in some cases,
e.g. UFC’s rule-based system was never designed
to tackle unnecessary tokens (Gupta, 2014), it is
less clear in others, e.g. there is no obvious rea-
son why AMU’s SMT system failed to learn when

8http://www.comp.nus.edu.sg/∼nlp/conll14st.html

to delete tokens (Junczys-Dowmunt and Grund-
kiewicz, 2014). AMU’s result is especially re-
markable given that their system still came 3rd
overall despite this limitation.

In contrast, CUUI’s classifier approach (Ro-
zovskaya et al., 2014) was the most successful
at correcting not only unnecessary token errors,
but also replacement token errors, while CAMB’s
hybrid MT approach (Felice et al., 2014) signif-
icantly outperformed all others in terms of miss-
ing token errors. It would hence make sense to
combine these two approaches, and indeed recent
research has shown this improves overall perfor-
mance (Rozovskaya and Roth, 2016).

5.2 General Error Types

Table 6 shows precision, recall and F0.5 for each
of the error types in our proposed framework for
each team in CoNLL-2014. As some error types
are more common than others, we also provide the
TP, FP and FN counts used to make this table in
Appendix B, Table 11.

Overall, CAMB was the most successful team
in terms of error types, achieving the highest F-
score in 10 (out of 24) error categories, followed
by AMU, who scored highest in 6 categories. All
but 3 teams (IITB, IPN and POST) achieved the
best score in at least 1 category, which suggests
that different approaches to GEC complement dif-
ferent error types. Only CAMB attempted to cor-
rect at least 1 error from every category.

Other interesting observations we can make
from this table include:

798

AMU CAMB CUUI IITB IPN NTHU PKU POST RAC SJTU UFC UMC

ADJ
P 4.88 9.09 - 0.00 0.00 0.00 66.67 0.00 12.50 0.00 - 0.00
R 6.67 13.89 - 0.00 0.00 0.00 7.14 0.00 3.57 0.00 - 0.00

F0.5 5.15 9.77 - 0.00 0.00 0.00 25.00 0.00 8.33 0.00 - 0.00

ADJ:FORM
P 55.56 75.00 100.00 100.00 0.00 33.33 100.00 50.00 8.00 - - 100.00
R 62.50 60.00 33.33 40.00 0.00 37.50 28.57 14.29 40.00 - - 60.00

F0.5 56.82 71.43 71.43 76.92 0.00 34.09 66.67 33.33 9.52 - - 88.24

ADV
P 6.67 11.54 0.00 0.00 0.00 0.00 0.00 - 0.00 4.76 - 8.77
R 2.94 20.45 0.00 0.00 0.00 0.00 0.00 - 0.00 3.03 - 12.50

F0.5 5.32 12.64 0.00 0.00 0.00 0.00 0.00 - 0.00 4.27 - 9.33

CONJ
P 6.25 0.00 - - 0.00 0.00 - - - 0.00 - 0.00
R 7.69 0.00 - - 0.00 0.00 - - - 0.00 - 0.00

F0.5 6.49 0.00 - - 0.00 0.00 - - - 0.00 - 0.00

CONTR
P 29.17 40.00 46.15 - 0.00 - - 33.33 0.00 66.67 - 28.57
R 100.00 33.33 85.71 - 0.00 - - 57.14 0.00 40.00 - 33.33

F0.5 33.98 38.46 50.85 - 0.00 - - 36.36 0.00 58.82 - 29.41

DET
P 33.33 36.16 30.92 21.43 0.00 36.03 29.35 26.09 0.00 43.88 - 36.21
R 14.09 43.03 51.91 0.92 0.00 28.46 7.85 49.41 0.00 12.54 - 23.66

F0.5 26.18 37.35 33.64 3.92 0.00 34.21 18.96 28.81 0.00 29.25 - 32.74

MORPH
P 55.56 59.15 55.88 28.57 1.16 27.87 20.80 27.78 32.69 100.00 40.00 43.75
R 48.91 47.73 20.88 5.41 1.39 21.52 30.59 12.50 21.25 2.74 5.00 15.91

F0.5 54.09 56.45 41.85 15.38 1.20 26.32 22.22 22.32 29.51 12.35 16.67 32.41

NOUN
P 20.90 25.27 0.00 28.57 4.35 0.00 0.00 10.00 10.53 0.00 - 27.78
R 12.39 19.49 0.00 2.20 2.17 0.00 0.00 1.92 1.92 0.00 - 9.90

F0.5 18.37 23.86 0.00 8.40 3.62 0.00 0.00 5.43 5.56 0.00 - 20.41

NOUN:INFL
P 60.00 60.00 50.00 - 25.00 100.00 62.50 66.67 66.67 0.00 - -
R 85.71 66.67 71.43 - 16.67 33.33 62.50 57.14 66.67 0.00 - -

F0.5 63.83 61.22 53.19 - 22.73 71.43 62.50 64.52 66.67 0.00 - -

NOUN:NUM
P 49.42 44.20 44.06 41.18 14.38 44.05 29.39 31.05 29.00 54.29 - 44.29
R 56.14 53.74 59.49 3.87 11.28 47.62 42.54 56.20 36.45 10.27 - 16.94

F0.5 50.63 45.83 46.47 14.06 13.63 44.72 31.33 34.10 30.23 29.23 - 33.48

NOUN:POSS
P 20.00 66.67 - - - - 14.29 0.00 0.00 25.00 - 50.00
R 14.29 10.53 - - - - 5.26 0.00 0.00 4.55 - 5.00

F0.5 18.52 32.26 - - - - 10.64 0.00 0.00 13.16 - 17.86

ORTH
P 60.00 66.67 73.81 - 3.45 0.00 28.57 49.32 16.57 - - 50.00
R 11.11 40.00 59.62 - 4.55 0.00 6.90 64.29 49.12 - - 17.24

F0.5 31.91 58.82 70.45 - 3.62 0.00 17.54 51.72 19.10 - - 36.23

OTHER
P 20.34 23.60 10.34 0.00 2.33 1.37 14.29 10.00 0.00 0.00 - 11.58
R 6.92 10.03 0.83 0.00 0.31 0.58 0.58 1.13 0.00 0.00 - 3.15

F0.5 14.65 18.57 3.14 0.00 1.01 1.07 2.49 3.90 0.00 0.00 - 7.54

PART
P 71.43 33.33 25.00 - - 16.67 - - - 50.00 - 20.00
R 20.83 15.38 4.76 - - 21.74 - - - 9.52 - 11.11

F0.5 48.08 27.03 13.51 - - 17.48 - - - 27.03 - 17.24

PREP
P 47.56 41.44 33.33 75.00 0.00 10.71 - 21.74 0.00 36.59 - 20.53
R 16.05 35.66 13.49 1.44 0.00 12.35 - 2.17 0.00 7.18 - 13.36

F0.5 34.15 40.14 25.76 6.70 0.00 11.01 - 7.76 0.00 20.11 - 18.54

PRON
P 41.18 20.37 0.00 0.00 11.11 50.00 100.00 27.27 5.00 0.00 - 22.92
R 9.72 13.41 0.00 0.00 1.69 2.82 1.54 4.62 1.52 0.00 - 13.92

F0.5 25.00 18.46 0.00 0.00 5.26 11.49 7.25 13.76 3.42 0.00 - 20.30

PUNCT
P 25.00 60.47 37.21 100.00 0.00 44.83 - 27.27 0.00 5.00 - 43.02
R 3.52 15.48 10.60 1.85 0.00 8.97 - 6.34 0.00 0.96 - 23.13

F0.5 11.26 38.24 24.77 8.62 0.00 24.90 - 16.42 0.00 2.72 - 36.71

SPELL
P 76.92 77.55 0.00 0.00 25.00 0.00 44.17 68.63 73.98 - - 100.00
R 63.83 41.76 0.00 0.00 4.23 0.00 71.29 71.43 85.85 - - 1.37

F0.5 73.89 66.20 0.00 0.00 12.61 0.00 47.81 69.17 76.09 - - 6.49

VERB
P 18.84 15.12 - 0.00 7.69 0.00 14.29 0.00 0.00 0.00 - 16.33
R 8.23 8.33 - 0.00 0.74 0.00 0.70 0.00 0.00 0.00 - 5.37

F0.5 14.98 13.00 - 0.00 2.66 0.00 2.94 0.00 0.00 0.00 - 11.59

VERB:FORM
P 34.92 36.36 68.75 0.00 8.77 35.11 30.77 25.00 34.41 28.57 - 31.11
R 23.40 25.00 24.18 0.00 5.75 35.11 35.56 3.45 32.65 4.65 - 16.09

F0.5 31.79 33.33 50.23 0.00 7.94 35.11 31.62 11.11 34.04 14.08 - 26.22

VERB:INFL
P 100.00 100.00 - - 100.00 100.00 50.00 100.00 100.00 - 0.00 -
R 100.00 100.00 - - 50.00 50.00 50.00 50.00 100.00 - 0.00 -

F0.5 100.00 100.00 - - 83.33 83.33 50.00 83.33 100.00 - 0.00 -

VERB:SVA
P 49.09 44.05 54.80 50.00 24.56 50.56 56.25 32.69 35.56 59.09 81.58 60.00
R 27.55 32.74 71.85 1.12 14.58 67.16 18.75 17.35 31.07 13.83 29.25 15.00

F0.5 42.45 41.20 57.53 5.15 21.60 53.19 40.18 27.78 34.56 35.71 60.08 37.50

VERB:TENSE
P 20.55 26.27 70.00 66.67 3.70 31.25 9.38 20.00 22.78 14.81 100.00 31.25
R 8.72 17.51 4.12 1.25 0.61 2.98 3.66 2.31 20.57 2.45 0.63 12.05

F0.5 16.16 23.88 16.67 5.81 1.84 10.78 7.14 7.91 22.30 7.38 3.05 23.70

WO
P - 38.89 0.00 66.67 - - - 0.00 0.00 - - 41.18
R - 33.33 0.00 14.29 - - - 0.00 0.00 - - 35.00

F0.5 - 37.63 0.00 38.46 - - - 0.00 0.00 - - 39.77

Table 6: Precision, recall and F0.5 for each team and error type. A dash indicates the team’s system did
not attempt to correct the given error type (TP+FP = 0). The highest F-score for each type is highlighted.

799

CAMB
Type P R F0.5

M:DET 43.20 51.77 44.68
R:DET 19.33 35.37 21.26
U:DET 43.75 39.90 42.92

DET 36.16 43.03 37.35

CUUI
Type P R F0.5

M:DET 23.86 45.00 26.34
R:DET 27.03 24.39 26.46
U:DET 36.19 66.37 39.81

DET 30.92 51.91 33.64

Table 7: Detailed breakdown of Determiner errors
for two teams.

• Despite the prevalence of spell checkers
nowadays, many teams did not seem to em-
ploy them; this would have been an easy way
to boost overall performance.

• Although several teams built specialised clas-
sifiers for DET and PREP errors, CAMB’s
hybrid MT approach still outperformed
them. This might be because the classifiers
were trained using a different error type
framework however.

• CUUI’s classifiers significantly outper-
formed all other approaches at ORTH and
VERB:FORM errors. This suggests classi-
fiers are well-suited to these error types.

• Although UFC’s rule-based approach was
the best at VERB:SVA errors, CUUI’s
classifier was not very far behind.

• Only AMU managed to correct any CONJ
errors.

• Content word errors (i.e. ADJ, ADV, NOUN
and VERB) were unsurprisingly very
difficult for all teams.

5.3 Detailed Error Types
In addition to analysing general error types, the
modular design of our framework also allows us to
evaluate error type performance at an even greater
level of detail. For example, Table 7 shows the
breakdown of Determiner errors for two teams us-
ing different approaches in terms of edit operation.
Note that this is a representative example of de-
tailed error type performance, as an analysis of all
error type combinations for all teams would take
up too much space.

Team P R F0.5

AMU 16.90 5.33 11.79
CAMB 27.22 17.06 24.32
CUUI 15.69 3.67 9.48
IITB 28.57 0.94 4.15
IPN 3.33 0.47 1.51
NTHU 0.00 0.00 0.00
PKU 25.00 1.40 5.73
POST 12.77 2.82 7.48
RAC 2.96 2.82 2.93
SJTU 10.00 0.47 1.99
UFC - - -
UMC 19.82 9.82 16.47

Table 8: Each team’s performance at correcting
multi-token edits; i.e. there are at least two tokens
on one side of the edit.

While CAMB’s hybrid MT approach achieved
a higher score than CUUI’s classifier overall, our
more detailed evaluation reveals that CUUI actu-
ally outperformed CAMB at Replacement Deter-
miner errors. We also learn that CAMB scored
twice as highly on M:DET and U:DET than it did
on R:DET and that CUUI’s significantly higher
U:DET recall was offset by a lower precision. Ul-
timately, this shows that even though one approach
might be better than another overall, different ap-
proaches may still have complementary strengths.

5.4 Multi Token Errors
Another benefit of explicitly annotating all hy-
pothesis edits is that edit spans become fixed; this
means we can evaluate system performance in
terms of edit size. Table 8 hence shows the over-
all performance for each team at correcting multi-
token edits, where a multi-token edit is an edit
that has at least two tokens on either side. In the
CoNLL-2014 test set, there are roughly 220 such
edits (about 10% of all edits).

In general, teams did not do well at multi-token
edits. In fact only three teams achieved scores
greater than 10% F0.5 and all of them used MT
(AMU, CAMB, UMC). This is significant because
recent work has suggested that the main goal of
GEC should be to produce fluent-sounding, rather
than just grammatical sentences, even though this
often requires complex multi-token edits (Sak-
aguchi et al., 2016). If no system is particularly
adept at correcting multi-token errors however, ro-
bust fluency correction will likely require more so-
phisticated methods than are currently available.

800

A
M

U
C

A
M

B
C

U
U

I
II

T
B

IP
N

N
T

H
U

PK
U

PO
ST

R
A

C
SJ

T
U

U
FC

U
M

C

0

10

20

30

40

50

F 0
.5

Detection
Correction

Figure 1: The difference between detection and
correction scores for each team overall.

5.5 Detection vs. Correction

Another important aspect of GEC that is seldom
reported in the literature is that of error detection;
i.e. the extent to which a system can identify er-
roneous tokens in text. This can be calculated by
comparing the edit overlap between the hypothesis
and reference files regardless of the proposed cor-
rection in a manner similar to Recognition evalu-
ation in the HOO shared tasks for GEC (Dale and
Kilgarriff, 2011).

Figure 1 hence shows how each team’s score
for detection differed in relation to their score for
correction. While CAMB scored highest for de-
tection overall, it is interesting to note that CUUI
ultimately performed slightly better than CAMB
at correction. This suggests CUUI was more suc-
cessful at correcting the errors they detected than
CAMB. In contrast, IPN and PKU are notable for
detecting significantly more errors than they were
able to correct. Nevertheless, a system’s ability to
detect errors, even if it is unable to correct them, is
still likely to be valuable information to a learner
(Rei and Yannakoudakis, 2016).

Finally, although we do not do so here, our
scorer is also capable of providing a detailed er-
ror type breakdown for detection.

6 Conclusion

In this paper, we described ERRANT, a grammat-
ical ERRor ANnotation Toolkit designed to au-

tomatically annotate parallel error correction data
with explicit edit spans and error type information.
ERRANT can be used to not only facilitate a de-
tailed error type evaluation in GEC, but also to
standardise existing error correction corpora and
reduce annotator workload. We release ERRANT
with this paper.

Our approach makes use of previous work to
align sentences based on linguistic intuition and
then introduces a new rule-based framework to
classify edits. This framework is entirely dataset
independent, and relies only on automatically
obtained information such as POS tags and
lemmas. A small-scale evaluation of our classifier
found that each rater considered >95% of the
predicted error types as either “Good” (85%) or
“Acceptable” (10%).

We demonstrated the value of ERRANT by car-
rying out a detailed evaluation of system error
type performance for all teams in the CoNLL-
2014 shared task on Grammatical Error Correc-
tion. We found that different systems had differ-
ent strengths and weaknesses which we hope re-
searchers can exploit to further improve general
performance.

References
Christopher Bryant and Hwee Tou Ng. 2015. How

far are we from fully automatic high quality gram-
matical error correction? In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 697–707.
http://www.aclweb.org/anthology/P15-1068.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Bet-
ter evaluation for grammatical error correction.
In Proceedings of the 2012 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies. Association for Computational
Linguistics, Montréal, Canada, pages 568–572.
http://www.aclweb.org/anthology/N12-1067.

Robert Dale and Adam Kilgarriff. 2011. Help-
ing Our Own: The HOO 2011 pilot shared
task. In Proceedings of the 13th European
Workshop on Natural Language Generation.
Association for Computational Linguistics, Strouds-
burg, PA, USA, ENLG ’11, pages 242–249.
http://dl.acm.org/citation.cfm?id=2187681.2187725.

Bradley Efron and Robert J. Tibshirani. 1993. An In-
troduction to the Bootstrap. Chapman & Hall, New
York.

801

Mariano Felice and Ted Briscoe. 2015. Towards a stan-
dard evaluation method for grammatical error de-
tection and correction. In Proceedings of the 2015
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Denver, Colorado, pages 578–
587. http://www.aclweb.org/anthology/N15-1060.

Mariano Felice, Christopher Bryant, and Ted Briscoe.
2016. Automatic extraction of learner errors in
ESL sentences using linguistically enhanced align-
ments. In Proceedings of COLING 2016, the 26th
International Conference on Computational Lin-
guistics: Technical Papers. The COLING 2016 Or-
ganizing Committee, Osaka, Japan, pages 825–835.
http://aclweb.org/anthology/C16-1079.

Mariano Felice, Zheng Yuan, Øistein E. Andersen, He-
len Yannakoudakis, and Ekaterina Kochmar. 2014.
Grammatical error correction using hybrid systems
and type filtering. In Proceedings of the Eighteenth
Conference on Computational Natural Language
Learning: Shared Task. Association for Computa-
tional Linguistics, Baltimore, Maryland, pages 15–
24. http://www.aclweb.org/anthology/W14-1702.

Roman Grundkiewicz, Marcin Junczys-Dowmunt, and
Edward Gillian. 2015. Human evaluation of gram-
matical error correction systems. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Lisbon, Portugal, pages 461–470.
http://aclweb.org/anthology/D15-1052.

Anubhav Gupta. 2014. Grammatical error detec-
tion using tagger disagreement. In Proceedings
of the Eighteenth Conference on Computa-
tional Natural Language Learning: Shared
Task. Association for Computational Lin-
guistics, Baltimore, Maryland, pages 49–52.
http://www.aclweb.org/anthology/W14-1706.

Marcin Junczys-Dowmunt and Roman Grundkiewicz.
2014. The AMU system in the CoNLL-2014
shared task: Grammatical error correction by data-
intensive and feature-rich statistical machine trans-
lation. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learn-
ing: Shared Task. Association for Computational
Linguistics, Baltimore, Maryland, pages 25–33.
http://www.aclweb.org/anthology/W14-1703.

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and
Joel Tetreault. 2015. Ground truth for grammati-
cal error correction metrics. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 588–593.
http://www.aclweb.org/anthology/P15-2097.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Chris-
tian Hadiwinoto, Raymond Hendy Susanto, and

Christopher Bryant. 2014. The CoNLL-2014 shared
task on grammatical error correction. In Pro-
ceedings of the Eighteenth Conference on Com-
putational Natural Language Learning: Shared
Task. ACL, Baltimore, Maryland, USA, pages
1–14. http://aclweb.org/anthology/W/W14/W14-
1701.pdf.

Justus J. Randolph. 2005. Free-marginal mul-
tirater kappa: An alternative to Fleiss’ fixed-
marginal multirater kappa. Joensuu Uni-
versity Learning and Instruction Symposium
http://files.eric.ed.gov/fulltext/ED490661.pdf.

Marek Rei and Helen Yannakoudakis. 2016. Com-
positional sequence labeling models for error
detection in learner writing. In Proceedings
of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Berlin, Germany, pages 1181–1191.
http://www.aclweb.org/anthology/P16-1112.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons,
Dan Roth, and Nizar Habash. 2014. The Illinois-
Columbia system in the CoNLL-2014 shared
task. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learn-
ing: Shared Task. Association for Computational
Linguistics, Baltimore, Maryland, pages 34–42.
http://www.aclweb.org/anthology/W14-1704.

Alla Rozovskaya and Dan Roth. 2016. Gram-
matical error correction: Machine translation and
classifiers. In Proceedings of the 54th An-
nual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics, Berlin, Germany, pages 2205–2215.
http://aclweb.org/anthology/P16-1208.

Keisuke Sakaguchi, Courtney Napoles, Matt Post,
and Joel Tetreault. 2016. Reassessing the goals
of grammatical error correction: Fluency instead
of grammaticality. Transactions of the Asso-
ciation for Computational Linguistics 4:169–182.
https://tacl2013.cs.columbia.edu/ojs/index.php/tacl/
article/view/800.

Ben Swanson and Elif Yamangil. 2012. Correction
detection and error type selection as an ESL ed-
ucational aid. In Proceedings of the 2012 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Montréal, Canada, pages 357–
361. http://www.aclweb.org/anthology/N12-1037.

Huichao Xue and Rebecca Hwa. 2014. Improved
correction detection in revised ESL sentences. In
Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers). Association for Computational
Linguistics, Baltimore, Maryland, pages 599–604.
http://www.aclweb.org/anthology/P14-2098.

802

Helen Yannakoudakis, Ted Briscoe, and Ben Med-
lock. 2011. A new dataset and method for au-
tomatically grading ESOL texts. In Proceedings
of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, Portland, Oregon, USA, pages 180–189.
http://www.aclweb.org/anthology/P11-1019.

803

A Complete list of valid error code combinations

Operation Tier
Type Missing Unnecessary Replacement

To
ke

n
Ti

er

Pa
rt

O
fS

pe
ec

h
Adjective M:ADJ U:ADJ R:ADJ
Adverb M:ADV U:ADV R:ADV
Conjunction M:CONJ U:CONJ R:CONJ
Determiner M:DET U:DET R:DET
Noun M:NOUN U:NOUN R:NOUN
Particle M:PART U:PART R:PART
Preposition M:PREP U:PREP R:PREP
Pronoun M:PRON U:PRON R:PRON
Punctuation M:PUNCT U:PUNCT R:PUNCT
Verb M:VERB U:VERB R:VERB

O
th

er

Contraction M:CONTR U:CONTR R:CONTR
Morphology - - R:MORPH
Orthography - - R:ORTH
Other M:OTHER U:OTHER R:OTHER
Spelling - - R:SPELL
Word Order - - R:WO

M
or

ph
ol

og
y

Ti
er

Adjective Form - - R:ADJ:FORM
Noun Inflection - - R:NOUN:INFL
Noun Number - - R:NOUN:NUM
Noun Possessive M:NOUN:POSS U:NOUN:POSS R:NOUN:POSS
Verb Form M:VERB:FORM U:VERB:FORM R:VERB:FORM
Verb Inflection - - R:VERB:INFL
Verb Agreement - - R:VERB:SVA
Verb Tense M:VERB:TENSE U:VERB:TENSE R:VERB:TENSE

Table 9: There are 55 total possible error types. This table shows all of them except UNK, which
indicates an uncorrected error. A dash indicates an impossible combination.

B TP, FP and FN counts for various CoNLL-2014 results

AMU CAMB CUUI IITB
Type TP FP FN TP FP FN TP FP FN TP FP FN

Missing 58 74 347 131 154 310 77 215 347 2 11 336
Replacement 428 722 1162 477 794 1219 381 449 1277 20 47 1320
Unnecessary 0 0 412 125 365 330 158 304 316 6 7 385

IPN NTHU PKU POST
Type TP FP FN TP FP FN TP FP FN TP FP FN

Missing 1 34 339 46 88 358 16 32 350 52 115 344
Replacement 53 484 1319 299 784 1262 279 663 1243 312 629 1302
Unnecessary 0 2 389 65 122 342 0 1 397 155 434 317

RAC SJTU UFC UMC
Type TP FP FN TP FP FN TP FP FN TP FP FN

Missing 1 65 368 15 9 323 0 0 339 99 148 321
Replacement 325 780 1236 47 46 1325 36 14 1326 143 269 1331
Unnecessary 0 5 407 45 210 351 0 0 381 74 365 357

Table 10: True Positive, False Positive and False Negative counts for each team in terms of Missing,
Replacement and Unnecessary edits. The total number of edits may vary for each system, as this depends
on the individual references that are chosen during evaluation. These results were used to make Table 5.

804

AMU CAMB CUUI IITB IPN NTHU PKU POST RAC SJTU UFC UMC

ADJ
TP 2 5 0 0 0 0 2 0 1 0 0 0
FP 39 50 0 3 2 3 1 4 7 8 0 21
FN 28 31 30 23 23 25 26 33 27 20 20 26

ADJ:FORM
TP 5 6 3 2 0 3 2 1 2 0 0 3
FP 4 2 0 0 1 6 0 1 23 0 0 0
FN 3 4 6 3 5 5 5 6 3 5 5 2

ADV
TP 1 9 0 0 0 0 0 0 0 1 0 5
FP 14 69 1 1 1 2 1 0 4 20 0 52
FN 33 35 36 32 33 35 37 41 37 32 33 35

CONJ
TP 1 0 0 0 0 0 0 0 0 0 0 0
FP 15 18 0 0 1 1 0 0 0 6 0 26
FN 12 15 14 12 12 13 12 15 13 13 12 14

CONTR
TP 7 2 6 0 0 0 0 4 0 2 0 2
FP 17 3 7 0 1 0 0 8 1 1 0 5
FN 0 4 1 5 5 5 5 3 5 3 5 4

DET
TP 52 179 231 3 0 107 27 210 0 43 0 88
FP 104 316 516 11 13 190 65 595 9 55 0 155
FN 317 237 214 324 325 269 317 215 346 300 327 284

MORPH
TP 45 42 19 4 1 17 26 10 17 2 4 14
FP 36 29 15 10 85 44 99 26 35 0 6 18
FN 47 46 72 70 71 62 59 70 63 71 76 74

NOUN
TP 14 23 0 2 2 0 0 2 2 0 0 10
FP 53 68 5 5 44 9 29 18 17 16 0 26
FN 99 95 109 89 90 102 103 102 102 93 92 91

NOUN:INFL
TP 6 6 5 0 1 2 5 4 4 0 0 0
FP 4 4 5 0 3 0 3 2 2 1 0 0
FN 1 3 2 6 5 4 3 3 2 6 6 6

NOUN:NUM
TP 128 122 141 7 22 100 97 136 78 19 0 31
FP 131 154 179 10 131 127 233 302 191 16 0 39
FN 100 105 96 174 173 110 131 106 136 166 178 152

NOUN:POSS
TP 3 2 0 0 0 0 1 0 0 1 0 1
FP 12 1 0 0 0 0 6 1 38 3 0 1
FN 18 17 20 18 19 22 18 21 20 21 20 19

ORTH
TP 3 14 31 0 1 0 2 36 28 0 0 5
FP 2 7 11 0 28 1 5 37 141 0 0 5
FN 24 21 21 21 21 27 27 20 29 24 21 24

OTHER
TP 24 38 3 0 1 2 2 4 0 0 0 11
FP 94 123 26 8 42 144 12 36 52 11 0 84
FN 323 341 358 329 322 345 343 349 346 323 327 338

PART
TP 5 4 1 0 0 5 0 0 0 2 0 2
FP 2 8 3 0 0 25 0 0 0 2 0 8
FN 19 22 20 19 21 18 21 20 19 19 17 16

PREP
TP 39 92 34 3 0 30 0 5 0 15 0 31
FP 43 130 68 1 2 250 0 18 3 26 0 120
FN 204 166 218 205 207 213 219 225 215 194 206 201

PRON
TP 7 11 0 0 1 2 1 3 1 0 0 11
FP 10 43 1 5 8 2 0 8 19 22 0 37
FN 65 71 63 57 58 69 64 62 65 62 62 68

PUNCT
TP 5 26 16 2 0 13 0 9 0 1 0 37
FP 15 17 27 0 16 16 0 24 29 19 0 49
FN 137 142 135 106 114 132 123 133 129 103 109 123

SPELL
TP 60 38 0 0 3 0 72 70 91 0 0 1
FP 18 11 1 1 9 2 91 32 32 0 0 0
FN 34 53 74 68 68 74 29 28 15 70 70 72

VERB
TP 13 13 0 0 1 0 1 0 0 0 0 8
FP 56 73 0 6 12 12 6 4 5 17 0 41
FN 145 143 165 133 135 152 141 164 151 139 131 141

VERB:FORM
TP 22 24 22 0 5 33 32 3 32 4 0 14
FP 41 42 10 1 52 61 72 9 61 10 0 31
FN 72 72 69 87 82 61 58 84 66 82 82 73

VERB:INFL
TP 2 2 0 0 1 1 1 1 2 0 0 0
FP 0 0 0 0 0 0 1 0 0 0 1 0
FN 0 0 2 2 1 1 1 1 0 2 2 2

VERB:SVA
TP 27 37 97 1 14 90 18 17 32 13 31 15
FP 28 47 80 1 43 88 14 35 58 9 7 10
FN 71 76 38 88 82 44 78 81 71 81 75 85

VERB:TENSE
TP 15 31 7 2 1 5 6 4 36 4 1 20
FP 58 87 3 1 26 11 58 16 122 23 0 44
FN 157 146 163 158 163 163 158 169 139 159 159 146

WO
TP 0 7 0 2 0 0 0 0 0 0 0 7
FP 0 11 10 1 0 0 0 2 1 0 0 10
FN 12 14 14 12 12 11 12 12 12 11 11 13

Table 11: True Positive, False Positive and False Negative counts for each error type for each team.
These results were used to make Table 6.

805

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 806–817
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1075

Evaluation Metrics for Machine Reading Comprehension:
Prerequisite Skills and Readability

Saku Sugawara♠, Yusuke Kido♠, Hikaru Yokono♣, and Akiko Aizawa♦♠
♠The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan

♣Fujitsu Laboratories Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki, Japan
♦Natural Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, Japan

sakus@is.s.u-tokyo.ac.jp mail@yusuk.eki.do
yokono.hikaru@jp.fujitsu.com aizawa@nii.ac.jp

Abstract

Knowing the quality of reading compre-
hension (RC) datasets is important for
the development of natural-language un-
derstanding systems. In this study, two
classes of metrics were adopted for eval-
uating RC datasets: prerequisite skills and
readability. We applied these classes to six
existing datasets, including MCTest and
SQuAD, and highlighted the characteris-
tics of the datasets according to each met-
ric and the correlation between the two
classes. Our dataset analysis suggests that
the readability of RC datasets does not di-
rectly affect the question difficulty and that
it is possible to create an RC dataset that is
easy to read but difficult to answer.

1 Introduction

A major goal of natural language processing
(NLP) is to develop agents that can understand
natural language. Such an ability can be tested
with a reading comprehension (RC) task that re-
quires the agent to read open-domain documents
and answer questions about them. Constructing
systems with RC competence is challenging be-
cause RC comprises multiple processes includ-
ing parsing, understanding cohesion, and infer-
ence with linguistic and general knowledge.

Clarifying what a system achieves is important
in the development of RC systems. To achieve
robust improvement, systems should be measured
according to a variety of metrics beyond simple
accuracy. However, a current problem is that
most RC datasets are presented only with superfi-
cial categories, such as question types (e.g., what,
where, and who) and answer types (e.g., numeric,
location, and person). In addition, Chen et al.
(2016) noted that some questions in datasets may
not be suited to the testing of RC systems. In such

ID: SQuAD, United Methodist Church
Context: The United Methodist Church (UMC) prac-
tices infant and adult baptism. Baptized Members are
those who have been baptized as an infant or child, but
who have not subsequently professed their own faith.
Question: What are members who have been baptized
as an infant or child but who have not subsequently pro-
fessed their own faith?
Answer: Baptized Members

ID: MCTest, mc160.dev.8
Context: Sara wanted to play on a baseball team. She
had never tried to swing a bat and hit a baseball before.
Her Dad gave her a bat and together they went to the
park to practice.
Question: Why was Sara practicing?
Answer: She wanted to play on a team

Figure 1: Examples of RC questions from SQuAD
(Rajpurkar et al., 2016) and MCTest (Richardson
et al., 2013) (the Contexts are excerpts).

situations, it is difficult to obtain an accurate as-
sessment of the RC system.

Norvig (1989) argued that questions that are
easy for humans to answer often turn out to be
difficult for machines. For example, consider the
two RC questions in Figure 1. The first example
is from SQuAD (Rajpurkar et al., 2016), although
the document is taken from a Wikipedia article and
was therefore written for adults. The question is
answerable simply by noticing one sentence, with-
out needing to fully understand the content of the
text. On the other hand, consider the second exam-
ple from MCTest (Richardson et al., 2013), which
was written for children and is easy to read. Here,
answering the question involves gathering infor-
mation from multiple sentences and utilizing a
combination of several skills, such as understand-
ing causal relations (Sara wanted... → they went
to...), coreference resolution (Sara and Her Dad =
they), and complementing ellipsis (baseball team
= team). These two examples show that the read-
ability of the text does not necessarily correlate
with the difficulty of answering questions about it.

806

https://doi.org/10.18653/v1/P17-1075

Furthermore, the accompanying categories of ex-
isting RC datasets cannot help with the analysis of
this issue.

In this study, our goal is to investigate how these
two types of difficulty, namely “answering ques-
tions” and “reading text,” are correlated in RC.
Corresponding to each type, we formalize two
classes of evaluation metrics, prerequisite skills
and readability, and analyze existing RC datasets.
Our intention is to provide the basis of an eval-
uation methodology of RC systems to help their
robust development.

Our two classes of metrics are inspired by
the analysis in McNamara and Magliano (2009)
of human text comprehension in psychology.
They considered two aspects of text comprehen-
sion, namely “strategic/skilled comprehension”
and “text ease of processing.”

Our first class defines metrics for “strate-
gic/skilled comprehension,” namely the difficulty
of comprehending the context when answering
questions. We adopted the set of prerequisite skills
that Sugawara et al. (2017) proposed for the fine-
grained analysis of RC capability. Their study also
presented an important observation of the relation
between the difficulty of an RC task and prereq-
uisite skills: the more skills that are required to
answer a question, the more difficult is the ques-
tion. Based on this observation, in this work, we
assume that the number of skills required to an-
swer a question is a reasonable indication of the
difficulty of the question. This is because each
skill corresponds to one of the functions of an NLP
system, which has to be capable of that function-
ality.

Our second class defines metrics for “text ease
of processing,” namely the difficulty of reading
the text. We regard it as readability of the text in
terms of syntactic and lexical complexity. From
among readability studies in NLP, we adopt a wide
range of linguistic features proposed by Vajjala
and Meurers (2012), which can be used for texts
with no available annotations.

The contributions of this paper are as follows.

1. We adopt two classes of evaluation metrics to
show the qualitative features of RC datasets.
Through analyses of RC datasets, we demon-
strate that there is only a weak correlation be-
tween the difficulty of questions and the read-
ability of context texts in RC datasets.

2. We revise a previous classification of pre-

requisite skills for RC. Specifically, skills of
knowledge reasoning are organized by us-
ing insights of entailment phenomena in NLP
and human text comprehension in psychol-
ogy.

3. We annotate six existing RC datasets, com-
pared to the two datasets considered in Sug-
awara and Aizawa (2016), with our organized
metrics being used in the comparison. We
have made the results publicly available1 and
report on the characteristics of the datasets
and the differences between them.

We should note that, in this study, RC datasets
with different task formulations were annotated
with prerequisite skills under the same conditions.
Annotators first saw a context, a question, and
its answer. They selected the sentences required
to provide the answer, and then annotated them
with appropriate prerequisite skills. That is, the
datasets were annotated from the point of view of
whether the context entailed the hypothesis con-
structed from the pair of the question and answer.
This means that our methodology cannot quantify
the systems’ competence in searching the context
for necessary sentences and answer candidates. In
other words, our methodology can be only used
to evaluate the competence of understanding RC
questions as contextual entailments.

The remainder of this paper is divided into the
following sections. First, we discuss related work
in Section 2. Next, we specify our two classes of
metrics in Section 3. In Section 4, we annotate
existing RC datasets with the prerequisite skills.
Section 5 gives the results of our dataset analysis
and Section 6 discusses their implications. Section
7 presents our conclusions.

2 Related Work

2.1 Reading Comprehension Datasets
In this section, we present a short history of RC
datasets. To our knowledge, Hirschman et al.
(1999) were the first to use NLP methods for
RC. Their dataset comprised reading materials for
grades 3–6 with simple 5W (wh-) questions. Sub-
sequent investigations into questions of natural
language understanding focused on other formu-
lations, such as question answering (Yang et al.,
2015; Wang et al., 2007; Voorhees et al., 1999) and

1http://www-al.nii.ac.jp/rc_dataset_
analysis

807

textual entailment (Bentivogli et al., 2010; Sam-
mons et al., 2010; Dagan et al., 2006). One of
the RC tasks of the time was QA4MRE (Sutcliffe
et al., 2013). The highest accuracy achieved for
this task was 59% and the size of the dataset was
very limited: there were only 224 gold-standard
questions, which is insufficient for machine learn-
ing methods.

This means that an important issue for design-
ing RC datasets is their scalability. Richardson
et al. (2013) presented MCTest, which is an open-
domain narrative dataset for gauging comprehen-
sion at a child’s level. This dataset was created
by crowdsourcing and was based on a scalable
methodology. Since then, additional large-scale
datasets have been proposed with the development
of machine learning methods in NLP. For exam-
ple, the CNN/Daily Mail dataset (Hermann et al.,
2015) and CBTest (Hill et al., 2016) have approx-
imately 1.4M and 688K passages, respectively.
These context texts and questions were automat-
ically curated and generated from large corpora.
However, Chen et al. (2016) indicated that approx-
imately 25% of the questions in the CNN/Daily
Mail dataset are either unsolvable or nonsensical.
This dataset-quality issue highlights the demand
for more stable and robust sourcing methods.

Several additional RC datasets were presented
in the last half of 2016, involving large docu-
ments and sensible queries that were guaranteed
by crowdsourcing or other human testing. They
were intended to provide large and high-quality
content for machine learning models. Nonethe-
less, as shown in the examples of Figure 1, they
were not offered with metrics that could evaluate
NLP systems adequately with respect to the diffi-
culty of questions and the surface features of texts.

2.2 Reading Comprehension in Psychology
In psychology, there is a rich tradition of research
on human text comprehension. The construction–
integration (C–I) model (Kintsch, 1988) is one of
the most basic and influential theories. This model
assumes a connectional and computational archi-
tecture for text comprehension. It assumes that
comprehension is the processing of information
based on the following two steps.2

1. Construction: read sentences or clauses as in-
puts; form and elaborate concepts and propo-
sitions corresponding to the inputs.

2Note that this is a very simplified overview.

2. Integration: associate the contents to un-
derstand them consistently (e.g., coreference,
discourse, and coherence).

During these steps, three levels of representa-
tion are constructed (van Dijk and Kintsch, 1983):
the surface code (i.e., wording and syntax), the
textbase (i.e., text propositions with cohesion),
and the situation model (i.e., mental represen-
tation). Based on these assumptions, McNa-
mara and Magliano (2009) proposed two aspects
of text comprehension, namely “strategic/skilled
comprehension” and “text ease of processing.” We
adopted these assumptions as the basis of our two
classes of evaluation metrics (Section 3).

In an alternative approach, Kintsch (1993) pro-
posed two dichotomies for the classification of
human inferences, including the knowledge-based
inference assumed in the C–I model. The first di-
chotomy is between inferences that are automatic
and those that are controlled. However, Graesser
et al. (1994) indicated that this distinction is am-
biguous, because there is a continuum between the
two states that depends on individuals. Therefore,
this dichotomy is unsuited to empirical evaluation,
which is our focus. The second dichotomy is be-
tween inferences that are retrieved and those that
are generated. Retrieved means that the informa-
tion used for inference is retrieved entirely from
the context. In contrast, when inferences are gen-
erated, the reader uses external knowledge that
goes beyond the context.

A similar distinction was proposed by McNa-
mara and Magliano (2009), namely that between
bridging and elaboration. A bridging inference
connects current information to other information
that has been encountered previously. Elaboration
connects current information to external knowl-
edge that is not included in the context. We use
these two types of inference in the classification
of knowledge reasoning.

3 Evaluation Metrics for Datasets

Following the depiction of text comprehension by
McNamara and Magliano (2009), we adopted two
classes for the evaluation of RC datasets: prereq-
uisite skills and readability.

For the prerequisite skills class (Section 3.1),
we refined RC skills that were proposed by Sug-
awara et al. (2017) and Sugawara and Aizawa
(2016). However, a problem in these studies is
that their categorization of knowledge reasoning

808

was provisional and with a weak theoretical back-
ground.

Therefore, in this study, we reorganized the cat-
egory of knowledge reasoning in terms of textual
entailment in NLP and human text comprehension
in psychology. In research on textual entailment,
several methodologies have been proposed for the
precise analysis of entailment phenomena (Dagan
et al., 2013; LoBue and Yates, 2011). In psychol-
ogy research, as described in Section 2.2, McNa-
mara and Magliano (2009) proposed a similar dis-
tinction for inferences: bridging versus elabora-
tion. We utilized these insights in developing a
comprehensive but not overly specific classifica-
tion of knowledge reasoning.

Our prerequisite skills class includes the
textbase and situation model (van Dijk and
Kintsch, 1983). In our terminology, this means
understanding each fact and associating multiple
facts in a text, such as the relations of events, char-
acters, or the topic of a story. The skills also in-
volve knowledge reasoning, which is divided into
several metrics according to the distinctions of hu-
man inferences. This point is discussed by Kintsch
(1993) and McNamara and Magliano (2009). It
also accords with the classification of entailment
phenomena by Dagan et al. (2013) and LoBue and
Yates (2011).

Readability metrics (Section 3.2) are quantita-
tive measures used to assess the difficulty of read-
ing, with respect to vocabulary and the complexity
of texts. In this study, they measure the compe-
tence in understanding the first basic representa-
tion of a text, called the surface code (van Dijk
and Kintsch, 1983).

3.1 Prerequisite Skills

Based on the 10 RC skills in Sugawara et al.
(2017), we identified 13 prerequisite skills, which
are presented below. (We use ∗ and † to indicate
skills that have been modified/elaborated from the
original definition or have been newly introduced
in this study, respectively.)

1. Object tracking∗: jointly tracking or grasp-
ing of multiple objects, including sets or member-
ships (Clark, 1975). This skill is a version of the
list/enumeration used in the original classification,
renamed to emphasize its scope with respect to
multiple objects.

2. Mathematical reasoning∗: we merged sta-
tistical and quantitative reasoning with mathemat-

ical reasoning. This skill is a renamed version of
mathematical operations.

3. Coreference resolution∗: this skill has a
small modification to include an anaphora (Dagan
et al., 2013). It is similar to direct reference (Clark,
1975).

4. Logical reasoning∗: we identified this skill
as the understanding of predicate logic, e.g., con-
ditionals, quantifiers, negation, and transitivity.
Note that this skill, together with mathematical
reasoning, is intended to align with the offline
skills described by Graesser et al. (1994).

5. Analogy∗: understanding of metaphors in-
cluding metonymy and synecdoche (see LoBue
and Yates (2011) for examples of synecdoche.)

6. Causal relation: understanding of causal-
ity that is represented by explicit expressions such
as “why,” “because,” and “the reason for” (only if
they exist).

7. Spatiotemporal relation: understanding of
spatial and/or temporal relationships between mul-
tiple entities, events, and states.

In addition, we propose the following four cate-
gories by refining the “commonsense reasoning”
category proposed originally in Sugawara et al.
(2017).

8. Ellipsis†: recognizing implicit/omitted infor-
mation (argument, predicate, quantifier, time, or
place). This skill is inspired by Dagan et al. (2013)
and the discussion in Sugawara et al. (2017).

9. Bridging†: inference supported by grammat-
ical and lexical knowledge (e.g., synonymy, hy-
pernymy, thematic role, part of events, idioms, and
apposition). This skill is inspired by the concept of
indirect reference in the literature (Clark, 1975).
Note that we exclude direct reference because it
is covered by coreference resolution (pronominal-
ization) and elaboration (epithets).

10. Elaboration†: inference using known facts,
general knowledge (e.g., kinship, exchange, typi-
cal event sequence, and naming), and implicit re-
lations (e.g., noun compounds and possessives)
(see Dagan et al. (2013) for details). Bridging
and elaboration are distinguished by the knowl-
edge used in inferences being grammatical/lexical
or general/commonsense, respectively.

11. Meta-knowledge†: using knowledge that
includes a reader, writer, or text genre (e.g., nar-
ratives and expository documents) from meta-
viewpoints (e.g., Who are the principal charac-
ters of the story? or What is the main subject of

809

this article?). Although this skill can be regarded
as part of elaboration, we defined it as an inde-
pendent skill because this knowledge is specific to
RC. We were motivated by the discussion in Smith
et al. (2015).

Whereas the above 11 skills involve multiple
items, the final pair of skills involve only a single
sentence.

12. Schematic clause relation: understand-
ing of complex sentences that have coordination
or subordination, including relative clauses.

13. Punctuation∗: understanding of punctu-
ation marks (e.g., parenthesis, dash, quotation,
colon, or semicolon). This skill is a renamed ver-
sion of special sentence structure. Concerning the
original definition, we regarded “scheme” in fig-
ures of speech as ambiguous and excluded it. We
defined ellipsis as a independent skill, and appo-
sition was merged into bridging. Similarly, un-
derstanding of constructions was merged into the
idioms in bridging.

Note that we did not construct this classification
to be dependent on particular RC systems in NLP.
This was because our methodology is intended to
be general and applicable to many kinds of archi-
tectures. For example, we did not consider the di-
chotomy between automatic and controlled infer-
ences because the usage of knowledge is not nec-
essarily the same for all RC systems.

3.2 Readability Metrics

In this study, we evaluated the readability of texts
based on metrics in NLP. Several studies have ex-
amined readability in various applications, such
as second-language learning (Razon and Barnden,
2015) and text simplification (Aluisio et al., 2010),
and from various aspects, such as development
measures in second-language acquisition (Vajjala
and Meurers, 2012) and discourse relations (Pitler
and Nenkova, 2008).

Of these, we adopted the classification of lin-
guistic features proposed by Vajjala and Meurers
(2012). This was because they presented a com-
parison of a wide range of linguistic features fo-
cusing on second-language acquisition and their
method can be applied to plain text.3

We list the readability metrics in Table 1, which
were reported by Vajjala and Meurers (2012) as

3The classification in Pitler and Nenkova (2008) is more
suited to measuring text quality. However, we could not use
their results because we could not use discourse annotations.

- Ave. no. of characters per word (NumChar)
- Ave. no. of syllables per word (NumSyll)
- Ave. sentence length in words (MLS)
- Proportion of words in AWL (AWL)
- Modifier variation (ModVar)
- No. of coordinate phrases per sentence (CoOrd)
- Coleman–Liau index (Coleman)
- Dependent clause-to-clause ratio (DC/C)
- Complex nominals per clause (CN/C)
- Adverb variation (AdvVar)

Table 1: Readability metrics. AWL refers to the
Academic Word List.4

the top 10 features that affect human readabil-
ity. To classify these metrics, we can identify
three classes: lexical features (NumChar, Num-
Syll, AWL, AdvVar, and ModVar), syntactic fea-
tures (MLS, CoOrd, DC/C, and CN/C), and tradi-
tional features (Coleman). We applied these met-
rics only to sentences that needed to be read in an-
swering questions.

However, because these metrics were proposed
for human readability, they do not necessarily cor-
relate with those used in RC systems. Therefore,
in any system analysis, ideally we would have to
consult a variety of features.

4 Annotation of Reading Comprehension
Datasets

We annotated six existing RC datasets with the
prerequisite skills. We explain the annotation
procedure in Section 4.1 and the annotated RC
datasets in Section 4.2.

4.1 Annotation Procedure

We prepared annotation guidelines according to
Sugawara et al. (2017). The guidelines include the
definitions and examples of the skills and annota-
tion instructions.

Four annotators were asked to simulate the pro-
cess of answering questions in RC datasets, using
only the prerequisite skills, and to annotate ques-
tions with one or more skills required in answer-
ing. For each task in the datasets, the annotators
saw simultaneously the context, question, and its
answer. When a dataset contained multiple-choice
questions, we showed all candidate answers and
labeled the correct one with an asterisk. The an-

4http://en.wikipedia.org/wiki/
Academic_Word_List

810

RC dataset Genre Query
sourcing

Task
formulation

QA4MRE
(2013)

Technical
documents

Handcrafted
by experts

Multiple
choice

MCTest
(2013)

Narratives by
crowd workers

Crowdsourced Multiple
choice

SQuAD
(2016)

Wikipedia
articles

Crowdsourced Text span
selection

Who-did-What
(2016)

News articles Automated Cloze

MS MARCO
(2016)

Segmented
web pages

Search engine
queries

Description

NewsQA
(2016)

News articles Crowdsourced Text span
selection

Table 2: Analyzed RC datasets, their genres, query
sourcing methods, and task formulations.

notators then selected the sentences that needed to
be read to be able to answer the question and de-
cided on the set of prerequisite skills required.

The annotators were allowed to select nonsense
for unsolvable or unanswerable questions (e.g.,
the “coreference error” and “ambiguous” ques-
tions described in Chen et al. (2016)) to distin-
guish them from any solvable questions that re-
quired no skills.

4.2 Datasets

As summarized in Table 2, the annotation was per-
formed on six existing RC datasets: QA4MRE
(Sutcliffe et al., 2013), MCTest (Richardson et al.,
2013), SQuAD (Rajpurkar et al., 2016), Who-did-
What (Onishi et al., 2016), MS MARCO (Nguyen
et al., 2016), and NewsQA (Trischler et al., 2016).
We selected these datasets to enable coverage of
a variety of genres, query sourcing methods, and
task formulations. From each dataset, we ran-
domly selected 100 questions. This number was
considered sufficient for the degree of analysis of
RC datasets performed by Chen et al. (2016). The
questions were sampled from the gold-standard
dataset of QA4MRE and the development sets of
the other RC datasets. (We explain the method of
choosing questions for the annotation in Appendix
A.)

For a variety of reasons, there were other
datasets we did not annotate in this study.
CNN/Daily Mail (Hermann et al., 2015) is
anonymized and contains errors, according to
Chen et al. (2016), making it unsuitable for anno-
tation. We considered CBTest (Hill et al., 2016) to
be devised as language-modeling tasks rather than
RC-related tasks. LAMBADA (Paperno et al.,

Skills QA4MRE MCTest SQuAD WDW MARCO NewsQA

1. Tracking 11.0 6.0 3.0 8.0 6.0 2.0
2. Math. 4.0 4.0 0.0 3.0 0.0 1.0
3. Coref. resol. 32.0 49.0 13.0 19.0 15.0 24.0
4. Logical rsng. 15.0 2.0 0.0 8.0 1.0 2.0
5. Analogy 7.0 0.0 0.0 7.0 0.0 3.0
6. Causal rel. 1.0 6.0 0.0 2.0 0.0 4.0
7. Sptemp rel. 26.0 9.0 2.0 2.0 0.0 3.0
8. Ellipsis 13.0 4.0 3.0 16.0 2.0 15.0
9. Bridging 69.0 26.0 42.0 59.0 36.0 50.0

10. Elaboration 60.0 8.0 13.0 57.0 18.0 36.0
11. Meta 1.0 1.0 0.0 0.0 0.0 0.0
12. Clause rel. 52.0 40.0 28.0 42.0 27.0 34.0
13. Punctuation 34.0 1.0 24.0 20.0 14.0 25.0

Nonsense 10.0 1.0 3.0 27.0 14.0 1.0

Table 3: Frequencies (%) of prerequisite skills
needed for the RC datasets.

#Skills QA4MRE MCTest SQuAD WDW MARCO NewsQA

0 2.0 18.0 27.0 2.0 15.0 13.0
1 13.0 36.0 33.0 5.0 35.0 26.0
2 13.0 24.0 24.0 14.0 29.0 23.0
3 20.0 15.0 6.0 22.0 6.0 25.0
4 14.0 4.0 6.0 16.0 2.0 9.0
5 13.0 1.0 1.0 6.0 0.0 2.0
6 10.0 1.0 0.0 6.0 0.0 1.0
7 1.0 0.0 0.0 2.0 0.0 0.0
8 1.0 0.0 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0

10 3.0 0.0 0.0 0.0 0.0 0.0

Ave. 3.25 1.56 1.28 2.43 1.19 1.99

Table 4: Frequencies (%) of the number of re-
quired prerequisite skills for the RC datasets.

2016) texts are formatted for machine reading,
with all tokens in lower case, which would seem
to disallow inferences based on proper nouns and
render them unsuitable for human reading and an-
notation.

5 Results of the Dataset Analysis

We now present the results of evaluating the RC
datasets according to the two classes of metrics.
In the annotation of prerequisite skills, the inter-
annotator agreement was 90.1% for 62 randomly
sampled questions. The evaluation was performed
with respect to the following four aspects: (i) fre-
quencies of prerequisite skills required for each
RC dataset; (ii) number of prerequisite skills re-
quired per question; (iii) readability metrics for
each RC dataset; and (iv) correlation between
readability metrics and the number of required
prerequisite skills.

(i) Frequencies of prerequisite skills (see Ta-
ble 3): QA4MRE had the highest scores for fre-
quencies among the datasets. This seems to reflect

811

Metrics QA4MRE MCTest SQuAD WDW MARCO NewsQA

NumChar 5.026 3.892 5.378 4.988 5.016 5.017
NumSyll 1.663 1.250 1.791 1.657 1.698 1.635
MLS 28.488 11.858 23.479 29.146 19.634 22.933
AWL 0.067 0.003 0.071 0.033 0.047 0.038
ModVar 0.174 0.114 0.188 0.150 0.186 0.138
CoOrd 0.922 0.309 0.722 0.467 0.651 0.507
Coleman 12.553 4.333 14.095 12.398 11.836 12.138
DC/C 0.343 0.223 0.243 0.254 0.220 0.264
CN/C 1.948 0.614 1.887 2.310 1.935 1.702
AdvVar 0.038 0.035 0.032 0.019 0.022 0.019
F–K 14.953 3.607 14.678 15.304 12.065 12.624

Words 1545.7 174.1 130.4 253.7 70.7 638.4

Table 5: Results of readability metrics for the RC
datasets. F–K is the Flesch–Kincaid grade level
(Kincaid et al., 1975). Words is the average word
count of the context for each question.

the fact that QA4MRE involves technical docu-
ments that contain a wide range of knowledge,
multiple clauses, and punctuation. Moreover, the
questions are devised by experts.

MCTest achieved a high score for several skills
(best for causal relation and meta-knowledge and
second-best for coreference resolution and spa-
tiotemporal relation), but a low score for punctua-
tion. These scores seem to be because the MCTest
dataset consists of narratives.

Another dataset that achieved notable scores is
Who-did-What. This dataset achieved the highest
score for ellipsis. This is because the questions of
Who-did-What are automatically generated from
articles not used as context. This methodology
tends to avoid textual overlap between a question
and its context, thereby requiring frequently the
skills of ellipsis, bridging, and elaboration.

With regard to nonsense, MS MARCO and
Who-did-What received relatively high scores.
This appears to have been caused by the automated
sourcing methods, which may generate a separa-
tion between the contents of the context and ques-
tion (i.e., web segments and a search query in MS
MARCO, and a context article and question article
in Who-did-What). In contrast, NewsQA had no
nonsense questions. Although this result was af-
fected by our filtering (described in Appendix A),
it is important to note that the NewsQA dataset in-
cludes annotations of meta-information whether or
not a question makes sense (is question bad).

(ii) Number of required prerequisite skills
(see Table 4): QA4MRE had the highest score.
On average, each question required 3.25 skills.
There were few questions in QA4MRE that re-

1.0 1.5 2.0 2.5 3.0 3.5

Average number of required skills
2

4

6

8

10

12

14

16

F-
K

 g
ra

de
 le

ve
l

QA4MRE

MCTest

SQuAD
WDW

MARCO
NewsQA

Figure 2: Flesch–Kincaid grade levels and average
number of required prerequisite skills for the RC
datasets.

0 2 4 6 8 10

Number of required skills
10

0

10

20

30

40

50

F-
K

 g
ra

de
 le

ve
l

QA4MRE

MCTest

SQuAD

Figure 3: Flesch–Kincaid grade levels and number
of required prerequisite skills for all questions in
the selected RC datasets.

quired zero or one skill, whereas such questions
were contained more frequently in other datasets.
Table 4 also indicates that more than 90% of the
MS MARCO questions required fewer than three
skills according to the annotation.

(iii) Readability metrics for each dataset (see
Table 5): SQuAD and QA4MRE achieved the
highest scores for most metrics. This reflects the
fact that Wikipedia articles and technical docu-
ments usually require a high-grade level of un-
derstanding. In contrast, MCTest had the lowest
scores, with its dataset consisting of narratives for
children.

(iv) Correlation between numbers of re-
quired prerequisite skills and readability met-
rics (see Figures 2 and 3, and Table 6): our main
interest was in the correlation between prerequi-
site skills and readability. To investigate this, we
examined the relation between the number of re-
quired prerequisite skills and readability metrics.

812

Metrics r p Metrics r p

NumChar 0.068 0.095 CoOrd 0.166 0.000
NumSyll 0.057 0.161 Coleman 0.140 0.001
MLS 0.416 0.000 DC/C 0.188 0.000
AWL 0.114 0.005 CN/C 0.131 0.001
ModVar 0.025 0.545 AdvVar 0.026 0.515

F–K 0.343 0.000 Words 0.355 0.000

Table 6: Pearson’s correlation coefficients (r) with
the p-values (p) for the readability metrics and
number of required prerequisite skills for all ques-
tions in the RC datasets.

We used the Flesch–Kincaid grade level (Kincaid
et al., 1975) as an intuitive reference for read-
ability. This value represents the typical num-
ber of years of education required to understand
texts based on counts of syllables, words, and sen-
tences.

Figures 2 and 3 show the relation between two
values for each dataset and for each question,
respectively. Figure 2 shows the trends of the
datasets. QA4MRE was relatively difficult both
to read and to answer, whereas SQuAD was dif-
ficult to read but easy to answer. For further in-
vestigation, we selected three datasets (QA4MRE,
MCTest, and SQuAD) and plotted all of their
questions in Figure 3. Three separate domains can
be seen.

Table 6 presents Pearson’s correlation coeffi-
cients between the number of required prerequisite
skills and each readability metric for all questions
in the RC datasets. Although there are weak corre-
lations, from 0.025 to 0.416, these results demon-
strate that there is not necessarily a strong correla-
tion between the two values. This leads to the fol-
lowing two insights. First, the readability of RC
datasets does not directly affect the difficulty of
their questions. That is, RC datasets that are diffi-
cult to read are not necessarily difficult to answer.
Second, it is possible to create difficult questions
from the context that are easy to read. MCTest is
a good example. The context texts in the MCTest
dataset are easy to read, but the difficulty of its
questions compares to that for the other datasets.

To summarize our results in terms of each RC
dataset, we can make the following observations.

- QA4MRE is difficult both to read and to answer
among the datasets analyzed. This would seem
to follow its questions being devised by experts.

- MCTest is a good example of an RC dataset that
is easy to read but difficult to answer. We pre-
sume that this is because the corpus genre (i.e.,
narrative) reflects the trend in required skills for
the questions.

- SQuAD is difficult to read, along with
QA4MRE, but relatively easy to answer com-
pared with the other datasets.

- Who-did-What performs well in terms of its
query-sourcing method. Although its questions
are created automatically, they are sophisticated
in terms of knowledge reasoning. However, the
automated sourcing method must be improved
to exclude nonsense questions.

- MS MARCO is a relatively easy dataset in
terms of prerequisite skills. However, one prob-
lem is that the dataset contained nonsense ques-
tions.

- NewsQA is advantageous in that it provides
meta-information on the reliability of the ques-
tions. Such information enabled us to avoid us-
ing nonsense questions, as for the training of
machine learning models.

6 Discussion

In this section, we discuss several issues regarding
the construction of RC datasets and the develop-
ment of RC systems using our methodology.

How to utilize the two classes of metrics for
system development: one possible scenario for
developing an RC system is that it is first built to
solve an easy-to-read and easy-to-answer dataset.
The next step would be to improve the system so
that it can solve an easy-to-read but difficult-to-
answer dataset (or its converse). Finally, only af-
ter it can solve such datasets should the system be
applied to difficult-to-read and difficult-to-answer
datasets. The metrics of this study may be useful
in preparing appropriate datasets for each step by
measuring their properties. The datasets can then
be ordered according to the grades of the metrics
and applied to each step of the development, as
in curriculum learning (Bengio et al., 2009) and
transfer learning (Pan and Yang, 2010).

Corpus genre: attention should be paid to the
genre of the corpus used to construct a dataset. Ex-
pository documents such as news articles tend to
require factorial understanding. Most existing RC
datasets use such texts because of their availabil-
ity. On the other hand, narrative texts may have a

813

closer correspondence to our everyday experience,
involving the emotions and intentions of charac-
ters (Graesser et al., 1994). To build agents that
work in the real world, RC datasets may have to
be constructed from narratives.

Question type: in contrast to factorial under-
standing, comprehensive understanding of natural
language texts needs a better grasp of global co-
herence (e.g., the main point or moral of the text,
the goal of a story, or the intention of characters)
from the broad context (Graesser et al., 1994).
Most questions in current use require only local
coherence (e.g., referential relations and thematic
roles) within a narrow context. An example of a
question based on global coherence would be to
give a summary of the text, as used in Hermann
et al. (2015). It could be generated automatically
by techniques of abstractive text summarization
(Rush et al., 2015; Ganesan et al., 2010).

Annotation issues: we found questions for
which there were disagreements regarding non-
sense decisions. For example, some questions
can be solved by external knowledge without even
seeing their context. Therefore, we should clar-
ify what constitutes a “solvable” or “reasonable”
question for RC. In addition, annotators reported
that the prerequisite skills did not easily treat
questions whose answer was “none of the above”
in QA4MRE. We considered these “no answer”
questions difficult, in that systems have to decide
not to select any of the candidate answers, and our
methodology failed to specify them.

Competence in selecting necessary sentences:
as mentioned in Section 1, our methodology can-
not evaluate competence in selecting sentences
that need to be read to answer questions. In a brief
analysis, we further investigated sentences in the
context of the datasets that were selected in the an-
notation. Analyses were performed in two ways.
For each question, we counted the number of re-
quired sentences and their distance apart.4 The
first row of Table 7 gives the average number of re-
quired sentences per question for each RC dataset.
Although the scores are reasonably close, MCTest
required multiple sentences to be read most fre-
quently. The second row gives the average dis-

4The distance of sentences was calculated as follows. If
a question required only one sentence to be read, its distance
was zero. If a question required two adjacent sentences to
be read, its distance was one. If a question required more
than two sentences to be read, its distance was the sum of the
distances of any two sentences.

Sentence QA4MRE MCTest SQuAD WDW MARCO NewsQA

Number 1.120 1.180 1.040 1.110 1.080 1.170
Distance 1.880 0.930 0.090 0.730 0.280 0.540

Table 7: Average number and distance apart of
sentences that need to be read to answer a ques-
tion in the RC datasets.

tance apart of the required sentences. QA4MRE
required the longest distance because readers had
to look for clues in the long context texts. In con-
trast, SQuAD and MS MARCO had lower scores.
Most of their questions seemed to be answered
by reading only a single sentence. Of course, the
scores for distances will depend on the length of
the context texts.

Metrics of RC for machines: our underlying
assumption in this study is that, in the develop-
ment of interactive agents such as dialogue sys-
tems, it is important to make the systems behave
in a human-like way. This has also become a
distinguishing feature of recent RC task design,
and one that has never been explicitly considered
in conventional NLP tasks. To date, the differ-
ence between human and machine RC has not at-
tracted much research attention. We believe that
our human-based evaluation metrics and analy-
sis will help researchers to develop a method for
the step-by-step construction of better RC datasets
and improved RC systems.

7 Conclusion

In this study, we adopted evaluation metrics that
comprise two classes, namely refined prerequisite
skills and readability, for analyzing the quality of
RC datasets. We applied these classes to six ex-
isting datasets and highlighted their characteris-
tics according to each metric. Our dataset analysis
suggests that the readability of RC datasets does
not directly affect the difficulty of the questions
and that it is possible to create an RC dataset that
is easy to read but difficult to answer. In future
work, we plan to use the analysis from the present
study in constructing a system that can be applied
to multiple datasets.

Acknowledgments

We would like to thank anonymous reviewers
for their insightful comments. This work was
supported by JSPS KAKENHI Grant Numbers
15H02754 and 16K16120.

814

References
Sandra Aluisio, Lucia Specia, Caroline Gasperin, and

Carolina Scarton. 2010. Readability assessment for
text simplification. In Proceedings of the NAACL
HLT 2010 Fifth Workshop on Innovative Use of
NLP for Building Educational Applications. Asso-
ciation for Computational Linguistics, pages 1–9.
https://aclweb.org/anthology/W10-1001.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,
and Jason Weston. 2009. Curriculum learning. In
Proceedings of the 26th annual international con-
ference on machine learning. ACM, pages 41–48.
https://doi.org/10.1145/1553374.1553380.

Luisa Bentivogli, Elena Cabrio, Ido Dagan, Danilo
Giampiccolo, Medea Lo Leggio, and Bernardo
Magnini. 2010. Building textual entailment special-
ized data sets: a methodology for isolating linguistic
phenomena relevant to inference. In Proceedings of
the 7th International Conference on Language Re-
sources and Evaluation. Citeseer.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
CNN/Daily Mail reading comprehension task. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics, pages 2358–2367.
https://aclweb.org/anthology/P16-1223.

Herbert H Clark. 1975. Bridging. In Proceed-
ings of the 1975 workshop on Theoretical is-
sues in natural language processing. Association
for Computational Linguistics, pages 169–174.
https://doi.org/10.3115/980190.980237.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2006. The PASCAL recognising textual en-
tailment challenge. In Machine learning
challenges. evaluating predictive uncertainty,
visual object classification, and recognising
tectual entailment, Springer, pages 177–190.
https://doi.org/10.1007/11736790 9.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing textual entail-
ment: Models and applications. Synthesis Lectures
on Human Language Technologies 6(4):1–220.

Kavita Ganesan, ChengXiang Zhai, and Jiawei Han.
2010. Opinosis: a graph-based approach to abstrac-
tive summarization of highly redundant opinions. In
Proceedings of the 23rd international conference on
computational linguistics. Association for Compu-
tational Linguistics, pages 340–348.

Arthur C Graesser, Murray Singer, and Tom Trabasso.
1994. Constructing inferences during narrative text
comprehension. Psychological review 101(3):371.
https://doi.org/10.1037/0033-295X.101.3.371.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-

chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1693–
1701.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. In Proceedings of the International Confer-
ence on Learning Representations.

Lynette Hirschman, Marc Light, Eric Breck, and
John D Burger. 1999. Deep read: A read-
ing comprehension system. In Proceedings
of the 37th Annual Meeting of the Associa-
tion for Computational Linguistics. Association
for Computational Linguistics, pages 325–332.
https://doi.org/10.3115/1034678.1034731.

J Peter Kincaid, Robert P Fishburne Jr, Richard L
Rogers, and Brad S Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for
navy enlisted personnel. Chief of Naval Technical
Training, Research Branch Report 8-75.

Walter Kintsch. 1988. The role of knowledge
in discourse comprehension: A construction-
integration model. Psychological review 95(2):163.
https://doi.org/10.1037/0033-295X.95.2.163.

Walter Kintsch. 1993. Information accretion and re-
duction in text processing: Inferences. Discourse
processes 16(1-2):193–202.

Peter LoBue and Alexander Yates. 2011. Types of
common-sense knowledge needed for recognizing
textual entailment. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 329–
334. https://aclweb.org/anthology/P11-2057.

Danielle S McNamara and Joe Magliano. 2009. To-
ward a comprehensive model of comprehension.
Psychology of learning and motivation 51:297–384.
https://doi.org/10.1016/S0079-7421(09)51009-2.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng
Gao, Saurabh Tiwary, Rangan Majumder, and
Li Deng. 2016. MS MARCO: A human gener-
ated machine reading comprehension dataset. CoRR
abs/1611.09268.

Peter Norvig. 1989. Marker passing as a weak method
for text inferencing. Cognitive Science 13(4):569–
620. https://doi.org/10.1207/s15516709cog1304 4.

Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gim-
pel, and David McAllester. 2016. Who did What:
A large-scale person-centered cloze dataset. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 2230–2235.
https://aclweb.org/anthology/D16-1241.

815

Sinno Jialin Pan and Qiang Yang. 2010. A sur-
vey on transfer learning. IEEE Transactions on
knowledge and data engineering 22(10):1345–1359.
https://doi.org/10.1109/TKDE.2009.191.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Fernandez. 2016. The LAMBADA dataset:
Word prediction requiring a broad discourse context.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics, pages 1525–
1534. https://aclweb.org/anthology/P16-1144.

Emily Pitler and Ani Nenkova. 2008. Revisiting read-
ability: A unified framework for predicting text
quality. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 186–195. https://aclweb.org/anthology/D08-
1020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions
for machine comprehension of text. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 2383–2392.
https://aclweb.org/anthology/D16-1264.

Abigail Razon and John Barnden. 2015. A new
approach to automated text readability classifica-
tion based on concept indexing with integrated
part-of-speech n-gram features. In Proceedings
of the International Conference Recent Advances
in Natural Language Processing. pages 521–528.
https://aclweb.org/anthology/R15-1068.

Matthew Richardson, J.C. Christopher Burges, and
Erin Renshaw. 2013. MCTest: A challenge dataset
for the open-domain machine comprehension of
text. In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing.
pages 193–203. http://aclweb.org/anthology/D13-
1020.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 379–389.
https://aclweb.org/anthology/D15-1044.

Mark Sammons, V.G.Vinod Vydiswaran, and Dan
Roth. 2010. “ask not what textual entail-
ment can do for you...”. In Proceedings
of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics. Association
for Computational Linguistics, pages 1199–1208.
https://aclweb.org/anthology/P10-1122.

Ellery Smith, Nicola Greco, Matko Bosnjak, and An-
dreas Vlachos. 2015. A strong lexical matching

method for the machine comprehension test. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1693–1698.

Saku Sugawara and Akiko Aizawa. 2016. An anal-
ysis of prerequisite skills for reading compre-
hension. In Proceedings of the Workshop on
Uphill Battles in Language Processing: Scaling
Early Achievements to Robust Methods. Associ-
ation for Computational Linguistics, pages 1–5.
https://aclweb.org/anthology/W16-6001.

Saku Sugawara, Hikaru Yokono, and Akiko Aizawa.
2017. Prerequisite skills for reading comprehen-
sion: Multi-perspective analysis of mctest datasets
and systems. In AAAI Conference on Artificial In-
telligence. pages 3089–3096.

Richard Sutcliffe, Anselmo Peñas, Eduard Hovy,
Pamela Forner, Álvaro Rodrigo, Corina Forascu,
Yassine Benajiba, and Petya Osenova. 2013.
Overview of QA4MRE main task at CLEF 2013.
Working Notes, CLEF .

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2016. NewsQA: A machine compre-
hension dataset. CoRR abs/1611.09830.

Sowmya Vajjala and Detmar Meurers. 2012. On im-
proving the accuracy of readability classification us-
ing insights from second language acquisition. In
Proceedings of the Seventh Workshop on Build-
ing Educational Applications Using NLP. Associa-
tion for Computational Linguistics, pages 163–173.
https://aclweb.org/anthology/W12-2019.

Teun Adrianus van Dijk and Walter Kintsch. 1983.
Strategies of discourse comprehension. Citeseer.

Ellen M Voorhees et al. 1999. The TREC-8 question
answering track report. In TREC. volume 99, pages
77–82.

Mengqiu Wang, Noah A. Smith, and Teruko Mita-
mura. 2007. What is the Jeopardy model? a
quasi-synchronous grammar for QA. In Proceed-
ings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning. Associa-
tion for Computational Linguistics, pages 22–32.
https://aclweb.org/anthology/D/D07/D07-1003.

Yi Yang, Wen-tau Yih, and Christopher Meek.
2015. WikiQA: A challenge dataset for open-
domain question answering. In Proceedings
of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 2013–2018.
https://aclweb.org/anthology/D15-1237.

816

A Sampling Methods for Questions

In this appendix, we explain the method of choos-
ing questions for annotation.

QA4MRE (Sutcliffe et al., 2013): the gold-
standard dataset comprised four different topics
and four documents for each topic. We randomly
selected 100 main and auxiliary questions so that
at least one question for each document was in-
cluded.

MCTest (Richardson et al., 2013): this dataset
comprised two sets: MC160 and MC500. Their
development sets had 80 tasks in total, with each
containing context texts and four questions. We
randomly chose 25 tasks (100 questions) from the
development sets.

SQuAD (Rajpurkar et al., 2016): this dataset
included Wikipedia articles involving various top-
ics, with the articles being divided into paragraphs.
We randomly chose 100 paragraphs from 15 arti-
cles and used only one question from each para-
graph for the annotation.

Who-did-What (WDW) (Onishi et al., 2016):
this dataset was constructed from the English Gi-
gaword newswire corpus (v5). Its questions were
automatically created using a different article from
that used for context. In addition, questions that
could be solved by a simple baseline method were
excluded from the dataset.

MS MARCO (MARCO) (Nguyen et al., 2016):
each task in this dataset comprised several seg-
ments, one question, and its answer. We randomly
chose 100 tasks (100 questions) and only used seg-
ments whose attribute was is selected = 1 as con-
text.

NewsQA (Trischler et al., 2016): we ran-
domly chose questions that satisfied the fol-
lowing conditions: is answer absent = 0,
is question bad = 0, and validated answers do
not include bad question or none.

817

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 818–827
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1076

A Minimal Span-Based Neural Constituency Parser

Mitchell Stern Jacob Andreas Dan Klein
Computer Science Division

University of California, Berkeley
{mitchell,jda,klein}@cs.berkeley.edu

Abstract

In this work, we present a minimal neural
model for constituency parsing based on
independent scoring of labels and spans.
We show that this model is not only
compatible with classical dynamic pro-
gramming techniques, but also admits a
novel greedy top-down inference algo-
rithm based on recursive partitioning of
the input. We demonstrate empirically
that both prediction schemes are competi-
tive with recent work, and when combined
with basic extensions to the scoring model
are capable of achieving state-of-the-art
single-model performance on the Penn
Treebank (91.79 F1) and strong perfor-
mance on the French Treebank (82.23 F1).

1 Introduction

This paper presents a minimal but surprisingly ef-
fective span-based neural model for constituency
parsing. Recent years have seen a great deal of
interest in parsing architectures that make use of
recurrent neural network (RNN) representations
of input sentences (Vinyals et al., 2015). Despite
evidence that linear RNN decoders are implicitly
able to respect some nontrivial well-formedness
constraints on structured outputs (Graves, 2013),
researchers have consistently found that the best
performance is achieved by systems that explicitly
require the decoder to generate well-formed tree
structures (Chen and Manning, 2014).

There are two general approaches to ensuring
this structural consistency. The most common is
to encode the output as a sequence of operations
within a transition system which constructs trees
incrementally. This transforms the parsing prob-
lem back into a sequence-to-sequence problem,
while making it easy to force the decoder to take
only actions guaranteed to produce well-formed

outputs. However, transition-based models do not
admit fast dynamic programs and require careful
feature engineering to support exact search-based
inference (Thang et al., 2015). Moreover, models
with recurrent state require complex training pro-
cedures to benefit from anything other than greedy
decoding (Wiseman and Rush, 2016).

An alternative line of work focuses on chart
parsers, which use log-linear or neural scoring
potentials to parameterize a tree-structured dy-
namic program for maximization or marginal-
ization (Finkel et al., 2008; Durrett and Klein,
2015). These models enjoy a number of appeal-
ing formal properties, including support for ex-
act inference and structured loss functions. How-
ever, previous chart-based approaches have re-
quired considerable scaffolding beyond a simple
well-formedness potential, e.g. pre-specification
of a complete context-free grammar for generat-
ing output structures and initial pruning of the out-
put space with a weaker model (Hall et al., 2014).
Additionally, we are unaware of any recent chart-
based models that achieve results competitive with
the best transition-based models.

In this work, we present an extremely simple
chart-based neural parser based on independent
scoring of labels and spans, and show how this
model can be adapted to support a greedy top-
down decoding procedure. Our goal is to preserve
the basic algorithmic properties of span-oriented
(rather than transition-oriented) parse representa-
tions, while exploring the extent to which neural
representational machinery can replace the addi-
tional structure required by existing chart parsers.
On the Penn Treebank, our approach outperforms
a number of recent models for chart-based and
transition-based parsing—including the state-of-
the-art models of Cross and Huang (2016) and
Liu and Zhang (2016)—achieving an F1 score of
91.79. We additionally obtain a strong F1 score of
82.23 on the French Treebank.

818

https://doi.org/10.18653/v1/P17-1076

2 Model

A constituency tree can be regarded as a collec-
tion of labeled spans over a sentence. Taking this
view as a guiding principle, we propose a model
with two components, one which assigns scores to
span labels and one which assigns scores directly
to span existence. The former is used to determine
the labeling of the output, and the latter provides
its structure.

At the core of both of these components is the
issue of span representation. Given that a span’s
correct label and its quality as a constituent de-
pend heavily on the context in which it appears,
we naturally turn to recurrent neural networks as
a starting point, since they have previously been
shown to capture contextual information suitable
for use in a variety of natural language applica-
tions (Bahdanau et al., 2014; Wang et al., 2015)

In particular, we run a bidirectional LSTM over
the input to obtain context-sensitive forward and
backward encodings for each position i, denoted
by fi and bi, respectively. Our representation of
the span (i, j) is then the concatenatation the vec-
tor differences fj − fi and bi − bj . This corre-
sponds to a bidirectional version of the LSTM-
Minus features first proposed by Wang and Chang
(2016).

On top of this base, our label and span scoring
functions are implemented as one-layer feedfor-
ward networks, taking as input the concatenated
span difference and producing as output either a
vector of label scores or a single span score. More
formally, letting sij denote the vector representa-
tion of span (i, j), we define

slabels(i, j) = V`g(W`sij + b`),

sspan(i, j) = v>s g(Wssij + bs),

where g denotes an elementwise nonlinearity. For
notational convenience, we also let the score of an
individual label ` be denoted by

slabel(i, j, `) = [slabels(i, j)]`,

where the right-hand side is the corresponding el-
ement of the label score vector.

One potential issue is the existence of unary
chains, corresponding to nested labeled spans with
the same endpoints. We take the common ap-
proach of treating these as additional atomic labels
alongside all elementary nonterminals. To accom-
modate n-ary trees, our inventory additionally in-
cludes a special empty label ∅ used for spans that

are not themselves full constituents but arise dur-
ing the course of implicit binarization.

Our model shares several features in common
with that of Cross and Huang (2016). In particu-
lar, our representation of spans and the form of our
label scoring function were directly inspired by
their work, as were our handling of unary chains
and our use of an empty label. However, our ap-
proach differs in its treatment of structural deci-
sions, and consequently, the inference algorithms
we describe below diverge significantly from their
transition-based framework.

3 Chart Parsing

Our basic model is compatible with traditional
chart-based dynamic programming. Representing
a constituency tree T by its labeled spans,

T := {(`t, (it, jt)) : t = 1, . . . , |T |},

we define the score of a tree to be the sum of its
constituent label and span scores,

stree(T) =
∑

(`,(i,j))∈T
[slabel(i, j, `) + sspan(i, j)] .

To find the tree with the highest score for a given
sentence, we use a modified CKY recursion. As
with classical chart parsing, the running time of
our procedure is O(n3) for a sentence of length n.

3.1 Dynamic Program for Inference

The base case is a span (i, i + 1) consisting of a
single word. Since every valid tree must include
all singleton spans, possibly with an empty label,
we need not consider the span score in this case
and perform only a single maximization over the
choice of label:

sbest(i, i+ 1) = max
`

[slabel(i, i+ 1, `)] .

For a general span (i, j), we define the score of
the split (i, k, j) as the sum of its subspan scores,

ssplit(i, k, j) = sspan(i, k) + sspan(k, j). (1)

For convenience, we also define an augmented
split score incorporating the scores of the corre-
sponding subtrees,

s̃split(i, k, j) = ssplit(i, k, j)

+ sbest(i, k) + sbest(k, j).

819

Using these quantities, we can then write the gen-
eral joint label and split decision as

sbest(i, j) = max
`,k

[slabel(i, j, `) + s̃split(i, k, j)] .

(2)

Because our model assigns independent scores to
labels and spans, this maximization decomposes
into two disjoint subproblems, greatly reducing
the size of the state space:

sbest(i, j) = max
`

[slabel(i, j, `)]

+ max
k

[s̃split(i, k, j)] .

We also note that the span scores sspan(i, j) for
each span (i, j) in the sentence can be computed
once at the beginning of the procedure and shared
across different subproblems with common left or
right endpoints, allowing for a quadratic rather
than cubic number of span score computations.

3.2 Margin Training
Training the model under this inference scheme
is accomplished using a margin-based approach.
When presented with an example sentence and its
corresponding parse tree T ∗, we compute the best
prediction under the current model using the above
dynamic program,

T̂ = argmax
T

[stree(T)] .

If T̂ = T ∗, then our prediction was correct and no
changes need to be made. Otherwise, we incur a
hinge penalty of the form

max
(

0, 1− stree(T ∗) + stree(T̂)
)

to encourage the model to keep a margin of at least
1 between the gold tree and the best alternative.
The loss to be minimized is then the sum of penal-
ties across all training examples.

Prior work has found that it can be beneficial in
a variety of applications to incorporate a structured
loss function into this margin objective, replacing
the hinge penalty above with one of the form

max
(

0, ∆(T̂ , T ∗)− stree(T ∗) + stree(T̂)
)

for a loss function ∆ that measures the similar-
ity between the prediction T̂ and the reference
T ∗. Here we take ∆ to be a Hamming loss on la-
beled spans. To incorporate this loss into the train-
ing objective, we modify the dynamic program of

Section 3.1 to support loss-augmented decoding
(Taskar et al., 2005). Since the label decisions are
isolated from the structural decisions, it suffices to
replace every occurrence of the label scoring func-
tion slabel(i, j, `) by

slabel(i, j, `) + 1(` 6= `∗ij),

where `∗ij is the label of span (i, j) in the gold tree
T ∗. This has the effect of requiring larger margins
between the gold tree and predictions that contain
more mistakes, offering a greater degree of robust-
ness and better generalization.

4 Top-Down Parsing

While we have so far motivated our model from
the perspective of classical chart parsing, it also al-
lows for a novel inference algorithm in which trees
are constructed greedily from the top down. At a
high level, given a span, we independently assign
it a label and pick a split point, then repeat this
process for the left and right subspans; the recur-
sion bottoms out with length-one spans that can no
longer be split. Figure 1 gives an illustration of the
process, which we describe in more detail below.

The base case is again a singleton span (i, i+1),
and follows the same form as the base case for the
chart parser. In particular, we select the label ̂̀that
satisfies

̂̀= argmax
`

[slabel(i, i+ 1, `)] ,

omitting span scores from consideration since sin-
gleton spans cannot be split.

To construct a tree over a general span (i, j), we
aim to solve the maximization problem

(̂̀, k̂) = argmax
`,k

[slabel(i, j, `) + ssplit(i, k, j)] ,

where ssplit(i, k, j) is defined as in Equation (1).
The independence of our label and span scoring
functions again yields the decomposed form

̂̀= argmax
`

[slabel(i, j, `)] ,

k̂ = argmax
k

[ssplit(i, k, j)] ,
(3)

leading to a significant reduction in the size of the
state space.

To generate a tree for the whole sentence, we
call this procedure on the full sentence span (0, n)
and return the result. As there areO(n) spans each

820

PRP
She

VBZ
enjoys

VBG
playing

NN
tennis

.

.input

0 1 2 3 4 5

S

NP ∅

VP ∅

∅ S–VP

∅ NP

top-dow
n

parsing

(a) Execution of the top-down parsing algorithm.

S

.

.
VP

S

VP

NP

NN
tennis

VBG
playing

VBZ
enjoys

NP

PRP
She

(b) Output parse tree.

Figure 1: An execution of our top-down parsing algorithm (a) and the resulting parse tree (b) for the
sentence “She enjoys playing tennis.” Part-of-speech tags, shown here together with the words, are
predicted externally and are included as part of the input to our system. Beginning with the full sentence
span (0, 5), the label S and the split point 1 are predicted, and recursive calls are made on the child spans
(0, 1) and (1, 5). The left child span (0, 1) is assigned the label NP, and with no further splits to make,
recursion terminates on this branch. The right child span (1, 5) is assigned the empty label ∅, indicating
that it does not represent a constituent in the tree. A split point of 4 is selected, and further recursive
calls are made on the grandchild spans (1, 4) and (4, 5). This process of labeling and splitting continues
until every branch of recursion bottoms out in singleton spans, at which point the full parse tree can be
returned. Note that the unary chain S–VP is produced in a single labeling step.

requiring one label evaluation and at most n − 1
split point evaluations, the running time of the pro-
cedure is O(n2).

The algorithm outlined here bears a strong re-
semblance to the chart parsing dynamic program
discussed in Section 3, but differs in one key as-
pect. When performing inference from the bot-
tom up, we have already computed the scores of
all of the subtrees below the current span, and we
can take this knowledge into consideration when
selecting a split point. In contrast, when produc-
ing a tree from the top down, we can only select a
split point based on top-level evaluations of span
quality, without knowing anything about the sub-
trees that will be generated below them. This dif-
ference is manifested in the augmented split score
s̃split used in the definition of sbest in Equation (2),
where the scores of the subtrees associated with a
split point are included in the chart recursion but
necessarily excluded from the top-down recursion.

While this apparent deficiency may be a cause
for concern, we demonstrate the surprising empir-
ical result in Section 6 that there is no loss in per-

formance when moving from the globally-optimal
chart parser to the greedy top-down procedure.

4.1 Margin Training

As with the chart parsing formulation, we also use
a margin-based method for learning under the top-
down model. However, rather than requiring sep-
aration between the scores of full trees, we instead
enforce a local margin at every decision point.

For a span (i, j) occurring in the gold tree, let `∗

and k∗ represent the correct label and split point,
and let ̂̀and k̂ be the predictions made by comput-
ing the maximizations in Equation (3). If ̂̀ 6= `∗,
meaning the prediction is incorrect, we incur a
hinge penalty of the form

max
(

0, 1− slabel(i, j, `∗) + slabel(i, j, ̂̀)
)
.

Similarly, if k̂ 6= k∗, we incur a hinge penalty of
the form

max
(

0, 1− ssplit(i, k∗, j) + ssplit(i, k̂, j)
)
.

821

To obtain the loss for a given training example, we
trace out the actions corresponding to the gold tree
and accumulate the above penalties over all deci-
sion points. As before, the total loss to be mini-
mized is the sum of losses across all training ex-
amples.

Loss augmentation is also beneficial for the lo-
cal decisions made by the top-down model, and
can be implemented in a manner akin to the one
discussed in Section 3.2.

4.2 Training with Exploration
The hinge penalties given above are only defined
for spans (i, j) that appear in the example tree.
The model must therefore be constrained at train-
ing time to follow decisions that exactly reproduce
the gold tree, since supervision cannot be provided
otherwise. As a result, the model is never exposed
to its mistakes, which can lead to a lack of calibra-
tion and poor performance at test time.

To circumvent this issue, a dynamic oracle can
be defined to inform the model about correct be-
havior even after it has deviated from the gold tree.
Cross and Huang (2016) propose such an oracle
for a related transition-based parsing system, and
prove its optimality for the F1 metric on labeled
spans. We adapt their result here to obtain a dy-
namic oracle for the present model with similar
guarantees.

The oracle for labeling decisions carries over
without modification: the correct label for a span
is the label assigned to that span if it is part of the
gold tree, or the empty label ∅ otherwise.

For split point decisions, the oracle can be bro-
ken down into two cases. If a span (i, j) appears as
a constituent in the gold tree T , we let b(i, j) de-
note the collection of its interior boundary points.
For example, if the constituent over (1, 7) has
children spanning (1, 3), (3, 6), and (6, 7), then
we would have the two interior boundary points,
b(1, 7) = {3, 6}. The oracle for a span appear-
ing in the gold tree is then precisely the output of
this function. Otherwise, for spans (i, j) not cor-
responding to gold constituents, we must instead
identify the smallest enclosing gold constituent:

(i∗, j∗) = min{(i′, j′) ∈ T : i′ ≤ i < j ≤ j′},
where the minimum is taken with respect to the
partial ordering induced by span length. The out-
put of the oracle is then the set of interior bound-
ary points of this enclosing span that also lie in-
side the original, {k ∈ b(i∗, j∗) : i < k < j}.

The proof of correctness is similar to the proof in
Cross and Huang (2016); we refer to the Dynamic
Oracle section in their paper for a more detailed
discussion.

As presented, the dynamic oracle for split point
decisions returns a collection of one or more splits
rather than a single correct answer. Any of these is
a valid choice, with different splits corresponding
to different binarizations of the original n-ary tree.
We choose to use the leftmost split point for con-
sistency in our implementation, but remark that
the oracle split with the highest score could also
be chosen at training time to allow for additional
flexibility.

Having defined the dynamic oracle for our sys-
tem, we note that training with exploration can
be implemented by a single modification to the
procedure described in Section 4.1. Local penal-
ties are accumulated as before, but instead of trac-
ing out the decisions required to produce the gold
tree, we instead follow the decisions predicted by
the model. In this way, supervision is provided
at states within the prediction procedure that are
more likely to arise at test time when greedy infer-
ence is performed.

5 Scoring and Loss Alternatives

The model presented in Section 2 is designed to
be as simple as possible. However, there are many
variations of the label and span scoring functions
that could be explored; we discuss some of the op-
tions here.

5.1 Top-Middle-Bottom Label Scoring

Our basic model treats the empty label, elementary
nonterminals, and unary chains each as atomic
units, obscuring similarities between unary chains
and their component nonterminals or between dif-
ferent unary chains with common prefixes or suf-
fixes. To address this lack of structure, we con-
sider an alternative scoring scheme in which la-
bels are predicted in three parts: a top nontermi-
nal, a middle unary chain, and a bottom nonter-
minal (each of which is possibly empty).1 This
not only allows for parameter sharing across la-
bels with common subcomponents, but also has
the added benefit of allowing the model to produce
novel unary chains at test time.

1In more detail, ∅ decomposes as (∅, ∅, ∅), X decom-
poses as (X , ∅, ∅), X–Y decomposes as (X , ∅, Y), and
X–Z1– · · · –Zk–Y decomposes as (X , Z1– · · · –Zk, Y).

822

More precisely, we introduce the decomposition

slabel(i, j, (`t, `m, `b)) =

stop(i, j, `t) + smiddle(i, j, `m) + sbottom(i, j, `b),

where stop, smiddle, and sbottom are independent
one-layer feedforward networks of the same form
as slabel that output vectors of scores for all la-
bel tops, label middle chains, and label bottoms
encountered in the training corpus, respectively.
The best label for a span (i, j) is then computed
by solving the maximization problem

max
`t,`m,`b

[slabel(i, j, (`t, `m, `b))] ,

which decomposes into three independent sub-
problems corresponding to the three label compo-
nents. The final label is obtained by concatenating
`t, `m, and `b, with empty components being omit-
ted from the concatenation.

5.2 Left and Right Span Scoring
The basic model uses the same span scoring func-
tion sspan to assign a score to the left and right
subspans of a given span. One simple extension
is to replace this by a pair of distinct left and right
feedforward networks of the same form, giving the
decomposition

ssplit(i, k, j) = sleft(i, k) + sright(k, j).

5.3 Span Concatenation Scoring
Since span scores are only used to score splits in
our model, we also consider directly scoring a split
by feeding the concatenation of the span represen-
tations of the left and right subspans through a sin-
gle feedforward network, giving

ssplit(i, k, j) = v>s g (Ws[sik; skj] + bs) .

This is similar to the structural scoring func-
tion used by Cross and Huang (2016), although
whereas they additionally include features for the
outside spans (0, i) and (j, n) in their concatena-
tion, we omit these from our implementation, find-
ing that they do not improve performance.

5.4 Deep Biaffine Span Scoring
Inspired by the success of deep biaffine scoring in
recent work by Dozat and Manning (2016) for de-
pendency parsing, we also consider a split scor-
ing function of a similar form for our model.
Specifically, we let hik = fleft(sik) and hkj =

fright(skj) be deep left and right span repre-
sentations obtained by passing the child vectors
through corresponding left and right feedforward
networks. We then define the biaffine split scoring
function

ssplit(i, k, j) = h>ikWshkj + v>lefthik + v>righthkj ,

which consists of the sum of a bilinear form
between the two hidden representations together
with two inner products.

5.5 Structured Label Loss
The three-way label scoring scheme described in
Section 5.1 offers one path towards the incorpora-
tion of label structure into the model. We addition-
ally consider a structured Hamming loss on labels.
More specifically, given two labels `1 and `2 con-
sisting of zero or more nonterminals, we define the
loss as |`1 \ `2|+ |`2 \ `1|, treating each label as a
multiset of nonterminals. This structured loss can
be incorporated into the training process using the
methods described in Sections 3.2 and 4.1.

6 Experiments

We first describe the general setup used for our
experiments. We use the Penn Treebank (Mar-
cus et al., 1993) for our English experiments, with
standard splits of sections 2-21 for training, sec-
tion 22 for development, and section 23 for test-
ing. We use the French Treebank from the SPMRL
2014 shared task (Seddah et al., 2014) with its pro-
vided splits for our French experiments. No to-
ken preprocessing is performed, and only a sin-
gle <UNK> token is used for unknown words at
test time. The inputs to our system are concate-
nations of 100-dimensional word embeddings and
50-dimensional part-of-speech embeddings. In
the case of the French Treebank, we also include
50-dimensional embeddings of each morphologi-
cal tag. We use automatically predicted tags for
training and testing, obtaining predicted part-of-
speech tags for the Penn Treebank using the Stan-
ford tagger (Toutanova et al., 2003) with 10-way
jackknifing, and using the provided predicted part-
of-speech and morphological tags for the French
Treebank. Words are replaced by <UNK> with
probability 1/(1+freq(w)) during training, where
freq(w) is the frequency of w in the training data.

We use a two-layer bidirectional LSTM for our
base span features. Dropout with a ratio selected
from {0.2, 0.3, 0.4} is applied to all non-recurrent

823

WSJ Dev, Atomic Labels, Basic 0-1 Label Loss
Parser Minimal Left-Right Concat. Biaffine
Chart 91.95 92.09 92.15 91.96

Top-Down 92.16 92.25 92.24 92.14

(a)

WSJ Dev, Atomic Labels, Structured Label Loss
Parser Minimal Left-Right Concat. Biaffine
Chart 91.86 92.12 92.09 91.95

Top-Down 92.12 92.31 92.26 92.20

(b)

WSJ Dev, 3-Part Labels, Basic 0-1 Label Loss
Parser Minimal Left-Right Concat. Biaffine
Chart 92.08 92.05 91.94 91.79

Top-Down 92.12 92.18 92.14 92.02

(c)

WSJ Dev, 3-Part Labels, Structured Label Loss
Parser Minimal Left-Right Concat. Biaffine
Chart 91.92 91.96 91.97 91.78

Top-Down 91.98 92.27 92.17 92.06

(d)

Table 1: Development F1 scores on the Penn Treebank. Each table corresponds to a particular choice
of label loss (either the basic 0-1 loss or the structured Hamming label loss of Section 5.5) and labeling
scheme (either the basic atomic scheme or the top-middle-bottom labeling scheme of Section 5.1). The
columns within each table correspond to different split scoring schemes: basic minimal scoring, the left-
right scoring of Section 5.2, the concatenation scoring of Section 5.3, and the deep biaffine scoring of
Section 5.4.

connections of the LSTM, including its inputs and
outputs. We tie the hidden dimension of the LSTM
and all feedforward networks, selecting a size
from {150, 200, 250}. All parameters (including
word and tag embeddings) are randomly initial-
ized using Glorot initialization (Glorot and Ben-
gio, 2010), and are tuned on development set per-
formance. We use the Adam optimizer (Kingma
and Ba, 2014) with its default settings for opti-
mization, with a batch size of 10. Our system is
implemented in C++ using the DyNet neural net-
work library (Neubig et al., 2017).

We begin by training the minimal version of our
proposed chart and top-down parsers on the Penn
Treebank. Out of the box, we obtain test F1 scores
of 91.69 for the chart parser and 91.58 for the top-
down parser. The higher of these matches the re-
cent state-of-the-art score of 91.7 reported by Liu
and Zhang (2016), demonstrating that our simple
neural parsing system is already capable of achiev-
ing strong results.

Building on this, we explore the effects of dif-
ferent split scoring functions when using either the
basic 0-1 label loss or the structured label loss dis-
cussed in Section 5.5. Our results are presented in
Tables 1a and 1b.

We observe that regardless of the label loss, the
minimal and deep biaffine split scoring schemes
perform a notch below the left-right and concate-
nation scoring schemes. That the minimal scoring
scheme performs worse than the left-right scheme
is unsurprising, since the latter is a strict gener-
alization of the former. It is evident, however,

that joint scoring of left and right subspans is not
required for strong results—in fact, the left-right
scheme which scores child subspans in isolation
slightly outperforms the concatenation scheme in
all but one case, and is stronger than the deep bi-
affine scoring function across the board.

Comparing results across the choice of label
loss, however, we find that fewer trends are ap-
parent. The scores obtained by training with a 0-1
loss are all within 0.1 of those obtained using a
structured Hamming loss, being slightly higher in
four out of eight cases and slightly lower in the
other half. This leads us to conclude that the more
elementary approach is sufficient when selecting
atomic labels from a fixed inventory.

We also perform the same set of experiments
under the setting where the top-middle-bottom la-
bel scoring function described in Section 5.1 is
used in place of an atomic label scoring function.
These results are shown in Tables 1c and 1d.

A priori, we might expect that exposing addi-
tional structure would allow the model to make
better predictions, but on the whole we find that
the scores in this set of experiments are worse than
those in the previous set. Trends similar to before
hold across the different choices of scoring func-
tions, though in this case the minimal setting has
scores closer to those of the left-right setting, even
exceeding its performance in the case of a chart
parser with a 0-1 label loss.

Our final test results are given in Table 2,
along with the results of other recent single-model
parsers trained without external parse data. We

824

Final Parsing Results on Penn Treebank
Parser LR LP F1
Durrett and Klein (2015) – – 91.1
Vinyals et al. (2015) – – 88.3
Dyer et al. (2016) – – 89.8
Cross and Huang (2016) 90.5 92.1 91.3
Liu and Zhang (2016) 91.3 92.1 91.7
Best Chart Parser 90.63 92.98 91.79
Best Top-Down Parser 90.35 93.23 91.77

Table 2: Comparison of final test F1 scores on
the Penn Treebank. Here we only include scores
from single-model parsers trained without external
parse data.

Final Parsing Results on French Treebank
Parser LR LP F1
Björkelund et al. (2014) – – 82.53
Durrett and Klein (2015) – – 81.25
Cross and Huang (2016) 81.90 84.77 83.11
Best Chart Parser 80.26 84.12 82.14
Best Top-Down Parser 79.60 85.05 82.23

Table 3: Comparison of final test F1 scores on the
French Treebank.

achieve a new state-of-the-art F1 score of 91.79
with our best model. Interestingly, we observe that
our parsers have a noticeably higher gap between
precision and recall than do other top parsers,
likely owing to the structured label loss which pe-
nalizes mismatching nonterminals more heavily
than it does a nonterminal and empty label mis-
match. In addition, there is little difference be-
tween the best top-down model and the best chart
model, indicating that global normalization is not
required to achieve strong results. Processing one
sentence at a time on a c4.4xlarge Amazon
EC2 instance, our best chart and top-down parsers
operate at speeds of 20.3 sentences per second and
75.5 sentences per second, respectively, as mea-
sured on the test set.

We additionally train parsers on the French
Treebank using the same settings from our English
experiments, selecting the best model of each type
based on development performance. We list our
test results along with those of several other recent
papers in Table 3. Although we fall short of the
scores obtained by Cross and Huang (2016), we
achieve competitive performance relative to the
neural CRF parser of Durrett and Klein (2015).

7 Related Work

Many early successful approaches to constituency
parsing focused on rich modeling of correlations
in the output space, typically by engineering proa-
bilistic context-free grammars with state spaces
enriched to capture long-distance dependencies
and lexical phenomena (Collins, 2003; Klein and
Manning, 2003; Petrov and Klein, 2007). By con-
trast, the approach we have described here contin-
ues a recent line of work on direct modeling of cor-
relations in the input space, by using rich feature
representations to parameterize local potentials
that interact with a comparatively unconstrained
structured decoder. As noted in the introduction,
this class of feature-based tree scoring functions
can be implemented with either a linear transition
system (Chen and Manning, 2014) or a global de-
coder (Finkel et al., 2008). Kiperwasser and Gold-
berg (2016) describe an approach closely related
to ours but targeted at dependency formalisms, and
which easily accommodates both sparse log-linear
scoring models (Hall et al., 2014) and deep neu-
ral potentials (Henderson, 2004; Ballesteros et al.,
2016).

The best-performing constituency parsers in the
last two years have largely been transition-based
rather than global; examples include the models
of Dyer et al. (2016), Cross and Huang (2016) and
Liu and Zhang (2016). The present work takes
many of the insights developed in these models
(e.g. the recurrent representation of spans (Kiper-
wasser and Goldberg, 2016), and the use of a dy-
namic oracle and exploration policy during train-
ing (Goldberg and Nivre, 2013)) and extends these
insights to span-oriented models, which support
a wider range of decoding procedures. Our ap-
proach differs from other recent chart-based neu-
ral models (e.g. Durrett and Klein (2015)) in the
use of a recurrent input representation, structured
loss function, and comparatively simple param-
eterization of the scoring function. In addition
to the globally optimal decoding procedures for
which these models were designed, and in contrast
to the left-to-right decoder typically employed
by transition-based models, our model admits an
additional greedy top-to-bottom inference proce-
dure.

8 Conclusion

We have presented a minimal span-oriented parser
that uses a recurrent input representation to score

825

trees with a sum of independent potentials on their
constituent spans and labels. Our model sup-
ports both exact chart-based decoding and a novel
top-down inference procedure. Both approaches
achieve state-of-the-art performance on the Penn
Treebank, and our best model achieves competi-
tive performance on the French Treebank. Our ex-
periments show that many of the key insights from
recent neural transition-based approaches to pars-
ing can be easily ported to the chart parsing set-
ting, resulting in a pair of extremely simple models
that nonetheless achieve excellent performance.

Acknowledgments

We would like to thank Nick Altieri and the anony-
mous reviewers for their valuable comments and
suggestions. MS is supported by an NSF Grad-
uate Research Fellowship. JA is supported by a
Facebook graduate fellowship and a Berkeley AI /
Huawei fellowship.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473. http://arxiv.org/abs/1409.0473.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A Smith. 2016. Training with exploration im-
proves a greedy stack-lstm parser. arXiv preprint
arXiv:1603.03793 .

Anders Björkelund, Ozlem Cetinoglu, Agnieszka
Falenska, Richárd Farkas, Thomas Müller, Wolf-
gang Seeker, and Zsolt Szántó. 2014. The ims-
wrocław-szeged-cis entry at the spmrl 2014 shared
task: Reranking and morphosyntax meet unlabeled
data. Notes of the SPMRL .

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP. pages 740–750.

Michael Collins. 2003. Head-driven statistical mod-
els for natural language parsing. Computational lin-
guistics 29(4):589–637.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In EMNLP.

Timothy Dozat and Christopher D. Manning.
2016. Deep biaffine attention for neural de-
pendency parsing. CoRR abs/1611.01734.
http://arxiv.org/abs/1611.01734.

Greg Durrett and Dan Klein. 2015. Neural crf parsing.
arXiv preprint arXiv:1507.03641 .

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A Smith. 2016. Recurrent neural network
grammars. arXiv preprint arXiv:1602.07776 .

Jenny Rose Finkel, Alex Kleeman, and Christopher D
Manning. 2008. Efficient, feature-based, condi-
tional random field parsing. In ACL. volume 46,
pages 959–967.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International
Conference on Artificial Intelligence and Statistics
(AISTATS10). Society for Artificial Intelligence and
Statistics.

Yoav Goldberg and Joakim Nivre. 2013. Training de-
terministic parsers with non-deterministic oracles.
Transactions of the association for Computational
Linguistics 1:403–414.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 .

David Leo Wright Hall, Greg Durrett, and Dan Klein.
2014. Less grammar, more features. In ACL (1).
pages 228–237.

James Henderson. 2004. Discriminative training of a
neural network statistical parser. In Proceedings of
the 42nd Annual Meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, page 95.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. arXiv preprint
arXiv:1603.04351 .

Dan Klein and Christopher D Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the An-
nual Meeting of the Association for Computational
Linguistics. pages 423–430.

Jiangming Liu and Yue Zhang. 2016. Shift-
reduce constituent parsing with neural looka-
head features. CoRR abs/1612.00567.
http://arxiv.org/abs/1612.00567.

Mitchell P. Marcus, Mary Ann Marcinkiewicz,
and Beatrice Santorini. 1993. Building a
large annotated corpus of english: The penn
treebank. Comput. Linguist. 19(2):313–330.
http://dl.acm.org/citation.cfm?id=972470.972475.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,

826

Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Proceedings of the Hu-
man Language Technology Conference of the North
American Chapter of the Association for Compu-
tational Linguistics. Assocation for Computational
Linguistics.

Djamé Seddah, Sandra Kübler, and Reut Tsarfaty.
2014. Introducing the spmrl 2014 shared task on
parsing morphologically-rich languages. In Pro-
ceedings of the First Joint Workshop on Statisti-
cal Parsing of Morphologically Rich Languages and
Syntactic Analysis of Non-Canonical Languages.
Dublin City University, Dublin, Ireland, pages 103–
109. http://www.aclweb.org/anthology/W14-6111.

Ben Taskar, Vassil Chatalbashev, Daphne Koller,
and Carlos Guestrin. 2005. Learning struc-
tured prediction models: A large margin ap-
proach. In Proceedings of the 22Nd Interna-
tional Conference on Machine Learning. ACM,
New York, NY, USA, ICML ’05, pages 896–903.
https://doi.org/10.1145/1102351.1102464.

Le Quang Thang, Hiroshi Noji, and Yusuke Miyao.
2015. Optimal shift-reduce constituent parsing with
structured perceptron. In Proceedings of the Annual
Meeting of the Association for Computational Lin-
guistics. volume 1, pages 1534–1544.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich
part-of-speech tagging with a cyclic dependency
network. In Proceedings of the 2003 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics on Hu-
man Language Technology - Volume 1. Asso-
ciation for Computational Linguistics, Strouds-
burg, PA, USA, NAACL ’03, pages 173–180.
https://doi.org/10.3115/1073445.1073478.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems. pages 2773–2781.

Peilu Wang, Yao Qian, Frank K. Soong, Lei He,
and Hai Zhao. 2015. A unified tagging solu-
tion: Bidirectional LSTM recurrent neural network
with word embedding. CoRR abs/1511.00215.
http://arxiv.org/abs/1511.00215.

Wenhui Wang and Baobao Chang. 2016. Graph-
based dependency parsing with bidirectional
LSTM. In Proceedings of the 54th Annual
Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers.
http://aclweb.org/anthology/P/P16/P16-1218.pdf.

Sam Wiseman and Alexander M Rush. 2016.
Sequence-to-sequence learning as beam-search op-
timization. arXiv preprint arXiv:1606.02960 .

827

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 828–838
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1077

Semantic Dependency Parsing via Book Embedding

Weiwei Sun, Junjie Cao and Xiaojun Wan
Institute of Computer Science and Technology, Peking University

The MOE Key Laboratory of Computational Linguistics, Peking University
{ws,junjie.cao,wanxiaojun}@pku.edu.cn

Abstract

We model a dependency graph as a book,
a particular kind of topological space, for
semantic dependency parsing. The spine
of the book is made up of a sequence of
words, and each page contains a subset
of noncrossing arcs. To build a semantic
graph for a given sentence, we design new
Maximum Subgraph algorithms to gener-
ate noncrossing graphs on each page, and
a Lagrangian Relaxation-based algorithm
to combine pages into a book. Experi-
ments demonstrate the effectiveness of the
book embedding framework across a wide
range of conditions. Our parser obtains
comparable results with a state-of-the-art
transition-based parser.

1 Introduction

Dependency analysis provides a lightweight and
effective way to encode syntactic and semantic
information of natural language sentences. One
of its branches, syntactic dependency parsing
(Kübler et al., 2009) has been an extremely ac-
tive research area, with high-performance parsers
being built and applied for practical use of NLP.
Semantic dependency parsing, however, has only
been addressed in the literature recently (Oepen
et al., 2014, 2015; Du et al., 2015; Zhang et al.,
2016; Cao et al., 2017).

Semantic dependency parsing employs a graph-
structured semantic representation. On the one
hand, it is flexible enough to provide analysis
for various semantic phenomena (Ivanova et al.,
2012). This very flexibility, on the other hand,
brings along new challenges for designing pars-
ing algorithms. For graph-based parsing, no previ-
ously defined Maximum Subgraph algorithm has
simultaneously a high coverage and a polynomial

complexity to low degrees. For transition-based
parsing, no principled decoding algorithms, e.g.
dynamic programming (DP), has been developed
for existing transition systems.

In this paper, we borrow the idea of book em-
bedding from graph theory, and propose a novel
framework to build parsers for flexible depen-
dency representations. In graph theory, a book is
a kind of topological space that consists of a spine
and a collection of one or more half-planes. In
our “book model” of semantic dependency graph,
the spine is made up of a sequence of words, and
each half-plane contains a subset of dependency
arcs. In particular, the arcs on each page com-
pose a noncrossing dependency graph, a.k.a. pla-
nar graph. Though a dependency graph in general
is very flexible, its subgraph on each page is rather
regular. Under the new perspective, semantic de-
pendency parsing can be cast as a two-step task:
Each page is first analyzed separately, and then all
the pages are bound coherently.

Our work is motivated by the extant low-degree
polynomial time algorithm for first-order Max-
imum Subgraph parsing for noncrossing depen-
dency graphs (Kuhlmann and Jonsson, 2015). We
enhance existing work with new exact second- and
approximate higher-order algorithms. Our algo-
rithms facilitate building with high accuracy the
partial semantic dependency graphs on each page.
To produce a full semantic analysis, we also need
to integrate partial graphs on all pages into one co-
herent book. To this end, we formulate the prob-
lem as a combinatorial optimization problem, and
propose a Lagrangian Relaxation-based algorithm
for solutions.

We implement a practical parser in the
new framework with a statistical disambiguation
model. We evaluate this parser on four data sets:
those used in SemEval 2014 Task 8 (Oepen et al.,
2014), and the dependency graphs extracted from

828

https://doi.org/10.18653/v1/P17-1077

....The ..company ..that ..Mark ..wants ..to ..buy.

arg1

.

arg1

.

arg1

.

arg1

.

arg2

.

arg1

.
arg2

.

arg2

.

arg2

Figure 1: A fragment of a semantic dependency
graph.

CCGbank (Hockenmaier and Steedman, 2007).
On all data sets, we find that our higher-order pars-
ing models are more accurate than the first-order
baseline. Experiments also demonstrate the effec-
tiveness of our page binding algorithm. Our new
parser can be taken as a graph-based parser ex-
tended for more general dependency graphs. It
parallels the state-of-the-art transition-based sys-
tem of Zhang et al. (2016) in performance.

The implementation of our parser is avail-
able at http://www.icst.pku.edu.cn/
lcwm/grass.

2 Background

2.1 Semantic Dependency Graphs

A dependency graph G = (V, A) is a labeled di-
rected graph for a sentence s = w1, . . . , wn. The
vertex set V consists of n vertices, each of which
corresponds to a word and is indexed by an integer.
The arc set A represents the labeled dependency
relations of the particular analysis G. Specifically,
an arc, viz. a(i,j,l), represents a dependency rela-
tion l from head wi to dependent wj .

Semantic dependency parsing is the task of
mapping a natural language sentence into a formal
meaning representation in the form of a depen-
dency graph. Figure 1 shows a graph fragment of a
noun phrase. This semantic graph is grounded on
Combinatory Categorial Grammar (CCG; Steed-
man, 2000), and can be taken as a proxy for
predicate–argument structure. The graph includes
most semantically relevant non-anaphoric local
(e.g. from “wants” to “Mark”) and long-distance
(e.g. from “buy” to “company”) dependencies.

2.2 Maximum Subgraph Parsing

Usually, syntactic dependency analysis employs
tree-shaped representations. Dependency parsing,
thus, can be formulated as the search for a max-
imum spanning tree (MST) of an arc-weighted
graph. For semantic dependency parsing, where
the target representations are not necessarily trees,

Kuhlmann and Jonsson (2015) proposed to gener-
alize the MST model to other types of subgraphs.
In general, dependency parsing is formulated as
the search for Maximum Subgraph for graph class
G: Given a graph G = (V, A), find a subset
A′ ⊆ A with maximum total weight such that the
induced subgraph G′ = (V, A′) belongs to G. For-
mally, we have the following optimization prob-
lem:

G′(s) = arg max
H∈G(s,G)

∑

p∈H

SCOREPART(s, p)

Here, G(s, G) is the set of all graphs that belong to
G and are compatible with s and G. For parsing,
G is usually a complete graph. SCOREPART(s, p)
evaluates the event that a small subgraph p of a
candidate graph H is good. We define the order of
a part according to the number of dependencies it
contains, in analogy with tree parsing in terminol-
ogy. Previous work only discussed the first-order
case for Maximum Subgraph parsing (Kuhlmann
and Jonsson, 2015). In this paper, we are also in-
terested in higher-order parsing, with a special fo-
cus on factorizations utilizing the following parts:

..
dependency
.

single-side neighbors
.

both-side neighbors
.

both-side tri-neighbors

If G is the set of projective trees or non-
crossing graphs the first-order Maximum Sub-
graph problem can be solved in cubic-time (Eis-
ner, 1996; Kuhlmann and Jonsson, 2015). Un-
fortunately, these two graph classes are not ex-
pressive enough to encode semantic dependency
graphs. Moreover, this problem for several well-
motivated graph classes, including acyclic or 2-
planar graphs, is NP-hard, even if one only consid-
ers first-order factorization. The lack of appropri-
ate decoding algorithms results in one major chal-
lenge for semantic dependency parsing.

2.3 Book Embedding
This section introduces the basic idea about book
embedding from a graph theoretical point of view.
Definition 1. A book is a kind of topological
space that consists of a line, called the spine,
together with a collection of one or more half-
planes, called the pages, each having the spine as
its boundary.

Definition 2. A book embedding of a finite graph
G onto a book B satisfies the following conditions.

829

....The ..company ..that ..Mark ..wants ..to ..buy.
arg1

.
arg1

.
arg1

.

arg1

.

arg2

.

arg1

.
arg2

.

arg2

.

arg2

Figure 2: Book embedding for the graph in Figure
1. Arcs are assigned to two pages.

1. Every vertex of G is depicted as a point on
the spine of B.

2. Every edge of G is depicted as a curve that
lies within a single page of B.

3. Every page of B does not have any edge
crossings.

A book embedding separates a graph into sev-
eral subgraphs, each of which contains all vertices,
but only a subset of arcs that are not crossed with
each other. This kind of graph is named noncross-
ing dependency graph by Kuhlmann and Jonsson
(2015) and planar by Titov et al. (2009), Gómez-
Rodrı́guez and Nivre (2010) and many others.

We can formalize a semantic dependency graph
as a book. Take the graph in Figure 1 for example.
We can separate the edges into two sets and take
each set as a single page, as shown in Figure 2.

Empirically, a semantic dependency graph is
sparse enough that it can be that it can be usually
embedded onto a very thin book. To measure the
thickness, we can use pagenumber that is defined
as follows.
Definition 3. The book pagenumber of G is the
minimum number of pages required for a book em-
bedding of G.

We look into the pagenumber of graphs on four
linguistic graph banks (as defined in Section 5).
These corpora are also used for training and eval-
uating our data-driven parsers. The pagenum-
bers are calculated using sentences in the train-
ing sets. Table 1 lists the percentages of com-
plete graphs that can be accounted with books of
different thickness. The percentages of noncross-
ing graphs, i.e. graphs that have pagenumber 1,
vary between 48.23% and 78.26%. The practical
usefulness of the algorithms for computing max-
imum noncrossing graphs will be limited by the
relatively low coverage.

The class of graphs with pagenumber no more
than two has a considerably satisfactory coverage.

PN DM PAS CCD PSD
1 69.83% 60.07% 48.23% 78.26%
2 29.85% 39.46% 49.86% 20.12%
3 0.31% 0.46% 1.71% 1.39%
4 0 0.02% 0.18% 0.21%
5 0 0 0.02% 0.02%
6 0 0 0 0.01%

Table 1: Coverage in terms of complete graphs
with respect to different pagenumbers (“PN” for
short). “DM,” “PAS,” “CCD” and “PSD” are short
for DeepBank, Enju HPSGBank, CCGBank and
Prague Dependency Treebank.

It can account for more than 98% of the graphs
and sometimes close to 100% in each data set.
Unfortunately, the power of Maximum Subgraph
parsing is limited given that finding the maximum
acyclic subgraph when pagenumber is at most k
is NP-hard for k ≥ 2 (Kuhlmann and Jonsson,
2015). As an alternative, we propose to model a
semantic graph as a book, in which the spine is
made up of a sequence of words, and each half-
plane contains a subset of dependency arcs. To
build a semantic graph for a given sentence, we de-
sign new parsing algorithms to generate noncross-
ing graphs on each page (Section 3), and a La-
grangian Relaxation-based algorithm to integrate
pages into a book (Section 4).

3 Maximum Subgraph for Noncrossing
Graphs

We introduce several DP algorithms for cal-
culating the maximum noncrossing dependency
graphs. Each algorithm visits all the spans from
bottom to top, finding the best combination of
smaller structures to form a new structure, accord-
ing to the scores of first- or higher-order features.
For sake of conciseness, we focus on undirected
graphs and treat direction of linguistic dependen-
cies as edge labels1. We will use e(i,j,l)(i < j) or
simply e(i,j) to indicate an edge in either direction

1 The single-head property does not hold. We currently
do not consider other constraints of directions. So predic-
tion of the direction of one edge does not affect prediction
of other edges as well as their directions. The directions can
be assigned locally, and our parser builds directed rather than
undirected graphs in this way. Undirected graphs are only
used to conveniently illustrate our algorithms. All experi-
mental results in Section 5 consider directed dependencies in
a standard way. We use the official evaluation tool provided
by SDP2014 shared task. The numberic results reported in
this paper are directly comparable to results in other papers.

830

..
O[s, e]

.
s
.

e
.

C[s, e, l]
.

s
.

e

..
s
.

e
. =.

s + 1
.

e
.

..
s
.

e
. =.

s
.

k
. +.

k
.

e

Figure 3: The sub-problems of first-order factor-
ization and the decomposition for C[s, e, l].

between i and j.
For sake of formal concision, we introduce the

algorithm of which the goal is to calculate the
maximum score of a subgraph. Extracting corre-
sponding optimal graphs can be done in a num-
ber of ways. For example, we can maintain an
auxiliary arc table which is populated parallel to
the procedure of obtaining maximum scores. We
define two score functions: (1) sfst(s, e, l) as-
signs a score to an individual edge e(s,e,l) and (2)
sscd(s, e1, e2, l1, l2) assigns a score to a pair of
neighboring edges e(s,e1,l1) and e(s,e2,l2).

3.1 First-Order Factorization
Given a sentence, we define two DP tables, namely
O[s, e] and C[s, e, l] which represents the value of
the highest scoring noncrossing graphs that spans
sequences of words of a sentence. The two ta-
bles are related to two sub-problems, as graphi-
cally shown in Figure 3. The following is their
explaination.

Open O[s, e] is intended to represent the highest
weighted subgraph spanning ws to we. The
subgraphs related to O[s, e] may or may not
contain e(s,e).

Closed C[s, e, l] represents the highest weighted
subgraph spanning ws to we too. But the
subgraphs related to C[s, e, l] must contain
e(s,e,l).

O[s, e] can be obtained by one of the following
combinations:

• C[s, e, l](l ∈ L), if there is an edge between
s and e with label l.

• C[s, k, l] + O[k, e](l ∈ L, s < k < e), if
e(s,e) does not exist and there is an edge with

..
s
.

e
. =.

s + 1
.

e− 1
.

..
s
.

e
. =.

s
.

rs

. +.
rs

.
e− 1

.

..
s
.

e
. =.

s + 1
.

le
. +.

le
.

e
.

..
s
.

e
. =.

s
.

rs

. +.
rs

.
le

. +.
le

.
e

Figure 4: The decomposition for C[s, e, l] in exact
single-side second-order factorization.

label l between s and some node in this span.
k is the farthest node linked to s.

• O[s + 1, e], if e(s,e) does not exist and there
is no edge to its right in this span.

C[s, e, l] can be obtained by one of the following
combinations:

• O[s + 1, e] + sfst(s, e, l), if s has no edge to
its right;

• C[s, k, l′] + O[k, e] + sfst(s, e, l)(l
′ ∈ L, s <

k < e), if there is an edge from s to some
node in the span.

For each edge, there are two directions for the
edge, we encode the directions into the label l,
and treat it as undirected edge. We need to search
for a best split and a best label for every span, so
the time complexity of the algorithm is O(n3|L|)
where n is the length of the sentence and L is the
set of labels.

3.2 Second-Order Single Side Factorization

We propose a new algorithm concerning single-
side second-order factorization. The DP tables, as
well as the decomposition for the open problem,
are the same as in the first order factorization. The
decomposition of C[s, e, l] is very different. In or-
der to score second-order features from adjacent
edges in the same side, which is similar to sibling
features for tree parsing (McDonald and Pereira,

831

2006), we need to find the rightmost node adja-
cent to s, denoted as rs, and the leftmost node
adjacent to e, denoted as le, and here we have
s < rs ≤ le < e. And, sometimes, we split
C[s, e, l] into three parts to capture the neighbor
factors on both endpoints. In summary, C[s, e, l]
can be obtained by one of the following combina-
tion (as graphically shown in Figure 4):

• O[s + 1, e − 1] + sfst(s, e, l) +
sscd(s, nil, e, nil, l) + sscd(e, nil, s, nil, l), if
there is no edge from s/e to any node in the
span.

• C[s, rs, l
′] + O[rs, e − 1] + sfst(s, e, l) +

sscd(s, rs, e, l
′, l) + sscd(e, nil, s, nil, l) (s <

rs < e), if there is no edge from e to any
node in the span.

• O[s + 1, le] + C[le, e, l
′] + sfst(s, e, l) +

sscd(e, le, s, l
′, l) + sscd(s, nil, e, nil, l) (s <

le < e), if there is no edge from s to any
node in the span.

• C[s, rs, l
′] + O[rs, le] + C[le, e, l

′′] +
sfst(s, e, l) + sscd(s, rs, e, l

′, l) +
sscd(e, le, s, l

′′, l) (s < rs ≤ le < e),
otherwise.

For the last combination, we need to search
for two best separating words, namely sr and
le, and two best labels, namely l′ and l′, so the
time complexity of this second-order algorithm is
O(n4|L|2).

3.3 Generalized Higher-Order Parsing
Both of the above two algorithms are exact de-
coding algorithms. Solutions allow for exact de-
coding with higher-order features typically at a
high cost in terms of efficiency. A trade-off be-
tween rich features and exact decoding benefit tree
parsing (McDonald and Nivre, 2011). In particu-
lar, Zhang and McDonald (2012) proposed a gen-
eralized higher-order model that abandons exact
search in graph-based parsing in favor of free-
dom in feature scope. They kept intact Eisner’s
algorithm for first-order parsing problems, while
enhanced the scoring function in an approximate
way by introducing higher-order features.

We borrow Zhang and McDonald’s idea and de-
velop a generalized parsing model for noncrossing
dependency representations. The sub-problems
and their decomposition are much like the first-
order algorithm. The difference is that we expand

..
O
.
s
.

rs

.
le

.
e

.
C

.
s

.
e

..
s
.

e
. =.

s + 1
.

rs

.
le

.
e

.

..
s
.

e
. =.

s
.

k
. +.

k
.

rk

.
le

.
e

Figure 5: Sub-problems of generalized higher-
order factorization and some of the combinations.

the signature of each structure to include all the
larger context required to compute higher-order
features. For example, we can record the leftmost
and the rightmost edges in the open structure to get
the tri-neighbor features. The time complexity is
thus always O(n3B2), no matter how complicat-
edly higher-order features are incorporated.

We focus on five factors introduced in Section
2.2. Still consider single-side second-order factor-
ization. We keep the closed structure the same but
modify the open one to O[s, e; rs, le, ls,rs , lle,e].
During parsing, we only record the top-B combi-
nations of label concerning e(s,e) and related rs, le,
ls,rs and lle,e. The split of a structure is similar to
the first-order algorithm, shown in Figure 5. Note
that rs may be e and le may be s. In this way, we
know exactly whether or not there is an edge from
s to e in a refined open structure. This is different
from the intuition of the design of the open struc-
ture when we consider first-order factorization.

4 Finding and Binding Pages

Statistics presented in Table 1 indicate that the
coverage of noncrossing dependency graphs is rel-
atively low. If we treat semantic dependency pars-
ing as Maximum Subgraph parsing, the practical
usefulness of the algorithms introduced above is
rather limited accordingly. To deal with this prob-
lem, we model a semantic graph as a book, and
view semantic dependency parsing as finding a
book with coherent optimal pages. Given the con-
siderably high coverage of pagenumber at most 2,
we only consider 2-page books.

832

....The ..company ..that ..Mark ..wants ..to ..buy.

arg1

.

arg1

.
arg2

.

arg2

.

arg2

.

arg2

.

arg1

.
arg1

.
arg1

.
arg1

.

arg1

.

arg2

.

arg1

Figure 6: Every non-crossing arc is repeatedly
assigned to every page.

4.1 Finding Pages via Coloring

In general, finding the pagenumber of a graph
is NP-hard (Gómez-Rodrı́guez and Nivre, 2010).
However, it is easy to figure out that the problem
is solvable if the pagenumber is at most 2. For-
tunately, a semantic dependency graph is not so
dense that it can be usually embedded onto a very
thin book with only 2 pages. For a structured pre-
diction problem, the structural information of the
output produced by a parser is very important. The
density of semantic dependency graphs therefore
results in a defect: The output’s structural infor-
mation is limited because only a half of arcs on
average are included in one page. To enrich the
structural information, we put into each page the
arcs that do not cross with any other arcs. See Fig-
ure 6 for example.

We utilize an algorithm based on coloring to de-
compose a graph G = (V,A) into two noncross-
ing subgraphs GA = (V, AB) and GB = (V, AB).
A detailed description is included in the supple-
mentary note. The key idea of our algorithm is to
color each crossing arc in two colors using depth-
first search. When we color an arc ex, we exam-
ine all arcs crossing with ex. If one of them, say
ey, has not been examined and can be colored in
the other color (no crossing arc of ey has the same
color with ey), we color ey and then recursively
process ey. Otherwise, ey is marked as a bad arc
and dropped from both AA and AB . After color-
ing all the crossing arcs, we add every arc in dif-
ferent color to different subgraphs. Specially, all
noncrossing arcs are assigned to both AA and AB .

4.2 Binding Pages via Lagrangian Relaxation

Applying the above algorithm, we can obtain two
corpora to train two noncrossing dependency pars-
ing models. In other words, we can learn two
score functions fA and fB to score noncrossing

dependency graphs. Given the trained models and
a sentence, we can find two optimal noncrossing
graphs, i.e. find the solutions for arg maxg fA(g)
and arg maxg fB(g), respectively.

We can put all the arcs contained in gA =
arg maxg fA(g) and gB = arg maxg fB(g) to-
gether as our parse for the sentence. This naive
combination always gives a graph with a recall
much higher than the precision. The problem is
that a naive combination does not take the agree-
ments of the graphs on the two pages into consid-
eration, and thus loses some information. To com-
bine the two pages in a principled way, we must
do joint decoding to find two graphs gA and gB to
maximize the score fA(gA) + fB(gB), under the
following constraints.

gA(i, j) ≤
∑

cross((i,j),(i′,j′))

gB(i′, j′) + gB(i, j)

gB(i, j) ≤
∑

cross((i,j),(i′,j′))

gA(i′, j′) + gA(i, j)

∀i, j
The functionality of cross is to figure out whether
e(i,j) and e(i′,j′) cross. The meaning of the first
constraint is: When there is an arc e(i,j) in the first
graph, e(i,j) is also in the second graph, or there is
an arc e(i′,j′) in the second graph which cross with
e(i,j). So is the second one. All constraints are
linear and can be written in a simplified way as,

AgA + BgB ≤ 0

where A and B are matrices that can be con-
structed by checking all possible crossing arc
pairs. In summary, we have the following con-
strained optimization problem,

min. −fA(gA)− fB(gB)
s.t. gA, gB are noncrossing graphs

AgA + BgB ≤ 0

The Lagrangian of the optimization problem is

L(gA, gB; u)
= −fg(gA)− ft(gB) + u⊤(AgA + BgB)

where u is the Lagrangian multiplier. Then the
dual is

L(u) = min
gA,gB

L(gA, gB; u)

= max
gA

(fg(gA)− u⊤AgA)

+max
gB

(fy(gB)− u⊤BgB)

833

BINDTWOPAGES(gA, gB)
1 u(0) ← 0
2 for k ← 0..T do
3 gA ← arg maxg fA(g)− u(k)⊤Ag

4 gB ← arg maxg fB(g)− u(k)⊤Bg

5 if AgA + BgB ≤ 0 then
6 return gA, gB

7 else
8 u(k+1) ← u(k) + α(k)(AgA + BgB)
9 return gA, gB

Figure 7: The page binding algorithm.

We instead try to find the solution for
maxu L(u). By using a subgradient method to cal-
culate maxu L(u), we have an algorithm for joint
decoding (see Figure 7). L(u) is divided into two
optimization problems which can be decoded eas-
ily. Each sub-problem is still a parsing problem
for noncrossing graphs. Only the scores of factors
are modified (see Line 3 and 4). Specifically, to
modify the first order weights of edges, we take a
subtraction of u⊤A in the first model and a sub-
straction of u⊤B in the second one. In each it-
eration, after obtaining two new parsing results,
we check whether the constraints are satisfied. If
the answer is “yes,” we stop and return the merged
graph. Otherwise, we update u in a way to in-
crease L(u) (see Line 8).

5 Experiments

5.1 Data Sets

To evaluate the effectiveness of book embed-
ding in practice, we conduct experiments on un-
labeled parsing using four corpora: CCGBank
(Hockenmaier and Steedman, 2007), DeepBank
(Flickinger et al., 2012), Enju HPSGBank (En-
juBank; Miyao et al., 2004) and Prague Depen-
dency TreeBank (PCEDT; Hajic et al., 2012), We
use “standard” training, validation, and test splits
to facilitate comparisons. Following previous ex-
perimental setup for CCG parsing, we use sec-
tion 02-21 as training data, section 00 as the de-
velopment data, and section 23 for testing. The
other three data sets are from SemEval 2014 Task
8 (Oepen et al., 2014), and the data splitting policy
follows the shared task. All the four data sets are
publicly available from LDC (Oepen et al., 2016).

Experiments for CCG analysis were performed
using automatically assigned POS-tags generated
by a symbol-refined HMM tagger (Huang et al.,

2010). For the other three data sets we use POS-
tags provided by the shared task. We also use fea-
tures extracted from trees. We consider two types
of trees: (1) syntactic trees provided as a com-
panion analysis by the shared task and CCGBank,
(2) pseudo trees (Zhang et al., 2016) automatically
extracted from semantic dependency annotations.
We utilize the Mate parser (Bohnet, 2010) to gen-
erate pseudo trees for all data sets and also syntac-
tic trees for CCG analysis, and use the companion
syntactic analysis provided by the shared task for
the other three data sets.

5.2 Statistical Disambiguation
Our parsing algorithms can be applied to scores
originated from any source, but in our experiments
we chose to use the framework of global linear
models, deriving our scores as:

SCOREPART(s, p) = w⊤ϕ(s, p)

ϕ is a feature-vector mapping and w is a param-
eter vector. p may refer to a single arc, a pair of
neighboring arcs, or a general tuple of arcs, ac-
cording to the definition of a parsing model. For
details we refer to the source code. We chose the
averaged structured perceptron (Collins, 2002) for
parameter estimation.

5.3 Results of Practical Parsing
We evaluate five decoding algorithms:

M1 first-order exact algorithm,

M2 second-order exact algorithm with single-
side factorization,

M3 second-order approximate algorithm2 with
single-side factorization,

M4 second-order approximate algorithm with
single- and both-side factorization,

M5 third-order approximate algorithm with
single- and both-side factorization.

5.3.1 Effectiveness of Higher-Order Features
Table 2 lists the accuracy of Maximum Subgraph
parsing. The output of our parser was evaluated
against each dependency in the corpus. We report
unlabeled precision (UP), recall (UR) and f-score
(UF). We can see that the first-order model obtains
a considerably good precision, with rich features.

2The beam size is set to 4 for all approximate algorithms.

834

DeepBank EnjuBank CCGBank PCEDT
UP UR UF UP UR UF UP UR UF UP UR UF

Sy
nt

ax
Tr

ee
M1 MS 90.97 86.11 88.47 92.92 89.71 91.29 94.21 88.70 91.37 91.49 86.39 88.87
M2 91.04 87.47 89.22 93.03 90.48 91.74 93.95 88.96 91.39 91.11 87.56 89.30
M3 90.94 87.65 89.27 93.27 90.62 91.93 93.93 89.11 91.46 91.25 87.66 89.42
M4 91.02 87.78 89.37 93.18 90.65 91.90 94.02 89.14 91.51 91.43 87.98 89.67
M5 90.91 87.51 89.18 93.15 90.57 91.84 93.91 89.19 91.49 91.29 87.96 89.59
M4 NC 88.17 90.46 89.30 91.42 93.42 92.41 92.36 93.10 92.73 89.25 90.34 89.79

LR 90.72 88.80 89.75 92.75 92.49 92.62 93.50 92.48 92.98 90.98 89.04 90.00

Ps
eu

do
Tr

ee

M1 MS 90.75 86.13 88.38 93.38 90.20 91.76 94.21 88.55 91.29 90.62 85.69 88.08
M2 90.13 87.01 88.54 93.18 90.63 91.89 93.96 88.54 91.17 89.92 86.55 88.20
M3 90.39 87.20 88.77 93.20 90.64 91.90 93.90 88.98 91.37 90.07 86.69 88.35
M4 90.31 87.25 88.76 93.18 90.67 91.91 94.01 89.04 91.46 90.03 86.84 88.40
M5 90.17 87.11 88.61 93.13 90.62 91.86 93.87 89.00 91.37 90.21 86.93 88.54
M4 NC 88.39 89.85 89.11 91.63 93.24 92.43 92.83 92.97 92.90 88.51 88.97 88.74

LR 90.01 88.55 89.27 92.79 92.59 92.69 93.78 92.28 93.02 90.04 87.92 88.97

Table 2: Parsing accuracy evaluated on the development sets. “MS” is short for Maximum Subgraph
parsing. “NC” and “LR” are short for naive combination and Lagrangian Relaxation.

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100Pe
rc

en
ta

ge
 o

f
de

co
di

ng
 te

rm
in

at
io

n

Iteration

DeepBank
EnjuBank
CCGBank

PCEDT
 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100Pe
rc

en
ta

ge
 o

f
de

co
di

ng
 te

rm
in

at
io

n

Iteration

DeepBank
EnjuBank
CCGBank

PCEDT

Figure 8: The termination rate of page binding. The left and right diagrams show the results obtained
when applying syntactic and pseudo tree features respectively.

But due to the low coverage of the noncrossing
dependency graphs, a set of dependencies can not
be built. This property has a great impact on re-
call. Furthermore, we can see that the introduction
of higher-order features improves parsing substan-
tially for all data sets, as expected. When pseudo
trees are utilized, the improvement is marginal.
We think the reason is that we have already in-
cluded many higher-order features at the stage of
pseudo tree parsing.

5.3.2 Effectiveness of Approximate Parsing

Perhaps surprisingly approximate parsing with
single-side second order features and cube pruning
is even slightly better than exact parsing. This re-
sult demonstrates the effectiveness of generalized
dependency parsing. Further including third-order
features does not improve parsing accuracy.

5.3.3 Effectiveness of Page Binding

When arcs are assigned to two sets, we can sep-
arately train two parsers for producing two types
of noncrossing dependency graphs. These two
parsers can be integrated using a naive merger or a
LR-based merger. Table 2 also shows the accuracy
obtained by the second-order model M4. The ef-
fectivenss of the Lagrangian Relaxation-based al-
gorithm for binding pages is confirmed.

5.3.4 Termination Rate of Page Binding

Figure 8 presents the termination rate with respec-
tive to the number of iterations. Here we apply M4
with syntax and pseudo tree features. In practice
the Lagrangian Relaxation-based algorithm finds
solutions in a few iterations for a majority of sen-
tences. This suggests that even though the joint
decoding is an iterative procedure, satisfactory ef-
ficiency is still available.

835

DeepBank EnjuBank CCGBank PCEDT
UP UR UF UP UR UF UP UR UF UP UR UF

M4-LR Syn 89.99 87.77 88.87 92.87 92.04 92.46 93.45 92.51 92.98 89.58 87.73 88.65
Pse 90.01 88.16 89.08 93.17 92.48 92.83 93.66 92.06 92.85 89.27 87.37 88.31

ZDSW Pse 89.04 88.85 88.95 92.92 92.83 92.87 92.49 92.30 92.40 - - - - - -
Peking 91.72 89.92 90.81 94.46 91.61 93.02 - - - - - - 91.79 86.02 88.81

Table 3: Parsing accuracy evaluated on the test sets.

5.4 Comparison with Other Parsers
We show the parsing results on the test data to-
gether with some relevant results from related
work. We compare our parser with two other
systems: (1) ZDSW (Zhang et al., 2016) is a
transition-based system that obtains state-of-the-
art accuracy; we present the results of their best
single parsing model; (2) Peking (Du et al., 2014)
is the best-performing system in the shared task; it
is a hybrid system that integrate more than ten sub-
models to achieve high accuracy. Our parser can
be taken as a graph-based parser. It reaches state-
of-the-art performance produced by the transition-
based system. On DeepBank and EnjuBank, the
accuracy of our parser is equivalent to ZDSW,
while on CCGBank, our parser is significantly bet-
ter.

There is still a gap between our single pars-
ing model and Peking hybrid model. For a ma-
jority of NLP tasks, e.g. parsing (Surdeanu and
Manning, 2010), semantic role labeling (Koomen
et al., 2005), hybrid systems that combines com-
plementary strength of heterogeneous models per-
form better. But good individual system is the cor-
nerstone of hybrid systems. Better design of single
system almost always benefits system ensemble.

6 Conclusion

We propose a new data-driven parsing frame-
work, namely book embedding, for semantic de-
pendency analysis, viz. mapping from natural lan-
guage sentences to bilexical semantic dependency
graphs. Our work includes two contributions:

1. new algorithms for maximum noncrossing
dependency parsing.

2. a Lagrangian Relaxation based algorithm to
combine noncrossing dependency subgraphs.

Experiments demonstrate the effectiveness of the
book embedding framework across a wide range
of conditions. Our graph-based parser obtains
state-of-the-art accuracy.

Acknowledgments

This work was supported by 863 Program of China
(2015AA015403), NSFC (61331011), and Key
Laboratory of Science, Technology and Standard
in Press Industry (Key Laboratory of Intelligent
Press Media Technology). Xiaojun Wan is the cor-
responding author.

References
Bernd Bohnet. 2010. Top accuracy and fast depen-

dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010). Coling 2010 Or-
ganizing Committee, Beijing, China, pages 89–97.
http://www.aclweb.org/anthology/C10-1011.

Junjie Cao, Sheng Huang, Weiwei Sun, and Xiao-
jun Wan. 2017. Parsing to 1-endpoint-crossing,
pagenumber-2 graphs. In Proceedings of the 55th
Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and ex-
periments with perceptron algorithms. In Pro-
ceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1–8.
https://doi.org/10.3115/1118693.1118694.

Yantao Du, Weiwei Sun, and Xiaojun Wan. 2015.
A data-driven, factorization parser for CCG de-
pendency structures. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 1545–
1555. http://www.aclweb.org/anthology/P15-1149.

Yantao Du, Fan Zhang, Weiwei Sun, and Xiaojun
Wan. 2014. Peking: Profiling syntactic tree pars-
ing techniques for semantic graph parsing. In
Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014). Asso-
ciation for Computational Linguistics and Dublin
City University, Dublin, Ireland, pages 459–464.
http://www.aclweb.org/anthology/S14-2080.

836

Jason M. Eisner. 1996. Three new probabilistic models
for dependency parsing: an exploration. In Proceed-
ings of the 16th conference on Computational lin-
guistics - Volume 1. Association for Computational
Linguistics, Stroudsburg, PA, USA, pages 340–345.

Daniel Flickinger, Yi Zhang, and Valia Kordoni. 2012.
Deepbank: A dynamically annotated treebank of the
wall street journal. In Proceedings of the Eleventh
International Workshop on Treebanks and Linguistic
Theories. pages 85–96.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency
structures. In Proceedings of the 48th An-
nual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics, Uppsala, Sweden, pages 1492–1501.
http://www.aclweb.org/anthology/P10-1151.

Jan Hajic, Eva Hajicová, Jarmila Panevová, Petr
Sgall, Ondej Bojar, Silvie Cinková, Eva Fucı́ková,
Marie Mikulová, Petr Pajas, Jan Popelka, Jirı́ Se-
mecký, Jana Sindlerová, Jan Stepánek, Josef Toman,
Zdenka Uresová, and Zdenek Zabokrtský. 2012.
Announcing prague czech-english dependency tree-
bank 2.0. In Proceedings of the 8th International
Conference on Language Resources and Evaluation.
Istanbul, Turkey.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the penn treebank. Com-
putational Linguistics 33(3):355–396.

Zhongqiang Huang, Mary Harper, and Slav Petrov.
2010. Self-training with products of latent vari-
able grammars. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Cambridge, MA, pages 12–22.
http://www.aclweb.org/anthology/D10-1002.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and
Dan Flickinger. 2012. Who did what to whom?
A contrastive study of syntacto-semantic dependen-
cies. In Proceedings of the Sixth Linguistic Annota-
tion Workshop. Jeju, Republic of Korea, pages 2–11.

Peter Koomen, Vasin Punyakanok, Dan Roth, and
Wen-tau Yih. 2005. Generalized inference with
multiple semantic role labeling systems. In Pro-
ceedings of the Ninth Conference on Computational
Natural Language Learning (CoNLL-2005). Asso-
ciation for Computational Linguistics, Ann Arbor,
Michigan, pages 181–184.

Sandra Kübler, Ryan T. McDonald, and Joakim Nivre.
2009. Dependency Parsing. Synthesis Lectures on
Human Language Technologies. Morgan & Clay-
pool.

Marco Kuhlmann and Peter Jonsson. 2015. Parsing to
noncrossing dependency graphs. Transactions of the
Association for Computational Linguistics 3:559–
570.

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of 11th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL-2006)). volume 6, pages
81–88.

Ryan T. McDonald and Joakim Nivre. 2011. Analyz-
ing and integrating dependency parsers. Computa-
tional Linguistics 37(1):197–230.

Yusuke Miyao, Takashi Ninomiya, and Jun ichi Tsujii.
2004. Corpus-oriented grammar development for
acquiring a head-driven phrase structure grammar
from the penn treebank. In IJCNLP. pages 684–693.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger,
Jan Hajič, Angelina Ivanova, and Zdeňka Urešová.
2016. Semantic Dependency Parsing (SDP) graph
banks release 1.0 LDC2016T10. Web Download.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajic, and Zdenka Uresová. 2015. Semeval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 9th International Work-
shop on Semantic Evaluation (SemEval 2015).

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, An-
gelina Ivanova, and Yi Zhang. 2014. Semeval 2014
task 8: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014). As-
sociation for Computational Linguistics and Dublin
City University, Dublin, Ireland, pages 63–72.
http://www.aclweb.org/anthology/S14-2008.

Mark Steedman. 2000. The syntactic process. MIT
Press, Cambridge, MA, USA.

Mihai Surdeanu and Christopher D. Manning. 2010.
Ensemble models for dependency parsing: Cheap
and good? In Human Language Technologies:
The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics. Association for Computational Lin-
guistics, Los Angeles, California, pages 649–652.
http://www.aclweb.org/anthology/N10-1091.

Ivan Titov, James Henderson, Paola Merlo, and
Gabriele Musillo. 2009. Online graph planari-
sation for synchronous parsing of semantic and
syntactic dependencies. In Proceedings of the
21st international jont conference on Artifi-
cal intelligence. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, pages 1562–1567.
http://dl.acm.org/citation.cfm?id=1661445.1661696.

Hao Zhang and Ryan McDonald. 2012. General-
ized higher-order dependency parsing with cube
pruning. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning. Association for Computational

837

Linguistics, Jeju Island, Korea, pages 320–331.
http://www.aclweb.org/anthology/D12-1030.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun
Wan. 2016. Transition-based parsing for deep de-
pendency structures. Computational Linguistics
42(3):353–389. http://aclweb.org/anthology/J16-
3001.

838

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 839–849
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1078

Neural Word Segmentation with Rich Pretraining

Jie Yang∗ and Yue Zhang∗ and Fei Dong
Singapore University of Technology and Design

{jie yang, fei dong}@mymail.sutd.edu.sg
yue zhang@sutd.edu.sg

Abstract

Neural word segmentation research has
benefited from large-scale raw texts by
leveraging them for pretraining character
and word embeddings. On the other hand,
statistical segmentation research has ex-
ploited richer sources of external informa-
tion, such as punctuation, automatic seg-
mentation and POS. We investigate the ef-
fectiveness of a range of external training
sources for neural word segmentation by
building a modular segmentation model,
pretraining the most important submod-
ule using rich external sources. Results
show that such pretraining significantly
improves the model, leading to accura-
cies competitive to the best methods on six
benchmarks.

1 Introduction

There has been a recent shift of research attention
in the word segmentation literature from statisti-
cal methods to deep learning (Zheng et al., 2013;
Pei et al., 2014; Morita et al., 2015; Chen et al.,
2015b; Cai and Zhao, 2016; Zhang et al., 2016b).
Neural network models have been exploited due to
their strength in non-sparse representation learn-
ing and non-linear power in feature combination,
which have led to advances in many NLP tasks. So
far, neural word segmentors have given compara-
ble accuracies to the best statictical models.

With respect to non-sparse representation,
character embeddings have been exploited as a
foundation of neural word segmentors. They serve
to reduce sparsity of character ngrams, allowing,
for example, “猫(cat)躺(lie)在(in)墙角(corner)”
to be connected with “狗(dog) 蹲(sit) 在(in) 墙

∗ Equal contribution.

角(corner)” (Zheng et al., 2013), which is infeasi-
ble by using sparse one-hot character features. In
addition to character embeddings, distributed rep-
resentations of character bigrams (Mansur et al.,
2013; Pei et al., 2014) and words (Morita et al.,
2015; Zhang et al., 2016b) have also been shown
to improve segmentation accuracies.

With respect to non-linear modeling power, var-
ious network structures have been exploited to
represent contexts for segmentation disambigua-
tion, including multi-layer perceptrons on five-
character windows (Zheng et al., 2013; Mansur
et al., 2013; Pei et al., 2014; Chen et al., 2015a), as
well as LSTMs on characters (Chen et al., 2015b;
Xu and Sun, 2016) and words (Morita et al.,
2015; Cai and Zhao, 2016; Zhang et al., 2016b).
For structured learning and inference, CRF has
been used for character sequence labelling mod-
els (Pei et al., 2014; Chen et al., 2015b) and struc-
tural beam search has been used for word-based
segmentors (Cai and Zhao, 2016; Zhang et al.,
2016b).

Previous research has shown that segmentation
accuracies can be improved by pretraining charac-
ter and word embeddings over large Chinese texts,
which is consistent with findings on other NLP
tasks, such as parsing (Andor et al., 2016). Pre-
training can be regarded as one way of leveraging
external resources to improve accuracies, which is
practically highly useful and has become a stan-
dard practice in neural NLP. On the other hand,
statistical segmentation research has exploited raw
texts for semi-supervised learning, by collecting
clues from raw texts more thoroughly such as
mutual information and punctuation (Li and Sun,
2009; Sun and Xu, 2011), and making use of self-
predictions (Wang et al., 2011; Liu and Zhang,
2012). It has also utilised heterogenous annota-
tions such as POS (Ng and Low, 2004; Zhang
and Clark, 2008) and segmentation under different

839

https://doi.org/10.18653/v1/P17-1078

State Recognized words Partial word Incoming chars Next Action
state0 [] φ [我去过火车站那边] SEP

state1 [] 我 [去过火车站那边] SEP

state2 [我] 去 [过火车站那边] SEP

state3 [我,去] 过 [火车站那边] SEP

state4 [我,去,过] 火 [车站那边] APP

state5 [我,去,过] 火车 [站那边] APP

state6 [我,去,过] 火车站 [那边] SEP

state7 [我,去,过,火车站] 那 [边] APP

state8 [我,去,过,火车站] 那边 [] FIN

state9 [我,去,过,火车站,那边] φ [] - -

Table 1: A transition based word segmentation example.

standards (Jiang et al., 2009). To our knowledge,
such rich external information has not been sys-
tematically investigated for neural segmentation.

We fill this gap by investigating rich external
pretraining for neural segmentation. Following
Cai and Zhao (2016) and Zhang et al. (2016b),
we adopt a globally optimised beam-search frame-
work for neural structured prediction (Andor et al.,
2016; Zhou et al., 2015; Wiseman and Rush,
2016), which allows word information to be mod-
elled explicitly. Different from previous work, we
make our model conceptually simple and modular,
so that the most important sub module, namely a
five-character window context, can be pretrained
using external data. We adopt a multi-task learn-
ing strategy (Collobert et al., 2011), casting each
external source of information as a auxiliary clas-
sification task, sharing a five-character window
network. After pretraining, the character win-
dow network is used to initialize the correspond-
ing module in our segmentor.

Results on 6 different benchmarks show that our
method outperforms the best statistical and neu-
ral segmentation models consistently, giving the
best reported results on 5 datasets in different do-
mains and genres. Our implementation is based
on LibN3L1 (Zhang et al., 2016a). Code and mod-
els can be downloaded from http://gitHub.
com/jiesutd/RichWordSegmentor

2 Related Work

Work on statistical word segmentation dates back
to the 1990s (Sproat et al., 1996). State-of-the-art
approaches include character sequence labeling
models (Xue et al., 2003) using CRFs (Peng et al.,

1https://github.com/SUTDNLP/LibN3L

2004; Zhao et al., 2006) and max-margin struc-
tured models leveraging word features (Zhang and
Clark, 2007; Sun et al., 2009; Sun, 2010). Semi-
supervised methods have been applied to both
character-based and word-based models, explor-
ing external training data for better segmentation
(Sun and Xu, 2011; Wang et al., 2011; Liu and
Zhang, 2012; Zhang et al., 2013). Our work be-
longs to recent neural word segmentation.

To our knowledge, there has been no work in the
literature systematically investigating rich external
resources for neural word segmentation training.
Closest in spirit to our work, Sun and Xu (2011)
empirically studied the use of various external re-
sources for enhancing a statistical segmentor, in-
cluding character mutual information, access va-
riety information, punctuation and other statisti-
cal information. Their baseline is similar to ours
in the sense that both character and word contexts
are considered. On the other hand, their model is
statistical while ours is neural. Consequently, they
integrate external knowledge as features, while we
integrate it by shared network parameters. Our re-
sults show a similar degree of error reduction com-
pared to theirs by using external data.

Our model inherits from previous findings on
context representations, such as character win-
dows (Mansur et al., 2013; Pei et al., 2014; Chen
et al., 2015a) and LSTMs (Chen et al., 2015b; Xu
and Sun, 2016). Similar to Zhang et al. (2016b)
and Cai and Zhao (2016), we use word context on
top of character context. However, words play a
relatively less important role in our model, and
we find that word LSTM, which has been used
by all previous neural segmentation work, is un-
necessary for our model. Our model is conceptu-
ally simpler and more modularised compared with

840

S A

hidden layer

output

车 站 那 边

w-k

Recognized words Partial word Incoming chars

w-2

我 之前 去 过 火

w-1 P c0 c1 . . . cm

.

. . .

XW XP XC

h

Figure 1: Overall model.

Zhang et al. (2016b) and Cai and Zhao (2016),
allowing a central sub module, namely a five-
character context window, to be pretrained.

3 Model

Our segmentor works incrementally from left to
right, as the example shown in Table 1. At each
step, the state consists of a sequence of words
that have been fully recognized, denoted as W =
[w−k, w−k+1, ..., w−1], a current partially recog-
nized word P , and a sequence of next incom-
ing characters, denoted as C = [c0, c1, ..., cm],
as shown in Figure 1. Given an input sentence,
W and P are initialized to [] and φ, respectively,
and C contains all the input characters. At each
step, a decision is made on c0, either appending
it as a part of P , or seperating it as the beginning
of a new word. The incremental process repeats
until C is empty and P is null again (C = [],
P = φ). Formally, the process can be regarded as
a state-transition process, where a state is a tuple
S = 〈W,P,C〉, and the transition actions include
SEP (seperate) and APP (append), as shown by the
deduction system in Figure 22.

In the figure, V denotes the score of a state,
given by a neural network model. The score of
the initial state (i.e. axiom) is 0, and the score of
a non-axiom state is the sum of scores of all incre-
mental decisions resulting in the state. Similar to
Zhang et al. (2016b) and Cai and Zhao (2016), our
model is a global structural model, using the over-
all score to disambiguate states, which correspond
to sequences of inter-dependent transition actions.

Different from previous work, the structure of

2An end of sentence symbol 〈/s〉 is added to the input so
that the last partial word can be put onto W as a full word
before segmentation finishes.

Axiom: S = 〈[], φ, C〉, V = 0
Goal: S = 〈W,φ, []〉, V = Vfinal

SEP:
S = 〈W,P, c0|C〉, V
S
′

= 〈W |P, c0, C〉, V ′ = V + Score(S, SEP)

APP:
S = 〈W,P, c0|C〉, V
S
′

= 〈W,P ⊕ c0, C〉, V ′ = V + Score(S,APP)

Figure 2: Deduction system, where ⊕ denotes
string concatenation.

our scoring network is shown in Figure 1. It con-
sists of three main layers. On the bottom is a rep-
resentation layer, which derives dense representa-
tions XW , XP and XC for W,P and C, respec-
tively. We compare various distributed represen-
tations and neural network structures for learning
XW , XP and XC , detailed in Section 3.1. On top
of the representation layer, we use a hidden layer
to merge XW , XP and XC into a single vector

h = tanh(WhW ·XW+WhP ·XP+WhC ·XC+bh)
(1)

The hidden feature vector h is used to represent
the state S = 〈W,P,C〉, for calculating the scores
of the next action. In particular, a linear output
layer with two nodes is employed:

o = Wo · h+ bo (2)

The first and second node of o represent
the scores of SEP and APP given S, namely
Score(S, SEP), Score(S,APP) respectively.

3.1 Representation Learning
Characters. We investigate two different ap-
proaches to encode incoming characters, namely a
window approach and an LSTM approach. For the
former, we follow prior methods (Xue et al., 2003;
Pei et al., 2014), using five-character window
[c−2, c−1, c0, c1, c2] to represent incoming charac-
ters. Shown in Figure 3, a multi-layer perceptron
(MLP) is employed to derive a five-character win-
dow vector DC from single-character vector rep-
resentations Vc−2 , Vc−1 , Vc0 , Vc1 , Vc2 .

DC = MLP([Vc−2 ;Vc−1 ;Vc0 ;Vc1 ;Vc2]) (3)

For the latter, we follow recent work (Chen
et al., 2015b; Zhang et al., 2016b), using a bi-
directional LSTM to encode input character se-
quence.3 In particular, the bi-directional LSTM

3The LSTM variation with coupled input and forget
gate but without peephole connections is applied (Gers and
Schmidhuber, 2000)

841

hidden vector [
←−
hC(c0);

−→
hC(c0)] of the next incom-

ing character c0 is used to represent the coming
characters [c0, c1, ...] given a state. Intuitively,
a five-character window provides a local context
from which the meaning of the middle character
can be better disambiguated. LSTM, on the other
hand, captures larger contexts, which can contain
more useful clues for dismbiguation but also ir-
relevant information. It is therefore interesting to
investigate a combination of their strengths, by
first deriving a locally-disambiguated version of
c0, and then feed it to LSTM for a globally dis-
ambiguated representation.

Now with regard to the single-character vec-
tor representation Vci(i ∈ [−2, 2]), we follow
previous work and consider both character em-
bedding ec(ci) and character-bigram embedding
eb(ci, ci+1) , investigating the effect of each on the
accuracies. When both ec(ci) and eb(ci, ci+1) are
utilized, the concatenated vector is taken as Vci .
Partial Word. We take a very simple approach to
representing the partial word P , by using the em-
bedding vectors of its first and last characters, as
well as the embedding of its length. Length em-
beddings are randomly initialized and then tuned
in model training. XP has relatively less influence
on the empirical segmentation accuracies.

XP = [ec(P [0]); ec(P [−1]); el(LEN(P))] (4)

Word. Similar to the character case, we investi-
gate two different approaches to encoding incom-
ing characters, namely a window approach and an
LSTM approach. For the former, we follow prior
methods (Zhang and Clark, 2007; Sun, 2010), us-
ing the two-word window [w−2, w−1] to represent
recognized words. A hidden layer is employed to
derive a two-word vector XW from single word
embeddings ew(w−2) and ew(w−1).

XW = tanh(Ww[ew(w−2); ew(w−1)] + bw) (5)

For the latter, we follow Zhang et al. (2016b)
and Cai and Zhao (2016), using an uni-directional
LSTM on words that have been recognized.

3.2 Pretraining
Neural network models for NLP benefit from pre-
training of word/character embeddings, learning
distributed sementic information from large raw
texts for reducing sparsity. The three basic ele-
ments in our neural segmentor, namely characters,
character bigrams and words, can all be pretrained

. . .

.

MLP

...
punc. silver hete. POS

shared parameters

main
training

pretrainingBi-LSTM

S A

hidden layer

output

...

...

XW XP XC

h

DC

Vc-2 Vc-1 Vc0 Vc1 Vc2

Figure 3: Shared character representation.

over large unsegmented data. We pretrain the five-
character window network in Figure 3 as an unit,
learning the MLP parameter together with char-
acter and bigram embeddings. We consider four
types of commonly explored external data to this
end, all of which have been studied for statisti-
cal word segmentation, but not for neural network
segmentors.
Raw Text. Although raw texts do not contain ex-
plicit word boundary information, statistics such
as mutual information between consecutive char-
acters can be useful features for guiding segmen-
tation (Sun and Xu, 2011). For neural segmenta-
tion, these distributional statistics can be implic-
itly learned by pretraining character embeddings.
We therefore consider a more explicit clue for pre-
training our character window network, namely
punctuations (Li and Sun, 2009).

Punctuation can serve as a type of explicit mark-
up (Spitkovsky et al., 2010), indicating that the
two characters on its left and right belong to two
different words. We leverage this source of infor-
mation by extracting character five-grams exclud-
ing punctuation from raw sentences, using them
as inputs to classify whether there is punctuation
before middle character. Denoting the resulting
five character window as [c−2, c−1, c0, c1, c2], the
MLP in Figure 3 is used to derive its representa-
tion DC , which is then fed to a softmax layer for
binary classification:

P (punc) = softmax(Wpunc ·DC + bpunc) (6)

Here P (punc) indicates the probability of a punc-
tuation mark existing before c0. Standard back-
propagation training of the MLP in Figure 3 can be
done jointly with the training of Wpunc and bpunc.
After such training, the embedding Vci and MLP
values can be used to initialize the corresponding
parameters for DC in the main segmentor, before

842

its training.
Automatically Segmented Text. Large texts
automatically segmented by a baseline segmen-
tor can be used for self-training (Liu and
Zhang, 2012) or deriving statistical features (Wang
et al., 2011). We adopt a simple strategy,
taking automatically segmented text as silver
data to pretrain the five-character window net-
work. Given [c−2, c−1, c0, c1.c2], DC is de-
rived using the MLP in Figure 3, and then
used to classify the segmentation of c0 into
B(begining)/M(middle)/E(end)/S(single character
word) labels.

P (silver) = softmax(Wsilv ·DC + bsilv) (7)

Here Wsilv and bsilv are model parameters. Train-
ing can be done in the same way as training with
punctuation.
Heterogenous Training Data. Multiple segmen-
tation corpora exist for Chinese, with different
segmentation granularities. There has been inves-
tigation on leveraging two corpora under differ-
ent annotation standards to improve statistical seg-
mentation (Jiang et al., 2009). We try to utilize
heterogenous treebanks by taking an external tree-
bank as labeled data, training a B/M/E/S classifier
for the character windows network.

P (hete) = softmax(Whete ·DC + bhete) (8)

POS Data. Previous research has shown that POS
information is closely related to segmentation (Ng
and Low, 2004; Zhang and Clark, 2008). We ver-
ify the utility of POS information for our seg-
mentor by pretraining a classifier that predicts the
POS on each character, according to the character
window representation DC . In particular, given
[c−2, c−1, c0, c1, c2], the POS of the word that c0
belongs to is used as the output.

P (pos) = softmax(Wpos ·DC + bpos) (9)

Multitask Learning. While each type of ex-
ternal training data can offer one source of seg-
mentation information, different external data can
be complimentary to each other. We aim to in-
ject all sources of information into the charac-
ter window representation DC by using it as a
shared representation for different classification
tasks. Neural model have been shown capable
of doing multi-task learning via parameter sharing
(Collobert et al., 2011). Shown in Figure 3, in our

Algorithm 1: Training
Input : (xi, yi)
Parameters: Θ
Process:
agenda← (S = 〈[], φ,Xi〉, V = 0)
for j in [0:LEN(Xi)] do

beam = []
for ŷ in agenda do

ŷ′ = ACTION(ŷ, SEP)
ADD(ŷ′, beam)
ŷ′ = ACTION(ŷ, APP)
ADD(ŷ′, beam)

end
agenda← TOP(beam, B)
if yij /∈ agenda then

ŷj = BESTIN(agenda)
UPDATE(yij , ŷj ,Θ)
return

end
end
ŷ = BESTIN(agenda)
UPDATE(yi, ŷ,Θ)
return

case, the output layer for each task is independent,
but the hidden layer DC and all layers below DC

are shared.
For training with all sources above, we ran-

domly sample sentences from the Punc./Auto-
seg/Heter./POS sources with the ratio of 10/1/1/1,
for each sentence in punctuation corpus we take
only 2 characters (character before and after the
punctuation) as input instances.

4 Decoding and Training

To train the main segmentor, we adopt the global
transition-based learning and beam-search strat-
egy of Zhang and Clark (2011). For decoding,
standard beam search is used, where the B best
partial output hypotheses at each step are main-
tained in an agenda. Initially, the agenda contains
only the start state. At each step, all hypotheses in
the agenda are expanded, by applying all possible
actions and B highest scored resulting hypotheses
are used as the agenda for the next step.

For training, the same decoding process is ap-
plied to each training example (xi, yi). At step j,
if the gold-standard sequence of transition actions
yij falls out of the agenda, max-margin update is
performed by taking the current best hypothesis
ŷj in the beam as a negative example, and yij as

843

Paramater Value Paramater Value
α 0.01 size(ec) 50
λ 10−8 size(eb) 50
p 0.2 size(ew) 50
η 0.2 size(el) 20
MLP layer 2 size(XC) 150
beam B 8 size(XP) 50
size(h) 200 size(XW) 100

Table 2: Hyper-parameter values.

a positive example. The loss function is

l(ŷj , y
i
j) = max((score(ŷj) + η · δ(ŷj , yij)

− score(yij)), 0),
(10)

where δ(ŷj , yij) is the number of incorrect local
decisions in ŷj , and η controls the score margin.

The strategy above is early-update (Collins and
Roark, 2004). On the other hand, if the gold-
standard hypothesis does not fall out of the agenda
until the full sentence has been segmented, a fi-
nal update is made between the highest scored hy-
pothesis ŷ (non-gold standard) in the agenda and
the gold-standard yi, using exactly the same loss
function. Pseudocode for the online learning algo-
rithm is shown in Algorithm 1.

We use Adagrad (Duchi et al., 2011) to optimize
model parameters, with an initial learning rate α.
L2 regularization and dropout (Srivastava et al.,
2014) on input are used to reduce overfitting, with
a L2 weight λ and a dropout rate p. All the pa-
rameters in our model are randomly initialized to
a value (−r, r), where r =

√
6.0

fanin+fanout
(Ben-

gio, 2012). We fine-tune character and character
bigram embeddings, but not word embeddings, ac-
ccording to Zhang et al. (2016b).

5 Experiments

5.1 Experimental Settings
Data. We use Chinese Treebank 6.0 (CTB6)
(Xue et al., 2005) as our main dataset. Train-
ing, development and test set splits follow previ-
ous work (Zhang et al., 2014). In order to ver-
ify the robustness of our model, we additionally
use SIGHAN 2005 bake-off (Emerson, 2005) and
NLPCC 2016 shared task for Weibo segmentation
(Qiu et al., 2016) as test datasets, where the stan-
dard splits are used. For pretraining embedding of

Source #Chars #Words #Sents
Raw data Gigaword 116.5m – –
Auto seg Gigaword 398.2m 238.6m 12.04m

Hete. People’s Daily 10.14m 6.17m 104k
POS People’s Daily 10.14m 6.17m 104k

Table 3: Statistics of external data.

words, characters and character bigrams, we use
Chinese Gigaword (simplified Chinese sections)4,
automatically segmented using ZPar 0.6 off-the-
shelf (Zhang and Clark, 2007), the statictics of
which are shown in Table 3.

For pretraining character representations, we
extract punctuation classification data from the Gi-
gaword corpus, and use the word-based ZPar and a
standard character-based CRF model (Tseng et al.,
2005) to obtain automatic segmentation results.
We compare pretraining using ZPar results only
and using results that both segmentors agree on.
For heterogenous segmentation corpus and POS
data, we use a People’s Daily corpus of 5 months5.
Statistics are listed in Table 3.
Evaluation. The standard word precision, recall
and F1 measure (Emerson, 2005) are used to eval-
uate segmentation performances.
Hyper-parameter Values. We adopt commonly
used values for most hyperparameters, but tuned
the sizes of hidden layers on the development set.
The values are summarized in Table 2.

5.2 Development Experiments

We perform development experiments to verify
the usefulness of various context representations,
network configurations and different pretraining
methods, respectively.

5.2.1 Context Representations
The influence of character and word context rep-
resentations are empirically studied by varying the
network structures forXC andXW in Figure 1, re-
spectively. All the experiments in this section are
performed using a beam size of 8.
Character Context. We fix the word represen-
tation XW to a 2-word window and compare dif-
ferent character context representations. The re-
sults are shown in Table 4, where “no char” rep-
resents our model without XC , “5-char window”
represents a five-character window context, “char
LSTM” represents character LSTM context and

4https://catalog.ldc.upenn.edu/LDC2011T13
5http://www.icl.pku.edu.cn/icl res

844

Character P R F
No char 82.19 87.20 84.62

5-char window 95.33 95.50 95.41
char LSTM 95.21 95.82 95.51

5-char window+LSTM 95.77 95.95 95.86
-char emb 95.20 95.19 95.20

-bichar emb 93.87 94.67 94.27

Table 4: Influence of character contexts.

“5-char window + LSTM” represents a combina-
tion, detailed in Section 3.1. “-char emb” and “-
bichar emb” represent the combined window and
LSTM context without character and character-
bigram information, respectively.

As can be seen from the table, without char-
acter information, the F-score is 84.62%, demon-
strating the necessity of character contexts. Us-
ing window and LSTM representations, the F-
scores increase to 95.41% and 95.51%, respec-
tively. A combination of the two lead to further
improvement, showing that local and global char-
acter contexts are indeed complementary, as hy-
pothesized in Section 3.1. Finally, by removing
character and character-bigram embeddings, the
F-score decreases to 95.20% and 94.27%, respec-
tively, which suggests that character bigrams are
more useful compared to character unigrams. This
is likely because they contain more distinct tokens
and hence offer a larger parameter space.
Word Context. The influence of various word
contexts are shown in Table 5. Without using word
information, our segmentor gives an F-score of
95.66% on the development data. Using a con-
text of only w−1 (1-word window), the F-measure
increases to 95.78%. This shows that word con-
texts are far less important in our model com-
pared to character contexts, and also compared to
word contexts in previous word-based segmentors
(Zhang et al., 2016b; Cai and Zhao, 2016). This
is likely due to the difference in our neural net-
work structures, and that we fine-tune both charac-
ter and character bigram embeddings, which sig-
nificantly enlarges the adjustable parameter space
as compared with Zhang et al. (2016b). The fact
that word contexts can contribute relatively less
than characters in a word is also not surprising
in the sense that word-based neural segmentors
do not outperform the best character-based mod-
els by large margins. Given that character context
is what we pretrain, our model relies more heavily

Word P R F
No word 95.50 95.83 95.66

1-word window 95.70 95.85 95.78
2-word window 95.77 95.95 95.86
3-word window 95.80 95.85 95.83

word LSTM 95.71 95.97 95.84
2-word window+LSTM 95.74 95.95 95.84

Table 5: Influence of word contexts.

on them.
With both w−2 and w−1 being used for the

context, the F-score further increases to 95.86%,
showing that a 2-word window is useful by of-
fering more contextual information. On the other
hand, when w−3 is also considered, the F-score
does not improve further. This is consistent with
previous findings of statistical word segmentation
(Zhang and Clark, 2007), which adopt a 2-word
context. Interestingly, using a word LSTM does
not bring further improvements, even when it is
combined with a window context. This suggests
that global word contexts may not offer crucial
additional information compared with local word
contexts. Intuitively, words are significantly less
polysemous compared with characters, and hence
can serve as effective contexts even if used locally,
to supplement a more crucial character context.

5.2.2 Stuctured Learning and Inference
We verify the effectiveness of structured learning
and inference by measuring the influence of beam
size on the baseline segmentor. Figure 4 shows the
F-scores against different numbers of training iter-
ations with beam size 1,2,4,8 and 16, respectively.
When the beam size is 1, the inference is local and
greedy. As the size of the beam increases, more
global structural ambiguities can be resolved since
learning is designed to guide search. A contrast
between beam sizes 1 and 2 demonstrates the use-
fulness of structured learning and inference. As
the beam size increases, the gain by doubling the
beam size decreases. We choose a beam size of
8 for the remaining experiments for a tradeoff be-
tween speed and accuracy.

5.2.3 Pretraining Results
Table 6 shows the effectiveness of rich pretrain-
ing of Dc on the development set. In particular,
by using punctuation information, the F-score in-
creases from 95.86% to 96.25%, with a relative
error reduction of 9.4%. This is consistent with

845

5 10 15 20
iteration

0.90

0.91

0.92

0.93

0.94

0.95

0.96
F1

-v
al
ue

beam=1
beam=2
beam=4
beam=8
beam=16

Figure 4: F1 measure against the training epoch.

Pretrain P R F ER%
Baseline 95.77 95.95 95.86 0

+Punc. pretrain 96.36 96.13 96.25 -9.4
+Auto-seg pretrain 96.23 96.29 96.26 -9.7
+Heter-seg pretrain 96.28 96.27 96.27 -9.9

+POS pretrain 96.16 96.28 96.22 -8.7
+Multitask pretrain 96.54 96.42 96.48 -15.0

Table 6: Influence of pretraining.

the observation of Sun and Xu (2011), who show
that punctuation is more effective compared with
mutual information and access variety as semi-
supervised data for a statistical word segmentation
model. With automatically-segmented data6, het-
erogenous segmentation and POS information, the
F-score increases to 96.26%, 96.27% and 96.22%,
respectively, showing the relevance of all infor-
mation sources to neural segmentation, which is
consistent with observations made for statistical
word segmentation (Jiang et al., 2009; Wang et al.,
2011; Zhang et al., 2013). Finally, by integrat-
ing all above information via multi-task learning,
the F-score is further improved to 96.48%, with a
15.0% relative error reduction.

5.2.4 Comparision with Zhang et al. (2016b)
Both our model and Zhang et al. (2016b) use
global learning and beam search, but our network
is different. Zhang et al. (2016b) utilizes the ac-
tion history with LSTM encoder, while we use par-
tial word rather than action information. Besides,
the character and character bigram embeddings
are fine-tuned in our model while Zhang et al.
(2016b) set the embeddings fixed during training.

6By using ZPar alone, the auto-segmented result is
96.02%, less than using results by matching ZPar and the
CRF segmentor outputs.

10< 30 50 70 90 >110
Sentence length

0.94

0.95

0.96

0.97

0.98

F1
-v
al
ue

Multitask
Baseline
Zhang et al. 2016

Figure 5: F1 measure against the sentence length.

We study the F-measure distribution with respect
to sentence length on our baseline model, multi-
task pretraining model and Zhang et al. (2016b).
In particular, we cluster the sentences in the de-
velopment dataset into 6 categories based on their
length and evaluate their F1-values, respectively.
As shown in Figure 5, the models give different
error distributions, with our models being more ro-
bust to the sentence length compared with Zhang
et al. (2016b). Their model is better on very
short sentences, but worse on all other cases. This
shows the relative advantages of our model.

5.3 Final Results
Our final results on CTB6 are shown in Table 7,
which lists the results of several current state-of-
the-art methods. Without multitask pretraining,
our model gives an F-score of 95.44%, which is
higher than the neural segmentor of Zhang et al.
(2016b), which gives the best accuracies among
pure neural segments on this dataset. By us-
ing multitask pretraining, the result increases to
96.21%, with a relative error reduction of 16.9%.
In comparison, Sun and Xu (2011) investigated
heterogenous semi-supervised learning on a state-
of-the-art statistical model, obtaining a relative er-
ror reduction of 13.8%. Our findings show that
external data can be as useful for neural segmen-
tation as for statistical segmentation.

Our final results compare favourably to the best
statistical models, including those using semi-
supervised learning (Sun and Xu, 2011; Wang
et al., 2011), and those leveraging joint POS and
syntactic information (Zhang et al., 2014). In ad-
dition, it also outperforms the best neural models,
in particular Zhang et al. (2016b)*, which is a hy-
brid neural and statistical model, integrating man-

846

Models P R F
Baseline 95.3 95.5 95.4

Punc. pretrain 96.0 95.6 95.8
Auto-seg pretrain 95.8 95.6 95.7
Multitask pretrain 96.4 96.0 96.2

Sun and Xu (2011) baseline 95.2 94.9 95.1
Sun and Xu (2011) multi-source semi 95.9 95.6 95.7

Zhang et al. (2016b) neural 95.3 94.7 95.0
Zhang et al. (2016b)* hybrid 96.1 95.8 96.0
Chen et al. (2015a) window 95.7 95.8 95.8

Chen et al. (2015b) char LSTM 96.2 95.8 96.0
Zhang et al. (2014) POS and syntax – – 95.7
Wang et al. (2011) statistical semi 95.8 95.8 95.8
Zhang and Clark (2011) statistical 95.5 94.8 95.1

Table 7: Main results on CTB6.

ual discrete features into their word-based neural
model. We achieve the best reported F-score on
this dataset. To our knowledge, this is the first time
a pure neural network model outperforms all ex-
isting methods on this dataset, allowing the use of
external data 7. We also evaluate our model pre-
trained only on punctuation and auto-segmented
data, which do not include additional manual la-
bels. The results on CTB test data show the accu-
racy of 95.8% and 95.7%, respectivley, which are
comparable with those statistical semi-supervised
methods (Sun and Xu, 2011; Wang et al., 2011).
They are also among the top performance meth-
ods in Table 7. Compared with discrete semi-
supervised methods (Sun and Xu, 2011; Wang
et al., 2011), our semi-supervised model is free
from hand-crafted features.

In addition to CTB6, which has been the most
commonly adopted by recent segmentation re-
search, we additionally evaluate our results on the
SIGHAN 2005 bakeoff and Weibo datasets, to ex-
amine cross domain robustness. Different state-
of-the-art methods for which results are recorded
on these datasets are listed in Table 8. Most neu-
ral models reported results only on the PKU 8 and
MSR datasets of the bakeoff test sets, which are in
simplified Chinese. The AS and CityU corpora are
in traditional Chinese, sourced from Taiwan and

7 We did not investigate the use of lexicons (Chen et al.,
2015a,b) in our research, since lexicons might cover different
OOV in the training and test data, and hence directly affecting
the accuracies, which makes it relatively difficult to compare
different methods fairly unless a single lexicon is used for all
methods, as observed by Cai and Zhao (2016).

8We notice that both PKU dataset and our heterogenous
data are based on the news of People’s Daily. While the het-
erogenous data only collect news from Febuary 1998 to June
1998, it does not contain the sentences in the dev and test
datasets of PKU.

F1 measure PKU MSR AS CityU Weibo
Multitask pretrain 96.3 97.5 95.7 96.9 95.5

Cai and Zhao (2016) 95.5 96.5 – – –
Zhang et al. (2016b) 95.1 97.0 – – –
Zhang et al. (2016b)* 95.7 97.7 – – –

Pei et al. (2014) 95.2 97.2 – – –
Sun et al. (2012) 95.4 97.4 – – –

Zhang and Clark (2007) 94.5 97.2 94.6 95.1 –
Zhang et al. (2006) 95.1 97.1 95.1 95.1 –
Sun et al. (2009) 95.2 97.3 – 94.6 –

Sun (2010) 95.2 96.9 95.2 95.6 –
Wang et al. (2014) 95.3 97.4 95.4 94.7 –
Xia et al. (2016) – – – – 95.4

Table 8: Main results on other test datasets.

Hong Kong corpora, respectively. We map them
into simplified Chinese before segmentation. The
Weibo corpus is in a yet different genre, being so-
cial media text. Xia et al. (2016) achieved the best
results on this dataset by using a statistical model
with features learned using external lexicons, the
CTB7 corpus and the People Daily corpus. Simi-
lar to Table 7, our method gives the best accuracies
on all corpora except for MSR, where it underper-
forms the hybrid model of Zhang et al. (2016b) by
0.2%. To our knowledge, we are the first to re-
port results for a neural segmentor on more than 3
datasets, with competitive results consistently. It
verifies that knowledge learned from a certain set
of resources can be used to enhance cross-domain
robustness in training a neural segmentor for dif-
ferent datasets, which is of practical importance.

6 Conclusion

We investigated rich external resources for en-
hancing neural word segmentation, by building a
globally optimised beam-search model that lever-
ages both character and word contexts. Taking
each type of external resource as an auxiliary clas-
sification task, we use neural multi-task learning
to pre-train a set of shared parameters for character
contexts. Results show that rich pretraining leads
to 15.4% relative error reduction, and our model
gives results highly competitive to the best sys-
tems on six different benchmarks.

Acknowledgments

We thank the anonymous reviewers for their in-
sightful comments and the support of NSFC
61572245. We would like to thank Meishan Zhang
for his insightful discussion and assisting coding.
Yue Zhang is the corresponding author.

847

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. In ACL.
Association for Computational Linguistics, pages
2442–2452. https://doi.org/10.18653/v1/P16-1231.

Yoshua Bengio. 2012. Practical recommendations for
gradient-based training of deep architectures. In
Neural networks: Tricks of the trade, Springer,
pages 437–478.

Deng Cai and Hai Zhao. 2016. Neural word seg-
mentation learning for chinese. In ACL. Associa-
tion for Computational Linguistics, pages 409–420.
https://doi.org/10.18653/v1/P16-1039.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, and Xu-
anjing Huang. 2015a. Gated recursive neu-
ral network for chinese word segmentation. In
ACL. Association for Computational Linguistics.
https://doi.org/10.3115/v1/P15-1168.

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei
Liu, and Xuanjing Huang. 2015b. Long short-
term memory neural networks for chinese word
segmentation. In EMNLP. Association for
Computational Linguistics, pages 1385–1394.
https://doi.org/10.18653/v1/D15-1141.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. In ACL. As-
sociation for Computational Linguistics, page 111.
http://aclweb.org/anthology/P04-1015.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

Thomas Emerson. 2005. The second international chi-
nese word segmentation bakeoff. In Proceedings of
the fourth SIGHAN workshop on Chinese language
Processing. volume 133.

Felix A Gers and Jürgen Schmidhuber. 2000. Recur-
rent nets that time and count. In Neural Networks,
2000. IJCNN 2000, Proceedings of the IEEE-INNS-
ENNS International Joint Conference on. IEEE, vol-
ume 3, pages 189–194.

Wenbin Jiang, Liang Huang, and Qun Liu. 2009.
Automatic adaptation of annotation standards:
Chinese word segmentation and pos tagging:
a case study. In ACL-IJCNLP. Association
for Computational Linguistics, pages 522–530.
http://aclweb.org/anthology/P09-1059.

Zhongguo Li and Maosong Sun. 2009. Punctuation
as implicit annotations for chinese word segmen-
tation. Computational Linguistics 35(4):505–512.
http://aclweb.org/anthology/J09-4006.

Yang Liu and Yue Zhang. 2012. Unsuper-
vised domain adaptation for joint segmentation
and pos-tagging. In COLING. pages 745–754.
http://aclweb.org/anthology/C12-2073.

Mairgup Mansur, Wenzhe Pei, and Baobao Chang.
2013. Feature-based neural language model and chi-
nese word segmentation. In IJCNLP. pages 1271–
1277. http://aclweb.org/anthology/I13-1181.

Hajime Morita, Daisuke Kawahara, and Sadao
Kurohashi. 2015. Morphological analysis for
unsegmented languages using recurrent neu-
ral network language model. In EMNLP.
Association for Computational Linguistics.
https://doi.org/10.18653/v1/D15-1276.

Hwee Tou Ng and Jin Kiat Low. 2004. Chinese part-of-
speech tagging: One-at-a-time or all-at-once? word-
based or character-based? In EMNLP. Associa-
tion for Computational Linguistics, pages 277–284.
http://aclweb.org/anthology/W04-3236.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2014.
Max-margin tensor neural network for chinese
word segmentation. In ACL. Association for
Computational Linguistics, pages 293–303.
https://doi.org/10.3115/v1/P14-1028.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese segmentation and new word detec-
tion using conditional random fields. In COLING.
page 562. http://aclweb.org/anthology/C04-1081.

Xipeng Qiu, Peng Qian, and Zhan Shi. 2016. Overview
of the nlpcc-iccpol 2016 shared task: Chinese word
segmentation for micro-blog texts. In International
Conference on Computer Processing of Oriental
Languages. Springer, pages 901–906.

Valentin I Spitkovsky, Daniel Jurafsky, and Hiyan Al-
shawi. 2010. Profiting from mark-up: Hyper-text
annotations for guided parsing. In ACL. Associ-
ation for Computational Linguistics, pages 1278–
1287. http://aclweb.org/anthology/P10-1130.

Richard Sproat, William Gale, Chilin Shih, and
Nancy Chang. 1996. A stochastic finite-
state word-segmentation algorithm for chi-
nese. Computational linguistics 22(3):377–404.
http://aclweb.org/anthology/J96-3004.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Weiwei Sun. 2010. Word-based and character-
based word segmentation models: Comparison
and combination. In COLING. pages 1211–1219.
http://aclweb.org/anthology/C10-2139.

848

Weiwei Sun and Jia Xu. 2011. Enhancing chinese word
segmentation using unlabeled data. In EMNLP. As-
sociation for Computational Linguistics, pages 970–
979. http://aclweb.org/anthology/D11-1090.

Xu Sun, Houfeng Wang, and Wenjie Li. 2012.
Fast online training with frequency-adaptive learn-
ing rates for chinese word segmentation and
new word detection. In ACL. Association
for Computational Linguistics, pages 253–262.
http://aclweb.org/anthology/P12-1027.

Xu Sun, Yaozhong Zhang, Takuya Matsuzaki, Yoshi-
masa Tsuruoka, and Jun’ichi Tsujii. 2009. A dis-
criminative latent variable chinese segmenter with
hybrid word/character information. In NAACL-
HLT . Association for Computational Linguistics,
pages 56–64. http://aclweb.org/anthology/N09-
1007.

Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel
Jurafsky, and Christopher Manning. 2005. A condi-
tional random field word segmenter for sighan bake-
off 2005. In Proceedings of the fourth SIGHAN
workshop on Chinese language Processing.

Mengqiu Wang, Rob Voigt, and Christopher D Man-
ning. 2014. Two knives cut better than one: Chi-
nese word segmentation with dual decomposition.
In ACL. Association for Computational Linguistics,
pages 193–198. https://doi.org/10.3115/v1/P14-
2032.

Yiou Wang, Yoshimasa Tsuruoka Jun’ichi Kazama,
Yoshimasa Tsuruoka, Wenliang Chen, Yujie
Zhang, and Kentaro Torisawa. 2011. Improv-
ing chinese word segmentation and pos tagging
with semi-supervised methods using large auto-
analyzed data. In IJCNLP. pages 309–317.
http://www.aclweb.org/anthology/I11-1035.

Sam Wiseman and Alexander M Rush. 2016.
Sequence-to-sequence learning as beam-search
optimization. In EMNLP. Association for
Computational Linguistics, pages 1296–1306.
http://aclweb.org/anthology/D16-1137.

Qingrong Xia, Zhenghua Li, Jiayuan Chao, and Min
Zhang. 2016. Word segmentation on micro-blog
texts with external lexicon and heterogeneous data.
In International Conference on Computer Process-
ing of Oriental Languages. Springer.

Jingjing Xu and Xu Sun. 2016. Dependency-
based gated recursive neural network for chi-
nese word segmentation. In ACL. Associa-
tion for Computational Linguistics, page 567.
https://doi.org/10.18653/v1/P16-2092.

Naiwen Xue, Fei Xia, Fu-Dong Chiou, and Marta
Palmer. 2005. The penn chinese treebank: Phrase
structure annotation of a large corpus. Natural lan-
guage engineering 11(02):207–238.

Nianwen Xue et al. 2003. Chinese word segmentation
as character tagging. Computational Linguistics and
Chinese Language Processing 8(1):29–48.

Longkai Zhang, Houfeng Wang, Xu Sun, and Mair-
gup Mansur. 2013. Exploring representations
from unlabeled data with co-training for chi-
nese word segmentation. In EMNLP. Associa-
tion for Computational Linguistics, pages 311–321.
http://aclweb.org/anthology/D13-1031.

Meishan Zhang, Jie Yang, Zhiyang Teng, and Yue
Zhang. 2016a. Libn3l: a lightweight package for
neural nlp. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation.
https://doi.org/10.1145/322234.322243.

Meishan Zhang, Yue Zhang, Wanxiang Che, and
Ting Liu. 2014. Character-level chinese de-
pendency parsing. In ACL. Association for
Computational Linguistics, pages 1326–1336.
https://doi.org/10.3115/v1/P14-1125.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016b.
Transition-based neural word segmentation. In
ACL. Association for Computational Linguistics.
https://doi.org/10.18653/v1/P16-1040.

Ruiqiang Zhang, Genichiro Kikui, and Eiichiro
Sumita. 2006. Subword-based tagging by
conditional random fields for chinese word
segmentation. In NAACL. Association for
Computational Linguistics, pages 193–196.
http://aclweb.org/anthology/N06-2049.

Yue Zhang and Stephen Clark. 2007. Chi-
nese segmentation with a word-based percep-
tron algorithm. In ACL. Association for Com-
putational Linguistics, volume 45, page 840.
http://aclweb.org/anthology/P07-1106.

Yue Zhang and Stephen Clark. 2008. Joint word seg-
mentation and pos tagging using a single perceptron.
In ACL. Association for Computational Linguistics,
pages 888–896. http://aclweb.org/anthology/P08-
1101.

Yue Zhang and Stephen Clark. 2011. Syntactic pro-
cessing using the generalized perceptron and beam
search. Computational linguistics 37(1):105–151.
https://doi.org/10.1162/coli a 00037.

Hai Zhao, Chang-Ning Huang, Mu Li, and Bao-Liang
Lu. 2006. Effective tag set selection in chinese word
segmentation via conditional random field model-
ing. In PACLIC. Citeseer, volume 20, pages 87–94.
http://aclweb.org/anthology/Y06-1012.

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu.
2013. Deep learning for chinese word segmen-
tation and pos tagging. In EMNLP. Associa-
tion for Computational Linguistics, pages 647–657.
http://aclweb.org/anthology/D13-1061.

Hao Zhou, Yue Zhang, Shujian Huang, and Ji-
ajun Chen. 2015. A neural probabilistic
structured-prediction model for transition-based
dependency parsing. In ACL. Association for
Computational Linguistics, pages 1213–1222.
https://doi.org/10.3115/v1/P15-1117.

849

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 850–860
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1079

Neural Machine Translation via Binary Code Prediction

Yusuke Oda† Philip Arthur† Graham Neubig‡† Koichiro Yoshino†§ Satoshi Nakamura†
† Nara Institute of Science and Technoloty, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan

‡ Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
§ Japan Science and Technology Agency, 4-1-8 Hon-machi, Kawaguchi, Saitama 332-0012, Japan
{oda.yusuke.on9, philip.arthur.om0}@is.naist.jp, gneubig@cs.cmu.edu,

{koichiro, s-nakamura}@is.naist.jp

Abstract

In this paper, we propose a new method
for calculating the output layer in neural
machine translation systems. The method
is based on predicting a binary code for
each word and can reduce computation
time/memory requirements of the output
layer to be logarithmic in vocabulary size
in the best case. In addition, we also intro-
duce two advanced approaches to improve
the robustness of the proposed model: us-
ing error-correcting codes and combining
softmax and binary codes. Experiments
on two English ↔ Japanese bidirectional
translation tasks show proposed models
achieve BLEU scores that approach the
softmax, while reducing memory usage to
the order of less than 1/10 and improving
decoding speed on CPUs by x5 to x10.

1 Introduction

When handling broad or open domains, machine
translation systems usually have to handle a large
vocabulary as their inputs and outputs. This is par-
ticularly a problem in neural machine translation
(NMT) models (Sutskever et al., 2014), such as
the attention-based models (Bahdanau et al., 2014;
Luong et al., 2015) shown in Figure 1. In these
models, the output layer is required to generate a
specific word from an internal vector, and a large
vocabulary size tends to require a large amount of
computation to predict each of the candidate word
probabilities.

Because this is a significant problem for neural
language and translation models, there are a num-
ber of methods proposed to resolve this problem,
which we detail in Section 2.2. However, none
of these previous methods simultaneously satisfies
the following desiderata, all of which, we argue,
are desirable for practical use in NMT systems:

Figure 1: Encoder-decoder-attention NMT model
and computation amount of the output layer.

Memory efficiency: The method should not re-
quire large memory to store the parameters
and calculated vectors to maintain scalability
in resource-constrained environments.

Time efficiency: The method should be able to
train the parameters efficiently, and possible
to perform decoding efficiently with choos-
ing the candidate words from the full proba-
bility distribution. In particular, the method
should be performed fast on general CPUs to
suppress physical costs of computational re-
sources for actual production systems.

Compatibility with parallel computation: It
should be easy for the method to be mini-
batched and optimized to run efficiently on
GPUs, which are essential for training large
NMT models.

In this paper, we propose a method that satis-
fies all of these conditions: requires significantly
less memory, fast, and is easy to implement mini-
batched on GPUs. The method works by not pre-
dicting a softmax over the entire output vocab-

850

https://doi.org/10.18653/v1/P17-1079

ulary, but instead by encoding each vocabulary
word as a vector of binary variables, then indepen-
dently predicting the bits of this binary represen-
tation. In order to represent a vocabulary size of
2n, the binary representation need only be at least
n bits long, and thus the amount of computation
and size of parameters required to select an output
word is only O(log V) in the size of the vocabu-
lary V , a great reduction from the standard linear
increase of O(V) seen in the original softmax.

While this idea is simple and intuitive, we found
that it alone was not enough to achieve competitive
accuracy with real NMT models. Thus we make
two improvements: First, we propose a hybrid
model, where the high frequency words are pre-
dicted by a standard softmax, and low frequency
words are predicted by the proposed binary codes
separately. Second, we propose the use of con-
volutional error correcting codes with Viterbi de-
coding (Viterbi, 1967), which add redundancy to
the binary representation, and even in the face of
localized mistakes in the calculation of the repre-
sentation, are able to recover the correct word.

In experiments on two translation tasks, we find
that the proposed hybrid method with error correc-
tion is able to achieve results that are competitive
with standard softmax-based models while reduc-
ing the output layer to a fraction of its original size.

2 Problem Description and Prior Work

2.1 Formulation and Standard Softmax
Most of current NMT models use one-hot repre-
sentations to represent the words in the output vo-
cabulary – each word w is represented by a unique
sparse vector eid(w) ∈ RV , in which only one ele-
ment at the position corresponding to the word ID
id(w) ∈ {x ∈ N | 1 ≤ x ≤ V } is 1, while oth-
ers are 0. V represents the vocabulary size of the
target language. NMT models optimize network
parameters by treating the one-hot representation
eid(w) as the true probability distribution, and min-
imizing the cross entropy between it and the soft-
max probability v:

LH(v, id(w)) := H(eid(w),v), (1)

= log sum expu− uid(w), (2)

v := expu/ sum expu, (3)

u := Whuh+ βu, (4)

where sumx represents the sum of all elements
in x, xi represents the i-th element of x, Whu ∈

RV×H and βu ∈ RV are trainable parameters and
H is the total size of hidden layers directly con-
nected to the output layer.

According to Equation (4), this model clearly
requires time/space computation in proportion to
O(HV), and the actual load of the computation of
the output layer is directly affected by the size of
vocabulary V , which is typically set around tens
of thousands (Sutskever et al., 2014).

2.2 Prior Work on Suppressing Complexity
of NMT Models

Several previous works have proposed methods to
reduce computation in the output layer. The hi-
erarchical softmax (Morin and Bengio, 2005) pre-
dicts each word based on binary decision and re-
duces computation time to O(H log V). However,
this method still requires O(HV) space for the
parameters, and requires calculation much more
complicated than the standard softmax, particu-
larly at test time.

The differentiated softmax (Chen et al., 2016)
divides words into clusters, and predicts words us-
ing separate part of the hidden layer for each word
clusters. This method make the conversion matrix
of the output layer sparser than a fully-connected
softmax, and can reduce time/space computation
amount by ignoring zero part of the matrix. How-
ever, this method restricts the usage of hidden
layer, and the size of the matrix is still in propor-
tion to V .

Sampling-based approximations (Mnih and
Teh, 2012; Mikolov et al., 2013) to the denomina-
tor of the softmax have also been proposed to re-
duce calculation at training. However, these meth-
ods are basically not able to be applied at test time,
still require heavy computation like the standard
softmax.

Vocabulary selection approaches (Mi et al.,
2016; L’Hostis et al., 2016) can also reduce the
vocabulary size at testing, but these methods aban-
don full search over the target space and the
quality of picked vocabularies directly affects the
translation quality.

Other methods using characters (Ling et al.,
2015) or subwords (Sennrich et al., 2016; Chitnis
and DeNero, 2015) can be applied to suppress the
vocabulary size, but these methods also make for
longer sequences, and thus are not a direct solution
to problems of computational efficiency.

851

Figure 2: Designs of output layers.

3 Binary Code Prediction Models

3.1 Representing Words using Bit Arrays

Figure 2(a) shows the conventional softmax pre-
diction, and Figure 2(b) shows the binary code
prediction model proposed in this study. Unlike
the conventional softmax, the proposed method
predicts each output word indirectly using dense
bit arrays that correspond to each word. Let
b(w) := [b1(w), b2(w), · · · , bB(w)] ∈ {0, 1}B be
the target bit array obtained for word w, where
each bi(w) ∈ {0, 1} is an independent binary
function given w, and B is the number of bits in
whole array. For convenience, we introduce some
constraints on b. First, a wordw is mapped to only
one bit array b(w). Second, all unique words can
be discriminated by b, i.e., all bit arrays satisfy
that:1

id(w) 6= id(w′)⇒ b(w) 6= b(w′). (5)

Third, multiple bit arrays can be mapped to the
same word as described in Section 3.5. By
considering second constraint, we can also con-
strain B ≥ dlog2 V e, because b should have
at least V unique representations to distinguish
each word. The output layer of the network in-
dependently predicts B probability values q :=
[q1(h), q2(h), · · · , qB(h)] ∈ [0, 1]B using the

1We designed this injective condition using the id(·) func-
tion to ignore task-specific sensitivities between different
word surfaces (e.g. cases, ligatures, etc.).

current hidden values h by logistic regressions:

q(h) = σ(Whqh+ βq), (6)

σ(x) := 1/(1 + exp(−x)), (7)

where Whq ∈ RB×H and βq ∈ RB are train-
able parameters. When we assume that each qi
is the probability that “the i-th bit becomes 1,” the
joint probability of generating word w can be rep-
resented as:

Pr(b(w)|q(h)) :=

B∏

i=1

(
biqi + b̄iq̄i

)
, (8)

where x̄ := 1 − x. We can easily obtain the
maximum-probability bit array from q by simply
assuming the i-th bit is 1 if qi ≥ 1/2, or 0 other-
wise. However, this calculation may generate in-
valid bit arrays which do not correspond to actual
words according to the mapping between words
and bit arrays. For now, we simply assume that
w = UNK (unknown) when such bit arrays are ob-
tained, and discuss alternatives later in Section 3.5.

The constraints described here are very general
requirements for bit arrays, which still allows us to
choose between a wide variety of mapping func-
tions. However, designing the most appropriate
mapping method for NMT models is not a triv-
ial problem. In this study, we use a simple map-
ping method described in Algorithm 1, which was
empirically effective in preliminary experiments.2

Here, V is the set of V target words including 3
extra markers: UNK, BOS (begin-of-sentence), and
EOS (end-of-sentence), and rank(w) ∈ N>0 is
the rank of the word according to their frequen-
cies in the training corpus. Algorithm 1 is one
of the minimal mapping methods (i.e., satisfying
B = dlog2 V e), and generated bit arrays have the
characteristics that their higher bits roughly repre-
sents the frequency of corresponding words (e.g.,
if w is frequently appeared in the training corpus,
higher bits in b(w) tend to become 0).

3.2 Loss Functions
For learning correct binary representations, we can
use any loss functions that is (sub-)differentiable
and satisfies a constraint that:

LB(q, b)

{
= εL, if q = b,
≥ εL, otherwise,

(9)

2Other methods examined included random codes, Huff-
man codes (Huffman, 1952) and Brown clustering (Brown
et al., 1992) with zero-padding to adjust code lengths, and
some original allocation methods based on the word2vec em-
beddings (Mikolov et al., 2013).

852

Algorithm 1 Mapping words to bit arrays.
Require: w ∈ V
Ensure: b ∈ {0, 1}B = Bit array representing w

x :=





0, if w = UNK
1, if w = BOS
2, if w = EOS
2 + rank(w), otherwise

bi := bx/2i−1c mod 2
b← [b1, b2, · · · , bB]

where εL is the minimum value of the loss func-
tion which typically does not affect the gradi-
ent descent methods. For example, the squared-
distance:

LB(q, b) :=

B∑

i=1

(qi − bi)2, (10)

or the cross-entropy:

LB(q, b) := −
B∑

i=1

(
bi log qi + b̄i log q̄i

)
, (11)

are candidates for the loss function. We also
examined both loss functions in the preliminary
experiments, and in this paper, we only used
the squared-distance function (Equation (10)), be-
cause this function achieved higher translation ac-
curacies than Equation (11).3

3.3 Efficiency of the Binary Code Prediction
The computational complexity for the parame-
ters Whq and βq is O(HB). This is equal
to O(H log V) when using a minimal mapping
method like that shown in Algorithm 1, and is sig-
nificantly smaller than O(HV) when using stan-
dard softmax prediction. For example, if we chose
V = 65536 = 216 and use Algorithm 1’s mapping
method, then B = 16 and total amount of com-
putation in the output layer could be suppressed to
1/4096 of its original size.

On a different note, the binary code prediction
model proposed in this study shares some ideas
with the hierarchical softmax (Morin and Bengio,
2005) approach. Actually, when we used a binary-
tree based mapping function for b, our model can
be interpreted as the hierarchical softmax with two

3In terms of learning probabilistic models, we should re-
mind that using Eq. (10) is an approximation of Eq. (11). The
output bit scores trained by Eq. (10) do not represent actual
word perplexities, and this characteristics imposes some prac-
tical problems when comparing multiple hypotheses (e.g.,
reranking, beam search, etc.). We could ignore this problem
in this paper because we only evaluated the one-best results
in experiments.

strong constraints for guaranteeing independence
between all bits: all nodes in the same level of the
hierarchy share their parameters, and all levels of
the hierarchy are predicted independently of each
other. By these constraints, all bits in b can be
calculated in parallel. This is particularly impor-
tant because it makes the model conducive to be-
ing calculated on parallel computation backends
such as GPUs.

However, the binary code prediction model also
introduces problems of robustness due to these
strong constraints. As the experimental results
show, the simplest prediction model which di-
rectly maps words into bit arrays seriously de-
creases translation quality. In Sections 3.4 and 3.5,
we introduce two additional techniques to prevent
reductions of translation quality and improve ro-
bustness of the binary code prediction model.

3.4 Hybrid Softmax/Binary Model

According to the Zipf’s law (Zipf, 1949), the dis-
tribution of word appearances in an actual cor-
pus is biased to a small subset of the vocabu-
lary. As a result, the proposed model mostly
learns characteristics for frequent words and can-
not obtain enough opportunities to learn for rare
words. To alleviate this problem, we introduce a
hybrid model using both softmax prediction and
binary code prediction as shown in Figure 2(c).
In this model, the output layer calculates a stan-
dard softmax for the N − 1 most frequent words
and an OTHER marker which indicates all rare
words. When the softmax layer predicts OTHER,
then the binary code layer is used to predict the
representation of rare words. In this case, the ac-
tual probability of generating a particular word can
be separated into two equations according to the
frequency of words:

Pr(w|h) '
{
v′id(w), if id(w) < N,

v′N · π(w,h), otherwise,
(12)

v′ := expu′/ sum expu′, (13)

u′ := Whu′h+ βu′ , (14)

π(w,h) := Pr(b(w)|q(h)), (15)

where Whu′ ∈ RN×H and βu′ ∈ RN are trainable
parameters, and id(w) assumes that the value cor-
responds to the rank of frequency of each word.
We also define the loss function for the hybrid

853

Figure 3: Example of the classification problem
using redundant bit array mapping.

model using both softmax and binary code losses:

L :=

{
lH(id(w)), if id(w) < N,
lH(N) + lB, otherwise,

(16)

lH(i) := λHLH(v′, i), (17)

lB := λBLB(q, b), (18)

where λH and λB are hyper-parameters to deter-
mine strength of both softmax/binary code losses.
These also can be adjusted according to the train-
ing data, but in this study, we only used λH =
λB = 1 for simplicity.

The computational complexity of the hybrid
model is O(H(N + log V)), which is larger than
the original binary code modelO(H log V). How-
ever,N can be chosen asN � V because the soft-
max prediction is only required for a few frequent
words. As a result, we can control the actual com-
putation for the hybrid model to be much smaller
than the standard softmax complexity O(HV),

The idea of separated prediction of frequent
words and rare words comes from the differenti-
ated softmax (Chen et al., 2016) approach. How-
ever, our output layer can be configured as a fully-
connected network, unlike the differentiated soft-
max, because the actual size of the output layer is
still small after applying the hybrid model.

3.5 Applying Error-correcting Codes
The 2 methods proposed in previous sections im-
pose constraints for all bits in q, and the value of
each bit must be estimated correctly for the cor-
rect word to be chosen. As a result, these models
may generate incorrect words due to even a sin-
gle bit error. This problem is the result of dense
mapping between words and bit arrays, and can
be avoided by creating redundancy in the bit ar-
ray. Figure 3 shows a simple example of how this
idea works when discriminating 2 words using 3
bits. In this case, the actual words are obtained by

Figure 4: Training and generation processes with
error-correcting code.

estimating the nearest centroid bit array accord-
ing to the Hamming distance between each cen-
troid and the predicted bit array. This approach
can predict correct words as long as the predicted
bit arrays are in the set of neighbors for the cor-
rect centroid (gray regions in the Figure 3), i.e.,
up to a 1-bit error in the predicted bits can be cor-
rected. This ability to be robust to errors is a cen-
tral idea behind error-correcting codes (Shannon,
1948). In general, an error-correcting code has the
ability to correct up to b(d−1)/2c bit errors when
all centroids differ d bits from each other (Golay,
1949). d is known as the free distance determined
by the design of error-correcting codes. Error-
correcting codes have been examined in some pre-
vious work on multi-class classification tasks, and
have reported advantages from the raw classifica-
tion (Dietterich and Bakiri, 1995; Klautau et al.,
2003; Liu, 2006; Kouzani and Nasireding, 2009;
Kouzani, 2010; Ferng and Lin, 2011, 2013). In
this study, we applied an error-correcting algo-
rithm to the bit array obtained from Algorithm 1
to improve robustness of the output layer in an
NMT system. A challenge in this study is try-
ing a large classification (#classes > 10,000) with
error-correction, unlike previous studies focused
on solving comparatively small tasks (#classes <
100). And this study also tries to solve a genera-
tion task unlike previous studies. As shown in the
experiments, we found that this approach is highly
effective in these tasks.

Figure 4 (a) and (b) illustrate the training and
generation processes for the model with error-
correcting codes. In the training, we first con-
vert the original bit arrays b(w) to a center bit
array b′ in the space of error-correcting code:
b′(b) := [b′1(b), b

′
2(b), · · · , b′B′(b)] ∈ {0, 1}B

′
,

where B′(B) ≥ B is the number of bits in the
error-correcting code. The NMT model learns its

854

Algorithm 2 Encoding into a convolutional code.
Require: b ∈ {0, 1}B
Ensure: b′ ∈ {0, 1}2(B+6) =

Redundant bit array

x[t] :=

{
bt, if 1 ≤ t ≤ B
0, otherwise

y1t := x[t− 6 .. t] · [1001111] mod 2
y2t := x[t− 6 .. t] · [1101101] mod 2
b′ ← [y11, y

2
1, y

1
2, y

2
2, · · · , y1B+6, y

2
B+6]

parameters based on the loss between predicted
probabilities q and b′. Note that typical error-
correcting codes satisfy O(B′/B) = O(1), and
this characteristic efficiently suppresses the in-
crease of actual computation cost in the output
layer due to the application of the error-correcting
code. In the generation of actual words, the decod-
ing method of the error-correcting code converts
the redundant predicted bits q into a dense rep-
resentation q̃ := [q̃1(q), q̃2(q), · · · , q̃B(q)], and
uses q̃ as the bits to restore the word, as is done in
the method described in the previous sections.

It should be noted that the method for perform-
ing error correction directly affects the quality of
the whole NMT model. For example, the map-
ping shown in Figure 3 has only 3 bits and it is
clear that these bits represent exactly the same in-
formation as each other. In this case, all bits can
be estimated using exactly the same parameters,
and we can not expect that we will benefit signif-
icantly from applying this redundant representa-
tion. Therefore, we need to choose an error correc-
tion method in which the characteristics of origi-
nal bits should be distributed in various positions
of the resulting bit arrays so that errors in bits are
not highly correlated with each-other. In addition,
it is desirable that the decoding method of the ap-
plied error-correcting code can directly utilize the
probabilities of each bit, because q generated by
the network will be a continuous probabilities be-
tween zero and one.

In this study, we applied convolutional codes
(Viterbi, 1967) to convert between original and re-
dundant bits. Convolutional codes perform a set
of bit-wise convolutions between original bits and
weight bits (which are hyper-parameters). They
are well-suited to our setting here because they
distribute the information of original bits in dif-
ferent places in the resulting bits, work robustly
for random bit errors, and can be decoded using

Algorithm 3 Decoding from a convolutional code.

Require: q ∈ (0, 1)2(B+6)

Ensure: q̃ ∈ {0, 1}B = Restored bit array
g(q, b) := b log q + (1− b) log(1− q)
φ0[s | s ∈ {0, 1}6]←

{
0, if s = [000000]
−∞, otherwise

for t = 1→ B + 6 do
for scur ∈ {0, 1}6 do
sprev(x) := [x] ◦ scur[1 .. 5]
o1(x) := ([x] ◦ scur) · [1001111] mod 2
o2(x) := ([x] ◦ scur) · [1101101] mod 2
g′(x) := g(q2t−1, o1(x)) + g(q2t, o2(x))
φ′(x) := φt−1[sprev(x)] + g′(x)
x̂← arg maxx∈{0,1} φ

′(x)
rt[s

cur]← sprev(x̂)
φt[s

cur]← φ′(x̂)
end for

end for
s′ ← [000000]
for t = B → 1 do
s′ ← rt+6[s

′]
q̃t ← s′1

end for
q̃ ← [q̃1, q̃2, · · · , q̃B]

bit probabilities directly.

Algorithm 2 describes the particular convolu-
tional code that we applied in this study, with two
convolution weights [1001111] and [1101101] as
fixed hyper-parameters.4 Where x[i .. j] :=
[xi, · · · , xj] and x · y :=

∑
i xiyi. On the other

hand, there are various algorithms to decode con-
volutional codes with the same format which are
based on different criteria. In this study, we use the
decoding method described in Algorithm 3, where
x ◦ y represents the concatenation of vectors x
and y. This method is based on the Viterbi al-
gorithm (Viterbi, 1967) and estimates original bits
by directly using probability of redundant bits. Al-
though Algorithm 3 looks complicated, this algo-
rithm can be performed efficiently on CPUs at test
time, and is not necessary at training time when we
are simply performing calculation of Equation (6).
Algorithm 2 increases the number of bits from B
intoB′ = 2(B+6), but does not restrict the actual
value of B.

4We also examined many configurations of convolutional
codes which have different robustness and computation costs,
and finally chose this one.

855

Table 1: Details of the corpus.
Name ASPEC BTEC

Languages En↔ Ja

#sentences
Train 2.00 M 465. k
Dev 1,790 510
Test 1,812 508

Vocabulary size V 65536 25000

4 Experiments

4.1 Experimental Settings

We examined the performance of the proposed
methods on two English-Japanese bidirectional
translation tasks which have different translation
difficulties: ASPEC (Nakazawa et al., 2016) and
BTEC (Takezawa, 1999). Table 1 describes details
of two corpora. To prepare inputs for training, we
used tokenizer.perl in Moses (Koehn et al.,
2007) and KyTea (Neubig et al., 2011) for En-
glish/Japanese tokenizations respectively, applied
lowercase.perl from Moses, and replaced
out-of-vocabulary words such that rank(w) >
V − 3 into the UNK marker.

We implemented each NMT model using C++
in the DyNet framework (Neubig et al., 2017) and
trained/tested on 1 GPU (GeForce GTX TITAN
X). Each test is also performed on CPUs to com-
pare its processing time. We used a bidirectional
RNN-based encoder applied in Bahdanau et al.
(2014), unidirectional decoder with the same style
of (Luong et al., 2015), and the concat global
attention model also proposed in Luong et al.
(2015). Each recurrent unit is constructed using a
1-layer LSTM (input/forget/output gates and non-
peepholes) (Gers et al., 2000) with 30% dropout
(Srivastava et al., 2014) for the input/output vec-
tors of the LSTMs. All word embeddings, recur-
rent states and model-specific hidden states are de-
signed with 512-dimentional vectors. Only output
layers and loss functions are replaced, and other
network architectures are identical for the conven-
tional/proposed models. We used the Adam op-
timizer (Kingma and Ba, 2014) with fixed hyper-
parameters α = 0.001, β1 = 0.9β2 = 0.999, ε =
10−8, and mini-batches with 64 sentences sorted
according to their sequence lengths. For eval-
uating the quality of each model, we calculated
case-insensitive BLEU (Papineni et al., 2002) ev-
ery 1000 mini-batches. Table 2 lists summaries of
all methods we examined in experiments.

Table 2: Evaluated methods.
Name Summary
Softmax Softmax prediction (Fig. 2(a))
Binary Fig. 2(b) w/ raw bit array
Hybrid-N Fig. 2(c) w/ softmax size N
Binary-EC Binary w/ error-correction
Hybrid-N-EC Hybrid-N w/ error-correction

(a) ASPEC (En→ Ja)

(b) BTEC (En→ Ja)

Figure 5: Training curves over 180,000 epochs.

4.2 Results and Discussion

Table 3 shows the BLEU on the test set (bold and
italic faces indicate the best and second places in
each task), number of bits B (or B′) for the binary
code, actual size of the output layer #out, number
of parameters in the output layer #W,β, as well as
the ratio of #W,β or amount of whole parameters
compared with Softmax, and averaged processing
time at training (per mini-batch on GPUs) and
test (per sentence on GPUs/CPUs), respectively.
Figure 5(a) and 5(b) shows training curves up
to 180,000 epochs about some English→Japanese
settings. To relax instabilities of translation qual-
ities while training (as shown in Figure 5(a) and
5(b)), each BLEU in Table 3 is calculated by av-
eraging actual test BLEU of 5 consecutive results

856

Table 3: Comparison of BLEU, size of output layers, number of parameters and processing time.
Corpus Method BLEU %

B #out #W,β
Ratio of #params Time (En→Ja) [ms]

EnJa JaEn #W,β All Train Test: GPU / CPU

ASPEC

Softmax 31.13 21.14 — 65536 33.6 M 1/1 1 1026. 121.6 / 2539.
Binary 13.78 6.953 16 16 8.21 k 1/4.10 k 0.698 711.2 73.08 / 122.3
Hybrid-512 22.81 13.95 16 528 271. k 1/124. 0.700 843.6 81.28 / 127.5
Hybrid-2048 27.73 16.92 16 2064 1.06 M 1/31.8 0.707 837.1 82.28 / 159.3
Binary-EC 25.95 18.02 44 44 22.6 k 1/1.49 k 0.698 712.0 78.75 / 164.0
Hybrid-512-EC 29.07 18.66 44 556 285. k 1/118. 0.700 850.3 80.30 / 180.2
Hybrid-2048-EC 30.05 19.66 44 2092 1.07 M 1/31.4 0.707 851.6 77.83 / 201.3

BTEC

Softmax 47.72 45.22 — 25000 12.8 M 1/1 1 325.0 34.35 / 323.3
Binary 31.83 31.90 15 15 7.70 k 1/1.67 k 0.738 250.7 27.98 / 54.62
Hybrid-512 44.23 43.50 15 527 270. k 1/47.4 0.743 300.7 28.83 / 66.13
Hybrid-2048 46.13 45.76 15 2063 1.06 M 1/12.1 0.759 307.7 28.25 / 67.40
Binary-EC 44.48 41.21 42 42 21.5 k 1/595. 0.738 255.6 28.02 / 69.76
Hybrid-512-EC 47.20 46.52 42 554 284. k 1/45.1 0.744 307.8 28.44 / 56.98
Hybrid-2048-EC 48.17 46.58 42 2090 1.07 M 1/12.0 0.760 311.0 28.47 / 69.44

Figure 6: BLEU changes in the Hybrid-N methods
according to the softmax size (En→Ja).

around the epoch that has the highest dev BLEU.

First, we can see that each proposed method
largely suppresses the actual size of the output
layer from ten to one thousand times compared
with the standard softmax. By looking at the to-
tal number of parameters, we can see that the
proposed models require only 70% of the actual
memory, and the proposed model reduces the to-
tal number of parameters for the output layers to
a practically negligible level. Note that most of
remaining parameters are used for the embedding
lookup at the input layer in both encoder/decoder.
These still occupy O(EV) memory, where E rep-
resents the size of each embedding layer and usu-
ally O(E/H) = O(1). These are not targets to be
reduced in this study because these values rarely
are accessed at test time because we only need to
access them for input words, and do not need them
to always be in the physical memory. It might be

possible to apply a similar binary representation
as that of output layers to the input layers as well,
then express the word embedding by multiplying
this binary vector by a word embedding matrix.
This is one potential avenue of future work.

Taking a look at the BLEU for the simple Bi-
nary method, we can see that it is far lower than
other models for all tasks. This is expected, as
described in Section 3, because using raw bit ar-
rays causes many one-off estimation errors at the
output layer due to the lack of robustness of the
output representation. In contrast, Hybrid-N and
Binary-EC models clearly improve BLEU from
Binary, and they approach that of Softmax. This
demonstrates that these two methods effectively
improve the robustness of binary code prediction
models. Especially, Binary-EC generally achieves
higher quality than Hybrid-512 despite the fact
that it suppress the number of parameters by about
1/10. These results show that introducing redun-
dancy to target bit arrays is more effective than
incremental prediction. In addition, the Hybrid-N-
EC model achieves the highest BLEU in all pro-
posed methods, and in particular, comparative or
higher BLEU than Softmax in BTEC. This behav-
ior clearly demonstrates that these two methods
are orthogonal, and combining them together can
be effective. We hypothesize that the lower qual-
ity of Softmax in BTEC is caused by an over-fitting
due to the large number of parameters required in
the softmax prediction.

The proposed methods also improve actual
computation time in both training and test. In par-
ticular on CPU, where the computation speed is
directly affected by the size of the output layer,
the proposed methods translate significantly faster

857

than Softmax by x5 to x20. In addition, we can
also see that applying error-correcting code is also
effictive with respect to the decoding speed.

Figure 6 shows the trade-off between the trans-
lation quality and the size of softmax layers in
the hybrid prediction model (Figure 2(c)) with-
out error-correction. According to the model def-
inition in Section 3.4, the softmax prediction and
raw binary code prediction can be assumed to be
the upper/lower-bound of the hybrid prediction
model. The curves in Figure 6 move between Soft-
max and Binary models, and this behavior intu-
itively explains the characteristics of the hybrid
prediction. In addition, we can see that the BLEU
score in BTEC quickly improves, and saturates at
N = 1024 in contrast to the ASPEC model, which
is still improving at N = 2048. We presume that
the shape of curves in Figure 6 is also affected by
the difficulty of the corpus, i.e., when we train the
hybrid model for easy datasets (e.g., BTEC is eas-
ier than ASPEC), it is enough to use a small soft-
max layer (e.g. N ≤ 1024).

5 Conclusion

In this study, we proposed neural machine transla-
tion models which indirectly predict output words
via binary codes, and two model improvements:
a hybrid prediction model using both softmax
and binary codes, and introducing error-correcting
codes to introduce robustness of binary code pre-
diction. Experiments show that the proposed
model can achieve comparative translation quali-
ties to standard softmax prediction, while signif-
icantly suppressing the amount of parameters in
the output layer, and improving calculation speeds
while training and especially testing.

One interesting avenue of future work is to au-
tomatically learn encodings and error correcting
codes that are well-suited for the type of binary
code prediction we are performing here. In Al-
gorithms 2 and 3 we use convolutions that were
determined heuristically, and it is likely that learn-
ing these along with the model could result in im-
proved accuracy or better compression capability.

Acknowledgments

Part of this work was supported by JSPS
KAKENHI Grant Numbers JP16H05873 and
JP17H00747, and Grant-in-Aid for JSPS Fellows
Grant Number 15J10649.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Peter F Brown, Peter V Desouza, Robert L Mercer,
Vincent J Della Pietra, and Jenifer C Lai. 1992.
Class-based n-gram models of natural language.
Computational linguistics 18(4):467–479.

Wenlin Chen, David Grangier, and Michael Auli. 2016.
Strategies for training large vocabulary neural lan-
guage models. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, Berlin, Germany, pages
1975–1985. http://www.aclweb.org/anthology/P16-
1186.

Rohan Chitnis and John DeNero. 2015. Variable-
length word encodings for neural translation mod-
els. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 2088–2093.
http://aclweb.org/anthology/D15-1249.

Thomas G. Dietterich and Ghulum Bakiri. 1995.
Solving multiclass learning problems via error-
correcting output codes. Journal of Artificial Intelli-
gence Research 2:263–286.

Chun-Sung Ferng and Hsuan-Tien Lin. 2011. Multi-
label classification with error-correcting codes.
Journal of Machine Learning Research 20:281–295.

Chun-Sung Ferng and Hsuan-Tien Lin. 2013. Multi-
label classification using error-correcting codes of
hard or soft bits. IEEE transactions on neural net-
works and learning systems 24(11):1888–1900.

Felix A Gers, Jürgen Schmidhuber, and Fred Cummins.
2000. Learning to forget: Continual prediction with
LSTM. Neural computation 12(10):2451–2471.

Marcel J. E. Golay. 1949. Notes on digital cod-
ing. Proceedings of the Institute of Radio Engineers
37:657.

David A. Huffman. 1952. A method for the construc-
tion of minimum-redundancy codes. Proceedings of
the Institute of Radio Engineers 40(9):1098–1101.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Aldebaro Klautau, Nikola Jevtić, and Alon Orlitsky.
2003. On nearest-neighbor error-correcting output
codes with application to all-pairs multiclass support
vector machines. Journal of Machine Learning Re-
search 4(April):1–15.

858

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine trans-
lation. In Proceedings of the 45th Annual Meet-
ing of the Association for Computational Linguistics
Companion Volume Proceedings of the Demo and
Poster Sessions. Association for Computational Lin-
guistics, Prague, Czech Republic, pages 177–180.
http://www.aclweb.org/anthology/P07-2045.

Abbas Z Kouzani. 2010. Multilabel classification us-
ing error correction codes. In International Sympo-
sium on Intelligence Computation and Applications.
Springer, pages 444–454.

Abbas Z Kouzani and Gulisong Nasireding. 2009.
Multilabel classification by bch code and random
forests. International journal of recent trends in en-
gineering 2(1):113–116.

Gurvan L’Hostis, David Grangier, and Michael Auli.
2016. Vocabulary selection strategies for neural ma-
chine translation. arXiv preprint arXiv:1610.00072
.

Wang Ling, Isabel Trancoso, Chris Dyer, and Alan W
Black. 2015. Character-based neural machine trans-
lation. arXiv preprint arXiv:1511.04586 .

Yang Liu. 2006. Using svm and error-correcting codes
for multiclass dialog act classification in meeting
corpus. In INTERSPEECH.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1412–
1421. http://aclweb.org/anthology/D15-1166.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Vocabulary manipulation for neural machine trans-
lation. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 124–129.
http://anthology.aclweb.org/P16-2021.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Andriy Mnih and Yee Whye Teh. 2012. A fast and sim-
ple algorithm for training neural probabilistic lan-
guage models. In Proceedings of the 29th Interna-
tional Conference on Machine Learning.

Frederic Morin and Yoshua Bengio. 2005. Hierarchi-
cal probabilistic neural network language model. In

Proceedings of Tenth International Workshop on Ar-
tificial Intelligence and Statistics. volume 5, pages
246–252.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016. Aspec:
Asian scientific paper excerpt corpus. In Nico-
letta Calzolari (Conference Chair), Khalid Choukri,
Thierry Declerck, Marko Grobelnik, Bente Mae-
gaard, Joseph Mariani, Asuncion Moreno, Jan
Odijk, and Stelios Piperidis, editors, Proceedings
of the Ninth International Conference on Language
Resources and Evaluation (LREC 2016). European
Language Resources Association (ELRA), Portoro,
Slovenia, pages 2204–2208.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
japanese morphological analysis. In Proceedings
of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, Portland, Oregon, USA, pages 529–533.
http://www.aclweb.org/anthology/P11-2093.

Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. 2002. Bleu: a method
for automatic evaluation of machine transla-
tion. In Proceedings of 40th Annual Meeting
of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Philadelphia, Pennsylvania, USA, pages 311–318.
https://doi.org/10.3115/1073083.1073135.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, Berlin, Germany, pages
1715–1725. http://www.aclweb.org/anthology/P16-
1162.

Claude E. Shannon. 1948. A mathematical theory
of communication. Bell System Technical Journal
27(3):379–423.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

859

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Toshiyuki Takezawa. 1999. Building a bilingual
travel conversation database for speech translation
research. In Proc. of the 2nd international workshop
on East-Asian resources and evaluation conference
on language resources and evaluation. pages 17–20.

Andrew Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE transactions on Information Theory
13(2):260–269.

George. K. Zipf. 1949. Human behavior and the prin-
ciple of least effort.. Addison-Wesley Press.

860

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 861–872
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1080

What do Neural Machine Translation Models Learn about Morphology?

Yonatan Belinkov1 Nadir Durrani2 Fahim Dalvi2 Hassan Sajjad2 James Glass1

1MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA 02139, USA
{belinkov, glass}@mit.edu

2Qatar Computing Research Institute, HBKU, Doha, Qatar
{ndurrani, faimaduddin, hsajjad}@qf.org.qa

Abstract

Neural machine translation (MT) models
obtain state-of-the-art performance while
maintaining a simple, end-to-end architec-
ture. However, little is known about what
these models learn about source and tar-
get languages during the training process.
In this work, we analyze the representa-
tions learned by neural MT models at var-
ious levels of granularity and empirically
evaluate the quality of the representations
for learning morphology through extrinsic
part-of-speech and morphological tagging
tasks. We conduct a thorough investiga-
tion along several parameters: word-based
vs. character-based representations, depth
of the encoding layer, the identity of the
target language, and encoder vs. decoder
representations. Our data-driven, quanti-
tative evaluation sheds light on important
aspects in the neural MT system and its
ability to capture word structure.1

1 Introduction

Neural network models are quickly becoming
the predominant approach to machine translation
(MT). Training neural MT (NMT) models can
be done in an end-to-end fashion, which is sim-
pler and more elegant than traditional MT sys-
tems. Moreover, NMT systems have become
competitive with, or better than, the previous
state-of-the-art, especially since the introduction
of sequence-to-sequence models and the atten-
tion mechanism (Bahdanau et al., 2014; Sutskever
et al., 2014). The improved translation quality
is often attributed to better handling of non-local
dependencies and morphology generation (Luong

1Our code is available at https://github.com/
boknilev/nmt-repr-analysis.

and Manning, 2015; Bentivogli et al., 2016; Toral
and Sánchez-Cartagena, 2017).

However, little is known about what and how
much these models learn about each language
and its features. Recent work has started ex-
ploring the role of the NMT encoder in learn-
ing source syntax (Shi et al., 2016), but research
studies are yet to answer important questions such
as: (i) what do NMT models learn about word
morphology? (ii) what is the effect on learning
when translating into/from morphologically-rich
languages? (iii) what impact do different repre-
sentations (character vs. word) have on learning?
and (iv) what do different modules learn about the
syntactic and semantic structure of a language?
Answering such questions is imperative for fully
understanding the NMT architecture. In this pa-
per, we strive towards exploring (i), (ii), and (iii)
by providing quantitative, data-driven answers to
the following specific questions:

• Which parts of the NMT architecture capture
word structure?

• What is the division of labor between differ-
ent components (e.g. different layers or en-
coder vs. decoder)?

• How do different word representations help
learn better morphology and modeling of in-
frequent words?

• How does the target language affect the learn-
ing of word structure?

To achieve this, we follow a simple but effective
procedure with three steps: (i) train a neural MT
system on a parallel corpus; (ii) use the trained
model to extract feature representations for words
in a language of interest; and (iii) train a classi-
fier using extracted features to make predictions

861

https://doi.org/10.18653/v1/P17-1080

for another task. We then evaluate the quality of
the trained classifier on the given task as a proxy
to the quality of the extracted representations. In
this way, we obtain a quantitative measure of how
well the original MT system learns features that
are relevant to the given task.

We focus on the tasks of part-of-speech (POS)
and full morphological tagging. We investigate
how different neural MT systems capture POS
and morphology through a series of experiments
along several parameters. For instance, we con-
trast word-based and character-based representa-
tions, use different encoding layers, vary source
and target languages, and compare extracting fea-
tures from the encoder vs. the decoder.

We experiment with several languages with
varying degrees of morphological richness:
French, German, Czech, Arabic, and Hebrew. Our
analysis reveals interesting insights such as:

• Character-based representations are much
better for learning morphology, especially for
low-frequency words. This improvement is
correlated with better BLEU scores. On the
other hand, word-based models are sufficient
for learning the structure of common words.

• Lower layers of the encoder are better at cap-
turing word structure, while deeper networks
improve translation quality, suggesting that
higher layers focus more on word meaning.

• The target language impacts the kind of in-
formation learned by the MT system. Trans-
lating into morphologically-poorer languages
leads to better source-side word representa-
tions. This is partly, but not completely, cor-
related with BLEU scores.

• The neural decoder learns very little about
word structure. The attention mechanism re-
moves much of the burden of learning word
representations from the decoder.

2 Methodology

Given a source sentence s = {w1, w2, ..., wN}
and a target sentence t = {u1, u2, ..., uM}, we
first generate a vector representation for the source
sentence using an encoder (Eqn. 1) and then map
this vector to the target sentence using a decoder
(Eqn. 2) (Sutskever et al., 2014):

Figure 1: Illustration of our approach: (i) NMT
system trained on parallel data; (ii) features ex-
tracted from pre-trained model; (iii) classifier
trained using the extracted features. Here a POS
tagging classifier is trained on features from the
first hidden layer.

ENC : s = {w1, w2, ..., wN} 7! s 2 Rk (1)

DEC : s 2 Rk 7! t = {u1, u2, ..., uM} (2)

In this work, we use long short-term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
encoder-decoders with attention (Bahdanau et al.,
2014), which we train on parallel data.

After training the NMT system, we freeze the
parameters of the encoder and use ENC as a feature
extractor to generate vectors representing words in
the sentence. Let ENCi(s) denote the encoded rep-
resentation of word wi. For example, this may be
the output of the LSTM after word wi. We feed
ENCi(s) to a neural classifier that is trained to pre-
dict POS or morphological tags and evaluate the
quality of the representation based on our ability
to train a good classifier. By comparing the perfor-
mance of classifiers trained with features from dif-
ferent instantiations of ENC, we can evaluate what
MT encoders learn about word structure. Figure 1
illustrates this process. We follow a similar proce-
dure for analyzing representation learning in DEC.

The classifier itself can be modeled in differ-
ent ways. For example, it may be an LSTM over
outputs of the encoder. However, as we are inter-
ested in assessing the quality of the representations
learned by the MT system, we choose to model the
classifier as a simple feed-forward neural network
with one hidden layer and a ReLU non-linearity.
Arguably, if the learned representations are good,
then a non-linear classifier should be able to ex-
tract useful information from them.2 We empha-

2We also experimented with a linear classifier and ob-
served similar trends to the non-linear case, but overall lower
results; Qian et al. (2016b) reported similar findings.

862

Ar De Fr Cz

Gold/Pred Gold/Pred Pred Pred

Train Tokens 0.5M/2.7M 0.9M/4M 5.2M 2M
Dev Tokens 63K/114K 45K/50K 55K 35K
Test Tokens 62K/16K 44K/25K 23K 20K

POS Tags 42 54 33 368
Morph Tags 1969 214 – –

Table 1: Statistics for annotated corpora in Arabic
(Ar), German (De), French (Fr), and Czech (Cz).

size that our goal is not to beat the state-of-the-art
on a given task, but rather to analyze what NMT
models learn about morphology. The classifier
is trained with a cross-entropy loss; more details
about its architecture are given in the supplemen-
tary material (appendix A.1).

3 Data

Language pairs We experiment with several
language pairs, including morphologically-rich
languages, that have received relatively significant
attention in the MT community. These include
Arabic-, German-, French-, and Czech-English
pairs. To broaden our analysis and study the effect
of having morphologically-rich languages on both
source and target sides, we also include Arabic-
Hebrew, two languages with rich and similar mor-
phological systems, and Arabic-German, two lan-
guages with rich but different morphologies.

MT data Our translation models are trained on
the WIT3 corpus of TED talks (Cettolo et al.,
2012; Cettolo, 2016) made available for IWSLT
2016. This allows for comparable and cross-
linguistic analysis. Statistics about each language
pair are given in Table 1 (under Pred). We use of-
ficial dev and test sets for tuning and testing. Re-
ported figures are the averages over test sets.

Annotated data We use two kinds of datasets
to train POS and morphological classifiers: gold-
standard and predicted tags. For predicted tags,
we simply used freely available taggers to anno-
tate the MT data. For gold tags, we use gold-
annotated datasets. Table 1 provides statistics for
datasets with gold and predicted tags; see the sup-
plementary material (appendix A.2) for more de-
tails about taggers and gold data. We train and test
our classifiers on predicted annotations, and simi-
larly on gold annotations, when we have them. We
report both results wherever available.

Gold Pred BLEU

Word/Char Word/Char Word/Char

Ar-En 80.31/93.66 89.62/95.35 24.7/28.4
Ar-He 78.20/92.48 88.33/94.66 9.9/10.7
De-En 87.68/94.57 93.54/94.63 29.6/30.4
Fr-En – 94.61/95.55 37.8/38.8
Cz-En – 75.71/79.10 23.2/25.4

Table 2: POS accuracy on gold and predicted tags
using word-based and character-based representa-
tions, as well as corresponding BLEU scores.

4 Encoder Analysis

Recall that after training the NMT system we
freeze its parameters and use it only to gener-
ate features for the POS/morphology classifier.
Given a trained encoder ENC and a sentence s with
POS/morphology annotation, we generate word
features ENCi(s) for every word in the sentence.
We then train a classifier that uses the features
ENCi(s) to predict POS or morphological tags.

4.1 Effect of word representation
In this section, we compare different word repre-
sentations extracted with different encoders. Our
word-based model uses a word embedding ma-
trix which is initialized randomly and learned with
other NMT parameters. For a character-based
model we adopt a convolutional neural network
(CNN) over character embeddings that is also
learned during training (Kim et al., 2015); see ap-
pendix A.1 for specific settings. In both cases we
run the encoder over these representations and use
its output ENCi(s) as features for the classifier.

Table 2 shows POS tagging accuracy using
features from different NMT encoders. Char-
based models always generate better represen-
tations for POS tagging, especially in the case
of morphologically-richer languages like Arabic
and Czech. We observed a similar pattern in
the full morphological tagging task. For exam-
ple, we obtain morphological tagging accuracy
of 65.2/79.66 and 67.66/81.66 using word/char-
based representations from the Arabic-Hebrew
and Arabic-English encoders, respectively.3 The
superior morphological power of the char-based
model also manifests in better translation quality
(measured by BLEU), as shown in Table 2.

3The results are not far below dedicated taggers (e.g.
95.1/84.1 on Arabic POS/morphology (Pasha et al., 2014)),
indicating that NMT models learn quite good representations.

863

Figure 2: POS and morphological tagging accuracy of word-based and character-based models per word
frequency in the training data. Best viewed in color.

Figure 3: Improvement in POS/morphology accu-
racy of character-based vs. word-based models for
words unseen/seen in training, and for all words.

Impact of word frequency Let us look more
closely at an example case: Arabic POS and mor-
phological tagging. Figure 3 shows the effect of
using word-based vs. char-based feature represen-
tations, obtained from the encoder of the Arabic-
Hebrew system (other language pairs exhibit sim-
ilar trends). Clearly, the char-based model is su-
perior to the word-based one. This is true for the
overall accuracy (+14.3% in POS, +14.5% in mor-
phology), but more so in OOV words (+37.6% in
POS, +32.7% in morphology). Figure 2 shows that
the gap between word-based and char-based repre-
sentations increases as the frequency of the word
in the training data decreases. In other words, the
more frequent the word, the less need there is for
character information. These findings make intu-
itive sense: the char-based model is able to learn
character n-gram patterns that are important for
identifying word structure, but as the word be-
comes more frequent the word-based model has
seen enough examples to make a decision.

Figure 4: Increase in POS accuracy with char- vs.
word-based representations per tag frequency in
the training set; larger bubbles reflect greater gaps.

Analyzing specific tags In Figure 5 we plot
confusion matrices for POS tagging using word-
based and char-based representations (from Ara-
bic encoders). While the char-based represen-
tations are overall better, the two models still
share similar misclassified tags. Much of the
confusion comes from wrongly predicting nouns
(NN, NNP). In the word-based case, relatively
many tags with determiner (DT+NNP, DT+NNPS,
DT+NNS, DT+VBG) are wrongly predicted as
non-determined nouns (NN, NNP). In the char-
based case, this hardly happens. This suggests that
the char-based representations are predictive of the
presence of a determiner, which in Arabic is ex-
pressed as the prefix “Al-” (the definite article), a
pattern easily captured by a char-based model.

In Figure 4 we plot the difference in POS accu-
racy when moving from word-based to char-based
representations, per POS tag frequency in the
training data. Tags closer to the upper-right corner
occur more frequently in the training set and are

864

(a) Word-based representations. (b) Character-based representations.

Figure 5: Confusion matrices for POS tagging using word-based and character-based representations.

better predicted by char-based compared to word-
based representations. There are a few fairly fre-
quent tags (in the middle-bottom part of the fig-
ure) whose accuracy does not improve much when
moving from word- to char-based representations:
mostly conjunctions, determiners, and certain par-
ticles (CC, DT, WP). But there are several very
frequent tags (NN, DT+NN, DT+JJ, VBP, and
even PUNC) whose accuracy improves quite a
lot. Then there are plural nouns (NNS, DT+NNS)
where the char-based model really shines, which
makes sense linguistically as plurality in Arabic
is usually expressed by certain suffixes (“-wn/yn”
for masc. plural, “-At” for fem. plural). The char-
based model is thus especially good with frequent
tags and infrequent words, which is understand-
able given that infrequent words typically belong
to frequent open categories like nouns and verbs.

4.2 Effect of encoder depth

Modern NMT systems use very deep architectures
with up to 8 or 16 layers (Wu et al., 2016; Zhou
et al., 2016). We would like to understand what
kind of information different layers capture. Given
a trained NMT model with multiple layers, we
extract feature representations from the different
layers in the encoder. Let ENCl

i(s) denote the
encoded representation of word wi after the l-th
layer. We can vary l and train different classi-
fiers to predict POS or morphological tags. Here
we focus on the case of a 2-layer encoder-decoder
model for simplicity (l 2 {1, 2}).

Figure 6: POS tagging accuracy using representa-
tions from layers 0 (word vectors), 1, and 2, taken
from encoders of different language pairs.

Figure 6 shows POS tagging results using rep-
resentations from different encoding layers across
five language pairs. The general trend is that pass-
ing word vectors through the NMT encoder im-
proves POS tagging, which can be explained by
the contextual information contained in the repre-
sentations after one layer. However, it turns out
that representations from the 1st layer are bet-
ter than those from the 2nd layer, at least for
the purpose of capturing word structure. Fig-
ure 7 demonstrates that the same pattern holds for
both word-based and char-based representations,
on Arabic POS and morphological tagging. In all
cases, layer 1 representations are better than layer
2 representations.4 In contrast, BLEU scores ac-

4We found this result to be also true in French, German,
and Czech experiments; see appendix A.3.

865

Figure 7: POS and morphological tagging accu-
racy across layers. Layer 0: word vectors or char-
based representations before the encoder; layers 1
and 2: representations after the 1st and 2nd layers.

tually increase when training 2-layer vs. 1-layer
models (+1.11/+0.56 BLEU for Arabic-Hebrew
word/char-based models). Thus translation qual-
ity improves when adding layers but morphol-
ogy quality degrades. Intuitively, it seems that
lower layers of the network learn to represent word
structure while higher layers are more focused on
word meaning. A similar pattern was recently ob-
served in a joint language-vision deep recurrent
network (Gelderloos and Chrupała, 2016).

4.3 Effect of target language
While translating from morphologically-rich lan-
guages is challenging, translating into such lan-
guages is even harder. For instance, our ba-
sic system obtains BLEU scores of 24.69/23.2
on Arabic/Czech to English, but only 13.37/13.9
on English to Arabic/Czech. How does the
target language affect the learned source lan-
guage representations? Does translating into
a morphologically-rich language require more
knowledge about source language morphology?
In order to investigate these questions, we fix
the source language and train NMT models us-
ing different target languages. For example,
given an Arabic source side, we train Arabic-to-
English/Hebrew/German systems. These target
languages represent a morphologically-poor lan-
guage (English), a morphologically-rich language
with similar morphology to the source language
(Hebrew), and a morphologically-rich language
with different morphology (German). To make a
fair comparison, we train the models on the inter-
section of the training data based on the source
language. In this way the experimental setup is

Figure 8: Effect of target language on representa-
tion quality of the Arabic source.

completely identical: the models are trained on the
same Arabic sentences with different translations.

Figure 8 shows POS and morphological tagging
accuracy of word-based representations from the
NMT encoders, as well as corresponding BLEU
scores. As expected, translating into English is
easier than translating into the morphologically-
richer Hebrew and German, resulting in higher
BLEU scores. Despite their similar morphologi-
cal systems, translating Arabic to Hebrew is worse
than Arabic to German, which can be attributed
to the richer Hebrew morphology compared to
German. POS and morphology accuracies share
an intriguing pattern: the representations that are
learned when translating into English are better for
predicting POS or morphology than those learned
when translating into German, which are in turn
better than those learned when translating into He-
brew. This is remarkable given that English is a
morphologically-poor language that does not dis-
play many of the morphological properties that
are found in the Arabic source. In contrast, Ger-
man and Hebrew have richer morphologies, so
one could expect that translating into them would
make the model learn more about morphology.

A possible explanation for this phenomenon is
that the Arabic-English model is simply better
than the Arabic-Hebrew and Arabic-German mod-
els, as hinted by the BLEU scores in Table 2.
The inherent difficulty in translating Arabic to He-
brew/German may affect the ability to learn good
representations of word structure. To probe this
more, we trained an Arabic-Arabic autoencoder
on the same training data. We found that it learns
to recreate the test sentences extremely well, with
very high BLEU scores (Figure 8). However, its

866

word representations are actually inferior for the
purpose of POS/morphological tagging. This im-
plies that higher BLEU does not necessarily en-
tail better morphological representations. In other
words, a better translation model learns more in-
formative representations, but only when it is actu-
ally learning to translate rather than merely mem-
orizing the data as in the autoencoder case. We
found this to be consistently true also for char-
based experiments, and in other language pairs.

5 Decoder Analysis

So far we only looked at the encoder. However,
the decoder DEC is a crucial part in an MT system
with access to both source and target sentences.
In order to examine what the decoder learns about
morphology, we first train an NMT system on the
parallel corpus. Then, we use the trained model to
encode a source sentence and extract features for
words in the target sentence. These features are
used to train a classifier on POS or morphological
tagging on the target side.5 Note that in this case
the decoder is given the correct target words one-
by-one, similar to the usual NMT training regime.

Table 3 (1st row) shows the results of using rep-
resentations extracted with ENC and DEC from the
Arabic-English and English-Arabic models, re-
spectively. There is clearly a huge drop in rep-
resentation quality with the decoder.6 At first, this
drop seems correlated with lower BLEU scores in
English to Arabic vs. Arabic to English. However,
we observed similar low POS tagging accuracy
using decoder representations from high-quality
NMT models. For instance, the French-to-English
system obtains 37.8 BLEU, but its decoder rep-
resentations give a mere 54.26% accuracy on En-
glish POS tagging.

As an alternative explanation for the poor qual-
ity of the decoder representations, consider the
fundamental tasks of the two NMT modules: en-
coder and decoder. The encoder’s task is to create
a generic, close to language-independent represen-
tation of the source sentence, as shown by recent
evidence from multilingual NMT (Johnson et al.,
2016). The decoder’s task is to use this represen-
tation to generate the target sentence in a specific

5In this section we only experiment with predicted tags as
there are no parallel data with gold POS/morphological tags
that we are aware of.

6Note that the decoder results are above a majority base-
line of 20%, so the decoder is still learning something about
the target language.

POS Accuracy BLEU
Attn ENC DEC Ar-En En-Ar

3 89.62 43.93 24.69 13.37
7 74.10 50.38 11.88 5.04

Table 3: POS tagging accuracy using encoder and
decoder representations with/without attention.

language. Presumably, it is sufficient for the de-
coder to learn a strong language model in order
to produce morphologically-correct output, with-
out learning much about morphology, while the
encoder needs to learn quite a lot about source
language morphology in order to create a good
generic representation. In the following section
we show that the attention mechanism also plays
an important role in the division of labor between
encoder and decoder.

5.1 Effect of attention
Consider the role of the attention mechanism in
learning useful representations: during decoding,
the attention weights are combined with the de-
coder’s hidden states to generate the current trans-
lation. These two sources of information need to
jointly point to the most relevant source word(s)
and predict the next most likely word. Thus,
the decoder puts significant emphasis on mapping
back to the source sentence, which may come at
the expense of obtaining a meaningful representa-
tion of the current word. We hypothesize that the
attention mechanism hurts the quality of the target
word representations learned by the decoder.

To test this hypothesis, we train NMT models
with and without attention and compare the quality
of their learned representations. As Table 3 shows
(compare 1st and 2nd rows), removing the atten-
tion mechanism decreases the quality of the en-
coder representations, but improves the quality of
the decoder representations. Without the attention
mechanism, the decoder is forced to learn more
informative representations of the target language.

5.2 Effect of word representation
We also conducted experiments to verify our find-
ings regarding word-based versus character-based
representations on the decoder side. By charac-
ter representation we mean a character CNN on
the input words. The decoder predictions are still
done at the word-level, which enables us to use its
hidden states as word representations.

867

Table 4 shows POS accuracy of word-based vs.
char-based representations in the encoder and de-
coder. While char-based representations improve
the encoder, they do not help the decoder. BLEU
scores behave similarly: the char-based model
leads to better translations in Arabic-to-English,
but not in English-to-Arabic. A possible expla-
nation for this phenomenon is that the decoder’s
predictions are still done at word level even with
the char-based model (which encodes the target in-
put but not the output). In practice, this can lead
to generating unknown words. Indeed, in Arabic-
to-English the char-based model reduces the num-
ber of generated unknown words in the MT test
set by 25%, while in English-to-Arabic the num-
ber of unknown words remains roughly the same
between word-based and char-based models.

6 Related Work

Analysis of neural models The opacity of neu-
ral networks has motivated researchers to ana-
lyze such models in different ways. One line of
work visualizes hidden unit activations in recur-
rent neural networks that are trained for a given
task (Elman, 1991; Karpathy et al., 2015; Kádár
et al., 2016; Qian et al., 2016a). While such vi-
sualizations illuminate the inner workings of the
network, they are often qualitative in nature and
somewhat anecdotal. A different approach tries to
provide a quantitative analysis by correlating parts
of the neural network with linguistic properties,
for example by training a classifier to predict fea-
tures of interest. Different units have been used,
from word embeddings (Köhn, 2015; Qian et al.,
2016b), through LSTM gates or states (Qian et al.,
2016a), to sentence embeddings (Adi et al., 2016).
Our work is most similar to Shi et al. (2016), who
use hidden vectors from a neural MT encoder to
predict syntactic properties on the English source
side. In contrast, we focus on representations in
morphologically-rich languages and evaluate both
source and target sides across several criteria. Vy-
lomova et al. (2016) also analyze different repre-
sentations for morphologically-rich languages in
MT, but do not directly measure the quality of the
learned representations.

Word representations in MT Machine transla-
tion systems that deal with morphologically-rich
languages resort to various techniques for repre-
senting morphological knowledge, such as word
segmentation (Nieflen and Ney, 2000; Koehn and

POS Accuracy BLEU
ENC DEC Ar-En En-Ar

Word 89.62 43.93 24.69 13.37
Char 95.35 44.54 28.42 13.00

Table 4: POS tagging accuracy using word-based
and char-based encoder/decoder representations.

Knight, 2003; Badr et al., 2008) and factored
translation and reordering models (Koehn and
Hoang, 2007; Durrani et al., 2014). Charac-
ters and other sub-word units have become in-
creasingly popular in neural MT, although they
had also been used in phrase-based MT for han-
dling morphologically-rich (Luong et al., 2010)
or closely related language pairs (Durrani et al.,
2010; Nakov and Tiedemann, 2012). In neural
MT, such units are obtained in a pre-processing
step—e.g. by byte-pair encoding (Sennrich et al.,
2016) or the word-piece model (Wu et al., 2016)—
or learned during training using a character-based
convolutional/recurrent sub-network (Costa-jussà
and Fonollosa, 2016; Luong and Manning, 2016;
Vylomova et al., 2016). The latter approach has
the advantage of keeping the original word bound-
aries without requiring pre- and post-processing.
Here we focus on a character CNN which has
been used in language modeling and machine
translation (Kim et al., 2015; Belinkov and Glass,
2016; Costa-jussà and Fonollosa, 2016; Jozefow-
icz et al., 2016; Sajjad et al., 2017). We evaluate
the quality of different representations learned by
an MT system augmented with a character CNN
in terms of POS and morphological tagging, and
contrast them with a purely word-based system.

7 Conclusion

Neural networks have become ubiquitous in ma-
chine translation due to their elegant architecture
and good performance. The representations they
use for linguistic units are crucial for obtaining
high-quality translation. In this work, we inves-
tigated how neural MT models learn word struc-
ture. We evaluated their representation quality on
POS and morphological tagging in a number of
languages. Our results lead to the following con-
clusions:

• Character-based representations are better
than word-based ones for learning morphol-
ogy, especially in rare and unseen words.

868

• Lower layers of the neural network are better
at capturing morphology, while deeper net-
works improve translation performance. We
hypothesize that lower layers are more fo-
cused on word structure, while higher ones
are focused on word meaning.

• Translating into morphologically-poorer lan-
guages leads to better source-side representa-
tions. This is partly, but not completely, cor-
related with BLEU scores.

• The attentional decoder learns impoverished
representations that do not carry much infor-
mation about morphology.

These insights can guide further development of
neural MT systems. For instance, jointly learn-
ing translation and morphology can possibly lead
to better representations and improved translation.
Our analysis indicates that this kind of approach
should take into account factors such as the en-
coding layer and the type of word representation.

Another area for future work is to extend
the analysis to other word representations (e.g.
byte-pair encoding), deeper networks, and more
semantically-oriented tasks such as semantic role-
labeling or semantic parsing.

Acknowledgments

We would like to thank Helmut Schmid for provid-
ing the Tiger corpus, members of the MIT Spoken
Language Systems group for helpful comments,
and the three anonymous reviewers for their use-
ful suggestions. This research was carried out in
collaboration between the HBKU Qatar Comput-
ing Research Institute (QCRI) and the MIT Com-
puter Science and Artificial Intelligence Labora-
tory (CSAIL).

References
Yossi Adi, Einat Kermany, Yonatan Belinkov, Ofer

Lavi, and Yoav Goldberg. 2016. Fine-grained Anal-
ysis of Sentence Embeddings Using Auxiliary Pre-
diction Tasks. arXiv preprint arXiv:1608.04207 .

Ibrahim Badr, Rabih Zbib, and James Glass. 2008.
Segmentation for English-to-Arabic Statisti-
cal Machine Translation. In Proceedings of
the 46th Annual Meeting of the Association
for Computational Linguistics on Human Lan-
guage Technologies: Short Papers. Colum-
bus, Ohio, HLT-Short ’08, pages 153–156.
http://dl.acm.org/citation.cfm?id=1557690.1557732.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural Machine Translation by Jointly
Learning to Align and Translate. arXiv preprint
arXiv:1409.0473 .

Yonatan Belinkov and James Glass. 2016. Large-Scale
Machine Translation between Arabic and Hebrew:
Available Corpora and Initial Results. In Proceed-
ings of the Workshop on Semitic Machine Trans-
lation. Association for Computational Linguistics,
Austin, Texas, pages 7–12.

Luisa Bentivogli, Arianna Bisazza, Mauro Cettolo, and
Marcello Federico. 2016. Neural versus Phrase-
Based Machine Translation Quality: a Case Study.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, Austin, Texas,
pages 257–267. https://aclweb.org/anthology/D16-
1025.

Mauro Cettolo. 2016. An Arabic-Hebrew parallel cor-
pus of TED talks. In Proceedings of the Work-
shop on Semitic Machine Translation. Association
for Computational Linguistics, Austin, Texas, pages
1–6.

Mauro Cettolo, Christian Girardi, and Marcello Fed-
erico. 2012. WIT3: Web Inventory of Transcribed
and Translated Talks. In Proceedings of the 16th

Conference of the European Association for Ma-
chine Translation (EAMT). Trento, Italy, pages 261–
268.

Marta R. Costa-jussà and José A. R. Fonollosa. 2016.
Character-based Neural Machine Translation. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 2: Short Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 357–361.
http://anthology.aclweb.org/P16-2058.

Nadir Durrani, Philipp Koehn, Helmut Schmid,
and Alexander Fraser. 2014. Investigating the
Usefulness of Generalized Word Representations
in SMT. In Proceedings of COLING 2014,
the 25th International Conference on Compu-
tational Linguistics: Technical Papers. Dublin
City University and Association for Computa-
tional Linguistics, Dublin, Ireland, pages 421–432.
http://www.aclweb.org/anthology/C14-1041.

Nadir Durrani, Hassan Sajjad, Alexander Fraser, and
Helmut Schmid. 2010. Hindi-to-Urdu Machine
Translation through Transliteration. In Proceedings
of the 48th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Uppsala, Sweden, pages 465–
474. http://www.aclweb.org/anthology/P10-1048.

Jeffrey L Elman. 1991. Distributed representations,
simple recurrent networks, and grammatical struc-
ture. Machine learning 7(2-3):195–225.

869

Lieke Gelderloos and Grzegorz Chrupała. 2016. From
phonemes to images: levels of representation in
a recurrent neural model of visually-grounded lan-
guage learning. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers. The COLING 2016
Organizing Committee, Osaka, Japan, pages 1309–
1319. http://aclweb.org/anthology/C16-1124.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2016. Google’s Multilingual Neural Machine
Translation System: Enabling Zero-Shot Transla-
tion. arXiv preprint arXiv:1611.04558 .

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the
Limits of Language Modeling. arXiv preprint
arXiv:1602.02410 .

Ákos Kádár, Grzegorz Chrupała, and Afra Alishahi.
2016. Representation of linguistic form and func-
tion in recurrent neural networks. arXiv preprint
arXiv:1602.08952 .

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2015.
Visualizing and Understanding Recurrent Networks.
arXiv preprint arXiv:1506.02078 .

Yoon Kim. 2016. Seq2seq-attn. https://
github.com/harvardnlp/seq2seq-attn.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2015. Character-aware Neural Lan-
guage Models. arXiv preprint arXiv:1508.06615 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization. arXiv preprint
arXiv:1412.6980 .

Philipp Koehn and Hieu Hoang. 2007. Fac-
tored Translation Models. In Proceedings of
the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL). Association for Computational Linguis-
tics, Prague, Czech Republic, pages 868–876.
http://www.aclweb.org/anthology/D07-1091.

Philipp Koehn and Kevin Knight. 2003. Empirical
Methods for Compound Splitting. In 10th Con-
ference of the European Chapter of the Associa-
tion for Computational Linguistics. pages 187–194.
http://www.aclweb.org/anthology/E03-1076.

Arne Köhn. 2015. What’s in an Embedding? An-
alyzing Word Embeddings through Multilingual
Evaluation. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 2067–2073.
http://aclweb.org/anthology/D15-1246.

Minh-Thang Luong and Christopher D. Manning.
2015. Stanford Neural Machine Translation Sys-
tems for Spoken Language Domains. In Proceed-
ings of the International Workshop on Spoken Lan-
guage Translation. Da Nang, Vietnam.

Minh-Thang Luong and D. Christopher Manning.
2016. Achieving Open Vocabulary Neural Machine
Translation with Hybrid Word-Character Mod-
els. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1054–1063.
https://doi.org/10.18653/v1/P16-1100.

Minh-Thang Luong, Preslav Nakov, and Min-Yen Kan.
2010. A Hybrid Morpheme-Word Representation
for Machine Translation of Morphologically Rich
Languages. In Proceedings of the 2010 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 148–157. http://aclweb.org/anthology/D10-
1015.

Thomas Mueller, Helmut Schmid, and Hinrich
Schütze. 2013. Efficient Higher-Order CRFs for
Morphological Tagging. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Seattle, Washington, USA, pages 322–
332. http://www.aclweb.org/anthology/D13-1032.

Preslav Nakov and Jörg Tiedemann. 2012. Com-
bining Word-Level and Character-Level Models for
Machine Translation Between Closely-Related Lan-
guages. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers). Jeju, Korea, ACL ’12,
pages 301–305. http://aclweb.org/anthology/P12-
2059.

Sonja Nieflen and Hermann Ney. 2000. Improv-
ing SMT quality with morpho-syntactic analysis.
In COLING 2000 Volume 2: The 18th Interna-
tional Conference on Computational Linguistics.
http://www.aclweb.org/anthology/C00-2162.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. MADAMIRA: A Fast, Comprehensive Tool
for Morphological Analysis and Disambiguation of
Arabic. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC’14). Reykjavik, Iceland, pages 1094–1101.

Peng Qian, Xipeng Qiu, and Xuanjing Huang.
2016a. Analyzing Linguistic Knowledge in Se-
quential Model of Sentence. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Austin, Texas, pages 826–835.
https://aclweb.org/anthology/D16-1079.

870

Peng Qian, Xipeng Qiu, and Xuanjing Huang.
2016b. Investigating Language Universal and Spe-
cific Properties in Word Embeddings. In Pro-
ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1478–1488.
http://www.aclweb.org/anthology/P16-1140.

Adwait Ratnaparkhi. 1998. Maximum Entropy Models
for Natural Language Ambiguity Resolution. Ph.D.
thesis, University of Pennsylvania, Philadelphia, PA.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, Ahmed
Abdelali, Yonatan Belinkov, and Stephan Vogel.
2017. Challenging Language-Dependent Segmenta-
tion for Arabic: An Application to Machine Trans-
lation and Part-of-Speech Tagging. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Vancouver, Canada.

Helmut Schmid. 1994. Part-of-Speech Tagging with
Neural Networks. In Proceedings of the 15th Inter-
national Conference on Computational Linguistics
(Coling 1994). Coling 1994 Organizing Committee,
Kyoto, Japan, pages 172–176.

Helmut Schmid. 2000. LoPar: Design and Imple-
mentation. Bericht des Sonderforschungsbereiches
“Sprachtheoretische Grundlagen fr die Computerlin-
guistik” 149, Institute for Computational Linguis-
tics, University of Stuttgart.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016. Neural Machine Translation of
Rare Words with Subword Units. In Proceed-
ings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 1715–1725.
http://www.aclweb.org/anthology/P16-1162.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016.
Does String-Based Neural MT Learn Source Syn-
tax? In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Austin, Texas, pages 1526–1534.
https://aclweb.org/anthology/D16-1159.

Ilya Sutskever, Oriol Vinyals, and Quoc VV Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Antonio Toral and Vı́ctor M. Sánchez-Cartagena.
2017. A Multifaceted Evaluation of Neural ver-
sus Phrase-Based Machine Translation for 9 Lan-
guage Directions. In Proceedings of the 15th
Conference of the European Chapter of the As-
sociation for Computational Linguistics: Volume
1, Long Papers. Association for Computational
Linguistics, Valencia, Spain, pages 1063–1073.
http://aclweb.org/anthology/E17-1100.

Ekaterina Vylomova, Trevor Cohn, Xuanli He, and
Gholamreza Haffari. 2016. Word Representa-
tion Models for Morphologically Rich Languages
in Neural Machine Translation. arXiv preprint
arXiv:1606.04217 .

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s Neural Machine
Translation System: Bridging the Gap between
Human and Machine Translation. arXiv preprint
arXiv:1609.08144 .

Jie Zhou, Ying Cao, Xuguang Wang, Peng Li,
and Wei Xu. 2016. Deep Recurrent Mod-
els with Fast-Forward Connections for Neural
Machine Translation. Transactions of the Asso-
ciation for Computational Linguistics 4:371–383.
https://transacl.org/ojs/index.php/tacl/article/view/863.

871

A Supplementary Material

A.1 Training Details
POS/Morphological classifier The classifier
used for all prediction tasks is a feed-forward net-
work with one hidden layer, dropout (⇢ = 0.5), a
ReLU non-linearity, and an output layer mapping
to the tag set (followed by a Softmax). The size
of the hidden layer is set to be identical to the size
of the encoder’s hidden state (typically 500 dimen-
sions). We use Adam (Kingma and Ba, 2014) with
default parameters to minimize the cross-entropy
objective. Training is run with mini-batches of
size 16 and stopped once the loss on the dev set
stops improving; we allow a patience of 5 epochs.

Neural MT system We train a 2-layer LSTM
encoder-decoder with attention. We use the
seq2seq-attn implementation (Kim, 2016)
with the following default settings: word vec-
tors and LSTM states have 500 dimensions, SGD
with initial learning rate of 1.0 and rate decay
of 0.5, and dropout rate of 0.3. The character-
based model is a CNN with a highway network
over characters (Kim et al., 2015) with 1000 fea-
ture maps and a kernel width of 6 characters.
This model was found to be useful for translating
morphologically-rich languages (Costa-jussà and
Fonollosa, 2016). The MT system is trained for
20 epochs, and the model with the best dev loss is
used for extracting features for the classifier.

A.2 Data and Taggers
Datasets All of the translation models are
trained on the Ted talks corpus included in WIT3

(Cettolo et al., 2012; Cettolo, 2016). Statistics
about each language pair are available on the
WIT3 website: https://wit3.fbk.eu. For
experiments using gold tags, we used the Arabic
Treebank for Arabic (with the versions and splits
described in the MADAMIRA manual (Pasha
et al., 2014)) and the Tiger corpus for German.7

POS and morphological taggers We used the
following tools to annotate the MT corpora:
MADAMIRA (Pasha et al., 2014) for Arabic POS
and morphological tags, Tree-Tagger (Schmid,
1994) for Czech and French POS tags, LoPar
(Schmid, 2000) for German POS and morpholog-
ical tags, and MXPOST (Ratnaparkhi, 1998) for
English POS tags. These tools are recommended

7http://www.ims.uni-stuttgart.de/
forschung/ressourcen/korpora/tiger.html

on the Moses website.8 As mentioned before, our
goal is not to achieve state-of-the-art results, but
rather to study what different components of the
NMT architecture learn about word morphology.
Please refer to Mueller et al. (2013) for represen-
tative POS and morphological tagging accuracies.

A.3 Supplementary Results
We report here results that were omitted from the
paper due to the space limit. Table 5 shows en-
coder results using different layers, languages, and
representations (word/char-based). As noted in the
paper, all the results consistently show that i) layer
1 performs better than layers 0 and 2; and ii) char-
based representations are better than word-based
for learning morphology. Table 6 shows that trans-
lating into a morphologically-poor language (En-
glish) leads to better source representations, and
Table 7 provides additional decoder results.

Layer 0 Layer 1 Layer 2

Word/Char (POS)

De 91.1/92.0 93.6/95.2 93.5/94.6
Fr 92.1/92.9 95.1/95.9 94.6/95.6
Cz 76.3/78.3 77.0/79.1 75.7/80.6

Word/Char (Morphology)

De 87.6/88.8 89.5/91.2 88.7/90.5

Table 5: POS and morphology accuracy on pre-
dicted tags using word- and char-based represen-
tations from different layers of *-to-En systems.

Source
Target

English Arabic Self

German 93.5 92.7 89.3
Czech 75.7 75.2 71.8

Table 6: Impact of changing the target language
on POS tagging accuracy. Self = German/Czech
in rows 1/2 respectively.

En-De En-Cz De-En Fr-En

POS 53.6 36.3 53.3 54.1
BLEU 23.4 13.9 29.6 37.8

Table 7: POS accuracy and BLEU using decoder
representations from different language pairs.

8http://www.statmt.org/moses/?n=Moses.
ExternalTools

872

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 873–883
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1081

Context-Dependent Sentiment Analysis in User-Generated Videos
Soujanya Poria

Temasek Laboratories
NTU, Singapore

sporia@ntu.edu.sg

Erik Cambria
School of Computer Science and

Engineering, NTU, Singapore
cambria@ntu.edu.sg

Devamanyu Hazarika
Computer Science and

Engineering, NITW, India
devamanyu@sentic.net

Navonil Mazumder
Centro de Investigacin en
Computacin, IPN, Mexico
navonil@sentic.net

Amir Zadeh
Language Technologies
Institute, CMU, USA

abagherz@cs.cmu.edu

Louis-Philippe Morency
Language Technologies
Institute, CMU, USA

morency@cs.cmu.edu

Abstract

Multimodal sentiment analysis is a de-
veloping area of research, which involves
the identification of sentiments in videos.
Current research considers utterances as
independent entities, i.e., ignores the inter-
dependencies and relations among the ut-
terances of a video. In this paper, we pro-
pose a LSTM-based model that enables
utterances to capture contextual informa-
tion from their surroundings in the same
video, thus aiding the classification pro-
cess. Our method shows 5-10% perfor-
mance improvement over the state of the
art and high robustness to generalizability.

1 Introduction

Sentiment analysis is a ‘suitcase’ research prob-
lem that requires tackling many NLP sub-tasks,
e.g., aspect extraction (Poria et al., 2016a), named
entity recognition (Ma et al., 2016), concept ex-
traction (Rajagopal et al., 2013), sarcasm detec-
tion (Poria et al., 2016b), personality recognition
(Majumder et al., 2017), and more.

Sentiment analysis can be performed at differ-
ent granularity levels, e.g., subjectivity detection
simply classifies data as either subjective (opin-
ionated) or objective (neutral), while polarity de-
tection focuses on determining whether subjec-
tive data indicate positive or negative sentiment.
Emotion recognition further breaks down the in-
ferred polarity into a set of emotions conveyed by
the subjective data, e.g., positive sentiment can be
caused by joy or anticipation, while negative sen-
timent can be caused by fear or disgust.

Even though the primary focus of this paper is
to classify sentiment in videos, we also show the
performance of the proposed method for the finer-
grained task of emotion recognition.

Emotion recognition and sentiment analysis
have become a new trend in social media, help-
ing users and companies to automatically extract
the opinions expressed in user-generated content,
especially videos. Thanks to the high availability
of computers and smartphones, and the rapid rise
of social media, consumers tend to record their re-
views and opinions about products or films and
upload them on social media platforms, such as
YouTube and Facebook. Such videos often con-
tain comparisons, which can aid prospective buy-
ers make an informed decision.

The primary advantage of analyzing videos over
text is the surplus of behavioral cues present in vo-
cal and visual modalities. The vocal modulations
and facial expressions in the visual data, along
with textual data, provide important cues to bet-
ter identify affective states of the opinion holder.
Thus, a combination of text and video data helps to
create a more robust emotion and sentiment anal-
ysis model (Poria et al., 2017a).

An utterance (Olson, 1977) is a unit of speech
bound by breathes or pauses. Utterance-level sen-
timent analysis focuses on tagging every utterance
of a video with a sentiment label (instead of as-
signing a unique label to the whole video). In par-
ticular, utterance-level sentiment analysis is use-
ful to understand the sentiment dynamics of dif-
ferent aspects of the topics covered by the speaker
throughout his/her speech.

Recently, a number of approaches to multi-
modal sentiment analysis, producing interesting
results, have been proposed (Pérez-Rosas et al.,
2013; Wollmer et al., 2013; Poria et al., 2015).
However, there are major issues that remain un-
addressed. Not considering the relation and de-
pendencies among the utterances is one of such is-
sues. State-of-the-art approaches in this area treat
utterances independently and ignore the order of
utterances in a video (Cambria et al., 2017b).

873

https://doi.org/10.18653/v1/P17-1081

Every utterance in a video is spoken at a distinct
time and in a particular order. Thus, a video can
be treated as a sequence of utterances. Like any
other sequence classification problem (Collobert
et al., 2011), sequential utterances of a video may
largely be contextually correlated and, hence, in-
fluence each other’s sentiment distribution. In our
paper, we give importance to the order in which
utterances appear in a video.

We treat surrounding utterances as the con-
text of the utterance that is aimed to be classi-
fied. For example, the MOSI dataset (Zadeh et al.,
2016) contains a video, in which a girl reviews
the movie ‘Green Hornet’. At one point, she says
“The Green Hornet did something similar”. Nor-
mally, doing something similar, i.e., monotonous
or repetitive might be perceived as negative. How-
ever, the nearby utterances “It engages the audi-
ence more”, “they took a new spin on it”, “and I
just loved it” indicate a positive context.

The hypothesis of the independence of tokens
is quite popular in information retrieval and data
mining, e.g., bag-of-words model, but it has a lot
limitations (Cambria and White, 2014). In this pa-
per, we discard such an oversimplifying hypothe-
sis and develop a framework based on long short-
term memory (LSTM) that takes a sequence of ut-
terances as input and extracts contextual utterance-
level features.

The other uncovered major issues in the lit-
erature are the role of speaker-dependent versus
speaker-independent models, the impact of each
modality across the dataset, and generalization
ability of a multimodal sentiment classifier. Leav-
ing these issues unaddressed has presented diffi-
culties in effective comparison of different multi-
modal sentiment analysis methods. In this work,
we address all of these issues.

Our model preserves the sequential order of
utterances and enables consecutive utterances to
share information, thus providing contextual infor-
mation to the utterance-level sentiment classifica-
tion process. Experimental results show that the
proposed framework has outperformed the state of
the art on three benchmark datasets by 5-10%.

The paper is organized as follows: Section 2
provides a brief literature review on multimodal
sentiment analysis; Section 3 describes the pro-
posed method in detail; experimental results and
discussion are shown in Section 4; finally, Sec-
tion 5 concludes the paper.

2 Related Work

The opportunity to capture people’s opinions has
raised growing interest both within the scientific
community, for the new research challenges, and
in the business world, due to the remarkable bene-
fits to be had from financial market prediction.

Text-based sentiment analysis systems can
be broadly categorized into knowledge-based
and statistics-based approaches (Cambria et al.,
2017a). While the use of knowledge bases
was initially more popular for the identification
of polarity in text (Cambria et al., 2016; Poria
et al., 2016c), sentiment analysis researchers have
recently been using statistics-based approaches,
with a special focus on supervised statistical meth-
ods (Socher et al., 2013; Oneto et al., 2016).

In 1974, Ekman (Ekman, 1974) carried out
extensive studies on facial expressions which
showed that universal facial expressions are able
to provide sufficient clues to detect emotions. Re-
cent studies on speech-based emotion analysis
(Datcu and Rothkrantz, 2008) have focused on
identifying relevant acoustic features, such as fun-
damental frequency (pitch), intensity of utterance,
bandwidth, and duration.

As for fusing audio and visual modalities for
emotion recognition, two of the early works
were (De Silva et al., 1997) and (Chen et al.,
1998). Both works showed that a bimodal system
yielded a higher accuracy than any unimodal sys-
tem. More recent research on audio-visual fusion
for emotion recognition has been conducted at ei-
ther feature level (Kessous et al., 2010) or decision
level (Schuller, 2011). While there are many re-
search papers on audio-visual fusion for emotion
recognition, only a few have been devoted to mul-
timodal emotion or sentiment analysis using tex-
tual clues along with visual and audio modalities.
(Wollmer et al., 2013) and (Rozgic et al., 2012)
fused information from audio, visual, and textual
modalities to extract emotion and sentiment.

Poria et al. (Poria et al., 2015, 2016d, 2017b)
extracted audio, visual and textual features us-
ing convolutional neural network (CNN); concate-
nated those features and employed multiple kernel
learning (MKL) for final sentiment classification.
(Metallinou et al., 2008) and (Eyben et al., 2010a)
fused audio and textual modalities for emotion
recognition. Both approaches relied on a feature-
level fusion. (Wu and Liang, 2011) fused audio
and textual clues at decision level.

874

3 Method

In this work, we propose a LSTM network that
takes as input the sequence of utterances in a video
and extracts contextual unimodal and multimodal
features by modeling the dependencies among the
input utterances. M number of videos, comprising
of its constituent utterances, serve as the input. We
represent the dataset as U = u1, u2, u3..., uM and
each ui = ui,1, ui,2, ..., ui, Li where Li is the num-
ber of utterances in video ui. Below, we present
an overview of the proposed method in two major
steps.

A. Context-Independent Unimodal Utterance-
Level Feature Extraction

Firstly, the unimodal features are extracted
without considering the contextual informa-
tion of the utterances (Section 3.1).

B. Contextual Unimodal and Multimodal
Classification

Secondly, the context-independent unimodal
features (from Step A) are fed into a LSTM
network (termed contextual LSTM) that al-
lows consecutive utterances in a video to
share information in the feature extraction
process (Section 3.2).

We experimentally show that this pro-
posed framework improves the performance
of utterance-level sentiment classification over
traditional frameworks.

3.1 Extracting Context-Independent
Unimodal Features

Initially, the unimodal features are extracted from
each utterance separately, i.e., we do not consider
the contextual relation and dependency among the
utterances. Below, we explain the textual, audio,
and visual feature extraction methods.

3.1.1 text-CNN: Textual Features Extraction
The source of textual modality is the transcrip-
tion of the spoken words. For extracting features
from the textual modality, we use a CNN (Karpa-
thy et al., 2014). In particular, we first repre-
sent each utterance as the concatenation of vec-
tors of the constituent words. These vectors are
the publicly available 300-dimensional word2vec
vectors trained on 100 billion words from Google
News (Mikolov et al., 2013).

The convolution kernels are thus applied to
these concatenated word vectors instead of indi-
vidual words. Each utterance is wrapped to a win-
dow of 50 words which serves as the input to the
CNN. The CNN has two convolutional layers; the
first layer has two kernels of size 3 and 4, with 50
feature maps each and the second layer has a ker-
nel of size 2 with 100 feature maps.

The convolution layers are interleaved with
max-pooling layers of window 2 × 2. This is
followed by a fully connected layer of size 500
and softmax output. We use a rectified linear
unit (ReLU) (Teh and Hinton, 2001) as the acti-
vation function. The activation values of the fully-
connected layer are taken as the features of utter-
ances for text modality. The convolution of the
CNN over the utterance learns abstract representa-
tions of the phrases equipped with implicit seman-
tic information, which with each successive layer
spans over increasing number of words and ulti-
mately the entire utterance.

3.1.2 openSMILE: Audio Feature Extraction
Audio features are extracted at 30 Hz frame-rate
and a sliding window of 100 ms. To compute
the features, we use openSMILE (Eyben et al.,
2010b), an open-source software that automati-
cally extracts audio features such as pitch and
voice intensity. Voice normalization is performed
and voice intensity is thresholded to identify sam-
ples with and without voice. Z-standardization is
used to perform voice normalization.

The features extracted by openSMILE con-
sist of several low-level descriptors (LLD), e.g.,
MFCC, voice intensity, pitch, and their statistics,
e.g., mean, root quadratic mean, etc. Specifically,
we use IS13-ComParE configuration file in openS-
MILE. Taking into account all functionals of each
LLD, we obtained 6373 features.

3.1.3 3D-CNN: Visual Feature Extraction
We use 3D-CNN (Ji et al., 2013) to obtain vi-
sual features from the video. We hypothesize
that 3D-CNN will not only be able to learn rele-
vant features from each frame, but will also learn
the changes among given number of consecutive
frames.

In the past, 3D-CNN has been successfully
applied to object classification on tridimensional
data (Ji et al., 2013). Its ability to achieve state-
of-the-art results motivated us to adopt it in our
framework.

875

Let vid ∈ Rc×f×h×w be a video, where c = num-
ber of channels in an image (in our case c = 3,
since we consider only RGB images), f = num-
ber of frames, h = height of the frames, and w =
width of the frames. Again, we consider the 3D
convolutional filter filt ∈ Rfm×c×fd×fh×fw , where
fm = number of feature maps, c = number of chan-
nels, fd = number of frames (in other words depth
of the filter), fh = height of the filter, and fw =
width of the filter. Similar to 2D-CNN, filt slides
across video vid and generates output convout ∈
Rfm×c×(f−fd+1)×(h−fh+1)×(w−fw+1). Next, we ap-
ply max pooling to convout to select only relevant
features. The pooling will be applied only to the
last three dimensions of the array convout.

In our experiments, we obtained best results
with 32 feature maps (fm) with the filter-size of
5 × 5 × 5 (or fd × fh × fw). In other words, the
dimension of the filter is 32 × 3 × 5 × 5 × 5 (or
fm × c × fd × fh × fw). Subsequently, we apply
max pooling on the output of convolution opera-
tion, with window-size being 3 × 3 × 3. This is
followed by a dense layer of size 300 and softmax.
The activation values of this dense layer are finally
used as the video features for each utterance.

3.2 Context-Dependent Feature Extraction

In sequence classification, the classification of
each member is dependent on the other members.
Utterances in a video maintain a sequence. We hy-
pothesize that, within a video, there is a high prob-
ability of inter-utterance dependency with respect
to their sentimental clues.

In particular, we claim that, when classifying
one utterance, other utterances can provide impor-
tant contextual information. This calls for a model
which takes into account such inter-dependencies
and the effect these might have on the target ut-
terance. To capture this flow of informational
triggers across utterances, we use a LSTM-based
recurrent neural network (RNN) scheme (Gers,
2001).

3.2.1 Long Short-Term Memory
LSTM (Hochreiter and Schmidhuber, 1997) is a
kind of RNN, an extension of conventional feed-
forward neural network. Specifically, LSTM cells
are capable of modeling long-range dependencies,
which other traditional RNNs fail to do given the
vanishing gradient issue. Each LSTM cell consists
of an input gate i, an output gate o, and a forget
gate f , to control the flow of information.

Current research (Zhou et al., 2016) indicates
the benefit of using such networks to incorporate
contextual information in the classification pro-
cess. In our case, the LSTM network serves the
purpose of context-dependent feature extraction
by modeling relations among utterances. We term
our architecture ‘contextual LSTM’. We propose
several architectural variants of it later in the pa-
per.

3.2.2 Contextual LSTM Architecture
Let unimodal features have dimension k, each
utterance is thus represented by a feature vec-
tor xi,t ∈ Rk, where t represents the tth utter-
ance of the video i. For a video, we collect the
vectors for all the utterances in it, to get Xi =[xi,1,xi,2, ...,xi,Li] ∈ RLi×k, where Li represents
the number of utterances in the video. This ma-
trix Xi serves as the input to the LSTM. Figure 1
demonstrates the functioning of this LSTM mod-
ule.

In the procedure, getLstmFeatures(Xi) of Al-
gorithm 1, each of these utterance xi,t is passed
through a LSTM cell using the equations men-
tioned in line 32 to 37. The output of the LSTM
cell hi,t is then fed into a dense layer and finally
into a softmax layer (line 38 to 39). The activa-
tions of the dense layer zi,t are used as the context-
dependent features of contextual LSTM.

3.2.3 Training
The training of the LSTM network is performed
using categorical cross-entropy on each utter-
ance’s softmax output per video, i.e.,

loss = − 1(∑Mi=1Li)
M∑
i=1

Li∑
j=1

C∑
c=1 y

j
i,c log2(ŷji,c),

where M = total number of videos, Li = number
of utterances for ith video, yji,c = original output

of class c, and ŷji,c = predicted output for jth utter-
ance of ith video.

As a regularization method, dropout between
the LSTM cell and dense layer is introduced to
avoid overfitting. As the videos do not have the
same number of utterances, padding is introduced
to serve as neutral utterances. To avoid the prolif-
eration of noise within the network, bit masking is
done on these padded utterances to eliminate their
effect in the network. Hyper-parameters tuning is
done on the training set by splitting it into train
and validation components with 80/20% split.

876

Softmax Output

Dense Layer Output

Contextual features

sc-LSTM

Utterance 1 Utterance 2 Utterance n

LSTMLSTM LSTM

Utterance 3

LSTM

...

...

...

...

...

Figure 1: Contextual LSTM network: input features are passed through an unidirectional LSTM layer, followed by a dense and
then a softmax layer. The dense layer activations serve as the output features.

RMSprop has been used as the optimizer which
is known to resolve Adagrad’s radically dimin-
ishing learning rates (Duchi et al., 2011). After
feeding the training set to the network, the test
set is passed through it to generate their context-
dependent features. These features are finally
passed through an SVM for the final classification.

Different Network Architectures We consider
the following variants of the contextual LSTM ar-
chitecture in our experiments.

sc-LSTM This variant of the contextual
LSTM architecture consists of unidirectional
LSTM cells. As this is the simple variant of the
contextual LSTM, we termed it as simple contex-
tual LSTM (sc-LSTM1).

h-LSTM We also investigate an architecture
where the dense layer after the LSTM cell is omit-
ted. Thus, the output of the LSTM cell hi,t pro-
vides our context-dependent features and the soft-
max layer provides the classification. We call this
architecture hidden-LSTM (h-LSTM).

bc-LSTM Bi-directional LSTMs are two uni-
directional LSTMs stacked together having oppo-
site directions. Thus, an utterance can get infor-
mation from utterances occurring before and after
itself in the video. We replaced the regular LSTM
with a bi-directional LSTM and named the result-
ing architecture as bi-directional contextual LSTM
(bc-LSTM). The training process of this architec-
ture is similar to sc-LSTM.

1http://github.com/senticnet/sc-lstm

uni-SVM In this setting, we first obtain the
unimodal features as explained in Section 3.1,
concatenate them and then send to an SVM for the
final classification. It should be noted that using a
gated recurrent unit (GRU) instead of LSTM did
not improve the performance.

3.3 Fusion of Modalities
We accomplish multimodal fusion through two
different frameworks, described below.

3.3.1 Non-hierarchical Framework
In this framework, we concatenate context-
independent unimodal features (from Section 3.1)
and feed that into the contextual LSTM networks,
i.e., sc-LSTM, bc-LSTM, and h-LSTM.

3.3.2 Hierarchical Framework
Contextual unimodal features can further improve
performance of the multimodal fusion framework
explained in Section 3.3.1. To accomplish this, we
propose a hierarchical deep network which con-
sists of two levels.

Level-1 Context-independent unimodal fea-
tures (from Section 3.1) are fed to the proposed
LSTM network to get context-sensitive unimodal
feature representations for each utterance. Individ-
ual LSTM networks are used for each modality.

Level-2 This level consists of a contextual
LSTM network similar to Level-1 but independent
in training and computation. Output from each
LSTM network in Level-1 are concatenated and
fed into this LSTM network, thus providing an in-
herent fusion scheme (see Figure 2).

877

Figure 2: Hierarchical architecture for extracting context-
dependent multimodal utterance features (see Figure 1 for the
LSTM module).

The performance of the second level banks on
the quality of the features from the previous level,
with better features aiding the fusion process. Al-
gorithm 1 describes the overall computation for ut-
terance classification. For the hierarchical frame-
work, we train Level-1 and Level-2 successively
but separately, i.e., the training is not performed
“end-to-end”.

Weight Bias
Wi,Wf ,Wc,Wo ∈ Rd×k bi, bf , bc, bo ∈ Rd

Pi, Pf , Pc, PoVo ∈ Rd×d bz ∈ Rm

Wz ∈ Rm×d bsft ∈ Rc

Wsft ∈ Rc×m

Table 1: Summary of notations used in Algorithm 1. Leg-
enda: d = dimension of hidden unit; k = dimension of input
vectors to LSTM layer; c = number of classes.

4 Experiments

4.1 Dataset details
Most of the research in multimodal sentiment
analysis is performed on datasets with speaker
overlap in train and test splits. Because each in-
dividual has a unique way of expressing emotions
and sentiments, however, finding generic, person-
independent features for sentiment analysis is very
important.

Algorithm 1 Proposed Architecture
1: procedure TRAINARCHITECTURE(U, V)
2: Train context-independent models with U
3: for i:[1,M] do ▷ extract baseline features
4: for j:[1,Li] do
5: xi,j ← TextFeatures(ui,j)
6: x

′
i,j ← V ideoFeatures(ui,j)

7: x”i,j ← AudioFeatures(ui,j)
8: Unimodal:
9: Train LSTM at Level-1 with X,X

′
andX”.

10: for i:[1,M] do ▷ unimodal features
11: Zi ← getLSTMFeatures(Xi)
12: Z

′
i ← getLSTMFeatures(X ′

i)
13: Z”

i ← getLSTMFeatures(X”
i)

14: Multimodal:
15: for i:[1,M] do
16: for j:[1,Li] do
17: if Non-hierarchical fusion then
18: x∗i,j ← (xi,j ∣∣x′i,j ∣∣x”i,j) ▷

concatenation
19: else
20: if Hierarchical fusion then
21: x∗i,j ← (zi,j ∣∣z′i,j ∣∣z”i,j) ▷

concatenation
22: Train LSTM at Level-2 with X∗.
23: for i:[1,M] do ▷ multimodal features
24: Z∗

i ← getLSTMFeatures(X∗
i)

25: testArchitecture(V)
26: return Z∗
27: procedure TESTARCHITECTURE(V)
28: Similar to training phase. V is passed through the

learnt models to get the features and classification out-
puts. Table 1 shows the trainable parameters.

29: procedure GETLSTMFEATURES(Xi) ▷ for ith video
30: Zi ← φ
31: for t:[1,Li] do ▷ Table 1 provides notation
32: it ← σ(Wixi,t + Pi.ht−1 + bi)
33: C̃t ← tanh(Wcxi,t + Pcht−1 + bc)
34: ft ← σ(Wfxt + Pfht−1 + bf)
35: Ct ← it ∗ C̃t + ft ∗Ct−1
36: ot ← σ(Woxt + Poht−1 + VoCt + bo)
37: ht ← ot ∗ tanh(Ct) ▷ output of lstm cell
38: zt ← ReLU(Wzht + bz) ▷ dense layer
39: prediction← softmax(Wsftzt + bsft)
40: Zi ← Zi ∪ zt
41: return Zi

In real-world applications, the model should be
robust to person idiosyncrasy but it is very diffi-
cult to come up with a generalized model from the
behavior of a limited number of individuals. To
this end, we perform person-independent experi-
ments to study generalization of our model, i.e.,
our train/test splits of the datasets are completely
disjoint with respect to speakers.

Multimodal Sentiment Analysis Datasets

MOSI The MOSI dataset (Zadeh et al., 2016)
is a dataset rich in sentimental expressions where
93 people review topics in English. The videos

878

are segmented with each segments sentiment label
scored between +3 (strong positive) to -3 (strong
negative) by 5 annotators. We took the average
of these five annotations as the sentiment polarity
and, hence, considered only two classes (positive
and negative). The train/validation set consists of
the first 62 individuals in the dataset. The test set
contains opinionated videos by rest 31 speakers.
In particular, 1447 and 752 utterances are used in
training and test, respectively.

MOUD This dataset (Pérez-Rosas et al.,
2013) contains product review videos provided by
55 persons. The reviews are in Spanish (we used
Google Translate API2 to get the English tran-
scripts). The utterances are labeled to be either
positive, negative or neutral. However, we drop
the neutral label to maintain consistency with pre-
vious work. Out of 79 videos in the dataset, 59
videos are considered in the train/val set.

Multimodal Emotion Recognition Datasets

IEMOCAP The IEMOCAP (Busso et al.,
2008) contains the acts of 10 speakers in a two-
way conversation segmented into utterances. The
medium of the conversations in all the videos is
English. The database contains the following cat-
egorical labels: anger, happiness, sadness, neutral,
excitement, frustration, fear, surprise, and other,
but we take only the first four so as to compare
with the state of the art (Rozgic et al., 2012).
Videos by the first 8 speakers are considered in
the training set. The train/test split details are pro-
vided in Table 2, which provides information re-
garding train/test split of all the datasets. Table 2
also provides cross-dataset split details where the
datasets MOSI and MOUD are used for training
and testing, respectively. The proposed model be-
ing used on reviews from different languages al-
lows us to analyze its robustness and generalizabil-
ity.

4.1.1 Characteristic of the Datasets
In order to evaluate the robustness of our proposed
method, we employ it on multiple datasets of
different kinds. Both MOSI and MOUD are
used for the sentiment classification task but
they consist of review videos spoken in different
languages, i.e., English and Spanish, respectively.

2http://translate.google.com

IEMOCAP dataset is different from MOSI and
MOUD since it is annotated with emotion la-
bels. Apart from this, IEMOCAP dataset was
created using a different method than MOSI and
MOUD. These two datasets were developed by
crawling consumers’ spontaneous online product
review videos from popular social websites and
later labeled with sentiment labels. To curate the
IEMOCAP dataset, instead, subjects were pro-
vided affect-related scripts and asked to act.

As pointed out by Poria et al. (Poria et al.,
2017a), acted dataset like IEMOCAP can suffer
from biased labeling and incorrect acting which
can further cause the poor generalizability of the
models trained on the acted datasets.

Dataset Train Test
uttrnce video uttrnce video

IEMOCAP 4290 120 1208 31
MOSI 1447 62 752 31

MOUD 322 59 115 20
MOSI→MOUD 2199 93 437 79

Table 2: uttrnce: Utterance; Person-Independent Train/Test
split details of each dataset (≈ 70/30 % split). Legenda: X→Y
represents train: X and test: Y; Validation sets are extracted
from the shuffled training sets using 80/20 % train/val ratio.

It should be noted that the datasets’ individ-
ual configuration and splits are same throughout
all the experiments (i.e., context-independent uni-
modal feature extraction, LSTM-based context-
dependent unimodal and multimodal feature ex-
traction and classification).

4.2 Performance of Different Models

In this section, we present unimodal and multi-
modal sentiment analysis performance of differ-
ent LSTM network variants as explained in Sec-
tion 3.2.3 and comparison with the state of the art.

Hierarchical vs Non-hierarchical Fusion
Framework As expected, trained contextual
unimodal features help the hierarchical fusion
framework to outperform the non-hierarchical
framework. Table 3 demonstrates this by com-
paring the hierarchical and the non-hierarchical
frameworks using the bc-LSTM network.

For this reason, we the rest of the analysis only
leverages on the hierarchical framework. The
non-hierarchical model outperforms the baseline
uni-SVM, which confirms that it is the context-
sensitive learning paradigm that plays the key role
in improving performance over the baseline.

879

Comparison of Different Network Variants It
is to be noted that both sc-LSTM and bc-LSTM
perform quite well on the multimodal emotion
recognition and sentiment analysis datasets. Since
bc-LSTM has access to both the preceding and
following information of the utterance sequence,
it performs consistently better on all the datasets
over sc-LSTM. The usefulness of the dense layer
in increasing the performance is evident from the
experimental results shown in Table 3. The per-
formance improvement is in the range of 0.3%
to 1.5% on MOSI and MOUD datasets. On the
IEMOCAP dataset, the performance improvement
of bc-LSTM and sc-LSTM over h-LSTM is in the
range of 1% to 5%.

Comparison with the Baselines Every LSTM
network variant has outperformed the baseline
uni-SVM on all the datasets by the margin of
2% to 5% (see Table 3). These results prove
our initial hypothesis that modeling the contex-
tual dependencies among utterances (which uni-
SVM cannot do) improves the classification. The
higher performance improvement on the IEMO-
CAP dataset indicates the necessity of modeling
long-range dependencies among the utterances as
continuous emotion recognition is a multiclass se-
quential problem where a person does not fre-
quently change emotions (Wöllmer et al., 2008).
We have implemented and compared with the cur-
rent state-of-the-art approach proposed by (Po-
ria et al., 2015). In their method, they extracted
features from each modality and fed these to a
MKL classifier. However, they did not conduct
the experiment in a speaker-independent manner
and also did not consider the contextual relation
among the utterances. In Table 3, the results in
bold are statistically significant (p < 0.05) in com-
pare to uni-SVM. Experimental results in Table 4
show that the proposed method outperformes (Po-
ria et al., 2015) by a significant margin. For the
emotion recognition task, we have compared our
method with the current state of the art (Rozgic
et al., 2012), who extracted features in a similar
fashion to (Poria et al., 2015) (although they used
SVM trees (Yuan et al., 2006) for the fusion).

4.3 Importance of the Modalities

As expected, in all kinds of experiments, bimodal
and trimodal models have outperformed unimodal
models. Overall, audio modality has performed
better than visual on all the datasets.

On MOSI and IEMOCAP datasets, the tex-
tual classifier achieves the best performance over
other unimodal classifiers. On IEMOCAP dataset,
the unimodal and multimodal classifiers obtained
poor performance to classify neutral utterances.
The textual modality, combined with non-textual
modes, boosts the performance in IEMOCAP by
a large margin. However, the margin is less in the
other datasets.

On the MOUD dataset, the textual modality per-
forms worse than audio modality due to the noise
introduced in translating Spanish utterances to En-
glish. Using Spanish word vectors3 in text-CNN
results in an improvement of 10%. Nonetheless,
we report results using these translated utterances
as opposed to utterances trained on Spanish word
vectors, in order to make fair comparison with
(Poria et al., 2015).

4.4 Generalization of the Models
To test the generalizability of the models, we have
trained our framework on complete MOSI dataset
and tested on MOUD dataset (Table 5). The per-
formance was poor for audio and textual modal-
ity as the MOUD dataset is in Spanish while
the model is trained on MOSI dataset, which is
in English language. However, notably the vi-
sual modality performs better than the other two
modalities in this experiment, which means that
in cross-lingual scenarios facial expressions carry
more generalized, robust information than audio
and textual modalities. We could not carry out a
similar experiment for emotion recognition as no
other utterance-level dataset apart from the IEMO-
CAP was available at the time of our experiments.

4.5 Qualitative Analysis
The need for considering context dependency (see
Section 1) is of prime importance for utterance-
level sentiment classification. For example, in the
utterance “What would have been a better name
for the movie”, the speaker is attempting to com-
ment the quality of the movie by giving an appro-
priate name. However, the sentiment is expressed
implicitly and requires the contextual knowledge
about the mood of the speaker and his/her general
opinion about the film. The baseline unimodal-
SVM and state of the art fail to classify this utter-
ance correctly4.

3http://crscardellino.me/SBWCE
4RNTN classifies it as neutral. It can be seen here

http://nlp.stanford.edu:8080/sentiment/rntnDemo.html

880

Modality
MOSI MOUD IEMOCAP

hierarchical (%)

no
n-

hi
er

(%
) hierarchical (%)

no
n-

hi
er

(%
) hierarchical (%)

no
n-

hi
er

(%
)

un
i-

SV
M

h-
L

ST
M

sc
-L

ST
M

bc
-L

ST
M

un
i-

SV
M

h-
L

ST
M

sc
-L

ST
M

bc
-L

ST
M

un
i-

SV
M

h-
L

ST
M

sc
-L

ST
M

bc
-L

ST
M

T 75.5 77.4 77.6 78.1 49.5 50.1 51.3 52.1 65.5 68.9 71.4 73.6
V 53.1 55.2 55.6 55.8 46.3 48.0 48.2 48.5 47.0 52.0 52.6 53.2
A 58.5 59.6 59.9 60.3 51.5 56.3 57.5 59.9 52.9 54.4 55.2 57.1

T + V 76.7 78.9 79.9 80.2 78.5 50.2 50.6 51.3 52.2 50.9 68.5 70.3 72.3 75.4 73.2
T + A 75.8 78.3 78.8 79.3 78.2 53.1 56.9 57.4 60.4 55.5 70.1 74.1 75.2 75.6 74.5
V + A 58.6 61.5 61.8 62.1 60.3 62.8 62.9 64.4 65.3 64.2 67.6 67.8 68.2 68.9 67.3

T + V + A 77.9 78.1 78.6 80.3 78.1 66.1 66.4 67.3 68.1 67.0 72.5 73.3 74.2 76.1 73.5

Table 3: Comparison of models mentioned in Section 3.2.3. The table reports the accuracy of classification. Legenda: non-hier← Non-hierarchical bc-lstm. For remaining fusion, hierarchical fusion framework is used (Section 3.3.2).

Modality Sentiment (%) Emotion on IEMOCAP (%)
MOSI MOUD angry happy sad neutral

T 78.12 52.17 76.07 78.97 76.23 67.44
V 55.80 48.58 53.15 58.15 55.49 51.26
A 60.31 59.99 58.37 60.45 61.35 52.31

T + V 80.22 52.23 77.24 78.99 78.35 68.15
T + A 79.33 60.39 77.15 79.10 78.10 69.14
V + A 62.17 65.36 68.21 71.97 70.35 62.37

A + V + T 80.30 68.11 77.98 79.31 78.30 69.92
State-of

73.551 63.251 73.10 2 72.402 61.902 58.102

-the-art
1by (Poria et al., 2015),2by (Rozgic et al., 2012)

Table 4: Accuracy % on textual (T), visual (V), audio (A)
modality and comparison with the state of the art. For the
fusion, the hierarchical fusion framework was used.

Modality MOSI→MOUD
uni-SVM h-LSTM sc-LSTM bc-LSTM

T 46.5% 46.5% 46.6% 46.9%
V 43.3% 45.5% 48.3% 49.6%
A 42.9% 46.0% 46.4% 47.2%

T + V 49.8% 49.8% 49.8% 49.8%
T + A 50.4% 50.9% 51.1% 51.3%
V + A 46.0% 47.1% 49.3% 49.6%

T + V + A 51.1% 52.2% 52.5% 52.7%

Table 5: Cross-dataset comparison in terms of classification
accuracy.

However, information from neighboring ut-
terances, e.g., “And I really enjoyed it” and
“The countryside which they showed while go-
ing through Ireland was astoundingly beautiful”
indicate its positive context and help our contex-
tual model to classify the target utterance cor-
rectly. Such contextual relationships are prevalent
throughout the dataset.

In order to have a better understanding of the
roles of each modality for the overall classifica-
tion, we have also done some qualitative analy-
sis. For example, the utterance “who doesn’t have

any presence or greatness at all” was classified
as positive by the audio classifier (as “presence
and greatness at all” was spoken with enthusiasm).
However, the textual modality caught the negation
induced by “doesn’t” and classified it correctly.
The same happened to the utterance “amazing spe-
cial effects”, which presented no jest of enthusi-
asm in the speaker’s voice nor face, but was cor-
rectly classified by the textual classifier.

On other hand, the textual classifier classified
the utterance “that like to see comic book charac-
ters treated responsibly” as positive (for the pres-
ence of “like to see” and “responsibly”) but the
high pitch of anger in the person’s voice and the
frowning face helps to identify this as a negative
utterance. In some cases, the predictions of the
proposed method are wrong because of face oc-
clusion or noisy audio. Also, in cases where sen-
timent is very weak and non contextual, the pro-
posed approach shows some bias towards its sur-
rounding utterances, which further leads to wrong
predictions.

5 Conclusion

The contextual relationship among utterances in a
video is mostly ignored in the literature. In this pa-
per, we developed a LSTM-based network to ex-
tract contextual features from the utterances of a
video for multimodal sentiment analysis. The pro-
posed method has outperformed the state of the art
and showed significant performance improvement
over the baseline.

As future work, we plan to develop a LSTM-
based attention model to determine the importance
of each utterance and its specific contribution to
each modality for sentiment classification.

881

References
Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe

Kazemzadeh, Emily Mower, Samuel Kim, Jean-
nette N Chang, Sungbok Lee, and Shrikanth S
Narayanan. 2008. Iemocap: Interactive emotional
dyadic motion capture database. Language re-
sources and evaluation 42(4):335–359.

Erik Cambria, Dipankar Das, Sivaji Bandyopadhyay,
and Antonio Feraco. 2017a. A Practical Guide to
Sentiment Analysis. Springer, Cham, Switzerland.

Erik Cambria, Devamanyu Hazarika, Soujanya Po-
ria, Amir Hussain, and RBV Subramanyam. 2017b.
Benchmarking multimodal sentiment aanlysis. In
CICLing.

Erik Cambria, Soujanya Poria, Rajiv Bajpai, and Björn
Schuller. 2016. SenticNet 4: A semantic resource
for sentiment analysis based on conceptual primi-
tives. In COLING. pages 2666–2677.

Erik Cambria and Bebo White. 2014. Jumping NLP
curves: A review of natural language processing re-
search. IEEE Computational Intelligence Magazine
9(2):48–57.

Lawrence S Chen, Thomas S Huang, Tsutomu
Miyasato, and Ryohei Nakatsu. 1998. Multimodal
human emotion/expression recognition. In Proceed-
ings of the Third IEEE International Conference
on Automatic Face and Gesture Recognition. IEEE,
pages 366–371.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Dragos Datcu and L Rothkrantz. 2008. Seman-
tic audio-visual data fusion for automatic emotion
recognition. Euromedia’2008 .

Liyanage C De Silva, Tsutomu Miyasato, and Ryohei
Nakatsu. 1997. Facial emotion recognition using
multi-modal information. In Proceedings of ICICS.
IEEE, volume 1, pages 397–401.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

Paul Ekman. 1974. Universal facial expressions of
emotion. Culture and Personality: Contemporary
Readings/Chicago .

Florian Eyben, Martin Wöllmer, Alex Graves, Björn
Schuller, Ellen Douglas-Cowie, and Roddy Cowie.
2010a. On-line emotion recognition in a 3-d
activation-valence-time continuum using acoustic
and linguistic cues. Journal on Multimodal User In-
terfaces 3(1-2):7–19.

Florian Eyben, Martin Wöllmer, and Björn Schuller.
2010b. Opensmile: the munich versatile and fast
open-source audio feature extractor. In Proceedings
of the 18th ACM international conference on Multi-
media. ACM, pages 1459–1462.

Felix Gers. 2001. Long Short-Term Memory in Re-
current Neural Networks. Ph.D. thesis, Universität
Hannover.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 2013.
3d convolutional neural networks for human action
recognition. IEEE transactions on pattern analysis
and machine intelligence 35(1):221–231.

Andrej Karpathy, George Toderici, Sanketh Shetty,
Thomas Leung, Rahul Sukthankar, and Li Fei-Fei.
2014. Large-scale video classification with convolu-
tional neural networks. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recog-
nition. pages 1725–1732.

Loic Kessous, Ginevra Castellano, and George Cari-
dakis. 2010. Multimodal emotion recognition in
speech-based interaction using facial expression,
body gesture and acoustic analysis. Journal on Mul-
timodal User Interfaces 3(1-2):33–48.

Yukun Ma, Erik Cambria, and Sa Gao. 2016. Label
embedding for zero-shot fine-grained named entity
typing. In COLING. Osaka, pages 171–180.

Navonil Majumder, Soujanya Poria, Alexander Gel-
bukh, and Erik Cambria. 2017. Deep learning based
document modeling for personality detection from
text. IEEE Intelligent Systems 32(2):74–79.

Angeliki Metallinou, Sungbok Lee, and Shrikanth
Narayanan. 2008. Audio-visual emotion recogni-
tion using gaussian mixture models for face and
voice. In Tenth IEEE International Symposium on
ISM 2008. IEEE, pages 250–257.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

David Olson. 1977. From utterance to text: The bias
of language in speech and writing. Harvard educa-
tional review 47(3):257–281.

Luca Oneto, Federica Bisio, Erik Cambria, and Davide
Anguita. 2016. Statistical learning theory and ELM
for big social data analysis. IEEE Computational
Intelligence Magazine 11(3):45–55.

Verónica Pérez-Rosas, Rada Mihalcea, and Louis-
Philippe Morency. 2013. Utterance-level multi-
modal sentiment analysis. In ACL (1). pages 973–
982.

882

Soujanya Poria, Erik Cambria, Rajiv Bajpai, and Amir
Hussain. 2017a. A review of affective computing:
From unimodal analysis to multimodal fusion. In-
formation Fusion .

Soujanya Poria, Erik Cambria, and Alexander Gel-
bukh. 2015. Deep convolutional neural network
textual features and multiple kernel learning for
utterance-level multimodal sentiment analysis. In
Proceedings of EMNLP. pages 2539–2544.

Soujanya Poria, Erik Cambria, and Alexander Gel-
bukh. 2016a. Aspect extraction for opinion min-
ing with a deep convolutional neural network.
Knowledge-Based Systems 108:42–49.

Soujanya Poria, Erik Cambria, D Hazarika, and Prateek
Vij. 2016b. A deeper look into sarcastic tweets using
deep convolutional neural networks. In COLING.
pages 1601–1612.

Soujanya Poria, Iti Chaturvedi, Erik Cambria, and Fed-
erica Bisio. 2016c. Sentic LDA: Improving on LDA
with semantic similarity for aspect-based sentiment
analysis. In IJCNN. pages 4465–4473.

Soujanya Poria, Iti Chaturvedi, Erik Cambria, and
Amir Hussain. 2016d. Convolutional mkl based
multimodal emotion recognition and sentiment anal-
ysis. In Data Mining (ICDM), 2016 IEEE 16th In-
ternational Conference on. IEEE, pages 439–448.

Soujanya Poria, Haiyun Peng, Amir Hussain, Newton
Howard, and Erik Cambria. 2017b. Ensemble appli-
cation of convolutional neural networks and multiple
kernel learning for multimodal sentiment analysis.
Neurocomputing .

Dheeraj Rajagopal, Erik Cambria, Daniel Olsher, and
Kenneth Kwok. 2013. A graph-based approach to
commonsense concept extraction and semantic sim-
ilarity detection. In WWW. Rio De Janeiro, pages
565–570.

Viktor Rozgic, Sankaranarayanan Ananthakrishnan,
Shirin Saleem, Rohit Kumar, and Rohit Prasad.
2012. Ensemble of svm trees for multimodal emo-
tion recognition. In Signal & Information Pro-
cessing Association Annual Summit and Conference
(APSIPA ASC), 2012 Asia-Pacific. IEEE, pages 1–4.

Björn Schuller. 2011. Recognizing affect from linguis-
tic information in 3d continuous space. IEEE Trans-
actions on Affective Computing 2(4):192–205.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of EMNLP. pages 1631–1642.

Vee Teh and Geoffrey E Hinton. 2001. Rate-coded re-
stricted boltzmann machines for face recognition. In
T Leen, T Dietterich, and V Tresp, editors, Advances
in neural information processing system. volume 13,
pages 908–914.

Martin Wöllmer, Florian Eyben, Stephan Reiter,
Björn W Schuller, Cate Cox, Ellen Douglas-Cowie,
Roddy Cowie, et al. 2008. Abandoning emo-
tion classes-towards continuous emotion recognition
with modelling of long-range dependencies. In In-
terspeech. volume 2008, pages 597–600.

Martin Wollmer, Felix Weninger, Timo Knaup, Bjorn
Schuller, Congkai Sun, Kenji Sagae, and Louis-
Philippe Morency. 2013. Youtube movie reviews:
Sentiment analysis in an audio-visual context. IEEE
Intelligent Systems 28(3):46–53.

Chung-Hsien Wu and Wei-Bin Liang. 2011. Emo-
tion recognition of affective speech based on mul-
tiple classifiers using acoustic-prosodic information
and semantic labels. IEEE Transactions on Affective
Computing 2(1):10–21.

Xun Yuan, Wei Lai, Tao Mei, Xian-Sheng Hua, Xiu-
Qing Wu, and Shipeng Li. 2006. Automatic video
genre categorization using hierarchical svm. In Im-
age Processing, 2006 IEEE International Confer-
ence on. IEEE, pages 2905–2908.

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-
Philippe Morency. 2016. Multimodal sentiment in-
tensity analysis in videos: Facial gestures and verbal
messages. IEEE Intelligent Systems 31(6):82–88.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-
based bidirectional long short-term memory net-
works for relation classification. In The 54th Annual
Meeting of the Association for Computational Lin-
guistics. pages 207–213.

883

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 884–895
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1082

A Multidimensional Lexicon for Interpersonal Stancetaking

Umashanthi Pavalanathan
Georgia Institute of Technology

Atlanta, GA
umashanthi@gatech.edu

Jim Fitzpatrick
University of Pittsburgh

Pittsburgh, PA
jim.fitzpatrick@gmail.com

Scott F. Kiesling
University of Pittsburgh

Pittsburgh, PA
kiesling@pitt.edu

Jacob Eisenstein
Georgia Institute of Technology

Atlanta, GA
jacobe@gatech.edu

Abstract

The sociolinguistic construct of stancetak-
ing describes the activities through which
discourse participants create and signal re-
lationships to their interlocutors, to the
topic of discussion, and to the talk it-
self. Stancetaking underlies a wide range
of interactional phenomena, relating to
formality, politeness, affect, and subjec-
tivity. We present a computational ap-
proach to stancetaking, in which we build
a theoretically-motivated lexicon of stance
markers, and then use multidimensional
analysis to identify a set of underlying
stance dimensions. We validate these
dimensions intrinsically and extrinsically,
showing that they are internally coherent,
match pre-registered hypotheses, and cor-
relate with social phenomena.

1 Introduction

What does it mean to be welcoming or standoffish,
light-hearted or cynical? Such interactional styles
are performed primarily with language, yet little is
known about how linguistic resources are arrayed
to create these social impressions. The sociolin-
guistic concept of interpersonal stancetaking at-
tempts to answer this question, by providing a con-
ceptual framework that accounts for a range of in-
terpersonal phenomena, subsuming formality, po-
liteness, and subjectivity (Du Bois, 2007).1 This

1Stancetaking is distinct from the notion of stance which
corresponds to a position in a debate (Walker et al., 2012).
Similarly, Freeman et al. (2014) correlate phonetic features
with the strength of such argumentative stances.

framework has been applied almost exclusively
through qualitative methods, using close readings
of individual texts or dialogs to uncover how lan-
guage is used to position individuals with respect
to their interlocutors and readers.

We attempt the first large-scale operationaliza-
tion of stancetaking through computational meth-
ods. Du Bois (2007) formalizes stancetaking as
a multi-dimensional construct, reflecting the re-
lationship of discourse participants to (a) the au-
dience or interlocutor; (b) the topic of discourse;
(c) the talk or text itself. However, the multi-
dimensional nature of stancetaking poses prob-
lems for traditional computational approaches, in
which labeled data is obtained by relying on anno-
tator intuitions about scalar concepts such polite-
ness (Danescu-Niculescu-Mizil et al., 2013) and
formality (Pavlick and Tetreault, 2016).

Instead, our approach is based on a
theoretically-guided application of unsupervised
learning, in the form of factor analysis, applied
to lexical features. Stancetaking is characterized
in large part by an array of linguistic features
ranging from discourse markers such as actually
to backchannels such as yep (Kiesling, 2009).
We therefore first compile a lexicon of stance
markers, combining prior lexicons from Biber and
Finegan (1989) and the Switchboard Dialogue Act
Corpus (Jurafsky et al., 1998). We then extend this
lexicon to the social media domain using word
embeddings. Finally, we apply multi-dimensional
analysis of co-occurrence patterns to identify a
small set of stance dimensions.

To measure the internal coherence (construct
validity) of the stance dimensions, we use a word

884

https://doi.org/10.18653/v1/P17-1082

intrusion task (Chang et al., 2009) and a set of pre-
registered hypotheses. To measure the utility of
the stance dimensions, we perform a series of ex-
trinsic evaluations. A predictive evaluation shows
that the membership of online communities is de-
termined in part by the interactional stances that
predominate in those communities. Furthermore,
the induced stance dimensions are shown to align
with annotations of politeness and formality.

Contributions We operationalize the sociolin-
guistic concept of stancetaking as a multi-
dimensional framework, making it possible to
measure at scale. Specifically,

• we contribute a lexicon of stance markers based
on prior work and adapted to the genre of online
interpersonal discourse;

• we group stance markers into latent dimensions;

• we show that these stance dimensions are inter-
nally coherent;

• we demonstrate that the stance dimensions pre-
dict and correlate with social phenomena.2

2 Related Work

From a theoretical perspective, we build on
prior work on interactional meaning in language.
Methodologically, our paper relates to prior work
on lexicon-based analysis and contrastive studies
of social media communities.

2.1 Linguistic Variation and Social Meaning
In computational sociolinguistics (Nguyen et al.,
2016), language variation has been studied pri-
marily in connection with macro-scale social vari-
ables, such as age (Argamon et al., 2007; Nguyen
et al., 2013), gender (Burger et al., 2011; Bam-
man et al., 2014), race (Eisenstein et al., 2011;
Blodgett et al., 2016), and geography (Eisenstein
et al., 2010). This parallels what Eckert (2012)
has called the “first wave” of language variation
studies in sociolinguistics, which also focused on
macro-scale variables.

More recently, sociolinguists have dedicated in-
creased attention to situational and stylistic varia-
tion, and the interactional meaning that such vari-
ation can convey (Eckert and Rickford, 2001).
This linguistic research can be aligned with com-
putational efforts to quantify phenomena such

2Lexicons and stance dimensions are available at
https://github.com/umashanthi-research/
multidimensional-stance-lexicon

as subjectivity (Riloff and Wiebe, 2003), senti-
ment (Wiebe et al., 2005), politeness (Danescu-
Niculescu-Mizil et al., 2013), formality (Pavlick
and Tetreault, 2016), and power dynamics (Prab-
hakaran et al., 2012). While linguistic research
on interactional meaning has focused largely on
qualitative methodologies such as discourse anal-
ysis (e.g., Bucholtz and Hall, 2005), these com-
putational efforts have made use of crowdsourced
annotations to build large datasets of, for example,
polite and impolite text. These annotation efforts
draw on the annotators’ intuitions about the mean-
ing of these sociolinguistic constructs.

Interpersonal stancetaking represents an at-
tempt to unify concepts such as sentiment, polite-
ness, formality, and subjectivity under a single the-
oretical framework (Jaffe, 2009; Kiesling, 2009).
The key idea, as articulated by Du Bois (2007), is
that stancetaking captures the speaker’s relation-
ship to (a) the topic of discussion, (b) the inter-
locutor or audience, and (c) the talk (or writing)
itself. Various configurations of these three legs
of the “stance triangle” can account for a range
of phenomena. For example, epistemic stance re-
lates to the speaker’s certainty about what is be-
ing expressed, while affective stance indicates the
speaker’s emotional position with respect to the
content (Ochs, 1993).

The framework of stancetaking has been widely
adopted in linguistics, particularly in the discourse
analytic tradition, which involves close reading
of individual texts or conversations (Kärkkäinen,
2006; Keisanen, 2007; Precht, 2003; White, 2003).
But despite its strong theoretical foundation, we
are aware of no prior efforts to operationalize
stancetaking at scale. Since annotators may not
have strong intuitions about stance — in the way
that they do about formality and politeness — we
cannot rely on the annotation methodologies em-
ployed in prior work. We take a different ap-
proach, performing a multidimensional analysis of
the distribution of likely stance markers.

2.2 Lexicon-based Analysis

Our operationalization of stancetaking is based on
the induction of lexicons of stance markers. The
lexicon-based methodology is related to earlier
work from social psychology, such as the Gen-
eral Inquirer (Stone, 1966) and LIWC (Tausczik
and Pennebaker, 2010). In LIWC, the basic cate-
gories were identified first, based on psychological

885

constructs (e.g., positive emotion, cognitive pro-
cesses, drive to power) and syntactic groupings of
words and phrases (e.g., pronouns, prepositions,
quantifiers). The lexicon designers then manually
contructed lexicons for each category, augmenting
their intuitions by using distributional statistics to
suggest words that may have been missed (Pen-
nebaker et al., 2015). In contrast, we follow the
approach of Biber (1991), using multidimensional
analysis to identify latent groupings of markers
based on co-occurrence statistics. We then use
crowdsourcing and extrinsic comparisons to val-
idate the coherence of these dimensions.

2.3 Multicommunity Studies

Social media platforms such as Reddit, Stack Ex-
change, and Wikia can be considered multicom-
munity environments, in that they host multiple
subcommunities with distinct social and linguis-
tic properties. Such subcommunities can be con-
trasted in terms of topics (Adamic et al., 2008;
Hessel et al., 2014) and social networks (Back-
strom et al., 2006). Our work focuses on Red-
dit, emphasizing community-wide differences in
norms for interpersonal interaction. In the same
vein, Tan and Lee (2015) attempt to characterize
stylistic differences across subreddits by focusing
on very common words and parts-of-speech; Tran
and Ostendorf (2016) use language models and
topic models to measure similarity across threads
within a subreddit. One distinction of our ap-
proach is that the use of multidimensional analy-
sis gives us interpretable dimensions of variation.
This makes it possible to identify the specific in-
terpersonal features that vary across communities.

3 Data

Reddit, one of the internet’s largest social me-
dia platforms, is a collection of subreddits or-
ganized around various topics of interest. As
of January 2017, there were more than one mil-
lion subreddits and nearly 250 million users, dis-
cussing topics ranging from politics (r/politics)
to horror stories (r/nosleep).3 Although Reddit
was originally designed for sharing hyperlinks, it
also provides the ability to post original textual
content, submit comments, and vote on content
quality (Gilbert, 2013). Reddit’s conversation-like
threads are therefore well suited for the study of
interpersonal social and linguistic phenomena.

3http://redditmetrics.com/

Subreddits 126,789
Authors 6,401,699
Threads 52,888,024
Comments 531,804,658

Table 1: Dataset size

For example, the following are two comments
from the subreddit r/malefashionadvice, posted in
response to a picture posted by a user asking for
fashion advise.

U1: “I think the beard looks pretty good. Defi-
nitely not the goatee. Clean shaven is always
the safe option.”

U2: “Definitely the beard. But keep it trimmed.”

The phrases in bold face are markers of stance,
indicating a evaluative stance. The following
example is a part of a thread in the subreddit
r/photoshopbattles where users discuss an edited
image posted by the original poster OP. The
phrases in bold face are markers of stance,
indicating an involved and interactional stance.

U3: “Ha ha awesome!”
U4: ‘‘are those..... furries?”

OP: “yes, sir. They are!”
U4: “Oh cool. That makes sense!”

We used an archive of 530 million comments
posted on Reddit in 2014, retrieved from the pub-
lic archive of Reddit comments.4 This dataset
consists of each post’s textual content, along with
metadata that identifies the subreddit, thread, au-
thor, and post creation time. More statistics about
the full dataset are shown in Table 1.

4 Stance Lexicon

Interpersonal stancetaking can be characterized in
part by an array of linguistic features such as
hedges (e.g., might, kind of), discourse markers
(e.g., actually, I mean), and backchannels (e.g.,
yep, um). Our analysis focuses on these markers,
which we collect into a lexicon.

4.1 Seed lexicon
We began with a seed lexicon of stance markers
from Biber and Finegan (1989), who compiled an

4https://archive.org/details/2015_
reddit_comments_corpus

886

extensive list by surveying dictionaries, previous
studies on stance, and texts in several genres of
English. This list includes certainty adverbs (e.g.,
actually, of course, in fact), affect markers (e.g.,
amazing, thankful, sadly), and hedges (e.g., kind
of, maybe, something like) among other adverbial,
adjectival, verbal, and modal markers of stance. In
total, this list consists of 448 stance markers.

The Biber and Finegan (1989) lexicon is pri-
marily based on written genres from the pre-social
media era. Our dataset — like much of the re-
cent work in this domain — consists of online dis-
cussions, which differ significantly from printed
texts (Eisenstein, 2013). One difference is that
online discussions contain a number of dialog act
markers that are characteristic of spoken language,
such as oh yeah, nah, wow. We accounted for
this by adding 74 dialog act markers from the
Switchboard Dialog Act Corpus (Jurafsky et al.,
1998). The final seed lexicon consists of 517
unique markers, from these two sources. Note that
the seed lexicon also includes markers that contain
multiple tokens (e.g. kind of, I know).

4.2 Lexicon expansion
Online discussions differ not only from writ-
ten texts, but also from spoken discussions,
due to their use of non-standard vocabulary and
spellings. To measure stance accurately, these
genre differences must be accounted for. We
therefore expanded the seed lexicon using auto-
mated techniques based on distributional statistics.
This is similar to prior work on the expansion of
sentiment lexicons (Hatzivassiloglou and McKe-
own, 1997; Hamilton et al., 2016).

Our lexicon expansion approach used word em-
beddings to find words that are distributionally
similar to those in the seed set. We trained word
embeddings on a corpus of 25 million Reddit com-
ments and a vocabulary of 100K most frequent
words on Reddit using the structured skip-gram
models of both WORD2VEC (Mikolov et al., 2013)
and WANG2VEC (Ling et al., 2015) with default
parameters. The WANG2VEC method augments
WORD2VEC by accounting for word order infor-
mation. We found the similarity judgments ob-
tained from WANG2VEC to be qualitatively more
meaningful, so we used these embeddings to con-
struct the expanded lexicon.5

5We used the following default parameters: 100 dimen-
sions, a window size of five, a negative sampling size of ten,
five-epoch iterations, and a sub-sampling rate of 10−4.

Seed term Expanded terms

(Example seeds from Biber and Finegan (1989))

significantly considerably, substantially, dramatically
certainly surely, frankly, definitely
incredibly extremely, unbelievably, exceptionally

(Example seeds from Jurafsky et al. (1998))

nope nah, yup, nevermind
great fantastic, terrific, excellent

Table 2: Stance lexicon: seed and expanded terms.

To perform lexicon expansion, we constructed
a dictionary of candidate terms, consisting of all
unigrams that occur with a frequency rate of at
least 10−7 in the Reddit comment corpus. Then,
for each single-token marker in the seed lexi-
con, we identified all terms from the candidate
set whose embedding has cosine similarity of at
least 0.75 with respect to the seed marker.6 Ta-
ble 2 shows examples of seed markers and re-
lated terms we extracted from word embeddings.
Through this procedure, we identified 228 addi-
tional markers based on similarity to items in the
seed list from Biber and Finegan (1989), and 112
additional markers based on the seed list of dia-
log acts. In total, our stance lexicon contains 812
unique markers.

5 Linguistic Dimensions of Stancetaking

To summarize the main axes of variation across
the lexicon of stance markers, we apply a multi-
dimensional analysis (Biber, 1992) to the distribu-
tional statistics of stance markers across subred-
dit communities. Each dimension of variation can
then be viewed as a spectrum, characterized by the
stance markers and subreddits that are associated
with the positive and negative extremes. Multi-
dimensional analysis is based on singular value
decomposition, which has been applied success-
fully to a wide range of problems in natural lan-
guage processing and information retrieval (e.g.,
Landauer et al., 1998). While Bayesian topic mod-
els are an appealing alternative, singular value de-
composition is fast and deterministic, with a min-
imal number of tuning parameters.

6We tried different thresholds on the similarity value and
the corpus frequency, and the reported values were chosen
based on the quality of the resulting related terms. This was
done prior to any of the validations or extrinsic analyses de-
scribed later in the paper.

887

5.1 Extracting Stance Dimensions

Our analysis is based on the co-occurrence of
stance markers and subreddits. This is motivated
by our interest in comparisons of the interactional
styles of online communities within Reddit, and
by the premise that these distributional differences
reflect socially meaningful communicative norms.
A pilot study applied the same technique to the co-
occurrence of stance markers and individual au-
thors, and the resulting dimensions appeared to be
less stylistically coherent.

Singular value decomposition is often used in
combination with a transformation of the co-
occurrence counts by pointwise mutual informa-
tion (Bullinaria and Levy, 2007). This transforma-
tion ensures that each cell in the matrix indicates
how much more likely a stance marker is to co-
occur with a given subreddit than would happen
by chance under an independence assumption. Be-
cause negative PMI values tend to be unreliable,
we use positive PMI (PPMI), which involves re-
placing all negative PMI values with zeros (Niwa
and Nitta, 1994). Therefore, we obtain stance di-
mensions by applying singular value decomposi-
tion to the matrix constructed as follows:

Xm,s =

(
log

Pr(marker = m, subreddit = s)

Pr(marker = m) Pr(subreddit = s)

)

+

.

Truncated singular value decomposition per-
forms the approximate factorization X ≈ UΣV >,
where each row of the matrix U is a k-dimensional
description of each stance marker, and each row of
V is a k-dimensional description of each subred-
dit. We included the 7,589 subreddits that received
at least 1,000 comments in 2014.

5.2 Results: Stance Dimensions
From the SVD analysis, we extracted the six prin-
cipal latent dimensions that explain the most vari-
ation in our dataset.7 The decision to include only
the first six dimensions was based on the strength
of the singular values corresponding to the dimen-
sions. Table 3 shows the top five stance markers
for each extreme of the six dimensions. The stance
dimensions convey a range of concepts, such as
involved versus informational language, narrative

7Similar to factor analysis, the top few dimensions of
SVD explain the most variation, and tend to be most inter-
pretable. A scree plot (Cattell, 1966) showed that the amount
of variation explained dropped after the top six dimensions,
and qualitative interpretation showed that the remaining di-
mension were less interpretable.

0.04 0.03 0.02 0.01 0.00 0.01 0.02 0.03

0.02

0.01

0.00

0.01

0.02

gadgets

nsfw

politics

funny

space
malefashionadvice

food

worldnews

explainlikeimfive
tattoos

facepalm

photoshopbattles

aww

asksc ience

trees

gonewild

sc ience

programming

personalfinance

atheism
4chan

his tory

(+)Dim-2(-)

D
im

-3
(+

)
(-

)

Figure 1: Mapping of subreddits in dimension
two and dimension three, highlighting especially
popular subreddits. Picture-oriented subreddits
r/gonewild and r/aww map high on dimension two
and low on dimension three, indicating involved
and informal style of discourse. Subreddits ded-
icated for knowledge sharing discussions such as
r/askscience and r/space map low on dimension
two and high on dimension three indicating infor-
mational and formal style.

versus dialogue-oriented writing, standard versus
non-standard variation, and positive versus nega-
tive affect. Figure 1 shows the distribution of sub-
reddits along two of these dimensions.

6 Construct Validity

Evaluating model output against gold-standard an-
notations is appropriate when there is some no-
tion of a correct answer. As stancetaking is a
multidimensional concept, we have taken an unsu-
pervised approach. Therefore, we use evaluation
techniques based on the notion of validity, which
is the extent to which the operationalization of a
construct truly captures the intended quantity or
concept. Validation techniques for unsupervised
content analysis are widely found in the social sci-
ence literature (Weber, 1990; Quinn et al., 2010)
and have also been recently used in the NLP and
machine learning communities (e.g., Chang et al.,
2009; Murphy et al., 2012; Sim et al., 2013).

We used several methods to validate the stance
dimensions extracted from the corpus of Reddit
comments. This section describes intrinsic eval-
uations, which test whether the extracted stance
dimensions are linguistically coherent and mean-

888

Stance markers Subreddits

Dim-1 - beautifully, pleased, thanks, spectacular, delightful philosophy, history, science
+ just, even, all, no, so pcmasterrace, leagueoflegends, gaming

Dim-2 - suggests that, demonstrates, conclude, demonstrated, demonstrate philosophy, science, askscience,
+ lovely, awww, hehe, aww, haha gonewild, nsfw, aww

Dim-3 - funnier, hilarious, disturbing, creepy, funny cringe, creepy, cringepics
+ thanks, ideally, calculate, estimate, calculation askscience, personalfinance, space

Dim-4 - phenomenal, bummed, enjoyed, fantastic, disappointing movies, television, books
+ hello, thx, hehe, aww, hi philosophy, 4chan, atheism

Dim-5 - lovely, stunning, wonderful, delightful, beautifully gonewild, aww, tattoos
+ nvm, cmon, smh, lmao, disappointing nfl, soccer, cringe

Dim-6 - stunning, fantastic, incredible, amazing, spectacular philosophy, gonewild, askscience
+ anxious, stressed, exhausted, overwhelmed, relieved relationships, sex, nosleep

Table 3: For each of the six dimensions extracted by our method, we show the five markers and three
subreddits (among the 100 most popular subreddits) with the highest loadings.

ingful, thereby testing the construct or content va-
lidity of the proposed stance dimensions (Quinn
et al., 2010). Extrinsic evaluations are presented
in section 7.

6.1 Word Intrusion Task

A word intrusion task is used to measure the co-
herence and interpretability of a group of words.
Human raters are presented with a list of terms, all
but one of which are selected from a target con-
cept; their task is to identify the intruder. If the
target concept is internally coherent, human raters
should be able to perform this task accurately; if
not, their selections should be random. Word in-
trusion tasks have previously been used to validate
the interpretability of topic models (Chang et al.,
2009) and vector space models (Murphy et al.,
2012).

We deployed a word intrusion task on Amazon
Mechanical Turk (AMT), in which we presented
the top four stance markers from one end of a di-
mension, along with an intruder marker selected
from the top four markers of the opposite end of
that dimension. In this way, we created four word
intrusion tasks for each end of each dimension.
The main reason for including only the top four
words in each dimension is the expense of con-
ducting crowd-sourced evaluations. In the most
relevant prior work, Chang et al. (2009) used the
top five words from each topic in their evaluation
of topic models.

Worker selection We required that the AMT
workers (“turkers”) have completed a minimum of
1,000 HITs and have at least 95% approval rate

Furthermore, because our task is based on analysis
of English language texts, we required the turkers
to be native speakers of English living in one of
the majority English speaking countries. As a fur-
ther requirement, we required the turkers to obtain
a qualification which involves an English compre-
hension test similar to the questions in standard-
ized English language tests. These requirements
are based on best practices identified by Callison-
Burch and Dredze (2010).

Task specification Each AMT human intelli-
gence task (HIT) consists of twelve word intrusion
tasks, one for each end of the six dimensions. We
provided minimal instructions regarding the task,
and did not provide any examples, to avoid intro-
ducing bias.8 As a further quality control, each
HIT included three questions which ask the turkers
to pick the best synonym for a given word from a
list of five answers, where one answer was clearly
correct; Turkers who gave incorrect answers were
to be excluded, but this situation did not arise in
practice. Altogether each HIT consists of 15 ques-
tions, and was paid US$1.50. Five different turk-
ers performed each HIT.

Results We measured the interrater reliability
using Krippendorf’s α (Krippendorff, 2007) and
the model precision metric of Chang et al. (2009).
Results on both metrics were encouraging. We
obtained a value of α = 0.73, on a scale where

8The prompt for the word intrusions task was: “Select the
intruder word/phrase: you will be given a list of five English
words/phrases and asked to pick the word/phrase that is least
similar to the other four words/phrases when used in online
discussion forums.”

889

α = 0 indicates chance agreement and α = 1 indi-
cates perfect agreement. The model precision was
0.82; chance precision is 0.20. To offer a sense of
typical values for this metric, Chang et al. (2009)
report model precisions in the range 0.7–0.83 in
their analysis of topic models. Overall, these re-
sults indicate that the multi-dimensional analysis
has succeeded at identifying dimensions that re-
flect natural groupings of stance markers.

6.2 Pre-registered Hypotheses

Content validity was also assessed using a set of
pre-registered hypotheses. The practice of pre-
registering hypotheses before an analysis and test-
ing the correctness is widely used in the social
sciences; it was adopted by Sim et al. (2013)
to evaluate the induction of political ideological
models from text. Before performing the muti-
dimensional analysis, we identified two groups of
hypotheses that are expected to hold with respect
to the latent stancetaking dimensions using our
prior linguistic knowledge:

• Hypothesis I: Stance markers that are syn-
onyms should not appear on the opposite
ends of a stance dimension.
• Hypothesis II: If at least one stance marker

from a predefined stance feature group (de-
fined below) appears on one end of a stance
dimension, then other markers from the same
feature group will tend not to appear at the
opposite end of the same dimension.

6.2.1 Synonym Pairs
For each marker in our stance lexicon, we ex-
tracted synonyms from Wordnet, focusing on
markers that appear in only one Wordnet synset,
and not including pairs in which one term was
an inflection of the other.9 Our final list contains
73 synonym pairs (e.g., eventually/finally, grate-
ful/thankful, yea/yeah). Of these pairs, there were
59 cases in which both terms appeared in either the
top or bottom 200 positions of a stance dimension.
In 51 of these cases (86%), the two terms appeared
on the same side of the dimension. The chance rate
would be 50%, so this supports Hypothesis I and

9It is possible that inflections are semantically similar, be-
cause by definition they are changes in the form of a word to
mark distinctions such as tense, person, or number. However,
different inflections of a single word form might be used to
mark different stances (e.g., some stances might be associ-
ated with the past while others might be associated with the
present or future).

Number of synonym pairs
Stance Dimension On same end On opposite ends

DIMENSION 1 6 3
DIMENSION 2 12 2
DIMENSION 3 2 1
DIMENSION 4 11 0
DIMENSION 5 10 2
DIMENSION 6 10 0

Total 51/59 8/59

Table 4: Results for pre-registered hypothesis that
stance dimensions will not split synonym pairs.

further validates the stance dimensions. More de-
tails of the results are shown in Table 4. Note that
synonym pairs may differ in aspects such as for-
mality (e.g., said/informed, want/desire), which
is one of the main dimensions of stancetaking.
Therefore, perfect support for Hypothesis I is not
expected.

6.2.2 Stance Feature Groups
Biber and Finegan (1989) group stance markers
into twelve “feature groups”, such as certainty
adverbs, doubt adverbs, affect expressions, and
hedges. Ideally, the stance dimensions should pre-
serve these groupings. To test this, for each of
the seven feature groups with at least ten stance
markers in the lexicon, we counted the number
of terms appearing among the top 200 positions
in both ends (high/low) of each dimension. Un-
der the null hypothesis, the stance dimensions are
random with respect to the feature groups, so we
would expect roughly an equal number of mark-
ers on both ends. As shown in Table 5, for five of
the seven feature groups, it is possible to reject the
null hypothesis at p < .007, which is the signifi-
cance threshold at α = 0.05, after correcting for
multiple comparisons using the Bonferroni correc-
tion. This indicates that the stance dimensions are
aligned with predefined stance feature groups.

7 Extrinsic Evaluations

The evaluations in the previous section test inter-
nal validity; we now describe evaluations testing
whether the stance dimensions are relevant to ex-
ternal social and interactional phenomena.

7.1 Predicting Cross-posting
Online communities can be considered as commu-
nities of practice (Eckert and McConnell-Ginet,
1992), where members come together to engage
in shared linguistic practices. These practices

890

Feature #Stance χ2 p-value Reject
group marker null?

Certainty adv. 38 16.94 4.6e−03 X
Doubt adv. 23 13.21 2.2e−02 ×
Certainty verbs 36 48.99 2.2e−09 X
Doubt verbs 55 30.45 1.2e−05 X
Certainty adj. 28 29.73 1.7e−05 X
Doubt adj. 12 14.80 1.1e−02 ×
Affect exp. 227 97.17 2.1e−19 X

Table 5: Results for preregistered hypothesis that
stance dimensions will align with stance feature
groups of Biber and Finegan (1989).

evolve simultaneously with membership, coalesc-
ing into shared norms. The memberships of mul-
tiple subreddits on the same topic (e.g., r/science
and r/askscience) often do not overlap consider-
ably. Therefore we hypothesize that users of Red-
dit have preferred interactional styles, and that par-
ticipation in subreddit communities is governed
not only by topic interest, but also by these inter-
actional preferences. The proposed stancetaking
dimensions provide a simple measure of interac-
tional style, allowing us to test whether it is pre-
dictive of community membership decisions.

Classification task We design a classification
task, in which the goal is to determine whether
a pair of subreddits is high-crossover or low-
crossover. In high-crossover subreddit pairs, indi-
viduals are especially likely to participate in both.
For the purpose of this evaluation, individuals are
considered to participate in a subreddit if they con-
tribute posts or comments. We compute the point-
wise mutual information (PMI) with respect to
cross-participation among the 100 most popular
subreddits. For each subreddit s, we identify the
five highest and lowest PMI pairs 〈s, t〉, and add
these to the high-crossover and low-crossover sets,
respectively. Example pairs are shown in Table 6.
After eliminating redundant pairs, we identify 437
unique high-crossover pairs, and 465 unique low-
crossover pairs. All evaluations are based on mul-
tiple random training/test splits over this dataset.

Classification approaches A simple classifica-
tion approach is to predict that subreddits with
similar text will have high crossover. We mea-
sure similarity using TF-IDF weighted cosine sim-
ilarity, using two possible lexicons: the 8,000
most frequent words on reddit (BOW), and the
stance lexicon (STANCE MARKERS). The simi-
larity threshold between high-crossover and low-

Cross-Community Participation

High-Scoring Pairs Low-Scoring Pairs

r/blog, r/announcements r/gonewild, r/leagueoflegends
r/pokemon, r/wheredidthesodago r/soccer, r/nosleep
r/politics, r/technology r/programming, r/gonewild
r/LifeProTips, r/dataisbeautiful r/nfl, r/leagueoflegends
r/Unexpected, r/JusticePorn r/Minecraft, r/personalfinance

Table 6: Examples of subreddit pairs that have
large and small amount of overlap of contributing
members.

Cosine SVD

BOW 66.13% 77.48%
STANCE MARKERS 64.31% 84.93%

Table 7: Accuracy for prediction of subreddit
cross-participation.

crossover pairs was estimated on the training data.
We also tested the relevance of multi-dimensional
analysis, by applying SVD to both lexicons. For
each pair of subreddits, we computed a feature set
of the absolute difference across the top six latent
dimensions, and applied a logistic regression clas-
sifier. Regularization was tuned by internal cross-
validation.

Results Table 7 shows average accuracies for
these models. The stance-based SVD features
are considerably more accurate than the BOW-
based SVD features, indicating that interactional
style does indeed predict cross-posting behavior.10

Both are considerably more accurate than the bag-
of-words models based on cosine similarity.

7.2 Politeness and Formality
The utility of the induced stance dimensions de-
pends on their correlation with social phenomena
of interest. Prior work has used crowdsourcing
to annotate texts for politeness and formality. We
now evaluate the stancetaking properties of these
annotated texts.

Data We used the politeness corpus of
Wikipedia edit requests from Danescu-Niculescu-
Mizil et al. (2013), which includes the textual
content of the edit requests, along with scalar
annotations of politeness. Following the original

10We use BOW+SVD as the most comparable content-
based alternative to our stancetaking dimensions. While there
may be more accurate discriminative approaches, our goal is
a direct comparison of stance and content-based features, not
an exhaustive comparison of classification approaches.

891

authors, we compare the text for the messages
ranked in the first and fourth quartiles of polite-
ness scores. For formality, we used the corpus
from Pavlick and Tetreault (2016), focusing on
the blogs domain, which is most similar to our
domain of Reddit. Each sentence in this corpus
was annotated for formality levels from −3 to
+3. We considered only the sentences with mean
formality score greater than +1 (more formal)
and less than −1 (less formal).

Stance dimensions For each document in the
above datasets, we compute the stance properties,
as follows: for each dimension, we compute the
total frequency of the hundred most positive terms
and the hundred most negative terms, and then
take the difference. Instances containing no terms
from either list are excluded. We focus on stance
dimensions two and five (summarized in Table 3),
because they appeared to be most relevant to po-
liteness and formality. Dimension two contrasts
informational and argumentative language against
emotional and non-standard language. Dimension
five contrasts positive and formal language against
non-standard and somewhat negative language.

Results A kernel density plot of the resulting
differences is shown in Figure 2. The effect sizes
of the resulting differences are quantified using
Cohen’s d statistic (Cohen, 1988). Effect sizes for
all differences are between 0.3 and 0.4, indicating
small-to-medium effects — except for the evalu-
ation of formality on dimension five, where the
effect size is close to zero. The relatively mod-
est effect sizes are unsurprising, given the short
length of the texts. However, these differences
lend insight to the relationship between formal-
ity and politeness, which may seem to be closely
related concepts. On dimension two, it is possi-
ble to be polite while using non-standard language
such as hehe and awww, so long as the sentiment
expressed is positive; however, these markers are
not consistent with formality. On dimension five,
we see that positive sentiment terms such as lovely
and stunning are consistent with politeness, but
not with formality. Indeed, the distribution of di-
mension five indicates that both ends of dimension
five are consistent only with informal texts.

Overall, these results indicate that interactional
phenomena such as politeness and formality are
reflected in our stance dimensions, which are in-
duced in an unsupervised manner. Future work

0
2
4
6
8

10
not polite
polite

not polite
polite

0.4 0.2 0.0 0.2 0.4
dimension 2:

 suggests that, demonstrates
 vs.lovely, awww, hehe

0
2
4
6
8

10
not formal
formal

0.4 0.2 0.0 0.2 0.4
dimension 5:

 lovely, stunning, wonderful
 vs. nvm, cmon, smh

not formal
formal

Figure 2: Kernel density distributions for stance
dimensions 2 and 5, plotted with respect to anno-
tations of politeness and formality.

may consider the utility of these stance dimen-
sions to predict these social phenomena, particu-
larly in cross-domain settings where lexical clas-
sifiers may overfit.

8 Conclusion

Stancetaking provides a general perspective on the
various linguistic phenomena that structure social
interactions. We have identified a set of several
hundred stance markers, building on previously-
identified lexicons by using word embeddings to
perform lexicon expansion. We then used multi-
dimensional analysis to group these markers into
stance dimensions, which we show to be internally
coherent and extrinsically useful. Our hope is that
these stance dimensions will be valuable as a con-
venient building block for future research on inter-
actional meaning.

Acknowledgments Thanks to the anonymous
reviewers for their useful and constructive feed-
back on our submission. This research was sup-
ported by Air Force Office of Scientific Research
award FA9550-14-1-0379, by National Institutes
of Health award R01-GM112697, and by the Na-
tional Science Foundation awards 1452443 and
1111142. We thank Tyler Schnoebelen for help-
ful discussions; C.J. Hutto, Tanushree Mitra, and
Sandeep Soni for assistance with Mechanical Turk
experiments; and Ian Stewart for assistance with
creating word embeddings. We also thank the Me-
chanical Turk workers for performing the word in-
trusion task, and for feedback on a pilot task.

References
Lada A. Adamic, Jun Zhang, Eytan Bakshy, and

Mark S. Ackerman. 2008. Knowledge sharing and
yahoo answers: Everyone knows something. In

892

Proceedings of the Conference on World-Wide Web
(WWW). pages 665–674.

Shlomo Argamon, Moshe Koppel, James W. Pen-
nebaker, and Jonathan Schler. 2007. Mining the
blogosphere: Age, gender and the varieties of self-
expression. First Monday 12(9).

Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and
Xiangyang Lan. 2006. Group formation in large so-
cial networks: Membership, growth, and evolution.
In Proceedings of Knowledge Discovery and Data
Mining (KDD). pages 44–54.

David Bamman, Jacob Eisenstein, and Tyler Schnoe-
belen. 2014. Gender identity and lexical variation in
social media. Journal of Sociolinguistics 18(2):135–
160.

Douglas Biber. 1991. Variation across speech and
writing. Cambridge University Press.

Douglas Biber. 1992. The multi-dimensional ap-
proach to linguistic analyses of genre variation: An
overview of methodology and findings. Computers
and the Humanities 26(5-6):331–345.

Douglas Biber and Edward Finegan. 1989. Styles of
stance in english: Lexical and grammatical marking
of evidentiality and affect. Text 9(1):93–124.

Su Lin Blodgett, Lisa Green, and Brendan OConnor.
2016. Demographic dialectal variation in social me-
dia: A case study of african-american english. In
Proceedings of Empirical Methods for Natural Lan-
guage Processing (EMNLP). pages 1119–1130.

M. Bucholtz and K. Hall. 2005. Identity and interac-
tion: A sociocultural linguistic approach. Discourse
studies 7(4-5):585–614.

John A Bullinaria and Joseph P Levy. 2007. Extracting
semantic representations from word co-occurrence
statistics: A computational study. Behavior re-
search methods 39(3):510–526.

John D. Burger, John Henderson, George Kim, and
Guido Zarrella. 2011. Discriminating gender on
twitter. In Proceedings of Empirical Methods
for Natural Language Processing (EMNLP). pages
1301–1309.

Chris Callison-Burch and Mark Dredze. 2010. Cre-
ating speech and language data with amazon’s me-
chanical turk. In Proceedings of the NAACL HLT
2010 Workshop on Creating Speech and Language
Data with Amazon’s Mechanical Turk. Association
for Computational Linguistics, pages 1–12.

Raymond B Cattell. 1966. The scree test for the num-
ber of factors. Multivariate behavioral research
1(2):245–276.

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L
Boyd-graber, and David M Blei. 2009. Reading tea
leaves: How humans interpret topic models. In Neu-
ral Information Processing Systems (NIPS). Vancou-
ver, pages 288–296.

Jacob Cohen. 1988. Statistical power analysis for
the behavioral sciences. Lawrence Earlbaum Asso-
ciates, Hillsdale, NJ.

Cristian Danescu-Niculescu-Mizil, Moritz Sudhof,
Dan Jurafsky, Jure Leskovec, and Christopher Potts.
2013. A computational approach to politeness with
application to social factors. In Proceedings of the
Association for Computational Linguistics (ACL).
Sophia, Bulgaria, pages 250–259.

John W. Du Bois. 2007. The stance triangle. In
Robert Engelbretson, editor, Stancetaking in dis-
course, John Benjamins Publishing Company, Ams-
terdam/Philadelphia, pages 139–182.

Penelope Eckert. 2012. Three waves of variation study:
the emergence of meaning in the study of sociolin-
guistic variation. Annual Review of Anthropology
41:87–100.

Penelope Eckert and Sally McConnell-Ginet. 1992.
Think practically and look locally: Language and
gender as community-based practice. Annual review
of anthropology 21:461–490.

Penelope Eckert and John R Rickford. 2001. Style
and sociolinguistic variation. Cambridge Univer-
sity Press.

Jacob Eisenstein. 2013. What to do about bad language
on the internet. In Proceedings of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL). pages 359–369.

Jacob Eisenstein, Amr Ahmed, and Eric P. Xing. 2011.
Sparse additive generative models of text. In Pro-
ceedings of the International Conference on Ma-
chine Learning (ICML). pages 1041–1048.

Jacob Eisenstein, Brendan O’Connor, Noah A. Smith,
and Eric P. Xing. 2010. A latent variable model for
geographic lexical variation. In Proceedings of Em-
pirical Methods for Natural Language Processing
(EMNLP). pages 1277–1287.

Valerie Freeman, Richard Wright, Gina-Anne Levow,
Yi Luan, Julian Chan, Trang Tran, Victoria Zayats,
Maria Antoniak, and Mari Ostendorf. 2014. Pho-
netic correlates of stance-taking. The Journal of the
Acoustical Society of America 136(4):2175–2175.

Eric Gilbert. 2013. Widespread underprovision on red-
dit. In Proceedings of Computer-Supported Coop-
erative Work (CSCW). pages 803–808.

William L. Hamilton, Kevin Clark, Jure Leskovec, and
Dan Jurafsky. 2016. Inducing domain-specific senti-
ment lexicons from unlabeled corpora. In Proceed-
ings of Empirical Methods for Natural Language
Processing (EMNLP). pages 595–605.

Vasileios Hatzivassiloglou and Kathleen R. McKeown.
1997. Predicting the semantic orientation of adjec-
tives. In Proceedings of the Association for Com-
putational Linguistics (ACL). Madrid, Spain, pages
174–181.

893

Jack Hessel, Chenhao Tan, and Lillian Lee. 2014. Sci-
ence, askscience, and badscience: On the coexis-
tence of highly related communities. In Proceedings
of the International Conference on Web and Social
Media (ICWSM). AAAI Publications, Menlo Park,
California, pages 171–180.

Alexandra Jaffe. 2009. Stance: Sociolinguistic Per-
spectives. Oxford University Press.

Daniel Jurafsky, Elizabeth Shriberg, Barbara Fox, and
Traci Curl. 1998. Lexical, prosodic, and syn-
tactic cues for dialog acts. In Proceedings of
ACL/COLING-98 Workshop on Discourse Relations
and Discourse Markers. pages 114–120.

Elise Kärkkäinen. 2006. Stance taking in conversa-
tion: From subjectivity to intersubjectivity. Text &
Talk-An Interdisciplinary Journal of Language, Dis-
course Communication Studies 26(6):699–731.

Tiina Keisanen. 2007. Stancetaking as an interactional
activity: Challenging the prior speaker. Stancetak-
ing in discourse: Subjectivity, evaluation, interac-
tion pages 253–81.

Scott Fabius Kiesling. 2009. Style as stance. Stance:
sociolinguistic perspectives pages 171–194.

Klaus Krippendorff. 2007. Computing krippendorff’s
alpha reliability. Departmental papers (ASC)
page 43.

Thomas Landauer, Peter W. Foltz, and Darrel Laham.
1998. Introduction to latent semantic analysis. Dis-
cource Processes 25:259–284.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the North American Chapter of the Association for
Computational Linguistics (NAACL). Denver, CO,
pages 1299–1304.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems. pages 3111–3119.

Brian Murphy, Partha Pratim Talukdar, and Tom
Mitchell. 2012. Learning effective and interpretable
semantic models using non-negative sparse embed-
ding. In Proceedings of the International Con-
ference on Computational Linguistics (COLING).
Mumbai, India, pages 1933–1949.

Dong Nguyen, A Seza Doğruöz, Carolyn P Rosé,
and Franciska de Jong. 2016. Computational soci-
olinguistics: A survey. Computational Linguistics
42(3):537–593.

Dong Nguyen, Rilana Gravel, Dolf Trieschnigg, and
Theo Meder. 2013. ”How Old Do You Think I
Am?” A Study of Language and Age in Twitter. In
Proceedings of the International Conference on Web
and Social Media (ICWSM). pages 439–448.

Yoshiki Niwa and Yoshihiko Nitta. 1994. Co-
occurrence vectors from corpora vs. distance vec-
tors from dictionaries. In Proceedings of the Inter-
national Conference on Computational Linguistics
(COLING). Kyoto, Japan, pages 304–309.

Elinor Ochs. 1993. Constructing social identity: A lan-
guage socialization perspective. Research on lan-
guage and social interaction 26(3):287–306.

Ellie Pavlick and Joel Tetreault. 2016. An empiri-
cal analysis of formality in online communication.
Transactions of the Association for Computational
Linguistics (TACL) 4:61–74.

James W Pennebaker, Ryan L Boyd, Kayla Jordan, and
Kate Blackburn. 2015. The development and psy-
chometric properties of LIWC2015. Technical re-
port.

Vinodkumar Prabhakaran, Owen Rambow, and Mona
Diab. 2012. Predicting overt display of power in
written dialogs. In Proceedings of the North Amer-
ican Chapter of the Association for Computational
Linguistics (NAACL). pages 518–522.

Kristen Precht. 2003. Stance moods in spoken english:
Evidentiality and affect in british and american con-
versation. Text - Interdisciplinary Journal for the
Study of Discourse 23(2):239–258.

Kevin M Quinn, Burt L Monroe, Michael Colaresi,
Michael H Crespin, and Dragomir R Radev. 2010.
How to analyze political attention with minimal as-
sumptions and costs. American Journal of Political
Science 54(1):209–228.

Ellen Riloff and Janyce Wiebe. 2003. Learning extrac-
tion patterns for subjective expressions. In Proceed-
ings of Empirical Methods for Natural Language
Processing (EMNLP). pages 105–112.

Yanchuan Sim, Brice Acree, Justin H Gross, and
Noah A Smith. 2013. Measuring ideological pro-
portions in political speeches. In Proceedings of
Empirical Methods for Natural Language Process-
ing (EMNLP).

Philip J. Stone. 1966. The General Inquirer: A Com-
puter Approach to Content Analysis. The MIT
Press.

Chenhao Tan and Lillian Lee. 2015. All who wan-
der: On the prevalence and characteristics of multi-
community engagement. In Proceedings of the Con-
ference on World-Wide Web (WWW). pages 1056–
1066.

Yla R Tausczik and James W Pennebaker. 2010. The
psychological meaning of words: LIWC and com-
puterized text analysis methods. Journal of Lan-
guage and Social Psychology 29(1):24–54.

Trang Tran and Mari Ostendorf. 2016. Characteriz-
ing the language of online communities and its re-
lation to community reception. In Proceedings of

894

Empirical Methods for Natural Language Process-
ing (EMNLP).

Marilyn A Walker, Pranav Anand, Robert Abbott, and
Ricky Grant. 2012. Stance classification using di-
alogic properties of persuasion. In Proceedings
of the North American Chapter of the Association
for Computational Linguistics (NAACL). pages 592–
596.

Robert Philip Weber. 1990. Basic content analysis. 49.
Sage.

Peter RR White. 2003. Beyond modality and hedging:
A dialogic view of the language of intersubjective
stance. Text - Interdisciplinary Journal for the Study
of Discourse 23(2):259–284.

Janyce Wiebe, Theresa Wilson, and Claire Cardie.
2005. Annotating expressions of opinions and emo-
tions in language. Language resources and evalua-
tion 39(2):165–210.

895

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 896–905
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1083

Tandem Anchoring:
a Multiword Anchor Approach for Interactive Topic Modeling

Jeffrey Lund, Connor Cook, Kevin Seppi
Computer Science Department

Brigham Young University
{jefflund,cojoco,kseppi}@byu.edu

Jordan Boyd-Graber
Computer Science Department
University of Colorado Boulder

jordan.boyd.graber@colorado.edu

Abstract

Interactive topic models are powerful tools
for understanding large collections of text.
However, existing sampling-based inter-
active topic modeling approaches scale
poorly to large data sets. Anchor meth-
ods, which use a single word to uniquely
identify a topic, offer the speed needed for
interactive work but lack both a mecha-
nism to inject prior knowledge and lack
the intuitive semantics needed for user-
facing applications. We propose combina-
tions of words as anchors, going beyond
existing single word anchor algorithms—
an approach we call “Tandem Anchors”.
We begin with a synthetic investigation of
this approach then apply the approach to
interactive topic modeling in a user study
and compare it to interactive and non-
interactive approaches. Tandem anchors
are faster and more intuitive than existing
interactive approaches.

Topic models distill large collections of text into
topics, giving a high-level summary of the the-
matic structure of the data without manual anno-
tation. In addition to facilitating discovery of top-
ical trends (Gardner et al., 2010), topic modeling
is used for a wide variety of problems including
document classification (Rubin et al., 2012), in-
formation retrieval (Wei and Croft, 2006), author
identification (Rosen-Zvi et al., 2004), and senti-
ment analysis (Titov and McDonald, 2008). How-
ever, the most compelling use of topic models is
to help users understand large datasets (Chuang
et al., 2012).

Interactive topic modeling (Hu et al., 2014) al-
lows non-experts to refine automatically generated

topics, making topic models less of a “take it or
leave it” proposition. Including humans input dur-
ing training improves the quality of the model and
allows users to guide topics in a specific way, cus-
tom tailoring the model for a specific downstream
task or analysis.

The downside is that interactive topic model-
ing is slow—algorithms typically scale with the
size of the corpus—and requires non-intuitive in-
formation from the user in the form of must-link
and cannot-link constraints (Andrzejewski et al.,
2009). We address these shortcomings of interac-
tive topic modeling by using an interactive version
of the anchor words algorithm for topic models.

The anchor algorithm (Arora et al., 2013) is an
alternative topic modeling algorithm which scales
with the number of unique word types in the data
rather than the number of documents or tokens
(Section 1). This makes the anchor algorithm fast
enough for interactive use, even in web-scale doc-
ument collections.

A drawback of the anchor method is that anchor
words—words that have high probability of being
in a single topic—are not intuitive. We extend the
anchor algorithm to use multiple anchor words in
tandem (Section 2). Tandem anchors not only im-
prove interactive refinement, but also make the un-
derlying anchor-based method more intuitive.

For interactive topic modeling, tandem anchors
produce higher quality topics than single word
anchors (Section 3). Tandem anchors provide
a framework for fast interactive topic model-
ing: users improve and refine an existing model
through multiword anchors (Section 4). Com-
pared to existing methods such as Interactive
Topic Models (Hu et al., 2014), our method is
much faster.

896

https://doi.org/10.18653/v1/P17-1083

1 Vanilla Anchor Algorithm

The anchor algorithm computes the topic matrix
A, whereAv,k is the conditional probability of ob-
serving word v given topic k, e.g., the probability
of seeing the word “lens” given the camera topic
in a corpus of Amazon product reviews. Arora
et al. (2012a) find these probabilities by assum-
ing that every topic contains at least one ‘anchor’
word which has a non-zero probability only in that
topic. Anchor words make computing the topic
matrix A tractable because the occurrence pattern
of the anchor word mirrors the occurrence pattern
of the topic itself.

To recover the topic matrix A using anchor
words, we first compute a V × V cooccurrence
matrix Q, where Qi,j is the conditional probabil-
ity p(wj |wi) of seeing word type wj after hav-
ing seen wi in the same document. A form of the
Gram-Schmidt process on Q finds anchor words
{g1 . . . gk} (Arora et al., 2013).

Once we have the set of anchor words, we can
compute the probability of a topic given a word
(the inverse of the conditioning inA). This coeffi-
cient matrixC is defined row-wise for each word i

C∗i,· = argmin
Ci,·

DKL

(
Qi,·

∥∥∥∥
K∑

k=1

Ci,kQgk,·

)
,

(1)
which gives the best reconstruction (based on
Kullback-Leibler divergence DKL) of non-anchor
words given anchor words’ conditional probabil-
ities. For example, in our product review data, a
word such as “battery” is a convex combination of
the anchor words’ contexts (Qgk,·) such as “cam-
era”, “phone”, and “car”. Solving each row of C
is fast and is embarrassingly parallel. Finally, we
apply Bayes’ rule to recover the topic matrix A
from the coefficient matrix C.

The anchor algorithm can be orders of mag-
nitude faster than probabilistic inference (Arora
et al., 2013). The construction of Q has a run-
time of O(DN2) where D is the number of docu-
ments and N is the average number of tokens per
document. This computation requires only a sin-
gle pass over the data and can be pre-computed
for interactive use-cases. Once Q is constructed,
topic recovery requires O(KV 2 +K2V I), where
K is the number of topics, V is the vocabulary
size, and I is the average number of iterations
(typically 100-1000). In contrast, traditional topic

Anchor Top Words in Topics
backpack backpack camera lens bag room carry fit

cameras equipment comfortable
camera camera lens pictures canon digital lenses

batteries filter mm photos
bag bag camera diaper lens bags genie smell

room diapers odor

Table 1: Three separate attempts to construct a
topic concerning camera bags in Amazon product
reviews with single word anchors. This example
is drawn from preliminary experiments with an au-
thor as the user. The term “backpack” is a good an-
chor because it uniquely identifies the topic. How-
ever, both “camera” and “bag” are poor anchors
for this topic.

model inference typically requires multiple passes
over the entire data. Techniques such as Online
LDA (Hoffman et al., 2010) or Stochastic Vari-
ation Inference (Hoffman et al., 2013) improves
this to a single pass over the entire data. How-
ever, from Heaps’ law (Heaps, 1978) it follows
that V 2 � DN for large datasets, leading to
much faster inference times for anchor methods
compared to probabilistic topic modeling. Further,
even if online were to be adapted to incorporate
human guidance, a single pass is not tractable for
interactive use.

2 Tandem Anchor Extension

Single word anchors can be opaque to users. For
an example of bewildering anchor words, con-
sider a camera bag topic from a collection of
Amazon product reviews (Table 1). The anchor
word “backpack” may seem strange. However,
this dataset contains nothing about regular back-
packs; thus, “backpack” is unique to camera bags.
Bizarre, low-to-mid frequency words are often an-
chors because anchor words must be unique to a
topic; intuitive or high-frequency words cannot be
anchors if they have probability in any other topic.

The anchor selection strategy can mitigate this
problem to some degree. For example, rather
than selecting anchors using an approximate con-
vex hull in high-dimensional space, we can find
an exact convex hull in a low-dimensional embed-
ding (Lee and Mimno, 2014). This strategy will
produce more salient topics but still makes it dif-
ficult for users to manually choose unique anchor
words for interactive topic modeling.

If we instead ask users to give us representative

897

words for this topic, we would expect combina-
tions of words like “camera” and “bag.” However,
with single word anchors we must choose a single
word to anchor each topic. Unfortunately, because
these words might appear in multiple topics, indi-
vidually they are not suitable as anchor words. The
anchor word “camera” generates a general cam-
era topic instead of camera bags, and the topic
anchored by “bag” includes bags for diaper pails
(Table 1).

Instead, we need to use sets of representative
terms as an interpretable, parsimonious descrip-
tion of a topic. This section discusses strategies
to build anchors from multiple words and the im-
plications of using multiword anchors to recover
topics. This extension not only makes anchors
more interpretable but also enables users to manu-
ally construct effective anchors in interactive topic
modeling settings.

2.1 Anchor Facets

We first need to turn words into an anchor. If
we interpret the anchor algorithm geometrically,
each row of Q represents a word as a point in
V -dimensional space. We then model each point
as a convex combination of anchor words to re-
construct the topic matrix A (Equation 1). In-
stead of individual anchor words (one anchor word
per topic), we use anchor facets, or sets of words
that describe a topic. The facets for each anchor
form a new pseudoword, or an invented point in
V -dimensional space (described in more detail in
Section 2.2).

While these new points do not correspond to
words in the vocabulary, we can express non-
anchor words as convex combinations of pseu-
dowords. To construct these pseudowords from
their facets, we combine the co-occurrence pro-
files of the facets. These pseudowords then aug-
ment the original cooccurrence matrix Q with K
additional rows corresponding to synthetic pseu-
dowords forming each of K multiword anchors.
We refer to this augmented matrix as S. The rest
of the anchor algorithm proceeds unmodified.

Our augmented matrix S is therefore a (V +
K) × V matrix. As before, V is the number of
token types in the data and K is the number of
topics. The first V rows of S correspond to the V
token types observed in the data, while the addi-
tionalK rows correspond to the pseudowords con-
structed from anchor facets. Each entry of S en-

codes conditional probabilities so that Si,j is equal
to p(wi |wj). For the additionalK rows, we invent
a cooccurrence pattern that can effectively explain
the other words’ conditional probabilities.

This modification is similar in spirit to super-
vised anchor words (Nguyen et al., 2015). This
supervised extension of the anchor words algo-
rithm adds columns corresponding to conditional
probabilities of metadata values after having seen
a particular word. By extending the vector-space
representation of each word, anchor words corre-
sponding to metadata values can be found. In con-
trast, our extension does not add dimensions to the
representation, but simply places additional points
corresponding to pseudoword words in the vector-
space representation.

2.2 Combining Facets into Pseudowords
We now describe more concretely how to combine
an anchor facets to describe the cooccurrence pat-
tern of our new pseudoword anchor. In tandem an-
chors, we create vector representations that com-
bine the information from anchor facets. Our an-
chor facets are G1 . . .GK , where Gk is a set of an-
chor facets which will form the kth pseudoword
anchor. The pseudowords are g1 . . . gK , where gk
is the pseudoword from Gk. These pseudowords
form the new rows of S. We give several candi-
dates for combining anchors facets into a single
multiword anchor; we compare their performance
in Section 3.

Vector Average An obvious function for com-
puting the central tendency is the vector average.
For each anchor facet,

Sgk,j =
∑

i∈Gk

Si,j
|Gk|

, (2)

where |Gk| is the cardinality of Gk. Vector average
makes the pseudoword Sgk,j more central, which
is intuitive but inconsistent with the interpretation
from Arora et al. (2013) that anchors should be
extreme points whose linear combinations explain
more central words.

Or-operator An alternative approach is to con-
sider a cooccurrence with any anchor facet in Gk.
For word j, we use De Morgan’s laws to set

Sgk,j = 1−
∏

i∈Gk
(1− Si,j). (3)

Unlike the average, which pulls the pseudoword
inward, this or-operator pushes the word outward,

898

increasing each of the dimensions. Increasing the
volume of the simplex spanned by the anchors ex-
plains more words.

Element-wise Min Vector average and or-
operator are both sensitive to outliers and cannot
account for polysemous anchor facets. Return-
ing to our previous example, both “camera” and
“bag” are bad anchors for camera bags because
they appear in documents discussing other prod-
ucts. However, if both “camera” and “bag” are
anchor facets, we can look at an intersection of
their contexts: words that appear with both. Us-
ing the intersection, the cooccurrence pattern of
our anchor facet will only include terms relevant
to camera bags.

Mathematically, this is an element-wise min op-
erator,

Sgk,j = min
i∈Gk

Si,j . (4)

This construction, while perhaps not as simple as
the previous two, is robust to words which have
cooccurrences which are not unique to a single
topic.

Harmonic Mean Leveraging the intuition that
we should use a combination function which is
both centralizing (like vector average) and ig-
nores large outliers (like element-wise min), the fi-
nal combination function is the element-wise har-
monic mean. Thus, for each anchor facet

Sgk,j =
∑

i∈Gk

(
S−1i,j
|Gk|

)−1
. (5)

Since the harmonic mean tends towards the lowest
values in the set, it is not sensitive to large outliers,
giving us robustness to polysemous words.

2.3 Finding Topics
After constructing the pseudowords of S we then
need to find the coefficients Ci,k which describe
each word in our vocabulary as a convex combi-
nation of the multiword anchors. Like standard
anchor methods, we solve the following for each
token type:

C∗i,· = argmin
Ci,·

DKL

(
Si,·

∥∥∥∥
K∑

k=1

Ci,kSgk,·

)
.

(6)
Finally, we appeal to Bayes’ rule, we recover the
topic-word matrixA from the coefficients of C.

The correctness of the topic recovery algorithm
hinges upon the assumption of separability. Sepa-
rability means that the occurrence pattern across

documents of the anchor words across the data
mirrors that of the topics themselves. For single
word anchors, this has been observed to hold for
a wide variety of data (Arora et al., 2012b). With
our tandem anchor extension, we make similar as-
sumptions as the vanilla algorithm, except with
pseudowords constructed from anchor facets. So
long as the occurrence pattern of our tandem an-
chors mirrors that of the underlying topics, we can
use the same reasoning as Arora et al. (2012a) to
assert that we can provably recover the topic-word
matrix A with all of the same theoretical guaran-
tees of complexity and robustness. Furthermore,
we runtime analysis given by Arora et al. (2013)
applies to tandem anchors.

If desired, we can also add further robustness
and extensibility to tandem anchors by adding reg-
ularization to Equation 6. Regularization allows
us to add something which is mathematically sim-
ilar to priors, and has been shown to improve
the vanilla anchor word algorithm (Nguyen et al.,
2014). We leave the question of the best regular-
ization for tandem anchors as future work, and fo-
cus our efforts on solving the problem of interac-
tive topic modeling.

3 High Water Mark for Tandem Anchors

Before addressing interactivity, we apply tandem
anchors to real world data, but with anchors
gleaned from metadata. Our purpose is twofold.
First, we determine which combiner from Sec-
tion 2.2 to use in our interactive experiments in
Section 4 and second, we confirm that well-chosen
tandem anchors can improve topics. In addi-
tion, we examine the runtime of tandem anchors
and compare to traditional model-based interac-
tive topic modeling techniques. We cannot assume
that we will have metadata available to build tan-
dem anchors, but we use them here because they
provide a high water mark without the variance in-
troduced by study participants.

3.1 Experimental Setup

We use the well-known 20 Newsgroups dataset
(20NEWS) used in previous interactive topic mod-
eling work: 18,846 Usenet postings from 20 dif-
ferent newgroups in the early 1990s.1 We remove
the newsgroup headers from each message, which
contain the newsgroup names, but otherwise left
messages intact with any footers or quotes. We

1http://qwone.com/˜jason/20Newsgroups/

899

then remove stopwords and words which appear
in fewer than 100 documents or more than 1,500
documents.

To seed the tandem anchors, we use the ti-
tles of newsgroups. To build each multiword
anchor facet, we split the title on word bound-
aries and expand any abbreviations or acronyms.
For example, the newsgroup title ‘comp.os.ms-
windows.misc’ becomes {“computer”, “operat-
ing”, “system”, “microsoft”, “windows”, “miscel-
laneous”}. We do not fully specify the topic;
the title gives some intuition, but the topic mod-
eling algorithm must still recover the complete
topic-word distributions. This is akin to know-
ing the names of the categories used but nothing
else. Critically, the topic modeling algorithm has
no knowledge of document-label relationships.

3.2 Experimental Results
Our first evaluation is a classification task to pre-
dict documents’ newsgroup membership. Thus,
we do not aim for state-of-the-art accuracy,2 but
the experiment shows title-based tandem anchors
yield topics closer to the underlying classes than
Gram-Schmidt anchors. After randomly splitting
the data into test and training sets we learn topics
from the test data using both the title-based tan-
dem anchors and the Gram-Schmidt single word
anchors.3 For multiword anchors, we use each
of the combiner functions from Section 2.2. The
anchor algorithm only gives the topic-word dis-
tributions and not word-level topic assignments,
so we infer token-level topic assignments using
LDA Latent Dirichlet Allocation (Blei et al., 2003)
with fixed topics discovered by the anchor method.
We use our own implementation of Gibbs sam-
pling with fixed topics and a symmetric document-
topic Dirichlet prior with concentration α = .01.
Since the topics are fixed, this inference is very
fast and can be parallelized on a per-document ba-
sis. We then train a hinge-loss linear classifier
on the newsgroup labels using Vowpal Wabbit4

with topic-word pairs as features. Finally, we infer
topic assignments in the test data and evaluate the
classification using those topic-word features. For
both training and test, we exclude words outside

2The best system would incorporate topic features with
other features, making it harder to study and understand the
topical trends in isolation.

3With fixed anchors and data the anchor algorithm is de-
terministic, so we use random splits instead of the standard
train/test splits so that we can compute variance.

4http://hunch.net/˜vw/

the LDA vocabulary.
The topics created from multiword anchor

facets are more accurate than Gram-Schmidt top-
ics (Figure 1). This is true regardless of the com-
biner function. However, harmonic mean is more
accurate than the other functions.5

Since 20NEWS has twenty classes, accuracy
alone does not capture confusion between closely
related newsgroups. For example, accuracy
penalizes a classifier just as much for label-
ing a document from ‘rec.sport.baseball’ with
‘rec.sport.hockey’ as with ‘alt.atheism’ despite the
similarity between sports newsgroups. Conse-
quently, after building a confusion matrix between
the predicted and true classes, external clustering
metrics reveal confusion between classes.

The first clustering metric is the adjusted Rand
index (Yeung and Ruzzo, 2001), which is akin to
accuracy for clustering, as it gives the percentage
of correct pairing decisions from a reference clus-
tering. Adjusted Rand index (ARI) also accounts
for chance groupings of documents. Next we use
F-measure, which also considers pairwise groups,
balancing the contribution of false negatives, but
without the true negatives. Finally, we use varia-
tion of information (VI). This metric measures the
amount of information lost by switching from the
gold standard labels to the predicted labels (Meilă,
2003). Since we are measuring the amount of in-
formation lost, lower variation of information is
better.

Based on these clustering metrics, tandem an-
chors can yield superior topics to those created us-
ing single word anchors (Figure 1). As with accu-
racy, this is true regardless of which combination
function we use. Furthermore, harmonic mean
produces the least confusion between classes.5

The final evaluation is topic coherence by New-
man et al. (2010), which measures whether the
topics make sense, and correlates with human
judgments of topic quality. Given V , the set of
the n most probable words of a topic, coherence is

∑

v1,v2∈V
log

D(v1, v2) + ε

D(v2)
(7)

where D(v1, v2) is the co-document frequency of

5Significant at p < 0.01/4 when using two-tailed t-tests
with a Bonferroni correction. For each of our evaluations, we
verify the normality of our data (D’Agostino and Pearson,
1973) and use two-tailed t-tests with Bonferroni correction
to determine whether the differences between the different
methods are significant.

900

●●

● ●● ●

● ●

●

● ● ●

●●

● ●

●

● ●● ●

● ●●

Accuracy ARI F−Measure VI Coherence

Gram−Schmidt

Title+Average

Title+Or

Title+Min

Title+HMean

0.
55

0.
60

0.
65

0.
70

0.
30

0.
35

0.
40

0.
45

0.
50

0.
56

0.
60

0.
64

0.
68

0.
72 2.

4

2.
7

3.
0

3.
3

3.
6

−
23

0

−
22

5

−
22

0

−
21

5

−
21

0

Figure 1: Using metadata can improve anchor-based topic models. For all metrics, the unsupervised
Gram-Schmidt anchors do worse than creating anchors based on Newsgroup titles (for all metrics except
VI, higher is better). For coherence, Gram-Schmidt does better than two functions for combining anchor
words, but not the element-wise min or harmonic mean.

word types v1 and v2, and D(v2) is the document
frequency of word type v2. A smoothing parame-
ter ε prevents zero logarithms.

Figure 1 also shows topic coherence. Although
title-based anchor facets produce better classifi-
cation features, topics from Gram-Schmidt an-
chors have better coherence than title-based an-
chors with the vector average or the or-operator.
However, when using the harmonic mean com-
biner, title-based anchors produce the most human
interpretable topics.6

Harmonic mean beats other combiner functions
because it is robust to ambiguous or irrelevant term
cooccurrences an anchor facet. Both the vector av-
erage and the or-operator are swayed by large out-
liers, making them sensitive to ambiguous terms
in an anchor facet. Element-wise min also has this
robustness, but harmonic mean is also able to bet-
ter characterize anchor facets as it has more cen-
tralizing tendency than the min.

3.3 Runtime Considerations

Tandem anchors will enable users to direct topic
inference to improve topic quality. However, for
the algorithm to be interactive we must also con-
sider runtime. Cook and Thomas (2005) argue that
for interactive applications with user-initiated ac-
tions like ours the response time should be less
than ten seconds. Longer waits can increase the
cognitive load on the user and harm the user inter-
action.

6Significant at p < 0.01/4 when using two-tailed t-tests
with a Bonferroni correction. For each of our evaluations, we
verify the normality of our data (D’Agostino and Pearson,
1973) and use two-tailed t-tests with Bonferroni correction
to determine whether the differences between the different
methods are significant.

Fortunately, the runtime of tandem anchors
is amenable to interactive topic modeling. On
20NEWS, interactive updates take a median time
of 2.13 seconds. This result was obtained using a
single core of an AMD Phemon II X6 1090T pro-
cessor. Furthermore, larger datasets typically have
a sublinear increase in distinct word types, so we
can expect to see similar run times, even on much
larger datasets.

Compared to other interactive topic modeling
algorithms, tandem anchors has a very attractive
run time. For example, using an optimized version
of the sampler for the Interactive Topic Model de-
scribed by Hu and Boyd-Graber (2012), and the
recommended 30 iterations of sampling, the Inter-
active Topic Model updates with a median time of
24.8 seconds (Hu and Boyd-Graber, 2012), which
is well beyond our desired update time for inter-
active use and an order of magnitude slower than
tandem anchors.

Another promising interactive topic modeling
approach is Utopian (Choo et al., 2013), which
uses non-negative factorization, albeit without the
benefit of anchor words. Utopian is much slower
than tandem anchors. Even on the small InfoVis-
VAST dataset which contains only 515 docu-
ments, Utopian takes 48 seconds to converge.
While the times are not strictly comparable due to
differing datasets, Utopian scales linearly with the
size of the data, we can intuit that even for mod-
erately sized datasets such as 20NEWS, Utopian is
infeasible for interactive topic modeling due to run
time.

While each of these interactive topic modeling
algorithms do achieve reasonable topics, only our
algorithm fits the run time requirements for inter-

901

Figure 2: Interface for user study with multiword
anchors applied to interactive topic modeling.

activity. Furthermore, since tandem anchors scales
with the size of the vocabulary rather than the size
of the data, this trend will only become more pro-
nounced as we increase the amount of data.

4 Interactive Anchor Words

Given high quality anchor facets, the tandem an-
chor algorithm can produce high quality topic
models (particularly when the harmonic mean
combiner is used). Moreover, the tandem anchor
algorithm is fast enough to be interactive (as op-
posed to model-based approaches such as the In-
teractive Topic Model). We now turn our attention
to our main experiment: tandem anchors applied
to the problem of interactive topic modeling. We
compare both single word and tandem anchors in
our study. We do not include the Interactive Topic
Model or Utopian, as their run times are too slow
for our users.

4.1 Interface and User Study

To show that interactive tandem anchor words are
fast, effective, and intuitive, we ask users to under-
stand a dataset using the anchor word algorithm.
For this user study, we recruit twenty participants
drawn from a university student body. The stu-
dent median age is twenty-two. Seven are female,
and thirteen are male. None of the students had
any prior familiarity with topic modeling or the
20NEWS dataset.

Each participant sees a simple user interface
(Figure 2) with topic given as a row with two
columns. The left column allows users to view and
edit topics’ anchor words; the right column lists
the most probable words in each topic.7 The user
can remove an anchor word or drag words from

7While we use topics generated using harmonic mean for
our final analysis, users were shown topics generated using
the min combiner. However, this does not change our result.

the topic word lists (right column) to become an
anchor word. Users can also add additional top-
ics by clicking the “Add Anchor” to create addi-
tional anchors. If the user wants to add a word to a
tandem anchor set that does not appear in the inter-
face, they manually type the word (restricted to the
model’s vocabulary). When the user wants to see
the updated topics for their newly refined anchors,
they click “Update Topics”.

We give each a participant a high level overview
of topic modeling. We also describe common
problems with topic models including intruding
topic words, duplicate topics, and ambiguous top-
ics. Users are instructed to use their best judge-
ment to determine if topics are useful. The task is
to edit the anchor words to improve the topics. We
asked that users spend at least twenty minutes, but
no more than thirty minutes. We repeat the task
twice: once with tandem anchors, and once with
single word anchors.8

4.2 Quantitative Results

We now validate our main result that for interac-
tive topic modeling, tandem anchors yields better
topics than single word anchors. Like our title-
based experiments in Section 3, topics generated
from users become features to train and test a clas-
sifier for the 20NEWS dataset. We choose this
dataset for easier comparison with the Interactive
Topic Modeling result of Hu et al. (2014). Based-
sie on our results with title-based anchors, we use
the harmonic mean combiner in our analysis. As
before, we report not only accuracy, but also mul-
tiple clustering metrics using the confusion ma-
trix from the classification task. Finally, we report
topic coherence.

Figure 3 summarizes the results of our quantita-
tive evaluation. While we only compare user gen-
erated anchors in our analysis, we include the un-
supervised Gram-Schmidt anchors as a baseline.
Some of the data violate assumptions of normal-
ity. Therefore, we use Wilcoxon’s signed-rank
test (Wilcoxon, 1945) to determine if the differ-
ences between multiword anchors and single word
anchors are significant.

Topics from user generated multiword anchors
yield higher classification accuracy (Figure 3).
Not only is our approach more scalable than
the Interactive Topic Model, but we also achieve

8The order in which users complete these tasks is counter-
balanced.

902

● ●● ● ●●

●

Accuracy ARI F−Measure VI Coherence

Tandem

Singleword

Gram−Schmidt

0.
55

0.
60

0.
65

0.
70

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70 2.

7

3.
0

3.
3

3.
6

−
24

0

−
23

0

−
22

0

−
21

0

−
20

0

−
19

0

Figure 3: Classification accuracy and coherence using topic features gleaned from user provided mul-
tiword and single word anchors. Grahm-Schmidt anchors are provided as a baseline. For all metrics
except VI, higher is better. Except for coherence, multiword anchors are best.

higher classification accuracy than Hu et al.
(2014).9 Tandem anchors also improve clustering
metrics.10

While user selected tandem anchors produce
better classification features than single word an-
chors, users selected single word anchors produce
topics with similar topic coherence scores.11

To understand this phenomenon, we use quality
metrics (AlSumait et al., 2009) for ranking topics
by their correspondence to genuine themes in the
data. Significant topics are likely skewed towards
a few related words, so we measure the distance
of each topic-word distribution from the uniform
distribution over words. Topics which are close
to the underlying word distribution of the entire
data are likely to be vacuous, so we also measure
the distance of each topic-word distribution from
the underlying word distribution. Finally, back-
ground topics are likely to appear in a wide range
of documents, while meaningful topics will appear
in a smaller subset of the data.

Figure 4 reports our topic significance findings.
For all three significance metrics, multiword an-
chors produce more significant topics than single
word anchors.10 Topic coherence is based solely
on the top n words of a topic, while both accuracy
and topic significance depend on the entire topic-
word distributions. With single word anchors, top-
ics with good coherence may still be too general.
Tandem anchors enables users to produce topics
with more specific word distributions which are
better features for classification.

Anchor Top Words in Topic
Automatic Gram Schmidt
love love god evolution romans heard car
game game games team hockey baseball

heard
Interactive Single-word
evolution evolution theory science faith quote

facts
religion religion god government state jesus is-

rael
baseball baseball games players word teams

car
hockey hockey team play games season play-

ers
Interactive Tandem
atheism god
exists prove

god science evidence reason faith ob-
jective

christian je-
sus

jesus christian christ church bible
christians

jew israel israel jews jewish israeli state religion
baseball bat
ball

hit baseball ball player games call

hockey nhl team hockey player nhl win play

Table 2: Comparison of topics generated for
20NEWS using various types of anchor words.
Users are able to combine words to create more
specific topics with tandem anchors.

4.3 Qualitative Results
We examine the qualitative differences between
how users select multiword anchor facets versus
single word anchors. Table 2 gives examples of
topics generated using different anchor strategies.
In a follow-up survey with our users, 75% find
it easier to affect individual changes in the top-
ics using tandem anchors compared to single word
anchors. Users who prefer editing multiword an-
chors over single word anchors often report that

9However, the values are not strictly comparable, as Hu
et al. (2014) use the standard chronological test/train fold,
and we use random splits.

10Significant at p < 0.01 when using Wilcoxon’s signed-
rank test.

11The difference between coherence scores was not statis-
tically significant using Wilcoxon’s signed-rank test.

903

●

●●●

●

●●●

●

●●●

uniform vacuous background

Tandem

Singleword

Gram−Schmidt

1 2 3

0.
5

1.
0

1.
5

2.
0

0.
5

1.
0

1.
5

2.
0

Figure 4: Topic significance for both single word and multiword anchors. In all cases higher is better.
Multiword anchors produce topics which are more significant than single word anchors.

multiword anchors make it easier to merge simi-
lar topics into a single focused topic by combin-
ing anchors. For example, by combining multi-
ple words related to Christianity, users were able
to create a topic which is highly specific, and dif-
ferentiated from general religion themes which in-
cluded terms about Atheism and Judaism.

While users find that use tandem anchors is eas-
ier, only 55% of our users say that they prefer
the final topics produced by tandem anchors com-
pared to single word anchors. This is in harmony
with our quantitative measurements of topic co-
herence, and may be the result of our stopping cri-
teria: when users judged the topics to be useful.

However, 100% of our users feel that the topics
created through interaction were better than those
generated from Gram-Schmidt anchors. This was
true regardless of whether we used tandem an-
chors or single word anchors.

Our participants also produce fewer topics when
using multiword anchors. The mean difference be-
tween topics under single word anchors and multi-
ple word anchors is 9.35. In follow up interviews,
participants indicate that the easiest way to resolve
an ambiguous topic with single word anchors was
to create a new anchor for each of the ambiguous
terms, thus explaining the proliferation of topics
for single word anchors. In contrast, fixing an am-
biguous tandem anchor is simple: users just add
more terms to the anchor facet.

5 Conclusion

Tandem anchors extend the anchor words algo-
rithm to allow multiple words to be combined into
anchor facets. For interactive topic modeling, us-
ing anchor facets in place of single word anchors
produces higher quality topic models and are more
intuitive to use. Furthermore, our approach scales
much better than existing interactive topic mod-
eling techniques, allowing interactivity on large

datasets for which interactivity was previous im-
possible.

Acknowledgements

This work was supported by the collaborative
NSF Grant IIS-1409287 (UMD) and IIS- 1409739
(BYU). Boyd-Graber is also supported by NSF
grants IIS-1320538 and NCSE-1422492.

References
Loulwah AlSumait, Daniel Barbará, James Gentle,

and Carlotta Domeniconi. 2009. Topic significance
ranking of LDA generative models. In Proceedings
of European Conference of Machine Learning.

David Andrzejewski, Xiaojin Zhu, and Mark Craven.
2009. Incorporating domain knowledge into topic
modeling via Dirichlet forest priors. In Proceedings
of the International Conference of Machine Learn-
ing.

Sanjeev Arora, Rong Ge, Yonatan Halpern, David
Mimno, Ankur Moitra, David Sontag, Yichen Wu,
and Michael Zhu. 2013. A practical algorithm for
topic modeling with provable guarantees. In Pro-
ceedings of the International Conference of Machine
Learning.

Sanjeev Arora, Rong Ge, Ravindran Kannan, and
Ankur Moitra. 2012a. Computing a nonnegative
matrix factorization–provably. In Proceedings of the
forty-fourth annual ACM symposium on Theory of
computing.

Sanjeev Arora, Rong Ge, and Ankur Moitra. 2012b.
Learning topic models–going beyond svd. In Fifty-
Third IEEE Annual Symposium on Foundations of
Computer Science.

David M. Blei, Andrew Ng, and Michael Jordan. 2003.
Latent dirichlet allocation. Journal of Machine
Learning Research 3:993–1022.

Jaegul Choo, Changhyun Lee, Chandan K Reddy, and
Heejung Park. 2013. Utopian: User-driven topic
modeling based on interactive nonnegative matrix
factorization. Visualization and Computer Graph-
ics, IEEE Transactions on 19(12):1992–2001.

904

Jason Chuang, Christopher D Manning, and Jeffrey
Heer. 2012. Termite: Visualization techniques for
assessing textual topic models. In Proceedings of
the International Working Conference on Advanced
Visual Interfaces.

Kristin A. Cook and James J. Thomas. 2005. Illuminat-
ing the path: The research and development agenda
for visual analytics. Technical report, Pacific North-
west National Laboratory (PNNL), Richland, WA
(US).

Ralph D’Agostino and Egon S Pearson. 1973. Tests for
departure from normality. empirical results for the
distributions of b2 and b1. Biometrika 60(3):613–
622.

Matthew J Gardner, Joshua Lutes, Jeff Lund, Josh
Hansen, Dan Walker, Eric Ringger, and Kevin Seppi.
2010. The topic browser: An interactive tool for
browsing topic models. In NIPS Workshop on Chal-
lenges of Data Visualization.

Harold Stanley Heaps. 1978. Information retrieval:
Computational and theoretical aspects, Academic
Press, Inc., pages 206–208.

Matthew Hoffman, Francis R Bach, and David M Blei.
2010. Online learning for latent dirichlet allocation.
In advances in neural information processing sys-
tems.

Matthew D Hoffman, David M Blei, Chong Wang, and
John William Paisley. 2013. Stochastic variational
inference. Journal of Machine Learning Research
14(1):1303–1347.

Yuening Hu and Jordan Boyd-Graber. 2012. Efficient
tree-based topic modeling. In Proceedings of the As-
sociation for Computational Linguistics.

Yuening Hu, Jordan Boyd-Graber, Brianna Satinoff,
and Alison Smith. 2014. Interactive topic modeling.
Machine Learning 95(3):423–469.

Moontae Lee and David Mimno. 2014. Low-
dimensional embeddings for interpretable anchor-
based topic inference. In Proceedings of Empirical
Methods in Natural Language Processing.

Marina Meilă. 2003. Comparing clusterings by the
variation of information. In Learning theory and
kernel machines.

David Newman, Jey Han Lau, Karl Grieser, and Timo-
thy Baldwin. 2010. Automatic evaluation of topic
coherence. In Proceedings of the Association for
Computational Linguistics.

Thang Nguyen, Jordan Boyd-Graber, Jeffrey Lund,
Kevin Seppi, and Eric Ringger. 2015. Is your anchor
going up or down? Fast and accurate supervised
topic models. In Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics.

Thang Nguyen, Yuening Hu, and Jordan L Boyd-
Graber. 2014. Anchors regularized: Adding robust-
ness and extensibility to scalable topic-modeling al-
gorithms. In Proceedings of the Association for
Computational Linguistics.

Michal Rosen-Zvi, Thomas Griffiths, Mark Steyvers,
and Padhraic Smyth. 2004. The author-topic model
for authors and documents. In Proceedings of Un-
certainty in Artificial Intelligence.

Timothy Rubin, America Chambers, Padhraic Smyth,
and Mark Steyvers. 2012. Statistical topic mod-
els for multi-label document classification. Machine
Learning 1(88):157–208.

Ivan Titov and Ryan T McDonald. 2008. A joint model
of text and aspect ratings for sentiment summariza-
tion. In Proceedings of the Association for Compu-
tational Linguistics.

Xing Wei and W Bruce Croft. 2006. LDA-based docu-
ment models for ad-hoc retrieval. In Proceedings of
the ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval.

Frank Wilcoxon. 1945. Individual comparisons by
ranking methods. Biometrics bulletin 1(6):80–83.

Ka Yee Yeung and Walter L Ruzzo. 2001. Details of
the adjusted rand index and clustering algorithms,
supplement to the paper an empirical study on prin-
cipal component analysis for clustering gene expres-
sion data. Bioinformatics 17(9):763–774.

905

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 906–916
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1084

Apples to Apples: Learning Semantics of Common Entities
Through a Novel Comprehension Task

Omid Bakhshandeh
University of Rochester

omidb@cs.rochester.edu

James F. Allen
University of Rochester

Institute for Human and Machine Cognition
james@cs.rochester.edu

Abstract

Understanding common entities and their
attributes is a primary requirement for
any system that comprehends natural
language. In order to enable learn-
ing about common entities, we intro-
duce a novel machine comprehension
task, GuessTwo: given a short paragraph
comparing different aspects of two real-
world semantically-similar entities, a sys-
tem should guess what those entities are.
Accomplishing this task requires deep lan-
guage understanding which enables infer-
ence, connecting each comparison para-
graph to different levels of knowledge
about world entities and their attributes.
So far we have crowdsourced a dataset
of more than 14K comparison paragraphs
comparing entities from a variety of cat-
egories such as fruits and animals. We
have designed two schemes for evaluation:
open-ended, and binary-choice prediction.
For benchmarking further progress in the
task, we have collected a set of paragraphs
as the test set on which human can accom-
plish the task with an accuracy of 94.2%
on open-ended prediction. We have im-
plemented various models for tackling the
task, ranging from semantic-driven to neu-
ral models. The semantic-driven approach
outperforms the neural models, however,
the results indicate that the task is very
challenging across the models.

1 Introduction

In the past few years, there has been great progress
on core NLP tasks (e.g., parsing and part of speech
tagging) which has renewed interest in primary
language learning tasks which require text under-

standing and reasoning, such as machine compre-
hension (Schoenick et al., 2016; Hermann et al.,
2015; Rajpurkar et al., 2016; Mostafazadeh et al.,
2016). Our question is how far have we got in
learning basic concepts of the world through lan-
guage comprehension. If we look at the large
body of work on extracting knowledge from un-
structured corpora, we will see that they often lack
some very basic pieces of information. For ex-
ample, let us focus on the basic concept of ap-
ple, the fruit. What do the state-of-the-art sys-
tems and resources know about an apple? None
of the state-of-the-art knowledge bases (Speer and
Havasi, 2012; Carlson et al., 2010; Fader et al.,
2011) include much precise information about the
fact that apples have an edible skin, vary from
sweet to sour, are round, and relatively the same
size of a fist. Moreover, there is no clear approach
on how to extract such information, if any, from
trained word embeddings. This paper focuses on
how we can automatically learn about various at-
tributes of such generic entities in the world.

A key observation motivating this work is that
we can learn more detail about objects when they
are compared to other similar objects. When we
compare things we often contrast, that is, we count
their similarities along with their dissimilarities.
This results in covering the primary attributes and
aspects of objects. As humans, we tend to recall
and mention the difference between things (say
green skin vs. red skin in apples) as opposed to
absolute measures (say the existence of skin). In-
terestingly, there is evidence that human knowl-
edge is structured by semantic similarity and the
relations among objects are defined by their rel-
ative perceptual and conceptual properties, such
as their form, function, behavior, and environ-
ment (Collins and Loftus, 1975; Tversky and Gati,
1978; Cree and Mcrae, 2003). Our idea is to lever-
age comparison as a way of naturally learning

906

https://doi.org/10.18653/v1/P17-1084

about common world concepts and their specific
attributes.

Comparison, where we name the similarities
and differences between things, is a unique cogni-
tive ability in humans1 which requires memorizing
facts, experiencing things and integration of con-
cepts of the world (Hazlitt, 1933). It is clear that
developing AI systems that are capable of compre-
hending comparison is crucial. In this paper, in or-
der to enable learning through comparison, we in-
troduce a new language comprehension task which
requires understanding different attributes of basic
entities that are being compared.

The contributions of this paper are as fol-
lows: (1) To equip learning about common enti-
ties through comparison comprehension, we have
crowdsourced a dataset of more than 14K com-
parison paragraphs comparing entities from nine
broad categories (Section 2). This resource will
be expanded over time and will be released to
the public. (2) We introduce a novel task called
GuessTwo, in which given a short paragraph com-
paring two entities, a system should guess what
the two things are. (Section 3). To make system-
atic benchmarking on the task possible, we vet a
collection of comparison paragraphs to obtain a
test set on which human performs with an accu-
racy 94.2%. (3) We present a host of neural ap-
proaches and a novel semantic-driven model for
tackling the GuessTwo task (Sections 4, 5). Our
experiments show that the semantic approach out-
performs the neural models. The results strongly
suggest that closing the gap between system and
human performances requires richer semantic pro-
cessing (Section 6). We hope that this work will
establish a new base for a machine comprehension
test that requires systems to go beyond informa-
tion extraction and towards levels of performing
basic reasoning.

2 Data Collection

To enable learning about common entities, we
aimed to create a dataset which meets the follow-
ing goals:

1. The dataset should be a collection of high-
quality documents which are rich in compar-

1It has been suggested (Hazlitt, 1933) that children un-
der seven years old cannot name differences between simple
things such as peach and apple. This further shows that the
ability for comparison develops at a later age and is cogni-
tively complex.

ing and contrasting entities using their vari-
ous attributes and aspects.

2. The comparisons in the dataset should in-
volve everyday non-technical concepts, mak-
ing their comprehension easy and common-
sense for a human.

After many experiments with scraping existing
Web resources, we decided to crowdsource the
comparison paragraphs using Amazon Mechani-
cal Turk2 (Mturk). We prompt the crowd workers
as follows: “Your task is to compare two given
items in one simple language paragraph so that a
knowledgeable person who reads it can guess what
the two things are”. The workers were instructed
to compare only the major and well-known aspects
of the two entities. We also asked them to use X
and Y for anonymously referring to the two enti-
ties. Table 1 shows three examples of our crowd-
sourced comparison paragraphs. As these exam-
ples show, the paragraphs are very contentful and
rich in comparison which meets our initial goals
in the dataset creation.

Entity Pair Selection. The choice of the two
entities which should be compared against each
other plays a key role in the quality of the col-
lected dataset. It is evident that naturally, we com-
pare two things which are semantically similar, yet
have some dissimilarities3, such as jam and jelly.
Given the goals of our task, we experimented with
concrete nouns which share a common taxonomy
class. We choose semantic classes which have at
least five well-known entities. So far, we have
covered nine broad categories as shown in Fig-
ure 2, with 21 subcategories shown in Figure 3.
We use Wikipedia item categories and the Word-
Net (Miller, 1995) ontology for identifying en-
tities from each subcategory. Then, we choose
the most common entities by looking up their fre-
quency on Google Web 1T N-grams4. We manu-
ally inspected the frequency-filtered list to make
sure that the entities are rather easy to describe
without getting technical. Given the list of enti-
ties, we paired each entity with at most five and
at least three other entities from the same subcate-
gory. We also include inter-subcategory compar-

2www.mturk.com
3Tversky’s (1978) analysis of similarity suggests that sim-

ilarity statements compare objects that belong to the same
class of things.

4https://catalog.ldc.upenn.edu/
ldc2006t13

907

Comparison Paragraph Entity X Entity Y

Both X and Y are fruits and a variety of apples. X and Y are generally similar
in size. X are dark red in color when ripe, while Y are a bright green color. X
is sweeter and softer than Y in taste and texture, sometimes starchy. Y are tart
and somewhat stringy. Y is often used in cooking, whereas X is not.

Red Delicious
Apple
Fruit

Granny Smith
Apple
Fruit

The X and Y are two types of vehicles. X is a smaller vehicle than Y. The
X has two wheels while Y has none. The X travels on roadways and smooth
surfaces, whereas Y is capable of flying. Only one or two people are able to
ride on X at once, while Y can carry more people.

Motorcycle
Motor Vehicle
Vehicle

Helicopter
Aircraft
Vehicle

X and Y are both types of world cuisines. X incorporates a lot of pasta dishes
and sauces, with basil, tomato, and cheese being major ingredients. Y consists
of many curries and stir fried dishes, with coconut and lemongrass being used
often. Y is generally spicier and more aromatic than X. X is a European
cuisine, while Y is an Asian cuisine.

Italian Cuisine
Cuisine
Cuisine

Thai Cuisine
Cuisine
Cuisine

Table 1: Examples from the GuessTwo comprehension dataset. Also provided with the dataset is the
subcategory and the broad category of the entities which are listed below the entity names in this Table.

Figure 1: An example illustrating the entity pair
matching process.

ison for a handful of entities at the boundaries.
Figure 1 illustrates our entity pair matching pro-
cess with an example on subcategories ‘apple’ and
‘citrus’.

Data Quality Control. Our task of free-form
writing is trickier than many other tasks such as
tagging on Mturk. To instruct the non-expert
workers, we designed a qualification test on Mturk
in which the workers had to judge whether or not a
given paragraph is acceptable according to our cri-
teria. We used three carefully selected paragraphs
to be a part of the qualification test. Moreover,
to further ensure the quality of the submissions,
one of our team members qualitatively browsed
through the submissions and gave the workers de-
tailed feedback before approving their paragraphs.

For each pair of entities, we collected eight
comparison paragraphs from different workers.
Given that different workers have different per-
spectives on what the major aspects to be com-
pared are, collecting multiple paragraphs helps
further enriching our dataset. We constrained the
paragraphs to be at least 250 characters and at
most 850 characters. Table 2 shows the basic
statistics of our dataset. In this Table, we also in-
cluded the median number of adjectives (includ-

ing comparatives) per paragraph as a measure of
descriptiveness of the comparison paragraphs. As
a point of reference, the median number of adjec-
tives in a random Wikipedia paragraph of the same
length is 5.

Figure 2: Distribution of broad category
of the entities.

Figure 3: Distribution of subcategory of
the entities.

Given the quality control we have in place, our
data collection is going slowly. So far we have col-
lected 14,142 paragraphs; however, we are aiming

908

Number of total approved paragraphs 14,142
Number of workers participated 649
Average number of paragraphs by one worker 21.7
Average work time among workers (minutes) 17.3
Median work time among workers (minutes) 6.4
Payment per paragraph (cents) 50
Number of broad entity categories 9
Number of entity sub-categories 24
Number of unique entities 920
Number of unique pairs compared 1974
Median number of sentences per paragraph 7
Median number of tokens per paragraph 70
Median number of adjectives per paragraph 7

Table 2: Statistics of the GuessTwo dataset as of
April 2017.

Figure 4: An example showing the entity pairs in
the test and training sets.

to expand the resource over time.

Test Set Creation. In order to enable bench-
marking on the task, we assessed the quality of
a random sample of GuessTwo paragraphs as fol-
lows: we show the paragraph to three human
workers on Mturk and ask them to guess what the
two things are. Then, we choose 520 paragraphs
for which all three workers have made exactly cor-
rect guesses for both entities. The test set will also
be expanded along with the further data collection.

We divided the rest of the GuessTwo dataset
into training and validation sets, with a 90%/10%
split. To ensure that the test set requires some
level of basic reasoning, our training set does not
share any exact entity pairs with the validation or
test set. This further enforces systems to learn
about entities indirectly by processing across para-
graphs. For instance, as shown in Figure 4, at test
time, a system should be able to guess a compari-
son involving the entities blood orange vs. lemon
by having seen comparisons of blood orange vs.
tangerine and tangerine vs. lemon.

Our dataset will be released to the pub-
lic through https://omidb.github.io/
guesstwo/.

3 The GuessTwo Task Definition

We define the following two different schemes for
the GuessTwo task:
• Open-ended GuessTwo. Given a short para-
graph P which compares two entities X and Y,
guess what the two entities are. The scope of this
prediction is the set of all entities appearing in the
training dataset.
• Binary Choice GuessTwo. Given a short para-
graph P which compares two entities X and Y,
and two nominals n1 and n2, choose 0 if n1 =
X and n2 = Y, choose 1 otherwise.

We speculate that system which can success-
fully tackle the GuessTwo task, has achieved two
major objectives: (1) Has successfully learned the
knowledge about entities stored in any form (e.g.,
continuous-space representation or symbolic) (2)
Has a basic natural language understanding ca-
pability, using which, it can comprehend a para-
graph and access its knowledge. We predict that
our training dataset has enough detailed informa-
tion about entities for learning the required knowl-
edge for tackling the task. Given the design of
our dataset, at test time, a system should perform
some level of reasoning to go beyond understand-
ing only one paragraph.

4 Neural Models

In this Section we present various end-to-end neu-
ral models for tackling the task of GuessTwo.

Continuous Bag-of-words Language Model.
This model computes the probability of a sequence
of consecutive words in context. The premise is
that the probability of a paragraph with the correct
realization of X and Y should be higher than the
a paragraph with incorrect realizations. In order
to compute the probability of a word given a con-
text we use Continuous Bag-of-words (CBOW)
(Mikolov et al., 2013a) which models the follow-
ing conditional probability:

p(w|C(w), θ) (1)

here, C(w) is the context of the word w and θ is
the model parameters. Then, the probability of a
sequence of words (in a paragraph) is computed as
follows:

n∏

i=1

p(wi|C(wi), θ) (2)

We define context to be a window of five words.
Figure 5a summarizes this model. We train this

909

(a) The CBOW model.

(b) The CNN open-ended model.

(c) The CNN binary-choice model.

Figure 5: Various neural models for tackling the task of GuessTwo.

Figure 6: The Encoder-Decoder model.

model on two datasets: (1) A collection5 of pro-
cessed Wikipedia articles. Wikipedia articles often
include definitions and descriptions of variety of
items, which can provide a reasonable resource for
our task. (2) the GuessTwo training dataset. We
call these models CBOW-Wikipedia and CBOW-
GuessTwo respectively.

At test time, for open-ended prediction we find
the two nominals which maximize the following
probability:

argmax
x,y

n∏

i=1

p(wi|C(wi)x,y, θ) (3)

where C(wi)x,y indicates the context in which any
occurrences of X have been replaced with x and
Y’s have been replaced with y. For binary choice
classification, we use the same modeling except
that we only consider x = n1, y = n2 and x =
n2, y = n1.

Encoder-Decoder Recurrent Neural Net
5http://mattmahoney.net/dc/text8.zip

(RNN). This model is a sequence-to-sequence
generation model (Cho et al., 2014; Sutskever
et al., 2014) that maps an input sequence to an
output sequence using an encoder-decoder RNN
with attention (Bahdanau et al., 2014). The en-
coder RNN processes the comparison paragraph
and the decoder generates the first item followed
by the second item (Figure 6). The paragraph
is encoded into a state vector of size 512. This
vector is then set as the initial recurrent state of
the decoder. We tune the model parameters on the
validation set, where we set the number of layers
to 2. The model is trained end-to-end, using
Stochastic Gradient Descent with early stopping.

For open-ended prediction, we use beam search
with beam-width = 25 and then output the two
tokens with the highest probability. For binary
choice classification, we use the same model
where we set the encoder RNN inputs to the in-
put paragraph tokens, then, we set the input of the
decoder RNN once to [n1, n2] and next to [n2,
n1]. After running the network forward, we take
the probability of the decoder logits and choose
the ordering which has the highest probability.

Convolutional Neural Network (CNN) En-
coder. As shown in the Figure 5b, this model first
uses a Convolutional Neural Network (CNN) (Le-
Cun and Bengio, 1998) for encoding the paragraph
(Kim, 2014). We train a simple CNN with one
layer of convolution on top of pre-trained word
vectors. Here we use the word vectors trained by

910

Be - Be

The set

Physical object - X Physical object - Y

Both

Fruit - Apple

Neutral1 Neutral

Sequence1 Sequence

Operator

Figure 7: Semantic parsing for the sentence Both
X and Y are apples.

Skip-gram model (Mikolov et al., 2013b) on 100
billion words of Google News6. For open-ended
prediction, the output of CNN is fed forward and
transformed into a 300 dimension vector. Then,
we use a softmax layer to get the probability of
each of the possible nominals forX andY. For bi-
nary choice classification, we use the same archi-
tecture and settings as above. Additionally, we en-
code each nominal into a 300-dimensional vector,
which then gets concatenated with the paragraph
vector. Figure 5c shows this model.

5 Semantic-driven Model

In this Section we present a semantic-driven ap-
proach which models the comparison paragraph
using semantic features and is capable of perform-
ing basic reasoning across paragraphs.

5.1 Representing Paragraphs
The question is, given a comparison paragraph,
what is the best representation which can enable
further reasoning? The comparison paragraphs of-
ten have complex syntactic and semantic struc-
tures, which might be challenging for many off-
the-shelf NLP tools to process. For instance, con-
sider the sentence X is much sweeter in taste than
Y. Although a dependency parser provides a lot
of information regarding how the individual words
relate grammatically, it does not give us any in-
formation regarding how Y’s sweetness (which is
elided from the sentence and is implicit) relates to
X’s. As another processing technique, if we use
the standard information extraction methods for
extracting and representing syntactic triplets (ar-
gument1, relation, argument2) (Fader et al., 2014;
Etzioni et al., 2011), we will extract a triplet such

6https://code.google.com/archive/p/
word2vec/

as X is sweeter which shares the same shortcom-
ings.

Our approach for better representation of com-
parison paragraphs starts with a broad-coverage
semantic parser (Banarescu et al., 2013; Bos,
2008; Allen et al., 2008). A semantic parser maps
an input sentence to its formal meaning represen-
tation, operating at the generic natural language
level. Here we use the TRIPS7 (Allen et al., 2008)
broad-coverage semantic parser. TRIPS provides
a very rich semantic structure; mainly it provides
sense disambiguated deep structures augmented
with semantic ontology types. Figure 7 shows
an example TRIPS semantic parse. In this graph
representation, each node specifies a word in bold
along with its corresponding ontology type on its
left. The edges in the graph are semantic roles8.
As you can see, this semantic parse represents the
sentence by decoupling the token ‘both’ and at-
tributing the property of ‘be apple’ to both X and
Y.

In our comparison paragraphs there are two ma-
jor types of sentences:
• Sentences with Absolute Information. These
sentences contain direct information about the en-
tities, such as X is red or Both X and Y are very
sweet. From each absolute sentence, we extract
frames which describe the absolute attributes of
the corresponding entity. We define a frame to
be a subgraph of a semantic parse which involves
exactly one entity and all of its semantic roles.
Relying on the deep semantic features offered by
the semantic parser, we perform negation propaga-
tion9 and sequence decoupling, among others fea-
tures. For example, given a sentence which has
a sequence, as the one depicted in Figure 7, we
perform sequence decoupling and extract the two
frames [X Be Apple] and [Y Be Apple].
• Sentences with Relative Information. These
sentences contain relative information about the
two entities, for instance, X is somewhat sweeter
thanY. As opposed to the sentences with absolute
information, we cannot extract frames from sen-
tences with comparisons directly. Various proper-
ties of entities can be associated with an abstract
scale, such as ‘size’ or ‘sweetness’, on which dif-

7http://trips.ihmc.us/parser/cgi/parse
8Refer to http://trips.ihmc.us/parser/

LFDocumentation.pdf for the full list of semantic roles
in TRIPS parser.

9A common construction which needs negation propaga-
tion is Neither X nor Y are

911

Comparative>

X is sweet -er than Y.

Scale/+

Figure

Ground

Figure 8: The comparison construction predicted
for the sentence X is sweeter than Y.

ferent entities can be compared. In order to extract
such scales and the relative standing of items on
them we use the structured prediction model pre-
sented in Bakhshandeh et al. (2016), which given
a sentence predicts its comparison structures. Fig-
ure 8 shows an example predicate-argument struc-
ture that is predicted by this model. We use pre-
trained model on the annotated corpus (Bakhshan-
deh et al., 2016) of comparison structures.

Given a comparison structure such as the one
presented in Figure 8, we can extract the informa-
tion that on the scale of ‘sweetness’ X is higher
thanY. It is clear that one can build a large knowl-
edge base of such relations by reading large col-
lections of comparison paragraphs. We populate
our knowledge base of relative information about
entities as follows: First, we predict the compar-
ison structure of each sentence and then extract a
binary relation≺s which shows the relation on the
scale of s. Second, for any scale s, we apply tran-
sitivity on its entities. As shown in equation 4,
the binary relation ≺s is transitive over the set of
all entities, A. This process, called closure, en-
ables us do basic reasoning and derives implicit
relations on scales from explicit relations.

∀s ∈ S ∀x, y, z ∈ A : (x ≺s y ∧ y ≺s z)
=⇒ x ≺s z (4)

The product of this step is a structured knowl-
edge base on entity ordering which we call the or-
dering lattice. Figure 9 shows an example partial
ordering lattice inferred by our model, where the
sweetness of Golden Delicious can be compared
to Granny Smith through their direct link with Red
Delicious.

5.2 Modeling

Given a paragraph P , we first extract the set of all
the absolute information frames for X and Y (as
described above), called FX(P) and FY(P). Sec-
ond, for the sentences with relative information,

Figure 9: The inferred partial ordering lattice com-
paring the sweetness of different apples.

we extract all the binary relations ≺s∈ R(P) that
should hold between X and Y. Then, our objec-
tive is to find two realizations for X and Y that
maximize the following:

argmax
x,y

p(x|FX(P)) + p(y|FY(P))

s.t. ∀ ≺s∈ R(P) : x ≺s y (5)

In order to compute the p(x|FX(P)) and
p(y|FY(P)) scores we used Regularized Gradient
Boosting (XGBoost) classifier (Friedman, 2000),
which uses a regularized model formulation to
limit overfitting. We directly use each frame in the
FX(P) and FY(P) sets as the classifier features.
We use Integer Linear Programming (ILP) for for-
mulating the constraints as follows: for each rela-
tion r ∈ R on the scale s, we lookup the scale
s in the ordering lattice and make the blacklist
B(P) containing each pair of entities which do
not satisfy the relation r. Our ordering lattice does
not have perfect complete information, hence, we
have Open World Assumption and only prune our
search space not to include the already observed
pairs which violate the relation. our ILP objective
function will be the following:

argmax
b,b′

∑

x∈N
bx p(x|FX(P)) +
∑

y∈N
b′y p(y|FY(P))

s.t. ∀ (j, j′) ∈ B(P) : bj + b′j′ ≤ 1 (6)

whereN is the set of all possible realizations and b
and b′ are the binary indicator variables, so bx = 1
indicates the realization of x for X.

912

In the case of open-ended prediction, the maxi-
mization presented in Equation 6 is carried out on
the set N . In the case of binary choice classifica-
tion, however, only the two choices of n1 and n2
are considered in the maximization.

6 Results

We evaluate all the models presented in Sections 4
and 5 using the following accuracy measure:

#correct predictions of both entities
#test cases

(7)

As for the open-ended prediction we compute the
nominator of the accuracy measure using three
various matching methods on both entities: (1)
exact-match, (2) subcategory match, (3) broad cat-
egory match.

As Table 3 shows, the semantic model outper-
forms all the neural models. Moreover, the ILP
constraints have been very effective in directing
the system in the correct search space. Among
the neural models, the Encoder-Decoder RNN
model performs noticeably better than other mod-
els when matching the subcategory and broad cat-
egory. According to the exact-matching, neither
of the CBOW models could guess any of the two
test entities correctly. Overall, it is evident that
the end-to-end neural models have not been able
to generalize well and learn about the attributes of
entities across various training paragraphs. This
can be partly due to not being trained on large
enough comparison training dataset. The seman-
tic model, however, could outperform the neural
models using the same amount of data. To a de-
gree, this is because the semantic model leverages
the basic language understanding capabilities of-
fered by the semantic parser.

It is also important to note that our seman-
tic approach is not only capable of binary and
open-ended prediction, but it also offers two by-
products that can be used as knowledge in a vari-
ety of other tasks: (1) a set of the most important
absolute information frames which can be chosen
based on feature importance in the classification,
(2) the partial ordering lattice of entities. Over-
all, the results strongly suggest that the GuessTwo
task is challenging, with the open-ended scheme
being the most challenging. There is a wide gap
between human and system performance on this
task, which makes it a very promising task for the
community to pursue.

Model Binary Open-ended
Exact. Subcat.

Human 100.0 94.2 100.0
CBOW-Wikipedia 51.9 0.0 1.5
CBOW-GuessTwo 51.7 0.0 1.1
Encoder-Decoder RNN 58.8 2.9 6.8
CNN 57.6 1.9 2.5
Semantic (no constraints) 61.5 10.5 38.5
Semantic (with ILP constraints) 69.2 11.7 40.4

Table 3: System accuracy results on the GuessTwo
test set. A random baseline on binary choice task
achieves 51%. The open-ended evaluation has
two columns: exact-match (exact) and subcate-
gory match (subcat), respectively.

7 Related Work

The task of Machine Comprehension (MC) has
gained a significant attention over the past few
years. The major driver for MC has been the
publicly available benchmarking datasets. A va-
riety of MC tasks have been introduced in the
community (Richardson et al.; Hermann et al.,
2015; Rajpurkar et al., 2016; Hill et al., 2015),
in which the system reads a short text and an-
swers a few multiple-choice questions. The read-
ing comprehension involved in these tests ranges
from reading a short fictional story (Richardson
et al.) to reading a short news article (Hermann
et al., 2015). In comparison, in the GuessTwo
task the reading comprehension involves reading
a short comparison paragraph and one can say the
multiple-choice question is the constant What are
X and Y?

The CNN/DailyMail dataset consists of more
than 100K short news articles with the questions
automatically created from the bullet-point sum-
maries of the original article. This dataset uses
fill-in-the-blank-style questions such as ‘Producer
X will not press charges against Jeremy Clark-
son’ where the system should choose among all
the anonymized entities in the corresponding para-
graph to fill in X. The Stanford Question Answer-
ing (SQuAD) dataset is another recent machine
comprehension test with over 500 Wikipedia ar-
ticles and +100,000 crowdsourced questions. The
answer to every question in this dataset is a span
of text from the corresponding reading passage.

Human accuracy on CNN/DailyMail is esti-
mated to be around 75% (Chen et al., 2016) with
the current state-of-the-art at 76.1 on CNN (Sor-
doni et al., 2016), and 75.8 on DailyMail (Chen
et al., 2016). The human F1 score on SQuAD

913

dataset is reported to be at 86.8%, with the cur-
rent state-of-the-art achieving 82.9%. Given these
statistics, neither of these datasets leave enough
room for further research. Given that in both these
tasks the answer to the question is directly found
in the provided passage, we argue that the commu-
nity requires a more challenging MC task which
goes beyond matching and needs some level of in-
ference across passages. The GuessTwo task re-
quires basic reasoning and inference across para-
graphs for comprehending various aspects of enti-
ties relative to one another.

Another interesting task is MCTest (Richard-
son et al.), which is a reading comprehension
test with 660 fictional stories as the passage and
four questions per story. The human-level per-
formance on MCTest is estimated to be around
90%, with the state-of-the-art achieving an accu-
racy of 70% (Wang et al., 2015). MCTest is also
proven to be challenging, however, given its very
limited training data, further progress on the task
has been hindered. Yet another relevant QA task
is the Allen AI Science Challenge (Clarke et al.,
2010; Schoenick et al., 2016), which is a dataset
of multiple-choice questions and answers from a
standardized 8th grade science exam. The ques-
tions can range from simple fact lookup to com-
plex ones which require extensive world knowl-
edge and commonsense reasoning. This task re-
quires machine reading of a variety of resources
such as textbooks and goes beyond reading a cou-
ple of passages.

8 Conclusion

We introduced the novel task of GuessTwo, in
which given a short paragraph comparing two
common entities, a system should guess what the
two entities are. The comparison paragraphs of-
ten have complex semantic structures which make
this comprehension task demanding. Furthermore,
guessing the two entities requires a system to go
beyond only understanding one given passage and
requires reasoning across paragraphs, which is one
of the most under-explored, yet crucial, capabili-
ties of an intelligent agent.

So far, we have crowdsourced a dataset of more
than 14K comparison paragraphs comparing enti-
ties from nine major categories. For benchmark-
ing the progress, we filter a collection of these
paragraphs to create a test set, on which humans
perform with an accuracy of 94.2%. For contin-

uing our data collection, we would like to have
a targeted entity pair selection where we partic-
ularly collect the missing relations in our partial
ordering lattice. We believe that this process can
help developing more effective systems. For the
most recent statistics of the dataset and the best
performing systems please check this website.

We presented a host of neural models and a
novel semantic-driven approach for tackling the
task of GuessTwo. Our experiments show that the
semantic approach outperforms the neural mod-
els by a large margin. The poor performance of
the neural models we experimented with can mo-
tivate designing new architectures which are ca-
pable of performing basic reasoning across para-
graphs. The results strongly suggest that bridging
the gap between system and human performance
on this task requires models with richer language
representation and reasoning capabilities. As a fu-
ture work, we would like to explore the feasibility
of marrying our semantic and neural models to ex-
ploit the benefits that each of them has to offer.

9 Acknowledgments

This work was supported in part by Grant
W911NF-15-1-0542 with the US Defense Ad-
vanced Research Projects Agency (DARPA) and
the Army Research Office (ARO). We would like
to thank Linxiuzhi Yang for her help in the data
collection and anonymous reviewers for their in-
sightful comments on this work. We specially
thank William de Beaumont for his invaluable
feedback on this paper. We also thank the inputs
from Steven Piantadosi, Brad Mahon, and Gregory
Carlson on cognitive aspects of comparison.

References
James F. Allen, Mary Swift, and Will de Beau-

mont. 2008. Deep semantic analysis of
text. In Proceedings of the 2008 Conference
on Semantics in Text Processing. Associa-
tion for Computational Linguistics, Strouds-
burg, PA, USA, STEP ’08, pages 343–354.
http://dl.acm.org/citation.cfm?id=1626481.1626508.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473. http://arxiv.org/abs/1409.0473.

Omid Bakhshandeh, Alexis Cornelia Wellwood, and
James Allen. 2016. Learning to jointly predict el-
lipsis and comparison structures. In Proceedings
of The 20th SIGNLL Conference on Computational

914

Natural Language Learning. Association for Com-
putational Linguistics, Berlin, Germany, pages 62–
74. http://www.aclweb.org/anthology/K16-1007.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representa-
tion for sembanking. In Proceedings of the
7th Linguistic Annotation Workshop and Interoper-
ability with Discourse. Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 178–186.
http://www.aclweb.org/anthology/W13-2322.

Johan Bos. 2008. Wide-coverage semantic analysis
with boxer. In Johan Bos and Rodolfo Delmonte,
editors, Semantics in Text Processing. STEP 2008
Conference Proceedings. College Publications, Re-
search in Computational Semantics, pages 277–286.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr
Settles, Estevam R. Hruschka, and Tom M. Mitchell.
2010. Toward an architecture for never-ending lan-
guage learning. In In AAAI.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the cnn/-
daily mail reading comprehension task. In Associa-
tion for Computational Linguistics (ACL).

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

James Clarke, Dan Goldwasser, Ming-Wei Chang,
and Dan Roth. 2010. Driving semantic pars-
ing from the world’s response. In Proceedings
of the Fourteenth Conference on Computa-
tional Natural Language Learning. Associa-
tion for Computational Linguistics, Strouds-
burg, PA, USA, CoNLL ’10, pages 18–27.
http://dl.acm.org/citation.cfm?id=1870568.1870571.

Allan M. Collins and Elizabeth F. Loftus. 1975. A
spreading-activation theory of semantic processing.
Psychological Review 82(6):407 – 428.

George S. Cree and Ken Mcrae. 2003. Analyzing the
factors underlying the structure and computation of
the meaning of chipmunk, cherry, chisel, cheese, and
cello (and many other such concrete nouns). Journal
of Experimental Psychology: General 132(2):163–
201+.

Oren Etzioni, Anthony Fader, Janara Christensen,
Stephen Soderland, and Mausam Mausam. 2011.
Open information extraction: The second gener-
ation. In Proceedings of the Twenty-Second In-
ternational Joint Conference on Artificial Intelli-
gence - Volume Volume One. AAAI Press, IJCAI’11,
pages 3–10. https://doi.org/10.5591/978-1-57735-
516-8/IJCAI11-012.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information
extraction. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.
Association for Computational Linguistics, Strouds-
burg, PA, USA, EMNLP ’11, pages 1535–1545.
http://dl.acm.org/citation.cfm?id=2145432.2145596.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and
extracted knowledge bases. In Proceedings of
the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM,
New York, NY, USA, KDD ’14, pages 1156–1165.
https://doi.org/10.1145/2623330.2623677.

Jerome H. Friedman. 2000. Greedy function approx-
imation: A gradient boosting machine. Annals of
Statistics 29:1189–1232.

V. Hazlitt. 1933. The psychology of in-
fancy. E.P. Dutton and company, inc.
https://books.google.com/books?id=I8svAAAAYAAJ.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1693–
1701.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. International Conference on Learning Repre-
sentations (ICLR) .

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Alessandro Mos-
chitti, Bo Pang, and Walter Daelemans, edi-
tors, Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Process-
ing, EMNLP 2014, October 25-29, 2014, Doha,
Qatar, A meeting of SIGDAT, a Special Inter-
est Group of the ACL. ACL, pages 1746–1751.
http://aclweb.org/anthology/D/D14/D14-1181.pdf.

Yann LeCun and Yoshua Bengio. 1998. The
handbook of brain theory and neural net-
works. MIT Press, Cambridge, MA, USA,
chapter Convolutional Networks for Images,
Speech, and Time Series, pages 255–258.
http://dl.acm.org/citation.cfm?id=303568.303704.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013b. Distributed
representations of words and phrases and their
compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, editors, Advances in Neural Information

915

Processing Systems 26, Curran Associates, Inc.,
pages 3111–3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.pdf.

George A. Miller. 1995. Wordnet: A lexical
database for english. Commun. ACM 38(11):39–41.
https://doi.org/10.1145/219717.219748.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A cor-
pus and cloze evaluation for deeper understanding
of commonsense stories. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Com-
putational Linguistics, San Diego, California, pages
839–849. http://www.aclweb.org/anthology/N16-
1098.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text .

Matthew Richardson, Christopher J. C. Burges, and
Erin Renshaw. ???? Mctest: A challenge dataset for
the open-domain machine comprehension of text.
pages 193–203.

Carissa Schoenick, Peter Clark, Oyvind Tafjord,
Peter D. Turney, and Oren Etzioni. 2016.
Moving beyond the turing test with the allen
AI science challenge. CoRR abs/1604.04315.
http://arxiv.org/abs/1604.04315.

Alessandro Sordoni, Phillip Bachman, and Yoshua
Bengio. 2016. Iterative alternating neural atten-
tion for machine reading. CoRR abs/1606.02245.
http://arxiv.org/abs/1606.02245.

Robert Speer and Catherine Havasi. 2012. Repre-
senting general relational knowledge in concept-
net 5. In Nicoletta Calzolari (Conference Chair),
Khalid Choukri, Thierry Declerck, Mehmet Uur
Doan, Bente Maegaard, Joseph Mariani, Asun-
cion Moreno, Jan Odijk, and Stelios Piperidis, ed-
itors, Proceedings of the Eight International Con-
ference on Language Resources and Evaluation
(LREC’12). European Language Resources Associ-
ation (ELRA), Istanbul, Turkey.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada. pages 3104–
3112. http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.

Amos Tversky and Itamar Gati. 1978. Studies of simi-
larity. Cognition and categorization 1(1978):79–98.

Hai Wang, Mohit Bansal, Kevin Gimpel, and David A.
McAllester. 2015. Machine comprehension with
syntax, frames, and semantics. In Proceedings
of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the Asian Federation of Natural Lan-
guage Processing, ACL 2015, July 26-31, 2015, Bei-
jing, China, Volume 2: Short Papers. The Asso-
ciation for Computer Linguistics, pages 700–706.
http://aclweb.org/anthology/P/P15/P15-2115.pdf.

916

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 917–928
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1085

Going out on a limb: Joint Extraction of Entity Mentions and Relations
without Dependency Trees

Arzoo Katiyar and Claire Cardie
Department of Computer Science

Cornell University
Ithaca, NY, 14853, USA

arzoo, cardie@cs.cornell.edu

Abstract

We present a novel attention-based re-
current neural network for joint extrac-
tion of entity mentions and relations. We
show that attention along with long short
term memory (LSTM) network can extract
semantic relations between entity men-
tions without having access to dependency
trees. Experiments on Automatic Content
Extraction (ACE) corpora show that our
model significantly outperforms feature-
based joint model by Li and Ji (2014). We
also compare our model with an end-to-
end tree-based LSTM model (SPTree) by
Miwa and Bansal (2016) and show that
our model performs within 1% on entity
mentions and 2% on relations. Our fine-
grained analysis also shows that our model
performs significantly better on AGENT-
ARTIFACT relations, while SPTree per-
forms better on PHYSICAL and PART-
WHOLE relations.

1 Introduction

Extraction of entities and their relations from text
belongs to a very well-studied family of structured
prediction tasks in NLP. There are several NLP
tasks such as fine-grained opinion mining (Choi
et al., 2006), semantic role labeling (Gildea and
Jurafsky, 2002), etc., which have a similar struc-
ture; thus making it an important and a challeng-
ing task.

Several methods have been proposed for entity
mention and relation extraction at the sentence-
level. These can be broadly categorized into –
1) pipeline models that treat the identification of
entity mentions (Nadeau and Sekine, 2007) and
relation classification (Zhou et al., 2005) as two
separate tasks; and 2) joint models, also the more

recent, which simultaneously identify the entity
mention and relations (Li and Ji, 2014; Miwa and
Sasaki, 2014). Joint models have been argued to
perform better than the pipeline models as knowl-
edge of the typed relation can increase the confi-
dence of the model on entity extraction and vice
versa.

Recurrent networks (RNNs) (Elman, 1990)
have recently become very popular for sequence
tagging tasks such as entity extraction that in-
volves a set of contiguous tokens. However, their
ability to identify relations between non-adjacent
tokens in a sequence, e.g., the head nouns of two
entities, is less explored. For these tasks, RNNs
that make use of tree structures have been deemed
more suitable. Miwa and Bansal (2016), for ex-
ample, propose an RNN comprised of a sequence-
based long short term memory (LSTM) for en-
tity identification and a separate tree-based depen-
dency LSTM layer for relation classification using
shared parameters between the two components.
As a result, their model depends critically on ac-
cess to dependency trees, restricting it to sentence-
level extraction and to languages for which (good)
dependency parsers exist. Also, their model does
not jointly extract entities and relations; they first
extract all entities and then perform relation clas-
sification on all pairs of entities in a sentence.

In our previous work (Katiyar and Cardie,
2016), we address the same task in an opinion
extraction context. Our LSTM-based formulation
explicitly encodes distance between the head of
entities into opinion relation labels. The output
space of our model is quadratic in size of the entity
and relation label set and we do not specifically
identify the relation type. Unfortunately, adding
relation type makes the output label space very
sparse, making it difficult for the model to learn.

In this paper, we propose a novel RNN-based
model for the joint extraction of entity mentions

917

https://doi.org/10.18653/v1/P17-1085

and relations. Unlike other models, our model
does not depend on any dependency tree informa-
tion. Our RNN-based model is a multi-layer bi-
directional LSTM over a sequence. We encode the
output sequence from left-to-right. At each time
step, we use an attention-like model on the previ-
ously decoded time steps, to identify the tokens in
a specified relation with the current token. We also
add an additional layer to our network to encode
the output sequence from right-to-left and find sig-
nificant improvement on the performance of rela-
tion identification using bi-directional encoding.

Our model significantly outperforms the
feature-based structured perceptron model of Li
and Ji (2014), showing improvements on both
entity and relation extraction on the ACE05
dataset. In comparison to the dependency tree-
based LSTM model of Miwa and Bansal (2016),
our model performs within 1% on entities and
2% on relations on ACE05 dataset. We also find
that our model performs significantly better than
their tree-based model on the AGENT-ARTIFACT

relation, while their tree-based model performs
better on PHYSICAL and PART-WHOLE relations;
the two models perform comparably on all other
relation types. The very competitive performance
of our non-tree-based model bodes well for
relation extraction of non-adjacent entities in
low-resource languages that lack good parsers.

In the sections that follow, we describe related
work (Section 2); our bi-directional LSTM model
with attention (Section 3); the training (Section 4);
the experiments on ACE dataset (Section 5); re-
sults (Section 6); error analysis (Section 7) and
conclusion (Section 8).

2 Related Work

RNNs (Hochreiter and Schmidhuber, 1997) have
been recently applied to many sequential model-
ing and prediction tasks, such as machine trans-
lation (Bahdanau et al., 2015; Sutskever et al.,
2014), named entity recognition (NER) (Ham-
merton, 2003), opinion mining (Irsoy and Cardie,
2014). Variants such as adding CRF-like objec-
tive on top of LSTMs have been found to produce
state-of-the-art results on several sequence pre-
diction NLP tasks (Collobert et al., 2011; Huang
et al., 2015; Katiyar and Cardie, 2016). These
models assume conditional independence at the
output layer whereas the model we propose in this
paper does not assume any conditional indepen-

dence at the output layer, allowing it to model an
arbitrary distribution over output sequences.

Relation classification has been widely studied
as a stand-alone task, assuming that the arguments
of the relations are known in advance. There have
been several models proposed including feature-
based models (Bunescu and Mooney, 2005; Ze-
lenko et al., 2003) and neural network based mod-
els (Socher et al., 2012; dos Santos et al., 2015;
Hashimoto et al., 2015; Xu et al., 2015a,b).

For joint-extraction of entities and relations,
feature-based structured prediction models (Li and
Ji, 2014; Miwa and Sasaki, 2014), joint inference
integer linear programming models(Yih and Roth,
2007; Yang and Cardie, 2013), card-pyramid pars-
ing (Kate and Mooney, 2010) and probabilistic
graphical models (Yu and Lam, 2010; Singh et al.,
2013) have been proposed. In contrast, we pro-
pose a neural network model which does not de-
pend on the availability of any features such as part
of speech (POS) tags, dependency trees, etc.

Recently, Miwa and Bansal (2016) proposed
an end-to-end LSTM based sequence and tree-
structured model. They extract entities via a se-
quence layer and relations between the entities via
the shortest path dependency tree network. In this
paper, we try to investigate recurrent neural net-
works with attention for extracting semantic rela-
tions between entity mentions without using any
dependency parse tree features. We also present
the first neural network based joint model that can
extract entity mentions and relations along with
the relation type. In our previous work (Katiyar
and Cardie, 2016), as explained earlier, we pro-
posed a LSTM-based model for joint extraction
of opinion entities and relations, but no relation
types. This model cannot be directly extended to
include relation types as the output space becomes
sparse making it difficult for the model to learn.

Recent advances in recurrent neural network
has seen the application of attention on recur-
rent neural networks to obtain a representation
weighted by the importance of tokens in the se-
quence model. Such models have been very fre-
quently used in question-answering tasks (for re-
cent examples, see Chen et al. (2016) and Lee et al.
(2016)), machine translation (Luong et al., 2015;
Bahdanau et al., 2015), and many other NLP ap-
plications. Pointer networks (Vinyals et al., 2015),
an adaptation of attention models, use these token-
level weights as pointers to the input elements.

918

Martin Geissler , ITV News , Safwan southern Iraq .
Entity tags B PER L PER O B ORG L ORG O U GPE O U LOC O

ORG-AFF

PHYS

PART-WHOLE

Figure 1: Gold standard annotation for an example sentence from ACE05 dataset.

Zhai et al. (2017), for example, have used these
for neural chunking, and Nallapati et al. (2016)
and Cheng and Lapata (2016), for summarization.
However, to the best of our knowledge, these net-
works have not been used for joint extraction of
entity mentions and relations. We present first
such attempt to use these attention models with re-
current neural networks for joint extraction of en-
tity mentions and relations.

3 Model

Our model comprises of a multi-layer bi-
directional recurrent network which learns a rep-
resentation for each token in the sequence. We use
the hidden representation from the top layer for
joint entity and relation extraction. For each to-
ken in the sequence, we output an entity tag and
a relation tag. The entity tag corresponds to the
entity type, whereas the relation tag is a tuple of
pointers to related entities and their respective re-
lation types. Figure 1 shows the annotation for
an example sentence from the dataset. We trans-
form the relation tags from entity level to token
level. For example, we separately model the re-
lation “ORG-AFF” for each token in the entity
“ITV News”. Thus, we model the relations be-
tween “ITV” and “Martin Geissler”, and “News”
and “Martin Geissler” separately. We employ a
pointer-like network on top of the sequence layer
in order to find the relation tag for each token as
shown in Figure 2. At each time step, the network
utilizes the information available about all output
tags from the previous time steps in order to out-
put the entity tag and relation tag jointly for the
current token.

3.1 Multi-layer Bi-directional Recurrent
Network

We use multi-layer bi-directional LSTMs for se-
quence tagging because LSTMs are more capable
of capturing long-term dependencies between to-
kens, making it ideal for both entity mention and

relation extraction.
Using LSTMs, we can compute the hidden state−→

ht in the forward direction and
←−
ht in the backward

direction for every token as below:
−→
h t = LSTM(xt,

−→
h t−1)

←−
h t = LSTM(xt,

←−
h t+1)

For every token t in the subsequent layer l, we
combine the representations

−→
h l−1t and

←−
h l−1t from

previous layer l-1 and feed it as an input. In this
paper, we only use the hidden state from the last
layer L for output layer and compute the top hid-
den layer representation as below:

z
′
t =
−→
V
−→
h

(L)
t +

←−
V
←−
h

(L)
t + c

−→
V and

←−
V are weight matrices for combining hid-

den representations from the two directions.

3.2 Entity detection
We formulate entity detection as a sequence label-
ing task using BILOU scheme similar to Li and Ji
(2014) and Miwa and Bansal (2016). We assign
each token in the entity with the tag B appended
with the entity type if it is the beginning of the en-
tity, I for inside of an entity, L for the end of the
entity or U if there is only one token in the entity.
Figure 1 shows an example of the entity tag se-
quence assigned to the sentence. For each token in
the sequence, we perform a softmax over all can-
didate tags to output the most likely tag:

yt = softmax(Uz
′
t + b)

Our network structure as shown in Figure 2 also
contains connections from the output yt−1 of the
previous time step to the current top hidden layer.
Thus our outputs are not conditionally indepen-
dent from each other. In order to add connections
from yt−1, we transform this output k into a label
embedding bkt−1

1. We represent each label type
1We can also add relation label embeddings using the re-

lation tag output from the previous time step.

919

Figure 2: Our network structure based on bi-directional LSTMs for joint entity and relation extraction.
This snapshot shows the network when encoding the relation tag for the word “Safwan” in the sentence.
The dotted lines in the figure show that top hidden layer and label embeddings for tokens is copied into
relation layer. The pointers at attention layer indicate the probability distribution over tokens, the length
of the pointers is used to denote the probability value.

k with a dense representation bk. We compute the
output layer representations as:

zt = LSTM([z
′
t; b

k
t−1], ht−1)

yt = softmax(Uzt + b
′
)

We decode the output sequence from left to right
in a greedy manner.

3.3 Attention Model

We use attention model for relation extraction. At-
tention models, over an encoder sequence of repre-
sentations z, can compute a soft probability distri-
bution p over these learned representations, where
di is the ith token in decoder sequence. These
probabilities are an indication of the importance
of different tokens in the encoder sequence:

uit = vT tanh(W1z +W2di)

pit = softmax(uit)

v is a weight matrix for attention which transforms
the hidden representations into attention scores.

We use pointer networks (Vinyals et al., 2015)
in our approach, which are a variation of these at-
tention models. Pointer networks interpret these
pit as the probability distribution over the input en-
coding sequence and use uit as pointers to the input
elements. We can use these pointers to encode re-
lation between the current token and the previous
predicted tokens, making it fit for relation extrac-
tion as explained in Section 3.4.

3.4 Relation detection

We formulate relation extraction also as a se-
quence labeling task. For each token, we want to
find the tokens in the past that the current token
is related to along with its relation type. In Fig-
ure 1, “Safwan” is related to the tokens “Martin”
as well as “Geissler” by the relation type “PHYS”.
For simplicity, let us assume that there is only one
previous token the current token is related to when
training, i.e., “Safwan” is related to “Geissler” via
PHYS relation. We can extend our approach to
output multiple relations as explained in Section 4.

We use pointer networks as described in Sec-

920

tion 3.3. At each time step, we stack the top hidden
layer representations from the previous time steps
z≤t2 and its corresponding label embeddings b≤t.
We only stack the top hidden layer representations
for the tokens which were predicted as non-O’s for
previous time steps as shown in Figure 2. Our de-
coding representation at time t is the concatena-
tion of zt and bt. The attention probabilities can
now be computed as below:

ut≤t = vT tanh(W1[z≤t; b≤t] +W2[zt; bt])

pt≤t = softmax(ut≤t)

Thus, pt≤t corresponds to the probability of each
token, in the sequence so far, being related to the
current token at time step t. For the case of NONE

relations, the token at t is related to itself.
We also want to find the type of the relations. In

order to achieve this, we add an extra dimension
to v corresponding to the size of relation types R
space. Thus, uit is no longer a score but a R di-
mensional vector. We then take softmax over this
vector of size O(|z≤t|×R) to find the most likely
tuple of pointer to the related entity and its relation
type.

3.5 Bi-directional Encoding

Bi-directional LSTMs have been found to be able
to capture context better than plain left-to-right
LSTMs, based on their performance on vari-
ous NLP tasks (Irsoy and Cardie, 2014). Also,
Sutskever et al. (2014) found that their perfor-
mance on machine translation task improved on
reversing the input sentences during training. In-
spired by these developments, we experiment with
bi-directional encoding at the output layer. We add
another top hidden layer on Bi-LSTM in Figure 2
which encodes the output sequence from right-
to-left. The two encoding share the same multi-
layer bi-directional LSTM except for the top hid-
den layer. Thus, we have two output layers in
our network which output the entity tags and re-
lation tags separately. At inference time, we em-
ploy heuristics to combine the output from the two
directions.

2The notation ≤ is used to denote the stacking of the rep-
resentations from the previous time steps. Thus, if zt is a
2-dimensional matrix then z≤t will be a 3-dimensional ten-
sor. The size along the first dimension will now correspond
to the number of 2-dimensional matrices stacked.

4 Training

We train our network by maximizing the log-
probability of the correct entity E and relation R
tag sequences jointly given the sentence S as be-
low:

log p(E,R|S, θ)

=
1

|S|
∑

i∈|S|
log p(ei, ri|e<i, r<i, S, θ)

=
1

|S|
∑

i∈|S|
log p(ei|e<i, r<i) + log p(ri|e≤i, r<i)

Thus, we can decompose our objective into the
sum of log-probabilities over entity sequence and
relation sequence. We use the gold entity tags
while training. As shown in Figure 2, we input
the label embedding from the previous time step to
the top hidden layer at the current time step along
with the other recurrent inputs. During training,
we pass the gold label embedding to the next time
step which enables better training of our model.
However, at test time when the gold label is not
available we use the predicted label at previous
time step as input to the current step.

At inference time, we can greedily decode the
sequence to find the most likely entity Ê and rela-
tion R̂ tag sequences:

(Ê, R̂) = argmax
E,R

p(E,R)

Since, we add another top layer to encode tag se-
quences in the reverse order as explained in Sec-
tion 3.5, there may be conflicts in the output. We
select the positive and more confident label similar
to Miwa and Bansal (2016).

Multiple Relations Our approach to relation ex-
traction is different from Miwa and Bansal (2016).
Miwa and Bansal (2016) present each pair of enti-
ties to their model for relation classification. In
our approach, we use pointer networks to iden-
tify the related entities. Thus, for our approach
described so far if we only compute the argmax
on our objective then we limit our model to output
only one relation label per token. However, from
our analysis of the dataset, an entity may be related
to more than one entity in the sentence. Hence, we
modify our objective to include multiple relations.
In Figure 2, token “Safwan” is related to both to-
kens “Martin” and “Geissler” of the entity “Mar-
tin Geissler”, hence we assign probability of 0.5

921

to both these tokens. This can be easily expanded
to include tokens from other related entities, such
that we assign equal probability 1

N to all tokens3

depending on the number N of these related to-
kens.

The log-probability for the entity part remain
the same as in our objective discussed in Section 4,
however we modify the relation log-probability as
below:

∑

|j:r′i,j>0|

r
′
i,j log p(ri,j|e≤i, r<i, S, θ)

where, r
′
i is the true distribution over relation la-

bel space and ri is the softmax output from our
model. From empirical analysis, we find that r

′
i is

generally sparse and hence using a cross entropy
objective like this can be useful to find multiple
relations. We can also use Sparsemax (Martins
and Astudillo, 2016) instead of softmax which is
more suitable for sparse distributions. However,
we leave it for future work.

At inference time, we output all the labels with
probability value above a certain threshold. We
adapt this threshold based on the validation set.

5 Experiments

5.1 Data
We evaluate our proposed model on the two
datasets from the Automatic Content Extraction
(ACE) program – ACE05 and ACE04. There are
7 main entity types namely Person (PER), Or-
ganization (ORG), Geographical Entities (GPE),
Location (LOC), Facility (FAC), Weapon (WEA)
and Vehicle (VEH). For each entity, both en-
tity mentions and its head phrase are annotated.
For the scope of this paper, we only use the en-
tity head phrase similar to Li and Ji (2014) and
Miwa and Bansal (2016). Also, there are rela-
tion types namely Physical (PHYS), Person-Social
(PER-SOC), Organization-Affiliation (ORG-AFF),
Agent-Artifact (ART), GPE-Affiliation (GPE-
AFF).

ACE05 has a total of 6 relation types including
PART-WHOLE. We use the same data splits as Li
and Ji (2014) and Miwa and Bansal (2016) such
that there are 351 documents for training, 80 for

3In this paper, we only identify mention heads and hence
the span is limited to a few tokens. We can also include only
the last token of the gold entity span in the gold probability
distribution.

development and the remaining 80 documents for
the test set.

ACE04 has 7 relation types with an additional
Discourse (DISC) type and split ORG-AFF relation
type into ORG-AFF and OTHER-AFF. We perform
5-fold cross validation similar to Chan and Roth
(2011) for fair comparison with the state-of-the-
art.

5.2 Evaluation Metrics

In order to compare our system with the previous
systems, we report micro F1-scores, Precision and
Recall on both entities and relations similar to Li
and Ji (2014) and Miwa and Bansal (2016). An en-
tity is considered correct if we can identify its head
and the entity type correctly. A relation is con-
sidered correct if we can identify the head of the
argument entities and also the relation type. We
also report a combined score when both argument
entities and relations are correct.

5.3 Baselines and Previous Models

We compare our approach with two previous ap-
proaches. The model proposed by Li and Ji
(2014) is a feature-based structured perceptron
model with efficient beam-search. They employ a
segment-based decoder instead of token-based de-
coding. Their model outperformed previous state-
of-the-art pipelined models. Miwa and Sasaki
(2014) (SPTree) recently proposed a LSTM-based
model with a sequence layer for entity identifi-
cation, and a tree-based dependency layer which
identifies relations between pairs of candidate en-
tities using the shortest dependency path between
them. We also employed our previous approach
(Katiyar and Cardie, 2016) for extraction of opin-
ion entities and relations to this task. We found
that the performance was not competitive with
the two approaches mentioned above, performing
upto 10 points lower on relations. Hence, we do
not include the results in Table 1. Also, Li and Ji
(2014) showed that the joint model performs bet-
ter than the pipelined approaches. Thus, we do not
include any pipeline baselines.

5.4 Hyperparameters and Training Details

We train our model using Adadelta (Zeiler, 2012)
with gradient clipping. We regularize our net-
work using dropout (Srivastava et al., 2014)
with the drop-out rate tuned using develop-
ment set. We initialized our word embeddings

922

Entity Relation Entity+Relation
Method P R F1 P R F1 P R F1

Li and Ji (2014) .852 .769 .808 .689 .419 .521 .654 .398 .495

SPTree .829 .839 .834 – – – .572 .540 .556

SPTree1 .823 .839 .831 .605 .553 .578 .578 .529 .553

Our Model .840 .813 .826 .579 .540 .559 .555 .518 .536

Table 1: Performance on ACE05 test dataset. The dashed (“–”) performance numbers were missing
in the original paper (Miwa and Bansal, 2016).

1 We ran the system made publicly available by Miwa and Bansal (2016), on ACE05 dataset for filling in the missing
values and comparing our system with theirs at fine-grained level.

Entity Relation Entity+Relation
Encoding P R F1 P R F1 P R F1

Left-to-Right .821 .812 .817 .622 .449 .522 .601 .434 .504

+Multiple Relations .835 .811 .823 .560 .492 .524 .539 .473 .504

+Bi-directional (Our Model) .840 .813 .826 .579 .540 .559 .555 .518 .536

Table 2: Performance of different encoding methods on ACE05 dataset.

with 300-dimensional word2vec (Mikolov et al.,
2013) word embeddings trained on Google News
dataset. We have 3 hidden layers in our network
and the dimensionality of the hidden units is 100.
All the weights in the network are initialized from
small random uniform noise. We tune our hyper-
parameters based on ACE05 development set and
use them for training on ACE04 dataset.

6 Results

Table 1 compares the performance of our system
with respect to the baselines on ACE05 dataset.
We find that our joint model significantly outper-
forms the joint structured perceptron model (Li
and Ji, 2014) on both entities and relations, despite
the unavailability of features such as dependency
trees, POS tags, etc. However, if we compare our
model to the SPTree models, then we find that
their model has better recall on both entities and
relations. In Section 7, we perform error analysis
to understand the difference in the performance of
the two models in detail.

We also compare the performance of various en-
coding schemes in Table 2. We compare the bene-
fits of introducing multiple relations in our objec-
tive and bi-directional encoding compared to left-
to-right encoding.

Multiple Relations We find that modifying our
objective to include multiple relations improves
the recall of our system on relations, leading to
slight improvement on the overall performance on

relations. However, careful tuning of the threshold
may further improve precision.

Bi-directional Encoding By adding bi-
directional encoding to our system, we find that
we can significantly improve the performance of
our system compared to left-to-right encoding.
It also improves precision compared to left-to-
right decoding combined with multiple relations
objective.

We find that for some relations it is easier to
detect them with respect to one of the entities in
the entity pair. PHYS relation is easier identified
with respect to GPE entity than PER entity. Thus,
our bi-directional encoding of relations allows us
to encode these relations with respect to both enti-
ties in the relation.

Table 3 shows the performance of our model on
ACE04 dataset. We believe that tuning the hy-
perparameters of our model can further improve
the results on this dataset. As also pointed out
by Li and Ji (2014) that ACE05 has better anno-
tation quality, we focused on ACE05 dataset for
this work.

7 Error Analysis

In this section, we perform a fine-grained compari-
son of our model with respect to the SPTree (Miwa
and Bansal, 2016) model. We compare the perfor-
mance of the two models with respect to entities,
relation types and the distance between the rela-
tion arguments and provide examples from the test
set in Table 6.

923

Entity Relation Entity+Relation
Method P R F1 P R F1 P R F1

Li and Ji (2014) .835 .762 .797 .647 .385 .483 .608 .361 .453

SPTree .808 .829 .818 – – – .487 .481 .484

Our Model .812 .781 .796 .502 .488 .493 .464 .453 .457

Table 3: Performance on ACE04 test dataset. The dashed (“–”) performance numbers were missing in
the original paper (Miwa and Bansal, 2016).

7.1 Entities

We find that our model has lower recall on en-
tity extraction than SPTree as shown in Table 1.
Miwa and Bansal (2016), in one of the ablation
tests on ACE05 development set, show that their
model can gain upto 2% improvement in recall
by entity pretraining. Since we propose a joint-
model, we cannot directly apply their pretraining
trick on entities separately. We leave it for future
work. Li and Ji (2014) mentioned in their analysis
of the dataset that there were many “UNK” tokens
in the test set which were never seen during train-
ing. We verified the same and we hypothesize that
for this reason the performance on the entities de-
pends largely on the pretrained word embeddings
being used. We found considerable improvements
on entity recall when using pretrained word em-
beddings, if available, for these “UNK” tokens.
Miwa and Bansal (2016) also use additional fea-
tures such as POS tags in addition to pretrained
word embeddings at the input layer.

Relation Type Method R P F1

ART
SPTree .363 .552 .438
Our model .431 .611 .505

PART-WHOLE
SPTree .560 .538 .548
Our model .520 .538 .528

PER-SOC
SPTree .671 .671 .671
Our model .657 .648 .652

PHYS
SPTree .489 .513 .500
Our model .388 .426 .406

GEN-AFF
SPTree .414 .640 .502
Our model .484 .516 .500

ORG-AFF
SPTree .692 .704 .697
Our model .706 .700 .703

Table 4: Performance on different relation types
in ACE05 test dataset. Numbers in the bracket de-
note the number of relations of each relation type
in the test set.

7.2 Relation Types

We evaluate our model on different relation types
and compare the performance with SPTree model

Relation
Distance Method R P F1

≤ 7 SPTree .589 .628 .608
Our model .591 .605 .598

> 7 SPTree .275 .375 .267
Our model .153 .259 .192

Table 5: Performance based on the distance be-
tween entity arguments in relations for ACE05 test
dataset.

in Table 4. Interestingly, we find that the per-
formance of the two models is varied over dif-
ferent relation types. The dependency tree-based
model significantly outperforms our joint-model
on PHYS and PART-WHOLE relations, whereas
our model is significantly better than tree-based
model on ART relation. We show an example sen-
tence (S1) in Table 6, where SPTree model identi-
fies the entities in ART relation correctly but fails
to identify ART relation. We compare the per-
formance with respect to PHYS relation in Sec-
tion 7.3.

7.3 Distance-based Analysis

We also compare the performance of the two mod-
els on relations based on the distance between the
entities in a relation in Table 5. We find that the
performance of both the models is very low for
distance greater than 7. SPTree model can iden-
tify 36 relations out of 131 such relations cor-
rectly, while our model can only identify 20 re-
lations in this category. We manually compare
the output of the two systems on these cases on
several examples to understand the gain of us-
ing dependency tree on longer distances. Inter-
estingly, the majority of these relations belong to
PHYS type, thus resulting in lower performance on
PHYS as discussed in Section 7.2. We found that
there were a few instances of co-reference errors
as shown in S2 in Table 6. Our model identifies
a PHYS relation between “here” and “baghdad”,
whereas the gold annotation has PHYS relation be-
tween “location” and “baghdad”. We think that

924

S1 : the [men]PER:ART-1 held on the sinking [vessel]VEH:ART-1 until the [passenger]PER:ART-2 [ship]VEH:ART-2 was able...

SPTree : the [men]PER held on the sinking [vessel]VEH until the [passenger]PER [ship]VEH was able to reach them.

Our Model : the [men]PER:ART-1 held on the sinking [vessel]VEH:ART-1 until the [passenger]PER:ART-2 [ship]VEH:ART-2 was able...

S2 :
[her]PER research was conducted [here]FAC at a [location]FAC:PHYS1 well-known to [u.n.]ORG:ORG-AFF1 [arms]WEA

[inspectors]PER:ORG-AFF1. 300 miles west of [baghdad]GPE:PHYS1.

SPTree :
[her]PER research was conducted [here]GPE at a [location]LOC:PHYS1 well-known to u.n. [arms]WEA

[[inspectors] PER:PHYS1,PHY2. 300 miles west of [baghdad]GPE:PHYS2.

Our Model :
[her]PER research was conducted [here]FAC:PHYS1 at a [location]GPE well-known to [u.n.]ORG:ORG-AFF1 [arms]WEA

[inspectors]PER:ORG-AFF1. 300 miles west of [baghdad]GPE:PHYS1.

S3 :
... [Abigail Fletcher]PER:PHYS1 , a [marcher]FAC:GEN-AFF2 from [Florida]FAC:GEN-AFF2, said outside the

[president]PER:ART3 ’s [[residence] FAC:ART3, PHYS1.

SPTree :
... [Abigail Fletcher]PER:PHYS1 , a [marcher]FAC:GEN-AFF2 from [Florida]FAC:GEN-AFF2, said outside the

[president]PER:ART3 ’s [[residence]]FAC:ART3, PHYS1.

Our Model : ... [Abigail Fletcher]PER , a [marcher]FAC:GEN-AFF2 from [Florida]FAC:GEN-AFF2, said outside the [president]PER ’s
residence.

Table 6: Examples from the dataset with label annotations from SPTree and our model for comparison.
The first row for each example is the gold standard.

incorporating these co-reference information dur-
ing both training and evaluation will further im-
prove the performance of both systems. Another
source of error that we found was the inability of
our system to extract entities (lower recall) as in
S3. Our model could not identify the FAC en-
tity “residence”. Hence, we think an improvement
on entity performance via methods like pretrain-
ing might be helpful in identifying more relations.
For distance less than 7, we find that our model
has better recall but lower precision, as expected.

8 Conclusion

In this paper, we propose a novel attention-based
LSTM model for joint extraction of entity men-
tions and relations. Experimentally, we found that
our model significantly outperforms feature-rich
structured perceptron joint model by Li and Ji
(2014). We also compare our model to an end-
to-end LSTM model by Miwa and Bansal (2016)
which comprises of a sequence layer for entity
extraction and a tree-based dependency layer for
relation classification. We find that our model,
without access to dependency trees, POS tags, etc
performs within 1% on entities and 2% on rela-
tions on ACE05 dataset. We also find that our
model performs significantly better than their tree-
based model on the ART relation, while their tree-
based model performs better on PHYS and PART-
WHOLE relations; the two models perform com-

parably on all other relation types.
In future, we plan to explore pretraining meth-

ods for our model which were shown to improve
recall on entity and relation performance by Miwa
and Bansal (2016). We introduce bi-directional
output encoding as well as an objective to learn
multiple relations in this paper. However, this
presents the challenge of combining predictions
from the two directions. We use heuristics in
this paper to combine the predictions. We think
that using probabilistic methods to combine model
predictions from both directions may further im-
prove the performance. We also plan to use
Sparsemax (Martins and Astudillo, 2016) instead
of Softmax for multiple relations, as the former
is more suitable for multi-label classification for
sparse labels.

It would also be interesting to see the effect of
reranking (Collins and Koo, 2005) on our joint
model. We also plan to extend the identification
of entities to full entity mention span instead of
only the head phrase as in Lu and Roth (2015).

Acknowledgments

We thank Qi Li and Makoto Miwa for their help
with the dataset and sharing their code for analy-
sis. We also thank Xilun Chen, Xanda Schofield,
Yiqing Hua, Vlad Niculae, Tianze Shi and the
three anonymous reviewers for their helpful feed-
back and discussion.

925

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR.

Razvan C. Bunescu and Raymond J. Mooney. 2005.
A shortest path dependency kernel for rela-
tion extraction. In Proceedings of the Confer-
ence on Human Language Technology and Em-
pirical Methods in Natural Language Process-
ing. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’05, pages 724–731.
https://doi.org/10.3115/1220575.1220666.

Yee Seng Chan and Dan Roth. 2011. Exploiting
syntactico-semantic structures for relation extrac-
tion. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguis-
tics: Human Language Technologies - Volume
1. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’11, pages 551–560.
http://dl.acm.org/citation.cfm?id=2002472.2002542.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In Pro-
ceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers. http://aclweb.org/anthology/P/P16/P16-
1223.pdf.

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 484–494.
http://www.aclweb.org/anthology/P16-1046.

Yejin Choi, Eric Breck, and Claire Cardie. 2006.
Joint extraction of entities and relations for opin-
ion recognition. In Proceedings of the 2006
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Sydney, Australia, pages 431–439.
http://www.aclweb.org/anthology/W/W06/W06-
1651.

Michael Collins and Terry Koo. 2005. Dis-
criminative reranking for natural language
parsing. Comput. Linguist. 31(1):25–70.
https://doi.org/10.1162/0891201053630273.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost)
from scratch. J. Mach. Learn. Res. 12:2493–2537.
http://dl.acm.org/citation.cfm?id=1953048.2078186.

Cı́cero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by rank-
ing with convolutional neural networks. CoRR
abs/1504.06580. http://arxiv.org/abs/1504.06580.

Jeffrey L. Elman. 1990. Finding structure in time.
COGNITIVE SCIENCE 14(2):179–211.

Daniel Gildea and Daniel Jurafsky.
2002. Automatic labeling of semantic
roles. Comput. Linguist. 28(3):245–288.
https://doi.org/10.1162/089120102760275983.

James Hammerton. 2003. Named entity recogni-
tion with long short-term memory. In Proceed-
ings of the Seventh Conference on Natural Lan-
guage Learning at HLT-NAACL 2003 - Volume 4.
Association for Computational Linguistics, Strouds-
burg, PA, USA, CONLL ’03, pages 172–175.
https://doi.org/10.3115/1119176.1119202.

Kazuma Hashimoto, Pontus Stenetorp, Makoto Miwa,
and Yoshimasa Tsuruoka. 2015. Task-oriented
learning of word embeddings for semantic re-
lation classification. In Proceedings of the
Nineteenth Conference on Computational Natu-
ral Language Learning. Association for Computa-
tional Linguistics, Beijing, China, pages 268–278.
http://www.aclweb.org/anthology/K15-1027.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. 9(8):1735–
1780. https://doi.org/10.1162/neco.1997.9.8.1735.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015.
Bidirectional LSTM-CRF models for se-
quence tagging. CoRR abs/1508.01991.
http://arxiv.org/abs/1508.01991.

Ozan Irsoy and Claire Cardie. 2014. Opinion mining
with deep recurrent neural networks. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2014, Oc-
tober 25-29, 2014, Doha, Qatar, A meeting of SIG-
DAT, a Special Interest Group of the ACL. pages
720–728. http://aclweb.org/anthology/D/D14/D14-
1080.pdf.

Rohit J. Kate and Raymond J. Mooney. 2010. Joint
entity and relation extraction using card-pyramid
parsing. In Proceedings of the Fourteenth Confer-
ence on Computational Natural Language Learn-
ing. Association for Computational Linguistics,
Stroudsburg, PA, USA, CoNLL ’10, pages 203–212.
http://dl.acm.org/citation.cfm?id=1870568.1870592.

Arzoo Katiyar and Claire Cardie. 2016. Investi-
gating lstms for joint extraction of opinion enti-
ties and relations. In Proceedings of the 54th
Annual Meeting of the Association for Com-
putational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers.
http://aclweb.org/anthology/P/P16/P16-1087.pdf.

Kenton Lee, Tom Kwiatkowski, Ankur P. Parikh, and
Dipanjan Das. 2016. Learning recurrent span repre-
sentations for extractive question answering. CoRR
abs/1611.01436. http://arxiv.org/abs/1611.01436.

926

Qi Li and Heng Ji. 2014. Incremental joint ex-
traction of entity mentions and relations. In
Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics,
ACL 2014, June 22-27, 2014, Baltimore, MD,
USA, Volume 1: Long Papers. pages 402–412.
http://aclweb.org/anthology/P/P14/P14-1038.pdf.

Wei Lu and Dan Roth. 2015. Joint mention ex-
traction and classification with mention hyper-
graphs. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 857–867.
http://aclweb.org/anthology/D15-1102.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Empir-
ical Methods in Natural Language Processing
(EMNLP). Association for Computational Lin-
guistics, Lisbon, Portugal, pages 1412–1421.
http://aclweb.org/anthology/D15-1166.

André F. T. Martins and Ramón F. Astudillo. 2016.
From softmax to sparsemax: A sparse model of
attention and multi-label classification. In Pro-
ceedings of the 33rd International Conference on
International Conference on Machine Learning -
Volume 48. JMLR.org, ICML’16, pages 1614–1623.
http://dl.acm.org/citation.cfm?id=3045390.3045561.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In C.J.C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K.Q. Weinberger,
editors, Advances in Neural Information Process-
ing Systems 26, Curran Associates, Inc., pages
3111–3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.pdf.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pages 1105–
1116. http://www.aclweb.org/anthology/P16-1105.

Makoto Miwa and Yutaka Sasaki. 2014. Model-
ing joint entity and relation extraction with ta-
ble representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL. pages 1858–1869.
http://aclweb.org/anthology/D/D14/D14-1200.pdf.

David Nadeau and Satoshi Sekine. 2007. A survey
of named entity recognition and classification. Lin-
guisticae Investigationes 30.

Ramesh Nallapati, Bing Xiang, and Bowen
Zhou. 2016. Sequence-to-sequence rnns for

text summarization. CoRR abs/1602.06023.
http://arxiv.org/abs/1602.06023.

Sameer Singh, Sebastian Riedel, Brian Martin, Jiap-
ing Zheng, and Andrew McCallum. 2013. Joint
inference of entities, relations, and coreference.
In Proceedings of the 2013 Workshop on Au-
tomated Knowledge Base Construction. ACM,
New York, NY, USA, AKBC ’13, pages 1–6.
https://doi.org/10.1145/2509558.2509559.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, EMNLP-CoNLL ’12, pages 1201–1211.
http://dl.acm.org/citation.cfm?id=2390948.2391084.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: A simple way to prevent
neural networks from overfitting. Journal of
Machine Learning Research 15:1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in Neural Information Process-
ing Systems 27: Annual Conference on Neural In-
formation Processing Systems 2014, December 8-
13 2014, Montreal, Quebec, Canada. pages 3104–
3112. http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in
Neural Information Processing Systems 28: An-
nual Conference on Neural Information Pro-
cessing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada. pages 2692–2700.
http://papers.nips.cc/paper/5866-pointer-networks.

Kun Xu, Yansong Feng, Songfang Huang, and
Dongyan Zhao. 2015a. Semantic relation clas-
sification via convolutional neural networks with
simple negative sampling. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Lisbon, Portugal, pages 536–540.
http://aclweb.org/anthology/D15-1062.

Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao
Peng, and Zhi Jin. 2015b. Classifying relations
via long short term memory networks along short-
est dependency paths. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 1785–1794.
http://aclweb.org/anthology/D15-1206.

Bishan Yang and Claire Cardie. 2013. Joint in-
ference for fine-grained opinion extraction. In

927

Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics,
ACL 2013, 4-9 August 2013, Sofia, Bulgaria,
Volume 1: Long Papers. pages 1640–1649.
http://aclweb.org/anthology/P/P13/P13-1161.pdf.

Wen-Tau Yih and D. Roth. 2007. Global inference
for entity and relation identification via a linear pro-
gramming formulation. In L. Getoor and B. Taskar,
editors, An Introduction to Statistical Relational
Learning, MIT Press.

Xiaofeng Yu and Wai Lam. 2010. Jointly identifying
entities and extracting relations in encyclope-
dia text via a graphical model approach. In
Proceedings of the 23rd International Confer-
ence on Computational Linguistics: Posters.
Association for Computational Linguistics, Strouds-
burg, PA, USA, COLING ’10, pages 1399–1407.
http://dl.acm.org/citation.cfm?id=1944566.1944726.

Matthew D. Zeiler. 2012. ADADELTA: an adap-
tive learning rate method. CoRR abs/1212.5701.
http://arxiv.org/abs/1212.5701.

Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. 2003. Kernel methods for relation
extraction. J. Mach. Learn. Res. 3:1083–1106.
http://dl.acm.org/citation.cfm?id=944919.944964.

Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen
Zhou. 2017. Neural models for sequence chunking.
In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA.. pages 3365–3371.
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14776.

GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang.
2005. Exploring various knowledge in relation ex-
traction. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05). Association for Computational Lin-
guistics, Ann Arbor, Michigan, pages 427–434.
https://doi.org/10.3115/1219840.1219893.

928

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 929–938
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1086

Naturalizing a Programming Language via Interactive Learning

Sida I. Wang, Samuel Ginn, Percy Liang, Christopher D. Manning
Computer Science Department

Stanford University
{sidaw, samginn, pliang, manning}@cs.stanford.edu

Abstract

Our goal is to create a convenient natu-
ral language interface for performing well-
specified but complex actions such as ana-
lyzing data, manipulating text, and query-
ing databases. However, existing natu-
ral language interfaces for such tasks are
quite primitive compared to the power one
wields with a programming language. To
bridge this gap, we start with a core pro-
gramming language and allow users to
“naturalize” the core language incremen-
tally by defining alternative, more natural
syntax and increasingly complex concepts
in terms of compositions of simpler ones.
In a voxel world, we show that a com-
munity of users can simultaneously teach
a common system a diverse language and
use it to build hundreds of complex voxel
structures. Over the course of three days,
these users went from using only the core
language to using the naturalized language
in 85.9% of the last 10K utterances.

1 Introduction

In tasks such as analyzing and plotting data
(Gulwani and Marron, 2014), querying databases
(Zelle and Mooney, 1996; Berant et al., 2013),
manipulating text (Kushman and Barzilay, 2013),
or controlling the Internet of Things (Campagna
et al., 2017) and robots (Tellex et al., 2011), peo-
ple need computers to perform well-specified but
complex actions. To accomplish this, one route is
to use a programming language, but this is inac-
cessible to most and can be tedious even for ex-
perts because the syntax is uncompromising and
all statements have to be precise. Another route
is to convert natural language into a formal lan-

Cubes: initial – select
left 6 – select front 8
– black 10x10x10 frame
– black 10x10x10 frame
– move front 10 – red
cube size 6 – move bot 2
– blue cube size 6 – green
cube size 4 – (some steps
are omitted)

Monsters, Inc: initial – move forward – add green
monster – go down 8 – go right and front – add brown
floor – add girl – go back and down – add door – add
black column 30 – go up 9 – finish door – (some steps
for moving are omitted)
Deer: initial – bird’s eye view – deer head; up; left 2;
back 2; { left antler }; right 2; {right antler} – down 4;
front 2; left 3; deer body; down 6; {deer leg front}; back
7; {deer leg back}; left 4; {deer leg back}; front 7; {deer
leg front} – (some steps omitted)

Figure 1: Some examples of users building struc-
tures using a naturalized language in Voxelurn:
http://www.voxelurn.com

guage, which has been the subject of work in se-
mantic parsing (Zettlemoyer and Collins, 2005;
Artzi and Zettlemoyer, 2011, 2013; Pasupat and
Liang, 2015). However, the capability of seman-
tic parsers is still quite primitive compared to the
power one wields with a programming language.
This gap is increasingly limiting the potential of

929

https://doi.org/10.18653/v1/P17-1086

both text and voice interfaces as they become more
ubiquitous and desirable.

In this paper, we propose bridging this gap with
an interactive language learning process which we
call naturalization. Before any learning, we seed a
system with a core programming language that is
always available to the user. As users instruct the
system to perform actions, they augment the lan-
guage by defining new utterances — e.g., the user
can explicitly tell the computer that ‘X’ means ‘Y’.
Through this process, users gradually and interac-
tively teach the system to understand the language
that they want to use, rather than the core language
that they are forced to use initially. While the
first users have to learn the core language, later
users can make use of everything that is already
taught. This process accommodates both users’
preferences and the computer action space, where
the final language is both interpretable by the com-
puter and easier to produce by human users.

Compared to interactive language learning with
weak denotational supervision (Wang et al., 2016),
definitions are critical for learning complex ac-
tions (Figure 1). Definitions equate a novel ut-
terance to a sequence of utterances that the sys-
tem already understands. For example, ‘go left 6
and go front’ might be defined as ‘repeat 6 [go
left]; go front’, which eventually can be traced
back to the expression ‘repeat 6 [select left of
this]; select front of this’ in the core language.
Unlike function definitions in programming lan-
guages, the user writes concrete values rather than
explicitly declaring arguments. The system auto-
matically extracts arguments and learns to produce
the correct generalizations. For this, we propose a
grammar induction algorithm tailored to the learn-
ing from definitions setting. Compared to stan-
dard machine learning, say from demonstrations,
definitions provide a much more powerful learn-
ing signal: the system is told directly that ‘a 3 by
4 red square’ is ‘3 red columns of height 4’, and
does not have to infer how to generalize from ob-
serving many structures of different sizes.

We implemented a system called Voxelurn,
which is a command language interface for a voxel
world initially equipped with a programming lan-
guage supporting conditionals, loops, and variable
scoping etc. We recruited 70 users from Ama-
zon Mechanical Turk to build 230 voxel struc-
tures using our system. All users teach the sys-
tem at once, and what is learned from one user

can be used by another user. Thus a community of
users evolves the language to becomes more effi-
cient over time, in a distributed way, through in-
teraction. We show that the user community de-
fined many new utterances—short forms, alterna-
tive syntax, and also complex concepts such as
‘add green monster, add yellow plate 3 x 3’. As
the system learns, users increasingly prefer to use
the naturalized language over the core language:
85.9% of the last 10K accepted utterances are in
the naturalized language.

Figure 2: Interface used by users to enter utter-
ances and create definitions.

2 Voxelurn

World. A world state in Voxelurn contains a set
of voxels, where each voxel has relations ‘row’,
‘col’, ‘height’, and ‘color’. There are two domain-
specific actions, ‘add’ and ‘move’, one domain-
specific relation ‘direction’. In addition, the state
contains a selection, which is a set of positions.
While our focus is Voxelurn, we can think more
generally about the world as a set of objects
equiped with relations — events on a calendar,
cells of a spreadsheet, or lines of text.

Core language. The system is born understand-
ing a core language called Dependency-based Ac-
tion Language (DAL), which we created (see Ta-
ble 1 for an overview).

The language composes actions using the usual
but expressive control primitives such as ‘if’,
‘foreach’, ‘repeat’, etc. Actions usually take
sets as arguments, which are represented using
lambda dependency-based compositional seman-
tics (lambda DCS) expressions (Liang, 2013). Be-
sides standard set operations like union, intersec-

930

Rule(s) Example(s) Description

A→ A; A select left; add red perform actions sequentially
A→ repeat N A repeat 3-1 add red top repeat action N times

A→ if S A if has color red [select origin] action if S is non-empty
A→ while S A while not has color red [select left of this] action while S is non-empty

A→ foreach S A foreach this [remove has row row of this] action for each item in S
A→ [A] [select left or right; add red; add red top] group actions for precedence
A→ {A} {select left; add red} scope only selection

A→ isolate A isolate [add red top; select has color red] scope voxels and selection

A→ select S select all and not origin set the selection
A→ remove S remove has color red remove voxels

A→ update R S update color [color of left of this] change property of selection
S this current selection
S all | none | origin all voxels, empty set, (0, 0)

R of S | has R S has color red or yellow | has row [col of this] lambda DCS joins
not S | S and S | S or S this or left and not has color red set operations

N | N+N | N -N 1,. . . ,10 | 1+2 | row of this + 1 numbers and arithmetic
argmax R S | argmin R S argmax col has color red superlatives

R color | row | col | height | top | left | · · · voxel relations
C red | orange | green | blue | black | · · · color values
D top | bot | front | back | left | right direction values

S→ very D of S very top of very bot of has color green syntax sugar for argmax
A→ add C [D] | move D add red | add yellow bot | move left add voxel, move selection

Table 1: Grammar of the core language (DAL), which includes actions (A), relations (R), and sets of
values (S). The grammar rules are grouped into four categories. From top to bottom: domain-general
action compositions, actions using sets, lambda DCS expressions for sets, and domain-specific relations
and actions.

tion and complement, lambda DCS leverages the
tree dependency structure common in natural lan-
guage: for the relation ‘color’, ‘has color red’
refers to the set of voxels that have color red, and
its reverse ‘color of has row 1’ refers to the set
of colors of voxels having row number 1. Tree-
structured joins can be chained without using any
variables, e.g., ‘has color [yellow or color of has
row 1]’.

We protect the core language from being rede-
fined so it is always precise and usable.1 In ad-
dition to expressivity, the core language interpo-
lates well with natural language. We avoid explicit
variables by using a selection, which serves as the
default argument for most actions.2 For example,
‘select has color red; add yellow top; remove’
adds yellow on top of red voxels and then removes
the red voxels.

To enable the building of more complex struc-
1Not doing so resulted in ambiguities that propagated un-

controllably, e.g., once ‘red’ can mean many different colors.
2The selection is like the turtle in LOGO, but can be a set.

tures in a more modular way, we introduce a no-
tion of scoping. Suppose one is operating on one
of the palm trees in Figure 2. The user might want
to use ‘select all’ to select only the voxels in that
tree rather than all of the voxels in the scene. In
general, an action A can be viewed as taking a
set of voxels v and a selection s, and producing
an updated set of voxels v′ and a modified selec-
tion s′. The default scoping is ‘[A]’, which is the
same as ‘A’ and returns (v′, s′). There are two
constructs that alter the flow: First, ‘{A}’ takes
(v, s) and returns (v′, s), thus restoring the selec-
tion. This allows A to use the selection as a tem-
porary variable without affecting the rest of the
program. Second, ‘isolate [A]’ takes (v, s), calls
A with (s, s) (restricting the set of voxels to just
the selection) and returns (v′′, s), where v′′ con-
sists of voxels in v′ and voxels in v that occupy
empty locations in v′. This allows A to focus
only on the selection (e.g., one of the palm trees).
Although scoping can be explicitly controlled via

931

‘[]’, ‘isolate’, and ‘{ }’, it is an unnatural concept
for non-programmers. Therefore when the choice
is not explicit, the parser generates all three pos-
sible scoping interpretations, and the model learns
which is intended based on the user, the rule, and
potentially the context.

3 Learning interactively from definitions

The goal of the user is to build a structure in Vox-
elurn. In Wang et al. (2016), the user provided
interactive supervision to the system by selecting
from a list of candidates. This is practical when
there are less than tens of candidates, but is com-
pletely infeasible for a complex action space such
as Voxelurn. Roughly, 10 possible colors over the
3× 3× 4 box containing the palm tree in Figure 2
yields 1036 distinct denotations, and many more
programs. Obtaining the structures in Figure 1 by
selecting candidates alone would be infeasible.

This work thus uses definitions in addition to se-
lecting candidates as the supervision signal. Each
definition consists of a head utterance and a body,
which is a sequence of utterances that the system
understands. One use of definitions is paraphras-
ing and defining alternative syntax, which helps
naturalize the core language (e.g., defining ‘add
brown top 3 times’ as ‘repeat 3 add brown top’).
The second use is building up complex concepts
hierarchically. In Figure 2, ‘add yellow palm tree’
is defined as a sequence of steps for building the
palm tree. Once the system understands an utter-
ance, it can be used in the body of other defini-
tions. For example, Figure 3 shows the full defini-
tion tree of ‘add palm tree’. Unlike function defi-
nitions in a programming language, our definitions
do not specify the exact arguments; the system has
to learn to extract arguments to achieve the correct
generalization.

The interactive definition process is described in
Figure 4. When the user types an utterance x, the
system parses x into a list of candidate programs.
If the user selects one of them (based on its de-
notation), then the system executes the resulting
program. If the utterance is unparsable or the user
rejects all candidate programs, the user is asked to
provide the definition body for x. Any utterances
in the body not yet understood can be defined re-
cursively. Alternatively, the user can first execute
a sequence of commands X , and then provide a
head utterance for body X .

When constructing the definition body, users

def: add palm tree
def: brown trunk height 3

def: add brown top 3 times
repeat 3 [add brown top]

def: go to top of tree
select very top of has color brown

def: add leaves here
def: select all sides

select left or right or front or back
add green

Figure 3: Defining ‘add palm tree’, tracing back
to the core language (utterances without def:).

begin execute x:
if x does not parse then define x;
if user rejects all parses then define x;
execute user choice

begin define x:
repeat starting with X ← []

user enters x′;
if x′ does not parse then define x′;
if user rejects all x′ then define x′;
X ← [X;x′];

until user accepts X as the def’n of x;

Figure 4: When the user enters an utterance, the
system tries to parse and execute it, or requests
that the user define it.

can type utterances with multiple parses; e.g.,
‘move forward’ could either modify the selec-
tion (‘select front’) or move the voxel (‘move
front’). Rather than propagating this ambiguity
to the head, we force the user to commit to one
interpretation by selecting a particular candidate.
Note that we are using interactivity to control the
exploding ambiguity.

4 Model and learning

Let us turn to how the system learns and predicts.
This section contains prerequisites before we de-
scribe definitions and grammar induction in Sec-
tion 5.

Semantic parsing. Our system is based on a se-
mantic parser that maps utterances x to programs
z, which can be executed on the current state s (set
of voxels and selection) to produce the next state
s′ = JzKs. Our system is implemented as the inter-
active package in SEMPRE (Berant et al., 2013);

932

Feature Description
Rule.ID ID of the rule
Rule.Type core?, used?, used by others?
Social.Author ID of author
Social.Friends (ID of author, ID of user)
Social.Self rule is authored by user?
Span (left/right token(s), category)
Scope type of scoping for each user

Table 2: Summary of features.

see Liang (2016) for a gentle exposition.
A derivation d represents the process by which

an utterance x turns into a program z = prog(d).
More precisely, d is a tree where each node
contains the corresponding span of the utterance
(start(d), end(d)), the grammar rule rule(d), the
grammar category cat(d), and a list of child
derivations [d1, . . . , dn].

Following Zettlemoyer and Collins (2005), we
define a log-linear model over derivations d given
an utterance x produced by the user u:

pθ(d | x, u) ∝ exp(θTφ(d, x, u)), (1)

where φ(d, x, u) ∈ Rp is a feature vector and
θ ∈ Rp is a parameter vector. The user u does
not appear in previous work on semantic parsing,
but we use it to personalize the semantic parser
trained on the community.

We use a standard chart parser to construct a
chart. For each chart cell, indexed by the start
and end indices of a span, we construct a list of
partial derivations recursively by selecting child
derivations from subspans and applying a gram-
mar rule. The resulting derivations are sorted by
model score and only the top K are kept. We
use chart(x) to denote the set of all partial deriva-
tions across all chart cells. The set of grammar
rules starts with the set of rules for the core lan-
guage (Table 1), but grows via grammar induction
when users add definitions (Section 5). Rules in
the grammar are stored in a trie based on the right-
hand side to enable better scalability to a large
number of rules.

Features. Derivations are scored using a
weighted combination of features. There are three
types of features, summarized in Table 2.

Rule features fire on each rule used to construct
a derivation. ID features fire on specific rules (by
ID). Type features track whether a rule is part of
the core language or induced, whether it has been

used again after it was defined, if it was used by
someone other than its author, and if the user and
the author are the same (5 + #rules features).

Social features fire on properties of rules that
capture the unique linguistic styles of different
users and their interaction with each other. Author
features capture the fact that some users provide
better, and more generalizable definitions that tend
to be accepted. Friends features are cross products
of author ID and user ID, which captures whether
rules from a particular author are systematically
preferred or not by the current user, due to stylistic
similarities or differences (#users+#users×#users
features).

Span features include conjunctions of the cate-
gory of the derivation and the leftmost/rightmost
token on the border of the span. In addition, span
features include conjunctions of the category of
the derivation and the 1 or 2 adjacent tokens just
outside of the left/right border of the span. These
capture a weak form of context-dependence that is
generally helpful (<≈ V 4 × #cats features for a
vocabulary of size V).

Scoping features track how the community, as
well as individual users, prefer each of the 3
scoping choices (none, selection only ‘{A}’, and
voxels+selection ‘isolate {A}’), as described in
Section 2. 3 global indicators, and 3 indicators
for each user fire every time a particular scoping
choice is made (3 + 3× #users features).

Parameter estimation. When the user types an
utterance, the system generates a list of candidate
next states. When the user chooses a particular
next state s′ from this list, the system performs an
online AdaGrad update (Duchi et al., 2010) on the
parameters θ according to the gradient of the fol-
lowing loss function:

− log
∑

d:Jprog(d)Ks=s′
pθ(d | x, u) + λ||θ||1,

which attempts to increase the model probability
on derivations whose programs produce the next
state s′.

5 Grammar induction

Recall that the main form of supervision is via user
definitions, which allows creation of user-defined
concepts. In this section, we show how to turn

933

these definitions into new grammar rules that can
be used by the system to parse new utterances.

Previous systems of grammar induction for
semantic parsing were given utterance-program
pairs (x, z). Both the GENLEX (Zettlemoyer
and Collins, 2005) and higher-order unifica-
tion (Kwiatkowski et al., 2010) algorithms over-
generate rules that liberally associate parts of x
with parts of z. Though some rules are immedi-
ately pruned, many spurious rules are undoubtedly
still kept. In the interactive setting, we must keep
the number of candidates small to avoid a bad user
experience, which means a higher precision bar
for new rules.

Fortunately, the structure of definitions makes
the grammar induction task easier. Rather than be-
ing given an utterance-program (x, z) pair, we are
given a definition, which consists of an utterance
x (head) along with the body X = [x1, . . . , xn],
which is a sequence of utterances. The body X is
fully parsed into a derivation d, while the head x is
likely only partially parsed. These partial deriva-
tions are denoted by chart(x).

At a high-level, we find matches—partial
derivations chart(x) of the head x that also occur
in the full derivation d of the body X . A grammar
rule is produced by substituting any set of non-
overlapping matches by their categories. As an
example, suppose the user defines

‘add red top times 3’ as ‘repeat 3 [add red top]’.

Then we would be able to induce the following
two grammar rules:

A→ add C D times N :

λCDN.repeat N [add C D]
A→ A times N :

λAN.repeat N [A]

The first rule substitutes primitive values (‘red’,
‘top’, and ‘3’) with their respective pre-terminal
categories (C, D, N). The second rule contains
compositional categories like actions (A), which
require some care. One might expect that greedily
substituting the largest matches or the match that
covers the largest portion of the body would work,
but the following example shows that this is not
the case:

A1 A1 A1︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
add red left and here = add red left; add red︸ ︷︷ ︸ ︸ ︷︷ ︸

A2 A2

Here, both the highest coverage substitution (A1:
‘add red’, which covers 4 tokens of the body), and
the largest substitution available (A2: ‘add red
left’) would generalize incorrectly. The correct
grammar rule only substitutes the primitive values
(‘red’, ‘left’).

5.1 Highest scoring abstractions

We now propose a grammar induction procedure
that optimizes a more global objective and uses the
learned semantic parsing model to choose substi-
tutions. More formally, let M be the set of partial
derivations in the head whose programs appear in
the derivation dX of the body X:

M
def
= {d ∈ chart(x) :

∃d′ ∈ desc(dX) ∧ prog(d) = prog(d′)},

where desc(dX) are the descendant derivations of
dX . Our goal is to find a packing P ⊆ M ,
which is a set of derivations corresponding to non-
overlapping spans of the head. We say that a pack-
ing P is maximal if no other derivations may be
added to it without creating an overlap.

Let packings(M) denote the set of maximal
packings, we can frame our problem as finding the
maximal packing that has the highest score under
our current semantic parsing model:

P ∗L = argmax
P∈packings(M);

∑

d∈P
score(d). (2)

Finding the highest scoring packing can be
done using dynamic programming on P ∗i for i =
0, 1, . . . , L, whereL is the length of x and P ∗0 = ∅.
Since d ∈M , start(d) and end(d) (exclusive) re-
fer to span in the head x. To obtain this dynamic
program, let Di be the highest scoring maximal
packing containing a derivation ending exactly at
position i (if it exists):

Di = {di} ∪ P ∗start(di), (3)

di = argmax
d∈M ;end(d)=i

score(d ∪ P ∗start(d)). (4)

Then the maximal packing of up to i can be de-
fined recursively as

P ∗i = argmax
D∈{Ds(i)+1,Ds(i)+2,...,Di}

score(D) (5)

s(i) = max
d:end(d)≤i

start(d), (6)

934

Input : x, dX , P ∗

Output: rule
r ← x;
f ← dX ;
for d ∈ P ∗ do

r ← r[cat(d)/ span(d)]
f ← λ cat(d).f [cat(d)/d]

return rule (cat(dX)→ r : f)

Algorithm 1: Extract a rule r from a derivation
dX of body X and a packing P ∗. Here, f [t/s]
means substituting s by t in f , with the usual
care about names of bound variables.

where s(i) is the largest index such thatDs(i) is no
longer maximal for the span (0, i) (i.e. there is a
d ∈M on the span start(d) ≥ s(i) ∧ end(d) ≤ i.

Once we have a packing P ∗ = P ∗L, we can go
through d ∈ P ∗ in order of start(d), as in Algo-
rithm 1. This generates one high precision rule per
packing per definition. In addition to the highest
scoring packing, we also use a “simple packing”,
which includes only primitive values (in Voxelurn,
these are colors, numbers, and directions). Un-
like the simple packing, the rule induced from the
highest scoring packing does not always general-
ize correctly. However, a rule that often general-
izes incorrectly should be down-weighted, along
with the score of its packings. As a result, a differ-
ent rule might be induced next time, even with the
same definition.

5.2 Extending the chart via alignment

Algorithm 1 yields high precision rules, but fails
to generalize in some cases. Suppose that ‘move
up’ is defined as ‘move top’, where ‘up’ does not
parse, and does not match anything. We would
like to infer that ‘up’ means ‘top’. To handle this,
we leverage a property of definitions that we have
not used thus far: the utterances themselves. If
we align the head and body, then we would in-
tuitively expect aligned phrases to correspond to
the same derivations. Under this assumption, we
can then transplant these derivations from dX to
chart(x) to create new matches. This is more con-
strained than the usual alignment problem (e.g., in
machine translation) since we only need to con-
sider spans of X which corresponds to derivations
in desc(dX).

Algorithm 2 provides the algorithm for extend-
ing the chart via alignments. The aligned function
is implemented using the following two heuristics:

Input : x,X, dX
for d ∈ desc(dX), x′ ∈ spans(x) do

if aligned(x′, d, (x,X)) then
d′ ← d;
start(d′)← start(x′);
end(d′)← end(x′);
chart(x)← chart(x) ∪ d′

end
end

Algorithm 2: Extending the chart by alignment:
If d is aligned with x′ based on the utterance,
then we pretend that x′ should also parse to d,
and d is transplanted to chart(x) as if it parsed
from x′.

• exclusion: if all but 1 pair of short spans (1
or 2 tokens) are matched, the unmatched pair
is considered aligned.

• projectivity: if d1, d2 ∈ desc(dX) ∩
chart(x), then ances(d1, d2) is aligned to the
corresponding span in x.

With the extended chart, we can run the algo-
rithm from Section 5.1 to induce rules. The trans-
planted derivations (e.g., ‘up’) might now form
new matches which allows the grammar induction
to induce more generalizable rules. We only per-
form this extension when the body consists of one
utterance, which tend to be a paraphrase. Bodies
with multiple utterances tend to be new concepts
(e.g., ‘add green monster’), for which alignment
is impossible. Because users have to select from
candidates parses in the interactive setting, induc-
ing low precision rules that generate many parses
degrade the user experience. Therefore, we induce
alignment-based rules conservatively—only when
all but 1 or 2 tokens of the head aligns to the body
and vice versa.

6 Experiments

Setup. Our ultimate goal is to create a commu-
nity of users who can build interesting structures in
Voxelurn while naturalizing the core language. We
created this community using Amazon Mechani-
cal Turk (AMT) in two stages. First, we had quali-
fier tasks, in which an AMT worker was instructed
to replicate a fixed target exactly (Figure 5), ensur-
ing that the initial users are familiar with at least
some of the core language, which is the starting
point of the naturalization process.

935

Figure 5: The target used for the qualifier.

Next, we allowed the workers who qualified to
enter the second freebuilding task, in which they
were asked to build any structure they wanted in
30 minutes. This process was designed to give
users freedom while ensuring quality. The anal-
ogy of this scheme in a real system is that early
users (or a small portion of expert users) have to
make some learning investment, so the system can
learn and become easier for other users.

Statistics. 70 workers passed the qualifier task,
and 42 workers participated in the final free-
building experiment. They built 230 structures.
There were over 103,000 queries consisting of
5,388 distinct token types. Of these, 64,075 utter-
ances were tried and 36,589 were accepted (so an
action was performed). There were 2,495 defini-
tions combining over 15,000 body utterances with
6.5 body utterances per head on average (96 max).
From these definitions, 2,817 grammar rules were
induced, compared to less than 100 core rules.
Over all queries, there were 8.73 parses per utter-
ance on average (starting from 1 for core).

Is naturalization happening? The answer is
yes according to Figure 6, which plots the cum-
mulative percentage of utterances that are core, in-
duced, or unparsable. To rule out that more in-
duced utterances are getting rejected, we consider
only accepted utterances in the middle of Fig-
ure 6, which plots the percentage of induced rules
among accepted utterances for the entire commu-
nity, as well as for the 5 heaviest users. Since un-
parsable utterances cannot be accepted, accepted
core (which is not shown) is the complement of
accepted induced. At the conclusion of the ex-
periment, 72.9% of all accepted utterances are
induced—this becomes 85.9% if we only consider
the final 10,000 accepted utterances.

Three modes of naturalization are outlined in
Table 3. For very common operations, like moving
the selection, people found ‘select left’ too ver-
bose and shorterned this to l, left, >, sel l. One
user preferred ‘go down and right’ instead of ‘se-
lect bot; select right’ in core and defined it as
‘go down; go right’. Definitions for high-level

Figure 6: Learning curves. Top: percentage of
all utterances that are part of the core language,
the induced language, or unparsable by the sys-
tem. Middle: percentage of accepted utterances
belonging to the induced language, overall and for
the 5 heaviest users. Bottom: expressiveness mea-
sured by the ratio of the length of the program to
the length of the corresponding utterance.

concepts tend to be whole objects that are not pa-
rameterized (e.g., ‘dancer’). The bottom plot of
Figure 6 suggests that users are defining and us-
ing higher level concepts, since programs become
longer relative to utterances over time.

As a result of the automatic but implicit gram-
mar induction, some concepts do not generalize
correctly. In definition head ‘3 tall 9 wide white
tower centered here’, arguments do not match the
body; for ‘black 10x10x10 frame’, we failed to to-
kenize.

936

Short forms
left, l, mov left, go left, <, sel left
br, black, blu, brn, orangeright, left3
add row brn left 5 := add row brown left 5
Alternative syntax
go down and right := go down; go right
select orange := select has color orange
add red top 4 times := repeat 4 [add red top]
l white := go left and add white
mov up 2 := repeat 2 [select up]
go up 3 := go up 2; go up
Higher level
add red plate 6 x 7, green cube size 4,
add green monster, black 10x10x10 frame,
flower petals, deer leg back, music box, dancer

Table 3: Example definitions. See CodaLab work-
sheet for the full leaderboard.

Learned parameters. Training using L1 regu-
larization, we obtained 1713 features with non-
zero parameters. One user defined many con-
cepts consisting of a single short token, and the
Social.Author feature for that user has the most
negative weight overall. With user compatibil-
ity (Social.Friends), some pairs have large pos-
itive weights and others large negative weights.
The ‘isolate’ scoping choice (which allows easier
hierarchical building) received the most positive
weights, both overall and for many users. The 2
highest scoring induced rules correspond to ‘add
row red right 5’ and ‘select left 2’.

Incentives. Having complex structures show
that the actions in Voxelurn are expressive and that
hierarchical definitions are useful. To incentivize
this behavior, we created a leaderboard which
ranked structures based on recency and upvotes
(like Hacker News). Over the course of 3 days,
we picked three prize categories to be released
daily. The prize categories for each day were
bridge, house, animal; tower, monster, flower;
ship, dancer, and castle.

To incentivize more definitions, we also track
citations. When a rule is used in an accepted ut-
terance by another user, the rule (and its author)
receives a citation. We pay bonuses to top users
according to their h-index. Most cited definitions
are also displayed on the leaderboard. Our qual-
itative results should be robust to the incentives
scheme, because the users do not overfit to the
incentives—e.g., around 20% of the structures are

not in the prize categories and users define com-
plex concepts that are rarely cited.

7 Related work and discussion

This work is an evolution of Wang et al. (2016),
but differs crucially in several ways: While Wang
et al. (2016) starts from scratch and relies on se-
lecting candidates, this work starts with a pro-
gramming language (PL) and additionally relies
on definitions, allowing us to scale. Instead of
having a private language for each user, the user
community in this work shares one language.

Azaria et al. (2016) presents Learning by In-
struction Agent (LIA), which also advocates learn-
ing from users. They argue that developers can-
not anticipate all the actions that users want, and
that the system cannot understand the correspond-
ing natural language even if the desired action is
built-in. Like Jia et al. (2017), Azaria et al. (2016)
starts with an ad-hoc set of initial slot-filling com-
mands in natural language as the basis of further
instructions—our approach starts with a more ex-
pressive core PL designed to interpolate with nat-
ural language. Compared to previous work, this
work studied interactive learning in a shared com-
munity setting and hierarchical definitions result-
ing in more complex concepts.

Allowing ambiguity and a flexible syntax is
a key reason why natural language is easier to
produce—this cannot be achieved by PLs such as
Inform and COBOL which look like natural lan-
guage. In this work, we use semantic parsing tech-
niques that can handle ambiguity (Zettlemoyer
and Collins, 2005, 2007; Kwiatkowski et al., 2010;
Liang et al., 2011; Pasupat and Liang, 2015). In
semantic parsing, the semantic representation and
action space is usually designed to accommodate
the natural language that is considered constant.
In contrast, the action space is considered constant
in the naturalizing PL approach, and the language
adapts to be more natural while accommodating
the action space.

Our work demonstrates that interactive defini-
tions is a strong and usable form of supervision.
In the future, we wish to test these ideas in more
domains, naturalize a real PL, and handle para-
phrasing and implicit arguments. In the process of
naturalization, both data and the semantic gram-
mar have important roles in the evolution of a lan-
guage that is easier for humans to produce while
still parsable by computers.

937

Acknowledgments. We thank our reviewers,
Panupong (Ice) Pasupat for helpful suggestions
and discussions on lambda DCS, DARPA Com-
municating with Computers (CwC) program un-
der ARO prime contract no. W911NF-15-1-0462,
and NSF CAREER Award no. IIS-1552635.

Reproducibility. All code, data, and experi-
ments for this paper are available on the CodaLab
platform:
https://worksheets.

codalab.org/worksheets/

0xbf8f4f5b42e54eba9921f7654b3c5c5d

and a demo: http://www.voxelurn.com

References
Y. Artzi and L. Zettlemoyer. 2011. Bootstrapping

semantic parsers from conversations. In Em-
pirical Methods in Natural Language Processing
(EMNLP). pages 421–432.

Y. Artzi and L. Zettlemoyer. 2013. Weakly supervised
learning of semantic parsers for mapping instruc-
tions to actions. Transactions of the Association for
Computational Linguistics (TACL) 1:49–62.

A. Azaria, J. Krishnamurthy, and T. M. Mitchell. 2016.
Instructable intelligent personal agent. In Associa-
tion for the Advancement of Artificial Intelligence
(AAAI). pages 2681–2689.

J. Berant, A. Chou, R. Frostig, and P. Liang. 2013. Se-
mantic parsing on Freebase from question-answer
pairs. In Empirical Methods in Natural Language
Processing (EMNLP).

G. Campagna, R. Ramesh, S. Xu, M. Fischer, and
M. S. Lam. 2017. Almond: The architecture of
an open, crowdsourced, privacy-preserving, pro-
grammable virtual assistant. In World Wide Web
(WWW). pages 341–350.

J. Duchi, E. Hazan, and Y. Singer. 2010. Adaptive sub-
gradient methods for online learning and stochastic
optimization. In Conference on Learning Theory
(COLT).

S. Gulwani and M. Marron. 2014. NLyze: interac-
tive programming by natural language for spread-
sheet data analysis and manipulation. In Interna-
tional Conference on Management of Data, SIG-
MOD. pages 803–814.

R. Jia, L. Heck, D. Hakkani-Tür, and G. Nikolov. 2017.
Learning concepts through conversations in spoken
dialogue systems. In International Conference on
Acoustics, Speech, and Signal Processing (ICASSP).

N. Kushman and R. Barzilay. 2013. Using semantic
unification to generate regular expressions from nat-
ural language. In Human Language Technology and

North American Association for Computational Lin-
guistics (HLT/NAACL). pages 826–836.

T. Kwiatkowski, L. Zettlemoyer, S. Goldwater, and
M. Steedman. 2010. Inducing probabilistic CCG
grammars from logical form with higher-order unifi-
cation. In Empirical Methods in Natural Language
Processing (EMNLP). pages 1223–1233.

P. Liang. 2013. Lambda dependency-based composi-
tional semantics. arXiv preprint arXiv:1309.4408 .

P. Liang. 2016. Learning executable semantic parsers
for natural language understanding. Communica-
tions of the ACM 59.

P. Liang, M. I. Jordan, and D. Klein. 2011. Learn-
ing dependency-based compositional semantics. In
Association for Computational Linguistics (ACL).
pages 590–599.

P. Pasupat and P. Liang. 2015. Compositional semantic
parsing on semi-structured tables. In Association for
Computational Linguistics (ACL).

S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G.
Banerjee, S. J. Teller, and N. Roy. 2011. Un-
derstanding natural language commands for robotic
navigation and mobile manipulation. In Associa-
tion for the Advancement of Artificial Intelligence
(AAAI).

S. I. Wang, P. Liang, and C. Manning. 2016. Learning
language games through interaction. In Association
for Computational Linguistics (ACL).

M. Zelle and R. J. Mooney. 1996. Learning to parse
database queries using inductive logic program-
ming. In Association for the Advancement of Arti-
ficial Intelligence (AAAI). pages 1050–1055.

L. S. Zettlemoyer and M. Collins. 2005. Learning to
map sentences to logical form: Structured classifica-
tion with probabilistic categorial grammars. In Un-
certainty in Artificial Intelligence (UAI). pages 658–
666.

L. S. Zettlemoyer and M. Collins. 2007. Online learn-
ing of relaxed CCG grammars for parsing to log-
ical form. In Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP/CoNLL). pages 678–687.

938

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 939–949
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1087

Semantic Word Clusters Using Signed Spectral Clustering

João Sedoc, Jean Gallier, Lyle Ungar
Computer & Information Science

University of Pennsylvania
joao, jean, ungar@cis.upenn.edu

Dean Foster
Amazon LLC

dean@foster.net

Abstract

Vector space representations of words cap-
ture many aspects of word similarity,
but such methods tend to produce vector
spaces in which antonyms (as well as syn-
onyms) are close to each other. For spec-
tral clustering using such word embed-
dings, words are points in a vector space
where synonyms are linked with posi-
tive weights, while antonyms are linked
with negative weights. We present a new
signed spectral normalized graph cut al-
gorithm, signed clustering, that overlays
existing thesauri upon distributionally de-
rived vector representations of words, so
that antonym relationships between word
pairs are represented by negative weights.
Our signed clustering algorithm produces
clusters of words that simultaneously cap-
ture distributional and synonym relations.
By using randomized spectral decomposi-
tion (Halko et al., 2011) and sparse matri-
ces, our method is both fast and scalable.
We validate our clusters using datasets
containing human judgments of word pair
similarities and show the benefit of using
our word clusters for sentiment prediction.

1 Introduction

In distributional vector representations, opposite
relations are not fully captured. Take, for example,
words such as “great” and “awful” that can appear
with similar frequency in the same sentence struc-
ture: “John had a great meeting” and “John had an
awful day.” Word embeddings, which are success-
ful in a wide array of NLP tasks (Turney et al.,
2010; Dhillon et al., 2015), fail to capture this
antonymy because they follow the distributional
hypothesis that similar words are used in similar

contexts (Harris, 1954), thus assigning small co-
sine or euclidean distances between the vector rep-
resentations of “great” and “awful”.

While vector space models (Turney et al., 2010)
such as word2vec (Mikolov et al., 2013), Global
vectors (GloVe) (Pennington et al., 2014), or
Eigenwords (Dhillon et al., 2015) capture relat-
edness, they do not adequately encode synonymy
and semantic similarity (Mohammad et al., 2013;
Scheible et al., 2013). Our goal is to create clus-
ters of synonyms or semantically equivalent words
and linguistically motivated unified constructs.
Signed graphs, which are graphs with negative
edge weights, were first introduced by Cartwright
and Harary (1956). However, signed graph clus-
tering for multiclass normalized cuts (K-clusters)
has been largely unexplored until recently. We
present a novel theory and method that extends
multiclass normalized cuts (K-cluster) of Yu and
Shi (2003) to signed graphs (Gallier, 2016)1 and
the work of Kunegis et al. (2010) to K-clustering.
This extension allows the incorporation of knowl-
edge base information, positive and negatively
weighted links (see figure 2.1). Negative edges
serve as repellent or opposite relationships be-
tween nodes.

Our signed spectral normalized graph cut algo-
rithm (henceforth, signed clustering) builds neg-
ative edge relations into graph embeddings using
similarity structure in vector spaces. It takes as
input an initial set of vectors and edge relations,
and hence is easy to combine with any word em-
bedding method. This paper formally improves on
the discrete optimization problem of Yu and Shi
(2003).

Signed clustering gives better clusters than
spectral clustering (Shi and Malik, 2000) of word
embeddings, and it has better coverage and is more
robust than thesaurus look-up. This is because the-

1Gallier (2016) is a full theoretical exposition of our meth-
ods with proofs on arXiv.

939

https://doi.org/10.18653/v1/P17-1087

sauri erroneously give equal weight to rare senses
of a word – for example, “rich” as a rarely used
synonym of “absurd”. Also, the overlap between
thesauri is small, due to their manual creation. Lin
(1998) found 17.8397% overlap between synonym
sets from Roget’s Thesaurus and WordNet 1.5. We
find similarly small overlap between all three the-
sauri tested.

We evaluate our clusters using SimLex-999
(Hill et al., 2014) and SimVerb-3500 (Gerz et al.,
2016) as a ground truth for our cluster evaluation.
Finally, we test our method on the sentiment anal-
ysis task. Overall, signed spectral clustering can
augment methods using signed information and
has broad application for many fields.

Our main contributions are: the novel extension
of signed clustering to the multiclass (K-cluster),
and the application of this method to create seman-
tic word clusters that are agnostic to vector space
representations and thesauri.

1.1 Related Work

Semantic word cluster and distributional thesauri
have been well studied in the NLP literature (Lin,
1998; Curran, 2004). Recently there has been a
line of research on incorporating synonyms and
antonyms into word embeddings. Our approach
is very much in the line of Vlachos et al. (2009).
However, they explicitly made verb clusters using
Dirichlet Process Mixture Models and must-link
/ cannot-link clustering. Furthermore, they note
that cannot-link clustering does not improve per-
formance whereas our signed clustering antonyms
are key.

Most recent models either attempt to make
richer contexts, in order to find semantic similar-
ity, or overlay thesaurus information in a super-
vised or semi-supervised manner. One line of ac-
tive research is post processing the word vector
embedding by transforming the space using a sin-
gle or multi-relational objective (Yih et al., 2012;
Tang et al., 2014; Chang et al., 2013; Tang et al.,
2014; Zhang et al., 2014; Faruqui et al., 2015;
Mrkšić et al., 2016).

Alternatively, there are methods to modify the
objective function for generating the word em-
beddings (Ono et al., 2015; Pham et al., 2015;
Schwartz et al., 2015).

Our approach differs from the aforementioned
methods in that we created word clusters using the
antonym relationships as negative links. Unlike

the previous approaches using semi-supervised
methods, we incorporated the thesauri as a knowl-
edge base. Similar to word vector retrofitting and
counter-fitting methods described in Faruqui et al.
(2015) and Mrkšić et al. (2016), our signed clus-
tering method uses existing vector representations
to create word clusters.

To our knowledge, this work is the first theo-
retical foundation of multiclass signed normalized
cuts.2 Zass and Shashua (2005) solved multiclass
cluster from another approach, by relaxing the or-
thogonality assumption and focusing instead on
the non-negativity constraint. This led to a doubly
stochastic optimization problem. Negative edges
are handled by a constrained hyperparameter. Hou
(2005) used positive degrees of nodes in the de-
gree matrix of a signed graph with weights (-1, 0,
1), which was advanced by Kolluri et al. (2004)
and Kunegis et al. (2010) using absolute values of
weights in the degree matrix. Interestingly, Chiang
et al. (2014) presented a theoretical foundation for
edge sign prediction and a recursive clustering ap-
proach. Mercado et al. (2016) found that using the
geometric mean of the graph Laplacian improves
performance.

Wang et al. (2016) used semi-supervised po-
larity induction (Rao and Ravichandran, 2009)
to create clusters of words with similar valence
and arousal. Must-link and cannot-link soft
spectral clustering (Rangapuram and Hein, 2012)
share similarities with our method, particularly
in the limit where there are no must-link edges
present. Both must-link and cannot-link clustering
as well as polarity induction differ in optimization
method. Our method is significantly faster due to
the use of randomized SVD (Halko et al., 2011)
and can thus be applied to large scale NLP prob-
lems.

We developed a novel theory and algorithm that
extends the clustering of Shi and Malik (2000) and
Yu and Shi (2003) to the multiclass signed graph
case.

2 Signed Graph Cluster Estimation

2.1 Signed Normalized Cut

Weighted graphs for which the weight matrix is
a symmetric matrix in which negative and posi-
tive entries are allowed are called signed graphs.

2The full exposition by Gallier (2016) is available on
arXiv.

940

Such graphs (with weights (−1, 0,+1)) were in-
troduced as early as 1953 by (Harary, 1953), to
model social relations involving disliking, indif-
ference, and liking. The problem of cluster-
ing the nodes of a signed graph arises naturally
as a generalization of the clustering problem for
weighted graphs. Figure 1 shows a signed graph of
word similarities with a thesaurus overlay. Gallier

Figure 1: Signed graph of words using a distance
metric from the word embedding. The red dashed
edges represent the antonym relation while solid
edges represent synonymy relations.

(2016) extends normalized cuts to signed graphs
in order to incorporate antonym information into
word clusters.

Definition 2.1. A weighted graph is a pair G =
(V,W), where V = {v1, . . . , vm} is a set of
nodes or vertices, and W is a symmetric matrix
called the weight matrix, such that wi j ≥ 0 for all
i, j ∈ {1, . . . ,m}, and wi i = 0 for i = 1, . . . ,m.
We say that a set {vi, vj} is an edge iff wi j > 0.
The corresponding (undirected) graph (V,E) with
E = {{vi, vj} | wi j > 0}, is called the underly-
ing graph of G.

Given a signed graph G = (V,W) (where
W is a symmetric matrix with zero diagonal en-
tries), the underlying graph of G is the graph with
node set V and set of (undirected) edges E =
{{vi, vj} | wij 6= 0}.

If (V,W) is a signed graph, where W is an
m × m symmetric matrix with zero diagonal en-
tries and with the other entries wij ∈ R arbitrary,
for any node vi ∈ V , the signed degree of vi is
defined as

di = d(vi) =
m∑

j=1

|wij |,

and the signed degree matrix D as

D = diag(d(v1), . . . , d(vm)).

For any subset A of the set of nodes V , let

vol(A) =
∑

vi∈A
di =

∑

vi∈A

m∑

j=1

|wij |.

For any two subsets A and B of V and AC which
is the complement of A, define links+(A,B),
links−(A,B), and cut(A,AC) by

links+(A,B) =
∑

vi∈A,vj∈B
wij>0

wij

links−(A,B) =
∑

vi∈A,vj∈B
wij<0

−wij

cut(A,AC) =
∑

vi∈A,vj∈AC
wij 6=0

|wij |.

Then, the signed Laplacian L is defined by

L = D −W,

and its normalized version Lsym by

Lsym = D
−1/2

LD
−1/2

= I −D−1/2WD
−1/2

.

Kunegis et al. (2010) showed that L is positive
semidefinite. For a graph without isolated vertices,
we have d(vi) > 0 for i = 1, . . . ,m, so D−1/2 is
well defined.

Given a partition of V into K clusters
(A1, . . . , AK), if we represent the jth block of this
partition by a vector Xj such that

Xj
i =

{
aj if vi ∈ Aj
0 if vi /∈ Aj ,

for some aj 6= 0. For illustration, suppose m = 5
and A1 = {v1, v3} then (X1)> = [a1, 0, a1, 0, 0].

Definition 2.2. The signed normalized cut
sNcut(A1, . . . , AK) of the partition (A1, ..., AK)
is defined as

sNcut(A1, . . . ,AK) =

K∑

j=1

cut(Aj , A
C
j) + 2links−(Aj , Aj)

vol(Aj)
.

941

It should be noted that this formulation differs
significantly from Kunegis et al. (2010) and even
more so from must-link / cannot-link clustering.

Observe that minimizing sNcut(A1, . . . , AK)
minimizes the number of positive and negative
edges between clusters and also the number of
negative edges within clusters. Removing the term
links−(Aj , Aj) reduces sNcut to normalized cuts.

A linear algebraic formulation is

sNcut(A1, . . . , AK) =
K∑

j=1

(Xj)>LXj

(Xj)>DXj
.

where X is the N ×K matrix whose jth column
is Xj .

2.2 Optimization Problem
We now formulate K-way clustering of a graph
using normalized cuts.

If we let

X =
{

[X1 . . . XK] | Xj = aj(x
j
1, . . . , x

j
N),

xji ∈ {1, 0}, aj ∈ R, Xj 6= 0
}

our solution set is

K =
{
X ∈ X | (Xi)>DXj = 0,

1 ≤ i, j ≤ K, i 6= j
}
.

The resulting optimization problem is

minimize

K∑

j=1

(Xj)>LXj

(Xj)>DXj

subject to (Xi)>DXj = 0,

1 ≤ i, j ≤ K, i 6= j, X ∈ X .
The problem can be reformulated to an equiva-

lent optimization problem:

minimize tr(X>LX)

subject to X>DX = I, X ∈ X .
We then form a relaxation of the above problem,

dropping the condition that X ∈ X , giving
Relaxed Problem

minimize tr(Y >D
−1/2

LD
−1/2

Y)

subject to Y >Y = I.

The minimum of the relaxed problem is
achieved by the K unit eigenvectors associated
with the smallest eigenvalues of Lsym.

2.3 Finding an Approximate Discrete
Solution

Given a solution Z of the relaxed problem, we
look for pairs (X,Q) with X ∈ X and where Q is
aK×K matrix with nonzero and pairwise orthog-
onal columns, with ‖X‖F = ‖Z‖F , that minimize

ϕ(X,Q) = ‖X − ZQ‖F .

Here, ‖A‖F is the Frobenius norm of A.
This nonlinear optimization problem involves

two unknown matrices X and Q. To solve the re-
laxed problem, we proceed by alternating between
minimizing ϕ(X,Q) = ‖X − ZQ‖F with respect
to X holding Q fixed (step 5 in algorithm 1), and
minimizing ϕ(X,Q) with respect to Q holding X
fixed (steps 6 and 7 in algorithm 1).

This second stage in which X is held fixed has
been studied, but it is still a hard problem for
which no closed-form solution is known. Hence
we divide the problem into steps 6 and 7 for which
the solution is known. Since Q is of the form
Q = RΛ whereR ∈ O(K) and Λ is a diagonal in-
vertible matrix, we minimize ‖X − ZRΛ‖F . The
matrix RΛ is not a minimizer of ‖X − ZRΛ‖F in
general, but it is an improvement on R alone, and
both stages can be solved quite easily. In step 6 the
problem reduces to minimizing −2tr(Q>Z>X);
that is, maximizing tr(Q>Z>X).

Algorithm 1 Signed Clustering
1: Input: W the weight matrix (without isolated nodes),

K the number of clusters, and termination threshold ε.
2: Using theD the degree matrix, and the signed Laplacian

L, compute Lsym the signed normalized Laplacian.

3: Initialize Λ = I , X = D
− 1

2U where U is the matrix of
the eigenvectors corresponding to the K smallest eigen-
values of Lsym. 3

4: while ‖X − ZRΛ‖F > ε do
5: Minimize ‖X − ZRΛ‖F with respect to X holding

Q fixed.
6: Fix X , Z, and Λ, find R ∈ O(K) that minimizes

‖X − ZRΛ‖F .
7: Fix X , Z, and R, find a diagonal invertible matrix Λ

that minimizes ‖X − ZRΛ‖F .

8: end while
9: Find the discrete solution X∗ by choosing the

largest entry xij on row i set xij = 1 and all
other xij = 0 for row i.

10: Output: X∗.

Steps 3 through 10 may be replaced by standard K-
means clustering. It should also be noted that by

942

removing the solution requirement that Xj 6= 0,
the algorithm can find k ≤ K clusters.

3 Similarity Calculation

The main input to the spectral signed clustering al-
gorithm is the similarity matrixW , which overlays
both the distributional properties and thesaurus in-
formation. Following Belkin and Niyogi (2003),
we chose the heat kernel based on the Euclidean
distance between word vector representations as
our similarity metric, such that

Wij =





0 if e−
‖wi−wj‖2

σ < ε

e−
‖wi−wj‖2

σ otherwise
.

where σ and ε are hyperparameters found using
grid search (see Supplemental material for more
detail).

We represented the thesaurus as two matrices
where

T synij =

{
1 if words i and j are synonyms
0 otherwise

.

and

T antij =

{
−1 if words i and j are antonyms
0 otherwise

.

T syn is the synonym graph and T ant is the
antonym graph. The signed graph can then be
written in matrix form as Ŵ = γW +βantT ant�
W+βsynT syn�W , where� computes Hadamard
product (element-wise multiplication).

The parameters γ, βsyn, and βant are tuned to
the data target dataset using cross validation. The
reader should note that σ and ε are not found us-
ing a target dataset, but instead using cross vali-
dation and grid search to minimize the number of
negative edges within clusters and the number of
disconnected components in the cluster.

4 Evaluation Metrics

We evaluated the clusters using both intrinsic and
extrinsic methods. For intrinsic evaluation, we
used thesaurus information for two novel metrics:
1) the number of negative edges (NNE) within the
clusters, which in our semantic clusters is the num-
ber of antonyms in the same cluster, and 2) the
number of disconnected components (NDC) in the
synonym graph, so the number of groups of words

that are not connected by a synonym relation in
the thesaurus. The NDC thus has the disadvantage
that it is a function of the thesaurus coverage. Our
third intrinsic measure uses a gold standard de-
signed to measure how well we capture word sim-
ilarity: Semantically similar words should be in
the same cluster and semantically dissimilar words
should not. For extrinsic evaluation, as descibed
below, we measure how much our clusters help to
identify text polarity. We also compare multiple
word embeddings and thesauri to demonstrate the
stability of our method.

5 Experiments with Synthetic Data

In order to evaluate our signed graph clustering
method, we first focused on intrinsic measures of
cluster quality in synthetic data. To do so, we cre-
ated random signed graphs with the same propor-
tion of positive and negative edges as in our real
dataset. Figure 2 demonstrates that the number of

Figure 2: The relation between disconnected com-
ponent (NDC) and negative edge (NNE) using
simulated signed graphs with 100 vertices.

negative edges within a cluster is minimized us-
ing our clustering algorithm on simulated data. As
the number of clusters becomes large, the number
of disconnected components, which includes clus-
ters of size one, consistently increases. Determin-
ing the optimal cluster size and similarity parame-
ters requires making a trade off between NDC and
NNE. For example, in figure 2 the optimal cluster
size is 20. One can see that as the number of clus-
ters increases NNE goes to zero, but the number
of disconnected components becomes the number
of vertices. In the extreme case all clusters contain
one vertex. K-means, also shown in figure 2, does
not optimize NNE.

943

6 Experimental Setup

6.1 Word Embeddings
We used four different word embedding meth-
ods for evaluation: Skip-gram vectors (word2vec)
(Mikolov et al., 2013), Global vectors (GloVe)
(Pennington et al., 2014), Eigenwords (Dhillon
et al., 2015), and Global Context (GloCon)
(Huang et al., 2012); however, we only report the
results for word2vec, which is the most popular
word embedding (see the supplemental material
for other embeddings). We used word2vec 300
dimensional embeddings which were trained on
several billion words of English: the Gigaword
and the English discussion forum data gathered as
part of BOLT. Tokenization was performed using
CMU’s Twokenize.4

6.2 Thesauri
Several thesauri were used in order to test the
robustness including Roget’s Thesaurus (Roget,
1852), the Microsoft Word English (MS Word)
thesaurus from Samsonovic et al. (2010) and
WordNet 3.0 (Miller, 1995).

We chose a subset of 5108 words for the training
dataset, which had high overlap between various
sources. Changes to the training dataset had mini-
mal effects on the optimal parameters. Within the
training dataset, each of the thesauri had roughly
3700 antonym pairs; combined they had 6680.
However, the number of distinct connected com-
ponents varied, with Roget’s Thesaurus having the
fewest (629), and MS Word Thesaurus (1162) and
WordNet (2449) having the most. These ratios
were consistent across the full dataset.

6.3 Gold Standard SimLex-999 And
SimVerb-3500

Following the analysis of Vlachos et al. (2009), we
threshold the semantically similar datasets to find
word pairs which should or should not belong to
the same cluster. As ground truth, we extracted
120 semantically similar words from SimLex-999
with a similarity score greater than 8 out of 10.
SimLex-999 is a gold standard resource for se-
mantic similarity, not relatedness, based on ratings
by human annotators.

Our 120 pair subset of SimLex-999 has multiple
parts-of-speech including Noun-Noun pairs, Verb-
Verb pairs and Adjective-Adjective pairs. Within

4https://github.com/brendano/
ark-tweet-nlp

SimVerb-3500, we used a subset of 318 semanti-
cally similar verb pairs.

The community is attempting to define better
gold standards; however, currently these are the
best datasets that we are aware of. We tried to
use WordNet, Roget, and the Paraphrase Database
(PPDB) (Ganitkevitch et al., 2013) as a gold stan-
dard, but manual inspection as well as empiri-
cal results showed that none of the automatically
generated datasets were a sufficient gold standard.
Possibly the symmetric pattern of (Schwartz et al.,
2015) would have been sufficient; we did not have
time to validate this.

6.4 Stanford Sentiment Treebank

We also evaluated our clusters by using them
as features for predicting sentiment, using senti-
ment treebank 5 (Socher et al., 2013) with coarse-
grained labels on phrases and sentences from
movie review excerpts. This dataset is widely used
for the evaluation of sentiment analysis. We used
the standard partition of the treebank into training
(6920), development (872), and test (1821) sets.

7 Cluster Evaluation

Table 1 shows the four most-associated words with
“accept” using different methods.

We now turn to quantitative measures of word
similarity and synonym cluster quality.

7.1 Comparison with K-means and
Normalized Cuts

In order to assess the model we tested (1) K-
means, (2) normalized cuts without thesaurus, and
(3) signed normalized cuts. As a baseline, we
created clusters using K-means on the original
word2vec vector representations where the num-
ber of K clusters was set to 750.

Table 2 shows the relative ratios of the different
clustering methods of with respect to antonym pair
inclusion and the number of disconnected compo-
nents within the clusters. For both methods, over
twenty percent of the clusters contain antonym
pairs even though the median cluster size is six.
Signed clustering radically reduced the number of
antonyms within clusters compared to the other
methods.

5http://nlp.stanford.edu/sentiment/
treebank.html

944

Ref word Roget WordNet MS Word W2V SC W2V
accept adopt agree take accepts grant

accept your fate get swallow reject permit
be fooled by fancy consent agree let
acquiesce hold assume accepting okay

Table 1: Qualitative comparison of clusters.

Method Antonym Ratio DC Ratio
K-Means 0.24 0.95
NC 0.21 0.97
SC 0.06 0.49

Table 2: Clustering evaluation of K-means, nor-
malized cuts, and signed normalized cuts with 750
clusters. Ratio of clusters with containing one or
more antonym pair and ratio of clusters with dis-
connected components.

8 Empirical Results

Tables 3 and 5 present our main result. When
using our signed clustering method with similar
words, as labeled by SimLex-999 and SimVerb-
3500, our clustering accuracy increased by 5%
on both SimLex-999 and SimVerb-3000. Fur-
thermore, by combining the thesauri lookup with
our clustering, we achieved almost perfect accu-
racy (96%). Table 5 shows the sentiment analy-
sis task performance. Our method outperforms all
methods with similar complexity; however, we did
not reach state-of-the-art results when compared
to much more complex models which also use a
richer dataset.

8.1 Evaluation Using Word Similarity
Datasets

In a perfect setting, all word pairs rated highly
similar by human annotators would be in the same
cluster, and all words which were rated dissimilar
would be in different clusters. Since our cluster-
ing algorithm produced sets of words, we used this
evaluation instead of the more commonly reported
correlations.

In table 3 we show the results of the eval-
uation with SimLex-999. Combining thesaurus
lookup and word2vec+CombThes clusters, la-
beled as Lookup + SC(W2V), yielded an accu-
racy of 0.96 (5 errors). Note that clusters using
word2vec with normalized cuts does not improve
accuracy. The MSW thesaurus has much lower
coverage, but 100 % accuracy, which is why when

Method Acc SimLex Err
MSW Lookup 0.70 0
Roget Lookup 0.63 0
WordNet Lookup 0.43 0
Combined Lookup 0.90 0
NC(W2V) 0.36 0.05
SC (W2V) 0.67 0
Lookup + NC(W2V) 0.91 0.05
Lookup + SC(W2V) 0.96 0
MSW + SC(W2V) 0.95 0

Table 3: Clustering evaluation using SimLex-999
with 120 word pairs having similarity score over
8. SC stands for our signed clustering and NC is
standard normalized cuts. SC(W2V) are the word
clusters from signed clustering using word2vec
and the combined thesauri. Err is the proportion
of dissimilar words (with score < 2) present in the
same cluster.

combined with the signed clustering the perfor-
mance is 0.95. In table 3 we state the proportion
of clusters containing dissimilar words as a sanity
check for cluster size. (See supplemental mate-
rial for full cluster size optimization information.)
Another important result is that the verb accuracy
yielded the largest accuracy gains, consistent with
the results of Schwartz et al. (2015).

Table 4 clearly shows that the overall perfor-
mance of all methods is lower for verb similarity.
However, the improvement using both signed clus-
tering as well as thesaurus look is also larger.

8.2 Sentiment Analysis

We trained an l2-norm regularized logistic regres-
sion (Friedman et al., 2001) and simultaneously γ,
βsyn, and βant using our word clusters in order
to predict the coarse-grained sentiment at the sen-
tence level. The γ and β parameters were found
using a portion of the data where we iteratively
switch between the logistic regression and the pa-
rameters, holding each fixed. However, hyper-
parameters σ and ε, and the number of clusters

945

Method Acc SimVerb
MSW Lookup 0.45
Roget Lookup 0.59
WordNet Lookup 0.43
Combined Lookup 0.83
NC(W2V) 0.24
SC (W2V) 0.56
Lookup + NC(W2V) 0.83
Lookup + SC(W2V) 0.88

Table 4: Clustering evaluation using SimVerb-
3500 with 317 word pairs having similarity score
over 8. SC stands for our signed clustering and
NC is standard normalized cuts. SC(W2V) are
the word clusters from signed clustering using
word2vec and the combined thesauri.

K were optimized minimizing error using grid
search. We compared our model against exist-
ing models: Naive Bayes with bag of words (NB)
(Socher et al., 2013), sentence word embedding
averages (VecAvg), retrofitted sentence word em-
beddings (RVecAvg) (Faruqui et al., 2015) that
incorporate thesaurus information, simple recur-
rent neural networks (RNN), and two baselines of
normalized cuts and signed normalized cuts using
only thesaurus information.

While the state-of-the art Convolutional Neu-
ral Network (CNN) (Kim, 2014) is at 0.881, our
model performs quite well with much less infor-
mation and complexity. Table 5 shows that signed
clustering outperforms the baselines of Naive
Bayes, normalized cuts, and signed cuts using just
thesaurus information. Furthermore, we outper-
form comparable models, including retrofitting,
which has thesaurus information, and the recur-
rent neural network, which has access to domain
specific context information.

Signed clustering using only thesaurus infor-
mation (SC(Thes)) performed significantly worse
than all other methods. This was largely due to
low coverage; rare words such as “WOW” and
“???” are not covered. As expected, because nor-
malized cut clusters include antonyms, the method
performs worse than others. Nonetheless the im-
provement from 0.79 to 0.836 is quite drastic.

9 Conclusion

We developed a novel theory for signed normal-
ized cuts and an algorithm for finding their dis-
crete solution. We showed that we can find su-

Model Accuracy
NB (Socher et al., 2013) 0.818
VecAvg (W2V) 0.812
(Faruqui et al., 2015)
RVecAvg (W2V) 0.821
(Faruqui et al., 2015)
RNN(Socher et al., 2013) 0.824
NC(W2V) 0.79
SC(Thes) 0.752
SC(W2V) 0.836

Table 5: Sentiment analysis accuracy for binary
predictions of signed clustering algorithm (SC)
versus other models. SC(W2V) are the signed
clusters using word2vec word representations.

perior semantically similar clusters which do not
require new word embeddings but simply overlay
thesaurus information on preexisting ones. The
clusters are general and can be used with many
out-of-the-box word embeddings. By accounting
for antonym relationships, our algorithm greatly
outperforms simple normalized cuts. Finally, we
examined our clustering method on the sentiment
analysis task from Socher et al. (2013) sentiment
treebank dataset and showed that it improved per-
formance versus comparable models.

Our automatically generated clusters give bet-
ter coverage than manually constructed thesauri.
Our signed spectral clustering method allows us
to incorporate the knowledge contained in these
thesauri without modifying the word embeddings
themselves. We further showed that use of the the-
sauri can be tuned to the task at hand.

Our signed spectral clustering method could be
applied to a broad range of NLP tasks, such as pre-
diction of social group clustering, identification of
personal versus non-personal verbs, and analyses
of clusters which capture positive, negative, and
objective emotional content. It could also be used
to explore multi-view relationships, such as align-
ing synonym clusters across multiple languages.
Another possibility is to use thesauri and word
vector representations together with word sense
disambiguation to generate semantically similar
clusters for multiple senses of words. Further-
more, signed spectral clustering has broader ap-
plications such as cellular biology, social network-
ing, and electricity networks. Finally, we plan to
extend the hard signed clustering presented here to
probabilistic soft clustering.

946

References

Mikhail Belkin and Partha Niyogi. 2003. Laplacian
eigenmaps for dimensionality reduction and data
representation. Neural computation 15(6):1373–
1396.

Dorwin Cartwright and Frank Harary. 1956. Structural
balance: a generalization of heider’s theory. Psy-
chological review 63(5):277.

Kai-Wei Chang, Wen-tau Yih, and Christopher Meek.
2013. Multi-relational latent semantic analysis. In
Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing. Associ-
ation for Computational Linguistics, pages 1602–
1612. http://aclweb.org/anthology/D13-1167.

Kai-Yang Chiang, Cho-Jui Hsieh, Nagarajan Natara-
jan, Inderjit S. Dhillon, and Ambuj Tewari.
2014. Prediction and clustering in signed net-
works: A local to global perspective. Jour-
nal of Machine Learning Research 15:1177–1213.
http://jmlr.org/papers/v15/chiang14a.html.

James Richard Curran. 2004. From distributional to
semantic similarity .

Paramveer S. Dhillon, Dean P. Foster, and Lyle H. Un-
gar. 2015. Eigenwords: Spectral word embeddings.
Journal of Machine Learning Research 16:3035–
3078. http://jmlr.org/papers/v16/dhillon15a.html.

Manaal Faruqui, Jesse Dodge, Kumar Sujay Jauhar,
Chris Dyer, Eduard Hovy, and A. Noah Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, pages
1606–1615. https://doi.org/10.3115/v1/N15-1184.

Jerome Friedman, Trevor Hastie, and Robert Tibshi-
rani. 2001. The elements of statistical learning, vol-
ume 1. Springer series in statistics Springer, Berlin.

Jean Gallier. 2016. Spectral theory of unsigned and
signed graphs applications to graph clustering: a sur-
vey. arXiv preprint arXiv:1601.04692 .

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. Ppdb: The paraphrase
database. In Proceedings of the 2013 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies. Association for
Computational Linguistics, pages 758–764.
http://aclweb.org/anthology/N13-1092.

Daniela Gerz, Ivan Vulić, Felix Hill, Roi Reichart, and
Anna Korhonen. 2016. Simverb-3500: A large-
scale evaluation set of verb similarity. arXiv preprint
arXiv:1608.00869 .

Nathan Halko, Per-Gunnar Martinsson, and Joel A
Tropp. 2011. Finding structure with random-
ness: Probabilistic algorithms for constructing ap-
proximate matrix decompositions. SIAM review
53(2):217–288.

Frank Harary. 1953. On the notion of balance of a
signed graph. The Michigan Mathematical Journal
2(2):143–146.

Zellig S Harris. 1954. Distributional structure. Word .

Felix Hill, Roi Reichart, and Anna Korhonen. 2014.
Simlex-999: Evaluating semantic models with
(genuine) similarity estimation. arXiv preprint
arXiv:1408.3456 .

Yao Ping Hou. 2005. Bounds for the least laplacian
eigenvalue of a signed graph. Acta Mathematica
Sinica 21(4):955–960.

Eric Huang, Richard Socher, Christopher Manning,
and Andrew Ng. 2012. Improving word repre-
sentations via global context and multiple word
prototypes. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, pages 873–882.
http://aclweb.org/anthology/P12-1092.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. In Proceedings of the
2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 1746–1751.
https://doi.org/10.3115/v1/D14-1181.

Ravikrishna Kolluri, Jonathan Richard Shewchuk, and
James F O’Brien. 2004. Spectral surface recon-
struction from noisy point clouds. In Proceedings
of the 2004 Eurographics/ACM SIGGRAPH sympo-
sium on Geometry processing. ACM, pages 11–21.

Jérôme Kunegis, Stephan Schmidt, Andreas Lom-
matzsch, Jürgen Lerner, Ernesto William De Luca,
and Sahin Albayrak. 2010. Spectral analysis of
signed graphs for clustering, prediction and visual-
ization. In SDM. SIAM, volume 10, pages 559–559.

Dekang Lin. 1998. Automatic retrieval and clustering
of similar words. In 36th Annual Meeting of the As-
sociation for Computational Linguistics and 17th In-
ternational Conference on Computational Linguis-
tics, Volume 2. http://aclweb.org/anthology/P98-
2127.

Pedro Mercado, Francesco Tudisco, and Matthias
Hein. 2016. Clustering signed networks with
the geometric mean of laplacians. In D. D. Lee,
M. Sugiyama, U. V. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information
Processing Systems 29. Curran Associates, Inc.,
pages 4421–4429. http://papers.nips.cc/paper/6164-
clustering-signed-networks-with-the-geometric-
mean-of-laplacians.pdf.

947

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

M. Saif Mohammad, J. Bonnie Dorr, Graeme Hirst,
and D. Peter Turney. 2013. Computing lexi-
cal contrast. Computational Linguistics 39(3).
https://doi.org/10.1162/COLI a 00143.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, M. Lina Rojas-Barahona, Pei-
Hao Su, David Vandyke, Tsung-Hsien Wen, and
Steve Young. 2016. Counter-fitting word vec-
tors to linguistic constraints. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 142–148.
https://doi.org/10.18653/v1/N16-1018.

Masataka Ono, Makoto Miwa, and Yutaka Sasaki.
2015. Word embedding-based antonym detection
using thesauri and distributional information. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, pages
984–989. https://doi.org/10.3115/v1/N15-1100.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 1532–1543.
https://doi.org/10.3115/v1/D14-1162.

The Nghia Pham, Angeliki Lazaridou, and Marco Ba-
roni. 2015. A multitask objective to inject lexi-
cal contrast into distributional semantics. In Pro-
ceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers). Asso-
ciation for Computational Linguistics, pages 21–26.
https://doi.org/10.3115/v1/P15-2004.

Syama Sundar Rangapuram and Matthias Hein. 2012.
Constrained 1-spectral clustering. International
conference on Artificial Intelligence and Statistics
(AISTATS) 22:1143—1151.

Delip Rao and Deepak Ravichandran. 2009. Semi-
supervised polarity lexicon induction. In Pro-
ceedings of the 12th Conference of the Euro-
pean Chapter of the ACL (EACL 2009). Associa-
tion for Computational Linguistics, pages 675–682.
http://aclweb.org/anthology/E09-1077.

Peter Mark Roget. 1852. Roget’s Thesaurus of English
Words and Phrases.... Longman Group Ltd.

Alexei V Samsonovic, Giorgio A Ascoli, and Jeffrey
Krichmar. 2010. Principal semantic components of
language and the measurement of meaning. PloS
one 5(6):e10921.

Silke Scheible, Sabine Schulte im Walde, and
Sylvia Springorum. 2013. Uncovering distribu-
tional differences between synonyms and antonyms
in a word space model. In Proceedings of
the Sixth International Joint Conference on Nat-
ural Language Processing. Asian Federation of
Natural Language Processing, pages 489–497.
http://aclweb.org/anthology/I13-1056.

Roy Schwartz, Roi Reichart, and Ari Rappoport.
2015. Symmetric pattern based word embeddings
for improved word similarity prediction. In Pro-
ceedings of the Nineteenth Conference on Com-
putational Natural Language Learning. Associa-
tion for Computational Linguistics, pages 258–267.
https://doi.org/10.18653/v1/K15-1026.

Jianbo Shi and Jitendra Malik. 2000. Normalized
cuts and image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on
22(8):888–905.

Richard Socher, Alex Perelygin, Jean Wu, Ja-
son Chuang, D. Christopher Manning, Andrew
Ng, and Christopher Potts. 2013. Recur-
sive deep models for semantic compositional-
ity over a sentiment treebank. In Proceed-
ings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1631–1642.
http://aclweb.org/anthology/D13-1170.

Duyu Tang, Furu Wei, Nan Yang, Ming Zhou, Ting
Liu, and Bing Qin. 2014. Learning sentiment-
specific word embedding for twitter sentiment clas-
sification. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1555–1565.
https://doi.org/10.3115/v1/P14-1146.

Peter D Turney, Patrick Pantel, et al. 2010. From
frequency to meaning: Vector space models of se-
mantics. Journal of artificial intelligence research
37(1):141–188.

Andreas Vlachos, Anna Korhonen, and Zoubin
Ghahramani. 2009. Proceedings of the Workshop
on Geometrical Models of Natural Language Se-
mantics, Association for Computational Linguistics,
chapter Unsupervised and Constrained Dirichlet
Process Mixture Models for Verb Clustering, pages
74–82. http://aclweb.org/anthology/W09-0210.

Jin Wang, Liang-Chih Yu, K Robert Lai, and Xuejie
Zhang. 2016. Community-based weighted graph
model for valence-arousal prediction of affective
words. IEEE/ACM Transactions on Audio, Speech,
and Language Processing 24(11):1957–1968.

948

Wen-tau Yih, Geoffrey Zweig, and John Platt. 2012.
Polarity inducing latent semantic analysis. In Pro-
ceedings of the 2012 Joint Conference on Empiri-
cal Methods in Natural Language Processing and
Computational Natural Language Learning. Asso-
ciation for Computational Linguistics, pages 1212–
1222. http://aclweb.org/anthology/D12-1111.

Stella X Yu and Jianbo Shi. 2003. Multiclass spec-
tral clustering. In Computer Vision, 2003. Pro-
ceedings. Ninth IEEE International Conference on.
IEEE, pages 313–319.

Ron Zass and Amnon Shashua. 2005. A unifying ap-
proach to hard and probabilistic clustering. In Com-
puter Vision, 2005. ICCV 2005. Tenth IEEE Interna-
tional Conference on. IEEE, volume 1, pages 294–
301.

Jingwei Zhang, Jeremy Salwen, Michael Glass,
and Alfio Gliozzo. 2014. Word semantic rep-
resentations using bayesian probabilistic ten-
sor factorization. In Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association for
Computational Linguistics, pages 1522–1531.
https://doi.org/10.3115/v1/D14-1161.

949

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 950–962
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1088

An Interpretable Knowledge Transfer Model
for Knowledge Base Completion

Qizhe Xie, Xuezhe Ma, Zihang Dai, Eduard Hovy
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

{qzxie, xuezhem, dzihang, hovy}@cs.cmu.edu

Abstract

Knowledge bases are important resources
for a variety of natural language process-
ing tasks but suffer from incompleteness.
We propose a novel embedding model,
ITransF, to perform knowledge base com-
pletion. Equipped with a sparse atten-
tion mechanism, ITransF discovers hidden
concepts of relations and transfer statisti-
cal strength through the sharing of con-
cepts. Moreover, the learned associations
between relations and concepts, which
are represented by sparse attention vec-
tors, can be interpreted easily. We evalu-
ate ITransF on two benchmark datasets—
WN18 and FB15k for knowledge base
completion and obtains improvements on
both the mean rank and Hits@10 metrics,
over all baselines that do not use additional
information.

1 Introduction

Knowledge bases (KB), such as WordNet (Fell-
baum, 1998), Freebase (Bollacker et al., 2008),
YAGO (Suchanek et al., 2007) and DBpe-
dia (Lehmann et al., 2015), are useful resources
for many applications such as question answer-
ing (Berant et al., 2013; Yih et al., 2015; Dai
et al., 2016) and information extraction (Mintz
et al., 2009). However, knowledge bases suf-
fer from incompleteness despite their formidable
sizes (Socher et al., 2013; West et al., 2014), lead-
ing to a number of studies on automatic knowl-
edge base completion (KBC) (Nickel et al., 2015)
or link prediction.

The fundamental motivation behind these stud-
ies is that there exist some statistical regularities
under the intertwined facts stored in the multi-
relational knowledge base. By discovering gener-

alizable regularities in known facts, missing ones
may be recovered in a faithful way. Due to its ex-
cellent generalization capability, distributed repre-
sentations, a.k.a. embeddings, have been popular-
ized to address the KBC task (Nickel et al., 2011;
Bordes et al., 2011, 2014, 2013; Socher et al.,
2013; Wang et al., 2014; Guu et al., 2015; Nguyen
et al., 2016b).

As a seminal work, Bordes et al. (2013) pro-
poses the TransE, which models the statistical
regularities with linear translations between en-
tity embeddings operated by a relation embed-
ding. Implicitly, TransE assumes both entity em-
beddings and relation embeddings dwell in the
same vector space, posing an unnecessarily strong
prior. To relax this requirement, a variety of mod-
els first project the entity embeddings to a relation-
dependent space (Bordes et al., 2014; Ji et al.,
2015; Lin et al., 2015b; Nguyen et al., 2016b),
and then model the translation property in the pro-
jected space. Typically, these relation-dependent
spaces are characterized by the projection matri-
ces unique to each relation. As a benefit, differ-
ent aspects of the same entity can be temporarily
emphasized or depressed as an effect of the projec-
tion. For instance, STransE (Nguyen et al., 2016b)
utilizes two projection matrices per relation, one
for the head entity and the other for the tail entity.

Despite the superior performance of STransE
compared to TransE, it is more prone to the data
sparsity problem. Concretely, since the projection
spaces are unique to each relation, projection ma-
trices associated with rare relations can only be ex-
posed to very few facts during training, resulting in
poor generalization. For common relations, a sim-
ilar issue exists. Without any restrictions on the
number of projection matrices, logically related or
conceptually similar relations may have distinct
projection spaces, hindering the discovery, shar-
ing, and generalization of statistical regularities.

950

https://doi.org/10.18653/v1/P17-1088

Previously, a line of research makes use of ex-
ternal information such as textual relations from
web-scale corpus or node features (Toutanova
et al., 2015; Toutanova and Chen, 2015; Nguyen
et al., 2016a), alleviating the sparsity problem. In
parallel, recent work has proposed to model reg-
ularities beyond local facts by considering multi-
relation paths (Garcı́a-Durán et al., 2015; Lin
et al., 2015a; Shen et al., 2016). Since the number
of paths grows exponentially with its length, as a
side effect, path-based models enjoy much more
training cases, suffering less from the problem.

In this paper, we propose an interpretable
knowledge transfer model (ITransF), which en-
courages the sharing of statistic regularities be-
tween the projection matrices of relations and al-
leviates the data sparsity problem. At the core of
ITransF is a sparse attention mechanism, which
learns to compose shared concept matrices into
relation-specific projection matrices, leading to a
better generalization property. Without any ex-
ternal resources, ITransF improves mean rank and
Hits@10 on two benchmark datasets, over all pre-
vious approaches of the same kind. In addition,
the parameter sharing is clearly indicated by the
learned sparse attention vectors, enabling us to in-
terpret how knowledge transfer is carried out. To
induce the desired sparsity during optimization,
we further introduce a block iterative optimization
algorithm.

In summary, the contributions of this work
are: (i) proposing a novel knowledge embedding
model which enables knowledge transfer by learn-
ing to discover shared regularities; (ii) introducing
a learning algorithm to directly optimize a sparse
representation from which the knowledge transfer-
ring procedure is interpretable; (iii) showing the
effectiveness of our model by outperforming base-
lines on two benchmark datasets for knowledge
base completion task.

2 Notation and Previous Models

Let E denote the set of entities and R denote the
set of relations. In knowledge base completion,
given a training set P of triples (h, r, t) where
h, t ∈ E are the head and tail entities having a
relation r ∈ R, e.g., (Steve Jobs, FounderOf,
Apple), we want to predict missing facts such as
(Steve Jobs, Profession, Businessperson).

Most of the embedding models for knowledge
base completion define an energy function fr(h, t)

according to the fact’s plausibility (Bordes et al.,
2011, 2014, 2013; Socher et al., 2013; Wang et al.,
2014; Yang et al., 2015; Guu et al., 2015; Nguyen
et al., 2016b). The models are learned to minimize
energy fr(h, t) of a plausible triple (h, r, t) and to
maximize energy fr(h′, t′) of an implausible triple
(h′, r, t′).

Motivated by the linear translation phe-
nomenon observed in well trained word embed-
dings (Mikolov et al., 2013), TransE (Bordes et al.,
2013) represents the head entity h, the relation r
and the tail entity t with vectors h, r and t ∈ Rn
respectively, which were trained so that h+r ≈ t.
They define the energy function as

fr(h, t) = ‖h+ r− t‖`
where ` = 1 or 2, which means either the `1 or
the `2 norm of the vector h + r − t will be used
depending on the performance on the validation
set.

To better model relation-specific aspects of
the same entity, TransR (Lin et al., 2015b) uses
projection matrices and projects the head entity
and the tail entity to a relation-dependent space.
STransE (Nguyen et al., 2016b) extends TransR
by employing different matrices for mapping the
head and the tail entity. The energy function is

fr(h, t) = ‖Wr,1h+ r−Wr,2t‖`
However, not all relations have abundant data

to estimate the relation specific matrices as most
of the training samples are associated with only a
few relations, leading to the data sparsity problem
for rare relations.

3 Interpretable Knowledge Transfer

3.1 Model
As discussed above, a fundamental weakness in
TransR and STransE is that they equip each re-
lation with a set of unique projection matrices,
which not only introduces more parameters but
also hinders knowledge sharing. Intuitively, many
relations share some concepts with each other, al-
though they are stored as independent symbols in
KB. For example, the relation “(somebody) won
award for (some work)” and “(somebody) was
nominated for (some work)” both describe a per-
son’s high-quality work which wins an award or
a nomination respectively. This phenomenon sug-
gests that one relation actually represents a col-
lection of real-world concepts, and one concept

951

can be shared by several relations. Inspired by the
existence of such lower-level concepts, instead of
defining a unique set of projection matrices for ev-
ery relation, we can alternatively define a small set
of concept projection matrices and then compose
them into customized projection matrices. Effec-
tively, the relation-dependent translation space is
then reduced to the smaller concept spaces.

However, in general, we do not have prior
knowledge about what concepts exist out there and
how they are composed to form relations. There-
fore, in ITransF, we propose to learn this informa-
tion simultaneously from data, together with all
knowledge embeddings. Following this idea, we
first present the model details, then discuss the op-
timization techniques for training.

Energy function Specifically, we stack all the
concept projection matrices to a 3-dimensional
tensor D ∈ Rm×n×n, wherem is the pre-specified
number of concept projection matrices and n is the
dimensionality of entity embeddings and relation
embeddings. We let each relation select the most
useful projection matrices from the tensor, where
the selection is represented by an attention vector.
The energy function of ITransF is defined as:

fr(h, t) = ‖αααHr ·D · h+ r−αααTr ·D · t‖` (1)

where αααHr ,ααα
T
r ∈ [0, 1]m, satisfying

∑
iααα

H
r,i =∑

iααα
T
r,i = 1, are normalized attention vectors

used to compose all concept projection matrices
in D by a convex combination. It is obvious that
STransE can be expressed as a special case of our
model when we use m = 2|R| concept matrices
and set attention vectors to disjoint one-hot vec-
tors. Hence our model space is a generalization of
STransE. Note that we can safely use fewer con-
cept matrices in ITransF and obtain better perfor-
mance (see section 4.3), though STransE always
requires 2|R| projection matrices.

We follow previous work to minimize the fol-
lowing hinge loss function:

L =
∑

(h,r,t)∼P,
(h′,r,t′)∼N

[
γ + fr(h, t)− fr(h′, t′)

]
+

(2)

where P is the training set consisting of correct
triples, N is the distribution of corrupted triples
defined in section 3.3, and [·]+ = max(·, 0). Note
that we have omitted the dependence of N on
(h, r, t) to avoid clutter. We normalize the en-
tity vectors h, t, and the projected entity vectors

αααHr ·D · h and αααTr ·D · t to have unit length after
each update, which is an effective regularization
method that benefits all models.

Sparse attention vectors In Eq. (1), we have
defined αααHr ,ααα

T
r to be some normalized vectors

used for composition. With a dense attention vec-
tor, it is computationally expensive to perform the
convex combination of m matrices in each itera-
tion. Moreover, a relation usually does not consist
of all existing concepts in practice. Furthermore,
when the attention vectors are sparse, it is often
easier to interpret their behaviors and understand
how concepts are shared by different relations.

Motivated by these potential benefits, we fur-
ther hope to learn sparse attention vectors in
ITransF. However, directly posing `1 regulariza-
tion (Tibshirani, 1996) on the attention vectors
fails to produce sparse representations in our pre-
liminary experiment, which motivates us to en-
force `0 constraints on αααTr ,ααα

H
r .

In order to satisfy both the normalization condi-
tion and the `0 constraints, we reparameterize the
attention vectors in the following way:

αααHr = SparseSoftmax(vHr , I
H
r)

αααTr = SparseSoftmax(vTr , I
T
r)

where vHr ,v
T
r ∈ Rm are the pre-softmax scores,

IHr , I
T
r ∈ {0, 1}m are the sparse assignment vec-

tors, indicating the non-zero entries of attention
vectors, and the SparseSoftmax is defined as

SparseSoftmax(v, I)i =
exp(vi/τ)Ii∑
j exp(vj/τ)Ij

with τ being the temperature of Softmax.
With this reparameterization, vHr ,v

T
r and

IHr , I
T
r replace αααTr ,ααα

H
r to become the real param-

eters of the model. Also, note that it is equiva-
lent to pose the `0 constraints on IHr , I

T
r instead of

αααTr ,ααα
H
r . Putting these modifications together, we

can rewrite the optimization problem as

minimize L
subject to ‖IHr ‖0 ≤ k, ‖ITr ‖0 ≤ k

(3)

where L is the loss function defined in Eq. (2).

3.2 Block Iterative Optimization
Though sparseness is favorable in practice, it is
generally NP-hard to find the optimal solution un-
der `0 constraints. Thus, we resort to an approxi-
mated algorithm in this work.

952

For convenience, we refer to the parameters
with and without the sparse constraints as the
sparse partition and the dense partition, respec-
tively. Based on this notion, the high-level idea
of the approximated algorithm is to iteratively op-
timize one of the two partitions while holding the
other one fixed. Since all parameters in the dense
partition, including the embeddings, the projection
matrices, and the pre-softmax scores, are fully dif-
ferentiable with the sparse partition fixed, we can
simply utilize SGD to optimize the dense partition.
Then, the core difficulty lies in the step of optimiz-
ing the sparse partition (i.e. the sparse assignment
vectors), during which we want the following two
properties to hold

1. the sparsity required by the `0 constaint is
maintained, and

2. the cost define by Eq. (2) is decreased.

Satisfying the two criterion seems to highly re-
semble the original problem defined in Eq. (3).
However, the dramatic difference here is that with
parameters in the dense partition regarded as con-
stant, the cost function is decoupled w.r.t. each
relation r. In other words, the optimal choice of
IHr , I

T
r is independent of IHr′ , I

T
r′ for any r′ 6= r.

Therefore, we only need to consider the optimiza-
tion for a single relation r, which is essentially an
assignment problem. Note that, however, IHr and
ITr are still coupled, without which we basically
reach the situation in a backpack problem. In prin-
ciple, one can explore combinatorial optimization
techniques to optimize IHr′ , I

T
r′ jointly, which usu-

ally involve some iterative procedure. To avoid
adding another inner loop to our algorithm, we
turn to a simple but fast approximation method
based on the following single-matrix cost.

Specifically, for each relation r, we consider the
induced cost LHr,i where only a single projection
matrix i is used for the head entity:

LHr,i =
∑

(h,r,t)∼Pr,
(h′,r,t′)∼Nr

[
γ + fHr,i(h, t)− fHr,i(h′, t′)

]
+

where fHr,i(h, t) = ‖Di · h + r − αααTr · D · t‖ is
the corresponding energy function, and the sub-
script in Pr and Nr denotes the subsets with rela-
tion r. Intuitively, LHr,i measures, given the current
tail attention vector αααTr , if only one project matrix
could be chosen for the head entity, how implausi-
ble Di would be. Hence, i∗ = argmini LHr,i gives

us the best single projection matrix on the head
side given αααTr .

Now, in order to choose the best k matrices, we
basically ignore the interaction among projection
matrices, and update IHr in the following way:

IHr,i ←
{
1, i ∈ argpartitioni(LHr,i, k)
0, otherwise

where the function argpartitioni(xi, k) produces
the index set of the lowest-k values of xi.

Analogously, we can define the single-matrix
cost LTr,i and the energy function fTr,i(h, t) on the
tail side in a symmetric way. Then, the update
rule for IHr follows the same derivation. Admit-
tedly, the approximation described here is rela-
tively crude. But as we will show in section 4,
the proposed algorithm yields good performance
empirically. We leave the further improvement of
the optimization method as future work.

3.3 Corrupted Sample Generating Method

Recall that we need to sample a negative triple
(h′, r, t′) to compute hinge loss shown in Eq. 2,
given a positive triple (h, r, t) ∈ P . The distri-
bution of negative triple is denoted by N(h, r, t).
Previous work (Bordes et al., 2013; Lin et al.,
2015b; Yang et al., 2015; Nguyen et al., 2016b)
generally constructs a set of corrupted triples by
replacing the head entity or tail entity with a ran-
dom entity uniformly sampled from the KB.

However, uniformly sampling corrupted entities
may not be optimal. Often, the head and tail en-
tities associated a relation can only belong to a
specific domain. When the corrupted entity comes
from other domains, it is very easy for the model
to induce a large energy gap between true triple
and corrupted one. As the energy gap exceeds
γ, there will be no training signal from this cor-
rupted triple. In comparison, if the corrupted en-
tity comes from the same domain, the task be-
comes harder for the model, leading to more con-
sistent training signal.

Motivated by this observation, we propose to
sample corrupted head or tail from entities in
the same domain with a probability pr and from
the whole entity set with probability 1 − pr.
The choice of relation-dependent probability pr is
specified in Appendix A.1. In the rest of the paper,
we refer to the new proposed sampling method as
”domain sampling”.

953

4 Experiments

4.1 Setup

To evaluate link prediction, we conduct experi-
ments on the WN18 (WordNet) and FB15k (Free-
base) introduced by Bordes et al. (2013) and use
the same training/validation/test split as in (Bordes
et al., 2013). The information of the two datasets
is given in Table 1.

Dataset #E #R #Train #Valid #Test
WN18 40,943 18 141,442 5,000 5,000
FB15k 14,951 1,345 483,142 50,000 59,071

Table 1: Statistics of FB15k and WN18 used in
experiments. #E, #R denote the number of enti-
ties and relation types respectively. #Train, #Valid
and #Test are the numbers of triples in the training,
validation and test sets respectively.

In knowledge base completion task, we evaluate
model’s performance of predicting the head entity
or the tail entity given the relation and the other en-
tity. For example, to predict head given relation r
and tail t in triple (h, r, t), we compute the energy
function fr(h′, t) for each entity h′ in the knowl-
edge base and rank all the entities according to the
energy. We follow Bordes et al. (2013) to report
the filter results, i.e., removing all other correct
candidates h′ in ranking. The rank of the correct
entity is then obtained and we report the mean rank
(mean of the predicted ranks) and Hits@10 (top 10
accuracy). Lower mean rank or higher Hits@10
mean better performance.

4.2 Implementation Details

We initialize the projection matrices with iden-
tity matrices added with a small noise sampled
from normal distribution N (0, 0.0052). The en-
tity and relation vectors of ITransF are initialized
by TransE (Bordes et al., 2013), following Lin
et al. (2015b); Ji et al. (2015); Garcı́a-Durán et al.
(2016, 2015); Lin et al. (2015a). We ran mini-
batch SGD until convergence. We employ the
“Bernoulli” sampling method to generate incor-
rect triples as used in Wang et al. (2014), Lin et al.
(2015b), He et al. (2015), Ji et al. (2015) and Lin
et al. (2015a).

STransE (Nguyen et al., 2016b) is the most sim-
ilar knowledge embedding model to ours except
that they use distinct projection matrices for each
relation. We use the same hyperparameters as used
in STransE and no significant improvement is ob-

served when we alter hyperparameters. We set the
margin γ to 5 and dimension of embedding n to
50 for WN18, and γ = 1, n = 100 for FB15k.
We set the batch size to 20 for WN18 and 1000 for
FB15k. The learning rate is 0.01 on WN18 and
0.1 on FB15k. We use 30 matrices on WN18 and
300 matrices on FB15k. All the models are imple-
mented with Theano (Bergstra et al., 2010). The
Softmax temperature is set to 1/4.

4.3 Results & Analysis
The overall link prediction results1 are reported
in Table 2. Our model consistently outperforms
previous models without external information on
both the metrics of WN18 and FB15k. On WN18,
we even achieve a much better mean rank with
comparable Hits@10 than current state-of-the-art
model IRN employing external information.

We can see that path information is very help-
ful on FB15k and models taking advantage of path
information outperform intrinsic models by a sig-
nificant margin. Indeed, a lot of facts are easier
to recover with the help of multi-step inference.
For example, if we know Barack Obama is born in
Honolulu, a city in the United States, then we eas-
ily know the nationality of Obama is the United
States. An straightforward way of extending our
proposed model to k-step path P = {ri}ki=1 is
to define a path energy function ‖αααHP · D · h +∑

ri∈P ri − αααTP · D · t‖`, αααHP is a concept asso-
ciation related to the path. We plan to extend our
model to multi-step path in the future.

To provide a detailed understanding why the
proposed model achieves better performance, we
present some further analysis in the sequel.

Performance on Rare Relations In the pro-
posed ITransF, we design an attention mecha-
nism to encourage knowledge sharing across dif-
ferent relations. Naturally, facts associated with
rare relations should benefit most from such shar-
ing, boosting the overall performance. To verify
this hypothesis, we investigate our model’s perfor-
mance on relations with different frequency.

The overall distribution of relation frequencies
resembles that of word frequencies, subject to the
zipf’s law. Since the frequencies of relations ap-
proximately follow a power distribution, their log

1Note that although IRN (Shen et al., 2016) does not ex-
plicitly exploit path information, it performs multi-step infer-
ence through the multiple usages of external memory. When
IRN is allowed to access memory once for each prediction, its
Hits@10 is 80.7, similar to models without path information.

954

Model Additional Information WN18 FB15k
Mean Rank Hits@10 Mean Rank Hits@10

SE (Bordes et al., 2011) No 985 80.5 162 39.8
Unstructured (Bordes et al., 2014) No 304 38.2 979 6.3
TransE (Bordes et al., 2013) No 251 89.2 125 47.1
TransH (Wang et al., 2014) No 303 86.7 87 64.4
TransR (Lin et al., 2015b) No 225 92.0 77 68.7
CTransR (Lin et al., 2015b) No 218 92.3 75 70.2
KG2E (He et al., 2015) No 348 93.2 59 74.0
TransD (Ji et al., 2015) No 212 92.2 91 77.3
TATEC (Garcı́a-Durán et al., 2016) No - - 58 76.7
NTN (Socher et al., 2013) No - 66.1 - 41.4
DISTMULT (Yang et al., 2015) No - 94.2 - 57.7
STransE (Nguyen et al., 2016b) No 206 (244) 93.4 (94.7) 69 79.7
ITransF No 205 94.2 65 81.0
ITransF (domain sampling) No 223 95.2 77 81.4
RTransE (Garcı́a-Durán et al., 2015) Path - - 50 76.2
PTransE (Lin et al., 2015a) Path - - 58 84.6
NLFeat (Toutanova and Chen, 2015) Node + Link Features - 94.3 - 87.0
Random Walk (Wei et al., 2016) Path - 94.8 - 74.7
IRN (Shen et al., 2016) External Memory 249 95.3 38 92.7

Table 2: Link prediction results on two datasets. Higher Hits@10 or lower Mean Rank indicates better
performance. Following Nguyen et al. (2016b) and Shen et al. (2016), we divide the models into two
groups. The first group contains intrinsic models without using extra information. The second group
make use of additional information. Results in the brackets are another set of results STransE reported.

frequencies are linear. The statistics of relations
on FB15k and WN18 are shown in Figure 1. We
can clearly see that the distributions exhibit long
tails, just like the Zipf’s law for word frequency.

In order to study the performance of relations
with different frequencies, we sort all relations by
their frequency in the training set, and split them
into 3 buckets evenly so that each bucket has a
similar interval length of log frequency.

Within each bucket, we compare our model
with STransE, as shown in Figure 2.2 As we can
see, on WN18, ITransF outperforms STransE by
a significant margin on rare relations. In partic-
ular, in the last bin (rarest relations), the aver-
age Hits@10 increases from 55.2 to 93.8, showing
the great benefits of transferring statistical strength
from common relations to rare ones. The compar-
ison on each relation is shown in Appendix A.2.
On FB15k, we can also observe a similar pattern,
although the degree of improvement is less signif-
icant. We conjecture the difference roots in the
fact that many rare relations on FB15k have dis-
joint domains, knowledge transfer through com-
mon concepts is harder.

Interpretability In addition to the quantitative
evidence supporting the effectiveness of knowl-
edge sharing, we provide some intuitive examples
to show how knowledge is shared in our model. As

2Domain sampling is not employed.

we mentioned earlier, the sparse attention vectors
fully capture the association between relations and
concepts and hence the knowledge transfer among
relations. Thus, we visualize the attention vectors
for several relations on both WN18 and FB15K in
Figure 3.

For WN18, the words “hyponym” and “hyper-
nym” refer to words with more specific or gen-
eral meaning respectively. For example, PhD is
a hyponym of student and student is a hypernym
of PhD. As we can see, concepts associated with
the head entities in one relation are also associated
with the tail entities in its reverse relation. Further,
“instance hypernym” is a special hypernym with
the head entity being an instance, and the tail en-
tity being an abstract notion. A typical example is
(New York,instance hypernym, city). This
connection has also been discovered by our model,
indicated by the fact that “instance hypernym(T)”
and “hypernym(T)” share a common concept ma-
trix. Finally, for symmetric relations like “simi-
lar to”, we see the head attention is identical to the
tail attention, which well matches our intuition.

On FB15k, we also see the sharing be-
tween reverse relations, as in “(somebody)
won award for (some work)” and “(some work)
award winning work (somebody)”. What’s
more, although relation “won award for” and
“was nominated for” share the same concepts,

955

Lo
g(
Fr
eq
ue
nc
y)

0

2.75

5.5

8.25

11
Fr
eq
ue
nc
y

0

10000

20000

30000

40000

Relation

Frequency Log(Frequency)

(a) WN18

Lo
g(
Fr
eq
ue
nc
y)

0

2.5

5

7.5

10

Fr
eq
ue
nc
y

0

4000

8000

12000

16000

Relation

Frequency Log(Frequency)

(b) FB15k

Figure 1: Frequencies and log frequencies of relations on two datasets. The X-axis are relations sorted
by frequency.

H
its

@
10

0

25

50

75

100

Relation Bin
1 2 3

ITransF STransE

(a) WN18

H
its

@
10

0

25

50

75

100

Relation Bin
1 2 3

ITransF STransE

(b) FB15k

Figure 2: Hits@10 on relations with different amount of data. We give each relation the equal weight
and report the average Hits@10 of each relation in a bin instead of reporting the average Hits@10 of
each sample in a bin. Bins with smaller index corresponding to high-frequency relations.

their attention distributions are different, suggest-
ing distinct emphasis. Finally, symmetric relations
like spouse behave similarly as mentioned before.

Model Compression A byproduct of parame-
ter sharing mechanism employed by ITransF is
a much more compact model with equal perfor-
mance. Figure 5 plots the average performance
of ITransF against the number of projection ma-
trices m, together with two baseline models. On
FB15k, when we reduce the number of matri-
ces from 2200 to 30 (∼ 90× compression), our
model performance decreases by only 0.09% on
Hits@10, still outperforming STransE. Similarly,
on WN18, ITransF continues to achieve the best
performance when we reduce the number of con-
cept project matrices to 18.

5 Analysis on Sparseness

Sparseness is desirable since it contribute to in-
terpretability and computational efficiency of our
model. We investigate whether enforcing sparse-
ness would deteriorate the model performance and
compare our method with another sparse encoding
methods in this section.

Dense Attention w/o `1 regularization Al-
though `0 constrained model usually enjoys many
practical advantages, it may deteriorate the model
performance when applied improperly. Here, we
show that our model employing sparse attention
can achieve similar results with dense attention
with a significantly less computational burden. We
also compare dense attention with `1 regulariza-
tion. We set the `1 coefficient to 0.001 in our ex-
periments and does not apply Softmax since the `1
of a vector after Softmax is always 1. We compare
models in a setting where the computation time of

956

(a) WN18 (b) FB15k

Figure 3: Heatmap visualization of attention vectors for ITransF on WN18 and FB15k. Each row is an
attention vector αααHr or αααTr for a relation’s head or tail concepts.

(a) WN18 (b) FB15k

Figure 4: Heatmap visualization of `1 regularized dense attention vectors, which are not sparse. Note
that the colorscale is not from 0 to 1 since Softmax is not applied.

H
its

@
10

70

73.25

76.5

79.75

83

matrices
15 30 75 300 600 1200 1345 2200 2690

ITransF STransE CTransR

(a) FB15k

H
its

@
10

90

91.25

92.5

93.75

95

matrices
18 22 26 30 36 45

ITransF STransE CTransR

(b) WN18

Figure 5: Performance with different number of projection matrices. Note that the X-axis denoting the
number of matrices is not linearly scaled.

dense attention model is acceptable3. We use 22
weight matrices on WN18 and 15 weight matri-
ces on FB15k and train both the models for 2000
epochs.

The results are reported in Table 3. Generally,
ITransF with sparse attention has slightly better or
comparable performance comparing to dense at-
tention. Further, we show the attention vectors of

3With 300 projection matrices, it takes 1h1m to run one
epoch for a model with dense attention.

model with `1 regularized dense attention in Fig-
ure 4. We see that `1 regularization does not pro-
duce a sparse attention, especially on FB15k.

Nonnegative Sparse Encoding In the proposed
model, we induce the sparsity by a carefully de-
signed iterative optimization procedure. Apart
from this approach, one may utilize sparse en-
coding techniques to obtain sparseness based on
the pretrained projection matrices from STransE.
Concretely, stacking |2R| pretrained projection

957

Method WN18 FB15k
MR H10 Time MR H10 Time

Dense 199 94.0 4m34s 69 79.4 4m30s
Dense + `1 228 94.2 4m25s 131 78.9 5m47s
Sparse 207 94.1 2m32s 67 79.6 1m52s

Table 3: Performance of model with dense atten-
tion vectors or sparse attention vectors. MR, H10
and Time denotes mean rank, Hits@10 and train-
ing time per epoch respectively

matrices into a 3-dimensional tensor X ∈
R2|R|×n×n, similar sparsity can be induced by
solving an `1-regularized tensor completion prob-
lem minA,D ||X − DA||22 + λ‖A‖`1 . Basically,
A plays the same role as the attention vectors in
our model. For more details, we refer readers to
(Faruqui et al., 2015).

For completeness, we compare our model with
the aforementioned approach4. The comparison
is summarized in table 4. On both benchmarks,
ITransF achieves significant improvement against
sparse encoding on pretrained model. This perfor-
mance gap should be expected since the objective
function of sparse encoding methods is to mini-
mize the reconstruction loss rather than optimize
the criterion for link prediction.

Method WN18 FB15k
MR H10 MR H10

Sparse Encoding 211 86.6 66 79.1
ITransF 205 94.2 65 81.0

Table 4: Different methods to obtain sparse repre-
sentations

6 Related Work

In KBC, CTransR (Lin et al., 2015b) enables re-
lation embedding sharing across similar relations,
but they cluster relations before training rather
than learning it in a principled way. Further, they
do not solve the data sparsity problem because
there is no sharing of projection matrices which
have a lot more parameters. Learning the asso-
ciation between semantic relations has been used
in related problems such as relational similarity
measurement (Turney, 2012) and relation adapta-
tion (Bollegala et al., 2015).

Data sparsity is a common problem in many
fields. Transfer learning (Pan and Yang, 2010)
has been shown to be promising to transfer knowl-

4We use the toolkit provided by (Faruqui et al., 2015).

edge and statistical strengths across similar mod-
els or languages. For example, Bharadwaj et al.
(2016) transfers models on resource-rich lan-
guages to low resource languages by parameter
sharing through common phonological features in
name entity recognition. Zoph et al. (2016) ini-
tialize from models trained by resource-rich lan-
guages to translate low-resource languages.

Several works on obtaining a sparse atten-
tion (Martins and Astudillo, 2016; Makhzani and
Frey, 2014; Shazeer et al., 2017) share a similar
idea of sorting the values before softmax and only
keeping theK largest values. However, the sorting
operation in these works is not GPU-friendly.

The block iterative optimization algorithm in
our work is inspired by LightRNN (Li et al., 2016).
They allocate every word in the vocabulary in a
table. A word is represented by a row vector and
a column vector depending on its position in the
table. They iteratively optimize embeddings and
allocation of words in tables.

7 Conclusion and Future Work

In summary, we propose a knowledge embedding
model which can discover shared hidden concepts,
and design a learning algorithm to induce the in-
terpretable sparse representation. Empirically, we
show our model can improve the performance
on two benchmark datasets without external re-
sources, over all previous models of the same kind.

In the future, we plan to enable ITransF to per-
form multi-step inference, and extend the sharing
mechanism to entity and relation embeddings, fur-
ther enhancing the statistical binding across pa-
rameters. In addition, our framework can also be
applied to multi-task learning, promoting a finer
sharing among different tasks.

Acknowledgments

We thank anonymous reviewers and Graham Neu-
big for valuable comments. We thank Yulun Du,
Paul Mitchell, Abhilasha Ravichander, Pengcheng
Yin and Chunting Zhou for suggestions on the
draft. We are also appreciative for the great work-
ing environment provided by staff in LTI.

This research was supported in part by DARPA
grant FA8750-12-2-0342 funded under the DEFT
program.

958

References

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Seattle, Washington, USA, pages 1533–
1544.

James Bergstra, Olivier Breuleux, Frédéric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Des-
jardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. 2010. Theano: a cpu and gpu math
expression compiler. In Proceedings of the Python
for scientific computing conference (SciPy). Austin,
TX, volume 4, page 3.

Akash Bharadwaj, David Mortensen, Chris Dyer, and
Jaime Carbonell. 2016. Phonologically aware neu-
ral model for named entity recognition in low re-
source transfer settings. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, pages 1462–1472.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: A Col-
laboratively Created Graph Database for Structur-
ing Human Knowledge. In Proceedings of the 2008
ACM SIGMOD International Conference on Man-
agement of Data. pages 1247–1250.

Danushka Bollegala, Takanori Maehara, and Ken-ichi
Kawarabayashi. 2015. Embedding semantic rela-
tions into word representations. In Proceedings of
the Twenty-Fourth International Joint Conference
on Artificial Intelligence.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2014. A Semantic Matching Energy
Function for Learning with Multi-relational Data.
Machine Learning 94(2):233–259.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating Embeddings for Modeling Multi-
relational Data. In Advances in Neural Information
Processing Systems 26, pages 2787–2795.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning Structured Embed-
dings of Knowledge Bases. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelli-
gence. pages 301–306.

Zihang Dai, Lei Li, and Wei Xu. 2016. Cfo: Condi-
tional focused neural question answering with large-
scale knowledge bases. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, Berlin, Ger-
many, pages 800–810.

Manaal Faruqui, Yulia Tsvetkov, Dani Yogatama, Chris
Dyer, and Noah A. Smith. 2015. Sparse overcom-
plete word vector representations. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 1491–
1500.

Christiane D. Fellbaum. 1998. WordNet: An Electronic
Lexical Database. MIT Press.

Alberto Garcı́a-Durán, Antoine Bordes, and Nico-
las Usunier. 2015. Composing Relationships with
Translations. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing. pages 286–290.

Alberto Garcı́a-Durán, Antoine Bordes, Nicolas
Usunier, and Yves Grandvalet. 2016. Combining
Two and Three-Way Embedding Models for Link
Prediction in Knowledge Bases. Journal of Artifi-
cial Intelligence Research 55:715–742.

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing Knowledge Graphs in Vector Space. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. pages
318–327.

Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao.
2015. Learning to Represent Knowledge Graphs
with Gaussian Embedding. In Proceedings of the
24th ACM International on Conference on Informa-
tion and Knowledge Management. pages 623–632.

Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and
Jun Zhao. 2015. Knowledge Graph Embedding via
Dynamic Mapping Matrix. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). pages 687–696.

Jens Lehmann, Robert Isele, Max Jakob, Anja
Jentzsch, Dimitris Kontokostas, Pablo N. Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick van
Kleef, Sören Auer, and Christian Bizer. 2015. DB-
pedia - A Large-scale, Multilingual Knowledge Base
Extracted from Wikipedia. Semantic Web 6(2):167–
195.

Xiang Li, Tao Qin, Jian Yang, and Tieyan Liu. 2016.
LightRNN: Memory and Computation-Efficient Re-
current Neural Networks. In Advances in Neural In-
formation Processing Systems 29.

Yankai Lin, Zhiyuan Liu, Huanbo Luan, Maosong Sun,
Siwei Rao, and Song Liu. 2015a. Modeling Rela-
tion Paths for Representation Learning of Knowl-
edge Bases. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing. pages 705–714.

959

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015b. Learning Entity and Re-
lation Embeddings for Knowledge Graph Comple-
tion. In Proceedings of the Twenty-Ninth AAAI Con-
ference on Artificial Intelligence Learning, pages
2181–2187.

Alireza Makhzani and Brendan Frey. 2014. K-sparse
autoencoders. In Proceedings of the International
Conference on Learning Representations.

André FT Martins and Ramón Fernandez Astudillo.
2016. From softmax to sparsemax: A sparse model
of attention and multi-label classification. In Pro-
ceedings of the 33th International Conference on
Machine Learning.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP. Asso-
ciation for Computational Linguistics, Suntec, Sin-
gapore, pages 1003–1011.

Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark
Johnson. 2016a. Neighborhood mixture model for
knowledge base completion. In Proceedings of the
20th SIGNLL Conference on Computational Natural
Language Learning (CoNLL). Association for Com-
putational Linguistics, page 4050.

Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark
Johnson. 2016b. STransE: a novel embedding
model of entities and relationships in knowledge
bases. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies. pages 460–466.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and
Evgeniy Gabrilovich. 2015. A Review of Relational
Machine Learning for Knowledge Graphs. Proceed-
ings of the IEEE, to appear .

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2011. A Three-Way Model for Collective
Learning on Multi-Relational Data. In Proceedings
of the 28th International Conference on Machine
Learning. pages 809–816.

Sinno Jialin Pan and Qiang Yang. 2010. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering 22(10):1345–1359.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously large neural networks:

The sparsely-gated mixture-of-experts layer. In Pro-
ceedings of the International Conference on Learn-
ing Representations.

Yelong Shen, Po-Sen Huang, Ming-Wei Chang, and
Jianfeng Gao. 2016. Implicit reasonet: Model-
ing large-scale structured relationships with shared
memory. arXiv preprint arXiv:1611.04642 .

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning With Neural Ten-
sor Networks for Knowledge Base Completion. In
Advances in Neural Information Processing Systems
26, pages 926–934.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. YAGO: A Core of Semantic Knowl-
edge. In Proceedings of the 16th International Con-
ference on World Wide Web. pages 697–706.

Robert Tibshirani. 1996. Regression shrinkage and se-
lection via the lasso. Journal of the Royal Statistical
Society. Series B (Methodological) pages 267–288.

Kristina Toutanova and Danqi Chen. 2015. Observed
Versus Latent Features for Knowledge Base and
Text Inference. In Proceedings of the 3rd Workshop
on Continuous Vector Space Models and their Com-
positionality. pages 57–66.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Hoi-
fung Poon, Pallavi Choudhury, and Michael Gamon.
2015. Representing Text for Joint Embedding of
Text and Knowledge Bases. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing. pages 1499–1509.

Peter D Turney. 2012. Domain and function: A dual-
space model of semantic relations and compositions.
Journal of Artificial Intelligence Research 44:533–
585.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge Graph Embedding by
Translating on Hyperplanes. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intel-
ligence, pages 1112–1119.

Zhuoyu Wei, Jun Zhao, and Kang Liu. 2016. Mining
inference formulas by goal-directed random walks.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, Austin, Texas,
pages 1379–1388.

Robert West, Evgeniy Gabrilovich, Kevin Murphy,
Shaohua Sun, Rahul Gupta, and Dekang Lin.
2014. Knowledge Base Completion via Search-
based Question Answering. In Proceedings of the
23rd International Conference on World Wide Web.
pages 515–526.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding Entities and
Relations for Learning and Inference in Knowledge
Bases. In Proceedings of the International Confer-
ence on Learning Representations.

960

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics,
Beijing, China, pages 1321–1331.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 1568–1575.

961

A Appendix

A.1 Domain Sampling Probability
In this section, we define the probability pr to
generate a negative sample from the same domain
mentioned in Section 3.3. The probability cannot
be too high to avoid generating negative samples
that are actually correct, since there are generally
a lot of facts missing in KBs.

Specifically, let MH
r = {h | ∃t(h, r, t) ∈ P}

and MT
r = {t | ∃h(h, r, t) ∈ P} denote the

head or tail domain of relation r. Suppose Nr =
{(h, r, t) ∈ P} is the induced set of edges with
relation r. We define the probability pr as

pr = min(
λ|MT

r ||MH
r |

|Nr|
, 0.5) (4)

Our motivation of such a formulation is as
follows: Suppose Or is the set that contains all
truthful fact triples on relation r, i.e., all triples
in training set and all other missing correct
triples. If we assume all fact triples within the
domain has uniform probability of being true, the
probability of a random triple being correct is
Pr((h, r, t) ∈ Or | h ∈ MH

r , t ∈ MT
r) =

|Or|
|MH

r ||MT
r |

Assume that all facts are missing with a proba-
bility λ, then |Nr| = λ|Or| and the above prob-
ability can be approximated by |Nr|

λ|MH
r ||MT

r |
. We

want the probability of generating a negative sam-
ple from the domain to be inversely proportional
to the probability of the sample being true, so we
define the probability as Eq. 4. The results in sec-
tion 4 are obtained with λ set to 0.001.

We compare how different value of λ would in-
fluence our model’s performance in Table. 5. With
large λ and higher domain sampling probability,
our model’s Hits@10 increases while mean rank
also increases. The rise of mean rank is due to
higher probability of generating a valid triple as
a negative sample causing the energy of a valid
triple to increase, which leads to a higher over-
all rank of a correct entity. However, the reason-
ing capability is boosted with higher Hits@10 as
shown in the table.

A.2 Performance on individual relations of
WN18

We plot the performance of ITransF and STransE
on each relation. We see that the improvement is
greater on rare relations.

Method WN18 FB15k
MR H10 MR H10

λ = 0.0003 217 95.0 68 80.4
λ = 0.001 223 95.2 73 80.6
λ = 0.003 239 95.2 82 80.9

Table 5: Different λ’s effect on our model perfor-
mance. The compared models are trained for 2000
epochs

H
its
@
10

0

25

50

75

100

Relation
1 3 5 7 9 11 13 15 17

ITransF STransE

Figure 6: Hits@10 on each relation in WN18. The
relations are sorted according to their frequency.

962

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 963–973
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1089

Learning a Neural Semantic Parser from User Feedback

Srinivasan Iyer†�, Ioannis Konstas†, Alvin Cheung†
Jayant Krishnamurthy‡ and Luke Zettlemoyer†‡

†Paul G. Allen School of Computer Science & Engineering, Univ. of Washington, Seattle, WA
{sviyer,ikonstas,akcheung,lsz}@cs.washington.edu

‡Allen Institute for Artificial Intelligence, Seattle, WA
{jayantk,lukez}@allenai.org

Abstract

We present an approach to rapidly and
easily build natural language interfaces to
databases for new domains, whose perfor-
mance improves over time based on user
feedback, and requires minimal interven-
tion. To achieve this, we adapt neural se-
quence models to map utterances directly
to SQL with its full expressivity, bypass-
ing any intermediate meaning representa-
tions. These models are immediately de-
ployed online to solicit feedback from real
users to flag incorrect queries. Finally,
the popularity of SQL facilitates gathering
annotations for incorrect predictions using
the crowd, which is directly used to im-
prove our models. This complete feedback
loop, without intermediate representations
or database specific engineering, opens up
new ways of building high quality seman-
tic parsers. Experiments suggest that this
approach can be deployed quickly for any
new target domain, as we show by learning
a semantic parser for an online academic
database from scratch.

1 Introduction

Existing semantic parsing approaches for building
natural language interfaces to databases (NLIDBs)
either use special-purpose intermediate meaning
representations that lack the full expressivity of
database query languages or require extensive fea-
ture engineering, making it difficult to deploy
them in new domains. We present a robust ap-
proach to quickly and easily learn and deploy se-
mantic parsers from scratch, whose performance

�Work done partly during an internship at the Allen Insti-
tute for Artificial Intelligence.

Most recent papers of Michael I. Jordan

SELECT paper.paperId , paper.year
FROM paper , writes , author
WHERE paper.paperId = writes.paperId

AND writes.authorId = author.authorId
AND author.authorName = "michael i. jordan"
AND paper.year =

(SELECT max(paper.year)
FROM paper , writes , author
WHERE paper.paperId = writes.paperId
AND writes.authorId = author.authorId
AND author.authorName = "michael i. jordan");

I’d like to book a flight from San Diego to Toronto

SELECT DISTINCT f1.flight_id
FROM flight f1, airport_service a1, city c1,

airport_service a2, city c2
WHERE f1.from_airport = a1.airport_code

AND a1.city_code = c1.city_code
AND c1.city_name = 'san diego'
AND f1.to_airport = a2.airport_code
AND a2.city_code = c2.city_code
AND c2.city_name = 'toronto ';

Figure 1: Utterances with corresponding SQL
queries to answer them for two domains, an aca-
demic database and a flight reservation database.

improves over time based on user feedback, and
requires very little expert intervention.

To learn these semantic parsers, we (1) adapt
neural sequence models to map utterances directly
to SQL thereby bypassing intermediate represen-
tations and taking full advantage of SQL’s query-
ing capabilities, (2) immediately deploy the model
online to solicit questions and user feedback on
results to reduce SQL annotation efforts, and (3)
use crowd workers from skilled markets to pro-
vide SQL annotations that can directly be used for
model improvement, in addition to being easier
and cheaper to obtain than logical meaning rep-
resentations. We demonstrate the effectiveness of
the complete approach by successfully learning a
semantic parser for an academic domain by simply
deploying it online for three days.

This type of interactive learning is related to a
number of recent ideas in semantic parsing, in-

963

https://doi.org/10.18653/v1/P17-1089

cluding batch learning of models that directly pro-
duce programs (e.g., regular expressions (Locas-
cio et al., 2016)), learning from paraphrases (of-
ten gathered through crowdsourcing (Wang et al.,
2015)), data augmentation (e.g. based on man-
ually engineered semantic grammars (Jia and
Liang, 2016)) and learning through direct interac-
tion with users (e.g., where a single user teaches
the model new concepts (Wang et al., 2016)).
However, there are unique advantages to our ap-
proach, including showing (1) that non-linguists
can write SQL to encode complex, compositional
computations (see Fig 1 for an example), (2) that
external paraphrase resources and the structure of
facts from the target database itself can be used
for effective data augmentation, and (3) that ac-
tual database users can effectively drive the overall
learning by simply providing feedback about what
the model is currently getting correct.

Our experiments measure the performance of
these learning advances, both in batch on existing
datasets and through a simple online experiment
for the full interactive setting. For the batch evalu-
ation, we use sentences from the benchmark Geo-
Query and ATIS domains, converted to contain
SQL meaning representations. Our neural learn-
ing with data augmentation achieves reasonably
high accuracies, despite the extra complexities of
mapping directly to SQL. We also perform sim-
ulated interactive learning on this data, showing
that with perfect user feedback our full approach
could learn high quality parsers with only 55% of
the data. Finally, we do a small scale online exper-
iment for a new domain, academic paper metadata
search, demonstrating that actual users can pro-
vide useful feedback and our full approach is an
effective method for learning a high quality parser
that continues to improve over time as it is used.

2 Related Work

Although diverse meaning representation lan-
guages have been used with semantic parsers –
such as regular expressions (Kushman and Barzi-
lay, 2013; Locascio et al., 2016), Abstract Mean-
ing Representations (AMR) (Artzi et al., 2015;
Misra and Artzi, 2016), and systems of equations
(Kushman et al., 2014; Roy et al., 2016) – parsers
for querying databases have typically used either
logic programs (Zelle and Mooney, 1996), lambda
calculus (Zettlemoyer and Collins, 2005), or λ-
DCS (Liang et al., 2013) as the meaning represen-

tation language. All three of these languages are
modeled after natural language to simplify pars-
ing. However, none of them is used to query
databases outside of the semantic parsing litera-
ture; therefore, they are understood by few peo-
ple and not supported by standard database imple-
mentations. In contrast, we parse directly to SQL,
which is a popular database query language with
wide usage and support. Learning parsers directly
from SQL queries has the added benefit that we
can potentially hire programmers on skilled-labor
crowd markets to provide labeled examples, such
as UpWork1, which we demonstrate in this work.

A few systems have been developed to di-
rectly generate SQL queries from natural lan-
guage (Popescu et al., 2003; Giordani and Mos-
chitti, 2012; Poon, 2013). However, all of these
systems make strong assumptions on the struc-
ture of queries: they use manually engineered
rules that can only generate a subset of SQL, re-
quire lexical matches between question tokens and
table/column names, or require questions to have
a certain syntactic structure. In contrast, our ap-
proach can generate arbitrary SQL queries, only
uses lexical matching for entity names, and does
not depend on syntactic parsing.

We use a neural sequence-to-sequence model to
directly generate SQL queries from natural lan-
guage questions. This approach builds on recent
work demonstrating that such models are effective
for tasks such as machine translation (Bahdanau
et al., 2015) and natural language generation (Kid-
don et al., 2016). Recently, neural models have
been successfully applied to semantic parsing with
simpler meaning representation languages (Dong
and Lapata, 2016; Jia and Liang, 2016) and short
regular expressions (Locascio et al., 2016). Our
work extends these results to the task of SQL
generation. Finally, Ling et al. (2016) generate
Java/Python code for trading cards given a natural
language description; however, this system suffers
from low overall accuracy.

A final direction of related work studies meth-
ods for reducing the annotation effort required to
train a semantic parser. Semantic parsers have
been trained from various kinds of annotations,
including labeled queries (Zelle and Mooney,
1996; Wong and Mooney, 2007; Zettlemoyer and
Collins, 2005), question/answer pairs (Liang et al.,
2013; Kwiatkowski et al., 2013; Berant et al.,

1http://www.upwork.com

964

2013), distant supervision (Krishnamurthy and
Mitchell, 2012; Choi et al., 2015), and binary
correct/incorrect feedback signals (Clarke et al.,
2010; Artzi and Zettlemoyer, 2013). Each of these
schemes presents a particular trade-off between
annotation effort and parser accuracy; however, re-
cent work has suggested that labeled queries are
the most effective (Yih et al., 2016). Our approach
trains on fully labeled SQL queries to maximize
accuracy, but uses binary feedback from users to
reduce the number of queries that need to be la-
beled. Annotation effort can also be reduced by
using crowd workers to paraphrase automatically
generated questions (Wang et al., 2015); however,
this approach may not generate the questions that
users actually want to ask the database – an ex-
periment in this paper demonstrated that 48% of
users’ questions in a calendar domain could not be
generated.

3 Feedback-based Learning

Our feedback-based learning approach can be
used to quickly deploy semantic parsers to cre-
ate NLIDBs for any new domain. It is a simple
interactive learning algorithm that deploys a pre-
liminary semantic parser, then iteratively improves
this parser using user feedback and selective query
annotation. A key requirement of this algorithm
is the ability to cheaply and efficiently annotate
queries for chosen user utterances. We address this
requirement by developing a model that directly
outputs SQL queries (Section 4), which can also
be produced by crowd workers.

Our algorithm alternates between stages of
training the model and making predictions to
gather user feedback, with the goal of improv-
ing performance in each successive stage. The
procedure is described in Algorithm 1. Our neu-
ral model N is initially trained on synthetic data
T generated by domain-independent schema tem-
plates (see Section 4), and is then ready to answer
new user questions, n. The results R of execut-
ing the predicted SQL query q are presented to the
user who provides a binary correct/incorrect feed-
back signal. If the user marks the result correct,
the pair (n, q) is added to the training set. If the
user marks the result incorrect, the algorithm asks
a crowd worker to annotate the utterance with the
correct query, q̂, and adds (n, q̂) to the training
set. This procedure can be repeated indefinitely,
ideally increasing parser accuracy and requesting

fewer annotations in each successive stage.

1 Procedure LEARN(schema)
2 T ← initial data(schema)
3 while true do
4 T ← T ∪ paraphrase(T)
5 N ← train model(T)
6 for n ∈ new utterances do
7 q ← predict(N , n)
8 R ← execute(q)
9 f ← feedback(R)

10 if f = correct then
11 T ← T ∪ (n, q)
12 else if f = wrong then
13 q̂ ← annotate(n)
14 T ← T ∪ (n, q̂)

15 end
16 end
17 end
18 end

Algorithm 1: Feedback-based learning.

4 Semantic Parsing to SQL

We use a neural sequence-to-sequence model
for mapping natural language questions directly
to SQL queries and this allows us to scale
our feedback-based learning approach, by easily
crowdsourcing labels when necessary. We further
present two data augmentation techniques which
use content from the database schema and exter-
nal paraphrase resources.

4.1 Model

We use an encoder-decoder model with global
attention, similar to Luong et al. (2015), where
the anonymized utterance (see Section 4.2) is
encoded using a bidirectional LSTM network,
then decoded to directly predict SQL query to-
kens. Fixed pre-trained word embeddings from
word2vec (Mikolov et al., 2013) are concatenated
to the embeddings that are learned for source to-
kens from the training data. The decoder predicts
a conditional probability distribution over possi-
ble values for the next SQL token given the pre-
vious tokens using a combination of the previous
SQL token embedding, attention over the hidden
states of the encoder network, and an attention sig-
nal from the previous time step.

Formally, if qi represents an embedding for the

965

ith SQL token qi, the decoder distribution is

p(qi|q1, . . . , qi−1) ∝ exp (W tanh(Ŵ[hi : ci]))

where hi represents the hidden state output of the
decoder LSTM at the ith timestep, ci represents
the context vector generated using an attention
weighted sum of encoder hidden states based on
hi, and, W and Ŵ are linear transformations. If
sj is the hidden representation generated by the en-
coder for the jth word in the utterance (k words
long), then the context vectors are defined to be:

ci =
k∑

j=1

αi,j · sj

The attention weights αi,j are computed using an
inner product between the decoder hidden state for
the current timestep hi, and the hidden representa-
tion of the jth source token sj:

αi,j =
exp(hi

TFsj)∑k
j=1 exp(hi

TFsj)

where F is a linear transformation. The decoder
LSTM cell f computes the next hidden state hi,
and cell state, mi, based on the previous hidden
and cell states, hi−1,mi−1, the embeddings of the
previous SQL token qi−1 and the context vector
of the previous timestep, ci−1

hi,mi = f(hi−1,mi−1,qi−1, ci−1)

We apply dropout on non-recurrent connections
for regularization, as suggested by Pham et al.
(2014). Beam search is used for decoding the SQL
queries after learning.

4.2 Entity Anonymization

We handle entities in the utterances and SQL by
replacing them with their types, using incremental
numbering to model multiple entities of the same
type (e.g., CITY NAME 1). During training, when
the SQL is available, we infer the type from the
associated column name; for example, Boston is
a city in city.city name = ’Boston’. To rec-
ognize entities in the utterances at test time, we
build a search engine on all entities from the target
database. For every span of words (starting with a
high span size and progressively reducing it), we
query the search engine using a TF-IDF scheme
to retrieve the entity that most closely matches the
span, then replace the span with the entity’s type.
We store these mappings and apply them to the
generated SQL to fill in the entity names. TF-IDF
matching allows some flexibility in matching en-

tity names in utterances, for example, a user could
say Donald Knuth instead of Donald E. Knuth.

4.3 Data Augmentation

We present two data augmentation strategies that
either (1) provide the initial training data to start
the interactive learning, before more labeled ex-
amples become available, or (2) use external para-
phrase resources to improve generalization.

Schema Templates To bootstrap the model to
answer simple questions initially, we defined 22
language/SQL templates that are schema-agnostic,
so they can be applied to any database. These tem-
plates contain slots whose values are populated
given a database schema. An example template
is shown in Figure 2a. The <ENT> types repre-
sent tables in the database schema, <ENT>.<COL>
represents a column in the particular table and
<ENT>.<COL>.<TYPE> represents the type associ-
ated with the particular column. A template is
instantiated by first choosing the entities and at-
tributes. Next, join conditions, i.e., JOIN FROM and
JOIN WHERE clauses, are generated from the tables
on the shortest path between the chosen tables in
the database schema graph, which connects tables
(graph nodes) using foreign key constraints. Fig-
ure 2b shows an instantiation of a template using
the path author - writes - paper - paperdataset -
dataset. SQL queries generated in this manner are
guaranteed to be executable on the target database.
On the language side, an English name of each en-
tity is plugged into the template to generate an ut-
terance for the query.

Paraphrasing The second data augmentation
strategy uses the Paraphrase Database (PPDB)
(Ganitkevitch et al., 2013) to automatically gener-
ate paraphrases of training utterances. Such meth-
ods have been recently used to improve perfor-
mance for parsing to logical forms (Chen et al.,
2016). PPDB contains over 220 million para-
phrase pairs divided into 6 sets (small to XXXL)
based on precision of the paraphrases. We use the
one-one and one-many paraphrases from the large
version of PPDB. To paraphrase a training utter-
ance, we pick a random word in the utterance that
is not a stop word or entity and replace it with a
random paraphrase. We perform paraphrase ex-
pansion on all examples labeled during learning,
as well as the initial seed examples from schema
templates.

966

Get all <ENT1>.<NAME> having
<ENT2>.<COL1>.<NAME> as <ENT2>.<COL1>.<TYPE>

SELECT <ENT1>.<DEF> FROM JOIN_FROM(<ENT1>, <ENT2>)
WHERE JOIN_WHERE(<ENT1>, <ENT2>) AND
 <ENT2>.<COL1> = <ENT2>.<COL1>.<TYPE>

(a) Schema template

SELECT author.authorId
FROM author , writes , paper , paperDataset , dataset
WHERE author.authorId = writes.authorId
 AND writes.paperId = paper.paperId
 AND paper.paperId = paperDataset.paperId
 AND paperDataset.datasetId = dataset.datasetId
 AND dataset.datasetName = DATASET_TYPE

Get all author having dataset as DATASET_TYPE

(b) Generated utterance-SQL pair

Figure 2: (a) Example schema template consist-
ing of a question and SQL query with slots to be
filled with database entities, columns, and values;
(b) Entity-anonymized training example generated
by applying the template to an academic database.

5 Benchmark Experiments

Our first set of experiments demonstrates that our
semantic parsing model has comparable accuracy
to previous work, despite the increased difficulty
of directly producing SQL. We demonstrate this
result by running our model on two benchmark
datasets for semantic parsing, GEO880 and ATIS.

5.1 Data sets

GEO880 is a collection of 880 utterances issued
to a database of US geographical facts (Geobase),
originally in Prolog format. Popescu et al. (2003)
created a relational database schema for Geobase
together with SQL queries for a subset of 700 ut-
terances. To compare against prior work on the
full corpus, we annotated the remaining utterances
and used the standard 600/280 training/test split
(Zettlemoyer and Collins, 2005).

ATIS is a collection of 5,418 utterances to a
flight booking system, accompanied by a rela-
tional database and SQL queries to answer the
questions. We use 4,473 utterances for training,
497 for development and 448 for test, follow-
ing Kwiatkowski et al. (2011). The original SQL
queries were very inefficient to execute due to the
use of IN clauses, so we converted them to joins
(Ramakrishnan and Gehrke, 2003) while verifying
that the output of the queries was unchanged.

Table 1 shows characteristics of both data sets.
GEO880 has shorter queries but is more compo-
sitional: almost 40% of the SQL queries have at

Geo880 ATIS SCHOLAR

Avg. NL length 7.56 10.97 6.69
NL vocab size 151 808 303

Avg. SQL length 16.06 67.01 28.85
SQL vocab size 89 605 163
% Subqueries > 1 39.8 12.42 2.58
Tables 1.19 5.88 3.33

Table 1: Utterance and SQL query statistics for
each dataset. Vocabulary sizes are counted after
entity anonymization.

least one nested subquery. ATIS has the longest
utterances and queries, with an average utterance
length of 11 words and an average SQL query
length of 67 tokens. They also operate on approx-
imately 6 tables per query on average. We will
release our processed versions of both datasets.

5.2 Experimental Methodology

We follow a standard train/dev/test methodology
for our experiments. The training set is augmented
using schema templates and 3 paraphrases per
training example, as described in Section 4. Ut-
terances were anonymized by replacing them with
their corresponding types and all words that occur
only once were replaced by UNK symbols. The
development set is used for hyperparameter tun-
ing and early stopping. For GEO880, we use cross
validation on the training set to tune hyperparam-
eters. We used a minibatch size of 100 and used
Adam (Kingma and Ba, 2015) with a learning rate
of 0.001 for 70 epochs for all our experiments. We
used a beam size of 5 for decoding. We report test
set accuracy of our SQL query predictions by exe-
cuting them on the target database and comparing
the result with the true result.

5.3 Results

Tables 2 and 3 show test accuracies based on de-
notations for our model on GEO880 and ATIS re-
spectively, compared with previous work.2 To our
knowledge, this is the first result on directly pars-
ing to SQL to achieve comparable performance
to prior work without using any database-specific
feature engineering. Popescu et al. (2003) and
Giordani and Moschitti (2012) also directly pro-
duce SQL queries but on a subset of 700 examples
from GEO880. The former only works on seman-
tically tractable utterances where words can be un-

2Note that 2.8% of GEO880 and 5% ATIS gold test set
SQL queries (before any processing) produced empty results.

967

System Acc.

Ours (SQL) 82.5

Popescu et al. (2003) (SQL) 77.5∗

Giordani and Moschitti (2012) (SQL) 87.2∗

Dong and Lapata (2016) 84.6�†

Jia and Liang (2016) 89.3�

Liang et al. (2013) 91.1�

Table 2: Accuracy of SQL query results on the
Geo880 corpus; ∗ use Geo700; � convert to logi-
cal forms instead of SQL; † measure accuracy in
terms of obtaining the correct logical form, other
systems, including ours, use denotations.

System Acc.

Ours (SQL) 79.24

GUSP (Poon, 2013) (SQL) 74.8
GUSP++ (Poon, 2013) (SQL) 83.5

Zettlemoyer and Collins (2007) 84.6�†

Dong and Lapata (2016) 84.2�†

Jia and Liang (2016) 83.3�

Wang et al. (2014) 91.3�†

Table 3: Accuracy of SQL query results on ATIS;
� convert to logical forms instead of SQL; † mea-
sure accuracy in terms of obtaining the correct log-
ical form, other systems, including ours, use deno-
tations.

ambiguously mapped to schema elements, while
the latter uses a reranking approach that also lim-
its the complexity of SQL queries that can be han-
dled. GUSP (Poon, 2013) creates an intermediate
representation that is then deterministically con-
verted to SQL to obtain an accuracy of 74.8% on
ATIS, which is boosted to 83.5% using manually
introduced disambiguation rules. However, it re-
quires a lot of SQL specific engineering (for ex-
ample, special nodes for argmax) and is hard to
extend to more complex SQL queries.

On both datasets, our SQL model achieves rea-
sonably high accuracies approaching that of the
best non-SQL results. Most relevant to this work
are the neural sequence based approaches of Dong
and Lapata (2016) and Jia and Liang (2016). We
note that Jia and Liang (2016) use a data recombi-
nation technique that boosts accuracy from 85.0 on
GEO880 and 76.3 on ATIS; this technique is also
compatible with our model and we hope to experi-

System GEO880 ATIS

Ours 84.8 86.2
- paraphrases 81.8 84.3
- templates 84.7 85.7

Table 4: Addition of paraphrases to the training set
helps performance, but template based data aug-
mentation does not significantly help in the fully
supervised setting. Accuracies are reported on the
standard dev set for ATIS and on the training set,
using cross-validation, for Geo880.

ment with this in future work. Our results demon-
strate that these models are powerful enough to di-
rectly produce SQL queries. Thus, our methods
enable us to utilize the full expressivity of the SQL
language without any extensions that certain log-
ical representations require to answer more com-
plex queries. More importantly, it can be imme-
diately deployed for users in new domains, with a
large programming community available for anno-
tation, and thus, fits effectively into a framework
for interactive learning.

We perform ablation studies on the develop-
ment sets (see Table 4) and find that paraphras-
ing using PPDB consistently helps boost perfor-
mance. However, unlike in the interactive ex-
periments (Section 6), data augmentation using
schema templates does not improve performance
in the fully supervised setting.

6 Interactive Learning Experiments

In this section, we learn a semantic parser for an
academic domain from scratch by deploying an
online system using our interactive learning algo-
rithm (Section 3). After three train-deploy cycles,
the system correctly answered 63.51% of user’s
questions. To our knowledge, this is the first effort
to learn a semantic parser using a live system, and
is enabled by our models that can directly parse
language to SQL without manual intervention.

6.1 User Interface
We developed a web interface for accepting nat-
ural language questions to an academic database
from users, using our model to generate a SQL
query, and displaying the results after execution.
Several example utterances are also displayed to
help users understand the domain. Together with
the results of the generated SQL query, users are
prompted to provide feedback which is used for

968

interactive learning. Screenshots of our interface
are included in our Supplementary Materials.

Collecting accurate user feedback on predicted
queries is a key challenge in the interactive learn-
ing setting for two reasons. First, the system’s re-
sults can be incorrect due to poor entity identifi-
cation or incompleteness in the database, neither
of which are under the semantic parser’s control.
Second, it can be difficult for users to determine if
the presented results are in fact correct. This de-
termination is especially challenging if the system
responds with the correct type of result, for exam-
ple, if the user requests “papers at ACL 2016” and
the system responds with all ACL papers.

We address this challenge by providing users
with two assists for understanding the system’s
behavior, and allowing users to provide more
granular feedback than simply correct/incorrect.
The first assist is type highlighting, which high-
lights entities identified in the utterance, for ex-
ample, “paper by Michael I. Jordan (AUTHOR)
in ICRA (VENUE) in 2016 (YEAR).” This as-
sist is especially helpful because the academic
database contains noisy keyword and dataset ta-
bles that were automatically extracted from the pa-
pers. The second assist is utterance paraphras-
ing, which shows the user another utterance that
maps to the same SQL query. For example, for the
above query, the system may show “what papers
does Michael I. Jordan (AUTHOR) have in ICRA
(VENUE) in 2016 (YEAR).” This assist only ap-
pears if a matching query (after entity anonymiza-
tion) exists in the model’s training set.

Using these assists and the predicted results,
users are asked to select from five feedback op-
tions: Correct, Wrong Types, Incomplete Result,
Wrong Result and Can’t Tell. The Correct and
Wrong Result options represent scenarios when
the user is satisfied with the result, or the result
is identifiably wrong, respectively. Wrong Types
indicates incorrect entity identification, which can
be determined from type highlighting. Incomplete
Result indicates that the query is correct but the
result is not; this outcome can occur because the
database is incomplete. Can’t Tell indicates that
the user is unsure about the feedback to provide.

6.2 Three-Stage Online Experiment

In this experiment, using our developed user in-
terface, we use Algorithm 1 to learn a semantic
parser from scratch. The experiment had three

stages; in each stage, we recruited 10 new users
(computer science graduate students) and asked
them to issue at least 10 utterances each to the
system and to provide feedback on the results.
We considered results marked as either Correct
or Incomplete Result as correct queries for learn-
ing. The remaining incorrect utterances were sent
to a crowd worker for annotation and were used
to retrain the system for the next stage. The
crowd worker had prior experience in writing SQL
queries and was hired from Upwork after complet-
ing a short SQL test. The worker was also given
access to the database to be able to execute the
queries and ensure that they are correct. For the
first stage, the system was trained using 640 ex-
amples generated using templates, that were aug-
mented to 1746 examples using paraphrasing (see
Section 4.3). The complexity of the utterances is-
sued in each of the three phases were compara-
ble, in that, the average length of the correct SQL
query for the utterances, and the number of tables
required to be queried, were similar.

Table 5 shows the percent of utterances judged
by users as either Correct or Incomplete Result
in each stage. In the first stage, we do not have
any labeled examples, and the model is trained us-
ing only synthetically generated data from schema
templates and paraphrases (see Section 4.3). De-
spite the lack of real examples, the system cor-
rectly answers 25% of questions. The system’s ac-
curacy increases and annotation effort decreases in
each successive stage as additional utterances are
contributed and incorrect utterances are labeled.
This result demonstrates that we can successfully
build semantic parsers for new domains by us-
ing neural models to generate SQL with crowd-
sourced annotations driven by user feedback.

We analyzed the feedback signals provided by
the users in the final stage of the experiment to
measure the quality of feedback. We found that
22.3% of the generated queries did not execute
(and hence were incorrect). 6.1% of correctly gen-
erated queries were marked wrong by users (see
Table 6). This erroneous feedback results in re-
dundant annotation of already correct examples.
The main cause of this erroneous feedback was in-
complete data for aggregation queries, where users
chose Wrong instead of Incomplete. 6.3% of in-
correct queries were erroneously deemed correct
by users. It is important that this fraction be low,
as these queries become incorrectly-labeled exam-

969

Stage 1 Stage 2 Stage 3

Accuracy (%) 25 53.7 63.5

Table 5: Percentage of utterances marked as Cor-
rect or Incomplete by users, in each stage of our
online experiment.

Feedback Error Rate (%)

Correct SQL 6.1
Incorrect SQL 6.3

Table 6: Error rates of user feedback when the
SQL is correct and incorrect. The Correct and
Incomplete results options are erroneous if the
SQL query is correct, and vice versa for incorrect
queries.

ples in the training set that may contribute to the
deterioration of model accuracy over time. This
quality of feedback is already sufficient for our
neural models to improve with usage, and creating
better interfaces to make feedback more accurate
is an important task for future work.

6.3 SCHOLAR dataset

We release a new semantic parsing dataset for aca-
demic database search using the utterances gath-
ered in the user study. We augment these la-
beled utterances with additional utterances labeled
by crowd workers. (Note that these additional
utterances were not used in the online experi-
ment). The final dataset comprises 816 natural
language utterances labeled with SQL, divided
into a 600/216 train/test split. We also provide a
database on which to execute these queries con-
taining academic papers with their authors, cita-
tions, journals, keywords and datasets used. Ta-
ble 1 shows statistics of this dataset. Our parser
achieves an accuracy of 67% on this train/test split
in the fully supervised setting. In comparison, a
nearest neighbor strategy that uses the cosine simi-
larity metric using a TF-IDF representation for the
utterances yields an accuracy of 52.75%.

We found that 15% of the predicted queries did
not execute, predominantly owing to (1) access-
ing table columns without joining with those ta-
bles, and (2) generating incorrect types that could
not be deanonymized using the utterance. The
main types of errors in the remaining well-formed
queries that produced incorrect results were (1)
portions of the utterance (such as ‘top’ and ‘cited

by both’) were ignored, and (2) some types from
the utterance were not transferred to the SQL
query.

2 4 6 8 10 12
Stages

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac

tio
n

Co
rre

ct

Simulated Interactive Learning on Geo880

Ours
Without templates
Without paraphrasing

2 4 6 8 10 12
Stages

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fr
ac
tio

n
Co

rre
ct

Simulated Interactive Learning on ATIS

Ours
Without templates
Without paraphrasing

Figure 3: Accuracy as a function of batch num-
ber in simulated interactive learning experiments
on Geo880 (top) and ATIS (bottom).

6.4 Simulated Interactive Experiments
We conducted additional simulated interactive
learning experiments using GEO880 and ATIS to
better understand the behavior of our train-deploy
feedback loop, the effects of our data augmen-
tation approaches, and the annotation effort re-
quired. We randomly divide each training set into
K batches and present these batches sequentially
to our interactive learning algorithm. Correctness
feedback is provided by comparing the result of
the predicted query to the gold query, i.e., we as-
sume that users are able to perfectly distinguish
correct results from incorrect ones.

Figure 3 shows accuracies on GEO880 and
ATIS respectively of each batch when the model
is trained on all previous batches. As in the live
experiment, accuracy improves with successive
batches. Data augmentation using templates helps
in the initial stages of GEO880, but its advantage

970

Batch Size 150 100 50

% Wrong 70.2 60.4 54.3

Table 7: Percentage of examples that required an-
notation (i.e., where the model initially made an
incorrect prediction) on GEO880 vs. batch size.

is reduced as more labeled data is obtained. Tem-
plates did not improve accuracy on ATIS, possibly
because most ATIS queries involve two entities,
i.e., a source city and a destination city, whereas
our templates only generate questions with a sin-
gle entity type. Nevertheless, templates are impor-
tant in a live system to motivate users to interact
with it in early stages. As observed before, para-
phrasing improves performance at all stages.

Table 7 shows the percent of examples that
require annotation using various batch sizes for
GEO880. Smaller batch sizes reduce annota-
tion effort, with a batch size of 50 requiring only
54.3% of the examples to be annotated. This re-
sult demonstrates that more frequent deployments
of improved models leads to fewer mistakes.

7 Conclusion

We describe an approach to rapidly train a seman-
tic parser as a NLIDB that iteratively improves
parser accuracy over time while requiring mini-
mal intervention. Our approach uses an attention-
based neural sequence-to-sequence model, with
data augmentation from the target database and
paraphrasing, to parse utterances to SQL. This
model is deployed in an online system, where user
feedback on its predictions is used to select utter-
ances to send for crowd worker annotation.

We find that the semantic parsing model is
comparable in performance to previous systems
that either map from utterances to logical forms,
or generate SQL, on two benchmark datasets,
GEO880 and ATIS. We further demonstrate the
effectiveness of our online system by learning a
semantic parser from scratch for an academic do-
main. A key advantage of our approach is that it
is not language-specific, and can easily be ported
to other commonly used query languages, such as
SPARQL or ElasticSearch. Finally, we also re-
lease a new dataset of utterances and SQL queries
for an academic domain.

Acknowledgments

The research was supported in part by DARPA,
under the DEFT program through the AFRL
(FA8750-13-2-0019), the ARO (W911NF-16-1-
0121), the NSF (IIS-1252835, IIS-1562364, IIS-
1546083, IIS-1651489, CNS-1563788), the DOE
(DE-SC0016260), an Allen Distinguished Investi-
gator Award, and gifts from NVIDIA, Adobe, and
Google. The authors thank Rik Koncel-Kedziorski
and the anonymous reviewers for their helpful
comments.

References
Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.

Broad-coverage CCG semantic parsing with AMR.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1699–
1710. https://doi.org/10.18653/v1/D15-1198.

Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-
pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Asso-
ciation for Computational Linguistics 1(1):49–62.
http://aclweb.org/anthology/Q13-1005.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings
of the 2015 International Conference on Learn-
ing Representations. CBLS, San Diego, California.
http://arxiv.org/abs/1409.0473.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on Free-
base from question-answer pairs. In Proceed-
ings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1533–1544.
http://aclweb.org/anthology/D13-1160.

Bo Chen, Le Sun, Xianpei Han, and Bo An. 2016.
Sentence rewriting for semantic parsing. In
Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 766–777.
http://www.aclweb.org/anthology/P16-1073.

Eunsol Choi, Tom Kwiatkowski, and Luke Zettle-
moyer. 2015. Scalable semantic parsing with par-
tial ontologies. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 1311–1320. https://doi.org/10.3115/v1/P15-
1127.

971

James Clarke, Dan Goldwasser, Ming-Wei Chang,
and Dan Roth. 2010. Driving semantic pars-
ing from the world’s response. In Proceed-
ings of the Fourteenth Conference on Compu-
tational Natural Language Learning. Associa-
tion for Computational Linguistics, pages 18–27.
http://aclweb.org/anthology/W10-2903.

Li Dong and Mirella Lapata. 2016. Language to logi-
cal form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 33–43.
https://doi.org/10.18653/v1/P16-1004.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The paraphrase
database. In Proceedings of the 2013 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies. Association for
Computational Linguistics, pages 758–764.
http://aclweb.org/anthology/N13-1092.

Alessandra Giordani and Alessandro Moschitti. 2012.
Translating questions to SQL queries with gener-
ative parsers discriminatively reranked. In Pro-
ceedings of COLING 2012: Posters. The COL-
ING 2012 Organizing Committee, pages 401–410.
http://aclweb.org/anthology/C12-2040.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 12–22.
https://doi.org/10.18653/v1/P16-1002.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with
neural checklist models. In Proceedings of
the 2016 Conference on Empirical Methods
in Natural Language Processing. Association
for Computational Linguistics, pages 329–339.
http://aclweb.org/anthology/D16-1032.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Jayant Krishnamurthy and Tom Mitchell. 2012.
Weakly supervised training of semantic parsers. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning. Associ-
ation for Computational Linguistics, pages 754–765.
http://aclweb.org/anthology/D12-1069.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automat-
ically solve algebra word problems. In Pro-
ceedings of the 52nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Baltimore, Maryland, pages 271–281.
http://www.aclweb.org/anthology/P14-1026.

Nate Kushman and Regina Barzilay. 2013. Using se-
mantic unification to generate regular expressions
from natural language. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and Luke
Zettlemoyer. 2013. Scaling semantic parsers with
on-the-fly ontology matching. In Proceedings of
the 2013 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Seattle, Washington, USA, pages
1545–1556. http://www.aclweb.org/anthology/D13-
1161.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2011. Lexical generaliza-
tion in CCG grammar induction for semantic pars-
ing. In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Processing.
Association for Computational Linguistics, pages
1512–1523. http://aclweb.org/anthology/D11-1140.

Percy Liang, I. Michael Jordan, and Dan Klein.
2013. Learning dependency-based compositional
semantics. Computational Linguistics 39(2).
https://doi.org/10.1162/COLI a 00127.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Moritz Karl Hermann, Tomáš Kočiský, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, pages 599–
609. https://doi.org/10.18653/v1/P16-1057.

Nicholas Locascio, Karthik Narasimhan, Eduardo
De Leon, Nate Kushman, and Regina Barzi-
lay. 2016. Neural generation of regular expres-
sions from natural language with minimal do-
main knowledge. In Proceedings of the 2016
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 1918–1923.
https://aclweb.org/anthology/D16-1197.

Thang Luong, Hieu Pham, and D. Christopher Man-
ning. 2015. Effective approaches to attention-
based neural machine translation. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1412–1421.
https://doi.org/10.18653/v1/D15-1166.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Kumar Dipendra Misra and Yoav Artzi. 2016. Neu-
ral shift-reduce CCG semantic parsing. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association

972

for Computational Linguistics, pages 1775–1786.
http://aclweb.org/anthology/D16-1183.

V. Pham, T. Bluche, C. Kermorvant, and J. Louradour.
2014. Dropout improves recurrent neural net-
works for handwriting recognition. In 2014
14th International Conference on Frontiers
in Handwriting Recognition. pages 285–290.
https://doi.org/10.1109/ICFHR.2014.55.

Hoifung Poon. 2013. Grounded unsupervised se-
mantic parsing. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, pages 933–943.
http://aclweb.org/anthology/P13-1092.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th in-
ternational conference on Intelligent user interfaces.
ACM, pages 149–157.

Raghu Ramakrishnan and Johannes Gehrke. 2003.
Database Management Systems. McGraw-Hill,
Inc., New York, NY, USA, 3 edition.

Subhro Roy, Shyam Upadhyay, and Dan Roth.
2016. Equation parsing : Mapping sen-
tences to grounded equations. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1088–1097.
http://aclweb.org/anthology/D16-1117.

Adrienne Wang, Tom Kwiatkowski, and Luke Zettle-
moyer. 2014. Morpho-syntactic lexical generaliza-
tion for CCG semantic parsing. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 1284–1295.
https://doi.org/10.3115/v1/D14-1135.

I. Sida Wang, Percy Liang, and D. Christopher Man-
ning. 2016. Learning language games through
interaction. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 2368–2378.
https://doi.org/10.18653/v1/P16-1224.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In Proceed-
ings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1332–1342.
https://doi.org/10.3115/v1/P15-1129.

Wah Yuk Wong and Raymond Mooney. 2007. Gener-
ation by inverting a semantic parser that uses sta-
tistical machine translation. In Human Language
Technologies 2007: The Conference of the North

American Chapter of the Association for Compu-
tational Linguistics; Proceedings of the Main Con-
ference. Association for Computational Linguistics,
pages 172–179. http://aclweb.org/anthology/N07-
1022.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of
semantic parse labeling for knowledge base ques-
tion answering. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 201–206.
https://doi.org/10.18653/v1/P16-2033.

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence.

Luke Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed CCG grammars for
parsing to logical form. In Proceedings of
the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL). http://aclweb.org/anthology/D07-1071.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: struc-
tured classification with probabilistic categorial
grammars. In UAI ’05, Proceedings of the 21st Con-
ference in Uncertainty in Artificial Intelligence.

973

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 974–984
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1090

Joint Modeling of Content and Discourse Relations in Dialogues

Kechen Qin1 Lu Wang1 Joseph Kim2

1College of Computer and Information Science, Northeastern University
2Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology
1qin.ke@husky.neu.edu, luwang@ccs.neu.edu

2joseph kim@csail.mit.edu

Abstract

We present a joint modeling approach to iden-
tify salient discussion points in spoken meet-
ings as well as to label the discourse rela-
tions between speaker turns. A variation of
our model is also discussed when discourse
relations are treated as latent variables. Ex-
perimental results on two popular meeting cor-
pora show that our joint model can outperform
state-of-the-art approaches for both phrase-
based content selection and discourse rela-
tion prediction tasks. We also evaluate our
model on predicting the consistency among
team members’ understanding of their group
decisions. Classifiers trained with features
constructed from our model achieve signif-
icant better predictive performance than the
state-of-the-art.

1 Introduction

Goal-oriented dialogues, such as meetings, nego-
tiations, or customer service transcripts, play an
important role in our daily life. Automatically ex-
tracting the critical points and important outcomes
from dialogues would facilitate generating sum-
maries for complicated conversations, understand-
ing the decision-making process of meetings, or
analyzing the effectiveness of collaborations.

We are interested in a specific type of dia-
logues — spoken meetings, which is a common
way for collaboration and idea sharing. Previ-
ous work (Kirschner et al., 2012) has shown that
discourse structure can be used to capture the
main discussion points and arguments put forward
during problem-solving and decision-making pro-
cesses in meetings. Indeed, content of different
speaker turns do not occur in isolation, and should
be interpreted within the context of discourse.
Meanwhile, content can also reflect the purpose of
speaker turns, thus facilitate with discourse rela-
tion understanding. Take the meeting snippet from

D: Three different types of batteries. Um can either use a hand
dynamo, or the kinetic type ones, you know that they use in
watches, or else uh a solar powered one.

B: Um the bat uh the battery for a a watch wouldn't
require a lot of power, would be my one query. Is a
kinetic one going to be able to supply enough power?

D: Yeah, I don't think it would.
C: Yeah.

D: We should probably just use conventional batteries.
B: Which I suppose as well would allow us to
go off the shelf again, you'd say ?

D: Yeah.

Uncertain

Option

Figure 1: A sample clip from AMI meeting corpus. B,
C, and D denotes different speakers. Here we highlight
salient phrases (in italics) that are relevant to the major
topic discussed, i.e., “which type of battery to use for
the remote control”. Arrows indicate discourse struc-
ture between speaker turns. We also show some of the
discourse relations for illustration.

AMI corpus (Carletta et al., 2006) in Figure 1 as
an example. This discussion is annotated with dis-
course structure based on the Twente Argumenta-
tion Schema (TAS) by Rienks et al. (2005), which
focuses on argumentative discourse information.
As can be seen, meeting participants evaluate dif-
ferent options by showing doubt (UNCERTAIN),
bringing up alternative solution (OPTION), or giv-
ing feedback. The discourse information helps
with the identification of the key discussion point,
i.e., “which type of battery to use”, by revealing
the discussion flow.

To date, most efforts to leverage discourse in-
formation to detect salient content from dialogues
have focused on encoding gold-standard discourse
relations as features for use in classifier train-
ing (Murray et al., 2006; Galley, 2006; McKeown
et al., 2007; Bui et al., 2009). However, automatic
discourse parsing in dialogues is still a challenging
problem (Perret et al., 2016). Moreover, acquiring
human annotation on discourse relations is a time-
consuming and expensive process, and does not

974

https://doi.org/10.18653/v1/P17-1090

scale for large datasets.

In this paper, we propose a joint modeling ap-
proach to select salient phrases reflecting key dis-
cussion points as well as label the discourse re-
lations between speaker turns in spoken meet-
ings. We hypothesize that leveraging the inter-
action between content and discourse has the po-
tential to yield better prediction performance on
both phrase-based content selection and discourse
relation prediction. Specifically, we utilize argu-
mentative discourse relations as defined in Twente
Argument Schema (TAS) (Rienks et al., 2005),
where discussions are organized into tree struc-
tures with discourse relations labeled between
nodes (as shown in Figure 1). Algorithms for joint
learning and joint inference are proposed for our
model. We also present a variation of our model
to treat discourse relations as latent variables when
true labels are not available for learning. We en-
vision that the extracted salient phrases by our
model can be used as input to abstractive meeting
summarization systems (Wang and Cardie, 2013;
Mehdad et al., 2014). Combined with the pre-
dicted discourse structure, a visualization tool can
be exploited to display conversation flow to sup-
port intelligent meeting assistant systems.

To the best of our knowledge, our work is
the first to jointly model content and discourse
relations in meetings. We test our model with
two meeting corpora — the AMI corpus (Car-
letta et al., 2006) and the ICSI corpus (Janin
et al., 2003). Experimental results show that our
model yields an accuracy of 63.2 on phrase selec-
tion, which is significantly better than a classifier
based on Support Vector Machines (SVM). Our
discourse prediction component also obtains bet-
ter accuracy than a state-of-the-art neural network-
based approach (59.2 vs. 54.2). Moreover, our
model trained with latent discourse outperforms
SVMs on both AMI and ICSI corpora for phrase
selection. We further evaluate the usage of se-
lected phrases as extractive meeting summaries.
Results evaluated by ROUGE (Lin and Hovy,
2003) demonstrate that our system summaries ob-
tain a ROUGE-SU4 F1 score of 21.3 on AMI
corpus, which outperforms non-trivial extractive
summarization baselines and a keyword selection
algorithm proposed in Liu et al. (2009).

Moreover, since both content and discourse
structure are critical for building shared under-
standing among participants (Mulder et al., 2002;

Mercer, 2004), we further investigate whether our
learned model can be utilized to predict the con-
sistency among team members’ understanding of
their group decisions. This task is first defined
as consistency of understanding (COU) prediction
by Kim and Shah (2016), who have labeled a por-
tion of AMI discussions with consistency or in-
consistency labels. We construct features from our
model predictions to capture different discourse
patterns and word entrainment scores for discus-
sion with different COU level. Results on AMI
discussions show that SVM classifiers trained with
our features significantly outperform the state-of-
the-art results (Kim and Shah, 2016) (F1: 63.1 vs.
50.5) and non-trivial baselines.

The rest of the paper is structured as follows:
we first summarize related work in Section 2. The
joint model is presented in Section 3. Datasets
and experimental setup are described in Section 4,
which is followed by experimental results (Sec-
tion 5). We then study the usage of our model for
predicting consistency of understanding in groups
in Section 6. We finally conclude in Section 7.

2 Related Work

Our model is inspired by research work that lever-
ages discourse structure for identifying salient
content in conversations, which is still largely
reliant on features derived from gold-standard
discourse labels (McKeown et al., 2007; Mur-
ray et al., 2010; Bokaei et al., 2016). For in-
stance, adjacency pairs, which are paired utter-
ances with question-answer or offer-accept rela-
tions, are found to frequently appear in meeting
summaries together and thus are utilized to extract
summary-worthy utterances by Galley (2006).
There is much less work that jointly predicts the
importance of content along with the discourse
structure in dialogus. Oya and Carenini (2014)
employs Dynamic Conditional Random Field to
recognize sentences in email threads for use in
summary as well as their dialogue acts. Only local
discourse structures from adjacent utterances are
considered. Our model is built on tree structures,
which captures more global information.

Our work is also in line with keyphrase identifi-
cation or phrase-based summarization for conver-
sations. Due to the noisy nature of dialogues, re-
cent work focuses on identifying summary-worthy
phrases from meetings (Fernández et al., 2008;
Riedhammer et al., 2010) or email threads (Loza

975

et al., 2014). For instance, Wang and Cardie
(2012) treat the problem as an information extrac-
tion task, where summary-worthy content repre-
sented as indicator and argument pairs is identi-
fied by an unsupervised latent variable model. Our
work also targets at detecting salient phrases from
meetings, but focuses on the joint modeling of crit-
ical discussion points and discourse relations held
between them.

For the area of discourse analysis in dialogues, a
significant amount of work has been done in pre-
dicting local discourse structures, such as recog-
nizing dialogue acts or social acts of adjacent ut-
terances from phone conversations (Stolcke et al.,
2000; Kalchbrenner and Blunsom, 2013; Ji et al.,
2016), spoken meetings (Dielmann and Renals,
2008), or emails (Cohen et al., 2004). Although
discourse information from non-adjacent turns has
been studied in the context of online discussion fo-
rums (Ghosh et al., 2014) and meetings (Hakkani-
Tur, 2009), none of them models the effect of dis-
course structure on content selection, which is a
gap that this work fills in.

3 The Joint Model of Content and
Discourse Relations

In this section, we first present our joint model in
Section 3.1. The algorithms for learning and in-
ference are described in Sections 3.2 and 3.3, fol-
lowed by feature description (Section 3.4).

3.1 Model Description

Our proposed model learns to jointly perform
phrase-based content selection and discourse re-
lation prediction by making use of the interac-
tion between the two sources of information. As-
sume that a meeting discussion is denoted as x,
where x consists of a sequence of discourse units
x = {x1, x2, · · · , xn}. Each discourse unit can be
a complete speaker turn or a part of it. As demon-
strated in Figure 1, a tree-structured discourse dia-
gram is constructed for each discussion with each
discourse unit xi as a node of the tree. In this work,
we consider the argumentative discourse structure
by Twente Argument Schema (TAS) (Rienks et al.,
2005). For each node xi, it is attached to another
node xi′ (i′ < i) in the discussion, and a discourse
relation di is hold on the link 〈xi, xi′〉 (di is empty
if xi is the root). Let t denote the set of links
〈xi, xi′〉 in x. Following previous work on dis-
course analysis in meetings (Rienks et al., 2005;

Hakkani-Tur, 2009), we assume that the attach-
ment structure between discourse units are given
during both training and testing.

A set of candidate phrases are extracted from
each discourse unit xi, from which salient phrases
that contain gist information will be identified. We
obtain constituent and dependency parses for ut-
terances using Stanford parser (Klein and Man-
ning, 2003). We restrict eligible candidate to be a
noun phrase (NP), verb phrase (VP), prepositional
phrase (PP), or adjective phrase (ADJP) with at
most 5 words, and its head word cannot be a stop
word.1 If a candidate is a parent of another can-
didate in the constituent parse tree, we will only
keep the parent. We further merge a verb and a
candidate noun phrase into one candidate if the
later is the direct object or subject of the verb. For
example, from utterance “let’s use a rubber case
as well as rubber buttons”, we can identify can-
didates “use a rubber case” and “rubber buttons”.
For xi, the set of candidate phrases are denoted as
ci = {ci,1, ci,2, · · · , ci,mi}, where mi is the num-
ber of candidates. ci,j takes a value of 1 if the cor-
responding candidate is selected as salient phrase;
otherwise, ci,j is equal to 0. All candidate phrases
in discussion x are represented as c.

We then define a log-linear model with feature
parameters w for the candidate phrases c and dis-
course relations d in x as:

p(c,d|x,w) ∝ exp[w · Φ(c,d,x)]

∝ exp[w ·
n∑

i=1,<xi,xi′>∈t

φ(ci, di, di′ ,x)]

∝ exp[

n∑

i=1,<xi,xi′>∈t

(wc ·
mi∑

j=1

φc(ci,j ,x)

+ wd · φd(di, di′ ,x) + wcd ·
mi∑

j=1

φcd(ci,j , di,x))]

(1)

Here Φ(·) and φ(·) denote feature vectors.
We utilize three types of feature functions: (1)
content-only features φc(·), which capture the im-
portance of phrases, (2) discourse-only features
φd(·), which characterize the (potentially higher-
order) discourse relations, and (3) joint features of
content and discourse φcd(·), which model the in-
teraction between the two. wc, wd, and wcd are

1Other methods for mining candidate phrases, such as
frequency-based method (Liu et al., 2015), will be studied
for future work.

976

corresponding feature parameters. Detailed fea-
ture descriptions can be found in Section 3.4.
Discourse Relations as Latent Variables. As we
mentioned in the introduction, acquiring labeled
training data for discourse relations is a time-
consuming process since it would require human
annotators to inspect the full discussions. There-
fore, we further propose a variation of our model
where it treats the discourse relations as latent
variables, so that p(c|x,w) =

∑
d p(c,d|x,w).

Its learning algorithm is slightly different as de-
scribed in the next section.

3.2 Joint Learning for Parameter Estimation

For learning the model parameters w, we em-
ploy an algorithm based on SampleRank (Rohan-
imanesh et al., 2011), which is a stochastic struc-
ture learning method. In general, the learning al-
gorithm constructs a sequence of configurations
for sample labels as a Markov chain Monte Carlo
(MCMC) chain based on a task-specific loss func-
tion, where stochastic gradients are distributed
across the chain.

The full learning procedure is described in Al-
gorithm 1. To start with, the feature weights w is
initialized with each value randomly drawn from
[−1, 1]. Multiple epochs are run through all sam-
ples. For each sample, we randomly initialize the
assignment of candidate phrases labels c and dis-
course relations d. Then an MCMC chain is con-
structed with a series of configurations σ = (c, d):
at each step, it first samples a discourse structure
d based on the proposal distribution q(d′|d,x),
and then samples phrase labels conditional on the
new discourse relations and previous phrase labels
based on q(c′|c,d′,x). Local search is used for
both proposal distributions.2 The new configu-
ration is accepted if it improves on the score by
ω(σ′). The parameters w are updated accordingly.

For the scorer ω, we use a weighted combina-
tion of F1 scores of phrase selection (F1c) and
discourse relation prediction (F1d): ω(σ) = α ·
F1c + (1− α) · F1d. We fix α to 0.1.

When discourse relations are treated as latent,
we initialize discourse relations for each sample
with a label in {1, 2, . . . ,K} if there are K rela-
tions indicated, and we only use F1c as the scorer.

2For future work, we can explore other proposal distribu-
tions that utilize the conditional distribution of salient phrases
given sampled discourse relations.

Input : X = {x}: discussions in the training set,
η: learning rate, ε: number of epochs,
δ: number of sampling rounds,
ω(·): scoring function, Φ(·): feature functions

Output: feature weights 1
|W|

∑
w∈W w

Initialize w;
W ← {w};
for e = 1 to ε do

for x in X do
// Initialize configuration for

x
Initialize c and d;
σ = (c,d);
for s = 1 to δ do

// New configuration via
local search

d′ ∼ qd(·|x,d);
c′ ∼ qd(·|x, c,d′);
σ′ = (c′,d′);
σ+ = arg maxσ̃∈{σ,σ′} ω(σ̃);
σ− = arg minσ̃∈{σ,σ′} ω(σ̃);
∇̂ = Φ(σ+)− Φ(σ−);
∆ω = ω(σ+)− ω(σ−);
// Update parameters
if w · ∇̂ < ∆ω & ∆ω 6= 0 then

w← w + η · ∇̂;
Add w inW;

end
// Accept or reject new

configuration
if σ+ == σ′ then

σ = σ′
end

end
end

end
Algorithm 1: SampleRank-based joint learning.

3.3 Joint Inference for Prediction

Given a new sample x and learned parameters w,
we predict phrase labels and discourse relations as
arg maxc,d p(c,d|x,w).

Dynamic programming can be employed to
carry out joint inference, however, it would
be time-consuming since our objective func-
tion has a large search space for both content
and discourse labels. Hence we propose an
alternating optimizing algorithm to search for
c and d iteratively. Concretely, for each it-
eration, we first optimize on d by maximiz-
ing

∑n
i=1,<xi,x′i>∈t(wd · φd(di, di′ ,x) + wcd ·∑mi

j=1 φcd(ci,j , di,x)). Message-passing (Smith
and Eisner, 2008) is used to find the best d.

In the second step, we search for c that max-
imizes

∑n
i=1,<xi,x′i>∈t(wc ·

∑mi
j=1 φc(ci,j ,x) +

wcd ·
∑mi

j=1 φcd(ci,j , di,x)). We believe that can-
didate phrases based on the same concepts should
have the same predicted label. Therefore, can-
didates of the same phrase type and sharing the
same head word are grouped into one cluster. We
then cast our task as an integer linear programming

977

problem.3 We optimize our objective function un-
der constraints: (1) ci,j = ci′,j′ if ci,j and ci′,j′ are
in the same cluster, and (2) ci,j ∈ {0, 1}, ∀i, j.

The inference process is the same for models
trained with latent discourse relations.

3.4 Features

We use features that characterize content, dis-
course relations, and the combination of both.
Content Features. For modeling the salience of
content, we calculate the minimum, maximum,
and average of TF-IDF scores of words and
number of content words in each phrase
based on the intuition that important phrases
tend to have more content words with high
TF-IDF scores (Fernández et al., 2008). We
also consider whether the head word of the
phrase has been mentioned in preceding
turn, which implies the focus of a discus-
sion. The size of the cluster each
phrase belongs to is also included. Number of
POS tags and phrase types are counted
to characterize the syntactic structure. Previous
work (Wang and Cardie, 2012) has found that
a discussion usually ends with decision-relevant
information. We thus identify the absolute
and relative positions of the turn con-
taining the candidate phrase in the discussion.
Finally, we record whether the candidate phrase
is uttered by the main speaker, who
speakers the most words in the discussion.
Discourse Features. For each discourse unit, we
collect the dialogue act types of the cur-
rent unit and its parent node in discourse tree,
whether there is any adjacency pair held be-
tween the two nodes (Hakkani-Tur, 2009), and
the Jaccard similarity between them. We
record whether two turns are uttered by the
same speaker, for example, ELABORATION is
commonly observed between the turns from the
same participant. We also calculate the number
of candidate phrases based on the obser-
vation that OPTION and SPECIALIZATION tend
to contain more informative words than POSI-
TIVE feedback. Length of the discourse unit is
also relevant. Therefore, we compute the time
span and number of words. To incorporate
global structure features, we encode the depth
of the node in the discourse tree and the

3We use lpsolve: http://lpsolve.
sourceforge.net/5.5/.

number of its siblings. Finally, we in-
clude an order-2 discourse relation
feature that encodes the relation between current
discourse unit and its parent, and the relation be-
tween the parent and its grandparent if it exists.
Joint Features. For modeling the interaction be-
tween content and discourse, the discourse rela-
tion is added to each content feature to compose a
joint feature. For example, if candidate c in discus-
sion x has a content feature φ[avg−TFIDF](c,x)
with a value of 0.5, and its discourse relation d is
POSITIVE, then the joint feature takes the form of
φ[avg−TFIDF,Positive](c, d,x) = 0.5.

4 Datasets and Experimental Setup

Meeting Corpora. We evaluate our joint model
on two meeting corpora with rich annotations: the
AMI meeting corpus (Carletta et al., 2006) and the
ICSI meeting corpus (Janin et al., 2003). AMI
corpus consists of 139 scenario-driven meetings,
and ICSI corpus contains 75 naturally occurring
meetings. Both of the corpora are annotated with
dialogue acts, adjacency pairs, and topic segmen-
tation. We treat each topic segment as one dis-
cussion, and remove discussions with less than
10 turns or labeled as “opening” and “chitchat”.
694 discussions from AMI and 1139 discussions
from ICSI are extracted, and these two datasets
are henceforth referred as AMI-FULL and ICSI-
FULL.
Acquiring Gold-Standard Labels. Both corpora
contain human constructed abstractive summaries
and extractive summaries on meeting level. Short
abstracts, usually in one sentence, are constructed
by meeting participants — participant summaries,
and external annotators — abstractive summaries.
Dialogue acts that contribute to important output
of the meeting, e.g. decisions, are identified and
used as extractive summaries, and some of them
are also linked to the corresponding abstracts.

Since the corpora do not contain phrase-level
importance annotation, we induce gold-standard
labels for candidate phrases based on the follow-
ing rule. A candidate phrase is considered as a
positive sample if its head word is contained in any
abstractive summary or participant summary. On
average, 71.9 candidate phrases are identified per
discussion for AMI-FULL with 31.3% labeled as
positive, and 73.4 for ICSI-FULL with 24.0% of
them as positive samples.

Furthermore, a subset of discussions in AMI-

978

FULL are annotated with discourse structure and
relations based on Twente Argumentation Schema
(TAS) by Rienks et al. (2005)4. A tree-structured
argument diagram (as shown in Figure 1) is cre-
ated for each discussion or a part of the discussion.
The nodes of the tree contain partial or complete
speaker turns, and discourse relation types are la-
beled on the links between the nodes. In total, we
have 129 discussions annotated with discourse la-
bels. This dataset is called AMI-SUB hereafter.
Experimental Setup. 5-fold cross validation is
used for all experiments. All real-valued features
are uniformly normalized to [0,1]. For the joint
learning algorithm, we use 10 epochs and carry out
50 sampling for MCMC for each training sample.
The learning rate is set to 0.01. We run the learn-
ing algorithm for 20 times, and use the average of
the learned weights as the final parameter values.
For models trained with latent discourse relations,
we fix the number of relations to 9.
Baselines and Comparisons. For both phrase-
based content selection and discourse relation pre-
diction tasks, we consider a baseline that always
predicts the majority label (Majority). Previous
work has shown that Support Vector Machines
(SVMs)-based classifiers achieve state-of-the-art
performance for keyphrase selection in meet-
ings (Fernández et al., 2008; Wang and Cardie,
2013) and discourse parsing for formal text (Her-
nault et al., 2010). Therefore, we compare with
linear SVM-based classifiers, trained with the
same feature set of content features or discourse
features. We fix the trade-off parameter to 1.0
for all SVM-based experiments. For discourse re-
lation prediction, we use one-vs-rest strategy to
build multiple binary classifiers.5 We also com-
pare with a state-of-the-art discourse parser (Ji
et al., 2016), which employs neural language
model to predict discourse relations.

5 Experimental Results

5.1 Phrase Selection and Discourse Labeling
Here we present the experimental results on
phrase-based content selection and discourse re-
lation prediction. We experiment with two vari-
ations of our joint model: one is trained on gold-
standard discourse relations, the other is trained by

4There are 9 types of relations in TAS: POSITIVE, NEG-
ATIVE, UNCERTAIN, REQUEST, SPECIALIZATION, ELABO-
RATION, OPTION, OPTION EXCLUSION, and SUBJECT-TO.

5Multi-class classifier was also experimented with, but
gave inferior performance.

Acc F1
Comparisons
Baseline (Majority) 60.1 37.5
SVM (w content features in § 3.4) 57.8 54.6
Our Models
Joint-Learn + Joint-Inference 63.2∗ 62.6∗
Joint-Learn + Separate-Inference 57.9 57.8
Separate-Learn 53.4 52.6
Our Models (Latent Discourse)
w/ True Attachment Structure
Joint-Learn + Joint-Inference 60.3∗ 60.3∗
Joint-Learn + Separate-Inference 56.4 56.2
w/o True Attachment Structure
Joint-Learn + Joint-Inference 56.4 56.4
Joint-Learn + Separate-Inference 52.7 52.3

Table 1: Phrase-based content selection performance
on AMI-SUB with accuracy (acc) and F1. We dis-
play results of our models trained with gold-standard
discourse relation labels and with latent discourse re-
lations. For the later, we also show results based on
True Attachment Structure, where the gold-standard at-
tachments are known, and without the True Attachment
Structure. Our models that significantly outperform
SVM-based model are highlighted with ∗ (p < 0.05,
paired t-test). Best result for each column is in bold.

Acc F1
Comparisons
Baseline (Majority) 51.2 7.5
SVM (w discourse features in § 3.4) 51.2 22.8
Ji et al. (2016) 54.2 21.4
Our Models
Joint-Learn + Joint-Inference 58.0∗ 21.7
Joint-Learn + Separate-Inference 59.2∗ 23.4
Separate-Learn 58.2∗ 25.1

Table 2: Discourse relation prediction performance on
AMI-SUB. Our models that significantly outperform
SVM-based model and Ji et al. (2016) are highlighted
with ∗ (p < 0.05, paired t-test). Best result for each
column is in bold.

treating discourse relations as latent models as de-
scribed in Section 3.1. Remember that we have
gold-standard argument diagrams on the AMI-
SUB dataset, we can thus conduct experiments by
assuming the True Attachment Structure is given
for latent versions. When argument diagrams are
not available, we build a tree among the turns in
each discussion as follows. Two turns are attached
if there is any adjacency pair between them. If one
turn is attached to more than one previous turns,
the closest one is considered. For the rest of the
turns, they are attached to the preceding turn. This
construction is applied on AMI-FULL and ICSI-
FULL.

We also investigate whether joint learning and
joint inference can produce better prediction per-

979

AMI-FULL ICSI-FULL
Acc F1 Acc F1

Comparisons
Baseline (Majority) 61.8 38.2 75.3 43.0
SVM (with content features in § 3.4) 58.6 56.7 66.2 53.1
Our Models (Latent Discourse)
Joint-Learn + Joint-Inference 63.4∗ 63.0∗ 73.5∗ 61.4∗
Joint-Learn + Separate-Inference 57.7 57.5 70.0∗ 62.7∗

Table 3: Phrase-based content selection performance
on AMI-FULL and ICSI-FULL. We display results
of our models trained with latent discourse relations.
Results that are significantly better than SVM-based
model are highlighted with ∗ (p < 0.05, paired t-test).

formance. We consider joint learning with sepa-
rate inference, where only content features or dis-
course features are used for prediction (Separate-
Inference). We further study learning separate
classifiers for content selection and discourse re-
lations without joint features (Separate-Learn).

We first show the phrase selection and discourse
relation prediction results on AMI-SUB in Ta-
bles 1 and 2. As shown in Table 1, our models,
trained with gold-standard discourse relations or
latent ones with true attachment structure, yield
significant better accuracy and F1 scores than
SVM-based classifiers trained with the same fea-
ture sets for phrase selection (paired t-test, p <
0.05). Our joint learning model with separate
inference also outperforms neural network-based
discourse parsing model (Ji et al., 2016) in Table 2.

Moreover, Tables 1 and 2 demonstrate that joint
learning usually produces superior performance
for both tasks than separate learning. Combined
with joint inference, our model obtains the best ac-
curacy and F1 on phrase selection. This indicates
that leveraging the interplay between content and
discourse boost the prediction performance. Sim-
ilar results are achieved on AMI-FULL and ICSI-
FULL in Table 3, where latent discourse relations
without true attachment structure are employed for
training.

5.2 Phrase-Based Extractive Summarization

We further evaluate whether the prediction of the
content selection component can be used for sum-
marizing the key points on discussion level. For
each discussion, salient phrases identified by our
model are concatenated in sequence for use as the
summary. We consider two types of gold-standard
summaries. One is utterance-level extractive sum-
mary, which consists of human labeled summary-
worthy utterances. The other is abstractive sum-

Extractive Summaries as Gold-Standard
ROUGE-1 ROUGE-SU4

Len Prec Rec F1 Prec Rec F1
Longest DA 30.9 64.4 15.0 23.1 58.6 9.3 15.3
Centroid DA 17.5 73.9 13.4 20.8 62.5 6.9 11.3
SVM 49.8 47.1 24.1 27.5 22.7 10.7 11.8
Liu et al. (2009) 62.4 40.4 39.2 36.2 15.5 15.2 13.5
Our Model 66.6 45.4 44.7 41.1∗ 24.1∗ 23.4∗ 20.9∗
Our Model-latent 85.9 42.9 49.3 42.4∗ 21.6 25.7∗ 21.3∗
Abstractive Summaries as Gold-Standard

ROUGE1 ROUGE-SU4
Len Prec Rec F1 Prec Rec F1

Longest DA 30.9 14.8 5.5 7.4 4.8 1.4 1.9
Centroid DA 17.5 24.9 5.6 8.5 11.6 1.4 2.2
SVM 49.8 13.3 9.7 9.5 4.4 2.4 2.4
Liu et al. (2009) 62.4 10.3 16.7 11.3 2.7 4.5 2.8
Our Model 66.6 12.6 18.9 13.1∗ 3.8 5.5∗ 3.7∗
Our Model-latent 85.9 11.4 20.0 12.4∗ 3.3 6.1∗ 3.5∗

Table 4: ROUGE scores for phrase-based extractive
summarization evaluated against human-constructed
utterance-level extractive summaries and abstractive
summaries. Our models that statistically significantly
outperform SVM and Liu et al. (2009) are highlighted
with ∗ (p < 0.05, paired t-test). Best ROUGE score for
each column is in bold.

mary, where we collect human abstract with at
least one link from summary-worthy utterances.

We calculate scores based on ROUGE (Lin and
Hovy, 2003), which is a popular tool for eval-
uating text summarization (Gillick et al., 2009;
Liu and Liu, 2010). ROUGE-1 (unigrams) and
ROUGE-SU4 (skip-bigrams with at most 4 words
in between) are used. Following previous work
on meeting summarization (Riedhammer et al.,
2010; Wang and Cardie, 2013), we consider two
dialogue act-level summarization baselines: (1)
LONGEST DA in each discussion is selected as the
summary, and (2) CENTROID DA, the one with the
highest TF-IDF similarity with all DAs in the dis-
cussion. We also compare with an unsupervised
keyword extraction approach by Liu et al. (2009),
where word importance is estimated by its TF-IDF
score, POS tag, and the salience of its correspond-
ing sentence. With the same candidate phrases
as in our model, we extend Liu et al. (2009) by
scoring each phrase based on its average score of
the words. Top phrases, with the same number of
phrases output by our model, are included into the
summaries. Finally, we compare with summaries
consisting of salient phrases predicted by an SVM
classifier trained with our content features.

From the results in Table 4, we can see that
phrase-based extractive summarization methods
can yield better ROUGE scores for recall and
F1 than baselines that extract the whole sen-
tences. Meanwhile, our system significantly out-

980

Meeting Clip:
D: can we uh power a light in this? can we get a strong
enough battery to power a light?
A: um i think we could because the lcd panel requires
power, and the lcd is a form of a light so that. . .
D: . . .it’s gonna have to have something high-tech about it
and that’s gonna take battery power. . .
D: illuminate the buttons. yeah it glows.
D: well m i’m thinking along the lines of you’re you’re in
the dark watching a dvd and you um you find the thing in the
dark and you go like this . . . oh where’s the volume button
in the dark, and uh y you just touch it . . . and it lights up or
something.
Abstract by Human:
What sort of battery to use. The industrial designer pre-
sented options for materials, components, and batteries and
discussed the restrictions involved in using certain materi-
als.
Longest DA:
well m i’m thinking along the lines of you’re you’re in the
dark watching a dvd and you um you find the thing in the
dark and you go like this.
Centroid DA:
can we uh power a light in this?
Our Method:
- power a light, a strong enough battery,
- requires power, a form,
- a really good battery, battery power,
- illuminate the buttons, glows,
- watching a dvd, the volume button, lights up or something

Figure 2: Sample summaries output by different sys-
tems for a meeting clip from AMI corpus (less relevant
utterances in between are removed). Salient phrases
by our system output are displayed for each turn of the
clip, with duplicated phrases removed for brevity.

performs the SVM-based classifiers when evalu-
ated on ROUGE recall and F1, while achieving
comparable precision. Compared to Liu et al.
(2009), our system also yields better results on all
metrics.

Sample summaries by our model along with two
baselines are displayed in Figure 2. Utterance-
level extract-based baselines unavoidably contain
disfluency and unnecessary details. Our phrase-
based extractive summary is able to capture the
key points from both the argumentation process
and important outcomes of the conversation. This
implies that our model output can be used as input
for an abstractive summarization system. It can
also facilitate the visualization of decision-making
processes.

5.3 Further Analysis and Discussions

Features Analysis. We first discuss salient fea-
tures with top weights learned by our joint model.
For content features, main speaker tends to utter
more salient content. Higher TF-IDF scores also

indicate important phrases. If a phrase is men-
tioned in previous turn and repeated in the current
turn, it is likely to be a key point. For discourse
features, structure features matter the most. For
instance, jointly modeling the discourse relation
of the parent node along with the current node can
lead to better inference. An example is that giv-
ing more details on the proposal (ELABORATION)
tends to lead to POSITIVE feedback. Moreover,
REQUEST usually appears close to the root of the
argument diagram tree, while POSITIVE feedback
is usually observed on leaves. Adjacency pairs
also play an important role for discourse predic-
tion. For joint features, features that compos-
ite “phrase mentioned in previous turn” and rela-
tion POSITIVE feedback or REQUEST yield higher
weight, which are indicators for both key phrases
and discourse relations. We also find that main
speaker information composite with ELABORA-
TION and UNCERTAIN are associated with high
weights.
Error Analysis and Potential Directions. Taking
a closer look at our prediction results, one major
source of incorrect prediction for phrase selection
is based on the fact that similar concepts might be
expressed in different ways, and our model pre-
dicts inconsistently for different variations. For
example, participants use both “thick” and “two
centimeters” to talk about the desired shape of
a remote control. However, our model does not
group them into the same cluster and later makes
different predictions. For future work, semantic
similarity with context information can be lever-
aged to produce better clustering results. Fur-
thermore, identifying discourse relations in dia-
logues is still a challenging task. For instance, “I
wouldn’t choose a plastic case” should be labeled
as OPTION EXCLUSION, if the previous turns talk
about different options. Otherwise, it can be la-
beled as NEGATIVE. Therefore, models that better
handle semantics and context need to be consid-
ered.

6 Predicting Consistency of
Understanding

As discussed in previous work (Mulder et al.,
2002; Mercer, 2004), both content and discourse
structure are critical for building shared under-
standing among discussants. In this section, we
test whether our joint model can be utilized to pre-
dict the consistency among team members’ under-

981

standing of their group decisions, which is defined
as consistency of understanding (COU) in Kim
and Shah (2016).

Kim and Shah (2016) establish gold-standard
COU labels on a portion of AMI discussions,
by comparing participant summaries to determine
whether participants report the same decisions. If
all decision points are consistent, the associated
topic discussion is labeled as consistent; other-
wise, the discussion is identified as inconsistent.
Their annotation covers the AMI-SUB dataset.
Therefore, we run the prediction experiments on
AMI-SUB by using the same annotation. Out of
total 129 discussions in AMI-SUB, 86 discussions
are labeled as consistent and 43 are inconsistent.

We construct three types of features by us-
ing our model’s predicted labels. Firstly, we
learn two versions of our model based on the
“consistent” discussions and the “inconsistent”
ones in the training set, with learned parame-
ters wcon and wincon. For a discussion in the
test set, these two models output two probabili-
ties pcon = maxc,d P (c,d|x,wcon) and pincon =
maxc,d P (c,d|x,wincon). We use pcon − pincon
as a feature.

Furthermore, we consider discourse relations
of length one and two from the discourse struc-
ture tree. Intuitively, some discourse relations,
e.g., ELABORATION followed by multiple POSI-
TIVE feedback, imply consistent understanding.

The third feature is based on word entrainment,
which has been shown to correlate with task suc-
cess for groups (Nenkova et al., 2008). Using
the formula in Nenkova et al. (2008), we com-
pute the average word entrainment between the
main speaker who utters the most words and all
the other participants. The content words in the
salient phrases predicted by our model is consid-
ered for entrainment computation.
Results. Leave-one-out is used for experiments.
For training, our features are constructed from
gold-standard phrase and discourse labels. Pre-
dicted labels by our model is used for constructing
features during testing. SVM-based classifier is
used for experimenting with different sets of fea-
tures output by our model. A majority class base-
line is constructed as well. We also consider an
SVM classifier trained with ngram features (uni-
grams and bigrams). Finally, we compare with the
state-of-the-art method in Kim and Shah (2016),
where discourse-relevant features and head ges-

Acc F1
Comparisons
Baseline (Majority) 66.7 40.0
Ngrams (SVM) 51.2 50.6
Kim and Shah (2016) 60.5 50.5
Features from Our Model
Consistency Probability (Prob) 52.7 52.1
Discourse Relation (Disc) 63.6 57.1∗
Word Entrainment (Ent) 60.5∗ 57.1∗
Prob + Disc+ Ent 68.2∗ 63.1∗
Oracles
Discourse Relation 69.8 62.7
Word Entrainment 61.2 57.8

Table 5: Consistency of Understanding (COU) predic-
tion results on AMI-SUB. Results that statistically sig-
nificantly outperform ngrams-based baseline and Kim
and Shah (2016) are highlighted with ∗ (p < 0.05,
paired t-test). For reference, we also show the pre-
diction performance based on gold-standard discourse
relations and phrase selection labels.

ture features are utilized in Hidden Markov Mod-
els to predict the consistency label.

The results are displayed in Table 5. All SVMs
trained with our features surpass the ngrams-based
baseline. Especially, the discourse features, word
entrainment feature, and the combination of the
three, all significantly outperform the state-of-the-
art system by Kim and Shah (2016).6

7 Conclusion

We presented a joint model for performing phrase-
level content selection and discourse relation pre-
diction in spoken meetings. Experimental results
on AMI and ICSI meeting corpora showed that our
model can outperform state-of-the-art methods for
both tasks. Further evaluation on the task of pre-
dicting consistency-of-understanding in meetings
demonstrated that classifiers trained with features
constructed from our model output produced supe-
rior performance compared to the state-of-the-art
model. This provides an evidence of our model be-
ing successfully applied in other prediction tasks
in spoken meetings.

Acknowledgments

This work was supported in part by National Sci-
ence Foundation Grant IIS-1566382 and a GPU
gift from Nvidia. We thank three anonymous re-
viewers for their valuable suggestions on various
aspects of this work.

6We also experiment with other popular classifiers, e.g.
logistic regression or decision tree, and similar trend is re-
spected.

982

References
Mohammad Hadi Bokaei, Hossein Sameti, and Yang

Liu. 2016. Extractive Summarization of Multi-party
Meetings Through Discourse Segmentation. Natu-
ral Language Engineering 22(01):41–72.

Trung H. Bui, Matthew Frampton, John Dowding,
and Stanley Peters. 2009. Extracting Decisions
from Multi-party Dialogue Using Directed Graph-
ical Models and Semantic Similarity. In Proceed-
ings of the SIGDIAL 2009 Conference: The 10th
Annual Meeting of the Special Interest Group on
Discourse and Dialogue. Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, SIGDIAL
’09, pages 235–243.

Jean Carletta, Simone Ashby, Sebastien Bourban, Mike
Flynn, Mael Guillemot, Thomas Hain, Jaroslav
Kadlec, Vasilis Karaiskos, Wessel Kraaij, Melissa
Kronenthal, Guillaume Lathoud, Mike Lincoln,
Agnes Lisowska, Iain McCowan, Wilfried Post,
Dennis Reidsma, and Pierre Wellner. 2006. The
AMI Meeting Corpus: A Pre-announcement. In
Proceedings of the Second International Conference
on Machine Learning for Multimodal Interaction.
Springer-Verlag, Berlin, Heidelberg, MLMI’05,
pages 28–39.

William W. Cohen, Vitor R. Carvalho, and Tom M.
Mitchell. 2004. Learning to Classify Email into
“Speech Acts” . In Dekang Lin and Dekai Wu, edi-
tors, Proceedings of the 2004 Conference on Empir-
ical Methods in Natural Language Processing. As-
sociation for Computational Linguistics, Barcelona,
Spain, pages 309–316.

Alfred Dielmann and Steve Renals. 2008. Recogni-
tion of Dialogue Acts in Multiparty Meetings Us-
ing a Switching DBN. IEEE transactions on audio,
speech, and language processing 16(7):1303–1314.

Raquel Fernández, Matthew Frampton, John Dowding,
Anish Adukuzhiyil, Patrick Ehlen, and Stanley Pe-
ters. 2008. Identifying Relevant Phrases to Sum-
marize Decisions in Spoken Meetings. In INTER-
SPEECH. pages 78–81.

Michel Galley. 2006. A Skip-chain Conditional Ran-
dom Field for Ranking Meeting Utterances by Im-
portance. In Proceedings of the 2006 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
Stroudsburg, PA, USA, EMNLP ’06, pages 364–
372.

Debanjan Ghosh, Smaranda Muresan, Nina Wacholder,
Mark Aakhus, and Matthew Mitsui. 2014. Analyz-
ing Argumentative Discourse Units in Online Inter-
actions. In Proceedings of the First Workshop on
Argumentation Mining. pages 39–48.

Dan Gillick, Korbinian Riedhammer, Benoit Favre,
and Dilek Hakkani-Tur. 2009. A Global Opti-
mization Framework for Meeting Summarization.
In Acoustics, Speech and Signal Processing, 2009.

ICASSP 2009. IEEE International Conference on.
IEEE, pages 4769–4772.

Dilek Hakkani-Tur. 2009. Towards Automatic Argu-
ment Diagramming of Multiparity Meetings. In
Acoustics, Speech and Signal Processing, 2009.
ICASSP 2009. IEEE International Conference on.
IEEE, pages 4753–4756.

Hugo Hernault, Helmut Prendinger, David A. duVerle,
and Mitsuru Ishizuka. 2010. HILDA: A Discourse
Parser Using Support Vector Machine Classification.
Dialogue & Discourse 1(3):1–33.

Adam Janin, Don Baron, Jane Edwards, Dan Ellis,
David Gelbart, Nelson Morgan, Barbara Peskin,
Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke,
et al. 2003. The ICSI Meeting Corpus. In Acous-
tics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). 2003 IEEE International Confer-
ence on. IEEE, volume 1, pages I–I.

Yangfeng Ji, Gholamreza Haffari, and Jacob Eisen-
stein. 2016. A Latent Variable Recurrent Neu-
ral Network for Discourse-Driven Language Mod-
els. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies. Association for Computational Linguis-
tics, San Diego, California, pages 332–342.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
Convolutional Neural Networks for Discourse Com-
positionality. In Proceedings of the Workshop on
Continuous Vector Space Models and their Compo-
sitionality. Association for Computational Linguis-
tics, Sofia, Bulgaria, pages 119–126.

Joseph Kim and Julie A Shah. 2016. Improving
Team’s Consistency of Understanding in Meet-
ings. IEEE Transactions on Human-Machine Sys-
tems 46(5):625–637.

Paul A Kirschner, Simon J Buckingham-Shum, and
Chad S Carr. 2012. Visualizing Argumentation:
Software Tools for Collaborative and Educational
Sense-making. Springer Science & Business Media.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate Unlexicalized Parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics - Volume 1. Association for Com-
putational Linguistics, Stroudsburg, PA, USA, ACL
’03, pages 423–430.

Chin-Yew Lin and Eduard Hovy. 2003. Auto-
matic Evaluation of Summaries Using N-gram Co-
occurrence Statistics. In Proceedings of the 2003
Conference of the North American Chapter of the
Association for Computational Linguistics on Hu-
man Language Technology - Volume 1. pages 71–78.

Fei Liu and Yang Liu. 2010. Using Spoken Utterance
Compression for Meeting Summarization: A Pilot
Study. In Spoken Language Technology Workshop
(SLT), 2010 IEEE. IEEE, pages 37–42.

983

Feifan Liu, Deana Pennell, Fei Liu, and Yang Liu.
2009. Unsupervised Approaches for Automatic
Keyword Extraction Using Meeting Transcripts. In
Proceedings of Human Language Technologies: The
2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
Boulder, Colorado, pages 620–628.

Jialu Liu, Jingbo Shang, Chi Wang, Xiang Ren, and Ji-
awei Han. 2015. Mining quality phrases from mas-
sive text corpora. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management
of Data. ACM, pages 1729–1744.

Vanessa Loza, Shibamouli Lahiri, Rada Mihalcea, and
Po-Hsiang Lai. 2014. Building a Dataset for Sum-
marization and Keyword Extraction from Emails. In
LREC. pages 2441–2446.

Kathleen McKeown, Lokesh Shrestha, and Owen Ram-
bow. 2007. Using Question-answer Pairs in Extrac-
tive Summarization of Email Conversations. In In-
ternational Conference on Intelligent Text Process-
ing and Computational Linguistics. Springer, pages
542–550.

Yashar Mehdad, Giuseppe Carenini, and Raymond T.
Ng. 2014. Abstractive Summarization of Spo-
ken and Written Conversations Based on Phrasal
Queries. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Association for Com-
putational Linguistics, Baltimore, Maryland, pages
1220–1230.

Neil Mercer. 2004. Sociocultural Discourse Analysis.
Journal of applied linguistics 1(2):137–168.

Ingrid Mulder, Janine Swaak, and Joseph Kessels.
2002. Assessing Group Learning and Shared Under-
standing in Technology-mediated Interaction. Edu-
cational Technology & Society 5(1):35–47.

Gabriel Murray, Giuseppe Carenini, and Raymond Ng.
2010. Generating and Validating Abstracts of Meet-
ing Conversations: A User Study. In Proceedings of
the 6th International Natural Language Generation
Conference. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, INLG ’10, pages 105–
113.

Gabriel Murray, Steve Renals, Jean Carletta, and Jo-
hanna Moore. 2006. Incorporating Speaker and Dis-
course Features into Speech Summarization. In Pro-
ceedings of the main conference on Human Lan-
guage Technology Conference of the North Amer-
ican Chapter of the Association of Computational
Linguistics. Association for Computational Linguis-
tics, pages 367–374.

Ani Nenkova, Agustin Gravano, and Julia Hirschberg.
2008. High Frequency Word Entrainment in Spoken
Dialogue. In Proceedings of the 46th annual meet-
ing of the association for computational linguistics

on human language technologies: Short papers. As-
sociation for Computational Linguistics, pages 169–
172.

Tatsuro Oya and Giuseppe Carenini. 2014. Extrac-
tive Summarization and Dialogue Act Modeling on
Email Threads: An Integrated Probabilistic Ap-
proach. In 15th Annual Meeting of the Special In-
terest Group on Discourse and Dialogue. page 133.

Jérémy Perret, Stergos Afantenos, Nicholas Asher, and
Mathieu Morey. 2016. Integer Linear Programming
for Discourse Parsing. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, San Diego, California, pages 99–
109.

Korbinian Riedhammer, Benoit Favre, and Dilek
Hakkani-Tür. 2010. Long Story Short - Global Un-
supervised Models for Keyphrase Based Meeting
Summarization. Speech Commun. 52(10):801–815.

Rutger Rienks, Dirk Heylen, and E. van der Weijden.
2005. Argument Diagramming of Meeting Conver-
sations. In A. Vinciarelli and J-M. Odobez, editors,
International Workshop on Multimodal Multiparty
Meeting Processing, MMMP 2005, part of the 7th
International Conference on Multimodal Interfaces,
ICMI 2005.

Khashayar Rohanimanesh, Kedar Bellare, Aron Cu-
lotta, Andrew McCallum, and Michael L Wick.
2011. Samplerank: Training Factor Graphs with
Atomic Gradients. In Proceedings of the 28th Inter-
national Conference on Machine Learning (ICML-
11). pages 777–784.

David A Smith and Jason Eisner. 2008. Dependency
Parsing by Belief Propagation. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, pages 145–156.

Andreas Stolcke, Klaus Ries, Noah Coccaro, Eliz-
abeth Shriberg, Rebecca Bates, Daniel Jurafsky,
Paul Taylor, Rachel Martin, Carol Van Ess-Dykema,
and Marie Meteer. 2000. Dialogue Act Mod-
eling for Automatic Tagging and Recognition of
Conversational Speech. Computational linguistics
26(3):339–373.

Lu Wang and Claire Cardie. 2012. Focused Meeting
Summarization via Unsupervised Relation Extrac-
tion. In Proceedings of the 13th Annual Meeting
of the Special Interest Group on Discourse and Di-
alogue. Association for Computational Linguistics,
Seoul, South Korea.

Lu Wang and Claire Cardie. 2013. Domain-
Independent Abstract Generation for Focused Meet-
ing Summarization. In Proceedings of the 51st
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Associ-
ation for Computational Linguistics, Sofia, Bulgaria,
pages 1395–1405.

984

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 985–995
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1091

Argument Mining with Structured SVMs and RNNs

Vlad Niculae
Cornell University

vlad@cs.cornell.edu

Joonsuk Park
Williams College

jpark@cs.williams.edu

Claire Cardie
Cornell University

cardie@cs.cornell.edu

Abstract

We propose a novel factor graph model
for argument mining, designed for settings
in which the argumentative relations in a
document do not necessarily form a tree
structure. (This is the case in over 20%
of the web comments dataset we release.)
Our model jointly learns elementary unit
type classification and argumentative re-
lation prediction. Moreover, our model
supports SVM and RNN parametrizations,
can enforce structure constraints (e.g.,
transitivity), and can express dependencies
between adjacent relations and proposi-
tions. Our approaches outperform unstruc-
tured baselines in both web comments and
argumentative essay datasets.

1 Introduction

Argument mining consists of the automatic identi-
fication of argumentative structures in documents,
a valuable task with applications in policy mak-
ing, summarization, and education, among others.
The argument mining task includes the tightly-knit
subproblems of classifying propositions into ele-
mentary unit types and detecting argumentative re-
lations between the elementary units. The desired
output is a document argumentation graph struc-
ture, such as the one in Figure 1, where proposi-
tions are denoted by letter subscripts, and the asso-
ciated argumentation graph shows their types and
support relations between them.

Most annotation and prediction efforts in ar-
gument mining have focused on tree or forest
structures (Peldszus and Stede, 2015; Stab and
Gurevych, 2016), constraining argument struc-
tures to form one or more trees. This makes the
problem computationally easier by enabling the
use of maximum spanning tree–style parsing ap-

[Calling a debtor at work is counter-intuitive;]a
[if collectors are continuously calling someone
at work, other employees may report it to the
debtor’s supervisor.]b [Most companies have es-
tablished rules about receiving or making per-
sonal calls during working hours.]c [If a col-
lector or creditor calls a debtor on his/her cell
phone and is informed that the debtor is at work,
the call should be terminated.]d [No calls to em-
ployers should be allowed,]e [as this jeopardizes
the debtor’s job.]f

b (VALUE)

a (VALUE)

d (POLICY)

c (FACT) f (VALUE)

e (POLICY)

Figure 1: Example annotated CDCP comment.1

proaches. However, argumentation in the wild can
be less well-formed. The argument put forth in
Figure 1, for instance, consists of two compo-
nents: a simple tree structure and a more com-
plex graph structure (c jointly supports b and d).
In this work, we design a flexible and highly
expressive structured prediction model for argu-
ment mining, jointly learning to classify elemen-
tary units (henceforth propositions) and to identify
the argumentative relations between them (hence-
forth links). By formulating argument mining as
inference in a factor graph (Kschischang et al.,
2001), our model (described in Section 4) can ac-
count for correlations between the two tasks, can
consider second order link structures (e.g., in Fig-
ure 1, c → b → a), and can impose arbitrary con-
straints (e.g., transitivity).

To parametrize our models, we evaluate two
alternative directions: linear structured SVMs

1We describe proposition types (FACT, etc.) in Section 3.

985

https://doi.org/10.18653/v1/P17-1091

(Tsochantaridis et al., 2005), and recurrent neural
networks with structured loss, extending (Kiper-
wasser and Goldberg, 2016). Interestingly, RNNs
perform poorly when trained with classification
losses, but become competitive with the feature-
engineered structured SVMs when trained within
our proposed structured learning model.

We evaluate our approach on two argument
mining datasets. Firstly, on our new Cornell
eRulemaking Corpus – CDCP,2 consisting of ar-
gument annotations on comments from an eRule-
making discussion forum, where links don’t al-
ways form trees (Figure 1 shows an abridged
example comment, and Section 3 describes the
dataset in more detail). Secondly, on the UKP ar-
gumentative essays v2 (henceforth UKP), where
argument graphs are annotated strictly as multiple
trees (Stab and Gurevych, 2016). In both cases,
the results presented in Section 5 confirm that our
models outperform unstructured baselines. On
UKP, we improve link prediction over the best re-
ported result in (Stab and Gurevych, 2016), which
is based on integer linear programming postpro-
cessing. For insight into the strengths and weak-
nesses of the proposed models, as well as into the
differences between SVM and RNN parameteriza-
tions, we perform an error analysis in Section 5.1.
To support argument mining research, we also re-
lease our Python implementation, Marseille.3

2 Related work

Our factor graph formulation draws from ideas
previously used independently in parsing and ar-
gument mining. In particular, maximum spanning
tree (MST) methods for arc-factored dependency
parsing have been successfully used by McDon-
ald et al. (2005) and applied to argument min-
ing with mixed results by Peldszus and Stede
(2015). As they are not designed for the task, MST
parsers cannot directly handle proposition classifi-
cation or model the correlation between proposi-
tion and link prediction—a limitation our model
addresses. Using RNN features in an MST parser
with a structured loss was proposed by Kiper-
wasser and Goldberg (2016); their model can be
seen as a particular case of our factor graph ap-
proach, limited to link prediction with a tree struc-
ture constraint. Our models support multi-task
learning for proposition classification, parameter-

2Dataset available at http://joonsuk.org.
3Available at https://github.com/vene/marseille.

izing adjacent links with higher-order structures
(e.g., c → b → a) and enforcing arbitrary con-
straints on the link structure, not limited to trees.
Such higher-order structures and logic constraints
have been successfully used for dependency and
semantic parsing by Martins et al. (2013) and Mar-
tins and Almeida (2014); to our knowledge we are
the first to apply them to argument mining, as well
as the first to parametrize them with neural net-
works. Stab and Gurevych (2016) used an inte-
ger linear program to combine the output of in-
dependent proposition and link classifiers using a
hand-crafted scoring formula, an approach simi-
lar to our baseline. Our factor graph method can
combine the two tasks in a more principled way,
as it fully learns the correlation between the two
tasks without relying on hand-crafted scoring, and
therefore can readily be applied to other argumen-
tation datasets. Furthermore, our model can en-
force the tree structure constraint, required on the
UKP dataset, using MST cycle constraints used by
Stab and Gurevych (2016), thanks to the AD3 in-
ference algorithm (Martins et al., 2015).

Sequence tagging has been applied to the re-
lated structured tasks of proposition identifica-
tion and classification (Stab and Gurevych, 2016;
Habernal and Gurevych, 2016; Park et al., 2015b);
integrating such models is an important next step.
Meanwhile, a new direction in argument mining
explores pointer networks (Potash et al., 2016); a
promising method, currently lacking support for
tree structures and domain-specific constraints.

3 Data

We release a new argument mining dataset consist-
ing of user comments about rule proposals regard-
ing Consumer Debt Collection Practices (CDCP)
by the Consumer Financial Protection Bureau col-
lected from an eRulemaking website, http://

regulationroom.org.
Argumentation structures found in web discus-

sion forums, such as the eRulemaking one we use,
can be more free-form than the ones encountered
in controlled, elicited writing such as (Peldszus
and Stede, 2015). For this reason, we adopt the
model proposed by Park et al. (2015a), which does
not constrain links to form tree structures, but un-
restricted directed graphs. Indeed, over 20% of
the comments in our dataset exhibit local struc-
tures that would not be allowable in a tree. Possi-
ble link types are reason and evidence, and propo-

986

sition types are split into five fine-grained cate-
gories: POLICY and VALUE contain subjective judge-
ments/interpretations, where only the former spec-
ifies a specific course of action to be taken. On
the other hand, TESTIMONY and FACT do not con-
tain subjective expressions, the former being about
personal experience, or “anecdotal.” Lastly, REFER-

ENCE covers URLs and citations, which are used to
point to objective evidence in an online setting.

In comparison, the UKP dataset (Stab and
Gurevych, 2016) only makes the syntactic dis-
tinction between CLAIM, MAJOR CLAIM, and PREMISE

types, but it also includes attack links. The per-
missible link structure is stricter in UKP, with
links constrained in annotation to form one or
more disjoint directed trees within each paragraph.
Also, since web arguments are not necessarily
fully developed, our dataset has many argumenta-
tive propositions that are not in any argumentation
relations. In fact, it isn’t unusual for comments to
have no argumentative links at all: 28% of CDCP
comments have no links, unlike UKP, where all
essays have complete argument structures. Such
comments with no links make the problem harder,
emphasizing the importance of capturing the lack
of argumentative support, not only its presence.

3.1 Annotation results
Each user comment was annotated by two anno-
tators, who independently annotated the bound-
aries and types of propositions, as well as the links
among them.4 To produce the final corpus, a third
annotator manually resolved the conflicts,5 and
two automatic preprocessing steps were applied:
we take the link transitive closure, and we remove
a small number of nested propositions.6 The re-
sulting dataset contains 731 comments, consist-
ing of about 3800 sentences (≈4700 propositions)
and 88k words. Out of the 43k possible pairs of
propositions, links are present between only 1300
(roughly 3%). In comparison, UKP has fewer doc-
uments (402), but they are longer, with a total
of 7100 sentences (6100 propositions) and 147k

4The annotators used the GATE annotation tool (Cun-
ningham et al., 2011).

5Inter-annotator agreement is measured with Krippen-
dorf’s α (Krippendorff, 1980) with respect to elementary unit
type (α=64.8%) and links (α=44.1%). A separate paper de-
scribing the dataset is under preparation.

6When two propositions overlap, we keep the one that re-
sults in losing the fewest links. For generality, we release the
dataset without this preprocessing, and include code to repro-
duce it; we believe that handling nested argumentative units
is an important direction for further research.

words. Since UKP links only occur within the
same paragraph and propositions not connected to
the argument are removed in a preprocessing step,
link prediction is less imbalanced in UKP, with
3800 pairs of propositions being linked out of a to-
tal of 22k (17%). We reserve a test set of 150 doc-
uments (973 propositions, 272 links) from CDCP,
and use the provided 80-document test split from
UKP (1266 propositions, 809 links).

4 Structured learning
for argument mining

4.1 Preliminaries
Binary and multi-class classification have been ap-
plied with some success to proposition and link
prediction separately, but we seek a way to jointly
learn the argument mining problem at the docu-
ment level, to better model contextual dependen-
cies and constraints. We therefore turn to struc-
tured learning, a framework that provides the de-
sired level of expressivity.

In general, learning from a dataset of documents
xi ∈ X and their associated labels yi ∈ Y involves
seeking model parameters w that can “pick out”
the best label under a scoring function f :

ŷ := arg maxy∈Y f(x, y; w). (1)

Unlike classification or regression, where X is usu-
ally a feature space Rd and Y ⊆ R (e.g., we predict
an integer class index or a probability), in struc-
tured learning, more complex inputs and outputs
are allowed. This makes the arg max in Equa-
tion 1 impossible to evaluate by enumeration, so
it is desirable to find models that decompose over
smaller units and dependencies between them; for
instance, as factor graphs. In this section, we give
a factor graph description of our proposed struc-
tured model for argument mining.

4.2 Model description
An input document is a string of words with
proposition offsets delimited. We denote the
propositions in a document by {a, b, c, ...} and the
possible directed link between a and b as a → b.
The argument structure we seek to predict consists
of the type of each proposition ya ∈ P and a bi-
nary label for each link ya→b ∈ R = {on, off}.7

7For simplicity and comparability, we follow Stab and
Gurevych (2016) in using binary link labels even if links
could be of different types. This can be addressed in our
model by incorporating “labeled link” factors.

987

a b c

a→ b b→ ca→ c

a← b b← ca← c

(a) CDCP

a b c

a→ b b→ ca→ c

a← b b← ca← c

(b) UKP

Figure 2: Factor graphs for a document with three propositions (a, b, c) and the six possible edges be-
tween them, and some of the factors used, illustrating differences and similarities between our models
for the two datasets. Unary factors are light gray; compatibility factors are black. Factors not part of the
basic model have curved edges: higher-order factors are orange and on the right; link structure factors
are hollow, as that they don’t have any parameters. Strict constraint factors are omitted for simplicity.

The possible proposition types P differ for the two
datasets; such differences are documented in Ta-
ble 1. As we describe the variables and factors
constituting a document’s factor graph, we shall
refer to Figure 2 for illustration.

Unary potentials. Each proposition a and each
link a → b has a corresponding random variable
in the factor graph (the circles in Figure 2). To
encode the model’s belief in each possible value
for these variables, we parametrize the unary fac-
tors (gray boxes in Figure 2) with unary poten-
tials: φ(a) ∈ R|P| is a score of ya for each pos-
sible proposition type. Similarly, link unary po-
tentials φ(a → b) ∈ R|R| are scores for ya→b be-
ing on/off. Without any other factors, this would
amount to independent classifiers for each task.

Compatibility factors. For every possible link
a → b, the variables (a, b, a → b) are bound
by a dense factor scoring their joint assignment
(the black boxes in Figure 2). Such a factor
could automatically learn to encourage links from
compatible types (e.g., from TESTIMONY to POLICY)
or discourage links between less compatible ones
(e.g., from FACT to TESTIMONY). In the simplest
form, this factor would be parametrized as a ten-
sor T ∈ R|P|×|P|×|R|, with tijk retaining the score
of a source proposition of type i to be (k = on)
or not to be (k = off) in a link with a proposi-
tion of type j. For more flexibility, we parametrize
this factor with compatibility features depending

only on simple structure: tijk becomes a vector,
and the score of configuration (i, j, k) is given by
v⊤

abtijk where vab consists of three binary features:

• bias: a constant value of 1, allowing T to
learn a base score for a label configuration
(i, j, k), as in the simple form above,

• adjacency: when there are no other proposi-
tions between the source and the target,

• order: when the source precedes the target.

Second order factors. Local argumentation
graph structures such as a → b → c might be
modeled better together rather than through sep-
arate link factors for a → b and b → c. As in
higher-order structured models for semantic and
dependency parsing (Martins et al., 2013; Martins
and Almeida, 2014), we implement three types of
second order factors: grandparent (a → b → c),
sibling (a ← b → c), and co-parent (a → b ←
c). Not all of these types of factors make sense
on all datasets: as sibling structures cannot exist
in directed trees, we don’t use sibling factors on
UKP. On CDCP, by transitivity, every grandpar-
ent structure implies a corresponding sibling, so it
is sufficient to parametrize siblings. This differ-
ence between datasets is emphasized in Figure 2,
where one example of each type of factor is pic-
tured on the right side of the graphs (orange boxes
with curved edges): on CDCP we illustrate a co-
parent factor (top right) and a sibling factor (bot-

988

tom right), while on UKP we show a co-parent
factor (top right) and a grandparent factor (bottom
right). We call these factors second order because
they involve two link variables, scoring the joint
assignment of both links being on.

Valid link structure. The global structure of ar-
gument links can be further constrained using do-
main knowledge. We implement this using con-
straint factors; these have no parameters and are
denoted by empty boxes in Figure 2. In general,
well-formed arguments should be cycle-free. In
the UKP dataset, links form a directed forest and
can never cross paragraphs. This particular con-
straint can be expressed as a series of tree factors,8

one for each paragraph (the factor connected to all
link variables in Figure 2). In CDCP, links do not
form a tree, but we use logic constraints to enforce
transitivity (top left factor in Figure 2) and to pre-
vent symmetry (bottom left); the logic formulas
implemented by these factors are described in Ta-
ble 1. Together, the two constraints have the desir-
able side effect of preventing cycles.

Strict constraints. We may include further
domain-specific constraints into the model, to ex-
press certain disallowed configurations. For in-
stance, proposition types that appear in CDCP data
can be ordered by the level of objectivity (Park
et al., 2015a), as shown in Table 1. In a well-
formed argument, we would want to see links from
more objective to equally or less objective propo-
sitions: it’s fine to provide FACT as reason for
VALUE, but not the other way around. While the
training data sometimes violates this constraint,
enforcing it might provide a useful inductive bias.

Inference. The arg max in Equation 1 is a MAP
over a factor graph with cycles and many overlap-
ping factors, including logic factors. While ex-
act inference methods are generally unavailable,
our setting is perfectly suited for the Alternat-
ing Directions Dual Decomposition (AD3) algo-
rithm: approximate inference on expressive factor
graphs with overlapping factors, logic constraints,
and generic factors (e.g., directed tree factors) de-
fined through maximization oracles (Martins et al.,
2015). When AD3 returns an integral solution, it
is globally optimal, but when solutions are frac-

8A tree factor regards each bound variable as an edge in
a graph and assigns −∞ scores to configurations that are not
valid trees. For inference, we can use maximum spanning
arborescence algorithms such as Chu-Liu/Edmonds.

tional, several options are available. At test time,
for analysis, we retrieve exact solutions using the
branch-and-bound method. At training time, how-
ever, fractional solutions can be used as-is; this
makes better use of each iteration and actually in-
creases the ratio of integral solutions in future iter-
ations, as well as at test time, as proven by Meshi
et al. (2016). We also find that after around 15
training iterations with fractional solutions, over
99% of inference calls are integral.

Learning. We train the models by minimizing
the structured hinge loss (Taskar et al., 2004):

∑

(x,y)∈D

max
y′∈Y

(f(x, y′; w) + ρ(y, y′))− f(x, y; w)

(2)
where ρ is a configurable misclassification cost.
The max in Equation 2 is not the same as the one
used for prediction, in Equation 1. However, when
the cost function ρ decomposes over the variables,
cost-augmented inference amounts to regular in-
ference after augmenting the potentials accord-
ingly. We use a weighted Hamming cost:

ρ(y, ŷ) :=
∑

v

ρ(yv)I[yv = ŷv]

where v is summed over all variables in a docu-
ment {a} ∪ {a → b}, and ρ(yv) is a misclassifi-
cation cost. We assign uniform costs ρ to 1 for all
mistakes except false-negative links, where we use
higher cost proportional to the class imbalance in
the training split, effectively giving more weight
to positive links during training.

4.3 Argument structure SVM

One option for parameterizing the potentials of
the unary and higher-order factors is with linear
models, using proposition, link, and higher-order
features. This gives birth to a linear structured
SVM (Tsochantaridis et al., 2005), which, when
using l2 regularization, can be trained efficiently in
the dual using the online block-coordinate Frank-
Wolfe algorithm of Lacoste-Julien et al. (2013), as
implemented in the pystruct library (Müller and
Behnke, 2014). This algorithm is more convenient
than subgradient methods, as it does not require
tuning a learning rate parameter.

Features. For unary proposition and link fea-
tures, we faithfully follow Stab and Gurevych
(2016, Tables 9 and 10): proposition features are

989

Model part CDCP dataset UKP dataset

proposition types REFERENCE ≻ TESTIMONY ≻ FACT ≻ VALUE ≻ POLICY CLAIM, MAJOR CLAIM, PREMISE

links all possible within each paragraph

2nd order factors siblings, co-parents grandparents, co-parents
link structure transitive acyclic:

• a → b & b → c =⇒ a → c
• ATMOSTONE(a → b, b → a)

directed forest:
• TREEFACTOR over each paragraph
• zero-potential “root” links a → ∗

strict constraints link source must be as least as objective as the target:
a → b =⇒ a � b

link source must be premise:
a → b =⇒ a = PREMISE

Table 1: Instantiation of model design choices for each dataset.

lexical (unigrams and dependency tuples), struc-
tural (token statistics and proposition location),
indicators (from hand-crafted lexicons), contex-
tual, syntactic (subclauses, depth, tense, modal,
and POS), probability, discourse (Lin et al., 2014),
and average GloVe embeddings (Pennington et al.,
2014). Link features are lexical (unigrams), syn-
tactic (POS and productions), structural (token
statistics, proposition statistics and location fea-
tures), hand-crafted indicators, discourse triples,
PMI, and shared noun counts.

Our proposed higher-order factors for grandpar-
ent, co-parent, and sibling structures require fea-
tures extracted from a proposition triplet a, b, c.
In dependency and semantic parsing, higher-order
factors capture relationships between words, so
sparse indicator features can be efficiently used.
In our case, since propositions consist of many
words, BOW features may be too noisy and too
dense; so for simplicity we again take a cue
from the link-specific features used by Stab and
Gurevych (2016). Our higher-order factor fea-
tures are: same sentence indicators (for all 3 and
for each pair), proposition order (one for each of
the 6 possible orderings), Jaccard similarity (be-
tween all 3 and between each pair), presence of
any shared nouns (between all 3 and between each
pair), and shared noun ratios: nouns shared by
all 3 divided by total nouns in each proposition
and each pair, and shared nouns between each pair
with respect to each proposition. Up to vocabulary
size difference, our total feature dimensionality is
approximately 7000 for propositions and 2100 for
links. The number of second order features is 35.

Hyperparameters. We pick the SVM regular-
ization parameter C ∈ {0.001, 0.003, 0.01, 0.03,
0.1, 0.3} by k-fold cross validation at document
level, optimizing for the average between link and
proposition F1 scores.

4.4 Argument structure RNN
Neural network methods have proven effective for
natural language problems even with minimal-
to-no feature engineering. Inspired by the use
of LSTMs (Hochreiter and Schmidhuber, 1997)
for MST dependency parsing by Kiperwasser and
Goldberg (2016), we parametrize the potentials in
our factor graph with an LSTM-based neural net-
work,9 replacing MST inference with the more
general AD3 algorithm, and using relaxed solu-
tions for training when inference is inexact.

We extract embeddings of all words with a
corpus frequency > 1, initialized with GloVe
word vectors. We use a deep bidirectional LSTM
to encode contextual information, representing a
proposition a as the average of the LSTM outputs

of its words, henceforth denoted
↔
a.

Proposition potentials. We apply a multi-layer
perceptron (MLP) with rectified linear activations
to each proposition, with all layer dimensions
equal except the final output layer, which has size
|P| and is not passed through any nonlinearities.

Link potentials. To score a dependency a → b,
Kiperwasser and Goldberg (2016) pass the con-

catenation [
↔
a;

↔
b] through an MLP. After trying

this, we found slightly better performance by first
passing each proposition through a slot-specific

dense layer
(
a := σsrc(

↔
a), b := σtrg(

↔
b)

)
fol-

lowed by a bilinear transformation:

φon(a→ b) := a
⊤
Wb + w⊤

srca + w⊤
trgb + w(on)

0 .

Since the bilinear expression returns a scalar, but
the link potentials must have a value for both the
on and off states, we set the full potential to
φ(a → b) := [φon(a → b), w(off)

0] where w(off)
0

is a learned scalar bias. We initialize W to the
diagonal identity matrix.

9We use the dynet library (Neubig et al., 2017).

990

Second order potentials. Grandparent poten-
tials φ(a → b → c) score two adjacent directed
edges, in other words three propositions. We again
first pass each proposition representation through
a slot-specific dense layer. We implement a multi-
linear scorer analogously to the link potentials:

φ(a→ b→ c) :=
∑

i,j,k

aibjckwijk

where W = (w)ijk is a third-order cube ten-
sor. To reduce the large numbers of parameters,
we implicitly represent W as a rank r tensor:
wijk =

∑r
s=1 u

(1)
is u

(2)
js u

(3)
ks . Notably, this model

captures only third-order interactions between the
representation of the three propositions. To cap-
ture first-order “bias” terms, we could include slot-
specific linear terms, e.g., w⊤

a a; but to further
capture quadratic backoff effects (for instance, if
two propositions carry a strong signal of being
siblings regardless of their parent), we would re-
quire quadratically many parameters. Instead of
explicit lower-order terms, we propose augment-
ing a, b, and c with a constant feature of 1, which
has approximately the same effect, while benefit-
ing from the parameter sharing in the low-rank
factorization; an effect described by Blondel et al.
(2016). Siblings and co-parents factors are simi-
larly parametrized with their own tensors.

Hyperparameters. We perform grid search us-
ing k-fold document-level cross-validation, tun-
ing the dropout probability in the dense MLP lay-
ers over {0.05, 0.1, 0.15, 0.2, 0.25} and the opti-
mal number of passes over the training data over
{10, 25, 50, 75, 100}. We use 2 layers for the
LSTM and the proposition classifier, 128 hidden
units in all layers, and a multilinear decomposition
with rank r = 16, after preliminary CV runs.

4.5 Baseline models

We compare our proposed models to equivalent in-
dependent unary classifiers. The unary-only ver-
sion of a structured SVM is an l2-regularized lin-
ear SVM.10 For the RNN, we compute unary po-
tentials in the same way as in the structured model,
but apply independent hinge losses at each vari-
able, instead of the global structured hinge loss.
Since the RNN weights are shared, this is a form of
multi-task learning. The baseline predictions can

10We train our SVM using SAGA (Defazio et al., 2014) in
lightning (Blondel and Pedregosa, 2016).

be interpreted as unary potentials, therefore we
can simply round their output to the highest scor-
ing labels, or we can, alternatively, perform test-
time inference, imposing the desired structure.

5 Results

We evaluate our proposed models on both datasets.
For model selection and development we used k-
fold cross-validation at document level: on CDCP
we set k = 3 to avoid small validation folds, while
on UKP we follow Stab and Gurevych (2016) set-
ting k = 5. We compare our proposed structured
learning systems (the linear structured SVM and
the structured RNN) to the corresponding baseline
versions. We organize our experiments in three in-
cremental variants of our factor graph: basic, full,
and strict, each with the following components:11

component basic full strict (baseline)

unaries X X X X
compat. factors X X X
compat. features X X
higher-order X X
link structure X X X
strict constraints X X

Following Stab and Gurevych (2016), we compute
F1 scores at proposition and link level, and also
report their average as a summary of overall per-
formance.12 The results of a single prediction run
on the test set are displayed in Table 2. The over-
all trend is that training using a structured objec-
tive is better than the baseline models, even when
structured inference is applied on the baseline pre-
dictions. On UKP, for link prediction, the linear
baseline can reach good performance when us-
ing inference, similar to the approach of Stab and
Gurevych (2016), but the improvement in propo-
sition prediction leads to higher overall F1 for the
structured models. Meanwhile, on the more dif-
ficult CDCP setting, performing inference on the
baseline output is not competitive. While feature
engineering still outperforms our RNN model, we
find that RNNs shine on proposition classification,
especially on UKP, and that structured training can
make them competitive, reducing their observed
lag on link prediction (Katiyar and Cardie, 2016),
possibly through mitigating class imbalance.

11Components are described in Section 4. The baselines
with inference support only unaries and factors with no pa-
rameters, as indicated in the last column.

12For link F1 scores, however, we find it more intuitive
to only consider retrieval of positive links rather than macro-
averaged two-class scores.

991

Baseline Structured

SVM RNN SVM RNN

Metric basic full strict basic full strict basic full strict basic full strict

CDCP dataset
Average 47.4 47.3 47.9 40.8 38.0 38.0 48.1 49.3 50.0 43.5 33.5 38.2
Link (272) 22.0 21.9 23.8 9.9 12.8 12.8 24.7 25.1 26.7 14.4 14.6 10.5
Proposition 72.7 72.7 72.0 71.8 63.2 63.2 71.6 73.5 73.2 72.7 52.4 65.9

VALUE (491) 75.3 75.3 74.4 74.1 74.8 74.8 73.4 75.7 76.4 73.7 73.1 69.7
POLICY (153) 78.7 78.7 78.5 74.3 72.2 72.2 72.3 77.3 76.8 73.9 74.4 76.8
TESTIMONY (204) 70.3 70.3 68.6 74.6 71.8 71.8 69.8 71.7 71.5 74.2 72.3 75.8
FACT (124) 39.2 39.2 38.3 35.8 30.5 30.5 42.4 42.5 41.3 41.5 42.2 40.5
REFERENCE (1) 100.0 100.0 100.0 100.0 66.7 66.7 100.0 100.0 100.0 100.0 0.0 66.7

UKP dataset
Average 64.7 66.6 66.5 58.7 57.4 58.7 67.1 68.9 67.1 59.0 63.6 64.7
Link (809) 55.8 59.7 60.3 44.8 43.8 44.0 56.9 60.1 56.9 44.1 50.4 50.1
Proposition 73.5 73.5 72.6 72.6 70.9 73.3 77.2 77.6 77.3 74.0 76.9 79.3

MAJOR CLAIM (153) 76.7 76.7 77.6 81.4 75.1 81.3 77.0 78.2 80.0 83.6 84.6 88.3
CLAIM (304) 55.4 55.4 52.0 51.7 52.7 53.5 64.3 64.5 62.8 53.2 60.2 62.0
PREMISE (809) 88.4 88.4 88.3 84.8 84.8 85.2 90.3 90.2 89.2 85.0 85.9 87.6

Table 2: Test set F1 scores for link and proposition classification, as well as their average, on the two
datasets. The number of test instances is shown in parentheses; best scores on overall tasks are in bold.

5.1 Discussion and analysis
Contribution of compatibility features. The
compatibility factor in our model can be visual-
ized as conditional odds ratios given the source
and target proposition types. Since there are only
four possible configurations of the compatibility
features, we can plot all cases in Figure 3, along-
side the basic model. Not using compatibility
features, the basic model can only learn whether
certain configurations are more likely than others
(e.g. a REFERENCE supporting another REFERENCE

is unlikely, while a REFERENCE supporting a FACT

is more likely; essentially a soft version of our
domain-specific strict constraints. The full model
with compatibility features is finer grained, captur-
ing, for example, that links from REFERENCE to FACT

are more likely when the reference comes after,
or that links from VALUE to POLICY are extremely
likely only when the two are adjacent.

Proposition errors. The confusion matrices in
Figure 4 reveal that the most common confusion
is misclassifying FACT as VALUE. The strongest dif-
ference between the various models tested is that
the RNN-based models make this error less often.
For instance, in the proposition:

And the single most frequently used excuse
of any debtor is “I didn’t receive the let-
ter/invoice/statement”

the pronouns in the nested quote may be mistaken
for subjectivity, leading to the structured SVMs

predictions of VALUE or TESTIMONY, while the ba-
sic structured RNN correctly classifies it as FACT.

Link errors. While structured inference cer-
tainly helps baselines by preventing invalid struc-
tures such as cycles, it still depends on local deci-
sions, losing to fully structured training in cases
where joint proposition and link decisions are
needed. For instance, in the following conclusion
of an UKP essay, the annotators found no links:

In short, [the individual should finance his
or her education]a because [it is a personal
choice.]b Otherwise, [it would cause too much
cost from taxpayers and the government.]c

Indeed, no reasons are provided, but baseline are
misled by the connectives: the SVM baseline out-
puts that b and c are PREMISEs supporting the CLAIM

a. The full structured SVM combines the two
tasks and correctly recognizes the link structure.

Linear SVMs are still a very good baseline, but
they tend to overgenerate links due to class imbal-
ance, even if we use class weights during training.
Surprisingly, RNNs are at the opposite end, be-
ing extremely conservative, and getting the high-
est precision among the models. On CDCP, where
the number of true links is 272, the linear base-
line with strict inference predicts 796 links with a
precision of only 16%, while the strict structured
RNN only predicts 52 links, with 33% precision;
the example in Figure 5 illustrates this. In terms of
higher-order structures, we find that using higher-
order factors increases precision, at a cost in recall.

992

P V F T R
Target

Policy

Value

Fact

Testimony

Reference

So
ur

ce
-0.3 -0.1 -0.1 -0.2 -0.1

+0.1 -0.0 -0.1 -0.1 -0.2

-0.0 +0.0 -0.1 -0.2 -0.1

-0.2 -0.1 -0.1 -0.3 +0.1

-0.3 +0.0 +0.6 +0.1 -0.4

Non-adjacent,
trg precedes src

P V F T R
Target

-0.2 -0.3 -0.0 -0.2 -0.2

-0.4 -0.3 -0.2 -0.1 -0.3

-0.3 -0.1 +0.0 -0.0 -0.3

-0.3 -0.0 -0.1 +0.1 -0.2

-0.2 -0.0 +0.4 +0.1 -0.4

Non-adjacent,
src precedes trg

P V F T R
Target

+0.6 +0.9 +0.3 +0.1 -0.1

+2.2 +1.7 +1.0 +0.9 -0.1

+2.0 +1.7 +1.0 +0.6 -0.1

+1.5 +1.5 +0.9 +0.9 +0.1

-0.2 +0.1 +0.5 +0.1 -0.8

Adjacent,
trg precedes src

P V F T R
Target

+0.7 +0.7 +0.3 +0.1 -0.2

+1.7 +1.4 +0.9 +0.9 -0.2

+1.7 +1.5 +1.1 +0.7 -0.3

+1.4 +1.5 +0.9 +1.4 -0.1

-0.1 +0.1 +0.3 +0.1 -0.9

Adjacent,
src precedes trg

P V F T R
Target

-0.8 -0.7 -1.1 -1.0 -0.4

+0.9 +0.3 -0.5 -0.5 -0.5

+0.6 +0.6 -0.2 -0.5 -0.3

+0.1 +0.3 -0.3 -0.2 -0.1

-0.7 -0.0 +1.3 -0.0 -1.0

Basic (no
compatibility features)

Figure 3: Learned conditional log-odds log p(on|·)
p(off|·) , given the source and target proposition types and

compatibility feature settings. First four figures correspond to the four possible settings of the compati-
bility features in the full structured SVM model. For comparison, the rightmost figure shows the same
parameters in the basic structured SVM model, which does not use compatibility features.

P V F T R
Predicted

P

V

F

T

R

Tr
ue

0.77 0.10 0.06 0.07 0.00

0.05 0.75 0.10 0.10 0.00

0.02 0.50 0.39 0.09 0.00

0.01 0.20 0.06 0.73 0.00

0.00 0.00 0.00 0.00 1.00

Baseline SVM basic

P V F T R
Predicted

0.76 0.16 0.05 0.04 0.00

0.05 0.76 0.11 0.08 0.00

0.04 0.42 0.44 0.10 0.00

0.01 0.21 0.06 0.72 0.00

0.00 0.00 0.00 0.00 1.00

Structured SVM full

P V F T R
Predicted

P

V

F

T

R

Tr
ue

0.72 0.14 0.12 0.02 0.00

0.04 0.74 0.15 0.07 0.00

0.06 0.48 0.40 0.06 0.00

0.02 0.20 0.06 0.72 0.00

0.00 0.00 0.00 0.00 1.00

Baseline RNN basic

P V F T R
Predicted

0.73 0.17 0.10 0.00 0.00

0.05 0.71 0.15 0.08 0.00

0.07 0.38 0.48 0.06 0.00

0.01 0.19 0.08 0.73 0.00

0.00 0.00 0.00 0.00 1.00

Structured RNN basic

Figure 4: Normalized confusion matrices for
proposition type classification.

This is most beneficial for the 856 co-parent struc-
tures in the UKP test set: the full structured SVM
has 53% F1, while the basic structured SVM and
the basic baseline get 47% and 45% respectively.
On CDCP, while higher-order factors help, perfor-
mance on siblings and co-parents is below 10% F1

score. This is likely due to link sparsity and sug-
gests plenty of room for further development.

6 Conclusions and future work

We introduce an argumentation parsing model
based on AD3 relaxed inference in expressive fac-
tor graphs, experimenting with both linear struc-

[I think the cost of education needs to be re-
duced (...) or repayment plans need to be income
based.]a [As far as consumer protection, legal
aid needs to be made available, affordable and
effective,]b [and consumers need to take time
to really know their rights and stop complaining
about harassment]c [because that’s a completely
different cause of action than restitution.]d

a (P)

c (P)

b (P) d (V)

(a) Ground truth

a (V)

c (V)

b (P)

d (V)

(b) Baseline linear strict

a (P)

c (V)

b (P)

d (V)

(c) Structured linear full

a (P)

c (P)

b (P) d (F)

(d) Structured RNN strict

Figure 5: Predictions on a CDCP comment where
the structured RNN outperforms the other models.

tured SVMs and structured RNNs, parametrized
with higher-order factors and link structure con-
straints. We demonstrate our model on a new
argumentation mining dataset with more permis-
sive argument structure annotation. Our model
also achieves state-of-the-art link prediction per-
formance on the UKP essays dataset.

Future work. Stab and Gurevych (2016) found
polynomial kernels useful for modeling feature
interactions, but kernel structured SVMs scale
poorly, we intend to investigate alternate ways
to capture feature interactions. While we focus
on monological argumentation, our model could
be extended to dialogs, for which argumentation
theory thoroughly motivates non-tree structures
(Afantenos and Asher, 2014).

993

Acknowledgements

We are grateful to André Martins, Andreas Müller,
Arzoo Katyiar, Chenhao Tan, Felix Wu, Jack Hes-
sel, Justine Zhang, Mathieu Blondel, Tianze Shi,
Tobias Schnabel, and the rest of the Cornell NLP
seminar for extremely helpful discussions. We
thank the anonymous reviewers for their thorough
and well-argued feedback.

References
Stergos Afantenos and Nicholas Asher. 2014. Counter-

argumentation and discourse: A case study. In Pro-
ceedings of ArgNLP.

Mathieu Blondel, Masakazu Ishihata, Akinori Fujino,
and Naonori Ueda. 2016. Polynomial networks and
factorization machines: New insights and efficient
training algorithms. In Proceedings of ICML.

Mathieu Blondel and Fabian Pedregosa. 2016.
Lightning: large-scale linear classifica-
tion, regression and ranking in Python.
https://doi.org/10.5281/zenodo.200504.

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva, Valentin Tablan, Niraj Aswani, Ian
Roberts, Genevieve Gorrell, Adam Funk, Angus
Roberts, Danica Damljanovic, Thomas Heitz,
Mark A. Greenwood, Horacio Saggion, Johann
Petrak, Yaoyong Li, and Wim Peters. 2011. Text
Processing with GATE (Version 6).

Aaron Defazio, Francis Bach, and Simon Lacoste-
Julien. 2014. SAGA: A fast incremental gradient
method with support for non-strongly convex com-
posite objectives. In Proceedings of NIPS.

Ivan Habernal and Iryna Gurevych. 2016. Argumenta-
tion mining in user-generated web discourse. Com-
putational Linguistics .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Arzoo Katiyar and Claire Cardie. 2016. Investigating
LSTMs for joint extraction of opinion entities and
relations. In Proceedings of ACL.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing us-
ing bidirectional LSTM feature representations.
arXiv:1603.04351 preprint.

Klaus Krippendorff. 1980. Content Analysis: An Intro-
duction to Its Methodology. Commtext. Sage.

Frank R Kschischang, Brendan J Frey, and H-A
Loeliger. 2001. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information The-
ory 47(2):498–519.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt,
and Patrick Pletscher. 2013. Block-coordinate
Frank-Wolfe optimization for structural SVMs. In
Proceedings of ICML.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2014. A
PDTB-styled end-to-end discourse parser. Natural
Language Engineering 20(02):151–184.

André FT Martins and Mariana SC Almeida. 2014.
Priberam: A Turbo Semantic Parser with second or-
der features. In Proceedings of SemEval.

André FT Martins, Miguel B Almeida, and Noah A
Smith. 2013. Turning on the Turbo: Fast third-
order non-projective Turbo Parsers. In Proceedings
of ACL.

André FT Martins, Mário AT Figueiredo, Pedro MQ
Aguiar, Noah A Smith, and Eric P Xing. 2015.
AD3: Alternating directions dual decomposition for
MAP inference in graphical models. Journal of Ma-
chine Learning Research 16:495–545.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajič. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of EMNLP.

Ofer Meshi, Mehrdad Mahdavi, Adrian Weller, and
David Sontag. 2016. Train and test tightness of LP
relaxations in structured prediction. In Proceedings
of ICML.

Andreas C Müller and Sven Behnke. 2014. PyStruct:
learning structured prediction in Python. Journal of
Machine Learning Research 15(1):2055–2060.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng
Ji, Lingpeng Kong, Adhiguna Kuncoro, Gau-
rav Kumar, Chaitanya Malaviya, Paul Michel,
Yusuke Oda, Matthew Richardson, Naomi Saphra,
Swabha Swayamdipta, and Pengcheng Yin. 2017.
DyNet: The dynamic neural network toolkit.
arXiv:1701.03980 preprint.

Joonsuk Park, Cheryl Blake, and Claire Cardie. 2015a.
Toward machine-assisted participation in eRulemak-
ing: An argumentation model of evaluability. In
Proceedings of ICAIL.

Joonsuk Park, Arzoo Katiyar, and Bishan Yang. 2015b.
Conditional random fields for identifying appropri-
ate types of support for propositions in online user
comments. In Proceedings of the 2nd Workshop
on Argumentation Mining. Association for Compu-
tational Linguistics, Denver, CO, pages 39–44.

Andreas Peldszus and Manfred Stede. 2015. Joint pre-
diction in MST-style discourse parsing for argumen-
tation mining. In Proceedings of EMNLP.

994

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of EMNLP.

Peter Potash, Alexey Romanov, and Anna Rumshisky.
2016. Here’s my point: Argumentation mining with
pointer networks. arXiv:1612.08994 preprint.

Christian Stab and Iryna Gurevych. 2016. Pars-
ing argumentation structures in persuasive essays.
arXiv:1604.07370 preprint.

Ben Taskar, Carlos Guestrin, and Daphne Koller. 2004.
Max-margin Markov networks. In Proceedings of
NIPS.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas
Hofmann, and Yasemin Altun. 2005. Large margin
methods for structured and interdependent output
variables. Journal of Machine Learning Research
6(Sep):1453–1484.

995

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 996–1005
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1092

Neural Discourse Structure for Text Categorization

Yangfeng Ji and Noah A. Smith
Paul G. Allen School of Computer Science & Engineering

University of Washington
Seattle, WA 98195, USA

{yangfeng,nasmith}@cs.washington.edu

Abstract

We show that discourse structure, as de-
fined by Rhetorical Structure Theory and
provided by an existing discourse parser,
benefits text categorization. Our approach
uses a recursive neural network and a
newly proposed attention mechanism to
compute a representation of the text that
focuses on salient content, from the per-
spective of both RST and the task. Exper-
iments consider variants of the approach
and illustrate its strengths and weaknesses.

1 Introduction

Advances in text categorization have the poten-
tial to improve systems for analyzing sentiment,
inferring authorship or author attributes, making
predictions, and many more. Several past re-
searchers have noticed that methods that reason
about the relative salience or importance of pas-
sages within a text can lead to improvements (Ko
et al., 2004). Latent variables (Yessenalina et al.,
2010), structured-sparse regularizers (Yogatama
and Smith, 2014), and neural attention models
(Yang et al., 2016) have all been explored.

Discourse structure, which represents the or-
ganization of a text as a tree (for an example, see
Figure 1), might provide cues for the importance
of different parts of a text. Some promising re-
sults on sentiment classification tasks support this
idea: Bhatia et al. (2015) and Hogenboom et al.
(2015) applied hand-crafted weighting schemes to
the sentences in a document, based on its discourse
structure, and showed benefit to sentiment polarity
classification.

In this paper, we investigate the value of
discourse structure for text categorization more
broadly, considering five tasks, through the
use of a recursive neural network built on an

R

Contrast

	

Elaboration

A B
	

Explanation

C
Joint

D

	
Constrast

E F

[Although the food was amazing]A [and I was in love

with the spicy pork burrito,]B [the service was really

awful.]C [We watched our waiter serve himself many

drinks.]D [He kept running into the bathroom]E [in-

stead of grabbing our bill.]F

Figure 1: A manually constructed example of the
RST (Mann and Thompson, 1988) discourse struc-
ture on a text.

automatically-derived document parse from a top-
performing, open-source discourse parser, DPLP
(Ji and Eisenstein, 2014). Our models learn to
weight the importance of a document’s sentences,
based on their positions and relations in the dis-
course tree. We introduce a new, unnormalized
attention mechanism to this end.

Experimental results show that variants of our
model outperform prior work on four out of five
tasks considered. Our method unsurprisingly un-
derperforms on the fifth task, making predictions
about legislative bills—a genre in which discourse
conventions are quite different from those in the
discourse parser’s training data. Further experi-
ments show the effect of discourse parse quality on
text categorization performance, suggesting that
future improvements to discourse parsing will pay
off for text categorization, and validate our new
attention mechanism.

996

https://doi.org/10.18653/v1/P17-1092

Our implementation is available at https://
github.com/jiyfeng/disco4textcat.

2 Background: Rhetorical Structure
Theory

Rhetorical Structure Theory (RST; Mann and
Thompson, 1988) is a theory of discourse that
has enjoyed popularity in NLP. RST posits that
a document can be represented by a tree whose
leaves are elementary discourse units (EDUs, typ-
ically clauses or sentences). Internal nodes in the
tree correspond to spans of sentences that are con-
nected via discourse relations such as CONTRAST

and ELABORATION. In most cases, a discourse re-
lation links adjacent spans denoted “nucleus” and
“satellite,” with the former more essential to the
writer’s purpose than the latter.1

An example of a manually constructed RST
parse for a restaurant review is shown in Figure 1.
The six EDUs are indexed from A to F ; the dis-
course tree organizes them hierarchically into in-
creasingly larger spans, with the last CONTRAST

relation resulting in a span that covers the whole
review. Within each relation, the RST tree in-
dicates the nucleus pointed by an arrow from its
satellite (e.g., in the ELABORATION relation, A is
the nucleus and B is the satellite).

The information embedded in RST trees has
motivated many applications in NLP research, in-
cluding document summarization (Marcu, 1999),
argumentation mining (Azar, 1999), and sentiment
analysis (Bhatia et al., 2015). In most applica-
tions, RST trees are built by automatic discourse
parsing, due to the expensive cost of manual an-
notation. In this work, we use a state-of-the-art
open-source RST-style discourse parser, DPLP (Ji
and Eisenstein, 2014).2

We follow recent work that suggests trans-
forming the RST tree into a dependency struc-
ture (Yoshida et al., 2014).3 Figure 2(a) shows the
corresponding dependency structure of the RST
tree in Figure 1. It is clear that C is the root of
the tree, and in fact this clause summarizes the re-
view and suffices to categorize it as negative. This
dependency representation of the RST tree offers a

1There are also a few exceptions in which a relation can
be realized with multiple nuclei.

2https://github.com/jiyfeng/DPLP
3The transformation is trivial and deterministic given the

nucleus-satellite mapping for each relation. The procedure is
analogous to the transformation of a headed phrase-structure
parse in syntax into a dependency tree (e.g., Yamada and Mat-
sumoto, 2003).

form of inductive bias for our neural model, help-
ing it to discern the most salient parts of a text in
order to assign it a label.

3 Model

Our model is a recursive neural network built on
a discourse dependency tree. It includes a dis-
tributed representation computed for each EDU,
and a composition function that combines EDUs
and partial trees into larger trees. At the top of the
tree, the representation of the complete document
is used to make a categorization decision. Our ap-
proach is analogous to (and inspired by) the use
of recursive neural networks on syntactic depen-
dency trees, with word embeddings at the leaves
(Socher et al., 2014).

3.1 Representation of Sentences

Let e be the distributed representation of an EDU.
We use a bidirectional LSTM on the words’ em-
beddings within each EDU (details of word em-
beddings are given in section 4), concatenating the
last hidden state vector from the forward LSTM
(−→e) with that of the backward LSTM (←−e) to get e.

There is extensive recent work on architectures
for embedding representations of sentences and
other short pieces of text, including, for example,
(bi)recursive neural networks (Paulus et al., 2014)
and convolutional neural networks (Kalchbrenner
et al., 2014). Future work might consider alterna-
tives; we chose the bidirectional LSTM due to its
effectiveness in many settings.

3.2 Full Recursive Model

Given the discourse dependency tree for an input
text, our recursive model builds a vector represen-
tation through composition at each arc in the tree.
Let vi denote the vector representation of EDU i
and its descendants. For the base case where EDU
i is a leaf in the tree, we let vi = tanh(ei), which
is the elementwise hyperbolic tangent function.

For an internal node i, the composition function
considers a parent and all of its children, whose in-
dices are denoted by children(i). In defining this
composition function, we seek for (i.) the contri-
bution of the parent node ei to be central; and (ii.)
the contribution of each child node ej be deter-
mined by its content as well as the discourse rela-
tion it holds with the parent. We therefore define

997

C

DA E

B F

Elab.

Cont. Exp. Exp.

Cont.

(a) dependency structure

tanh(eC +
∑
j∈{A,D,E} αC,jWC,jvj)

tanh(eD)tanh(eA + αA,BWA,BvB) tanh(eE + αF,EWF,EvF)

tanh(eB) tanh(eF)

WA,B

WC,A WC,D WC,E

WF,E

(b) recursive neural network structure

Figure 2: The dependency discourse tree derived from the example RST tree in Figure 1 (a) and the
corresponding recursive neural network model on the tree (b).

vi = tanh


ei +

∑

j∈children(i)
αi,jWri,jvj


 ,

(1)
where Wri,j is a relation-specific composition
matrix indexed by the relation between i and j,
ri,j .
αi,j is an “attention” weight, defined as

αi,j = σ
(
e>i Wαvj

)
, (2)

where σ is the elementwise sigmoid and Wα

contains attention parameters (these are relation-
independent). Our attention mechanism differs
from prior work (Bahdanau et al., 2015), in which
attention weights are normalized to sum to one
across competing candidates for attention. Here,
αi,j does not depend on node i’s other children.
This is motivated by RST, in which the presence
of a node does not signify lesser importance to its
siblings. Consider, for example, EDU D and text
span E-F in Figure 1, which in parallel provide
EXPLANATION for EDU C. This scenario dif-
fers from machine translation, where attention is-
used to implicitly and softly align output-language
words to relatively few input-language words. It
also differs from attention in composition func-
tions used in syntactic parsing (Kuncoro et al.,
2017), where attention can mimic head rules that
follow from an endocentricity hypothesis of syn-
tactic phrase representation.

Our recursive composition function, through
the attention mechanism and the relation-specific
weight matrices, is designed to learn how to dif-
ferently weight EDUs for the categorization task.
This idea of using a weighting scheme along
with discourse structure is explored in prior works
(Bhatia et al., 2015; Hogenboom et al., 2015), al-
though they are manually designed, rather than
learned from training data.

Once we have vroot of a text, the prediction of
its category is given by softmax (Wovroot + b).

We refer to this model as the FULL model, since
it makes use of the entire discourse dependency
tree.

3.3 Unlabeled Model

The FULL model based on Equation 1 uses a de-
pendency discourse tree with relations. Because
alternate discourse relation labels have been pro-
posed (e.g., Prasad et al., 2008), we seek to mea-
sure the effect of these labels. We therefore con-
sider an UNLABELED model based only on the
tree structure, without the relations:

vi = tanh


ei +

∑

j∈children(i)
αi,jvj


 . (3)

Here, only attention weights are used to compose
the children nodes’ representations, significantly
reducing the number of model parameters.

This UNLABELED model is similar to the depth
weighting scheme introduced by Bhatia et al.
(2015), which also uses an unlabeled discourse de-
pendency tree, but our attention weights are com-
puted by a function whose parameters are learned.
This approach sits squarely between Bhatia et al.
(2015) and the flat document structure used by
Yang et al. (2016); the UNLABELED model still
uses discourse to bias the model toward some con-
tent (that which is closer to the tree’s root).

3.4 Simpler Variants

We consider two additional baselines that are even
simpler. The first, ROOT, uses the discourse de-
pendency structure only to select the root EDU,
which is used to represent the entire text: vroot =
eroot. No composition function is needed. This
model variant is motivated by work on document
summarization (Yoshida et al., 2014), where the

998

most central EDU is used to represent the whole
text.

The second variant, ADDITIVE, uses all the
EDUs with a simple composition function, and
does not depend on discourse structure at all:
vroot =

1
N

∑N
i=1 ei, where N is the total number

of EDUs. This serves as a baseline to test the bene-
fits of discourse, controlling for other design deci-
sions and implementation choices. Although sen-
tence representations ei are built in a different way
from the work of Yang et al. (2016), this model is
quite similar to their HN-AVE model on building
document representations.

4 Implementation Details

The parameters of all components of our model
(top-level classification, composition, and EDU
representation) are learned end-to-end using stan-
dard methods. We implement our learning pro-
cedure with the DyNet package (Neubig et al.,
2017).

Preprocessing. For all datasets, we use the same
preprocessing steps, mostly following recent work
on language modeling (e.g., Mikolov et al., 2010).
We lowercased all the tokens and removed tokens
that contain only punctuation symbols. We re-
placed numbers in the documents with a special
number token. Low-frequency word types were
replaced by UNK; we reduce the vocabulary for
each dataset until approximately 5% of tokens are
mapped to UNK. The vocabulary sizes after pre-
processing are also shown in Table 1.

Discourse parsing. Our model requires the dis-
course structure for each document. We used
DPLP, the RST parser from Ji and Eisenstein
(2014), which is one of the best discourse parsers
on the RST discourse treebank benchmark (Carl-
son et al., 2001). It employs a greedy decoding
algorithm for parsing, producing 2,000 parses per
minute on average on a single CPU. DPLP pro-
vides discourse segmentation, breaking a text into
EDUs, typically clauses or sentences, based on
syntactic parses provided by Stanford CoreNLP.
RST trees are converted to dependencies follow-
ing the method of Yoshida et al. (2014). DPLP
as distributed is trained on 347 Wall Street Jour-
nal articles from the Penn Treebank (Marcus et al.,
1993).

Word embeddings. In cases where there are
10,000 or fewer training examples, we used

pretrained GloVe word embeddings (Pennington
et al., 2014), following previous work on neu-
ral discourse processing (Ji and Eisenstein, 2015).
For larger datasets, we randomly initialized word
embeddings and trained them alongside other
model parameters.

Learning and hyperparameters. Online learn-
ing was performed with the optimization method
and initial learning rate as hyperparameters. To
avoid the exploding gradient problem, we used the
norm clipping trick with a threshold of τ = 5.0.
In addition, dropout rate 0.3 was used on both
input and hidden layers to avoid overfitting. We
performed grid search over the word vector repre-
sentation dimensionality, the LSTM hidden state
dimensionality (both {32, 48, 64, 128, 256}), the
initial learning rate ({0.1, 0.01, 0.001}), and the
update method (SGD and Adam, Kingma and Ba,
2015). For each corpus, the highest-accuracy com-
bination of these hyperparameters is selected us-
ing development data or ten-fold cross validation,
which will be specified in section 5.

5 Datasets

We selected five datasets of different sizes and cor-
responding to varying categorization tasks. Some
information about these datasets is summarized
in Table 1.

Sentiment analysis on Yelp reviews. Originally
from the Yelp Dataset Challenge in 2015, this
dataset contains 1.5 million examples. We used
the preprocessed dataset from Zhang et al. (2015),
which has 650,000 training and 50,000 test exam-
ples. The task is to predict an ordinal rating (1–5)
from the text of the review. To select the best com-
bination of hyperparameters, we randomly sam-
pled 10% training examples as the development
data. We compared with hierarchical attention net-
works (Yang et al., 2016), which use the normal-
ized attention mechanism on both word and sen-
tence layers with a flat document structure, and
provide the state-of-the-art result on this corpus.

Framing dimensions in news articles. The Me-
dia Frames Corpus (MFC; Card et al., 2015) in-
cludes around 4,200 news articles about immi-
gration from 13 U.S. newspapers over the years
1980–2012. The annotations of these articles are
in terms of a set of 15 general-purpose labels,
such as ECONOMICS and MORALITY, designed
to categorize the emphasis framing applied to the

999

Number of docs.

Dataset Task Classes Total Training Development Test Vocab. size

Yelp Sentiment 5 700K 650K – 50K 10K
MFC Frames 15 4.2K – – – 7.5K
Debates Vote 2 1.6K 1,135 105 403 5K
Movies Sentiment 2 2.0K – – – 5K
Bills Survival 2 52K 46K – 6K 10K

Table 1: Information about the five datasets used in our experiments. To compare with prior work, we
use different experimental settings. For Yelp and Bill corpora, we use 10% of the training examples as
development data. For MFC and Movies corpora, we use 10-fold cross validation and report averages
across all folds.

immigration issue within the articles. We fo-
cused on predicting the single primary frame of
each article. The state-of-the-art result on this
corpus is from Card et al. (2016), where they
used logistic regression together with unigrams,
bigrams and Bamman-style personas (Bamman
et al., 2014) as features. The best feature com-
bination in their model alongside other hyperpa-
rameters was identified by a Bayesian optimiza-
tion method (Bergstra et al., 2015). To select hy-
perparameters, we used a small set of examples
from the corpus as a development set. Then, we
report average accuracy across 10-fold cross vali-
dation as in (Card et al., 2016).

Congressional floor debates. The corpus was
originally collected by Thomas et al. (2006), and
the data split we used was constructed by Yesse-
nalina et al. (2010). The goal is to predict the vote
(“yea” or “nay”) for the speaker of each speech
segment. The most recent work on this corpus
is from Yogatama and Smith (2014), which pro-
posed structured regularization methods based on
linguistic components, e.g., sentences, topics, and
syntactic parses. Each regularization method in-
duces a linguistic bias to improve text classifica-
tion accuracy, where the best result we repeated
here is from the model with sentence regularizers.

Movie reviews. This classic movie review cor-
pus was constructed by Pang and Lee (2004) and
includes 1,000 positive and 1,000 negative re-
views. On this corpus, we used the standard ten-
fold data split for cross validation and reported
the average accuracy across folds. We compared
with the work from both Bhatia et al. (2015) and
Hogenboom et al. (2015), which are two recent
works on discourse for sentiment analysis. Bha-

tia et al. (2015) used a hand-crafted weighting
scheme to bias the bag-of-word representations on
sentences. Hogenboom et al. (2015) also consid-
ered manually-designed weighting schemes and a
lexicon-based model as classifier, achieving per-
formance inferior to fully-supervised methods like
Bhatia et al. (2015) and ours.

Congressional bill corpus. This corpus, col-
lected by Yano et al. (2012), includes 51,762 leg-
islative bills from the 103rd to 111th U.S. Con-
gresses. The task is to predict whether a bill will
survive based on its content. We randomly sam-
pled 10% training examples as development data
to search for the best hyperparameters. To our
knowledge, the best published results are due to
Yogatama and Smith (2014), which is the same
baseline as for the congressional floor debates cor-
pus.

6 Experiments

We evaluated all variants of our model on the five
datasets presented in section 5, comparing in each
case to the published state of the art as well as the
most relevant works.

Results. See Table 2. On four out of five
datasets, our UNLABELED model (line 8) outper-
forms past methods. In the case of the very large
Yelp dataset, our FULL model (line 9) gives even
stronger performance, but not elsewhere, suggest-
ing that it is overparameterized for the smaller
datasets. Indeed, on the MFC and Movies tasks,
the discourse-ignorant ADDITIVE outperforms the
FULL model. On these datasets, the selected FULL

model had nearly 20 times as many parameters as
the UNLABELED model, which in turn had twice
as many parameters as the ADDITIVE.

1000

Method Yelp MFC Debates Movies Bills

Prior work
1. Yang et al. (2016) 71.0 — — — —
2. Card et al. (2016) — 56.8 — — —
3. Yogatama and Smith (2014) — — 74.0 — 88.5
4. Bhatia et al. (2015) — — — 82.9 —
5. Hogenboom et al. (2015) — — — 71.9 —
Variants of our model
6. ADDITIVE 68.5 57.6 69.0 82.7 80.1
7. ROOT 54.3 51.2 60.3 68.7 70.5
8. UNLABELED 71.3 58.4 75.7 83.1 78.4
9. FULL 71.8 56.3 74.2 79.5 77.0

Table 2: Test-set accuracy across five datasets. Results from prior work are reprinted from the corre-
sponding publications. Boldface marks performance stronger than the previous state of the art.

This finding demonstrates the benefit of ex-
plicit discourse structure—even the output from an
imperfect parser—for text categorization in some
genres. This benefit is supported by both UN-
LABELED and FULL, since both of them use dis-
course structures of texts. The advantage of us-
ing discourse information varies on different gen-
res and different corpus sizes. Even though the
discourse parser is trained on news text, it still of-
fers benefit to restaurant and movie reviews and to
the genre of congressional debates. Even for news
text, if the training dataset is small (e.g., MFC), a
lighter-weight variant of discourse (UNLABELED)
is preferred.

Legislative bills, which have technical legal
content and highly specialized conventions (see
the supplementary material for an example), are
arguably the most distant genre from news among
those we considered. On that task, we see dis-
course working against accuracy. Note that the
corpus of bills is more than ten times larger than
three cases where our UNLABELED model outper-
formed past methods, suggesting that the drop in
performance is not due to lack of data.

It is also important to notice that the ROOT

model performs quite poorly in all cases. This im-
plies that discourse structure is not simply helping
by finding a single EDU upon which to make the
categorization decision.

Qualitative analysis. Figure 3 shows some ex-
ample texts from the Yelp Review corpus with
their discourse structures produced by DPLP,
where the weights were generated with the FULL

model. Figures 3(a) and 3(b) are two successful

examples of the FULL model. Figure 3(a) shows
a simple case with respect to the discourse struc-
ture. Figure 3(b) is slightly different—the text in
this example may have more than one reasonable
discourse structure, e.g., 2D could be a child of
2C instead of 2A. In both cases, discourse struc-
tures help the FULL model bias to the important
sentences.

Figure 3(c), on the other hand, presents a neg-
ative example, where DPLP failed to identify
the most salient sentence 3F . In addition, the
weights produced by the FULL model do not
make much sense, which we suspect the model
was confused by the structure. Figure 3(c) also
presents a manually-constructed discourse struc-
ture on the same text for reference. A more accu-
rate prediction is expected if we use this manually-
constructed discourse structure, because it has the
appropriate dependency between sentences. In ad-
dition, the annotated discourse relations are able to
select the right relation-specific composition ma-
trices in FULL model, which are consistent with
the training examples.

Effect of parsing performance. A natural ques-
tion is whether further improvements to RST dis-
course parsing would lead to even greater gains in
text categorization. While advances in discourse
parsing are beyond the scope of this paper, we
can gain some insight by exploring degradation
to the DPLP parser. An easy way to do this is
to train it on subsets of the RST discourse tree-
bank. We repeated the conditions described above
for our FULL model, training DPLP on 25%, 50%,
and 75% of the training set (randomly selected in

1001

From DPLP:

1A 1B 1C
0.66

Elaboration

0.67

Cause

[This store is somewhat convenient but I can never find

any workers,]1A [it drives me crazy.]1B [I never come

here on the weekends or around holidays anymore.]1C

(a) true label: 2, predicted label: 2

From DPLP:

2A2B2C 2D
0.87

Evaluation

0.61

Elaboration

0.70

Evaluation

[I love these people.]2A [They are very friendly and always ask about my

life.]2B [They remember things I tell them then ask about it the next time

I’m in.]2C [Patrick and Lily are the best but everyone there is wonderful in

their own ways.]2D

(b) true label: 5, predicted label: 5

From DPLP:

3B

3A 3C 3D 3E 3F
0.47

Elaboration

0.32

Elaboration

0.62

Elaboration

0.16 Elaboration0.32Attribution

Manually constructed:

3F

3B3A

3C 3D

3E

Cause

Background

Explanation Explanation

Explanation

[We use to visit this pub 10 years ago because they had a nice english waitress and excellent fish and chips for

the price.]3A [However we went back a few weeks ago and were disappointed.]3B [The price of the fish and chip

dinner went up and they cut the portion in half.]3C [No one assisted us in putting two tables together we had to

do it ourselves.]3D [Two guests wanted a good English hot tea and they didn’t brew it in advance.]3E [So we’ve

decided there are newer and better places to eat fish and chips especially up in north phoenix.]3F

(c) true label: 1, predicted label: 3

Figure 3: Some example texts (with light revision for readability) from the Yelp Review corpus and
their corresponding dependency discourse parses from DPLP (Ji and Eisenstein, 2014). The numbers on
dependency edges are attention weights produced by the FULL model.

1002

50 52 54 56 58 60 62
F1 on RST Discourse Treebank

70.8

71.0

71.2

71.4

71.6

71.8
A

cc
u

ra
cy

 o
n

 Y
e
lp

 R
e
vi

e
w

s

Figure 4: Varying the amount of training data for
the discourse parser, we can see how parsing F1

performance affects accuracy on the Yelp review
task.

each case) before re-parsing the data for the sen-
timent analysis task. We did not repeat the hy-
perparameter search. In Figure 4, we plot accu-
racy of the classifier (y-axis) against the F1 perfor-
mance of the discourse parser (x-axis). Unsurpris-
ingly, lower parsing performance implies lower
classification accuracy. Notably, if the RST dis-
course treebank were reduced to 25% of its size,
our method would underperform the discourse-
ignorant model of Yang et al. (2016). While we
cannot extrapolate with certainty, these findings
suggest that further improvements to discourse
parsing, through larger annotated datasets or im-
proved models, could lead to greater gains.

Attention mechanism. In section 3, we con-
trasted our new attention mechanism (Equation 2),
which is inspired by RST’s lack of “competi-
tion” for salience among satellites, with the atten-
tion mechanism used in machine translation (Bah-
danau et al., 2015). We consider here a variant of
our model with normalized attention:

α′i = softmax







...
v>j

...



j∈children(i)

Wα · ei


 .

(4)
The result here is a vectorα′i, with one element for
each child node j ∈ children(i), and which sums
to one.

On Yelp dateset, this variant of the FULL model
achieves 70.3% accuracy (1.5% absolute behind
our FULL model), giving empirical support to our

theoretically-motivated design decision not to nor-
malize attention. Of course, further architecture
improvements may yet be possible.

Discussion. Our findings in this work show the
benefit of using discourse structure for text cate-
gorization. Although discourse structure strongly
improves the performance on most of corpora in
our experiments, its benefit is limited particularly
by two factors: (1) the state-of-the-art perfor-
mance on RST discourse parsing; and (2) domain
mismatch between the training corpus for a dis-
course parser and the domain where the discourse
parser is used. For the first factor, discourse pars-
ing is still an active research topic in NLP, and may
yet improve. The second factor suggests explor-
ing domain adaptation methods or even direct dis-
course annotation for genres of interest.

7 Related Work

Early work on text categorization often treated text
as a bag of words (e.g., Joachims, 1998; Yang and
Pedersen, 1997). Representation learning, for ex-
ample through matrix decomposition (Deerwester
et al., 1990) or latent topic variables (Ramage
et al., 2009), has been considered to avoid over-
fitting in the face of sparse data.

The assumption that all parts of a text should
influence categorization equally persists even as
more powerful representation learners are consid-
ered. Zhang et al. (2015) treat a text as a sequence
of characters, proposing to a deep convolutional
neural network to build text representation. Xiao
and Cho (2016) extended that architecture by in-
serting a recurrent neural network layer between
the convolutional layer and the classification layer.

In contrast, our contributions follow Ko et al.
(2004), who sought to weight the influence of dif-
ferent parts of an input text on the task. Two works
that sought to learn the importance of sentences in
a document are Yessenalina et al. (2010) and Yang
et al. (2016). The former used a latent variable
for the informativeness of each sentence, and the
latter used a neural network to learn an attention
function. Neither used any linguistic bias, relying
only on task supervision to discover the latent vari-
able distribution or attention function. Our work
builds the neural network directly on a discourse
dependency tree, favoring the most central EDUs
over the others but giving the model the ability to
overcome this bias.

Another way to use linguistic information was

1003

presented by Yogatama and Smith (2014), who
used a bag-of-words model. The novelty in their
approach was a data-driven regularization method
that encouraged the model to collectively ignore
groups of features found to coocur. Most related
to our work is their “sentence regularizer,” which
encouraged the model to try to ignore training-set
sentences that were not informative for the task.
Discourse structure was not considered.

Discourse for sentiment analysis. Recently,
discourse structure has been considered for sen-
timent analysis, which can be cast as a text cate-
gorization problem. Bhatia et al. (2015) proposed
two discourse-motivated models for sentiment po-
larity prediction. One of the models is also based
on discourse dependency trees, but using a hand-
crafted weighting scheme. Our method’s attention
mechanism automates the weighting.

8 Conclusion

We conclude that automatically-derived discourse
structure can be helpful to text categorization, and
the benefit increases with the accuracy of dis-
course parsing. We did not see a benefit for
categorizing legislative bills, a text genre whose
discourse structure diverges from that of news.
These findings motivate further improvements to
discourse parsing, especially for new genres.

Acknowledgments

We thank anonymous reviewers and members of
Noah’s ARK for helpful feedback on this work.
We thank Dallas Card and Jesse Dodge for helping
prepare the Media Frames Corpus and the Con-
gressional bill corpus. This work was made pos-
sible by a University of Washington Innovation
Award.

References
Moshe Azar. 1999. Argumentative text as rhetorical

structure: An application of rhetorical structure the-
ory. Argumentation 13(1):97–114.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

David Bamman, Brendan O’Connor, and Noah A
Smith. 2014. Learning latent personas of film char-
acters. In ACL.

James Bergstra, Brent Komer, Chris Eliasmith, Dan
Yamins, and David D. Cox. 2015. Hyperopt: a

Python library for model selection and hyperparam-
eter optimization. Computational Science & Dis-
covery 8(1).

Parminder Bhatia, Yangfeng Ji, and Jacob Eisenstein.
2015. Better document-level sentiment analysis
from RST discourse parsing. In EMNLP.

Dallas Card, Amber E. Boydstun, Justin H. Gross,
Philip Resnik, and Noah A. Smith. 2015. The Me-
dia Frames Corpus: Annotations of frames across
issues. In ACL.

Dallas Card, Justin Gross, Amber E. Boydstun, and
Noah A. Smith. 2016. Analyzing framing through
the casts of characters in the news. In EMNLP.

Lynn Carlson, Daniel Marcu, and Mary Ellen
Okurowski. 2001. Building a discourse-tagged cor-
pus in the framework of Rhetorical Structure The-
ory. In Proceedings of Second SIGdial Workshop on
Discourse and Dialogue.

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American Society for Information Science
41(6):391.

Alexander Hogenboom, Flavius Frasincar, Franciska
de Jong, and Uzay Kaymak. 2015. Using rhetorical
structure in sentiment analysis. Communications of
the ACM 58(7):69–77.

Yangfeng Ji and Jacob Eisenstein. 2014. Representa-
tion learning for document-level discourse parsing.
In ACL.

Yangfeng Ji and Jacob Eisenstein. 2015. One vector is
not enough: Entity-augmented distributed semantics
for discourse relations. Transactions of the Associa-
tion of Computational Linguistics 3:329–344.

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In ECML.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. ArXiv:1404.2188.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Youngjoong Ko, Jinwoo Park, and Jungyun Seo. 2004.
Improving text categorization using the importance
of sentences. Information Processing & Manage-
ment 40(1):65–79.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A.
Smith. 2017. What do recurrent neural network
grammars learn about syntax? In EACL.

William Mann and Sandra Thompson. 1988. Rhetori-
cal Structure Theory: Toward a functional theory of
text organization. Text 8(3):243–281.

1004

Daniel Marcu. 1999. Discourse trees are good indi-
cators of importance in text. In Inderjeet Mani and
Mark T. Maybury, editors, Advances in Automatic
Text Summarization, pages 123–136.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of English: The Penn Treebank. Computa-
tional Linguistics 19(2):313–330.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, et al. 2017. Dynet: The dy-
namic neural network toolkit. ArXiv:1701.03980.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
the 42nd annual meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics, page 271.

Romain Paulus, Richard Socher, and Christopher D
Manning. 2014. Global belief recursive neural net-
works. In NIPS.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word
representation. In EMNLP.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse Treebank 2.0.
In LREC.

Daniel Ramage, David Hall, Ramesh Nallapati, and
Christopher D. Manning. 2009. Labeled lda: A su-
pervised topic model for credit attribution in multi-
labeled corpora. In EMNLP.

Richard Socher, Andrej Karpathy, Quoc V Le, Christo-
pher D. Manning, and Andrew Y. Ng. 2014.
Grounded compositional semantics for finding and
describing images with sentences. Transactions
of the Association for Computational Linguistics
2:207–218.

Matt Thomas, Bo Pang, and Lillian Lee. 2006. Get out
the vote: Determining support or opposition from
Congressional floor-debate transcripts. In EMNLP.

Yijun Xiao and Kyunghyun Cho. 2016. Effi-
cient character-level document classification by
combining convolution and recurrent layers.
ArXiv:1602.00367.

H. Yamada and Y. Matsumoto. 2003. Statistical de-
pendency analysis with support vector machines. In
IWPT .

Yiming Yang and Jan O. Pedersen. 1997. A compara-
tive study on feature selection in text categorization.
In ICML.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
NAACL.

Tae Yano, Noah A. Smith, and John D. Wilkerson.
2012. Textual predictors of bill survival in congres-
sional committees. In NAACL.

Ainur Yessenalina, Yisong Yue, and Claire Cardie.
2010. Multi-level structured models for document
sentiment classification. In EMNLP.

Dani Yogatama and Noah A. Smith. 2014. Linguistic
structured sparsity in text categorization. In ACL.

Yasuhisa Yoshida, Jun Suzuki, Tsutomu Hirao, and
Masaaki Nagata. 2014. Dependency-based dis-
course parser for single-document summarization.
In EMNLP.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS.

1005

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1006–1017
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1093

Adversarial Connective-exploiting Networks for
Implicit Discourse Relation Classification

Lianhui Qin1,2, Zhisong Zhang1,2, Hai Zhao1,2,∗, Zhiting Hu3, Eric P. Xing3

1Department of Computer Science and Engineering, Shanghai Jiao Tong University
2Key Laboratory of Shanghai Education Commission for Intelligent Interaction

and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
3Carnegie Mellon University

{qinlianhui, zzs2011}@sjtu.edu.cn, zhaohai@cs.sjtu.edu.cn,
{zhitingh, epxing}@cs.cmu.edu

Abstract

Implicit discourse relation classification is
of great challenge due to the lack of con-
nectives as strong linguistic cues, which
motivates the use of annotated implicit
connectives to improve the recognition.
We propose a feature imitation frame-
work in which an implicit relation net-
work is driven to learn from another neu-
ral network with access to connectives,
and thus encouraged to extract similarly
salient features for accurate classification.
We develop an adversarial model to en-
able an adaptive imitation scheme through
competition between the implicit network
and a rival feature discriminator. Our
method effectively transfers discriminabil-
ity of connectives to the implicit features,
and achieves state-of-the-art performance
on the PDTB benchmark.

1 Introduction

Discourse relations connect linguistic units such
as clauses and sentences to form coherent seman-
tics. Identification of discourse relations can ben-
efit a variety of downstream applications includ-
ing question answering (Liakata et al., 2013), ma-
chine translation (Li et al., 2014), text summariza-
tion (Gerani et al., 2014), opinion spam detection
(Chen and Zhao, 2015), and so forth.

∗Corresponding authors. This paper was partially sup-
ported by Cai Yuanpei Program (CSC No. 201304490199
and No. 201304490171), National Natural Science Foun-
dation of China (No. 61170114, No. 61672343 and No.
61272248), National Basic Research Program of China (No.
2013CB329401), Major Basic Research Program of Shang-
hai Science and Technology Committee (No. 15JC1400103),
Art and Science Interdisciplinary Funds of Shanghai Jiao
Tong University (No. 14JCRZ04), and Key Project of
National Society Science Foundation of China (No. 15-
ZDA041).

Connectives (e.g., but, so, etc) are one of the
most critical linguistic cues for identifying dis-
course relations. When explicit connectives are
present in the text, a simple frequency-based map-
ping is sufficient to achieve over 85% classifica-
tion accuracy (Xue et al., 2016; Li et al., 2016).
In contrast, implicit discourse relation recognition
has long been seen as a challenging problem, with
the best accuracy so far still lower than 50% (Chen
et al., 2015). In the implicit case, discourse rela-
tions are not lexicalized by connectives, but to be
inferred from relevant sentences (i.e., arguments).
For example, the following two adjacent sentences
Arg1 and Arg2 imply relation Cause (i.e., Arg2 is
the cause of Arg1).

[Arg1]: Never mind.

[Arg2]: You already know the answer.

[Implicit connective]: Because

[Discourse relation]: Cause

Various attempts have been made to directly in-
fer underlying relations by modeling the seman-
tics of the arguments, ranging from feature-based
methods (Lin et al., 2009; Pitler et al., 2009) to the
very recent end-to-end neural models (Chen et al.,
2016a; Qin et al., 2016c). Despite impressive per-
formance, the absence of strong explicit connec-
tive cues has made the inference extremely hard
and hindered further improvement. In fact, even
the human annotators would make use of connec-
tives to aid relation annotation. For instance, the
popular Penn Discourse Treebank (PDTB) bench-
mark data (Prasad et al., 2008) was annotated by
first inserting a connective expression (i.e., im-
plicit connective, as shown in the above example)
manually, and determining the abstract relation by
combining both the implicit connective and con-
textual semantics.

1006

https://doi.org/10.18653/v1/P17-1093

Therefore, the huge performance gap between
explicit and implicit parsing (namely, 85% vs
50%), as well as the human annotation practice,
strongly motivates to incorporate connective infor-
mation to guide the reasoning process. This paper
aims to advance implicit parsing by making use of
annotated implicit connectives available in train-
ing data. Few recent work has explored such com-
bination. Zhou et al. (2010) developed a two-step
approach by first predicting implicit connectives
whose sense is then disambiguated to obtain the
relation. However, the pipeline approach usually
suffers from error propagation, and the method it-
self has relied on hand-crafted features which do
not necessarily generalize well. Other research
leveraged explicit connective examples for data
augmentation (Rutherford and Xue, 2015; Braud
and Denis, 2015; Ji et al., 2015; Braud and Denis,
2016). Our work is orthogonal and complemen-
tary to this line.

In this paper, we propose a novel neural method
that incorporates implicit connectives in a princi-
pled adversarial framework. We use deep neu-
ral models for relation classification, and take the
intuition that, sentence arguments integrated with
connectives would enable highly discriminative
neural features for accurate relation inference, and
an ideal implicit relation classifier, even though
without access to connectives, should mimic the
connective-augmented reasoning behavior by ex-
tracting similarly salient features. We therefore
setup a secondary network in addition to the im-
plicit relation classifier, building upon connective-
augmented inputs and serving as a feature learning
model for the implicit classifier to emulate.

Methodologically, however, feature imitation in
our problem is challenging due to the semantic gap
induced by adding the connective cues. It is nec-
essary to develop an adaptive scheme to flexibly
drive learning and transfer discriminability. We
devise a novel adversarial approach which enables
a self-calibrated imitation mechanism. Specifi-
cally, we build a discriminator which distinguishes
between the features by the two counterpart net-
works. The implicit relation network is then
trained to correctly classify relations and simulta-
neously to fool the discriminator, resulting in an
adversarial framework. The adversarial mecha-
nism has been an emerging method in different
context, especially for image generation (Good-
fellow et al., 2014) and domain adaptation (Ganin

et al., 2016; Chen et al., 2016c). Our adversar-
ial framework is unique to address neural fea-
ture emulation between two models. Besides, to
the best of our knowledge, this is the first adver-
sarial approach in the context of discourse pars-
ing. Compared to previous connective exploit-
ing work (Zhou et al., 2010; Xu et al., 2012),
our method provides a new integration paradigm
and an end-to-end procedure that avoids inefficient
feature engineering and error propagation.

Our method is evaluated on the PDTB 2.0
benchmark in a variety of experimental settings.
The proposed adversarial model greatly improves
over standalone neural models and previous best-
performing approaches. We also demonstrate that
our implicit recognition network successfully imi-
tates and extracts crucial hidden representations.

We begin by briefly reviewing related work in
section 2. Section 3 presents the proposed adver-
sarial model. Section 4 shows substantially im-
proved experimental results over previous meth-
ods. Section 5 discusses extensions and future
work.

2 Related Work

2.1 Implicit Discourse Relation Recognition

There has been a surge of interest in implicit dis-
course parsing since the release of PDTB (Prasad
et al., 2008), the first large discourse corpus distin-
guishing implicit examples from explicit ones. A
large set of work has focused on direct classifica-
tion based on observed sentences, including struc-
tured methods with linguistically-informed fea-
tures (Lin et al., 2009; Pitler et al., 2009; Zhou
et al., 2010), end-to-end neural models (Qin et al.,
2016b,c; Chen et al., 2016a; Liu and Li, 2016), and
combined approaches (Ji and Eisenstein, 2015; Ji
et al., 2016). However, the lacking of connec-
tive cues makes learning purely from contextual
semantics full of challenges.

Prior work has attempted to leverage connec-
tive information. Zhou et al. (2010) also incorpo-
rate implicit connectives, but in a pipeline man-
ner by first predicting the implicit connective with
a language model and determining discourse rela-
tion accordingly. Instead of treating implicit con-
nectives as intermediate prediction targets which
can suffer from error propagation, we use the con-
nectives to induce highly discriminative features to
guide the learning of an implicit network, serving
as an adaptive regularization mechanism for en-

1007

hanced robustness and generalization. Our frame-
work is also end-to-end, avoiding costly feature
engineering. Another notable line aims at adapt-
ing explicit examples for data synthesis (Biran
and McKeown, 2013; Rutherford and Xue, 2015;
Braud and Denis, 2015; Ji et al., 2015), multi-task
learning (Lan et al., 2013; Liu et al., 2016), and
word representation (Braud and Denis, 2016). Our
work is orthogonal and complementary to these
methods, as we use implicit connectives which
have been annotated for implicit examples.

2.2 Adversarial Networks

Deep neural networks have gained impressive suc-
cess in various natural language processing tasks
(Wang et al., 2016; Zhang et al., 2016b; Cai
et al., 2017), in which adversarial networks have
been shown especially effective in deep genera-
tive modeling (Goodfellow et al., 2014) and do-
main adaptation (Ganin et al., 2016). Generative
adversarial nets (Goodfellow et al., 2014) learn
to produce realistic samples through competition
between a generator and a real/fake discrimina-
tor. Professor forcing (Lamb et al., 2016) ap-
plies a similar idea to improve long-term gener-
ation of a recurrent neural language model. Other
approaches (Chen et al., 2016b; Hu et al., 2017;
Liang et al., 2017) extend the framework for con-
trollable image/text generation. Li et al. (2015);
Salimans et al. (2016) propose feature matching
which trains generators to match the statistics of
real/fake examples. Their features are extracted
by the discriminator rather than the classifier net-
works as in our case. Our work differs from the
above since we consider the context of discrimi-
native modeling. Adversarial domain adaptation
forces a neural network to learn domain-invariant
features using a classifier that distinguishes the
domain of the network’s input data based on the
hidden feature. Our adversarial framework is dis-
tinct in that besides the implicit relation network
we construct a second neural network serving as a
teacher model for feature emulation.

To the best of our knowledge, this is the first
to employ the idea of adversarial learning in the
context of discourse parsing. We propose a novel
connective exploiting scheme based on feature im-
itation, and to this end derive a new adversar-
ial framework, achieving substantial performance
gain over existing methods. The proposed ap-
proach is generally applicable to other tasks for

utilizing any indicative side information. We give
more discussions in section 5.

3 Adversarial Method

Discourse connectives are key indicators for dis-
course relation. In the annotation procedure of
the PDTB implicit relation benchmark, annotators
inserted implicit connective expressions between
adjacent sentences to lexicalize abstract relations
and help with final decisions. Our model aims at
making full use of the provided implicit connec-
tives at training time to regulate learning of im-
plicit relation recognizer, encouraging extraction
of highly discriminative semantics from raw argu-
ments, and improving generalization at test time.
Our method provides a novel adversarial frame-
work that leverages connective information in a
flexible adaptive manner, and is efficiently trained
end-to-end through standard back-propagation.

The basic idea of the proposed approach is sim-
ple. We want our implicit relation recognizer,
which predicts the underlying relation of sen-
tence arguments without discourse connective, to
have prediction behaviors close to a connective-
augmented relation recognizer which is provided
with a discourse connective in addition to the ar-
guments. The connective-augmented recognizer is
in analogy to an annotator with the help of connec-
tives as in the human annotation process, and the
implicit recognizer would be improved by learn-
ing from such an “informed” annotator. Specif-
ically, we want the latent features extracted by
the two models to match as closely as possible,
which explicitly transfers the discriminability of
the connective-augmented representations to im-
plicit ones.

To this end, instead of manually selecting a
closeness metric, we take advantage of the ad-
versarial framework by constructing a two-player
zero-sum game between the implicit recognizer
and a rival discriminator. The discriminator at-
tempts to distinguish between the features ex-
tracted by the two relation models, while the im-
plicit relation model is trained to maximize the ac-
curacy on implicit data, and at the same time to
confuse the discriminator.

In the next we first present the overall architec-
ture of the proposed approach (section 3.1), then
develop the training procedure (section 3.2). The
components are realized as deep (convolutional)
neural networks, with detailed modeling choices

1008

x1: Never mind.
x2: You Know the answer. i-CNN

a-CNN

+implicit connective c: Because Discriminator D Classifier C

x1: Never mind.
x2: Because You Know the answer.

HI

HA

Figure 1: Architecture of the proposed method. The framework contains three main components: 1)
an implicit relation network i-CNN over raw sentence arguments, 2) a connective-augmented relation
network a-CNN whose inputs are augmented with implicit connectives, and 3) a discriminator distin-
guishing between the features by the two networks. The features are fed to the final classifier for relation
classification. The discriminator and i-CNN form an adversarial pair for feature imitation. At test time,
the implicit network i-CNN with the classifier is used for prediction.

discussed in section 3.3.

3.1 Model Architecture
Let (x, y) be a pair of input and output of implicit
relation classification, where x = (x1,x2) is a
pair of sentence arguments, and y is the underlying
discourse relation. Each training example also in-
cludes an annotated implicit connective c that best
expresses the relation. Figure 1 shows the archi-
tecture of our framework.

The neural model for implicit relation clas-
sification (i-CNN in the figure) extracts latent
representation from the arguments, denoted as
HI(x1,x2), and feeds the feature into a classifier
C for final prediction C(HI(x1,x2)). For ease
of notation, we will also use HI(x) to denote the
latent feature on data x.

The second relation network (a-CNN) takes
as inputs the sentence arguments along with an
implicit connective, to induce the connective-
augmented representation HA(x1,x2, c), and ob-
tains relation prediction C(HA(x1,x2, c)). Note
that the same final classifierC is used for both net-
works, so that the feature representations by the
two networks are ensured to be within the same
semantic space, enabling feature emulation as pre-
sented shortly.

We further pair the implicit network with a ri-
val discriminator D to form our adversarial game.
The discriminator is to differentiate between the
reasoning behaviors of the implicit network i-CNN
and the augmented network a-CNN. Specifically,
D is a binary classifier that takes as inputs a la-

tent feature H derived from either i-CNN or a-
CNN given appropriate data (where implicit con-
nectives is either missing or present, respectively).
The output D(H) estimates the probability that
H comes from the connective-augmented a-CNN
rather than i-CNN.

3.2 Training Procedure
The system is trained through an alternating op-
timization procedure that updates the components
in an interleaved manner. In this section, we first
present the training objective for each component,
and then give the overall training algorithm.

Let θD denote the parameters of the discrimina-
tor. The training objective ofD is straightforward,
i.e., to maximize the probability of correctly dis-
tinguishing the input features:

max
θD
LD = E(x,c,y)∼data

[
logD(HA(x, c);θD)+

log(1−D(HI(x);θD))
]
,

(1)

where E(x,c,y)∼data[·] denotes the expectation in
terms of the data distribution.

We denote the parameters of the implicit net-
work i-CNN and the classifier C as θI and θC ,
respectively. The model is then trained to (a)
correctly classify relations in training data and
(b) produce salient features close to connective-
augmented ones. The first objective can be ful-
filled by minimizing the usual cross-entropy loss:

LI,C(θI ,θC) = E(x,y)∼data

[
J
(
C(HI(x;θI);θC), y

)]
,

(2)

1009

Algorithm 1 Adversarial Model for Implicit Recognition

Input: Training data {(x, c, y)n}
Parameters: λ1, λ2 – balancing parameters

1: Initialize {θI ,θC} and {θA} by minimizing
Eq.(2) and Eq.(4), respectively

2: repeat
3: Train the discriminator through Eq.(1)
4: Train the relation models through Eq.(5)
5: until convergence

Output: Adversarially enhanced implicit relation
network i-CNN with classifier C for prediction

where J(p, y) = −∑k I(y = k) log pk is the
cross-entropy loss between predictive distribution
p and ground-truth label y. We achieve objective
(b) by minimizing the discriminator’s chance of
correctly telling apart the features:

LI(θI) = Ex∼data

[
log
(
1−D(HI(x;θI))

)]
. (3)

The parameters of the augmented network a-
CNN, denoted as θA, can be learned by simply fit-
ting to the data, i.e., minimizing the cross-entropy
loss as follows:

LA(θA) = E(x,c,y)∼data

[
J
(
C(HA(x, c;θA)), y

)]
. (4)

As mentioned above, here we use the same classi-
fierC as for the implicit network, forcing a unified
feature space of both networks. We combine the
above objectives Eqs.(2)-(4) of the relation classi-
fiers and minimize the joint loss:

min
θI ,θA,θC

LI,A,C = LI,C(θI ,θC) + λ1LI(θI) + λ2LA(θA),

(5)

where λ1 and λ2 are two balancing parameters cal-
ibrating the weights of the classification losses and
the feature-regulating loss. In practice, we pre-
train the implicit and augmented networks inde-
pendently by minimizing Eq.(2) and Eq.(4), re-
spectively. In the adversarial training process,
we found setting λ2 = 0 gives stable conver-
gence. That is, the connective-augmented features
are fixed after the pre-training stage.

Algorithm 1 summarizes the training procedure,
where we interleave the optimization of Eq.(1) and
Eq.(5) at each iteration. More practical details are
provided in section 4. We instantiate all modules
as neural networks (section 3.3) which are differ-
entiable, and perform the optimization efficiently
through standard stochastic gradient descent and
back-propagation.

Concat

Max-pooling

Convolution

Embedding

Arg1: Never mind. Arg2: You know the answer.

H(x)

Classi�cation: Cause Discrimination

Figure 2: Neural structure of i-CNN. Two sets
of convolutional filters are shown, with the cor-
responding features in red and blue, respectively.
The weights of the filters on two input arguments
are tied.

Through Eq.(1) and Eq.(3), the discriminator
and the implicit relation network follow a min-
imax competition, which drives both to improve
until the implicit feature representations are close
to the connective-augmented latent representa-
tions, encouraging the implicit network to ex-
tract highly discriminative features from raw sen-
tence arguments for relation classification. Alter-
natively, we can see Eq.(3) as an adaptive regu-
larization on the implicit model, which, compared
to pre-fixed regularizors such as `2-regularization,
provides a more flexible, self-calibrated mecha-
nism to improve generalization ability.

0 1

Input

Gate

Output /

HI HA/

Gate

Figure 3: Neural structure of the discriminator D.

1010

3.3 Component Structures

We have presented our adversarial framework for
implicit relation classification. We now discuss the
model realization of each component. All com-
ponents of the framework are parameterized with
neural networks. Distinct roles of the modules in
the framework lead to different modeling choices.

Relation Classification Networks Figure 2 il-
lustrates the structure of the implicit relation net-
work i-CNN. We use a convolutional network as
it is a common architectural choice for discourse
parsing. The network takes as inputs the word
vectors of the tokens in each sentence argument,
and maps each argument to intermediate features
through a shared convolutional layer. The result-
ing representations are then concatenated and fed
into a max pooling layer to select most salient fea-
tures as the final representation. The final classi-
fier C is a simple fully-connected layer followed
by a softmax classifier.

The connective-augmented network a-CNN has
a similar structure as i-CNN, wherein implicit con-
nective is appended to the second sentence as in-
put. The key difference from i-CNN is that here we
adopt average k-max pooling, which takes the av-
erage of the top-k maximum values in each pool-
ing window. The reason is to prevent the net-
work from solely selecting the connective induced
features (which are typically the most salient fea-
tures) which would be the case when using max
pooling, but instead force it to also attend to con-
textual features derived from the arguments. This
facilitates more homogeneous output features of
the two networks, and thus facilitates feature imi-
tation. In all the experiments we fixed k = 2.

Discriminator The discriminator is a binary
classifier to identify the correct source of an in-
put feature vector. To make it a strong rival to the
feature imitating network (i-CNN), we model the
discriminator as a multi-layer perceptron (MLP)
enhanced with gated mechanism for efficient in-
formation flow (Srivastava et al., 2015; Qin et al.,
2016c), as shown in Figure 3.

4 Experiments

We demonstrate the effectiveness of our approach
both quantitatively and qualitatively with exten-
sive experiments. We evaluate prediction perfor-
mance on the PDTB benchmark in different set-
tings. Our method substantially improves over a

diverse set of previous models, especially in the
practical multi-class classification task. We per-
form in-depth analysis of the model behaviors, and
show our adversarial framework successfully en-
ables the implicit relation model to imitate and
learn discriminative features.

4.1 Experiment Setup

We use PDTB 2.01, one of the largest manually
annotated discourse relation corpus. The dataset
contains 16,224 implicit relation instances in total,
with three levels of senses: Level-1 Class, Level-2
Type, and Level-3 Subtypes. The 1st level con-
sists of four major relation Classes: COMPARI-
SON, CONTINGENCY, EXPANSION and TEMPO-
RAL. The 2nd level contains 16 Types.

To make extensive comparison with prior work
of implicit discourse relation classification, we
evaluate on two popular experimental settings: 1)
multi-class classification for 2nd-level types (Lin
et al., 2009; Ji and Eisenstein, 2015), and 2) one-
versus-others binary classifications for 1st-level
classes (Pitler et al., 2009). We describe the de-
tailed configurations in the following respective
sections. We will focus our analysis on the multi-
class classification setting, which is most realis-
tic in practice and serves as a building block for
a complete discourse parser such as that for the
shared tasks of CoNLL-2015 and 2016 (Xue et al.,
2015, 2016).

Model Training Here we provide the detailed
architecture configurations of each component we
used in the experiments.

• Throughout the experiments i-CNN and a-
CNN contain 3 sets of convolutional filters
with the filter sizes selected on the dev set.
Table 1 lists the filter configurations of the
convolutional layer in i-CNN and a-CNN in
different tasks. As described in section 3.3,
following the convolutional layer is a max
pooling layer in i-CNN, and an average k-
max pooling layer with k = 2 in a-CNN.

• The final single-layer classifier C contains
512 neurons with tanh activation function.

• The discriminator D consists of 4 fully-
connected layers, with 2 gated pathways from
layer 1 to layer 3 and layer 4 (see Figure 3).

1http://www.seas.upenn.edu/∼pdtb/

1011

Task Filter sizes Filter number

PDTB-Lin 2, 4, 8 3×256

PDTB-Ji 2, 5, 10 3×256

One-vs-all 2, 5, 10 3×1024

Table 1: The convolutional architectures of i-CNN
and a-CNN in different tasks (section 4). For ex-
ample, in PDTB-Lin, we use 3 sets of filters, each
of which is of size 2, 4, and 8, respectively; and
each set has 256 filters.

The size of each layer is set to 1024 and is
fixed in all the experiments.

• We set the dimension of the input word vec-
tors to 300 and initialize with pre-trained
word2vec (Mikolov et al., 2013). The max-
imum length of sentence argument is set to
80. Truncation and zero-padding are applied
when necessary.

All experiments were performed on a TITAN-X
GPU and 128GB RAM, with neural implementa-
tion based on Tensorflow2.

For adversarial model training, it is critical to
keep balance between the progress of the two play-
ers. We use a simple strategy which at each itera-
tion optimizes the discriminator and the implicit
relation network on a randomly-sampled mini-
batch. We found this is enough to stabilize the
training. The neural parameters are trained using
AdaGrad (Duchi et al., 2011) with an initial learn-
ing rate of 0.001. For the balancing parameters
in Eq.(5), we set λ1 = 0.1, while λ2 = 0. That
is, after the initialization stage the weights of the
connective-augmented network a-CNN are fixed.
This has been shown capable of giving stable and
good predictive performance for our system.

4.2 Implicit Relation Classification

We will mainly focus on the general multi-class
classification problem in two alternative settings
adopted in prior work, showing the superiority of
our model over previous state of the arts. We
perform in-depth comparison with carefully de-
signed baselines, providing empirical insights into
the working mechanism of the proposed frame-
work. For broader comparisons we also report the
performance in the one-versus-all setting.

2https://www.tensorflow.org

Model PDTB-Lin PDTB-Ji

1 Word-vector 34.07 36.86
2 CNN 43.12 44.51
3 Ensemble 42.17 44.27
4 Multi-task 43.73 44.75
5 `2-reg 44.12 45.33

6 Lin et al. (2009) 40.20 -
7 Lin et al. (2009) - 40.66

+Brown clusters
8 Ji and Eisenstein

(2015)
- 44.59

9 Qin et al. (2016a) 43.81 45.04

10 Ours 44.65 46.23

Table 2: Accuracy (%) on the test sets of the
PDTB-Lin and PDTB-Ji settings for multi-class
classification. Please see the text for more details.

Multi-class Classifications
We first adopt the standard PDTB splitting con-
vention following (Lin et al., 2009), denoted as
PDTB-Lin, where sections 2-21, 22, and 23 are
used as training, dev, and test sets, respectively.
The most frequent 11 types of relations are se-
lected in the task. During training, instances with
more than one annotated relation types are con-
sidered as multiple instances, each of which has
one of the annotations. At test time, a prediction
that matches one of the gold types is considered as
correct. The test set contains 766 examples. More
details are in (Lin et al., 2009). An alternative,
slightly different multi-class setting is used in (Ji
and Eisenstein, 2015), denoted as PDTB-Ji, where
sections 2-20, 0-1, and 21-22 are used as training,
dev, and test sets, respectively. The resulting test
set contains 1039 examples. We also evaluate in
this setting for thorough comparisons.

Table 2 shows the classification accuracy in
both of the settings. We see that our model
(Row 10) achieves state-of-the-art performance,
greatly outperforming previous methods (Rows 6-
9) with various modeling paradigms, including the
linguistic feature-based model (Lin et al., 2009),
pure neural methods (Qin et al., 2016c), and com-
bined approach (Ji and Eisenstein, 2015).

To obtain better insights into the working mech-
anism of our method, we further compare with
a set of carefully selected baselines as shown
in Rows 1-5. 1) “Word-vector” sums over the
word vectors for sentence representation, show-
ing the base effect of word embeddings. 2)
“CNN” is a standalone convolutional net having
the exact same architecture with our implicit rela-

1012

tion network. Our model trained within the pro-
posed framework provides significant improve-
ment, showing the benefits of utilizing implicit
connectives at training time. 3) “Ensemble” has
the same neural architecture with the proposed
framework except that the input of a-CNN is not
augmented with implicit connectives. This essen-
tially is an ensemble of two implicit recognition
networks. We see that the method performs even
inferior to the single CNN model. This further
confirms the necessity of exploiting connective in-
formation. 4) “Multi-task” is the convolutional net
augmented with an additional task of simultane-
ously predicting the implicit connectives based on
the network features. As a straightforward way of
incorporating connectives, we see that the method
slightly improves over the stand-alone CNN, while
falling behind our approach with a large margin.
This indicates that our proposed feature imitation
is a more effective scheme for making use of im-
plicit connectives. 5) At last, “`2-reg” also imple-
ments feature mimicking by imposing an `2 dis-
tance penalty between the implicit relation fea-
tures and connective-augmented features. We see
that the simple model has obtained improvement
over previous best-performing systems in both
settings, further validating the idea of imitation.
However, in contrast to the fixed `2 regularization,
our adversarial framework provides an adaptive
mechanism, which is more flexible and performs
better as shown in the table.

Model COMP. CONT. EXP. TEMP.

Pitler et al. (2009) 21.96 47.13 - 16.76
Qin et al. (2016c) 41.55 57.32 71.50 35.43
Zhang et al. (2016a) 35.88 50.56 71.48 29.54
Zhou et al. (2010) 31.79 47.16 70.11 20.30
Liu and Li (2016) 36.70 54.48 70.43 38.84
Chen et al. (2016a) 40.17 54.76 - 31.32

Ours 40.87 54.56 72.38 36.20

Table 3: Comparisons of F1 scores (%) for binary
classification.

One-versus-all Classifications
We also report the results of four one-versus-all
binary classifications for more comparisons with
prior work. We follow the conventional experi-
mental setting (Pitler et al., 2009) by selecting sec-
tions 2-20, 21-22, and 0-1 as training, dev, and test
sets. Table 4 lists the statistics of the data.

Following previous work, Table 3 reports the F1

Relation Train Dev Test
Comparison 1942/1942 197/986 152/894
Contigency 3342/3342 295/888 279/767
Expansion 7004/7004 671/512 574/472
Temporal 760/760 64/1119 85/961

Table 4: Distributions of positive and negative in-
stances from the train/dev/test sets in four binary
relation classification tasks.

scores. Our method outperforms most of the prior
systems in all the tasks. We achieve state-of-the-
art performance in recognition of the Expansion
relation, and obtain comparable scores with the
best-performing methods in each of the other rela-
tions, respectively. Notably, our feature imitation
scheme greatly improves over (Zhou et al., 2010)
which leverages implicit connectives as an inter-
mediate prediction task. This provides additional
evidence for the effectiveness of our approach.

4.3 Qualitative Analysis

We now take a closer look into the modeling be-
havior of our framework, by investigating the pro-
cess of the adversarial game during training, as
well as the feature imitation effects.

Figure 4 demonstrates the training progress of
different components. The a-CNN network keeps
high predictive accuracy as implicit connectives
are given, showing the importance of connective
cues. The rise-and-fall patterns in the accuracy
of the discriminator clearly show its competition
with the implicit relation network i-CNN as train-
ing goes. At first few iterations the accuracy of the
discriminator increases quickly to over 0.9, while
at late stage the accuracy drops to around 0.6,
showing that the discriminator is getting confused
by i-CNN (an accuracy of 0.5 indicates full con-
fusion). The i-CNN network keeps improving in
terms of implicit relation classification accuracy,
as it is gradually fitting to the data and simultane-
ously learning increasingly discriminative features
by mimicking a-CNN. The system exhibits simi-
lar learning patterns in the two different settings,
showing the stability of the training strategy.

We finally visualize the output feature vec-
tors of i-CNN and a-CNN using the t-SNE
method (Maaten and Hinton, 2008) in Figure 5.
Without feature imitation, the extracted features
by the two networks are clearly separated (Fig-
ure 5(a)). In contrast, as shown in Figures 5(b)-
(c), the feature vectors are increasingly mixed as
training proceeds. Thus our framework has suc-

1013

0 5 10 15
Training epochs

0.4

0.6

0.8
A

cc
u
ra

cy

a-CNN

i-CNN

Discr

0 5 10 15 20
Training epochs

0.4

0.6

0.8

A
cc

u
ra

cy

a-CNN

i-CNN

Discr

Figure 4: (Best viewed in colors.) Test-set performance of three components over training epochs.
Relation networks a-CNN and i-CNN are measured with multi-class classification accuracy (with or
without implicit connectives, respectively), while the discriminator is evaluated with binary classification
accuracy. Top: the PDTB-Lin setting (Lin et al., 2009), where first 8 epochs are for initialization stage
(thus the discriminator is fixed and not shown); Bottom: the PDTB-Ji setting (Ji and Eisenstein, 2015),
where first 3 epochs are for initialization.

(a) (b) (c)

Figure 5: (Best viewed in colors.) Visualizations of the extracted hidden features by the implicit relation
network i-CNN (blue) and connective-augmented relation network a-CNN (orange), in the multi-class
classification setting (Lin et al., 2009). (a) Two networks are trained without adversary (with shared
classifier); (b) Two networks are trained within our framework at epoch 10; (c) at epoch 20. The implicit
relation network successfully imitates the connective-augmented features through the adversarial game.
Visualization is conducted with the t-SNE algorithm (Maaten and Hinton, 2008).

cessfully driven i-CNN to induce similar represen-
tations with a-CNN, even though connectives are
not present.

5 Discussions

We have developed an adversarial neural frame-
work that facilitates an implicit relation network to
extract highly discriminative features by mimick-
ing a connective-augmented network. Our method
achieved state-of-the-art performance for implicit
discourse relation classification. Besides implicit
connective examples, our model can naturally ex-
ploit enormous explicit connective data to further
improve discourse parsing.

The proposed adversarial feature imitation
scheme is also generally applicable to other con-
text to incorporate indicative side information

available at training time for enhanced infer-
ence. Our framework shares a similar spirit of
the iterative knowledge distillation method (Hu
et al., 2016a,b) which train a “student” network to
mimic the classification behavior of a knowledge-
informed “teacher” network. Our approach en-
courages imitation on the feature level instead of
the final prediction level. This allows our ap-
proach to apply to regression tasks, and more in-
terestingly, the context in which the student and
teacher networks have different prediction out-
puts, e.g., performing different tasks, while trans-
ferring knowledge between each other can be ben-
eficial. Besides, our adversarial mechanism pro-
vides an adaptive metric to measure and drive the
imitation procedure.

1014

References
Or Biran and Kathleen McKeown. 2013. Aggregated

word pair features for implicit discourse relation dis-
ambiguation. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (ACL, Volume 2: Short Papers). Sofia, Bul-
garia, pages 69–73.

Chloé Braud and Pascal Denis. 2015. Comparing word
representations for implicit discourse relation classi-
fication. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). Lisbon, Portugal, pages 2201–2211.

Chloé Braud and Pascal Denis. 2016. Learning
connective-based word representations for implicit
discourse relation identification. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Austin, Texas,
pages 203–213.

Deng Cai, Hai Zhao, Zhisong Zhang, Yuan Xin,
Yongjian Wu, and Feiyue Huang. 2017. Fast and
accurate neural word segmentation for Chinese. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (ACL). Van-
couver, Canada.

Changge Chen, Peilu Wang, and Hai Zhao. 2015.
Shallow discourse parsing using constituent pars-
ing tree. In Proceedings of the Nineteenth Confer-
ence on Computational Natural Language Learning
- Shared Task (CONLL). Beijing, China, pages 37–
41.

Changge Chen and Hai Zhao. 2015. Deceptive opinion
spam detection using deep level linguistic feature.
In The 4th CCF Conference on Natural Language
Processing and Chinese Computing (NLPCC 2015),
LNCS. Nanchang, China, volume 9362, pages 465–
474.

Jifan Chen, Qi Zhang, Pengfei Liu, Xipeng Qiu, and
Xuanjing Huang. 2016a. Implicit discourse rela-
tion detection via a deep architecture with gated rel-
evance network. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (ACL Volume 1: Long Papers). Berlin, Ger-
many, pages 1726–1735.

Xi Chen, Yan Duan, Rein Houthooft, John Schul-
man, Ilya Sutskever, and Pieter Abbeel. 2016b. In-
fogan: Interpretable representation learning by in-
formation maximizing generative adversarial nets.
In Advances in Neural Information Processing Sys-
tems. pages 2172–2180.

Xilun Chen, Ben Athiwaratkun, Yu Sun, Kilian Wein-
berger, and Claire Cardie. 2016c. Adversarial deep
averaging networks for cross-lingual sentiment clas-
sification. arXiv preprint arXiv:1606.01614 .

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. Journal of Machine Learning Research
17(59):1–35.

Shima Gerani, Yashar Mehdad, Giuseppe Carenini,
T. Raymond Ng, and Bita Nejat. 2014. Abstractive
summarization of product reviews using discourse
structure. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). pages 1602–1613.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems. pages 2672–2680.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric P Xing. 2016a. Harnessing deep
neural networks with logic rules. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (ACL). Berlin, Germany,
pages 2410–2420.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Controllable
text generation. arXiv preprint arXiv:1703.00955 .

Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, and
Eric P Xing. 2016b. Deep neural networks with
massive learned knowledge. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Austin, USA,
pages 1670–1679.

Yangfeng Ji and Jacob Eisenstein. 2015. One vector is
not enough: Entity-augmented distributed semantics
for discourse relations. Transactions of the Associ-
ation for Computational Linguistics (TACL) 3:329–
344.

Yangfeng Ji, Gholamreza Haffari, and Jacob Eisen-
stein. 2016. A latent variable recurrent neural net-
work for discourse-driven language models. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL). San Diego, California, pages 332–342.

Yangfeng Ji, Gongbo Zhang, and Jacob Eisenstein.
2015. Closing the gap: Domain adaptation from
explicit to implicit discourse relations. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Lisbon,
Portugal, pages 2219–2224.

Alex M Lamb, Anirudh Goyal, Ying Zhang, Saizheng
Zhang, Aaron C Courville, and Yoshua Bengio.
2016. Professor forcing: A new algorithm for train-
ing recurrent networks. In Advances In Neural In-
formation Processing Systems. pages 4601–4609.

1015

Man Lan, Yu Xu, and Zhengyu Niu. 2013. Leverag-
ing synthetic discourse data via multi-task learning
for implicit discourse relation recognition. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (ACL, Volume 1:
Long Papers). Sofia, Bulgaria, pages 476–485.

Junyi Jessy Li, Marine Carpuat, and Ani Nenkova.
2014. Assessing the discourse factors that influence
the quality of machine translation. In Proceedings
of the 52nd Annual Meeting of the Association for
Computational Linguistics (ACL, Volume 2: Short
Papers). Baltimore, Maryland, pages 283–288.

Yujia Li, Kevin Swersky, and Richard S Zemel. 2015.
Generative moment matching networks. In Pro-
ceedings of the 32nd International Conference on
Machine Learning (ICML). Lille, France, pages
1718–1727.

Zhongyi Li, Hai Zhao, Chenxi Pang, Lili Wang, and
Huan Wang. 2016. A constituent syntactic parse tree
based discourse parser. In Proceedings of the Twen-
tieth Conference on Computational Natural Lan-
guage Learning - Shared Task (CONLL). Berlin,
Germany, pages 60–64.

Maria Liakata, Simon Dobnik, Shyamasree Saha,
Colin Batchelor, and Dietrich Rebholz-Schuhmann.
2013. A discourse-driven content model for sum-
marising scientific articles evaluated in a complex
question answering task. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Seattle, Washington,
USA, pages 747–757.

Xiaodan Liang, Zhiting Hu, Hao Zhang, Chuang
Gan, and Eric P Xing. 2017. Recurrent topic-
transition GAN for visual paragraph generation.
arXiv preprint arXiv:1703.07022 .

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. 2009.
Recognizing implicit discourse relations in the Penn
Discourse Treebank. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Singapore, pages 343–
351.

Yang Liu and Sujian Li. 2016. Recognizing implicit
discourse relations via repeated reading: Neural net-
works with multi-level attention. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Austin, Texas,
pages 1224–1233.

Yang Liu, Sujian Li, Xiaodong Zhang, and Zhifang
Sui. 2016. Implicit discourse relation classifica-
tion via multi-task neural networks. arXiv preprint
arXiv:1603.02776 .

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research 9:2579–2605.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing

systems (3). South Lake Tahoe, Nevada, USA, pages
3111–3119.

Emily Pitler, Annie Louis, and Ani Nenkova. 2009.
Automatic sense prediction for implicit discourse re-
lations in text. In Proceedings of the Joint Confer-
ence of the 47th Annual Meeting of he Association
for Computational Linguistics and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing (ACL-IJCNLP). Suntec, Singapore, pages
683–691.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind K Joshi, and Bon-
nie L Webber. 2008. The Penn discourse tree-
bank 2.0. In The sixth international conference on
Language Resources and Evaluation (LREC). Mar-
rakech, Morocco, pages 2961–2968.

Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016a.
Implicit discourse relation recognition with context-
aware character-enhanced embeddings. In Proceed-
ings of COLING 2016, the 26th International Con-
ference on Computational Linguistics: Technical
Papers. Osaka, Japan, pages 1914–1924.

Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016b.
Shallow discourse parsing using convolutional neu-
ral network. In Proceedings of the CoNLL-16
shared task. Berlin, Germany, pages 70–77.

Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016c. A
stacking gated neural architecture for implicit dis-
course relation classification. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). Austin, Texas,
pages 2263–2270.

Attapol Rutherford and Nianwen Xue. 2015. Im-
proving the inference of implicit discourse relations
via classifying explicit discourse connectives. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL: HLT). Denver, Colorado, pages 799–808.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training gans. In Advances
in Neural Information Processing Systems. pages
2226–2234.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen
Schmidhuber. 2015. Highway networks. arXiv
preprint arXiv:1505.00387 .

Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and
Hai Zhao. 2016. Learning distributed word repre-
sentations for bidirectional LSTM recurrent neural
network. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT). San Diego, California,
pages 527–533.

1016

Yu Xu, Man Lan, Yue Lu, Zheng Yu Niu, and
Chew Lim Tan. 2012. Connective prediction using
machine learning for implicit discourse relation clas-
sification. In The 2012 International Joint Confer-
ence on Neural Networks (IJCNN). Brisbane, Aus-
tralia, pages 1–8.

Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Rashmi
Prasad, Christopher Bryant, and Attapol Ruther-
ford. 2015. The CoNLL-2015 shared task on shal-
low discourse parsing. In Proceedings of the Nine-
teenth Conference on Computational Natural Lan-
guage Learning - Shared Task (CoNLL). Beijing,
China, pages 1–16.

Nianwen Xue, Hwee Tou Ng, Sameer Pradhan, Bon-
nie Webber, Attapol Rutherford, Chuan Wang, and
Hongmin Wang. 2016. The CoNLL-2016 shared
task on shallow discourse parsing. In Proceedings of
the Twentieth Conference on Computational Natural
Language Learning - Shared Task (CoNLL). Berlin,
Germany, pages 1–19.

Biao Zhang, Deyi Xiong, jinsong su, Qun Liu, Ron-
grong Ji, Hong Duan, and Min Zhang. 2016a. Vari-
ational neural discourse relation recognizer. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP).
Austin, Texas, pages 382–391.

Zhisong Zhang, Hai Zhao, and Lianhui Qin. 2016b.
Probabilistic graph-based dependency parsing with
convolutional neural network. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL). Berlin, Germany, pages
1382–1392.

Zhi-Min Zhou, Yu Xu, Zheng-Yu Niu, Man Lan, Jian
Su, and Chew Lim Tan. 2010. Predicting discourse
connectives for implicit discourse relation recog-
nition. In Proceedings of the 23rd International
Conference on Computational Linguistics (CoLING
2010). Beijing, China, pages 1507–1514.

1017

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1018–1028
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1094

Don’t understand a measure? Learn it:
Structured Prediction for Coreference Resolution optimizing its measures

Iryna Haponchyk∗ and Alessandro Moschitti
∗DISI, University of Trento, 38123 Povo (TN), Italy

Qatar Computing Research Institute, HBKU, 34110, Doha, Qatar
{gaponchik.irina,amoschitti}@gmail.com

Abstract

An assential aspect of structured predic-
tion is the evaluation of an output struc-
ture against the gold standard. Especially
in the loss-augmented setting, the need of
finding the max-violating constraint has
severely limited the expressivity of effec-
tive loss functions. In this paper, we
trade off exact computation for enabling
the use of more complex loss functions for
coreference resolution (CR). Most note-
worthily, we show that such functions
can be (i) automatically learned also from
controversial but commonly accepted CR
measures, e.g., MELA, and (ii) success-
fully used in learning algorithms. The ac-
curate model comparison on the standard
CoNLL–2012 setting shows the benefit of
more expressive loss for Arabic and En-
glish data.

1 Introduction
In recent years, interesting structured predic-

tion methods have been developed for coref-
erence resolution (CR), e.g., (Fernandes et al.,
2014; Björkelund and Kuhn, 2014; Martschat and
Strube, 2015). These models are supposed to out-
put clusters but, to better control the exponential
nature of the problem, the clusters are converted
into tree structures. Although this simplifies the
problem, optimal solutions are associated with an
exponential set of trees, requiring to maximize
over such a set. This originated latent models (Yu
and Joachims, 2009) optimizing the so-called loss-
augmented objective functions.

In this setting, loss functions need to be factor-
izable together with the feature representations for
finding the max-violating constraints. The conse-
quence is that only simple loss functions, basically

just counting incorrect edges, were applied in pre-
vious work, giving up expressivity for simplicity.
This is a critical limitation as domain experts con-
sider more information than just counting edges.

In this paper, we study the use of more ex-
pressive loss functions in the structured predic-
tion framework for CR, although some findings
are clearly applicable to more general settings.
We attempted to optimize the complicated offi-
cial MELA measure1 (Pradhan et al., 2012) of
CR within the learning algorithm. Unfortunately,
MELA is the average of measures, among which
CEAFe has an excessive computational complex-
ity preventing its direct use. To solve this prob-
lem, we defined a model for learning MELA from
data using a fast linear regressor, which can be
then effectively used in structured prediction al-
gorithms. We defined features to learn such a loss
function, e.g., different link counts or aggregations
such as Precision and Recall. Moreover, we de-
signed methods for generating training data from
which our regression loss algorithm (RL) can gen-
eralize well and accurately predict MELA values
on unseen data.

Since RL is not factorizable2 over a mention
graph, we designed a latent structured percep-
tron (LSP) that can optimize non-factorizable loss
functions on CR graphs. We tested LSP using RL
and other traditional loss functions using the same
setting of the CoNLL–2012 Shared Task, thus en-
abling an exact comparison with previous work.
The results confirmed that RL can be effectively
learned and used in LSP, although the improve-
ment was smaller than expected, considering that
our RL provides the algorithm with a more accu-
rate feedback.

Thus, we analyzed the theory behind this pro-

1Received most consensus in the NLP community.
2We have not found yet a possible factorization.

1018

https://doi.org/10.18653/v1/P17-1094

cess by also contributing to the definition of the
properties of loss optimality. These show that
the available loss functions, e.g., by Fernandes
et al.; Yu and Joachims, are enough for optimizing
MELA on the training set, at least when the data
is separable. Thus, in such conditions, we cannot
expect a very large improvement from RL.

To confirm such a conjecture, we tested the
models in a more difficult setting, in terms of sepa-
rability. We used different feature sets of a smaller
size and found out that in such conditions, RL re-
quires less epochs for converging and produces
better results than the other simpler loss functions.
The accuracy of RL-based model, using 16 times
less features, decreases by just 0.3 points, still im-
proving the state of the art in structured predic-
tion. Accordingly, in the Arabic setting, where the
available features are less discriminative, our ap-
proach highly improves the standard LSP.

2 Related Work
There is a number of works attempting to di-

rectly optimize coreference metrics. The solu-
tion proposed by Zhao and Ng (2010) consists in
finding an optimal weighting (by beam search) of
training instances, which would maximize the tar-
get coreference metric. Their models, optimiz-
ing MUC and B3, deliver a significant improve-
ment on the MUC and ACE corpora. Uryupina
et al. (2011) benefited from applying genetic algo-
rithms for the selection of features and architecture
configuration by multi-objective optimization of
MUC and the two CEAF variants. Our approach
is different in that the evaluation measure (its ap-
proximation) is injected directly into the learning
algorithm. Clark and Manning (2016) optimize B3

directly as well within a mention-ranking model.
For the efficiency reasons, they omit optimization
of CEAF, which we enable in this work.

SVMcluster – a structured output approach by
Finley and Joachims (2005) – enables optimiza-
tion to any clustering loss function (including non-
decomposable ones). The authors experimentally
show that optimizing particular loss functions re-
sults into a better classification accuracy in terms
of the same functions. However, these are in gen-
eral fast to compute, which is not the MELA case.

While Finley and Joachims are compelled to
perform approximate inference to overcome the
intractability of finding an optimal clustering, the
latent variable structural approaches – SVM of Yu
and Joachims (2009) and perceptron of Fernan-

Figure 1: Latent tree used for structural learning

des et al. (2014) – render exact inference possi-
ble by introducing auxiliary graph structures. The
modeling of Fernandes et al. (also referred to as
the antecedent tree approach) is exploited in the
works of Björkelund and Kuhn (2014), Martschat
and Strube (2015), and Lassalle and Denis (2015).
Like us, the first couples such approach with ap-
proximate inference but for enabling the use of
non-local features. The current state-of-the-art
model of Wiseman et al. (2016) also employs a
greedy inference procedure as it has global fea-
tures from an RNN as a non-decomposable term
in the inference objective.

3 Structure Output Learning for CR
We consider online learning algorithms for link-

ing structured input and output patterns. More
formally, such algorithms find a linear mapping
f(x,y) = 〈w,Φ(x,y)〉, where f : X × Y → R,
w is a linear model, Φ(x,y) is a combined fea-
ture vector of input variables X and output vari-
ables Y . The predicted structure is derived with
the argmax

y∈Y
f(x,y). In the next sections, we show

how to learn w for CR using structured percep-
tron. Additionally, we provide a characterization
of effective loss functions for separable cases.

3.1 Modeling CR

In this framework, CR is essentially modeled as
a clustering problem, where an input-output exam-
ple is described by a tuple (x,y,h), x is a set of
entity mentions contained in a text document, y is
set of the corresponding mention clusters, and h
is a latent variable, i.e., an auxiliary structure that
can represent the clusters of y. For example, given
the following text:

Although (she)m1 was supported by (President
Obama)m2 , (Mrs. Clinton)m3 missed (her)m4

(chance)m5 , (which)m6 looked very good before
counting votes.

the clusters of the entity mentions are represented
by the latent tree in Figure 1, where its nodes are

1019

Algorithm 1 Latent Structured Perceptron
1: Input: X = {(xi,yi)}ni=1, w0, C, T
2: w← w0; t← 0
3: repeat
4: for i = 1, ..., n do
5: h∗i ← argmax

h∈H(xi,yi)

〈wt,Φ(xi,h)〉

6: ĥi ← argmax
h∈H(xi)

〈wt,Φ(xi,h)〉+C×∆(yi,h
∗
i ,h)

7: if ∆(yi,h
∗
i, ĥi) > 0 then

8: wt+1 ← wt + Φ(xi,h
∗
i)− Φ(xi, ĥi)

9: end if
10: end for
11: t← t+ 1
12: until t < nT

13: w← 1
t

t∑
i=1

wi

return w

mentions and the subtrees connected to the addi-
tional root node form distinct clusters. The tree h
is called a latent variable as it is consistent with y,
i.e., it contains only links between mention nodes
that corefer or fall into the same cluster according
to y. Clearly, an exponential set of trees, H , can
be associated with one and the same clustering y.
Using only one tree to represent a clustering makes
the search for optimal mention clusters tractable.
In particular, structured prediction algorithms se-
lect h that maximizes the model learned at time t
as shown in the next section.

3.2 Latent Structured Perceptron (LSP)
The LSP model proposed by Sun et al. (2009)

and specialized for solving CR tasks by Fernandes
et al. (2012) is described by Alg. 1.

Given a training set {(xi,yi)}ni=1, initial w0
3,

a trade off parameter C, and the maximum num-
ber of epochs T , LSP iterates the following opera-
tions: Line 5 finds a latent tree h∗i that maximizes
〈wt,Φ(xi,h)〉 for the current example (xi,yi). It
basically finds the max ground truth tree with re-
spect to the current wt. Finding such max re-
quires an exploration over the tree set H(xi,yi),
which only contains arcs between mentions that
corefer according to the gold standard clustering
yi. Line 6 seeks for the max-violating tree ĥi in
H(xi), which is the set of all candidate trees using
any possible combination of arcs. Line 7 tests if
the produced tree ĥi has some mistakes with re-
spect to the gold clustering yi, using loss function
∆(yi,h

∗
i , ĥi). Note that some models define a loss

exploiting also the current best latent tree h∗i . If
the test is verified, the model is updated with the
vector Φ(xi,h

∗
i)− Φ(xi, ĥi).

3Either 0 or a random vector.

Fernandes et al. (2012) used exactly the di-
rected trees we showed as latent structures and
applied Edmonds’ spanning tree algorithm (Ed-
monds, 1967) for finding the max. Their model
achieved the best results in the CoNLL–2012
Shared Task, a challenge for CR systems (Prad-
han et al., 2012). Their selected loss function also
plays an important role as shown in the following.

3.3 Loss functions
When defining a loss, it is very important to pre-

serve the factorization of the model components
along the latent tree edges since this leads to effi-
cient maximization algorithms (see Section 5).

Fernandes et al. uses a loss function that (i)
compares a predicted tree ĥ against the gold tree
h∗ and (ii) factorizes over the edges in the way the
model does. Its equation is:

∆F (h∗, ĥ) =

M∑

i=1

1ĥ(i) 6=h∗(i)(1+r ·1h∗(i)=0), (1)

where h∗(i) and ĥ(i) output the parent of the men-
tion node i in the gold and predicted tree, respec-
tively, whereas 1h∗(i) 6=ĥ(i) just checks if the par-
ents are different, and if yes, penalty of 1 (or 1 + r
if the gold parent is the root) is added.

Yu and Joachims’s loss is based on undirected
tree without a root and on the gold clustering y. It
is computed as:

∆Y J(y, ĥ) = n(y)− k(y) +
∑

e∈ĥ
l(y, e), (2)

where n(y) is the number of graph nodes, k(y) is
the number of clusters in y, and l(y, e) assigns−1
to any edge e that connects nodes from the same
cluster in y, and r otherwise.

In our experiments, we adopt both loss func-
tions, however, in contrast to Fernandes et al., we
always measure ∆F against the gold label y and
not against the current h∗, i.e., in the way it is done
by Martschat and Strube (2015), who employ an
equivalent LSP model in their work.

3.4 On optimality of simple loss functions
The above loss functions are rather simple and

mainly based on counting the number of mistaken
edges. Below, we show that such simple loss func-
tions achieve training data separation (if it exists)
of a general task measure reaching its max on their
0 mistakes. The latter is a desirable characteristic
of many measures used in CR and NLP research.

1020

Proposition 1 (Sufficient condition for optimal-
ity of loss functions for learning graphs). Let
∆(y,h∗, ĥ) ≥ 0 be a simple, edge-factorizable
loss function, which is also monotone in the num-
ber of edge errors, and let µ(y, ĥ) be any graph-
based measure maximized by no edge errors.
Then, if the training set is linearly separable LSP
optimizing ∆ converges to the µ optimum.

Proof. If the data is linearly separable the percep-
tron converges ⇒ ∆(yi,h

∗
i, ĥi) = 0, ∀xi. The

loss is factorizable, i.e.,

∆(yi,h
∗
i, ĥi) =

∑

e∈ĥi

l(yi,h
∗
i, e), (3)

where l(·) is an edge loss function. Thus,∑
e∈ĥi

l(yi,h
∗
i, e) = 0. The latter equation and

monotonicity imply l(yi,h
∗
i, e) = 0,∀e ∈ ĥi,

i.e., there are no edge mistakes, otherwise by fix-
ing such edges, we would have a smaller ∆, i.e.,
negative, contradicting the initial positiveness hy-
pothesis. Thus, no edge mistake in any xi implies
that µ(y, ĥ) is maximized on the training set.

Corollary 1. ∆F (h∗, ĥ) and ∆Y J(y, ĥ) are both
optimal loss functions for graphs.

Proof. Equations 1 and 2 show that both are 0
when applied to a clustering with no mistake
on the edges. Additionally, for each edge mis-
take more, both loss functions increase, implying
monotonicity. Thus, they satisfy all the assump-
tions of Proposition 1.

The above characteristic suggests that ∆F and
∆Y J can optimize any measure that reasonably
targets no mistakes as its best outcome. Clearly,
this property does not guarantee loss functions to
be suitable for a given task measure, e.g., the latter
may have different max points and behave rather
discontinuously. However, a common practice in
NLP is to optimize the maximum of a measure,
e.g., in case of Precision and Recall, or Accuracy,
therefore, loss functions able to at least achieve
such an optimum are preferable.

4 Automatically learning a loss function
How to measure a complex task such as CR has

generated a long and controversial discussion in
the research community. While such a debate is
progressing, the most accepted and used measure
is the so-called Mention, Entity, and Link Average
(MELA) score. As it will be clear from the de-
scription below, MELA is not easily interpretable

and not robust to the mention identification ef-
fect (Moosavi and Strube, 2016). Thus, loss func-
tions showing the optimality property may not be
enough to optimize it. Our proposal is to use a
version of MELA transformed in a loss function
optimized by an LSP algorithm with inexact in-
ference. However, the computational complexity
of the measure prevents to carry out an effective
learning. Our solution is thus to learn MELA with
a fast linear regressor, which also produces a con-
tinuos version of the measure.

4.1 Measures for CR

MELA is the unweighted average of MUC (Vi-
lain et al., 1995), B3 (Bagga and Baldwin, 1998)
and CEAFe (CEAF variant with entity-based sim-
ilarity) (Luo, 2005; Cai and Strube, 2010) scores,
having heterogeneous nature.

MUC is based on the number of correctly pre-
dicted links between mentions. The number of
links required for obtaining the key entity set K
is
∑

ki∈K(|ki|−1), where ki are key entities in K
(cardinality of each entity minus one). MUC recall
computes what fraction of these were predicted,
and the predicted were as many as

∑
ki∈K(|ki| −

|p(ki)|) =
∑

ki∈K(|ki|−1− (|p(ki)|−1)), where
p(ki) is a partition of the key entity ki formed by
intersecting it with the corresponding response en-
tities rj ∈ R, s.t., ki∩ rj 6= ∅. This number equals
to the number of the key links minus the number
of missing links, required to unite the parts of the
partition p(ki) to obtain ki.

B3 computes Precision and Recall individually
for each mention. For mention m: Recallm =
|kmi ∩rmj |
|kmi |

, where kmi and rmj , subscripted with m,
denote, correspondingly, the key and response en-
tities into which m falls. The over-document Re-
call is then an average of these taken with respect
to the number of the key mentions. The MUC
and B3 Precision is computed by interchanging the
roles of the key and response entities.

CEAFe computes similarity between key and
system entities after finding an optimal alignment
between them. Using ψ(ki, rj) =

2|ki∩rj |
|ki|+|rj | as the

entity similarity measure, it finds an optimal one-
to-one map g∗ : K → R, which maps every key
entity to a response entity, maximazing an overall
similarity Ψ(g) =

∑
ki∈K ψ(ki, g(ki)) of the ex-

ample. This is solved as a bipartite matching prob-
lem by the Kuhn-Munkres algorithm. Then Preci-

1021

Algorithm 2 Finding a Max-violating Spanning
Tree
1: Input: training example (x,y); graph G(x) with ver-

tices V denoting mentions; set of the incoming candidate
edges, E(v), v ∈ V ; weight vector w

2: h∗ ← ∅
3: for v ∈ V do
4: e∗ = argmax

e∈E(v)

〈w, e〉+ C × l(y, e)

5: h∗ = h∗ ∪ e∗

6: end for
7: return max-violating tree h∗

8: (clustering y∗ is induced by the tree h∗)

sion and Recall are Ψ(g∗)∑
rj∈R

ψ(rj ,rj)
and Ψ(g∗)∑

ki∈K
ψ(ki,ki)

,

respectively.
MELA computation is rather expensive mostly

because of CEAFe. Its complexity is bounded
by O(Ml2 log l) (Luo, 2005), where M and l
are, correspondingly, the maximum and minimum
number of entities in y and ŷ. Computing CEAFe
is especially slow for the candidate outputs ŷ with
a low quality of prediction, i.e, when l is big, and
the coherence with the gold y is scarse.

Finally, B3 and CEAFe are strongly influenced
by the mention identification effect (Moosavi and
Strube, 2016). Thus, ∆F and ∆Y J may output
identical values for different clusterings that can
have a big gap in terms of MELA.

4.2 Features for learning measures
As computational reasons prevent to use MELA

in LSP (see our inexact search algorithm in Sec-
tion 5), we study methods for approximating it
with a linear regressor. For this purpose, we define
nine features, which count either exact or simpli-
fied versions of Precision, Recall and F1 of each
of the three metric-components of MELA. Clearly,
neither ∆F nor ∆Y J provide the same values.

Apart from the computational complexity, the
difficulty of evaluating the quality of the predicted
clustering ŷ during training is also due to the fact
that CR is carried out on automatically detected
mentions, while it needs to be compared against
a gold standard clustering of a gold mention set.
However, we can use simple information about au-
tomatic mentions and how they relate to gold men-
tions and gold clusters. In particular, we use four
numbers: (i) correctly detected automatic men-
tions, (ii) links they have in the gold standard, (iii)
gold mentions, and (iv) gold links. The last one
enables the precise computation of Precision, Re-
call and F1-measure values of MUC; the required
partitions p(ki) of key entities are also available at

training time as they contain only automatic men-
tions. These are the first three features that we de-
sign. Likewise for B3, the feature values can be
derived using (ii) and (iii).

For computing CEAFe heuristics, we do not
perform cluster alignment to find an optimal
Ψ(g∗). Instead of Ψ(g∗), which can be rewrit-
ten as

∑
m∈K∩R

2
|kmi |+|g∗(kmi)| if summing up over

the mentions not the entities, we simply use Ψ̃ =∑
m∈K∩R

2
|kmi |+|rmj |

, pretending that for each m

its key kmi and response rmj entities are aligned.∑
rj∈R ψ(rj , rj) and

∑
ki∈K ψ(ki, ki) in the de-

nominators of the Precision and Recall are the
number of predicted and gold clusters, corre-
spondingly. The imprecision of the CEAFe related
features is expected to be leveraged when put to-
gether with the exact B3 and MUC values into the
regression learning using the exact MELA values
(implicitly exact CEAFe values as well).

4.3 Generating training and test data
The features described above can be used to

characterize the clustering variables ŷ. For gen-
erating training data, we collected all the max-
violating ŷ produced during LSPF (using ∆F)
learning and associate them with their correct
MELA scores from the scorer. This way, we can
have both training and test data for our regressor.
In our experiments, for the generation purpose, we
decided to run LSPF on each document separately
to obtain more variability in ŷ’s. We use a simple
linear SVM to learn a model wρ. Considering that
MELA(y, ŷ) score lies in the interval [100, 0], a
simple approximation of the loss could be:

∆ρ(y, ŷ) = 100−wρ · φ(y, ŷ). (4)

Below, we show its improved version and an LSP
for learning with it based on inexact search.

5 Learning with learned loss functions
Our experiments will demonstrate that ∆ρ can

be accurately learned from data. However, the fea-
tures we used for this are not factorizable over the
edges of the latent trees. Thus, we design a new
LSP algorithm that can use our learned loss in an
approximated max search.

5.1 A general inexact algorithm for CR
If the loss function can be factorized over tree

edges (see Equation 3) the max-violating con-
straint in Line 6 of Alg. 1 can be efficiently found
by exact decoding, e.g., using Edmonds’ algo-
rithm as in Fernandes et al. (2014) or Kruskal’s as

1022

Algorithm 3 Inexact Inference of a Max-violating
Spanning Tree with a Global Loss
1: Input: training example (x,y); graph G(x) with ver-

tices V denoting mentions; set of the incoming candidate
edges, E(v), v ∈ V ; w, ground truth tree h∗

2: ĥ← ∅
3: score← 0
4: repeat
5: prev score = score
6: score = 0
7: for v ∈ V do
8: h = ĥ \ e(v)
9: ê = argmax

e∈E(v)

〈w, e〉+ C ×∆(y,h∗,h ∪ e)

10: ĥ = h ∪ ê
11: score = score+ 〈w, ê〉
12: end for
13: score = score+ ∆(y,h∗, ĥ)
14: until score = prev score

15: return max-violating tree ĥ

in Yu and Joachims (2009). The candidate graph,
by construction, does not contain cycles, and the
inference by Edmonds’ algorithm does technically
the same as the ”best-left-link” inference algo-
rithm by Chang et al. (2012). This can be schemat-
ically represented in Alg. 2.

When we deal with ∆ρ, Alg. 2 cannot be
longer applied as our new loss function is non-
factorizable. Thus, we designed a greedy solution,
Alg. 3, which still uses the spanning tree algo-
rithm, though, it is not guaranteed to deliver the
max-violating constraint. However, finding even
a suboptimal solution optimizing a more accurate
loss function may achieve better performance both
in terms of speed and accuracy.

We reformulate Step 4 of Alg. 2, where a max-
violating incoming edge ê is identified for a ver-
tex v. The new max-violating inference objective
contains now a global loss measured on the par-
tial structure ĥ built up to now plus a candidate
edge e for a vertex v in consideration (Line 10 of
Alg. 3). On a high level, this resembles the infer-
ence procedure of Wiseman et al. (2016), who use
it for optimizing global features coming from an
RNN. Differently though, after processing all the
vertices, we repeat the procedure until the score of
ĥ no longer improves.

Note that Björkelund and Kuhn (2014) perform
inexact search on the same latent tree structures to
extend the model to non-local features. In contrast
to our approach, they use beam search and accu-
mulate the early updates.

In addition to the design of an algorithm en-
abling the use of our ∆ρ, there are other intricacies

Samples # examples MSE SCCTrain Test
S1 S2 6, 011 2.650 99.68
S2 S1 5, 496 2.483 99.70

Table 1: Accuracy of the loss regressor on two different sets
of examples generated from different documents samples.

caused by the lack of factorization that need to be
taken into account (see the next section).

5.2 Approaching factorization properties
The ∆ρ defined by Equation 4 approximately

falls into the interval [0, 100]. However, the sim-
ple optimal loss functions, ∆F and ∆Y J , output
a value dependent on the size of the input train-
ing document in terms of edges (as they factorize
in terms of edges). Since this property cannot be
learned from MELA by our regression algorithm,
we calibrate our loss with respect to the number of
correctly predicted mentions, c, in that document,
obtaining ∆′ρ = c

100∆ρ.
Finally, another important issue is connected to

the fact that on the way as we incrementally con-
struct a max-violating tree according to Alg. 3, ∆ρ

decreases (and MELA grows), as we add more
mentions to the output, traversing the tree nodes
v. Thus, to equalize the contribution of the loss
among the candidate edges of different nodes, we
also scale the loss of the candidate edges of the
node v having order i in the document, accord-
ing to the formula ∆′′ρ = i

|V |∆
′
ρ. This can be

interpreted as giving more weight to the hard-to-
classify instances – an important issue alleviated
by Zhao and Ng (2010). Towards the end of the
document, the probability of correctly predicting
an incoming edge for a node generally decreases,
as increases the number of hypotheses.

6 Experiments
In our experiments, we first show that our re-

gressor for learning MELA approximates it rather
accurately. Then, we examine the impact of our
∆ρ on state-of-the-art systems in comparison with
other loss functions. Finally, we show that the im-
pact of our model is amplified when learning in
smaller feature spaces.

6.1 Setup
Data We conducted our experiments on En-

glish and Arabic parts of the corpus from CoNLL
2012-Shared Task4. The English data contains
2,802, 343, and 348 documents in the training,

4conll.cemantix.org/2012/data.html

1023

101 102 103

2

4

6

8

10

12

number of training examples

M
SE

101 102 103

98.8

99.0

99.2

99.4

99.6

99.8

number of training examples

SC
C

Figure 2: Regressor Learning curves.

dev. and test parts, respectively. The Arabic data
includes 359, 44, and 44 documents for training,
dev. and test sets, respectively.
Models We implement our version of LSP,
where LSPF , LSPY J , and LSPρ use the loss func-
tions, ∆F , ∆Y J , and ∆ρ, defined in Section 3.3
and 5.2, respectively. We used cort5 – coref-
erence toolkit by Martschat and Strube (2015)
both to preprocess the English data and to extract
candidate mentions and features (the basic set).
For Arabic, we used mentions and features from
BART6 (Uryupina et al., 2012). We extended the
initial feature set for Arabic with the feature com-
binations proposed by Durrett and Klein (2013),
those permitted by the available initial features.
Parametrization All the perceptron models re-
quire tuning of a regularization parameter C.
LSPF and LSPY J – also tuning of a specific
loss parameter r. We select the parameters on
the entire dev. set by training on 100 random
documents from the training set. We pick up
C ∈ {1.0, 100.0, 1000.0, 2000.0}, the r val-
ues for LSPF from the interval [0.5, 2.5] with
step 0.5, and the r values for LSPY J – from
{0.05, 0.1, 0.5}. Ultimately, for English, we used
C = 1000.0 in all the models; r = 1.0 in LSPF
and r = 0.1 in LSPY J . And wider ranges of pa-
rameter values were considered for Arabic, due to
the lower mention detection rate: C = 1000.0,
r = 6.0 for LSPF , C = 1000.0, r = 0.01 for
LSPY J , and C = 5000.0 – for LSPρ. A standard
previous work setting for the number of epochs T
of LSP is 5 (Martschat and Strube, 2015). Fernan-
des et al. (2014) noted that T = 50 was sufficient
for convergence. We selected the best T from 1 to
50 on the dev. set.
Evaluation measure We used MUC, B3, CEAFe
and their average MELA for evaluation, computed
by the version 8 of the official CoNLL scorer.

5http://smartschat.de/software
6http://www.bart-coref.org/

Model Selected (N = 1M) All (N ∼ 16.8M)
Dev. Test Tbest Dev. Test Tbest

LSPF 63.72 62.19 49 64.05 63.05 41
LSPY J 63.72 62.44 29 64.32 62.76 13
LSPρ 64.12 63.09 27 64.30 63.37 18

M&S AT – – – 62.31 61.24 5
M&S MR – – – 63.52 62.47 5
B&K – – – 62.52 61.63 –
Fer – – – 60.57 60.65 –

Table 2: Results of our and previous work models evaluated
on the dev. and test sets following the exact CoNLL-2012 En-
glish setting, using all training documents with All and 1M
features. Tbest is evaluated on the dev. set.

6.2 Learning loss functions

For learning MELA, we generated training and
test examples from LSPF according to the proce-
dure described in Section 4.3. In the first experi-
ment, we trained the wρ model on a set of exam-
ples S1, generated from a sample of 100 English
documents and tested on a set of examples S2, gen-
erated from another sample of the same size, and
vice versa. The results in Table 1 show that with
just 5, 000/6, 000, the Mean Squared Error (MSE)
is roughly between ∼ 2.4 − 2.7: these are rather
small numbers considering that the regression out-
put values in the interval [0, 100]. Squared Cor-
relation Coefficient (SCC) reaches a correlation
of about 99.7%, demonstrating that our regression
approach is effective in estimating MELA.

Additionally, Figure 2 shows the regression
learning curves evaluated with MSE and SCC. The
former rapidly decreases and, with about 1, 000
examples, reaches a plateau of around 2.3. The lat-
ter shows a similar behaviour, approaching a cor-
relation of about 99.8% with real MELA.

6.3 State of the art and model comparison

We first experimented with the standard CoNLL
setting to compare the LSP accuracy in terms of
MELA using the three different loss functions,
i.e., LSPF , LSPY J and LSPρ. In particular, we
used all the documents of the training set and all
N ∼ 16.8M features from cort, and tested on the
both dev. and test sets. The results are reported in
Columns All of Table 2.

We note first that our ∆ρ is effective as it stays
on a par with ∆F and ∆Y J on the dev. set. This
is interesting as Corollary 1 shows that such func-
tions can optimize MELA, the reported values re-
fer to the optimal epoch numbers. Also, LSPρ im-
proves the other models on the test set by 0.3 per-
cent points (statistical significant at the 93% level
of confidence).

1024

0 25 50 75 100

42

44

46

48

number of epochs, T

M
E

L
A

N = 10K

0 25 50 75 100

54

56

58

60

number of epochs, T

M
E

L
A

N = 100K

0 25 50 75 100
56

58

60

62

number of epochs, T

M
E

L
A

N = 300K

0 25 50 75 100

58

60

62

64

number of epochs, T

M
E

L
A

N = 500K

0 25 50 75 100

60

62

64

number of epochs, T

M
E

L
A

N = 1M

0 25 50 75 100

60

62

64

number of epochs, T

M
E

L
A

N = 1.5M

0 25 50 75 100

61

62

63

64

number of epochs, T

M
E

L
A

All (N ∼ 16.8M)

104 105 106 107
45

50

55

60

65

number of features,N

M
E
L
A

All on the Test Set

LSPF LSPY J LSPρ

Figure 3: Results of LSP models on the dev. set using different number of features, N . The last plot reports MELA score on
the test set of the models using the optimal number of epochs tuned on the dev. set.

#Feat. Model Test Set
MUC B3 CEAFe MELA

All LSPF 72.66 59.94 56.54 63.05
LSPY J 72.18 59.31 55.82 62.76
LSPρ 72.34 60.36 57.40 63.37

LSPF 71.95 59.03 55.59 62.19
1M LSPY J 72.35 59.54 56.38 62.44

LSPρ 72.09 60.11 57.07 63.09

Table 3: Results on the test set using the same setting of
Table 2 and the measures composing MELA.

Secondly, all the three models improve the state
of the art on CR using LSP, i.e., by Martschat
and Strube (2015) using antecedent trees (M&S
AT) or mention ranking (M&S MR), Björkelund
and Kuhn (2014) using a global feature model
(B&K) and Fernandes et al. (2014) (Fer). Noted
that all the LSP models were trained on the train-
ing set only, without retraining on the training and
dev. sets together, thus our scores can be improved.

Thirdly, Table 3 shows the breakdown of the
MELA results in terms of its components on the
test set. Interestingly, LSPρ is noticeably better in
terms of B3 and CEAFe, while LSP with simple
losses, as expected, deliver higher MUC score.

Finally, the overall improvement of ∆ρ is not
impressive. This mainly depends on the optimal-
ity of the competing loss functions, which in a set-
ting of ∼ 16.8M features, satisfy the separability
condition of Proposition 1.

6.4 Learning in more challenging conditions

In these experiments, we verify the hypothesis
that when the optimality property is partially or

totally missing ∆ρ is more visibly superior to ∆F

and ∆Y J . As we do not want to degrade their ef-
fectiveness, the only condition dependent on the
setting is the data inseparability or at least harder
to be separated. These conditions can be obtained
by reducing the size of the feature space. How-
ever, since we aim at testing conditions, where ∆ρ

is practically useful, we filter out less important
features, preserving the model accuracy (at least
when the selection is not extremely harsh). For
this purpose, we use a feature selection approach
using a basic binary classifier trained to discrimi-
nate between correct and incorrect mention pairs.
It is typically used in non structured CR methods
and has a nice property of using the same fea-
tures of LSP (we do not use global features in our
study). We carried out a selection using the abso-
lute values of the model weights of the classifier
for ranking features and then selecting those hav-
ing higher rank (Haponchyk and Moschitti, 2017).

The MELA produced by our models using all
the training data is presented in Figure 3. The
first 7 plots show learning curves in terms of LSP
epochs for different feature sets with increasing
size N , evaluated on the dev. set. We note that:
firstly, the fewer features are available, the better
LSPρ curves are than those of LSPF and LSPY J
in terms of accuracy and convergence speed. The
intuition is that finding a separation of the training
set (generalizing well) becomes more challenging
(e.g., with 10k features, the data is not linearly sep-

1025

arable) thus a loss function which is closer to the
real measure provides some advantages.

Secondly, when using all features, LSPρ is still
overall better than the other models but clearly the
latter can achieve the same MELA on the dev. set.

Thirdly, the last plot shows the MELA produced
by LSP models on the test set, when trained with
the best epoch derived from the dev. set (previous
plots). We observe that LSPρ is constantly better
than the other models, though decreasing its effect
as the feature number increases.

Next, in Column 1 (Selected) of Table 2, we
report the model MELA using 1 million features.
We note that LSPρ improves the other models by
at least 0.6 percent points, achieving the same ac-
curacy as the best of its competitors, i.e., LSPF ,
using all the features.

Finally, ∆ρ does not satisfy Proposition 1,
therefore, generally, we do not know if it can op-
timize any µ-type measure over graphs. How-
ever, being learned to optimize MELA, it clearly
separates data maximizing such a measure. We
empirically verified this by checking the MELA
score obtained on the training set: we found that
LSPρ always optimizes MELA, iterating for fewer
epochs than the other loss functions.

6.5 Generalization to other languages

Here, we test the effectiveness of the proposed
method on Arabic using all available data and fea-
tures. The results in Table 4 reveal an indisputable
superiority of LSPρ over the counterparts optimiz-
ing simple loss functions. They support the results
of the previous section as we had to deal with the
insufficiency of the expert-based features for Ara-
bic. In such an uneasy case, LSPρ was able to im-
prove over LSPF by more than 4.7 points.

We also tested the loss model wρ trained for
the experiments on the English data (resp. setting
All of Section 6.3) in LSPρ on Arabic. This cor-
responds to LSPENρ model. Notably, it performs
even better, 1.5 points more, than LSPρ using a
loss learned from Arabic examples. This suggests
a nice property of data invariance of ∆ρ. The im-
provement delivered by the ”English” wρ is due
to the fact that it was trained on the data which
is richer: (i) quantitatively, since coming from al-
most 8 times more training documents in compar-
ison to Arabic and (ii) qualitatively, in a sense of
diversity with respect to the RL target value. In-
deed, the Arabic data is much less separable than

Model All (N ∼ 395K)
Dev. Test Tbest

LSPF 31.20 33.19 10
LSPY J 27.70 28.51 13
LSPρ 36.91 37.91 6
LSPENρ 38.47 39.56 12

Uryupina et al., 2012 – 37.54 –
B&K 46.67 48.72 –
Fer – 45.18 –

Table 4: Results of our and baseline models evaluated on
the dev. and test sets following the exact CoNLL-2012 Arabic
setting, using all training documents. Tbest is evaluated on
the dev. set.

the English data and this prevents to have exam-
ples where MELA values are higher.

7 Conclusions
In this paper, we studied the use of complex loss

functions in structured prediction for CR. Given
the scale of our investigation, we limited our study
to LSP, which is anyway considered state of the
art. We derived several findings: (i) for the first
time, up to our knowledge, we showed that a com-
plex measure, such as MELA, can be learned by
a linear regressor (RL) with high accuracy and ef-
fective generalization. (ii) The latter was essential
for designing a new LSP based on inexact search
and RL. (iii) We showed that an automatically
learned loss can be optimized and provides state-
of-the-art performance in a real setting, including
thousands of documents and millions of features,
such as CoNLL–2012 Shared Task. (iv) We de-
fined a property of optimal loss functions for CR,
which shows that in separable cases, such losses
are enough to get the state of the art. However, as
soon as separability becomes more complex sim-
ple loss functions lose optimality and RL becomes
more accurate and faster. (v) Our MELA approxi-
mation provides a loss that is data invariant which,
once learned, can be optimized in LSP on different
datasets and in different languages.

Our study opens several future directions, rang-
ing from defining algorithms based on automati-
cally learned loss functions to learning more ef-
fective measures from expert examples.

Acknowledgements
We would like to thank Olga Uryupina for pro-
viding us with the preprocessed data from BART
for Arabic. This work has been supported by the
EC project CogNet, 671625 (H2020-ICT-2014-2,
Research and Innovation action). Many thanks to
the anonymous reviewers for their valuable sug-
gestions.

1026

References
Amit Bagga and Breck Baldwin. 1998. Algorithms

for scoring coreference chains. In Proceedings of
the Linguistic Coreference Workshop at the First In-
ternational Conference on Language Resources and
Evaluation. Granada, Spain, pages 563–566.

Anders Björkelund and Jonas Kuhn. 2014. Learn-
ing structured perceptrons for coreference resolu-
tion with latent antecedents and non-local features.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Baltimore, Maryland, pages 47–57.
http://www.aclweb.org/anthology/P/P14/P14-1005.

Jie Cai and Michael Strube. 2010. Evaluation metrics
for end-to-end coreference resolution systems. In
Proceedings of the 11th Annual Meeting of the
Special Interest Group on Discourse and Dia-
logue. Association for Computational Linguistics,
Stroudsburg, PA, USA, SIGDIAL ’10, pages 28–36.
http://dl.acm.org/citation.cfm?id=1944506.1944511.

Kai-Wei Chang, Rajhans Samdani, Alla Rozovskaya,
Mark Sammons, and Dan Roth. 2012. Illinois-
coref: The ui system in the conll-2012 shared
task. In Joint Conference on EMNLP and
CoNLL - Shared Task. Association for Computa-
tional Linguistics, Jeju Island, Korea, pages 113–
117. http://www.aclweb.org/anthology/W12-4513.

Kevin Clark and Christopher D. Manning. 2016. Im-
proving coreference resolution by learning entity-
level distributed representations. In Proceed-
ings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 643–653.
http://www.aclweb.org/anthology/P16-1061.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing.

Jack Edmonds. 1967. Optimum branchings. Journal
of research of National Bureau of standards pages
233–240.

Eraldo Rezende Fernandes, Cı́cero Nogueira dos
Santos, and Ruy Luiz Milidiú. 2012. Latent
structure perceptron with feature induction
for unrestricted coreference resolution. In
Joint Conference on EMNLP and CoNLL -
Shared Task. Association for Computational
Linguistics, Jeju Island, Korea, pages 41–48.
http://www.aclweb.org/anthology/W12-4502.

Eraldo Rezende Fernandes, Cı́cero Nogueira dos San-
tos, and Ruy Luiz Milidiú. 2014. Latent trees for
coreference resolution. Computational Linguistics
40(4):801–835.

Thomas Finley and Thorsten Joachims. 2005.
Supervised clustering with support vector ma-
chines. In ICML ’05: Proceedings of the 22nd
international conference on Machine learning.
ACM, New York, NY, USA, pages 217–224.
https://doi.org/10.1145/1102351.1102379.

Iryna Haponchyk and Alessandro Moschitti. 2017. A
practical perspective on latent structured predic-
tion for coreference resolution. In Proceedings
of the 15th Conference of the European Chapter
of the Association for Computational Linguistics:
Volume 2, Short Papers. Association for Computa-
tional Linguistics, Valencia, Spain, pages 143–149.
http://www.aclweb.org/anthology/E17-2023.

Emmanuel Lassalle and Pascal Denis. 2015.
Joint anaphoricity detection and corefer-
ence resolution with constrained latent struc-
tures. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence.
AAAI Press, AAAI’15, pages 2274–2280.
http://dl.acm.org/citation.cfm?id=2886521.2886637.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of the Con-
ference on Human Language Technology and Em-
pirical Methods in Natural Language Process-
ing. Association for Computational Linguistics,
Stroudsburg, PA, USA, HLT ’05, pages 25–32.
https://doi.org/10.3115/1220575.1220579.

Sebastian Martschat and Michael Strube. 2015. La-
tent structures for coreference resolution. Transac-
tions of the Association for Computational Linguis-
tics 3:405–418.

Nafise Sadat Moosavi and Michael Strube. 2016.
Which coreference evaluation metric do you trust?
a proposal for a link-based entity aware metric.
In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 632–642.
http://www.aclweb.org/anthology/P16-1060.

Sameer Pradhan, Alessandro Moschitti, Nian-
wen Xue, Olga Uryupina, and Yuchen Zhang.
2012. Conll-2012 shared task: Modeling mul-
tilingual unrestricted coreference in ontonotes.
In Joint Conference on EMNLP and CoNLL
- Shared Task. Association for Computational
Linguistics, Jeju Island, Korea, page 1–40.
http://www.aclweb.org/anthology/W12-4501.

Xu Sun, Takuya Matsuzaki, Daisuke Okanohara,
and Jun’ichi Tsujii. 2009. Latent variable
perceptron algorithm for structured classifi-
cation. In Proceedings of the 21st Interna-
tional Jont Conference on Artifical Intelligence.
Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, IJCAI’09, pages 1236–1242.
http://dl.acm.org/citation.cfm?id=1661445.1661643.

Olga Uryupina, Alessandro Moschitti, and Mas-
simo Poesio. 2012. Bart goes multilingual:

1027

The unitn/essex submission to the conll-
2012 shared task. In Joint Conference on
EMNLP and CoNLL - Shared Task. Associa-
tion for Computational Linguistics, Strouds-
burg, PA, USA, CoNLL ’12, pages 122–128.
http://dl.acm.org/citation.cfm?id=2391181.2391198.

Olga Uryupina, Sriparna Saha, Asif Ekbal, and
Massimo Poesio. 2011. Multi-metric optimization
for coreference: The unitn/iitp/essex submission
to the 2011 conll shared task. In Proceedings
of the Fifteenth Conference on Computational
Natural Language Learning: Shared Task. Associ-
ation for Computational Linguistics, Stroudsburg,
PA, USA, CONLL Shared Task ’11, pages 61–65.
http://dl.acm.org/citation.cfm?id=2132936.2132944.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Proceed-
ings of the 6th Message Understanding Conference.
pages 45–52.

Sam Wiseman, Alexander M. Rush, and Stuart M.
Shieber. 2016. Learning global features for coref-
erence resolution. In NAACL HLT 2016, The
2016 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, San Diego Cali-
fornia, USA, June 12-17, 2016. pages 994–1004.
http://aclweb.org/anthology/N/N16/N16-1114.pdf.

Chun-Nam John Yu and Thorsten Joachims. 2009.
Learning structural svms with latent variables.
In Proceedings of the 26th Annual International
Conference on Machine Learning. ACM, New
York, NY, USA, ICML ’09, pages 1169–1176.
https://doi.org/10.1145/1553374.1553523.

Shanheng Zhao and Hwee Tou Ng. 2010. Maximum
metric score training for coreference resolution. In
Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010). Coling
2010 Organizing Committee, Beijing, China, pages
1308–1316. http://www.aclweb.org/anthology/C10-
1147.

1028

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1029–1039
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1095

Bayesian Modeling of Lexical Resources for Low-Resource Settings

Nicholas Andrews and Mark Dredze and Benjamin Van Durme and Jason Eisner
Department of Computer Science and Human Language Technology Center of Excellence

Johns Hopkins University
3400 N. Charles St., Baltimore, MD 21218 USA

{noa,eisner,mdredze,vandurme}@jhu.edu

Abstract

Lexical resources such as dictionaries and
gazetteers are often used as auxiliary data
for tasks such as part-of-speech induction
and named-entity recognition. However,
discriminative training with lexical features
requires annotated data to reliably estimate
the lexical feature weights and may result
in overfitting the lexical features at the ex-
pense of features which generalize better.
In this paper, we investigate a more robust
approach: we stipulate that the lexicon is
the result of an assumed generative process.
Practically, this means that we may treat
the lexical resources as observations under
the proposed generative model. The lexi-
cal resources provide training data for the
generative model without requiring sepa-
rate data to estimate lexical feature weights.
We evaluate the proposed approach in two
settings: part-of-speech induction and low-
resource named-entity recognition.

1 Introduction

Dictionaries and gazetteers are useful in many
natural language processing tasks. These lexical
resources may be derived from freely available
sources (such as Wikidata and Wiktionary) or con-
structed for a particular domain. Lexical resources
are typically used to complement existing anno-
tations for a given task (Ando and Zhang, 2005;
Collobert et al., 2011). In this paper, we focus
instead on low-resource settings where task annota-
tions are unavailable or scarce. Specifically, we use
lexical resources to guide part-of-speech induction
(§4) and to bootstrap named-entity recognizers in
low-resource languages (§5).

Given their success, it is perhaps surprising that
incorporating gazetteers or dictionaries into dis-

criminative models (e.g. conditional random fields)
may sometimes hurt performance. This phenom-
ena is called weight under-training, in which lexi-
cal features—which detect whether a name is listed
in the dictionary or gazetteer—are given exces-
sive weight at the expense of other useful features
such as spelling features that would generalize to
unlisted names (Smith et al., 2005; Sutton et al.,
2006; Smith and Osborne, 2006). Furthermore, dis-
criminative training with lexical features requires
sufficient annotated training data, which poses chal-
lenges for the unsupervised and low-resource set-
tings we consider here.

Our observation is that Bayesian modeling pro-
vides a principled solution. The lexicon is itself a
dataset that was generated by some process. Prac-
tically, this means that lexicon entries (words or
phrases) may be treated as additional observations.
As a result, these entries provide information about
how names are spelled. The presence of the lexi-
con therefore now improves training of the spelling
features, rather than competing with the spelling
features to help explain the labeled corpus.

A downside is that generative models are typi-
cally less feature-rich than their globally normal-
ized discriminative counterparts (e.g. conditional
random fields). In designing our approach—the
hierarchical sequence memoizer (HSM)—we aim
to be reasonably expressive while retaining prac-
tically useful inference algorithms. We propose a
Bayesian nonparametric model to serve as a gener-
ative distribution responsible for both lexicon and
corpus data. The proposed model memoizes previ-
ously used lexical entries (words or phrases) but
backs off to a character-level distribution when
generating novel types (Teh, 2006; Mochihashi
et al., 2009). We propose an efficient inference
algorithm for the proposed model using particle
Gibbs sampling (§3). Our code is available at
https://github.com/noa/bayesner.

1029

https://doi.org/10.18653/v1/P17-1095

2 Model

Our goal is to fit a model that can automatically
annotate text. We observe a supervised or unsu-
pervised training corpus. For each label y in the
annotation scheme, we also observe a lexicon of
strings of type y. For example, in our tagging task
(§4), a dictionary provides us with a list of words
for each part-of-speech tag y. (These lists need not
be disjoint.) For named-entity recognition (NER,
§5), we use a list of words or phrases for each
named-entity type y (PER, LOC, ORG, etc.).1

2.1 Modeling the lexicon

We may treat the lexicon for type y, of size my, as
having been produced by a set of my IID draws
from an unknown distribution Py over the words
or named entities of type y. It therefore provides
some evidence about Py. We will later assume that
Py is also used when generating mentions of these
words or entities in text. Thanks to this sharing of
Py, if x = Washington is listed in the gazetteer
of locations (y = LOC), we can draw the same con-
clusions as if we had seen a LOC-labeled instance
of Washington in a supervised corpus.

Generalizing this a bit, we may suppose that one
observation of string x in the lexicon is equivalent
to c labeled tokens of x in a corpus, where the
constant c > 0 is known as a pseudocount. In
other words, observing a lexicon of my distinct
types {x1, . . . , xmy} is equivalent to observing a
labeled pseudocorpus of cmy tokens. Notice that
given such an observation, the prior probability of
any candidate distribution Py is reweighted by the
likelihood (cmy)!

(c!)my · (Py(x1)Py(x2) · · ·Py(xmy))c.
Therefore, this choice of Py can have relatively
high posterior probability only to the extent that it
assigns high probability to all of the lexicon types.

2.2 Discussion

We employ the above model because it has rea-
sonable qualitative behavior and because computa-
tionally, it allows us to condition on observed lexi-
cons as easily as we condition on observed corpora.
However, we caution that as a generative model
of the lexicon, it is deficient, in the sense that it

1Dictionaries and knowledge bases provide more infor-
mation than we use in this paper. For instance, Wikidata
also provides a wealth of attributes and other metadata for
each entity s. In principle, this additional information could
also be helpful in estimating Py(s); we leave this intriguing
possibility for future work.

allocates probability mass to events that cannot ac-
tually correspond to any lexicon. After all, drawing
cmy IID tokens from Py is highly unlikely to result
in exactly c tokens of each of my different types,
and yet a run of our system will always assume
that precisely this happened to produce each ob-
served lexicon! To avoid the deficiency, one could
assume that the lexicon was generated by rejection
sampling: that is, the gazetteer author repeatedly
drew samples of size cmy from Py until one was
obtained that had this property, and then returned
the set of distinct types in that sample as the lexi-
con for y. But this is hardly a realistic description
of how gazetteers are actually constructed. Rather,
one imagines that the gazetteer author simply har-
vested a lexicon of frequent types from Py or from
a corpus of tokens generated from Py. For example,
a much better generative story is that the lexicon
was constructed as the first my distinct types to
appear ≥ c times in an unbounded sequence of IID
draws from Py. When c = 1, this is equivalent
to modeling the lexicon as my draws without re-
placement from Py.2 Unfortunately, draws without
replacement are no longer IID or exchangeable: or-
der matters. It would therefore become difficult to
condition inference and learning on an observed
lexicon, because we would need to explicitly sum
or sample over the possibilities for the latent se-
quence of tokens (or stick segments). We therefore
adopt the simpler deficient model.

A version of our lexicon model (with c = 1)
was previously used by Dreyer and Eisner (2011,
Appendix C), who observed a list of verb paradigm
types rather than word or entity-name types.

2.3 Prior distribution over Py
We assume a priori that Py was drawn from a
Pitman-Yor process (PYP) (Pitman and Yor, 1997).
Both the lexicon and the ordinary corpus are ob-
servations that provide information about Py. The
PYP is defined by three parameters: a concentra-
tion parameter α, a discount parameter d, and a
base distribution Hy. In our case, Hy is a distribu-
tion over X = Σ∗, the set of possible strings over
a finite character alphabet Σ.

For example, HLOC is used to choose new place
names, so it describes what place names tend to

2If we assume that Py was drawn from a Pitman-Yor pro-
cess prior (as in §2.3) using the stick-breaking method (Pitman,
1996), it is also equivalent to modeling the lexicon as the set
of labels of the first my stick segments (which tend to have
high probability).

1030

look like in the language. The draw PLOC ∼
PYP(d, α,HLOC) is an “adapted” version of HLOC.
It is PLOC that determines how often each name is
mentioned in text (and whether it is mentioned in
the lexicon). Some names such as Washington
that are merely plausible under HLOC are far more
frequent under PLOC, presumably because they
were chosen as the names of actual, significant
places. These place names were randomly drawn
from HLOC as part of the procedure for drawing Py.

The expected value of Py is H (i.e., H is the
mean of the PYP distribution), but if α and d are
small, then a typical draw of Py will be rather dif-
ferent from H , with much of the probability mass
falling on a subset of the strings.

At training or test time, when deciding whether
to label a corpus token of x = Washington as
a place or person, we will be interested in the rel-
ative values of PLOC(x) and PPER(x). In practice,
we do not have to represent the unknown infinite
object Py, but can integrate over its possible values.
When Py ∼ PYP(d, α,Hy), then a sequence of
draws X1, X2, . . . ∼ Py is distributed according to
a Chinese restaurant process, via

Py(Xi+1 = x | X1, . . . , Xi) (1)

=
customers(x)− d · tables(x)

α+ i

+
α+ d ·∑x′ tables(x′)

α+ i
Hy(x)

where customers(x) ≤ i is the number of
times that x appeared among X1, . . . , Xi, and
tables(x) ≤ customers(x) is the number of those
times that x was drawn from Hy (where each
Py(Xi | · · ·) defined by (1) is interpreted as a
mixture distribution that sometimes uses Hy).

2.4 Form of the base distribution Hy

By fitting Hy on corpus and lexicon data, we learn
what place names or noun strings tend to look like
in the language. By simultaneously fitting Py, we
learn which ones are commonly mentioned. Recall
that under our model, tokens are drawn from Py but
the underlying types are drawn fromHy, e.g.,Hy is
responsible for (at least) the first token of each type.

A simple choice for Hy is a Markov process
that emits characters in Σ ∪ {$}, where $ is a dis-
tinguished stop symbol that indicates the end of
the string. Thus, the probability of producing $
controls the typical string length under Hy.

We use a more sophisticated model of strings—a
sequence memoizer (SM), which is a (hierarchi-
cal) Bayesian treatment of variable-order Markov
modeling (Wood et al., 2009). The SM allows
dependence on an unbounded history, and the prob-
ability of a given sequence (string) can be found
efficiently much as in equation (1).

Given a string x = a1 · · · aJ ∈ Σ∗, the SM
assigns a probability to it via

Hy(a1:J) =
(J∏

j=1

Hy(aj | a1:j−1)
)
Hy($ | a1:J)

=
(J∏

j=1

Hy,a1:j−1(aj)
)
Hy,a1:J ($) (2)

where Hy,u(a) denotes the conditional probability
of character a given the left context u ∈ Σ∗. Each
Hy,u is a distribution over Σ, defined recursively
as

Hy,ε ∼ PYP(dε, αε,UΣ) (3)

Hy,u ∼ PYP(d|u|, α|u|, Hy,σ(u))

where ε is the empty sequence, UΣ is the uni-
form distribution over Σ ∪ {$}, and σ(u) drops
the first symbol from u. The discount and concen-
tration parameters (d|u|, α|u|) are associated with
the lengths of the contexts |u|, and should gener-
ally be larger for longer (more specific) contexts,
implying stronger backoff from those contexts.3

Our inference procedure is largely indifferent to
the form of Hy, so the SM is not the only option.
It would be possible to inject more assumptions
into Hy, for instance via structured priors for mor-
phology or a grammar of name structure. Another
possibility is to use a parametric model such as
a neural language model (e.g., Jozefowicz et al.
(2016)), although this would require an inner-loop
of gradient optimization.

2.5 Modeling the sequence of tags y

We now turn to modeling the corpus. We assume
that each sentence is generated via a sequence of
latent labels y = y1:T ∈ Y∗.4 The observations

3We fix these hyperparameters using the values suggested
in (Wood et al., 2009; Gasthaus and Teh, 2010), which we find
to be quite robust in practice. One could also resample their
values (Blunsom and Cohn, 2010); we experimented with this
but did not observe any consistent advantage to doing so in
our setting.

4The label sequence is terminated by a distinguished end-
of-sequence label, again written as $.

1031

x1:T are then generated conditioned on the label
sequence via the corresponding Py distribution (de-
fined in §2.3). All observations with the same label
y are drawn from the same Py, and thus this subse-
quence of observations is distributed according to
the Chinese restaurant process (1).

We model y using another sequence memo-
izer model. This is similar to other hierarchical
Bayesian models of latent sequences (Goldwater
and Griffiths, 2007; Blunsom and Cohn, 2010), but
again, it does not limit the Markov order (the num-
ber of preceding labels that are conditioned on).
Thus, the probability of a sequence of latent types
is computed in the same way as the base distribu-
tion in §2.4, that is,

p(y1:T) :=
(T∏

t=1

Gy1:t−1(yt)
)
Gy1:T ($) (4)

where Gv(y) denotes the conditional probability
of latent label y ∈ Y given the left context v ∈ Y∗.
Each Gv is a distribution over Y , defined recur-
sively as

Gε ∼ PYP(dε, αε,UY) (5)

Gv ∼ PYP(d|v|, α|v|, Gσ(v))

The probability of transitioning to label yt de-
pends on the assignments of all previous labels
y1 . . . yt−1.

For part-of-speech induction, each label yt is the
part-of-speech associated with the corresponding
word xt. For named-entity recognition, we say that
each word token is labeled with a named entity
type (LOC, PER, . . .),5 or with itself if it is not
a named entity but rather a “context word.” For
example, the word token xt = Washington
could have been emitted from the label yt = LOC,
or from yt = PER, or from yt = Washington
itself (in which case p(xt | yt) = 1). This uses a
much larger set of labels Y than in the traditional
setup where all context words are emitted from the
same latent label type O. Of course, most labels
are impossible at most positions (e.g., yt cannot be
Washington unless xt = Washington). This
scheme makes our generative model sensitive to
specific contexts (which is accomplished in dis-
criminative NER systems by contextual features).
For example, the SM for y can learn that spoke
to PER yesterday is a common 4-gram

5In §3.2, we will generalize this labeling scheme to allow
multi-word named entities such as New York.

in the label sequence y, and thus we are more
likely to label Washington as a person if x =
. . .spoke to Washington yesterday

We need one change to make this work, since
now Y must include not only the standard NER
labels Y ′ = {PER, LOC, ORG, GPE} but also words
like Washington. Indeed, now Y = Y ′ ∪ Σ∗.
But no uniform distribution exists over the infinite
set Σ∗, so how should we replace the base distribu-
tion UY over labels in equation (5)? Answer: To
draw from the new base distribution, sample y ∼
UY ′ ∪{CONTEXT}. If y = CONTEXT, however, then
“expand” it by resampling y ∼ HCONTEXT. Here
HCONTEXT is the base distribution over spellings of
context words, and is learned just like the other Hy

distributions in §2.4.

3 Inference via particle Markov chain
Monte Carlo

3.1 Sequential sampler

TakingY to be a random variable, we are interested
in the posterior distribution p(Y = y | x) over la-
bel sequences y given the emitted word sequence
x. Our model does not admit an efficient dynamic
programming algorithm, owing to the dependen-
cies introduced among the Yt when we marginalize
over the unknown G and P distributions that gov-
ern transitions and emissions, respectively. In con-
trast to tagging with a hidden Markov model tag-
ging, the distribution of each label Yt depends on
all previous labels y1:t−1, for two reasons: ¬ The
transition distribution p(Yt = y | y1:t−1) has un-
bounded dependence because of the PYP prior (4).
­ The emission distribution p(xt | Yt = y) de-
pends on the emissions observed from any earlier
tokens of y, because of the Chinese restaurant pro-
cess (1). When ­ is the only complication, block
Metropolis-Hastings samplers have proven effec-
tive (Johnson et al., 2007). However, this approach
uses dynamic programming to sample from a pro-
posal distribution efficiently, which ¬ precludes in
our case. Instead, we use sequential Monte Carlo
(SMC)—sometimes called particle filtering—as a
proposal distribution. Particle filtering is typically
used in online settings, including word segmenta-
tion (Borschinger and Johnson, 2011), to make de-
cisions before all of x has been observed. However,
we are interested in the inference (or smoothing)
problem that conditions on all of x (Dubbin and
Blunsom, 2012; Tripuraneni et al., 2015).

SMC employs a proposal distribution q(y | x)

1032

whose definition decomposes as follows:

q(y1 | x1)
T∏

t=2

q(yt | y1:t−1,x1:t) (6)

for T = |x|. To sample a sequence of latent
labels, first sample an initial label y1 from q1,
then proceed incrementally by sampling yt from
qt(· | y1:t−1,x1:t) for t = 2, . . . , T . The fi-
nal sampled sequence y is called a particle, and
is given an unnormalized importance weight of
w̃ = w̃T · p($ | y1:T) where w̃T was built up via

w̃t := w̃t−1 ·
p(y1:t,x1:t)

p(y1:t−1,x1:t−1) q(yt | y1:t−1,x1:t)
(7)

The SMC procedure consists of generating a sys-
tem of M weighted particles whose unnormalized
importance weights w̃(m) : 1 ≤ m ≤ M are
normalized into w(m) := w̃(m)/

∑M
m=1 w̃

(m). As
M → ∞, SMC provides a consistent estimate of
the marginal likelihood p(x) as 1

M

∑M
m=1 w̃

(m),
and samples from the weighted particle system are
distributed as samples from the desired posterior
p(y | x) (Doucet and Johansen, 2009).

Particle Gibbs. We employ SMC as a kernel in
an MCMC sampler (Andrieu et al., 2010). In par-
ticular, we use a block Gibbs sampler in which
we iteratively resample the hidden labeling y of
a sentence x conditioned on the current labelings
for all other sentences in the corpus. In this con-
text, the algorithm is called conditional SMC since
one particle is always fixed to the previous sam-
pler state for the sentence being resampled, which
ensures that the MCMC procedure is ergodic. At
a high level, this procedure is analogous to other
Gibbs samplers (e.g. for topic models), except that
the conditional SMC (CSMC) kernel uses auxiliary
variables (particles) in order to generate the new
block variable assignments. The procedure is out-
lined in Algorithm 1. Given a previous latent state
assignment y′1:T and observations x1:T , the CSMC
kernel produces a new latent state assignment via
M auxiliary particles where one particle is fixed to
the previous assignment. For ergodicity, M ≥ 2,
where larger values of M may improve mixing rate
at the expense of increased computation per step.

Proposal distribution. The choice of proposal dis-
tribution q is crucial to the performance of SMC
methods. In the case of continuous latent variables,

it is common to propose yt from the transition prob-
ability p(Yt | y1:t−1) because this distribution usu-
ally has a simple form that permits efficient sam-
pling. However, it is possible to do better in the
case of discrete latent variables. The optimal pro-
posal distribution is the one which minimizes the
variance of the importance weights, and is given by

q(yt | y1:t−1,x1:t) := p(yt | y1:t−1,x1:t) (8)

=
p(yt | y1:t−1)p(xt | yt)

p(xt | y1:t−1)

where

p(xt | y1:t−1)=
∑

yt∈Y
p(yt | y1:t−1)p(xt | yt) (9)

Substituting this expression in equation (7) and
simplifying yields the incremental weight update:

w̃t := w̃t−1 · p(xt | y1:t−1) (10)

Resampling. In filtering applications, it is com-
mon to use resampling operations to prevent weight
degeneracy. We do not find resampling necessary
here for three reasons. First, note that we resam-
ple hidden label sequences that are only as long as
the number of words in a given sentence. Second,
we use a proposal which minimizes the variance
of the weights. Finally, we use SMC as a kernel
embedded in an MCMC sampler; asymptotically,
this procedure yields samples from the desired pos-
terior regardless of degeneracy (which only affects
the mixing rate). Practically speaking, one can di-
agnose the need for resampling via the effective
sample size (ESS) of the particle system:

ESS :=
1

∑M
m=1(w̃(m))2

=
(
∑M

m=1w
(m))2

∑M
m=1(w(m))2

In our experiments, we find that ESS remains high
(a significant fraction of M) even for long sen-
tences, suggesting that resampling is not necessary
to enable mixing of the the Gibbs sampler.

Decoding. In order to obtain a single latent vari-
able assignment for evaluation purposes, we simply
take the state of the Markov chain after a fixed num-
ber of iterations of particle Gibbs. In principle, one
could collect many samples during particle Gibbs
and use them to perform minimum Bayes risk de-
coding under a given loss function. However, this
approach is somewhat slower and did not appear to
improve performance in preliminary experiments

1033

Algorithm 1 Conditional SMC

1: procedure CSMC(x1:T , y′1:T , M)
2: Draw y

(m)
1 (eqn. 8) for m ∈ [1,M − 1]

3: Set y(M)
1 = y′1

4: Set w̃(m)
1 (eqn. 10) for m ∈ [1,M]

5: for t = 2 to T do
6: Draw y

(m)
t (eqn. 8) for m ∈ [1,M −1]

7: Set yMt = y′t
8: Set w̃(m)

t (eqn. 10) for m ∈ [1,M]

9: Set w̃(m) = w̃
(m)
T p($|y1:T) for m ∈ [1,M]

10: Draw index k where p(k = m) ∝ w̃(m)

11: return y(k)
1:T

3.2 Segmental sampler

We now present an sampler for settings such as
NER where each latent label emits a segment con-
sisting of 1 or more words. We make use of the
same transition distribution p(yt | y1:t−1), which
determines the probability of a label in a given
context, and an emission distribution p(xt | yt)
(namely Pyt); these are assumed to be drawn
from hierarchical Pitman-Yor processes described
in §2.5 and §2.1, respectively. To allow the xt to be
a multi-word string, we simply augment the charac-
ter set with a distinguished space symbol ∈ Σ that
separates words within a string. For instance, New
York would be generated as the 9-symbol sequence
New York$.

Although the model emits New York all at
once, we still formulate our inference procedure as
a particle filter that proposes one tag for each word.
Thus, for a given segment label type y, we allow
two tag types for its words:

• I-y corresponds to a non-final word in a seg-
ment of type y (in effect, a word with a fol-
lowing attached).
• E-y corresponds to the final word in a segment

of type y.

For instance, x1:2 = New York would be anno-
tated as a location segment by defining y1:2 =
I-LOC E-LOC. This says that y1:2 has jointly
emitted x1:2, an event with prior probability
PLOC(New York). Each word that is not part
of a named entity is considered to be a single-
word segment. For example, if the next word
were x3 = hosted then it should be tagged with
y3 = hosted as in §2.5, in which case x3 was
emitted with probability 1.

To adapt the sampler described in §3.1 for the
segmental case, we need only to define the transi-
tion and emission probabilities used in equation (8)
and its denominator (9).

For the transition probabilities, we want to model
the sequence of segment labels. If yt−1 is an I- tag,
we take p(yt | y1:t−1) = 1 , since then yt merely
continues an existing segment. Otherwise yt starts
a new segment, and we take p(yt | y1:t−1) = 1 to
be defined by the PYP’s probability Gy1:t−1(yt) as
usual, but where we interpret the subscript y1:t−1

to refer to the possibly shorter sequence of segment
labels implied by those t− 1 tags.

For the emission probabilities, if yt has the form
I-y or E-y, then its associated emission probabil-
ity no longer has the form p(xt | yt), since the
choice of xt also depends on any words emitted
earlier in the segment. Let s ≤ t be the starting
position of the segment that contains t. If yt = E-y,
then the emission probability is proportional to
Py(xs xs+1 . . . xt). If yt = I-y then the emis-
sion probability is proportional to the prefix prob-
ability

∑
x Py(x) where x ranges over all strings

in Σ∗ that have xs xs+1 . . . xt as a proper pre-
fix. Prefix probabilities in Hy are easy to compute
because Hy has the form of a language model, and
prefix probabilities in Py are therefore also easy to
compute (using a prefix tree for efficiency).

This concludes the description of the segmental
sampler. Note that the particle Gibbs procedure is
unchanged.

4 Inducing parts-of-speech with
type-level supervision

Automatically inducing parts-of-speech from raw
text is a challenging problem (Goldwater et al.,
2005). Our focus here is on the easier problem
of type-supervised part-of-speech induction, in
which (partial) dictionaries are used to guide in-
ference (Garrette and Baldridge, 2012; Li et al.,
2012). Conditioned on the unlabeled corpus and
dictionary, we use the MCMC procedure described
in §3.1 to impute the latent parts-of-speech.

Since dictionaries are freely available for hun-
dreds of languages,6 we see this as a mild addi-
tional requirement in practice over the purely unsu-
pervised setting.

In prior work, dictionaries have been used as con-
straints on possible parts-of-speech: words appear-
ing in the dictionary take one of their known parts-

6https://www.wiktionary.org/

1034

of-speech. In our setting, however, the dictionar-
ies are not constraints but evidence. If monthly
is listed in (only) the adjective lexicon, this tells
us that PADJ sometimes generates monthly and
therefore that HADJ may also tend to generate
other words that end with -ly. However, for us,
PADV(monthly) > 0 as well, allowing us to still
correctly treat monthly as a possible adverb if we
later encounter it in a training or test corpus.

4.1 Experiments

We follow the experimental procedure described
in Li et al. (2012), and use their released code and
data to compare to their best model: a second-order
maximum entropy Markov model parametrized
with log-linear features (SHMM-ME). This model
uses hand-crafted features designed to distinguish
between different parts-of-speech, and it has spe-
cial handling for rare words. This approach is sur-
prisingly effective and outperforms alternate ap-
proaches such as cross-lingual transfer (Das and
Petrov, 2011). However, it also has limitations,
since words that do not appear in the dictionary
will be unconstrained, and spurious or incorrect
lexical entries may lead to propagation of errors.

The lexicons are taken from the Wiktionary
project; their size and coverage are documented
by (Li et al., 2012). We evaluate our model on
multi-lingual data released as part of the CoNLL
2007 and CoNLL-X shared tasks. In particular, we
use the same set of languages as Li et al. (2012).7

For our method, we impute the parts-of-speech by
running particle Gibbs for 100 epochs, where one
epoch consists of resampling the states for a each
sentence in the corpus. The final sampler state is
then taken as a 1-best tagging of the unlabeled data.

Results. The results are reported in Table 1.
We find that our hierarchical sequence memoizer
(HSM) matches or exceeds the performance of the
baseline (SHMM-ME) for nearly all the tested lan-
guages, particularly for morphologically rich lan-
guages such as German where the spelling distribu-
tions Hy may capture regularities. It is interesting
to note that our model performs worse relative to
the baseline for English; one possible explanation
is that the baseline uses hand-engineered features
whereas ours does not, and these features may have
been tuned using English data for validation.

7With the exception of Dutch. Unlike the other CoNLL lan-
guages, Dutch includes phrases, and the procedure by which
these were split into tokens was not fully documented.

Our generative model is supposed to exploit lex-
icons well. To see what is lost from using a genera-
tive model, we also compared with Li et al. (2012)
on standard supervised tagging without any lexi-
cons. Even here our generative model is very com-
petive, losing only on English and Swedish.

5 Boostrapping NER with type-level
supervision

Name lists and dictionaries are useful for NER
particularly when in-domain annotations are scarce.
However, with little annotated data, discriminative
training may be unable to reliably estimate lexical
feature weights and may overfit. In this section, we
are interested in evaluating our proposed Bayesian
model in the context of low-resource NER.

5.1 Data

Most languages do not have corpora annotated for
parts-of-speech, named-entities, syntactic parses,
or other linguistic annotations. Therefore, rapidly
deploying natural language technologies in a new
language may be challenging. In the context of
facilitating relief responses in emergencies such as
natural disasters, the DARPA LORELEI (Low Re-
source Languages for Emergent Incidents) program
has sponsored the development and release of repre-
sentative “language packs” for Turkish and Uzbek
with more languages planned (Strassel and Tracey,
2016). We use the named-entity annotations as part
of these language packs which include persons, lo-
cations, organizations, and geo-political entities, in
order to explore bootstrapping named-entity recog-
nition from small amounts of data. We consider
two types of data: ¬ in-context annotations, where
sentences are fully annotated for named-entities,
and ­ lexical resources.

The LORELEI language packs lack adequate in-
domain lexical resources for our purposes. There-
fore, we simulate in-domain lexical resources
by holding out portions of the annotated de-
velopment data and deriving dictionaries and
name lists from them. For each label y ∈
{PER, LOC, ORG, GPE, CONTEXT}, our lexicon
for y lists all distinct y-labeled strings that appear
in the held-out data. This setup ensures that the
labels associated with lexicon entries correspond
to the annotation guidelines used in the data we
use for evaluation. It avoids possible problems that
might arise when leveraging noisy out-of-domain
knowledge bases, which we may explore in future.

1035

Model Danish German Greek English Italian Portuguese Spanish Swedish Mean

Wiktionary
SHMM-ME 83.3 85.8 79.2 87.1 86.5 84.5 86.4 86.1 84.9
HSM 83.7 90.7 81.7 84.0 86.7 85.5 87.6 86.8 85.8

Supervised
SHMM-ME 93.9 97.4 95.1 95.8 93.8 95.5 93.8 95.5 95.1
HSM 95.2 97.4 97.4 95.2 94.5 96.0 95.6 92.2 95.3

Table 1: Part-of-speech induction results in multiple languages.

5.2 Evaluation
In this section we report supervised NER experi-
ments on two low-resource languages: Turkish and
Uzbek. We vary both the amount of supervision
as well as the size of the lexical resources. A chal-
lenge when evaluating the performance of a model
with small amounts of training data is that there
may be high-variance in the results. In order to
have more confidence in our results, we perform
bootstrap resampling experiments in which the
training set, evaluation set, and lexical resources
are randomized across several replications of the
same experiment (for each of the data conditions).
We use 10 replications for each of the data condi-
tions reported in Figures 1–2, and report both the
mean performance and 95% confidence intervals.

Baseline. We use the Stanford NER system
with a standard set of language-independent fea-
tures (Finkel et al., 2005).8. This model is a condi-
tional random field (CRF) with feature templates
which include character n-grams as well as word
shape features. Crucially, we also incorporate lexi-
cal features. The CRF parameters are regularized
using an L1 penalty and optimized via Orthant-wise
limited-memory quasi-Newton optimization (An-
drew and Gao, 2007). For both our proposed
method and the discriminative baseline, we use
a fixed set of hyperparameters (i.e. we do not use
a separate validation set for tuning each data con-
dition). In order to make a fair comparison to the
CRF, we use our sampler for forward inference
only, without resampling on the test data.

Results. We show learning curves as a function
of supervised training corpus size. Figure 1 shows
that our generative model strongly beats the base-
line in this low-data regime. In particular, when
there is little annotated training data, our proposed
generative model can compensate by exploiting the
lexicon, while the discriminative baseline scores
terribly. The performance gap decreases with larger

8We also experimented with neural models, but found that
the CRF outperformed them in low-data conditions.

supervised corpora, which is consistent with prior
results comparing generative and discriminative
training (Ng and Jordan, 2002).

In Figure 2, we show the effect of the lexi-
con’s size: as expected, larger lexicons are better.
The generative approach significantly outperforms
the discriminative baseline at any lexicon size, al-
though its advantage drops for smaller lexicons or
larger training corpora.

In Figure 1 we found that increasing the pseudo-
count c consistently decreases performance, so we
used c = 1 in our other experiments.9

6 Conclusion

This paper has described a generative model for
low-resource sequence labeling and segmentation
tasks using lexical resources. Experiments in semi-
supervised and low-resource settings have demon-
strated its applicability to part-of-speech induction
and low-resource named-entity recognition. There
are many potential avenues for future work. Our
model may be useful in the context of active learn-
ing where efficient re-estimation and performance
in low-data conditions are important. It would also
be interesting to explore more expressive parame-
terizations, such recurrent neural networks for Hy.
In the space of neural methods, differentiable mem-
ory (Santoro et al., 2016) may be more flexible
than the PYP prior, while retaining the ability of
the model to cache strings observed in the gazetteer.

Acknowledgments

This work was supported by the JHU Human Lan-
guage Technology Center of Excellence, DARPA
LORELEI, and NSF grant IIS-1423276. Thanks to
Jay Feldman for early discussions.

9Why? Even a pseudocount of c = 1 is enough to ensure
that Py(s) � Hy(s), since the prior probability Hy(s) is
rather small for most strings in the lexicon. Indeed, perhaps
c < 1 would have increased performance, particularly if the
lexicon reflects out-of-domain data. This could be arranged,
in effect, by using a hierarchical Bayesian model in which the
lexicon and corpus emissions are not drawn from the identical
distribution Py but only from similar (coupled) distributions.

1036

100 200 300 400 500
sentence

0

10

20

30

40

50

60

F1

Model
baseline
c=1
c=10
c=100

Figure 1: Absolute NER performance for Turkish (y-axis) as a function of corpus size (x-axis). The
y-axis gives the F1 score on a held-out evaluation set (averaged over 10 bootstrap replicates, with error
bars showing 95% confidence intervals). Our generative approach is compared to a baseline discriminative
model with lexicon features (lowest curve). 500 held-out sentences were used to create the lexicon for
both methods. Note that increasing the pseudocount c for lexicon entries (upper curves) tends to decrease
performance for the generative model; we therefore take c = 1 in all other experiments. This graph shows
Turkish; the corresponding Uzbek figure is available as supplementary material.

100 200 300 400 500
sentence

0

10

20

30

40

F1
 m

od
el

 -
F1

 b
as

el
in

e

Gazetteer size
1000
100
10

Figure 2: Relative NER performance for Turkish (y-axis) as a function of corpus size (x-axis). In this
graph, c = 1 is constant and the curves instead compare different lexicon sizes derived from 10, 100,
and 1000 held-out sentences. The y-axis now gives the difference F1model − F1baseline, so positive values
indicate improvement over the baseline due to the proposed model. Gains are highest for large lexicons
and for small corpora. Again, the corresponding Uzbek figure is available as supplementary material.

1037

References
Rie Kubota Ando and Tong Zhang. 2005. A frame-

work for learning predictive structures from multi-
ple tasks and unlabeled data. Journal of Machine
Learning Research 6:1817–1853.

Galen Andrew and Jianfeng Gao. 2007. Scalable
training of L1-regularized log-linear models. In
Proceedings of the 24th International Conference
on Machine Learning. pages 33–40.

Christophe Andrieu, Arnaud Doucet, and Roman
Holenstein. 2010. Particle Markov chain Monte
Carlo methods. Journal of the Royal Statisti-
cal Society: Series B (Statistical Methodology)
72(3):269–342.

Phil Blunsom and Trevor Cohn. 2010. A hierarchical
Pitman-Yor process HMM for unsupervised part-
of-speech induction. In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics.

Benjamin Borschinger and Mark Johnson. 2011. A
particle filter algorithm for Bayesian wordsegmen-
tation. In Proceedings of the Australasian Lan-
guage Technology Association Workshop 2011.
Canberra, Australia, pages 10–18.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12:2493–2537.

Dipanjan Das and Slav Petrov. 2011. Unsupervised
part-of-speech tagging with bilingual graph-based
projections. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies-Volume 1.
pages 600–609.

Arnaud Doucet and Adam M. Johansen. 2009. A
tutorial on particle filtering and smoothing: Fif-
teen years later. Handbook of Nonlinear Filtering
12:656–704.

Markus Dreyer and Jason Eisner. 2011. Discovering
morphological paradigms from plain text using a
Dirichlet process mixture model. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing (EMNLP). Edinburgh, pages
616–627.

Gregory Dubbin and Phil Blunsom. 2012. Unsuper-
vised Bayesian part of speech inference with parti-
cle Gibbs. In Proceedings of the 2012 European
Conference on Machine Learning and Knowledge
Discovery in Databases - Volume Part I. Springer-
Verlag, Berlin, Heidelberg, ECML PKDD’12,
pages 760–773.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs

sampling. In Proceedings of the 43rd Annual Meet-
ing on Association for Computational Linguistics.
Stroudsburg, PA, USA, ACL ’05, pages 363–370.

Dan Garrette and Jason Baldridge. 2012. Type-
supervised hidden Markov models for part-of-
speech tagging with incomplete tag dictionaries. In
Proceedings of the 2012 Joint Conference on Em-
pirical Methods in Natural Language Processing
and Computational Natural Language Learning.
pages 821–831.

Jan Gasthaus and Yee Whye Teh. 2010. Improve-
ments to the sequence memoizer. In NIPS. pages
685–693.

Sharon Goldwater and Thomas L. Griffiths. 2007. A
fully Bayesian approach to unsupervised part-of-
speech tagging. In Proceedings of the 45th Annual
Meeting of the Association for Computational Lin-
guistics. Prague, Czech Republic, pages 744–751.

Sharon Goldwater, Mark Johnson, and Thomas L.
Griffiths. 2005. Interpolating between types and
tokens by estimating power-law generators. In Ad-
vances in Neural Information Processing Systems.
pages 459–466.

Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2007. Bayesian inference for PCFGs via
Markov chain Monte Carlo. In HLT-NAACL. pages
139–146.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster,
Noam Shazeer, and Yonghui Wu. 2016. Explor-
ing the limits of language modeling. Computing
Research Repository arXiv:1602.02410.

Shen Li, Joao V Graça, and Ben Taskar. 2012. Wiki-ly
supervised part-of-speech tagging. In Proceedings
of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computa-
tional Natural Language Learning. pages 1389–
1398.

Daichi Mochihashi, Takeshi Yamada, and Naonori
Ueda. 2009. Bayesian unsupervised word segmen-
tation with nested Pitman-Yor language modeling.
In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th Interna-
tional Joint Conference on Natural Language Pro-
cessing of the AFNLP: Volume 1-Volume 1. pages
100–108.

Andrew Y. Ng and Michael I. Jordan. 2002. On dis-
criminative vs. generative classifiers: A comparison
of logistic regression and naive Bayes. Advances in
Neural Information Processing Systems 2:841–848.

Jim Pitman. 1996. Some developments of the
Blackwell-MacQueen urn scheme. In T. S. Fer-
guson, L. S. Shapley, and J. B. MacQueen, editors,
Statistics, Probability and Game Theory: Papers
in Honor of David Blackwell, Institute of Mathe-
matical Statistics, volume 30 of IMS Lecture Notes-
Monograph series, pages 245–267.

1038

Jim Pitman and Marc Yor. 1997. The two-parameter
Poisson-Dirichlet distribution derived from a stable
subordinator. The Annals of Probability pages 855–
900.

Adam Santoro, Sergey Bartunov, Matthew Botvinick,
Daan Wierstra, and Timothy P. Lillicrap. 2016.
One-shot learning with memory-augmented neu-
ral networks. Computing Research Repository
arXiv:1605.06065.

Andrew Smith, Trevor Cohn, and Miles Osborne.
2005. Logarithmic opinion pools for conditional
random fields. In Proceedings of the 43rd Annual
Meeting on Association for Computational Linguis-
tics. pages 18–25.

Andrew Smith and Miles Osborne. 2006. Using
gazetteers in discriminative information extrac-
tion. In Proceedings of the Tenth Conference on
Computational Natural Language Learning. pages
133–140.

Stephanie Strassel and Jennifer Tracey. 2016. Lorelei
language packs: Data, tools, and resources for tech-
nology development in low resource languages. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC
2016). European Language Resources Association
(ELRA), Paris, France.

Charles Sutton, Michael Sindelar, and Andrew Mc-
Callum. 2006. Reducing weight undertraining in
structured discriminative learning. In Proceedings
of the Main Conference on Human Language Tech-
nology Conference of the North American Chapter
of the Association of Computational Linguistics.
Stroudsburg, PA, USA, HLT-NAACL ’06, pages
89–95.

Yee Whye Teh. 2006. A hierarchical Bayesian lan-
guage model based on Pitman-Yor processes. In
Proceedings of the 21st International Conference
on Computational Linguistics and the 44th annual
meeting of the Association for Computational Lin-
guistics. pages 985–992.

Nilesh Tripuraneni, Shixiang Gu, Hong Ge, and
Zoubin Ghahramani. 2015. Particle Gibbs for in-
finite hidden Markov models. In Proceedings of
the 28th International Conference on Neural Infor-
mation Processing Systems. MIT Press, Cambridge,
MA, USA, NIPS’15, pages 2395–2403.

Frank Wood, Cédric Archambeau, Jan Gasthaus,
Lancelot James, and Yee Whye Teh. 2009. A
stochastic memoizer for sequence data. In Proceed-
ings of the 26th Annual International Conference
on Machine Learning. pages 1129–1136.

1039

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1040–1050
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1096

Semi-Supervised QA with Generative Domain-Adaptive Nets

Zhilin Yang Junjie Hu Ruslan Salakhutdinov William W. Cohen
School of Computer Science
Carnegie Mellon University

{zhiliny,junjieh,rsalakhu,wcohen}@cs.cmu.edu

Abstract

We study the problem of semi-supervised
question answering—-utilizing unlabeled
text to boost the performance of ques-
tion answering models. We propose a
novel training framework, the Generative
Domain-Adaptive Nets. In this framework,
we train a generative model to gener-
ate questions based on the unlabeled text,
and combine model-generated questions
with human-generated questions for train-
ing question answering models. We de-
velop novel domain adaptation algorithms,
based on reinforcement learning, to alle-
viate the discrepancy between the model-
generated data distribution and the human-
generated data distribution. Experiments
show that our proposed framework obtains
substantial improvement from unlabeled
text.

1 Introduction

Recently, various neural network models were
proposed and successfully applied to the tasks of
questions answering (QA) and/or reading com-
prehension (Xiong et al., 2016; Dhingra et al.,
2016; Yang et al., 2017). While achieving state-
of-the-art performance, these models rely on a
large amount of labeled data. However, it is
extremely difficult to collect large-scale question
answering datasets. Historically, many of the
question answering datasets have only thousands
of question answering pairs, such as WebQues-
tions (Berant et al., 2013), MCTest (Richardson
et al., 2013), WikiQA (Yang et al., 2015), and
TREC-QA (Voorhees and Tice, 2000). Although
larger question answering datasets with hundreds
of thousands of question-answer pairs have been
collected, including SQuAD (Rajpurkar et al.,

2016), MSMARCO (Nguyen et al., 2016), and
NewsQA (Trischler et al., 2016a), the data collec-
tion process is expensive and time-consuming in
practice. This hinders real-world applications for
domain-specific question answering.

Compared to obtaining labeled question answer
pairs, it is trivial to obtain unlabeled text data.
In this work, we study the following problem of
semi-supervised question answering: is it possi-
ble to leverage unlabeled text to boost the perfor-
mance of question answering models, especially
when only a small amount of labeled data is avail-
able? The problem is challenging because con-
ventional manifold-based semi-supervised learn-
ing algorithms (Zhu and Ghahramani, 2002; Yang
et al., 2016a) cannot be straightforwardly applied.
Moreover, since the main foci of most question
answering tasks are extraction rather than genera-
tion, it is also not sensible to use unlabeled text to
improve language modeling as in machine transla-
tion (Gulcehre et al., 2015).

To better leverage the unlabeled text, we pro-
pose a novel neural framework called Genera-
tive Domain-Adaptive Nets (GDANs). The start-
ing point of our framework is to use linguistic
tags to extract possible answer chunks in the un-
labeled text, and then train a generative model to
generate questions given the answer chunks and
their contexts. The model-generated question-
answer pairs and the human-generated question-
answer pairs can then be combined to train a ques-
tion answering model, referred to as a discrimina-
tive model in the following text. However, there
is discrepancy between the model-generated data
distribution and the human-generated data distri-
bution, which leads to suboptimal discriminative
models. To address this issue, we further propose
two domain adaptation techniques that treat the
model-generated data distribution as a different
domain. First, we use an additional domain tag to

1040

https://doi.org/10.18653/v1/P17-1096

indicate whether a question-answer pair is model-
generated or human-generated. We condition the
discriminative model on the domain tags so that
the discriminative model can learn to factor out
domain-specific and domain-invariant representa-
tions. Second, we employ a reinforcement learn-
ing algorithm to fine-tune the generative model to
minimize the loss of the discriminative model in
an adversarial way.

In addition, we present a simple and effective
baseline method for semi-supervised question an-
swering. Although the baseline method performs
worse than our GDAN approach, it is extremely
easy to implement and can still lead to substan-
tial improvement when only limited labeled data
is available.

We experiment on the SQuAD dataset (Ra-
jpurkar et al., 2016) with various labeling rates and
various amounts of unlabeled data. Experimen-
tal results show that our GDAN framework con-
sistently improves over both the supervised learn-
ing setting and the baseline methods, including ad-
versarial domain adaptation (Ganin and Lempit-
sky, 2014) and dual learning (Xia et al., 2016).
More specifically, the GDAN model improves the
F1 score by 9.87 points in F1 over the supervised
learning setting when 8K labeled question-answer
pairs are used.

Our contribution is four-fold. First, different
from most of the previous neural network stud-
ies on question answering, we study a critical
but challenging problem, semi-supervised ques-
tion answering. Second, we propose the Gener-
ative Domain-Adaptive Nets that employ domain
adaptation techniques on generative models with
reinforcement learning algorithms. Third, we in-
troduce a simple and effective baseline method.
Fourth, we empirically show that our framework
leads to substantial improvements.

2 Semi-Supervised Question Answering

Let us first introduce the problem of semi-
supervised question answering.

Let L = {q(i), a(i), p(i)}Ni=1 denote a question
answering dataset of N instances, where q(i), a(i),
and p(i) are the question, answer, and paragraph
of the i-th instance respectively. The goal of ques-
tion answering is to produce the answer a(i) given
the question q(i) along with the paragraph p(i).
We will drop the superscript ·(i) when the con-
text is unambiguous. In our formulation, follow-

ing the setting in SQuAD (Rajpurkar et al., 2016),
we specifically focus on extractive question an-
swering, where a is always a consecutive chunk of
text in p. More formally, let p = (p1, p2, · · · , pT)
be a sequence of word tokens with T being the
length, then a can always be represented as a =
(pj , pj+1, · · · , pk−1, pk), where j and k are the
start and end token indices respectively. The ques-
tions can also be represented as a sequence of
word tokens q = (q1, q2, · · · , qT ′) with length T ′.

In addition to the labeled dataset L, in the semi-
supervised setting, we are also given a set of unla-
beled data, denoted as U = {a(i), p(i)}Mi=1, where
M is the number of unlabeled instances. Note that
it is usually trivial to have access to an almost infi-
nite number of paragraphs p from sources such as
Wikipedia articles and other web pages. And since
the answer a is always a consecutive chunk in p,
we argue that it is also sensible to extract possible
answer chunks from the unlabeled text using lin-
guistic tags. We will discuss the technical details
of answer chunk extraction in Section 4.1, and in
the formulation of our framework, we assume that
the answer chunks a are available.

Given both the labeled data L and the unlabeled
data U , the goal of semi-supervised question an-
swering is to learn a question answering model D
that captures the probability distribution P(a|p, q).
We refer to this question answering model D as
the discriminative model, in contrast to the gener-
ative model that we will present in Section 3.2.

2.1 A Simple Baseline

We now present a simple baseline for semi-
supervised question answering. Given a
paragraph p = (p1, p2, · · · , pT) and the an-
swer a = (pj , pj+1, · · · , pk−1, pk), we extract
(pj−W , pj−W+1, · · · , pj−1, pk+1, pk+2, pk+W)
from the paragraph and treat it as the question.
Here W is the window size and is set at 5 in our
experiments so that the lengths of the questions
are similar to human-generated questions. The
context-based question-answer pairs on U are
combined with human-generated pairs on L for
training the discriminative model. Intuitively, this
method extracts the contexts around the answer
chunks to serve as hints for the question answering
model. Surprisingly, this simple baseline method
leads to substantial improvements when labeled
data is limited.

1041

3 Generative Domain-Adaptive Nets

Though the simple method described in Section
2.1 can lead to substantial improvement, we aim to
design a learning-based model to move even fur-
ther. In this section, we will describe the model
architecture and the training algorithms for the
GDANs. We will use a notation in the context of
question answering following Section 2, but one
should be able to extend the notion of GDANs to
other applications as well.

The GDAN framework consists of two models,
a discriminative model and a generative model.
We will first discuss the two models in detail in the
context of question answering, and then present
an algorithm based on reinforcement learning to
combine the two models.

3.1 Discriminative Model

The discriminative model learns the conditional
probability of an answer chunk given the para-
graph and the question, i.e., P(a|p, q). We em-
ploy a gated-attention (GA) reader (Dhingra et al.,
2016) as our base model in this work, but our
framework does not make any assumptions about
the base models being used. The discriminative
model is referred to as D.

The GA model consists of K layers with K
being a hyper-parameter. Let Hk

p be the inter-
mediate paragraph representation at layer k, and
Hq be the question representation. The paragraph
representation Hk

p is a T × d matrix, and the
question representation Hq is a T ′ × d matrix,
where d is the dimensionality of the representa-
tions. Given the paragraph p, we apply a bidi-
rectional Gated Recurrent Unit (GRU) network
(Chung et al., 2014) on top of the embeddings of
the sequence (p1, p2, · · · , pT), and obtain the ini-
tial paragraph representation H0

p. Given the ques-
tion q, we also apply another bidirectional GRU to
obtain the question representation Hq.

The question and paragraph representations are
combined with the gated-attention (GA) mecha-
nism (Dhingra et al., 2016). More specifically, for
each paragraph token pi, we compute

αj =
exphTq,jh

k−1
p,i∑T ′

j′=1 exph
T
q,j′h

k−1
p,i

hkp,i =
T ′∑

j=1

αjhq,j � hk−1p,i

where hkp,i is the i-th row of Hk
p and hq,j is the

j-th row of Hq.
Since the answer a is a sequence of consecutive

word tokens in the paragraph p, we apply two soft-
max layers on top of HK

p to predict the start and
end indices of a, following Yang et al. (2017).

3.1.1 Domain Adaptation with Tags
We will train our discriminative model on
both model-generated question-answer pairs and
human-generated pairs. However, even a well-
trained generative model will produce questions
somewhat different from human-generated ones.
Learning from both human-generated data and
model-generated data can thus lead to a biased
model. To alleviate this issue, we propose to
view the model-generated data distribution and the
human-generated data distribution as two different
data domains and explicitly incorporate domain
adaptation into the discriminative model.

More specifically, we use a domain tag as an
additional input to the discriminative model. We
use the tag “d true” to represent the domain of
human-generated data (i.e., the true data), and
“d gen” for the domain of model-generated data.
Following a practice in domain adaptation (John-
son et al., 2016; Chu et al., 2017), we append the
domain tag to the end of both the questions and
the paragraphs. By introducing the domain tags,
we expect the discriminative model to factor out
domain-specific and domain-invariant representa-
tions. At test time, the tag “d true” is appended.

3.2 Generative Model

The generative model learns the conditional prob-
ability of generating a question given the para-
graph and the answer, i.e., P(q|p, a). We im-
plement the generative model as a sequence-to-
sequence model (Sutskever et al., 2014) with a
copy mechanism (Gu et al., 2016; Gulcehre et al.,
2016).

The generative model consists of an encoder
and a decoder. An encoder is a GRU that en-
codes the input paragraph into a sequence of hid-
den states H. We inject the answer information
by appending an additional zero/one feature to the
word embeddings of the paragraph tokens; i.e., if
a word token appears in the answer, the feature is
set at one, otherwise zero.

The decoder is another GRU with an attention
mechanism over the encoder hidden states H. At
each time step, the generation probabilities over all

1042

Algorithm 1 Training Generative Domain-
Adaptive Nets

Input: labeled data L, unlabeled data U , #iter-
ations TG and TD
Initialize G by MLE training on L
Randomly initialize D
while not stopping do

for t← 1 to TD do
Update D to maximize J(L, d true, D) +
J(UG, d gen, D) with SGD

end for
for t← 1 to TG do

Update G to maximize J(UG, d true, D)
with Reinforce and SGD

end for
end while
return model D

word types are defined with a copy mechanism:

poverall = gtpvocab + (1− gt)pcopy (1)

where gt is the probability of generating the token
from the vocabulary, while (1 − gt) is the proba-
bility of copying a token from the paragraph. The
probability gt is computed based on the current
hidden state ht:

gt = σ(wT
g ht)

where σ denotes the logistic function and wg is a
vector of model parameters. The generation prob-
abilities pvocab are defined as a softmax func-
tion over the word types in the vocabulary, and the
copying probabilities pcopy are defined as a soft-
max function over the word types in the paragraph.
Both pvocab and pcopy are defined as a function
of the current hidden state ht and the attention re-
sults (Gu et al., 2016).

3.3 Training Algorithm
We first define the objective function of the

GDANs, and then present an algorithm to optimize
the given objective function. Similar to the Gener-
ative Adversarial Nets (GANs) (Goodfellow et al.,
2014) and adversarial domain adaptation (Ganin
and Lempitsky, 2014), the discriminative model
and the generative model have different objectives
in our framework. However, rather than formulat-
ing the objective as an adversarial game between
the two models (Goodfellow et al., 2014; Ganin
and Lempitsky, 2014), in our framework, the dis-
criminative model relies on the data generated by

the generative model, while the generative model
aims to match the model-generated data distribu-
tion with the human-generated data distribution
using the signals from the discriminative model.

Given a labeled datasetL = {p(i), q(i), a(i)}Ni=1,
the objective function of a discriminative modelD
for a supervised learning setting can be written as∑

p(i),q(i),a(i)∈L logPD(a(i)|p(i), q(i)), where PD
is a probability distribution defined by the model
D. Since we also incorporate domain tags into the
model D, we denote the objective function as

J(L, tag, D) =
1

|L|
∑

p(i),q(i),a(i)∈L

log PD,tag(a
(i)|p(i), q(i))

meaning that the domain tag, “tag”, is appended
to the dataset L. We use |L| = N to denote the
number of the instances in the dataset L. The ob-
jective function is averaged over all instances such
that we can balance labeled and unlabeled data.

Let UG denote the dataset obtained by gener-
ating questions on the unlabeled dataset U with
the generative model G. The objective of the
discriminative model is then to maximize J for
both labeled and unlabeled data under the do-
main adaptation notions, i.e., J(L, d true, D) +
J(UG, d gen, D).

Now we discuss the objective of the genera-
tive model. Similar to the dual learning (Xia
et al., 2016) framework, one can define an auto-
encoder objective. In this case, the generative
model aims to generate questions that can be re-
constructed by the discriminative model, i.e., max-
imizing J(UG, d gen, D). However, this objective
function can lead to degenerate solutions because
the questions can be thought of as an overcom-
plete representation of the answers (Vincent et al.,
2010). For example, given p and a, the genera-
tive model might learn to generate trivial questions
such as copying the answers, which does not con-
tributed to learning a better D.

Instead, we leverage the discriminative model to
better match the model-generated data distribution
with the human-generated data distribution. We
propose to define an adversarial training objective
J(UG, d true, D). We append the tag “d true” in-
stead of “d gen” for the model-generated data to
“fool” the discriminative model. Intuitively, the
goal of G is to generate ”useful” questions where
the usefulness is measured by the probability that
the generated questions can be answered correctly
by D.

1043

(a) Training the discriminative model
on labeled data.

(b) Training the discriminative model
on unlabeled data.

(c) Training the generative model on
unlabeled data.

Figure 1: Model architecture and training. Red boxes denote the modules being updated. “d true” and “d gen” are two
domain tags. D is the discriminative model and G is the generative model. The objectives for the three cases are all to
minimize the cross entropy loss of the answer chunks.

The overall objective function now can be writ-
ten as

maxD J(L, d true, D) + J(UG, d gen, D)

maxG J(UG, d true, D)

With the above objective function in mind, we
present a training algorithm in Algorithm 1 to train
a GDAN. We first pretrain the generative model
on the labeled data L with maximum likelihood
estimation (MLE):

max
G

N∑

i=1

T ′∑

t=1

logPG(q
(i)
t |q

(i)
<t, p

(i), a(i))

where PG is the probability defined by Eq. 1.
We then alternatively update D and G based

on their objectives. To update D, we sam-
ple one batch from the labeled data L and one
batch from the unlabeled data UG, and com-
bine the two batches to perform a gradient up-
date step. Since the output of G is discrete and
non-differentiable, we use the Reinforce algorithm
(Williams, 1992) to update G. The action space
is all possible questions with length T ′ (possibly
with padding) and the reward is the objective func-
tion J(UG, d true, D). Let θG be the parameters of
G. The gradient can be written as

∂J(UG, d true, D)

∂θG

= EPG(q|p,a)(log PD,d true(a|p, q)− b)
∂ log PG(q|p, a)

∂θG

where we use an average reward from samples as
the baseline b. We approximate the expectation

EPG(q|p,a) by sampling one instance at a time from
PG(q|p, a) and then do an update step. This train-
ing algorithm is referred to as reinforcement learn-
ing (RL) training in the following sections. The
overall architecture and training algorithm are il-
lustrated in Figure 1.

MLE vs RL. The generator G has two
training phases–MLE training and RL training,
which are different in that: 1) RL training
does not require labels, so G can explore a
broader data domain of p using unlabeled data,
while MLE training requires labels; 2) MLE
maximizes logP (q|p, a), while RL maximizes
logPD(a|q, p). Since logP (q|a, p) is the sum
of logP (q|p) and logP (a|q, p) (plus a constant),
maximizing logP (a|q, p) does not require mod-
eling logP (q|p) that is irrelevant to QA, which
makes optimization easier. Moreover, maximizing
logP (a|q, p) is consistent with the goal of QA.

4 Experiments

4.1 Answer Extraction

As discussed in Section 2, our model assumes that
answers are available for unlabeled data. In this
section, we introduce how we use linguistic tags
and rules to extract answer chunks from unlabeled
text.

To extract answers from massive unlabelled
Wikipedia articles, we first sample 205,511
Wikipedia articles that are not used in the training,
development and test sets in the SQuAD dataset.
We extract the paragraphs from each article, and
limit the length of each paragraph at the word level
to be less than 850. In total, we obtain 950,612

1044

Table 1: Sampled generated questions given the paragraphs and the answers. P means paragraphs, A means answers, GQ
means groundtruth questions, and Q means questions generated by our models. MLE refers to maximum likelihood training,
and RL refers to reinforcement learning so as to maximize J(UG, d true, D). We truncate the paragraphs to only show tokens
around the answer spans with a window size of 20.

P1: is mediated by ige , which triggers degranulation of mast cells and basophils when cross - linked by antigen . type
ii hypersensitivity occurs when antibodies bind to antigens on the patient ’ s own cells , marking them for destruction .
this
A: type ii hypersensitivity
GQ: antibody - dependent hypersensitivity belongs to what class of hypersensitivity ?
Q (MLE): what was the UNK of the patient ’ s own cells ?
Q (RL): what occurs when antibodies bind to antigens on the patient ’ s own cells by antigen when cross
P2: an additional warming of the earth ’ s surface . they calculate with confidence that co0 has been responsible for
over half the enhanced greenhouse effect . they predict that under a “ business as usual ” (bau) scenario ,
A: over half
GQ: how much of the greenhouse effect is due to carbon dioxide ?
Q (MLE): what is the enhanced greenhouse effect ?
Q (RL): what the enhanced greenhouse effect that co0 been responsible for
P3:) narrow gauge lines , which are the remnants of five formerly government - owned lines which were built in
mountainous areas .
A: mountainous areas
GQ: where were the narrow gauge rail lines built in victoria ?
Q (MLE): what is the government government government - owned lines built ?
Q (RL): what were the remnants of government - owned lines built in
P4: but not both). in 0000 , bankamericard was renamed and spun off into a separate company known today as visa
inc .
A: visa inc .
GQ: what present - day company did bankamericard turn into ?
Q (MLE): what was the separate company bankamericard ?
Q (RL): what today as bankamericard off into a separate company known today as spun off into a separate company
known today
P5: legrande writes that ” the formulation of a single all - encompassing definition of the term is extremely difficult , if
A: legrande
GQ: who wrote that it is difficult to produce an all inclusive definition of civil disobedience ?
Q (MLE): what is the term of a single all all all all encompassing definition of a single all
Q (RL): what writes ” the formulation of a single all - encompassing definition of the term all encompassing encom-
passing encompassing encompassing

paragraphs from unlabelled articles.
Answers in the SQuAD dataset can be catego-

rized into ten types, i.e., “Date”, “Other Numeric”,
“Person”, “Location”, “Other Entity”, “Common
Noun Phrase”, “Adjective Phrase”, “Verb Phrase”,
“Clause” and “Other” (Rajpurkar et al., 2016).
For each paragraph from the unlabeled articles,
we utilize Stanford Part-Of-Speech (POS) tag-
ger (Toutanova et al., 2003) to label each word
with the corresponding POS tag, and imple-
ment a simple constituency parser to extract the
noun phrase, verb phrase, adjective and clause
based on a small set of constituency grammars.
Next, we use Stanford Named Entity Recog-
nizer (NER) (Finkel et al., 2005) to assign each
word with one of the seven labels, i.e., “Date”,
“Money”, “Percent”, “location”, “Organization”
and “Time”. We then categorize a span of con-
secutive words with the same NER tags of either
“Money” or “Percent” as the answer of the type
“Other Numeric”. Similarly, we categorize a span
of consecutive words with the same NER tags of

“Organization” as the answer of the type “Other
Entity”. Finally, we subsample five answers from
all the extracted answers for each paragraph ac-
cording to the percentage of answer types in the
SQuAD dataset. We obtain 4,753,060 answers in
total, which is about 50 times larger than the num-
ber of answers in the SQuAD dataset.

4.2 Settings and Comparison Methods

The original SQuAD dataset consists of 87,636
training instances and 10,600 development in-
stances. Since the test set is not published, we
split 10% of the training set as the test set, and
the remaining 90% serves as the actual training
set. Instances are split based on articles; i.e., para-
graphs in one article always appear in only one
set. We tune the hyper-parameters and perform
early stopping on the development set using the
F1 scores, and the performance is evaluated on the
test set using both F1 scores and exact matching
(EM) scores (Rajpurkar et al., 2016).

We compare the following methods. SL is

1045

the supervised learning setting where we train the
model D solely on the labeled data L. Context
is the simple context-based method described in
Section 2.1. Context + domain is the “Context”
method with domain tags as described in Section
3.1.1. Gen is to train a generative model and
use the generated questions as additional training
data. Gen + GAN refers to the domain adapta-
tion method using GANs (Ganin and Lempitsky,
2014); in contrast to the original work, the gen-
erative model is updated using Reinforce. Gen +
dual refers to the dual learning method (Xia et al.,
2016). Gen + domain is “Gen” with domain tags,
while the generative model is trained with MLE
and fixed. Gen + domain + adv is the approach
we propose (Cf. Figure 1 and Algorithm 1), with
“adv” meaning adversarial training based on Re-
inforce. We use our own implementation of “Gen
+ GAN” and “Gen + dual”, since the GAN model
(Ganin and Lempitsky, 2014) does not handle dis-
crete features and the dual learning model (Xia
et al., 2016) cannot be directly applied to question
answering. When implementing these two base-
lines, we adopt the learning schedule introduced
by Ganin and Lempitsky (2014), i.e., gradually in-
creasing the weights of the gradients for the gen-
erative model G.

4.3 Results and Analysis

We study the performance of different models with
varying labeling rates and unlabeled dataset sizes.
Labeling rates are the percentage of training in-
stances that are used to train D. The results are
reported in Table 2. Though the unlabeled dataset
we collect consists of around 5 million instances,
we also sample a subset of around 50,000 in-
stances to evaluate the effects of the size of un-
labeled data. The highest labeling rate in Table 2
is 0.9 because 10% of the training instances are
used for testing. Since we do early stopping on
the development set using the F1 scores, we also
report the development F1. We report two metrics,
the F1 scores and the exact matching (EM) scores
(Rajpurkar et al., 2016), on the test set. All metrics
are computed using the official evaluation scripts.

SL v.s. SSL. We observe that semi-supervised
learning leads to consistent improvements over
supervised learning in all cases. Such improve-
ments are substantial when labeled data is limited.
For example, the GDANs improve over supervised
learning by 9.87 points in F1 and 7.26 points in

EM when the labeling rate is 0.1. With our semi-
supervised learning approach, we can use only
0.1 training instances to obtain even better perfor-
mance than a supervised learning approach with
0.2 training instances, saving more than half of the
labeling costs.

Comparison with Baselines. By comparing
“Gen + domain + adv” with “Gen + GAN” and
“Gen + Dual”, it is clear that the GDANs perform
substantially better than GANs and dual learning.
With labeling rate 0.1, GDANs outperform dual
learning and GANs by 2.47 and 4.29 points re-
spectively in terms of F1.

Ablation Study. We also perform an ablation
study by examining the effects of “domain” and
“adv” when added to “gen”. It can be seen that
both the domain tags and the adversarial training
contribute to the performance of the GDANs when
the labeling rate is equal to or less than 0.5. With
labeling rate 0.9, adding domain tags still leads
to better performance but adversarial training does
not seem to improve the performance by much.

Unlabeled Data Size. Moreover, we observe
that the performance can be further improved
when a larger unlabeled dataset is used, though
the gain is relatively less significant compared to
changing the model architectures. For example,
increasing the unlabeled dataset size from 50K to
5M, the performance of GDANs increases by 0.38
points in F1 and 0.52 points in EM.

Context-Based Method. Surprisingly, the
simple context-based method, though performing
worse than GDANs, still leads to substantial gains;
e.g., 7.00 points in F1 with labeling rate 0.1.
Adding domain tags can improve the performance
of the context-based method as well.

MLE vs RL. We plot the loss curve of
−J(UG, d gen, D) for both the MLE-trained gen-
erator (“Gen + domain”) and the RL-trained gen-
erator (“Gen + domain + adv”) in Figure 2.
We observe that the training loss for D on RL-
generated questions is lower than MLE-generated
questions, which confirms that RL training maxi-
mizes logP (a|p, q).

Samples of Generated Questions. We present
some questions generated by our model in Table
1. The generated questions are post-processed
by removing repeated subs-sequences. Compared
to MLE-generated questions, RL-generated ques-
tions are more informative (Cf., P1, P2, and P4),
and contain less “UNK” (unknown) tokens (Cf.,

1046

Figure 2: Comparison of discriminator training loss
−J(UG, d gen, D) on generated QA pairs. The lower the
better. MLE refers to questions generated by maximum like-
lihood training, and RL refers to questions generated by rein-
forcement learning.

P1). Moreover, both semantically and syntacti-
cally, RL-generated questions are more accurate
(Cf., P3 and P5).

5 Related Work

Semi-Supervised Learning. Semi-supervised
learning has been extensively studied in litera-
ture (Zhu, 2005). A batch of novel models have
been recently proposed for semi-supervised learn-
ing based on representation learning techniques,
such as generative models (Kingma et al., 2014),
ladder networks (Rasmus et al., 2015) and graph
embeddings (Yang et al., 2016a). However, most
of the semi-supervised learning methods are based
on combinations of the supervised loss p(y|x)
and an unsupervised loss p(x). In the con-
text of reading comprehension, directly model-
ing the likelihood of a paragraph would not pos-
sibly improve the supervised task of question an-
swering. Moreover, traditional graph-based semi-
supervised learning (Zhu and Ghahramani, 2002)
cannot be easily extended to modeling the unla-
beled answer chunks.

Domain Adaptation. Domain adaptation has
been successfully applied to various tasks, such
as classification (Ganin and Lempitsky, 2014) and
machine translation (Johnson et al., 2016; Chu
et al., 2017). Several techniques on domain adap-
tation (Glorot et al., 2011) focus on learning distri-
bution invariant features by sharing the intermedi-
ate representations for downstream tasks. Another
line of research on domain adaptation attempt to
match the distance between different domain dis-
tributions in a low dimensional space (Long et al.,
2015; Baktashmotlagh et al., 2013). There are

also methods seeking a domain transition from the
source domain to the target domain (Gong et al.,
2012; Gopalan et al., 2011; Pan et al., 2011). Our
work gets inspiration from a practice in Johnson et
al. (2016) and Chu et al. (2017) based on append-
ing domain tags. However, our method is different
from the above methods in that we apply domain
adaptation techniques to the outputs of a genera-
tive model rather than a natural data domain.

Question Answering. Various neural models
based on attention mechanisms (Wang and Jiang,
2016; Seo et al., 2016; Xiong et al., 2016; Wang
et al., 2016; Dhingra et al., 2016; Kadlec et al.,
2016; Trischler et al., 2016b; Sordoni et al., 2016;
Cui et al., 2016; Chen et al., 2016) have been pro-
posed to tackle the tasks of question answering
and reading comprehension. However, the perfor-
mance of these neural models largely relies on a
large amount of labeled data available for training.

Learning with Multiple Models. GANs
(Goodfellow et al., 2014) formulated a adversarial
game between a discriminative model and a gener-
ative model for generating realistic images. Ganin
and Lempitsky (Ganin and Lempitsky, 2014) em-
ployed a similar idea to use two models for do-
main adaptation. Review networks (Yang et al.,
2016b) employ a discriminative model as a regu-
larizer for training a generative model. In the con-
text of machine translation, given a language pair,
various recent work studied jointly training mod-
els to learn the mappings in both directions (Tu
et al., 2016; Xia et al., 2016).

6 Conclusions

We study a critical and challenging problem,
semi-supervised question answering. We pro-
pose a novel neural framework called Genera-
tive Domain-Adaptive Nets, which incorporate
domain adaptation techniques in combination with
generative models for semi-supervised learning.
Empirically, we show that our approach leads to
substantial improvements over supervised learn-
ing models and outperforms several strong base-
lines including GANs and dual learning. In the
future, we plan to apply our approach to more
question answering datasets in different domains.
It will also be intriguing to generalize GDANs to
other applications.

Acknowledgements. This work was funded by the

Office of Naval Research grants N000141512791 and

N000141310721 and NVIDIA.

1047

Table 2: Performance with various labeling rates, unlabeled data sizes |U |, and methods. “Dev” denotes the development
set, and “test” denotes the test set. F1 and EM are two metrics.

Labeling rate |U | Method Dev F1 Test F1 Test EM

0.1 50K SL 0.4262 0.3815 0.2492
0.1 50K Context 0.5046 0.4515 0.2966
0.1 50K Context + domain 0.5139 0.4575 0.3036
0.1 50K Gen 0.5049 0.4553 0.3018
0.1 50K Gen + GAN 0.4897 0.4373 0.2885
0.1 50K Gen + dual 0.5036 0.4555 0.3005
0.1 50K Gen + domain 0.5234 0.4703 0.3145
0.1 50K Gen + domain + adv 0.5313 0.4802 0.3218
0.2 50K SL 0.5134 0.4674 0.3163
0.2 50K Context 0.5652 0.5132 0.3573
0.2 50K Context + domain 0.5672 0.5200 0.3581
0.2 50K Gen 0.5643 0.5159 0.3618
0.2 50K Gen + GAN 0.5525 0.5037 0.3470
0.2 50K Gen + dual 0.5720 0.5192 0.3612
0.2 50K Gen + domain 0.5749 0.5216 0.3658
0.2 50K Gen + domain + adv 0.5867 0.5394 0.3781
0.5 50K SL 0.6280 0.5722 0.4187
0.5 50K Context 0.6300 0.5740 0.4195
0.5 50K Context + domain 0.6307 0.5791 0.4237
0.5 50K Gen 0.6237 0.5717 0.4155
0.5 50K Gen + GAN 0.6110 0.5590 0.4044
0.5 50K Gen + dual 0.6368 0.5746 0.4163
0.5 50K Gen + domain 0.6378 0.5826 0.4261
0.5 50K Gen + domain + adv 0.6375 0.5831 0.4267
0.9 50K SL 0.6611 0.6070 0.4534
0.9 50K Context 0.6560 0.6028 0.4507
0.9 50K Context + domain 0.6553 0.6105 0.4557
0.9 50K Gen 0.6464 0.5970 0.4445
0.9 50K Gen + GAN 0.6396 0.5874 0.4317
0.9 50K Gen + dual 0.6511 0.5892 0.4340
0.9 50K Gen + domain 0.6611 0.6102 0.4573
0.9 50K Gen + domain + adv 0.6585 0.6043 0.4497
0.1 5M SL 0.4262 0.3815 0.2492
0.1 5M Context 0.5140 0.4641 0.3014
0.1 5M Context + domain 0.5166 0.4599 0.3083
0.1 5M Gen 0.5099 0.4619 0.3103
0.1 5M Gen + domain 0.5301 0.4703 0.3227
0.1 5M Gen + domain + adv 0.5442 0.4840 0.3270
0.9 5M SL 0.6611 0.6070 0.4534
0.9 5M Context 0.6605 0.6026 0.4473
0.9 5M Context + domain 0.6642 0.6066 0.4548
0.9 5M Gen 0.6647 0.6065 0.4600
0.9 5M Gen + domain 0.6726 0.6092 0.4599
0.9 5M Gen + domain + adv 0.6670 0.6102 0.4531

1048

References
Mahsa Baktashmotlagh, Mehrtash T Harandi, Brian C

Lovell, and Mathieu Salzmann. 2013. Unsupervised
domain adaptation by domain invariant projection.
In ICCV . pages 769–776.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In EMNLP.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. arXiv
preprint arXiv:1606.02858 .

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of simple domain adapta-
tion methods for neural machine translation. arXiv
preprint arXiv:1701.03214 .

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2016. Attention-over-
attention neural networks for reading comprehen-
sion. arXiv preprint arXiv:1607.04423 .

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang,
William W Cohen, and Ruslan Salakhutdinov.
2016. Gated-attention readers for text comprehen-
sion. arXiv preprint arXiv:1606.01549 .

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In ACL. Association for Computational
Linguistics, pages 363–370.

Yaroslav Ganin and Victor Lempitsky. 2014. Unsuper-
vised domain adaptation by backpropagation. arXiv
preprint arXiv:1409.7495 .

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In ICML.
pages 513–520.

Boqing Gong, Yuan Shi, Fei Sha, and Kristen Grau-
man. 2012. Geodesic flow kernel for unsupervised
domain adaptation. In CVPR. IEEE, pages 2066–
2073.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In NIPS. pages 2672–2680.

Raghuraman Gopalan, Ruonan Li, and Rama Chel-
lappa. 2011. Domain adaptation for object recog-
nition: An unsupervised approach. In ICCV . IEEE,
pages 999–1006.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv preprint
arXiv:1603.06393 .

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallap-
ati, Bowen Zhou, and Yoshua Bengio. 2016.
Pointing the unknown words. arXiv preprint
arXiv:1603.08148 .

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine transla-
tion. arXiv preprint arXiv:1503.03535 .

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
et al. 2016. Google’s multilingual neural machine
translation system: Enabling zero-shot translation.
arXiv preprint arXiv:1611.04558 .

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and
Jan Kleindienst. 2016. Text understanding with
the attention sum reader network. arXiv preprint
arXiv:1603.01547 .

Diederik P Kingma, Shakir Mohamed, Danilo Jimenez
Rezende, and Max Welling. 2014. Semi-supervised
learning with deep generative models. In NIPS.
pages 3581–3589.

Mingsheng Long, Yue Cao, Jianmin Wang, and
Michael I Jordan. 2015. Learning transferable fea-
tures with deep adaptation networks. In ICML.
pages 97–105.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine
reading comprehension dataset. arXiv preprint
arXiv:1611.09268 .

Sinno Jialin Pan, Ivor W Tsang, James T Kwok, and
Qiang Yang. 2011. Domain adaptation via transfer
component analysis. IEEE Transactions on Neural
Networks 22(2):199–210.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In EMNLP.

Antti Rasmus, Mathias Berglund, Mikko Honkala,
Harri Valpola, and Tapani Raiko. 2015. Semi-
supervised learning with ladder networks. In NIPS.
pages 3546–3554.

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text. In
EMNLP. volume 3.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

1049

Alessandro Sordoni, Philip Bachman, Adam Trischler,
and Yoshua Bengio. 2016. Iterative alternating neu-
ral attention for machine reading. arXiv preprint
arXiv:1606.02245 .

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS. pages 3104–3112.

Kristina Toutanova, Dan Klein, Christopher D Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In NAACL. Association for Computational Linguis-
tics, pages 173–180.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin Har-
ris, Alessandro Sordoni, Philip Bachman, and Ka-
heer Suleman. 2016a. Newsqa: A machine compre-
hension dataset. arXiv preprint arXiv:1611.09830 .

Adam Trischler, Zheng Ye, Xingdi Yuan, and Kaheer
Suleman. 2016b. Natural language comprehension
with the epireader. arXiv preprint arXiv:1606.02270
.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In ACL.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie,
Yoshua Bengio, and Pierre-Antoine Manzagol.
2010. Stacked denoising autoencoders: Learning
useful representations in a deep network with a lo-
cal denoising criterion. JMLR 11(Dec):3371–3408.

Ellen M Voorhees and Dawn M Tice. 2000. Building a
question answering test collection. In SIGIR. ACM,
pages 200–207.

Shuohang Wang and Jing Jiang. 2016. Machine com-
prehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905 .

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu
Florian. 2016. Multi-perspective context match-
ing for machine comprehension. arXiv preprint
arXiv:1612.04211 .

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4):229–256.

Yingce Xia, Di He, Tao Qin, Liwei Wang, Nenghai
Yu, Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual
learning for machine translation. arXiv preprint
arXiv:1611.00179 .

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In EMNLP. Citeseer, pages 2013–
2018.

Zhilin Yang, William Cohen, and Ruslan Salakhut-
dinov. 2016a. Revisiting semi-supervised learning
with graph embeddings. In ICML.

Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu,
William W Cohen, and Ruslan Salakhutdinov. 2017.
Words or characters? fine-grained gating for reading
comprehension. In ICLR.

Zhilin Yang, Ye Yuan, Yuexin Wu, William W Cohen,
and Ruslan R Salakhutdinov. 2016b. Review net-
works for caption generation. In NIPS. pages 2361–
2369.

Xiaojin Zhu. 2005. Semi-supervised learning literature
survey .

Xiaojin Zhu and Zoubin Ghahramani. 2002. Learning
from labeled and unlabeled data with label propaga-
tion .

1050

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1051–1062
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1097

From Language to Programs: Bridging Reinforcement Learning and
Maximum Marginal Likelihood

Kelvin Guu
Statistics

Stanford University
kguu@stanford.edu

Panupong Pasupat
Computer Science

Stanford University
ppasupat@stanford.edu

Evan Zheran Liu
Computer Science

Stanford University
evanliu@stanford.edu

Percy Liang
Computer Science

Stanford University
pliang@cs.stanford.edu

Abstract

Our goal is to learn a semantic parser that
maps natural language utterances into ex-
ecutable programs when only indirect su-
pervision is available: examples are la-
beled with the correct execution result,
but not the program itself. Consequently,
we must search the space of programs
for those that output the correct result,
while not being misled by spurious pro-
grams: incorrect programs that coinci-
dentally output the correct result. We
connect two common learning paradigms,
reinforcement learning (RL) and maxi-
mum marginal likelihood (MML), and
then present a new learning algorithm that
combines the strengths of both. The new
algorithm guards against spurious pro-
grams by combining the systematic search
traditionally employed in MML with the
randomized exploration of RL, and by up-
dating parameters such that probability is
spread more evenly across consistent pro-
grams. We apply our learning algorithm
to a new neural semantic parser and show
significant gains over existing state-of-the-
art results on a recent context-dependent
semantic parsing task.

1 Introduction

We are interested in learning a semantic parser that
maps natural language utterances into executable
programs (e.g., logical forms). For example, in
Figure 1, a program corresponding to the utter-
ance transforms an initial world state into a new
world state. We would like to learn from indirect
supervision, where each training example is only
labeled with the correct output (e.g. a target world
state), but not the program that produced that out-

"The man in the yellow hat moves to the left of the woman in blue.”

Spurious: move(hasShirt(red), 1)
Correct: move(hasHat(yellow), leftOf(hasShirt(blue)))

1 2 3 1 2 3

BEFORE AFTER

z*

z'0.1

0.1

0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1

p(z') = 10-4

p(z*) = 10-6

red

yellow
hasHat blue hasShirt leftOf move

move1hasShirt

Figure 1: The task is to map natural language ut-
terances to a program that manipulates the world
state. The correct program captures the true mean-
ing of the utterances, while spurious programs ar-
rive at the correct output for the wrong reasons.
We develop methods to prevent the model from
being drawn to spurious programs.

put (Clarke et al., 2010; Liang et al., 2011; Kr-
ishnamurthy and Mitchell, 2012; Artzi and Zettle-
moyer, 2013; Liang et al., 2017).

The process of constructing a program can be
formulated as a sequential decision-making pro-
cess, where feedback is only received at the end
of the sequence when the completed program is
executed. In the natural language processing lit-
erature, there are two common approaches for
handling this situation: 1) reinforcement learn-
ing (RL), particularly the REINFORCE algorithm
(Williams, 1992; Sutton et al., 1999), which max-
imizes the expected reward of a sequence of
actions; and 2) maximum marginal likelihood
(MML), which treats the sequence of actions as
a latent variable, and then maximizes the marginal
likelihood of observing the correct program output
(Dempster et al., 1977).

While the two approaches have enjoyed success
on many tasks, we found them to work poorly out
of the box for our task. This is because in addi-
tion to the sparsity of correct programs, our task
also requires weeding out spurious programs (Pa-
supat and Liang, 2016): incorrect interpretations

1051

https://doi.org/10.18653/v1/P17-1097

of the utterances that accidentally produce the cor-
rect output, as illustrated in Figure 1.

We show that MML and RL optimize closely re-
lated objectives. Furthermore, both MML and RL
methods have a mechanism for exploring program
space in search of programs that generate the cor-
rect output. We explain why this exploration tends
to quickly concentrate around short spurious pro-
grams, causing the model to sometimes overlook
the correct program. To address this problem, we
propose RANDOMER, a new learning algorithm
with two parts:

First, we propose randomized beam search, an
exploration strategy which combines the system-
atic beam search traditionally employed in MML
with the randomized off-policy exploration of RL.
This increases the chance of finding correct pro-
grams even when the beam size is small or the pa-
rameters are not pre-trained.

Second, we observe that even with good explo-
ration, the gradients of both the RL and MML
objectives may still upweight entrenched spuri-
ous programs more strongly than correct programs
with low probability under the current model. We
propose a meritocratic parameter update rule, a
modification to the MML gradient update, which
more equally upweights all programs that produce
the correct output. This makes the model less
likely to overfit spurious programs.

We apply RANDOMER to train a new neural se-
mantic parser, which outputs programs in a stack-
based programming language. We evaluate our re-
sulting system on SCONE, the context-dependent
semantic parsing dataset of Long et al. (2016).
Our approach outperforms standard RL and MML
methods in a direct comparison, and achieves new
state-of-the-art results, improving over Long et al.
(2016) in all three domains of SCONE, and by
over 30% accuracy on the most challenging one.

2 Task

We consider the semantic parsing task in the
SCONE dataset1 (Long et al., 2016). As illustrated
in Figure 1, each example consists of a world con-
taining several objects (e.g., people), each with
certain properties (e.g., shirt color and hat color).
Given the initial world state w0 and a sequence of
M natural language utterances u = (u1, . . . , uM),
the task is to generate a program that manipulates
the world state according to the utterances. Each

1
https://nlp.stanford.edu/projects/scone

utterance um describes a single action that trans-
forms the world state wm−1 into a new world state
wm. For training, the system receives weakly su-
pervised examples with input x = (u, w0) and the
target final world state y = wM .

The dataset includes 3 domains: ALCHEMY,
TANGRAMS, and SCENE. The description of each
domain can be found in Appendix B. The do-
mains highlight different linguistic phenomena:
ALCHEMY features ellipsis (e.g., “throw the rest
out”, “mix”); TANGRAMS features anaphora on
actions (e.g., “repeat step 3”, “bring it back”);
and SCENE features anaphora on entities (e.g., “he
moves back”, “. . . to his left”). Each domain con-
tains roughly 3,700 training and 900 test exam-
ples. Each example contains 5 utterances and is
labeled with the target world state after each utter-
ance, but not the target program.

Spurious programs. Given a training example
(u, w0, wM), our goal is to find the true underly-
ing program z∗ which reflects the meaning of u.
The constraint that z∗ must transformw0 intowM ,
i.e. z(w0) = wM , is not enough to uniquely iden-
tify the true z∗, as there are often many z satisfy-
ing z(w0) = wM : in our experiments, we found
at least 1600 on average for each example. Al-
most all do not capture the meaning of u (see Fig-
ure 1). We refer to these incorrect z’s as spurious
programs. Such programs encourage the model
to learn an incorrect mapping from language to
program operations: e.g., the spurious program in
Figure 1 would cause the model to learn that “man
in the yellow hat” maps to hasShirt(red).

Spurious programs in SCONE. In this dataset,
utterances often reference objects in different
ways (e.g. a person can be referenced by shirt
color, hat color, or position). Hence, any target
programming language must also support these
different reference strategies. As a result, even
a single action such as moving a person to a tar-
get destination can be achieved by many different
programs, each selecting the person and destina-
tion in a different way. Across multiple actions,
the number of programs grows combinatorially.2

Only a few programs actually implement the cor-
rect reference strategy as defined by the utterance.
This problem would be more severe in any more
general-purpose language (e.g. Python).

2The number of well-formed programs in SCENE exceeds
1015

1052

3 Model

We formulate program generation as a sequence
prediction problem. We represent a program as
a sequence of program tokens in postfix nota-
tion; for example, move(hasHat(yellow),
leftOf(hasShirt(blue))) is linearized as
yellow hasHat blue hasShirt leftOf
move. This representation also allows us to incre-
mentally execute programs from left to right using
a stack: constants (e.g., yellow) are pushed onto
the stack, while functions (e.g., hasHat) pop
appropriate arguments from the stack and push
back the computed result (e.g., the list of people
with yellow hats). Appendix B lists the full set of
program tokens, Z , and how they are executed.
Note that each action always ends with an action
token (e.g., move).

Given an input x = (u, w0), the model gener-
ates program tokens z1, z2, . . . from left to right
using a neural encoder-decoder model with atten-
tion (Bahdanau et al., 2015). Throughout the gen-
eration process, the model maintains an utterance
pointer, m, initialized to 1. To generate zt, the
model’s encoder first encodes the utterance um
into a vector em. Then, based on em and pre-
viously generated tokens z1:t−1, the model’s de-
coder defines a distribution p(zt | x, z1:t−1) over
the possible values of zt ∈ Z . The next token zt is
sampled from this distribution. If an action token
(e.g., move) is generated, the model increments
the utterance pointer m. The process terminates
when all M utterances are processed. The final
probability of generating a particular program z =
(z1, . . . , zT) is p(z | x) =

∏T
t=1 p(zt | x, z1:t−1).

Encoder. The utterance um under the pointer is
encoded using a bidirectional LSTM:

hFi = LSTM(hFi−1,Φu(um,i))

hBi = LSTM(hBi+1,Φu(um,i))

hi = [hFi ;hBi],

where Φu(um,i) is the fixed GloVe word embed-
ding (Pennington et al., 2014) of the ith word in
um. The final utterance embedding is the concate-
nation em = [hF|um|;h

B
1].

Decoder. Unlike Bahdanau et al. (2015), which
used a recurrent network for the decoder, we opt
for a feed-forward network for simplicity. We
use em and an embedding f(z1:t−1) of the previ-
ous execution history (described later) as inputs to

compute an attention vector ct:

qt = ReLU(Wq[em; f(z1:t−1)])

αi ∝ exp(q>t Wahi) (i = 1, . . . , |um|)
ct =

∑

i

αihi.

Finally, after concatenating qt with ct, the distri-
bution over the set Z of possible program tokens
is computed via a softmax:

p(zt | x, z1:t−1) ∝ exp(Φz(zt)
>Ws[qt; ct]),

where Φz(zt) is the embedding for token zt.

Execution history embedding. We compare
two options for f(z1:t−1), our embedding of the
execution history. A standard approach is to sim-
ply take the k most recent tokens zt−k:t−1 and con-
catenate their embeddings. We will refer to this as
TOKENS and use k = 4 in our experiments.

We also consider a new approach which lever-
ages our ability to incrementally execute programs
using a stack. We summarize the execution history
by embedding the state of the stack at time t − 1,
achieved by concatenating the embeddings of all
values on the stack. (We limit the maximum stack
size to 3.) We refer to this as STACK.

4 Reinforcement learning versus
maximum marginal likelihood

Having formulated our task as a sequence pre-
diction problem, we must still choose a learn-
ing algorithm. We first compare two standard
paradigms: reinforcement learning (RL) and max-
imum marginal likelihood (MML). In the next sec-
tion, we propose a better alternative.

4.1 Comparing objective functions
Reinforcement learning. From an RL perspec-
tive, given a training example (x, y), a policy
makes a sequence of decisions z = (z1, . . . , zT),
and then receives a reward at the end of the
episode: R(z) = 1 if z executes to y and 0 oth-
erwise (dependence on x and y has been omitted
from the notation).

We focus on policy gradient methods, in which
a stochastic policy function is trained to maximize
the expected reward. In our setup, pθ(z | x) is
the policy (with parameters θ), and its expected
reward on a given example (x, y) is

G(x, y) =
∑

z

R(z) pθ(z | x), (1)

1053

where the sum is over all possible programs. The
overall RL objective, JRL, is the expected reward
across examples:

JRL =
∑

(x,y)

G(x, y). (2)

Maximum marginal likelihood. The MML
perspective assumes that y is generated by a
partially-observed random process: conditioned
on x, a latent program z is generated, and con-
ditioned on z, the observation y is generated. This
implies the marginal likelihood:

pθ(y | x) =
∑

z

p(y | z) pθ(z | x). (3)

Note that since the execution of z is deterministic,
pθ(y | z) = 1 if z executes to y and 0 otherwise.
The log marginal likelihood of the data is then

JMML = logLMML, (4)

where LMML =
∏

(x,y)

pθ(y | x). (5)

To estimate our model parameters θ, we maximize
JMML with respect to θ.

With our choice of reward, the RL expected re-
ward (1) is equal to the MML marginal probabil-
ity (3). Hence the only difference between the two
formulations is that in RL we optimize the sum of
expected rewards (2), whereas in MML we opti-
mize the product (5).3

4.2 Comparing gradients
In both policy gradient and MML, the objectives
are typically optimized via (stochastic) gradient
ascent. The gradients of JRL and JMML are
closely related. They both have the form:

∇θJ =
∑

(x,y)

Ez∼q [R(z)∇ log pθ(z | x)] (6)

=
∑

(x,y)

∑

z

q(z)R(z)∇ log pθ(z | x),

where q(z) equals

qRL(z) = pθ(z | x) for JRL, (7)

qMML(z) =
R(z)pθ(z | x)∑
z̃R(z̃)pθ(z̃ | x)

(8)

= pθ(z | x,R(z) 6= 0) for JMML.

3 Note that the log of the product in (5) does not equal the
sum in (2).

Taking a step in the direction of∇ log pθ(z | x)
upweights the probability of z, so we can heuris-
tically think of the gradient as attempting to up-
weight each reward-earning program z by a gradi-
ent weight q(z). In Subsection 5.2, we argue why
qMML is better at guarding against spurious pro-
grams, and propose an even better alternative.

4.3 Comparing gradient approximation
strategies

It is often intractable to compute the gradient (6)
because it involves taking an expectation over all
possible programs. So in practice, the expectation
is approximated.

In the policy gradient literature, Monte Carlo
integration (MC) is the typical approximation
strategy. For example, the popular REINFORCE
algorithm (Williams, 1992) uses Monte Carlo
sampling to compute an unbiased estimate of the
gradient:

∆MC =
1

B

∑

z∈S
[R(z)− c]∇ log pθ(z | x), (9)

where S is a collection of B samples z(b) ∼ q(z),
and c is a baseline (Williams, 1992) used to re-
duce the variance of the estimate without altering
its expectation.

In the MML literature for latent sequences, the
expectation is typically approximated via numeri-
cal integration (NUM) instead:

∆NUM =
∑

z∈S
q(z)R(z)∇ log pθ(z | x). (10)

where the programs in S come from beam search.

Beam search. Beam search generates a set of
programs via the following process. At step t of
beam search, we maintain a beam Bt of at most B
search states. Each state s ∈ Bt represents a par-
tially constructed program, s = (z1, . . . , zt) (the
first t tokens of the program). For each state s in
the beam, we generate all possible continuations,

cont(s) = cont((z1, . . . , zt))

= {(z1, . . . , zt, zt+1) | zt+1 ∈ Z} .

We then take the union of these continuations,
cont(Bt) =

⋃
s∈Bt cont(s). The new beam

Bt+1 is simply the highest scoringB continuations
in cont(Bt), as scored by the policy, pθ(s | x).
Search is halted after a fixed number of iterations

1054

or when there are no continuations possible. S is
then the set of all complete programs discovered
during beam search. We will refer to this as beam
search MML (BS-MML).

In both policy gradient and MML, we think of
the procedure used to produce the set of programs
S as an exploration strategy which searches for
programs that produce reward. One advantage of
numerical integration is that it allows us to de-
couple the exploration strategy from the gradient
weights assigned to each program.

5 Tackling spurious programs

In this section, we illustrate why spurious pro-
grams are problematic for the most commonly
used methods in RL (REINFORCE) and MML
(beam search MML). We describe two key prob-
lems and propose a solution to each, based on
insights gained from our comparison of RL and
MML in Section 4.

5.1 Spurious programs bias exploration

As mentioned in Section 4, REINFORCE and BS-
MML both employ an exploration strategy to ap-
proximate their respective gradients. In both meth-
ods, exploration is guided by the current model
policy, whereby programs with high probability
under the current policy are more likely to be ex-
plored. A troubling implication is that programs
with low probability under the current policy are
likely to be overlooked by exploration.

If the current policy incorrectly assigns low
probability to the correct program z∗, it will likely
fail to discover z∗ during exploration, and will
consequently fail to upweight the probability of
z∗. This repeats on every gradient step, keep-
ing the probability of z∗ perpetually low. The
same feedback loop can also cause already high-
probability spurious programs to gain even more
probability. From this, we see that exploration is
sensitive to initial conditions: the rich get richer,
and the poor get poorer.

Since there are often thousands of spurious pro-
grams and only a few correct programs, spurious
programs are usually found first. Once spurious
programs get a head start, exploration increasingly
biases towards them.

As a remedy, one could try initializing parame-
ters such that the model puts a uniform distribution
over all possible programs. A seemingly reason-
able tactic is to initialize parameters such that the

"The man in the yellow hat moves to the left of the woman in blue.”

Spurious: move(hasShirt(red), 1)
Correct: move(hasHat(yellow), leftOf(hasShirt(blue)))

1 2 3 1 2 3

BEFORE AFTER

z*

z'0.1

0.1

0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1

p(z') = 10-4

p(z*) = 10-6

red

yellow
hasHat blue hasShirt leftOf move

move1hasShirt

Figure 2: Two possible paths in the tree of all
possible programs. One path leads to the spurious
program z′ (red) while the longer path leads to the
correct program z∗ (gold). Each edge represents a
decision and shows the probability of that decision
under a uniform policy. The shorter program has
two orders of magnitude higher probability.

model policy puts near-uniform probability over
the decisions at each time step. However, this
causes shorter programs to have orders of mag-
nitude higher probability than longer programs,
as illustrated in Figure 2 and as we empirically
observe. A more sophisticated approach might
involve approximating the total number of pro-
grams reachable from each point in the program-
generating decision tree. However, we instead
propose to reduce sensitivity to the initial distri-
bution over programs.

Solution: randomized beam search
One solution to biased exploration is to simply rely
less on the untrustworthy current policy. We can
do this by injecting random noise into exploration.

In REINFORCE, a common solution is to sam-
ple from an ε-greedy variant of the current policy.
On the other hand, MML exploration with beam
search is deterministic. However, it has a key ad-
vantage over REINFORCE-style sampling: even
if one program occupies almost all probability un-
der the current policy (a peaky distribution), beam
search will still use its remaining beam capacity to
explore at least B− 1 other programs. In contrast,
sampling methods will repeatedly visit the mode
of the distribution.

To get the best of both worlds, we propose a
simple ε-greedy randomized beam search. Like
regular beam search, at iteration t we compute the
set of all continuations cont(Bt) and sort them
by their model probability pθ(s | x). But instead
of selecting the B highest-scoring continuations,
we choose B continuations one by one without re-
placement from cont(Bt). When choosing a con-
tinuation from the remaining pool, we either uni-
formly sample a random continuation with prob-
ability ε, or pick the highest-scoring continuation
in the pool with probability 1− ε. Empirically, we

1055

find that this performs much better than both clas-
sic beam search and ε-greedy sampling (Table 3).

5.2 Spurious programs dominate gradients
In both RL and MML, even if exploration is per-
fect and the gradient is exactly computed, spurious
programs can still be problematic.

Even if perfect exploration visits every pro-
gram, we see from the gradient weights q(z) in (7)
and (8) that programs are weighted proportional to
their current policy probability. If a spurious pro-
gram z′ has 100 times higher probability than z∗ as
in Figure 2, the gradient will spend roughly 99%
of its magnitude upweighting towards z′ and only
1% towards z∗ even though the two programs get
the same reward.

This implies that it would take many updates for
z∗ to catch up. In fact, z∗ may never catch up, de-
pending on the gradient updates for other training
examples. Simply increasing the learning rate is
inadequate, as it would cause the model to take
overly large steps towards z′, potentially causing
optimization to diverge.

Solution: the meritocratic update rule
To solve this problem, we want the upweighting to
be more “meritocratic”: any program that obtains
reward should be upweighted roughly equally.

We first observe that JMML already improves
over JRL in this regard. From (6), we see that the
gradient weight qMML(z) is the policy distribution
restricted to and renormalized over only reward-
earning programs. This renormalization makes the
gradient weight uniform across examples: even if
all reward-earning programs for a particular exam-
ple have very low model probability, their com-
bined gradient weight

∑
z qMML(z) is always 1.

In our experiments, JMML performs significantly
better than JRL (Table 4).

However, while JMML assigns uniform weight
across examples, it is still not uniform over the
programs within each example. Hence we propose
a new update rule which goes one step further in
pursuing uniform updates. Extending qMML(z),
we define a β-smoothed version:

qβ(z) =
qMML(z)β∑
z̃ qMML(z̃)β

. (11)

When β = 0, our weighting is completely uni-
form across all reward-earning programs within an
example while β = 1 recovers the original MML
weighting. Our new update rule is to simply take

a modified gradient step where q = qβ .4 We will
refer to this as the β-meritocratic update rule.

5.3 Summary of the proposed approach

We described two problems5 and their solutions:
we reduce exploration bias using ε-greedy ran-
domized beam search and perform more balanced
optimization using the β-meritocratic parameter
update rule. We call our resulting approach RAN-
DOMER. Table 1 summarizes how RANDOMER

combines desirable qualities from both REIN-
FORCE and BS-MML.

6 Experiments

Evaluation. We evaluate our proposed methods
on all three domains of the SCONE dataset. Accu-
racy is defined as the percentage of test examples
where the model produces the correct final world
state wM . All test examples have M = 5 (5utts),
but we also report accuracy after processing the
first 3 utterances (3utts). To control for the effects
of randomness, we train 5 instances of each model
with different random seeds. We report the median
accuracy of the instances unless otherwise noted.

Training. Following Long et al. (2016), we de-
compose each training example into smaller ex-
amples. Given an example with 5 utterances, u =
[u1, . . . , u5], we consider all length-1 and length-2
substrings of u: [u1], [u2], . . . , [u3, u4], [u4, u5] (9
total). We form a new training example from each
substring, e.g., (u′, w′0, w

′
M) where u′ = [u4, u5],

w′0 = w3 and w′M = w5.
All models are implemented in TensorFlow

(Abadi et al., 2015). Model parameters are ran-
domly initialized (Glorot and Bengio, 2010), with
no pre-training. We use the Adam optimizer
(Kingma and Ba, 2014) (which is applied to the
gradient in (6)), a learning rate of 0.001, a mini-
batch size of 8 examples (different from the beam
size), and train until accuracy on the validation set
converges (on average about 13,000 steps). We

4 Also, note that if exploration were exhaustive, β = 0
would be equivalent to supervised learning using the set of
all reward-earning programs as targets.

5 These problems concern the gradient w.r.t. a single ex-
ample. The full gradient averages over multiple examples,
which helps separate correct from spurious. E.g., if multi-
ple examples all mention “yellow hat”, we will find a correct
program parsing this as hasHat(yellow) for each exam-
ple, whereas the spurious programs we find will follow no
consistent pattern. Consequently, spurious gradient contribu-
tions may cancel out while correct program gradients will all
“vote” in the same direction.

1056

Method Approximation of Eq [·] Exploration strategy Gradient weight q(z)
REINFORCE Monte Carlo integration independent sampling pθ(z | x)

BS-MML numerical integration beam search pθ(z | x,R(z) 6= 0)
RANDOMER numerical integration randomized beam search qβ(z)

Table 1: RANDOMER combines qualities of both REINFORCE (RL) and BS-MML. For approximating
the expectation over q in the gradient, we use numerical integration as in BS-MML. Our exploration
strategy is a hybrid of search (MML) and off-policy sampling (RL). Our gradient weighting is equivalent
to MML when β = 1 and more “meritocratic” than both MML and REINFORCE for lower values of β.

use fixed GloVe vectors (Pennington et al., 2014)
to embed the words in each utterance.

Hyperparameters. For all models, we per-
formed a grid search over hyperparameters to
maximize accuracy on the validation set. Hy-
perparameters include the learning rate, the
baseline in REINFORCE, ε-greediness and β-
meritocraticness. For REINFORCE, we also ex-
perimented with a regression-estimated baseline
(Ranzato et al., 2015), but found it to perform
worse than a constant baseline.

6.1 Main results
Comparison to prior work. Table 2 compares
RANDOMER to results from Long et al. (2016)
as well as two baselines, REINFORCE and BS-
MML (using the same neural model but differ-
ent learning algorithms). Our approach achieves
new state-of-the-art results by a significant mar-
gin, especially on the SCENE domain, which fea-
tures the most complex program syntax. We report
the results for REINFORCE, BS-MML, and RAN-
DOMER on the seed and hyperparameters that
achieve the best validation accuracy.

We note that REINFORCE performs very well
on TANGRAMS but worse on ALCHEMY and very
poorly on SCENE. This might be because the pro-
gram syntax for TANGRAMS is simpler than the
other two: there is no other way to refer to objects
except by index.

We also found that REINFORCE required ε-
greedy exploration to make any progress. Us-
ing ε-greedy greatly skews the Monte Carlo ap-
proximation of ∇JRL, making it more uniformly
weighted over programs in a similar spirit to us-
ing β-meritocratic gradient weights qβ . However,
qβ increases uniformity over reward-earning pro-
grams only, rather than over all programs.

Effect of randomized beam search. Table 3
shows that ε-greedy randomized beam search con-
sistently outperforms classic beam search. Even
when we increase the beam size of classic beam

ALCHEMY TANGRAMS SCENE
system 3utts 5utts 3utts 5utts 3utts 5utts
LONG+16 56.8 52.3 64.9 27.6 23.2 14.7
REINFORCE 58.3 44.6 68.5 37.3 47.8 33.9
BS-MML 58.7 47.3 62.6 32.2 53.5 32.5
RANDOMER 66.9 52.9 65.8 37.1 64.8 46.2

Table 2: Comparison to prior work. LONG+16
results are directly from Long et al. (2016). Hy-
perparameters are chosen by best performance on
validation set (see Appendix A).

ALCHEMY TANGRAMS SCENE
random beam 3utts 5utts 3utts 5utts 3utts 5utts

classic beam search
None 32 30.3 23.2 0.0 0.0 33.4 20.1
None 128 59.0 46.4 60.9 28.6 24.5 13.9

randomized beam search
ε = 0.05 32 58.7 45.5 61.1 32.5 33.4 23.0
ε = 0.15 32 61.3 48.3 65.2 34.3 50.8 33.5
ε = 0.25 32 60.5 48.6 60.0 27.3 54.1 35.7

Table 3: Randomized beam search. All listed
models use gradient weight qMML and TOKENS to
represent execution history.

search to 128, it still does not surpass randomized
beam search with a beam of 32, and further in-
creases yield no additional improvement.

Effect of β-meritocratic updates. Table 4 eval-
uates the impact of β-meritocratic parameter up-
dates (gradient weight qβ). More uniform up-
weighting across reward-earning programs leads
to higher accuracy and fewer spurious programs,
especially in SCENE. However, no single value of
β performs best over all domains.

Choosing the right value of β in RANDOMER

significantly accelerates training. Figure 3 illus-
trates that while β = 0 and β = 1 ultimately
achieve similar accuracy on ALCHEMY, β = 0
reaches good performance in half the time.

Since lowering β reduces trust in the model pol-
icy, β < 1 helps in early training when the cur-
rent policy is untrustworthy. However, as it grows
more trustworthy, β < 1 begins to pay a price for
ignoring it. Hence, it may be worthwhile to anneal
β towards 1 over time.

1057

ALCHEMY TANGRAMS SCENE
q(z) 3utts 5utts 3utts 5utts 3utts 5utts
qRL 0.2 0.0 0.9 0.6 0.0 0.0

qMML (qβ=1) 61.3 48.3 65.2 34.3 50.8 33.5
qβ=0.25 64.4 48.9 60.6 29.0 42.4 29.7
qβ=0 63.6 46.3 54.0 23.5 61.0 42.4

Table 4: β-meritocratic updates. All listed
models use randomized beam search, ε = 0.15
and TOKENS to represent execution history.

ALCHEMY TANGRAMS SCENE
3utts 5utts 3utts 5utts 3utts 5utts

HISTORY 61.3 48.3 65.2 34.3 50.8 33.5
STACK 64.2 53.2 63.0 32.4 59.5 43.1

Table 5: TOKENS vs STACK embedding. Both
models use ε = 0.15 and gradient weight qMML.

Effect of execution history embedding. Ta-
ble 5 compares our two proposals for embed-
ding the execution history: TOKENS and STACK.
STACK performs better in the two domains where
an object can be referenced in multiple ways
(SCENE and ALCHEMY). STACK directly embeds
objects on the stack, invariant to the way in which
they were pushed onto the stack, unlike TOKENS.
We hypothesize that this invariance increases ro-
bustness to spurious behavior: if a program acci-
dentally pushes the right object onto the stack via
spurious means, the model can still learn the re-
maining steps of the program without conditioning
on a spurious history.

Fitting vs overfitting the training data. Ta-
ble 6 reveals that BS-MML and RANDOMER use
different strategies to fit the training data. On
the depicted training example, BS-MML actually
achieves higher expected reward / marginal prob-
ability than RANDOMER, but it does so by putting
most of its probability on a spurious program—
a form of overfitting. In contrast, RANDOMER

spreads probability mass over multiple reward-
earning programs, including the correct ones.

As a consequence of overfitting, we observed at
test time that BS-MML only references people by
positional indices instead of by shirt or hat color,
whereas RANDOMER successfully learns to use
multiple reference strategies.

7 Related work and discussion

Semantic parsing from indirect supervision.
Our work is motivated by the classic problem of
learning semantic parsers from indirect supervi-
sion (Clarke et al., 2010; Liang et al., 2011; Artzi

0 5000 10000 15000 20000 25000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RANDOMER beta = 0

RANDOMER beta = 0.25

RANDOMER beta = 1

BS-MML

REINFORCE

Figure 3: Validation set accuracy (y-axis)
across training iterations (x-axis) on ALCHEMY.
We compare RANDOMER, BS-MML and REIN-
FORCE. Vertical lines mark the first time each
model surpasses 60% accuracy. RANDOMER with
β = 0 reaches this point twice as fast as β = 1.
REINFORCE plateaus for a long time, then begins
to climb after 40k iterations (not shown). Training
runs are averaged over 5 seeds.

and Zettlemoyer, 2011, 2013; Reddy et al., 2014;
Pasupat and Liang, 2015). We are interested in
the initial stages of training from scratch, where
getting any training signal is difficult due to the
combinatorially large search space. We also high-
lighted the problem of spurious programs which
capture reward but give incorrect generalizations.

Maximum marginal likelihood with beam
search (BS-MML) is traditionally used to learn se-
mantic parsers from indirect supervision.

Reinforcement learning. Concurrently, there
has been a recent surge of interest in reinforce-
ment learning, along with the wide application
of the classic REINFORCE algorithm (Williams,
1992)—to troubleshooting (Branavan et al., 2009),
dialog generation (Li et al., 2016), game playing
(Narasimhan et al., 2015), coreference resolution
(Clark and Manning, 2016), machine translation
(Norouzi et al., 2016), and even semantic parsing
(Liang et al., 2017). Indeed, the challenge of train-
ing semantic parsers from indirect supervision is
perhaps better captured by the notion of sparse re-
wards in reinforcement learning.

The RL answer would be better exploration,
which can take many forms including simple
action-dithering such as ε-greedy, entropy regular-
ization (Williams and Peng, 1991), Monte Carlo
tree search (Coulom, 2006), randomized value
functions (Osband et al., 2014, 2016), and meth-
ods which prioritize learning environment dynam-
ics (Duff, 2002) or under-explored states (Kearns
and Singh, 2002; Bellemare et al., 2016; Nachum
et al., 2016). The majority of these methods em-
ploy Monte Carlo sampling for exploration. In

1058

Utterance: the man in the purple shirt and red hat moves just
to the right of the man in the red shirt and yellow hat

program prob
RANDOMER (ε = 0.15, β = 0)

* move(hasHat(red),
rightOf(hasHat(red)))

0.122

* move(hasShirt(purple),
rightOf(hasShirt(red)))

0.061

o move(hasHat(red),
rightOf(index(allPeople, 1)))

0.059

* move(hasHat(red),
rightOf(hasHat(yellow)))

0.019

o move(index(allPeople, 2),
rightOf(hasShirt(red)))

0.018

x move(hasHat(red), 8) 0.018
BS-MML

o move(index(allPeople, 2), 2) 0.887
x move(index(allPeople, 2), 6) 0.041
x move(index(allPeople, 2), 5) 0.020
x move(index(allPeople, 2), 8) 0.016
x move(index(allPeople, 2), 7) 0.009
x move(index(allPeople, 2), 3) 0.008

Table 6: Top-scoring predictions for a training ex-
ample from SCENE (* = correct, o = spurious, x
= incorrect). RANDOMER distributes probabil-
ity mass over numerous reward-earning programs
(including the correct ones), while classic beam
search MML overfits to one spurious program,
giving it very high probability.

contrast, we find randomized beam search to be
more suitable in our setting, because it explores
low-probability states even when the policy distri-
bution is peaky. Our β-meritocratic update also
depends on the fact that beam search returns an
entire set of reward-earning programs rather than
one, since it renormalizes over the reward-earning
set. While similar to entropy regularization, β-
meritocratic update is more targeted as it only in-
creases uniformity of the gradient among reward-
earning programs, rather than across all programs.

Our strategy of using randomized beam search
and meritocratic updates lies closer to MML than
RL, but this does not imply that RL has nothing
to offer in our setting. With the simple connec-
tion between RL and MML we established, much
of the literature on exploration and variance reduc-
tion in RL can be directly applied to MML prob-
lems. Of special interest are methods which incor-
porate a value function such as actor-critic.

Maximum likelihood and RL. It is tempting to
group our approach with sequence learning meth-
ods which interpolate between supervised learn-
ing and reinforcement learning (Ranzato et al.,
2015; Venkatraman et al., 2015; Ross et al., 2011;
Norouzi et al., 2016; Bengio et al., 2015; Levine,

2014). These methods generally seek to make RL
training easier by pre-training or “warm-starting”
with fully supervised learning. This requires each
training example to be labeled with a reasonably
correct output sequence. In our setting, this would
amount to labeling each example with the correct
program, which is not known. Hence, these meth-
ods cannot be directly applied.

Without access to correct output sequences,
we cannot directly maximize likelihood, and in-
stead resort to maximizing the marginal likelihood
(MML). Rather than proposing MML as a form of
pre-training, we argue that MML is a superior sub-
stitute for the standard RL objective, and that the
β-meritocratic update is even better.

Simulated annealing. Our β-meritocratic up-
date employs exponential smoothing, which bears
resemblance to the simulated annealing strategy of
Och (2003); Smith and Eisner (2006); Shen et al.
(2015). However, a key difference is that these
methods smooth the objective function whereas
we smooth an expectation in the gradient. To un-
derscore the difference, we note that fixing β = 0
in our method (total smoothing) is quite effective,
whereas total smoothing in the simulated anneal-
ing methods would correspond to a completely flat
objective function, and an uninformative gradient
of zero everywhere.

Neural semantic parsing. There has been re-
cent interest in using recurrent neural networks for
semantic parsing, both for modeling logical forms
(Dong and Lapata, 2016; Jia and Liang, 2016;
Liang et al., 2017) and for end-to-end execution
(Yin et al., 2015; Neelakantan et al., 2016). We
develop a neural model for the context-dependent
setting, which is made possible by a new stack-
based language similar to Riedel et al. (2016).

Acknowledgments. This work was supported
by the NSF Graduate Research Fellowship under
No. DGE-114747 and the NSF CAREER Award
under No. IIS-1552635.

Reproducibility. Our code is made available
at https://github.com/kelvinguu/lang2program.
Reproducible experiments are available
at https://worksheets.codalab.org/worksheets/

0x88c914ee1d4b4a4587a07f36f090f3e5/.

References
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,

C. Citro, G. S. Corrado, A. Davis, J. Dean,

1059

M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Józefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. G. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. A.
Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng. 2015. Tensorflow: Large-scale
machine learning on heterogeneous distributed sys-
tems. arXiv preprint arXiv:1603.04467 .

Y. Artzi and L. Zettlemoyer. 2011. Bootstrapping
semantic parsers from conversations. In Em-
pirical Methods in Natural Language Processing
(EMNLP). pages 421–432.

Y. Artzi and L. Zettlemoyer. 2013. Weakly supervised
learning of semantic parsers for mapping instruc-
tions to actions. Transactions of the Association for
Computational Linguistics (TACL) 1:49–62.

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural
machine translation by jointly learning to align and
translate. In International Conference on Learning
Representations (ICLR).

M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul,
D. Saxton, and R. Munos. 2016. Unifying count-
based exploration and intrinsic motivation. In Ad-
vances in Neural Information Processing Systems
(NIPS). pages 1471–1479.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. 2015.
Scheduled sampling for sequence prediction with re-
current neural networks. In Advances in Neural In-
formation Processing Systems (NIPS). pages 1171–
1179.

S. Branavan, H. Chen, L. S. Zettlemoyer, and R. Barzi-
lay. 2009. Reinforcement learning for mapping in-
structions to actions. In Association for Compu-
tational Linguistics and International Joint Con-
ference on Natural Language Processing (ACL-
IJCNLP). pages 82–90.

K. Clark and C. D. Manning. 2016. Deep rein-
forcement learning for mention-ranking coreference
models. arXiv preprint arXiv:1609.08667 .

J. Clarke, D. Goldwasser, M. Chang, and D. Roth.
2010. Driving semantic parsing from the world’s re-
sponse. In Computational Natural Language Learn-
ing (CoNLL). pages 18–27.

R. Coulom. 2006. Efficient selectivity and backup op-
erators in Monte-Carlo tree search. In International
Conference on Computers and Games. pages 72–83.

A. P. Dempster, L. N. M., and R. D. B. 1977. Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society:
Series B 39(1):1–38.

L. Dong and M. Lapata. 2016. Language to logical
form with neural attention. In Association for Com-
putational Linguistics (ACL).

M. O. Duff. 2002. Optimal Learning: Computational
procedures for Bayes-adaptive Markov decision pro-
cesses. Ph.D. thesis, University of Massachusetts
Amherst.

X. Glorot and Y. Bengio. 2010. Understanding the
difficulty of training deep feedforward neural net-
works. In International Conference on Artificial In-
telligence and Statistics.

R. Jia and P. Liang. 2016. Data recombination for neu-
ral semantic parsing. In Association for Computa-
tional Linguistics (ACL).

M. Kearns and S. Singh. 2002. Near-optimal reinforce-
ment learning in polynomial time. Machine Learn-
ing 49(2):209–232.

D. Kingma and J. Ba. 2014. Adam: A method
for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

J. Krishnamurthy and T. Mitchell. 2012. Weakly
supervised training of semantic parsers. In Em-
pirical Methods in Natural Language Processing
and Computational Natural Language Learning
(EMNLP/CoNLL). pages 754–765.

S. Levine. 2014. Motor Skill Learning with Local Tra-
jectory Methods. Ph.D. thesis, Stanford University.

J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and
J. Gao. 2016. Deep reinforcement learning for dia-
logue generation. In Empirical Methods in Natural
Language Processing (EMNLP).

C. Liang, J. Berant, Q. Le, and K. D. F. N. Lao.
2017. Neural symbolic machines: Learning seman-
tic parsers on Freebase with weak supervision. In
Association for Computational Linguistics (ACL).

P. Liang, M. I. Jordan, and D. Klein. 2011. Learn-
ing dependency-based compositional semantics. In
Association for Computational Linguistics (ACL).
pages 590–599.

R. Long, P. Pasupat, and P. Liang. 2016. Simpler
context-dependent logical forms via model projec-
tions. In Association for Computational Linguistics
(ACL).

O. Nachum, M. Norouzi, and D. Schuurmans.
2016. Improving policy gradient by explor-
ing under-appreciated rewards. arXiv preprint
arXiv:1611.09321 .

K. Narasimhan, T. Kulkarni, and R. Barzilay. 2015.
Language understanding for text-based games us-
ing deep reinforcement learning. arXiv preprint
arXiv:1506.08941 .

A. Neelakantan, Q. V. Le, and I. Sutskever. 2016.
Neural programmer: Inducing latent programs with
gradient descent. In International Conference on
Learning Representations (ICLR).

1060

M. Norouzi, S. Bengio, N. Jaitly, M. Schuster, Y. Wu,
D. Schuurmans, et al. 2016. Reward augmented
maximum likelihood for neural structured predic-
tion. In Advances In Neural Information Processing
Systems. pages 1723–1731.

F. J. Och. 2003. Minimum error rate training in statisti-
cal machine translation. In Association for Compu-
tational Linguistics (ACL). pages 160–167.

I. Osband, C. Blundell, A. Pritzel, and B. V. Roy. 2016.
Deep exploration via bootstrapped DQN. In Ad-
vances In Neural Information Processing Systems.
pages 4026–4034.

I. Osband, B. V. Roy, and Z. Wen. 2014. Generaliza-
tion and exploration via randomized value functions.
arXiv preprint arXiv:1402.0635 .

P. Pasupat and P. Liang. 2015. Compositional semantic
parsing on semi-structured tables. In Association for
Computational Linguistics (ACL).

P. Pasupat and P. Liang. 2016. Inferring logical forms
from denotations. In Association for Computational
Linguistics (ACL).

J. Pennington, R. Socher, and C. D. Manning. 2014.
Glove: Global vectors for word representation. In
Empirical Methods in Natural Language Processing
(EMNLP).

M. Ranzato, S. Chopra, M. Auli, and W. Zaremba.
2015. Sequence level training with recurrent neural
networks. arXiv preprint arXiv:1511.06732 .

S. Reddy, M. Lapata, and M. Steedman. 2014. Large-
scale semantic parsing without question-answer
pairs. Transactions of the Association for Compu-
tational Linguistics (TACL) 2(10):377–392.

S. Riedel, M. Bosnjak, and T. Rocktäschel. 2016.
Programming with a differentiable forth interpreter.
CoRR, abs/1605.06640 .

S. Ross, G. Gordon, and A. Bagnell. 2011. A reduction
of imitation learning and structured prediction to no-
regret online learning. In Artificial Intelligence and
Statistics (AISTATS).

S. Shen, Y. Cheng, Z. He, W. He, H. Wu, M. Sun, and
Y. Liu. 2015. Minimum risk training for neural ma-
chine translation. arXiv preprint arXiv:1512.02433
.

D. A. Smith and J. Eisner. 2006. Minimum risk an-
nealing for training log-linear models. In Interna-
tional Conference on Computational Linguistics and
Association for Computational Linguistics (COL-
ING/ACL). pages 787–794.

R. Sutton, D. McAllester, S. Singh, and Y. Mansour.
1999. Policy gradient methods for reinforcement
learning with function approximation. In Advances
in Neural Information Processing Systems (NIPS).

A. Venkatraman, M. Hebert, and J. A. Bagnell. 2015.
Improving multi-step prediction of learned time se-
ries models. In Association for the Advancement of
Artificial Intelligence (AAAI). pages 3024–3030.

R. J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3):229–256.

R. J. Williams and J. Peng. 1991. Function optimiza-
tion using connectionist reinforcement learning al-
gorithms. Connection Science 3(3):241–268.

P. Yin, Z. Lu, H. Li, and B. Kao. 2015. Neural en-
quirer: Learning to query tables. arXiv preprint
arXiv:1512.00965 .

A Hyperparameters in Table 2
System ALCHEMY TANGRAMS SCENE

REINFORCE

Sample size 32
Baseline 10−2

ε = 0.15
embed TOKENS

Sample size 32
Baseline 10−2

ε = 0.15
embed TOKENS

Sample size 32
Baseline 10−4

ε = 0.15
embed TOKENS

BS-MML Beam size 128
embed TOKENS

Beam size 128
embed TOKENS

Beam size 128
embed TOKENS

RANDOMER
β = 1
ε = 0.05
embed TOKENS

β = 1
ε = 0.15
embed TOKENS

β = 0
ε = 0.15
embed STACK

1061

B SCONE domains and program tokens
token type semantics
Shared across ALCHEMY, TANGRAMS, SCENE

1, 2, 3, . . . constant push: number
-1, -2, -3, . . .
red, yellow, green, constant push: color
orange, purple, brown
allObjects constant push: the list of all objects
index function pop: a list L and a number i

push: the object L[i] (the index starts from 1; negative indices are allowed)
prevArgj (j = 1, 2) function pop: a number i

push: the j argument from the ith action
prevAction action pop: a number i

perform: fetch the ith action and execute it using the arguments on the stack
Additional tokens for the ALCHEMY domain
An ALCHEMY world contains 7 beakers. Each beaker may contain up to 4 units of colored chemical.
1/1 constant push: fraction (used in the drain action)
hasColor function pop: a color c

push: list of beakers with chemical color c
drain action pop: a beaker b and a number or fraction a

perform: remove a units of chemical (or all chemical if a = 1/1) from b

pour action pop: two beakers b1 and b2
perform: transfer all chemical from b1 to b2

mix action pop: a beaker b
perform: turn the color of the chemical in b to brown

Additional tokens for the TANGRAMS domain
A TANGRAMS world contains a row of tangram pieces with different shapes. The shapes are anonymized; a tangram can
be referred to by an index or a history reference, but not by shape.
swap action pop: two tangrams t1 and t2

perform: exchange the positions of t1 and t2
remove action pop: a tangram t

perform: remove t from the stage
add action pop: a number i and a previously removed tangram t

perform: insert t to position i
Additional tokens for the SCENE domain
A SCENE world is a linear stage with 10 positions. Each position may be occupied by a person with a colored shirt and
optionally a colored hat. There are usually 1-5 people on the stage.
noHat constant push: pseudo-color (indicating that the person is not wearing a hat)
hasShirt, hasHat function pop: a color c

push: the list of all people with shirt or hat color c
hasShirtHat function pop: two colors c1 and c2

push: the list of all people with shirt color c1 and hat color c2
leftOf, rightOf function pop: a person p

push: the location index left or right of p
create action pop: a number i and two colors c1, c2

perform: add a new person at position i with shirt color c1 and hat color c2
move action pop: a person p and a number i

perform: move p to position i
swapHats action pop: two people p1 and p2

perform: have p1 and p2 exchange their hats
leave action pop: a person p

perform: remove p from the stage

1062

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1063–1072
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1098

Diversity driven attention model for query-based abstractive
summarization

Preksha Nema† Mitesh M. Khapra† Anirban Laha∗† Balaraman Ravindran†
†Indian Institute of Technology Madras, India

∗ IBM Research India
{preksha,miteshk}@cse.iitm.ac.in

anirlaha@in.ibm.com ravi@cse.iitm.ac.in

Abstract

Abstractive summarization aims to gen-
erate a shorter version of the document
covering all the salient points in a com-
pact and coherent fashion. On the other
hand, query-based summarization high-
lights those points that are relevant in the
context of a given query. The encode-
attend-decode paradigm has achieved
notable success in machine translation,
extractive summarization, dialog sys-
tems, etc. But it suffers from the draw-
back of generation of repeated phrases.
In this work we propose a model for the
query-based summarization task based
on the encode-attend-decode paradigm
with two key additions (i) a query
attention model (in addition to doc-
ument attention model) which learns
to focus on different portions of the
query at different time steps (instead
of using a static representation for the
query) and (ii) a new diversity based
attention model which aims to allevi-
ate the problem of repeating phrases in
the summary. In order to enable the
testing of this model we introduce a
new query-based summarization dataset
building on debatepedia. Our experi-
ments show that with these two addi-
tions the proposed model clearly out-
performs vanilla encode-attend-decode
models with a gain of 28% (absolute) in
ROUGE-L scores.

1 Introduction
Over the past few years neural models based

on the encode-attend-decode (Bahdanau et al.,

2014) paradigm have shown great success
in various natural language generation (NLG)
tasks such as machine translation (Bahdanau
et al., 2014), abstractive summarization ((Rush
et al., 2015),(Nallapati et al., 2016)) dialog (Li
et al., 2016), etc. One such NLG problem which
has not received enough attention in the past
is query based abstractive text summarization
where the aim is to generate the summary of
a document in the context of a query. In gen-
eral, abstractive summarization, aims to cover
all the salient points of a document in a compact
and coherent fashion. On the other hand, query
focused summarization highlights those points
that are relevant in the context of the query.
Thus given a document on “the super bowl”, the
query “How was the half-time show?”, would
result in a summary that would not cover the ac-
tual game itself.

Note that there has been some work on
query based extractive summarization in the
past where the aim is to simply extract the most
salient sentence(s) from a document and treat
these as a summary. There is no natural lan-
guage generation involved. Since, we were in-
terested in abstractive (as opposed to extractive)
summarization we created a new dataset based
on debatepedia. This dataset contains triplets of
the form (query, document, summary). Further,
each summary is abstractive and not extractive
in the sense that the summary does not neces-
sarily comprise of a sentence which is simply
copied from the original document.

Using this dataset as a testbed, we focus on
a recurring problem in models based on the
encode-attend-decode paradigm. Specifically,
it is observed that the summaries produced by
such models contain repeated phrases. Table 1
shows a few such examples of summaries gener-

1063

https://doi.org/10.18653/v1/P17-1098

Document Snippet: The “natural death” alter-
native to euthanasia is not keeping someone
alive via life support until they die on life sup-
port. That would, indeed, be unnatural. The
natural alternative is, instead, to allow them to
die off of life support.
Query: Is euthanasia better than withdrawing
life support (non-treatment)?
Ground Truth Summary: The alternative to
euthanasia is a natural death without life sup-
port.
Predicted Summary: the large to euthanasia is
a natural death life life use
Document Snippet: Legalizing same-sex mar-
riage would also be a recognition of basic Amer-
ican principles, and would represent the cul-
mination of our nation’s commitment to equal
rights. It is, some have said, the last major
civil-rights milestone yet to be surpassed in our
two-century struggle to attain the goals we set
for this nation at its formation.
Query: Is gay marriage a civil right?
Ground Truth Summary: Gay marriage is a
fundamental equal right.
Predicted Summary: gay marriage is a appro-
priate right right

Table 1: Examples showing repeated words in the
output of encoder-decoder models

ated by such a model when trained on this new
dataset. This problem has also been reported by
(Chen et al., 2016) in the context of summariza-
tion and by (Sankaran et al., 2016) in the context
of machine translation.

We first provide an intuitive explanation for
this problem and then propose a solution for
alleviating it. A typical encode-attend-decode
model first computes a vectorial representation
for the document and the query and then pro-
duces a contextual summary one word at a time.
Each word is produced by feeding a new con-
text vector to the decoder at each time step by
attending to different parts of the document and
query. If the decoder produces the same word
or phrase repeatedly then it could mean that the
context vectors fed to the decoder at these time
steps are very similar.

We propose a model which explicitly pre-
vents this by ensuring that successive context
vectors are orthogonal to each other. Specifi-
cally, we subtract out any component that the

current context vector has in the direction of the
previous context vector. Notice that, we do not
require the current context vector to be orthog-
onal to all previous context vectors but just its
immediate predecessor. This enables the model
to attend to words repeatedly if required later in
the process. To account for the complete history
(or all previous context vectors) we also pro-
pose an extension of this idea where we pass the
sequence of context vectors through a LSTM
(Hochreiter and Schmidhuber, 1997) and ensure
that the current state produced by the LSTM is
orthogonal to the history. At each time step, the
state of the LSTM is then fed to the decoder to
produce one word in the summary.

Our contributions can be summarized as fol-
lows: (i) We propose a new dataset for query
based abstractive summarization and evaluate
encode-attend-decode models on this dataset (ii)
We study the problem of repeating phrases in
NLG in the context of this dataset and pro-
pose two solutions for countering this problem.
We show that our method outperforms a vanilla
encoder-decoder model with a gain of 28% (ab-
solute) in ROUGE-L score (iii) We also demon-
strate that our method clearly outperforms a re-
cent state of the art method proposed for han-
dling the problem of repeating phrases with a
gain of 7% (absolute) in ROUGE-L scores (iv)
We do a qualitative analysis of the results and
show that our model indeed produces outputs
with fewer repetitions.

2 Related Work
Summarization has been studied in the con-

text of text ((Mani, 2001), (Das and Martins,
2007), (Nenkova and McKeown, 2012)) as well
as speech ((Zhu and Penn, 2006), (Zhu et al.,
2009)). A vast majority of this work has focused
on extractive summarization where the idea is to
construct a summary by selecting the most rele-
vant sentences from the document ((Neto et al.,
2002), (Erkan and Radev, 2004), (Filippova and
Altun, 2013), (Colmenares et al., 2015), (Ried-
hammer et al., 2010), (Ribeiro et al., 2013)).
There has been some work on abstractive sum-
marization in the context of DUC-2003 and
DUC-2004 contests (Zajic et al.). We refer the
reader to (Das and Martins, 2007) and (Nenkova
and McKeown, 2012) for an excellent survey of

1064

the field.
Recent research in abstractive summarization

has focused on data driven neural models based
on the encode-attend-decode paradigm (Bah-
danau et al., 2014). For example, (Rush et al.,
2015), report state of the art results on the Gi-
gaWord and DUC corpus using such a model.
Similarly, the work of Lopyrev (2015) uses neu-
ral networks to generate news headline from
short news stories. Chopra et al. (2016) ex-
tend the work of Rush et al. (2015) and report
further improvements on the two datasets. Hu
et al. (2015) introduced a dataset for Chinese
short text summarization and evaluated a simi-
lar RNN encoder-decoder model on it.

One recurring problem in encoder-decoder
models for NLG is that they often repeat the
same phrase/word multiple times in the sum-
mary (at the cost of both coherency and fluency).
Sankaran et al. (2016) study this problem in the
context of MT and propose a temporal attention
model which enforces the attention weights for
successive time steps to be different from each
other. Similarly, and more relevant to this work,
Chen et al. (2016) propose a distraction based
attention model which maintains a history of at-
tention vectors and context vectors. It then sub-
tracts this history from the current attention and
context vector. When evaluated on our dataset
their method performs poorly. This could be be-
cause their method is very aggressive in deal-
ing with the history (as explained later in the
Experiments section). On the other hand, our
method has a better way of handling history (by
passing context vectors through an LSTM recur-
rent network) which gives us the flexibility to
forget/retain some portions of the history and at
the same time produce diverse context vectors
at successive time steps.

We evaluate our method in the context of
query based abstractive summarization - a prob-
lem which has received almost no attention in
the past due to unavailability of datasets. We
create a new dataset for this task and show that
our method indeed produces better output by
reducing the number of repeated phrases pro-
duced by encoder decoder models.

Average number of words per
Document Summary Query

66.4 11.16 9.97

Table 2: Average length of docu-
ments/queries/summaries in the dataset

3 Dataset
As mentioned earlier, there are no existing

datasets for query based abstractive summariza-
tion. We create such a dataset from Debatepe-
dia an encyclopedia of pro and con arguments
and quotes on critical debate topics. There are
663 debates in the corpus (we have considered
only those debates which have at least one query
with one document). These 663 debates belong
to 53 overlapping categories such as Politics,
Law, Crime, Environment, Health, Morality, Re-
ligion, etc. A given topic can belong to more
than one category. For example, the topic “Eye
for an Eye philosophy” belongs to both “Law”
as well as “Morality”. The average number of
queries per debate is 5 and the average number
of documents per query is 4. Please refer to the
dataset url1 for more details about number of de-
bates per category.

For example, Figure 1 shows the queries as-
sociated with the topic “Algae Biofuel”. It also
lists the set of documents and an abstractive
summary associated with each query. As is
obvious from the example, the summary is an
abstractive summary and not extracted directly
from the document. We crawled 12695 such
{query, document, summary} triples from de-
batepedia (these were all the triples that were
available). Table 2 reports the average length
of the query, summary and documents in this
dataset.

We used 10 fold cross validation for all our
experiments. Each fold uses 80% of the docu-
ments for training, 10% for validation and 10%
for testing.

4 Proposed model
Given a query q = q1, q2, ..., qk containing

k words, a document d = d1, d2, ..., dn con-
taining n words, the task is to generate a con-
textual summary y = y1, y2, ..., ym containing

1http://www.cse.iitm.ac.in/˜miteshk/
datasets/qbas.html

1065

Figure 1: Queries associated with the topic “algae
biofuel”

Figure 2: Documents and summaries for a given
query

m words. This can be modeled as the problem
of finding a y∗ that maximizes the probability
p(y|q,d) which can be further decomposed as:

y∗ = argmax
y

m∏

t=1

p(yt|y1, ..., yt−1,q,d) (1)

We now describe a way of modeling
p(yt|y1, ..., yt−1,q,d) using the neural encoder-
attention-decoder paradigm. The proposed
model contains the following components: (i)
an encoder RNN for the query (ii) an encoder
RNN for the document (iii) attention mecha-
nism for the query (iv) attention mechanism for
the document and (v) a decoder RNN. All the
RNNs use a GRU cell.
Encoder for the query: We use a recurrent neu-
ral network with Gated Recurrent Units (GRU)
for encoding the query. It reads the query q =
q1, q2, ..., qk from left to right and computes a
hidden representation for each time-step as:

hqi = GRUq(h
q
i−1, e(qi)) (2)

where e(qi) ∈ Rd is the d-dimensional embed-
ding of the query word qi.
Encoder for the document: This is similar to
the query encoder and reads the document d =
d1, d2, ..., dn from left to right and computes a
hidden representation for each time-step as:

hdi = GRUd(h
d
i−1, e(di)) (3)

where e(di) ∈ Rd is the d-dimensional embed-
ding of the document word di.
Attention mechanism for the query : At each
time step, the decoder produces an output word

by focusing on different portions of the query
(document) with the help of a query (document)
attention model. We first describe the query
attention model which assigns weights αqt,i to
each word in the query at each decoder timestep
using the following equations.

aqt,i = vTq tanh(Wqst + Uqh
q
i) (4)

αqt,i =
exp(aqt,i)∑k
j=1 exp(aqt,j)

(5)

where st is the current state of the decoder at
time step t (we will see an exact formula for this
soon). Wq ∈ Rl2×l1 , Uq ∈ Rl2×l2 , vq ∈ Rl2 ,
l1 is the size of the decoder’s hidden state, l2
is both the size of hqi and also the size of the
final query representation at time step t, which
is computed as:

qt =
k∑

i=1

αqt,ih
q
i (6)

Attention mechanism for the document : We
now describe the document attention model
which assigns weights to each word in the docu-
ment using the following equations.

adt,i = vTd tanh(Wdst + Udh
d
i + Zqt) (7)

αdt,i =
exp(adt,i)∑n
j=1 exp(adt,j)

where st is the current state of the decoder at
time step t (we will see an exact formula for this

1066

soon). Wd ∈ Rl4×l1 , Ud ∈ Rl4×l4 , Z ∈ Rl4×l2 ,
vd ∈ Rl2 , l4 is the size of hdi and also the size
of the final document representation dt which is
passed to the decoder at time step t as:

dt =
n∑

i=1

αdt,ih
d
i (8)

Note that dt now encodes the relevant informa-
tion from the document as well as the query (see
Equation (7)) at time step t. We refer to this as
the context vector for the decoder.
Decoder: The hidden state of the decoder st at
each time t is again computed using a GRU as
follows:

st = GRUdec(st−1, [e(yt−1), dt−1]) (9)

where, yt−1 gives a distribution over the vocab-
ulary words at timestep t − 1 and is computed
as:

yt = softmax(Wof(Wdecst + Vdecdt)) (10)

where Wo ∈ RN×l1 , Wdec ∈ Rl1×l1 , Vdec ∈
Rl1×l4 , N is the vocabulary size, yt is the final
output of the model which defines a probability
distribution over the output vocabulary. This is
exactly the quantity defined in Equation (1) that
we wanted to model (p(yt|y1, ..., yt−1,q,d)).
Further, note that, e(yt−1) is the d-dimensional
embedding of the word which has the highest
probability under the distribution yt−1. Also
[e(yt−1), dt−1] means a concatenation of the
vectors e(yt−1), dt−1. We chose f to be the iden-
tity function.

The model as described above is an instanti-
ation of the encoder-attention-decoder idea ap-
plied to query based abstractive summarization.
As mentioned earlier (and demonstrated later
through experiments), this model suffers from
the problem of repeating the same phrase/word
in the output. We now propose a new attention
model which we refer to as diversity based at-
tention model to address this problem.

4.1 Diversity based attention model
As hypothesized earlier, if the decoder pro-

duces the same phrase/word multiple times then
it is possible that the context vectors being fed
to the decoder at consecutive time steps are

Document Encoder

support

.

.

.

same

Legalizing

Gay marriage is a fundamental

equal right

Decoder

Is gay marriage a civil right?

Query Encoder

D
ocum

entA
ttention

D
iversity

C
ell

Query Attention

Figure 3: Proposed model for Query based Ab-
stractive Summarization with (i) query encoder (ii)
document encoder (iii) query attention model (iv)
diversity based document attention model and (v)
decoder. The green and red arrows show the con-
nections for timestep 3 of the decoder.

very similar. We propose four models (D1, D2,
SD1, SD2) to directly address this problem.
D1: In this model, after computing dt as de-
scribed in Equation (8), we make it orthogonal
to the context vector at time t− 1:

d
′
t = dt −

dTt d
′
t−1

d
′T
t−1d

′
t−1

d
′
t−1 (11)

SD1: The above model imposes a hard or-
thogonality constraint on the context vector(d

′
t).

We also propose a relaxed version of the above
model which uses a gating parameter. This gat-
ing parameter decides what fraction of the pre-
vious context vector should be subtracted from
the current context vector using the following
equations:

γt = Wgdt−1 + bg

d
′
t = dt − γt

dTt d
′
t−1

d
′T
t−1d

′
t−1

d
′
t−1

where Wg ∈ Rl4×l4 , bg ∈ Rl4 , l4 is the dimen-
sion of dt as defined in equation (8).
D2: The above model only ensures that the cur-
rent context vector is diverse w.r.t the previous
context vector. It ignores all history before time
step t − 1. To account for the history, we treat
successive context vectors as a sequence and use

1067

a modified LSTM cell to compute the new state
at each time step. Specifically, we use the fol-
lowing set of equations to compute a diverse
context at time t:

it = σ(Widt + Uiht−1 + bi)

ft = σ(Wfdt + Ufht−1 + bf)

ot = σ(Wodt + Uoht−1 + bo)

ĉt = tanh(Wcdt + Ucht−1 + bc)

ct = it � ĉt + ft � ct−1

cdiverset = ct −
ct
T ct−1

cTt−1ct−1
ct−1 (12)

ht = ot � tanh(cdiverset)

d
′
t = ht (13)

where Wi,Wf ,Wo,Wc ∈ Rl5×l4 ,
Ui, Uf , Uo, Uc ∈ Rl5×l4 , dt is the l4-
dimensional output of Equation (8); l5 is
number of hidden units in the LSTM cell. This
final d

′
t from Equation (13) is then used in

Equation (9). Note that Equation (12) ensures
that state of the LSTM at time step t is orthog-
onal to the previous history. Figure 3 shows
a pictorial representation of the model with a
diversity LSTM cell.
SD2: This model again uses a relaxed ver-
sion of the orthogonality constraint used in D2.
Specifically, we define a gating parameter gt and
replace (12) above by (14) as define below:

gt = σ(Wgdt + Ught−1 + bo)

cdiverset = ct − gt
ct
T ct−1

cTt−1ct−1
ct−1 (14)

where Wg ∈ Rl5×l4 , Ug ∈ Rl5×l4

5 Baseline Methods
We compare with two recently proposed base-

line diversity methods (Chen et al., 2016) as de-
scribed below. Note that these methods were
proposed in the context of abstractive summa-
rization (not query based abstractive summariza-
tion) and we adapt them for the task of query
based abstractive summarization. Below we just
highlight the key differences from our model in
computing the context vector d

′
t passed to the

decoder.
M1: This model accumulates all the previous
context vectors as

∑t−1
j=1 d

′
j and incorporates

this history while computing a diverse context
vector:

d
′
t = tanh(Wcdt − Uc

t−1∑

j=1

d
′
j) (15)

where Wc, Uc ∈ Rl4×l4 are diagonal matrices.
We then use this diversity driven context d

′
t in

Equation (9) and (10).
M2: In this model, in addition to computing a
diverse context as described in Equation (15),
the attention weights at each time step are also
forced to be diverse from the attention weights
at the previous time step.

α
′
t,i = vTa tanh(Was

′
t + Uadt − ba

t−1∑

j=1

α
′
j,i)

where Wa ∈ Rl1×l1 , Ua ∈ Rl1×l4 , ba, va ∈ Rl1 ,
l1 is the number of hidden units in the decoder
GRU. Once again, they maintain a history of at-
tention weights and compute a diverse attention
vector by subtracting the history from the cur-
rent attention vector.

6 Experimental Setup
We evaluate our models on the dataset de-

scribed in section 3. Note that there are no prior
baselines on query based abstractive summariza-
tion so we could only compare with different
variations of the encoder decoder models as de-
scribed above. Further, we compare our diver-
sity based attention models with existing mod-
els for diversity by suitably adapting them to
this problem as described earlier. Specifically,
we compare the performance of the following
models:

• Vanilla e-a-d: This is the vanilla encoder-
attention-decoder model adapted to the
problem of abstractive summarization. It
contains the following components (i) doc-
ument encoder (ii) document attention
model (iii) decoder. It does not contain an
encoder or attention model for the query.
This helps us understand the importance of
the query.

• Queryenc: This model contains the query
encoder in addition to the three compo-
nents used in the vanilla model above. It
does not contain any attention model for
the query.

1068

• Queryatt: This model contains the query
attention model in addition to all the com-
ponents in Queryenc.

• D1: The diversity attention model as de-
scribed in Section 4.1.

• D2: The LSTM based diversity attention
model as described in Section 4.1.

• SD1: The soft diversity attention model as
described in Section 4.1

• SD2: The soft LSTM based diversity atten-
tion model as described in Section 4.1

• B1: Diversity cell in Figure3 is replaced by
the basic LSTM cell (i.e. cdiverset = ct in-
stead of using Equation (12). This helps us
understand whether simply using an LSTM
to track the history of context vectors (with-
out imposing a diversity constraint) is suffi-
cient.

• M1: The baseline model which operates on
the context vector as described in Section
5.

• M2: The baseline model which operates on
the attention weights in addition to the con-
text vector as described in Section 5.

We used 80% of the data for training, 10%
for validation and 10% for testing. We create
10 such folds and report the average Rouge-1,
Rouge-2, Rouge-L scores across the 10 folds.
The hyperparameters (batch size and GRU cell
sizes) of all the models are tuned on the valida-
tion set. We tried the following batch sizes : 32,
64 and the following GRU cell sizes 200, 300,
400. We used Adam (Kingma and Ba, 2014) as
the optimization algorithm with the initial learn-
ing rate set to 0.0004, β1 = 0.9, β2 = 0.999.
We used pre-trained publicly available Glove
word embeddings2 and fine-tuned them during
training. The same word embeddings are used
for the query words and the document words.

Table 3 summarizes the results of our experi-
ments.

2http://nlp.stanford.edu/projects/glove/

Models ROUGE-1 ROUGE-2 ROUGE-L
Vanilla e-a-d 13.73 2.06 12.84
Queryenc 20.87 3.39 19.38
Queryatt 29.28 10.24 28.21

B1 23.18 6.46 22.03
M1 33.06 13.35 32.17
M2 18.42 4.47 17.45
D1 33.85 13.65 32.99

SD1 31.36 11.23 30.5
D2 38.12 16.76 37.31

SD2 41.26 18.75 40.43
Table 3: Performance on various models using full-
length ROUGE metrics

7 Discussions
In this section, we discuss the results of the

experiments reported in Table 3.
1. Effect of Query: Comparing rows 1 and 2
we observe that adding an encoder for the query
and allowing it to influence the outputs of the de-
coder indeed improves the performance. This is
expected as the query contains some keywords
which could help in sharpening the focus of the
summary.
2. Effect of Query attention model: Compar-
ing rows 2 and 3 we observe that using an atten-
tion model to dynamically compute the query
representation at each time step improves the re-
sults. This suggests that the attention model in-
deed learns to focus on relevant portions of the
query at different time steps.
3. Effect of Diversity models: All the diversity
models introduced in the paper (rows 7, 8, 9,
10) give significant improvement over the non-
diversity models. In particular, the modified
LSTM based diversity model gives the best re-
sults. This is indeed very encouraging and Table
4 shows some sample summaries comparing the
performance of different models.
4. Comparison with baseline diversity mod-
els: The baseline diversity model M1 performs
at par with our models D1 and SD1 but not as
good as D2 and SD2. However, the model M2
performs very poorly. We believe that simulta-
neously adding a constraint on the context vec-
tors as well as attention weights (as is indeed
the case with M2) is a bit too aggressive and
leads to poor performance (although this needs
further investigation).
5. Quantitative Analysis: In addition to the
qualitative analysis reported in Table 4 we also
did a quantitative analysis by counting the num-

1069

Source:Although cannabis does indeed have some harmful effects, it is no more harmful than legal
substances like alcohol and tobacco. As a matter of fact, research by the British Medical Association
shows that nicotine is far more addictive than cannabis. Furthermore, the consumption of alcohol and
the smoking of cigarettes cause more deaths per year than does the use of cannabis (e.g. through lung
cancer, stomach ulcers, accidents caused by drunk driving etc.). The legalization of cannabis will remove
an anomaly in the law whereby substances that are more dangerous than cannabis are legal whilst the
possession and use of cannabis remains unlawful.
Query: is marijuana harmless enough to be considered a medicine
G: marijuana is no more harmful than tobacco and alcohol
Queryattn: marijuana is no the drug drug for tobacco and tobacco
D1: marijuana is no more harmful than tobacco and tobacco
SD1: marijuana is more for evidence than tobacco and health
D2: marijuana is no more harmful than tobacco and use
SD2: marijuana is no more harmful than tobacco and alcohol
Source:Fuel cell critics point out that hydrogen is flammable, but so is gasoline. Unlike gasoline, which
can pool up and burn for a long time, hydrogen dissipates rapidly. Gas tanks tend to be easily punctured,
thin-walled containers, while the latest hydrogen tanks are made from Kevlar. Also, gaseous hydrogen
isn’t the only method of storage under consideration–BMW is looking at liquid storage while other
researchers are looking at chemical compound storage, such as boron pellets.
Query: safety are hydrogen fuel cell vehicles safe
G: hydrogen in cars is less dangerous than gasoline
Queryattn: hydrogen is hydrogen hydrogen hydrogen fuel energy
D1:hydrogen in cars is less natural than gasoline
SD1: hydrogen in cars is reduce risk than fuel
D2: hydrogen in waste is less effective than gasoline
SD2:hydrogen in cars is less dangerous than gasoline
Source:The basis of all animal rights should be the Golden Rule: we should treat them as we would wish
them to treat us, were any other species in our dominant position.
Query: do animals have rights that makes eating them inappropriate
G: animals should be treated as we would want to be treated
Queryatt: animals should be treated as we would protect to be treated
D1: animals should be treated as we most individual to be treated
SD1: animals should be treated as we would physically to be treated
D2: animals should be treated as we would illegal to be treated
SD2: animals should be treated as those would want to be treated

Table 4: Summaries generated by different models. In general, we observed that the baseline models
which do not use a diversity based attention model tend to produce more repetitions. Notice that the last
example shows that our model is not very aggressive in dealing with the history and is able to produce
valid repetitions (treated ... treated) when needed

ber of sentences containing repeated words gen-
erated by different models. Specifically for the
1268 test instances we counted the number of
sentences containing repeated words as gener-
ated by different modes. Table 5 summarizes
this analysis.

8 Conclusion
In this work we proposed a query-based sum-

marization method. The unique feature of

Model Number
Queryattn 498

SD1 352
SD2 344
D1 191
D2 179

Table 5: Average number of sentences with repeat-
ing words across 10 folds

1070

the model is a novel diversification mechanism
based on successive orthogonalization. This
gives us the flexibility to: (i) provide diverse
context vectors at successive time steps and (ii)
pay attention to words repeatedly if need be later
in the summary (as opposed to existing mod-
els which aggressively delete the history). We
also introduced a new data set and empirically
verified we perform significantly better (gain of
28% (absolute) in ROUGE-L score) than apply-
ing a plain encode-attend-decode mechanism to
this problem. We observe that adding an atten-
tion mechanism on the query string gives signif-
icant improvements. We also compare with a
state of the art diversity model and outperform
it by a good margin (gain of 7% (absolute) in
ROUGE-L score). The diversification model
proposed is general enough to apply to other
NLG tasks with suitable modifications and we
are currently working on extending this to dia-
log systems and general summarization.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Distraction-based neural networks
for modeling documents. In Proceedings of the
Twenty-Fifth International Joint Conference on Ar-
tificial Intelligence (IJCAI-16). pages 2754–2760.

Sumit Chopra, Michael Auli, Alexander M Rush, and
SEAS Harvard. 2016. Abstractive sentence sum-
marization with attentive recurrent neural networks.
Proceedings of NAACL-HLT16 pages 93–98.

Carlos A Colmenares, Marina Litvak, Amin Mantrach,
and Fabrizio Silvestri. 2015. Heads: Headline gen-
eration as sequence prediction using an abstract
feature-rich space. In HLT-NAACL. pages 133–142.

Dipanjan Das and André FT Martins. 2007. A survey
on automatic text summarization. Literature Survey
for the Language and Statistics II course at CMU
4:192–195.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of Artificial Intelligence Re-
search 22:457–479.

Katja Filippova and Yasemin Altun. 2013. Overcom-
ing the lack of parallel data in sentence compression.
In EMNLP. Citeseer, pages 1481–1491.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8):1735–
1780.

Baotian Hu, Qingcai Chen, and Fangze Zhu. 2015. Lc-
sts: A large scale chinese short text summarization
dataset. arXiv preprint arXiv:1506.05865 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Jiwei Li, Michel Galley, Chris Brockett, Georgios P
Spithourakis, Jianfeng Gao, and Bill Dolan. 2016.
A persona-based neural conversation model. arXiv
preprint arXiv:1603.06155 .

Konstantin Lopyrev. 2015. Generating news head-
lines with recurrent neural networks. arXiv preprint
arXiv:1512.01712 .

Inderjeet Mani. 2001. Automatic summarization, vol-
ume 3. John Benjamins Publishing.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summariza-
tion using sequence-to-sequence rnns and beyond.
arXiv preprint arXiv:1602.06023 .

Ani Nenkova and Kathleen McKeown. 2012. A sur-
vey of text summarization techniques. In Mining
text data, Springer, pages 43–76.

Joel Larocca Neto, Alex A Freitas, and Celso AA
Kaestner. 2002. Automatic text summarization us-
ing a machine learning approach. In Brazilian Sym-
posium on Artificial Intelligence. Springer, pages
205–215.

Ricardo Ribeiro, Luı́s Marujo, David Martins de Matos,
Joao P Neto, Anatole Gershman, and Jaime Car-
bonell. 2013. Self reinforcement for important pas-
sage retrieval. In Proceedings of the 36th inter-
national ACM SIGIR conference on Research and
development in information retrieval. ACM, pages
845–848.

Korbinian Riedhammer, Benoit Favre, and Dilek
Hakkani-Tür. 2010. Long story short–global unsu-
pervised models for keyphrase based meeting sum-
marization. Speech Communication 52(10):801–
815.

Alexander M Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. arXiv preprint
arXiv:1509.00685 .

Baskaran Sankaran, Haitao Mi, Yaser Al-Onaizan, and
Abe Ittycheriah. 2016. Temporal attention model
for neural machine translation. arXiv preprint
arXiv:1608.02927 .

David Zajic, Bonnie Dorr, and Richard Schwartz. ????
Bbn/umd at duc-2004: Topiary.

1071

Xiaodan Zhu and Gerald Penn. 2006. Comparing the
roles of textual, acoustic and spoken-language fea-
tures on spontaneous-conversation summarization.
In Proceedings of the Human Language Technol-
ogy Conference of the NAACL, Companion Volume:
Short Papers. Association for Computational Lin-
guistics, pages 197–200.

Xiaodan Zhu, Gerald Penn, and Frank Rudzicz. 2009.
Summarizing multiple spoken documents: finding
evidence from untranscribed audio. In Proceed-
ings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP: Volume 2-Volume 2. Association for Com-
putational Linguistics, pages 549–557.

1072

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1073–1083
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1099

Get To The Point: Summarization with Pointer-Generator Networks

Abigail See
Stanford University

abisee@stanford.edu

Peter J. Liu
Google Brain

peterjliu@google.com

Christopher D. Manning
Stanford University

manning@stanford.edu

Abstract

Neural sequence-to-sequence models have
provided a viable new approach for ab-
stractive text summarization (meaning
they are not restricted to simply selecting
and rearranging passages from the origi-
nal text). However, these models have two
shortcomings: they are liable to reproduce
factual details inaccurately, and they tend
to repeat themselves. In this work we pro-
pose a novel architecture that augments the
standard sequence-to-sequence attentional
model in two orthogonal ways. First,
we use a hybrid pointer-generator network
that can copy words from the source text
via pointing, which aids accurate repro-
duction of information, while retaining the
ability to produce novel words through the
generator. Second, we use coverage to
keep track of what has been summarized,
which discourages repetition. We apply
our model to the CNN / Daily Mail sum-
marization task, outperforming the current
abstractive state-of-the-art by at least 2
ROUGE points.

1 Introduction

Summarization is the task of condensing a piece of
text to a shorter version that contains the main in-
formation from the original. There are two broad
approaches to summarization: extractive and ab-
stractive. Extractive methods assemble summaries
exclusively from passages (usually whole sen-
tences) taken directly from the source text, while
abstractive methods may generate novel words
and phrases not featured in the source text – as
a human-written abstract usually does. The ex-
tractive approach is easier, because copying large

Original Text (truncated): lagos, nigeria (cnn) a day after winning nige-
ria’s presidency, muhammadu buhari told cnn’s christiane amanpour that
he plans to aggressively fight corruption that has long plagued nigeria
and go after the root of the nation’s unrest. buhari said he’ll “rapidly give
attention” to curbing violence in the northeast part of nigeria, where the ter-
rorist group boko haram operates. by cooperating with neighboring nations
chad, cameroon and niger, he said his administration is confident it will
be able to thwart criminals and others contributing to nigeria’s instability.
for the first time in nigeria’s history, the opposition defeated the ruling party
in democratic elections. buhari defeated incumbent goodluck jonathan by
about 2 million votes, according to nigeria’s independent national electoral
commission. the win comes after a long history of military rule, coups
and botched attempts at democracy in africa’s most populous nation.

Baseline Seq2Seq + Attention: UNK UNK says his administration is confi-
dent it will be able to destabilize nigeria’s economy. UNK says his admin-
istration is confident it will be able to thwart criminals and other nigerians.
he says the country has long nigeria and nigeria’s economy.

Pointer-Gen: muhammadu buhari says he plans to aggressively fight cor-
ruption in the northeast part of nigeria. he says he’ll “rapidly give at-
tention” to curbing violence in the northeast part of nigeria. he says his
administration is confident it will be able to thwart criminals.

Pointer-Gen + Coverage: muhammadu buhari says he plans to aggressively
fight corruption that has long plagued nigeria. he says his administration is
confident it will be able to thwart criminals. the win comes after a long his-
tory of military rule, coups and botched attempts at democracy in africa’s
most populous nation.

Figure 1: Comparison of output of 3 abstrac-
tive summarization models on a news article. The
baseline model makes factual errors, a nonsen-
sical sentence and struggles with OOV words
muhammadu buhari. The pointer-generator model
is accurate but repeats itself. Coverage eliminates
repetition. The final summary is composed from
several fragments.

chunks of text from the source document ensures
baseline levels of grammaticality and accuracy.
On the other hand, sophisticated abilities that are
crucial to high-quality summarization, such as
paraphrasing, generalization, or the incorporation
of real-world knowledge, are possible only in an
abstractive framework (see Figure 5).

Due to the difficulty of abstractive summariza-
tion, the great majority of past work has been ex-
tractive (Kupiec et al., 1995; Paice, 1990; Sag-
gion and Poibeau, 2013). However, the recent suc-
cess of sequence-to-sequence models (Sutskever

1073

https://doi.org/10.18653/v1/P17-1099

...

At
te

nt
io

n
Di

st
rib

ut
io

n

<START>

Vocabulary
Distribution

Context Vector

Germany

a zoo

Partial Summary

"beat"

Germany emerge victorious in 2-0 win against Argentina on Saturday ...

En
co

de
r

H
id

de
n

St
at

es

 Decoder
H

idden States

Source Text

Figure 2: Baseline sequence-to-sequence model with attention. The model may attend to relevant words
in the source text to generate novel words, e.g., to produce the novel word beat in the abstractive summary
Germany beat Argentina 2-0 the model may attend to the words victorious and win in the source text.

et al., 2014), in which recurrent neural networks
(RNNs) both read and freely generate text, has
made abstractive summarization viable (Chopra
et al., 2016; Nallapati et al., 2016; Rush et al.,
2015; Zeng et al., 2016). Though these systems
are promising, they exhibit undesirable behavior
such as inaccurately reproducing factual details,
an inability to deal with out-of-vocabulary (OOV)
words, and repeating themselves (see Figure 1).

In this paper we present an architecture that
addresses these three issues in the context of
multi-sentence summaries. While most recent ab-
stractive work has focused on headline genera-
tion tasks (reducing one or two sentences to a
single headline), we believe that longer-text sum-
marization is both more challenging (requiring
higher levels of abstraction while avoiding repe-
tition) and ultimately more useful. Therefore we
apply our model to the recently-introduced CNN/
Daily Mail dataset (Hermann et al., 2015; Nallap-
ati et al., 2016), which contains news articles (39
sentences on average) paired with multi-sentence
summaries, and show that we outperform the state-
of-the-art abstractive system by at least 2 ROUGE
points.

Our hybrid pointer-generator network facili-
tates copying words from the source text via point-
ing (Vinyals et al., 2015), which improves accu-
racy and handling of OOV words, while retaining
the ability to generate new words. The network,
which can be viewed as a balance between extrac-
tive and abstractive approaches, is similar to Gu
et al.’s (2016) CopyNet and Miao and Blunsom’s
(2016) Forced-Attention Sentence Compression,

that were applied to short-text summarization. We
propose a novel variant of the coverage vector (Tu
et al., 2016) from Neural Machine Translation,
which we use to track and control coverage of the
source document. We show that coverage is re-
markably effective for eliminating repetition.

2 Our Models

In this section we describe (1) our baseline
sequence-to-sequence model, (2) our pointer-
generator model, and (3) our coverage mechanism
that can be added to either of the first two models.
The code for our models is available online.1

2.1 Sequence-to-sequence attentional model

Our baseline model is similar to that of Nallapati
et al. (2016), and is depicted in Figure 2. The to-
kens of the article wi are fed one-by-one into the
encoder (a single-layer bidirectional LSTM), pro-
ducing a sequence of encoder hidden states hi. On
each step t, the decoder (a single-layer unidirec-
tional LSTM) receives the word embedding of the
previous word (while training, this is the previous
word of the reference summary; at test time it is
the previous word emitted by the decoder), and
has decoder state st . The attention distribution at

is calculated as in Bahdanau et al. (2015):

et
i = vT tanh(Whhi +Wsst +battn) (1)

at = softmax(et) (2)

where v, Wh, Ws and battn are learnable parame-
ters. The attention distribution can be viewed as

1www.github.com/abisee/pointer-generator

1074

Source Text

Germany emerge victorious in 2-0 win against Argentina on Saturday ...

...

<START>

Vocabulary Distribution

Context Vector

Germany

a zoo

beat

a zoo

Partial Summary

Final Distribution

"Argentina"

"2-0"

At
te

nt
io

n
Di

st
rib

ut
io

n

En
co

de
r

H
id

de
n

St
at

es

Decoder H
idden States

Figure 3: Pointer-generator model. For each decoder timestep a generation probability pgen ∈ [0,1] is
calculated, which weights the probability of generating words from the vocabulary, versus copying words
from the source text. The vocabulary distribution and the attention distribution are weighted and summed
to obtain the final distribution, from which we make our prediction. Note that out-of-vocabulary article
words such as 2-0 are included in the final distribution. Best viewed in color.

a probability distribution over the source words,
that tells the decoder where to look to produce the
next word. Next, the attention distribution is used
to produce a weighted sum of the encoder hidden
states, known as the context vector h∗t :

h∗t = ∑i at
ihi (3)

The context vector, which can be seen as a fixed-
size representation of what has been read from the
source for this step, is concatenated with the de-
coder state st and fed through two linear layers to
produce the vocabulary distribution Pvocab:

Pvocab = softmax(V ′(V [st ,h∗t]+b)+b′) (4)

where V , V ′, b and b′ are learnable parameters.
Pvocab is a probability distribution over all words
in the vocabulary, and provides us with our final
distribution from which to predict words w:

P(w) = Pvocab(w) (5)

During training, the loss for timestep t is the neg-
ative log likelihood of the target word w∗t for that
timestep:

losst =− logP(w∗t) (6)

and the overall loss for the whole sequence is:

loss =
1
T ∑T

t=0 losst (7)

2.2 Pointer-generator network
Our pointer-generator network is a hybrid between
our baseline and a pointer network (Vinyals et al.,
2015), as it allows both copying words via point-
ing, and generating words from a fixed vocabulary.
In the pointer-generator model (depicted in Figure
3) the attention distribution at and context vector
h∗t are calculated as in section 2.1. In addition, the
generation probability pgen ∈ [0,1] for timestep t is
calculated from the context vector h∗t , the decoder
state st and the decoder input xt :

pgen = σ(wT
h∗h
∗
t +wT

s st +wT
x xt +bptr) (8)

where vectors wh∗ , ws, wx and scalar bptr are learn-
able parameters and σ is the sigmoid function.
Next, pgen is used as a soft switch to choose be-
tween generating a word from the vocabulary by
sampling from Pvocab, or copying a word from the
input sequence by sampling from the attention dis-
tribution at . For each document let the extended
vocabulary denote the union of the vocabulary,
and all words appearing in the source document.
We obtain the following probability distribution
over the extended vocabulary:

P(w) = pgenPvocab(w)+(1− pgen)∑i:wi=w at
i (9)

Note that if w is an out-of-vocabulary (OOV)
word, then Pvocab(w) is zero; similarly if w does

1075

not appear in the source document, then ∑i:wi=w at
i

is zero. The ability to produce OOV words is
one of the primary advantages of pointer-generator
models; by contrast models such as our baseline
are restricted to their pre-set vocabulary.

The loss function is as described in equations
(6) and (7), but with respect to our modified prob-
ability distribution P(w) given in equation (9).

2.3 Coverage mechanism
Repetition is a common problem for sequence-
to-sequence models (Tu et al., 2016; Mi et al.,
2016; Sankaran et al., 2016; Suzuki and Nagata,
2016), and is especially pronounced when gener-
ating multi-sentence text (see Figure 1). We adapt
the coverage model of Tu et al. (2016) to solve the
problem. In our coverage model, we maintain a
coverage vector ct , which is the sum of attention
distributions over all previous decoder timesteps:

ct = ∑t−1
t ′=0 at ′ (10)

Intuitively, ct is a (unnormalized) distribution over
the source document words that represents the de-
gree of coverage that those words have received
from the attention mechanism so far. Note that c0

is a zero vector, because on the first timestep, none
of the source document has been covered.

The coverage vector is used as extra input to the
attention mechanism, changing equation (1) to:

et
i = vT tanh(Whhi +Wsst +wcct

i +battn) (11)

where wc is a learnable parameter vector of same
length as v. This ensures that the attention mecha-
nism’s current decision (choosing where to attend
next) is informed by a reminder of its previous
decisions (summarized in ct). This should make
it easier for the attention mechanism to avoid re-
peatedly attending to the same locations, and thus
avoid generating repetitive text.

We find it necessary (see section 5) to addition-
ally define a coverage loss to penalize repeatedly
attending to the same locations:

covlosst = ∑i min(at
i,c

t
i) (12)

Note that the coverage loss is bounded; in particu-
lar covlosst ≤∑i at

i = 1. Equation (12) differs from
the coverage loss used in Machine Translation. In
MT, we assume that there should be a roughly one-
to-one translation ratio; accordingly the final cov-
erage vector is penalized if it is more or less than 1.

Our loss function is more flexible: because sum-
marization should not require uniform coverage,
we only penalize the overlap between each atten-
tion distribution and the coverage so far – prevent-
ing repeated attention. Finally, the coverage loss,
reweighted by some hyperparameter λ , is added to
the primary loss function to yield a new composite
loss function:

losst =− logP(w∗t)+λ ∑i min(at
i,c

t
i) (13)

3 Related Work

Neural abstractive summarization. Rush et al.
(2015) were the first to apply modern neural net-
works to abstractive text summarization, achiev-
ing state-of-the-art performance on DUC-2004
and Gigaword, two sentence-level summarization
datasets. Their approach, which is centered on the
attention mechanism, has been augmented with re-
current decoders (Chopra et al., 2016), Abstract
Meaning Representations (Takase et al., 2016), hi-
erarchical networks (Nallapati et al., 2016), vari-
ational autoencoders (Miao and Blunsom, 2016),
and direct optimization of the performance metric
(Ranzato et al., 2016), further improving perfor-
mance on those datasets.

However, large-scale datasets for summariza-
tion of longer text are rare. Nallapati et al. (2016)
adapted the DeepMind question-answering dataset
(Hermann et al., 2015) for summarization, result-
ing in the CNN/Daily Mail dataset, and provided
the first abstractive baselines. The same authors
then published a neural extractive approach (Nal-
lapati et al., 2017), which uses hierarchical RNNs
to select sentences, and found that it significantly
outperformed their abstractive result with respect
to the ROUGE metric. To our knowledge, these
are the only two published results on the full data-
set.

Prior to modern neural methods, abstractive
summarization received less attention than extrac-
tive summarization, but Jing (2000) explored cut-
ting unimportant parts of sentences to create sum-
maries, and Cheung and Penn (2014) explore sen-
tence fusion using dependency trees.

Pointer-generator networks. The pointer net-
work (Vinyals et al., 2015) is a sequence-to-
sequence model that uses the soft attention dis-
tribution of Bahdanau et al. (2015) to produce
an output sequence consisting of elements from

1076

the input sequence. The pointer network has been
used to create hybrid approaches for NMT (Gul-
cehre et al., 2016), language modeling (Merity
et al., 2016), and summarization (Gu et al., 2016;
Gulcehre et al., 2016; Miao and Blunsom, 2016;
Nallapati et al., 2016; Zeng et al., 2016).

Our approach is close to the Forced-Attention
Sentence Compression model of Miao and Blun-
som (2016) and the CopyNet model of Gu et al.
(2016), with some small differences: (i) We cal-
culate an explicit switch probability pgen, whereas
Gu et al. induce competition through a shared soft-
max function. (ii) We recycle the attention distri-
bution to serve as the copy distribution, but Gu et
al. use two separate distributions. (iii) When a
word appears multiple times in the source text, we
sum probability mass from all corresponding parts
of the attention distribution, whereas Miao and
Blunsom do not. Our reasoning is that (i) calcu-
lating an explicit pgen usefully enables us to raise
or lower the probability of all generated words or
all copy words at once, rather than individually,
(ii) the two distributions serve such similar pur-
poses that we find our simpler approach suffices,
and (iii) we observe that the pointer mechanism
often copies a word while attending to multiple oc-
currences of it in the source text.

Our approach is considerably different from
that of Gulcehre et al. (2016) and Nallapati et al.
(2016). Those works train their pointer compo-
nents to activate only for out-of-vocabulary words
or named entities (whereas we allow our model to
freely learn when to use the pointer), and they do
not mix the probabilities from the copy distribu-
tion and the vocabulary distribution. We believe
the mixture approach described here is better for
abstractive summarization – in section 6 we show
that the copy mechanism is vital for accurately
reproducing rare but in-vocabulary words, and in
section 7.2 we observe that the mixture model en-
ables the language model and copy mechanism to
work together to perform abstractive copying.

Coverage. Originating from Statistical Ma-
chine Translation (Koehn, 2009), coverage was
adapted for NMT by Tu et al. (2016) and Mi et al.
(2016), who both use a GRU to update the cov-
erage vector each step. We find that a simpler
approach – summing the attention distributions to
obtain the coverage vector – suffices. In this re-
spect our approach is similar to Xu et al. (2015),
who apply a coverage-like method to image cap-

tioning, and Chen et al. (2016), who also incorpo-
rate a coverage mechanism (which they call ‘dis-
traction’) as described in equation (11) into neural
summarization of longer text.

Temporal attention is a related technique that
has been applied to NMT (Sankaran et al., 2016)
and summarization (Nallapati et al., 2016). In
this approach, each attention distribution is di-
vided by the sum of the previous, which effec-
tively dampens repeated attention. We tried this
method but found it too destructive, distorting the
signal from the attention mechanism and reducing
performance. We hypothesize that an early inter-
vention method such as coverage is preferable to
a post hoc method such as temporal attention – it
is better to inform the attention mechanism to help
it make better decisions, than to override its de-
cisions altogether. This theory is supported by the
large boost that coverage gives our ROUGE scores
(see Table 1), compared to the smaller boost given
by temporal attention for the same task (Nallapati
et al., 2016).

4 Dataset

We use the CNN/Daily Mail dataset (Hermann
et al., 2015; Nallapati et al., 2016), which con-
tains online news articles (781 tokens on average)
paired with multi-sentence summaries (3.75 sen-
tences or 56 tokens on average). We used scripts
supplied by Nallapati et al. (2016) to obtain the
same version of the the data, which has 287,226
training pairs, 13,368 validation pairs and 11,490
test pairs. Both the dataset’s published results
(Nallapati et al., 2016, 2017) use the anonymized
version of the data, which has been pre-processed
to replace each named entity, e.g., The United Na-
tions, with its own unique identifier for the exam-
ple pair, e.g., @entity5. By contrast, we operate
directly on the original text (or non-anonymized
version of the data),2 which we believe is the fa-
vorable problem to solve because it requires no
pre-processing.

5 Experiments

For all experiments, our model has 256-
dimensional hidden states and 128-dimensional
word embeddings. For the pointer-generator mod-
els, we use a vocabulary of 50k words for both
source and target – note that due to the pointer net-
work’s ability to handle OOV words, we can use

2at www.github.com/abisee/pointer-generator

1077

ROUGE METEOR
1 2 L exact match + stem/syn/para

abstractive model (Nallapati et al., 2016)* 35.46 13.30 32.65 - -
seq-to-seq + attn baseline (150k vocab) 30.49 11.17 28.08 11.65 12.86
seq-to-seq + attn baseline (50k vocab) 31.33 11.81 28.83 12.03 13.20
pointer-generator 36.44 15.66 33.42 15.35 16.65
pointer-generator + coverage 39.53 17.28 36.38 17.32 18.72
lead-3 baseline (ours) 40.34 17.70 36.57 20.48 22.21
lead-3 baseline (Nallapati et al., 2017)* 39.2 15.7 35.5 - -
extractive model (Nallapati et al., 2017)* 39.6 16.2 35.3 - -

Table 1: ROUGE F1 and METEOR scores on the test set. Models and baselines in the top half are
abstractive, while those in the bottom half are extractive. Those marked with * were trained and evaluated
on the anonymized dataset, and so are not strictly comparable to our results on the original text. All our
ROUGE scores have a 95% confidence interval of at most ±0.25 as reported by the official ROUGE
script. The METEOR improvement from the 50k baseline to the pointer-generator model, and from the
pointer-generator to the pointer-generator+coverage model, were both found to be statistically significant
using an approximate randomization test with p< 0.01.

a smaller vocabulary size than Nallapati et al.’s
(2016) 150k source and 60k target vocabularies.
For the baseline model, we also try a larger vocab-
ulary size of 150k.

Note that the pointer and the coverage mecha-
nism introduce very few additional parameters to
the network: for the models with vocabulary size
50k, the baseline model has 21,499,600 parame-
ters, the pointer-generator adds 1153 extra param-
eters (wh∗ , ws, wx and bptr in equation 8), and cov-
erage adds 512 extra parameters (wc in equation
11).

Unlike Nallapati et al. (2016), we do not pre-
train the word embeddings – they are learned
from scratch during training. We train using Ada-
grad (Duchi et al., 2011) with learning rate 0.15
and an initial accumulator value of 0.1. (This
was found to work best of Stochastic Gradient
Descent, Adadelta, Momentum, Adam and RM-
SProp). We use gradient clipping with a maximum
gradient norm of 2, but do not use any form of reg-
ularization. We use loss on the validation set to
implement early stopping.

During training and at test time we truncate the
article to 400 tokens and limit the length of the
summary to 100 tokens for training and 120 to-
kens at test time.3 This is done to expedite train-
ing and testing, but we also found that truncating
the article can raise the performance of the model

3The upper limit of 120 is mostly invisible: the beam
search algorithm is self-stopping and almost never reaches
the 120th step.

(see section 7.1 for more details). For training,
we found it efficient to start with highly-truncated
sequences, then raise the maximum length once
converged. We train on a single Tesla K40m GPU
with a batch size of 16. At test time our summaries
are produced using beam search with beam size 4.

We trained both our baseline models for about
600,000 iterations (33 epochs) – this is similar
to the 35 epochs required by Nallapati et al.’s
(2016) best model. Training took 4 days and 14
hours for the 50k vocabulary model, and 8 days 21
hours for the 150k vocabulary model. We found
the pointer-generator model quicker to train, re-
quiring less than 230,000 training iterations (12.8
epochs); a total of 3 days and 4 hours. In par-
ticular, the pointer-generator model makes much
quicker progress in the early phases of training.
To obtain our final coverage model, we added the
coverage mechanism with coverage loss weighted
to λ = 1 (as described in equation 13), and trained
for a further 3000 iterations (about 2 hours). In
this time the coverage loss converged to about 0.2,
down from an initial value of about 0.5. We also
tried a more aggressive value of λ = 2; this re-
duced coverage loss but increased the primary loss
function, thus we did not use it.

We tried training the coverage model without
the loss function, hoping that the attention mech-
anism may learn by itself not to attend repeatedly
to the same locations, but we found this to be inef-
fective, with no discernible reduction in repetition.
We also tried training with coverage from the first

1078

iteration rather than as a separate training phase,
but found that in the early phase of training, the
coverage objective interfered with the main objec-
tive, reducing overall performance.

6 Results

6.1 Preliminaries

Our results are given in Table 1. We evalu-
ate our models with the standard ROUGE metric
(Lin, 2004b), reporting the F1 scores for ROUGE-
1, ROUGE-2 and ROUGE-L (which respectively
measure the word-overlap, bigram-overlap, and
longest common sequence between the reference
summary and the summary to be evaluated). We
obtain our ROUGE scores using the pyrouge

package.4 We also evaluate with the METEOR
metric (Denkowski and Lavie, 2014), both in ex-
act match mode (rewarding only exact matches
between words) and full mode (which addition-
ally rewards matching stems, synonyms and para-
phrases).5

In addition to our own models, we also report
the lead-3 baseline (which uses the first three sen-
tences of the article as a summary), and compare
to the only existing abstractive (Nallapati et al.,
2016) and extractive (Nallapati et al., 2017) mod-
els on the full dataset. The output of our models is
available online.6

Given that we generate plain-text summaries but
Nallapati et al. (2016; 2017) generate anonymized
summaries (see Section 4), our ROUGE scores
are not strictly comparable. There is evidence
to suggest that the original-text dataset may re-
sult in higher ROUGE scores in general than the
anonymized dataset – the lead-3 baseline is higher
on the former than the latter. One possible expla-
nation is that multi-word named entities lead to
a higher rate of n-gram overlap. Unfortunately,
ROUGE is the only available means of compar-
ison with Nallapati et al.’s work. Nevertheless,
given that the disparity in the lead-3 scores is
(+1.1 ROUGE-1, +2.0 ROUGE-2, +1.1 ROUGE-
L) points respectively, and our best model scores
exceed Nallapati et al. (2016) by (+4.07 ROUGE-
1, +3.98 ROUGE-2, +3.73 ROUGE-L) points, we
may estimate that we outperform the only previous
abstractive system by at least 2 ROUGE points all-
round.

4pypi.python.org/pypi/pyrouge/0.1.3
5www.cs.cmu.edu/~alavie/METEOR
6www.github.com/abisee/pointer-generator

1-grams
2-grams

3-grams
4-grams

sentences
0

10

20

30

%
th

at
ar

e
du

pl
ic

at
es

pointer-generator, no coverage
pointer-generator + coverage
reference summaries

Figure 4: Coverage eliminates undesirable repe-
tition. Summaries from our non-coverage model
contain many duplicated n-grams while our cover-
age model produces a similar number as the ref-
erence summaries.

6.2 Observations

We find that both our baseline models perform
poorly with respect to ROUGE and METEOR, and
in fact the larger vocabulary size (150k) does not
seem to help. Even the better-performing baseline
(with 50k vocabulary) produces summaries with
several common problems. Factual details are fre-
quently reproduced incorrectly, often replacing an
uncommon (but in-vocabulary) word with a more-
common alternative. For example in Figure 1,
the baseline model appears to struggle with the
rare word thwart, producing destabilize instead,
which leads to the fabricated phrase destabilize
nigeria’s economy. Even more catastrophically,
the summaries sometimes devolve into repetitive
nonsense, such as the third sentence produced by
the baseline model in Figure 1. In addition, the
baseline model can’t reproduce out-of-vocabulary
words (such as muhammadu buhari in Figure 1).
Further examples of all these problems are pro-
vided in the supplementary material.

Our pointer-generator model achieves much
better ROUGE and METEOR scores than the
baseline, despite many fewer training epochs. The
difference in the summaries is also marked: out-
of-vocabulary words are handled easily, factual
details are almost always copied correctly, and
there are no fabrications (see Figure 1). However,
repetition is still very common.

Our pointer-generator model with coverage im-
proves the ROUGE and METEOR scores further,
convincingly surpassing the best abstractive model

1079

Article: smugglers lure arab and african migrants by offer-
ing discounts to get onto overcrowded ships if people bring
more potential passengers, a cnn investigation has revealed.
(...)
Summary: cnn investigation uncovers the business inside
a human smuggling ring.

Article: eyewitness video showing white north charleston
police officer michael slager shooting to death an unarmed
black man has exposed discrepancies in the reports of the
first officers on the scene. (...)
Summary: more questions than answers emerge in con-
troversial s.c. police shooting.

Figure 5: Examples of highly abstractive reference
summaries (bold denotes novel words).

of Nallapati et al. (2016) by several ROUGE
points. Despite the brevity of the coverage train-
ing phase (about 1% of the total training time),
the repetition problem is almost completely elimi-
nated, which can be seen both qualitatively (Figure
1) and quantitatively (Figure 4). However, our best
model does not quite surpass the ROUGE scores
of the lead-3 baseline, nor the current best extrac-
tive model (Nallapati et al., 2017). We discuss this
issue in section 7.1.

7 Discussion

7.1 Comparison with extractive systems

It is clear from Table 1 that extractive systems tend
to achieve higher ROUGE scores than abstractive,
and that the extractive lead-3 baseline is extremely
strong (even the best extractive system beats it by
only a small margin). We offer two possible ex-
planations for these observations.

Firstly, news articles tend to be structured with
the most important information at the start; this
partially explains the strength of the lead-3 base-
line. Indeed, we found that using only the first 400
tokens (about 20 sentences) of the article yielded
significantly higher ROUGE scores than using the
first 800 tokens.

Secondly, the nature of the task and the ROUGE
metric make extractive approaches and the lead-
3 baseline difficult to beat. The choice of con-
tent for the reference summaries is quite subjective
– sometimes the sentences form a self-contained
summary; other times they simply showcase a few
interesting details from the article. Given that the
articles contain 39 sentences on average, there are
many equally valid ways to choose 3 or 4 high-
lights in this style. Abstraction introduces even
more options (choice of phrasing), further decreas-

ing the likelihood of matching the reference sum-
mary. For example, smugglers profit from des-
perate migrants is a valid alternative abstractive
summary for the first example in Figure 5, but
it scores 0 ROUGE with respect to the reference
summary. This inflexibility of ROUGE is exac-
erbated by only having one reference summary,
which has been shown to lower ROUGE’s relia-
bility compared to multiple reference summaries
(Lin, 2004a).

Due to the subjectivity of the task and thus
the diversity of valid summaries, it seems that
ROUGE rewards safe strategies such as select-
ing the first-appearing content, or preserving orig-
inal phrasing. While the reference summaries do
sometimes deviate from these techniques, those
deviations are unpredictable enough that the safer
strategy obtains higher ROUGE scores on average.
This may explain why extractive systems tend to
obtain higher ROUGE scores than abstractive, and
even extractive systems do not significantly ex-
ceed the lead-3 baseline.

To explore this issue further, we evaluated our
systems with the METEOR metric, which rewards
not only exact word matches, but also matching
stems, synonyms and paraphrases (from a pre-
defined list). We observe that all our models re-
ceive over 1 METEOR point boost by the inclu-
sion of stem, synonym and paraphrase matching,
indicating that they may be performing some ab-
straction. However, we again observe that the
lead-3 baseline is not surpassed by our models.
It may be that news article style makes the lead-
3 baseline very strong with respect to any metric.
We believe that investigating this issue further is
an important direction for future work.

7.2 How abstractive is our model?

We have shown that our pointer mechanism makes
our abstractive system more reliable, copying fac-
tual details correctly more often. But does the ease
of copying make our system any less abstractive?

Figure 6 shows that our final model’s sum-
maries contain a much lower rate of novel n-grams
(i.e., those that don’t appear in the article) than the
reference summaries, indicating a lower degree of
abstraction. Note that the baseline model produces
novel n-grams more frequently – however, this
statistic includes all the incorrectly copied words,
UNK tokens and fabrications alongside the good
instances of abstraction.

1080

1-grams
2-grams

3-grams
4-grams

sentences
0

20
40
60
80

100
%

th
at

ar
e

no
ve

l

pointer-generator + coverage
sequence-to-sequence + attention baseline
reference summaries

Figure 6: Although our best model is abstractive,
it does not produce novel n-grams (i.e., n-grams
that don’t appear in the source text) as often as
the reference summaries. The baseline model
produces more novel n-grams, but many of these
are erroneous (see section 7.2).

Article: andy murray (...) is into the semi-finals of the mi-
ami open , but not before getting a scare from 21 year-old
austrian dominic thiem, who pushed him to 4-4 in the sec-
ond set before going down 3-6 6-4, 6-1 in an hour and three
quarters. (...)
Summary: andy murray defeated dominic thiem 3-6 6-4,
6-1 in an hour and three quarters.

Article: (...) wayne rooney smashes home during manch-
ester united ’s 3-1 win over aston villa on saturday. (...)
Summary: manchester united beat aston villa 3-1 at old
trafford on saturday.

Figure 7: Examples of abstractive summaries pro-
duced by our model (bold denotes novel words).

In particular, Figure 6 shows that our final
model copies whole article sentences 35% of the
time; by comparison the reference summaries do
so only 1.3% of the time. This is a main area for
improvement, as we would like our model to move
beyond simple sentence extraction. However, we
observe that the other 65% encompasses a range of
abstractive techniques. Article sentences are trun-
cated to form grammatically-correct shorter ver-
sions, and new sentences are composed by stitch-
ing together fragments. Unnecessary interjections,
clauses and parenthesized phrases are sometimes
omitted from copied passages. Some of these abil-
ities are demonstrated in Figure 1, and the supple-
mentary material contains more examples.

Figure 7 shows two examples of more impres-
sive abstraction – both with similar structure. The
dataset contains many sports stories whose sum-
maries follow the X beat Y 〈score〉 on 〈day〉 tem-

plate, which may explain why our model is most
confidently abstractive on these examples. In gen-
eral however, our model does not routinely pro-
duce summaries like those in Figure 7, and is not
close to producing summaries like in Figure 5.

The value of the generation probability pgen
also gives a measure of the abstractiveness of our
model. During training, pgen starts with a value
of about 0.30 then increases, converging to about
0.53 by the end of training. This indicates that
the model first learns to mostly copy, then learns
to generate about half the time. However at test
time, pgen is heavily skewed towards copying, with
a mean value of 0.17. The disparity is likely
due to the fact that during training, the model re-
ceives word-by-word supervision in the form of
the reference summary, but at test time it does
not. Nonetheless, the generator module is use-
ful even when the model is copying. We find
that pgen is highest at times of uncertainty such
as the beginning of sentences, the join between
stitched-together fragments, and when producing
periods that truncate a copied sentence. Our mix-
ture model allows the network to copy while si-
multaneously consulting the language model – en-
abling operations like stitching and truncation to
be performed with grammaticality. In any case,
encouraging the pointer-generator model to write
more abstractively, while retaining the accuracy
advantages of the pointer module, is an exciting
direction for future work.

8 Conclusion

In this work we presented a hybrid pointer-
generator architecture with coverage, and showed
that it reduces inaccuracies and repetition. We ap-
plied our model to a new and challenging long-
text dataset, and significantly outperformed the
abstractive state-of-the-art result. Our model ex-
hibits many abstractive abilities, but attaining
higher levels of abstraction remains an open re-
search question.

9 Acknowledgment

We thank the ACL reviewers for their helpful com-
ments. This work was begun while the first author
was an intern at Google Brain and continued at
Stanford. Stanford University gratefully acknowl-
edges the support of the DARPA DEFT Program
AFRL contract no. FA8750-13-2-0040. Any opin-
ions in this material are those of the authors alone.

1081

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei, and
Hui Jiang. 2016. Distraction-based neural networks
for modeling documents. In International Joint
Conference on Artificial Intelligence.

Jackie Chi Kit Cheung and Gerald Penn. 2014. Unsu-
pervised sentence enhancement for automatic sum-
marization. In Empirical Methods in Natural Lan-
guage Processing.

Sumit Chopra, Michael Auli, and Alexander M Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In North Amer-
ican Chapter of the Association for Computational
Linguistics.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In EACL 2014 Workshop
on Statistical Machine Translation.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12:2121–2159.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Association for
Computational Linguistics.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Association for Computa-
tional Linguistics.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Neural Informa-
tion Processing Systems.

Hongyan Jing. 2000. Sentence reduction for automatic
text summarization. In Applied natural language
processing.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

Julian Kupiec, Jan Pedersen, and Francine Chen. 1995.
A trainable document summarizer. In International
ACM SIGIR conference on Research and develop-
ment in information retrieval.

Chin-Yew Lin. 2004a. Looking for a few good
metrics: Automatic summarization evaluation-how
many samples are enough? In NACSIS/NII Test
Collection for Information Retrieval (NTCIR) Work-
shop.

Chin-Yew Lin. 2004b. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: ACL workshop.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture
models. In NIPS 2016 Workshop on Multi-class
and Multi-label Learning in Extremely Large Label
Spaces.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe
Ittycheriah. 2016. Coverage embedding models for
neural machine translation. In Empirical Methods in
Natural Language Processing.

Yishu Miao and Phil Blunsom. 2016. Language as a
latent variable: Discrete generative models for sen-
tence compression. In Empirical Methods in Natu-
ral Language Processing.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
SummaRuNNer: A recurrent neural network based
sequence model for extractive summarization of
documents. In Association for the Advancement of
Artificial Intelligence.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
Çaglar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Computational Natural Lan-
guage Learning.

Chris D Paice. 1990. Constructing literature abstracts
by computer: techniques and prospects. Information
Processing & Management 26(1):171–186.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In International
Conference on Learning Representations.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Empirical Methods in Nat-
ural Language Processing.

Horacio Saggion and Thierry Poibeau. 2013. Auto-
matic text summarization: Past, present and future.
In Multi-source, Multilingual Information Extrac-
tion and Summarization, Springer, pages 3–21.

Baskaran Sankaran, Haitao Mi, Yaser Al-Onaizan, and
Abe Ittycheriah. 2016. Temporal attention model
for neural machine translation. arXiv preprint
arXiv:1608.02927 .

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Neural Information Processing Systems.

Jun Suzuki and Masaaki Nagata. 2016. RNN-based
encoder-decoder approach with word frequency es-
timation. arXiv preprint arXiv:1701.00138 .

1082

Sho Takase, Jun Suzuki, Naoaki Okazaki, Tsutomu Hi-
rao, and Masaaki Nagata. 2016. Neural headline
generation on abstract meaning representation. In
Empirical Methods in Natural Language Process-
ing.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Association for Computa-
tional Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Neural Information Pro-
cessing Systems.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual
attention. In International Conference on Machine
Learning.

Wenyuan Zeng, Wenjie Luo, Sanja Fidler, and Raquel
Urtasun. 2016. Efficient summarization with
read-again and copy mechanism. arXiv preprint
arXiv:1611.03382 .

1083

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1084–1094
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1100

Supervised Learning of Automatic Pyramid
for Optimization-Based Multi-Document Summarization

Maxime Peyrard and Judith Eckle-Kohler
Research Training Group AIPHES and UKP Lab

Computer Science Department, Technische Universität Darmstadt
www.aiphes.tu-darmstadt.de, www.ukp.tu-darmstadt.de

Abstract

We present a new supervised framework
that learns to estimate automatic Pyramid
scores and uses them for optimization-
based extractive multi-document summa-
rization. For learning automatic Pyramid
scores, we developed a method for au-
tomatic training data generation which is
based on a genetic algorithm using auto-
matic Pyramid as the fitness function. Our
experimental evaluation shows that our
new framework significantly outperforms
strong baselines regarding automatic Pyra-
mid, and that there is much room for im-
provement in comparison with the upper-
bound for automatic Pyramid.

1 Introduction

We consider extractive text summarization, the
task of condensing a textual source, e.g., a set of
source documents in multi-document summariza-
tion (MDS), into a short summary text. The qual-
ity of an automatic system summary is tradition-
ally evaluated by comparing it against one or more
reference summaries written by humans. This
comparison is performed by means of an evalua-
tion metric measuring indicators of summary qual-
ity and combining them into an aggregated score.

Many state-of-the-art summarization systems
cast extractive summarization as an optimization
problem and maximize an objective function in or-
der to create good, i.e., high-scoring summaries.
To this end, optimization-based systems com-
monly use an objective function which encodes
exactly those quality indicators which are mea-
sured by the particular evaluation metric being
used. Some systems even employ an approxima-
tion of the evaluation metric as objective function.

Consider as an example the ROUGE metric
which has become a de-facto standard for sum-
mary evaluation (Lin, 2004). ROUGE computes
the n-gram overlap between a system summary
and a pool of reference summaries. There are sev-
eral previous approaches which have used an ap-
proximation of ROUGE as the optimization objec-
tive (e.g., Sipos et al. (2012); Peyrard and Eckle-
Kohler (2016a)).

However, ROUGE has been widely criticized
for being too simplistic and not suitable for captur-
ing important quality aspects we are interested in.
In particular, ROUGE does not capture sentences
which are semantically equivalent but expressed
with different words (Nenkova et al., 2007).

Ideally, we would like to evaluate our sum-
maries based on human judgments. A well-known
example of such a human evaluation method is the
so-called Pyramid method (Nenkova et al., 2007):
it evaluates the particular quality aspect of content
selection and is based on a manual comparison of
Summary Content Units (SCUs) in reference sum-
maries against SCUs in system summaries. While
the resulting Pyramid score is much more mean-
ingful and informative than ROUGE, it is very ex-
pensive to obtain, and – worse – not reproducible.

These issues have been addressed by a line of
research aimed at automating the Pyramid evalua-
tion (Harnly et al., 2005; Passonneau et al., 2013).
Recently, Yang et al. (2016) developed a freely
available off-the-shelf system for automatic Pyra-
mid scoring called PEAK, which uses open Infor-
mation Extraction (open IE) propositions as SCUs
and relies on proposition comparison. Automatic
Pyramid (AP) scores are reproducible, and unlike
ROUGE, they are based on semantically motivated
content units (SCUs) rather than word n-grams.
Moreover, they correlate better with human judg-
ments than ROUGE (Yang et al., 2016).

Given these recent advances in the automatic

1084

https://doi.org/10.18653/v1/P17-1100

evaluation of summaries regarding content selec-
tion, we believe that research in optimization-
based summarization should move away from
ROUGE towards AP as a more meaningful eval-
uation metric to approximate and to optimize.

In our work, we are the first to explore this
new direction and to systematically investigate the
use of AP in optimization-based extractive sum-
marization. We make the following contributions:

• We compute an upper-bound for AP with a
Genetic Algorithm (GA), and compare it to
the ROUGE upper-bound.

• We develop a new extractive MDS system
specifically optimizing for an approximation
of AP. Our system uses a supervised learning
setup to learn an approximation of AP from
automatically generated training data. We
constrain the learned approximation of AP to
be linear so that we can extract summaries
efficiently via Integer Linear Programming
(ILP). Our experimental evaluation shows
that our approach significantly outperforms
strong baselines on the AP metric.

The code both for the new upper-bound and for
our ILP is available at github.com/UKPLab/
acl2017-optimize_pyramid.

2 Background

In this section, we summarize the Pyramid method
and the PEAK system, the automated version of
Pyramid we consider in this work.

Pyramid The Pyramid method (Nenkova et al.,
2007) is a manual evaluation method which deter-
mines to what extent a system summary covers the
content expressed in a set of reference summaries.
The comparison of system summary content to
reference summary content is performed on the
basis of SCUs which correspond to semantically
motivated, subsentential units, such as phrases or
clauses.

The Pyramid method consists of two steps: the
creation of a Pyramid set from reference sum-
maries, and second, Pyramid scoring of system
summaries based on the Pyramid set. In the first
step, humans annotate phrasal content units in the
reference summaries and group them into clusters
of semantically equivalent phrases. The resulting
clusters are called SCUs and the annotators as-
sign an SCU label to each cluster, which is a sen-
tence describing the cluster content in their own

words. The final set of SCUs forms the Pyramid
set. Each SCU has a weight corresponding to the
number of reference summaries in which the SCU
appears. Since each SCU must not appear more
than once in each reference summary, the maxi-
mal weight of an SCU is the total number of refer-
ence summaries. In the second step, humans anno-
tate phrasal content units in a system summary and
align them to the corresponding SCUs in the Pyra-
mid set. The Pyramid score of a system summary
is then calculated as the sum of the SCU weights
for all Pyramid set SCUs being aligned to anno-
tated system summary phrases.

PEAK The AP system PEAK by Yang et al.
(2016) uses clauses as the content expressing units
and represents them as propositions in the open IE
paradigm. An open IE proposition is a triple of
subject, predicate and object phrases. PEAK uses
the state-of-the-art system clausIE (Del Corro and
Gemulla, 2013) for proposition extraction.

While PEAK includes the automatic creation of
Pyramid sets from reference summaries, as well as
automatic Pyramid scoring of system summaries,
in this work, we use PEAK for automatic scoring
only. As for the Pyramid sets, we can assume that
these have already been created, either via PEAK
or by humans (e.g., using the TAC 2009 data1).

Since automatic scoring with PEAK requires
that the Pyramid sets consist of representative
open IE propositions which constitute the auto-
mated counterparts of the SCUs, we first need to
represent the manually constructed SCUs as open
IE propositions, too. To this end, we use clausIE
to extract an open IE proposition from each SCU
label – a sentence describing the cluster content.
As a result, each pyramid set is represented as a
list of propositions {pj} with a weight taken from
the underlying SCU.

For scoring, PEAK processes a system sum-
mary with clausIE, converting it from a list of
sentences to a list of propositions {si}. A bi-
partite graph G is constructed, where the two
sets of nodes are the summary propositions {si}
and the pyramid propositions {pj}. An edge is
drawn between si and pj if the similarity is above
a given threshold. PEAK computes the similar-
ity with the ADW system (Align, Disambiguate
and Walk), a system for computing text similar-
ity based on WordNet, which reaches state-of-the-

1http://tac.nist.gov/2009/
Summarization

1085

art performance but is slow (Pilehvar et al., 2013).
Since each system summary unit can be aligned
to at most one SCU, the alignment of the sum-
mary propositions {si} and the pyramid propo-
sitions {pj} is equivalent to finding a maximum
weight matching, which PEAK solves using the
Munkres-Kuhn bipartite graph algorithm. From
the matched pyramid propositions {pj} the final
pyramid score is computed.

3 Approach

3.1 Upper-bound for Automatic Pyramid
We start by computing upper-bound summaries
according to AP in order to gain a better under-
standing of the metric.

Notations Let D = {si} be a document collec-
tion considered as a set of sentences. A summary
S is simply a subset of D. We use ppyr to de-
note the set of propositions in the Pyramid sets ex-
tracted from the SCU labels using clausIE.

The upper-bound is the set of sentences S∗ with
the best AP score.

Method The task is to extract the set of sen-
tences which contains the propositions matching
most of the highest-weighted SCUs, thus resulting
in the best matching of propositions, i.e., the high-
est AP score possible. Formally, we have to solve
the following optimization problem:

S∗ = argmax
S

AutoPyr(S) (1)

Unfortunately, it cannot be solved directly via
ILP because of the Munkres-Kuhn bipartite graph
algorithm within AP. While Munkres-Kuhn is an
ILP, we solve a different problem. In our problem,
Munkres-Kuhn would act as constraint because we
are looking for the best matching among all valid
matchings. Munkres-Kuhn only yields the valid
matching for one particular set of sentences. One
global ILP can be written down by enumerating
all possible matchings in the constraints but it will
have a completely unrealistic runtime.

Instead, we have to rely on search-based algo-
rithms and compute summaries close to the upper-
bound. We search for such an approximate so-
lution by employing a meta-heuristic solver in-
troduced recently for extractive MDS by Peyrard
and Eckle-Kohler (2016a). Specifically, we use
the tool published with their paper.2 Their meta-

2https://github.com/UKPLab/
coling2016-genetic-swarm-MDS

heuristic solver implements a Genetic Algorithm
(GA) to create and iteratively optimize summaries
over time.

In this implementation, the individuals of the
population are the candidate solutions which are
valid extractive summaries. Valid means that the
summary meets the length constraint. Each sum-
mary is represented by a binary vector indicating
for each sentence in the source document whether
it is included in the summary or not. The size
of the population is a hyper-parameter that we set
to 100. Two evolutionary operators are applied:
the mutation and the reproduction. The mutation
happens to several randomly chosen summaries
by randomly removing one of its sentences and
adding a new one that does not violate the length
constraint. The reproduction is performed by ran-
domly extracting a valid summary from the union
of sentences of randomly selected parent sum-
maries. Both operators are controlled by hyper-
parameters which we set to their default values.

In our scenario, the fitness function is the AP
metric, which takes a summary S as input and
outputs its AP score. S is converted into a list
of propositions pS by looking-up the propositions
of each sentence in S from a pre-computed hash-
map. For all sentences in the document collection
D, the hash-map stores the corresponding propo-
sitions. Then the Munkres-Kuhn algorithm is ap-
plied to pS and ppyr in order to find matching
propositions, and finally the scores of their corre-
sponding SCUs are used to evaluate the fitness of
the summary.

The runtime might become an issue, because
the similarity computation between propositions
via ADW is slow. However, all the necessary in-
formation is present in the similarity matrix A de-
fined by:

Aij = ADW (pDi , p
pyr
j) (2)

Here Aij is the semantic similarity between the
proposition pDi from the source document i and
the proposition pPj from the Pyramid set j. A has
dimensions m × n if m is the number of proposi-
tions in the document collection and n the number
of propositions in the Pyramid set. We keep the
runtime low by pre-computing the similarity ma-
trix A.

With a population of 100 summaries in the GA,
the algorithm converges in less than a minute to
high scoring summaries, which we can expect to
be close to the real upper-bound.

1086

3.2 Supervised Setup to Learn an
Approximation of AP

We denote the true AP scoring function by π∗.
π∗ scores summaries by matching the summary
propositions to the Pyramid propositions in Ppyr
as described before. In this work, we aim to learn
a function π, which approximates π∗ without hav-
ing access to Ppyr, but only to the document col-
lection D.

Formally, it means that over all document col-
lections D and all summaries S, we look for π
which minimizes the following loss:

L(π) =
∑

D∈D

∑

S∈S
‖π(D,S)− π∗(Ppyr, S)‖2 (3)

This states that the learned π minimizes the
squared distance from π∗ over the available train-
ing data.

Model Note that we simply denote π(D,S) by
π(S) as it is not ambiguous which document col-
lection is used when S is a summary of D.

In order to be able to use an exact and efficient
solver like ILP, we constrain π to be a linear func-
tion. Therefore, we look for π of the following
form:

π(S) =
∑

s∈S
fθ(s)−

∑

i>j

gγ(si ∩ sj) (4)

Two functions are jointly learned: fθ is a function
scoring individual sentences, and gγ is a function
scoring the intersection of sentences. θ ∪ γ is the
set of learned paramaters.

We can interpret this learning scenario as jointly
learning the sentence importance and the redun-
dancy to get π as close as possible to the true AP
π∗. fθ represents the notion of importance learned
in the context of AP, while gγ contains notions of
coherence and redundancy by scoring sentence in-
tersections. This scenario is intuitive and inspired
by previous work on summarization (McDonald,
2007).

Now, we explain how to learn these two func-
tions while enforcing π to be linear. Suppose each
sentence is represented by a feature set φ and each
sentence intersections is represented by φ∩, then
the set of features for a summary S is:

Φ(S) = {
⋃

s∈S
φ(s) ∪

⋃

i>j

φ∩(si ∩ sj)} (5)

It is clear that the number of features is vari-
able and depends on the number m of sentences

in S. In order to deal with a variable number of
sentences as input, one could use recurrent neural
networks, but at the cost of loosing linearity.

Instead, to keep the linearity and to cope with
variable sized inputs, we employ linear models for
both fθ and gγ :

π(S) =
∑

s∈S
θ · φ(s)−

∑

i>j

γ · φ∩(si ∩ sj) (6)

By leveraging the properties of linear models
we end-up with the following formulation:

π(S) = θ ·
∑

s∈S
φ(s)− γ ·

∑

i≥j
φ∩(si ∩ sj) (7)

Because of the linear models, we can sum fea-
tures over sentences and over sentence intersec-
tions to obtain a fixed size feature set:

Φ
∑

(S) = {φ
∑

(S) ∪ φ
∑
∩ (S)} (8)

where we introduced the following notations:

φ
∑

(S) =
∑
s∈S

φ(s)

φ
∑
∩ (S) =

∑
i>j

φ(si ∩ sj)

Suppose φ is composed of k features and φ∩ of
n features. Then φ

∑
(S) is a vector of dimension

k, and similarly φ
∑
∩ (S) is of dimension n. Finally,

Φ∑ is a fixed size feature set of dimension k + n.
The function π as defined in equation 6 is still

linear with respect to sentence and sentence inter-
section features, which is convenient for the sub-
sequent summary extraction stage.

Features While any feature set for sentences φ
and for sentence intersections φ∩ could be used,
we focused on simple ones in this work.

For a sentence s, φ(s) consists of the following
features:

• Sentence length in number of words.

• Sentence position as an integer number start-
ing from 0.

• Word overlap with title: Jaccard similarity
between the unigrams in the title t and a sen-
tence s:

Jaccard(s, t) =
|t ∩ s|
|t ∪ s| (9)

• Sum of frequency of unigrams and bigrams
in the sentence.

1087

• Sum of TF*IDF of unigrams and bigrams in
the sentence. The idf of unigrams and bi-
grams is trained on a background corpus of
DBpedia articles.3

• Centrality of the sentence computed via
PageRank: A similarity matrix is built be-
tween sentences in the document collection
based on their TF*IDF vector similarity.
Then a power method is applied on the sim-
ilarity matrix to get PageRank scores of in-
dividual sentences. It is similar to the clas-
sic LexRank algorithm (Erkan and Radev,
2004).

• Propositions centrality: We also use the
centrality feature for propositions. Each sen-
tence is scored by the sum of the centrality of
its propositions. As PEAK is based on propo-
sitions, we expect proposition-level features
to provide a useful signal.

Finally, φ∩(si ∩ sj) consists of the unigram, bi-
gram and trigram overlap between the two sen-
tences si and sj .

Training The model is trained with a stan-
dard linear least squares regression using pairs of
(Φ(S), π∗(S)) as training examples. Because our
approach relies on an automatic metric, an arbi-
trarily large number of summaries and their corre-
sponding scores can be generated. In contrast, get-
ting manual Pyramid annotations for a large num-
ber of summaries would be expensive and time-
consuming.

As training examples we take the population of
scored summaries created by the same GA we use
for computing upper-bound summaries. It is im-
portant to note that this GA is also a perfect gen-
erator of training instances: the summaries in its
population are already scored because the fitness
function is the AP metric. Indeed, for each topic,
an arbitrarily large amount of scored summaries
can be generated by adjusting the size of the popu-
lation. Moreover, the summaries in the population
are very diverse and have a wide range of scores,
from almost upper-bound to completely random.

Optimization-based Summary Extraction
Since the function π is constrained to be linear,
we can extract the best scoring summary by
solving an ILP.

3http://wiki.dbpedia.org/
nif-abstract-datasets

Let x be a binary vector indicating whether sen-
tence i is in the summary or not. Similarly, let
α be a binary matrix indicating whether both sen-
tence i and j are in the summary. Finally, let K
be the length constraint. With these notations, the
best summary is extracted by solving the follwo-
gin ILP:

argmax
S

∑
si∈S

xi∗θ ·φ(si)−
∑
i≥j

αi,j ∗γ ·φ∩(si∩sj)
m∑
i=1

xi ∗ len(si) ≤ K
∀(i, j), αi,j − xi ≤ 0
∀(i, j), αi,j − xj ≤ 0

∀(i, j), xi + xj − αi,j ≤ 1

Which is the ILP directly corresponding to maxi-
mizing π as defined by equation 6. Note that · is
the dot product while ∗ is the scalar multiplication
in R.

4 Experiments

4.1 Setup
Dataset We perform our experiments on a multi-
document summarization dataset from the Text
Analysis Conference (TAC) shared task in 2009,
TAC-2009.4 TAC-2009 contains 44 topics, each
consisting of 10 news articles to be summarized in
a maximum of 100 words. In our experiments, we
use only the so-called initial summaries (A sum-
maries), but not the update summaries. For each
topic, there are 4 human reference summaries and
a manually created Pyramid set. As described in
section 2, we pre-processed these Pyramid sets
with clausIE in order to make them compatible
with PEAK.

Metrics We primarily evaluate our system via
automatic Pyramid scoring from PEAK, after pre-
processing the summaries with clausIE. PEAK has
a parameter twhich is the minimal similarity value
required for matching a summary proposition and
a Pyramid proposition. We use two different val-
ues: t = 0.6 (AP-60) and t = 0.7 (AP-70).

For completeness, we also report the ROUGE
scores identified by Owczarzak et al. (2012a) as
strongly correlating with human evaluation meth-
ods: ROUGE-1 (R-1) and ROUGE-2 (R-2) recall
with stemming and stopwords not removed.

Finally, we perform significance testing with t-
test to compare differences between two means.5

4http://tac.nist.gov/2009/
Summarization/

5The symbol * indicates that the difference compared to

1088

4.2 Automatic Evalution

Upper-bound Comparison We compute the set
of upper-bound summaries for both ROUGE-2 (R-
UB) and for AP (AP-UB).6 Both sets of upper-
bound summaries are evaluated with ROUGE and
AP, and the results are reported in Table 1.

R-1 R-2 AP-60 AP-70

R-UB 0.4722* 0.2062* 0.5088 0.3074
AP-UB 0.3598 0.1057 0.5789* 0.3790*

Table 1: Upper bound comparison between
ROUGE and Automatic Pyramid (AP).

Interestingly, we observe significant differences
between the two upper-bounds. While it is ob-
vious that each set of upper-bound summaries
reaches the best score on the metric it maximizes,
the same summary set scores much worse when
evaluated with the other metric. This observation
empirically confirms that the two metrics measure
different properties of system summaries.

Moreover, the upper-bound for AP gives us in-
formation about the room for improvement that
summarization systems have with respect to AP.
This is relevant in the next paragraph, where we
compare systems in an end-to-end evaluation.

End-to-end Evaluation We evaluate the qual-
ity of the summaries extracted by the summarizer
π − ILP in a standard end-to-end evaluation sce-
nario. π − ILP is the system composed of the
learned function π and the ILP defined in the pre-
vious section.

Learning π Using our GA data generation
method, we produce 100 scored summaries for
each of the 44 topics in TAC2009 while comput-
ing the upper-bound. We use the threshold value
of 0.65 as a compromise between AP-60 and AP-
70. The data generated have scores ranging from
0. to 0.4627 with an average of 0.1615. The data is
well distributed because the standard deviation is
0.1449. A highly diverse set of summaries is pro-
duced, because on average two summaries in the
training set only have 1.5% sentences in common,
and most of the sentences of the source documents
are contained in at least one summary.

The model is then trained in a leave-one-out
cross-validation setup. The parameters θ and γ are

the previous best baseline is significant with p ≤ 0.05.
6We use the parameter t = 0.6 during the upper-bound

computation of AP-UB.

R-1 R-2 AP-60 AP-70

TF*IDF 0.3251 0.0626 0.2857 0.1053
LexRank 0.3539 0.0900 0.3969 0.1854
ICSI 0.3670 0.1030 0.3520 0.1568
JS-Gen 0.3381 0.0868 0.3745 0.1463

π-ILP 0.3498 0.0867 0.4402* 0.2109*

Table 2: End-to-end evaluation of our approach on
TAC-2009.

trained on all topics but one. The trained model is
used to extract a high-scoring summary on the re-
maining topic by solving the ILP defined above.

Our framework is compared to the following
baselines:

TF*IDF weighting A simple heuristic intro-
duced by Luhn (1958) where each sentence re-
ceives a score from the TF*IDF of its terms.
The best sentences are greedily extracted until the
length constraint is met. We use the implementa-
tion available in the sumy package.7

LexRank (Erkan and Radev, 2004) is a pop-
ular graph-based approach. A similarity graph
G(V,E) is constructed where V is the set of sen-
tences and an edge eij is drawn between sentences
vi and vj if and only if the cosine similarity be-
tween them is above a given threshold. Sentences
are scored according to their PageRank score inG.
It is also available in the sumy package.

ICSI (Gillick and Favre, 2009) is a recent sys-
tem that has been identified as one of the state-
of-the-art systems by Hong et al. (2014). It is an
ILP framework that extracts a summary by solv-
ing a maximum coverage problem considering the
most frequent bigrams in the source documents.
We use the Python implementation released by
Boudin et al. (2015).

JS-Gen (Peyrard and Eckle-Kohler, 2016a) is
a recent approach which uses a GA to minimize
the Jensen-Shannon (JS) divergence between the
extracted summary and the source documents. JS
divergence measures the difference between prob-
ability distributions of words in the source docu-
ments and in the summary.

Results We report the performance of π− ILP
in comparison to the baselines in Table 2.

The results confirm an expected behavior. Our
supervised framework which aims at approximat-
ing and maximizing AP, easily and significantly
outperforms all the other baselines when evaluated

7https://github.com/miso-belica/sumy

1089

with AP for both values of the threshold. While
the system is not designed with ROUGE in mind,
it still performs reasonably well in the ROUGE
evaluation, even though it does not outperform
previous works.

In general, the two metrics ROUGE and AP do
not produce the same rankings of systems. This is
another piece of empirical evidence that they mea-
sure different properties of summaries.

When we compare the system performances to
the upper-bound scores reported in Table 1, we see
that there is still a large room for improvements.
We take a closer look at this performance gap in
the next paragraph where we evaluate the learning
component of our approach.

Evaluation of Learned π In this paragraph, we
evaluate the learning of π as an approximation of
π∗. We do so by measuring the correlation be-
tween π and the true AP π∗.

We report three correlation metrics to evaluate
and compare the ranking of summaries induced by
π and π∗: Pearson’s r, Spearman’s ρ and NDCG.
Pearson’s r is a value correlation metric which de-
picts linear relationship between the scores pro-
duced by two ranking lists.

Spearman’s ρ is a rank correlation metric which
compares the ordering of systems induced by the
two ranking lists.

NDCG is a metric from information retrieval
which compares ranked lists and puts a special
emphasis on the top elements by applying loga-
rithm decay weighting for elements further down
in the list. Intuitively, it describes how well the
π function is able to recognize the best scoring
summaries. In our case, it is particularly desir-
able to have a high NDCG score, because the op-
timizer extracts summaries with high π scores; we
want to confirm that top scoring summaries are
also among top scoring summaries according to
the true π∗.

For comparison, we report how well our base-
lines correlate with π∗. For this, we consider
the scoring function for summaries which is part
of all our baselines, and which they explicitly or
implicitly optimize: TF*IDF greedily maximizes
fTF∗IDF , the sum of the frequency of the words in
the summary. ICSI maximizes the sum of the doc-
ument frequency of bigrams (fICSI). LexRank
maximizes fLexRank, the sum of the PageRank of
sentences in the summary, and fJS is the JS diver-
gence between the summary and the source docu-

Pearson’s r Spearman’s ρ NDCG

fTF∗IDF 0.1246 0.0765 0.8869
fLexRank 0.1733 0.0879 0.8774
fICSI 0.3742 0.3295 0.8520
fJS 0.4074 0.3833 0.8803

π 0.4929* 0.4667* 0.9429*

Table 3: Performance of the supervised learn-
ing of π on TAC-2009 in a leave-one-out cross-
validation.

ments optimized by JS-Gen.
For our supervised learning of π, the training

procedure is the same as described in the previous
section. The correlation scores are averaged over
topics and reported in Table 3.

We observe that π is able to approximate AP
significantly better than any baseline for all met-
rics. This explains why optimizing π with ILP out-
performs the baseline systems in the end-to-end
evaluation (Table 2).

The learned π achieves a high NDCG, indicat-
ing that optimizing π produces summaries very
likely to have high π∗ scores. This means that π
is capable of accurately identifying high-scoring
summaries, which again explains the strong per-
formance of π − ILP . The fact that the overall
correlations are lower for every system shows that
it is difficult to predict π for poor and average qual-
ity summaries.

It is interesting to observe that features such as
unigram and bigram frequency, which are known
to be strong features to approximate ROUGE, are
less useful to approximate the more complex AP.

Feature Weights The advantage of linear mod-
els is their interpretability. One can investigate the
contribution of each feature by looking at its corre-
sponding weight learned during training. The sign
of the weight indicates whether the feature corre-
lates positively or negatively with the results, and
its amplitude determines the importance of this
feature in the final estimation.

We observe that the most useful feature is the
proposition centrality, which confirms our expec-
tation that proposition-based features are useful
for approximating PEAK. The bigram coverage
has also a high weight explaining the strong per-
formance of ICSI. The least useful feature is the
sentence position, even if it still contains some
useful signal.

Interestingly, the analysis of features from the

1090

Pearson’s r Spearman’s ρ NDCG

ROUGE − 1 0.3292 0.3187 0.7195
ROUGE − 2 0.3292 0.2936 0.7259

Table 4: Correlation between ROUGE-1 and
ROUGE-2 with AP on the automatically generated
training data for TAC-2009.

sentence intersection reveals a slightly positive
correlation for the unigram and bigram overlap,
but a negative correlation for trigram overlap. Our
interpretation is that the model learns that good
summaries tend to have repeated unigrams and
bigrams to ensure some coherence, while the re-
peated trigrams are more indicative of undesired
redundancy.

Agreement between ROUGE and AP In the
previous paragraphs, we already saw that differ-
ent metrics produce different rankings of systems.
We want to investigate this further and understand
to what extent ROUGE and AP disagree. To that
end, we use the summaries automatically gener-
ated by the genetic algorithm during the upper-
bound computation. Remember that for each topic
of TAC-2009 it produces 100 summaries with a
wide range of AP scores. We then score these
summaries with both ROUGE-1 and ROUGE-2
and compare how ROUGE metrics correlate with
AP. In order to get a meaningful picture, we use
the same three correlation metrics as above: Pear-
son’s, Spearman’s ρ and NDCG. The results are
presented in Table 4.

We observe a low correlation between ROUGE
metrics and AP in terms of both rank correlation
(Spearman’s ρ) and value correlation (Pearson’s
r). Even though the NDCG numbers are better, the
correlation is also relatively low given that higher
numbers are usually expected for NDCG (also ob-
served in Table 3).

This analysis confirms the initial claim that
ROUGE and AP behave quite differently and mea-
sure different aspects of summary quality. There-
fore, we believe systems developed and trained for
AP are worth studying because they necessarily
capture different aspects of summarization.

5 Related Work

We discuss (i) related work in extractive summa-
rization where an approximation of an automatic
evaluation metric was optimized, and (ii) work re-

lated to AP specifically.
As ROUGE is the metric predominantly

used for evaluation of extractive summarization,
there are several previous optimization-based ap-
proaches which included an approximation of
ROUGE in the objective function to maximize.
For example, Takamura and Okumura (2010) and
Sipos et al. (2012) performed structured out-
put learning (using pairs of summaries and their
ROUGE scores available in benchmark datasets as
training examples) and thereby learned to maxi-
mize the ROUGE scores of the system summaries.
Peyrard and Eckle-Kohler (2016b) on the other
hand, learned an approximation of ROUGE scores
for individual sentences in a supervised setup, and
subsequently employed these estimated sentence
scores in an ILP formulation to extract summaries.

There is also recent work on considering fully
automatic evaluation metrics (not relying on hu-
man reference summaries), such as the JS di-
vergence as optimization objective. Peyrard and
Eckle-Kohler (2016a) used metaheuristics to min-
imize JS divergence in a multi-document summa-
rization approach and showed that the resulting ex-
tractive summaries also scored competitively us-
ing ROUGE.

Regarding AP, there is not much prior work
apart from the papers where the different variants
of AP have been presented (Harnly et al., 2005;
Passonneau et al., 2013; Yang et al., 2016). Espe-
cially, there is no prior work in optimization-based
extractive summarization which has developed an
approximation of AP and used it in an objective
function.

However, AP as an evaluation metric is becom-
ing ever more important in the context of abstrac-
tive summarization, a research topic which has
been gaining momentum in the last few years. For
example Li (2015) and Bing et al. (2015) use an
earlier version of AP based on distributional se-
mantics (Passonneau et al., 2013) to evaluate ab-
stractive multi-document summarization.

6 Discussion and Future Work

We presented a supervised framework that learns
automatic Pyramid scores and uses them for
optimization-based summary extraction. Us-
ing the TAC-2009 multi-document summarization
dataset, we performed an upper-bound analysis
for AP, and we evaluated the summaries extracted
with our framework in an end-to-end evaluation

1091

using automatic evaluation metrics. We observed
that the summaries extracted with our framework
achieve significantly better AP scores than several
strong baselines, but compared to the upper-bound
for AP, there is still a large room for improvement.

We show that AP and ROUGE catch differ-
ent aspects of summary quality, but further work
would be needed in order to substantiate the
claim that AP is indeed better than ROUGE.
One way of doing so would be to perform a
human evaluation of high-scoring summaries ac-
cording to ROUGE and AP. In general, ROUGE-
1 and ROUGE-2 were considered as the base-
lines for validating the performance of AP be-
cause these variants strongly correlate with human
evaluation methods (Owczarzak et al., 2012a,b).
However, the comparison could be repeated with
ROUGE-3, ROUGE-4 and ROUGE-BE, which
have been found to predict manual Pyramid bet-
ter than ROUGE-1 and ROUGE-2 (Rankel et al.,
2013).

More generally, we see two main directions for
future research: (i) the more specific question on
how to improve the approximation of AP and (ii)
the general need for more research on AP.

There are several possible ways how to improve
the approximation of AP. First, more semantically-
oriented features could be developed, e.g., fea-
tures based on propositions rather than sentences
or n-grams, or word embedding features encoding
a large amount of distributional semantic knowl-
edge (Mikolov et al., 2013). Second, the linear-
ity constraint we used for efficiency reasons could
be relaxed. Modeling AP as a non-linear func-
tion will presumably enhance the approximation.
For the extraction of summaries based on a non-
linear function, greedy algorithms or search-based
strategies could be used, e.g., the GA we used in
this work for the upper-bound computation.

We see a general need for more research on AP,
because the way AP measures the quality aspect
of content selection is not only more meaningful
than ROUGE, but also applicable to the growing
field of abstractive summarization.

An important direction would be the improve-
ment of AP itself, both in terms of methods used
to compute AP, and in terms of tools: while the
current off-the-shelf system PEAK is a promising
start, it is very slow and therefore difficult to apply
in practice.

In this context, we would like to stress that our

GA-based method to create training data for learn-
ing a model of AP can easily be adapted to any au-
tomatic scoring metric, and specifically to other or
future AP variants.

Finally, we hope to encourage the community
to move away from ROUGE and instead consider
AP as the main summary evaluation metric. This
would be especially interesting for optimization-
based approaches, since the quality of the sum-
maries created by such approaches depends on the
quality of the underlying scoring metric.

7 Conclusion

We presented the first work on AP in optimization-
based extractive summarization. We computed
an upper-bound for AP and developed a super-
vised framework which learns an approximation
of AP based on automatically generated training
instances. We could access a large number of
high-quality training data by using the population
of a genetic algorithm. Our end-to-end evaluation
showed that of our framework significantly outper-
forms strong baselines on the AP metric, but also
revealed a large room for improvement in compar-
ison to the upper-bound, which motivates future
work on developing systems with better perfor-
mance on the semantically motivated AP metric.

Acknowledgments

This work has been supported by the German Re-
search Foundation (DFG) as part of the Research
Training Group “Adaptive Preparation of Informa-
tion from Heterogeneous Sources” (AIPHES) un-
der grant No. GRK 1994/1, and via the German-
Israeli Project Cooperation (DIP, grant No. GU
798/17-1).

References
Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei Guo,

and Rebecca Passonneau. 2015. Abstractive Multi-
Document Summarization via Phrase Selection and
Merging. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics, Beijing,
China, pages 1587–1597.

Florian Boudin, Hugo Mougard, and Benoit Favre.
2015. Concept-based Summarization using Inte-
ger Linear Programming: From Concept Pruning
to Multiple Optimal Solutions. In Proceedings of

1092

the 2015 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1914–
1918.

Luciano Del Corro and Rainer Gemulla. 2013.
ClausIE: Clause-based Open Information Extrac-
tion. In Proceedings of the 22Nd International Con-
ference on World Wide Web. ACM, Rio de Janeiro,
Brazil, pages 355–366.

Günes Erkan and Dragomir R. Radev. 2004. LexRank:
Graph-based Lexical Centrality As Salience in Text
Summarization. Journal of Artificial Intelligence
Research pages 457–479.

Dan Gillick and Benoit Favre. 2009. A Scalable Global
Model for Summarization. In Proceedings of the
Workshop on Integer Linear Programming for Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Boulder, Colorado, pages 10–18.

Aaron Harnly, Rebecca Passonneau, and Owen Ram-
bow. 2005. Automation of Summary Evaluation
by the Pyramid Method. In Proceedings of the In-
ternational Conference Recent Advances in Natural
Language Processing (RANLP). Borovets, Bulgaria,
pages 226–232.

Kai Hong, John Conroy, benoit Favre, Alex Kulesza,
Hui Lin, and Ani Nenkova. 2014. A Repository
of State of the Art and Competitive Baseline Sum-
maries for Generic News Summarization. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14).
Reykjavik, Iceland, pages 1608–1616.

Wei Li. 2015. Abstractive Multi-document Summa-
rization with Semantic Information Extraction. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Associ-
ation for Computational Linguistics, Lisbon, Portu-
gal, pages 1908–1913.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Text Summa-
rization Branches Out: Proceedings of the ACL-04
Workshop. Association for Computational Linguis-
tics, Barcelona, Spain, pages 74–81.

Hans Peter Luhn. 1958. The Automatic Creation of
Literature Abstracts. IBM Journal of Research De-
velopment 2:159–165.

Ryan McDonald. 2007. A study of global inference al-
gorithms in multi-document summarization. In Pro-
ceedings of the 29th European Conference on IR
Research. Springer-Verlag, Rome, Italy, ECIR’07,
pages 557–564.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing
Systems 26, Curran Associates, Inc., pages 3111–
3119.

Ani Nenkova, Rebecca Passonneau, and Kathleen
McKeown. 2007. The Pyramid Method: Incorporat-
ing Human Content Selection Variation in Summa-
rization Evaluation. ACM Transactions on Speech
and Language Processing (TSLP) 4(2).

Karolina Owczarzak, John M. Conroy, Hoa Trang
Dang, and Ani Nenkova. 2012a. An Assessment of
the Accuracy of Automatic Evaluation in Summa-
rization. In Proceedings of Workshop on Evaluation
Metrics and System Comparison for Automatic Sum-
marization. Association for Computational Linguis-
tics, Montréal, Canada, pages 1–9.

Karolina Owczarzak, Peter A. Rankel, Hoa Trang
Dang, and John M. Conroy. 2012b. Assessing the
Effect of Inconsistent Assessors on Summarization
Evaluation. In Proceedings of the 50th Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
Jeju Island, Korea, pages 359–362.

Rebecca Passonneau, Emily Chen, Weiwei Guo, and
Dolores Perin. 2013. Automated Pyramid Scoring
of Summaries using Distributional Semantics. In
Proceedings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics. Associa-
tion for Computational Linguistics, Sofia, Bulgaria,
pages 143–147.

Maxime Peyrard and Judith Eckle-Kohler. 2016a.
A General Optimization Framework for Multi-
Document Summarization Using Genetic Algo-
rithms and Swarm Intelligence. In Proceedings of
the 26th International Conference on Computational
Linguistics (COLING 2016). The COLING 2016 Or-
ganizing Committee, Osaka, Japan, pages 247 – 257.

Maxime Peyrard and Judith Eckle-Kohler. 2016b. Op-
timizing an Approximation of ROUGE - a Problem-
Reduction Approach to Extractive Multi-Document
Summarization. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, Berlin, Germany, pages
1825–1836.

Mohammad Taher Pilehvar, David Jurgens, and
Roberto Navigli. 2013. Align, Disambiguate and
Walk: A Unified Approach for Measuring Seman-
tic Similarity. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
Sofia, Bulgaria, pages 1341–1351.

Peter A. Rankel, John M. Conroy, Hoa Trang Dang,
and Ani Nenkova. 2013. A Decade of Automatic
Content Evaluation of News Summaries: Reassess-
ing the State of the Art. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Sofia, Bulgaria, pages 131–136.

Ruben Sipos, Pannaga Shivaswamy, and Thorsten
Joachims. 2012. Large-margin Learning of Sub-
modular Summarization Models. In Proceedings

1093

of the 13th Conference of the European Chapter of
the Association for Computational Linguistics. As-
sociation for Computational Linguistics, Avignon,
France, pages 224–233.

Hiroya Takamura and Manabu Okumura. 2010. Learn-
ing to Generate Summary as Structured Output. In
Proceedings of the 19th ACM international Confer-
ence on Information and Knowledge Management.
Association for Computing Machinery, Toronto ,
ON, Canada, pages 1437–1440.

Qian Yang, Rebecca Passonneau, and Gerard de Melo.
2016. PEAK: Pyramid Evaluation via Automated
Knowledge Extraction. In Proceedings of the 30th
AAAI Conference on Artificial Intelligence (AAAI
2016). AAAI Press, Phoenix, AZ, USA.

1094

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1095–1104
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1101

Selective Encoding for Abstractive Sentence Summarization

Qingyu Zhou†∗ Nan Yang‡ Furu Wei‡ Ming Zhou‡
†Harbin Institute of Technology, Harbin, China

‡Microsoft Research, Beijing, China
qyzhou@hit.edu.cn {nanya,fuwei,mingzhou}@microsoft.com

Abstract

We propose a selective encoding model
to extend the sequence-to-sequence frame-
work for abstractive sentence summariza-
tion. It consists of a sentence encoder,
a selective gate network, and an atten-
tion equipped decoder. The sentence en-
coder and decoder are built with recur-
rent neural networks. The selective gate
network constructs a second level sen-
tence representation by controlling the in-
formation flow from encoder to decoder.
The second level representation is tailored
for sentence summarization task, which
leads to better performance. We evalu-
ate our model on the English Gigaword,
DUC 2004 and MSR abstractive sentence
summarization datasets. The experimen-
tal results show that the proposed selective
encoding model outperforms the state-of-
the-art baseline models.

1 Introduction

Sentence summarization aims to shorten a given
sentence and produce a brief summary of it. This
is different from document level summarization
task since it is hard to apply existing techniques
in extractive methods, such as extracting sentence
level features and ranking sentences. Early works
propose using rule-based methods (Zajic et al.,
2007), syntactic tree pruning methods (Knight and
Marcu, 2002), statistical machine translation tech-
niques (Banko et al., 2000) and so on for this task.
We focus on abstractive sentence summarization
task in this paper.

Recently, neural network models have been ap-
plied in this task. Rush et al. (2015) use auto-
constructed sentence-headline pairs to train a neu-

∗Contribution during internship at Microsoft Research.

ral network summarization model. They use a
Convolutional Neural Network (CNN) encoder
and feed-forward neural network language model
decoder for this task. Chopra et al. (2016) ex-
tend their work by replacing the decoder with Re-
current Neural Network (RNN). Nallapati et al.
(2016) follow this line and change the encoder to
RNN to make it a full RNN based sequence-to-
sequence model (Sutskever et al., 2014).

the sri lankan government on wednesday announced
the closure of government schools with immediate
effect as a military campaign against tamil separatists
escalated in the north of the country .

sri lanka closes schools as war escalates

Figure 1: An abstractive sentence summarization
system may produce the output summary by dis-
tilling the salient information from the highlight to
generate a fluent sentence. We model the distilling
process with selective encoding.

All the above works fall into the encoding-
decoding paradigm, which first encodes the in-
put sentence to an abstract representation and
then decodes the intended output sentence based
on the encoded information. As an extension
of the encoding-decoding framework, attention-
based approach (Bahdanau et al., 2015) has been
broadly used: the encoder produces a list of vec-
tors for all tokens in the input, and the decoder
uses an attention mechanism to dynamically ex-
tract encoded information and align with the out-
put tokens. This approach achieves huge success
in tasks like machine translation, where alignment
between all parts of the input and output are re-
quired. However, in abstractive sentence summa-
rization, there is no explicit alignment relationship
between the input sentence and the summary ex-

1095

https://doi.org/10.18653/v1/P17-1101

cept for the extracted common words. The chal-
lenge here is not to infer the alignment, but to se-
lect the highlights while filtering out secondary
information in the input. A desired work-flow
for abstractive sentence summarization is encod-
ing, selection, and decoding. After selecting the
important information from an encoded sentence,
the decoder produces the output summary using
the selected information. For example, in Fig-
ure 1, given the input sentence, the summariza-
tion system first selects the important information,
and then rephrases or paraphrases to produce a
well-organized summary. Although this is implic-
itly modeled in the encoding-decoding framework,
we argue that abstractive sentence summarization
shall benefit from explicitly modeling this selec-
tion process.

In this paper we propose Selective Encoding for
Abstractive Sentence Summarization (SEASS).
We treat the sentence summarization as a three-
phase task: encoding, selection, and decoding. It
consists of a sentence encoder, a selective gate net-
work, and a summary decoder. First, the sentence
encoder reads the input words through an RNN
unit to construct the first level sentence represen-
tation. Then the selective gate network selects the
encoded information to construct the second level
sentence representation. The selective mechanism
controls the information flow from encoder to de-
coder by applying a gate network according to
the sentence information, which helps improve en-
coding effectiveness and release the burden of the
decoder. Finally, the attention-equipped decoder
generates the summary using the second level sen-
tence representation. We conduct experiments
on English Gigaword, DUC 2004 and Microsoft
Research Abstractive Text Compression test sets.
Our SEASS model achieves 17.54 ROUGE-2 F1,
9.56 ROUGE-2 recall and 10.63 ROUGE-2 F1 on
these test sets respectively, which improves perfor-
mance compared to the state-of-the-art methods.

2 Related Work

Abstractive sentence summarization, also known
as sentence compression and similar to headline
generation, is used to help compress or fuse the
selected sentences in extractive document sum-
marization systems since they may inadvertently
include unnecessary information. The sentence
summarization task has been long connected to the
headline generation task. There are some previous

methods to solve this task, such as the linguistic
rule-based method (Dorr et al., 2003). As for the
statistical machine learning based methods, Banko
et al. (2000) apply statistical machine translation
techniques by modeling headline generation as a
translation task and use 8000 article-headline pairs
to train the system.

Rush et al. (2015) propose leveraging news data
in Annotated English Gigaword (Napoles et al.,
2012) corpus to construct large scale parallel data
for sentence summarization task. They propose an
ABS model, which consists of an attentive Con-
volutional Neural Network encoder and an neural
network language model (Bengio et al., 2003) de-
coder. On this Gigaword test set and DUC 2004
test set, the ABS model produces the state-of-the-
art results. Chopra et al. (2016) extend this work,
which keeps the CNN encoder but replaces the de-
coder with recurrent neural networks. Their exper-
iments showes that the CNN encoder with RNN
decoder model performs better than Rush et al.
(2015). Nallapati et al. (2016) further change the
encoder to an RNN encoder, which leads to a full
RNN sequence-to-sequence model. Besides, they
enrich the encoder with lexical and statistic fea-
tures which play important roles in traditional fea-
ture based summarization systems, such as NER
and POS tags, to improve performance. Experi-
ments on the Gigaword and DUC 2004 test sets
show that the above models achieve state-of-the-
art results.

Gu et al. (2016) and Gulcehre et al. (2016)
come up similar ideas that summarization task can
benefit from copying words from input sentences.
Gu et al. (2016) propose CopyNet to model the
copying action in response generation, which also
applies for summarization task. Gulcehre et al.
(2016) propose a switch gate to control whether
to copy from source or generate from decoder vo-
cabulary. Zeng et al. (2016) also propose using
copy mechanism and add a scalar weight on the
gate of GRU/LSTM for this task. Cheng and Lap-
ata (2016) use an RNN based encoder-decoder for
extractive summarization of documents.

Yu et al. (2016) propose a segment to seg-
ment neural transduction model for sequence-to-
sequence framework. The model introduces a
latent segmentation which determines correspon-
dences between tokens of the input sequence and
the output sequence. Experiments on this task
show that the proposed transduction model per-

1096

forms comparable to the ABS model. Shen et al.
(2016) propose to apply Minimum Risk Train-
ing (MRT) in neural machine translation to di-
rectly optimize the evaluation metrics. Ayana et al.
(2016) apply MRT on abstractive sentence sum-
marization task and the results show that optimiz-
ing for ROUGE improves the test performance.

3 Problem Formulation

For sentence summarization, given an input sen-
tence x = (x1, x2, . . . , xn), where n is the sen-
tence length, xi ∈ Vs and Vs is the source vo-
cabulary, the system summarizes x by producing
y = (y1, y2, . . . , yl), where l ≤ n is the summary
length , yi ∈ Vt and Vt is the target vocabulary.

If |y| ⊆ |x|, which means all words in sum-
mary y must appear in given input, we denote this
as extractive sentence summarization. If |y| * |x|,
which means not all words in summary come from
input sentence, we denote this as abstractive sen-
tence summarization. Table 1 provides an exam-
ple. We focus on abstracive sentence summariza-
tion task in this paper.

Input: South Korean President Kim Young-Sam
left here Wednesday on a week - long state
visit to Russia and Uzbekistan for talks on
North Korea ’s nuclear confrontation and
ways to strengthen bilateral ties .

Output: Kim leaves for Russia for talks on NKorea
nuclear standoff

Table 1: An abstractive sentence summarization
example.

4 Model

As shown in Figure 2, our model consists of a
sentence encoder using the Gated Recurrent Unit
(GRU) (Cho et al., 2014), a selective gate network
and an attention-equipped GRU decoder. First, the
bidirectional GRU encoder reads the input words
x = (x1, x2, . . . , xn) and builds its representation
(h1, h2, . . . , hn). Then the selective gate selects
and filters the word representations according to
the sentence meaning representation to produce a
tailored sentence word representation for abstrac-
tive sentence summarization task. Lastly, the GRU
decoder produces the output summary with atten-
tion to the tailored representation. In the following
sections, we introduce the sentence encoder, the
selective mechanism, and the summary decoder
respectively.

4.1 Sentence Encoder
The role of the sentence encoder is to read the in-
put sentence and construct the basic sentence rep-
resentation. Here we employ a bidirectional GRU
(BiGRU) as the recurrent unit, where GRU is de-
fined as:

zi = σ(Wz[xi, hi−1])

ri = σ(Wr[xi, hi−1])

h̃i = tanh(Wh[xi, ri � hi−1])
hi = (1− zi)� hi−1 + zi � h̃i

(1)

(2)

(3)

(4)

where Wz , Wr and Wh are weight matrices.
The BiGRU consists of a forward GRU and a

backward GRU. The forward GRU reads the input
sentence word embeddings from left to right and
gets a sequence of hidden states, (~h1,~h2, . . . ,~hn).
The backward GRU reads the input sentence
embeddings reversely, from right to left, and
results in another sequence of hidden states,
(~h1, ~h2, . . . , ~hn):

~hi = GRU(xi,~hi−1)

~hi = GRU(xi, ~hi+1)

(5)

(6)

The initial states of the BiGRU are set to zero
vectors, i.e., ~h1 = 0 and ~hn = 0. After reading the
sentence, the forward and backward hidden states
are concatenated, i.e., hi = [~hi; ~hi], to get the ba-
sic sentence representation.

4.2 Selective Mechanism
In the sequence-to-sequence machine translation
(MT) model, the encoder and decoder are respon-
sible for mapping input sentence information to
a list of vectors and decoding the sentence rep-
resentation vectors to generate an output sentence
(Bahdanau et al., 2015). Some previous works ap-
ply this framework to summarization generation
tasks (Nallapati et al., 2016; Gu et al., 2016; Gul-
cehre et al., 2016). However, abstractive sentence
summarization is different from MT in two ways.
First, there is no explicit alignment relationship
between the input sentence and the output sum-
mary except for the common words. Second, sum-
marization task needs to keep the highlights and
remove the unnecessary information, while MT
needs to keep all information literally.

Herein, we propose a selective mechanism to
model the selection process for abstractive sen-
tence summarization. The selective mechanism

1097

𝑥1

ℎ1

𝑥2

ℎ2

𝑥3

ℎ3

𝑥4

ℎ4

𝑥5

ℎ5

𝑥6

ℎ6

ℎ1′ ℎ2′ ℎ3′ ℎ4′ ℎ5′ ℎ6′

ℎ𝑖 𝑠

MLP
GRU

Attention

𝑐𝑡−1 𝑠𝑡−1 𝑦𝑡−1

𝑠𝑡

𝑐𝑡

maxout

𝑦𝑡

Selective Gate
Network

Encoder

Decoder

softmax

Figure 2: Overview of the Selective Encoding for Abstractive Sentence Summarization (SEASS).

extends the sequence-to-sequence model by con-
structing a tailored representation for abstractive
sentence summarization task. Concretely, the se-
lective gate network in our model takes two vector
inputs, the sentence word vector hi and the sen-
tence representation vector s. The sentence word
vector hi is the output of the BiGRU encoder and
represents the meaning and context information of
word xi. The sentence vector s is used to represent
the meaning of the sentence. For each word xi,
the selective gate network generates a gate vector
sGatei using hi and s, then the tailored represen-
tation is constructed, i.e., h′i.

In detail, we concatenate the last forward hid-
den state ~hn and backward hidden state ~h1 as the
sentence representation s:

s =

[
~h1

~hn

]
(7)

For each time step i, the selective gate takes the
sentence representation s and BiGRU hidden hi as
inputs to compute the gate vector sGatei:

sGatei = σ(Wshi +Uss+ b)

h′i = hi � sGatei
(8)

(9)

where Ws and Us are weight matrices, b is the
bias vector, σ denotes sigmoid activation func-
tion, and � is element-wise multiplication. After
the selective gate network, we obtain another se-
quence of vectors (h′1, h

′
2, . . . , h

′
n). This new se-

quence is then used as the input sentence represen-
tation for the decoder to generate the summary.

4.3 Summary Decoder
On top of the sentence encoder and the selective
gate network, we use GRU with attention as the
decoder to produce the output summary.

At each decoding time step t, the GRU reads the
previous word embedding wt−1 and previous con-
text vector ct−1 as inputs to compute the new hid-
den state st. To initialize the GRU hidden state, we
use a linear layer with the last backward encoder
hidden state ~h1 as input:

st = GRU(wt−1, ct−1, st−1)

s0 = tanh(Wd
~h1 + b)

(10)

(11)

where Wd is the weight matrix and b is the bias
vector.

The context vector ct for current time step t is
computed through the concatenate attention mech-
anism (Luong et al., 2015), which matches the
current decoder state st with each encoder hidden
state h′i to get an importance score. The impor-
tance scores are then normalized to get the current
context vector by weighted sum:

et,i = v>a tanh(Wast−1 +Uah
′
i)

αt,i =
exp(et,i)∑n
i=1 exp(et,i)

ct =
n∑

i=1

αt,ih
′
i

(12)

(13)

(14)

We then combine the previous word embedding
wt−1, the current context vector ct, and the de-
coder state st to construct the readout state rt. The
readout state is then passed through a maxout hid-
den layer (Goodfellow et al., 2013) to predict the

1098

next word with a softmax layer over the decoder
vocabulary.

rt = Wrwt−1 +Urct +Vrst

mt = [max{rt,2j−1, rt,2j}]>j=1,...,d

p(yt|y1, . . . , yt−1) = softmax(Womt)

(15)

(16)

(17)

where Wa, Ua, Wr, Ur, Vr and Wo are weight
matrices. Readout state rt is a 2d-dimensional
vector, and the maxout layer (Equation 16) picks
the max value for every two numbers in rt and pro-
duces a d-dimensional vector mt.

4.4 Objective Function
Our goal is to maximize the output summary prob-
ability given the input sentence. Therefore, we op-
timize the negative log-likelihood loss function:

J(θ) = − 1

|D|
∑

(x,y)∈D
log p(y|x) (18)

where D denotes a set of parallel sentence-
summary pairs and θ is the model parameter. We
use Stochastic Gradient Descent (SGD) with mini-
batch to learn the model parameter θ.

5 Experiments

In this section we introduce the dataset we use, the
evaluation metric, the implementation details, the
baselines we compare to, and the performance of
our system.

5.1 Dataset
Training Set For our training set, we use a par-
allel corpus which is constructed from the Anno-
tated English Gigaword dataset (Napoles et al.,
2012) as mentioned in Rush et al. (2015). The
parallel corpus is produced by pairing the first sen-
tence and the headline in the news article with
some heuristic rules. We use the script1 released
by Rush et al. (2015) to pre-process and extract the
training and development datasets. The script per-
forms various basic text normalization, including
PTB tokenization, lower-casing, replacing all digit
characters with #, and replacing word types seen
less than 5 times with 〈unk〉. The extracted corpus
contains about 3.8M sentence-summary pairs for
the training set and 189K examples for the devel-
opment set.

For our test set, we use the English Gigaword,
DUC 2004, and Microsoft Research Abstractive
Text Compression test sets.

1https://github.com/facebook/NAMAS

English Gigaword Test Set We randomly sam-
ple 8000 pairs from the extracted development set
as our development set since it is relatively large.
For the test set, we use the same randomly held-
out test set of 2000 sentence-summary pairs as
Rush et al. (2015).2

We also find that except for the empty titles, this
test set has some invalid lines like the input sen-
tence containing only one word. Therefore, we
further sample 2000 pairs as our internal test set
and release it for future works3.

DUC 2004 Test Set We employ DUC 2004 data
for tasks 1 & 2 (Over et al., 2007) in our experi-
ments as one of the test sets since it is too small to
train a neural network model on. The dataset pairs
each document with 4 different human-written ref-
erence summaries which are capped at 75 bytes. It
has 500 input sentences with each sentence paired
with 4 summaries.

MSR-ATC Test Set Toutanova et al. (2016) re-
lease a new dataset for sentence summarization
task by crowdsourcing. This dataset contains ap-
proximately 6,000 source text sentences with mul-
tiple manually-created summaries (about 26,000
sentence-summary pairs in total). Toutanova et al.
(2016) provide a standard split of the data into
training, development, and test sets, with 4,936,
448 and 785 input sentences respectively. Since
the training set is too small, we only use the test set
as one of our test sets. We denote this dataset as
MSR-ATC (Microsoft Research Abstractive Text
Compression) test set in the following.

Table 2 summarizes the statistic information of
the three datasets we used.

5.2 Evaluation Metric

We employ ROUGE (Lin, 2004) as our evaluation
metric. ROUGE measures the quality of summary
by computing overlapping lexical units, such as
unigram, bigram, trigram, and longest common
subsequence (LCS). It becomes the standard eval-
uation metric for DUC shared tasks and popular
for summarization evaluation. Following previous
work, we use ROUGE-1 (unigram), ROUGE-2 (bi-

2Thanks to Rush et al. (2015), we acquired the test set they
used. Following Chopra et al. (2016), we remove pairs with
empty titles resulting in slightly different accuracy compared
to Rush et al. (2015) for their systems. The cleaned test set
contains 1951 sentence-summary pairs.

3Our development and test sets can be found at https:
//res.qyzhou.me

1099

Data Set Giga DUC† MSR†

#(sent) 3.99M 500 785
#(sentWord) 125M 17.8K 29K
#(summWord) 33M 20.9K 85.9K
#(ref) 1 4 3-5
AvgInputLen 31.35 35.56 36.97
AvgSummLen 8.23 10.43 25.5

Table 2: Data statistics for the English Giga-
word, DUC 2004 and MSR-ATC datasets. #(x)
denotes the number of x, e.g., #(ref) is the num-
ber of reference summaries of an input sentence.
AvgInputLen is the average input sentence length
and AvgSummLen is the average summary length.
†DUC 2004 and MSR-ATC datasets are for test
purpose only.

gram) and ROUGE-L (LCS) as the evaluation met-
rics in the reported experimental results.

5.3 Implementation Details

Model Parameters The input and output vocab-
ularies are collected from the training data, which
have 119,504 and 68,883 word types respectively.
We set the word embedding size to 300 and all
GRU hidden state sizes to 512. We use dropout
(Srivastava et al., 2014) with probability p = 0.5.

Model Training We initialize model parame-
ters randomly using a Gaussian distribution with
Xavier scheme (Glorot and Bengio, 2010). We use
Adam (Kingma and Ba, 2015) as our optimizing
algorithm. For the hyperparameters of Adam op-
timizer, we set the learning rate α = 0.001, two
momentum parameters β1 = 0.9 and β2 = 0.999
respectively, and ε = 10−8. During training, we
test the model performance (ROUGE-2 F1) on de-
velopment set for every 2,000 batches. We halve
the Adam learning rate α if the ROUGE-2 F1 score
drops for twelve consecutive tests on development
set. We also apply gradient clipping (Pascanu
et al., 2013) with range [−5, 5] during training. To
both speed up the training and converge quickly,
we use mini-batch size 64 by grid search.

Beam Search We use beam search to generate
multiple summary candidates to get better results.
To avoid favoring shorter outputs, we average the
ranking score along the beam path by dividing it
by the number of generated words. To both decode
fast and get better results, we set the beam size to

12 in our experiments.

5.4 Baseline
We compare SEASS model with the following
state-of-the-art baselines:

ABS Rush et al. (2015) use an attentive CNN en-
coder and NNLM decoder to do the sentence
summarization task. We trained this baseline
model with the released code1 and evaluate
it with our internal English Gigaword test set
and MSR-ATC test set.

ABS+ Based on ABS model, Rush et al. (2015)
further tune their model using DUC 2003
dataset, which leads to improvements on
DUC 2004 test set.

CAs2s As an extension of the ABS model,
Chopra et al. (2016) use a convolutional
attention-based encoder and RNN decoder,
which outperforms the ABS model.

Feats2s Nallapati et al. (2016) use a full
RNN sequence-to-sequence encoder-decoder
model and add some features to enhance the
encoder, such as POS tag, NER, and so on.

Luong-NMT Neural machine translation model
of Luong et al. (2015) with two-layer LSTMs
for the encoder-decoder with 500 hidden
units in each layer implemented in (Chopra
et al., 2016).

s2s+att We also implement a sequence-to-
sequence model with attention as our
baseline and denote it as “s2s+att”.

5.5 Results
We report ROUGE F1, ROUGE recall and ROUGE

F1 for English Gigaword, DUC 2004 and MSR-
ATC test sets respectively. We use the official
ROUGE script (version 1.5.5) 4 to evaluate the
summarization quality in our experiments. For
English Gigaword5 and MSR-ATC6 test sets, the
outputs have different lengths so we evaluate the
system with F1 metric. As for the DUC 2004 test
set7, the task requires the system to produce a fixed
length summary (75 bytes), therefore we employ
ROUGE recall as the evaluation metric. To satisfy
the length requirement, we decode the output sum-
mary to a roughly expected length following Rush
et al. (2015).

4http://www.berouge.com/
5The ROUGE evaluation option is the same as Rush et al.

(2015), -m -n 2 -w 1.2
6The ROUGE evaluation option is, -m -n 2 -w 1.2
7The ROUGE evaluation option is, -m -b 75 -n 2 -w 1.2

1100

English Gigaword We acquire the test set from
Rush et al. (2015) so we can make fair compar-
isons to the baselines.

Models RG-1 RG-2 RG-L

ABS (beam)‡ 29.55- 11.32- 26.42-

ABS+ (beam)‡ 29.76- 11.88- 26.96-

Feats2s (beam)‡ 32.67- 15.59- 30.64-

CAs2s (greedy)‡ 33.10- 14.45- 30.25-

CAs2s (beam)‡ 33.78- 15.97- 31.15-

Luong-NMT (beam)‡ 33.10- 14.45- 30.71-

s2s+att (greedy) 33.18- 14.79- 30.80-

s2s+att (beam) 34.04- 15.95- 31.68-

SEASS (greedy) 35.48 16.50 32.93
SEASS (beam) 36.15 17.54 33.63

Table 3: Full length ROUGE F1 evaluation results
on the English Gigaword test set used by Rush
et al. (2015). RG in the Table denotes ROUGE.
Results with ‡ mark are taken from the correspond-
ing papers. The superscript - indicates that our
SEASS model with beam search performs signif-
icantly better than it as given by the 95% confi-
dence interval in the official ROUGE script.

Models RG-1 RG-2 RG-L

ABS (beam) 37.41- 15.87- 34.70-

s2s+att (greedy) 42.41- 20.76- 39.84-

s2s+att (beam) 43.76- 22.28- 41.14-

SEASS (greedy) 45.27 22.88 42.20
SEASS (beam) 46.86 24.58 43.53

Table 4: Full length ROUGE F1 evaluation on our
internal English Gigaword test data. The super-
script - indicates that our SEASS model performs
significantly better than it as given by the 95%
confidence interval in the official ROUGE script.

In Table 3, we report the ROUGE F1 score of
our model and the baseline methods. Our SEASS
model with beam search outperforms all baseline
models by a large margin. Even for greedy search,
our model still performs better than other methods
which used beam search. For the popular ROUGE-
2 metric, our SEASS model achieves 17.54 F1
score and performs better than the previous works.
Compared to the ABS model, our model has a
6.22 ROUGE-2 F1 relative gain. Compared to the
highest CAs2s baseline, our model achieves 1.57

ROUGE-2 F1 improvement and passes the signifi-
cant test according to the official ROUGE script.

Table 4 summarizes our results on our internal
test set using ROUGE F1 evaluation metrics. The
performance on our internal test set is compara-
ble to our development set, which achieves 24.58
ROUGE-2 F1 and outperforms the baselines.

DUC 2004 We evaluate our model using the
ROUGE recall score since the reference summaries
of the DUC 2004 test set are capped at 75 bytes.
Therefore, we decode the summary to a fixed
length 18 to ensure that the generated summary
satisfies the minimum length requirement. As
summarized in Table 5, our SEASS outperforms
all the baseline methods and achieves 29.21, 9.56
and 25.51 for ROUGE 1, 2 and L recall. Compared
to the ABS+ model which is tuned using DUC
2003 data, our model performs significantly bet-
ter by 1.07 ROUGE-2 recall score and is trained
only with English Gigaword sentence-summary
data without being tuned using DUC data.

Models RG-1 RG-2 RG-L

ABS (beam)‡ 26.55- 7.06- 22.05-

ABS+ (beam)‡ 28.18- 8.49- 23.81-

Feats2s (beam)‡ 28.35- 9.46 24.59-

CAs2s (greedy)‡ 29.13 7.62- 23.92-

CAs2s (beam)‡ 28.97 8.26- 24.06-

Luong-NMT (beam)‡ 28.55 8.79- 24.43-

s2s+att (greedy) 27.03- 7.89- 23.80-

s2s+att (beam) 28.13 9.25 24.76
SEASS (greedy) 28.68 8.55 25.04
SEASS (beam) 29.21 9.56 25.51

Table 5: ROUGE recall evaluation results on DUC
2004 test set. All these models are tested using
beam search. Results with ‡ mark are taken from
the corresponding papers. The superscript - in-
dicates that our SEASS model performs signifi-
cantly better than it as given by the 95% confi-
dence interval in the official ROUGE script.

MSR-ATC We report the full length ROUGE F1
score on the MSR-ATC test set in Table 6. To the
best of our knowledge, this is the first work that
reports ROUGE metric scores on the MSR-ATC
dataset. Note that we only compare our model
with ABS since the others are not publicly avail-
able. Our SEASS achieves 10.63 ROUGE-2 F1 and
outperforms the s2s+att baseline by 1.02 points.

1101

th
e

co
u
n
ci

l

o
f

e
u
ro

p
e

's h
u
m

a
n

ri
g
h
ts

co
m

m
is

si
o
n
e
r

sl
a
m

m
e
d

th
u
rs

d
a
y

a
s

`` u
n
a
cc

e
p
ta

b
le

'' co
n
d
it

io
n
s

in fr
a
n
ce

's o
v
e
rc

ro
w

d
e
d

a
n
d

d
ila

p
id

a
te

d

ja
ils

, w
h
e
re

so
m

e

#
#

in
m

a
te

s

h
a
v
e

co
m

m
it

te
d

su
ic

id
e

th
is

y
e
a
r

.

Figure 3: First derivative heat map of the output with respect to the selective gate. The important
words are selected in the input sentence, such as “europe”, “slammed” and “unacceptable”. The output
summary of our system is “council of europe slams french prison conditions” and the true summary is
“council of europe again slams french prison conditions”.

Models RG-1 RG-2 RG-L

ABS (beam) 20.27- 5.26- 17.10-

s2s+att (greedy) 15.15- 4.48- 13.62-

s2s+att (beam) 22.65- 9.61- 21.39-

SEASS (greedy) 19.77 6.44 17.36
SEASS (beam) 25.75 10.63 22.90

Table 6: Full length ROUGE F1 evaluation on
MSR-ATC test set. Beam search are used in both
the baselines and our method. The superscript -

indicates that our SEASS model performs signif-
icantly better than it as given by the 95% confi-
dence interval in the official ROUGE script.

6 Discussion

In this section, we first compare the performance
of SEASS with the s2s+att baseline model to illus-
trate that the proposed method succeeds in select-
ing information and building tailored representa-
tion for abstractive sentence summarization. We
then analyze selective encoding by visualizing the
heat map.

Effectiveness of Selective Encoding We fur-
ther test the SEASS model with different sentence
lengths on English Gigaword test sets, which are
merged from the Rush et al. (2015) test set and our
internal test set. The length of sentences in the test
sets ranges from 10 to 80. We group the sentences
with an interval of 4 and get 18 different groups
and we draw the first 14 groups. We find that the
performance curve of our SEASS model always
appears to be on the top of that of s2s+att with a
certain margin. For the groups of 16, 20, 24, 32,
56 and 60, the SEASS model obtains big improve-
ments compared to the s2s+att model. Overall,
these improvements on all groups indicate that the
selective encoding method benefits the abstractive
sentence summarization task.

10 20 30 40 50 60

Input Sentence Length

0

5

10

15

20

25

30

R
O

U
G

E
-2

 F
1
 S

co
re

s

SEASS

s2s+att

Figure 4: ROUGE-2 F1 score on different groups
of input sentences in terms of their length for
s2s+att baseline and our SEASS model on English
Gigaword test sets.

Saliency Heat Map of Selective Gate Since the
output of the selective gate network is a high di-
mensional vector, it is hard to visualize all the gate
values. We use the method in Li et al. (2016) to
visualize the contribution of the selective gate to
the final output, which can be approximated by the
first derivative. Given sentence words x with asso-
ciated output summary y, the trained model asso-
ciates the pair (x, y) with a score Sy(x). The goal
is to decide which gate g associated with a spe-
cific word makes the most significant contribution
to Sy(x). We approximate the Sy(g) by comput-
ing the first-order Taylor expansion since the score
Sy(x) is a highly non-linear function in the deep
neural network models:

Sy(g) ≈ w(g)T g + b (19)

where w(g) is first the derivative of Sy with re-
spect to the gate g:

w(g) =
∂(Sy)

∂g
|g (20)

1102

We then draw the Euclidean norm of the first
derivative of the output y with respect to the se-
lective gate g associated with each input words.

Figure 3 shows an example of the first derivative
heat map, in which most of the important words
are selected by the selective gate such as “eu-
rope”, “slammed”, “unacceptable”, “conditions”,
and “france”. We can observe that the selective
gate determines the importance of each word be-
fore decoder, which releases the burden of it by
providing tailored sentence encoding.

7 Conclusion

This paper proposes a selective encoding model
which extends the sequence-to-sequence model
for abstractive sentence summarization task. The
selective mechanism mimics one of the human
summarizers’ behaviors, selecting important in-
formation before writing down the summary. With
the proposed selective mechanism, we build an
end-to-end neural network summarization model
which consists of three phases: encoding, selec-
tion, and decoding. Experimental results show
that the selective encoding model greatly improves
the performance with respect to the state-of-the-
art methods on English Gigaword, DUC 2004 and
MSR-ATC test sets.

Acknowledgments

We thank Chuanqi Tan, Junwei Bao, Shuangzhi
Wu and the anonymous reviewers for their helpful
comments. We also thank Alexander M. Rush for
providing the dataset for comparison and helpful
discussions.

References
Ayana, Shiqi Shen, Zhiyuan Liu, and Maosong Sun.

2016. Neural headline generation with minimum
risk training. CoRR abs/1604.01904.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of 3rd
International Conference for Learning Representa-
tions. San Diego.

Michele Banko, Vibhu O Mittal, and Michael J Wit-
brock. 2000. Headline generation based on statis-
tical translation. In Proceedings of the 38th An-
nual Meeting on Association for Computational Lin-
guistics. Association for Computational Linguistics,
pages 318–325.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. journal of machine learning research
3(Feb):1137–1155.

Jianpeng Cheng and Mirella Lapata. 2016. Neural
summarization by extracting sentences and words.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Lin-
guistics, Berlin, Germany, pages 484–494.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, Doha, Qatar, pages
1724–1734.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, San Diego, Califor-
nia, pages 93–98.

Bonnie Dorr, David Zajic, and Richard Schwartz. 2003.
Hedge trimmer: A parse-and-trim approach to head-
line generation. In Proceedings of the HLT-NAACL
03 on Text summarization workshop-Volume 5. As-
sociation for Computational Linguistics, pages 1–8.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Aistats. volume 9, pages 249–256.

Ian J Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron C Courville, and Yoshua Bengio. 2013. Max-
out networks. ICML (3) 28:1319–1327.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, Berlin,
Germany, pages 1631–1640.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, Berlin, Ger-
many, pages 140–149.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of 3rd International Conference for Learning Repre-
sentations. San Diego.

1103

Kevin Knight and Daniel Marcu. 2002. Summariza-
tion beyond sentence extraction: A probabilistic ap-
proach to sentence compression. Artificial Intelli-
gence 139(1):91–107.

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Juraf-
sky. 2016. Visualizing and understanding neural
models in nlp. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, San Diego, California, pages 681–691.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop. Barcelona, Spain, volume 8.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1412–
1421.

Ramesh Nallapati, Bowen Zhou, Ça glar Gulçehre,
and Bing Xiang. 2016. Abstractive text summariza-
tion using sequence-to-sequence rnns and beyond.
In Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated gigaword. In Pro-
ceedings of the Joint Workshop on Automatic Knowl-
edge Base Construction and Web-scale Knowledge
Extraction. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, AKBC-WEKEX ’12,
pages 95–100.

Paul Over, Hoa Dang, and Donna Harman. 2007. Duc
in context. Information Processing & Management
43(6):1506–1520.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3) 28:1310–1318.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 379–389.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics,
Berlin, Germany, pages 1683–1692.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks

from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Kristina Toutanova, Chris Brockett, Ke M. Tran, and
Saleema Amershi. 2016. A dataset and evaluation
metrics for abstractive compression of sentences and
short paragraphs. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, Austin, Texas, pages 340–350.

Lei Yu, Jan Buys, and Phil Blunsom. 2016. Online
segment to segment neural transduction. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages
1307–1316.

David Zajic, Bonnie J Dorr, Jimmy Lin, and Richard
Schwartz. 2007. Multi-candidate reduction: Sen-
tence compression as a tool for document summa-
rization tasks. Information Processing & Manage-
ment 43(6):1549–1570.

Wenyuan Zeng, Wenjie Luo, Sanja Fidler, and Raquel
Urtasun. 2016. Efficient summarization with
read-again and copy mechanism. arXiv preprint
arXiv:1611.03382 .

1104

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1105–1115
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1102

PositionRank: An Unsupervised Approach to Keyphrase Extraction
from Scholarly Documents

Corina Florescu and Cornelia Caragea
Computer Science and Engineering

University of North Texas, USA
CorinaFlorescu@my.unt.edu, ccaragea@unt.edu

Abstract

The large and growing amounts of online
scholarly data present both challenges and
opportunities to enhance knowledge dis-
covery. One such challenge is to auto-
matically extract a small set of keyphrases
from a document that can accurately de-
scribe the document’s content and can fa-
cilitate fast information processing. In
this paper, we propose PositionRank, an
unsupervised model for keyphrase extrac-
tion from scholarly documents that incor-
porates information from all positions of a
word’s occurrences into a biased PageR-
ank. Our model obtains remarkable im-
provements in performance over PageR-
ank models that do not take into account
word positions as well as over strong base-
lines for this task. Specifically, on several
datasets of research papers, PositionRank
achieves improvements as high as 29.09%.

1 Introduction

The current Scholarly Web contains many millions
of scientific documents. For example, Google
Scholar is estimated to have more than 100 million
documents. On one hand, these rapidly-growing
scholarly document collections offer benefits for
knowledge discovery, and on the other hand, find-
ing useful information has become very challeng-
ing. Keyphrases associated with a document typi-
cally provide a high-level topic description of the
document and can allow for efficient information
processing. In addition, keyphrases are shown
to be rich sources of information in many natu-
ral language processing and information retrieval
tasks such as scientific paper summarization, clas-
sification, recommendation, clustering, and search
(Abu-Jbara and Radev, 2011; Qazvinian et al.,

2010; Jones and Staveley, 1999; Zha, 2002; Zhang
et al., 2004; Hammouda et al., 2005). Due to their
importance, many approaches to keyphrase extrac-
tion have been proposed in the literature along two
lines of research: supervised and unsupervised
(Hasan and Ng, 2014, 2010).

In the supervised line of research, keyphrase
extraction is formulated as a binary classification
problem, where candidate phrases are classified as
either positive (i.e., keyphrases) or negative (i.e.,
non-keyphrases) (Frank et al., 1999; Hulth, 2003).
Various feature sets and classification algorithms
yield different extraction systems. For example,
Frank et al. (1999) developed a system that ex-
tracts two features for each candidate phrase, i.e.,
the tf-idf of the phrase and its distance from the be-
ginning of the target document, and uses them as
input to Naı̈ve Bayes classifiers. Although super-
vised approaches typically perform better than un-
supervised approaches (Kim et al., 2013), the re-
quirement for large human-annotated corpora for
each field of study has led to significant attention
towards the design of unsupervised approaches.

In the unsupervised line of research, keyphrase
extraction is formulated as a ranking problem with
graph-based ranking techniques being considered
state-of-the-art (Hasan and Ng, 2014). These
graph-based techniques construct a word graph
from each target document, such that nodes cor-
respond to words and edges correspond to word
association patterns. Nodes are then ranked us-
ing graph centrality measures such as PageRank
(Mihalcea and Tarau, 2004; Liu et al., 2010) or
HITS (Litvak and Last, 2008), and the top ranked
phrases are returned as keyphrases. Since their
introduction, many graph-based extensions have
been proposed, which aim at modeling various
types of information. For example, Wan and Xiao
(2008) proposed a model that incorporates a local

1105

https://doi.org/10.18653/v1/P17-1102

Factorizing Personalized Markov Chains for Next-Basket Recommendation
by Steffen Rendle, Christoph Freudenthaler and Lars Schmidt-Thieme
Recommender systems are an important component of many websites. Two of the most popular ap-
proaches are based on matrix factorization (MF) and Markov chains (MC). MF methods learn the
general taste of a user by factorizing the matrix over observed user-item preferences. [...] we present
a method bringing both approaches together. Our method is based on personalized transition graphs
over underlying Markov chains. [...] our factorized personalized MC (FPMC) model subsumes both
a common Markov chain and the normal matrix factorization model. [...] we introduce an adaption
of the Bayesian Personalized Ranking (BPR) framework for sequential basket data. [...]

Author-input keyphrases: Basket Recommendation, Markov Chain, Matrix Factorization

Figure 1: The title and abstract of a WWW paper by Rendle et al. (2010) and the author-input keyphrases
for the paper. Red bold phrases represent the gold-standard keyphrases for the document.

neighborhood of the target document correspond-
ing to its textually-similar documents, computed
using the cosine similarity between the tf-idf vec-
tors of documents. Liu et al. (2010) assumed a
mixture of topics over documents and proposed
to use topic models to decompose these topics in
order to select keyphrases from all major topics.
Keyphrases are then ranked by aggregating the
topic-specific scores obtained from several topic-
biased PageRanks. We posit that other information
can be leveraged that has the potential to improve
unsupervised keyphrase extraction.

For example, in a scholarly domain, keyphrases
generally occur on positions very close to the be-
ginning of a document and occur frequently. Fig-
ure 1 shows an anecdotal example illustrating this
behavior using the 2010 best paper award win-
ner in the World Wide Web conference. The au-
thor input keyphrases are marked with red bold in
the figure. Notice in this example the high fre-
quency of the keyphrase “Markov chain” that oc-
curs very early in the document (even from its ti-
tle). Hence, can we design an effective unsuper-
vised approach to keyphrase extraction by jointly
exploiting words’ position information and their
frequency in documents? We specifically address
this question using research papers as a case study.
The result of this extraction task will aid indexing
of documents in digital libraries, and hence, will
lead to improved organization, search, retrieval,
and recommendation of scientific documents. The
importance of keyphrase extraction from research
papers is also emphasized by the SemEval Shared
Tasks on this topic from 20171 and 2010 (Kim
et al., 2010). Our contributions are as follows:

1http://alt.qcri.org/semeval2017/task10/

• We propose an unsupervised graph-based
model, called PositionRank, that incorporates
information from all positions of a word’s oc-
currences into a biased PageRank to score
keywords that are later used to score and rank
keyphrases in research papers.

• We show that PositionRank that aggregates
information from all positions of a word’s oc-
currences performs better than a model that
uses only the first position of a word.

• We experimentally evaluate PositionRank on
three datasets of research papers and show
statistically significant improvements over
PageRank-based models that do not take into
account word positions, as well as over strong
baselines for keyphrase extraction.

The rest of the paper is organized as follows. We
summarize related work in the next section. Po-
sitionRank is described in Section 3. We then
present the datasets of research papers, and our
experiments and results in Section 4. Finally, we
conclude the paper in Section 5.

2 Related Work

Many supervised and unsupervised approaches to
keyphrase extraction have been proposed in the lit-
erature (Hasan and Ng, 2014).

Supervised approaches use annotated docu-
ments with “correct” keyphrases to train clas-
sifiers for discriminating keyphrases from non-
keyphrases for a document. KEA (Frank et al.,
1999) and GenEx (Turney, 2000) are two repre-
sentative supervised approaches with the most im-
portant features being the frequency and the po-
sition of a phrase in a target document. Hulth

1106

(2003) used a combination of lexical and syn-
tactic features such as the collection frequency
and the part-of-speech tag of a phrase in conjunc-
tion with a bagging technique. Nguyen and Kan
(2007) extended KEA to include features such as
the distribution of candidate phrases in different
sections of a research paper, and the acronym sta-
tus of a phrase. In a different work, Medelyan et
al. (2009) extended KEA to integrate information
from Wikipedia. Lopez and Romary (2010) used
bagged decision trees learned from a combination
of features including structural features (e.g., the
presence of a phrase in particular sections of a
document) and lexical features (e.g., the presence
of a candidate phrase in WordNet or Wikipedia).
Chuang et al. (2012) proposed a model that in-
corporates a set of statistical and linguistic fea-
tures (e.g., tf-idf, BM25, part-of-speech filters) for
identifying descriptive terms in a text. Caragea et
al. (2014a) designed features based on informa-
tion available in a document network (such as a
citation network) and used them with traditional
features in a supervised framework.

In unsupervised approaches, various measures
such as tf-idf and topic proportions are used to
score words, which are later aggregated to ob-
tain scores for phrases (Barker and Cornacchia,
2000; Zhang et al., 2007; Liu et al., 2009). The
ranking based on tf-idf has been shown to work
well in practice (Hasan and Ng, 2014, 2010), de-
spite its simplicity. Graph-based ranking meth-
ods and centrality measures are considered state-
of-the-art for unsupervised keyphrase extraction.
Mihalcea and Tarau (2004) proposed TextRank for
scoring keyphrases by applying PageRank on a
word graph built from adjacent words within a
document. Wan and Xiao (2008) extended Tex-
tRank to SingleRank by adding weighted edges
between words that co-occur in a window of vari-
able size w ≥ 2. Textually-similar neighboring
documents are included in ExpandRank (Wan and
Xiao, 2008) to compute more accurate word co-
occurrence information. Gollapalli and Caragea
(2014) extended ExpandRank to integrate infor-
mation from citation networks where papers cite
one another.

Lahiri et al. (2014) extracted keyphrases from
documents using various centrality measures such
as node degree, clustering coefficient and close-
ness. Martinez-Romo et al. (2016) used informa-
tion from WordNet to enrich the semantic relation-
ships between the words in the graph.

Several unsupervised approaches leverage word
clustering techniques such as first grouping can-
didate words into topics and then, extracting one
representative keyphrase from each topic (Liu
et al., 2009; Bougouin et al., 2013). Liu et al.
(2010) extended topic-biased PageRank (Haveli-
wala, 2003) to kephrase extraction. In particular,
they decomposed a document into multiple topics,
using topic models, and applied a separate topic-
biased PageRank for each topic. The PageRank
scores from each topic were then combined into
a single score, using as weights the topic propor-
tions returned by topic models for the document.

The best performing keyphrase extraction sys-
tem in SemEval 2010 (El-Beltagy and Rafea,
2010) used statistical observations such as term
frequencies to filter out phrases that are unlikely
to be keyphrases. More precisely, thresholding
on the frequency of phrases is applied, where the
thresholds are estimated from the data. The candi-
date phrases are then ranked using the tf-idf model
in conjunction with a boosting factor which aims
at reducing the bias towards single word terms.
Danesh et al. (2015) computed an initial weight
for each phrase based on a combination of sta-
tistical heuristics such as the tf-idf score and the
first position of a phrase in a document. Phrases
and their initial weights are then incorporated into
a graph-based algorithm which produces the final
ranking of keyphrase candidates. Le et al. (2016)
showed that the extraction of keyphrases from a
document can benefit from considering candidate
phrases with part of speech tags other than nouns
or adjectives. Adar and Datta (2015) extracted
keyphrases by mining abbreviations from scien-
tific literature and built a semantically hierarchi-
cal keyphrase database. Word embedding vectors
were also employed to measure the relatedness be-
tween words in graph based models (Wang et al.,
2014). Many of the above approaches, both su-
pervised and unsupervised, are compared and an-
alyzed in the ACL survey on keyphrase extraction
by Hasan and Ng (2014).

In contrast to the above approaches, we pro-
pose PositionRank, aimed at capturing both highly
frequent words or phrases and their position in a
document. Despite that the relative position of a
word in a document is shown to be a very effective
feature in supervised keyphrase extraction (Hulth,
2003; Zhang et al., 2007), to our knowledge, the
position information has not been used before in
unsupervised methods. The strong contribution of

1107

this paper is the design of a position-biased PageR-
ank model that successfully incorporates all posi-
tions of a word’s occurrences, which is different
from supervised models that use only the first po-
sition of a word. Our model assigns higher proba-
bilities to words found early on in a document in-
stead of using a uniform distribution over words.

3 Proposed Model

In this section, we describe PositionRank, our
fully unsupervised, graph-based model, that si-
multaneously incorporates the position of words
and their frequency in a document to compute a
biased PageRank score for each candidate word.
Graph-based ranking algorithms such as PageR-
ank (Page et al., 1998) measure the importance
of a vertex within a graph by taking into account
global information computed recursively from the
entire graph. For each word, we compute a weight
by aggregating information from all positions of
the word’s occurrences. This weight is then incor-
porated into a biased PageRank algorithm in order
to assign a different “preference” to each word.

3.1 PositionRank

The PositionRank algorithm involves three essen-
tial steps: (1) the graph construction at word level;
(2) the design of Position-Biased PageRank; and
(3) the formation of candidate phrases. These
steps are detailed below.

3.1.1 Graph Construction
Let d be a target document for extracting
keyphrases. We first apply the part-of-speech filter
using the NLP Stanford toolkit and then select as
candidate words only nouns and adjectives, simi-
lar to previous works (Mihalcea and Tarau, 2004;
Wan and Xiao, 2008). We build a word graph
G = (V,E) for d such that each unique word
that passes the part-of-speech filter corresponds
to a node in G. Two nodes vi and vj are con-
nected by an edge (vi, vj) ∈ E if the words cor-
responding to these nodes co-occur within a win-
dow of w contiguous tokens in the content of d.
The weight of an edge (vi, vj) ∈ E is computed
based on the co-occurrence count of the two words
within a window ofw successive tokens in d. Note
that the graph can be constructed both directed and
undirected. However, Mihalcea and Tarau (2004)
showed that the type of graph used to represent
the text does not significantly influence the per-

formance of keyphrase extraction. Hence, in this
work, we build undirected graphs.

3.1.2 Position-Biased PageRank
Formally, letG be an undirected graph constructed
as above and let M be its adjacency matrix. An
element mij ∈ M is set to the weight of edge
(vi, vj) if there exist an edge between nodes vi
and vj , and is set to 0 otherwise. The PageRank
score of a node vi is recursively computed by sum-
ming the normalized scores of nodes vj , which are
linked to vi (as explained below).

Let S denote the vector of PageRank scores, for
all vi ∈ V . The initial values of S are set to 1

|V | .
The PageRank score of each node at step t+1, can
then be computed recursively using:

S(t+ 1) = M̃ · S(t) (1)

where M̃ is the normalized form of matrixM with
m̃ij ∈ M̃ defined as:

m̃ij =

{
mij/

∑|V |
j=1mij if

∑|V |
j=1mij 6= 0

0 otherwise

The PageRank computation can be seen as a
Markov Chain process in which nodes represent
states and the links between them are the transi-
tions. By recursively applying Eq. (1), we ob-
tain the principal eigenvector, which represents the
stationary probability distribution of each state, in
our case of each node (Manning et al., 2008).

To ensure that the PageRank (or the random
walk) does not get stuck into cycles of the graph, a
damping factor α is added to allow the “teleport”
operation to another node in the graph. Hence, the
computation of S becomes:

S = α · M̃ · S + (1− α) · p̃ (2)

where S is the principal eigenvector and p̃ is a vec-
tor of length |V | with all elements 1

|V | . The vector
p̃ indicates that, being in a node vi, the random
walk can jump to any other node in the graph with
equal probability.

By biasing p̃, the random walk would prefer
nodes that have higher probability in the graph
(Haveliwala, 2003).

The idea of PositionRank is to assign larger
weights (or probabilities) to words that are found
early in a document and are frequent. Specifically,
we want to assign a higher probability to a word
found on the 2nd position as compared to a word

1108

found on the 50th position in the same document.
We weigh each candidate word with its inverse po-
sition in the document before any filters are ap-
plied. If the same word appears multiple times in
the target document, then we sum all its position
weights. For example, if a word is found on the
following positions: 2nd, 5th and 10th, its weight
is: 1

2 + 1
5 + 1

10 = 4
5 = 0.8. Summing up the posi-

tion weights for a given word aims to grant more
confidence to frequently occurring words by tak-
ing into account the position weight of each occur-
rence. Then, the vector p̃ is set to the normalized
weights for each candidate word as follows:

p̃ =
[

p1
p1+p2+...+p|V |

, p2
p1+p2+...+p|V |

, ...,
p|V |

p1+p2+...+p|V |

]

The PageRank score of a vertex vi, i.e., S(vi),
can be obtained in an algebraic way by recursively
computing the following equation:

S(vi) = (1− α) · p̃i + α ·
∑

vj∈Adj(vi)

wji
O(vj)

S(vj)

where O(vj) =
∑

vk∈Adj(vj)wjk and p̃i is the
weight found in the vector p̃ for vertex vi.

In our experiments, the words’ PageRank scores
are recursively computed until the difference be-
tween two consecutive iterations is less than 0.001
or a number of 100 iterations is reached.

3.1.3 Forming Candidate Phrases
Candidate words that have contiguous positions
in a document are concatenated into phrases.
We consider noun phrases that match the regu-
lar expression (adjective)*(noun)+, of length up to
three, (i.e., unigrams, bigrams, and trigrams).

Finally, phrases are scored by using the sum
of scores of individual words that comprise the
phrase (Wan and Xiao, 2008). The top-scoring
phrases are output as predictions (i.e., the pre-
dicted keyphrases for the document).

4 Experiments and Results

4.1 Datasets and Evaluation Metrics

In order to evaluate the performance of Posi-
tionRank, we carried out experiments on three
datasets. The first and second datasets were
made available by Gollapalli and Caragea (2014).2

These datasets are compiled from the CiteSeerX
digital library (Giles et al., 1998) and consist of

2http://www.cse.unt.edu/∼ccaragea/keyphrases.html

research papers from the ACM Conference on
Knowledge Discovery and Data Mining (KDD)
and the World Wide Web Conference (WWW).
The third dataset was made available by Nguyen
and Kan (2007) and consist of research papers
from various disciplines. In experiments, we
use the title and abstract of each paper to ex-
tract keyphrases. The author-input keyphrases are
used as gold-standard for evaluation. All three
datasets are summarized in Table 1, which shows
the number of papers in each dataset, the total
number of keyphrases (Kp), the average number
of keyphrases per document (AvgKp), and a brief
insight into the length and number of available
keyphrases.

Evaluation Metrics. We use mean reciprocal
rank (MRR) curves to illustrate our experimental
findings. MRR gives the averaged ranking of the
first correct prediction and is defined as:

MRR = 1
|D|
∑

d∈D
1
rd

where D is the collection of documents and rd
is the rank at which the first correct keyphrase
of document d was found. We also summarize
the results in terms of Precision, Recall, and F1-
score in a table to contrast PositionRank with pre-
vious models since these metrics are widely used
in previous works (Hulth, 2003; Wan and Xiao,
2008; Mihalcea and Tarau, 2004; Hasan and Ng,
2014). To compute “performance@k” (such as
MRR@k), we examine the top-k predictions (with
k ranging from 1 to 10). We use average k to refer
to the average number of keyphrases for a particu-
lar dataset as listed in Table 1. For example, aver-
age k = 5 for the WWW dataset. For comparison
purposes, we used Porter Stemmer to reduce both
predicted and gold keyphrases to a base form.

4.2 Results and Discussion

Our experiments are organized around several
questions, which are discussed below.

How sensitive is PositionRank to its parame-
ters? One parameter of our model that can influ-
ence its performance is the window size w, which
determines how edges are added between candi-
date words in the graph. We experimented with
values of w ranging from 2 to 10 in steps of 1 and
chose several configurations for illustration. Fig-
ure 2 shows the MRR curves of PositionRank for
different values of w, on all three datasets. As can
be seen from the figure, the performance of our
model does not change significantly as w changes.

1109

Dataset #Docs Kp AvgKp unigrams bigrams trigrams n-grams (n ≥ 4)
KDD 834 3093 3.70 810 1770 471 42
WWW 1350 6405 4.74 2254 3139 931 81
Nguyen 211 882 4.18 260 457 132 33

Table 1: A summary of our datasets.

Figure 2: MRR curves for PositionRank that uses different values for the window size.

In addition to the window size, our model has
one more parameter, i.e., the damping factor α.
In order to understand its influence on the per-
formance of PositionRank, we experimented with
several values of α, e.g., 0.75, 0.8, 0.85, 0.9, and
did not find significant differences in the perfor-
mance of PositionRank (results not shown due to
highly overlapping curves). Hence, in Equation 2,
we set α = 0.85 as in (Haveliwala, 2003).

What is the impact of aggregating information
from all positions of a word over using a word’s
first position only? In this experiment, we ana-
lyze the influence that position-weighted frequent
words in a document would have on the perfor-
mance of PositionRank. Specifically, we compare
the performance of the model that aggregates in-
formation from all positions of a word’s occur-
rences, referred as PositionRank - full model with
that of the model that uses only the first position
of a word, referred as PositionRank - fp. In the ex-
ample from the previous section, a word occurring
on positions 2nd, 5th, and 10th will have a weight
of 1

2 + 1
5 + 1

10 = 4
5 = 0.8 in the full model, and a

weight of 1
2 = 0.5 in the first position (fp) model.

Note that the weights of words are normalized be-
fore they are used in the biased PageRank.

Figure 3 shows the results of this experiment in
terms of MRR for the top k predicted keyphrases,
with k from 1 to 10, for all datasets, KDD, WWW,
and Nguyen. As we can see from the figure, the
performance of PositionRank - full model consis-
tently outperforms its counterpart that uses the first
position only, on all datasets. We can conclude

from this experiment that aggregating information
from all occurrences of a word acts as an impor-
tant component in PositionRank. Hence, we use
PositionRank - full model for further comparisons.

How well does position information aid in un-
supervised keyphrase extraction from research
papers? In this experiment, we compare our
position-biased PageRank model (PositionRank)
with two PageRank-based models, TextRank and
SingleRank, that do not make use of the position
information. In TextRank, an undirected graph is
built for each target paper, so that nodes corre-
spond to words and edges are drawn between two
words that occur next to each other in text, i.e., the
window sizew is 2. SingleRank extends TextRank
by adding edges between two words that co-occur
in a window of w ≥ 2 contiguous words in text.

Figure 4 shows the MRR curves comparing Po-
sitionRank with TextRank and SingleRank. As
can be seen from the figure, PositionRank sub-
stantially outperforms both TextRank and Sin-
gleRank on all three datasets, illustrating that the
words’ positions contain significant hints that aid
the keyphrase extraction task. PositionRank can
successfully harness this information in an unsu-
pervised setting to obtain good improvements in
the extraction performance. For example, Posi-
tionRank that uses information from all positions
of a word’s occurrences yields improvements in
MRR@average k of 17.46% for KDD, 20.18% for
WWW, and 17.03% for Nguyen over SingleRank.

How does PositionRank compare with other
existing state-of-the-art methods? In Figure 5, we

1110

Figure 3: The comparison of PositionRank that aggregates information from all positions of a word’s
occurrences (full model) with the PositionRank that uses only the first position of a word (fp).

Figure 4: MRR curves for PositionRank and two unbiased PageRank-based models that do not consider
position information.

compare PositionRank with several strong base-
lines: TF-IDF, ExpandRank, and TopicalPageR-
ank (TPR) (Hasan and Ng, 2014; Wan and Xiao,
2008; Liu et al., 2010). We selected these base-
lines based on the ACL survey on keyphrase ex-
traction by Hasan and Ng (2014). In TF-IDF,
we calculate the tf score of each candidate word
in the target document, whereas the idf compo-
nent is estimated from all three datasets. In Ex-
pandRank, we build an undirected graph from
each paper and its local textual neighborhood and
calculate the candidate words’ importance scores
using PageRank. We performed experiments with
various numbers of textually-similar neighbors
and present the best results for each dataset. In
TPR, we build an undirected graph using infor-
mation from the target paper. We then perform
topic decomposition of the target document us-
ing topic models to infer the topic distribution
of a document and to compute the probability of
words in these topics. Last, we calculate the candi-
date words’ importance scores by aggregating the
scores from several topic-biased PageRanks (one
PageRank per topic). We used the implementation
of topic models from Mallet.3 To train the topic

3http://mallet.cs.umass.edu/

model, we used a subset of about 45, 000 paper ab-
stracts extracted from the CiteSeerx scholarly big
dataset introduced by Caragea et al. (2014b). For
all models, the score of a phrase is obtained by
summing the score of the constituent words in the
phrase.

From Figure 5, we can see that PositionRank
achieves a significant increase in MRR over the
baselines, on all datasets. For example, the high-
est relative improvement in MRR@average k for
this experiment is as high as 29.09% achieved on
the Nguyen collection. Among all models com-
pared in Figure 5, ExpandRank is clearly the best
performing baseline, while TPR achieves the low-
est MRR values, on all datasets.

4.3 Overall Performance

As already mentioned, prior works on keyphrase
extraction report results also in terms of precision
(P), recall (R), and F1-score (F1) (Hulth, 2003;
Hasan and Ng, 2010; Liu et al., 2010; Wan and
Xiao, 2008). Consistent with these works, in Ta-
ble 2, we show the results of the comparison of
PositionRank with all baselines, in terms of P, R
and F1 for top k = 2, 4, 6, 8 predicted keyphrases,
on all three datasets. As can be seen from the ta-

1111

Figure 5: MRR curves for PositionRank and baselines on the three datasets.

Dataset Unsupervised Top2 Top4 Top6 Top8
method P% R% F1% P% R% F1% P% R% F1% P% R% F1%

KDD PositionRank 11.1 5.6 7.3 10.8 11.1 10.6 9.8 15.3 11.6 9.2 18.9 12.1
PositionRank-fp 10.3 5.3 6.8 10.2 10.4 10.0 9.1 13.8 10.9 8.6 17.2 11.3
TF-IDF 10.5 5.2 6.8 9.6 9.7 9.4 9.2 13.8 10.7 8.7 17.4 11.3
TextRank 8.1 4.0 5.3 8.3 8.5 8.1 8.1 12.3 9.4 7.6 15.3 9.8
SingleRank 9.1 4.6 6.0 9.3 9.4 9.0 8.7 13.1 10.1 8.1 16.4 10.6
ExpandRank 10.3 5.5 6.9 10.4 10.7 10.1 9.2 14.5 10.9 8.4 17.5 11.0
TPR 9.3 4.8 6.2 9.1 9.3 8.9 8.8 13.4 10.3 8.0 16.2 10.4

WWW PositionRank 11.3 5.3 7.0 11.3 10.5 10.5 10.8 14.9 12.1 9.9 18.1 12.3
PositionRank-fp 9.6 4.5 6.0 10.3 9.6 9.6 10.1 13.8 11.2 9.4 17.2 11.7
TF-IDF 9.5 4.5 5.9 10.0 9.3 9.3 9.6 13.3 10.7 9.1 16.8 11.4
TextRank 7.7 3.7 4.8 8.6 7.9 8.0 8.1 12.3 9.8 8.2 15.2 10.2
SingleRank 9.1 4.2 5.6 9.6 8.9 8.9 9.3 13.0 10.5 8.8 16.3 11.0
ExpandRank 10.4 5.3 6.7 10.4 10.6 10.1 9.5 14.7 11.2 8.6 17.7 11.2
TPR 8.8 4.2 5.5 9.6 8.9 8.9 9.5 13.2 10.7 9.0 16.5 11.2

Nguyen PositionRank 10.5 5.8 7.3 10.6 11.4 10.7 11.0 17.2 13.0 10.2 21.1 13.5
PositionRank-fp 10.0 5.4 6.8 10.4 11.1 10.5 11.2 17.4 13.2 10.1 21.2 13.3
TF-IDF 7.3 4.0 5.0 9.5 10.3 9.6 9.1 14.4 10.9 8.9 18.9 11.8
TextRank 6.3 3.6 4.5 7.4 7.4 7.2 7.8 11.9 9.1 7.2 14.8 9.4
SingleRank 9.0 5.2 6.4 9.5 9.9 9.4 9.2 14.5 11.0 8.9 18.3 11.6
ExpandRank 9.5 5.3 6.6 9.5 10.2 9.5 9.1 14.4 10.8 8.7 18.3 11.4
TPR 8.7 4.9 6.1 9.1 9.5 9.0 8.8 13.8 10.5 8.8 18.0 11.5

Table 2: PositionRank against baselines in terms of Precision, Recall and F1-score. Best results are
shown in bold blue.

ble, PositionRank outperforms all baselines, on all
datasets. For example, on WWW at top 6 pre-
dicted keyphrases, PositionRank achieves an F1-
score of 12.1% as compared to 11.2% achieved
by ExpandRank and 10.7% achieved by both TF-
IDF and TPR. From the table, we can also see
that ExpandRank is generally the best performing
baseline on all datasets. However, it is interesting
to note that, unlike PositionRank that uses infor-
mation only from the target paper, ExpandRank
adds external information from a textually-similar
neighborhood of the target paper, and hence, is
computationally more expensive.

PositionRank-first position only (fp) typically
performs worse than PositionRank-full model, but
it still outperforms the baseline methods for most
top k predicted keyphrases, on all datasets. For
example, on Nguyen at top 4, PositionRank-fp
achieves an F1-score of 10.5% compared to the

best baseline (TF-IDF in this case), which reaches
only a score of 9.6%.

A striking observation is that PositionRank out-
performs TPR on all datasets. Compared with
our model, TPR is a very complex model, which
uses topic models to learn topics of words and
infer the topic proportion of documents. Addi-
tionally, TPR has more parameters (e.g., the num-
ber of topics) that need to be tuned separately for
each dataset. PositionRank is much less complex,
it does not require an additional dataset (e.g., to
train a topic model) and its performance is better
than that of TPR. TF-IDF and ExpandRank are the
best performing baselines, on all datasets, KDD,
WWW, and Nguyen. For example, on KDD at
k = 4, TF-IDF and ExpandRank yield an F1-score
of 9.4% and 10.1%, respectively, compared with
8.4%, 9.0% and 8.9% achieved by TextRank, Sin-
gleRank and TPR, respectively.

1112

Geographically0.274 Focused0.134 Collaborative0.142 Crawling0.165
by Weizheng Gao, Hyun Chul Lee and Yingbo Miao A collaborative0.142 crawler0.165 is a
group0.025 of crawling0.165 nodes0.033, in which each crawling0.165 node0.033 is responsible0.012

for a specific0.010 portion0.010 of the web0.015. We study the problem0.007 of collecting0.011

geographically0.274 aware0.006 pages0.018 using collaborative0.142 crawling0.165 strategies0.017. We
first propose several collaborative0.142 crawling0.165 strategies0.017 for the geographically0.274
focused0.134 crawling0.165, whose goal0.004 is to collect web0.015 pages0.018 about specified0.010

geographic0.274 locations0.003 by considering features0.005 like URL0.006 address0.005 of page0.018 [...]
More precisely, features0.005 like URL0.006 address0.005 of page0.018 and extended0.004 anchor0.004

text0.004 of link0.004 are shown to yield the best overall performance0.003 for the geographically0.274
focused0.134 crawling0.165.

Author-input keyphrases: collaborative crawling, geographically focused crawling, geographic entities

Figure 6: The title and abstract of a WWW paper by Gao et al. (2006) and the author-input keyphrases
for the paper. Bold dark red phrases represent predicted keyphrases for the document.

With a paired t-test on our results, we found that
the improvements in MRR, precision, recall, and
F1-score for PositionRank are statistically signifi-
cant (p-values < 0.05).

4.4 Anecdotal Evidence

We show anecdotal evidence using a paper by Gao
et al. (2006) that is part of the Nguyen dataset.
Figure 6 shows the title and abstract of this pa-
per together with the author-input keyphrases. We
marked in bold dark red the candidate phrases
that are predicted as keyphrases by our proposed
model (PositionRank), in black the words that
are selected as candidate phrases and in gray the
words that are filtered out based on their part-of-
speech tags or the stopwords list being used. We
show the probability (or weight) of each candidate
word in its upper right corner. These weights are
computed based on both the word’s position and
its frequency in the text. Note that our model uses
these weights to bias the PageRank algorithm to
prefer specific nodes in the graph.

As we can see from the figure, component
words of author’s keyphrases such as: “collab-
orative,” “crawling,” “focused,” and “geographi-
cally” are assigned the highest scores while can-
didates such as “performance,” “anchor,” or “fea-
tures” are assigned very low weights, making them
less likely to be chosen as keyphrases.

5 Conclusion and Future Work

We proposed a novel unsupervised graph-based al-
gorithm, called PositionRank, which incorporates
both the position of words and their frequency

in a document into a biased PageRank. To our
knowledge, we are the first to integrate the po-
sition information in novel ways in unsupervised
keyphrase extraction. Specifically, unlike super-
vised approaches that use only the first position
information, we showed that modeling the entire
distribution of positions for a word outperforms
models that use only the first position.

Our experiments on three datasets of research
papers show that our proposed model achieves bet-
ter results than strong baselines, with relative im-
provements in performance as high as 29.09%. In
the future, it would be interesting to explore the
performance of PositionRank on other types of
documents, e.g., web pages and emails.

Acknowledgments

We are grateful to Dr. C. Lee Giles for the Cite-
SeerX data that we used to create our KDD and
WWW datasets as well as to train the topic mod-
els. We very much thank our anonymous review-
ers for their constructive comments and feedback.
This research was supported by the NSF award
#1423337 to Cornelia Caragea. Any opinions,
findings, and conclusions expressed here are those
of the authors and do not necessarily reflect the
views of NSF.

References
Amjad Abu-Jbara and Dragomir Radev. 2011. Co-

herent citation-based summarization of scientific pa-
pers. In Proc. of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. pages 500–509.

1113

Eytan Adar and Srayan Datta. 2015. Building a scien-
tific concept hierarchy database (schbase). In Pro-
ceedings of the Association for Computational Lin-
guistics. pages 606–615.

Ken Barker and Nadia Cornacchia. 2000. Using noun
phrase heads to extract document keyphrases. In Ad-
vances in Artificial Intelligence. pages 40–52.

Adrien Bougouin, Florian Boudin, and Béatrice Daille.
2013. Topicrank: Graph-based topic ranking for
keyphrase extraction. In International Joint Con-
ference on Natural Language Processing (IJCNLP).
pages 543–551.

Cornelia Caragea, Florin Adrian Bulgarov, Andreea
Godea, and Sujatha Das Gollapalli. 2014a. Citation-
enhanced keyphrase extraction from research pa-
pers: A supervised approach. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing. pages 1435–1446.

Cornelia Caragea, Jian Wu, Alina Maria Ciobanu, Kyle
Williams, Juan Pablo Fernández Ramı́rez, Hung-
Hsuan Chen, Zhaohui Wu, and C. Lee Giles. 2014b.
Citeseer x : A scholarly big dataset. In Proceedings
of the 36th European Conference on Information Re-
trieval. pages 311–322.

Jason Chuang, Christopher D Manning, and Jeffrey
Heer. 2012. Without the clutter of unimportant
words: Descriptive keyphrases for text visualization.
ACM Transactions on Computer-Human Interaction
19(3):19.

Soheil Danesh, Tamara Sumner, and James H Martin.
2015. Sgrank: Combining statistical and graphical
methods to improve the state of the art in unsuper-
vised keyphrase extraction. Lexical and Computa-
tional Semantics page 117.

Samhaa R El-Beltagy and Ahmed Rafea. 2010. Kp-
miner: Participation in semeval-2. In Proceedings
of the 5th international workshop on semantic eval-
uation. Association for Computational Linguistics,
pages 190–193.

Eibe Frank, Gordon W. Paynter, Ian H. Witten,
Carl Gutwin, and Craig G. Nevill-Manning. 1999.
Domain-specific keyphrase extraction. In Proceed-
ings of the 16th International Joint Conference on
Artificial Intelligence. pages 668–673.

Weizheng Gao, Hyun Chul Lee, and Yingbo Miao.
2006. Geographically focused collaborative crawl-
ing. In Proceedings of the 15th international con-
ference on World Wide Web. ACM, pages 287–296.

C Lee Giles, Kurt D Bollacker, and Steve Lawrence.
1998. Citeseer: An automatic citation indexing sys-
tem. In Proceedings of the third ACM conference on
Digital libraries. pages 89–98.

Sujatha Das Gollapalli and Cornelia Caragea. 2014.
Extracting keyphrases from research papers using

citation networks. In Proceedings of the 28th Amer-
ican Association for Artificial Intelligence. pages
1629–1635.

Khaled M Hammouda, Diego N Matute, and Mo-
hamed S Kamel. 2005. Corephrase: Keyphrase
extraction for document clustering. In Machine
Learning and Data Mining in Pattern Recognition,
Springer, pages 265–274.

Kazi Saidul Hasan and Vincent Ng. 2010. Conundrums
in unsupervised keyphrase extraction: making sense
of the state-of-the-art. In Proceedings of the 23rd In-
ternational Conference on Computational Linguis-
tics. pages 365–373.

Kazi Saidul Hasan and Vincent Ng. 2014. Automatic
keyphrase extraction: A survey of the state of the art.
In Proceedings of the 27th International Conference
on Computational Linguistics. pages 1262–1273.

Taher H Haveliwala. 2003. Topic-sensitive pager-
ank: A context-sensitive ranking algorithm for web
search. IEEE transactions on knowledge and data
engineering pages 784–796.

Anette Hulth. 2003. Improved automatic keyword ex-
traction given more linguistic knowledge. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing. pages 216–223.

Steve Jones and Mark S. Staveley. 1999. Phrasier:
A system for interactive document retrieval using
keyphrases. In Proceedings of the 22nd Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval. pages
160–167.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2010. SemEval-2010 Task 5:
Automatic Keyphrase Extraction from Scientific Ar-
ticles. In Proceedings of the 5th International Work-
shop on Semantic Evaluation. pages 21–26.

Su Nam Kim, Olena Medelyan, Min-Yen Kan, and
Timothy Baldwin. 2013. Automatic keyphrase ex-
traction from scientific articles. Language Re-
sources and Evaluation, Springer 47(3):723–742.

Shibamouli Lahiri, Sagnik Ray Choudhury, and Cor-
nelia Caragea. 2014. Keyword and keyphrase ex-
traction using centrality measures on collocation
networks. CoRR abs/1401.6571.

Tho Thi Ngoc Le, Minh Le Nguyen, and Akira Shi-
mazu. 2016. Unsupervised keyphrase extraction:
Introducing new kinds of words to keyphrases. In
Australasian Joint Conference on Artificial Intelli-
gence. Springer, pages 665–671.

Marina Litvak and Mark Last. 2008. Graph-based
keyword extraction for single-document summa-
rization. In Proceedings of the workshop on
Multi-source Multilingual Information Extraction
and Summarization. pages 17–24.

1114

Zhiyuan Liu, Wenyi Huang, Yabin Zheng, and
Maosong Sun. 2010. Automatic keyphrase extrac-
tion via topic decomposition. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing. pages 366–376.

Zhiyuan Liu, Peng Li, Yabin Zheng, and Maosong
Sun. 2009. Clustering to find exemplar terms for
keyphrase extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing. pages 257–266.

Patrice Lopez and Laurent Romary. 2010. Humb: Au-
tomatic key term extraction from scientific articles
in grobid. In Proceedings of the 5th International
Workshop on Semantic Evaluation. Association for
Computational Linguistics, pages 248–251.

Christopher D Manning, Prabhakar Raghavan, Hinrich
Schütze, et al. 2008. Introduction to information re-
trieval, volume 1. Cambridge university press Cam-
bridge.

Juan Martinez-Romo, Lourdes Araujo, and Andres
Duque Fernandez. 2016. Semgraph: Extracting
keyphrases following a novel semantic graph-based
approach. Journal of the Association for Informa-
tion Science and Technology 67(1):71–82.

Olena Medelyan, Eibe Frank, and Ian H Witten.
2009. Human-competitive tagging using automatic
keyphrase extraction. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing. ACL, pages 1318–1327.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing. pages 404–411.

Thuy Dung Nguyen and Min-Yen Kan. 2007.
Keyphrase extraction in scientific publications. In
Asian Digital Libraries. Springer, pages 317–326.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1998. The pagerank citation rank-
ing: bringing order to the web. Technical report,
Standford Digital Library Technologies Project .

Vahed Qazvinian, Dragomir R. Radev, and Arzu-
can Özgür. 2010. Citation summarization through
keyphrase extraction. In Proceedings of the 23rd In-
ternational Conference on Computational Linguis-
tics. COLING ’10, pages 895–903.

Peter D Turney. 2000. Learning algorithms for
keyphrase extraction. Information Retrieval
2(4):303–336.

Xiaojun Wan and Jianguo Xiao. 2008. Single doc-
ument keyphrase extraction using neighborhood
knowledge. In Proceedings of the 2008 American
Association for Artificial Intelligence. pages 855–
860.

Rui Wang, Wei Liu, and Chris McDonald. 2014.
Corpus-independent generic keyphrase extraction
using word embedding vectors. In Software Engi-
neering Research Conference. page 39.

Hongyuan Zha. 2002. Generic summarization and
keyphrase extraction using mutual reinforcement
principle and sentence clustering. In Proceedings
of the 25th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval. pages 113–120.

Yongzheng Zhang, Evangelos Milios, and Nur Zincir-
Heywood. 2007. A comparative study on key phrase
extraction methods in automatic web site summa-
rization. Journal of Digital Information Manage-
ment 5(5):323.

Yongzheng Zhang, Nur Zincir-Heywood, and Evange-
los Milios. 2004. World wide web site summariza-
tion. Web Intelligence and Agent Systems 2(1):39–
53.

1115

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1116–1126
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1103

Towards an Automatic Turing Test:
Learning to Evaluate Dialogue Responses

Ryan Lowe♥∗ Michael Noseworthy♥∗ Iulian V. Serban♦

Nicolas A.-Gontier♥ Yoshua Bengio♦‡ Joelle Pineau♥‡

♥ Reasoning and Learning Lab, School of Computer Science, McGill University
♦ Montreal Institute for Learning Algorithms, Université de Montréal

‡ CIFAR Senior Fellow

Abstract

Automatically evaluating the quality of di-
alogue responses for unstructured domains
is a challenging problem. Unfortunately,
existing automatic evaluation metrics are
biased and correlate very poorly with hu-
man judgements of response quality. Yet
having an accurate automatic evaluation
procedure is crucial for dialogue research,
as it allows rapid prototyping and testing of
new models with fewer expensive human
evaluations. In response to this challenge,
we formulate automatic dialogue evalua-
tion as a learning problem. We present an
evaluation model (ADEM) that learns to pre-
dict human-like scores to input responses,
using a new dataset of human response
scores. We show that the ADEM model’s
predictions correlate significantly, and at a
level much higher than word-overlap met-
rics such as BLEU, with human judge-
ments at both the utterance and system-
level. We also show that ADEM can gener-
alize to evaluating dialogue models unseen
during training, an important step for auto-
matic dialogue evaluation.

1 Introduction

Building systems that can naturally and meaning-
fully converse with humans has been a central goal
of artificial intelligence since the formulation of
the Turing test (Turing, 1950). Research on one
type of such systems, sometimes referred to as
non-task-oriented dialogue systems, goes back to
the mid-60s with Weizenbaum’s famous program
ELIZA: a rule-based system mimicking a Roge-
rian psychotherapist by persistently either rephras-
ing statements or asking questions (Weizenbaum,

∗ Indicates equal contribution.

Context of Conversation
Speaker A: Hey, what do you want to do tonight?
Speaker B: Why don’t we go see a movie?
Model Response
Nah, let’s do something active.
Reference Response
Yeah, the film about Turing looks great!

Figure 1: Example where word-overlap scores
fail for dialogue evaluation; although the model
response is reasonable, it has no words in common
with the reference response, and thus would be
given low scores by metrics such as BLEU.

1966). Recently, there has been a surge of inter-
est towards building large-scale non-task-oriented
dialogue systems using neural networks (Sordoni
et al., 2015b; Shang et al., 2015; Vinyals and Le,
2015; Serban et al., 2016a; Li et al., 2015). These
models are trained in an end-to-end manner to op-
timize a single objective, usually the likelihood
of generating the responses from a fixed corpus.
Such models have already had a substantial im-
pact in industry, including Google’s Smart Reply
system (Kannan et al., 2016), and Microsoft’s Xi-
aoice chatbot (Markoff and Mozur, 2015), which
has over 20 million users.

One of the challenges when developing such sys-
tems is to have a good way of measuring progress,
in this case the performance of the chatbot. The
Turing test provides one solution to the evaluation
of dialogue systems, but there are limitations with
its original formulation. The test requires live hu-
man interactions, which is expensive and difficult
to scale up. Furthermore, the test requires carefully
designing the instructions to the human interlocu-
tors, in order to balance their behaviour and ex-
pectations so that different systems may be ranked
accurately by performance. Although unavoidable,
these instructions introduce bias into the evaluation
measure. The more common approach of having

1116

https://doi.org/10.18653/v1/P17-1103

humans evaluate the quality of dialogue system
responses, rather than distinguish them from hu-
man responses, induces similar drawbacks in terms
of time, expense, and lack of scalability. In the
case of chatbots designed for specific conversation
domains, it may also be difficult to find sufficient
human evaluators with appropriate background in
the topic (Lowe et al., 2015).

Despite advances in neural network-based mod-
els, evaluating the quality of dialogue responses
automatically remains a challenging and under-
studied problem in the non-task-oriented setting.
The most widely used metric for evaluating such
dialogue systems is BLEU (Papineni et al., 2002),
a metric measuring word overlaps originally devel-
oped for machine translation. However, it has been
shown that BLEU and other word-overlap metrics
are biased and correlate poorly with human judge-
ments of response quality (Liu et al., 2016). There
are many obvious cases where these metrics fail,
as they are often incapable of considering the se-
mantic similarity between responses (see Figure 1).
Despite this, many researchers still use BLEU to
evaluate their dialogue models (Ritter et al., 2011;
Sordoni et al., 2015b; Li et al., 2015; Galley et al.,
2015; Li et al., 2016a), as there are few alternatives
available that correlate with human judgements.
While human evaluation should always be used to
evaluate dialogue models, it is often too expensive
and time-consuming to do this for every model
specification (for example, for every combination
of model hyperparameters). Therefore, having an
accurate model that can evaluate dialogue response
quality automatically — what could be considered
an automatic Turing test — is critical in the quest
for building human-like dialogue agents.

To make progress towards this goal, we make
the simplifying assumption that a ‘good’ chatbot
is one whose responses are scored highly on ap-
propriateness by human evaluators. We believe
this is sufficient for making progress as current
dialogue systems often generate inappropriate re-
sponses. We also find empirically that asking
evaluators for other metrics results in either low
inter-annotator agreement, or the scores are highly
correlated with appropriateness (see supp. mate-
rial). Thus, we collect a dataset of appropriateness
scores to various dialogue responses, and we use
this dataset to train an automatic dialogue evalu-
ation model (ADEM). The model is trained in a
semi-supervised manner using a hierarchical recur-

Examples 4104
Contexts 1026
Training examples 2,872
Validation examples 616
Test examples 616
κ score (inter-annotator 0.63
correlation)

Table 1: Statistics of the dialogue response evalua-
tion dataset. Each example is in the form (context,
model response, reference response, human score).

rent neural network (RNN) to predict human scores.
We show that ADEM scores correlate significantly
with human judgement at both the utterance-level
and system-level. We also show that ADEM can of-
ten generalize to evaluating new models, whose
responses were unseen during training, making
ADEM a strong first step towards effective auto-
matic dialogue response evaluation.1

2 Data Collection

To train a model to predict human scores to dia-
logue responses, we first collect a dataset of human
judgements (scores) of Twitter responses using the
crowdsourcing platform Amazon Mechanical Turk
(AMT).2 The aim is to have accurate human scores
for a variety of conversational responses — con-
ditioned on dialogue contexts — which span the
full range of response qualities. For example, the
responses should include both relevant and irrel-
evant responses, both coherent and non-coherent
responses and so on. To achieve this variety, we use
candidate responses from several different models.
Following (Liu et al., 2016), we use the following
4 sources of candidate responses: (1) a response
selected by a TF-IDF retrieval-based model, (2) a
response selected by the Dual Encoder (DE) (Lowe
et al., 2015), (3) a response generated using the hier-
archical recurrent encoder-decoder (HRED) model
(Serban et al., 2016a), and (4) human-generated
responses. It should be noted that the human-
generated candidate responses are not the reference
responses from a fixed corpus, but novel human
responses that are different from the reference. In
addition to increasing response variety, this is nec-
essary because we want our evaluation model to
learn to compare the reference responses to the
candidate responses. We provide the details of our

1Code and trained model parameters are available online:
https://github.com/mike-n-7/ADEM.

2All data collection was conducted in accordance with the
policies of the host institutions’ ethics board.

1117

AMT experiments in the supplemental material, in-
cluding additional experiments suggesting that sev-
eral other metrics are currently unlikely to be useful
for building evaluation models. Note that, in order
to maximize the number of responses obtained with
a fixed budget, we only obtain one evaluation score
per dialogue response in the dataset.

To train evaluation models on human judge-
ments, it is crucial that we obtain scores of re-
sponses that lie near the distribution produced by
advanced models. This is why we use the Twitter
Corpus (Ritter et al., 2011), as such models are
pre-trained and readily available. Further, the set
of topics discussed is quite broad — as opposed to
the very specific Ubuntu Dialogue Corpus (Lowe
et al., 2015) — and therefore the model may also
be suited to other chit-chat domains. Finally, since
it does not require domain specific knowledge (e.g.
technical knowledge), it should be easy for AMT
workers to annotate.

3 Technical Background

3.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of
neural network with time-delayed connections be-
tween the internal units. This leads to the formation
of a hidden state ht, which is updated for every in-
put: ht = f(Whhht−1 +Wihxt), where Whh and
Wih are parameter matrices, f is a non-linear acti-
vation function such as tanh, and xt is the input at
time t. The hidden state allows for RNNs to better
model sequential data, such as language.

In this paper, we consider RNNs augmented with
long-short term memory (LSTM) units (Hochre-
iter and Schmidhuber, 1997). LSTMs add a set of
gates to the RNN that allow it to learn how much
to update the hidden state. LSTMs are one of the
most well-established methods for dealing with
the vanishing gradient problem in recurrent net-
works (Hochreiter, 1991; Bengio et al., 1994).

3.2 Word-Overlap Metrics

One of the most popular approaches for automati-
cally evaluating the quality of dialogue responses
is by computing their word overlap with the ref-
erence response. In particular, the most popular
metrics are the BLEU and METEOR scores used
for machine translation, and the ROUGE score used
for automatic summarization. While these metrics
tend to correlate with human judgements in their
target domains, they have recently been shown to

highly biased and correlate very poorly with human
judgements for dialogue response evaluation (Liu
et al., 2016). We briefly describe BLEU here, and
provide a more detailed summary of word-overlap
metrics in the supplemental material.

BLEU BLEU (Papineni et al., 2002) analyzes the
co-occurrences of n-grams in the reference and the
proposed responses. It computes the n-gram preci-
sion for the whole dataset, which is then multiplied
by a brevity penalty to penalize short translations.
For BLEU-N , N denotes the largest value of n-
grams considered (usually N = 4).

Drawbacks One of the major drawbacks of
word-overlap metrics is their failure in capturing
the semantic similarity (and other structure) be-
tween the model and reference responses when
there are few or no common words. This problem
is less critical for machine translation; since the
set of reasonable translations of a given sentence
or document is rather small, one can reasonably
infer the quality of a translated sentence by only
measuring the word-overlap between it and one (or
a few) reference translations. However, in dialogue,
the set of appropriate responses given a context is
much larger (Artstein et al., 2009); in other words,
there is a very high response diversity that is un-
likely to be captured by word-overlap comparison
to a single response.

Further, word-overlap scores are computed di-
rectly between the model and reference responses.
As such, they do not consider the context of the
conversation. While this may be a reasonable as-
sumption in machine translation, it is not the case
for dialogue; whether a model response is an ade-
quate substitute for the reference response is clearly
context-dependent. For example, the two responses
in Figure 1 are equally appropriate given the con-
text. However, if we simply change the context to:

“Have you heard of any good movies recently?”,
the model response is no longer relevant while the
reference response remains valid.

4 An Automatic Dialogue Evaluation
Model (ADEM)

To overcome the problems of evaluation with word-
overlap metrics, we aim to construct a dialogue
evaluation model that: (1) captures semantic sim-
ilarity beyond word overlap statistics, and (2) ex-
ploits both the context and the reference response
to calculate its score for the model response. We

1118

Figure 2: The ADEM model, which uses a hierarchical encoder to produce the context embedding c.

call this evaluation model ADEM.
ADEM learns distributed representations of the

context, model response, and reference response
using a hierarchical RNN encoder. Given the dia-
logue context c, reference response r, and model
response r̂, ADEM first encodes each of them into
vectors (c, r̂, and r, respectively) using the RNN
encoder. Then, ADEM computes the score using a
dot-product between the vector representations of
c, r, and r̂ in a linearly transformed space: :

score(c, r, r̂) = (cTM r̂+ rTN r̂− α)/β (1)

where M,N ∈ Rn are learned matrices initialized
to the identity, and α, β are scalar constants used to
initialize the model’s predictions in the range [1, 5].
The model is shown in Figure 2.

The matrices M and N can be interpreted as
linear projections that map the model response r̂
into the space of contexts and reference responses,
respectively. The model gives high scores to re-
sponses that have similar vector representations to
the context and reference response after this projec-
tion. The model is end-to-end differentiable; all the
parameters can be learned by backpropagation. In
our implementation, the parameters θ = {M,N}
of the model are trained to minimize the squared
error between the model predictions and the human
score, with L2-regularization:

L =
∑

i=1:K

[score(ci, ri, r̂i)− humani]2 + γ||θ||2

(2)
where γ is a scalar constant. The simplicity of our
model leads to both accurate predictions and fast
evaluation (see supp. material), which is important
to allow rapid prototyping of dialogue systems.

The hierarchical RNN encoder in our model con-
sists of two layers of RNNs (El Hihi and Bengio,
1995; Sordoni et al., 2015a). The lower-level RNN,
the utterance-level encoder, takes as input words

from the dialogue, and produces a vector output
at the end of each utterance. The context-level en-
coder takes the representation of each utterance
as input and outputs a vector representation of the
context. This hierarchical structure is useful for
incorporating information from early utterances in
the context (Serban et al., 2016a). Following pre-
vious work, we take the last hidden state of the
context-level encoder as the vector representation
of the input utterance or context. The parameters of
the RNN encoder are pretrained and are not learned
from the human scores.

An important point is that the ADEM procedure
above is not a dialogue retrieval model: the funda-
mental difference is that ADEM has access to the
reference response. Thus, ADEM can compare a
model’s response to a known good response, which
is significantly easier than inferring response qual-
ity from solely the context.

Pre-training with VHRED We would like an
evaluation model that can make accurate predic-
tions from few labeled examples, since these exam-
ples are expensive to obtain. We therefore employ
semi-supervised learning, and use a pre-training
procedure to learn the parameters of the encoder.
In particular, we train the encoder as part of a neu-
ral dialogue model; we attach a third decoder RNN
that takes the output of the encoder as input, and
train it to predict the next utterance of a dialogue
conditioned on the context.

The dialogue model we employ for pre-training
is the latent variable hierarchical recurrent encoder-
decoder (VHRED) model (Serban et al., 2016b),
shown in Figure 3. The VHRED model is an exten-
sion of the original hierarchical recurrent encoder-
decoder (HRED) model (Serban et al., 2016a) with
a turn-level stochastic latent variable. The dialogue
context is encoded into a vector using our hierarchi-
cal encoder, and the VHRED then samples a Gaus-

1119

Figure 3: The VHRED model used for pre-training. The hierarchical structure of the RNN encoder is
shown in the red box around the bottom half of the figure. After training using the VHRED procedure, the
last hidden state of the context-level encoder is used as a vector representation of the input text.

sian variable that is used to condition the decoder
(see supplemental material for further details). Af-
ter training VHRED, we use the last hidden state
of the context-level encoder, when c, r, and r̂ are
fed as input, as the vector representations for c, r,
and r̂, respectively. We use representations from
the VHRED model as it produces more diverse and
coherent responses compared to HRED.

5 Experiments

5.1 Experimental Procedure

In order to reduce the effective vocabulary size, we
use byte pair encoding (BPE) (Gage, 1994; Sen-
nrich et al., 2015), which splits each word into
sub-words or characters. We also use layer normal-
ization (Ba et al., 2016) for the hierarchical encoder,
which we found worked better at the task of dia-
logue generation than the related recurrent batch
normalization (Ioffe and Szegedy, 2015; Cooij-
mans et al., 2016). To train the VHRED model,
we employed several of the same techniques found
in (Serban et al., 2016b) and (Bowman et al., 2016):
we drop words in the decoder with a fixed rate of
25%, and we anneal the KL-divergence term lin-
early from 0 to 1 over the first 60,000 batches. We
use Adam as our optimizer (Kingma and Ba, 2014).

When training ADEM, we also employ a sub-
sampling procedure based on the model response
length. In particular, we divide the training exam-
ples into bins based on the number of words in a

response and the score of that response. We then
over-sample from bins across the same score to
ensure that ADEM does not use response length to
predict the score. This is because humans have a
tendency to give a higher rating to shorter responses
than to longer responses (Serban et al., 2016b), as
shorter responses are often more generic and thus
are more likely to be suitable to the context. Indeed,
the test set Pearson correlation between response
length and human score is 0.27.

For training VHRED, we use a context em-
bedding size of 2000. However, we found the
ADEM model learned more effectively when this
embedding size was reduced. Thus, after train-
ing VHRED, we use principal component analysis
(PCA) (Pearson, 1901) to reduce the dimensional-
ity of the context, model response, and reference
response embeddings to n. We found experimen-
tally that n = 50 provided the best performance.

When training our models, we conduct early
stopping on a separate validation set. For the eval-
uation dataset, we split the train/ validation/ test
sets such that there is no context overlap (i.e. the
contexts in the test set are unseen during training).

5.2 Results

Utterance-level correlations We first present
new utterance-level correlation results3 for existing

3We present both the Spearman correlation (computed on
ranks, depicts monotonic relationships) and Pearson correla-
tion (computed on true values, depicts linear relationships)

1120

(a) BLEU-2 (b) ROUGE (c) ADEM

Figure 4: Scatter plot showing model against human scores, for BLEU-2 and ROUGE on the full dataset,
and ADEM on the test set. We add Gaussian noise drawn from N (0, 0.3) to the integer human scores to
better visualize the density of points, at the expense of appearing less correlated.

Full dataset Test set
Metric Spearman Pearson Spearman Pearson
BLEU-2 0.039 (0.013) 0.081 (<0.001) 0.051 (0.254) 0.120 (<0.001)
BLEU-4 0.051 (0.001) 0.025 (0.113) 0.063 (0.156) 0.073 (0.103)
ROUGE 0.062 (<0.001) 0.114 (<0.001) 0.096 (0.031) 0.147 (<0.001)
METEOR 0.021 (0.189) 0.022 (0.165) 0.013 (0.745) 0.021 (0.601)
T2V 0.140 (<0.001) 0.141 (<0.001) 0.140 (<0.001) 0.141 (<0.001)
VHRED -0.035 (0.062) -0.030 (0.106) -0.091 (0.023) -0.010 (0.805)

Validation set Test set
C-ADEM 0.338 (<0.001) 0.355 (<0.001) 0.366 (<0.001) 0.363 (<0.001)
R-ADEM 0.404 (<0.001) 0.404 (<0.001) 0.352 (<0.001) 0.360 (<0.001)
ADEM (T2V) 0.252 (<0.001) 0.265 (<0.001) 0.280 (<0.001) 0.287 (<0.001)
ADEM 0.410 (<0.001) 0.418 (<0.001) 0.428 (<0.001) 0.436 (<0.001)

Table 2: Correlation between metrics and human judgements, with p-values shown in brackets. ‘ADEM

(T2V)’ indicates ADEM with tweet2vec embeddings (Dhingra et al., 2016), and ‘VHRED’ indicates the
dot product of VHRED embeddings (i.e. ADEM at initialization). C- and R-ADEM represent the ADEM

model trained to only compare the model response to the context or reference response, respectively. We
compute the baseline metric scores (top) on the full dataset to provide a more accurate estimate of their
scores (as they are not trained on a training set).

word-overlap metrics, in addition to results with
embedding baselines and ADEM, in Table 2. The
baseline metrics are evaluated on the entire dataset
of 4,104 responses to provide the most accurate
estimate of the score. 4 We measure the correlation
for ADEM on the validation and test sets, which
constitute 616 responses each.

We also conduct an analysis of the response data
from (Liu et al., 2016), where the pre-processing
is standardized by removing ‘<first speaker>’ to-
kens at the beginning of each utterance. The results
are detailed in the supplemental material. We can
observe from both this data, and the new data in
Table 2, that the correlations for the word-overlap
metrics are even lower than estimated in previous

scores.
4Note that our word-overlap correlation results in Table

2 are also lower than those presented in (Galley et al., 2015).
This is because Galley et al. measure corpus-level correlation,
i.e. correlation averaged across different subsets (of size 100)
of the data, and pre-filter for high-quality reference responses.

studies (Liu et al., 2016; Galley et al., 2015). In
particular, this is the case for BLEU-4, which has
frequently been used for dialogue response evalu-
ation (Ritter et al., 2011; Sordoni et al., 2015b; Li
et al., 2015; Galley et al., 2015; Li et al., 2016a).

We can see from Table 2 that ADEM correlates
far better with human judgement than the word-
overlap baselines. This is further illustrated by the
scatterplots in Figure 4. We also compare with
ADEM using tweet2vec embeddings (Dhingra et al.,
2016). In this case, instead of using the VHRED
pre-training method presented in Section 4, we use
off-the-shelf embeddings for c, r, and r̂, and fine-
tuneM andN on our dataset. These tweet2vec em-
beddings are computed at the character-level with
a bidirectional GRU on a Twitter dataset for hash-
tag prediction (Dhingra et al., 2016). We find that
they obtain reasonable but inferior performance
compared to using VHRED embeddings.

1121

Figure 5: Scatterplots depicting the system-level correlation results for ADEM, BLEU-2, BLEU-4,and
ROUGE on the test set. Each point represents the average scores for the responses from a dialogue model
(TFIDF, DE, HRED, human). Human scores are shown on the horizontal axis, with normalized metric
scores on the vertical axis. The ideal metric has a perfectly linear relationship.

System-level correlations We show the system-
level correlations for various metrics in Table 3,
and present it visually in Figure 5. Each point in
the scatterplots represents a dialogue model; hu-
mans give low scores to TFIDF and DE responses,
higher scores to HRED and the highest scores to
other human responses. It is clear that existing
word-overlap metrics are incapable of capturing
this relationship for even 4 models. This renders
them completely deficient for dialogue evaluation.
However, ADEM produces almost the same model
ranking as humans, achieving a significant Pearson
correlation of 0.954.5 Thus, ADEM correlates well
with humans both at the response and system level.

Generalization to previously unseen models
When ADEM is used in practice, it will take as
input responses from a new model that it has not
seen during training. Thus, it is crucial that ADEM

correlates with human judgements for new models.
We test ADEM’s generalization ability by perform-
ing a leave-one-out evaluation. For each dialogue
model that was the source of response data for
training ADEM (TF-IDF, Dual Encoder, HRED, hu-
mans), we conduct an experiment where we train
on all model responses except those from the cho-
sen model, and test only on the model that was
unseen during training.

The results are given in Table 4. We observe
that the ADEM model is able to generalize for all
models except the Dual Encoder. This is partic-
ularly surprising for the HRED model; in this
case, ADEM was trained only on responses that
were written by humans (from retrieval models
or human-generated), but is able to generalize to
responses produced by a generative neural net-
work model. When testing on the entire test set,

5For comparison, BLEU achieves a system-level correla-
tion of 0.99 on 5 models in the translation domain (Papineni
et al., 2002).

Metric Pearson
BLEU-1 -0.079 (0.921)
BLEU-2 0.308 (0.692)
BLEU-3 -0.537 (0.463)
BLEU-4 -0.536 (0.464)
ROUGE 0.268 (0.732)
ADEM 0.954 (0.046)

Table 3: System-level correlation, with the p-value
in brackets.

the model achieves comparable correlations to the
ADEM model that was trained on 25% less data
selected at random.

Qualitative Analysis To illustrate some
strengths and weaknesses of ADEM, we show
human and ADEM scores for each of the responses
to various contexts in Table 5. There are several
instances where ADEM predicts accurately: in
particular, ADEM is often very good at assigning
low scores to poor responses. This seen in the first
two contexts, where most of the responses given a
score of 1 from humans are given scores less than 2
by ADEM. The single exception in response (4) for
the second context seems somewhat appropriate
and should perhaps have been scored higher by the
human evaluator. There are also several instances
where the model assigns high scores to suitable
responses, as in the first two contexts.

One drawback we observed is that ADEM tends
to be too conservative when predicting response
scores. This is the case in the third context, where
the model assigns low scores to most of the re-
sponses that a human rated highly. This behaviour
is likely due to the squared error loss used to train
ADEM; since the model receives a large penalty for
incorrectly predicting an extreme value, it learns to
predict scores closer to the average human score.
We provide many more experiments, including in-
vestigation of evaluation speed, learning curves,
data efficiency, a failure analysis, and the primary
source of improvement over word-overlap metrics

1122

Test on full dataset Test on removed model responses
Data Removed Spearman Pearson Spearman Pearson
TF-IDF 0.406 (<0.001) 0.409 (<0.001) 0.186 (0.021) 0.196 (0.015)
Dual Encoder 0.364 (<0.001) 0.373 (<0.001) 0.026 (0.749) 0.027 (0.736)
HRED 0.393 (<0.001) 0.396 (<0.001) 0.151 (0.060) 0.148 (<0.070)
Human 0.292 (<0.001) 0.298 (<0.001) 0.216 (<0.010) 0.148 (<0.070)
Average 0.364 0.369 0.145 0.130
25% at random 0.378 (<0.001) 0.384 (<0.001) — —

Table 4: Correlation for ADEM when various model responses are removed from the training set. The
left two columns show performance on the entire test set, and the right two columns show performance
on responses only from the dialogue model not seen during training. The last row (25% at random)
corresponds to the ADEM model trained on all model responses, but with the same amount of training data
as the model above (i.e. 25% less data than the full training set).

Context Reference response Model responses Human
score

ADEM
score

photo to see my television debut go to -
some. some on <url> - hehe <url>→
it really was you? i thought ppl were rec-
ognizing someone who looked like you!
were the oysters worth the wait?

yeah it was me . haha i
’d kinda forgotten about
it it was filmed a while
ago

1) i’m not sure. i just don’t know what to do with it.
2) you heard the horsepower productions remix of lee scratch

perry’s ‘exercising’ off his ‘mighty upsetter’ album?
3) you wont chug a fuzzy peach navel
4) they were!

3
1

1
5

1.602
1.513

1.744
3.274

just beat call of duty!! → want a cookie?
→ yes!! → come get it

im in kenmore at the
moment

1) i’m gonna get a new phone some moro
2) no way man.
3) wow i just got a free pizza coupon! get yours

before theres no more! <url>
4) i’m going to go to the mall.

1
5
1

1

1.848
4.265
0.921

2.634
am i out of twitter jail yet? testing →
yeah. i posted bail → thanks. i am a
right chatter tweetbox on sundays. same
happened last sunday lol

any news on meeting
our user ? i go to the
us on friday and i don
’t want to miss anything
arranged

1) i’m not sure if i’m going to be able to get it.
2) good to see another mac user in the leadership ranks
3) awww poor baby hope u get to feeling better soon. maybe
some many work days at piedmont
4) did you tweet too much?

3
4

2
5

1.912
1.417

1.123
2.539

Table 5: Examples of scores given by the ADEM model.

in the supplemental material.

6 Related Work

Related to our approach is the literature on novel
methods for the evaluation of machine translation
systems, especially through the WMT evaluation
task (Callison-Burch et al., 2011; Machácek and
Bojar, 2014; Stanojevic et al., 2015). In particu-
lar, (Albrecht and Hwa, 2007; Gupta et al., 2015)
have proposed to evaluate machine translation sys-
tems using Regression and Tree-LSTMs respec-
tively. Their approach differs from ours as, in the
dialogue domain, we must additionally condition
our score on the context of the conversation, which
is not necessary in translation.

There has also been related work on estimating
the quality of responses in chat-oriented dialogue
systems. (DeVault et al., 2011) train an automatic
dialogue policy evaluation metric from 19 struc-
tured role-playing sessions, enriched with para-
phrases and external referee annotations. (Gandhe
and Traum, 2016) propose a semi-automatic eval-
uation metric for dialogue coherence, similar to
BLEU and ROUGE, based on ‘wizard of Oz’ type

data.6 (Xiang et al., 2014) propose a framework to
predict utterance-level problematic situations in a
dataset of Chinese dialogues using intent and sen-
timent factors. Finally, (Higashinaka et al., 2014)
train a classifier to distinguish user utterances from
system-generated utterances using various dialogue
features, such as dialogue acts, question types, and
predicate-argument structures.

Several recent approaches use hand-crafted re-
ward features to train dialogue models using rein-
forcement learning (RL). For example, (Li et al.,
2016b) use features related to ease of answering
and information flow, and (Yu et al., 2016) use
metrics related to turn-level appropriateness and
conversational depth. These metrics are based on
hand-crafted features, which only capture a small
set of relevant aspects; this inevitably leads to sub-
optimal performance, and it is unclear whether such
objectives are preferable over retrieval-based cross-
entropy or word-level maximum log-likelihood ob-
jectives. Furthermore, many of these metrics are
computed at the conversation-level, and are not
available for evaluating single dialogue responses.

6In ‘wizard of Oz’ scenarios, humans play the role of the
dialogue system, usually unbeknown to the interlocutors.

1123

The metrics that can be computed at the response-
level could be incorporated into our framework, for
example by adding a term to equation 1 consisting
of a dot product between these features and a vector
of learned parameters.

There has been significant work on evaluation
methods for task-oriented dialogue systems, which
attempt to solve a user’s task such as finding a
restaurant. These methods include the PARADISE
framework (Walker et al., 1997) and MeMo (Möller
et al., 2006), which consider a task completion
signal. PARADISE in particular is perhaps the
first work on learning an automatic evaluation func-
tion for dialogue, accomplished through linear re-
gression. However, PARADISE requires that one
can measure task completion and task complexity,
which are not available in our setting.

7 Discussion

We use the Twitter Corpus to train our models as it
contains a broad range of non-task-oriented conver-
sations and it has been used to train many state-of-
the-art models. However, our model could easily
be extended to other general-purpose datasets, such
as Reddit, once similar pre-trained models become
publicly available. Such models are necessary even
for creating a test set in a new domain, which will
help us determine if ADEM generalizes to related di-
alogue domains. We leave investigating the domain
transfer ability of ADEM for future work.

The evaluation model proposed in this paper
favours dialogue models that generate responses
that are rated as highly appropriate by humans. It is
likely that this property does not fully capture the
desired end-goal of chatbot systems. For example,
one issue with building models to approximate hu-
man judgements of response quality is the problem
of generic responses. Since humans often provide
high scores to generic responses due to their appro-
priateness for many given contexts (Shang et al.,
2016), a model trained to predict these scores will
exhibit the same behaviour. An important direc-
tion for future work is modifying ADEM such that
it is not subject to this bias. This could be done,
for example, by censoring ADEM’s representations
(Edwards and Storkey, 2016) such that they do
not contain any information about length. Alterna-
tively, one can combine this with an adversarial
evaluation model (Kannan and Vinyals, 2017; Li
et al., 2017) that assigns a score based on how easy
it is to distinguish the dialogue model responses

from human responses. In this case, a model that
generates generic responses will easily be distin-
guishable and obtain a low score.

An important direction of future research is
building models that can evaluate the capability of
a dialogue system to have an engaging and mean-
ingful interaction with a human. Compared to eval-
uating a single response, this evaluation is arguably
closer to the end-goal of chatbots. However, such
an evaluation is extremely challenging to do in a
completely automatic way. We view the evaluation
procedure presented in this paper as an important
step towards this goal; current dialogue systems are
incapable of generating responses that are rated as
highly appropriate by humans, and we believe our
evaluation model will be useful for measuring and
facilitating progress in this direction.

References
Joshua Albrecht and Rebecca Hwa. 2007. Regression

for sentence-level mt evaluation with pseudo refer-
ences. In ACL.

Ron Artstein, Sudeep Gandhe, Jillian Gerten, Anton
Leuski, and David Traum. 2009. Semi-formal eval-
uation of conversational characters. In Languages:
From Formal to Natural, Springer, pages 22–35.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450 .

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks 5(2):157–166.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. COLING .

Chris Callison-Burch, Philipp Koehn, Christof Monz,
and Omar F Zaidan. 2011. Findings of the 2011
workshop on statistical machine translation. In Pro-
ceedings of the Sixth Workshop on Statistical Ma-
chine Translation. Association for Computational
Linguistics, pages 22–64.

Tim Cooijmans, Nicolas Ballas, César Laurent, and
Aaron Courville. 2016. Recurrent batch normaliza-
tion. arXiv preprint arXiv:1603.09025 .

David DeVault, Anton Leuski, and Kenji Sagae. 2011.
Toward learning and evaluation of dialogue policies
with text examples. In Proceedings of the SIG-
DIAL 2011 Conference. Association for Computa-
tional Linguistics, pages 39–48.

1124

Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick,
Michael Muehl, and William W Cohen. 2016.
Tweet2vec: Character-based distributed repre-
sentations for social media. arXiv preprint
arXiv:1605.03481 .

Harrison Edwards and Amos Storkey. 2016. Censoring
representations with an adversary. ICLR .

Salah El Hihi and Yoshua Bengio. 1995. Hierarchical
recurrent neural networks for long-term dependen-
cies. In NIPS. Citeseer, volume 400, page 409.

Philip Gage. 1994. A new algorithm for data compres-
sion. The C Users Journal 12(2):23–38.

Michel Galley, Chris Brockett, Alessandro Sordoni,
Yangfeng Ji, Michael Auli, Chris Quirk, Mar-
garet Mitchell, Jianfeng Gao, and Bill Dolan. 2015.
deltableu: A discriminative metric for generation
tasks with intrinsically diverse targets. arXiv
preprint arXiv:1506.06863 .

Sudeep Gandhe and David Traum. 2016. A semi-
automated evaluation metric for dialogue model
coherence. In Situated Dialog in Speech-Based
Human-Computer Interaction, Springer, pages 217–
225.

Rohit Gupta, Constantin Orasan, and Josef van Gen-
abith. 2015. Reval: A simple and effective machine
translation evaluation metric based on recurrent neu-
ral networks. In Proceedings of the 2015 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP).

Ryuichiro Higashinaka, Toyomi Meguro, Kenji Ima-
mura, Hiroaki Sugiyama, Toshiro Makino, and
Yoshihiro Matsuo. 2014. Evaluating coherence in
open domain conversational systems. In INTER-
SPEECH. pages 130–134.

Sepp Hochreiter. 1991. Untersuchungen zu dynamis-
chen neuronalen netzen. Diploma, Technische Uni-
versität München page 91.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8):1735–
1780.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint
arXiv:1502.03167 .

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias
Kaufmann, Andrew Tomkins, Balint Miklos, Greg
Corrado, László Lukács, Marina Ganea, Peter
Young, et al. 2016. Smart reply: Automated re-
sponse suggestion for email. In Proceedings of the
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD). volume 36, pages 495–
503.

Anjuli Kannan and Oriol Vinyals. 2017. Adversar-
ial evaluation of dialogue models. arXiv preprint
arXiv:1701.08198 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2015. A diversity-promoting objec-
tive function for neural conversation models. arXiv
preprint arXiv:1510.03055 .

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016a. A persona-based neural con-
versation model. arXiv preprint arXiv:1603.06155
.

Jiwei Li, Will Monroe, and Dan Jurafsky. 2017. Learn-
ing to decode for future success. arXiv preprint
arXiv:1701.06549 .

Jiwei Li, Will Monroe, Alan Ritter, and Dan Jurafsky.
2016b. Deep reinforcement learning for dialogue
generation. arXiv preprint arXiv:1606.01541 .

Chia-Wei Liu, Ryan Lowe, Iulian V Serban, Michael
Noseworthy, Laurent Charlin, and Joelle Pineau.
2016. How not to evaluate your dialogue system:
An empirical study of unsupervised evaluation met-
rics for dialogue response generation. arXiv preprint
arXiv:1603.08023 .

Ryan Lowe, Nissan Pow, Iulian Serban, and Joelle
Pineau. 2015. The ubuntu dialogue corpus: A large
dataset for research in unstructured multi-turn dia-
logue systems. arXiv preprint arXiv:1506.08909 .

Matouš Machácek and Ondrej Bojar. 2014. Results of
the wmt14 metrics shared task. In Proceedings of
the Ninth Workshop on Statistical Machine Transla-
tion. Citeseer, pages 293–301.

J. Markoff and P. Mozur. 2015. For sympathetic ear,
more chinese turn to smartphone program. NY
Times .

Sebastian Möller, Roman Englert, Klaus-Peter Engel-
brecht, Verena Vanessa Hafner, Anthony Jameson,
Antti Oulasvirta, Alexander Raake, and Norbert Re-
ithinger. 2006. Memo: towards automatic usability
evaluation of spoken dialogue services by user error
simulations. In INTERSPEECH.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 311–318.

Karl Pearson. 1901. Principal components analysis.
The London, Edinburgh and Dublin Philosophical
Magazine and Journal 6(2):566.

Alan Ritter, Colin Cherry, and William B Dolan. 2011.
Data-driven response generation in social media. In
Proceedings of the conference on empirical meth-
ods in natural language processing. Association for
Computational Linguistics, pages 583–593.

1125

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. arXiv preprint arXiv:1508.07909 .

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron Courville, and Joelle Pineau. 2016a.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models. In AAAI.
pages 3776–3784.

Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville,
and Yoshua Bengio. 2016b. A hierarchical latent
variable encoder-decoder model for generating dia-
logues. arXiv preprint arXiv:1605.06069 .

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neu-
ral responding machine for short-text conversation.
arXiv preprint arXiv:1503.02364 .

Lifeng Shang, Tetsuya Sakai, Zhengdong Lu, Hang Li,
Ryuichiro Higashinaka, and Yusuke Miyao. 2016.
Overview of the ntcir-12 short text conversation task.
Proceedings of NTCIR-12 pages 473–484.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-
Yun Nie. 2015a. A hierarchical recurrent encoder-
decoder for generative context-aware query sugges-
tion. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Man-
agement. ACM, pages 553–562.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015b.
A neural network approach to context-sensitive gen-
eration of conversational responses. arXiv preprint
arXiv:1506.06714 .

Miloš Stanojevic, Amir Kamran, Philipp Koehn, and
Ondrej Bojar. 2015. Results of the wmt15 metrics
shared task. In Proceedings of the Tenth Workshop
on Statistical Machine Translation. pages 256–273.

Alan M Turing. 1950. Computing machinery and intel-
ligence. Mind 59(236):433–460.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869 .

Marilyn A Walker, Diane J Litman, Candace A Kamm,
and Alicia Abella. 1997. Paradise: A framework for
evaluating spoken dialogue agents. In Proceedings
of the eighth conference on European chapter of the
Association for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 271–280.

J. Weizenbaum. 1966. ELIZAa computer program for
the study of natural language communication be-
tween man and machine. Communications of the
ACM 9(1):36–45.

Yang Xiang, Yaoyun Zhang, Xiaoqiang Zhou, Xiao-
long Wang, and Yang Qin. 2014. Problematic situa-
tion analysis and automatic recognition for chi-nese

online conversational system. Proc. CLP pages 43–
51.

Zhou Yu, Ziyu Xu, Alan W Black, and Alex I Rud-
nicky. 2016. Strategy and policy learning for non-
task-oriented conversational systems. In 17th An-
nual Meeting of the Special Interest Group on Dis-
course and Dialogue. page 404.

1126

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1127–1138
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1104

A Transition-Based Directed Acyclic Graph Parser for UCCA

Daniel Hershcovich1,2 Omri Abend2

1The Edmond and Lily Safra Center for Brain Sciences
2School of Computer Science and Engineering

Hebrew University of Jerusalem
{danielh,oabend,arir}@cs.huji.ac.il

Ari Rappoport2

Abstract

We present the first parser for UCCA, a
cross-linguistically applicable framework
for semantic representation, which builds
on extensive typological work and sup-
ports rapid annotation. UCCA poses a
challenge for existing parsing techniques,
as it exhibits reentrancy (resulting in DAG
structures), discontinuous structures and
non-terminal nodes corresponding to com-
plex semantic units. To our knowledge,
the conjunction of these formal properties
is not supported by any existing parser.
Our transition-based parser, which uses a
novel transition set and features based on
bidirectional LSTMs, has value not just for
UCCA parsing: its ability to handle more
general graph structures can inform the de-
velopment of parsers for other semantic
DAG structures, and in languages that fre-
quently use discontinuous structures.

1 Introduction

Universal Conceptual Cognitive Annotation
(UCCA, Abend and Rappoport, 2013) is a cross-
linguistically applicable semantic representation
scheme, building on the established Basic Lin-
guistic Theory typological framework (Dixon,
2010a,b, 2012), and Cognitive Linguistics litera-
ture (Croft and Cruse, 2004). It has demonstrated
applicability to multiple languages, including
English, French, German and Czech, support
for rapid annotation by non-experts (assisted by
an accessible annotation interface (Abend et al.,
2017)), and stability under translation (Sulem
et al., 2015). It has also proven useful for machine
translation evaluation (Birch et al., 2016). UCCA
differs from syntactic schemes in terms of content
and formal structure. It exhibits reentrancy,

discontinuous nodes and non-terminals, which no
single existing parser supports. Lacking a parser,
UCCA’s applicability has been so far limited, a
gap this work addresses.

We present the first UCCA parser, TUPA
(Transition-based UCCA Parser), building on re-
cent advances in discontinuous constituency and
dependency graph parsing, and further introduc-
ing novel transitions and features for UCCA.
Transition-based techniques are a natural starting
point for UCCA parsing, given the conceptual
similarity of UCCA’s distinctions, centered around
predicate-argument structures, to distinctions ex-
pressed by dependency schemes, and the achieve-
ments of transition-based methods in dependency
parsing (Dyer et al., 2015; Andor et al., 2016;
Kiperwasser and Goldberg, 2016). We are fur-
ther motivated by the strength of transition-based
methods in related tasks, including dependency
graph parsing (Sagae and Tsujii, 2008; Ribeyre
et al., 2014; Tokgöz and Eryiğit, 2015), con-
stituency parsing (Sagae and Lavie, 2005; Zhang
and Clark, 2009; Zhu et al., 2013; Maier, 2015;
Maier and Lichte, 2016), AMR parsing (Wang
et al., 2015a,b, 2016; Misra and Artzi, 2016;
Goodman et al., 2016; Zhou et al., 2016; Damonte
et al., 2017) and CCG parsing (Zhang and Clark,
2011; Ambati et al., 2015, 2016).

We evaluate TUPA on the English UCCA cor-
pora, including in-domain and out-of-domain set-
tings. To assess the ability of existing parsers to
tackle the task, we develop a conversion proce-
dure from UCCA to bilexical graphs and trees.
Results show superior performance for TUPA,
demonstrating the effectiveness of the presented
approach.1

The rest of the paper is structured as follows:

1All parsing and conversion code, as well as trained
parser models, are available at https://github.com/
danielhers/tupa.

1127

https://doi.org/10.18653/v1/P17-1104

Section 2 describes UCCA in more detail. Sec-
tion 3 introduces TUPA. Section 4 discusses the
data and experimental setup. Section 5 presents
the experimental results. Section 6 summarizes re-
lated work, and Section 7 concludes the paper.

2 The UCCA Scheme

UCCA graphs are labeled, directed acyclic graphs
(DAGs), whose leaves correspond to the tokens of
the text. A node (or unit) corresponds to a ter-
minal or to several terminals (not necessarily con-
tiguous) viewed as a single entity according to se-
mantic or cognitive considerations. Edges bear a
category, indicating the role of the sub-unit in the
parent relation. Figure 1 presents a few examples.

UCCA is a multi-layered representation, where
each layer corresponds to a “module” of seman-
tic distinctions. UCCA’s foundational layer, tar-
geted in this paper, covers the predicate-argument
structure evoked by predicates of all grammatical
categories (verbal, nominal, adjectival and others),
the inter-relations between them, and other ma-
jor linguistic phenomena such as coordination and
multi-word expressions. The layer’s basic notion
is the scene, describing a state, action, movement
or some other relation that evolves in time. Each
scene contains one main relation (marked as either
a Process or a State), as well as one or more Par-
ticipants. For example, the sentence “After gradu-
ation, John moved to Paris” (Figure 1a) contains
two scenes, whose main relations are “gradua-
tion” and “moved”. “John” is a Participant in both
scenes, while “Paris” only in the latter. Further
categories account for inter-scene relations and the
internal structure of complex arguments and rela-
tions (e.g. coordination, multi-word expressions
and modification).

One incoming edge for each non-root node is
marked as primary, and the rest (mostly used for
implicit relations and arguments) as remote edges,
a distinction made by the annotator. The primary
edges thus form a tree structure, whereas the re-
mote edges enable reentrancy, forming a DAG.

While parsing technology in general, and
transition-based parsing in particular, is well-
established for syntactic parsing, UCCA has sev-
eral distinct properties that distinguish it from syn-
tactic representations, mostly UCCA’s tendency to
abstract away from syntactic detail that do not af-
fect argument structure. For instance, consider the
following examples where the concept of a scene

(a)
After

L

graduation
P

H

,
U

John

A

moved

P

to
R

Paris

C

A

H

A

(b) John

A

gave

C

everything up

C

P

A
P process
A participant
H linked scene
C center
R relator
N connector
L scene linker
U punctuation
F function unit

(c)

John

C

and

N

Mary

C

’s

F

A

trip

P

home

A

Figure 1: UCCA structures demonstrating three structural
properties exhibited by the scheme. (a) includes a remote
edge (dashed), resulting in “John” having two parents. (b)
includes a discontinuous unit (“gave ... up”). (c) includes a
coordination construction (“John and Mary”). Pre-terminal
nodes are omitted for brevity. Right: legend of edge labels.

has a different rationale from the syntactic concept
of a clause. First, non-verbal predicates in UCCA
are represented like verbal ones, such as when they
appear in copula clauses or noun phrases. Indeed,
in Figure 1a, “graduation” and “moved” are con-
sidered separate events, despite appearing in the
same clause. Second, in the same example, “John”
is marked as a (remote) Participant in the grad-
uation scene, despite not being overtly marked.
Third, consider the possessive construction in Fig-
ure 1c. While in UCCA “trip” evokes a scene in
which “John and Mary” is a Participant, a syntac-
tic scheme would analyze this phrase similarly to
“John and Mary’s shoes”.

These examples demonstrate that a UCCA
parser, and more generally semantic parsers, face
an additional level of ambiguity compared to their
syntactic counterparts (e.g., “after graduation” is
formally very similar to “after 2pm”, which does
not evoke a scene). Section 6 discusses UCCA
in the context of other semantic schemes, such as
AMR (Banarescu et al., 2013).

Alongside recent progress in dependency pars-
ing into projective trees, there is increasing inter-
est in parsing into representations with more gen-
eral structural properties (see Section 6). One such
property is reentrancy, namely the sharing of se-
mantic units between predicates. For instance, in
Figure 1a, “John” is an argument of both “gradu-

1128

ation” and “moved”, yielding a DAG rather than
a tree. A second property is discontinuity, as
in Figure 1b, where “gave up” forms a discon-
tinuous semantic unit. Discontinuities are perva-
sive, e.g., with multi-word expressions (Schnei-
der et al., 2014). Finally, unlike most depen-
dency schemes, UCCA uses non-terminal nodes
to represent units comprising more than one word.
The use of non-terminal nodes is motivated by
constructions with no clear head, including co-
ordination structures (e.g., “John and Mary” in
Figure 1c), some multi-word expressions (e.g.,
“The Haves and the Have Nots”), and preposi-
tional phrases (either the preposition or the head
noun can serve as the constituent’s head). To our
knowledge, no existing parser supports all struc-
tural properties required for UCCA parsing.

3 Transition-based UCCA Parsing

We now turn to presenting TUPA. Building on
previous work on parsing reentrancies, disconti-
nuities and non-terminal nodes, we define an ex-
tended set of transitions and features that supports
the conjunction of these properties.

Transition-based parsers (Nivre, 2003) scan the
text from start to end, and create the parse incre-
mentally by applying a transition at each step to
the parser’s state, defined using three data struc-
tures: a buffer B of tokens and nodes to be pro-
cessed, a stack S of nodes currently being pro-
cessed, and a graph G = (V,E, `) of constructed
nodes and edges, where V is the set of nodes, E
is the set of edges, and ` : E → L is the label
function, L being the set of possible labels. Some
states are marked as terminal, meaning that G is
the final output. A classifier is used at each step to
select the next transition based on features encod-
ing the parser’s current state. During training, an
oracle creates training instances for the classifier,
based on gold-standard annotations.

Transition Set. Given a sequence of tokens
w1, . . . , wn, we predict a UCCA graph G over the
sequence. Parsing starts with a single node on the
stack (an artificial root node), and the input tokens
in the buffer. Figure 2 shows the transition set.

In addition to the standard SHIFT and RE-
DUCE operations, we follow previous work in
transition-based constituency parsing (Sagae and
Lavie, 2005), adding the NODE transition for cre-
ating new non-terminal nodes. For every X ∈ L,
NODEX creates a new node on the buffer as a par-

ent of the first element on the stack, with an X-
labeled edge. LEFT-EDGEX and RIGHT-EDGEX
create a new primary X-labeled edge between the
first two elements on the stack, where the parent is
the left or the right node, respectively. As a UCCA
node may only have one incoming primary edge,
EDGE transitions are disallowed if the child node
already has an incoming primary edge. LEFT-
REMOTEX and RIGHT-REMOTEX do not have
this restriction, and the created edge is addition-
ally marked as remote. We distinguish between
these two pairs of transitions to allow the parser
to create remote edges without the possibility of
producing invalid graphs. To support the predic-
tion of multiple parents, node and edge transitions
leave the stack unchanged, as in other work on
transition-based dependency graph parsing (Sagae
and Tsujii, 2008; Ribeyre et al., 2014; Tokgöz and
Eryiğit, 2015). REDUCE pops the stack, to allow
removing a node once all its edges have been cre-
ated. To handle discontinuous nodes, SWAP pops
the second node on the stack and adds it to the top
of the buffer, as with the similarly named transi-
tion in previous work (Nivre, 2009; Maier, 2015).
Finally, FINISH pops the root node and marks the
state as terminal.

Classifier. The choice of classifier and feature
representation has been shown to play an impor-
tant role in transition-based parsing (Chen and
Manning, 2014; Andor et al., 2016; Kiperwasser
and Goldberg, 2016). To investigate the impact of
the type of transition classifier in UCCA parsing,
we experiment with three different models.

1. Starting with a simple and common choice
(e.g., Maier and Lichte, 2016), TUPASparse
uses a linear classifier with sparse features,
trained with the averaged structured perceptron
algorithm (Collins and Roark, 2004) and MIN-
UPDATE (Goldberg and Elhadad, 2011): each
feature requires a minimum number of updates
in training to be included in the model.2

2. Changing the model to a feedforward neu-
ral network with dense embedding features,
TUPAMLP (“multi-layer perceptron”), uses an
architecture similar to that of Chen and Man-
ning (2014), but with two rectified linear layers

2We also experimented with a linear model using dense
embedding features, trained with the averaged structured per-
ceptron algorithm. It performed worse than the sparse per-
ceptron model and was hence discarded.

1129

Before Transition Transition After Transition Condition
Stack Buffer Nodes Edges Stack Buffer Nodes Edges Terminal?
S x | B V E SHIFT S | x B V E −
S | x B V E REDUCE S B V E −
S | x B V E NODEX S | x y | B V ∪ {y} E ∪ {(y, x)X} − x 6= root
S | y, x B V E LEFT-EDGEX S | y, x B V E ∪ {(x, y)X} − 




x 6∈ w1:n,
y 6= root,
y 6;G x

S | x, y B V E RIGHT-EDGEX S | x, y B V E ∪ {(x, y)X} −
S | y, x B V E LEFT-REMOTEX S | y, x B V E ∪ {(x, y)∗X} −
S | x, y B V E RIGHT-REMOTEX S | x, y B V E ∪ {(x, y)∗X} −
S | x, y B V E SWAP S | y x | B V E − i(x) < i(y)
[root] ∅ V E FINISH ∅ ∅ V E +

Figure 2: The transition set of TUPA. We write the stack with its top to the right and the buffer with its head to the left. (·, ·)X
denotes a primary X-labeled edge, and (·, ·)∗X a remote X-labeled edge. i(x) is a running index for the created nodes. In
addition to the specified conditions, the prospective child in an EDGE transition must not already have a primary parent.

instead of one layer with cube activation. The
embeddings and classifier are trained jointly.

3. Finally, TUPABiLSTM uses a bidirectional
LSTM for feature representation, on top of the
dense embedding features, an architecture sim-
ilar to Kiperwasser and Goldberg (2016). The
BiLSTM runs on the input tokens in forward
and backward directions, yielding a vector rep-
resentation that is then concatenated with dense
features representing the parser state (e.g., ex-
isting edge labels and previous parser actions;
see below). This representation is then fed into
a feedforward network similar to TUPAMLP.
The feedforward layers, BiLSTM and embed-
dings are all trained jointly.

For all classifiers, inference is performed greed-
ily, i.e., without beam search. Hyperparameters
are tuned on the development set (see Section 4).

Features. TUPASparse uses binary indicator fea-
tures representing the words, POS tags, syntactic
dependency labels and existing edge labels related
to the top four stack elements and the next three
buffer elements, in addition to their children and
grandchildren in the graph. We also use bi- and
trigram features based on these values (Zhang and
Clark, 2009; Zhu et al., 2013), features related to
discontinuous nodes (Maier, 2015, including sep-
arating punctuation and gap type), features repre-
senting existing edges and the number of parents
and children, as well as the past actions taken by
the parser. In addition, we use use a novel, UCCA-
specific feature: number of remote children.3

For TUPAMLP and TUPABiLSTM, we replace all
indicator features by a concatenation of the vector
embeddings of all represented elements: words,

3See Appendix A for a full list of used feature templates.

POS tags, syntactic dependency labels, edge la-
bels, punctuation, gap type and parser actions.
These embeddings are initialized randomly. We
additionally use external word embeddings initial-
ized with pre-trained word2vec vectors (Mikolov
et al., 2013),4 updated during training. In addi-
tion to dropout between NN layers, we apply word
dropout (Kiperwasser and Goldberg, 2016): with
a certain probability, the embedding for a word is
replaced with a zero vector. We do not apply word
dropout to the external word embeddings.

Finally, for all classifiers we add a novel real-
valued feature to the input vector, ratio, corre-
sponding to the ratio between the number of ter-
minals to number of nodes in the graph G. This
feature serves as a regularizer for the creation
of new nodes, and should be beneficial for other
transition-based constituency parsers too.

Training. For training the transition classifiers,
we use a dynamic oracle (Goldberg and Nivre,
2012), i.e., an oracle that outputs a set of opti-
mal transitions: when applied to the current parser
state, the gold standard graph is reachable from the
resulting state. For example, the oracle would pre-
dict a NODE transition if the stack has on its top
a parent in the gold graph that has not been cre-
ated, but would predict a RIGHT-EDGE transition
if the second stack element is a parent of the first
element according to the gold graph and the edge
between them has not been created. The transition
predicted by the classifier is deemed correct and
is applied to the parser state to reach the subse-
quent state, if the transition is included in the set
of optimal transitions. Otherwise, a random opti-
mal transition is applied, and for the perceptron-
based parser, the classifier’s weights are updated

4https://goo.gl/6ovEhC

1130

Parser state

S

,

B

John moved to Paris .

G

After

L

graduation

P

H

Transition classifier

After

LSTM

LSTM

LSTM

LSTM

graduation

LSTM

LSTM

LSTM

LSTM

to

LSTM

LSTM

LSTM

LSTM

Paris

LSTM

LSTM

LSTM

LSTM

. . .

. . .

. . .

. . .

. . .

MLP

NODEU

Figure 3: Illustration of the TUPA model. Top: parser state
(stack, buffer and intermediate graph). Bottom: TUPABiLTSM
architecture. Vector representation for the input tokens is
computed by two layers of bidirectional LSTMs. The vectors
for specific tokens are concatenated with embedding and nu-
meric features from the parser state (for existing edge labels,
number of children, etc.), and fed into the MLP for selecting
the next transition.

according to the perceptron update rule.
POS tags and syntactic dependency labels are

extracted using spaCy (Honnibal and Johnson,
2015).5 We use the categorical cross-entropy ob-
jective function and optimize the NN classifiers
with the Adam optimizer (Kingma and Ba, 2014).

4 Experimental Setup

Data. We conduct our experiments on the
UCCA Wikipedia corpus (henceforth, Wiki), and
use the English part of the UCCA Twenty Thou-
sand Leagues Under the Sea English-French par-
allel corpus (henceforth, 20K Leagues) as out-
of-domain data.6 Table 1 presents some statis-
tics for the two corpora. We use passages of in-
dices up to 676 of the Wiki corpus as our train-
ing set, passages 688–808 as development set, and
passages 942–1028 as in-domain test set. While

5https://spacy.io
6http://cs.huji.ac.il/˜oabend/ucca.html

Wiki 20K
Train Dev Test Leagues

passages 300 34 33 154
sentences 4268 454 503 506
nodes 298,993 33,704 35,718 29,315
% terminal 42.96 43.54 42.87 42.09
% non-term. 58.33 57.60 58.35 60.01
% discont. 0.54 0.53 0.44 0.81
% reentrant 2.38 1.88 2.15 2.03
edges 287,914 32,460 34,336 27,749
% primary 98.25 98.75 98.74 97.73
% remote 1.75 1.25 1.26 2.27
Average per non-terminal node

children 1.67 1.68 1.66 1.61

Table 1: Statistics of the Wiki and 20K Leagues UCCA cor-
pora. All counts exclude the root node, implicit nodes, and
linkage nodes and edges.

UCCA edges can cross sentence boundaries, we
adhere to the common practice in semantic pars-
ing and train our parsers on individual sentences,
discarding inter-relations between them (0.18% of
the edges). We also discard linkage nodes and
edges (as they often express inter-sentence rela-
tions and are thus mostly redundant when applied
at the sentence level) as well as implicit nodes.7 In
the out-of-domain experiments, we apply the same
parsers (trained on the Wiki training set) to the 20K
Leagues corpus without parameter re-tuning.

Implementation. We use the DyNet package
(Neubig et al., 2017) for implementing the NN
classifiers. Unless otherwise noted, we use the
default values provided by the package. See Ap-
pendix C for the hyperparameter values we found
by tuning on the development set.

Evaluation. We define a simple measure for
comparing UCCA structures Gp = (Vp, Ep, `p)
and Gg = (Vg, Eg, `g), the predicted and gold-
standard graphs, respectively, over the same se-
quence of terminals W = {w1, . . . , wn}. For an
edge e = (u, v) in either graph, u being the parent
and v the child, its yield y(e) ⊆ W is the set of
terminals in W that are descendants of v. Define
the set of mutual edges between Gp and Gg:

M(Gp, Gg) =

{(e1, e2) ∈ Ep × Eg | y(e1) = y(e2) ∧ `p(e1) = `g(e2)}

Labeled precision and recall are defined by di-
viding |M(Gp, Gg)| by |Ep| and |Eg|, respec-
tively, and F-score by taking their harmonic mean.

7Appendix B further discusses linkage and implicit units.

1131

After graduation , John moved to Paris

L
U

A
A

H

R

A

John gave everything up

A
A

C

John and Mary went home

A

N

C

A

Figure 4: Bilexical graph approximation (dependency graph)
for the sentences in Figure 1.

We report two variants of this measure: one where
we consider only primary edges, and another for
remote edges (see Section 2). Performance on re-
mote edges is of pivotal importance in this inves-
tigation, which focuses on extending the class of
graphs supported by statistical parsers.

We note that the measure collapses to the stan-
dard PARSEVAL constituency evaluation measure
if Gp and Gg are trees. Punctuation is excluded
from the evaluation, but not from the datasets.

Comparison to bilexical graph parsers. As no
direct comparison with existing parsers is possi-
ble, we compare TUPA to bilexical dependency
graph parsers, which support reentrancy and dis-
continuity but not non-terminal nodes.

To facilitate the comparison, we convert our
training set into bilexical graphs (see examples in
Figure 4), train each of the parsers, and evaluate
them by applying them to the test set and then re-
constructing UCCA graphs, which are compared
with the gold standard. The conversion to bilexi-
cal graphs is done by heuristically selecting a head
terminal for each non-terminal node, and attach-
ing all terminal descendents to the head terminal.
In the inverse conversion, we traverse the bilexical
graph in topological order, creating non-terminal
parents for all terminals, and attaching them to
the previously-created non-terminals correspond-
ing to the bilexical heads.8

In Section 5 we report the upper bounds on the
achievable scores due to the error resulting from
the removal of non-terminal nodes.

Comparison to tree parsers. For completeness,
and as parsing technology is considerably more

8See Appendix D for a detailed description of the conver-
sion procedures.

After

L

graduation
P

H

,
U

John

A

moved

P

to
R

Paris

C

A

H

After graduation , John moved to Paris

L U A

H

R

A

Figure 5: Tree approximation (constituency) for the sentence
in Figure 1a (top), and bilexical tree approximation (depen-
dency) for the same sentence (bottom). These are identical to
the original graphs, apart from the removal of remote edges.

mature for tree (rather than graph) parsing, we also
perform a tree approximation experiment, con-
verting UCCA to (bilexical) trees and evaluat-
ing constituency and dependency tree parsers on
them (see examples in Figure 5). Our approach
is similar to the tree approximation approach used
for dependency graph parsing (Agić et al., 2015;
Fernández-González and Martins, 2015), where
dependency graphs were converted into depen-
dency trees and then parsed by dependency tree
parsers. In our setting, the conversion to trees con-
sists simply of removing remote edges from the
graph, and then to bilexical trees by applying the
same procedure as for bilexical graphs.

Baseline parsers. We evaluate two bilexical
graph semantic dependency parsers: DAGParser
(Ribeyre et al., 2014), the leading transition-based
parser in SemEval 2014 (Oepen et al., 2014)
and TurboParser (Almeida and Martins, 2015), a
graph-based parser from SemEval 2015 (Oepen
et al., 2015); UPARSE (Maier and Lichte, 2016),
a transition-based constituency parser supporting
discontinuous constituents; and two bilexical tree
parsers: MaltParser (Nivre et al., 2007), and the
stack LSTM-based parser of Dyer et al. (2015,
henceforce “LSTM Parser”). Default settings are
used in all cases.9 DAGParser and UPARSE use
beam search by default, with a beam size of 5 and
4 respectively. The other parsers are greedy.

5 Results

Table 2 presents our main experimental results, as
well as upper bounds for the baseline parsers, re-

9For MaltParser we use the ARCEAGER transition set and
SVM classifier. Other configurations yielded lower scores.

1132

Wiki (in-domain) 20K Leagues (out-of-domain)
Primary Remote Primary Remote

LP LR LF LP LR LF LP LR LF LP LR LF
TUPASparse 64.5 63.7 64.1 19.8 13.4 16 59.6 59.9 59.8 22.2 7.7 11.5
TUPAMLP 65.2 64.6 64.9 23.7 13.2 16.9 62.3 62.6 62.5 20.9 6.3 9.7
TUPABiLSTM 74.4 72.7 73.5 47.4 51.6 49.4 68.7 68.5 68.6 38.6 18.8 25.3
Bilexical Approximation (Dependency DAG Parsers)

Upper Bound 91 58.3 91.3 43.4

DAGParser 61.8 55.8 58.6 9.5 0.5 1 56.4 50.6 53.4 – 0 0
TurboParser 57.7 46 51.2 77.8 1.8 3.7 50.3 37.7 43.1 100 0.4 0.8
Tree Approximation (Constituency Tree Parser)

Upper Bound 100 – 100 –

UPARSE 60.9 61.2 61.1 – – – 52.7 52.8 52.8 – – –
Bilexical Tree Approximation (Dependency Tree Parsers)

Upper Bound 91 – 91.3 –

MaltParser 62.8 57.7 60.2 – – – 57.8 53 55.3 – – –
LSTM Parser 73.2 66.9 69.9 – – – 66.1 61.1 63.5 – – –

Table 2: Experimental results, in percents, on the Wiki test set (left) and the 20K Leagues set (right). Columns correspond to
labeled precision, recall and F-score, for both primary and remote edges. F-score upper bounds are reported for the conversions.
For the tree approximation experiments, only primary edges scores are reported, as they are unable to predict remote edges.
TUPABiLSTM obtains the highest F-scores in all metrics, surpassing the bilexical parsers, tree parsers and other classifiers.

flecting the error resulting from the conversion.10

DAGParser and UPARSE are most directly com-
parable to TUPASparse, as they also use a percep-
tron classifier with sparse features. TUPASparse
considerably outperforms both, where DAGParser
does not predict any remote edges in the out-of-
domain setting. TurboParser fares worse in this
comparison, despite somewhat better results on
remote edges. The LSTM parser of Dyer et al.
(2015) obtains the highest primary F-score among
the baseline parsers, with a considerable margin.

Using a feedforward NN and embedding fea-
tures, TUPAMLP obtains higher scores than
TUPASparse, but is outperformed by the LSTM
parser on primary edges. However, using bet-
ter input encoding allowing virtual look-ahead
and look-behind in the token representation,
TUPABiLSTM obtains substantially higher scores
than TUPAMLP and all other parsers, on both pri-
mary and remote edges, both in the in-domain and
out-of-domain settings. Its performance in abso-
lute terms, of 73.5% F-score on primary edges,
is encouraging in light of UCCA’s inter-annotator
agreement of 80–85% F-score on them (Abend
and Rappoport, 2013).

The parsers resulting from tree approximation
10The low upper bound for remote edges is partly due

to the removal of implicit nodes (not supported in bilexical
representations), where the whole sub-graph headed by such
nodes, often containing remote edges, must be discarded.

are unable to recover any remote edges, as these
are removed in the conversion.11 The bilexical
DAG parsers are quite limited in this respect as
well. While some of the DAG parsers’ difficulty
can be attributed to the conversion upper bound of
58.3%, this in itself cannot account for their poor
performance on remote edges, which is an order
of magnitude lower than that of TUPABiLSTM.

6 Related Work

While earlier work on anchored12 semantic pars-
ing has mostly concentrated on shallow seman-
tic analysis, focusing on semantic role labeling of
verbal argument structures, the focus has recently
shifted to parsing of more elaborate representa-
tions that account for a wider range of phenomena
(Abend and Rappoport, 2017).

Grammar-Based Parsing. Linguistically ex-
pressive grammars such as HPSG (Pollard and
Sag, 1994), CCG (Steedman, 2000) and TAG
(Joshi and Schabes, 1997) provide a theory of the
syntax-semantics interface, and have been used
as a basis for semantic parsers by defining com-

11We also experimented with a simpler version of TUPA
lacking REMOTE transitions, obtaining an increase of up to
2 labeled F-score points on primary edges, at the cost of not
being able to predict remote edges.

12By anchored we mean that the semantic representation
directly corresponds to the words and phrases of the text.

1133

positional semantics on top of them (Flickinger,
2000; Bos, 2005, among others). Depending on
the grammar and the implementation, such seman-
tic parsers can support some or all of the struc-
tural properties UCCA exhibits. Nevertheless, this
line of work differs from our approach in two im-
portant ways. First, the representations are differ-
ent. UCCA does not attempt to model the syntax-
semantics interface and is thus less coupled with
syntax. Second, while grammar-based parsers ex-
plicitly model syntax, our approach directly mod-
els the relation between tokens and semantic struc-
tures, without explicit composition rules.

Broad-Coverage Semantic Parsing. Most
closely related to this work is Broad-Coverage
Semantic Dependency Parsing (SDP), addressed
in two SemEval tasks (Oepen et al., 2014, 2015).
Like UCCA parsing, SDP addresses a wide range
of semantic phenomena, and supports discon-
tinuous units and reentrancy. In SDP, however,
bilexical dependencies are used, and a head must
be selected for every relation—even in construc-
tions that have no clear head, such as coordination
(Ivanova et al., 2012). The use of non-terminal
nodes is a simple way to avoid this liability. SDP
also differs from UCCA in the type of distinctions
it makes, which are more tightly coupled with
syntactic considerations, where UCCA aims
to capture purely semantic cross-linguistically
applicable notions. For instance, the “poss” label
in the DM target representation is used to annotate
syntactic possessive constructions, regardless of
whether they correspond to semantic ownership
(e.g., “John’s dog”) or other semantic relations,
such as marking an argument of a nominal
predicate (e.g., “John’s kick”). UCCA reflects the
difference between these constructions.

Recent interest in SDP has yielded numerous
works on graph parsing (Ribeyre et al., 2014;
Thomson et al., 2014; Almeida and Martins, 2015;
Du et al., 2015), including tree approximation
(Agić and Koller, 2014; Schluter et al., 2014) and
joint syntactic/semantic parsing (Henderson et al.,
2013; Swayamdipta et al., 2016).

Abstract Meaning Representation. Another
line of work addresses parsing into AMRs (Flani-
gan et al., 2014; Vanderwende et al., 2015; Pust
et al., 2015; Artzi et al., 2015), which, like UCCA,
abstract away from syntactic distinctions and rep-
resent meaning directly, using OntoNotes predi-

cates (Weischedel et al., 2013). Events in AMR
may also be evoked by non-verbal predicates, in-
cluding possessive constructions.

Unlike in UCCA, the alignment between AMR
concepts and the text is not explicitly marked.
While sharing much of this work’s motivation, not
anchoring the representation in the text compli-
cates the parsing task, as it requires the alignment
to be automatically (and imprecisely) detected. In-
deed, despite considerable technical effort (Flani-
gan et al., 2014; Pourdamghani et al., 2014; Wer-
ling et al., 2015), concept identification is only
about 80%–90% accurate. Furthermore, anchor-
ing allows breaking down sentences into seman-
tically meaningful sub-spans, which is useful for
many applications (Fernández-González and Mar-
tins, 2015; Birch et al., 2016).

Several transition-based AMR parsers have
been proposed: CAMR assumes syntactically
parsed input, processing dependency trees into
AMR (Wang et al., 2015a,b, 2016; Goodman et al.,
2016). In contrast, the parsers of Damonte et al.
(2017) and Zhou et al. (2016) do not require syn-
tactic pre-processing. Damonte et al. (2017) per-
form concept identification using a simple heuris-
tic selecting the most frequent graph for each to-
ken, and Zhou et al. (2016) perform concept iden-
tification and parsing jointly. UCCA parsing does
not require separately aligning the input tokens to
the graph. TUPA creates non-terminal units as
part of the parsing process.

Furthermore, existing transition-based AMR
parsers are not general DAG parsers. They are
only able to predict a subset of reentrancies and
discontinuities, as they may remove nodes before
their parents have been predicted (Damonte et al.,
2017). They are thus limited to a sub-class of
AMRs in particular, and specifically cannot pro-
duce arbitrary DAG parses. TUPA’s transition set,
on the other hand, allows general DAG parsing.13

7 Conclusion

We present TUPA, the first parser for UCCA.
Evaluated in in-domain and out-of-domain set-
tings, we show that coupled with a NN classifier
and BiLSTM feature extractor, it accurately pre-
dicts UCCA graphs from text, outperforming a va-
riety of strong baselines by a margin.

Despite the recent diversity of semantic pars-

13See Appendix E for a proof sketch for the completeness
of TUPA’s transition set.

1134

ing work, the effectiveness of different approaches
for structurally and semantically different schemes
is not well-understood (Kuhlmann and Oepen,
2016). Our contribution to this literature is a gen-
eral parser that supports multiple parents, discon-
tinuous units and non-terminal nodes.

Future work will evaluate TUPA in a multi-
lingual setting, assessing UCCA’s cross-linguistic
applicability. We will also apply the TUPA transi-
tion scheme to different target representations, in-
cluding AMR and SDP, exploring the limits of its
generality. In addition, we will explore different
conversion procedures (Kong et al., 2015) to com-
pare different representations, suggesting ways for
a data-driven design of semantic annotation.

A parser for UCCA will enable using the frame-
work for new tasks, in addition to existing ap-
plications such as machine translation evaluation
(Birch et al., 2016). We believe UCCA’s merits in
providing a cross-linguistically applicable, broad-
coverage annotation will support ongoing efforts
to incorporate deeper semantic structures into var-
ious applications, such as sentence simplification
(Narayan and Gardent, 2014) and summarization
(Liu et al., 2015).

Acknowledgments

This work was supported by the HUJI Cyber Secu-
rity Research Center in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Of-
fice, and by the Intel Collaborative Research In-
stitute for Computational Intelligence (ICRI-CI).
The first author was supported by a fellowship
from the Edmond and Lily Safra Center for Brain
Sciences. We thank Wolfgang Maier, Nathan
Schneider, Elior Sulem and the anonymous re-
viewers for their helpful comments.

References
Omri Abend and Ari Rappoport. 2013. Uni-

versal Conceptual Cognitive Annotation
(UCCA). In Proc. of ACL. pages 228–238.
http://aclweb.org/anthology/P13-1023.

Omri Abend and Ari Rappoport. 2017. The state of the
art in semantic representation. In Proc. of ACL. To
appear.

Omri Abend, Shai Yerushalmi, and Ari Rappoport.
2017. UCCAApp: Web-application for syntactic
and semantic phrase-based annotation. In Proc. of
ACL: System Demonstration Papers. To appear.

Željko Agić and Alexander Koller. 2014. Pots-
dam: Semantic dependency parsing by bidirec-
tional graph-tree transformations and syntactic pars-
ing. In Proc. of SemEval. pages 465–470.
http://aclweb.org/anthology/S14-2081.

Željko Agić, Alexander Koller, and Stephan Oepen.
2015. Semantic dependency graph parsing using
tree approximations. In Proc. of IWCS. pages 217–
227. http://aclweb.org/anthology/W15-0126.

Mariana S. C. Almeida and André F. T. Martins.
2015. Lisbon: Evaluating TurboSemanticParser
on multiple languages and out-of-domain
data. In Proc. of SemEval. pages 970–973.
http://aclweb.org/anthology/S15-2162.

Bharat Ram Ambati, Tejaswini Deoskar, Mark
Johnson, and Mark Steedman. 2015. An in-
cremental algorithm for transition-based CCG
parsing. In Proc. of NAACL. pages 53–63.
http://aclweb.org/anthology/N15-1006.

Bharat Ram Ambati, Tejaswini Deoskar, and Mark
Steedman. 2016. Shift-reduce CCG parsing using
neural network models. In Proc. of NAACL-HLT .
pages 447–453. http://aclweb.org/anthology/N16-
1052.

Daniel Andor, Chris Alberti, David Weiss, Ali-
aksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins.
2016. Globally normalized transition-based neural
networks. In Proc. of ACL. pages 2442–2452.
http://aclweb.org/anthology/P16-1231.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer.
2015. Broad-coverage CCG semantic parsing with
AMR. In Proc. of EMNLP. pages 1699–1710.
http://aclweb.org/anthology/D15-1198.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Martha Palmer, and Nathan Schneider.
2013. Abstract Meaning Representation for sem-
banking. In Proc. of the Linguistic Annotation
Workshop. http://aclweb.org/anthology/W13-2322.

Alexandra Birch, Omri Abend, Ondřej Bojar,
and Barry Haddow. 2016. HUME: Human
UCCA-based evaluation of machine transla-
tion. In Proc. of EMNLP. pages 1264–1274.
http://aclweb.org/anthology/D16-1134.

Johan Bos. 2005. Towards wide-coverage
semantic interpretation. In Proc.
of IWCS. volume 6, pages 42–53.
http://www.let.rug.nl/bos/pubs/Bos2005IWCS.pdf.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proc. of EMNLP. pages 740–750.
http://aclweb.org/anthology/D14-1082.

1135

Michael Collins and Brian Roark. 2004. In-
cremental parsing with the perceptron al-
gorithm. In Proc. of ACL. pages 111–118.
http://aclweb.org/anthology/P04-1015.

William Croft and D Alan Cruse. 2004. Cognitive lin-
guistics. Cambridge University Press.

Marco Damonte, Shay B. Cohen, and Giorgio
Satta. 2017. An incremental parser for abstract
meaning representation. In Proceedings of EACL.
http://homepages.inf.ed.ac.uk/scohen/eacl17amr.pdf.

Robert M. W. Dixon. 2010a. Basic Linguistic Theory:
Grammatical Topics, volume 2. Oxford University
Press.

Robert M. W. Dixon. 2010b. Basic Linguistic Theory:
Methodology, volume 1. Oxford University Press.

Robert M. W. Dixon. 2012. Basic Linguistic Theory:
Further Grammatical Topics, volume 3. Oxford
University Press.

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun,
and Xiaojun Wan. 2015. Peking: Build-
ing semantic dependency graphs with a hybrid
parser. In Proc. of SemEval. pages 927–931.
http://aclweb.org/anthology/S15-2154.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependeny parsing with stack long short-
term memory. In Proc. of ACL. pages 334–343.
http://aclweb.org/anthology/P15-1033.

Daniel Fernández-González and André FT Martins.
2015. Parsing as reduction. In Proc. of ACL. pages
1523–1533. http://aclweb.org/anthology/P15-1147.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. In Proc. of ACL. pages 1426–1436.
http://aclweb.org/anthology/P14-1134.

Daniel Flickinger. 2000. On building a more efficient
grammar by exploiting types. In Collaborative Lan-
guage Engineering, CLSI, Stanford, CA, volume 6,
pages 15–28.

Yoav Goldberg and Michael Elhadad. 2011. Learn-
ing sparser perceptron models. Technical report.
http://www.cs.bgu.ac.il/˜yoavg/publications.

Yoav Goldberg and Joakim Nivre. 2012. A
dynamic oracle for arc-eager dependency pars-
ing. In Proc. of COLING. pages 959–976.
http://aclweb.org/anthology/C12-1059.

James Goodman, Andreas Vlachos, and Jason Narad-
owsky. 2016. Noise reduction and targeted explo-
ration in imitation learning for Abstract Meaning
Representation parsing. In Proc. of ACL. pages 1–
11. http://aclweb.org/anthology/P16-1001.

James Henderson, Paola Merlo, Ivan Titov, and
Gabriele Musillo. 2013. Multilingual joint pars-
ing of syntactic and semantic dependencies with a
latent variable model. Computational Linguistics
39(4):949–998. http://cognet.mit.edu/node/27348.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proc. of EMNLP. pages 1373–
1378. http://aclweb.org/anthology/D15-1162.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid,
and Dan Flickinger. 2012. Who did what to
whom? A contrastive study of syntacto-semantic
dependencies. In Proc. of LAW. pages 2–11.
http://aclweb.org/anthology/W12-3602.

Aravind Joshi and Yves Schabes. 1997. Tree-
Adjoining Grammars. In Grzegorz Rozenberg and
Arto Salomaa, editors, Handbook of Formal Lan-
guages, Springer, Berlin, volume 3, pages 69–124.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg.
2016. Simple and accurate dependency
parsing using bidirectional LSTM fea-
ture representations. TACL 4:313–327.
https://transacl.org/ojs/index.php/tacl/article/view/885.

Lingpeng Kong, Alexander M. Rush, and Noah A.
Smith. 2015. Transforming dependencies into
phrase structures. In Proc. of NAACL HLT .
https://aclweb.org/anthology/N15-1080.

Marco Kuhlmann and Stephan Oepen.
2016. Towards a catalogue of linguis-
tic graph banks. Computational Linguistics
https://mn.uio.no/ifi/english/people/aca/oe/cl.pdf.

Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman
Sadeh, and Noah A. Smith. 2015. Toward ab-
stractive summarization using semantic represen-
tations. In Proc. of NAACL. pages 1077–1086.
http://aclweb.org/anthology/N15-1114.

Wolfgang Maier. 2015. Discontinuous incremental
shift-reduce parsing. In Proc. of ACL. pages 1202–
1212. http://aclweb.org/anthology/P15-1116.

Wolfgang Maier and Timm Lichte. 2016. Discontinu-
ous parsing with continuous trees. In Proc. of Work-
shop on Discontinuous Structures in NLP. pages 47–
57. http://aclweb.org/anthology/W16-0906.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781.
https://arxiv.org/pdf/1301.3781.

Dipendra K Misra and Yoav Artzi. 2016.
Neural shift-reduce CCG semantic pars-
ing. In Proc. of EMNLP. pages 1775–1786.
http://aclweb.org/anthology/D16-1183.

1136

Shashi Narayan and Claire Gardent. 2014. Hybrid
simplification using deep semantics and machine
translation. In Proc. of ACL. pages 435–445.
http://aclweb.org/anthology/P14-1041.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 https://arxiv.org/abs/1701.03980.

Joakim Nivre. 2003. An efficient algorithm for projec-
tive dependency parsing. In Proc. of IWPT . pages
149–160. http://aclweb.org/anthology/W06-2933.

Joakim Nivre. 2009. Non-projective dependency pars-
ing in expected linear time. In Proc. of ACL. pages
351–359. http://aclweb.org/anthology/P09-1040.

Joakim Nivre, Johan Hall, Jens Nilsson, Atanas
Chanev, Gülsen Eryigit, Sandra Kübler, Svetoslav
Marinov, and Erwin Marsi. 2007. MaltParser: A
language-independent system for data-driven de-
pendency parsing. Natural Language Engineering
13(02):95–135.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger,
Jan Hajič, and Zdeňka Urešová. 2015. SemEval
2015 task 18: Broad-coverage semantic dependency
parsing. In Proc. of SemEval. pages 915–926.
http://aclweb.org/anthology/S15-2153.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, An-
gelina Ivanova, and Yi Zhang. 2014. SemEval
2014 task 8: Broad-coverage semantic depen-
dency parsing. In Proc. of SemEval. pages 63–72.
http://aclweb.org/anthology/S14-2008.

Carl Pollard and Ivan Sag. 1994. Head Driven Phrase
Structure Grammar. CSLI Publications, Stan-
ford, CA.

Nima Pourdamghani, Yang Gao, Ulf Hermjakob,
and Kevin Knight. 2014. Aligning English
strings with abstract meaning representation
graphs. In Proc. of EMNLP. pages 425–429.
http://aclweb.org/anthology/D14-1048.

Michael Pust, Ulf Hermjakob, Kevin Knight,
Daniel Marcu, and Jonathan May. 2015. Pars-
ing English into abstract meaning represen-
tation using syntax-based machine transla-
tion. In Proc. of EMNLP. pages 1143–1154.
http://aclweb.org/anthology/D15-1136.

Corentin Ribeyre, Eric Villemonte de la Clergerie,
and Djamé Seddah. 2014. Alpage: Transition-
based semantic graph parsing with syntactic fea-
tures. In Proc. of SemEval. pages 97–103.
http://aclweb.org/anthology/S14-2012.

Kenji Sagae and Alon Lavie. 2005. A classifier-
based parser with linear run-time complex-
ity. In Proc. of IWPT . pages 125–132.
http://aclweb.org/anthology/W05-1513.

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-reduce de-
pendency DAG parsing. In Proc. of COLING. pages
753–760. http://aclweb.org/anthology/C08-1095.

Natalie Schluter, Anders Søgaard, Jakob Elming, Dirk
Hovy, Barbara Plank, Héctor Martı́nez Alonso,
Anders Johanssen, and Sigrid Klerke. 2014.
Copenhagen-Malmö: Tree approximations of se-
mantic parsing problems. In Proc. of SemEval.
pages 213–217. http://aclweb.org/anthology/S14-
2034.

Nathan Schneider, Emily Danchik, Chris Dyer,
and Noah A Smith. 2014. Discriminative lex-
ical semantic segmentation with gaps: run-
ning the MWE gamut. TACL 2:193–206.
http://aclweb.org/anthology/Q14-1016.pdf.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA.

Elior Sulem, Omri Abend, and Ari Rappoport.
2015. Conceptual annotations preserve struc-
ture across translations: A French-English case
study. In Proc. of S2MT . pages 11–22.
http://aclweb.org/anthology/W15-3502.

Swabha Swayamdipta, Miguel Ballesteros, Chris
Dyer, and Noah A. Smith. 2016. Greedy,
joint syntactic-semantic parsing with stack
LSTMs. In Proc. of CoNLL. pages 187–197.
http://aclweb.org/anthology/K16-1019.

Sam Thomson, Brendan O’Connor, Jeffrey Flani-
gan, David Bamman, Jesse Dodge, Swabha
Swayamdipta, Nathan Schneider, Chris Dyer,
and Noah A. Smith. 2014. CMU: Arc-
factored, discriminative semantic dependency pars-
ing. In Proc. of SemEval. pages 176–180.
http://aclweb.org/anthology/S14-2027.

Alper Tokgöz and Gülsen Eryiğit. 2015. Transition-
based dependency DAG parsing using dynamic ora-
cles. In Proc. of ACL Student Research Workshop.
pages 22–27. http://aclweb.org/anthology/P15-
3004.

Lucy Vanderwende, Arul Menezes, and Chris Quirk.
2015. An AMR parser for English, French, Ger-
man, Spanish and Japanese and a new AMR-
annotated corpus. In Proc. of NAACL. pages 26–30.
http://aclweb.org/anthology/N15-3006.

1137

Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng
Ji, and Nianwen Xue. 2016. CAMR at SemEval-
2016 task 8: An extended transition-based amr
parser. In Proc. of SemEval. pages 1173–1178.
http://aclweb.org/anthology/S16-1181.

Chuan Wang, Nianwen Xue, and Sameer Prad-
han. 2015a. Boosting transition-based AMR
parsing with refined actions and auxiliary an-
alyzers. In Proc. of ACL. pages 857–862.
http://aclweb.org/anthology/P15-2141.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015b. A transition-based algorithm for AMR
parsing. In Proc. of NAACL. pages 366–375.
http://aclweb.org/anthology/N15-1040.

Ralph Weischedel, Martha Palmer, Mitchell Mar-
cus, Eduard Hovy, Sameer Pradhan, Lance
Ramshaw, Nianwen Xue, Ann Taylor, Jeff
Kaufman, Michelle Franchini, et al. 2013.
OntoNotes release 5.0 LDC2013T19. Lin-
guistic Data Consortium, Philadelphia, PA
https://catalog.ldc.upenn.edu/LDC2013T19.

Keenon Werling, Gabor Angeli, and Christopher D.
Manning. 2015. Robust subgraph genera-
tion improves abstract meaning representation
parsing. In Proc. of ACL. pages 982–991.
http://aclweb.org/anthology/P15-1095.

Yue Zhang and Stephen Clark. 2009. Transition-based
parsing of the Chinese treebank using a global dis-
criminative model. In Proc. of IWPT . Associa-
tion for Computational Linguistics, pages 162–171.
http://aclweb.org/anthology/W09-3825.

Yue Zhang and Stephen Clark. 2011. Shift-reduce
CCG parsing. In Proc. of ACL. pages 683–692.
http://aclweb.org/anthology/P11-1069.

Junsheng Zhou, Feiyu Xu, Hans Uszkoreit,
Weiguang Qu, Ran Li, and Yanhui Gu.
2016. AMR parsing with an incremental joint
model. In Proc. of EMNLP. pages 680–689.
http://aclweb.org/anthology/D16-1065.

Muhua Zhu, Yue Zhang, Wenliang Chen, Min Zhang,
and Jingbo Zhu. 2013. Fast and accurate shift-
reduce constituent parsing. In Proc. of ACL. pages
434–443. http://aclweb.org/anthology/P13-1043.

1138

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1139–1149
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1105

Abstract Syntax Networks for Code Generation and Semantic Parsing

Maxim Rabinovich∗ Mitchell Stern∗ Dan Klein
Computer Science Division

University of California, Berkeley
{rabinovich,mitchell,klein}@cs.berkeley.edu

Abstract

Tasks like code generation and semantic
parsing require mapping unstructured (or
partially structured) inputs to well-formed,
executable outputs. We introduce ab-
stract syntax networks, a modeling frame-
work for these problems. The outputs
are represented as abstract syntax trees
(ASTs) and constructed by a decoder with
a dynamically-determined modular struc-
ture paralleling the structure of the output
tree. On the benchmark HEARTHSTONE

dataset for code generation, our model ob-
tains 79.2 BLEU and 22.7% exact match
accuracy, compared to previous state-of-
the-art values of 67.1 and 6.1%. Further-
more, we perform competitively on the
ATIS, JOBS, and GEO semantic parsing
datasets with no task-specific engineering.

1 Introduction

Tasks like semantic parsing and code generation
are challenging in part because they are struc-
tured (the output must be well-formed) but not
synchronous (the output structure diverges from
the input structure).

Sequence-to-sequence models have proven ef-
fective for both tasks (Dong and Lapata, 2016;
Ling et al., 2016), using encoder-decoder frame-
works to exploit the sequential structure on both
the input and output side. Yet these approaches
do not account for much richer structural con-
straints on outputs—including well-formedness,
well-typedness, and executability. The well-
formedness case is of particular interest, since it
can readily be enforced by representing outputs as
abstract syntax trees (ASTs) (Aho et al., 2006), an
approach that can be seen as a much lighter weight

∗Equal contribution.

name: [
’D’, ’i’, ’r’, ’e’, ’ ’,
’W’, ’o’, ’l’, ’f’, ’ ’,
’A’, ’l’, ’p’, ’h’, ’a’]

cost: [’2’]
type: [’Minion’]
rarity: [’Common’]
race: [’Beast’]
class: [’Neutral’]
description: [
’Adjacent’, ’minions’, ’have’,
’+’, ’1’, ’Attack’, ’.’]

health: [’2’]
attack: [’2’]
durability: [’-1’]

class DireWolfAlpha(MinionCard):
def __init__(self):
super().__init__(
"Dire Wolf Alpha", 2, CHARACTER_CLASS.ALL,
CARD_RARITY.COMMON, minion_type=MINION_TYPE.BEAST)

def create_minion(self, player):
return Minion(2, 2, auras=[
Aura(ChangeAttack(1), MinionSelector(Adjacent()))

])

Figure 1: Example code for the “Dire Wolf Alpha”
Hearthstone card.

show me the fare from ci0 to ci1

lambda $0 e
(exists $1 (and (from $1 ci0)

(to $1 ci1)
(= (fare $1) $0)))

Figure 2: Example of a query and its logical form
from the ATIS dataset. The ci0 and ci1 tokens
are entity abstractions introduced in preprocess-
ing (Dong and Lapata, 2016).

version of CCG-based semantic parsing (Zettle-
moyer and Collins, 2005).

In this work, we introduce abstract syntax
networks (ASNs), an extension of the standard
encoder-decoder framework utilizing a modular
decoder whose submodels are composed to na-
tively generate ASTs in a top-down manner. The
decoding process for any given input follows a dy-

1139

https://doi.org/10.18653/v1/P17-1105

namically chosen mutual recursion between the
modules, where the structure of the tree being
produced mirrors the call graph of the recursion.
We implement this process using a decoder model
built of many submodels, each associated with a
specific construct in the AST grammar and in-
voked when that construct is needed in the out-
put tree. As is common with neural approaches to
structured prediction (Chen and Manning, 2014;
Vinyals et al., 2015), our decoder proceeds greed-
ily and accesses not only a fixed encoding but
also an attention-based representation of the in-
put (Bahdanau et al., 2014).

Our model significantly outperforms previous
architectures for code generation and obtains com-
petitive or state-of-the-art results on a suite of se-
mantic parsing benchmarks. On the HEARTH-
STONE dataset for code generation, we achieve a
token BLEU score of 79.2 and an exact match ac-
curacy of 22.7%, greatly improving over the pre-
vious best results of 67.1 BLEU and 6.1% exact
match (Ling et al., 2016).

The flexibility of ASNs makes them readily ap-
plicable to other tasks with minimal adaptation.
We illustrate this point with a suite of seman-
tic parsing experiments. On the JOBS dataset,
we improve on previous state-of-the-art, achiev-
ing 92.9% exact match accuracy as compared to
the previous record of 90.7%. Likewise, we per-
form competitively on the ATIS and GEO datasets,
matching or exceeding the exact match reported
by Dong and Lapata (2016), though not quite
reaching the records held by the best previous se-
mantic parsing approaches (Wang et al., 2014).

1.1 Related work

Encoder-decoder architectures, with and without
attention, have been applied successfully both to
sequence prediction tasks like machine translation
and to tree prediction tasks like constituency pars-
ing (Cross and Huang, 2016; Dyer et al., 2016;
Vinyals et al., 2015). In the latter case, work has
focused on making the task look like sequence-to-
sequence prediction, either by flattening the output
tree (Vinyals et al., 2015) or by representing it as
a sequence of construction decisions (Cross and
Huang, 2016; Dyer et al., 2016). Our work dif-
fers from both in its use of a recursive top-down
generation procedure.

Dong and Lapata (2016) introduced a sequence-
to-sequence approach to semantic parsing, includ-

ing a limited form of top-down recursion, but
without the modularity or tight coupling between
output grammar and model characteristic of our
approach.

Neural (and probabilistic) modeling of code, in-
cluding for prediction problems, has a longer his-
tory. Allamanis et al. (2015) and Maddison and
Tarlow (2014) proposed modeling code with a
neural language model, generating concrete syn-
tax trees in left-first depth-first order, focusing on
metrics like perplexity and applications like code
snippet retrieval. More recently, Shin et al. (2017)
attacked the same problem using a grammar-based
variational autoencoder with top-down generation
similar to ours instead. Meanwhile, a separate line
of work has focused on the problem of program
induction from input-output pairs (Balog et al.,
2016; Liang et al., 2010; Menon et al., 2013).

The prediction framework most similar in spirit
to ours is the doubly-recurrent decoder network in-
troduced by Alvarez-Melis and Jaakkola (2017),
which propagates information down the tree using
a vertical LSTM and between siblings using a hor-
izontal LSTM. Our model differs from theirs in
using a separate module for each grammar con-
struct and learning separate vertical updates for
siblings when the AST labels require all siblings
to be jointly present; we do, however, use a hori-
zontal LSTM for nodes with variable numbers of
children. The differences between our models re-
flect not only design decisions, but also differences
in data—since ASTs have labeled nodes and la-
beled edges, they come with additional structure
that our model exploits.

Apart from ours, the best results on the code-
generation task associated with the HEARTH-
STONE dataset are based on a sequence-to-
sequence approach to the problem (Ling et al.,
2016). Abstract syntax networks greatly improve
on those results.

Previously, Andreas et al. (2016) introduced
neural module networks (NMNs) for visual ques-
tion answering, with modules corresponding to
linguistic substructures within the input query.
The primary purpose of the modules in NMNs is
to compute deep features of images in the style of
convolutional neural networks (CNN). These fea-
tures are then fed into a final decision layer. In
contrast to the modules we describe here, NMN
modules do not make decisions about what to gen-
erate or which modules to call next, nor do they

1140

ClassDef

identifier

Name

identifier

FunctionDef FunctionDef

“DireWolfAlpha”

“MinionCard”

identifier

“__init__”

identifier

“create_minion”

...

name
bases

body

...

(a) The root portion of the AST.

Call

identifier

“Aura”

Name

Call Call

identifier

“ChangeAttack”

Name

identifier

“MinionSelector”

Name

object

1

Num Call

identifier

“Adjacent”

Name

func

func func

args

args args

func args

(b) Excerpt from the same AST, corresponding to the code snip-
pet Aura(ChangeAttack(1),MinionSelector(Adjacent())).

Figure 3: Fragments from the abstract syntax tree corresponding to the example code in Figure 1. Blue
boxes represent composite nodes, which expand via a constructor with a prescribed set of named children.
Orange boxes represent primitive nodes, with their corresponding values written underneath. Solid black
squares correspond to constructor fields with sequential cardinality, such as the body of a class
definition (Figure 3a) or the arguments of a function call (Figure 3b).

maintain recurrent state.

2 Data Representation

2.1 Abstract Syntax Trees

Our model makes use of the Abstract Syntax
Description Language (ASDL) framework (Wang
et al., 1997), which represents code fragments as
trees with typed nodes. Primitive types correspond
to atomic values, like integers or identifiers. Ac-
cordingly, primitive nodes are annotated with a
primitive type and a value of that type—for in-
stance, in Figure 3a, the identifier node stor-
ing "create minion" represents a function of
the same name.

Composite types correspond to language con-
structs, like expressions or statements. Each type
has a collection of constructors, each of which
specifies the particular language construct a node
of that type represents. Figure 4 shows con-
structors for the statement (stmt) and expression
(expr) types. The associated language constructs
include function and class definitions, return state-
ments, binary operations, and function calls.

Composite types enter syntax trees via compos-
ite nodes, annotated with a composite type and a
choice of constructor specifying how the node ex-
pands. The root node in Figure 3a, for example, is

1The full grammar can be found online on the
documentation page for the Python ast module:
https://docs.python.org/3/library/ast.
html#abstract-grammar

primitive types: identifier, object, ...

stmt
= FunctionDef(

identifier name, arg* args, stmt* body)
| ClassDef(

identifier name, expr* bases, stmt* body)
| Return(expr? value)
| ...

expr
= BinOp(expr left, operator op, expr right)
| Call(expr func, expr* args)
| Str(string s)
| Name(identifier id, expr_context ctx)
| ...

...

Figure 4: A simplified fragment of the Python
ASDL grammar.1

a composite node of type stmt that represents a
class definition and therefore uses the ClassDef
constructor. In Figure 3b, on the other hand, the
root uses the Call constructor because it repre-
sents a function call.

Children are specified by named and typed
fields of the constructor, which have cardinalities
of singular, optional, or sequential.
By default, fields have singular cardinality,
meaning they correspond to exactly one child.
For instance, the ClassDef constructor has a
singular name field of type identifier.
Fields of optional cardinality are associ-

1141

ated with zero or one children, while fields
of sequential cardinality are associated with
zero or more children—these are designated us-
ing ? and * suffixes in the grammar, respectively.
Fields of sequential cardinality are often used
to represent statement blocks, as in the body field
of the ClassDef and FunctionDef construc-
tors.

The grammars needed for semantic parsing can
easily be given ASDL specifications as well, us-
ing primitive types to represent variables, predi-
cates, and atoms and composite types for standard
logical building blocks like lambdas and counting
(among others). Figure 2 shows what the resulting
λ-calculus trees look like. The ASDL grammars
for both λ-calculus and Prolog-style logical forms
are quite compact, as Figures 9 and 10 in the ap-
pendix show.

2.2 Input Representation

We represent inputs as collections of named com-
ponents, each of which consists of a sequence of
tokens. In the case of semantic parsing, inputs
have a single component containing the query sen-
tence. In the case of HEARTHSTONE, the card’s
name and description are represented as sequences
of characters and tokens, respectively, while cate-
gorical attributes are represented as single-token
sequences. For HEARTHSTONE, we restrict our
input and output vocabularies to values that occur
more than once in the training set.

3 Model Architecture

Our model uses an encoder-decoder architecture
with hierarchical attention. The key idea behind
our approach is to structure the decoder as a col-
lection of mutually recursive modules. The mod-
ules correspond to elements of the AST gram-
mar and are composed together in a manner that
mirrors the structure of the tree being generated.
A vertical LSTM state is passed from module to
module to propagate information during the de-
coding process.

The encoder uses bidirectional LSTMs to em-
bed each component and a feedforward network
to combine them. Component- and token-level at-
tention is applied over the input at each step of the
decoding process.

We train our model using negative log likeli-
hood as the loss function. The likelihood encom-
passes terms for all generation decisions made by

the decoder.

3.1 Encoder
Each component c of the input is encoded using a
component-specific bidirectional LSTM. This re-
sults in forward and backward token encodings
(
−→
hc,
←−
hc) that are later used by the attention mech-

anism. To obtain an encoding of the input as a
whole for decoder initialization, we concatenate
the final forward and backward encodings of each
component into a single vector and apply a linear
projection.

3.2 Decoder Modules
The decoder decomposes into several classes of
modules, one per construct in the grammar, which
we discuss in turn. Throughout, we let v de-
note the current vertical LSTM state, and use f
to represent a generic feedforward neural network.
LSTM updates with hidden state h and input x are
notated as LSTM(h,x).

Composite type modules Each composite type
T has a corresponding module whose role is to se-
lect among the constructors C for that type. As
Figure 5a exhibits, a composite type module re-
ceives a vertical LSTM state v as input and ap-
plies a feedforward network fT and a softmax out-
put layer to choose a constructor:

p (C | T,v) =
[
softmax (fT (v))

]
C
.

Control is then passed to the module associated
with constructor C.

Constructor modules Each constructor C has a
corresponding module whose role is to compute
an intermediate vertical LSTM state vu,F for each
of its fields F whenever C is chosen at a composite
node u.

For each field F of the constructor, an embed-
ding eF is concatenated with an attention-based
context vector c and fed through a feedforward
neural network fC to obtain a context-dependent
field embedding:

ẽF = fC (eF, c) .

An intermediate vertical state for the field F at
composite node u is then computed as

vu,F = LSTMv (vu, ẽF) .

Figure 5b illustrates the process, starting with a
single vertical LSTM state and ending with one
updated state per field.

1142

Assign

...

stmt
ClassDef

Return

If

For

While If

(a) A composite type module choosing a constructor for
the corresponding type.

If
test

body

orelse

expr

stmt*

stmt*

(b) A constructor module computing updated vertical
LSTM states.

stmt*

stmt

(c) A constructor field module (sequential cardinal-
ity) generating children to populate the field. At each
step, the module decides whether to generate a child and
continue (white circle) or stop (black circle).

damage

...

identifier
__init__

create_minion

add_buff

change_attack
add_buff

(d) A primitive type module choosing a value from a
closed list.

Figure 5: The module classes constituting our decoder. For brevity, we omit the cardinality modules for
singular and optional cardinalities.

Constructor field modules Each field F of a
constructor has a corresponding module whose
role is to determine the number of children asso-
ciated with that field and to propagate an updated
vertical LSTM state to them. In the case of fields
with singular cardinality, the decision and up-
date are both vacuous, as exactly one child is al-
ways generated. Hence these modules forward the
field vertical LSTM state vu,F unchanged to the
child w corresponding to F:

vw = vu,F. (1)

Fields with optional cardinality can have either
zero or one children; this choice is made using a
feedforward network applied to the vertical LSTM
state:

p(zF = 1 | vu,F) = sigmoid (fgenF (vu,F)) . (2)

If a child is to be generated, then as in (1), the state
is propagated forward without modification.

In the case of sequential fields, a horizon-
tal LSTM is employed for both child decisions and
state updates. We refer to Figure 5c for an illus-
tration of the recurrent process. After being ini-
tialized with a transformation of the vertical state,
sF,0 = WFvu,F, the horizontal LSTM iteratively

decides whether to generate another child by ap-
plying a modified form of (2):

p (zF,i = 1 | sF,i−1, vu,F) =
sigmoid (fgenF (sF,i−1, vu,F)) .

If zF,i = 0, generation stops and the process ter-
minates, as represented by the solid black circle
in Figure 5c. Otherwise, the process continues as
represented by the white circle in Figure 5c. In
that case, the horizontal state su,i−1 is combined
with the vertical state vu,F and an attention-based
context vector cF,i using a feedforward network
fupdateF to obtain a joint context-dependent encod-
ing of the field F and the position i:

ẽF,i = fupdateF (vu,F, su,i−1, cF,i).

The result is used to perform a vertical LSTM up-
date for the corresponding child wi:

vwi = LSTMv(vu,F, ẽF,i).

Finally, the horizontal LSTM state is updated us-
ing the same field-position encoding, and the pro-
cess continues:

su,i = LSTMh(su,i−1, ẽF,i).

1143

Primitive type modules Each primitive type T

has a corresponding module whose role is to se-
lect among the values y within the domain of that
type. Figure 5d presents an example of the sim-
plest form of this selection process, where the
value y is obtained from a closed list via a soft-
max layer applied to an incoming vertical LSTM
state:

p (y | T,v) =
[
softmax (fT (v))

]
y
.

Some string-valued types are open class, how-
ever. To deal with these, we allow generation both
from a closed list of previously seen values, as in
Figure 5d, and synthesis of new values. Synthesis
is delegated to a character-level LSTM language
model (Bengio et al., 2003), and part of the role
of the primitive module for open class types is to
choose whether to synthesize a new value or not.
During training, we allow the model to use the
character LSTM only for unknown strings but in-
clude the log probability of that binary decision in
the loss in order to ensure the model learns when
to generate from the character LSTM.

3.3 Decoding Process
The decoding process proceeds through mutual re-
cursion between the constituting modules, where
the syntactic structure of the output tree mirrors
the call graph of the generation procedure. At
each step, the active decoder module either makes
a generation decision, propagates state down the
tree, or both.

To construct a composite node of a given type,
the decoder calls the appropriate composite type
module to obtain a constructor and its associated
module. That module is then invoked to obtain
updated vertical LSTM states for each of the con-
structor’s fields, and the corresponding constructor
field modules are invoked to advance the process
to those children.

This process continues downward, stopping at
each primitive node, where a value is generated
but no further recursion is carried out.

3.4 Attention
Following standard practice for sequence-to-
sequence models, we compute a raw bilinear at-
tention score qrawt for each token t in the input us-
ing the decoder’s current state x and the token’s
encoding et:

qrawt = e>t Wx.

The current state x can be either the vertical
LSTM state in isolation or a concatentation of the
vertical LSTM state and either a horizontal LSTM
state or a character LSTM state (for string gener-
ation). Each submodule that computes attention
does so using a separate matrix W.

A separate attention score qcomp
c is computed

for each component of the input, independent of
its content:

qcomp
c = w>c x.

The final token-level attention scores are the
sums of the raw token-level scores and the corre-
sponding component-level scores:

qt = qrawt + qcomp
c(t) ,

where c(t) denotes the component in which token
t occurs. The attention weight vector a is then
computed using a softmax:

a = softmax (q) .

Given the weights, the attention-based context is
given by:

c =
∑

t

atet.

Certain decision points that require attention
have been highlighted in the description above;
however, in our final implementation we made
attention available to the decoder at all decision
points.

Supervised Attention In the datasets we con-
sider, partial or total copying of input tokens into
primitive nodes is quite common. Rather than pro-
viding an explicit copying mechanism (Ling et al.,
2016), we instead generate alignments where pos-
sible to define a set of tokens on which the atten-
tion at a given primitive node should be concen-
trated.2 If no matches are found, the correspond-
ing set of tokens is taken to be the whole input.

The attention supervision enters the loss
through a term that encourages the final attention
weights to be concentrated on the specified sub-
set. Formally, if the matched subset of component-
token pairs is S, the loss term associated with the
supervision would be

log
∑

t

exp (at)− log
∑

t∈S
exp (at), (3)

2Alignments are generated using an exact string match
heuristic that also included some limited normalization, pri-
marily splitting of special characters, undoing camel case,
and lemmatization for the semantic parsing datasets.

1144

where at is the attention weight associated with to-
ken t, and the sum in the first term ranges over all
tokens in the input. The loss in (3) can be inter-
preted as the negative log probability of attending
to some token in S.

4 Experimental evaluation

4.1 Semantic parsing

Data We use three semantic parsing datasets:
JOBS, GEO, and ATIS. All three consist of nat-
ural language queries paired with a logical repre-
sentation of their denotations. JOBS consists of
640 such pairs, with Prolog-style logical represen-
tations, while GEO and ATIS consist of 880 and
5,410 such pairs, respectively, with λ-calculus log-
ical forms. We use the same training-test split
as Zettlemoyer and Collins (2005) for JOBS and
GEO, and the standard training-development-test
split for ATIS. We use the preprocessed versions
of these datasets made available by Dong and La-
pata (2016), where text in the input has been low-
ercased and stemmed using NLTK (Bird et al.,
2009), and matching entities appearing in the same
input-output pair have been replaced by numbered
abstract identifiers of the same type.

Evaluation We compute accuracies using tree
exact match for evaluation. Following the pub-
licly released code of Dong and Lapata (2016), we
canonicalize the order of the children within con-
junction and disjunction nodes to avoid spurious
errors, but otherwise perform no transformations
before comparison.

4.2 Code generation

Data We use the HEARTHSTONE dataset intro-
duced by Ling et al. (2016), which consists of
665 cards paired with their implementations in the
open-source Hearthbreaker engine.3 Our training-
development-test split is identical to that of Ling
et al. (2016), with split sizes of 533, 66, and 66,
respectively.

Cards contain two kinds of components: tex-
tual components that contain the card’s name and
a description of its function, and categorical ones
that contain numerical attributes (attack, health,
cost, and durability) or enumerated attributes (rar-
ity, type, race, and class). The name of the card
is represented as a sequence of characters, while

3Available online at https://github.com/
danielyule/hearthbreaker.

its description consists of a sequence of tokens
split on whitespace and punctuation. All categori-
cal components are represented as single-token se-
quences.

Evaluation For direct comparison to the results
of Ling et al. (2016), we evaluate our predicted
code based on exact match and token-level BLEU
relative to the reference implementations from the
library. We additionally compute node-based pre-
cision, recall, and F1 scores for our predicted trees
compared to the reference code ASTs. Formally,
these scores are obtained by defining the intersec-
tion of the predicted and gold trees as their largest
common tree prefix.

4.3 Settings

For each experiment, all feedforward and LSTM
hidden dimensions are set to the same value. We
select the dimension from {30, 40, 50, 60, 70}
for the smaller JOBS and GEO datasets, or from
{50, 75, 100, 125, 150} for the larger ATIS

and HEARTHSTONE datasets. The dimensionality
used for the inputs to the encoder is set to 100 in
all cases. We apply dropout to the non-recurrent
connections of the vertical and horizontal LSTMs,
selecting the noise ratio from {0.2, 0.3, 0.4, 0.5}.
All parameters are randomly initialized using Glo-
rot initialization (Glorot and Bengio, 2010).

We perform 200 passes over the data for the
JOBS and GEO experiments, or 400 passes for
the ATIS and HEARTHSTONE experiments. Early
stopping based on exact match is used for the se-
mantic parsing experiments, where performance is
evaluated on the training set for JOBS and GEO

or on the development set for ATIS. Parameters
for the HEARTHSTONE experiments are selected
based on development BLEU scores. In order to
promote generalization, ties are broken in all cases
with a preference toward higher dropout ratios and
lower dimensionalities, in that order.

Our system is implemented in Python using
the DyNet neural network library (Neubig et al.,
2017). We use the Adam optimizer (Kingma and
Ba, 2014) with its default settings for optimiza-
tion, with a batch size of 20 for the semantic pars-
ing experiments, or a batch size of 10 for the
HEARTHSTONE experiments.

4.4 Results

Our results on the semantic parsing datasets are
presented in Table 1. Our basic system achieves

1145

ATIS GEO JOBS

System Accuracy System Accuracy System Accuracy
ZH15 84.2 ZH15 88.9 ZH15 85.0
ZC07 84.6 KCAZ13 89.0 PEK03 88.0
WKZ14 91.3 WKZ14 90.4 LJK13 90.7
DL16 84.6 DL16 87.1 DL16 90.0
ASN 85.3 ASN 85.7 ASN 91.4

+ SUPATT 85.9 + SUPATT 87.1 + SUPATT 92.9

Table 1: Accuracies for the semantic parsing tasks. ASN denotes our abstract syntax network framework.
SUPATT refers to the supervised attention mentioned in Section 3.4.

System Accuracy BLEU F1
NEAREST 3.0 65.0 65.7
LPN 6.1 67.1 –
ASN 18.2 77.6 72.4

+ SUPATT 22.7 79.2 75.6

Table 2: Results for the HEARTHSTONE task. SU-
PATT refers to the system with supervised atten-
tion mentioned in Section 3.4. LPN refers to the
system of Ling et al. (2016). Our nearest neigh-
bor baseline NEAREST follows that of Ling et al.
(2016), though it performs somewhat better; its
nonzero exact match number stems from spurious
repetition in the data.

a new state-of-the-art accuracy of 91.4% on the
JOBS dataset, and this number improves to 92.9%
when supervised attention is added. On the ATIS

and GEO datasets, we respectively exceed and
match the results of Dong and Lapata (2016).
However, these fall short of the previous best re-
sults of 91.3% and 90.4%, respectively, obtained
by Wang et al. (2014). This difference may be par-
tially attributable to the use of typing information
or rich lexicons in most previous semantic pars-
ing approaches (Zettlemoyer and Collins, 2007;
Kwiatkowski et al., 2013; Wang et al., 2014; Zhao
and Huang, 2015).

On the HEARTHSTONE dataset, we improve
significantly over the initial results of Ling et al.
(2016) across all evaluation metrics, as shown in
Table 2. On the more stringent exact match metric,
we improve from 6.1% to 18.2%, and on token-
level BLEU, we improve from 67.1 to 77.6. When
supervised attention is added, we obtain an ad-
ditional increase of several points on each scale,
achieving peak results of 22.7% accuracy and 79.2
BLEU.

class IronbarkProtector(MinionCard):
def __init__(self):
super().__init__(
’Ironbark Protector’, 8,
CHARACTER_CLASS.DRUID,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

8, 8, taunt=True)

Figure 6: Cards with minimal descriptions exhibit
a uniform structure that our system almost always
predicts correctly, as in this instance.

class ManaWyrm(MinionCard):
def __init__(self):
super().__init__(
’Mana Wyrm’, 1,
CHARACTER_CLASS.MAGE,
CARD_RARITY.COMMON)

def create_minion(self, player):
return Minion(

1, 3, effects=[
Effect(
SpellCast(),
ActionTag(
Give(ChangeAttack(1)),

SelfSelector()))
])

Figure 7: For many cards with moderately com-
plex descriptions, the implementation follows a
functional style that seems to suit our modeling
strategy, usually leading to correct predictions.

4.5 Error Analysis and Discussion

As the examples in Figures 6-8 show, classes in
the HEARTHSTONE dataset share a great deal of
common structure. As a result, in the simplest
cases, such as in Figure 6, generating the code is
simply a matter of matching the overall structure
and plugging in the correct values in the initializer
and a few other places. In such cases, our sys-
tem generally predicts the correct code, with the

1146

class MultiShot(SpellCard):
def __init__(self):

super().__init__(
’Multi-Shot’, 4,
CHARACTER_CLASS.HUNTER,
CARD_RARITY.FREE)

def use(self, player, game):
super().use(player, game)
targets = copy.copy(

game.other_player.minions)
for i in range(0, 2):
target = game.random_choice(targets)
targets.remove(target)
target.damage(
player.effective_spell_damage(3),
self)

def can_use(self, player, game):
return (
super().can_use(player, game) and
(len(game.other_player.minions) >= 2))

class MultiShot(SpellCard):
def __init__(self):
super().__init__(
’Multi-Shot’, 4,
CHARACTER_CLASS.HUNTER,
CARD_RARITY.FREE)

def use(self, player, game):
super().use(player, game)
minions = copy.copy(

game.other_player.minions)
for i in range(0, 3):

minion = game.random_choice(minions)
minions.remove(minion)

def can_use(self, player, game):
return (

super().can_use(player, game) and
len(game.other_player.minions) >= 3)

Figure 8: Cards with nontrivial logic expressed in an imperative style are the most challenging for our
system. In this example, our prediction comes close to the gold code, but misses an important statement
in addition to making a few other minor errors. (Left) gold code; (right) predicted code.

exception of instances in which strings are incor-
rectly transduced. Introducing a dedicated copy-
ing mechanism like the one used by Ling et al.
(2016) or more specialized machinery for string
transduction may alleviate this latter problem.

The next simplest category of card-code pairs
consists of those in which the card’s logic is
mostly implemented via nested function calls.
Figure 7 illustrates a typical case, in which the
card’s effect is triggered by a game event (a spell
being cast) and both the trigger and the effect are
described by arguments to an Effect construc-
tor. Our system usually also performs well on in-
stances like these, apart from idiosyncratic errors
that can take the form of under- or overgeneration
or simply substitution of incorrect predicates.

Cards whose code includes complex logic ex-
pressed in an imperative style, as in Figure 8, pose
the greatest challenge for our system. Factors like
variable naming, nontrivial control flow, and in-
terleaving of code predictable from the descrip-
tion with code required due to the conventions of
the library combine to make the code for these
cards difficult to generate. In some instances (as
in the figure), our system is nonetheless able to
synthesize a close approximation. However, in the
most complex cases, the predictions deviate sig-
nificantly from the correct implementation.

In addition to the specific errors our system
makes, some larger issues remain unresolved. Ex-
isting evaluation metrics only approximate the
actual metric of interest: functional equiva-
lence. Modifications of BLEU, tree F1, and exact

match that canonicalize the code—for example,
by anonymizing all variables—may prove more
meaningful. Direct evaluation of functional equiv-
alence is of course impossible in general (Sipser,
2006), and practically challenging even for the
HEARTHSTONE dataset because it requires inte-
grating with the game engine.

Existing work also does not attempt to enforce
semantic coherence in the output. Long-distance
semantic dependencies, between occurrences of a
single variable for example, in particular are not
modeled. Nor is well-typedness or executability.
Overcoming these evaluation and modeling issues
remains an important open problem.

5 Conclusion

ASNs provide a modular encoder-decoder archi-
tecture that can readily accommodate a variety of
tasks with structured output spaces. They are par-
ticularly applicable in the presence of recursive
decompositions, where they can provide a simple
decoding process that closely parallels the inher-
ent structure of the outputs. Our results demon-
strate their promise for tree prediction tasks, and
we believe their application to more general out-
put structures is an interesting avenue for future
work.

Acknowledgments

MR is supported by an NSF Graduate Research
Fellowship and a Fannie and John Hertz Founda-
tion Google Fellowship. MS is supported by an
NSF Graduate Research Fellowship.

1147

References
Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jef-

frey D. Ullman. 2006. Compilers: Principles, Tech-
niques, and Tools (2Nd Edition). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

Miltiadis Allamanis, Daniel Tarlow, Andrew D. Gor-
don, and Yi Wei. 2015. Bimodal modelling of
source code and natural language. In Proceedings
of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015.
pages 2123–2132.

David Alvarez-Melis and Tommi S. Jaakkola. 2017.
Tree-structured decoding with doubly-recurrent
neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR)
2017.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and
Dan Klein. 2016. Neural module networks. In Pro-
ceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). Oral.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473.

Matej Balog, Alexander L. Gaunt, Marc Brockschmidt,
Sebastian Nowozin, and Daniel Tarlow. 2016.
Deepcoder: Learning to write programs. CoRR
abs/1611.01989.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. J. Mach. Learn. Res. 3:1137–1155.
http://dl.acm.org/citation.cfm?id=944919.944966.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media, Inc., 1st edition.

Danqi Chen and Christopher D. Manning. 2014. A
fast and accurate dependency parser using neu-
ral networks. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL. pages 740–750.
http://aclweb.org/anthology/D/D14/D14-1082.pdf.

James Cross and Liang Huang. 2016. Span-based
constituency parsing with a structure-label system
and provably optimal dynamic oracles. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2016,
Austin, Texas, USA, November 1-4, 2016. pages 1–
11.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. CoRR abs/1601.01280.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network

grammars. In NAACL HLT 2016, The 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, San Diego California, USA,
June 12-17, 2016. pages 199–209.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In In Proceedings of the International
Conference on Artificial Intelligence and Statistics
(AISTATS10). Society for Artificial Intelligence and
Statistics.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and
Luke S. Zettlemoyer. 2013. Scaling semantic
parsers with on-the-fly ontology matching. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2013,
18-21 October 2013, Grand Hyatt Seattle, Seattle,
Washington, USA, A meeting of SIGDAT, a Special
Interest Group of the ACL. pages 1545–1556.

Percy Liang, Michael I. Jordan, and Dan Klein. 2010.
Learning programs: A hierarchical bayesian ap-
proach. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10), June
21-24, 2010, Haifa, Israel. pages 639–646.

Percy Liang, Michael I. Jordan, and Dan Klein.
2013. Learning dependency-based compositional
semantics. Comput. Linguist. 39(2):389–446.
https://doi.org/10.1162/COLI a 00127.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomás Kociský, Fumin
Wang, and Andrew Senior. 2016. Latent predictor
networks for code generation. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2016, August 7-12, 2016,
Berlin, Germany, Volume 1: Long Papers.

Chris J. Maddison and Daniel Tarlow. 2014. Struc-
tured generative models of natural source code. In
Proceedings of the 31th International Conference on
Machine Learning, ICML 2014, Beijing, China, 21-
26 June 2014. pages 649–657.

Aditya Krishna Menon, Omer Tamuz, Sumit Gulwani,
Butler W. Lampson, and Adam Kalai. 2013. A ma-
chine learning framework for programming by ex-
ample. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013, At-
lanta, GA, USA, 16-21 June 2013. pages 187–195.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke

1148

Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. Dynet:
The dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language inter-
faces to databases. In Proceedings of the 8th in-
ternational conference on Intelligent user interfaces.
ACM, pages 149–157.

Richard Shin, Alexander A. Alemi, Geoffrey Irving,
and Oriol Vinyals. 2017. Tree-structured varia-
tional autoencoder. In Proceedings of the Inter-
national Conference on Learning Representations
(ICLR) 2017.

Michael Sipser. 2006. Introduction to the Theory of
Computation. Course Technology, second edition.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey E. Hinton. 2015.
Grammar as a foreign language. In Advances in
Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Sys-
tems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada. pages 2773–2781.

Adrienne Wang, Tom Kwiatkowski, and Luke S Zettle-
moyer. 2014. Morpho-syntactic lexical generaliza-
tion for ccg semantic parsing. In EMNLP. pages
1284–1295.

Daniel C. Wang, Andrew W. Appel, Jeff L. Korn,
and Christopher S. Serra. 1997. The zephyr ab-
stract syntax description language. In Proceedings
of the Conference on Domain-Specific Languages on
Conference on Domain-Specific Languages (DSL),
1997. USENIX Association, Berkeley, CA, USA,
DSL’97, pages 17–17.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In UAI ’05, Proceedings of the 21st Con-
ference in Uncertainty in Artificial Intelligence, Ed-
inburgh, Scotland, July 26-29, 2005. pages 658–666.

Luke S. Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed ccg grammars for parsing to
logical form. In In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL-2007. pages 678–
687.

Kai Zhao and Liang Huang. 2015. Type-driven in-
cremental semantic parsing with polymorphism. In
NAACL HLT 2015, The 2015 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Denver, Colorado, USA, May 31 - June 5,
2015. pages 1416–1421.

A Appendix

expr
= Apply(pred predicate, arg* arguments)
| Not(expr argument)
| Or(expr left, expr right)
| And(expr* arguments)

arg
= Literal(lit literal)
| Variable(var variable)

Figure 9: The Prolog-style grammar we use for the
JOBS task.

expr
= Variable(var variable)
| Entity(ent entity)
| Number(num number)
| Apply(pred predicate, expr* arguments)
| Argmax(var variable, expr domain, expr body)
| Argmin(var variable, expr domain, expr body)
| Count(var variable, expr body)
| Exists(var variable, expr body)
| Lambda(var variable, var_type type, expr body)
| Max(var variable, expr body)
| Min(var variable, expr body)
| Sum(var variable, expr domain, expr body)
| The(var variable, expr body)
| Not(expr argument)
| And(expr* arguments)
| Or(expr* arguments)
| Compare(cmp_op op, expr left, expr right)

cmp_op = Equal | LessThan | GreaterThan

Figure 10: The λ-calculus grammar used by our
system.

1149

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1150–1159
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1106

Visualizing and Understanding Neural Machine Translation

Yanzhuo Ding† Yang Liu†‡∗Huanbo Luan† Maosong Sun†‡
†State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing, China
‡Jiangsu Collaborative Innovation Center for Language Competence, Jiangsu, China

djx133@yeah.net, liuyang2011@tsinghua.edu.cn
luanhuanbo@gmail.com, sms@tsinghua.edu.cn

Abstract

While neural machine translation (NMT)
has made remarkable progress in recent
years, it is hard to interpret its inter-
nal workings due to the continuous rep-
resentations and non-linearity of neural
networks. In this work, we propose
to use layer-wise relevance propagation
(LRP) to compute the contribution of
each contextual word to arbitrary hid-
den states in the attention-based encoder-
decoder framework. We show that visu-
alization with LRP helps to interpret the
internal workings of NMT and analyze
translation errors.

1 Introduction

End-to-end neural machine translation (NMT),
which leverages neural networks to directly map
between natural languages, has gained increasing
popularity recently (Sutskever et al., 2014; Bah-
danau et al., 2015). NMT proves to outperform
conventional statistical machine translation (SMT)
significantly across a variety of language pairs
(Junczys-Dowmunt et al., 2016) and becomes the
new de facto method in practical MT systems (Wu
et al., 2016).

However, there still remains a severe challenge:
it is hard to interpret the internal workings of
NMT. In SMT (Koehn et al., 2003; Chiang, 2005),
the translation process can be denoted as a deriva-
tion that comprises a sequence of translation rules
(e.g., phrase pairs and synchronous CFG rules).
Defined on language structures with varying gran-
ularities, these translation rules are interpretable
from a linguistic perspective. In contrast, NMT
takes an end-to-end approach: all internal infor-
mation is represented as real-valued vectors or

∗Corresponding author.

matrices. It is challenging to associate hidden
states in neural networks with interpretable lan-
guage structures. As a result, the lack of inter-
pretability makes it very difficult to understand
translation process and debug NMT systems.

Therefore, it is important to develop new meth-
ods for visualizing and understanding NMT. Ex-
isting work on visualizing and interpreting neu-
ral models has been extensively investigated in
computer vision (Krizhevsky et al., 2012; Mahen-
dran and Vedaldi, 2015; Szegedy et al., 2014; Si-
monyan et al., 2014; Nguyen et al., 2015; Girshick
et al., 2014; Bach et al., 2015). Although visu-
alizing and interpreting neural models for natural
language processing has started to attract attention
recently (Karpathy et al., 2016; Li et al., 2016),
to the best of our knowledge, there is no exist-
ing work on visualizing NMT models. Note that
the attention mechanism (Bahdanau et al., 2015) is
restricted to demonstrate the connection between
words in source and target languages and unable
to offer more insights in interpreting how target
words are generated (see Section 4.5).

In this work, we propose to use layer-wise rel-
evance propagation (LRP) (Bach et al., 2015) to
visualize and interpret neural machine translation.
Originally designed to compute the contributions
of single pixels to predictions for image classi-
fiers, LRP back-propagates relevance recursively
from the output layer to the input layer. In con-
trast to visualization methods relying on deriva-
tives, a major advantage of LRP is that it does
not require neural activations to be differentiable
or smooth (Bach et al., 2015). We adapt LRP
to the attention-based encoder-decoder framework
(Bahdanau et al., 2015) to calculate relevance that
measures the association degree between two ar-
bitrary neurons in neural networks. Case studies
on Chinese-English translation show that visual-
ization helps to interpret the internal workings of

1150

https://doi.org/10.18653/v1/P17-1106

在 纽约
zai niuyue

</s>

in New </s>York

source words

source word embeddings

source forward hidden states

source backward hidden states

source hidden states

source contexts

target hidden states

target word embeddings

target words

attention

Figure 1: The attention-based encoder-decoder
architecture for neural machine translation (Bah-
danau et al., 2015).

NMT and analyze translation errors.

2 Background

Given a source sentence x = x1, . . . , xi, . . . , xI
with I source words and a target sentence y =
y1, . . . , yj , . . . , yJ with J target words, neu-
ral machine translation (NMT) decomposes the
sentence-level translation probability as a product
of word-level translation probabilities:

P (y|x;θ) =
J∏

j=1

P (yj |x,y<j ;θ), (1)

where y<j = y1, . . . , yj−1 is a partial translation.
In this work, we focus on the attention-based

encoder-decoder framework (Bahdanau et al.,
2015). As shown in Figure 1, given a source sen-
tence x, the encoder first uses source word embed-
dings to map each source word xi to a real-valued
vector xi.1

Then, a forward recurrent neural network
(RNN) with GRU units (Cho et al., 2014) runs to
calculate source forward hidden states:

−→
h i = f(

−→
h i−1,xi), (2)

where f(·) is a non-linear function.
Similarly, the source backward hidden states

can be obtained using a backward RNN:

←−
h i = f(

←−
h i+1,xi). (3)

1Note that we use x to denote a source sentence and x to
denote the vector representation of a single source word.

To capture global contexts, the forward and
backward hidden states are concatenated as the
hidden state for each source word:

hi = [
−→
h i;
←−
h i]. (4)

Bahdanau et al. (2015) propose an attention
mechanism to dynamically determine the relevant
source context cj for each target word:

cj =

I+1∑

i=1

αj,ihi, (5)

where αj,i is an attention weight that indicates
how well the source word xi and the target word
yj match. Note that an end-of-sentence token is
appended to the source sentence.

In the decoder, a target hidden state for the j-th
target word is calculated as

sj = g(sj−1,yj , cj), (6)

where g(·) is a non-linear function, yj−1 denotes
the vector representation of the (j − 1)-th target
word.

Finally, the word-level translation probability is
given by

P (yj |x,y<j ;θ) = ρ(yj−1, sj , cj), (7)

where ρ(·) is a non-linear function.
Although NMT proves to deliver state-of-the-

art translation performance with the capability to
handle long-distance dependencies due to GRU
and attention, it is hard to interpret the internal
information such as

−→
h i,
←−
h i, hi, cj , and sj in

the encoder-decoder framework. Though project-
ing word embedding space into two dimensions
(Faruqui and Dyer, 2014) and the attention matrix
(Bahdanau et al., 2015) shed partial light on how
NMT works, how to interpret the entire network
still remains a challenge.

Therefore, it is important to develop new meth-
ods for understanding the translation process and
analyzing translation errors for NMT.

3 Approach

3.1 Problem Statement
Recent efforts on interpreting and visualizing neu-
ral models has focused on calculating the contribu-
tion of a unit at the input layer to the final decision
at the output layer (Simonyan et al., 2014; Ma-
hendran and Vedaldi, 2015; Nguyen et al., 2015;

1151

in New </s>York

在 纽约 </s> in New

zai niuyue

Figure 2: Visualizing the relevance between the
vector representation of a target word “New York”
and those of all source words and preceding target
words.

Girshick et al., 2014; Bach et al., 2015; Li et al.,
2016). For example, in image classification, it is
important to understand the contribution of a sin-
gle pixel to the prediction of classifier (Bach et al.,
2015).

In this work, we are interested in calculating the
contribution of source and target words to the fol-
lowing internal information in the attention-based
encoder-decoder framework:

1.
−→
h i: the i-th source forward hidden state,

2.
←−
h i: the i-th source backward hidden state,

3. hi: the i-th source hidden state,

4. cj : the j-th source context vector,

5. sj : the j-th target hidden state,

6. yj : the j-th target word embedding.

For example, as shown in Figure 2, the gener-
ation of the third target word “York” depends on
both the source context (i.e., the source sentence
“zai niuyue </s>”) and the target context (i.e.,
the partial translation “in New”). Intuitively, the
source word “niuyue” and the target word “New”
are more relevant to “York” and should receive
higher relevance than other words. The problem
is how to quantify and visualize the relevance be-
tween hidden states and contextual word vectors.

More formally, we introduce a number of defi-
nitions to facilitate the presentation.

Definition 1 The contextual word set of a hidden
state v ∈ RM×1 is denoted as C(v), which is a
set of source and target contextual word vectors
u ∈ RN×1 that influences the generation of v.

Figure 3: A simple feed-forward network for il-
lustrating layer-wise relevance propagation (Bach
et al., 2015).

For example, the context word set for
−→
h i

is {x1, . . . ,xi}, for
←−
h i is {xi, . . . ,xI+1}, and

for hi is {x1, . . . ,xI+1}. The contextual word
set for cj is {x1, . . . ,xI+1}, for sj and yj is
{x1, . . . ,xI+1,y1, . . . ,yj−1}.

As both hidden states and contextual words are
represented as real-valued vectors, we need to fac-
torize vector-level relevance at the neuron level.

Definition 2 The neuron-level relevance be-
tween the m-th neuron in a hidden state vm ∈ R
and the n-th neuron in a contextual word vector
un ∈ R is denoted as run←vm ∈ R, which satis-
fies the following constraint:

vm =
∑

u∈C(v)

N∑

n=1

run←vm (8)

Definition 3 The vector-level relevance between
a hidden state v and one contextual word vector
u ∈ C(v) is denoted as Ru←v ∈ R, which quanti-
fies the contribution of u to the generation of v. It
is calculated as

Ru←v =
M∑

m=1

N∑

n=1

run←vm (9)

Definition 4 The relevance vector of a hidden
state v is a sequence of vector-level relevance of
its contextual words:

Rv = {Ru1←v, . . . , Ru|C(v)|←v} (10)

Therefore, our goal is to compute relevance vec-
tors for hidden states in a neural network, as shown
in Figure 2. The key problem is how to compute
neuron-level relevance.

3.2 Layer-wise Relevance Propagation
We follow (Bach et al., 2015) to use layer-wise
relevance propagation (LRP) to compute neuron-
level relevance. We use a simple feed-forward net-
work shown in Figure 3 to illustrate the central
idea of LRP.

1152

Input: A neural network G for a sentence pair and a set of hidden states to be visualized V .
Output: Vector-level relevance setR.

1 for u ∈ G in a forward topological order do
2 for v ∈ OUT(u) do
3 calculating weight ratios wu→v;
4 end
5 end
6 for v ∈ V do
7 for v ∈ v do
8 rv←v = v; // initializing neuron-level relevance

9 end
10 for u ∈ G in a backward topological order do
11 ru←v =

∑
z∈OUT(u)wu→zrz←v ; // calculating neuron-level relevance

12 end
13 for u ∈ C(v) do
14 Ru←v =

∑
u∈u

∑
v∈v ru←v ; // calculating vector-level relevance

15 R = R∪ {Ru←v}; // Update vector-level relevance set

16 end
17 end

Algorithm 1: Layer-wise relevance propagation for neural machine translation.

LRP first propagates the relevance from the out-
put layer to the intermediate layer:

rz1←v1 =
W

(2)
1,1z1

W
(2)
1,1z1 +W

(2)
2,1z2

v1 (11)

rz2←v1 =
W

(2)
2,1z2

W
(2)
1,1z1 +W

(2)
2,1z2

v1 (12)

Note that we ignore the non-linear activation func-
tion because Bach et al. (2015) indicate that LRP
is invariant against the choice of non-linear func-
tion.

Then, the relevance is further propagated to the
input layer:

ru1←v1 =
W

(1)
1,1u1

W
(1)
1,1u1 +W

(1)
2,1u2

rz1←v1 +

W
(1)
1,2u1

W
(1)
1,2u1 +W

(1)
2,2u2

rz2←v1 (13)

ru2←v1 =
W

(1)
2,1u2

W
(1)
1,1u1 +W

(1)
2,1u2

rz1←v1 +

W
(1)
2,2u2

W
(1)
1,2u1 +W

(1)
2,2u2

rz2←v1 (14)

Note that ru1←v1 + ru2←v1 = v1.

More formally, we introduce the following def-
initions to ease exposition.

Definition 5 Given a neuron u, its incoming neu-
ron set IN(u) comprises all its direct connected
preceding neurons in the network.

For example, in Figure 3, the incoming neuron
set of z1 is IN(z1) = {u1, u2}.
Definition 6 Given a neuron u, its outcoming
neuron set OUT(u) comprises all its direct con-
nected descendant neurons in the network.

For example, in Figure 3, the incoming neuron
set of z1 is OUT(z1) = {v1, v2}.
Definition 7 Given a neuron v and its incoming
neurons u ∈ IN(v), the weight ratio that mea-
sures the contribution of u to v is calculated as

wu→v =
Wu,vu∑

u′∈IN(v)Wu′,vu′
(15)

Although the NMT model usually involves
multiple operators such as matrix multiplication,
element-wise multiplication, and maximization,
they only influence the way to calculate weight ra-
tios in Eq. (15).

For matrix multiplication such as v = Wu, its
basic form that is calculated at the neuron level is
given by v =

∑
u∈IN(v)Wu,vu . We follow Bach

et al. (2015) to calculate the weight ratio using Eq.
(15).

1153

近 两
jin liang

年
nian

来
lai

， 美国
, meiguo

近 两 年 来 ， 美国

jin liang nian lai , meiguo

1 2 3 4 5 6

1 2 3 4 5 6

Figure 4: Visualizing source hidden states for a
source content word “nian” (years).

For element-wise multiplication such as v =
u1◦u2, its basic form is given by v =

∏
u∈IN(v) u.

We use the following method to calculate its
weight ratio:

wu→v =
u∑

u′∈IN(v) u
′ (16)

For maximization such as v = max{u1, u2},
we calculate its weight ratio as follows:

wu→v =
{

1 if u = maxu′∈IN(v){u′}
0 otherwise

(17)

Therefore, the general local redistribution rule
for LRP is given by

ru←v =
∑

z∈OUT(u)

wu→zrz←v (18)

Algorithm 1 gives the layer-wise relevance
propagation algorithm for neural machine trans-
lation. The input is an attention-based encoder-
decoder neural network for a sentence pair after
decoding G and a set of hidden states to be visu-
alized V . The output is a set of vector-level rel-
evance between intended hidden states and their
contextual words R. The algorithm first com-
putes weight ratios for each neuron in a forward
pass (lines 1-4). Then, for each hidden state to
be visualized (line 6), the algorithm initializes the
neuron-level relevance for itself (lines 7-9). After
initialization, the neuron-level relevance is back-
propagated through the network (lines 10-12). Fi-
nally, vector-level relevance is calculated based on
neuron-level relevance (lines 13-16). The time
complexity of Algorithm 1 isO(|G|×|V|×Omax),

我 参拜 是 为了 祈求 my

wo canbai shi weile qiqiu

my visit tois pray
1 2 3 4 5

1 2 3 4 5 1

Figure 5: Visualizing target hidden states for a tar-
get content word “visit”.

where |G| is the number of neuron units in the neu-
ral network G, |V| is the number of hidden states
to be visualized and Omax is the maximum of out-
degree for neurons in the network. Calculating
relevance is more computationally expensive than
computing attention as it involves all neurons in
the network. Fortunately, it is possible to take ad-
vantage of parallel architectures of GPUs and rel-
evance caching for speed-up.

4 Analysis

4.1 Data Preparation
We evaluate our approach on Chinese-English
translation. The training set consists of 1.25M
pairs of sentences with 27.93M Chinese words and
34.51M English words. We use the NIST 2003
dataset as the development set for model selection
and the NIST 2004 dataset as test set. The BLEU
score on NIST 2003 is 32.73.

We use the open-source toolkit GROUNDHOG

(Bahdanau et al., 2015), which implements the
attention-based encoder-decoder framework. Af-
ter model training and selection on the training
and development sets, we use the resulting NMT
model to translate the test set. Therefore, the vi-
sualization examples in the following subsections
are taken from the test set.

4.2 Visualization of Hidden States
4.2.1 Source Side
Figure 4 visualizes the source hidden states for a
source content word “nian” (years). For each word
in the source string “jin liang nian lai , meiguo”
(in recent two years, USA), we attach a number

1154

the 𝐥𝐚𝐫𝐠𝐞𝐬𝐭 UNK in 𝐭𝐡𝐞 𝐰𝐨𝐫𝐥𝐝

zhaiwuguo

世界

2 3 4 5 6 7

最 大 的 债务国* ， the largest2 3 4 5 6 7 2 3

dedazuishijie ,

Figure 6: Visualizing target hidden states for a tar-
get UNK word.

to denote the position of the word in the sentence.
For example, “nian” (years) is the third word.

We are interested in visualizing the relevance
between the third source forward hidden state

−→
h 3

and all its contextual words “jin” (recent) and
“liang” (two). We observe that the direct preced-
ing word “liang” (two) contributes more to form-
ing the forward hidden state of “nian” (years). For
the third source backward hidden state

←−
h 3, the

relevance of contextual words generally decreases
with the increase of the distance to “nian” (years).
Clearly, the concatenation of forward and back-
ward hidden states h3 capture contexts in both di-
rections.

The situations for function words and punctua-
tion marks are similar but the relevance is usually
more concentrated on the word itself. We omit the
visualization due to space limit.

4.2.2 Target Side
Figure 5 visualizes the target-side hidden states for
the second target word “visit”. For comparison,
we also give the attention weights α2, which cor-
rectly identifies the second source word “canbai”
(“visit”) is most relevant to “visit”.

The relevance vector of the source context c2 is
generally consistent with the attention but reveals
that the third word “shi” (is) also contributes to the
generation of “visit”.

For the target hidden state s2, the contextual
word set includes the first target word “my”. We
find that most contextual words receive high val-
ues of relevance. This phenomenon has been fre-
quently observed for most target words in other
sentences. Note that relevance vector is not nor-
malized. This is an essential difference between

vote of confidence

参

6 7 8

众 两 院5 6 7 8 9

yuanliangzhongcan

in the109

senatethe10

senate </s>
11 12

信任 投票 </s>
11 10 11

xinren toupiao </s>

Figure 7: Analyzing translation error: word omis-
sion. The 6-th source word “zhong” is untrans-
lated incorrectly.

attention and relevance. While attention is defined
to be normalized, the only constraint on relevance
is that the sum of relevance of contextual words
is identical to the value of intended hidden state
neuron.

For the target word embedding y2, the relevance
is generally consistent with the attention by iden-
tifying that the second source word contributes
more to the generation of “visit”. But Ry2 further
indicates that the target word “my” is also very im-
portant for generating “visit”.

Figure 6 shows the hidden states of a target
UNK word, which is very common to see in NMT
because of limited vocabulary. It is interesting to
investigate whether the attention mechanism could
put a UNK in the right place in the translation. In
this example, the 6-th source word “zhaiwuguo” is
a UNK. We find that the model successfully pre-
dicts the correct position of UNK by exploiting
surrounding source and target contexts. But the
ordering of UNK usually becomes worse if multi-
ple UNK words exist on the source side.

4.3 Translation Error Analysis

Given the visualization of hidden states, it is possi-
ble to offer useful information for analyzing trans-
lation errors commonly observed in NMT such as
word omission, word repetition, unrelated words
and negation reversion.

4.3.1 Word Omission
Given a source sentence “bajisitan zongtong muxi-
alafu yingde can zhong liang yuan xinren toupiao”
(pakistani president musharraf wins votes of con-
fidence in senate and house), the NMT model pro-

1155

the history of

美国人

2 3 4

历史 上 有
1 2 3 4 4

youshanglishimeiguoren

the history
65

of the
5

Figure 8: Analyzing translation error: word repe-
tition. The target word “history” occurs twice in
the translation incorrectly.

duces a wrong translation “pakistani president win
over democratic vote of confidence in the senate”.
One translation error is that the 6-th source word
“zhong” (house) is incorrectly omitted for transla-
tion.

As the end-of-sentence token “</s>” occurs
early than expected, we choose to visualize its cor-
responding target hidden states. Although the at-
tention correctly identifies the 6-th source word
“zhong” (house) to be important for generating
the next target word, the relevance of source con-
text Rc12 attaches more importance to the end-of-
sentence token.

Finally, the relevance of target word Ry12 re-
veals that the end-of-sentence token and the 11-th
target word “senate” become dominant in the soft-
max layer for generating the target word.

This example demonstrates that only using at-
tention matrices does not suffice to analyze the
internal workings of NMT. The values of rele-
vance of contextual words might vary significantly
across different layers.

4.3.2 Word Repetition

Given a source sentence “meiguoren lishi shang
you jiang chengxi de chuantong , you fancuo ren-
cuo de chuantong” (in history , the people of amer-
ica have the tradition of honesty and would not
hesitate to admit their mistakes), the NMT model
produces a wrong translation “in the history of the
history of the history of the americans , there is a
tradition of faith in the history of mistakes”. The

is to forge ahead . </s>

</s>

是

7 8 9 10 11 12

跨大西洋 关系 。 </s> is to
9 10 11 12 13 6 7

.guanxikuadaxiyangis

Figure 9: Analyzing translation error: unrelated
words. The 9-th target word “forge” is totally un-
related to the source sentence.

translation error is that “history” repeats four times
in the translation.

Figure 8 visualizes the target hidden states of
the 6-th target word “history”. According to the
relevance of the target word embedding Ry6 , the
first source word “meiguoren” (american), the
second source word “lishi” (history) and the 5-th
target word “the” are most relevant to the gen-
eration of “history”. Therefore, word repetition
not only results from wrong attention but also
is significantly influenced by target side context.
This finding confirms the importance of control-
ling source and target contexts to improve fluency
and adequacy (Tu et al., 2017).

4.3.3 Unrelated Words
Given a source sentence “ci ci huiyi de yi ge
zhongyao yiti shi kuadaxiyang guanxi” (one the
the top agendas of the meeting is to discuss the
cross-atlantic relations), the model prediction is
“a key topic of the meeting is to forge ahead”.
One translation error is that the 9-th English word
“forge” is totally unrelated to the source sentence.

Figure 9 visualizes the hidden states of the
9-th target word “forge”. We find that while
the attention identifies the 10-th source word
“kuadaxiyang” (cross-atlantic) to be most rele-
vant, the relevance vector of the target word Ry9

finds that multiple source and target words should
contribute to the generation of the next target
word.

We observe that unrelated words are more likely
to occur if multiple contextual words have high

1156

we will talk

就

11 12 13

谈 不 上6 7 8 9 10

shangbutanjiu

about development1514

talkwill12发展 13

fazhan

Figure 10: Analyzing translation error: negation.
The 8-th negation source word “bu” (not) is not
translated.

values in the relevance vector of the target word
being generated.

4.3.4 Negation Reversion
Given a source sentence “bu jiejue shengcun wenti
, jiu tan bu shang fa zhan , geng tan bu shang ke
chixu fazhan” (without solution to the issue of sub-
sistence , there will be no development to speak of ,
let alone sustainable development), the model pre-
diction is “if we do not solve the problem of liv-
ing , we will talk about development and still less
can we talk about sustainable development”. The
translation error is that the 8-th negation source
word “bu” (not) is untranslated. The omission of
negation is a severe translation error it reverses the
meaning of the source sentence.

As shown in Figure 10, while both attention and
relevance correctly identify the 8-th negation word
“bu” (not) to be most relevant, the model still gen-
erates “about” instead of a negation target word.
One possible reason is that target context words
“will talk” take the lead in determining the next
target word.

4.4 Extra Words

Given a source sentence “bajisitan zongtong mux-
ialafu yingde can zhong liang yuan xinren tou-
piao”(pakistani president musharraf wins votes of
confidence in senate and house), the model predic-
tion is “pakistani president win over democratic
vote of confidence in the senate” The translation
error is that the 5-th target word “democratic” is
extra generated.

democratic vote of confidence

两

5 6 7 8

院 信任 投票 </s>
7 8 9 10 11

toupiaoxinrenyuanliang

in the
109

win over
3 4

</s>

Figure 11: Analyzing translation error: extra
word. The 5-th target word “democratic” is an ex-
tra word.

Figure 11 visualizes the hidden states of the
9-th target word “forge”. We find that while
the attention identifies the 9-th source word “xin-
ren”(confidence) to be most relevant, the relevance
vector of the target word Ry9 indicates that the
end-of-sentence token and target words contribute
more to the generation of “democratic”.

4.5 Summary of Findings

We summarize the findings of visualizing and an-
alyzing the decoding process of NMT as follows:

1. Although attention is very useful for under-
standing the connection between source and
target words, only using attention is not suf-
ficient for deep interpretation of target word
generation (Figure 9);

2. The relevance of contextual words might vary
significantly across different layers of hidden
states (Figure 9);

3. Target-side context also plays a critical role in
determining the next target word being gen-
erated. It is important to control both source
and target contexts to produce correct trans-
lations (Figure 10);

4. Generating the end-of-sentence token too
early might lead to many problems such as
word omission, unrelated word generation,
and truncated translation (Figures 7 and 9).

1157

5 Related Work

Our work is closely related to previous visualiza-
tion approaches that compute the contribution of
a unit at the input layer to the final decision at
the output layer (Simonyan et al., 2014; Mahen-
dran and Vedaldi, 2015; Nguyen et al., 2015; Gir-
shick et al., 2014; Bach et al., 2015; Li et al.,
2016). Among them, our approach bears most re-
semblance to (Bach et al., 2015) since we adapt
layer-wise relevance propagation to neural ma-
chine translation. The major difference is that
word vectors rather than single pixels are the ba-
sic units in NMT. Therefore, we propose vector-
level relevance based on neuron-level relevance
for NMT. Calculating weight ratios has also been
carefully designed for the operators in NMT.

The proposed approach also differs from (Li
et al., 2016) in that we use relevance rather than
partial derivative to quantify the contributions of
contextual words. A major advantage of using rel-
evance is that it does not require neural activations
to be differentiable or smooth (Bach et al., 2015).

The relevance vector we used is significantly
different from the attention matrix (Bahdanau
et al., 2015). While attention only demonstrates
the association degree between source and target
words, relevance can be used to calculate the as-
sociation degree between two arbitrary neurons in
neural networks. In addition, relevance is effective
in analyzing the effect of source and target con-
texts on generating target words.

6 Conclusion

In this work, we propose to use layer-wise rele-
vance propagation to visualize and interpret neural
machine translation. Our approach is capable of
calculating the relevance between arbitrary hidden
states and contextual words by back-propagating
relevance along the network recursively. Analyses
of the state-of-art attention-based encoder-decoder
framework on Chinese-English translation show
that our approach is able to offer more insights
than the attention mechanism for interpreting neu-
ral machine translation.

In the future, we plan to apply our approach
to more NMT approaches (Sutskever et al., 2014;
Shen et al., 2016; Tu et al., 2016; Wu et al., 2016)
on more language pairs to further verify its effec-
tiveness. It is also interesting to develop relevance-
based neural translation models to explicitly con-
trol relevance to produce better translations.

Acknowledgements

This work is supported by the National Natu-
ral Science Foundation of China (No.61522204),
the 863 Program (2015AA015407), and the
National Natural Science Foundation of China
(No.61432013). This research is also supported by
the Singapore National Research Foundation un-
der its International Research Centre@Singapore
Funding Initiative and administered by the IDM
Programme.

References
Sebastian Bach, Alexander Binder, Grégoire Mon-

tavon, Frederick Klauschen, Klaus-Robert Müller,
and Wojciech Samek. 2015. On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PLoS ONE .

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Davie Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of ACL.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings
of EMNLP.

Mannal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of EACL.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jiten-
dra Malik. 2014. Rich feature hierarchies for accu-
rate object detection and semantic segmentation. In
Proceedings of CVPR.

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu
Hoang. 2016. Is neural machine translation ready
for deployment? a case study on 30 translation di-
rections. arXiv:1610.01108v2.

Andrej Karpathy, Justin Johnson, and Fei-Fei Li. 2016.
Visualing and understanding recurrent networks. In
Proceedings of ICLR Workshop.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of NAACL.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton.
2012. Imagenet classification with deep convolu-
tional nerual networks. In Proceedings of NIPS.

1158

Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky.
2016. Visualizing and understanding neural models
in nlp. In Proceedings of NAACL.

Aravindh Mahendran and Andrea Vedaldi. 2015. Un-
derstanding deep image representations by inverting
them. In Proceedings of CVPR.

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2015.
Deep neural networks are easily fooled: High con-
fidence predictions for unrecignizable images. In
Proceedings of CVPR.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of ACL.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisser-
man. 2014. Deep inside convolutional networks: Vi-
sualizing image classification models and saliency
maps. In Proceedings of ICLR Workshop.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of NIPS.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In Proceedings of ICLR.

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu,
and Hang Li. 2017. Context gates for neural ma-
chine translation. Transactions of the ACL .

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of ACL.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Ja-
son Riesa, Alex Rudnick, Oriol Vinyals, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
arXiv:1609.08144v2.

1159

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1160–1170
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1107

Detecting annotation noise in automatically labelled data

Ines Rehbein Josef Ruppenhofer
IDS Mannheim/University of Heidelberg, Germany

Leibniz Science Campus “Empirical Linguistics and Computational Language Modeling”
rehbein@cl.uni-heidelberg.de, ruppenhofer@ids-mannheim.de

Abstract

We introduce a method for error detec-
tion in automatically annotated text, aimed
at supporting the creation of high-quality
language resources at affordable cost. Our
method combines an unsupervised gener-
ative model with human supervision from
active learning. We test our approach on
in-domain and out-of-domain data in two
languages, in AL simulations and in a real
world setting. For all settings, the results
show that our method is able to detect
annotation errors with high precision and
high recall.

1 Introduction

Until recently, most of the work in Computational
Linguistics has been focussed on standard written
text, often from newswire. The emergence of two
new research areas, Digital Humanities and Com-
putational Sociolinguistics, have however shifted
the interest towards large, noisy text collections
from various sources. More and more researchers
are working with social media text, historical data,
or spoken language transcripts, to name but a few.
Thus the need for NLP tools that are able to pro-
cess this data has become more and more appar-
ent, and has triggered a lot of work on domain
adaptation and on developing more robust prepro-
cessing tools. Studies are usually carried out on
large amounts of data, and thus fully manual an-
notation or even error correction of automatically
prelabelled text is not feasible. Given the impor-
tance of identifying noisy annotations in automat-
ically annotated data, it is all the more surpris-
ing that up to now this area of research has been
severely understudied.

This paper addresses this gap and presents a
method for error detection in automatically la-

belled text. As test cases, we use POS tagging and
Named Entity Recognition, both standard prepro-
cessing steps for many NLP applications. How-
ever, our approach is general and can also be ap-
plied to other classification tasks.

Our approach is based on the work of Hovy et
al. (2013) who develop a generative model for es-
timating the reliability of multiple annotators in a
crowdsourcing setting. We adapt the generative
model to the task of finding errors in automatically
labelled data by integrating it in an active learning
(AL) framework. We first show that the approach
of Hovy et al. (2013) on its own is not able to beat
a strong baseline. We then present our integrated
model, in which we impose human supervision on
the generative model through AL, and show that
we are able to achieve substantial improvements
in two different tasks and for two languages.

Our contributions are the following. We provide
a novel approach to error detection that is able to
identify errors in automatically labelled text with
high precision and high recall. To the best of our
knowledge, our method is the first that addresses
this task in an AL framework. We show how AL
can be used to guide an unsupervised generative
model, and we will make our code available to the
research community.1 Our approach works par-
ticularly well in out-of-domain settings where no
annotated training data is yet available.

2 Related work

Quite a bit of work has been devoted to the iden-
tifcation of errors in manually annotated corpora
(Eskin, 2000; van Halteren, 2000; Kveton and
Oliva, 2002; Dickinson and Meurers, 2003; Lofts-
son, 2009; Ambati et al., 2011).

1Our code is available at http://www.cl.
uni-heidelberg.de/˜rehbein/resources.

1160

https://doi.org/10.18653/v1/P17-1107

Several studies have tried to identify trustwor-
thy annotators in crowdsourcing settings (Snow
et al., 2008; Bian et al., 2009), amongst them
the work of Hovy et al. (2013) described in Sec-
tion 3. Others have proposed selective relabelling
strategies when working with non-expert annota-
tors (Sheng et al., 2008; Zhao et al., 2011).

Manual annotations are often inconsistent and
annotation errors can thus be identified by looking
at the variance in the data. In contrast to this, we
focus on detecting errors in automatically labelled
data. This is a much harder problem as the an-
notation errors are systematic and consistent and
therefore hard to detect. Only a few studies have
addressed this problem. One of them is Rocio
et al. (2007) who adapt a multiword unit extrac-
tion algorithm to detect automatic annotation er-
rors in POS tagged corpora. Their semi-automatic
method is geared towards finding (a small number
of) high frequency errors in large datasets, often
caused by tokenisation errors. Their algorithm ex-
tracts sequences that have to be manually sorted
into linguistically sound patterns and erroneous
patterns.

Loftsson (2009) tests several methods for error
detection in POS tagged data, one of them based
on the predictions of an ensemble of 5 POS tag-
gers. Error candidates are those tokens for which
the predictions of all ensemble taggers agree but
that diverge from the manual annotation. This
simple method yields a precision of around 16%
(no. of true positives amongst the error candi-
dates), but no information is given about the re-
call of the method, i.e. how many of the errors in
the corpus have been identified. Rehbein (2014)
extends the work of Loftsson (2009) by training
a CRF classifier on the output of ensemble POS
taggers. This results in a much higher precision,
but with low recall (for a precision in the range of
50-60% they report a recall between 10-20%).

Also related is work that addresses the issue of
learning in the presence of annotation noise (Rei-
dsma and Carletta, 2008; Beigman and Klebanov,
2009; Bekker and Goldberger, 2016). The main
difference to our work lies in its different focus.
While our focus is on identifying errors with the
goal of improving the quality of an existing lan-
guage resource, their main objective is to improve
the accuracy of a machine learning system.

In the next section we describe the approach
of Hovy et al. (2013) and present our adaptation

Algorithm 1 AL with variational inference
Input: classifier predictions A
1: for 1 ... n iterations do
2: procedure GENERATE(A)
3: for i = 1 ... n classifiers do
4: Ti ∼ Uniform
5: for j = 1 ... n instances do
6: Sij ∼ Bernoulli(1− θj)
7: if Sij = 0 then
8: Aij = Ti

9: else
10: Aij ∼Multinomial(ξj)
11: end if
12: end for
13: end for
14: return posterior entropies E
15: end procedure
16: procedure ACTIVELEARNING(A)
17: rank J →max(E)
18: for j = 1 ... n instances do
19: Oracle→ label(j);
20: select random classifier i;
21: update model prediction for i(j);
22: end for
23: end procedure
24: end for

for semi-supervised error detection that combines
Bayesian inference with active learning.

3 Method

3.1 Modelling human annotators

Hovy et al. (2013) develop a generative model
for Multi-Annotator Competence Estimation
(MACE) to determine which annotators to trust
in a crowdsourcing setting (Algorithm 1, lines
2-15). MACE implements a simple graphical
model where the input consists of all annotated
instances I by a set of J annotators. The model
generates the observed annotations A as follows.
The (unobserved) “true” label Ti is sampled from
a uniform prior, based on the assumption that the
annotators always try to predict the correct label
and thus the majority of the annotations should,
more often than not, be correct. The model is
unsupervised, meaning that no information on the
real gold labels is available.

To model each annotator’s behaviour, a binary
variable Sij (also unobserved) is drawn from a
Bernoulli distribution that describes whether an-
notator j is trying to predict the correct label for
instance i or whether s/he is just spamming (a be-
haviour not uncommon in a crowdsourcing set-
ting). If Sij is 0, the “true” label Ti is used to gen-
erate the annotation Aij . If Sij is 1, the predicted
label Aij for instance i comes from a multinomial
distribution with parameter vector ξj .

1161

The model parameter θj can be interpreted as
a “trustworthiness” parameter that describes the
probability that annotator j predicts the correct la-
bel. ξj , on the other hand, contains information
about the actual behaviour of annotator j in the
case that the annotator is not trying to predict the
correct label.

The model parameters are learned by maximiz-
ing the marginal likelihood of the observed data,
using Expectation Maximization (EM) (Dempster
et al., 1977) and Bayesian variational inference.
Bayesian inference is used to provide the model
with priors on the annotators’ behaviour and yields
improved correlations over EM between the model
estimates and the annotators’ proficiency while
keeping accuracy high. For details on the imple-
mentation and parameter settings refer to Hovy et
al. (2013) and Johnson (2007).

We adapt the model of Hovy et al. (2013) and
apply it to the task of error detection in automat-
ically labelled text. To that end, we integrate the
variational model in an active learning (AL) set-
ting, with the goal of identifying as many errors
as possible while keeping the number of instances
to be checked as small as possible. The tasks
we chose in our experiments are POS tagging and
NER, but our approach is general and can easily
be applied to other classification tasks.

3.2 Active learning
Active learning (Cohn et al., 1996) is a semi-
supervised framework where a machine learner
is trained on a small set of carefully selected in-
stances that are informative for the learning pro-
cess, and thus yield the same accuracy as when
training the learner on a larger set of randomly
chosen examples. The main objective is to save
time and money by minimising the need for man-
ual annotation. Many different measures of infor-
mativeness as well as selection strategies for AL
have been proposed in the literature, amongst them
query-by-committee learning (Seung et al., 1992).

The query-by-committee (QBC) approach uses
a classifier ensemble (or committee) and selects
the instances that show maximal disagreement be-
tween the predictions of the committee members.
These instances are assumed to provide new infor-
mation for the learning process, as the classifiers
are most unsure about how to label them. The
selected instances are then presented to the ora-
cle (the human annotator), to be manually disam-
biguated and added to the training data. Then the

classifier committee is retrained on the extended
training set and the next AL iteration starts.

The query-by-committee strategy calls to mind
previous work on error detection in manually la-
belled text that made use of disagreements be-
tween the predictions of a classifier ensemble and
the manually assigned tag, to identify potential an-
notation errors in the data (Loftsson, 2009). This
approach works surprisingly well, and the trade-
off between precision and recall can be balanced
by adding a threshold (i.e. by considering all in-
stances where at least N of the ensemble classi-
fiers disagree with the manually assigned label).
Loftsson (2009) reports a precision of around 16%
for using a committee of five POS taggers to iden-
tify annotation errors (see section 2).

Let us assume we follow this approach and ap-
ply a tagger with an average accuracy of 97% to
a corpus with 100,000 tokens. We can then ex-
pect around 3,000 incorrectly tagged instances in
the data. Trying to identify these with a preci-
sion of 16% means that when looking at 1,000 in-
stances of potential errors, we can only expect to
see around 160 true positive cases, and we would
have to check a large amount of data in order to
correct a substantial part of the annotation noise.
This means that this approach is not feasible for
correcting large automatically annotated data.

It is thus essential to improve precision and re-
call for error detection, and our goal is to minimise
the number of instances that have to be manually
checked while maximizing the number of true er-
rors in the candidate set. In what follows we show
how we can achieve this by using active learning
to guide variational inference for error detection.

3.3 Guiding variational inference with AL

Variational inference is a method from calculus
where the posterior distribution over a set of un-
observed random variables Y is approximated by a
variational distribution Q(Y). We start with some
observed data X (a set of predictions made by our
committee of classifiers) The distribution of the
true labels Y = {y1, y2, ..., yn} is unknown.

As it is too difficult to work with the posterior
p(y|x), we try to approximate it with a much sim-
pler distribution q(y) which models y for each ob-
served x. To that end, we define a family Q of dis-
tributions that are computationally easy to work
with, and pick the q in Q that best approximates
the posterior, where q(y) is called the variational
approximation to the posterior p(y|x).

1162

For computing variational inference, we use the
implementation of Hovy et al. (2013)2 who jointly
optimise p and q using variational EM. They alter-
nate between adjusting q given the current p (E-
step) and adjusting p given the current q (M-step).
In the E-step, the objective is to find the q that
minimises the divergence between the two distri-
butions, D(q||p). In the M-step, we keep q fixed
and try to adjust p. The two steps are repeated until
convergence.

We extend the model for use in AL as follows
(Algorithm 1). We start with the predictions from
a classifier ensemble and learn a variational in-
ference model on the data (lines 2-15). We then
use the posterior entropies according to the current
model, and select the c instances with the highest
entropies for manual validation. These instances
are presented to the oracle who assigns the true la-
bel. We save the predictions made by the human
annotator and, in the next iteration, use them in
the variational E-step as a prior to guide the learn-
ing process. In addition, we randomly pick one of
the classifiers and update its prediction by replac-
ing the classifier’s prediction with the label we ob-
tained from the oracle.3 In the next iteration, we
train the variational model on the updated predic-
tions. By doing this, we also gradually improve
the quality of the input to the variational model.

In a typical AL approach, the main goal is to
improve the classifiers’ accuracy on new data. In
contrast to that, our approach aims at increasing
precision and recall for error detection in auto-
matically labelled data, and thus at minimising the
time needed for manual correction. Please note
that in our model we do not need to retrain the
classifiers used for predicting the labels but only
retrain the model that determines which of the
classifiers’ predictions we can trust. This is cru-
cial as it saves time and makes it easy to integrate
the approach in a realistic scenario with a real hu-
man annotator in the loop.

4 Data and setup

In our first experiment (§5.1) we want to assess the
benefits of our approach for finding POS errors in
standard newspaper text (in-domain setting) where

2MACE is available for download from
http://www.isi.edu/publications/licensed-sw/mace

3We also experimented with updating more than one clas-
sifier, which resulted in lower precision and recall. We take
this as evidence for the importance of keeping the variance in
the predictions high.

we have plenty of training data. For this setting,
we use the English Penn Treebank, annotated with
parts-of-speech, for training and testing.

In the second experiment (§5.2) we apply our
method in an out-of-domain setting where we
want to detect POS errors in text from new do-
mains where no training data is yet available (out-
of-domain setting). For this we use the Penn Tree-
bank as training data, and test our models on data
from the English Web treebank (Bies et al., 2012).

To test our method on a different task and a new
language, we apply it to Named Entity Recog-
nition (NER) (experiment 3, §5.3), using out-of-
domain data from the Europarl corpus.4 The data
was created by Faruqui and Pado (2010) and in-
cludes the first two German Europarl session tran-
scripts, manually annotated with NER labels ac-
cording to the CoNLL 2003 annotation guidelines
(Tjong Kim Sang and De Meulder, 2003).

The first three experiments are simulation stud-
ies. In our last experiment (§5.4), we show that our
method also works well in a real AL scenario with
a human annotator in the loop. For this we use the
out-of-domain setting from the second experiment
and let the annotators correct POS errors in two
web genres (answers, weblogs) from the English
Web treebank.

4.1 Tools for preprocessing
For the POS tagging experiments, we use the fol-
lowing taggers to predict the labels:

• bi-LSTM-aux (Plank et al., 2016)
• HunPos (Halácsy et al., 2007)
• Stanford postagger (Toutanova et al., 2003)
• SVMTool (Giménez and Màrquez, 2004)
• TreeTagger (Schmid, 1999)
• TWeb (Ma et al., 2014)
• Wapiti (Lavergne et al., 2010)

The taggers implement a range of different al-
gorithms, including HMMs, decision trees, SVMs,
maximum entropy and neural networks. We train
the taggers on subsets of 20,000 sentences ex-
tracted from the standard training set of the PTB
(sections 00-18)5 and use the development and test
set (sections 19-21 and 22-24) for testing. The
training times of the taggers vary considerably,
ranging from a few seconds (HunPos) to several

4The NER taggers have been trained on written German
data from the HGC and DeWaC corpora (see §4.1).

5For taggers that use a development set during training,
we also extract the dev data from sections 00-18 of the PTB.

1163

hours. This is a problem for the typical AL setting
where it is crucial not to keep the human annota-
tors waiting for the next instance while the system
retrains. A major advantage of our setup is that we
do not need to retrain the baseline classifiers as we
only use them once, for preprocessing, before the
actual error detection starts.

For the NER experiment, we use tools for
which pretrained models for German are available,
namely GermaNER (Benikova et al., 2015), and
the StanfordNER system (Finkel and Manning,
2009) with models trained on the HGC and the
DeWaC corpus (Baroni et al., 2009; Faruqui and
Padó, 2010).6

4.2 Evaluation measures

We report results for different evaluation measures
to asses the usefulness of our method. First, we re-
port tagger accuracy on the data, obtained during
preprocessing (figure 1). This corresponds to the
accuracy of the labels in the corpus before error
correction (baseline accuracy). Label accuracy
measures the accuracy of the labels in the corpus
after N iterations of error correction. Please note
that we do not retrain the tools used for prepro-
cessing, but assess the quality of the data after N
iterations of manual inspection and correction.

We also report precision and recall for the error
detection itself. True positives (tp) refers to the
number of instances selected for correction during
AL that were actual annotation errors. We com-
pute Error detection (ED) precision as the num-
ber of true positives divided by the number of all
instances selected for error correction duringN it-
erations of AL, and recall as the ratio of correctly
identified errors to all errors in the data.

4.3 Baseline accuracies

Table 1 shows the accuracies for the individual
POS taggers used in experiments 1, 2 and 4.
Please note that this is not a fair comparison as
each tagger was trained on a different randomly
sampled subset of the data and, crucially, we did
not optimise any of the taggers but used default
settings in all experiments.7 The accuracies of the

6To increase the number of annotators we use an older
version of the StanfordNER (2009-01-16) and a newer ver-
sion (2015-12-09), with both the DeWaC and HGC models,
resulting in a total of 5 annotators for the NER task.

7Please note that the success of our method relies on the
variation in the ensemble predictions, and thus improving
the accuracies for preprocessing is not guaranteed to improve
precision for the error detection task.

Annotation
matrix:

c1 c2 ... cn

DT DT ... DT

N NE ... N

V V ... V

...

EVAL:
tagger acc.

Classifiers:
c1, c2, ..., cn

EVAL:
ED precision,

recall, #true pos

EVAL:
label accuracy

QBC VI-AL
entropy posterior entropy

Oracle

Select instances

get label

Output after
N iterations:

update matrix

retrain VI

QBC VI-AL
majority vote VI prediction

cQBC

DT

N

V

...

cV I−AL

DT

NE

V

...

EVAL Evaluation measures used in the experiments

tagger acc Accuracy of preprocessing classifiers on the data.

label acc Label accuracy in the corpus after N iterations of AL.

true pos No. of instances selected for correction that are true errors.

ED prec No. of true pos. / all instances selected for error correction.

recall Correctly identified errors / all errors in the corpus.

Preprocessing

AL for N iterations

Output

Figure 1: Error detection procedure and overview
over different evaluation measures for assessing
the quality of error identification.

baseline taggers vary between 94-97%, with an
average accuracy of 95.8%. The majority base-
line yields better results than the best individual
tagger, with an accuracy of 97.3%. Importantly,
the predictions made by the variational inference
model (MACE) are in the same range as the ma-
jority baseline and thus do not improve over the

1164

Tagger Acc.
bilstm 97.00
hunpos 96.18
stanford 96.93
svmtool 95.86
treetagger 94.35
tweb 95.99
wapiti 94.52
avg. 95.83
majority vote 97.28
MACE 97.27

Table 1: Tagger accuracies for POS taggers
trained on subsamples of the WSJ with 20,000 to-
kens (for the majority vote, ties were broken ran-
domly).

majority vote on the automatically labelled data.
To be able to run the variational inference model

in an AL setting, we limit the size of the test data
(the size of the pre-annotated data to be corrected)
to batches of 5,000 tokens. This allows us to re-
duce the training time of the variational model and
avoid unnecessary waiting times for the oracle.

For NER (experiment 3), in contrast to POS tag-
ging, we have a much smaller label set with only
5 labels (PER, ORG, LOC, MISC, O), and a
highly skewed distribution where most of the in-
stances belong to the negative class (O). To ensure
a sufficient number of NEs in the data, we increase
the batch size and use the whole out-of-domain
testset with 4,395 sentences in the experiment.8

The overall accuracies of the different NER mod-
els are all in the range of 97.7-98.6%. Results for
individual classes, however, vary considerably be-
tween the different models.

5 Results

5.1 Experiment 1: In-domain setting

In our first experiment, we explore the benefits of
our AL approach to error detection in a setting
where we have a reasonably large amount of train-
ing data, and where training and test data come
from the same domain (in-domain setting).

We implement two selection strategies. The
first one is a Query-by-Committee approach (QBC)
where we use the disagreements in the predictions
of our tagger ensemble to identify potential errors.
For each instance i, we compute the entropy over
the predicted labels M by the 7 taggers and select

8This is possible because, given the lower number of class
labels, the training time for the VI-AL model for NER is much
shorter than for the POS data.

QBC VI-AL
N label acc ED prec label acc ED prec
0 97.58 - 97.56 -

100 97.84 13.0 98.42 41.0
200 97.86 7.0 98.90 33.0
300 97.90 5.3 99.16 26.3
400 97.82 3.0 99.26 21.0
500 97.92 3.4 99.34 17.6

Table 2: Label accuracies on 5,000 tokens of
WSJ text afterN iterations, and precision for error
detection (ED prec).

the N instances with the highest entropy (Equa-
tion 1).

H = −
M∑

m=1

P (yi = m) logP (yi = m) (1)

For each selected instance, we then replace the
label predicted by majority vote with the gold la-
bel. Please note that the selected instances might
already have the correct label, and thus the re-
placement does not necessarily increase accuracy
but only does so when the algorithm selects a true
error. We then evaluate the accuracy of the ma-
jority predictions after updating the N instances
ranked highest for entropy9 (figure 1).

We compare the QBC setting to our integrated
approach where we guide the generative model
with human supervision. Here the instances are
selected according to their posterior entropy as as-
signed by the variational model, and after being
disambiguated by the oracle, the predictions of a
randomly selected classifier are updated with the
oracle tags. We run the AL simulation for 500
iterations10 and select one new instance in each
iteration. After replacing the predicted label for
this instance by the gold label, we retrain the vari-
ational model and select the next instance, based
on the new posterior probabilities learned on the
modified dataset. We refer to this setting as VI-
AL.

Table 2 shows POS tag accuracies (lab-acc) af-
ter N iterations of active learning. For the QBC

setting, we see a slight increase in label accuracy
of 0.3% (from 97.6 to 97.9) after manually validat-
ing 10% of the instances in the data. For the first
100 instances, we see a precision of 13% for error

9Please recall that, in contrast to a traditional QBC active
learning approach, we do not retrain the classifiers but only
update the labels predicted by the classifiers.

10We stopped after 500 iterations as this was enough to
detect nearly all errors in the WSJ data.

1165

answer email newsg. review weblog
bilstm 85.5 84.2 86.5 86.9 89.6
hun 88.5 87.4 89.2 89.7 92.2
stan 89.0 88.1 89.9 90.7 93.0
svm 87.4 86.1 88.2 88.8 91.3
tree 86.8 85.6 87.1 88.7 87.4
tweb 88.2 87.1 88.5 89.3 92.0
wapiti 85.2 82.4 84.6 86.5 87.3
avg. 87.2 85.8 87.7 88.7 90.4
major. 87.4 88.8 89.1 90.9 93.8
MACE 87.4 88.6 89.1 91.0 93.9

Table 3: Tagger accuracies on different web gen-
res (trained on the WSJ); avg. accuracy, accu-
racy for majority vote (major.), and accuracy for
MACE.

detection. In the succeeding iterations, the preci-
sion slowly decreases as it gets harder to identify
new errors. We even observe a slight decrease in
label accuracy after 400 iterations that is due to the
fact that ties are broken randomly and thus the vote
for the same instance can vary between iterations.

Looking at the AL setting with variational infer-
ence, we also see the highest precision for identi-
fying errors during the first 100 iterations. How-
ever, the precision for error dection is more than
3 times as high as for QBC (41% vs. 13%), and
we are still able to detect new errors during the
last 100 iterations. This results in an increase in
POS label accuracy in the corpus from 97.56% to
99.34%, a near perfect result.

To find out what error types we were not able to
identify, we manually checked the remaining 33
errors that we failed to detect in the first 500 iter-
ations. Most of those are cases where an adjective
(JJ) was mistaken for a past participle (VBN).

(2) Companies were closedJJ/V BN yesterday

Manning (2011), who presents a categorization
of the type of errors made by a state-of-the-art
POS tagger on the PTB, refers to the error type
in example (2) as underspecified/unclear, a cate-
gory that he applies to instances where “the tag is
underspecified, ambiguous, or unclear in the con-
text”. These cases are also hard to disambiguate
for human annotators, so it is not surprising that
our system failed to detect them.

5.2 Experiment 2: Out-of-domain setting

In the second experiment, we test how our ap-
proach performs in an out-of-domain setting. For
this, we use the English Web treebank (Bies et al.,

N answer email newsg review weblog
0 87.4 88.6 89.1 91.0 93.9

100 88.9 90.0 90.4 92.2 95.2
200 90.3 91.1 91.3 93.4 96.2
300 91.6 92.2 92.0 94.4 97.2
400 92.9 93.3 92.8 95.4 97.5
500 93.9 94.0 93.5 96.0 97.8
600 94.8 94.9 93.9 96.5 97.9
700 95.6 95.6 94.1 96.9 98.0
800 96.2 95.9 94.7 97.3 98.4
900 96.7 96.2 94.9 97.7 98.6

1000 97.0 96.8 95.1 97.9 98.6

Table 4: Increase in POS label accuracy on the
web genres (5,000 tokens) after N iterations of er-
ror correction with VI-AL.

2012), a corpus of over 250,000 words of Eng-
lish weblogs, newsgroups, email, reviews and
question-answers manually annotated for parts-of-
speech and syntax. Our objective is to develop
and test a method for error detection that can also
be applied to out-of-domain scenarios for creat-
ing and improving language resources when no in-
domain training data is available. We thus abstain
from retraining the taggers on the web data and use
the tools and models from experiment 1 (§5.1) as
is, trained on the WSJ. As the English Web tree-
bank uses an extended tagset with additional tags
for URLs and email addresses etc., we allow the
oracle to assign new tags unknown to the prepro-
cessing classifiers. In a traditional AL setting, this
would not be possible, as all class labels have to
be known from the start. In our setting, however,
this can be easily implemented.

For each web genre, we extract samples of
5,000 tokens and run an active learning simulation
with 500 iterations, where in each iteration one
new instance is selected and disambiguated. Af-
ter each iteration, we update the variational model
and the predictions of a randomly selected classi-
fier, as described in Section 5.1.

Table 3 shows the performance of the WSJ-
trained taggers on the web data. As expected, the
results are much lower than the ones from the in-
domain setting. This allows us to explore the be-
haviour of our error detection approach under dif-
ferent conditions, in particular to test our approach
on tag predictions of a lower quality. The last three
rows in Table 3 give the average tagger accuracy,
the accuracy for the majority vote for the ensem-
ble (not to be confused with QBC), and the accu-
racy we get when using the predictions from the
variational model without AL (MACE).

1166

QBC VI-AL
N # tp ED prec rec # tp ED prec rec

100 85 85.0 13.5 75 75.0 11.9
200 148 74.0 23.5 146 73.0 23.2
300 198 66.0 31.4 212 70.7 33.6
400 239 59.7 37.9 278 69.5 44.1
500 282 56.4 44.8 323 64.6 51.3
600 313 52.2 49.7 374 62.3 59.4
700 331 47.3 52.5 412 58.9 65.4
800 355 44.4 56.3 441 55.1 70.0
900 365 40.6 57.9 465 51.7 73.8

1000 371 37.1 58.9 484 48.4 76.8

Table 5: No. of true positives (# tp), precision (ED
prec) and recall for error detection on 5,000 tokens
from the answers set after N iterations.

We can see that the majority baseline often, but
not always succeeds in beating the best individual
tagger. Results for MACE are more or less in the
same range as the majority vote, same as in exper-
iment 1, but do not improve over the baseline.

Next, we employ AL in the out-of-domain set-
ting (Tables 4, 5 and 6). Table 4 shows the increase
in POS label accuracy for the five web genres af-
ter running N iterations of AL with variational in-
ference (VI-AL). Table 5 compares the results of
the two selection strategies, QBC and VI-AL, on
the answers subcorpus after an increasing number
of AL iterations.11 Table 6 completes the picture
by showing results for error detection for all web
genres, for QBC and VI-AL, after inspecting 10%
of the data (500 iterations).

Table 4 shows that using VI-AL for error detec-
tion results in a substantial increase in POS label
accuracy for all genres. VI-AL still detects new
errors after a high number of iterations, without
retraining the ensemble taggers. This is especially
useful in a setting where no labelled target domain
data is yet available.

Table 5 shows the number of true positives
amongst the selected error candidates as well as
precision and recall for error detection for differ-
ent stages of AL on the answers genre. We can
see that during the early learning stages, both se-
lection strategies have a high precision and QBC

beats VI-AL. After 200 iterations it becomes more
difficult to detect new errors, and the precision for
both methods decreases. The decrease, however,
is much slower for VI-AL, leading to higher preci-
sion after the initial rounds of training, and the gap
in results becomes more and more pronounced.

11Due to space restrictions, we can only report detailed re-
sults for one web genre. Results for the other web genres
follow the same trend (see Tables 4 and 6).

QBC VI-AL
tp ED prec rec # tp ED prec rec

answer 282 56.4 44.8 323 64.6 51.3
email 264 52.8 47.1 261 52.2 46.6

newsg. 195 39.0 36.0 214 42.8 39.6
review 227 45.4 49.7 255 51.0 55.8

weblog 166 33.2 54.6 196 39.2 64.5

Table 6: No. of true positives (# tp), precision (ED
prec) and recall for error detection on 5,000 tokens
after 500 iterations on all web genres.

After 600 iterations, VI-AL beats QBC by more
than 10%, thus resulting in a lower number of in-
stances that have to be checked to obtain the same
POS accuracy in the final dataset. Looking at re-
call, we see that by manually inspecting 10% of
the data VI-AL manages to detect more than 50%
of all errors, and after validating 20% of the data,
we are able to eliminate 75% of all errors in the
corpus. In contrast, QBC detects less than 60% of
the annotation errors in the dataset.

In the out-of-domain setting where we start with
low-quality POS predictions, we are able to detect
errors in the data with a much higher precision
than in the in-domain setting, where the number
of errors in the dataset is much lower. Even after
1,000 iterations, the precision for error detection
is close to 50% in the answers data.

Table 6 shows that the same trend appears for
the other web genres, where we observe a substan-
tially higher precision and recall when guiding AL
with variational inference (VI-AL). Only on the
email data are the results below the ones for QBC,
but the gap is small.

5.3 Experiment 3: A new task (and language)
We now want to test if the approach generalises
well to other classification tasks, and also to new
languages. To that end, we apply our approach to
the task of Named Entity Recognition (NER) on
German data (§4).

Table 7 shows results for error detection for
NER. In comparison to the POS experiments, we
observe a much lower recall, for both QBC and VI-
AL. This is due to the larger size of the NER testset
which results in a higher absolute number of er-
rors in the data. Please bear in mind that recall is
computed as the ratio of correctly identified errors
to all errors in the testset (here we have a total of
110,405 tokens in the test set which means that we
identified>35% of all errors by querying less than
1% of the data). Also note that the overall num-
ber of errors is higher in the QBC setting (1,756

1167

QBC VI-AL
N # tp ED prec rec # tp ED prec rec

100 54 54.0 3.1 76 76.0 4.7
200 113 56.5 6.4 155 77.5 9.6
300 162 54.0 9.2 217 72.3 13.4
400 209 52.2 11.9 297 74.2 18.2
500 274 54.8 15.6 352 70.4 22.3
600 341 56.8 19.4 409 68.2 25.5
700 406 58.0 23.1 452 64.6 27.8
800 480 60.0 27.3 483 60.4 29.8
900 551 61.2 31.4 512 56.9 31.9

1000 617 61.7 35.1 585 58.5 35.8
1000 remaining errors:1,139 remaining errors:1,043

Table 7: Error detection results on the GermEval
2014 NER testset afterN iterations (true positives,
ED precision and recall).

errors) than in the VI-AL setting (1,628 errors), as
in the first setting we used a majority vote for gen-
erating the data pool while in the second setting
we relied on the predictions of MACE. For POS
tagging, we did not observe a difference between
the initial data pools (Table 3). For NER, however,
the initial predictions of MACE are better than the
majority vote.

During the first 800 iterations, precision for VI-
AL is much higher than for QBC, but then slowly
decreases. For QBC, however, we see the opposite
trend. Here precision stays in the range of 52-56%
for the first 600 iterations. After that, it slowly
increases, and during the last iterations QBC preci-
sion outperforms VI-AL.

Recall, however, is higher for the VI-AL model,
for all iterations. This means that even if preci-
sion is slightly lower than in the QBC setting af-
ter 800 iterations, it is still better to use the VI-AL

model. For comparison, in the QBC setting we still
have 1,139 errors left in the corpus after 1,000 it-
erations, while for VI-AL the number of errors re-
maining in the data is much lower (1,043).

5.4 Experiment 4: A real-world scenario

In our final experiment, we test our approach in a
real-world scenario with a human annotator in the
loop. To that end, we let two linguistically trained
human annotators correct POS errors identified by
AL. We use the out-of-domain data from experi-
ment 2 (§5.2), specifically the answers and weblog
subcorpora.

We run two VI-AL experiments where the oracle
is presented with new error candidates for 500 it-
erations. The time needed for correction was 135
minutes (annotator 1, answers) and 157 minutes
(annotator 2, weblog) for correcting 500 instances

VI-AL with human annotator
answers weblog

N # tp ED prec rec # tp ED prec rec
100 71 68.0 10.8 62 62.0 20.3
200 103 63.5 20.2 112 56.0 36.7
300 177 58.0 27.6 156 52.0 51.1
400 224 55.3 35.1 170 42.5 55.7
500 259 51.2 40.6 180 36.0 59.0

Table 8: POS results for VI-AL with a human an-
notator on 2 web genres (true positives, precision
and recall for error detection on 5,000 tokens)

each. This includes the time needed to consult the
annotation guidelines, as both annotators had no
prior experience with the extended English Web
treebank guidelines. We expect that the amount of
time needed for correction will decrease when the
annotators become more familiar with the annota-
tion scheme. Results are shown in Table 8.

As expected, precision as well as recall are
lower for the human annotators as compared to
the simulation study (Table 6). However, even
with some annotation noise we were able to detect
more than 40% of all errors in the answers data
and close to 60% of all errors in the weblog cor-
pus, by manually inspecting only 10% of the data.
This results in an increase in POS label accuracy
from 88.8 to 92.5% for the answers corpus and
from 93.9 to 97.5% for the weblogs, which is very
close to the 97.8% we obtained in the simulation
study (Table 4).

6 Conclusions

In the paper, we addressed a severely understud-
ied problem, namely the detection of errors in
automatically annotated language resources. We
present an approach that combines an unsuper-
vised generative model with human supervision in
an AL framework. Using POS tagging and NER as
test cases, we showed that our model can detect er-
rors with high precision and recall, and works es-
pecially well in an out-of-domain setting. Our ap-
proach is language-agnostic and can be used with-
out retraining the classifiers, which saves time and
is of great practical use in an AL setting. We also
showed that combining an unsupervised genera-
tive model with human supervision is superior to
using a query-by-committee strategy for AL.

Our system architecture is generic and can be
applied to any classification task, and we expect
it to be of use in many annotation projects, espe-
cially when dealing with non-standard data or in
out-of-domain settings.

1168

Acknowledgments

This research has been conducted within the Leib-
niz Science Campus “Empirical Linguistics and
Computational Modeling”, funded by the Leibniz
Association under grant no. SAS-2015-IDS-LWC
and by the Ministry of Science, Research, and Art
(MWK) of the state of Baden-Württemberg.

References
Bharat Ram Ambati, Mridul Gupta, Rahul Agarwal,

Samar Husain, and Dipti Misra Sharma. 2011. Er-
ror detection for treebank validation. In Proceedings
of the 9th Workshop on Asian Language Resources.
Chiang Mai, Thailand, ALR9, pages 23–30.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi,
and Eros Zanchetta. 2009. The WaCky wide web:
a collection of very large linguistically processed
web-crawled corpora. Language Resources and
Evaluation 43(3):209–226.

Eyal Beigman and Beata Beigman Klebanov. 2009.
Learning with annotation noise. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference
on Natural Language Processing of the AFNLP.
Suntec, Singapore, ACL’09, pages 280–287.

Alan Joseph Bekker and Jacob Goldberger. 2016.
Training deep neural-networks based on unreliable
labels. In Proceedings of IEEE International Con-
ference on Acoustic, Speech and Signal Processing.
ICASSP.

Darina Benikova, Seid Muhie Yimam, Prabhakaran
Santhanam, and Chris Biemann. 2015. GermaNER:
Free open German Named Entity Recognition tool.
In Proceedings of the International Conference of
the German Society for Computational Linguistics
and Language Technology (GSCL’15). Essen, Ger-
many, pages 31–38.

Jiang Bian, Yandong Liu, Ding Zhou, Eugene
Agichtein, and Hongyuan Zha. 2009. Learning to
recognize reliable users and content in social media
with coupled mutual reinforcement. In Proceedings
of the 18th International Conference on World Wide
Web. Madrid, Spain, WWW’09, pages 51–60.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012. English Web Treebank. Technical Report
LDC2012T13, Philadelphia: Linguistic Data Con-
sortium.

David Cohn, Zoubin Ghahramani, and Michael Jordan.
1996. Active learning with statistical models. Jour-
nal of Artificial Intelligence Research 4:129–145.

A. P. Dempster, N. M. Laird, and D. B. Rubin. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. Journal of the Royal Statistical So-
ciety, Series B 39(1):1–38.

Marcus Dickinson and Detmar W. Meurers. 2003. De-
tecting errors in part-of-speech annotation. In Pro-
ceedings of the 10th Conference of the European
Chapter of the Association for Computational Lin-
guistics. Budapest, Hungary, EACL’03, pages 107–
114.

Eleazar Eskin. 2000. Automatic corpus correction with
anomaly detection. In Proceedings of the 1st Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics. NAACL’00,
pages 148–153.

Manaal Faruqui and Sebastian Padó. 2010. Training
and evaluating a German Named Entity Recognizer
with semantic generalization. In Proceedings of the
Conference on Natural Language Processing. KON-
VENS’10, pages 129–133.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Nested Named Entity Recognition. In Proceedings
of the Conference on Empirical Methods in Natural
Language Processing. EMNLP’09, pages 141–150.

Jesús Giménez and Lluı́s Màrquez. 2004. SVMTool: A
general POS tagger generator based on Support Vec-
tor Machines. In Proceedings of the Fourth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’04). Lisbon, Portugal, LREC, pages
43–46.

Péter Halácsy, András Kornai, and Csaba Oravecz.
2007. HunPos: An open source trigram tagger. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions.
Prague, Czech Republic, ACL’07, pages 209–212.

Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani,
and Eduard Hovy. 2013. Learning whom to trust
with MACE. In Proceedings of the 2013 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Atlanta, Georgia, USA,
NAACL-HLT’13, pages 1120–1130.

Mark Johnson. 2007. Why doesn’t EM find good
HMM pos-taggers? In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing. Prague, Czech Republic, EMNLP’07,
pages 296–305.

Pavel Kveton and Karel Oliva. 2002. (Semi-)automatic
detection of errors in pos-tagged corpora. In Pro-
ceedings of the 19th International Conference on
Computational Linguistics. Taipei, Taiwan, COL-
ING’02, pages 1–7.

Thomas Lavergne, Olivier Cappé, and François Yvon.
2010. Practical very large scale CRFs. In Pro-
ceedings the 48th Annual Meeting of the Associa-
tion for Computational Linguistics. Uppsala, Swe-
den, ACL’10, pages 504–513.

Hrafn Loftsson. 2009. Correcting a POS-tagged corpus
using three complementary methods. In Proceed-
ings of the 12th Conference of the European Chapter

1169

of the ACL. Athens, Greece, EACL’09, pages 523–
531.

Ji Ma, Yue Zhang, and Jingbo Zhu. 2014. Tagging the
web: Building a robust web tagger with neural net-
work. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics. Bal-
timore, Maryland, ACL’14, pages 144–154.

Christopher D. Manning. 2011. Part-of-speech tagging
from 97linguistics? In Proceedings of the 12th In-
ternational Conference on Computational Linguis-
tics and Intelligent Text Processing. Tokyo, Japan,
CICLing’11, pages 171–189.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics. Berlin, Germany, ACL’16, pages 412–418.

Ines Rehbein. 2014. POS error detection in automati-
cally annotated corpora. In Proceedings of the 8th
Linguistic Annotation Workshop. LAW VIII, pages
20–28.

Dennis Reidsma and Jean Carletta. 2008. Reliability
measurement without limits. Computational Lin-
guistics 34(3):319–326.

Vitor Rocio, Joaquim Silva, and Gabriel Lopes. 2007.
Detection of strange and wrong automatic part-
of-speech tagging. In Proceedings of the Arit-
ficial Intelligence 13th Portuguese Conference on
Progress in Artificial Intelligence. Guimarães, Por-
tugal, EPIA07, pages 683–690.

Helmut Schmid. 1999. Improvements in part-of-
speech tagging with an application to German. In
Susan Armstrong, Kenneth Church, Pierre Isabelle,
Sandra Manzi, Evelyne Tzoukermann, and David
Yarowsky, editors, Natural Language Processing
Using Very Large Corpora, Kluwer Academic Pub-
lishers, Dordrecht, volume 11 of Text, Speech and
Language Processing, pages 13–26.

H. Sebastian Seung, Manfred Opper, and Haim Som-
polinsky. 1992. Query by committee. In Proceed-
ings of the Fifth Annual Workshop on Computational
Learning Theory. Pittsburgh, Pennsylvania, USA,
COLT’92, pages 287–294.

Victor Sheng, Foster Provost, and Panagiotis G. Ipeiro-
tis. 2008. Get another label? Improving data qual-
ity and data mining using multiple, noisy labelers.
In Proceedings of the 14th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining. KDD’08, pages 614–622.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. 2008. Cheap and fast—but is it
good?: Evaluating non-expert annotations for natu-
ral language tasks. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language
Processing. Honolulu, Hawaii, EMNLP’08, pages
254–263.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Walter Daelemans and Miles Osborne, editors, Pro-
ceedings of the SIGNLL Conference on Compu-
tational Natural Language Learning. Edmonton,
Canada, CoNLL’03, pages 142–147.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proceedings of the 2003 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics on Human Language Technology
- Volume 1. Edmonton, Canada, NAACL’03, pages
173–180.

Hans van Halteren. 2000. The detection of incon-
sistency in manually tagged text. In Proceedings
of the COLING-2000 Workshop on Linguistically
Interpreted Corpora. Centre Universitaire, Luxem-
bourg, pages 48–55.

Liyue Zhao, Gita Sukthankar, and Rahul Sukthankar.
2011. Incremental relabeling for active learning
with noisy crowdsourced annotations. In Privacy,
Security, Risk and Trust (PASSAT) and 2011 IEEE
Third Inernational Conference on Social Comput-
ing. PASSAT and SocialCom, pages 728–733.

1170

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1171–1181
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1108

Abstractive Document Summarization with a Graph-Based
Attentional Neural Model

Jiwei Tan, Xiaojun Wan and Jianguo Xiao
Institute of Computer Science and Technology, Peking University

The MOE Key Laboratory of Computational Linguistics, Peking University
{tanjiwei,wanxiaojun,xiaojianguo}@pku.edu.cn

Abstract

Abstractive summarization is the ultimate
goal of document summarization research,
but previously it is less investigated due
to the immaturity of text generation tech-
niques. Recently impressive progress has
been made to abstractive sentence sum-
marization using neural models. Unfor-
tunately, attempts on abstractive docu-
ment summarization are still in a primi-
tive stage, and the evaluation results are
worse than extractive methods on bench-
mark datasets. In this paper, we review
the difficulties of neural abstractive docu-
ment summarization, and propose a novel
graph-based attention mechanism in the
sequence-to-sequence framework. The in-
tuition is to address the saliency factor
of summarization, which has been over-
looked by prior works. Experimental re-
sults demonstrate our model is able to
achieve considerable improvement over
previous neural abstractive models. The
data-driven neural abstractive method is
also competitive with state-of-the-art ex-
tractive methods.

1 Introduction

Document summarization is a task to generate a
fluent, condensed summary for a document, and
keep important information. As a useful tech-
nique to alleviate the information overload peo-
ple are facing today, document summarization has
been extensively investigated. Efforts on docu-
ment summarization can be categorized to extrac-
tive and abstractive methods. Extractive methods
produce the summary of a document by extracting
sentences from the original document. They have
the advantage of producing fluent sentences and

preserving the meaning of original documents, but
also inevitably face the drawbacks of information
redundancy and incoherence between sentences.
Moreover, extraction is far from the way humans
write summaries.

On the contrary, abstractive methods are able
to generate better summaries with the use of ar-
bitrary words and expressions, but generating ab-
stractive summaries is much more difficult in prac-
tice. Abstractive summarization involves sophis-
ticated techniques including meaning representa-
tion, content organization, and surface realization.
Each of these techniques has large space to be im-
proved (Yao et al., 2017). Due to the immaturity of
natural language generation techniques, fully ab-
stractive approaches are still at the beginning and
cannot always ensure grammatical abstracts.

Recent neural networks enable an end-to-end
framework for natural language generation. Suc-
cess has been witnessed on tasks like machine
translation and image captioning, together with
the abstractive sentence summarization (Rush
et al., 2015). Unfortunately, the extension of sen-
tence abstractive methods to the document sum-
marization task is not straightforward. Encoding
and decoding for a long sequence of multiple sen-
tences, currently still lack satisfactory solutions
(Yao et al., 2017). Recent abstractive document
summarization models are yet not able to achieve
convincing performance, with a considerable gap
from extractive methods.

In this paper, we review the key factors of doc-
ument summarization, i.e., the saliency, fluency,
coherence, and novelty requirements of the gener-
ated summary. Fluency is what neural generation
models are naturally good at, but the other factors
are less considered in previous neural abstractive
models. A recent study (Chen et al., 2016) starts
to consider the factor of novelty, using a distrac-
tion mechanism to avoid redundancy. As far as we

1171

https://doi.org/10.18653/v1/P17-1108

know, however, saliency has not been addressed
by existing neural abstractive models, despite its
importance for summary generation.

In this work, we study how neural summariza-
tion models can discover the salient information of
a document. Inspired by the graph-based extrac-
tive summarization methods, we introduce a novel
graph-based attention mechanism in the encoder-
decoder framework. Moreover, we investigate the
challenges of accepting and generating long se-
quences for sequence-to-sequence (seq2seq) mod-
els, and propose a new hierarchical decoding al-
gorithm with a reference mechanism to generate
the abstractive summaries. The proposed method
is able to tackle the constraints of saliency, non-
redundancy, information correctness, and fluency
under a unified framework.

We conduct experiments on two large-scale cor-
pora with human generated summaries. Experi-
mental results demonstrate that our approach con-
sistently outperforms previous neural abstractive
summarization models, and is also competitive
with state-of-the-art extractive methods.

We organize the paper as follows. Section 2
introduces related work. Section 3 describes our
method. In Section 4 we present the experiments
and have discussion. Finally in Section 5 we con-
clude this paper.

2 Related Work

2.1 Extractive Summarization Methods

Document summarization can be categorized to
extractive methods and abstractive methods. Ex-
tractive methods extract sentences from the orig-
inal document to form the summary. Notable
early works include (Edmundson, 1969; Carbonell
and Goldstein, 1998; McDonald, 2007). In recent
years much progress has also been made under
traditional extractive frameworks (Li et al., 2013;
Dasgupta et al., 2013; Nishikawa et al., 2014).

Neural networks have also been widely investi-
gated on the extractive summarization task. Ear-
lier works explore to use deep learning techniques
in the traditional framework (Kobayashi et al.,
2015; Yin and Pei, 2015; Cao et al., 2015a,b).
More recent works predict the extraction of sen-
tences in a more data-driven way. Cheng and La-
pata (2016) propose an encoder-decoder approach
where the encoder learns the representation of sen-
tences and documents while the decoder classifies
each sentence using an attention mechanism. Nal-

lapati et al. (2017) propose a recurrent neural net-
work (RNN)-based sequence model for extractive
summarization of documents. Neural sentence ex-
tractive models are able to leverage large-scale
training data and achieve performance better than
traditional extractive summarization methods.

2.2 Abstractive Summarization Methods

Abstractive summarization aims at generating the
summary based on understanding the input text.
It involves multiple subproblems like simplifica-
tion, paraphrasing, and fusion. Previous research
is mostly restricted in one or a few of the subprob-
lems or specific domains (Woodsend and Lapata,
2012; Thadani and McKeown, 2013; Cheung and
Penn, 2014; Pighin et al., 2014; Sun et al., 2015).

As for neural network models, success is
achieved on sentence abstractive summarization.
Rush et al. (2015) train a neural attention model
on a large corpus of news documents and their
headlines, and later Chopra et al. (2016) extend
their work with an attentive recurrent neural net-
work framework. Nallapati et al. (2016) introduce
various effective techniques in the RNN seq2seq
framework. These neural sentence abstraction
models are able to achieve state-of-the-art results
on the DUC competition of generating headline-
level summaries for news documents.

Some recent works investigate neural abstrac-
tive models on the document summarization task.
Cheng and Lapata (2016) also adopt a word ex-
traction model, which is restricted to use the words
of the source document to generate a summary, al-
though the performance is much worse than the
sentence extractive model. Nallapati et al. (2016)
extend the sentence summarization model by try-
ing a hierarchical attention architecture and a lim-
ited vocabulary during the decoding phase. How-
ever these models still investigate few properties
of the document summarization task. Chen et al.
(2016) first attempt to explore the novelty factor
of summarization, and propose a distraction-based
attentional model. Unfortunately these state-of-
the-art neural abstractive summarization models
are still not competitive to extractive methods, and
there are several problems remain to be solved.

3 Our Method

3.1 Overview

In this section we introduce our method. We
adopt an encoder-decoder framework, which is

1172

widely used in machine translation (Bahdanau
et al., 2014) and dialog systems (Mou et al., 2016),
etc. In particular, we use a hierarchical encoder-
decoder framework similar to (Li et al., 2015), as
shown in Figure 1. The main distinction of this
work is that we introduce a graph-based attention
mechanism which is illustrated in Figure 1b, and
we propose a hierarchical decoding algorithm with
a reference mechanism to tackle the difficulty of
abstractive summary generation. In the following
parts, we will first introduce the encoder-decoder
framework, and then describe the graph-based at-
tention and the hierarchical decoding algorithm.

3.2 Encoder
The goal of the encoder is to map the input doc-
ument to a vector representation. A document d
is a sequence of sentences d = {si}, and a sen-
tence si is a sequence of words si = {wi,k}. Each
word wi,k is represented by its distributed repre-
sentation ei,k, which is mapped by a word embed-
ding matrix Ev. We adopt a hierarchical encoder
framework, where we use a word encoder encword
to encode the words of a sentence si into the sen-
tence representation, and use a sentence encoder
encsent to encode the sentences of a document d
into the document representation. The input to
the word encoder is the word sequence of a sen-
tence, appended with an “<eos>” token indicat-
ing the end of a sentence. The word encoder se-
quentially updates its hidden state after receiving
each word, as hi,k = encword(hi,k−1, ei,k). The
last hidden state (after the word encoder receives
“<eos>”) is denoted as hi,−1, and used as the em-
bedding representation of the sentence si, denoted
as xi. A sentence encoder is used to sequentially
receive the embeddings of the sentences, given by
hi = encsent(hi−1,xi). A pseudo sentence of
an “<eod>” token is appended at the end of the
document to indicate the end of the whole docu-
ment. The hidden state after the sentence encoder
receives “<eod>” is treated as the representation
of the input document c = h−1.

We use the Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997) as both
the word encoder encword and sentence encoder
encsent. In particular, we adopt the variant of
LSTM structure in (Graves, 2013).

3.3 Decoder with Attention
The decoder is used to generate output sentences
{s′j} according to the representation of the input

sentences. We also use an LSTM-based hierarchi-
cal decoder framework to generate the summary,
because the summary typically comprises several
sentences. The sentence decoder decsent receives
the document representation c as the initial state
h
′
0 = c, and predicts the sentence representa-

tions sequentially, by h
′
j = decsent(h

′
j−1,x

′
j−1),

where x
′
j−1 is the encoded representation of the

previously generated sentence s
′
j−1. The word de-

coder decword receives a sentence representation
h
′
j as the initial state h

′
j,0 = h

′
j , and predicts

the word representations sequentially, by h
′
j,k =

decword(h
′
j,k−1, ej,k−1), where ej,k−1 is the em-

bedding of the previously generated word. The
predicted word representations are mapped to vec-
tors of the vocabulary size dimension, and then
normalized by a softmax layer as the probability
distribution of generating the words in the vocab-
ulary. A word decoder stops when it generates the
“<eos>” token and similarly the sentence decoder
stops when it generates the “<eod>” token.

In primitive decoder models, c is the same for
generating all the output words, which requires c
to be a sufficient representation for the whole input
sequence. The attention mechanism (Bahdanau
et al., 2014) is usually introduced to alleviate the
burden of remembering the whole input sequence,
and to allow the decoder to pay different attention
to different parts of input at different generation
states. The attention mechanism sets a different
cj when generating sentence j, by cj =

∑
i α

j
ihi.

αji indicates how much the i-th original sentence
si contributes to generating the j-th sentence. αji
is usually computed as:

αji =
e
η
(
hi,h

′
j

)

∑
l e
η(hl,h

′
j)

(1)

where η is the function modeling the relation be-
tween hi and h

′
j . η can be defined using various

functions including η (a,b) = aTb, η (a,b) =
aTMb, and even a non-linear function achieved
by a multi-layer neural network. In this paper we
use η (a,b) = aTMb where M is a parameter
matrix.

3.4 Graph-based Attention Mechanism
Traditional attention computes the importance
score of a sentence si, when generating sentence
s
′
j , according to the relation between the hidden

state hi and current decoding state h
′
j , as shown

1173

w
o

rd
 en

co
d

er

sentence encoder

<eod> <eod>

w
o

rd
 d

eco
d

er

sentence decoder

2h1h 3h
'

1h
'

2hc '

3h

1, 1h 

1,2h

1,1h

'

1,1h

'

1,3h

'

1,2h

(a) Traditional attention.

w
o

rd
 en

co
d

er

sentence encoder

<eod> <eod>

w
o

rd
 d

eco
d

er

sentence decoder

2h1h 3h
'

1h
'

2hc '

3h

graph ranking model

1,1h

1,2h

1, 1h 

'

1,1h

'

1,2h

'

1,3h

(b) Graph-based attention.

Figure 1: Hierarchical encoder-decoder framework and comparison of the attention mechanisms.

in Figure 1a. This attention mechanism is use-
ful in scenarios like machine translation and im-
age captioning, because the model is able to learn
a relevance mapping between the input and out-
put. However, for document summarization, it is
not easy for the model to learn how to summarize
the salient information of a document, i.e., which
sentences are more important to a document.

To tackle this challenge, we learn from graph-
based extractive summarization models TextRank
(Mihalcea and Tarau, 2004) and LexRank (Erkan
and Radev, 2004), which are based on the PageR-
ank (Page et al., 1999) algorithm. These unsu-
pervised graph-based models show good ability to
identify important sentences in a document. The
underlying idea is that a sentence is important in a
document if it is heavily linked with many impor-
tant sentences (Wan, 2010).

In graph-based extractive summarization, a
graph G is constructed to rank the original sen-
tences. The vertices V are the set of n sentences
to be considered, and the edges E are the rela-
tions between the sentences, which are typically
modeled by the similarity of sentences. Let W ∈
Rn×n be the adjacent matrix. Then the saliency
scores of the sentences are determined by making
use of the global information on the graph recur-
sively, as:

f (t+ 1) = λWD−1f(t) + (1− λ)y (2)

where f = [f1, . . . , fn] ∈ Rn denotes the rank
scores of the n sentences. f(t) denotes the rank
scores at the t-th iteration. D is a diagonal matrix
with its (i, i)-element equal to the sum of the i-th
column of W . Assume we use hi as the represen-
tation of si, and W (i, j) = hTi Mhj , where M is
a parameter matrix to be learned. λ is a damping

factor. y ∈ Rn with all elements equal to 1/n. The
solution of f can be calculated using the closed-
form:

f = (1− λ)(I − λWD−1)−1y (3)

In the graph model, the importance score of a
sentence si is determined by the relation between
hi and the {hl} of all other sentences. Rela-
tively, in traditional attention mechanisms, the im-
portance (attention) score αji is determined by the
relation between hi and h

′
j , regardless of other

original sentences. In our model we hope to com-
bine the two effects, and compute the rank scores
of the original sentences regarding h

′
j , so that the

importance scores of original sentences are dif-
ferent when decoding different state h

′
j , denoted

by f j . In our model we use the scores f j to
compute the attention. Therefore, h

′
j should be

considered in the graph model. Inspired by the
query-focused graph-based extractive summariza-
tion model (Wan et al., 2007), we realize this
by applying the idea of topic-sensitive PageRank
(Haveliwala, 2002), which is to rank the sentences
with the concern of their relevance to the topic. We
treat the current decoding state h

′
j as the topic and

add it into the graph as the 0-th pseudo-sentence.
Given a topic T , the topic-sensitive PageRank is
similar to Eq. 3 except that y becomes:

yT =

{
1
|T | i ∈ T
0 i /∈ T

(4)

Therefore yT is always a one hot vector and
only y0 = 1, indicating the 0-th sentence is s

′
j .

Denote W j as the new adjacent matrix added with
h
′
j , and Dj as the new diagonal matrix corre-

sponding to W j . Then the convergence score vec-
tor f j contains the importance scores for all the

1174

input sentences when generating sentence s
′
j , as:

f j = (1− λ)(I − λW jDj−1
)−1yT (5)

The new scores f j can be used to compute the
graph-based attention when decoding h

′
j , to find

the sentences which are both globally important
and relevant to current decoding state h

′
j . In-

spired by (Chen et al., 2016) we adopt a distraction
mechanism to compute the final attention value
αji , which subtracts the rank scores of the previous
step, to penalize the model from attending to pre-
viously attended sentences, and also help to nor-
malize the ranked scores f j . The graph-based at-
tention is finally computed as:

αji =
max(f ji − f

j−1
i , 0)

∑
l

(
max(f jl − f

j−1
l , 0)

) (6)

where f0 is initialized with all elements equal to
1/n. The graph-based attention will only focus
on those sentences ranked higher over the previ-
ous decoding step, so that it concentrates more on
the sentences which are both salient and novel.
Both Eq. 5 and Eq. 6 are differentiable; thus we
can use the graph-based attention function Eq. 6
to replace the traditional attention function Eq. 1,
and the neural model using the graph-based atten-
tion can also be trained using traditional gradient-
based methods.

3.5 Model Training
The loss function L of the model is the negative
log likelihood of generating summaries over the
training set D:

L =
∑

(Y,X)∈D
− log p(Y |X; θ) (7)

where X =
{
x1, . . . , x|X|

}
and Y ={

y1, . . . , y|Y |
}

denote the word sequences of a
document and its summary respectively, including
the “<eos>” and “<eod>” tokens for structure
information. Then

log p(Y |X; θ) =

|Y |∑

τ=1

log p (yτ | {y1, . . . , yτ−1} , c; θ)

(8)
and log p (yτ | {y1, . . . , yτ−1} , c; θ) is modeled by
the LSTM encoder and decoder. We use the
Adamax (Kingma and Ba, 2014) gradient-based

optimization method to optimize the model pa-
rameters θ.

3.6 Decoding Algorithm

We find there are several problems during the gen-
eration of summary, including out-of-vocabulary
(OOV) words, information incorrectness, error ac-
cumulation and repetition. These problems make
the generated abstractive summaries far from sat-
isfactory. In this work, we propose a hierarchical
decoding algorithm with a reference mechanism
to tackle these difficulties, which effectively im-
proves the quality of generated summaries.

As OOV words frequently occur in name enti-
ties, we can first identify the entities of a docu-
ment using NLP toolkit like Stanford CoreNLP1.
Then we prefix every entity with an “@entity” to-
ken and a number indicating how many words the
entity has. We hope the entity prefixes can help
better deal with entities which have more than one
word, and help improve the accuracy of recovering
OOV words in entities. After decoding we recover
the OOV words by matching entities in the origi-
nal document according to the contexts.

For the hierarchical decoder, a major challenge
is that same sentences or phrases are often re-
peated in the output. A beam search strategy may
help to alleviate the repetition in a sentence, but
the repetition in the whole generated summary is
remained a problem. The word-level beam search
is not easy to be extended to the sentence level.
The reason is that the K-best sentences generated
by a word decoder will mostly be similar to each
other, which is also noticed by Li et al. (2016).

In this paper we propose a hierarchical beam
search algorithm with a reference mechanism.
The hierarchical algorithm comprises K-best
word-level beam search and N -best sentence-
level beam search. At the word level, the
only difference to vanilla beam search is that
we add an additional term to the score p̃(yτ)
of generating word yτ , and now score(yτ) =
p̃(yτ) + γ (ref(Yτ−1 + yτ , s∗)− ref(Yτ−1, s∗)),
where Yτ−1 = {y1, . . . , yτ−1} and p̃(yτ) =
log p (yτ |Yτ−1, c; θ). s∗ is an original sentence to
refer to. ref is a function which calculates the
ratio of bigram overlap between two texts. The
added term aims to favor the generated word yτ
with improving the bigram overlap between cur-
rent generated summary Yτ−1 and the target orig-

1http://stanfordnlp.github.io/CoreNLP/

1175

Dataset Train Valid Test D.L. S. L.
CNN 83568 1220 1093 29.8 3.54
DailyMail 196557 12147 10396 26.0 3.84

Table 1: The statistics of the two datasets. D.L.
and S.L. indicate the average number of sentences
in the document and summary, respectively.

inal sentence s∗. At the word decoder level, the
reference mechanism helps to both improve the in-
formation correctness and avoid redundancy. Be-
cause the reference score is based on the bigram
overlap improvement to the whole generated sum-
mary Yτ−1, the awareness of previously gener-
ated sentences also helps alleviate sentence-level
redundancy. A factor γ is introduced to control
the influence of the reference mechanism. Note
that because of the non-optimal search, the gener-
ated sentence will still be different to the original
sentence even with an extremely large γ.

At the sentence level, N -best sentence beam is
to keep the N generated sentences by referring
to N different original sentences, which have the
highest attention scores and have not been used
as a reference. With referring to N different sen-
tences, the N candidate sentences are guaranteed
diverse. Sentence-level beam search is realized by
maximizing the accumulated score of all the sen-
tences generated.

4 Experiments

4.1 Dataset

We conduct experiments on two large-scale cor-
pora of CNN and DailyMail, which have been
widely used in neural document summarization
tasks. The corpora are originally constructed in
(Hermann et al., 2015) by collecting human gen-
erated abstractive highlights from the news stories
in the CNN and DailyMail website. The statistics
and split of the two datasets are listed in Table 1.

4.2 Implementation

We use the corpora which are already provided
with labeled entities (Nallapati et al., 2016). The
documents and summaries are first lowercased and
tokenized, and all digit characters are replaced
with the “#” symbol, similar to (Nallapati et al.,
2016, 2017). We keep the 40,000 most frequently
occurring words and other words are replaced with
the “<OOV>” token.

We use Theano2 for implementation. For the
word encoder and decoder we use three layers of
LSTM, and for the sentence encoder and decoder
we use one layer of LSTM. The dimension of hid-
den vectors are all 512. We use pre-trained GloVe
(Pennington et al., 2014) vectors3 for the initializa-
tion of word vectors, which will be further trained
in the model. The dimension of word vectors is
100. λ is set to 0.9. The parameters of Adamax are
set to those provided in (Kingma and Ba, 2014).
The batch size is set to 8 documents, and an epoch
is set containing 10,000 randomly sampled docu-
ments. Convergence is reached within 200 epochs
on the DailyMail dataset and 120 epochs on the
CNN dataset. It takes about one day for every 30
epochs on a GTX-1080 GPU card. γ is tuned on
the validation set and the best choice is 300. The
beam sizes for word decoder and sentence decoder
are 15 and 2, respectively.

4.3 Evaluation

We adopt the widely used ROUGE (Lin, 2004)
toolkit for evaluation. We first compare with
the reported results in (Chen et al., 2016) in-
cluding various traditional extractive methods and
a state-of-the-art abstractive model (Distraction-
M3) on the CNN dataset, as shown in Table 2.
Uni-GRU is a non-hierarchical seq2seq baseline
model. In Table 3 we compare our method with
the results of state-of-the-art neural summariza-
tion methods reported in recent papers. Extractive
models include NN-SE (Cheng and Lapata, 2016)
and SummaRuNNer (Nallapati et al., 2017), while
SummaRuNNer-abs is also an extractive model
similar to SummaRuNNer but is trained directly
on the abstractive summaries. Moreover, we in-
clude several baselines for comparison, includ-
ing the baselines reported in (Cheng and Lapata,
2016) although they are tested on 500 samples of
the test set. LREG is a feature based method us-
ing linear regression. NN-ABS is a neural abstrac-
tive baseline which is a simple hierarchical exten-
sion of (Rush et al., 2015). NN-WE is the abstrac-
tive model which restricts the generation of words
from the original document. Lead-3 is a strong ex-
tractive baseline that uses the lead three sentences
as the summary.

In Table 4 we compare our model with the
abstractive attentional encoder-decoder models in

2https://github.com/Theano/Theano
3http://nlp.stanford.edu/projects/glove

1176

Method Rouge-1 Rouge-2 Rouge-L
Lead-3 26.1 9.6 17.8
Luhn 23.2 7.2 15.5
Edmundson 24.5 8.2 16.7
LSA 21.2 6.2 14.0
LexRank 26.1 9.6 17.7
TextRank 23.3 7.7 15.8
Sum-basic 22.9 5.5 14.8
KL-sum 20.7 5.9 13.7
Uni-GRU 18.4 4.8 14.3
Distraction-M3 27.1 8.2 18.7
Our Method 30.3 9.8 20.0

Table 2: Comparison results on the CNN test set
using the full-length F1 variants of Rouge.

Method Rouge-1 Rouge-2 Rouge-L
LREG(500) 18.5 6.9 10.2
NN-ABS(500) 7.8 1.7 7.1
NN-WE(500) 15.7 6.4 9.8
Lead-3 21.9 7.2 11.6
NN-SE 22.7 8.5 12.5
SummaRuNNer-abs 23.8 9.6 13.3
SummaRuNNer 26.2 10.8 14.4
Our Method 27.4 11.3 15.1

Table 3: Comparison results on the DailyMail test
set using Rouge recall at 75 bytes.

(Nallapati et al., 2016), which leverage several ef-
fective techniques and achieve state-of-the-art per-
formance on sentence abstractive summarization
tasks. The words-lvt2k and words-lvt2k-ptr are
flat models and words-lvt2k-hieratt is a hierarchi-
cal extension.

Results in Table 2 show our abstractive method
is able to outperform traditional extractive meth-
ods and the distraction-based abstractive model.
The results in Tables 3 and 4 show that our method
has considerable improvement over neural ab-
stractive baselines, and is able to outperform state-
of-the-art neural extractive methods. An interest-
ing observation is the results of the hierarchical
model in Table 4 are lower than the flat models,
which may demonstrate the difficulty for a tradi-
tional attention model to identify the important in-
formation in a document.

We also conducted human evaluation on 20 ran-
dom samples from the DailyMail test set and com-
pared the summaries generated by our method
with the outputs of Lead-3, NN-SE (Cheng and

Method Rouge-1 Rouge-2 Rouge-L
words-lvt2k 32.5 11.8 29.5
words-lvt2k-ptr 32.1 11.7 29.2
words-lvt2k-hieratt 31.8 11.6 28.7
Our Method 38.1 13.9 34.0

Table 4: Comparison results on the merged
CNN/DailyMail test set using full-length F1
metric.

Method Informative Concise Coherent Fluent
Lead-3 3.60 3.75 4.16 3.85
NN-SE 3.85 3.70 3.48 3.78
Distraction 3.03 3.25 2.93 3.65
Our Method 3.93 3.82 3.53 3.80

Table 5: Human evaluation results.

Lapata, 2016) and Distraction (Chen et al., 2016).
The output summaries of NN-SE are provided by
the authors, and the output summaries of Distrac-
tion are achieved by running the code provided
by the authors on the DailyMail dataset. Three
participants were asked to compare the generated
summaries with the human summaries, and as-
sess each summary from four independent per-
spectives: (1) How informative the summary is?
(2) How concise the summary is? (3) How co-
herent (between sentences) the summary is? (4)
How fluent, grammatical the sentences of a sum-
mary are? Each property is assessed with a score
from 1 (worst) to 5 (best). The average results are
presented in Table 5.

As shown in Table 5, our method consistently
outperforms the previous state-of-the-art abstrac-
tive method Distraction. Compared with extrac-
tive methods, our method is able to generate more
informative and concise summaries, which shows
the advantage of abstractive methods. The Dis-
traction method in fact usually produces the short-
est summaries, but the conciseness score is low
mainly because sometimes it generates repeated
sentences. The repetition also causes Distrac-
tion to achieve a low coherence score. Concern-
ing coherence and fluency, our abstractive method
achieves slightly better scores than NN-SE, while
not surprisingly Lead-3 gets the best scores. The
fluency scores show the good ability of the ab-
stractive model to generate fluent and grammatical
sentences.

1177

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
¸

10.0

10.5

11.0

11.5

12.0

12.5

13.0

13.5

14.0

14.5
R

o
u
g
e
-2

 F
-s

co
re

within 200 epochs
within 300 epochs

(a) Rouge-2 F1 score vs. λ.

0 1 10 100 200 300 400 500 1e3 1e4
°

6

8

10

12

14

R
o
u
g
e
-2

 F
-s

co
re

(b) Rouge-2 F1 score vs. γ.

Figure 2: Results of different setting of hyper-
parameters tested on 500 samples from the Dai-
lyMail test set.

4.4 Model Validation

We conduct experiments to see how the model’s
performance is affected by the choice of the hyper-
parameters. For efficiency we test on 500 ran-
dom samples from the DailyMail test set. Figure
2a shows the maximum average Rouge-2 F1-score
achieved when the model is trained using different
λ values within 200 and 300 epochs. When using
a larger λ, the performance is better and the con-
vergence is faster. When λ = 1.0 the model fails
to train because of running into a singular matrix.

Figure 2b shows the results achieved when us-
ing different γ values in the hierarchical decod-
ing algorithm. γ = 0 is the baseline of the tradi-
tional decoding algorithm which does not refer to
the original document. The poor results indicate
that even the model is able to learn to identify the
salient information in the original document, the
performance is limited by the model’s ability of
generating a long output sequence. That may be
a reason why simple extensions of seq2seq mod-
els fail on the abstractive document summarization
task. The performance is significantly improved
using a reasonable γ, and the optimal γ value is
consistent with the one chosen on the validation
set. When using an extremely large γ, the perma-
nence begins to decrease, because the model will
copy too much from the original document, and at
this time the generated text also becomes less flu-
ent. Results show that introducing the reference
mechanism in the hierarchical beam search is very
effective. The γ factor significantly affects the re-
sults, but the optimal value is easy to be decided
on a validation set.

We also conduct ablation experiments on the
CNN dataset to verify the effectiveness of the pro-
posed model. Results on the CNN test set are
shown in Table 6. “w/o GraphAtt” is to replace

Framework Rouge-1 Rouge-2 Rouge-L
Our Method 30.3 9.8 20.0

w/o GraphAtt 29.2 9.0 19.0
w/o SentenceBeam 29.6 9.3 19.1
w/o BeamSearch 25.1 6.7 17.9

Table 6: Results of removing different compo-
nents of our method on the CNN test set using
the full-length F1 variants of Rouge. Two-tailed
t-tests demonstrate the difference between Our
Method and other frameworks are all statistically
significant (p < 0.01).

the graph-based attention by a traditional attention
function. “w/o SentenceBeam” is to remove the
sentence-level beam search. “w/o BeamSearch” is
to remove both the sentence-level and word-level
beam search, and use a greedy decoding algorithm
with the reference mechanism. As seen from Ta-
ble 6, the graph-based attention mechanism is sig-
nificantly better than traditional attention mecha-
nism for the document summarization task. Beam
search helps significantly improve the generated
summaries. Our proposed decoding algorithm en-
ables a sentence-level beam search, which helps
improve the generated summaries with multiple
sentences.

4.5 Case Study

We show the case study of a sample4 from the Dai-
lyMail test set in Figure 3. We show the “@entity”
and number here although they are removed in the
evaluation. We compare our result with the output
by a model using traditional attention as Baseline
Attention. We also show the output generated by a
Baseline Decoder, which sets γ = 0 and does not
use the sentence-level beam search, to study the
difficulty for a traditional decoder to generate mul-
tiple sentences. Many observations can be found
in Figure 3. The lead three sentences mainly fo-
cus on the money information and are not suffi-
cient. As for the Baseline Decoder, first it usu-
ally ends the generation too early. The “<eod>”
token indicates where the original output stops.
When we force the decoder not to end here, the
model shows the ability to continue producing the
important information. However, two flaws are
presented. First is the repetition of “## - year -

4The original story and highlights can be found at
http://www.dailymail.co.uk/news/article-3041766/Benefits-
cheat-pocketed-17-000-taxpayers-money.html

1178

Gold Summary:
@entity 2 mary day , ## , claimed over £ ##,### in benefits despite not being
eligible .
she had £ ##,### savings in the bank which meant she was not entitled .
day used taxpayers ’ money to go on luxury holidays to @entity 1 indian
resort of @entity 1 goa .
pleaded guilty to dishonestly claiming benefits and has paid back money .

Lead3:
a benefits cheat who pocketed almost £ ##,### of taxpayers ’ money and
spent it on a string of luxury holidays despite having £ ##,### in the bank
has avoided jail .
@entity 2 mary day , ## , of @entity 1 swanage in @entity 1 dorset , used
taxpayers ’ money to go on luxury holidays to the @entity 1 indian resort of
@entity 1 goa for up to a month each time .
day fraudulently claimed £ ##,### of income support and disability al-
lowance despite having £ ##,### of her own savings in the bank .

Baseline Decoder:
- month - old @entity 2 mary day , ## , was given £ ##,### in money .
the ## - year - old claimed £ ##,### in disability allowance . <eod>
the ## - year - old was given a six - month prison sentence .
- year - old pleaded guilty to two counts of fraud .

Baseline Attention:
@entity 2 mary day , ## , used taxpayers ’ money to go on luxury holidays .
claimed £ ##,### of income support and disability allowance despite having
savings in the bank . <eod>
benefits of taxpayers £ ##,### in disability handouts .

Our Method:
@entity 2 mary day , ## , used taxpayers ’ money to go on luxury holidays
to the @entity 1 indian resort of @entity 1 goa .
despite having £ ##,### of her own savings in the bank , she claimed £
##,### of income support and disability allowance .
she pleaded guilty and had given the sentence for three months in prison ,
but suspended the sentence for ## months .

Figure 3: Examples of generated summaries.

old”. Because the word decoder is unaware of the
history generated sentences, it repeats generating
the sequence as the subject all the time. Second,
more importantly, is the information incorrectness.
The “## - month - old” is not appropriate to de-
scribe the heroine, and the “six - month prison sen-
tence” is in fact “three months”. Information in-
correctness occurs because, for a decoder, it aims
at generating a fluent sentence according to the
input representation. However, no favor of con-
sistent with the original input is concerned. The
proposed hierarchical decoding algorithm helps to
alleviate the two problems. The awareness of all
the generated sentences helps prevent from always
generating some important information. The fa-
vor of bigram overlapping with the original sen-
tences helps generate more correct sentences. For
example the model is able to correctly distinguish
between the “three-month sentence” and the “##-
month suspend”. In conclusion, our method is able
to identify the most important information in the
original document, and the decoding algorithm we
propose is able to generate a more discourse-fluent
and information-correct abstractive summary.

The visualization of the graph-based attention
when our method generates the presented example

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19<eod>

O1

O2

O3

<eod>

Figure 4: Attention heatmap when generating the
example summary. Ii and Oi indicate the i-th sen-
tence of the input and output, respectively.

is shown in Figure 4. It seems that the graph-based
attention mechanism is able to find the important
sentences in the input document, and the distrac-
tion mechanism makes the decoder focus on dif-
ferent sentences during decoding. Gradually the
decoder attends to “<eod>” until it stops.

5 Conclusion and Future Work

In this paper we tackle the challenging task of ab-
stractive document summarization, which is still
less investigated to date. We study the difficulty of
the abstractive document summarization task, and
address the need of finding salient content from
the original document, which is overlooked by
previous studies. We propose a novel graph-based
attention mechanism in a hierarchical encoder-
decoder framework, and propose a hierarchical
beam search algorithm to generate multi-sentence
summary. Extensive experiments verify the effec-
tiveness of the proposed method. Experimental re-
sults on two large-scale datasets demonstrate our
method achieves state-of-the-art abstractive docu-
ment summarization performance. It is also able
to achieve competitive results with state-of-the-art
neural extractive summarization models.

There is lots of future work we can do. An ap-
pealing direction is to investigate the neural ab-
stractive method on the multi-document summa-
rization task, which is more challenging and lacks
training data. Further endeavor may be needed.

Acknowledgments

This work was supported by 863 Program of China
(2015AA015403), NSFC (61331011), and Key
Laboratory of Science, Technology and Standard
in Press Industry (Key Laboratory of Intelligent
Press Media Technology). We thank the anony-
mous reviewers for helpful comments and Xinjie
Zhou, Jianmin Zhang for doing human evaluation.
Xiaojun Wan is the corresponding author.

1179

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Ziqiang Cao, Furu Wei, Li Dong, Sujian Li, and Ming
Zhou. 2015a. Ranking with recursive neural net-
works and its application to multi-document summa-
rization. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA.. pages 2153–2159.

Ziqiang Cao, Furu Wei, Sujian Li, Wenjie Li, Ming
Zhou, and Houfeng Wang. 2015b. Learning sum-
mary prior representation for extractive summariza-
tion. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and
the 7th International Joint Conference on Natural
Language Processing (Volume 2: Short Papers). As-
sociation for Computational Linguistics, pages 829–
833. https://doi.org/10.3115/v1/P15-2136.

Jaime G. Carbonell and Jade Goldstein. 1998. The
use of mmr, diversity-based reranking for reorder-
ing documents and producing summaries. In SIGIR
’98: Proceedings of the 21st Annual International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, August 24-28 1998,
Melbourne, Australia. pages 335–336.

Qian Chen, Xiaodan Zhu, Zhen-Hua Ling, Si Wei, and
Hui Jiang. 2016. Distraction-based neural networks
for document summarization. In Proceedings of the
Twenty-Fifth International Joint Conference on Ar-
tificial Intelligence (IJCAI-16). pages 2754–2760.

Jianpeng Cheng and Mirella Lapata. 2016. Neu-
ral summarization by extracting sentences and
words. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 484–494.
https://doi.org/10.18653/v1/P16-1046.

Kit Jackie Chi Cheung and Gerald Penn. 2014.
Unsupervised sentence enhancement for auto-
matic summarization. In Proceedings of the
2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 775–786.
https://doi.org/10.3115/v1/D14-1085.

Sumit Chopra, Michael Auli, and M. Alexander Rush.
2016. Abstractive sentence summarization with
attentive recurrent neural networks. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 93–98.
https://doi.org/10.18653/v1/N16-1012.

Anirban Dasgupta, Ravi Kumar, and Sujith Ravi.
2013. Summarization through submodularity and
dispersion. In Proceedings of the 51st Annual

Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1014–1022.
http://aclweb.org/anthology/P13-1100.

Harold P Edmundson. 1969. New methods in au-
tomatic extracting. Journal of the ACM (JACM)
16(2):264–285.

Günes Erkan and Dragomir R. Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. J. Artif. Intell. Res. (JAIR) 22:457–
479.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 .

Taher H. Haveliwala. 2002. Topic-sensitive pagerank.
In Proceedings of the Eleventh International World
Wide Web Conference, WWW 2002, May 7-11, 2002,
Honolulu, Hawaii. pages 517–526.

Karl Moritz Hermann, Tomás Kociský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in
Neural Information Processing Systems 28: Annual
Conference on Neural Information Processing Sys-
tems 2015, December 7-12, 2015, Montreal, Que-
bec, Canada. pages 1693–1701.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Hayato Kobayashi, Masaki Noguchi, and Taichi
Yatsuka. 2015. Summarization based on em-
bedding distributions. In Proceedings of the
2015 Conference on Empirical Methods in
Natural Language Processing. Association for
Computational Linguistics, pages 1984–1989.
https://doi.org/10.18653/v1/D15-1232.

Chen Li, Xian Qian, and Yang Liu. 2013. Us-
ing supervised bigram-based ilp for extractive sum-
marization. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1004–1013.
http://aclweb.org/anthology/P13-1099.

Jiwei Li, Thang Luong, and Dan Jurafsky. 2015. A
hierarchical neural autoencoder for paragraphs and
documents. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 1106–1115. https://doi.org/10.3115/v1/P15-
1107.

1180

Jiwei Li, Will Monroe, and Dan Jurafsky. 2016. A sim-
ple, fast diverse decoding algorithm for neural gen-
eration. arXiv preprint arXiv:1611.08562 .

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text Summarization
Branches Out: Proceedings of the ACL-04 work-
shop. Barcelona, Spain, volume 8.

Ryan T. McDonald. 2007. A study of global infer-
ence algorithms in multi-document summarization.
In Advances in Information Retrieval, 29th Euro-
pean Conference on IR Research, ECIR 2007, Rome,
Italy, April 2-5, 2007, Proceedings. pages 557–564.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing. pages 404–411.

Lili Mou, Yiping Song, Rui Yan, Ge Li, Lu Zhang, and
Zhi Jin. 2016. Sequence to backward and forward
sequences: A content-introducing approach to gen-
erative short-text conversation. In Proceedings of
COLING 2016, the 26th International Conference
on Computational Linguistics: Technical Papers.
The COLING 2016 Organizing Committee, pages
3349–3358. http://aclweb.org/anthology/C16-1316.

Ramesh Nallapati, Feifei Zhai, and Bowen Zhou. 2017.
Summarunner: A recurrent neural network based se-
quence model for extractive summarization of doc-
uments. In Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9,
2017, San Francisco, California, USA.. pages 3075–
3081.

Ramesh Nallapati, Bowen Zhou, Cicero dos San-
tos, Caglar Gulcehre, and Bing Xiang. 2016.
Abstractive text summarization using sequence-
to-sequence rnns and beyond. In Proceedings
of The 20th SIGNLL Conference on Computa-
tional Natural Language Learning. Association
for Computational Linguistics, pages 280–290.
https://doi.org/10.18653/v1/K16-1028.

Hitoshi Nishikawa, Kazuho Arita, Katsumi Tanaka,
Tsutomu Hirao, Toshiro Makino, and Yoshihiro
Matsuo. 2014. Learning to generate coherent
summary with discriminative hidden semi-markov
model. In Proceedings of COLING 2014. Dublin
City University and Association for Computational
Linguistics, pages 1648–1659.

Lawrence Page, Sergey Brin, Rajeev Motwani, and
Terry Winograd. 1999. The pagerank citation rank-
ing: Bringing order to the web. Technical report,
Stanford InfoLab.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. Glove: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, pages 1532–1543.
https://doi.org/10.3115/v1/D14-1162.

Daniele Pighin, Marco Cornolti, Enrique Alfonseca,
and Katja Filippova. 2014. Modelling events
through memory-based, open-ie patterns for abstrac-
tive summarization. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). Associ-
ation for Computational Linguistics, pages 892–901.
https://doi.org/10.3115/v1/P14-1084.

M. Alexander Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 379–389.
https://doi.org/10.18653/v1/D15-1044.

Rui Sun, Yue Zhang, Meishan Zhang, and Donghong
Ji. 2015. Event-driven headline generation. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Associ-
ation for Computational Linguistics, pages 462–472.
https://doi.org/10.3115/v1/P15-1045.

Kapil Thadani and Kathleen McKeown. 2013. Super-
vised sentence fusion with single-stage inference. In
Proceedings of the Sixth International Joint Confer-
ence on Natural Language Processing. Asian Feder-
ation of Natural Language Processing, pages 1410–
1418.

Xiaojun Wan. 2010. Towards a unified approach to
simultaneous single-document and multi-document
summarizations. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics
(Coling 2010). Coling 2010 Organizing Committee,
pages 1137–1145.

Xiaojun Wan, Jianwu Yang, and Jianguo Xiao.
2007. Manifold-ranking based topic-focused multi-
document summarization. In IJCAI 2007, Proceed-
ings of the 20th International Joint Conference on
Artificial Intelligence, Hyderabad, India, January 6-
12, 2007. pages 2903–2908.

Kristian Woodsend and Mirella Lapata. 2012. Multi-
ple aspect summarization using integer linear pro-
gramming. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning. Association for Computational Linguis-
tics, pages 233–243.

Jin-ge Yao, Xiaojun Wan, and Jianguo Xiao. 2017. Re-
cent advances in document summarization. Knowl-
edge and Information Systems .

Wenpeng Yin and Yulong Pei. 2015. Optimizing sen-
tence modeling and selection for document summa-
rization. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015. pages 1383–1389.

1181

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1182–1192
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1109

Probabilistic Typology: Deep Generative Models of Vowel Inventories

Ryan Cotterell and Jason Eisner
Department of Computer Science

Johns Hopkins University
{ryan.cotterell,eisner}@jhu.edu

Abstract

Linguistic typology studies the range of
structures present in human language. The
main goal of the field is to discover which
sets of possible phenomena are universal,
and which are merely frequent. For ex-
ample, all languages have vowels, while
most—but not all—languages have an [u]
sound. In this paper we present the first
probabilistic treatment of a basic question
in phonological typology: What makes a
natural vowel inventory? We introduce a se-
ries of deep stochastic point processes, and
contrast them with previous computational,
simulation-based approaches. We provide
a comprehensive suite of experiments on
over 200 distinct languages.

1 Introduction

Human languages exhibit a wide range of phenom-
ena, within some limits. However, some structures
seem to occur or co-occur more frequently than oth-
ers. Linguistic typology attempts to describe the
range of natural variation and seeks to organize and
quantify linguistic universals, such as patterns of
co-occurrence. Perhaps one of the simplest typolog-
ical questions comes from phonology: which vow-
els tend to occur and co-occur within the phoneme
inventories of different languages? Drawing in-
spiration from the linguistic literature, we propose
models of the probability distribution from which
the attested vowel inventories have been drawn.

It is a typological universal that every language
contains both vowels and consonants (Velupillai,
2012). But which vowels a language contains
is guided by softer constraints, in that certain
configurations are more widely attested than oth-
ers. For instance, in a typical phoneme inven-
tory, there tend to be far fewer vowels than con-
sonants. Likewise, all languages contrast vowels
based on height, although which contrast is made
is language-dependent (Ladefoged and Maddieson,
1996). Moreover, while over 600 unique vowel

Figure 1: The transformed vowel space that is constructed
within one of our deep generative models (see §7.1). A deep
network nonlinearly maps the blue grid (“formant space”) to
the red grid (“metric space”), with individual vowels mapped
from blue to red position as shown. Vowel pairs such as [@]–
[O] that are brought close together are anti-correlated in the
point process. Other pairs such as [y]–[1] are driven apart.
For purposes of the visualization, we have transformed the
red coordinate system to place red vowels near their blue
positions—while preserving distances up to a constant factor
(a “Procrustes transformation”).

phonemes have been attested cross-linguistically
(Moran et al., 2014), certain regions of acoustic
space are used much more often than others, e.g.,
the regions conventionally transcribed as [a], [i],
and [u]. Human language also seems to prefer in-
ventories where phonologically distinct vowels are
spread out in acoustic space (“dispersion”) so that
they can be easily distinguished by a listener. We
depict the acoustic space for English in Figure 2.

In this work, we regard the proper goal of lin-
guistic typology as the construction of a universal
prior distribution from which linguistic systems are
drawn. For vowel system typology, we propose
three formal probability models based on stochas-
tic point processes. We estimate the parameters
of the model on one set of languages and evaluate
performance on a held-out set. We explore three
questions: (i) How well do the properties of our
proposed probability models line up experimen-
tally with linguistic theory? (ii) How well can our
models predict held-out vowel systems? (iii) Do
our models benefit from a “deep” transformation
from formant space to metric space?

1182

https://doi.org/10.18653/v1/P17-1109

iː
ɪ

e

æ

ə

ʌ
ɑː
ɒ

ɔː

ʊ
uː

Figure 2: The standard vowel table in IPA for the RP accent
of English. The x-axis indicates the front-back spectrum and
the y-axis indicates the high-low distinction.

2 Vowel Inventories and their Typology

Vowel inventories are a simple entry point into the
study of linguistic typology. Every spoken lan-
guage chooses a discrete set of vowels, and the
number of vowel phonemes ranges from 3 to 46,
with a mean of 8.7 (Gordon, 2016). Nevertheless,
the empirical distribution over vowel inventories is
remarkably peaked. The majority of languages
have 5–7 vowels, and there are only a handful
of distinct 4-vowel systems attested despite many
possibilities. Reigning linguistic theory (Becker-
Kristal, 2010) has proposed that vowel inventories
are shaped by the principles discussed below.

2.1 Acoustic Phonetics

One way to describe the sound of a vowel is
through its acoustic energy at different frequencies.
A spectrogram (Figure 3) is a visualization of the
energy at various frequencies over time. Consider
the “peak” frequencies F0 < F1 < F2 < . . . that
have a greater energy than their neighboring fre-
quencies. F0 is called the fundamental frequency
or pitch. The other qualities of the vowel are largely
determined by F1, F2, . . ., which are known as for-
mants (Ladefoged and Johnson, 2014). In many
languages, the first two formants F1 and F2 contain
enough information to identify a vowel: Figure 3
shows how these differ across three English vowels.
We consider each vowel listed in the International
Phonetic Alphabet (IPA) to be cross-linguistically
characterized by some (F1, F2) pair.

2.2 Dispersion

The dispersion criterion (Liljencrants and Lind-
blom, 1972; Lindblom, 1986) states that the
phonemes of a language must be “spread out” so
that they are easily discriminated by a listener. A

0 Hz

1000 Hz

2000 Hz

3000 Hz

4000 Hz

5000 Hz
/i/ /u/ /ɑ/

Figure 3: Example spectrogram of the three English vowels:
[i], [u] and [A]. The x-axis is time and y-axis is frequency.
The first two formants F1 and F2 are marked in with colored
arrows for each vowel. We used the Praat toolkit to generate
the spectrogram and find the formants (Boersma et al., 2002).

language seeks phonemes that are sufficiently “dis-
tant” from one another to avoid confusion. Dis-
tances between phonemes are defined in some la-
tent “metric space.” We use this term rather than
“perceptual space” because the confusability of two
vowels may reflect not just their perceptual similar-
ity, but also their common distortions by imprecise
articulation or background noise.1

2.3 Focalization
The dispersion criterion alone does not seem to
capture the whole story. Certain vowels are simply
more popular cross-linguistically. A commonly ac-
cepted explanation is the quantal theory of speech
(Stevens, 1972, 1989). The quantal theory states
that certain sounds are easier to articulate and to
perceive than others. These vowels may be charac-
terized as those where F1 and F2 have frequen-
cies that are close to one another. On the pro-
duction side, these vowels are easier to pronounce
since they allow for greater articulatory impreci-
sion. On the perception side, they are more salient
since the two spectral peaks aggregate and act as
one, larger peak to a certain degree. In general,
languages will prefer these vowels.

2.4 Dispersion-Focalization Theory
The dispersion-focalization theory (DFT) combines
both of the above notions. A good vowel system
now consists of vowels that contrast with each
other and are individually desirable (Schwartz et al.,
1997). This paper provides the first probabilis-
tic treatment of DFT, and new evaluation metrics
for future probabilistic and non-probabilistic treat-
ments of vowel inventory typology.

1We assume in this paper that the metric space is
universal—although it would not be unreasonable to suppose
that each language’s vowel system has adapted to avoid confu-
sion in the specific communicative environment of its speakers.

1183

3 Point Process Models

Given a base set V , a point process is a distribution
over its subsets.2 In this paper, we take V to be
the set of all IPA symbols corresponding to vow-
els. Thus a draw from a point process is a vowel
inventory V ⊆ V , and the point process itself is
a distribution over such inventories. We will con-
sider three basic point process models for vowel
systems: the Bernoulli Point Process, the Markov
Point Process and the Determinantal Point Process.
In this section, we review the relevant theory of
point processes, highlighting aspects related to §2.

3.1 Bernoulli Point Processes

Taking V = {v1, . . . , vN}, a Bernoulli point pro-
cess (BPP) makes an independent decision about
whether to include each vowel in the subset. The
probability of a vowel system V ⊆ V is thus

p(V) ∝
∏

vi∈V
φ(vi), (1)

where φ is a unary potential function, i.e., φ(vi) ≥
0. Qualitatively, this means that φ(vi) should be
large if the ith vowel is good in the sense of §2.3.
Marginal inference in a BPP is computationally
trivial. The probability that the inventory V con-
tains vi is φ(vi)/(1 + φ(vi)), independent of the
other vowels in V . Since a BPP predicts each
vowel independently, it only models focalization.
Thus, the model provides an appropriate baseline
that will let us measure the importance of the dis-
persion principle—how far can we get with just
focalization? A BPP may still tend to generate
well-dispersed sets if it defines φ to be large only
on certain vowels in V and these are well-dispersed
(e.g., [i], [u], [a]). More precisely, it can define φ
so that φ(vi)φ(vj) is small whenever vi, vj are sim-
ilar.3 But it cannot actively encourage dispersion:

2A point process is a specific kind of stochastic process,
which is the technical term for a distribution over functions.
Under this view, drawing some subset of V from the point
process is regarded as drawing some indicator function on V .

3We point out that such a scheme would break down if we
extended our work to cover fine-grained phonetic modeling of
the vowel inventory. In that setting, we ask not just whether the
inventory includes /i/ but exactly which pronunciation of /i/ it
contains. In the limit, φ becomes a function over a continuous
vowel space V = R2, turning the BPP into an inhomogeneous
spatial Poisson process. A continuous φ function implies that
the model places similar probability on similar vowels. Then
if most vowel inventories contain some version of /i/, then
many of them will contain several closely related variants of
/i/ (independently chosen). By contrast, the other methods in
this paper do extend nicely to fine-grained phonetic modeling.

including vi does not lower the probability of also
including vj .

3.2 Markov Point Processes
A Markov Point Process (MPP) (Van Lieshout,
2000)—also known as a Boltzmann machine (Ack-
ley et al., 1985; Hinton and Sejnowski, 1986)—
generalizes the BPP by adding pairwise interac-
tions between vowels. The probability of a vowel
system V ⊆ V is now

p(V) ∝
∏

vi∈V
φ(vi)

∏

vi,vj∈V
ψ(vi, vj), (2)

where each φ(vi) ≥ 0 is, again, a unary potential
that scores the quality of the ith vowel, and each
ψ(vi, vj) ≥ 0 is a binary potential that scores the
combination of the ith and jth vowels. Roughly
speaking, the potential ψ(vi, vj) should be large if
the ith and jth vowel often co-occur. Recall that
under the principle of dispersion, the vowels that
often co-occur are easily distinguishable. Thus,
confusable vowel pairs should tend to have poten-
tial ψ(vi, vj) < 1.

Unlike the BPP, the MPP can capture both fo-
calization and dispersion. In this work, we will
consider a fully connected MPP, i.e., there is a po-
tential function for each pair of vowels in V . MPPs
closely resemble Ising models (Ising, 1925), but
with the difference that Ising models are typically
lattice-structured, rather than fully connected.

Inference in MPPs. Inference in fully connected
MPPs, just as in general Markov Random Fields
(MRFs), is intractable (Cooper, 1990) and we must
rely on approximation. In this work, we estimate
any needed properties of the MPP distribution by
(approximately) drawing vowel inventories from
it via Gibbs sampling (Geman and Geman, 1984;
Robert and Casella, 2005). Gibbs sampling simu-
lates a discrete-time Markov chain whose station-
ary distribution is the desired MPP distribution.
At each time step, for some random vi ∈ V , it
stochastically decides whether to replace the cur-
rent inventory V with V̄ , where V̄ is a copy of V
with vi added (if vi /∈ V) or removed (if vi ∈ V).
The probability of replacement is p(V̄)

p(V)+p(V̄)
.

3.3 Determinantal Point Processes
A determinantal point process (DPP) (Macchi,
1975) provides an elegant alternative to an MPP,
and one that is directly suited to modeling both fo-
calization and dispersion. Inference requires only

1184

a few matrix computations and runs tractably in
O(|V|3) time, even though the model may encode
a rich set of multi-way interactions. We focus on
the L-ensemble parameterization of the DPP, due
to Borodin and Rains (2005).4 This type of DPP
defines the probability of an inventory V ⊆ V as

p(V) ∝ detLV , (3)

where L ∈ RN×N (for N = |V|) is a symmetric
positive semidefinite matrix, and LV refers to the
submatrix of L with only those rows and columns
corresponding to those elements in the subset V .

Although MAP inference remains NP-hard in
DPPs (just as in MPPs), marginal inference be-
comes tractable. We may compute the normalizing
constant in closed form as follows:

∑

V ∈2V

detLV = det (L+ I) . (4)

How does a DPP ensure focalization and disper-
sion? L is positive semidefinite iff it can be written
as E>E for some matrix E ∈ RN×N . It is possi-
ble to express p(V) in terms of the column vectors
of E, which we call e1, . . . , eN :

• For inventories of size 2, p({vi, vj}) ∝
(φ(vi)φ(vj) sin θ)2, where φ(vi), φ(vj) repre-
sent the quality of vowels vi, vj (as in the BPP)
while sin θ ∈ [0, 1] represents their dissimi-
larity. More precisely, φ(vi), φ(vj) are the
lengths of vectors ei, ej while θ is the angle
between them. Thus, we should choose the
columns of E so that focal vowels get long
vectors and similar vowels get vectors of simi-
lar direction.
• Generalizing beyond inventories of size 2,
p(V) is proportional to the square of the vol-
ume of the parallelepiped whose sides are
given by {ei : vi ∈ V }. This volume can
be regarded as

∏
vi∈V φ(vi) times a term that

ranges from 1 for an orthogonal set of vowels
to 0 for a linearly dependent set of vowels.
• The events vi ∈ V and vj ∈ V are anti-

correlated (when not independent). That is,
while both vowels may individually have high
probabilities (focalization), having either one
in the inventory lowers the probability of the
other (dispersion).

4Most DPPs are L-ensembles (Kulesza and Taskar, 2012).

4 Dataset

At this point it is helpful to introduce the empirical
dataset we will model. For each of 223 languages,5

Becker-Kristal (2010) provides the vowel inventory
as a set of IPA symbols, listing the first 5 formants
for each vowel (or fewer when not available in
the original source). Some corpus statistics are
shown in Figs. 4 and 5.6 For the present paper,
we take V to be the set of all 53 IPA symbols that
appear in the corpus. We treat these IPA labels as
meaningful, in that we consider two vowels in dif-
ferent languages to be the same vowel in V if (for
example) they are both annotated as [O]. We char-
acterize that vowel by its average formant vector
across all languages in the corpus that contain the
vowel: e.g., (F1, F2, . . .) = (500, 700, . . .) for [O].
In future work, we plan to relax this idealization
(see footnote 3), allowing us to investigate natural
questions such as whether [u] is pronounced higher
(smaller F1) in languages that also contain [o] (to
achieve better dispersion).

5 Model Parameterization

The BPP, MPP, and DPP models (§3) require us to
specify parameters for each vowel in V . In §5.1, we
will accomplish this by deriving the parameters for
each vowel vi from a possibly high-dimensional
embedding of that vowel, e(vi) ∈ Rr.

In §5.2, e(vi) ∈ Rr will in turn be defined
as some learned function of f(vi) ∈ Rk, where
f : V 7→ Rk is the function that maps a vowel
to a k-vector of its measurable acoustic properties.
This approach allows us to determine reasonable
parameters even for rare vowels, based on their
measurable properties. It will even enable us in

5Becker-Kristal lists some languages multiple times with
different measurements. When a language had multiple list-
ings, we selected one randomly for our experiments.

6Caveat: The corpus is a curation of information from
various phonetics papers into a common electronic format.
No standard procedure was followed across all languages: it
was up to individual phoneticists to determine the size of each
vowel inventory, the choice of IPA symbols to describe it,
and the procedure for measuring the formants. Moreover, it
is an idealization to provide a single vector of formants for
each vowel type in the language. In real speech, different to-
kens of the same vowel are pronounced differently, because of
coarticulation with the vowel context, allophony, interspeaker
variation, and stochastic intraspeaker variation. Even within a
token, the formants change during the duration of the vowel.
Thus, one might do better to represent a vowel’s pronuncia-
tion not by a formant vector, but by a conditional probability
distribution over its formant trajectories given its context, or
by a parameter vector that characterizes such a conditional
distribution. This setting would require richer data than we
present here.

1185

future to generalize to vowels that were unseen in
the training set, letting us scale to very large or
infinite V (footnote 3).

5.1 Deep Point Processes
We consider deep versions of all three processes.

Deep Bernoulli Point Process. We define

φ(vi) = ||e(vi)|| ≥ 0 (5)

Deep Markov Point Process. The MPP em-
ploys the same unary potential as the BPP, as well
as the binary potential

ψ(vi, vj) = exp− 1

T · ||e(vi)−e(vj)||2
< 1 (6)

where the learned temperature T > 0 controls the
relative strength of the unary and binary potentials.

This formula is inspired by Coulomb’s law
for describing the repulsion of static electrically
charged particles. Just as the repulsive force be-
tween two particles approaches∞ as they approach
each other, the probability of finding two vowels
in the same inventory approaches exp−∞ = 0
as they approach each other. The formula is also
reminiscent of Shepard (1987)’s “universal law of
generalization,” which says here that the proba-
bility of responding to vi as if it were vj should
fall off exponentially with their distance in some
“psychological space” (here, embedding space).

Deep Determinantal Point Process. For the
DPP, we simply define the vector ei to be e(vi),
and proceed as before.

Summary. In the deep BPP, the probability of
a set of vowels is proportional to the product of
the lengths of their embedding vectors. The deep
MPP modifies this by multiplying in pairwise re-
pulsion terms in (0, 1) that increase as the vectors’
endpoints move apart in Euclidean space (or as
T → ∞). The deep DPP instead modifies it by
multiplying in a single setwise repulsion term in
(0, 1) that increases as the embedding vectors be-
come more mutually orthogonal. In the limit, then,
the MPP and DPP both approach the BPP.

5.2 Embeddings
Throughout this work, we simply have f extract
the first k = 2 formants, since our dataset does not
provide higher formants for all languages.7 For

7In lieu of higher formants, we could have extended the
vector f(vi) to encode the binary distinctive features of the
IPA vowel vi: round, tense, long, nasal, creaky, etc.

example, we have f([O]) = (500, 700). We now
describe three possible methods for mapping f(vi)
to an embedding e(vi). Each of these maps has
learnable parameters.

Neural Embedding. We first consider directly
embedding each vowel vi into a vector space Rr.
We achieve this through a feed-forward neural net

e(vi) = W1 tanh (W0f(vi) + b0) + b1, (7)

Equation (7) gives an architecture with 1 layer of
nonlinearity; in general we consider stacking d ≥ 0
layers. Here W0 ∈ Rr×k,W1 ∈ Rr×r, . . .Wd ∈
Rr×r are weight matrices, b0, . . .bd ∈ Rr are bias
vectors, and tanh could be replaced by any point-
wise nonlinearity. We treat both the depth d and the
embedding size r as hyperparameters, and select
the optimal values on a development set.

Interpretable Neural Embedding. We are in-
terested in the special case of neural embeddings
when r = k since then (for any d) the mapping
f(vi) 7→ e(vi) is a diffeomorphism:8 a smooth
invertible function of Rk. An example of such a
diffeomorphism is shown in Figure 1.

There is a long history in cognitive psychology
of mapping stimuli into some psychological space.
The distances in this psychological space may be
predictive of generalization (Shepard, 1987) or of
perception. Due to the anatomy of the ear, the map-
ping of vowels from acoustic space to perceptual
space is often presumed to be nonlinear (Rosner
and Pickering, 1994; Nearey and Kiefte, 2003),
and there are many perceptually-oriented phonetic
scales, e.g., Bark and Mel, that carry out such non-
linear transformations while preserving the dimen-
sionality k, as we do here. As discussed in §2.2,
vowel system typology is similarly believed to be
influenced by distances between the vowels in a
latent metric space. We are interested in whether
a constrained k-dimensional model of these dis-
tances can do well in our experiments.

Prototype-Based Embedding. Unfortunately,
our interpretable neural embedding is unfortunately
incompatible with the DPP. The DPP assigns
probability 0 to any vowel inventory V whose e
vectors are linearly dependent. If the vectors are
in Rk, then this means that p(V) = 0 whenever
|V | > k. In our setting, this would limit vowel
inventories to size 2.

8Provided that our nonlinearity in (7) is a differentiable
invertible function like tanh rather than relu.

1186

Our solution to this problem is to still construct
our interpretable metric space Rk, but then map that
nonlinearly to Rr for some large r. This latter map
is constrained. Specifically, we choose “prototype”
points µ1, . . . ,µr ∈ Rk. These prototype points
are parameters of the model: their coordinates are
learned and do not necessarily correspond to any
actual vowel. We then construct e(vi) ∈ Rr as a
“response vector” of similarities of our vowel vi to
these prototypes. Crucially, the responses depend
on distances measured in the interpretable metric
space Rk. We use a Gaussian-density response
function, where x(vi) denotes the representation
of our vowel vi in the interpretable space:

e(vi)` = w` p(x(vi);µ`, σ
2I) (8)

= w` (2πσ2)−(k
2) exp

(−||x− µ`||2
2σ2

)
.

for ` = 1, 2, . . . , r. We additionally impose the
constraints that each w` ≥ 0 and

∑r
`=1w` = 1.

Notice that the sum
∑r

`=1 e(vi) may be viewed
as the density at x(vi) under a Gaussian mixture
model. We use this fact to construct a prototype-
based MPP as well: we redefine φ(vi) to equal this
positive density, while still defining ψ via equa-
tion (6). The idea is that dispersion is measured
in the interpretable space Rk, and focalization is
defined by certain “good” regions in that space that
are centered at the r prototypes.

6 Evaluation Metrics

Fundamentally, we are interested in whether our
model has abstracted the core principles of what
makes a good vowel system. Our choice of a proba-
bilistic model provides a natural test: how surprised
is our model by held-out languages? In other words,
how likely does our model think unobserved, but
attested vowel systems are? While this is a natural
evaluation paradigm in NLP, it has not—to the best
of our knowledge—been applied to a quantitative
investigation of linguistic typology.

As a second evaluation, we introduce a vowel
system cloze task that could also be used to evalu-
ate non-probabilistic models. This task is defined
by analogy to the traditional semantic cloze task
(Taylor, 1953), where the reader is asked to fill
in a missing word in the sentence from the con-
text. In our vowel system cloze task, we present
a learner with a subset of the vowels in a held-out
vowel system and ask them to predict the remain-
ing vowels. Consider, as a concrete example, the

general American English vowel system (exclud-
ing long vowels) {[i], [I], [u], [U], [E], [æ], [O], [A],
[@]}. One potential cloze task would be to predict
{[i], [u]} given {[I], [U], [E], [æ], [O], [A], [@]} and
the fact that two vowels are missing from the in-
ventory. Within the cloze task, we report accuracy,
i.e., did we guess the missing vowel right? We
consider three versions of the cloze tasks. First,
we predict one missing vowel in a setting where
exactly one vowel was deleted. Second, we predict
up to one missing vowel where a vowel may have
been deleted. Third, we predict up to two missing
vowels, where one or two vowels may be deleted.

7 Experiments

We evaluate our models using 10-fold cross-
validation over the 223 languages. We report the
mean performance over the 10 folds. The per-
formance on each fold (“test”) was obtained by
training many models on 8 of the other 9 folds
(“train”), selecting the model that obtained the best
task-specific performance on the remaining fold
(“development”), and assessing it on the test fold.
Minimization of the parameters is performed with
the L-BFGS algorithm (Liu and Nocedal, 1989).
As a preprocessing step, the first two formants val-
ues F1 and F2 are centered around zero and scaled
down by a factor of 1000 since the formant values
themselves may be quite large.

Specifically, we use the development fold to
select among the following combinations of hy-
perparameters. For neural embeddings, we tried
r ∈ {2, 10, 50, 100, 150, 200}. For prototype em-
beddings, we took the number of components
r ∈ {20, 30, 40, 50}. We tried network depths
d ∈ {0, 1, 2, 3}. We sweep the coefficient for an
L2 regularizer on the neural network parameters.

7.1 Results and Discussion
Figure 1 visualizes the diffeomorphism from for-
mant space to metric space for one of our DPP
models (depth d = 3 with r = 20 prototypes).
Similar figures can be generated for all of the inter-
pretable models.

We report results for cross-entropy and the cloze
evaluation in Table 1.9 Under both metrics, we
see that the DPP is slightly better than the MPP;
both are better than the BPP. This ranking holds for

9Computing cross-entropy exactly is intractable with the
MPP, so we resort to an unbiased importance sampling scheme
where we draw samples from the BPP and reweight according
to the MPP (Liu et al., 2015).

1187

BPP uBPP uMPP uDPP iBPP iMPP iDPP pBPP pMPP pDPP

x-ent 8.24 8.28 8.08 8.00 13.01 11.50 7 12.83 10.95 10.29
cloze-1 69.55% 69.55% 72.05% 73.18% 64.13% 67.02% 7 65.13% 68.18% 68.18%
cloze-01 60.00% 60.00% 61.01% 62.27% 61.78% 61.04% 7 61.02% 63.04% 63.63%
cloze-012 53.18% 53.18% 57.92% 58.18% 39.04% 43.02% 7 40.56% 45.01% 45.46%

Table 1: Cross-entropy in nats (lower is better) and cloze prediction accuracy (higher is better). “BPP” is a simple BPP with one
parameter for each of the 53 vowels in V . This model does artificially well by modeling an “accidental” feature of our data: it is
able to learn not only which vowels are popular among languages, but also which IPA symbols are popular or conventional among
the descriptive phoneticists who created our dataset (see footnote 6), something that would become irrelevant if we upgraded our
task to predict actual formant vectors rather than IPA symbols (see footnote 3). Our point processes, by contrast, are appropriately
allowed to consider a vowel only through its formant vector. The “u-” versions of the models use the uninterpretable neural
embedding of the formant vector into Rr: by taking r to be large, they are still able to learn special treatment for each vowel in
V (which is why uBPP performs identically to BPP, before being beaten by uMPP and uDPP). The “i-” versions limit themselves
to an interpretable neural embedding into Rk, giving a more realistic description that does not perform as well. The “p-”versions
lift that Rk embedding into Rr by measuring similarities to r prototypes; they thereby improve on the corresponding i- versions.
For each result shown, the depth d of our neural network was tuned on a development set (typically d = 2). r was also tuned
when applicable (typically r > 100 dimensions for the u- models and r ≈ 30 prototypes for the p- models).

each of the 3 embedding schemes. The embedding
schemes themselves are compared in the caption.

Within each embedding scheme, the BPP per-
forms several points worse on the cloze tasks, con-
firming that dispersion is needed to model vowel
inventories well. Still, the BPP’s respectable per-
formance shows that much of the structure can be
capture by focalization. As §3 noted, the BPP may
generate well-dispersed sets, as the common vow-
els tend to be dispersed already (see Figure 4). In
this capacity, however, the BPP is not explanatory
as it cannot actually tell us why these vowels should
be frequent.

We mention that depth in the neural network is
helpful, with deeper embedding networks perform-
ing slightly better than depth d = 0.

Finally, we identified each model’s favorite com-
plete vowel system of size n (Table 2). For the
BPP, this is simply the n most probable vowels.
Decoding the DPP and MPP is NP-hard, but we
found the best system by brute force (for small n).
The dispersion in these models predicts different
systems than the BPP.

8 Discussion: Probabilistic Typology

Typology as Density Estimation? Our goal is
to define a universal distribution over all possible
vowel inventories. Is this appropriate? We regard
this as a natural approach to typology, because it
directly describes which kinds of linguistic systems
are more or less common. Traditional implicational
universals (“all languages with vi have vj”) are soft-
ened, in our approach, into conditional probabilities
such as “p(vj ∈ V | vi ∈ V) ≈ 0.9.” Here the 0.9
is not merely an empirical ratio, but a smoothed

probability derived from the complete estimated
distribution. It is meant to make predictions about
unseen languages.

Whether human language learners exploit any
properties of this distribution10 is a separate ques-
tion that goes beyond typology. Jakobson (1941)
did find that children acquired phoneme invento-
ries in an order that reflected principles similar to
dispersion (“maximum contrast”) and focalization.

At any rate, we estimate the distribution given
some set of attested systems that are assumed to
have been drawn IID from it. One might object
that this IID assumption ignores evolutionary re-
lationships among the attested systems, causing
our estimated distribution to favor systems that are
coincidentally frequent among current human lan-
guages, rather than being natural in some timeless
sense. We reply that our approach is then appro-
priate when the goal of typology is to estimate the
distribution of actual human languages—a distri-
bution that can be utilized in principle (and also
in practice, as we show) to predict properties of
actual languages from outside the training set.

A different possible goal of typology is a the-
ory of natural human languages. This goal would
require a more complex approach. One should
not imagine that natural languages are drawn in a
vacuum from some single, stationary distribution.
Rather, each language is drawn conditionally on
its parent language. Thus, one should estimate a
stochastic model of the evolution of linguistic sys-
tems through time, and identify “naturalness” with

10This could happen because learners have evolved to ex-
pect the languages (the Baldwin effect), or because the lan-
guages have evolved to be easily learned (universal grammar).

1188

BPP MPP DPP
changes from n− 1 changes from n− 1 changes from n− 1

n MAP inventory additions deletions MAP inventory additions deletions MAP inventory additions deletions

1 i i @ @ @ @
2 i, u u i, u i, u @ i, u i, u @
3 i, u, a a i, u, a a i, u, a a
4 i, u, a, o o i, u, a, e e i, u, a, o o
5 i, u, a, o, e e i, u, a, e, @ @ i, u, a, o, @ o

Table 2: Highest-probability inventory of each size according to our three models (prototype-based embeddings and d = 3). The
MAP configuration is computed by brute-force enumeration for small n.

the directions in which this system tends to evolve.

Energy Minimization Approaches. The tradi-
tional energy-based approach (Liljencrants and
Lindblom, 1972) to vowel simulation minimizes
the following objective (written in our notation):

E(m) =
∑

1≤i<j≤m

1

||e(vi)− e(vj)||2
, (9)

where the vectors e(vi) ∈ Rr are not spit out of a
deep network, as in our case, but rather directly op-
timized. Liljencrants and Lindblom (1972) propose
a coordinate descent algorithm to optimize E(m).
While this is not in itself a probabilistic model,
they generate diverse vowel systems through ran-
dom restarts that find different local optima (a kind
of deterministic evolutionary mechanism). We note
that equation (9) assumes that the number of vowels
m is given, and only encodes a notion of dispersion.
Roark (2001) subsequently extended equation (9)
to include the notion of focalization.

Vowel Inventory Size. A fatal flaw of the tradi-
tional energy minimization paradigm is that it has
no clear way to compare vowel inventories of dif-
ferent sizes. The problem is quite crippling since,
in general, inventories with fewer vowels will have
lower energy. This does not match reality—the
empirical distribution over inventory sizes (shown
in Figure 5) shows that the mode is actually 5 and
small inventories are uncommon: no 1-vowel in-
ventory is attested and only one 2-vowel inventory
is known. A probabilistic model over all vowel
systems must implicitly model the size of the sys-
tem. Indeed, our models pit all potential inventories
against each other, bestowing the extra burden to
match the empirical distribution over size.

Frequency of Inventories. Another problem is
the inability to model frequency. While for inven-
tories of a modest size (3-5 vowels) there are very
few unique attested systems, there is a plethora of

attested larger vowel systems. The energy min-
imization paradigm has no principled manner to
tell the scientist how likely a novel system may be.
Appealing again to the empirical distribution over
attested vowel systems, we consider the relative
diversity of systems of each size. We graph this
in Figure 5. Consider all vowel systems of size 7.
There are

(|V|
7

)
potential inventories, yet the empir-

ical distribution is remarkably peaked. Our proba-
bilistic models have the advantage in this context
as well, as they naturally quantify the likelihood of
an individual inventory.

Typology is a Small-Data Problem. In contrast
to many common problems in applied NLP, e.g.,
part-of-speech tagging, parsing and machine trans-
lation, the modeling of linguistic typology is fun-
damentally a “small-data” problem. Out of the
7105 languages on earth, we only have linguistic
annotation for 2600 of them (Comrie et al., 2013).
Moreover, we only have phonetic and phonological
annotation for a much smaller set of languages—
between 300-500 (Maddieson, 2013). Given the
paucity of data, overfitting on only those attested
languages is a dangerous possibility—just because
a certain inventory has never been attested, it is
probably wrong to conclude that it is impossible—
or even improbable—on that basis alone. By anal-
ogy to language modeling, almost all sentences
observed in practice are novel with respect to the
training data, but we still must employ a princi-
pled manner to discriminate high-probability sen-
tences (which are syntactically and semantically
coherent) from low-probability ones. Probabilistic
modeling provides a natural paradigm for this sort
of investigation—machine learning has developed
well-understood smoothing techniques, e.g., reg-
ularization with tuning on a held-out dev set, to
avoid overfitting in a small-data scenario.

Related Work in NLP. Various point processes
have been previously applied to potpourri of tasks

1189

i u a o e ɔ ɛ ɪ y ʊ ɑ ø æ ə ɨ œ ʏɯʌ ɤ ɒ ɵ ʉ ɜ ɐ e̞ ö0

10

20

30

40

50

60

70

80

90

Figure 4: Percentage of the vowel inventories (y-axis) in the
Becker-Kristal corpus (Becker-Kristal, 2010) that have a given
vowel (shown in IPA along the x-axis).

in NLP. Determinantal point processes have found a
home in the literature in tasks that require diversity.
E.g., DPPs have achieved state-of-the-art results on
multi-document document summarization (Kulesza
and Taskar, 2011), news article selection (Affandi
et al., 2012) recommender systems (Gartrell et al.,
2017), joint clustering of verbal lexical semantic
properties (Reichart and Korhonen, 2013), inter
alia. Poisson point processes have also been ap-
plied to NLP problems: Yee et al. (2015) model
the emerging topic on social media using a homo-
geneous point process and Lukasik et al. (2015)
apply a log-Gaussian point process, a variant of
the Poisson point process, to rumor detection in
Twitter. We are unaware of previous attempts to
probabilistically model vowel inventory typology.

Future Work. This work lends itself to sev-
eral technical extensions. One could expand the
function f to more completely characterize each
vowel’s acoustic properties, perceptual properties,
or distinctive features (footnote 7). One could gen-
eralize our point process models to sample finite
subsets from the continuous space of vowels (foot-
note 3). One could consider augmenting the MPP
with a new factor that explicitly controls the size
of the vowel inventory. Richer families of point
processes might also be worth exploring. For ex-
ample, perhaps the vowel inventory is generated by
some temporal mechanism with latent intermediate
steps, such as sequential selection of the vowels or
evolutionary drift of the inventory. Another possi-
bility is that vowel systems tend to reuse distinctive
features or even follow factorial designs, so that an
inventory with creaky front vowels also tends to
have creaky back vowels.

3 4 5 6 7 8 9 10 11 12 13 140

20

40

60

80

100

120

140

Figure 5: Histogram of the sizes of different vowel inventories
in the corpus. The x-axis is the size of the vowel inventory
and the y-axis is the number of inventories with that size.

9 Conclusions

We have presented a series of point process models
for the modeling of vowel system inventory typol-
ogy with the goal of a mathematical grounding
for research in phonological typology. All mod-
els were additionally given a deep parameteriza-
tion to learn representations similar to perceptual
space in cognitive science. Also, we motivated our
preference for probabilistic modeling in linguistic
typology over previously proposed computational
approaches and argued it is a more natural research
paradigm. Additionally, we have introduced sev-
eral novel evaluation metrics for research in vowel-
system typology, which we hope will spark further
interest in the area. Their performance was empiri-
cally validated on the Becker-Kristal corpus, which
includes data from over 200 languages.

Acknowledgments

The first author was funded by an NDSEG graduate
fellowship, and the second author by NSF grant IIS-
1423276. We would like to thank Tim Vieira and
Huda Khayrallah for helpful initial feedback.

References
David H. Ackley, Geoffrey E. Hinton, and Terrence J.

Sejnowski. 1985. A learning algorithm for Boltz-
mann machines. Cognitive Science 9(1):147–169.

Raja Hafiz Affandi, Alex Kulesza, and Emily B. Fox.
2012. Markov determinantal point processes. In
Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence. pages 26–35.

Roy Becker-Kristal. 2010. Acoustic Typology of Vowel
Inventories and Dispersion Theory: Insights from
a Large Cross-Linguistic Corpus. Ph.D. thesis,
UCLA.

1190

Paulus Petrus Gerardus Boersma et al. 2002. Praat, a
system for doing phonetics by computer. Glot Inter-
national 5.

Alexei Borodin and Eric M. Rains. 2005. Eynard-
Mehta theorem, Schur process, and their Pfaffian
analogs. Journal of Statistical Physics 121(3-
4):291–317.

Bernard Comrie, Matthew S. Dryer, David Gil, and
Martin Haspelmath. 2013. Introduction. In
Matthew S. Dryer and Martin Haspelmath, editors,
The World Atlas of Language Structures Online,
Max Planck Institute for Evolutionary Anthropol-
ogy, Leipzig. http://wals.info/chapter/s1.

Gregory F. Cooper. 1990. The computational complex-
ity of probabilistic inference using Bayesian belief
networks. Artificial Intelligence 42(2-3):393–405.

Mike Gartrell, Ulrich Paquet, and Noam Koenigstein.
2017. Low-rank factorization of determinantal point
processes pages 1912–1918.

Stuart Geman and Donald Geman. 1984. Stochas-
tic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence (6):721–741.

Matthew K. Gordon. 2016. Phonological Typology.
Oxford.

Geoffrey E. Hinton and Terry J. Sejnowski. 1986.
Learning and relearning in Boltzmann machines. In
David E. Rumelhart and James L. McClelland, ed-
itors, Parallel Distributed Processing, MIT Press,
volume 2, chapter 7, pages 282–317.

Ernst Ising. 1925. Beitrag zur theorie des ferromag-
netismus. Zeitschrift für Physik A Hadrons and Nu-
clei 31(1):253–258.

Roman Jakobson. 1941. Kindersprache, Aphasie und
allgemeine Lautgesetze. Suhrkamp Frankfurt aM.

Alex Kulesza and Ben Taskar. 2011. Learning deter-
minantal point processes. In Proceedings of the
Twenty-Seventh Conference on Uncertainty in Arti-
ficial Intelligence. pages 419–427.

Alex Kulesza and Ben Taskar. 2012. Determinantal
point processes for machine learning. Foundations
and Trends R© in Machine Learning 5(2–3):123–286.

Peter Ladefoged and Keith Johnson. 2014. A Course in
Phonetics. Centage.

Peter Ladefoged and Ian Maddieson. 1996. The Sounds
of the World’s Languages. Oxford.

Johan Liljencrants and Björn Lindblom. 1972. Numer-
ical simulation of vowel quality systems: The role
of perceptual contrast. Language pages 839–862.

Björn Lindblom. 1986. Phonetic universals in vowel
systems. Experimental Phonology pages 13–44.

Dong C. Liu and Jorge Nocedal. 1989. On the limited
memory BFGS method for large scale optimization.
Mathematical Programming 45(1-3):503–528.

Qiang Liu, Jian Peng, Alexander T. Ihler, and John
W. Fisher III. 2015. Estimating the partition func-
tion by discriminance sampling. In Proceedings of
the Thirty-First Conference on Uncertainty in Artifi-
cial Intelligence. pages 514–522.

Michal Lukasik, Trevor Cohn, and Kalina Bontcheva.
2015. Point process modelling of rumour dynamics
in social media. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers). Association for Computational Linguistics,
Beijing, China, pages 518–523.

Odile Macchi. 1975. The coincidence approach to
stochastic point processes. Advances in Applied
Probability pages 83–122.

Ian Maddieson. 2013. Vowel quality inventories. In
Matthew S. Dryer and Martin Haspelmath, editors,
The World Atlas of Language Structures Online,
Max Planck Institute for Evolutionary Anthropol-
ogy, Leipzig. http://wals.info/chapter/2.

Steven Moran, Daniel McCloy, and Richard Wright.
2014. PHOIBLE online. Leipzig: Max Planck In-
stitute for Evolutionary Anthropology .

Terrance M. Nearey and Michael Kiefte. 2003. Com-
parison of several proposed perceptual representa-
tions of vowel spectra. Proceedings of the XVth In-
ternational Congress of Phonetic Sciences 1:1005–
1008.

Roi Reichart and Anna Korhonen. 2013. Improved lex-
ical acquisition through DPP-based verb clustering.
In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers). Association for Computational Lin-
guistics, Sofia, Bulgaria, pages 862–872.

Brian Roark. 2001. Explaining vowel inventory ten-
dencies via simulation: Finding a role for quantal
locations and formant normalization. In North East
Linguistic Society. volume 31, pages 419–434.

Christian P. Robert and George Casella. 2005. Monte
Carlo Statistical Methods. Springer-Verlag New
York, Inc., Secaucus, NJ, USA.

Burton S. Rosner and John B. Pickering. 1994. Vowel
Perception and Production. Oxford University
Press.

Jean-Luc Schwartz, Louis-Jean Boë, Nathalie Vallée,
and Christian Abry. 1997. The dispersion-
focalization theory of vowel systems. Journal of
Phonetics 25(3):255–286.

Roger N. Shepard. 1987. Toward a universal law of
generalization for psychological science. Science
237(4820):1317–1323.

1191

Kenneth N. Stevens. 1972. The quantal nature of
speech: Evidence from articulatory-acoustic data.
In E. E. David and P. B. Denes, editors, Human Com-
munication: A Unified View, McGraw-Hill, pages
51–56.

Kenneth N Stevens. 1989. On the quantal nature of
speech. Journal of Phonetics 17:3–45.

Wilson L. Taylor. 1953. Cloze procedure: a new tool
for measuring readability. Journalism and Mass
Communication Quarterly 30(4):415.

M. N. M. Van Lieshout. 2000. Markov Point Pro-
cesses and Their Applications. Imperial College
Press, London.

Viveka Velupillai. 2012. An Introduction to Linguistic
Typology. John Benjamins Publishing Company.

Connie Yee, Nathan Keane, and Liang Zhou. 2015.
Modeling and characterizing social media topics us-
ing the gamma distribution. In EVENTS. pages 117–
122.

1192

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1193–1203
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1110

Adversarial Multi-Criteria Learning for Chinese Word Segmentation

Xinchi Chen, Zhan Shi, Xipeng Qiu∗, Xuanjing Huang
Shanghai Key Laboratory of Intelligent Information Processing, Fudan University

School of Computer Science, Fudan University
825 Zhangheng Road, Shanghai, China

{xinchichen13,zshi16,xpqiu,xjhuang}@fudan.edu.cn

Abstract

Different linguistic perspectives causes
many diverse segmentation criteria for
Chinese word segmentation (CWS). Most
existingmethods focus on improve the per-
formance for each single criterion. Howe-
ver, it is interesting to exploit these dif-
ferent criteria and mining their common
underlying knowledge. In this paper, we
propose adversarial multi-criteria learning
for CWS by integrating shared knowledge
frommultiple heterogeneous segmentation
criteria. Experiments on eight corpora
with heterogeneous segmentation criteria
show that the performance of each corpus
obtains a significant improvement, compa-
red to single-criterion learning. Source co-
des of this paper are available on Github1.

1 Introduction

Chinese word segmentation (CWS) is a prelimi-
nary and important task for Chinese natural lan-
guage processing (NLP). Currently, the state-of-
the-art methods are based on statistical supervi-
sed learning algorithms, and rely on a large-scale
annotated corpus whose cost is extremely expen-
sive. Although there have been great achievements
in building CWS corpora, they are somewhat in-
compatible due to different segmentation criteria.
As shown in Table 1, given a sentence “姚明进
入总决赛 (YaoMing reaches the final)”, the two
commonly-used corpora, PKU’s People’s Daily
(PKU) (Yu et al., 2001) and Penn Chinese Tree-
bank (CTB) (Fei, 2000), use different segmenta-
tion criteria. In a sense, it is a waste of resources
if we fail to fully exploit these corpora.

∗Corresponding author.
1https://github.com/FudanNLP

Corpora Yao Ming reaches the final
CTB 姚明 进入 总决赛
PKU 姚 明 进入 总 决赛

Table 1: Illustration of the different segmentation
criteria.

Recently, some efforts have been made to ex-
ploit heterogeneous annotation data for Chinese
word segmentation or part-of-speech tagging (Ji-
ang et al., 2009; Sun and Wan, 2012; Qiu et al.,
2013; Li et al., 2015, 2016). These methods adop-
ted stacking or multi-task architectures and sho-
wed that heterogeneous corpora can help each ot-
her. However, most of these model adopt the shal-
low linear classifier with discrete features, which
makes it difficult to design the shared feature spa-
ces, usually resulting in a complex model. Fortu-
nately, recent deep neural models provide a con-
venient way to share information among multiple
tasks (Collobert and Weston, 2008; Luong et al.,
2015; Chen et al., 2016).
In this paper, we propose an adversarial multi-

criteria learning for CWS by integrating shared
knowledge from multiple segmentation criteria.
Specifically, we regard each segmentation cri-
terion as a single task and propose three diffe-
rent shared-private models under the framework
of multi-task learning (Caruana, 1997; Ben-David
and Schuller, 2003), where a shared layer is used
to extract the criteria-invariant features, and a pri-
vate layer is used to extract the criteria-specific fe-
atures. Inspired by the success of adversarial stra-
tegy on domain adaption (Ajakan et al., 2014; Ga-
nin et al., 2016; Bousmalis et al., 2016), we furt-
her utilize adversarial strategy to make sure the
shared layer can extract the common underlying
and criteria-invariant features, which are suitable
for all the criteria. Finally, we exploit the eight
segmentation criteria on the five simplified Chi-

1193

https://doi.org/10.18653/v1/P17-1110

nese and three traditional Chinese corpora. Expe-
riments show that our models are effective to im-
prove the performance for CWS. We also observe
that traditional Chinese could benefit from incor-
porating knowledge from simplified Chinese.
The contributions of this paper could be summa-

rized as follows.

• Multi-criteria learning is first introduced for
CWS, in which we propose three shared-
private models to integrate multiple segmen-
tation criteria.

• An adversarial strategy is used to force the
shared layer to learn criteria-invariant featu-
res, in which an new objective function is also
proposed instead of the original cross-entropy
loss.

• We conduct extensive experiments on eight
CWS corpora with different segmentation cri-
teria, which is by far the largest number of
datasets used simultaneously.

2 General Neural Model for Chinese
Word Segmentation

Chinese word segmentation task is usually regar-
ded as a character based sequence labeling pro-
blem. Specifically, each character in a sentence
is labeled as one of L = {B,M,E, S}, indicating
the begin, middle, end of a word, or a word with
single character. There are lots of prevalent met-
hods to solve sequence labeling problem such as
maximum entropy Markov model (MEMM), con-
ditional random fields (CRF), etc. Recently, neu-
ral networks are widely applied to Chinese word
segmentation task for their ability to minimize the
effort in feature engineering (Zheng et al., 2013;
Pei et al., 2014; Chen et al., 2015a,b).
Specifically, given a sequence with n charac-

ters X = {x1, . . . , xn}, the aim of CWS task
is to figure out the ground truth of labels Y ∗ =
{y∗

1, . . . , y
∗
n}:

Y ∗ = argmax
Y ∈Ln

p(Y |X), (1)

where L = {B,M,E, S}.
The general architecture of neural CWS could

be characterized by three components: (1) a cha-
racter embedding layer; (2) feature layers consis-
ting of several classical neural networks and (3) a
tag inference layer. The role of feature layers is to
extract features, which could be either convolution
neural network or recurrent neural network. In this

Characters

Embedding Layer

Feature Layer

Inference Layer B

M

E

S

y3y2y1 y4

x4x1 x2 x3

Forward

Backward

Score

Figure 1: General neural architecture for Chinese
word segmentation.

paper, we adopt the bi-directional long short-term
memory neural networks followed by CRF as the
tag inference layer. Figure 1 illustrates the general
architecture of CWS.

2.1 Embedding layer
In neural models, the first step usually is to map
discrete language symbols to distributed embed-
ding vectors. Formally, we lookup embedding
vector from embedding matrix for each character
xi as exi ∈ Rde , where de is a hyper-parameter
indicating the size of character embedding.

2.2 Feature layers
We adopt bi-directional long short-term memory
(Bi-LSTM) as feature layers. While there are nu-
merous LSTM variants, here we use the LSTM ar-
chitecture used by (Jozefowicz et al., 2015), which
is similar to the architecture of (Graves, 2013) but
without peep-hole connections.

LSTM LSTM introduces gate mechanism and
memory cell to maintain long dependency infor-
mation and avoid gradient vanishing. Formally,
LSTM, with input gate i, output gate o, forget gate
f and memory cell c, could be expressed as:




ii
oi

fi
c̃i


 =




σ
σ
σ
ϕ




(
Wg

ᵀ
[

exi

hi−1

]
+ bg

)
, (2)

ci = ci−1 ⊙ fi + c̃i ⊙ ii, (3)
hi = oi ⊙ ϕ(ci), (4)

where Wg ∈ R(de+dh)×4dh and bg ∈ R4dh are
trainable parameters. dh is a hyper-parameter, in-

1194

dicating the hidden state size. Function σ(·) and
ϕ(·) are sigmoid and tanh functions respectively.
Bi-LSTM In order to incorporate information
from both sides of sequence, we use bi-directional
LSTM (Bi-LSTM) with forward and backward di-
rections. The update of each Bi-LSTM unit can be
written precisely as follows:

hi =
−→h i ⊕

←−h i, (5)

= Bi-LSTM(exi ,
−→h i−1,

←−h i+1, θ), (6)

where
−→h i and

←−h i are the hidden states at position i
of the forward and backward LSTMs respectively;
⊕ is concatenation operation; θ denotes all para-
meters in Bi-LSTM model.

2.3 Inference Layer
After extracting features, we employ conditional
random fields (CRF) (Lafferty et al., 2001) layer
to inference tags. In CRF layer, p(Y |X) in Eq (1)
could be formalized as:

p(Y |X) =
Ψ(Y |X)∑

Y ′∈Ln Ψ(Y ′|X)
. (7)

Here, Ψ(Y |X) is the potential function, and we
only consider interactions between two successive
labels (first order linear chain CRFs):

Ψ(Y |X) =
n∏

i=2

ψ(X, i, yi−1, yi), (8)

ψ(x, i, y′, y) = exp(s(X, i)y + by′y), (9)

where by′y ∈ R is trainable parameters respective
to label pair (y′, y). Score function s(X, i) ∈ R|L|

assigns score for each label on tagging the i-th cha-
racter:

s(X, i) = W⊤
s hi + bs, (10)

where hi is the hidden state of Bi-LSTM at posi-
tion i; Ws ∈ Rdh×|L| and bs ∈ R|L| are trainable
parameters.

3 Multi-Criteria Learning for Chinese
Word Segmentation

Although neural models are widely used on CWS,
most of them cannot deal with incompatible crite-
ria with heterogonous segmentation criteria simul-
taneously.
Inspired by the success of multi-task learning

(Caruana, 1997; Ben-David and Schuller, 2003;
Liu et al., 2016a,b), we regard the heterogenous

criteria as multiple “related” tasks, which could
improve the performance of each other simultane-
ously with shared information.
Formally, assume that there areM corpora with

heterogeneous segmentation criteria. We referDm

as corpusm with Nm samples:

Dm = {(X(m)
i , Y

(m)
i)}Nm

i=1, (11)

where Xm
i and Y m

i denote the i-th sentence and
the corresponding label in corpusm.
To exploit the shared information between these

different criteria, we propose three sharing models
for CWS task as shown in Figure 2. The feature
layers of these three models consist of a private
(criterion-specific) layer and a shared (criterion-
invariant) layer. The difference between three mo-
dels is the information flow between the task layer
and the shared layer. Besides, all of these three
models also share the embedding layer.

3.1 Model-I: Parallel Shared-Private Model
In the feature layer of Model-I, we regard the pri-
vate layer and shared layer as two parallel layers.
For corpusm, the hidden states of shared layer and
private layer are:

h(s)
i =Bi-LSTM(exi ,

−→h (s)
i−1,
←−h (s)

i+1, θs), (12)

h(m)
i =Bi-LSTM(exi ,

−→h (m)
i−1,
←−h (m)

i+1, θm), (13)

and the score function in the CRF layer is compu-
ted as:

s(m)(X, i) = W(m)
s

⊤
[
h(s)

i

h(m)
i

]
+ b(m)

s , (14)

where W(m)
s ∈ R2dh×|L| and b(m)

s ∈ R|L| are
criterion-specific parameters for corpusm.

3.2 Model-II: Stacked Shared-Private Model
In the feature layer of Model-II, we arrange the
shared layer and private layer in stacked manner.
The private layer takes output of shared layer as
input. For corpus m, the hidden states of shared
layer and private layer are:

h(s)
i = Bi-LSTM(exi ,

−→h (s)
i−1,
←−h (s)

i+1, θs), (15)

h(m)
i = Bi-LSTM(

[
exi

h(s)
i

]
,
−→h (m)

i−1,
←−h (m)

i+1 , θm) (16)

and the score function in the CRF layer is compu-
ted as:

s(m)(X, i) = W(m)
s

⊤
h(m)

i + b(m)
s , (17)

where W(m)
s ∈ R2dh×|L| and b(m)

s ∈ R|L| are
criterion-specific parameters for corpusm.

1195

CRF

CRF

Task A

Task B

X(A)

X(B)

Y(B)

Y(A)

(a) Model-I

CRF

CRF

Task A

Task B

X(A)

X(B)

Y(B)

Y(A)

(b) Model-II

CRF

CRF

Task A

Task B

X(A)

X(B)

Y(B)

Y(A)

(c) Model-III

Figure 2: Three shared-private models for multi-criteria learning. The yellow blocks are the shared Bi-
LSTM layer, while the gray block are the private Bi-LSTM layer. The yellow circles denote the shared
embedding layer. The red information flow indicates the difference between three models.

3.3 Model-III: Skip-Layer Shared-Private
Model

In the feature layer of Model-III, the shared layer
and private layer are in stacked manner as Model-
II. Additionally, we send the outputs of shared
layer to CRF layer directly.
The Model III can be regarded as a combination

ofModel-I andModel-II. For corpusm, the hidden
states of shared layer and private layer are the same
with Eq (15) and (16), and the score function in
CRF layer is computed as the same as Eq (14).

3.4 Objective function

The parameters of the network are trained to max-
imize the log conditional likelihood of true labels
on all the corpora. The objective functionJseg can
be computed as:

Jseg(Θm, Θs) =

M∑

m=1

Nm∑

i=1

log p(Y
(m)

i |X(m)
i ; Θm, Θs),

(18)
whereΘm andΘs denote all the parameters in pri-
vate and shared layers respectively.

4 Incorporating Adversarial Training for
Shared Layer

Although the shared-private model separates the
feature space into shared and private spaces, there
is no guarantee that sharable features do not ex-
ist in private feature space, or vice versa. Inspired
by the work on domain adaptation (Ajakan et al.,
2014; Ganin et al., 2016; Bousmalis et al., 2016),
we hope that the features extracted by shared layer
is invariant across the heterogonous segmentation
criteria. Therefore, we jointly optimize the shared

CRF

CRF

Task A

Task B

AVG

Discriminator Shared-private Model

X(A)

X(B)

Y(B)

Y(A)A/B

Softmax

Linear

Figure 3: Architecture of Model-III with adversa-
rial training strategy for shared layer. The discri-
minator firstly averages the hidden states of shared
layer, then derives probability over all possible cri-
teria by applying softmax operation after a linear
transformation.

layer via adversarial training (Goodfellow et al.,
2014).
Therefore, besides the task loss for CWS, we ad-

ditionally introduce an adversarial loss to prevent
criterion-specific feature from creeping into shared
space as shown in Figure 3. We use a criterion dis-
criminator which aims to recognizewhich criterion
the sentence is annotated by using the shared fea-
tures.
Specifically, given a sentence X with length n,

we refer to h(s)
X as shared features for X in one

of the sharing models. Here, we compute h(s)
X by

simply averaging the hidden states of shared layer
h(s)

X = 1
n

∑n
i h

(s)
xi . The criterion discriminator

computes the probability p(·|X) over all criteria
as:

p(·|X; Θd, Θs) = softmax(W⊤
d h

(s)
X + bd), (19)

1196

whereΘd indicates the parameters of criterion dis-
criminatorWd ∈ Rdh×M and bd ∈ RM ; Θs deno-
tes the parameters of shared layers.

4.1 Adversarial loss function
The criterion discriminator maximizes the cross
entropy of predicted criterion distribution p(·|X)
and true criterion.

max
Θd
J 1

adv(Θd) =

M∑

m=1

Nm∑

i=1

log p(m|X(m)
i ; Θd, Θs). (20)

An adversarial loss aims to produce shared fea-
tures, such that a criterion discriminator cannot re-
liably predict the criterion by using these shared fe-
atures. Therefore, wemaximize the entropy of pre-
dicted criterion distribution when training shared
parameters.

max
Θs
J 2

adv(Θs) =

M∑

m=1

Nm∑

i=1

H
(
p(m|X(m)

i ; Θd, Θs)
)

,

(21)
where H(p) = −∑

i pi log pi is an entropy of dis-
tribution p.
Unlike (Ganin et al., 2016), we use entropy term

instead of negative cross-entropy.

5 Training

Finally, we combine the task and adversarial ob-
jective functions.

J (Θ;D) = Jseg(Θm, Θs) + J 1
adv(Θd) + λJ 2

adv(Θs),
(22)

where λ is the weight that controls the interaction
of the loss terms and D is the training corpora.
The training procedure is to optimize two dis-

criminative classifiers alternately as shown in Al-
gorithm 1. We use Adam (Kingma and Ba, 2014)
with minibatchs to maximize the objectives.
Notably, when using adversarial strategy, we

firstly train 2400 epochs (each epoch only trains
on eight batches from different corpora), then we
only optimize Jseg(Θ

m,Θs) with Θs fixed until
convergence (early stop strategy).

6 Experiments

6.1 Datasets
To evaluate our proposed architecture, we experi-
ment on eight prevalent CWS datasets from SIG-
HAN2005 (Emerson, 2005) and SIGHAN2008
(Jin and Chen, 2008). Table 2 gives the details of
the eight datasets. Among these datasets, AS, CI-
TYU and CKIP are traditional Chinese, while the

Algorithm 1 Adversarial multi-criteria learning
for CWS task.
1: for i = 1; i <= n_epoch; i+ + do
2: # Train tag predictor for CWS
3: form = 1;m <= M ;m+ + do
4: # Randomly pick data from corpusm
5: B = {X,Y }bm

1 ∈ Dm

6: Θs += α∇ΘsJ (Θ;B)
7: Θm += α∇ΘmJ (Θ;B)
8: end for
9: # Train criterion discriminator
10: form = 1;m <= M ;m+ + do
11: B = {X,Y }bm

1 ∈ Dm

12: Θd += α∇ΘdJ (Θ;B)
13: end for
14: end for

remains, MSRA, PKU, CTB, NCC and SXU, are
simplified Chinese. We use 10% data of shuffled
train set as development set for all datasets.

6.2 Experimental Configurations
For hyper-parameter configurations, we set both
the character embedding size de and the dimensi-
onality of LSTM hidden states dh to 100. The ini-
tial learning rate α is set to 0.01. The loss weight
coefficient λ is set to 0.05. Since the scale of each
dataset varies, we use different training batch sizes
for datasets. Specifically, we set batch sizes of AS
andMSR datasets as 512 and 256 respectively, and
128 for remains. We employ dropout strategy on
embedding layer, keeping 80% inputs (20% dro-
pout rate).
For initialization, we randomize all parameters

following uniform distribution at (−0.05, 0.05).
We simply map traditional Chinese characters to
simplified Chinese, and optimize on the same cha-
racter embedding matrix across datasets, which is
pre-trained on Chinese Wikipedia corpus, using
word2vec toolkit (Mikolov et al., 2013). Follo-
wing previous work (Chen et al., 2015b; Pei et al.,
2014), all experiments including baseline results
are using pre-trained character embedding with bi-
gram feature.

6.3 Overall Results
Table 3 shows the experiment results of the pro-
posed models on test sets of eight CWS datasets,
which has three blocks.
(1) In the first block, we can see that the per-

formance is boosted by using Bi-LSTM, and the

1197

Datasets Words Chars Word Types Char Types Sents OOV Rate

Si
gh
an
05 MSRA Train 2.4M 4.1M 88.1K 5.2K 86.9K -

Test 0.1M 0.2M 12.9K 2.8K 4.0K 2.60%

AS Train 5.4M 8.4M 141.3K 6.1K 709.0K -
Test 0.1M 0.2M 18.8K 3.7K 14.4K 4.30%

Si
gh
an
08

PKU Train 1.1M 1.8M 55.2K 4.7K 47.3K -
Test 0.2M 0.3M 17.6K 3.4K 6.4K -

CTB Train 0.6M 1.1M 42.2K 4.2K 23.4K -
Test 0.1M 0.1M 9.8K 2.6K 2.1K 5.55%

CKIP Train 0.7M 1.1M 48.1K 4.7K 94.2K -
Test 0.1M 0.1M 15.3K 3.5K 10.9K 7.41%

CITYU Train 1.1M 1.8M 43.6K 4.4K 36.2K -
Test 0.2M 0.3M 17.8K 3.4K 6.7K 8.23%

NCC Train 0.5M 0.8M 45.2K 5.0K 18.9K -
Test 0.1M 0.2M 17.5K 3.6K 3.6K 4.74%

SXU Train 0.5M 0.9M 32.5K 4.2K 17.1K -
Test 0.1M 0.2M 12.4K 2.8K 3.7K 5.12%

Table 2: Details of the eight datasets.

performance of Bi-LSTM cannot be improved by
merely increasing the depth of networks. In addi-
tion, although the F value of LSTMmodel in (Chen
et al., 2015b) is 97.4%, they additionally incorpo-
rate an external idiom dictionary.

(2) In the second block, our proposed three mo-
dels based on multi-criteria learning boost per-
formance. Model-I gains 0.75% improvement
on averaging F-measure score compared with Bi-
LSTM result (94.14%). Only the performance on
MSRA drops slightly. Compared to the baseline
results (Bi-LSTM and stacked Bi-LSTM), the pro-
posed models boost the performance with the help
of exploiting information across these heterogene-
ous segmentation criteria. Although various crite-
ria have different segmentation granularities, there
are still some underlying information shared. For
instance, MSRA and CTB treat family name and
last name as one token “宁泽涛 (NingZeTao)”,
whereas some other datasets, like PKU, regard
them as two tokens, “宁 (Ning)” and “泽涛 (Ze-
Tao)”. The partial boundaries (before “宁 (Ning)”
or after “涛 (Tao)”) can be shared.

(3) In the third block, we introduce adversarial
training. By introducing adversarial training, the
performances are further boosted, and Model-I is
slightly better than Model-II and Model-III. The
adversarial training tries to make shared layer keep
criteria-invariant features. For instance, as shown
in Table 3, when we use shared information, the
performance onMSRA drops (worse than baseline
result). The reason may be that the shared parame-
ters bias to other segmentation criteria and intro-
duce noisy features into shared parameters. When
we additionally incorporate the adversarial stra-

tegy, we observe that the performance on MSRA
is improved and outperforms the baseline results.
We could also observe the improvements on ot-
her datasets. However, the boost from the adver-
sarial strategy is not significant. The main rea-
son might be that the proposed three sharing mo-
dels implicitly attempt to keep invariant features
by shared parameters and learn discrepancies by
the task layer.

6.4 Speed

To further explore the convergence speed, we plot
the results on development sets through epochs.
Figure 4 shows the learning curve of Model-I wit-
hout incorporating adversarial strategy. As shown
in Figure 4, the proposed model makes progress
gradually on all datasets. After about 1000 epochs,
the performance becomes stable and convergent.

We also test the decoding speed, and our mo-
dels process 441.38 sentences per second avera-
gely. As the proposed models and the baseline
models (Bi-LSTM and stacked Bi-LSTM) are ne-
arly in the same complexity, all models are nearly
the same efficient. However, the time consump-
tion of training process varies from model to mo-
del. For the models without adversarial training,
it costs about 10 hours for training (the same for
stacked Bi-LSTM to train eight datasets), whereas
it takes about 16 hours for the models with adver-
sarial training. All the experiments are conducted
on the hardware with Intel(R) Xeon(R) CPU E5-
2643 v3 @ 3.40GHz and NVIDIA GeForce GTX
TITAN X.

1198

Models MSRA AS PKU CTB CKIP CITYU NCC SXU Avg.

LSTM

P 95.13 93.66 93.96 95.36 91.85 94.01 91.45 95.02 93.81
R 95.55 94.71 92.65 85.52 93.34 94.00 92.22 95.05 92.88
F 95.34 94.18 93.30 95.44 92.59 94.00 91.83 95.04 93.97

OOV 63.60 69.83 66.34 76.34 68.67 65.48 56.28 69.46 67.00

Bi-LSTM

P 95.70 93.64 93.67 95.19 92.44 94.00 91.86 95.11 93.95
R 95.99 94.77 92.93 95.42 93.69 94.15 92.47 95.23 94.33
F 95.84 94.20 93.30 95.30 93.06 94.07 92.17 95.17 94.14

OOV 66.28 70.07 66.09 76.47 72.12 65.79 59.11 71.27 68.40

Stacked Bi-LSTM

P 95.69 93.89 94.10 95.20 92.40 94.13 91.81 94.99 94.03
R 95.81 94.54 92.66 95.40 93.39 93.99 92.62 95.37 94.22
F 95.75 94.22 93.37 95.30 92.89 94.06 92.21 95.18 94.12

OOV 65.55 71.50 67.92 75.44 70.50 66.35 57.39 69.69 68.04
Multi-Criteria Learning

Model-I

P 95.67 94.44 94.93 95.95 93.99 95.10 92.54 96.07 94.84
R 95.82 95.09 93.73 96.00 94.52 95.60 92.69 96.08 94.94
F 95.74 94.76 94.33 95.97 94.26 95.35 92.61 96.07 94.89

OOV 69.89 74.13 72.96 81.12 77.58 80.00 64.14 77.05 74.61

Model-II

P 95.74 94.60 94.82 95.90 93.51 95.30 92.26 96.17 94.79
R 95.74 95.20 93.76 95.94 94.56 95.50 92.84 95.95 94.94
F 95.74 94.90 94.28 95.92 94.03 95.40 92.55 96.06 94.86

OOV 69.67 74.87 72.28 79.94 76.67 81.05 61.51 77.96 74.24

Model-III

P 95.76 93.99 94.95 95.85 93.50 95.56 92.17 96.10 94.74
R 95.89 95.07 93.48 96.11 94.58 95.62 92.96 96.13 94.98
F 95.82 94.53 94.21 95.98 94.04 95.59 92.57 96.12 94.86

OOV 70.72 72.59 73.12 81.21 76.56 82.14 60.83 77.56 74.34
Adversarial Multi-Criteria Learning

Model-I+ADV

P 95.95 94.17 94.86 96.02 93.82 95.39 92.46 96.07 94.84
R 96.14 95.11 93.78 96.33 94.70 95.70 93.19 96.01 95.12
F 96.04 94.64 94.32 96.18 94.26 95.55 92.83 96.04 94.98

OOV 71.60 73.50 72.67 82.48 77.59 81.40 63.31 77.10 74.96

Model-II+ADV

P 96.02 94.52 94.65 96.09 93.80 95.37 92.42 95.85 94.84
R 95.86 94.98 93.61 95.90 94.69 95.63 93.20 96.07 94.99
F 95.94 94.75 94.13 96.00 94.24 95.50 92.81 95.96 94.92

OOV 72.76 75.37 73.13 82.19 77.71 81.05 62.16 76.88 75.16

Model-III+ADV

P 95.92 94.25 94.68 95.86 93.67 95.24 92.47 96.24 94.79
R 95.83 95.11 93.82 96.10 94.48 95.60 92.73 96.04 94.96
F 95.87 94.68 94.25 95.98 94.07 95.42 92.60 96.14 94.88

OOV 70.86 72.89 72.20 81.65 76.13 80.71 63.22 77.88 74.44

Table 3: Results of proposed models on test sets of eight CWS datasets. There are three blocks. The first
block consists of two baseline models: Bi-LSTM and stacked Bi-LSTM. The second block consists of
our proposed three models without adversarial training. The third block consists of our proposed three
models with adversarial training. Here, P, R, F, OOV indicate the precision, recall, F value and OOV
recall rate respectively. The maximum F values in each block are highlighted for each dataset.

6.5 Error Analysis

We further investigate the benefits of the propo-
sed models by comparing the error distributions
between the single-criterion learning (baselinemo-
del Bi-LSTM) andmulti-criteria learning (Model-I
and Model-I with adversarial training) as shown in
Figure 5. According to the results, we could ob-
serve that a large proportion of points lie above
diagonal lines in Figure 5a and Figure 5b, which
implies that performance benefit from integrating
knowledge and complementary information from
other corpora. As shown in Table 3, on the test
set of CITYU, the performance of Model-I and
its adversarial version (Model-I+ADV) boost from

92.17% to 95.59% and 95.42% respectively.

In addition, we observe that adversarial strategy
is effective to prevent criterion specific features
from creeping into shared space. For instance, the
segmentation granularity of personal name is often
different according to heterogenous criteria. With
the help of adversarial strategy, our models could
correct a large proportion of mistakes on personal
name. Table 4 lists the examples from 2333-th and
89-th sentences in test sets of PKU and MSRA da-
tasets respectively.

1199

0 500 1,000 1,500 2,000 2,500

90

92

94

96

epoches

F-
va
lu
e(
%
)

MSRA AS
PKU CTB
CKIP CITYU
NCC SXU

Figure 4: Convergence speed of Model-I without
adversarial training on development sets of eight
datasets.

40

50

60

70

80

90

100

40 50 60 70 80 90 100

M
u

lt
i-

C
ri

te
ri

a
Le

ar
n

in
g

Base Line

(a)

40

50

60

70

80

90

100

40 50 60 70 80 90 100

M
u

lt
i-

C
ri

te
ri

a
Le

ar
n

in
g

+
A

d
ve

rs
ar

y

Base Line

(b)

Figure 5: F-measure scores on test set of CITYU
dataset. Each point denotes a sentence, with the
(x, y) values of each point denoting the F-measure
scores of the two models, respectively. (a) is
comparison between Bi-LSTM andModel-I. (b) is
comparison between Bi-LSTM and Model-I with
adversarial training.

7 Knowledge Transfer

We also conduct experiments of whether the
shared layers can be transferred to the other related
tasks or domains. In this section, we investigate
the ability of knowledge transfer on two experi-
ments: (1) simplified Chinese to traditional Chi-
nese and (2) formal texts to informal texts.

7.1 Simplified Chinese to Traditional Chinese

Traditional Chinese and simplified Chinese are
two similar languages with slightly difference on
character forms (e.g. multiple traditional charac-
ters might map to one simplified character). We
investigate that if datasets in traditional Chinese
and simplified Chinese could help each other. Ta-
ble 5 gives the results of Model-I on 3 traditio-

Models PKU-2333 MSRA-89

Golds Roh Moo-hyun Mu Ling Ying
卢 武铉 穆玲英

Base Line 卢武铉 穆 玲英
Model-I 卢武铉 穆 玲英

Modell-I+ADV 卢 武铉 穆玲英

Table 4: Segmentation cases of personal names.

Models AS CKIP CITYU Avg.
Baseline(Bi-LSTM) 94.20 93.06 94.07 93.78

Model-I∗ 94.12 93.24 95.20 94.19

Table 5: Performance on 3 traditional Chinese da-
tasets. Model-I∗ means that the shared parameters
are trained on 5 simplified Chinese datasets and
are fixed for traditional Chinese datasets. Here, we
conductModel-I without incorporating adversarial
training strategy.

nal Chinese datasets under the help of 5 simpli-
fied Chinese datasets. Specifically, we firstly train
the model on simplified Chinese datasets, then
we train traditional Chinese datasets independently
with shared parameters fixed.
As we can see, the average performance is boos-

ted by 0.41% on F-measure score (from 93.78% to
94.19%), which indicates that shared features le-
arned from simplified Chinese segmentation crite-
ria can help to improve performance on traditio-
nal Chinese. Like MSRA, as AS dataset is relati-
vely large (train set of 5.4M tokens), the features
learned by shared parameters might bias to other
datasets and thus hurt performance on such large
dataset AS.

7.2 Formal Texts to Informal Texts

7.2.1 Dataset
We use the NLPCC 2016 dataset2 (Qiu et al., 2016)
to evaluate our model on micro-blog texts. The
NLPCC 2016 data are provided by the shared task
in the 5th CCF Conference on Natural Language
Processing & Chinese Computing (NLPCC 2016):
Chinese Word Segmentation and POS Tagging for
micro-blog Text. Unlike the popular used news-
wire dataset, the NLPCC 2016 dataset is collected
from Sina Weibo3, which consists of the informal
texts frommicro-blog with the various topics, such
as finance, sports, entertainment, and so on. The
information of the dataset is shown in Table 6.

2https://github.com/FudanNLP/
NLPCC-WordSeg-Weibo

3http://www.weibo.com/

1200

Dataset Words Chars Word Types Char Types Sents OOV Rate
Train 421,166 688,743 43,331 4,502 20,135 -
Dev 43,697 73,246 11,187 2,879 2,052 6.82%
Test 187,877 315,865 27,804 3,911 8,592 6.98%

Table 6: Statistical information of NLPCC 2016 dataset.

Models P R F OOV
Baseline(Bi-LSTM) 93.56 94.33 93.94 70.75

Model-I∗ 93.65 94.83 94.24 74.72

Table 7: Performances on the test set of NLPCC
2016 dataset. Model-I∗ means that the shared pa-
rameters are trained on 8 Chinese datasets (Table
2) and are fixed for NLPCC dataset. Here, we
conductModel-I without incorporating adversarial
training strategy.

7.2.2 Results
Formal documents (like the eight datasets in Table
2) and micro-blog texts are dissimilar in many as-
pects. Thus, we further investigate that if the for-
mal texts could help to improve the performance
of micro-blog texts. Table 7 gives the results of
Model-I on the NLPCC 2016 dataset under the
help of the eight datasets in Table 2. Specifically,
we firstly train themodel on the eight datasets, then
we train on the NLPCC 2016 dataset alone with
shared parameters fixed. The baseline model is Bi-
LSTM which is trained on the NLPCC 2016 data-
set alone.
As we can see, the performance is boosted

by 0.30% on F-measure score (from 93.94% to
94.24%), and we could also observe that the OOV
recall rate is boosted by 3.97%. It shows that the
shared features learned from formal texts can help
to improve the performance on ofmicro-blog texts.

8 Related Works

There are many works on exploiting heterogene-
ous annotation data to improve various NLP tasks.
Jiang et al. (2009) proposed a stacking-based mo-
del which could train a model for one specific de-
sired annotation criterion by utilizing knowledge
from corpora with other heterogeneous annotati-
ons. Sun and Wan (2012) proposed a structure-
based stacking model to reduce the approximation
error, which makes use of structured features such
as sub-words. These models are unidirectional aid
and also suffer from error propagation problem.
Qiu et al. (2013) used multi-tasks learning fra-

mework to improve the performance of POS tag-

ging on two heterogeneous datasets. Li et al.
(2015) proposed a coupled sequence labeling mo-
del which could directly learn and infer two he-
terogeneous annotations. Chao et al. (2015) also
utilize multiple corpora using coupled sequence la-
beling model. These methods adopt the shallow
classifiers, therefore suffering from the problem of
defining shared features.
Our proposed models use deep neural networks,

which can easily share information with hidden
shared layers. Chen et al. (2016) also adopted
neural network models for exploiting heterogene-
ous annotations based on neural multi-viewmodel,
which can be regarded as a simplified version of
our proposed models by removing private hidden
layers.
Unlike the above models, we design three

sharing-private architectures and keep shared layer
to extract criterion-invariance features by introdu-
cing adversarial training. Moreover, we fully ex-
ploit eight corpora with heterogeneous segmenta-
tion criteria to model the underlying shared infor-
mation.

9 Conclusions & Future Works

In this paper, we propose adversarial multi-criteria
learning for CWS by fully exploiting the under-
lying shared knowledge across multiple heteroge-
neous criteria. Experiments show that our propo-
sed three shared-private models are effective to ex-
tract the shared information, and achieve signifi-
cant improvements over the single-criterion met-
hods.

Acknowledgments

We appreciate the contribution from Jingjing Gong
and Jiacheng Xu. Besides, we would like to
thank the anonymous reviewers for their valu-
able comments. This work is partially funded
by National Natural Science Foundation of China
(No. 61532011 and 61672162), Shanghai Munici-
pal Science and Technology Commission on (No.
16JC1420401).

1201

References
Hana Ajakan, Pascal Germain, Hugo Larochelle,
François Laviolette, and Mario Marchand. 2014.
Domain-adversarial neural networks. arXiv preprint
arXiv:1412.4446 .

S. Ben-David and R. Schuller. 2003. Exploiting task
relatedness for multiple task learning. Learning The-
ory and Kernel Machines pages 567–580.

Konstantinos Bousmalis, George Trigeorgis, Nathan
Silberman, Dilip Krishnan, and Dumitru Erhan.
2016. Domain separation networks. In Advances in
Neural Information Processing Systems. pages 343–
351.

Rich Caruana. 1997. Multitask learning. Machine le-
arning 28(1):41–75.

Jiayuan Chao, Zhenghua Li, Wenliang Chen, and Min
Zhang. 2015. Exploiting heterogeneous annotati-
ons for weibo word segmentation and pos tagging.
In National CCF Conference on Natural Language
Processing and Chinese Computing. Springer, pages
495–506.

Hongshen Chen, Yue Zhang, and Qun Liu. 2016. Neu-
ral network for heterogeneous annotations. Procee-
dings of the 2016 Conference on Empirical Methods
in Natural Language Processing .

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, and Xuanjing
Huang. 2015a. Gated recursive neural network for
chinese word segmentation. In Proceedings of An-
nual Meeting of the Association for Computational
Linguistics..

Xinchi Chen, Xipeng Qiu, Chenxi Zhu, Pengfei Liu,
and Xuanjing Huang. 2015b. Long short-term me-
mory neural networks for chinese word segmenta-
tion. In EMNLP. pages 1197–1206.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Procee-
dings of ICML.

Thomas Emerson. 2005. The second international chi-
nese word segmentation bakeoff. In Proceedings of
the fourth SIGHAN workshop on Chinese language
Processing. volume 133.

XIA Fei. 2000. The part-of-speech tagging guide-
lines for the penn chinese treebank (3.0). URL:
http://www. cis. upenn. edu/˜ chinese/segguide. 3rd.
ch. pdf .

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François La-
violette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. Journal of Machine Learning Research
17(59):1–35.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. In Advances in Neural Information
Processing Systems. pages 2672–2680.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 .

W. Jiang, L. Huang, and Q. Liu. 2009. Automatic adap-
tation of annotation standards: Chinese word seg-
mentation and POS tagging: a case study. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing. pages
522–530.

G. Jin and X. Chen. 2008. The fourth international
chinese language processing bakeoff: Chinese word
segmentation, named entity recognition and chinese
pos tagging. In Sixth SIGHANWorkshop on Chinese
Language Processing. page 69.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya Sutske-
ver. 2015. An empirical exploration of recurrent net-
work architectures. In Proceedings of The 32nd In-
ternational Conference on Machine Learning.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proceedings of the Eighteenth Inter-
national Conference on Machine Learning.

Zhenghua Li, Jiayuan Chao, Min Zhang, and Wenliang
Chen. 2015. Coupled sequence labeling on hetero-
geneous annotations: Pos tagging as a case study. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference onNatural Language
Processing.

Zhenghua Li, Jiayuan Chao, Min Zhang, and Jiwen
Yang. 2016. Fast coupled sequence labeling on he-
terogeneous annotations via context-aware pruning.
In Proceedings of EMNLP.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016a.
Deep multi-task learning with shared memory. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. 2016b.
Recurrent neural network for text classification with
multi-task learning. In Proceedings of International
Joint Conference on Artificial Intelligence.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2015. Multi-task
sequence to sequence learning. arXiv preprint
arXiv:1511.06114 .

1202

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Wenzhe Pei, Tao Ge, and Chang Baobao. 2014. Max-
margin tensor neural network for chinese word seg-
mentation. In Proceedings of ACL.

Xipeng Qiu, Peng Qian, and Zhan Shi. 2016. Overview
of the NLPCC-ICCPOL 2016 shared task: Chinese
word segmentation for micro-blog texts. In Interna-
tional Conference on Computer Processing of Orien-
tal Languages. Springer, pages 901–906.

Xipeng Qiu, Jiayi Zhao, and Xuanjing Huang. 2013.
Joint chinese word segmentation and pos tagging on
heterogeneous annotated corpora with multiple task
learning. In EMNLP. pages 658–668.

Weiwei Sun and Xiaojun Wan. 2012. Reducing ap-
proximation and estimation errors for chinese lexical
processing with heterogeneous annotations. In Pro-
ceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics: Long Papers-
Volume 1. pages 232–241.

S. Yu, J. Lu, X. Zhu, H. Duan, S. Kang, H. Sun,
H. Wang, Q. Zhao, and W. Zhan. 2001. Processing
norms of modern Chinese corpus. Technical report,
Technical report.

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu. 2013.
Deep learning for chinese word segmentation and
pos tagging. In EMNLP. pages 647–657.

1203

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1204–1214
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1111

Neural Joint Model for Transition-based Chinese Syntactic Analysis

Shuhei Kurita Daisuke Kawahara
Graduate School of Informatics, Kyoto University

{kurita, dk, kuro}@nlp.ist.i.kyoto-u.ac.jp

Sadao Kurohashi

Abstract

We present neural network-based joint
models for Chinese word segmentation,
POS tagging and dependency parsing. Our
models are the first neural approaches for
fully joint Chinese analysis that is known
to prevent the error propagation problem
of pipeline models. Although word em-
beddings play a key role in dependency
parsing, they cannot be applied directly to
the joint task in the previous work. To
address this problem, we propose embed-
dings of character strings, in addition to
words. Experiments show that our mod-
els outperform existing systems in Chinese
word segmentation and POS tagging, and
perform preferable accuracies in depen-
dency parsing. We also explore bi-LSTM
models with fewer features.

1 Introduction

Dependency parsers have been enhanced by the
use of neural networks and embedding vectors
(Chen and Manning, 2014; Weiss et al., 2015;
Zhou et al., 2015; Alberti et al., 2015; Andor et al.,
2016; Dyer et al., 2015). When these dependency
parsers process sentences in English and other lan-
guages that use symbols for word separations, they
can be very accurate. However, for languages
that do not contain word separation symbols, de-
pendency parsers are used in pipeline processes
with word segmentation and POS tagging mod-
els, and encounter serious problems because of
error propagations. In particular, Chinese word
segmentation is notoriously difficult because sen-
tences are written without word dividers and Chi-
nese words are not clearly defined. Hence, the
pipeline of word segmentation, POS tagging and
dependency parsing always suffers from word seg-

mentation errors. Once words have been wrongly-
segmented, word embeddings and traditional one-
hot word features, used in dependency parsers,
will mistake the precise meanings of the original
sentences. As a result, pipeline models achieve
dependency scores of around 80% for Chinese.

A traditional solution to this error propagation
problem is to use joint models. Many Chinese
words play multiple grammatical roles with only
one grammatical form. Therefore, determining
the word boundaries and the subsequent tagging
and dependency parsing are closely correlated.
Transition-based joint models for Chinese word
segmentation, POS tagging and dependency pars-
ing are proposed by Hatori et al. (2012) and Zhang
et al. (2014). Hatori et al. (2012) state that de-
pendency information improves the performances
of word segmentation and POS tagging, and de-
velop the first transition-based joint word seg-
mentation, POS tagging and dependency parsing
model. Zhang et al. (2014) expand this and find
that both the inter-word dependencies and intra-
word dependencies are helpful in word segmenta-
tion and POS tagging.

Although the models of Hatori et al. (2012) and
Zhang et al. (2014) perform better than pipeline
models, they rely on the one-hot representation
of characters and words, and do not assume the
similarities among characters and words. In ad-
dition, not only words and characters but also
many incomplete tokens appear in the transition-
based joint parsing process. Such incomplete or
unknown words (UNK) could become important
cues for parsing, but they are not listed in dic-
tionaries or pre-trained word embeddings. Some
recent studies show that character-based embed-
dings are effective in neural parsing (Ballesteros
et al., 2015; Zheng et al., 2015), but their models
could not be directly applied to joint models be-
cause they use given word segmentations. To solve

1204

https://doi.org/10.18653/v1/P17-1111

these problems, we propose neural network-based
joint models for word segmentation, POS tagging
and dependency parsing. We use both character
and word embeddings for known tokens and apply
character string embeddings for unknown tokens.

Another problem in the models of Hatori et al.
(2012) and Zhang et al. (2014) is that they rely
on detailed feature engineering. Recently, bidi-
rectional LSTM (bi-LSTM) based neural network
models with very few feature extraction are pro-
posed (Kiperwasser and Goldberg, 2016; Cross
and Huang, 2016). In their models, the bi-LSTM
is used to represent the tokens including their con-
text. Indeed, such neural networks can observe
whole sentence through the bi-LSTM. This bi-
LSTM is similar to that of neural machine trans-
lation models of Bahdanau et al. (2014). As a
result, Kiperwasser and Goldberg (2016) achieve
competitive scores with the previous state-of-the-
art models. We also develop joint models with n-
gram character string bi-LSTM.

In the experiments, we obtain state-of-the-art
Chinese word segmentation and POS tagging
scores, and the pipeline of the dependency model
achieves the better dependency scores than the
previous joint models. To the best of our knowl-
edge, this is the first model to use embeddings and
neural networks for Chinese full joint parsing.

Our contributions are summarized as follows:
(1) we propose the first embedding-based fully
joint parsing model, (2) we use character string
embeddings for UNK and incomplete tokens. (3)
we also explore bi-LSTM models to avoid the de-
tailed feature engineering in previous approaches.
(4) in experiments using Chinese corpus, we
achieve state-of-the-art scores in word segmenta-
tion, POS tagging and dependency parsing.

2 Model

All full joint parsing models we present in this
paper use the transition-based algorithm in Sec-
tion 2.1 and the embeddings of character strings
in Section 2.2. We present two neural networks:
the feed-forward neural network models in Sec-
tion 2.3 and the bi-LSTM models in Section 2.4.

2.1 Transition-based Algorithm for Joint
Segmentation, POS Tagging, and
Dependency Parsing

Based on Hatori et al. (2012), we use a modi-
fied arc-standard algorithm for character transi-

技术有了新的进展。

新的进展。

Stack (word-based) Buffer (character-based)

SH RL SH

技术

RR

了

AP SH

Technology have made new progress.

Left children
(word-based)

Right children
(word-based)

Transitions History:

有

Figure 1: Transition-based Chinese joint model
for word segmentation, POS tagging and depen-
dency parsing.

tions (Figure 1). The model consists of one buffer
and one stack. The buffer contains characters in
the input sentence, and the stack contains words
shifted from the buffer. The stack words may
have their child nodes. The words in the stack are
formed by the following transition operations.

• SH(t) (shift): Shift the first character of the
buffer to the top of the stack as a new word.

• AP (append): Append the first character of
the buffer to the end of the top word of the
stack.

• RR (reduce-right): Reduce the right word of
the top two words of the stack, and make the
right child node of the left word.

• RL (reduce-left): Reduce the left word of the
top two words of the stack, and make the left
child node of the right word.

The RR and RL operations are the same as those
of the arc-standard algorithm (Nivre, 2004a). SH
makes a new word whereas AP makes the current
word longer by adding one character. The POS
tags are attached with the SH(t) transition.

In this paper, we explore both greedy models
and beam decoding models. This parsing algo-
rithm works in both types. We also develop a
joint model of word segmentation and POS tag-
ging, along with a dependency parsing model. The
joint model of word segmentation and POS tag-
ging does not have RR and RL transitions.

2.2 Embeddings of Character Strings
First, we explain the embeddings used in the neu-
ral networks. Later, we explain details of the neu-
ral networks in Section 2.3 and 2.4.

1205

Both meaningful words and incomplete tokens
appear during transition-based joint parsing. Al-
though embeddings of incomplete tokens are not
used in previous work, they could become use-
ful features in several cases. For example, “南京
东路” (Nanjing East Road, the famous shopping
street of Shanghai) is treated as a single Chinese
word in the Penn Chinese Treebank (CTB) cor-
pus. There are other named entities of this form in
CTB, e.g, “北京西路” (Beijing West Road) and
“湘西路” (Hunan West Road). In these cases,
“南京” (Nanjing) and “北京” (Beijing) are loca-
tion words, while “东路” (East Road) and “西
路” (West Road) are sub-words. “东路” and “西
路” are similar in terms of their character com-
position and usage, which is not sufficiently con-
sidered in the previous work. Moreover, rep-
resentations of incomplete tokens are helpful for
compensating the segmentation ambiguity. Sup-
pose that the parser makes over-segmentation er-
rors and segments “南京东路” to “南京” and “东
路”. In this case, “东路” becomes UNK. However,
the models could infer that “东路” is also a loca-
tion, from its character composition and neighbor-
ing words. This could give models robustness of
segmentation errors. In our models, we prepare
the word and character embeddings in the pre-
training. We also use the embeddings of character
strings for sub-words and UNK which are not in
the pre-trained embeddings.

The characters and words are embedded in the
same vector space during pre-training. We pre-
pare the same training corpus with the segmented
word files and the segmented character files. Both
files are concatenated and learned by word2vec
(Mikolov et al., 2013). We use the embeddings
of 1M frequent words and characters. Words and
characters that are in the training set and do not
have pre-trained embeddings are given randomly
initialized embeddings. The development set and
the test set have out-of-vocabulary (OOV) tokens
for these embeddings.

The embeddings of the unknown character
strings are generated in the neural computation
graph when they are required. Consider a char-
acter string c1c2 · · · cn consisting of characters
ci. When this character string is not in the pre-
trained embeddings, the model obtains the embed-
dings v(c1c2 · · · cn) by the mean of each character
embeddings

∑n
i=1 v(ci). Embeddings of words,

characters and character strings have the same di-

Word embeddings Character embeddings

mean

Embedding layer

Hidden layer 1

Hidden layer 2

ReLU

ReLU

Character Strings

softmax

pgreedyt

ρ

Greedy output

Beam output

Figure 2: The feed-forward neural network model.
The greedy output is obtained at the second top
layer, while the beam decoding output is obtained
at the top layer. The input character strings are
translated into word embeddings if the embed-
dings of the character strings are available. Other-
wise, the embeddings of the character strings are
used.

mension and are chosen in the neural computation
graph. We avoid using the “UNK” vector as far as
possible, because this degenerates the information
about unknown tokens. However, models use the
“UNK” vector if the parser encounters characters
that are not in the pre-trained embeddings, though
this is quite uncommon.

2.3 Feed-forward Neural Network
2.3.1 Neural Network
We present a feed-forward neural network model
in Figure 2. The neural network for greedy train-
ing is based on the neural networks of Chen and
Manning (2014) and Weiss et al. (2015). We add
the dynamic generation of the embeddings of char-
acter strings for unknown tokens, as described in
Section 2.2. This neural network has two hidden
layers with 8,000 dimensions. This is larger than
Chen and Manning (2014) (200 dimensions) or
Weiss et al. (2015) (1,024 or 2,048 dimensions).
We use the ReLU for the activation function of
the hidden layers (Nair and Hinton, 2010) and the
softmax function for the output layer of the greedy

1206

Type Value

Size of h1,h2 8,000
Initial learning rate 0.01
Initial learning rate of beam decoding 0.001
Embedding vocabulary size 1M
Embedding vector size 200
Small embedding vector size 20
Minibatch size 200

Table 1: Parameters for neural network structure
and training.

neural network. There are three randomly initial-
ized weight matrices between the embedding lay-
ers and the softmax function. The loss function
L(θ) for the greedy training is

L(θ) = −
∑

s,t

log pgreedys,t +
λ

2
||θ||2,

pgreedys,t (β) ∝ exp


∑

j

wtjβj + bt


 ,

where t denotes one transition among the transi-
tion set T (t ∈ T). s denotes one element of the
single mini-batch. β denotes the output of the pre-
vious layer. w and b denote the weight matrix and
the bias term. θ contains all parameters. We use
the L2 penalty term and the Dropout. The back-
prop is performed including the word and charac-
ter embeddings. We use Adagrad (Duchi et al.,
2010) to optimize learning rate. We also consider
Adam (Kingma and Ba, 2015) and SGD, but find
that Adagrad performs better in this model. The
other learning parameters are summarized in Ta-
ble 1.

In our model implementation, we divide all sen-
tences into training batches. Sentences in the same
training batches are simultaneously processed by
the neural mini-batches. By doing so, the model
can parse all sentences of the training batch in the
number of transitions required to parse the longest
sentence in the batch. This allows the model to
parse more sentences at once, as long as the neural
mini-batch can be allocated to the GPU memory.
This can be applied to beam decoding.

2.3.2 Features
The features of this neural network are listed in
Table 2. We use three kinds of features: (1) fea-
tures obtained from Hatori et al. (2012) by remov-
ing combinations of features, (2) features obtained
from Chen and Manning (2014), (3) original fea-
tures related to character strings. In particular,

Type Features

Stack word and tags s0w, s1w, s2w
s0p, s1p, s2p

Stack 1 children and tags s0l0w, s0r0w, s0l1w, s0r1w
s0l0p, s0r0p, s0l1p, s0r1p

Stack 2 children s1l0w, s1r0w, s1l1w, s1r1w
Children of children s0l0lw, s0r0rw, s1l0lw, s1r0rw
Buffer characters b0c, b1c, b2c, b3c
Previously shifted words q0w, q1w
Previously shifted tags q0p, q1p
Character of q0 q0e
Parts of q0 word q0f1, q0f2, q0f3
Strings across q0 and buf. q0b1, q0b2, q0b3
Strings of buffer characters b0-2, b0-3, b0-4

b1-3, b1-4, b1-5
b2-4, b2-5, b2-6
b3-5, b3-6
b4-6

Length of q0 lenq0

Table 2: Features for the joint model. “q0” denotes
the last shifted word and “q1” denotes the word
shifted before “q0”. In “part of q0 word”, “f1”,
“f2” and “f3” denote sub-words of “q0”, which
are 1, 2 and 3 sequential characters including the
last character of “q0” respectively. In “strings
across q0 and buf.”, “q0bX” denotes “q0” and X
sequential characters of the buffer. This feature
could capture words that boundaries have not de-
termined yet. In “strings of buffer characters”,
“bX-Y” denotes sequential characters from theX-
th to Y -th character of the buffer. The suffix “e”
denotes the end character of the word. The dimen-
sion of the embedding of “length of q0” is 20.

the original features include sub-words, character
strings across the buffer and the stack, and charac-
ter strings in the buffer. Character strings across
the buffer and stack could capture the currently-
segmented word. To avoid using character strings
that are too long, we restrict the length of charac-
ter string to a maximum of four characters. Un-
like Hatori et al. (2012), we use sequential char-
acters of sentences for features, and avoid hand-
engineered combinations among one-hot features,
because such combinations could be automatically
generated in the neural hidden layers as distributed
representations (Hinton et al., 1986).

In the later section, we evaluate a joint model
for word segmentation and POS tagging. This
model does not use the children and children-of-
children of stack words as features.

1207

2.3.3 Beam Search
Structured learning plays an important role in pre-
vious joint parsing models for Chinese.1 In this
paper, we use the structured learning model pro-
posed by Weiss et al. (2015) and Andor et al.
(2016).

In Figure 2, the output layer for the beam de-
coding is at the top of the network. There are
a perceptron layer which has inputs from the
two hidden layers and the greedy output layer:
[h1,h2,p

greedy(y)]. This layer is learned by the
following cost function (Andor et al., 2016):

L(d∗1:j ; θ) = −
j∑

i=1

ρ(d∗1:i−1, d
∗
i ; θ)

+ ln
∑

d′1:j∈B1:j
exp

j∑

i=1

ρ(d′1:i−1, d
′
i; θ),

where d1:j denotes the transition path and d∗1:j de-
notes the gold transition path. B1:j is the set of
transition paths from 1 to j step in beam. ρ is
the value of the top layer in Figure 2. This train-
ing can be applied throughout the network. How-
ever, we separately train the last beam layer and
the previous greedy network in practice, as in An-
dor et al. (2016). First, we train the last percep-
tron layer using the beam cost function freezing
the previous greedy-trained layers. After the last
layer has been well trained, backprop is performed
including the previous layers. We notice that train-
ing the embedding layer at this stage could make
the results worse, and thus we exclude it. Note
that this whole network backprop requires consid-
erable GPU memory. Hence, we exclude particu-
larly large batches from the training, because they
cannot be on GPU memory. We use multiple beam
sizes for training because models can be trained
faster with small beam sizes. After the small beam
size training, we use larger beam sizes. The test of
this fully joint model takes place with a beam size
of 16.

Hatori et al. (2012) use special alignment steps
in beam decoding. The AP transition has size-2
steps, whereas the other transitions have a size-1
step. Using this alignment, the total number of
steps for an N -character sentence is guaranteed to
be 2N − 1 (excluding the root arc) for any transi-
tion path. This can be interpreted as the AP transi-
tion doing two things: appending characters and

1Hatori et al. (2012) report that structured learning with a
beam size of 64 is optimal.

resolving intra-word dependencies. This align-
ment stepping assumes that the intra-word depen-
dencies of characters to the right of the characters
exist in each Chinese word.

2.4 Bi-LSTM Model
In Section 2.3, we describe a neural network
model with feature extraction. Unfortunately, al-
though this model is fast and very accurate, it
has two problems: (1) the neural network can-
not see the whole sentence information. (2) it re-
lies on feature engineering. To solve these prob-
lems, Kiperwasser and Goldberg (2016) propose
a bi-LSTM neural network parsing model. Sur-
prisingly, their model uses very few features, and
bi-LSTM is applied to represent the context of the
features. Their neural network consists of three
parts: bi-LSTM, a feature extraction function and
a multilayer perceptron (MLP). First, all tokens in
the sentences are converted to embeddings. Sec-
ond, the bi-LSTM reads all embeddings of the sen-
tence. Third, the feature function extracts the fea-
ture representations of tokens from the bi-LSTM
layer. Finally, an MLP with one hidden layer out-
puts the transition scores of the transition-based
parser.

In this paper, we propose a Chinese joint pars-
ing model with simple and global features using
n-gram bi-LSTM and a simple feature extraction
function. The model is described in Figure 3.
We consider that Chinese sentences consist of to-
kens, including words, UNKs and incomplete to-
kens, which can have some meanings and are use-
ful for parsing. Such tokens appear in many parts
of the sentence and have arbitrary lengths. To
capture them, we propose the n-gram bi-LSTM.
The n-gram bi-LSTM read through characters
ci · · · ci+n−1 of the sentence (ci is the i-th charac-
ter). For example, the 1-gram bi-LSTM reads each
character, and the 2-gram bi-LSTM reads two con-
secutive characters cici+1. After the n-gram for-
ward LSTM reads character string ci · · · ci+n−1,
it next reads ci+1 · · · ci+n. The backward LSTM
reads from ci+1 · · · ci+n toward ci · · · ci+n−1. This
allows models to capture any n-gram character
strings in the input sentence.2 All n-gram in-
puts to bi-LSTM are given by the embeddings of
words and characters or the dynamically generated
embeddings of character strings, as described in

2At the end of the sentence of length N , character strings
ci · · · cN (N < i+n−1), which are shorter than n characters,
are used.

1208

技 术 有 了 新

了新的进展。

Stack (word-based) Buffer (character-based)

技术 有

技术 术有 有了 了新 新的

技术有 术有了 有了新 了新的 新的进

技术有了 术有了新 有了新的 了新的进 新的进展

LSTM LSTM LSTMLSTM

LSTM LSTM LSTMLSTM

LSTM

LSTM

LSTM LSTM LSTMLSTM

LSTM LSTM LSTMLSTM

LSTM

LSTM

LSTM LSTM LSTMLSTM

LSTM LSTM LSTMLSTM

LSTM

LSTM

LSTM LSTM LSTMLSTM

LSTM LSTM LSTMLSTM

LSTM

LSTM

1-
gr

am

MLP

s1 s0 b0

s2

s2_is_NULL

2-
gr

am
3-

gr
am

4-
gr

am
bi

-L
S

TM
bi

-L
S

TM
bi

-L
S

TM
bi

-L
S

TM

s1 s0 b0s2

softmax

concat concat concat

pgreedyt

Word Embeddings of

LSTM

LSTM

a)

b)

Character Strings

Bi-LSTM

技术 技术有了

Embeddings

LSTM

LSTM

mean

Bi-LSTM

(Technology) (Technology have made)

Figure 3: The bi-LSTM model. (a): The Chinese
sentence “技术有了新的进展。” has been pro-
cessed. (b): Similar to the feed-forward neural
network model, the embeddings of words, char-
acters and character strings are used. In this fig-
ure, a word “技术”(technology) has its embed-
ding, while a token “技术有了”(technology have
made) does not.

Section 2.2. Although these arbitrary n-gram to-
kens produce UNKs, character string embeddings
can capture similarities among them. Following
the bi-LSTM layer, the feature function extracts
the corresponding outputs of the bi-LSTM layer.
We summarize the features in Table 3. Finally,
MLP and the softmax function outputs the transi-
tion probability. We use an MLP with three hidden
layers as for the model in Section 2.3. We train
this neural network with the loss function for the
greedy training.

Model Features

4 features s0w, s1w, s2w, b0c
8 features s0w, s1w, s2w, b0c

s0r0w, s0l0w, s1r0w, s1l0w

Table 3: Features for the bi-LSTM models. All
features are words and characters. We experiment
both four and eight features models.

#snt #oov

CTB-5 Train 18k -
Dev. 350 553
Test 348 278

CTB-7 Train 31k -
Dev. 10k 13k
Test 10k 13k

Table 4: Summary of datasets.

3 Experiments

3.1 Experimental Settings

We use the Penn Chinese Treebank 5.1 (CTB-
5) and 7 (CTB-7) datasets to evaluate our mod-
els, following the splitting of Jiang et al. (2008)
for CTB-5 and Wang et al. (2011) for CTB-7.
The statistics of datasets are presented in Table
4. We use the Chinese Gigaword Corpus for em-
bedding pre-training. Our model is developed for
unlabeled dependencies. The development set is
used for parameter tuning. Following Hatori et al.
(2012) and Zhang et al. (2014), we use the stan-
dard word-level evaluation with F1-measure. The
POS tags and dependencies cannot be correct un-
less the corresponding words are correctly seg-
mented.

We trained three models: SegTag, SegTagDep
and Dep. SegTag is the joint word segmentation
and POS tagging model. SegTagDep is the full
joint segmentation, tagging and dependency pars-
ing model. Dep is the dependency parsing model
which is similar to Weiss et al. (2015) and Andor
et al. (2016), but uses the embeddings of character
strings. Dep compensates for UNKs and segmen-
tation errors caused by previous word segmenta-
tion using embeddings of character strings. We
will examine this effect later.

Most experiments are conducted on GPUs, but
some of beam decoding processes are performed
on CPUs because of the large mini-batch size. The
neural network is implemented with Theano.

1209

Model Seg POS

Hatori+12 SegTag 97.66 93.61
Hatori+12 SegTag(d) 98.18 94.08
Hatori+12 SegTagDep 97.73 94.46
Hatori+12 SegTagDep(d) 98.26 94.64
M. Zhang+14 EAG 97.76 94.36
Y. Zhang+15 98.04 94.47

SegTag(g) 98.41 94.84
SegTag 98.60 94.76

Table 5: Joint segmentation and POS tagging
scores. Both scores are in F-measure. In Ha-
tori et al. (2012), (d) denotes the use of dictio-
naries. (g) denotes greedy trained models. All
scores for previous models are taken from Hatori
et al. (2012), Zhang et al. (2014) and Zhang et al.
(2015).

3.2 Results

3.2.1 Joint Segmentation and POS Tagging

First, we evaluate the joint segmentation and POS
tagging model (SegTag). Table 5 compares the
performance of segmentation and POS tagging us-
ing the CTB-5 dataset. We train two modles: a
greedy-trained model and a model trained with
beams of size 4. We compare our model to three
previous approaches: Hatori et al. (2012), Zhang
et al. (2014) and Zhang et al. (2015). Our SegTag
joint model is superior to these previous models,
including Hatori et al. (2012)’s model with rich
dictionary information, in terms of both segmen-
tation and POS tagging accuracy.

3.2.2 Joint Segmentation, POS Tagging and
Dependency Parsing

Table 6 presents the results of our full joint model.
We employ the greedy trained full joint model
SegTagDep(g) and the beam decoding model Seg-
TagDep. All scores for the existing models in this
table are taken from Zhang et al. (2014). Though
our model surpasses the previous best end-to-end
joint models in terms of segmentation and POS
tagging, the dependency score is slightly lower
than the previous models. The greedy model
SegTagDep(g) achieves slightly lower scores than
beam models, although this model works consid-
erably fast because it does not use beam decoding.

Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 EAG 97.76 94.36 81.70

SegTagDep(g) 98.24 94.49 80.15
SegTagDep 98.37 94.83 81.42

Table 6: Joint Segmentation, POS Tagging and
Dependency Parsing. Hatori et al. (2012)’s CTB-5
scores are reported in Zhang et al. (2014). EAG in
Zhang et al. (2014) denotes the arc-eager model.
(g) denotes greedy trained models.

Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 STD 97.67 94.28 81.63
M. Zhang+14 EAG 97.76 94.36 81.70
Y. Zhang+15 98.04 94.47 82.01

SegTagDep(g) 98.24 94.49 80.15
SegTagDep 98.37 94.83‡ 81.42‡

SegTag+Dep 98.60‡ 94.76‡ 82.60‡

Table 7: The SegTag+Dep model. Note that the
model of Zhang et al. (2015) requires other base
parsers. ‡ denotes that the improvement is statisti-
cally siginificant at p < 0.01 compared with Seg-
TagDep(g) using paired t-test.

3.2.3 Pipeline of Our Joint SegTag and Dep
Model

We use our joint SegTag model for the pipeline
input of the Dep model (SegTag+Dep). Both Seg-
Tag and Dep models are trained and tested by the
beam cost function with beams of size 4. Table
7 presents the results. Our SegTag+Dep model
performs best in terms of the dependency and
word segmentation. The SegTag+Dep model is
better than the full joint model. This is because
most segmentation errors of these models occur
around named entities. Hatori et al. (2012)’s align-
ment step assumes the intra-word dependencies in
words, while named entities do not always have
them. For example, SegTag+Dep model treats
named entity “海赛克”, a company name, as one
word, while the SegTagDep model divides this to
“海” (sea) and “赛克”, where “赛克” could be
used for foreigner’s name. For such words, Seg-
TagDep prefers SH because AP has size-2 step
of the character appending and intra-word depen-
dency resolution, which does not exist for named
entities. This problem could be solved by adding
a special transition AP_named_entity which
is similar to AP but with size-1 step and used

1210

Model Dep

Dep(g)-cs 80.51
Dep(g) 80.98

Table 8: SegTag+Dep(g) model with and without
character strings (cs) representations. Note that
we compare these models with greedy training for
simplicity’s sake.

only for named entities. Additionally, Zhang et al.
(2014)’s STD (arc-standard) model works slightly
better than Hatori et al. (2012)’s fully joint model
in terms of the dependency score. Zhang et al.
(2014)’s STD model is similar to our SegTag+Dep
because they combine a word segmentator and a
dependency parser using “deque” of words.

3.2.4 Effect of Character String Embeddings
Finally, we compare the two pipeline models of
SegTag+Dep to show the effectiveness of using
character string representations instead of “UNK”
embeddings. We use two dependency models with
greedy training: Dep(g) for dependency model
and Dep(g)-cs for dependency model without the
character string embeddings . In the Dep(g)-cs
model, we use the “UNK” embedding when the
embeddings of the input features are unavailable,
whereas we use the character string embeddings in
model Dep(g). The results are presented in Table
8. When the models encounter unknown tokens,
using the embeddings of character strings is better
than using the “UNK” embedding.

3.2.5 Effect of Features across the Buffer and
Stack

We test the effect of special features: q0bX in
Table 2. The q0bX features capture the tokens
across the buffer and stack. Joint transition-based
parsing models by Hatori et al. (2012) and Chen
and Manning (2014) decide POS tags of words
before corresponding word segmentations are de-
termined. In our model, the q0bX features cap-
ture words even if their segmentations are not de-
termined. We examine the effectiveness of these
features by training greedy full joint models with
and without them. The results are shown in Table
9. The q0bX features boost not only POS tagging
scores but also word segmentation scores.

3.2.6 CTB-7 Experiments
We also test the SegTagDep and SegTag+Dep
models on CTB-7. In these experiments, we no-

Model Seg POS Dep

SegTagDep(g) -q0bX 97.81 93.79 79.16
SegTagDep(g) 98.24 94.49 80.15

Table 9: SegTagDep model with and without
(-q0bX) features across the buffer and stack. We
compare these models with greedy training (g).

Model Seg POS Dep

Hatori+12 95.42 90.62 73.58
M. Zhang+14 STD 95.53 90.75 75.63

SegTagDep(g) 96.06 90.28 73.98
SegTagDep 95.86 90.91‡ 74.04
SegTag+Dep 96.23‡ 91.25‡ 75.28‡

Table 10: Results from SegTag+Dep and Seg-
TagDep applied to the CTB-7 corpus. (g) denotes
greedy trained models. ‡ denotes that the improve-
ment is statistically siginificant at p < 0.01 com-
pared with SegTagDep(g) using paired t-test.

tice that the MLP with four hidden layers performs
better than the MLP with three hidden layers, but
we could not find definite differences in the ex-
periments in CTB-5. We speculate that this is
caused by the difference in the training set size.
We present the final results with four hidden lay-
ers in Table 10.

3.2.7 Bi-LSTM Model
We experiment the n-gram bi-LSTMs models with
four and eight features listed in Table 3. We sum-
marize the result in Table 11. The greedy bi-
LSTM models perform slightly worse than the
previous models, but they do not rely on feature
engineering.

4 Related Work

Zhang and Clark (2008) propose an incremental
joint word segmentation and POS tagging model
driven by a single perceptron. Zhang and Clark
(2010) improve this model by using both charac-
ter and word-based decoding. Hatori et al. (2011)
propose a transition-based joint POS tagging and
dependency parsing model. Zhang et al. (2013)
propose a joint model using character structures
of words for constituency parsing. Wang et al.
(2013) also propose a lattice-based joint model
for constituency parsing. Zhang et al. (2015) pro-
pose joint segmentation, POS tagging and depen-
dency re-ranking system. This system requires

1211

Model Seg POS Dep

Hatori+12 97.75 94.33 81.56
M. Zhang+14 EAG 97.76 94.36 81.70
SegTagDep (g) 98.24 94.49 80.15

Bi-LSTM 4feat.(g) 97.72 93.12 79.03
Bi-LSTM 8feat.(g) 97.70 93.37 79.38

Table 11: Bi-LSTM feature extraction model.
“4feat.” and “8feat.” denote the use of four and
eight features.

base parsers. In neural joint models, Zheng et al.
(2013) propose a neural network-based Chinese
word segmentation model based on tag inferences.
They extend their models for joint segmentation
and POS tagging. Zhu et al. (2015) propose the
re-ranking system of parsing results with recursive
convolutional neural network.

5 Conclusion

We propose the joint parsing models by the feed-
forward and bi-LSTM neural networks. Both of
them use the character string embeddings. The
character string embeddings help to capture the
similarities of incomplete tokens. We also ex-
plore the neural network with few features using
n-gram bi-LSTMs. Our SegTagDep joint model
achieves better scores of Chinese word segmenta-
tion and POS tagging than previous joint models,
and our SegTag and Dep pipeline model achieves
state-of-the-art score of dependency parsing. The
bi-LSTM models reduce the cost of feature engi-
neering.

References
Chris Alberti, David Weiss, Greg Coppola, and Slav

Petrov. 2015. Improved transition-based parsing
and tagging with neural networks. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1354–1359.
http://aclweb.org/anthology/D15-1159.

Daniel Andor, Chris Alberti, David Weiss, Aliak-
sei Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. 2016. Glob-
ally normalized transition-based neural networks.
In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 2442–2452.
http://www.aclweb.org/anthology/P16-1231.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473. http://arxiv.org/abs/1409.0473.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with lstms. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 349–359.
http://aclweb.org/anthology/D15-1041.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using
neural networks. In Proceedings of the 2014
Conference on Empirical Methods in Natural
Language Processing (EMNLP). Association
for Computational Linguistics, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

James Cross and Liang Huang. 2016. Incremental
parsing with minimal features using bi-directional
lstm. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 32–37.
http://anthology.aclweb.org/P16-2006.

John Duchi, Elad Hazan, and Yoram Singer. 2010.
Adaptive subgradient methods for online learning
and stochastic optimization. UCB/EECS-2010-24.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd
Annual Meeting of the Association for Com-
putational Linguistics and the 7th International
Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers). Association
for Computational Linguistics, pages 334–343.
http://www.aclweb.org/anthology/P15-1033.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2011. Incremental joint pos tag-
ging and dependency parsing in chinese. In Pro-
ceedings of 5th International Joint Conference on
Natural Language Processing. Asian Federation of
Natural Language Processing, pages 1216–1224.
http://www.aclweb.org/anthology/I11-1136.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental joint approach
to word segmentation, pos tagging, and dependency
parsing in chinese. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1045–1053.
http://www.aclweb.org/anthology/P12-1110.

Geoffrey E. Hinton, J. L. McClelland, and D. E.
Rumelhart. 1986. Learning distributed represen-
tations of concepts. In Proceedings of the eighth
annual conference of the cognitive science society.
pages Vol.1, p.12.

1212

Wenbin Jiang, Liang Huang, Qun Liu, and Yajuan Lü.
2008. A cascaded linear model for joint chinese
word segmentation and part-of-speech tagging. In
Proceedings of ACL-08: HLT . Association for Com-
putational Linguistics, pages 897–904.

D. P. Kingma and J. Ba. 2015. Adam: A method
for stochastic optimization. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers).

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing
using bidirectional lstm feature represen-
tations. Transactions of the Association
for Computational Linguistics 4:313–327.
https://transacl.org/ojs/index.php/tacl/article/view/885.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word repre-
sentations in vector space. volume abs/1301.3781.
http://arxiv.org/abs/1301.3781.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), June 21-24, 2010,
Haifa, Israel. pages 807–814.

Joakim Nivre. 2004a. Incrementality in determinis-
tic dependency parsing. In Frank Keller, Stephen
Clark, Matthew Crocker, and Mark Steedman, edi-
tors, Proceedings of the ACL Workshop Incremental
Parsing: Bringing Engineering and Cognition To-
gether. Association for Computational Linguistics,
pages 50–57.

Yiou Wang, Jun’ichi Kazama, Yoshimasa Tsuruoka,
Wenliang Chen, Yujie Zhang, and Kentaro Tori-
sawa. 2011. Improving chinese word segmentation
and pos tagging with semi-supervised methods using
large auto-analyzed data. In Proceedings of 5th In-
ternational Joint Conference on Natural Language
Processing. Asian Federation of Natural Language
Processing, Chiang Mai, Thailand, pages 309–317.
http://www.aclweb.org/anthology/I11-1035.

Zhiguo Wang, Chengqing Zong, and Nianwen Xue.
2013. A lattice-based framework for joint chi-
nese word segmentation, pos tagging and pars-
ing. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 623–627.
http://www.aclweb.org/anthology/P13-2110.

David Weiss, Chris Alberti, Michael Collins, and
Slav Petrov. 2015. Structured training for neu-
ral network transition-based parsing. In Proceed-
ings of the 53rd Annual Meeting of the Associa-
tion for Computational Linguistics and the 7th In-
ternational Joint Conference on Natural Language

Processing (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, pages 323–333.
http://www.aclweb.org/anthology/P15-1032.

Meishan Zhang, Yue Zhang, Wanxiang Che, and Ting
Liu. 2013. Chinese parsing exploiting charac-
ters. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 125–134.
http://www.aclweb.org/anthology/P13-1013.

Meishan Zhang, Yue Zhang, Wanxiang Che, and
Ting Liu. 2014. Character-level chinese depen-
dency parsing. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1326–1336.
http://www.aclweb.org/anthology/P14-1125.

Yuan Zhang, Chengtao Li, Regina Barzilay, and Ka-
reem Darwish. 2015. Randomized greedy inference
for joint segmentation, pos tagging and dependency
parsing. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligenc.
Association for Computational Linguistics, pages
42–52. http://www.aclweb.org/anthology/N15-
1005.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 562–571.

Yue Zhang and Stephen Clark. 2010. A fast de-
coder for joint word segmentation and POS-tagging
using a single discriminative model. In Pro-
ceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 843–852.
http://www.aclweb.org/anthology/D10-1082.

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu.
2013. Deep learning for Chinese word seg-
mentation and POS tagging. In Proceedings
of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 647–657.
http://www.aclweb.org/anthology/D13-1061.

Xiaoqing Zheng, Haoyuan Peng, Yi Chen, Pengjing
Zhang, and Zhang Wenqiang. 2015. Character-
based parsing with convolutional neural network. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
page 153.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun
Chen. 2015. A neural probabilistic structured-
prediction model for transition-based dependency
parsing. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics

1213

and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics, pages
1213–1222. http://www.aclweb.org/anthology/P15-
1117.

Chenxi Zhu, Xipeng Qiu, Xinchi Chen, and Xuanjing
Huang. 2015. A re-ranking model for dependency
parser with recursive convolutional neural network.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Asso-
ciation for Computational Linguistics, pages 1159–
1168. http://www.aclweb.org/anthology/P15-1112.

1214

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1215–1226
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1112

Robust Incremental Neural Semantic Graph Parsing

Jan Buys1 and Phil Blunsom1,2

1Department of Computer Science, University of Oxford 2DeepMind
{jan.buys,phil.blunsom}@cs.ox.ac.uk

Abstract

Parsing sentences to linguistically-
expressive semantic representations is a
key goal of Natural Language Process-
ing. Yet statistical parsing has focussed
almost exclusively on bilexical depen-
dencies or domain-specific logical forms.
We propose a neural encoder-decoder
transition-based parser which is the first
full-coverage semantic graph parser for
Minimal Recursion Semantics (MRS).
The model architecture uses stack-based
embedding features, predicting graphs
jointly with unlexicalized predicates
and their token alignments. Our parser
is more accurate than attention-based
baselines on MRS, and on an additional
Abstract Meaning Representation (AMR)
benchmark, and GPU batch processing
makes it an order of magnitude faster
than a high-precision grammar-based
parser. Further, the 86.69% Smatch score
of our MRS parser is higher than the
upper-bound on AMR parsing, making
MRS an attractive choice as a semantic
representation.

1 Introduction

An important goal of Natural Language Under-
standing (NLU) is to parse sentences to structured,
interpretable meaning representations that can be
used for query execution, inference and reasoning.
Recently end-to-end models have outperformed
traditional pipeline approaches, predicting syntac-
tic or semantic structure as intermediate steps, on
NLU tasks such as sentiment analysis and seman-
tic relatedness (Le and Mikolov, 2014; Kiros et al.,
2015), question answering (Hermann et al., 2015)
and textual entailment (Rocktäschel et al., 2015).

However the linguistic structure used in applica-
tions has predominantly been shallow, restricted
to bilexical dependencies or trees.

In this paper we focus on robust parsing into
linguistically deep representations. The main rep-
resentation that we use is Minimal Recursion Se-
mantics (MRS) (Copestake et al., 1995, 2005),
which serves as the semantic representation of the
English Resource Grammar (ERG) (Flickinger,
2000). Existing parsers for full MRS (as op-
posed to bilexical semantic graphs derived from,
but simplifying MRS) are grammar-based, per-
forming disambiguation with a maximum entropy
model (Toutanova et al., 2005; Zhang et al., 2007);
this approach has high precision but incomplete
coverage.

Our main contribution is to develop a fast and
robust parser for full MRS-based semantic graphs.
We exploit the power of global conditioning en-
abled by deep learning to predict linguistically
deep graphs incrementally. The model does not
have access to the underlying ERG or syntac-
tic structures from which the MRS analyses were
originally derived. We develop parsers for two
graph-based conversions of MRS, Elementary De-
pendency Structure (EDS) (Oepen and Lønning,
2006) and Dependency MRS (DMRS) (Copes-
take, 2009), of which the latter is inter-convertible
with MRS.

Abstract Meaning Representation (AMR) (Ba-
narescu et al., 2013) is a graph-based semantic
representation that shares the goals of MRS. Aside
from differences in the choice of which linguis-
tic phenomena are annotated, MRS is a compo-
sitional representation explicitly coupled with the
syntactic structure of the sentence, while AMR
does not assume compositionality or alignment
with the sentence structure. Recently a number
of AMR parsers have been developed (Flanigan
et al., 2014; Wang et al., 2015b; Artzi et al., 2015;

1215

https://doi.org/10.18653/v1/P17-1112

Damonte et al., 2017), but corpora are still un-
der active development and low inter-annotator
agreement places on upper bound of 83% F1 on
expected parser performance (Banarescu et al.,
2013). We apply our model to AMR parsing by
introducing structure that is present explicitly in
MRS but not in AMR (Buys and Blunsom, 2017).

Parsers based on RNNs have achieved state-of-
the-art performance for dependency parsing (Dyer
et al., 2015; Kiperwasser and Goldberg, 2016)
and constituency parsing (Vinyals et al., 2015b;
Dyer et al., 2016; Cross and Huang, 2016b). One
of the main reasons for the prevalence of bilex-
ical dependencies and tree-based representations
is that they can be parsed with efficient and well-
understood algorithms. However, one of the key
advantages of deep learning is the ability to make
predictions conditioned on unbounded contexts
encoded with RNNs; this enables us to predict
more complex structures without increasing algo-
rithmic complexity. In this paper we show how to
perform linguistically deep parsing with RNNs.

Our parser is based on a transition system for
semantic graphs. However, instead of generat-
ing arcs over an ordered, fixed set of nodes (the
words in the sentence), we generate the nodes and
their alignments jointly with the transition actions.
We use a graph-based variant of the arc-eager
transition-system. The sentence is encoded with a
bidirectional RNN. The transition sequence, seen
as a graph linearization, can be predicted with
any encoder-decoder model, but we show that us-
ing hard attention, predicting the alignments with
a pointer network and conditioning explicitly on
stack-based features improves performance. In or-
der to deal with data sparsity candidate lemmas
are predicted as a pre-processing step, so that the
RNN decoder predicts unlexicalized node labels.

We evaluate our parser on DMRS, EDS and
AMR graphs. We show that our model ar-
chitecture improves performance from 79.68%
to 84.16% F1 over an attention-based encoder-
decoder baseline. Although our parser is less ac-
curate that a high-precision grammar-based parser
on a test set of sentences parsable by that gram-
mar, incremental prediction and GPU batch pro-
cessing enables it to parse 529 tokens per sec-
ond, against 7 tokens per second for the grammar-
based parser. On AMR parsing our model obtains
60.11% Smatch, an improvement of 8% over an
existing neural AMR parser.

Figure 1: Semantic representation of the sentence
“Everybody wants to meet John.” The graph is
based on the Elementary Dependency Structure
(EDS) representation of Minimal Recursion Se-
mantics (MRS). The alignments are given together
with the corresponding tokens, and lemmas of sur-
face predicates and constants.

2 Meaning Representations

We define a common framework for semantic
graphs in which we can place both MRS-
based graph representations (DMRS and EDS)
and AMR. Sentence meaning is represented
with rooted, labelled, connected, directed
graphs (Kuhlmann and Oepen, 2016). An
example graph is visualized in Figure 1. represen-
tations. Node labels are referred to as predicates
(concepts in AMR) and edge labels as arguments
(AMR relations). In addition constants, a special
type of node modifiers, are used to denote the
string values of named entities and numbers
(including date and time expressions). Every
node is aligned to a token or a continuous span of
tokens in the sentence the graph corresponds to.

Minimal Recursion Semantics (MRS) is a
framework for computational semantics that can
be used for parsing or generation (Copestake et al.,
2005). Instances and eventualities are represented
with logical variables. Predicates take arguments
with labels from a small, fixed set of roles. Ar-
guments are either logical variables or handles,
designated formalism-internal variables. Handle
equality constraints support scope underspecifi-
cation; multiple scope-resolved logical represen-
tations can be derived from one MRS structure.
A predicate corresponds to its intrinsic argument

1216

and is aligned to a character span of the (unto-
kenized) input sentence. Predicates representing
named entities or numbers are parameterized by
strings. Quantification is expressed through pred-
icates that bound instance variables, rather than
through logical operators such as ∃ or ∀. MRS was
designed to be integrated with feature-based gram-
mars such as Head-driven Phrase Structure Gram-
mar (HPSG) (Pollard and Sag, 1994) or Lexical
Functional Grammar (LFG) (Kaplan and Bresnan,
1982). MRS has been implement the English
Resource Grammar (ERG) (Flickinger, 2000), a
broad-coverage high-precision HPSG grammar.

Oepen and Lønning (2006) proposed Elemen-
tary Dependency Structure (EDS), a conversion of
MRS to variable-free dependency graphs which
drops scope underspecification. Copestake (2009)
extended this conversion to avoid information loss,
primarily through richer edge labels. The result-
ing representation, Dependency MRS (DMRS),
can be converted back to the original MRS, or
used directly in MRS-based applications (Copes-
take et al., 2016). We are interested in the em-
pirical performance of parsers for both of these
representations: while EDS is more interpretable
as an independent semantic graph representation,
DMRS can be related back to underspecified log-
ical forms. A bilexical simplification of EDS
has previously been used for semantic dependency
parsing (Oepen et al., 2014, 2015). Figure 1 illus-
trates an EDS graph.

MRS makes an explicit distinction between sur-
face and abstract predicates (by convention surface
predicates are prefixed by an underscore). Surface
predicates consist of a lemma followed by a coarse
part-of-speech tag and an optional sense label.
Predicates absent from the ERG lexicon are rep-
resented by their surface forms and POS tags. We
convert the character-level predicate spans given
by MRS to token-level spans for parsing purposes,
but the representation does not require gold tok-
enization. Surface predicates usually align with
the span of the token(s) they represent, while ab-
stract predicates can span longer segments. In full
MRS every predicate is annotated with a set of
morphosyntactic features, encoding for example
tense, aspect and number information; we do not
currently model these features.

AMR (Banarescu et al., 2013) graphs can be
represented in the same framework, despite a num-
ber of linguistic differences with MRS. Some in-

:root(<2> _v_1
:ARG1(<1> person
:BV-of(<1> every_q))

:ARG2 <4> _v_1
:ARG1*(<1> person
:ARG2(<5> named_CARG

:BV-of (<5> proper_q)))

Figure 2: A top-down linearization of the EDS
graph in Figure 1, using unlexicalized predicates.

formation annotated explicitly in MRS is latent
in AMR, including alignments and the distinction
between surface (lexical) and abstract concepts.
AMR predicates are based on PropBank (Palmer
et al., 2005), annotated as lemmas plus sense la-
bels, but they form only a subset of concepts.
Other concepts are either English words or spe-
cial keywords, corresponding to overt lexemes in
some cases but not others.

3 Incremental Graph Parsing

We parse sentences to their meaning repre-
sentations by incrementally predicting semantic
graphs together with their alignments. Let e =
e1, e2, . . . , eI be a tokenized English sentence,
t = t1, t2, . . . , tJ a sequential representation of its
graph derivation and a = a1, a2, . . . , aJ an align-
ment sequence consisting of integers in the range
1, . . . , I . We model the conditional distribution
p(t,a|e) which decomposes as

J∏

j=1

p(aj |(a, t)1:j−1, e)p(tj |a1:j , t1:j−1, e).

We also predict the end-of-span alignments as a
seperate sequence a(e).

3.1 Top-down linearization
We now consider how to linearize the semantic
graphs, before defining the neural models to pa-
rameterize the parser in section 4. The first ap-
proach is to linearize a graph as the pre-order
traversal of its spanning tree, starting at a desig-
nated root node (see Figure 2). Variants of this ap-
proach have been proposed for neural constituency
parsing (Vinyals et al., 2015b), logical form pre-
diction (Dong and Lapata, 2016; Jia and Liang,
2016) and AMR parsing (Barzdins and Gosko,
2016; Peng et al., 2017).

In the linearization, labels of edges whose direc-
tion are reversed in the spanning tree are marked

1217

by adding -of. Edges not included in the span-
ning tree, referred to as reentrancies, are rep-
resented with special edges whose dependents
are dummy nodes pointing back to the original
nodes. Our potentially lossy representation repre-
sents these edges by repeating the dependent node
labels and alignments, which are recovered heuris-
tically. The alignment does not influence the lin-
earized node ordering.

3.2 Transition-based parsing

Figure 1 shows that the semantic graphs we
work with can also be interpreted as dependency
graphs, as nodes are aligned to sentence tokens.
Transition-based parsing (Nivre, 2008) has been
used extensively to predict dependency graphs in-
crementally. We apply a variant of the arc-eager
transition system that has been proposed for graph
(as opposed to tree) parsing (Sagae and Tsujii,
2008; Titov et al., 2009; Gómez-Rodrı́guez and
Nivre, 2010) to derive a transition-based parser for
deep semantic graphs. In dependency parsing the
sentence tokens also act as nodes in the graph, but
here we need to generate the nodes incrementally
as the transition-system proceeds, conditioning the
generation on the given sentence. Damonte et al.
(2017) proposed an arc-eager AMR parser, but
their transition system is more narrowly restricted
to AMR graphs.

The transition system consists of a stack of
graph nodes being processed and a buffer, holding
a single node at a time. The main transition ac-
tions are shift, reduce, left-arc, right-arc. Figure 3
shows an example transition sequence together
with the stack and buffer after each step. The shift
transition moves the element on the buffer to the
top of the stack, and generates a predicate and its
alignment as the next node on the buffer. Left-arc
and right-arc actions add labeled arcs between the
buffer and stack top (for DMRS a transition for
undirected arcs is included), but do not change the
state of the stack or buffer. Finally, reduce pops the
top element from the stack, and predicts its end-of-
span alignment (if included in the representation).
To predict non-planar arcs, we add another transi-
tion, which we call cross-arc, which first predicts
the stack index of a node which is not on top of
the stack, adding an arc between the head of the
buffer and that node. Another special transition
designates the buffer node as the root.

To derive an oracle for this transition system,

it is necessary to determine the order in which the
nodes are generated. We consider two approaches.
The first ordering is obtained by performing an
in-order traversal of the spanning tree, where the
node order is determined by the alignment. In the
resulting linearization the only non-planar arcs are
reentrancies. The second approach lets the order-
ing be monotone (non-decreasing) with respect to
the alignments, while respecting the in-order or-
dering for nodes with the same alignment. In an
arc-eager oracle arcs are added greedily, while a
reduce action can either be performed as soon as
the stack top node has been connected to all its de-
pendents, or delayed until it has to reduce to allow
the correct parse tree to be formed. In our model
the oracle delays reduce, where possible, until the
end alignment of the stack top node spans the node
on the buffer. As the span end alignments often
cover phrases that they head (e.g. for quantifiers)
this gives a natural interpretation to predicting the
span end together with the reduce action.

3.3 Delexicalization and lemma prediction

Each token in MRS annotations is aligned to at
most one surface predicate. We decompose sur-
face predicate prediction by predicting candidate
lemmas for input tokens, and delexicalized predi-
cates consisting only of sense labels. The full sur-
face predicates are then recovered through the pre-
dicted alignments.

We extract a dictionary mapping words to lem-
mas from the ERG lexicon. Candidate lemmas
are predicted using this dictionary, and where no
dictionary entry is available with a lemmatizer.
The same approach is applied to predict constants,
along with additional normalizations such as map-
ping numbers to digit strings.

We use the Stanford CoreNLP toolkit (Manning
et al., 2014) to tokenize and lemmatize sentences,
and tag tokens with the Stanford Named Entity
Recognizer (Finkel et al., 2005). The tokenization
is customized to correspond closely to the ERG
tokenization; hyphens are removed pre-processing
step. For AMR we use automatic alignments and
the graph topology to classify concepts as surface
or abstract (Buys and Blunsom, 2017). The lexi-
con is restricted to Propbank (Palmer et al., 2005)
predicates; for other concepts we extract a lexicon
from the training data.

1218

Action Stack Buffer Arc added
init(1, person) [] (1, 1, person) -
sh(1, every q) [(1, 1, person)] (2, 1, every q) -
la(BV) [(1, 1, person)] (2, 1, every q) (2, BV, 1)
sh(2, v 1) [(1, 1, person), (2, 1, every q)] (2, 1, v 1) -
re [(1, 1, person)] (3, 2, v 1) -
la(ARG1) [(1, 1, person)] (3, 2, v 1) (3, ARG1, 1)

Figure 3: Start of the transition sequence for parsing the graph in Figure 1. The transitions are shift
(sh), reduce (re), left arc (la) and right arc (ra). The action taken at each step is given, along with the
state of the stack and buffer after the action is applied, and any arcs added. Shift transitions generate the
alignments and predicates of the nodes placed on the buffer. Items on the stack and buffer have the form
(node index, alignment, predicate label), and arcs are of the form (head index, argument label, dependent
index).

4 Encoder-Decoder Models

4.1 Sentence encoder

The sentence e is encoded with a bidirectional
RNN. We use a standard LSTM architecture
without peephole connections (Jozefowicz et al.,
2015). For every token e we embed its word, POS
tag and named entity (NE) tag as vectors xw, xt
and xn, respectively.

The embeddings are concatenated and passed
through a linear transformation

g(e) =W (x)[xw;xt;xn] + bx,

such that g(e) has the same dimension as the
LSTM. Each input position i is represented by a
hidden state hi, which is the concatenation of its
forward and backward LSTM state vectors.

4.2 Hard attention decoder

We model the alignment of graph nodes to sen-
tence tokens, a, as a random variable. For the arc-
eager model, aj corresponds to the alignment of
the node of the buffer after action tj is executed.
The distribution of tj is over all transitions and
predicates (corresponding to shift transitions), pre-
dicted with a single softmax.

The parser output is predicted by an RNN de-
coder. Let sj be the decoder hidden state at output
position j. We initialize s0 with the final state of
the backward encoder. The alignment is predicted
with a pointer network (Vinyals et al., 2015a).

The logits are computed with an MLP scoring
the decoder hidden state against each of the en-
coder hidden states (for i = 1, . . . , I),

uij = wT tanh(W (1)hi +W (2)sj).

The alignment distribution is then estimated by

p(aj = i|a1:j−1, t1:j−1, e) = softmax(uij).

To predict the next transition ti, the output vec-
tor is conditioned on the encoder state vector haj ,
corresponding to the alignment:

oj =W (3)sj +W (4)haj

vj = R(d)oj + b(d),

where R(d) and b(d) are the output representation
matrix and bias vector, respectively.

The transition distribution is then given by

p(tj |a1:j , t1:j−1, e) = softmax(vj).

Let e(t) be the embedding of decoder symbol t.
The RNN state at the next time-step is computed
as

dj+1 =W (5)e(tj) +W (6)haj

sj+1 = RNN(dj+1, sj).

The end-of-span alignment a(e)j for MRS-based
graphs is predicted with another pointer network.
The end alignment of a token is predicted only
when a node is reduced from the stack, therefore
this alignment is not observed at each time-step; it
is also not fed back into the model.

The hard attention approach, based on super-
vised alignments, can be contrasted to soft atten-
tion, which learns to attend over the input without
supervision. The attention is computed as with
hard attention, as αij = softmax(uij). However
instead of making a hard selection, a weighted
average over the encoder vectors is computed as
qj =

∑i=I
i=1 α

i
jhi. This vector is used instead of

haj for prediction and feeding to the next time-
step.

1219

4.3 Stack-based model

We extend the hard attention model to include fea-
tures based on the transition system stack. These
features are embeddings from the bidirectional
RNN encoder, corresponding to the alignments of
the nodes on the buffer and on top of the stack.
This approach is similar to the features proposed
by Kiperwasser and Goldberg (2016) and Cross
and Huang (2016a) for dependency parsing, al-
though they do not use RNN decoders.

To implement these features the layer that com-
putes the output vector is extended to

oj =W (3)sj +W (4)haj +W (7)hst0 ,

where st0 is the sentence alignment index of the
element on top of the stack. The input layer to the
next RNN time-step is similarly extended to

dj+1 =W (5)e(tj) +W (6)hbuf +W (8)hst0 ,

where buf is the buffer alignment after tj is exe-
cuted.

Our implementation of the stack-based model
enables batch processing in static computation
graphs, similar to Bowman et al. (2016). We main-
tain a stack of alignment indexes for each element
in the batch, which is updated inside the computa-
tion graph after each parsing action. This enables
minibatch SGD during training as well as efficient
batch decoding.

We perform greedy decoding. For the stack-
based model we ensure that if the stack is empty,
the next transition predicted has to be shift. For
the other models we ensure that the output is well-
formed during post-processing by robustly skip-
ping over out-of-place symbols or inserting miss-
ing ones.

5 Related Work

Prior work for MRS parsing predominantly pre-
dicts structures in the context of grammar-based
parsing, where sentences are parsed to HPSG
derivations consistent with the grammar, in this
case the ERG (Flickinger, 2000). The nodes in the
derivation trees are feature structures, from which
MRS is extracted through unification. This ap-
proach fails to parse sentences for which no valid
derivation is found. Maximum entropy models are
used to score the derivations in order to find the
most likely parse (Toutanova et al., 2005). This

approach is implemented in the PET (Callmeier,
2000) and ACE1 parsers.

There have also been some efforts to develop
robust MRS parsers. One proposed approach
learns a PCFG grammar to approximate the HPSG
derivations (Zhang and Krieger, 2011; Zhang
et al., 2014). MRS is then extracted with ro-
bust unification to compose potentially incompati-
ble feature structures, although that still fails for
a small proportion of sentences. The model is
trained on a large corpus of Wikipedia text parsed
with the grammar-based parser. Ytrestøl (2012)
proposed a transition-based approach to HPSG
parsing that produces derivations from which both
syntactic and semantic (MRS) parses can be ex-
tracted. The parser has an option not to be re-
stricted by the ERG. However, neither of these ap-
proaches have results available that can be com-
pared directly to our setup, or generally available
implementations.

Although AMR parsers produce graphs that are
similar in structure to MRS-based graphs, most of
them make assumptions that are invalid for MRS,
and rely on extensive external AMR-specific re-
sources. Flanigan et al. (2014) proposed a two-
stage parser that first predicts concepts or sub-
graphs corresponding to sentence segments, and
then parses these concepts into a graph structure.
However MRS has a large proportion of abstract
nodes that cannot be predicted from short seg-
ments, and interact closely with the graph struc-
ture. Wang et al. (2015b,a) proposed a custom
transition-system for AMR parsing that converts
dependency trees to AMR graphs, relying on as-
sumptions on the relationship between these. Pust
et al. (2015) proposed a parser based on syntax-
based machine translation (MT), while AMR has
also been integrated into CCG Semantic Pars-
ing (Artzi et al., 2015; Misra and Artzi, 2016). Re-
cently Damonte et al. (2017) and Peng et al. (2017)
proposed AMR parsers based on neural networks.

6 Experiments

6.1 Data
DeepBank (Flickinger et al., 2012) is an HPSG
and MRS annotation of the Penn Treebank Wall
Street Journal (WSJ) corpus. It was developed fol-
lowing an approach known as dynamic treebank-
ing (Oepen et al., 2004) that couples treebank an-
notation with grammar development, in this case

1http://sweaglesw.org/linguistics/ace/

1220

of the ERG. This approach has been shown to lead
to high inter-annotator agreement: 0.94 against
0.71 for AMR (Bender et al., 2015). Parses are
only provided for sentences for which the ERG
has an analysis acceptable to the annotator – this
means that we cannot evaluate parsing accuracy
for sentences which the ERG cannot parse (ap-
proximately 15% of the original corpus).

We use Deepbank version 1.1, corresponding to
ERG 12142, following the suggested split of sec-
tions 0 to 19 as training data data, 20 for develop-
ment and 21 for testing. The gold-annotated train-
ing data consists of 35,315 sentences. We use the
LOGON environment3 and the pyDelphin library4

to extract DMRS and EDS graphs.

For AMR parsing we use LDC2015E86, the
dataset released for the SemEval 2016 AMR pars-
ing Shared Task (May, 2016). This data includes
newswire, weblog and discussion forum text. The
training set has 16,144 sentences. We obtain align-
ments using the rule-based JAMR aligner (Flani-
gan et al., 2014).

6.2 Evaluation

Dridan and Oepen (2011) proposed an evaluation
metric called Elementary Dependency Matching
(EDM) for MRS-based graphs. EDM computes
the F1-score of tuples of predicates and arguments.
A predicate tuple consists of the label and charac-
ter span of a predicate, while an argument tuple
consists of the character spans of the head and de-
pendent nodes of the relation, together with the ar-
gument label. In order to tolerate subtle tokeniza-
tion differences with respect to punctuation, we al-
low span pairs whose ends differ by one character
to be matched.

The Smatch metric (Cai and Knight, 2013), pro-
posed for evaluating AMR graphs, also measures
graph overlap, but does not rely on sentence align-
ments to determine the correspondences between
graph nodes. Smatch is instead computed by per-
forming inference over graph alignments to esti-
mate the maximum F1-score obtainable from a
one-to-one matching between the predicted and
gold graph nodes.

2http://svn.delph-in.net/erg/tags/
1214/

3http://moin.delph-in.net/LogonTop
4https://github.com/delph-in/pydelphin

Model EDM EDMP EDMA

TD lex 81.44 85.20 76.87
TD unlex 81.72 85.59 77.04
AE lex 81.35 85.79 76.02
AE unlex 82.56 86.76 77.54

Table 1: DMRS development set results for
attention-based encoder-decoder models with
alignments encoded in the linearization, for top-
down (TD) and arc-eager (AE) linearizations, and
lexicalized and unlexicalized predicate prediction.

6.3 Model setup

Our parser5 is implemented in TensorFlow (Abadi
et al., 2015). For training we use Adam (Kingma
and Ba, 2015) with learning rate 0.01 and batch-
size 64. Gradients norms are clipped to 5.0 (Pas-
canu et al., 2013). We use single-layer LSTMs
with dropout of 0.3 (tuned on the development set)
on input and output connections. We use encoder
and decoder embeddings of size 256, and POS and
NE tag embeddings of size 32, For DMRS and
EDS graphs the hidden units size is set to 256, for
AMR it is 128. This configuration, found using
grid search and heuristic search within the range
of models that fit into a single GPU, gave the best
performance on the development set under mul-
tiple graph linearizations. Encoder word embed-
dings are initialized (in the first 100 dimensions)
with pre-trained order-sensitive embeddings (Ling
et al., 2015). Singletons in the encoder input
are replaced with an unknown word symbol with
probability 0.5 for each iteration.

6.4 MRS parsing results

We compare different linearizations and model ar-
chitectures for parsing DMRS on the development
data, showing that our approach is more accurate
than baseline neural approaches. We report EDM
scores, including scores for predicate (EDMP) and
argument (EDMA) prediction.

First we report results using standard attention-
based encoder-decoders, with the alignments en-
coded as token strings in the linearization. (Ta-
ble 1). We compare the top-down (TD) and arc-
eager (AE) linearizations, as well as the effect of
delexicalizing the predicates (factorizing lemmas
out of the linearization and predicting them sepa-

5Code and data preparation scripts are avail-
able at https://github.com/janmbuys/
DeepDeepParser.

1221

Model EDM EDMP EDMA

TD soft 81.53 85.32 76.94
TD hard 82.75 86.37 78.37
AE hard 84.65 87.77 80.85
AE stack 85.28 88.38 81.51

Table 2: DMRS development set results of
encoder-decoder models with pointer-based align-
ment prediction, delexicalized predicates and hard
or soft attention.

rately.) In both cases constants are predicted with
a dictionary lookup based on the predicted spans.
A special label is predicted for predicates not in
the ERG lexicon – the words and POS tags that
make up those predicates are recovered through
the alignments during post-processing.

The arc-eager unlexicalized representation
gives the best performance, even though the
model has to learn to model the transition system
stack through the recurrent hidden states without
any supervision of the transition semantics. The
unlexicalized models are more accurate, mostly
due to their ability to generalize to sparse or
unseen predicates occurring in the lexicon. For
the arc-eager representation, the oracle EDM
is 99% for the lexicalized representation and
98.06% for the delexicalized representation. The
remaining errors are mostly due to discrepancies
between the tokenization used by our system and
the ERG tokenization. The unlexicalized models
are also faster to train, as the decoder’s output
vocabulary is much smaller, reducing the expense
of computing softmaxes over large vocabularies.

Next we consider models with delexicalized lin-
earizations that predict the alignments with pointer
networks, contrasting soft and hard attention mod-
els (Table 2). The results show that the arc-eager
models performs better than those based on top-
down representation. For the arc-eager model we
use hard attention, due to the natural interpreta-
tion of the alignment prediction corresponding to
the transition system. The stack-based architec-
ture gives further improvements.

When comparing the effect of different predi-
cate orderings for the arc-eager model, we find that
the monotone ordering performs 0.44 EDM better
than the in-order ordering, despite having to parse
more non-planar dependencies.

We also trained models that only predict pred-
icates (in monotone order) together with their

Model TD RNN AE RNN ACE
EDM 79.68 84.16 89.64
EDMP 83.36 87.54 92.08
EDMA 75.16 80.10 86.77
Start EDM 84.44 87.81 91.91
Start EDMA 80.93 85.61 89.28
Smatch 85.28 86.69 93.50

Table 3: DMRS parsing test set results, compar-
ing the standard top-down attention-based and arc-
eager stack-based RNN models to the grammar-
based ACE parser.

start spans. The hard attention model obtains
91.36% F1 on predicates together with their start
spans with the unlexicalized model, compared to
88.22% for lexicalized predicates and 91.65% for
the full parsing model.

Table 3 reports test set results for various eval-
uation metrics. Start EDM is calculated by requir-
ing only the start of the alignment spans to match,
not the ends. We compare the performance of our
baseline and stack-based models against ACE, the
ERG-based parser.

Despite the promising performance of the
model a gap remains between the accuracy of our
parser and ACE. One reason for this is that the test
set sentences will arguably be easier for ACE to
parse as their choice was restricted by the same
grammar that ACE uses. EDM metrics exclud-
ing end-span prediction (Start EDM) show that
our parser has relatively more difficulty in pars-
ing end-span predictions than the grammar-based
parser.

We also evaluate the speed of our model com-
pared with ACE. For the unbatched version of
our model, the stack-based parser parses 41.63 to-
kens per second, while the batched implementa-
tion parses 529.42 tokens per second using a batch
size of 128. In comparison, the setting of ACE for
which we report accuracies parses 7.47 tokens per
second. By restricting the memory usage of ACE,
which restricts its coverage, we see that ACE can
parse 11.07 tokens per second at 87.7% coverage,
and 15.11 tokens per second at 77.8% coverage.

Finally we report results for parsing EDS (Ta-
ble 4). The EDS parsing task is slightly simpler
than DMRS, due to the absence of rich argument
labels and additional graph edges that allow the
recovery of full MRS. We see that for ACE the ac-
curacies are very similar, while for our model EDS

1222

Model AE RNN ACE
EDM 85.48 89.58
EDMP 88.14 91.82
EDMA 82.20 86.92
Smatch 86.50 93.52

Table 4: EDS parsing test set results.

Model Concept F1 Smatch
TD no pointers 70.16 57.95
TD soft 71.25 59.39
TD soft unlex 72.62 59.88
AE hard unlex 76.83 59.83
AE stack unlex 77.93 61.21

Table 5: Development set results for AMR pars-
ing. All the models except the first predict align-
ments with pointer networks.

parsing is more accurate on the EDM metrics. We
hypothesize that most of the extra information in
DMRS can be obtained through the ERG, to which
ACE has access but our model doesn’t.

An EDS corpus which consists of about 95% of
the DeepBank data has also been released6, with
the goal of enabling comparison with other se-
mantic graph parsing formalisms, including CCG
dependencies and Prague Semantic Dependencies,
on the same data set (Kuhlmann and Oepen, 2016).
On this corpus our model obtains 85.87 EDM and
85.49 Smatch.

6.5 AMR parsing
We apply the same approach to AMR parsing. Re-
sults on the development set are given in Table 5.
The arc-eager-based models again give better per-
formance, mainly due to improved concept pre-
diction accuracy. However, concept prediction re-
mains the most important weakness of the model;
Damonte et al. (2017) reports that state-of-the-art
AMR parsers score 83% on concept prediction.

We report test set results in Table 6. Our
best neural model outperforms the baseline JAMR
parser (Flanigan et al., 2014), but still lags behind
the performance of state-of-the-art AMR parsers
such as CAMR (Wang et al., 2016) and AMR
Eager (Damonte et al., 2017). These models
make extensive use of external resources, includ-
ing syntactic parsers and semantic role labellers.
Our attention-based encoder-decoder model al-
ready outperforms previous sequence-to-sequence

6http://sdp.delph-in.net/osdp-12.tgz

Model Smatch
Flanigan et al. (2014) 56
Wang et al. (2016) 66.54
Damonte et al. (2017) 64
Peng and Gildea (2016) 55
Peng et al. (2017) 52
Barzdins and Gosko (2016) 43.3
TD no pointers 56.56
AE stack delex 60.11

Table 6: AMR parsing test set results (Smatch F1
scores). Published results follow the number of
decimals which were reported.

AMR parsers (Barzdins and Gosko, 2016; Peng
et al., 2017), and the arc-eager model boosts ac-
curacy further. Our model also outperforms a
Synchronous Hyperedge Replacement Grammar
model (Peng and Gildea, 2016) which is compa-
rable as it does not make extensive use of external
resources.

7 Conclusion

In this paper we advance the state of parsing by
employing deep learning techniques to parse sen-
tence to linguistically expressive semantic repre-
sentations that have not previously been parsed
in an end-to-end fashion. We presented a robust,
wide-coverage parser for MRS that is faster than
existing parsers and amenable to batch process-
ing. We believe that there are many future av-
enues to explore to further increase the accuracy
of such parsers, including different training ob-
jectives, more structured architectures and semi-
supervised learning.

Acknowledgments

The first author thanks the financial support of the
Clarendon Fund and the Skye Foundation. We
thank Stephan Oepen for feedback and help with
data preperation, and members of the Oxford NLP
group for valuable discussions.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,

1223

Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.
http://tensorflow.org/.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer.
2015. Broad-coverage CCG semantic parsing
with AMR. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 1699–1710.
http://aclweb.org/anthology/D15-1198.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representa-
tion for sembanking. In Proceedings of the
7th Linguistic Annotation Workshop and Interoper-
ability with Discourse. Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 178–186.
http://www.aclweb.org/anthology/W13-2322.

Guntis Barzdins and Didzis Gosko. 2016. Riga at
semeval-2016 task 8: Impact of smatch extensions
and character-level neural translation on AMR pars-
ing accuracy. In Proceedings of SemEval.

Emily M Bender, Dan Flickinger, Stephan Oepen,
Woodley Packard, and Ann Copestake. 2015. Lay-
ers of interpretation: On grammar and composition-
ality. In Proceedings of the 11th International Con-
ference on Computational Semantics. pages 239–
249.

Samuel R. Bowman, Jon Gauthier, Abhinav Ras-
togi, Raghav Gupta, Christopher D. Manning,
and Christopher Potts. 2016. A fast uni-
fied model for parsing and sentence understand-
ing. In Proceedings of ACL. pages 1466–1477.
http://www.aclweb.org/anthology/P16-1139.

Jan Buys and Phil Blunsom. 2017. Oxford at SemEval-
2017 Task 9: Neural AMR parsing with pointer-
augmented attention. In Proceedings of SemEval.

Shu Cai and Kevin Knight. 2013. Smatch: An evalua-
tion metric for semantic feature structures. In Pro-
ceedings of ACL (short papers).

Ulrich Callmeier. 2000. PET - a platform for ex-
perimentation with efficient HPSG processing tech-
niques. Natural Language Engineering 6(1):99–
107.

Ann Copestake. 2009. Invited talk: Slacker se-
mantics: Why superficiality, dependency and
avoidance of commitment can be the right way
to go. In Proceedings of EACL. pages 1–9.
http://www.aclweb.org/anthology/E09-1001.

Ann Copestake, Guy Emerson, Michael Wayne Good-
man, Matic Horvat, Alexander Kuhnle, and Ewa
Muszyska. 2016. Resources for building applica-
tions with dependency minimal recursion semantics.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016).

Ann Copestake, Dan Flickinger, Rob Malouf, Susanne
Riehemann, and Ivan Sag. 1995. Translation us-
ing minimal recursion semantics. In In Proceedings
of the Sixth International Conference on Theoretical
and Methodological Issues in Machine Translation.

Ann Copestake, Dan Flickinger, Carl Pollard, and
Ivan A Sag. 2005. Minimal recursion semantics: An
introduction. Research on Language and Computa-
tion 3(2-3):281–332.

James Cross and Liang Huang. 2016a. Incremental
parsing with minimal features using bi-directional
lstm. In Proceedings of ACL. page 32.

James Cross and Liang Huang. 2016b. Span-
based constituency parsing with a structure-
label system and provably optimal dynamic ora-
cles. In Proceedings of EMNLP. pages 1–11.
https://aclweb.org/anthology/D16-1001.

Marco Damonte, Shay B. Cohen, and Giorgio Satta.
2017. An incremental parser for abstract meaning
representation. In Proceedings of EACL. pages 536–
546. http://www.aclweb.org/anthology/E17-1051.

Li Dong and Mirella Lapata. 2016. Lan-
guage to logical form with neural atten-
tion. In Proceedings of ACL. pages 33–43.
http://www.aclweb.org/anthology/P16-1004.

Rebecca Dridan and Stephan Oepen. 2011. Parser eval-
uation using elementary dependency matching. In
Proceedings of the 12th International Conference
on Parsing Technologies. Association for Computa-
tional Linguistics, pages 225–230.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of ACL. pages 334–
343. http://www.aclweb.org/anthology/P15-1033.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of NAACL.

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by Gibbs
sampling. In Proceedings of ACL. pages 363–370.
http://dx.doi.org/10.3115/1219840.1219885.

Jeffrey Flanigan, Sam Thomson, Jaime G. Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrimi-
native graph-based parser for the abstract meaning
representation. In Proceedings of ACL. pages 1426–
1436. http://aclweb.org/anthology/P/P14/P14-
1134.pdf.

1224

Dan Flickinger. 2000. On building a more effcient
grammar by exploiting types. Natural Language
Engineering 6(01):15–28.

Dan Flickinger, Yi Zhang, and Valia Kordoni. 2012.
Deepbank. a dynamically annotated treebank of the
wall street journal. In Proceedings of the 11th In-
ternational Workshop on Treebanks and Linguistic
Theories. pages 85–96.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency
structures. In Proceedings of ACL. pages 1492–
1501. http://www.aclweb.org/anthology/P10-1151.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1693–
1701.

Robin Jia and Percy Liang. 2016. Data
recombination for neural semantic pars-
ing. In Proceedings of ACL. pages 12–22.
http://www.aclweb.org/anthology/P16-1002.

Rafal Jozefowicz, Wojciech Zaremba, and Ilya
Sutskever. 2015. An empirical exploration of recur-
rent network architectures. In Proceedings of ICML.
pages 2342–2350.

Ronald M Kaplan and Joan Bresnan. 1982. Lexical-
functional grammar: A formal system for gram-
matical representation. Formal Issues in Lexical-
Functional Grammar pages 29–130.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR. http://arxiv.org/abs/1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions
of the Association for Computational Linguistics
4:313–327.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems.
pages 3294–3302.

Marco Kuhlmann and Stephan Oepen. 2016. Towards
a catalogue of linguistic graph banks. Computa-
tional Linguistics 42(4):819–827.

Quoc V Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML.
volume 14, pages 1188–1196.

Wang Ling, Chris Dyer, Alan W Black, and Is-
abel Trancoso. 2015. Two/too simple adapta-
tions of word2vec for syntax problems. In
Proceedings of NAACL-HLT . pages 1299–1304.
http://www.aclweb.org/anthology/N15-1142.

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J. Bethard,
and David McClosky. 2014. The Stanford
CoreNLP natural language processing toolkit.
In ACL System Demonstrations. pages 55–60.
http://www.aclweb.org/anthology/P/P14/P14-5010.

Jonathan May. 2016. Semeval-2016 task 8:
Meaning representation parsing. In Pro-
ceedings of SemEval. pages 1063–1073.
http://www.aclweb.org/anthology/S16-1166.

Dipendra Kumar Misra and Yoav Artzi. 2016. Neu-
ral shift-reduce ccg semantic parsing. In Proceed-
ings of EMNLP. Austin, Texas, pages 1775–1786.
https://aclweb.org/anthology/D16-1183.

Joakim Nivre. 2008. Algorithms for deterministic in-
cremental dependency parsing. Computational Lin-
guistics 34(4):513–553.

Stephan Oepen, Dan Flickinger, Kristina Toutanova,
and Christopher D. Manning. 2004. Lingo red-
woods. Research on Language and Computation
2(4):575–596. https://doi.org/10.1007/s11168-004-
7430-4.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger, Jan
Hajic, and Zdenka Uresova. 2015. Semeval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proceedings of SemEval. pages 915–926.
http://www.aclweb.org/anthology/S15-2153.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, An-
gelina Ivanova, and Yi Zhang. 2014. Semeval 2014
task 8: Broad-coverage semantic dependency pars-
ing. In Proceedings of SemEval. pages 63–72.
http://www.aclweb.org/anthology/S14-2008.

Stephan Oepen and Jan Tore Lønning. 2006.
Discriminant-based MRS banking. In Proceedings
of the 5th International Conference on Language
Resources and Evaluation. pages 1250–1255.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated corpus of
semantic roles. Computational linguistics 31(1):71–
106.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. ICML (3) 28:1310–1318.

Xiaochang Peng and Daniel Gildea. 2016. Uofr at
semeval-2016 task 8: Learning synchronous hyper-
edge replacement grammar for amr parsing. In
Proceedings of SemEval-2016. pages 1185–1189.
http://www.aclweb.org/anthology/S16-1183.

Xiaochang Peng, Chuan Wang, Daniel Gildea,
and Nianwen Xue. 2017. Addressing the
data sparsity issue in neural amr pars-
ing. In Proceedings of EACL. Preprint.
http://www.cs.brandeis.edu/ cwang24/files/eacl17.pdf.

1225

Carl Pollard and Ivan A Sag. 1994. Head-driven
phrase structure grammar. University of Chicago
Press.

Michael Pust, Ulf Hermjakob, Kevin Knight, Daniel
Marcu, and Jonathan May. 2015. Parsing En-
glish into abstract meaning representation using
syntax-based machine translation. In Proceed-
ings of EMNLP. Association for Computational
Linguistics, Lisbon, Portugal, pages 1143–1154.
http://aclweb.org/anthology/D15-1136.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomáš Kočiskỳ, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
arXiv preprint arXiv:1509.06664 .

Kenji Sagae and Jun’ichi Tsujii. 2008. Shift-
reduce dependency DAG parsing. In Pro-
ceedings of Coling 2008. pages 753–760.
http://www.aclweb.org/anthology/C08-1095.

Ivan Titov, James Henderson, Paola Merlo, and
Gabriele Musillo. 2009. Online graph planarisation
for synchronous parsing of semantic and syntactic
dependencies. In IJCAI. pages 1562–1567.

Kristina Toutanova, Christopher D. Manning, Dan
Flickinger, and Stephan Oepen. 2005. Stochas-
tic HPSG parse disambiguation using the redwoods
corpus. Research on Language and Computation
3(1):83–105.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015a. Pointer networks. In Advances in Neu-
ral Information Processing Systems 28. pages 2692–
2700. http://papers.nips.cc/paper/5866-pointer-
networks.pdf.

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015b. Gram-
mar as a foreign language. In Advances in Neural
Information Processing Systems. pages 2755–2763.

Chuan Wang, Sameer Pradhan, Xiaoman Pan, Heng
Ji, and Nianwen Xue. 2016. Camr at semeval-
2016 task 8: An extended transition-based amr
parser. In Proceedings of SemEval. pages 1173–
1178. http://www.aclweb.org/anthology/S16-1181.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015a. Boosting transition-based AMR pars-
ing with refined actions and auxiliary analyz-
ers. In Proceedings of ACL (2). pages 857–862.
http://www.aclweb.org/anthology/P15-2141.pdf.

Chuan Wang, Nianwen Xue, and Sameer Pradhan.
2015b. A transition-based algorithm for AMR
parsing. In Proceedings of NAACL 2015. pages
366–375. http://aclweb.org/anthology/N/N15/N15-
1040.pdf.

Gisle Ytrestøl. 2012. Transition-Based Parsing for
Large-Scale Head-Driven Phrase Structure Gram-
mars. Ph.D. thesis, University of Oslo.

Yi Zhang and Hans-Ulrich Krieger. 2011. Large-scale
corpus-driven PCFG approximation of an HPSG.
In Proceedings of the 12th international conference
on parsing technologies. Association for Computa-
tional Linguistics, pages 198–208.

Yi Zhang, Stephan Oepen, and John Carroll. 2007.
Efficiency in unification-based n-best pars-
ing. In Proceedings of IWPT . pages 48–59.
http://www.aclweb.org/anthology/W/W07/W07-
2207.

Yi Zhang, Stephan Oepen, Rebecca Dridan, Dan
Flickinger, and Hans-Ulrich Krieger. 2014. Robust
parsing, meaning composition, and evaluation: In-
tegrating grammar approximation, default unifica-
tion, and elementary semantic dependencies. Un-
published manuscript.

1226

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1227–1236
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1113

Joint Extraction of Entities and Relations
Based on a Novel Tagging Scheme

Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao,Peng Zhou, Bo Xu
Institute of Automation, Chinese Academy of Sciences, 100190, Beijing, P.R. China
{suncong.zheng, feng.wang,hongyun.bao, haoyuexing2014, peng.zhou,xubo}@ia.ac.cn

Abstract

Joint extraction of entities and relations is
an important task in information extrac-
tion. To tackle this problem, we firstly
propose a novel tagging scheme that can
convert the joint extraction task to a tag-
ging problem. Then, based on our tag-
ging scheme, we study different end-to-
end models to extract entities and their re-
lations directly, without identifying enti-
ties and relations separately. We conduct
experiments on a public dataset produced
by distant supervision method and the ex-
perimental results show that the tagging
based methods are better than most of the
existing pipelined and joint learning meth-
ods. What’s more, the end-to-end model
proposed in this paper, achieves the best
results on the public dataset.

1 Introduction

Joint extraction of entities and relations is to de-
tect entity mentions and recognize their semantic
relations simultaneously from unstructured text, as
Figure 1 shows. Different from open information
extraction (Open IE) (Banko et al., 2007) whose
relation words are extracted from the given sen-
tence, in this task, relation words are extracted
from a predefined relation set which may not ap-
pear in the given sentence. It is an important issue
in knowledge extraction and automatic construc-
tion of knowledge base.

Traditional methods handle this task in a
pipelined manner, i.e., extracting the entities
(Nadeau and Sekine, 2007) first and then recog-
nizing their relations (Rink, 2010). This separated
framework makes the task easy to deal with, and
each component can be more flexible. But it ne-
glects the relevance between these two sub-tasks

The [United States]E-loc President [Trump]E-per will visit the [Apple Inc]E-Org .

Country-President

None
None

Extracted Results

{United States, Country-President, Trump}

Figure 1: A standard example sentence for the
task. “Country-President” is a relation in the pre-
defined relation set.

and each subtask is an independent model. The
results of entity recognition may affect the perfor-
mance of relation classification and lead to erro-
neous delivery (Li and Ji, 2014).

Different from the pipelined methods, join-
t learning framework is to extract entities togeth-
er with relations using a single model. It can ef-
fectively integrate the information of entities and
relations, and it has been shown to achieve bet-
ter results in this task. However, most existing
joint methods are feature-based structured system-
s (Li and Ji, 2014; Miwa and Sasaki, 2014; Yu
and Lam, 2010; Ren et al., 2017). They need
complicated feature engineering and heavily re-
ly on the other NLP toolkits, which might also
lead to error propagation. In order to reduce the
manual work in feature extraction, recently, (Mi-
wa and Bansal, 2016) presents a neural network-
based method for the end-to-end entities and rela-
tions extraction. Although the joint models can
represent both entities and relations with shared
parameters in a single model, they also extract the
entities and relations separately and produce re-
dundant information. For instance, the sentence in
Figure 1 contains three entities: “United States”,
“Trump” and “Apple Inc”. But only “United S-
tates” and “Trump” hold a fix relation “Country-
President”. Entity “Apple Inc” has no obvious
relationship with the other entities in this sen-

1227

https://doi.org/10.18653/v1/P17-1113

tence. Hence, the extracted result from this sen-
tence is {United Statese1, Country-Presidentr,
Trumpe2}, which called triplet here.

In this paper, we focus on the extraction of
triplets that are composed of two entities and one
relation between these two entities. Therefore, we
can model the triplets directly, rather than extract-
ing the entities and relations separately. Based on
the motivations, we propose a tagging scheme ac-
companied with the end-to-end model to settle this
problem. We design a kind of novel tags which
contain the information of entities and the rela-
tionships they hold. Based on this tagging scheme,
the joint extraction of entities and relations can be
transformed into a tagging problem. In this way,
we can also easily use neural networks to model
the task without complicated feature engineering.

Recently, end-to-end models based on LSTM
(Hochreiter and Schmidhuber, 1997) have been
successfully applied to various tagging tasks:
Named Entity Recognition (Lample et al., 2016),
CCG Supertagging (Vaswani et al., 2016), Chunk-
ing (Zhai et al., 2017) et al. LSTM is capable of
learning long-term dependencies, which is benefi-
cial to sequence modeling tasks. Therefore, based
on our tagging scheme, we investigate different
kinds of LSTM-based end-to-end models to joint-
ly extract the entities and relations. We also modi-
fy the decoding method by adding a biased loss to
make it more suitable for our special tags.

The method we proposed is a supervised learn-
ing algorithm. In reality, however, the process
of manually labeling a training set with a large
number of entity and relation is too expensive and
error-prone. Therefore, we conduct experiments
on a public dataset1 which is produced by distant
supervision method (Ren et al., 2017) to validate
our approach. The experimental results show that
our tagging scheme is effective in this task. In ad-
dition, our end-to-end model can achieve the best
results on the public dataset.

The major contributions of this paper are: (1) A
novel tagging scheme is proposed to jointly extrac-
t entities and relations, which can easily transfor-
m the extraction problem into a tagging task. (2)
Based on our tagging scheme, we study different
kinds of end-to-end models to settle the problem.
The tagging-based methods are better than most
of the existing pipelined and joint learning meth-
ods. (3) Furthermore, we also develop an end-to-

1https://github.com/shanzhenren/CoType

end model with biased loss function to suit for the
novel tags. It can enhance the association between
related entities.

2 Related Works

Entities and relations extraction is an importan-
t step to construct a knowledge base, which can
be benefit for many NLP tasks. Two main frame-
works have been widely used to solve the problem
of extracting entity and their relationships. One
is the pipelined method and the other is the joint
learning method.

The pipelined method treats this task as two sep-
arated tasks, i.e., named entity recognition (NER)
(Nadeau and Sekine, 2007) and relation classifica-
tion (RC) (Rink, 2010). Classical NER models are
linear statistical models, such as Hidden Markov
Models (HMM) and Conditional Random Fields
(CRF) (Passos et al., 2014; Luo et al., 2015). Re-
cently, several neural network architectures (Chi-
u and Nichols, 2015; Huang et al., 2015; Lam-
ple et al., 2016) have been successfully applied
to NER, which is regarded as a sequential to-
ken tagging task. Existing methods for relation
classification can also be divided into handcraft-
ed feature based methods (Rink, 2010; Kambhat-
la, 2004) and neural network based methods (Xu,
2015a; Zheng et al., 2016; Zeng, 2014; Xu, 2015b;
dos Santos, 2015).

While joint models extract entities and relations
using a single model. Most of the joint method-
s are feature-based structured systems (Ren et al.,
2017; Yang and Cardie, 2013; Singh et al., 2013;
Miwa and Sasaki, 2014; Li and Ji, 2014). Recent-
ly, (Miwa and Bansal, 2016) uses a LSTM-based
model to extract entities and relations, which can
reduce the manual work.

Different from the above methods, the method
proposed in this paper is based on a special tag-
ging manner, so that we can easily use end-to-
end model to extract results without NER and RC.
end-to-end method is to map the input sentence
into meaningful vectors and then back to produce
a sequence. It is widely used in machine transla-
tion (Kalchbrenner and Blunsom, 2013; Sutskever
et al., 2014) and sequence tagging tasks (Lample
et al., 2016; Vaswani et al., 2016). Most meth-
ods apply bidirectional LSTM to encode the input
sentences, but the decoding methods are always d-
ifferent. For examples, (Lample et al., 2016) use
a CRF layers to decode the tag sequence, while

1228

Input Sentence: The United States President Trump will visit the Apple Inc founded by Steven Paul Jobs

{Apple Inc, Company-Founder, Steven Paul Jobs}Final Results:

Tags: O B-CP-1 E-CP-1 O S-CP-2 O O O B-CF-1 E-CF-1 O O B-CF-2 I-CF-2 E-CF-2

{United States, Country-President, Trump}

Figure 2: Gold standard annotation for an example sentence based on our tagging scheme, where “CP”
is short for “Country-President” and “CF” is short for “Company-Founder”.

(Vaswani et al., 2016; Katiyar and Cardie, 2016)
apply LSTM layer to produce the tag sequence.

3 Method

We propose a novel tagging scheme and an end-to-
end model with biased objective function to jointly
extract entities and their relations. In this section,
we firstly introduce how to change the extraction
problem to a tagging problem based on our tag-
ging method. Then we detail the model we used
to extract results.

3.1 The Tagging Scheme
Figure 2 is an example of how the results are
tagged. Each word is assigned a label that con-
tributes to extract the results. Tag “O” represents
the “Other” tag, which means that the correspond-
ing word is independent of the extracted result-
s. In addition to “O”, the other tags consist of
three parts: the word position in the entity, the
relation type, and the relation role. We use the
“BIES” (Begin, Inside, End,Single) signs to rep-
resent the position information of a word in the
entity. The relation type information is obtained
from a predefined set of relations and the relation
role information is represented by the numbers “1”
and “2”. An extracted result is represented by a
triplet: (Entity1, RelationType,Entity2). “1”
means that the word belongs to the first entity in
the triplet, while “2” belongs to second entity that
behind the relation type. Thus, the total number of
tags is Nt = 2 ∗ 4 ∗ |R|+ 1, where |R| is the size
of the predefined relation set.

Figure 2 is an example illustrating our tag-
ging method. The input sentence contains t-
wo triplets: {United States, Country-President,
Trump} and {Apple Inc, Company-Founder,
Steven Paul Jobs}, where “Country-President”
and “Company-Founder” are the predefined re-
lation types. The words “United”,“States”,“
Trump”,“Apple”,“Inc” ,“Steven”, “Paul” and

“Jobs” are all related to the final extracted result-
s. Thus they are tagged based on our special tags.
For example, the word of “United” is the first word
of entity “United States” and is related to the rela-
tion “Country-President”, so its tag is “B-CP-1”.
The other entity “ Trump”, which is correspond-
ing to “United States”, is labeled as “S-CP-2”. Be-
sides, the other words irrelevant to the final result
are labeled as “O”.

3.2 From Tag Sequence To Extracted Results

From the tag sequence in Figure 2, we know that
“ Trump” and “United States” share the same re-
lation type “Country-President”, “Apple Inc” and
“Steven Paul Jobs” share the same relation type
“Company-Founder”. We combine entities with
the same relation type into a triplet to get the fi-
nal result. Accordingly, “ Trump” and “United S-
tates” can be combined into a triplet whose rela-
tion type is “Country-President”. Because, the re-
lation role of “ Trump” is “2” and “United States”
is “1”, the final result is {United States, Country-
President, Trump}. The same applies to {Apple
Inc, Company-Founder, Steven Paul Jobs}.

Besides, if a sentence contains two or more
triplets with the same relation type, we combine
every two entities into a triplet based on the n-
earest principle. For example, if the relation type
“Country-President” in Figure 2 is “Company-
Founder”, then there will be four entities in the
given sentence with the same relation type. “U-
nited States” is closest to entity “ Trump” and
the “Apple Inc” is closest to “Jobs”, so the re-
sults will be {United States, Company-Founder,
Trump} and {Apple Inc, Company-Founder,
Steven Paul Jobs}.

In this paper, we only consider the situation
where an entity belongs to a triplet, and we leave
identification of overlapping relations for future
work.

1229

The United States president

 O B-CP-1 E-CP-1 O S-CP-2

W1

Bi-LSTM

h1

LSTMd

T1

W2

Bi-LSTM

h2

LSTMd

T2

W3

Bi-LSTM

h3

LSTMd

T3

W4

Bi-LSTM

h4

LSTMd

T4

W5

Bi-LSTM

h5

LSTMd

T5

Trump

tanhσ σ σ

X

+X

tanh

X

Wt

ht-1 ht

ct-1 ct

tanhσ σ σ

X

+X

tanh

X

Wt

ht-1 ht

ct-1 ct

Tt
Tt-1

tanh

(a) Bi-LSTM Block

(b) LSTMd Block
Input

Sentence

Embeding
Layer

 Encoding
Layer

Decoding
Layer

Softmax

Output

 O B-CP-1 E-CP-1 O S-CP-2

W1

Bi-LSTM

h1

LSTMd

T1

W2

Bi-LSTM

h2

LSTMd

T2

W3

Bi-LSTM

h3

LSTMd

T3

W4

Bi-LSTM

h4

LSTMd

T4

W5

Bi-LSTM

h5

LSTMd

T5

Input

Sentence

Embedding

Layer

 Encoding

Layer

Decoding

Layer

Softmax

Output

 The United States president Trump ...

(a) The End-to-End Model

tanhσ σ σ

X

+X

tanh

X

ht

ct-1 ct

(b) Bi-LSTM BlockWt

ht-1

tanhσ σ σ

X

+X

tanh

X

ht

ht-1 ht

ct-1 ct

Tt
Tt-1

tanh

(c) LSTMd Block

2

2

2

2

Figure 3: An illustration of our model. (a): The architecture of the end-to-end model, (b): The LSTM
memory block in Bi-LSTM encoding layer, (c): The LSTM memory block in LSTMd decoding layer.

3.3 The End-to-end Model

In recent years, end-to-end model based on neural
network is been widely used in sequence tagging
task. In this paper, we investigate an end-to-end
model to produce the tags sequence as Figure 3
shows. It contains a bi-directional Long Short Ter-
m Memory (Bi-LSTM) layer to encode the input
sentence and a LSTM-based decoding layer with
biased loss. The biased loss can enhance the rele-
vance of entity tags.

The Bi-LSTM Encoding Layer. In sequence tag-
ging problems, the Bi-LSTM encoding layer has
been shown the effectiveness to capture the se-
mantic information of each word. It contains for-
ward lstm layer, backward lstm layer and the con-
catenate layer. The word embedding layer con-
verts the word with 1-hot representation to an em-
bedding vector. Hence, a sequence of words can
be represented as W = {w1, ...wt, wt+1...wn},
where wt ∈ Rd is the d-dimensional word vector
corresponding to the t-th word in the sentence and
n is the length of the given sentence. After word
embedding layer, there are two parallel LSTM lay-
ers: forward LSTM layer and backward LSTM
layer. The LSTM architecture consists of a set of
recurrently connected subnets, known as memory
blocks. Each time-step is a LSTM memory block.
The LSTM memory block in Bi-LSTM encoding
layer is used to compute current hidden vector ht
based on the previous hidden vector ht−1, the pre-
vious cell vector ct−1 and the current input word
embedding wt. Its structure diagram is shown in
Figure 3 (b), and detail operations are defined as

follows:

it = δ(Wwiwt +Whiht−1 +Wcict−1 + bi), (1)

ft = δ(Wwfwt+Whfht−1+Wcfct−1+bf), (2)

zt = tanh(Wwcwt +Whcht−1 + bc), (3)

ct = ftct−1 + itzt, (4)

ot = δ(Wwowt +Whoht−1 +Wcoct + bo), (5)

ht = ottanh(ct), (6)

where i, f and o are the input gate, forget gate
and output gate respectively, b is the bias term, c
is the cell memory, and W(.) are the parameters.
For each word wt, the forward LSTM layer will
encode wt by considering the contextual informa-
tion from wordw1 towt, which is marked as

−→
ht . In

the similar way, the backward LSTM layer will en-
code wt based on the contextual information from
wn to wt, which is marked as

←−
ht . Finally, we con-

catenate
←−
ht and

−→
ht to represent word t’s encoding

information, denoted as ht = [
−→
ht ,
←−
ht].

The LSTM Decoding Layer. We also adopt a L-
STM structure to produce the tag sequence. When
detecting the tag of word wt, the inputs of decod-
ing layer are: ht obtained from Bi-LSTM encod-
ing layer, former predicted tag embedding Tt−1,
former cell value c(2)t−1, and the former hidden vec-

tor in decoding layer h(2)t−1. The structure diagram
of the memory block in LSTMd is shown in Figure
3 (c), and detail operations are defined as follows:

i
(2)
t = δ(W

(2)
wi ht +W

(2)
hi h

(2)
t−1 +WtiTt−1 + b

(2)
i),

(7)

1230

f
(2)
t = δ(W

(2)
wf ht +W

(2)
hf h

(2)
t−1 +WtfTt−1 + b

(2)
f),

(8)

z
(2)
t = tanh(W (2)

wc ht+W
(2)
hc h

(2)
t−1+WtcTt−1+b(2)c),

(9)

c
(2)
t = f

(2)
t c

(2)
t−1 + i

(2)
t z

(2)
t , (10)

o
(2)
t = δ(W (2)

wo ht +W
(2)
ho h

(2)
t−1 +W (2)

co ct + b(2)o),
(11)

h
(2)
t = o

(2)
t tanh(c

(2)
t), (12)

Tt = Wtsh
(2)
t + bts. (13)

The final softmax layer computes normalized enti-
ty tag probabilities based on the tag predicted vec-
tor Tt:

yt = WyTt + by, (14)

pit =
exp(yit)

Nt∑
j=1

exp(yjt)

, (15)

where Wy is the softmax matrix, Nt is the total
number of tags. Because T is similar to tag em-
bedding and LSTM is capable of learning long-
term dependencies, the decoding manner can mod-
el tag interactions.
The Bias Objective Function. We train our mod-
el to maximize the log-likelihood of the data and
the optimization method we used is RMSprop pro-
posed by Hinton in (Tieleman and Hinton, 2012).
The objective function can be defined as:

L =max

|D|∑

j=1

Lj∑

t=1

(log(p
(j)
t = y

(j)
t |xj ,Θ) · I(O)

+α · log(p
(j)
t = y

(j)
t |xj ,Θ) · (1− I(O))),

where |D| is the size of training set, Lj is the
length of sentence xj , y

(j)
t is the label of word t

in sentence xj and p(j)t is the normalized probabil-
ities of tags which defined in Formula 15. Besides,
I(O) is a switching function to distinguish the loss
of tag ’O’ and relational tags that can indicate the
results. It is defined as follows:

I(O) =

{
1, if tag = ′O′

0, if tag 6= ′O′.

α is the bias weight. The larger α is, the greater
influence of relational tags on the model.

4 Experiments

4.1 Experimental setting
Dataset To evaluate the performance of our meth-
ods, we use the public dataset NYT 2 which is pro-
duced by distant supervision method (Ren et al.,
2017). A large amount of training data can be
obtained by means of distant supervision method-
s without manually labeling. While the test set is
manually labeled to ensure its quality. In total, the
training data contains 353k triplets, and the test set
contains 3, 880 triplets. Besides, the size of rela-
tion set is 24.
Evaluation We adopt standard Precision (Prec),
Recall (Rec) and F1 score to evaluate the result-
s. Different from classical methods, our method
can extract triplets without knowing the informa-
tion of entity types. In other words, we did not use
the label of entity types to train the model, there-
fore we do not need to consider the entity types
in the evaluation. A triplet is regarded as correct
when its relation type and the head offsets of two
corresponding entities are both correct. Besides,
the ground-truth relation mentions are given and
“None” label is excluded as (Ren et al., 2017; Li
and Ji, 2014; Miwa and Bansal, 2016) did. We
create a validation set by randomly sampling 10%
data from test set and use the remaining data as e-
valuation based on (Ren et al., 2017)’s suggestion.
We run 10 times for each experiment then report
the average results and their standard deviation as
Table 1 shows.
Hyperparameters Our model consists of a Bi-
LSTM encoding layer and a LSTM decoding layer
with bias objective function. The word embed-
dings used in the encoding part are initialed by
running word2vec3 (Mikolov et al., 2013) on NYT
training corpus. The dimension of the word em-
beddings is d = 300. We regularize our network
using dropout on embedding layer and the dropout
ratio is 0.5. The number of lstm units in encoding
layer is 300 and the number in decoding layer is
600. The bias parameter α corresponding to the
results in Table 1 is 10.

2The dataset can be downloaded at: http-
s://github.com/shanzhenren/CoType. There are three
data sets in the public resource and we only use the NYT
dataset. Because more than 50% of the data in BioInfer
has overlapping relations which is beyond the scope of this
paper. As for dataset Wiki-KBP, the number of relation type
in the test set is more than that of the train set, which is also
not suitable for a supervised training method. Details of the
data can be found in Ren’s(Ren et al., 2017) paper.

3https://code.google.com/archive/p/word2vec/

1231

Methods Prec. Rec. F1
FCM 0.553 0.154 0.240

DS+logistic 0.258 0.393 0.311
LINE 0.335 0.329 0.332

MultiR 0.338 0.327 0.333
DS-Joint 0.574 0.256 0.354
CoType 0.423 0.511 0.463

LSTM-CRF 0.693± 0.008 0.310± 0.007 0.428± 0.008
LSTM-LSTM 0.682± 0.007 0.320± 0.006 0.436± 0.006

LSTM-LSTM-Bias 0.615± 0.008 0.414± 0.005 0.495± 0.006

Table 1: The predicted results of different methods on extracting both entities and their relations. The
first part (from row 1 to row 3) is the pipelined methods and the second part (row 4 to 6) is the jointly
extracting methods. Our tagging methods are shown in part three (row 7 to 9). In this part, we not only
report the results of precision, recall and F1, we also compute their standard deviation.

Baselines We compare our method with sever-
al classical triplet extraction methods, which can
be divided into the following categories: the
pipelined methods, the jointly extracting method-
s and the end-to-end methods based our tagging
scheme.

For the pipelined methods, we follow (Ren
et al., 2017)’s settings: The NER results are ob-
tained by CoType (Ren et al., 2017) then sever-
al classical relation classification methods are ap-
plied to detect the relations. These methods are:
(1) DS-logistic (Mintz et al., 2009) is a distant su-
pervised and feature based method, which com-
bines the advantages of supervised IE and unsu-
pervised IE features; (2) LINE (Tang et al., 2015)
is a network embedding method, which is suit-
able for arbitrary types of information networks;
(3) FCM (Gormley et al., 2015) is a compositional
model that combines lexicalized linguistic context
and word embeddings for relation extraction.

The jointly extracting methods used in this pa-
per are listed as follows: (4) DS-Joint (Li and Ji,
2014) is a supervised method, which jointly ex-
tracts entities and relations using structured per-
ceptron on human-annotated dataset; (5) MultiR
(Hoffmann et al., 2011) is a typical distant super-
vised method based on multi-instance learning al-
gorithms to combat the noisy training data; (6) Co-
Type (Ren et al., 2017) is a domain independent
framework by jointly embedding entity mention-
s, relation mentions, text features and type labels
into meaningful representations.

In addition, we also compare our method with
two classical end-to-end tagging models: LSTM-
CRF (Lample et al., 2016) and LSTM-LSTM

(Vaswani et al., 2016). LSTM-CRF is proposed
for entity recognition by using a bidirectional L-
STM to encode input sentence and a conditional
random fields to predict the entity tag sequence.
Different from LSTM-CRF, LSTM-LSTM uses a
LSTM layer to decode the tag sequence instead
of CRF. They are used for the first time to jointly
extract entities and relations based on our tagging
scheme.

4.2 Experimental Results

We report the results of different methods as
shown in Table 1. It can be seen that our method,
LSTM-LSTM-Bias, outperforms all other meth-
ods in F1 score and achieves a 3% improvement
in F1 over the best method CoType (Ren et al.,
2017). It shows the effectiveness of our proposed
method. Furthermore, from Table 1, we also can
see that the jointly extracting methods are better
than pipelined methods, and the tagging methods
are better than most of the jointly extracting meth-
ods. It also validates the validity of our tagging
scheme for the task of jointly extracting entities
and relations.

When compared with the traditional methods,
the precisions of the end-to-end models are signifi-
cantly improved. But only LSTM-LSTM-Bias can
be better to balance the precision and recall. The
reason may be that these end-to-end models all use
a Bi-LSTM encoding input sentence and different
neural networks to decode the results. The meth-
ods based on neural networks can well fit the da-
ta. Therefore, they can learn the common features
of the training set well and may lead to the lower
expansibility. We also find that the LSTM-LSTM

1232

Elements E1 E2 (E1,E2)
PRF Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

LSTM-CRF 0.596 0.325 0.420 0.605 0.325 0.423 0.724 0.341 0.465
LSTM-LSTM 0.593 0.342 0.434 0.619 0.334 0.434 0.705 0.340 0.458

LSTM-LSTM-Bias 0.590 0.479 0.529 0.597 0.451 0.514 0.645 0.437 0.520

Table 2: The predicted results of triplet’s elements based on our tagging scheme.

model is better than LSTM-CRF model based on
our tagging scheme. Because, LSTM is capable of
learning long-term dependencies and CRF (Laf-
ferty et al., 2001) is good at capturing the joint
probability of the entire sequence of labels. The
related tags may have a long distance from each
other. Hence, LSTM decoding manner is a little
better than CRF. LSTM-LSTM-Bias adds a bias
weight to enhance the effect of entity tags and
weaken the effect of invalid tag. Therefore, in this
tagging scheme, our method can be better than the
common LSTM-decoding methods.

5 Analysis and Discussion

5.1 Error Analysis
In this paper, we focus on extracting triplets com-
posed of two entities and a relation. Table 1 has
shown the predict results of the task. It treats an
triplet is correct only when the relation type and
the head offsets of two corresponding entities are
both correct. In order to find out the factors that af-
fect the results of end-to-end models, we analyze
the performance on predicting each element in the
triplet as Table 2 shows. E1 and E2 represent the
performance on predicting each entity, respective-
ly. If the head offset of the first entity is correct,
then the instance of E1 is correct, the same to E2.
Regardless of relation type, if the head offsets of
two corresponding entities are both correct, the in-
stance of (E1, E2) is correct.

As shown in Table 2, (E1, E2) has higher pre-
cision when compared with E1 and E2. But its
recall result is lower than E1 and E2. It means
that some of the predicted entities do not form a
pair. They only obtain E1 and do not find its cor-
responding E2, or obtain E2 and do not find its
corresponding E1. Thus it leads to the prediction
of more single E and less (E1, E2) pairs. There-
fore, entity pair (E1, E2) has higher precision and
lower recall than single E. Besides, the predict-
ed results of (E1, E2) in Table 2 have about 3%
improvement when compared predicted results in
Table 1, which means that 3% of the test data is

predicted to be wrong because the relation type is
predicted to be wrong.

5.2 Analysis of Biased Loss

Different from LSTM-CRF and LSTM-LSTM,
our approach is biased towards relational labels to
enhance links between entities. In order to further
analyze the effect of the bias objective function,
we visualize the ratio of predicted single entities
for each end-to-end method as Figure 4. The s-
ingle entities refer to those who cannot find their
corresponding entities. Figure 4 shows whether it
is E1 or E2, our method can get a relatively low ra-
tio on the single entities. It means that our method
can effectively associate two entities when com-
pared LSTM-CRF and LSTM-LSTM which pay
little attention to the relational tags.

Single E1 Single E2
0.00

0.05

0.10

0.15

0.20

0.25

T
h
e
 R

a
ti

o
 o

f
S
in

g
le

 E

0.178
0.186

0.151
0.167

0.135

0.101

LSTM-CRF
LSTM-LSTM
LSTM-LSTM-Bias

Figure 4: The ratio of predicted single entities for
each method. The higher of the ratio the more en-
tities are left.

Besides, we also change the Bias Parameter α
from 1 to 20, and the predicted results are shown
in Figure 5. If α is too large, it will affect the
accuracy of prediction and if α is too small, the
recall will decline. When α = 10, LSTM-LSTM-
Bias can balance the precision and recall, and can
achieve the best F1 scores.

1233

Standard S1
[Panama City Beach]E2contain has condos , but the area was one of only two
in [Florida]E1contain where sales rose in March , compared with a year earlier.

LSTM-LSTM
Panama City Beach has condos , but the area was one of only two in
[Florida]E1contain where sales rose in March , compared with a year earlier.

LSTM-LSTM-Bias
[Panama City Beach]E2contain has condos , but the area was one of only two
in [Florida]E1contain where sales rose in March , compared with a year earlier.

Standard S2
All came from [Nuremberg]E2contain , [Germany]E1contain , a center of brass
production since the Middle Ages.

LSTM-LSTM
All came from Nuremberg , [Germany]E1contain , a center of brass production
since the [Middle Ages]E2contain.

LSTM-LSTM-Bias
All came from Nuremberg , [Germany]E1contain , a center of brass production
since the [Middle Ages]E2contain.

Standard S3
[Stephen A.]E2CF , the co-founder of the [Blackstone Group]E1CF , which
is in the process of going public , made $ 400 million last year.

LSTM-LSTM
[Stephen A.]E1CF , the co-founder of the [Blackstone Group]E1CF , which
is in the process of going public , made $ 400 million last year.

LSTM-LSTM-Bias
[Stephen A.]E1CF , the co-founder of the [Blackstone Group]E2CF , which
is in the process of going public , made $ 400 million last year.

Table 3: Output from different models. Standard Si represents the gold standard of sentence i. The
blue part is the correct result, and the red one is the wrong one. E1CF in case ’3’ is short for
E1Company−Founder.

0 5 10 15 20

Bias Parameter

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

V
a
lu

e
 o

f
(

P
,R

,F
)

Precition
Recall
F1

Figure 5: The results predicted by LSTM-LSTM-
Bias on different bias parameter α.

5.3 Case Study

In this section, we observe the prediction results of
end-to-end methods, and then select several repre-
sentative examples to illustrate the advantages and
disadvantages of the methods as Table 3 shows.
Each example contains three row, the first row is
the gold standard, the second and the third rows
are the extracted results of model LSTM-LSTM
and LSTM-LSTM-Bias respectively.
S1 represents the situation that the distance be-

tween the two interrelated entities is far away

from each other, which is more difficult to detect
their relationships. When compared with LSTM-
LSTM, LSTM-LSTM-Bias uses a bias objective
function which enhance the relevance between en-
tities. Therefore, in this example, LSTM-LSTM-
Bias can extract two related entities, while LSTM-
LSTM can only extract one entity of “Florida” and
can not detect entity “Panama City Beach”.

S2 is a negative example that shows these meth-
ods may mistakenly predict one of the entity.
There are no indicative words between entities
Nuremberg and Germany. Besides, the patten
“a * of *” between Germany and MiddleAges
may be easy to mislead the models that there ex-
ists a relation of “Contains” between them. The
problem can be solved by adding some samples
of this kind of expression patterns to the training
data.

S3 is a case that models can predict the enti-
ties’ head offset right, but the relational role is
wrong. LSTM-LSTM treats both “Stephen A.
Schwarzman” and “Blackstone Group” as entity
E1, and can not find its corresponding E2. Al-
though, LSTM-LSMT–Bias can find the entities
pair (E1, E2), it reverses the roles of “Stephen A.
Schwarzman” and “Blackstone Group”. It shows
that LSTM-LSTM-Bias is able to better on pre-

1234

dicting entities pair, but it remains to be improved
in distinguishing the relationship between the two
entities.

6 Conclusion

In this paper, we propose a novel tagging scheme
and investigate the end-to-end models to joint-
ly extract entities and relations. The experimen-
tal results show the effectiveness of our proposed
method. But it still has shortcoming on the identi-
fication of the overlapping relations. In the future
work, we will replace the softmax function in the
output layer with multiple classifier, so that a word
can has multiple tags. In this way, a word can ap-
pear in multiple triplet results, which can solve the
problem of overlapping relations. Although, our
model can enhance the effect of entity tags, the as-
sociation between two corresponding entities still
requires refinement in next works.

Acknowledgments

We thank Xiang Ren for dataset details and help-
ful discussions. This work is also supported by the
National High Technology Research and Devel-
opment Program of China (863 Program) (Grant
No. 2015AA015402), the National Natural Sci-
ence Foundation of China (No. 61602479) and the
NSFC project 61501463.

References

Michele Banko, Michael J Cafarella, Stephen Soder-
land, Matthew Broadhead, and Oren Etzioni. 2007.
Open information extraction from the web. In IJ-
CAI. volume 7, pages 2670–2676.

Jason PC Chiu and Eric Nichols. 2015. Named enti-
ty recognition with bidirectional lstm-cnns. In Pro-
cessings of Transactions of the Association for Com-
putational Linguistics.

Cıcero Nogueira et al. dos Santos. 2015. Classifying
relations by ranking with convolutional neural net-
works. In Proceedings of the 53th ACL internation-
al conference. volume 1, pages 626–634.

Matthew R Gormley, Mo Yu, and Mark Dredze. 2015.
Improved relation extraction with feature-rich com-
positional embedding models. In Proceedings of the
EMNLP.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of the 49th
Annual Meeting of the Association for Computation-
al Linguistics. Association for Computational Lin-
guistics, pages 541–550.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Nal Kalchbrenner and Phil Blunsom. 2013. Recurren-
t continuous translation models. In EMNLP. vol-
ume 3, page 413.

Nanda Kambhatla. 2004. Combining lexical, syntactic,
and semantic features with maximum entropy mod-
els for extracting relations. In Proceedings of the
43th ACL international conference. page 22.

Arzoo Katiyar and Claire Cardie. 2016. Investigating
lstms for joint extraction of opinion entities and rela-
tions. In Proceedings of the 54th ACL international
conference.

John Lafferty, Andrew McCallum, Fernando Pereira,
et al. 2001. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence da-
ta. In Proceedings of the eighteenth international
conference on machine learning, ICML. volume 1,
pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the NAACL international confer-
ence.

Qi Li and Heng Ji. 2014. Incremental joint extraction
of entity mentions and relations. In Proceedings
of the 52rd Annual Meeting of the Association for
Computational Linguistics. pages 402–412.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Za-
iqing Nie. 2015. Joint entity recognition and disam-
biguation. In Conference on Empirical Methods in
Natural Language Processing. pages 879–888.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Mike Mintz, Steven Bills, Rion Snow, and Dan Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
the Joint Conference of the 47th Annual Meeting of
the ACL. Association for Computational Linguistics,
pages 1003–1011.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. In Proceedings of the 54rd Annual Meet-
ing of the Association for Computational Linguistic-
s.

1235

Makoto Miwa and Yutaka Sasaki. 2014. Modeling
joint entity and relation extraction with table repre-
sentation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing. pages 1858–1869.

David Nadeau and Satoshi Sekine. 2007. A sur-
vey of named entity recognition and classification.
Lingvisticae Investigationes 30(1):3–26.

Alexandre Passos, Vineet Kumar, and Andrew McCal-
lum. 2014. Lexicon infused phrase embeddings for
named entity resolution. In International Confer-
ence on Computational Linguistics. pages 78–86.

Xiang Ren, Zeqiu Wu, Wenqi He, Meng Qu, Clare R
Voss, Heng Ji, Tarek F Abdelzaher, and Jiawei Han.
2017. Cotype: Joint extraction of typed entities and
relations with knowledge bases. In Proceedings of
the 26th WWW international conference.

Bryan et al. Rink. 2010. Utd: Classifying semantic re-
lations by combining lexical and semantic resources.
In Proceedings of the 5th International Workshop on
Semantic Evaluation. pages 256–259.

Sameer Singh, Sebastian Riedel, Brian Martin, Jiaping
Zheng, and Andrew McCallum. 2013. Joint infer-
ence of entities, relations, and coreference. In Pro-
ceedings of the 2013 workshop on Automated knowl-
edge base construction. ACM, pages 1–6.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural network-
s. In Advances in neural information processing sys-
tems. pages 3104–3112.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. Line: Large-scale in-
formation network embedding. In Proceedings of
the 24th International Conference on World Wide
Web. ACM, pages 1067–1077.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop. In COURSERA: Neural networks for
machine learning.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with lstms. In Proceed-
ings of the NAACL international conference. pages
232–237.

Kun et al. Xu. 2015a. Semantic relation classification
via convolutional neural networks with simple neg-
ative sampling. In Proceedings of the EMNLP.

Yan et al. Xu. 2015b. Classifying relations via long
short term memory networks along shortest depen-
dency paths. In Proceedings of EMNLP internation-
al conference.

Bishan Yang and Claire Cardie. 2013. Joint inference
for fine-grained opinion extraction. In Proceedings
of the 51rd Annual Meeting of the Association for
Computational Linguistics. pages 1640–1649.

Xiaofeng Yu and Wai Lam. 2010. Jointly identifying
entities and extracting relations in encyclopedia tex-
t via a graphical model approach. In Proceedings
of the 21th COLING international conference. pages
1399–1407.

Daojian et al. Zeng. 2014. Relation classification via
convolutional deep neural network. In Proceedings
of the 25th COLING international conference. pages
2335–2344.

Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen
Zhou. 2017. Neural models for sequence chunk-
ing. In Proceedings of the AAAI international con-
ference.

Suncong Zheng, Jiaming Xu, Peng Zhou, Hongyun
Bao, Zhenyu Qi, and Bo Xu. 2016. A neural net-
work framework for relation extraction: Learning
entity semantic and relation pattern. Knowledge-
Based Systems 114:12–23.

1236

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1237–1247
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1114

A Local Detection Approach for
Named Entity Recognition and Mention Detection

Mingbin Xu, Hui Jiang, Sedtawut Watcharawittayakul
Department of Electrical Engineering and Computer Science

Lassonde School of Engineering, York University
4700 Keele Street, Toronto, Ontario, Canada

{xmb, hj, watchara}@eecs.yorku.ca

Abstract

In this paper, we study a novel approach
for named entity recognition (NER) and
mention detection (MD) in natural lan-
guage processing. Instead of treating
NER as a sequence labeling problem, we
propose a new local detection approach,
which relies on the recent fixed-size ordi-
nally forgetting encoding (FOFE) method
to fully encode each sentence fragment
and its left/right contexts into a fixed-
size representation. Subsequently, a sim-
ple feedforward neural network (FFNN)
is learned to either reject or predict en-
tity label for each individual text frag-
ment. The proposed method has been eval-
uated in several popular NER and MD
tasks, including CoNLL 2003 NER task
and TAC-KBP2015 and TAC-KBP2016
Tri-lingual Entity Discovery and Linking
(EDL) tasks. Our method has yielded
pretty strong performance in all of these
examined tasks. This local detection ap-
proach has shown many advantages over
the traditional sequence labeling methods.

1 Introduction

Natural language processing (NLP) plays an im-
portant role in artificial intelligence, which has
been extensively studied for many decades. Con-
ventional NLP techniques include the rule-based
symbolic approaches widely used about two
decades ago, and the more recent statistical ap-
proaches relying on feature engineering and sta-
tistical models. In the recent years, deep learning
approach has achieved huge successes in many ap-
plications, ranging from speech recognition to im-
age classification. It is drawing increasing atten-
tion in the NLP community.

In this paper, we are interested in a fundamen-
tal problem in NLP, namely named entity recogni-
tion (NER) and mention detection (MD). NER and
MD are very challenging tasks in NLP, laying the
foundation of almost every NLP application. NER
and MD are tasks of identifying entities (named
and/or nominal) from raw text, and classifying the
detected entities into one of the pre-defined cate-
gories such as person (PER), organization (ORG),
location (LOC), etc. Some tasks focus on named
entities only, while the others also detect nominal
mentions. Moreover, nested mentions may need to
be extracted too. For example,

[Sue]PER and her [brother]PER N studied in
[University of [Toronto]LOC]ORG

.

where Toronto is a LOC entity, embedded in an-
other longer ORG entity University of Toronto.

Similar to many other NLP problems, NER and
MD is formulated as a sequence labeling prob-
lem, where a tag is sequentially assigned to each
word in the input sentence. It has been extensively
studied in the NLP community (Borthwick et al.,
1998). The core problem is to model the condi-
tional probability of an output sequence given an
arbitrary input sequence. Many hand-crafted fea-
tures are combined with statistical models, such as
conditional random fields (CRFs) (Nguyen et al.,
2010), to compute conditional probabilities. More
recently, some popular neural networks, includ-
ing convolutional neural networks (CNNs) and re-
current neural networks (RNNs), are proposed to
solve sequence labelling problems. In the infer-
ence stage, the learned models compute the condi-
tional probabilities and the output sequence is gen-
erated by the Viterbi decoding algorithm (Viterbi,
1967).

In this paper, we propose a novel local detec-
tion approach for solving NER and MD problems.
The idea can be easily extended to many other se-

1237

https://doi.org/10.18653/v1/P17-1114

quence labeling problems, such as chunking, part-
of-speech tagging (POS). Instead of globally mod-
eling the whole sequence in training and jointly
decode the entire output sequence in test, our
method examines all word segments (up to a cer-
tain length) in a sentence. A word segment will
be examined individually based on the underlying
segment itself and its left and right contexts in the
sentence so as to determine whether this word seg-
ment is a valid named entity and the corresponding
label if it is. This approach conforms to the way
human resolves an NER problem. Given any word
fragment and its contexts in a sentence or para-
graph, people accurately determine whether this
word segment is a named entity or not. People
rarely conduct a global decoding over the entire
sentence to make such a decision. The key to mak-
ing an accurate local decision for each individual
fragment is to have full access to the fragment it-
self as well as its complete contextual information.
The main pitfall to implement this idea is that we
can not easily encode the segment and its contexts
in models since they are of varying lengths in nat-
ural languages. Many feature engineering tech-
niques have been proposed but all of these meth-
ods will inevitably lead to information loss. In this
work, we propose to use a recent fixed-size encod-
ing method, namely fixed-size ordinally forgetting
encoding (FOFE) (Zhang et al., 2015a,b), to solve
this problem. The FOFE method is a simple recur-
sive encoding method. FOFE theoretically guar-
antees (almost) unique and lossless encoding of
any variable-length sequence. The left and the
right contexts for each word segment are encoded
by FOFE method, and then a simple neural net-
work can be trained to make a precise recogni-
tion for each individual word segment based on the
fixed-size presentation of the contextual informa-
tion. This FOFE-based local detection approach
is more appealing to NER and MD. Firstly, fea-
ture engineering is almost eliminated. Secondly,
under this local detection framework, nested men-
tion is handled with little modification. Next, it
makes better use of partially-labeled data avail-
able from many application scenarios. Sequence
labeling model requires all entities in a sentence
to be labeled. If only some (not all) entities are la-
beled, it is not effective to learn a sequence label-
ing model. However, every single labeled entity,
along with its contexts, may be used to learn the
proposed model. At last, due to the simplicity of

FOFE, simple neural networks, such as multilayer
perceptrons, are sufficient for recognition. These
models are much faster to train and easier to tune.
In the test stage, all possible word segments from a
sentence may be packed into a mini-batch, jointly
recognized in parallel on GPUs. This leads to a
very fast decoding process as well.

In this paper, we have applied this FOFE-based
local detection approach to several popular NER
and MD tasks, including the CoNLL 2003 NER
task and TAC-KBP2015 and TAC-KBP2016 Tri-
lingual Entity Discovery and Linking (EDL) tasks.
Our proposed method has yielded strong perfor-
mance in all of these examined tasks.

2 Related Work

It has been a long history of research involving
neural networks (NN). In this section, we briefly
review some recent NN-related research work in
NLP, which may be relevant to our work.

The success of word embedding (Mikolov et al.,
2013; Liu et al., 2015) encourages researchers to
focus on machine-learned representation instead
of heavy feature engineering in NLP. Using word
embedding as the typical feature representation
for words, NNs become competitive to traditional
approaches in NER. Many NLP tasks, such as
NER, chunking and part-of-speech (POS) tagging
can be formulated as sequence labeling tasks. In
(Collobert et al., 2011), deep convolutional neu-
ral networks (CNN) and conditional random fields
(CRF) are used to infer NER labels at a sentence
level, where they still use many hand-crafted fea-
tures to improve performance, such as capitaliza-
tion features explicitly defined based on first-letter
capital, non-initial capital and so on.

Recently, recurrent neural networks (RNNs)
have demonstrated the ability in modeling se-
quences (Graves, 2012). Huang et al. (2015)
built on the previous CNN-CRF approach by re-
placing CNNs with bidirectional Long Short-Term
Memory (B-LSTM). Though they have reported
improved performance, they employ heavy fea-
ture engineering in that work, most of which
is language-specific. There is a similar attempt
in (Rondeau and Su, 2016) with full-rank CRF.
CNNs are used to extract character-level features
automatically in (dos Santos et al., 2015).

Gazetteer is a list of names grouped by the pre-
defined categories. Gazetteer is shown to be one
of the most effective external knowledge sources

1238

to improve NER performance (Sang and Meulder,
2003). Thus, gazetteer is widely used in many
NER systems. In (Chiu and Nichols, 2016), state-
of-the-art performance on a popular NER task,
i.e., CoNLL2003, is achieved by incorporating a
large gazetteer. Different from previous ways to
use a set of bits to indicate whether a word is in
gazetteer or not, they have encoded a match in
BIOES (Begin, Inside, Outside, End, Single) an-
notation, which captures positional information.

Interestingly enough, none of these recent suc-
cesses in NER was achieved by a vanilla RNN.
Rather, these successes are often established by
sophisticated models combining CNNs, LSTMs
and CRFs in certain ways. In this paper, based on
recent work in (Zhang et al., 2015a,b) and (Zhang
et al., 2016), we propose a novel but simple solu-
tion to NER by applying DNN on top of FOFE-
based features. This simpler approach can achieve
performance very close to state-of-the-art on vari-
ous NER and MD tasks, without using any exter-
nal knowledge or feature engineering.

3 Preliminary

In this section, we will briefly review some back-
ground techniques, which are important to our
proposed NER and mention detection approach.

3.1 Deep Feedforward Neural Networks

It is well known that neural network is a universal
approximator under certain conditions (Hornik,
1991). A feedforward neural network (FFNN) is a
weighted graph with a layered architecture. Each
layer is composed of several nodes. Successive
layers are fully connected. Each node applies a
function on the weighted sum of the lower layer.
An NN can learn by adjusting its weights in a
process called back-propagation. The learned NN
may be used to generalize and extrapolate to new
inputs that have not been seen during training.

3.2 Fixed-size Ordinally Forgetting Encoding

FFNN is a powerful computation model. How-
ever, it requires fixed-size inputs and lacks the
ability of capturing long-term dependency. Be-
cause most NLP problems involves variable-
length sequences of words, RNNs/LSTMs are
more popular than FFNNs in dealing with these
problems. The Fixed-size Ordinally Forgetting
Encoding (FOFE), originally proposed in (Zhang
et al., 2015a,b), nicely overcomes the limitations

of FFNNs because it can uniquely and losslessly
encode a variable-length sequence of words into a
fixed-size representation.

Give a vocabulary V , each word can be repre-
sented by a one-hot vector. FOFE mimics bag-of-
words (BOW) but incorporates a forgetting factor
to capture positional information. It encodes any
sequence of variable length composed by words in
V . Let S = w1, w2, w3, ..., wT denote a sequence
of T words from V , and et be the one-hot vector
of the t-th word in S, where 1 ≤ t ≤ T . The
FOFE of each partial sequence zt from the first
word to the t-th word is recursively defined as:

zt =

{
0, if t = 0

α · zt−1 + et, otherwise
(1)

where the constant α is called forgetting factor,
and it is picked between 0 and 1 exclusively. Ob-
viously, the size of zt is |V |, and it is irrelevant to
the length of original sequence, T .

Here’s an example. Assume that we have three
words in our vocabulary, e.g. A, B, C, whose
one-hot representations are [1, 0, 0], [0, 1, 0] and
[0, 0, 1] respectively. When calculating from left
to right, the FOFE for the sequence “ABC” is
[α2, α, 1] and that of “ABCBC” is [α4, α+α3, 1+
α2].

The word sequences can be unequivocally re-
covered from their FOFE representations (Zhang
et al., 2015a,b). The uniqueness of FOFE repre-
sentation is theoretically guaranteed by the follow-
ing two theorems:

Theorem 1. If the forgetting factor α satisfies
0 < α ≤ 0.5, FOFE is unique for any countable
vocabulary V and any finite value T .

Theorem 2. For 0.5 < α < 1, given any finite
value T and any countable vocabulary V , FOFE
is almost unique everywhere, except only a finite
set of countable choices of α.

Though in theory uniqueness is not guaranteed
when α is chosen from 0.5 to 1, in practice the
chance of hitting such scenarios is extremely slim,
almost impossible due to quantization errors in the
system. Furthermore, in natural languages, nor-
mally a word does not appear repeatedly within
a near context. Simply put, FOFE is capable
of uniquely encoding any sequence of arbitrary
length, serving as a fixed-size but theoretically
lossless representation for any sequence.

1239

Figure 1: Illustration of the local detection approach for NER using FOFE codes as input and an FFNN
as model. The window currently examines the fragment of Toronto Maple Leafs. The window will scan
and scrutinize all fragments up to K words.

3.3 Character-level Models in NLP
Kim et al. (2016) model morphology in the char-
acter level since this may provide some additional
advantages in dealing with unknown or out-of-
vocabulary (OOVs) words in a language. In the
literature, convolutional neural networks (CNNs)
have been widely used as character-level models
in NLP (Kim et al., 2016). A trainable character
embedding is initialized based on a set of possible
characters. When a word fragment comes, char-
acter vectors are retrieved according to its spelling
to construct a matrix. This matrix can be viewed
as a single-channel image. CNN is applied to gen-
erate a more abstract representation of the word
fragment.

The above FOFE method can be easily ex-
tended to model character-level feature in NLP.
Any word, phrase or fragment can be viewed as
a sequence of characters. Based on a pre-defined
set of all possible characters, we apply the same
FOFE method to encode the sequence of charac-
ters. This always leads to a fixed-size representa-
tion, irrelevant to the number of characters in ques-
tion. For example, a word fragment of “Walmart”
may be viewed as a sequence of seven characters:
‘W’, ‘a’, ‘l’, ‘m’, ‘a’, ‘r’, ‘t’. The FOFE codes
of character sequences are always fixed-sized and
they can be directly fed to an FFNN for morphol-
ogy modeling.

4 FOFE-based Local Detection for NER

As described above, our FOFE-based local detec-
tion approach for NER, called FOFE-NER here-
after, is motivated by the way how human actu-
ally infers whether a word segment in text is an
entity or mention, where the entity types of the

other entities in the same sentence is not a must.
Particularly, the dependency between adjacent en-
tities is fairly weak in NER. Whether a fragment
is an entity or not, and what class it may belong
to, largely depend on the internal structure of the
fragment itself as well as the left and right con-
texts in which it appears. To a large extent, the
meaning and spelling of the underlying fragment
are informative to distinguish named entities from
the rest of the text. Contexts play a very important
role in NER or MD when it involves multi-sense
words/phrases or out-of-vocabulary (OOV) words.

As shown in Figure 1, our proposed FOFE-
NER method will examine all possible fragments
in text (up to a certain length) one by one. For each
fragment, it uses the FOFE method to fully en-
code the underlying fragment itself, its left context
and right context into some fixed-size representa-
tions, which are in turn fed to an FFNN to pre-
dict whether the current fragment is NOT a valid
entity mention (NONE), or its correct entity type
(PER, LOC, ORG and so on) if it is a valid men-
tion. This method is appealing because the FOFE
codes serves as a theoretically lossless representa-
tion of the hypothesis and its full contexts. FFNN
is used as a universal approximator to map from
text to the entity labels.

In this work, we use FOFE to explore both
word-level and character-level features for each
fragment and its contexts.

4.1 Word-level Features

FOFE-NER generates several word-level features
for each fragment hypothesis and its left and right
contexts as follows:

• Bag-of-word (BoW) of the fragment, e.g.

1240

bag-of-word vector of ‘Toronto’, ‘Maple’ and
‘Leafs’ in Figure 1.

• FOFE code for left context including the
fragment, e.g. FOFE code of the word se-
quence of “... puck from space for the Toronto
Maple Leafs” in Figure 1.

• FOFE code for left context excluding the
fragment, e.g. the FOFE code of the word
sequence of “... puck from space for the” in
Figure 1..

• FOFE code for right context including the
fragment, e.g. the FOFE code of the word
sequence of “... against opener home ’ Leafs
Maple Toronto” in Figure 1.

• FOFE code for right context excluding the
fragment, e.g. the FOFE code of the word se-
quence of “... against opener home ” in Fig-
ure 1.

Moreover, all of the above word features are
computed for both case-sensitive words in raw
text as well as case-insensitive words in normal-
ized lower-case text. These FOFE codes are pro-
jected to lower-dimension dense vectors based on
two projection matrices, Ws and Wi, for case-
sensitive and case-insensitive FOFE codes respec-
tively. These two projection matrices are initial-
ized by word embeddings trained by word2vec,
and fine-tuned during the learning of the neural
networks.

Due to the recursive computation of FOFE
codes in eq.(1), all of the above FOFE codes can
be jointly computed for one sentence or document
in a very efficient manner.

4.2 Character-level Features

On top of the above word-level features, we also
augment character-level features for the underly-
ing segment hypothesis to further model its mor-
phological structure. For the example in Figure 1,
the current fragment, Toronto Maple Leafs, is con-
sidered as a sequence of case-sensitive characters,
i.e. “{‘T’, ‘o’, ..., ‘f’ , ‘s’ }”, we then add the fol-
lowing character-level features for this fragment:
• Left-to-right FOFE code of the character se-

quence of the underlying fragment. That is
the FOFE code of the sequence, “‘T’, ‘o’, ...,
‘f’ , ‘s’ ”.

• Right-to-left FOFE code of the character se-
quence of the underlying fragment. That is

the FOFE code of the sequence, “‘s’ , ‘f’ , ...,
‘o’, ‘T’ ”.

These case-sensitive character FOFE codes are
also projected by another character embedding
matrix, which is randomly initialized and fine-
tuned during model training.

Alternatively, we may use the character CNNs,
as described in Section 3.3, to generate character-
level features for each fragment hypothesis as
well.

5 Training and Decoding Algorithm

Obviously, the above FOFE-NER model will take
each sentence of words, S = [w1, w2, w3, ..., wm],
as input, and examine all continuous sub-
sequences [wi, wi+1, wi+2, ..., wj] up to n words
in S for possible entity types. All sub-sequences
longer than n words are considered as non-entities
in this work.

When we train the model, based on the entity
labels of all sentences in the training set, we will
generate many sentence fragments up to n words.
These fragments fall into three categories:
• Exact-match with an entity label, e.g., the

fragment “Toronto Maple Leafs” in the pre-
vious example.

• Partial-overlap with an entity label, e.g., “for
the Toronto”.

• Disjoint with all entity label, e.g. “from space
for”.

For all exact-matched fragments, we generate
the corresponding outputs based on the types of
the matched entities in the training set. For both
partial-overlap and disjoint fragments, we intro-
duce a new output label, NONE, to indicate that
these fragments are not a valid entity. Therefore,
the output nodes in the neural networks contains
all entity types plus a rejection option denoted as
NONE.

During training, we implement a producer-
consumer software design such that a thread
fetches training examples, computes all FOFE
codes and packs them as a mini-batch while the
other thread feeds the mini-batches to neural net-
works and adjusts the model parameters and all
projection matrices. Since “partial-overlap” and
“disjoint” significantly outnumber “exact-match”,
they are down-sampled so as to balance the data
set.

During inference, all fragments not longer than

1241

n words are all fed to FOFE-NER to compute
their scores over all entity types. In practice, these
fragments can be packed as one mini-batch so that
we can compute them in parallel on GPUs. As the
NER result, the FOFE-NER model will return a
subset of fragments only if: i) they are recognized
as a valid entity type (not NONE); AND ii) their
NN scores exceed a global pruning threshold.

Occasionally, some partially-overlapped or
nested fragments may occur in the above pruned
prediction results. We can use one of the following
simple post-processing methods to remove over-
lappings from the final results:

1. highest-first: We check every word in a sen-
tence. If it is contained by more than one
fragment in the pruned results, we only keep
the one with the maximum NN score and dis-
card the rest.

2. longest-first: We check every word in a sen-
tence. If it is contained by more than one
fragment in the pruned results, we only keep
the longest fragment and discard the rest.

Either of these strategies leads to a collection of
non-nested, non-overlapping, non-NONE entity
labels.

In some tasks, it may require to label all nested
entities. This has imposed a big challenge to the
sequence labeling methods. However, the above
post-processing can be slightly modified to gen-
erate nested entities’ labels. In this case, we first
run either highest-first or longest-first to generate
the first round result. For every entity survived in
this round, we will recursively run either highest-
first or longest-first on all entities in the original
set, which are completely contained by it. This
will generate more prediction results. This pro-
cess may continue to allow any levels of nesting.
For example, for a sentence of “w1 w2 w3 w4 w5”,
if the model first generates the prediction results
after the global pruning, as [“w2w3”, PER, 0.7],
[“w3w4”, LOC, 0.8], [“w1w2w3w4”, ORG, 0.9],
if we choose to run highest-first, it will gener-
ate the first entity label as [“w1w2w3w4”, ORG,
0.9]. Secondly, we will run highest-first on the
two fragments that are completely contained by
the first one, i.e., [“w2w3”, PER, 0.7], [“w3w4”,
LOC, 0.8], then we will generate the second nested
entity label as [“w3w4”, LOC, 0.8]. Fortunately,
in any real NER and MD tasks, it is pretty rare
to have overlapped predictions in the NN outputs.

Therefore, the extra expense to run this recursive
post-processing method is minimal.

6 Second-Pass Augmentation

As we know, CRF brings marginal performance
gain to all taggers (but not limited to NER) be-
cause of the dependancies (though fairly weak) be-
tween entity types. We may easily add this level of
information to our model by introducing another
pass of FOFE-NER. We call it 2nd-pass FOFE-
NER.

In 2nd-pass FOFE-NER, another set of model
is trained on outputs from the first-pass FOFE-
NER, including all predicted entities. For exam-
ple, given a sentence

S = [w1, w2, ...wi, ...wj , ...wn]

and an underlying word segment [wi, ..., wj] in the
second pass, every predicted entity outside this
segment is substituted by its entity type predicted
from the first pass. For example, in the first pass,
a sentence like “Google has also recruited Fei-Fei
Li, director of the AI lab at Stanford University.”
is predicted as: “<ORG> has also recruited Fei-
Fei Li, director of the AI lab at<ORG>.” In 2nd-
pass FOFE-NER, when examining the segment
“Fei-Fei Li”, the predicted entity types <ORG>
are used to replace the actual named entities. The
2nd-pass FOFE-NER model is trained on the out-
puts of the first pass, where all detected entities are
replaced by their predicted types as above.

During inference, the results returned by the
1st-pass model are substituted in the same way.
The scores for each hypothesis from 1st-pass
model and 2nd-pass model are linear interpolated
and then decoded by either highest-first or longest-
first to generate the final results of 2nd-pass
FOFE-NER.

Obviously, 2nd-pass FOFE-NER may capture
the semantic roles of other entities while filtering
out unwanted constructs and sparse combonations.
On the other hand, it enables longer context expan-
sion, since FOFE memorizes contextual informa-
tion in an unselective decaying fashion.

7 Experiments

In this section, we evaluate the effectiveness of
our proposed methods on several popular NER
and MD tasks, including CoNLL 2003 NER
task and TAC-KBP2015 and TAC-KBP2016 Tri-
lingual Entity Discovery and Linking (EDL) tasks.

1242

We have made our codes available at https://
github.com/xmb-cipher/fofe-ner for
readers to reproduce the results in this paper.

7.1 CoNLL 2003 NER task

The CoNLL-2003 dataset (Sang and Meulder,
2003) consists of newswire from the Reuters
RCV1 corpus tagged with four types of non-
nested named entities: location (LOC), organi-
zation (ORG), person (PER), and miscellaneous
(MISC).

The top 100,000 words, are kept as vocabulary,
including punctuations. For the case-sensitive em-
bedding, an OOV is mapped to <unk> if it con-
tains no upper-case letter and <UNK> other-
wise. We perform grid search on several hyper-
parameters using a held-out dev set. Here we
summarize the set of hyper-parameters used in
our experiments: i) Learning rate: initially set
to 0.128 and is multiplied by a decay factor each
epoch so that it reaches 1/16 of the initial value
at the end of the training; ii) Network struc-
ture: 3 fully-connected layers of 512 nodes with
ReLU activation, randomly initialized based on
a uniform distribution between −

√
6

Ni+No
and

√
6

Ni+No
(Glorot et al., 2011); iii) Character em-

beddings: 64 dimensions, randomly initialized.
iv) mini-batch: 512; v) Dropout rate: initially set
to 0.4, slowly decreased during training until it
reaches 0.1 at the end. vi) Number of epochs: 128;
vii)Embedding matrices case-sensitive and case-
insensitive word embeddings of 256 dimensions,
trained from Reuters RCV1; viii) We stick to the
official data train-dev-test partition. ix) Forgetting
factor α = 0.5. 1

We have investigated the performance of our
method on the CoNLL-2003 dataset by using dif-
ferent combinations of the FOFE features (both
word-level and character-level). The detailed
comparison results are shown in Table 1. In Table
2, we have compared our best performance with
some top-performing neural network systems on
this task. As we can see from Table 2, our system
(highest-first decoding) yields very strong perfor-
mance (90.85 in F1 score) in this task, outperform-
ing most of neural network models reported on this

1The choice of the forgetting factor α is empirical. We’ve
evaluatedα = 0.5, 0.6, 0.7, 0.8 on a development set in some
early experiments. It turns out that α = 0.5 is the best. As a
result, α = 0.5 is used for all NER/MD tasks throughout this
paper.

dataset. More importantly, we have not used any
hand-crafted features in our systems, and all fea-
tures (either word or char level) are automatically
derived from the data. Highest-first and longest-
first perform similarly. In (Chiu and Nichols,
2016)2, a slightly better performance (91.62 in F1

score) is reported but a customized gazetteer is
used in theirs.

7.2 KBP2015 EDL Task

Given a document collection in three languages
(English, Chinese and Spanish), the KBP2015 tri-
lingual EDL task (Ji et al., 2015) requires to auto-
matically identify entities (including nested enti-
ties) from a source collection of textual documents
in multiple languages as in Table 3, and classify
them into one of the following pre-defined five
types: Person (PER), Geo-political Entity (GPE),
Organization (ORG), Location (LOC) and Facility
(FAC). The corpus consists of news articles and
discussion forum posts published in recent years,
related but non-parallel across languages.

Three models are trained and evaluated inde-
pendently. Unless explicitly listed, hyperparam-
eters follow those used for CoNLL2003 as de-
scribed in section 7.1 and 2nd-pass model is not
used. Three sets of word embeddings of 128
dimensions are derived from English Gigaword
(Parker et al., 2011), Chinese Gigaword (Graff and
Chen, 2005) and Spanish Gigaword (Mendonca
et al., 2009) respectively. Some language-specific
modifications are made:
• Chinese: Because Chinese segmentation is

not reliable, we label Chinese at character
level. The analogous roles of case-sensitive
word-embedding and case-sensitive word-
embedding are played by character embed-
ding and word-embedding in which the char-
acter appears. Neither Char FOFE features
nor Char CNN features are used for Chinese.

• Spanish: Character set of Spanish is a su-
per set of that of English. When build-
ing character-level features, we use the mod
function to hash each character’s UTF8 en-
coding into a number between 0 (inclusive)
and 128 (exclusive).

As shown in Table 4, our FOFE-based local de-
tection method has obtained fairly strong perfor-

2In their work, they have used a combination of training-
set and dev-set to train the model, differing from all other
systems (including ours) in Table 2.

1243

FEATURE P R F1

word-level

case-insensitive
context FOFE incl. word fragment 86.64 77.04 81.56
context FOFE excl. word fragment 53.98 42.17 47.35
BoW of word fragment 82.92 71.85 76.99

case-sensitive
context FOFE incl. word fragment 88.88 79.83 84.12
context FOFE excl. word fragment 50.91 42.46 46.30
BoW of word fragment 85.41 74.95 79.84

char-level
Char FOFE of word fragment 67.67 52.78 59.31
Char CNN of word fragment 78.93 69.49 73.91

all case-insensitive features 90.11 82.75 86.28
all case-sensitive features 90.26 86.63 88.41
all word-level features 92.03 86.08 88.96
all word-level & Char FOFE features 91.68 88.54 90.08
all word-level & Char CNN features 91.80 88.58 90.16
all word-level & all char-level features 93.29 88.27 90.71
all features + dev set + 5-fold cross-validation 92.58 89.31 90.92
all features + 2nd-pass 92.13 89.61 90.85
all features + 2nd-pass + dev set + 5-fold cross-validation 92.62 89.77 91.17

Table 1: Effect of various FOFE feature combinations on the CoNLL2003 test data.

algorithm word char gaz cap pos F1
CNN-BLSTM-CRF (Collobert et al., 2011) 3 7 3 3 7 89.59
BLSTM-CRF (Huang et al., 2015) 3 3 3 3 3 90.10
BLSTM-CRF (Rondeau and Su, 2016) 3 7 3 3 3 89.28
BLSTM-CRF, char-CNN (Chiu and Nichols, 2016) 3 3 3 7 7 91.62
Stack-LSTM-CRF, char-LSTM (Lample et al., 2016) 3 3 7 7 7 90.94
this work 3 3 7 7 7 90.85

Table 2: Performance (F1 score) comparison among various neural models reported on the CoNLL
dataset, and the different features used in these methods.

English Chinese Spanish ALL
Train 168 147 129 444
Eval 167 167 166 500

Table 3: Number of Documents in KBP2015

2015 track best ours
P R F1 P R F1

Trilingual 75.9 69.3 72.4 78.3 69.9 73.9
English 79.2 66.7 72.4 77.1 67.8 72.2
Chinese 79.2 74.8 76.9 79.3 71.7 75.3
Spanish 78.4 72.2 75.2 79.9 71.8 75.6

Table 4: Entity Discovery Performance of our
method on the KBP2015 EDL evaluation data,
with comparison to the best systems in KBP2015
official evaluation.

mance in the KBP2015 dataset. The overall trilin-
gual entity discovery performance is slightly bet-
ter than the best systems participated in the official
KBP2015 evaluation, with 73.9 vs. 72.4 as mea-
sured by F1 scores. Outer and inner decodings are
longest-first and highest-first respectively.

7.3 KBP2016 EDL task
In KBP2016, the trilingual EDL task is extended
to detect nominal mentions of all 5 entity types for
all three languages. In our experiments, for sim-
plicity, we treat nominal mention types as some
extra entity types and detect them along with
named entities together with a single model.

7.3.1 Data Description
No official training set is provided in KBP2016.
We make use of three sets of training data:
• Training and evaluation data in KBP2015:

as described in 7.2

1244

LANG
NAME NOMINAL OVERALL 2016 BEST

P R F1 P R F1 P R F1 P R F1
ENG 0.898 0.789 0.840 0.554 0.336 0.418 0.836 0.680 0.750 0.846 0.710 0.772
CMN 0.848 0.702 0.768 0.414 0.258 0.318 0.789 0.625 0.698 0.789 0.737 0.762
SPA 0.835 0.778 0.806 0.000 0.000 0.000 0.835 0.602 0.700 0.839 0.656 0.736
ALL 0.893 0.759 0.821 0.541 0.315 0.398 0.819 0.639 0.718 0.802 0.704 0.756

Table 5: Official entity discovery performance of our methods on KBP2016 trilingual EDL track. Neither
KBP2015 nor in-house data labels nominal mentions. Nominal mentions in Spanish are totally ignored
since no training data is found for them.

training data P R F1

KBP2015 0.836 0.598 0.697
KBP2015 + WIKI 0.837 0.628 0.718
KBP2015 + in-house 0.836 0.680 0.750

Table 6: Our entity discovery official performance
(English only) in KBP2016 is shown as a compar-
ison of three models trained by different combina-
tions of training data sets.

• Machine-labeled Wikipedia (WIKI): When
terms or names are first mentioned in a
Wikipedia article they are often linked to the
corresponding Wikipedia page by hyperlinks,
which clearly highlights the possible named
entities with well-defined boundary in the
text. We have developed a program to au-
tomatically map these hyperlinks into KBP
annotations by exploring the infobox (if ex-
isting) of the destination page and/or examin-
ing the corresponding Freebase types. In this
way, we have created a fairly large amount of
weakly-supervised trilingual training data for
the KBP2016 EDL task. Meanwhile, a gaze-
teer is created and used in KBP2016.

• In-house dataset: A set of 10,000 English
and Chinese documents is manually labeled
using some annotation rules similar to the
KBP 2016 guidelines.

We split the available data into training, valida-
tion and evaluation sets in a ratio of 90:5:5. The
models are trained for 256 epochs if the in-house
data is not used, and 64 epochs otherwise.

7.3.2 Effect of various training data
In our first set of experiments, we investigate the
effect of using different training data sets on the fi-
nal entity discovery performance. Different train-
ing runs are conducted on different combinations
of the aforementioned data sources. In Table 6, we
have summarized the official English entity dis-

covery results from several systems we submit-
ted to KBP2016 EDL evaluation round I and II.
The first system, using only the KBP2015 data to
train the model, has achieved 0.697 in F1 score
in the official KBP2016 English evaluation data.
After adding the weakly labeled data, WIKI, we
can see the entity discovery performance is im-
proved to 0.718 in F1 score. Moreover, we can
see that it yields even better performance by us-
ing the KBP2015 data and the in-house data sets
to train our models, giving 0.750 in F1 score.

7.3.3 The official trilingual EDL
performance in KBP2016

The official best results of our system are sum-
marized in Table 5. We have broken down the
system performance according to different lan-
guages and categories of entities (named or nom-
inal). Our system, achieving 0.718 in F1 score
in the KBP2016 trilingual EDL track, ranks sec-
ond among all participants. Note that our result
is produced by a single system while the top sys-
tem is a combination of two different models, each
of which is based on 5-fold cross-validation (Liu
et al., 2016).

8 Conclusion

In this paper, we propose a novel solution to NER
and MD by applying FFNN on top of FOFE fea-
tures. This simple local-detection based approach
has achieved almost state-of-the-art performance
on various NER and MD tasks, without using any
external knowledge or feature engineering.

Acknowledgement

This work is supported mainly by a research do-
nation from iFLYTEK Co., Ltd., Hefei, China,
and partially by a discovery grant from Natu-
ral Sciences and Engineering Research Council
(NSERC) of Canada.

1245

References
Andrew Borthwick, John Sterling, Eugene Agichtein,

and Ralph Grishman. 1998. Exploiting di-
verse knowledge sources via maximum entropy in
named entity recognition. In Proc. of the Sixth
Workshop on Very Large Corpora. volume 182.
http://ucrel.lancs.ac.uk/acl/W/W98/W98-1118.pdf.

Jason P. C. Chiu and Eric Nichols. 2016. Named
entity recognition with bidirectional LSTM-
CNNs. Transactions of the Association
for Computational Linguistics 4:357–370.
https://www.aclweb.org/anthology/Q16-1026.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. 2011. Natural language process-
ing (almost) from scratch. Journal of Ma-
chine Learning Research 12(Aug):2493–2537.
http://www.jmlr.org/papers/volume12/collobert11a
/collobert11a.pdf.

Cıcero dos Santos, Victor Guimaraes, RJ Niterói,
and Rio de Janeiro. 2015. Boosting named
entity recognition with neural character em-
beddings. In Proceedings of NEWS 2015
The Fifth Named Entities Workshop. Association
for Computational Linguistics (ACL), page 25.
https://doi.org/10.18653/v1/w15-3904.

X. Glorot, A. Bordes, and Y. Bengio. 2011. Deep
sparse rectifier neural networks. In International
Conference on Artificial Intelligence and Statis-
tics. JMLR W&CP:. volume 15, pages 315–323.
http://www.jmlr.org/proceedings/papers/v15/glorot11a
/glorot11a.pdf.

David Graff and Ke Chen. 2005. Chinese gigaword.
LDC Catalog No.: LDC2003T09, ISBN 1:58563–
58230.

Alex Graves. 2012. Neural networks. In Su-
pervised Sequence Labelling with Recurrent
Neural Networks, Springer, pages 15–35.
https://doi.org/10.1007/978-3-642-24797-2.

Kurt Hornik. 1991. Approximation capabilities of
multilayer feedforward networks. Neural Net-
works 4(2):251–257. https://doi.org/10.1016/0893-
6080(91)90009-t.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence
tagging. arXiv preprint arXiv:1508.01991
https://arxiv.org/abs/1508.01991.

Heng Ji, Joel Nothman, and Ben Hachey.
2015. Overview of tac-kbp2015 tri-lingual
entity discovery and linking. In Proceed-
ings of Text Analysis Conference (TAC2015).
http://nlp.cs.rpi.edu/paper/kbp2015.pdf.

Yoon Kim, Yacine Jernite, David Sontag, and
Alexander M Rush. 2016. Character-aware
neural language models. In AAAI. Citeseer.
https://arxiv.org/abs/1508.06615.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer.
2016. Neural architectures for named entity
recognition. arXiv preprint arXiv:1603.01360
https://arxiv.org/abs/1603.01360.

Dan Liu, Wei Lin, Shiliang Zhang, Si Wei, and
Hui Jiang. 2016. Neural networks models for
entity discovery and linking. arXiv preprint
arXiv:1611.03558 https://arxiv.org/abs/1611.03558.

Quan Liu, Hui Jiang, Si Wei, Zhen-Hua Ling,
and Yu Hu. 2015. Learning semantic word
embeddings based on ordinal knowledge con-
straints. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume
1: Long Papers). Association for Computational
Linguistics, Beijing, China, pages 1501–1511.
http://www.aclweb.org/anthology/P15-1145.

Angelo Mendonca, David Andrew Graff, and Denise
DiPersio. 2009. Spanish gigaword second edition.
Linguistic Data Consortium.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In Advances in neural infor-
mation processing systems. pages 3111–3119.
https://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-
compositionality.pdf.

Truc-Vien T Nguyen, Alessandro Moschitti, and
Giuseppe Riccardi. 2010. Kernel-based rerank-
ing for named-entity extraction. In Proceedings
of the 23rd International Conference on Com-
putational Linguistics: Posters. Association
for Computational Linguistics, pages 901–909.
http://www.anthology.aclweb.org/C/C10/C10-
2104.pdf.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English gigaword. Linguis-
tic Data Consortium .

Marc-Antoine Rondeau and Yi Su. 2016. LSTM-
based NeuroCRFs for named entity recogni-
tion. In Interspeech 2016. International Speech
Communication Association, pages 665–669.
https://doi.org/10.21437/interspeech.2016-288.

Erik F Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: Lan-
guage independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003,. page
142147. http://www.aclweb.org/anthology/W03-
0419.

A. Viterbi. 1967. Error bounds for convo-
lutional codes and an asymptotically opti-
mum decoding algorithm. IEEE Transac-
tions on Information Theory 13(2):260–269.
https://doi.org/10.1109/tit.1967.1054010.

1246

Shiliang Zhang, Hui Jiang, Shifu Xiong, Si Wei, and
Li-Rong Dai. 2016. Compact feedforward sequen-
tial memory networks for large vocabulary con-
tinuous speech recognition. In Interspeech 2016.
International Speech Communication Association.
https://doi.org/10.21437/interspeech.2016-121.

Shiliang Zhang, Hui Jiang, Mingbin Xu, Jun-
feng Hou, and Lirong Dai. 2015a. A fixed-
size encoding method for variable-length se-
quences with its application to neural network lan-
guage models. arXiv preprint arXiv:1505.01504.
https://arxiv.org/abs/1505.01504.

Shiliang Zhang, Hui Jiang, Mingbin Xu, Junfeng Hou,
and Lirong Dai. 2015b. The fixed-size ordinally-
forgetting encoding method for neural network lan-
guage models. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers). Association for Computational Linguistics
(ACL). https://doi.org/10.3115/v1/p15-2081.

1247

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1248–1259
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1115

Vancouver Welcomes You!
Minimalist Location Metonymy Resolution

Milan Gritta, Mohammad Taher Pilehvar, Nut Limsopatham and Nigel Collier

Language Technology Lab
Department of Theoretical and Applied Linguistics

University of Cambridge

{mg711,mp792,nl347,nhc30}@cam.ac.uk

Abstract

Named entities are frequently used in a
metonymic manner. They serve as ref-
erences to related entities such as peo-
ple and organisations. Accurate identifi-
cation and interpretation of metonymy can
be directly beneficial to various NLP ap-
plications, such as Named Entity Recog-
nition and Geographical Parsing. Until
now, metonymy resolution (MR) methods
mainly relied on parsers, taggers, dictio-
naries, external word lists and other hand-
crafted lexical resources. We show how
a minimalist neural approach combined
with a novel predicate window method
can achieve competitive results on the Se-
mEval 2007 task on Metonymy Resolu-
tion. Additionally, we contribute with a
new Wikipedia-based MR dataset called
RelocaR, which is tailored towards loca-
tions as well as improving previous defi-
ciencies in annotation guidelines.

1 Introduction

In everyday language, we come across many types
of figurative speech. These irregular expressions
are understood with little difficulty by humans but
require special attention in NLP. One of these is
metonymy, a type of common figurative language,
which stands for the substitution of the concept,
phrase or word being meant with a semantically
related one. For example, in “Moscow traded
gas and aluminium with Beijing.”, both location
names were substituted in place of governments.

Named Entity Recognition (NER) taggers have
no provision for handling metonymy, meaning
that this frequent linguistic phenomenon goes
largely undetected within current NLP. Classi-

fication decisions presently focus on the entity
using features such as orthography to infer its
word sense, largely ignoring the context, which
provides the strongest clue about whether a word
is used metonymically. A common classifica-
tion approach is choosing the N words to the
immediate left and right of the entity or the
whole paragraph as input to the model. However,
this “greedy” approach also processes input that
should in practice be ignored.

Metonymy is problematic for applications such
as Geographical Parsing (Monteiro et al., 2016;
Gritta et al., 2017, GP) and other information
extraction tasks in NLP. In order to accurately
identify and ground location entities, for example,
we must recognise that metonymic entities consti-
tute false positives and should not be treated the
same way as regular locations. For example, in
“London voted for the change.”, London refers
to the concept of “people” and should not be
classified as a location. There are many types of
metonymy (Shutova et al., 2013), however, in this
paper, we primarily address metonymic location
mentions with reference to GP and NER.

Contributions: (1) We investigate how to
improve classification tasks by introducing a
novel minimalist method called Predicate Window
(PreWin), which outperforms common feature se-
lection baselines. Our final minimalist classifier is
comparable to systems which use many external
features and tools. (2) We improve the annota-
tion guidelines in MR and contribute with a new
Wikipedia-based MR dataset called ReLocaR to
address the training data shortage. (3) We make
an annotated subset of the CoNLL 2003 (NER)
Shared Task available for extra MR training data,
alongside models, tools and other data.

1248

https://doi.org/10.18653/v1/P17-1115

2 Related Work

Some of the earliest work on MR that used an
approach similar to our method (machine learning
and dependency parsing) was by Nissim and
Markert (2003a). The decision list classifier
with backoff was evaluated using syntactic
head-modifier relations, grammatical roles and
a thesaurus to overcome data sparseness and
generalisation problems. However, the method
was still limited for classifying unseen data. Our
method uses the same paradigm but adds more
features, a different machine learning architecture
and a better usage of the parse tree structure.

Much of the later work on MR comes from
the SemEval 2007 Shared Task 8 (Markert and
Nissim, 2007) and later by Markert and Nissim
(2009). The feature set of Nissim and Markert
(2003a) was updated to include: grammatical
role of the potentially metonymic word (PMW)
(such as subj, obj), lemmatised head/modifier of
PMW, determiner of PMW, grammatical number
of PMW (singular, plural), number of words in
PMW and number of grammatical roles of PMW
in current context. The winning system by Farkas
et al. (2007) used these features and a maximum
entropy classifier to achieve 85.2% accuracy. This
was also the “leanest” system but still made use
of feature engineering and some external tools.
Brun et al. (2007) achieved 85.1% accuracy using
local syntactical and global distributional features
generated with an adapted, proprietary Xerox
deep parser. This was the only unsupervised
approach, based on using syntactic context simi-
larities calculated on large corpora such as the the
British National Corpus (BNC) with 100M tokens.

Nastase and Strube (2009) used a Support Vec-
tor Machine (SVM) with handcrafted features (in
addition to the features provided by Markert and
Nissim (2007)) including grammatical colloca-
tions extracted from the BNC to learn selectional
preferences, WordNet 3.0, Wikipedia’s category
network, whether the entity “has-a-product” such
as Suzuki and whether the entity “has-an-event”
such as Vietnam (both obtained from Wikipedia).
The bigger set of around 60 features and leverag-
ing global (paragraph) context enabled them to
achieve 86.1% accuracy. Once again, we draw
attention to the extra training, external tools and
additional feature generation.

Similar recent work by Nastase and Strube
(2013) which extends that of Nastase et al.
(2012) involved transforming Wikipedia into a
large-scale multilingual concept network called
WikiNet. By building on Wikipedia’s existing
network of categories and articles, their method
automatically discovers new relations and their
instances. As one of their extrinsic evaluations,
metonymy resolution was tested. Global context
(whole paragraph) was used to interpret the target
word. Using an SVM and a powerful knowledge
base built from Wikipedia, the highest perfor-
mance to date (a 0.1% improvement from Nastase
and Strube (2009)) was achieved at 86.2%, which
has remained the SOTA until now.

The related work on MR so far has made limited
use of dependency trees. Typical features came in
the form of a head dependency of the target en-
tity, its dependency label and its role (subj-of-win,
dobj-of-visit, etc). However, other classification
tasks made good use of dependency trees. Liu
et al. (2015) used the shortest dependency path and
dependency sub-trees successfully to improve re-
lation classification (new SOTA on SemEval 2010
Shared Task). Bunescu and Mooney (2005) show
that using dependency trees to generate the input
sequence to a model performs well in relation ex-
traction tasks. Dong et al. (2014) used dependency
parsing for Twitter sentiment classification to find
the words syntactically connected to the target of
interest. Joshi and Penstein-Rosé (2009) used de-
pendency parsing to explore how features based
on syntactic dependency relations can be used to
improve performance on opinion mining. In unsu-
pervised lymphoma (type of cancer) classification,
Luo et al. (2014) constructed a sentence graph
from the results of a two-phase dependency parse
to mine pathology reports for the relationships be-
tween medical concepts. Our methods also exploit
the versatility of dependency parsing to leverage
information about the sentence structure.

2.1 SemEval 2007 Dataset

Our main standard for performance evaluation is
the SemEval 2007 Shared Task 8 (Markert and
Nissim, 2007) dataset first introduced in Nissim
and Markert (2003b). Two types of entities were
evaluated, organisations and locations, randomly
retrieved from the British National Corpus (BNC).

1249

We only use the locations dataset, which com-
prises a train (925 samples) and a test (908 sam-
ples) partition. For medium evaluation, the classes
are literal (geographical territories and political
entities), metonymic (place-for-people, place-for-
product, place-for-event, capital-for-government
or place-for-organisation) and mixed (metonymic
and literal frames invoked simultaneously or un-
able to distinguish). The metonymic class further
breaks down into two levels of subclasses allowing
for fine evaluation. The class distribution within
SemEval is approx 80% literal, 18% metonymic
and 2% mixed. This seems to be the approxi-
mate natural distribution of the classes for location
metonymy, which we have also observed while
sampling Wikipedia for our new dataset.

3 Our Approach

Our contribution broadly divides into two main
parts, data and methodology. Section 3 introduces
our new dataset, Section 4 introduces our new fea-
ture extraction method.

3.1 Design and Motivation
As part of our contribution, we created a new MR
dataset called ReLocaR (Real Location Retrieval),
partly due to the lack of quality annotated train/test
data and partly because of the shortcomings with
the SemEval 2007 dataset (see Section 3.2). Our
corpus is designed to evaluate the capability of
a classifier to distinguish literal, metonymic and
mixed location mentions. In terms of dataset size,
ReLocaR contains 1,026 training and 1,000 test in-
stances. The data was sampled using Wikipedia’s
Random Article API1. We kept the sentences,
which contained at least one of the places from a
manually compiled list2 of countries and capitals
of the world. The natural distribution of literal ver-
sus metonymic examples is approximately 80/20
so we had to discard the excess literal examples
during sampling to balance the classes.

3.2 ReLocaR - Improvements over SemEval
1. We do not break down the metonymic class
further as the distinction between the subclasses
is subtle and hard to agree on.

2. The distribution of the three classes in ReLo-
caR (literal, metonymic, mixed) is approximately
1https://www.mediawiki.org/wiki/API:Random
2https://github.com/milangritta/Minimalist-Location-
Metonymy-Resolution/data/locations.txt

(49%, 49%, 2%) eliminating the high bias (80%,
18%, 2%) of SemEval. We will show how such
a high bias transpires in the test results (Section 5).

3. We have reviewed the annotation of the test
partition and found that we disagreed with up
to 11% of the annotations. Zhang and Gelernter
(2015) disagreed with the annotation 8% of
the time. Poibeau (2007) also challenged some
annotation decisions. ReLocaR was annotated by
4 trained linguists (undergraduate and graduate)
and 2 computational linguists (authors). Linguists
were independently instructed (see section 3.3)
to assign one of the two classes to each example
with little guidance. We leveraged their linguistic
training and expertise to make decisions rather
than imposing some specific scheme. Unresolved
sentences would receive the mixed class label.

4. The most prominent difference is a small
change in the annotation scheme (after indepen-
dent linguistic advice). The SemEval 2007 Task
8 annotation scheme (Markert and Nissim, 2007)
considers the political entity interpretation a lit-
eral reading. It suggests that in “Britain’s cur-
rent account deficit...”, Britain refers to a literal
location, rather than a government (which is an
organisation). This is despite acknowledging that
“The locative and the political sense is often dis-
tinguished in dictionaries as well as in the ACE
annotation scheme...”. In ReLocaR datasets, we
consider a political entity a metonymic reading.

3.2.1 Why government is not a location
A government/nation/political entity is semanti-
cally much closer to Organisation/Person than a
Location. “Moscow talks to Beijing.” does not
tell us where this is happening. It most likely
means a politician is talking to another politician.
These are not places but people and/or groups. It
is paramount to separate references to “inanimate”
places from references to “animate” entities.

3.3 Annotation Guidelines (Summary)

ReLocaR has three classes, literal, metonymic
and mixed. Literal reading comprises territorial
interpretations (the geographical territory, the
land, soil and physical location) i.e. inanimate
places that serve to point to a set of coordi-
nates (where something might be located and/or
happening) such as “The treaty was signed in
Italy.”, “Peter comes from Russia.”, “Britain’s

1250

Andy Murray won the Grand Slam today.”, “US
companies increased exports by 50%.”, “China’s
artists are among the best in the world.” or “The
reach of the transmission is as far as Brazil.”.

A metonymic reading is any location oc-
currence that expresses animacy (Coulson and
Oakley, 2003) such as “Jamaica’s indifference
will not improve the negotiations.”, “Sweden’s
budget deficit may rise next year.”. The following
are other metonymic scenarios: a location name,
which stands for any persons or organisations
associated with it such as “We will give aid to
Afghanistan.”, a location as a product such as
“I really enjoyed that delicious Bordeaux.”, a
location posing as a sports team “India beat
Pakistan in the playoffs.”, a governmental or
other legal entity posing as a location “Zambia
passed a new justice law today.”, events acting as
locations “Vietnam was a bad experience for me”.

The mixed reading is assigned in two cases: ei-
ther both readings are invoked at the same time
such as in “The Central European country of Slo-
vakia recently joined the EU.” or there is not
enough context to ascertain the reading i.e. both
are plausible such as in “We marvelled at the art of
ancient Mexico.”. In difficult cases such as these,
the mixed class is assigned.

3.4 Inter-Annotator Agreement

We give the IAA for the test partition only. The
whole dataset was annotated by the first author as
the main annotator. Two pairs of annotators (4 lin-
guists) then labelled 25% of the dataset each for
a 3-way agreement. The agreement before adjudi-
cation was 91% and 93%, 97.2% and 99.2% after
adjudication (for pair one and two respectively).
The other 50% of sentences were then once again
labelled by the main annotator with a 97% agree-
ment with self. The remainder of the sentences
(unable to agree on among annotators even after
adjudication) were labelled as a mixed class (1.8%
of all sentences).

3.5 CoNLL 2003 and MR

We have also annotated a small subset of
the CoNLL 2003 NER Shared Task data for
metonymy resolution (locations only). Respect-
ing the Reuters RCV1 Corpus (Lewis et al., 2004)

distribution permissions3, we make only a heav-
ily processed subset available on GitHub4. There
are 4,089 positive (literal) and 2,126 negative
(metonymic) sentences to assist with algorithm ex-
perimentation and model prototyping. Due to the
lack of annotated training data for MR, this is a
valuable resource. The data was annotated by the
first author, there are no IAA figures.

4 Methodology

4.1 Predicate Window (PreWin)

Through extensive experimentation and observa-
tion, we arrived at the intuition behind PreWin,
our novel feature extraction method. The classi-
fication decision of the class of the target entity
is mostly informed not by the whole sentence
(or paragraph), rather it is a small and focused
“predicate window” pointed to by the entity’s
head dependency. In other words, most of the
sentence is not only superfluous for the task, it
actually lowers the accuracy of the model due to
irrelevant input. This is particularly important in
metonymy resolution as the entity’s surface form
is not taken into consideration, only its context.

In Figure 1, we show the process of extracting
the Predicate Window from a sample sentence
(more examples are available in the Appendix).
We start by using the SpaCy dependency parser
by Honnibal and Johnson (2015), which is the
fastest in the world, open source and highly
customisable. Each dependency tree provides the
following features: dependency labels and entity
head dependency. Rather than using most of the
tree, we only use a single local head dependency
relationship to point to the predicate. Leveraging
a dependency parser helps PreWin with selecting
the minimum relevant input to the model while
discarding irrelevant input, which may cause the
neural model to behave unpredictably. Finally, the
entity itself is never used as input in any of our
methods, we only rely on context.

PreWin then extracts up to 5 words and their
dependency labels starting at the head of the
entity (see the next paragraph for exceptions),
going in the away (from the entity) direction. The
method always skips the conjunct (“and”, “or”)

3http://trec.nist.gov/data/reuters/reuters.html
4https://github.com/milangritta/Minimalist-Location-
Metonymy-Resolution

1251

Figure 1: The predicate window starts at the head of the target entity and ends up to 4 words further,
going away from the entity. The “conj” relations are always skipped. In the above example, the head
of “UK” is “decided” so PreWin takes 5 words plus dependency labels as the input to the model. The
left-hand side input to the model is empty and is set to zeroes (see Figure 2 for a full model diagram).

relationships in order to find the predicate (see
Figure 3 in the Appendix for a visual example of
why this is important). The reason for the choice
of 5 words is the balance between too much
input, feeding the model with less relevant context
and just enough context to capture the necessary
semantics. We have experimented with lengths of
3-10 words, however 5 words typically achieved
the best results.

The following are the three types of exceptions
when the output will not start with the head of
the entity. In these cases, PreWin will include the
neighbouring word as well. In a sentence “The
pub is located in southern Zambia.”, the head of
the entity is “in”, however in this case PreWin will
include “southern” (adjectival modifier) as this
carries important semantics for the classification.
Similarly, PreWin will also include the neighbour-
ing compound noun as in: “Lead coffins were very
rare in colonial America.”, the output will include
“colonial” as a feature plus the next four words.
In another sentence: “Vancouver’s security is the
best in the world.’, PreWin will include the “’s”
(case) plus the next four words continuing from
the head of the entity (the word “security”).

4.2 Neural Network Architecture

The output of PreWin is used to train the following
machine learning model. We decided to use the
Long Short Term Memory (LSTM) architecture
by Keras5 (Chollet, 2015). Two LSTMs are used,
one for the left and right side (up to 5 words each).
Two fully connected (dense) layers are used for
the left and right dependency relation labels (up to

5https://keras.io/

5 labels each, encoded as one-hot). The full ar-
chitecture is available in the Appendix, please see
Figure 2. You can download the models and data
from GitHub6. LSTMs are excellent at process-
ing language sequences (Hochreiter and Schmid-
huber, 1997; Sak et al., 2014; Graves et al., 2013),
which is why we use this architecture. It allows the
model to encode the word sequences, preserve im-
portant word order and provide superior classifica-
tion performance. Both the Multilayer Perceptron
and the Convolutional Neural Network were con-
sistently inferior (typically 5% - 10% lower accu-
racy) in our earlier performance comparisons. For
all experiments, we used a vocabulary of the first
(most frequent) 100,000 word vectors in GloVe7

(Pennington et al., 2014). Finally, unless explicitly
stated otherwise, the standard dimension of word
embeddings was 50, which we found to work best.

4.3 “Immediate” Baseline

A common approach in lexical classification tasks
is choosing the 5 to 10 words to the immediate
right and left of the entity as input to a model
(Mikolov et al., 2013; Mesnil et al., 2013; Baroni
et al., 2014; Collobert et al., 2011). We evaluate
this method (its 5 and 10-word variant) alongside
PreWin and Paragraph.

4.4 Paragraph Baseline

The paragraph baseline method extends the “im-
mediate” one by taking 50 words from each side of
the entity as the input to the classifier. In practice,
this extends the feature window to include extra-
sentential evidence in the paragraph. This ap-

6https://github.com/milangritta/Minimalist-Location-
Metonymy-Resolution

7http://nlp.stanford.edu/projects/glove/

1252

proach is also popular in machine learning (Mela-
mud et al., 2016; Zhang et al., 2016).

4.5 Ensemble of Models

In addition to a single best performing model, we
have combined several models trained on different
data and/or using different model configurations.
For the SemEval test, we combined three separate
models trained on the newly annotated CoNLL
dataset and the training data for SemEval. For the
ReLocaR test, we once again let three models vote,
trained on CooNLL and ReLocaR data.

5 Results

We evaluate all methods using three datasets for
training (ReLocaR, SemEval, CoNLL) and two
for testing (ReLocaR, SemEval). Due to inherent
randomness in the deep learning libraries, we per-
formed 10 runs for each setup and averaged the
figures (we also report standard deviation).

5.1 Metrics and Significance

Following the SemEval 2007 convention, we use
two metrics to evaluate performance, accuracy and
f-scores (for each class). We only evaluate at
the coarse level, which means literal versus non-
literal (metonymic and mixed are merged into one
class). In terms of statistical significance, our best
score on the SemEval dataset (908 samples) is not
significant at the 95% confidence level. However,
the accuracy improvements of PreWin over the
common baselines are highly statistically signifi-
cant with 99.9%+ confidence.

5.2 Predicate Window

Tables 1 and 2 show PreWin performing con-
sistently better than other baselines, in many
instances, significantly better and with fewer
words (smaller input). The standard deviation is
also lower for PreWin meaning more stable test
runs. Compared with the 5 and 10 window “im-
mediate” baseline, which is the common approach
in classification, PreWin is more discriminating
with its input. Due to the linguistic variety and
the myriad of ways the target word sense can be
triggered in a sentence, it is not always the case
that the 5 or 10 nearest words inform us of the
target entity’s meaning/type. We ought to ask
what else is being expressed in the same 5 to
10-word window?

Conventional classification methods (Immedi-
ate, Paragraph) can also be seen as prioritising
either feature precision or feature recall. Para-
graph maximises the input sequence size, which
maximises recall at the expense of including
features that are either irrelevant or mislead the
model, lowering precision. Immediate baseline
maximises precision by using features close to the
target entity at the expense of missing important
features positioned outside of its small window,
lowering recall. PreWin can be understood as
an integration of both approaches. It retains
high precision by limiting the size of the feature
window to 5 while maximising recall by searching
anywhere in the sentence, frequently outside of a
limited “immediate” window.

Perhaps we can also caution against a simple
adherence to Firth (1957) “You shall know a word
by the company it keeps”. This does not appear
to be the case in our experiments as PreWin reg-
ularly performs better than the “immediate” base-
line. Further prototypical examples of the method
can be viewed in the Appendix. Our intuition that
most words in the sentence, indeed in the para-
graph do not carry the semantic information re-
quired to classify the target entity is ultimately
based on evidence. The model uses only a small
window, linked to the entity via a head dependency
relationship for the final classification decision.

5.3 Common Errors

Most of the time (typically 85% for the two
datasets), PreWin is sufficient for an accurate clas-
sification. However, it does not work well in some
cases. The typical 15% error rate breaks down
as follows (percentages were estimated based on
extensive experimentation and observation):

Discarding important context (3%): Some-
times the 5 or 10 word “immediate” baseline
method would actually have been preferred such
as in the sentence “...REF in 2014 ranked Essex
in the top 20 universities...”. PreWin discards the
right-hand side input, which is required in this
case for a correct classification. Since ”ranked” is
the head of ”Essex”, the rest of the sentence gets
ignored and the valuable context gets lost.

More complex semantic patterns (11%):
Many common mistakes were due to the lack

1253

of the model’s understanding of more complex
predicates such as in the following sentences: “
...of military presence of Germany.”, “Houston
also served as a member and treasurer of the...”
or ”...invitations were extended to Yugoslavia
...”. We think this is due to a lack of training data
(around 1,000 sentences per dataset). Additional
examples such as “...days after the tour had exited
Belgium.” expose some of the limitations of the
neural model to recognise uncommon ways of
expressing a reference to a literal place. Recall
that no external resources or tools were used to
supplement the training/features, the model had to
learn to generalise from what it has seen during
training, which was limited in our experiments.

Parsing mistakes (1%): were less common
though still present. It is important to choose the
right dependency parser for the task since different
parsers will often generate slightly different parse
trees. We have used SpaCy8 for all our experi-
ments, which is a Python-based industrial strength
NLP library. Sometimes, tokenisation errors for
acronyms like “U.S.A.” and wrongly hyphenated
words may also cause parsing errors, however, this
was infrequent.

Method Training (Size) Acc (STD)

PreWin SemEval (925) 62.4 (2.30)
Immediate 5 SemEval (925) 60.6 (2.34)
Immediate 10 SemEval (925) 59.2 (2.26)
Paragraph SemEval (925) 58.0 (2.49)

PreWin CoNLL (6,215) 82.8 (0.46)
Immediate 5 CoNLL (6,215) 78.2 (0.61)
Immediate 10 CoNLL (6,215) 79.1 (0.76)
Paragraph CoNLL (6,215) 79.5 (1.50)

PreWin ReLocaR (1,026) 83.6 (0.71)
Immediate 5 ReLocaR (1,026) 81.4 (1.34)
Immediate 10 ReLocaR (1,026) 81.3 (1.44)
Paragraph ReLocaR (1,026) 80.0 (2.25)

Ensemble ReLocaR/CoNLL 84.8 (0.34)

Table 1: Results for ReLocaR data. Figures are
averaged over 10 runs. STD - Standard deviation.

5.4 Flexibility of Neural Model

The top accuracy figures for ReLocaR are almost
identical to SemEval. The highest single model

8https://spacy.io/

accuracy for ReLocaR was 83.6% (84.8% with
Ensemble), which was within 0.5% of the equiv-
alent methods for SemEval (83.1%, 84.6% for
Ensemble). Both were achieved using the same
methods (PreWin or Ensemble), neural architec-
ture and size of corpora. When the models were
trained on the CoNLL data, the accuracies were
82.8% and 79.5%. However, when the models
trained on ReLocaR and tested on SemEval (and
vice versa), accuracy dropped to between 62.4%
and 69% showing that what was learnt does not
seem to transfer well to another dataset. We think
the reason for this is the difference in annotation
guidelines; the government is a metonymic read-
ing, not a literal one. This causes the model to
make more mistakes.

Method Training (Size) Acc (STD)

PreWin SemEval (925) 83.1 (0.64)
Immediate 5 SemEval (925) 81.3 (1.11)
Immediate 10 SemEval (925) 81.9 (0.89)
Paragraph SemEval (925) 81.3 (0.88)

PreWin CoNLL (6,215) 79.5 (0.34)
Immediate 5 CoNLL (6,215) 77.8 (1.47)
Immediate 10 CoNLL (6,215) 77.8 (1.22)
Paragraph CoNLL (6,215) 77.2 (2.10)

PreWin ReLocaR (1,026) 69.0 (3.13)
Immediate 5 ReLocaR (1,026) 63.6 (5.42)
Immediate 10 ReLocaR (1,026) 64.2 (4.12)
Paragraph ReLocaR (1,026) 64.4 (7.76)

Nastase et al. SemEval (925) 86.2 (N/A)

Ensemble SemEval/CoNLL 84.6 (0.43)

Table 2: Results for SemEval data. Figures are
averaged over 10 runs. STD - standard deviation.

5.5 Ensemble Method

The highest accuracy and f-scores were achieved
with the ensemble method for both datasets. We
combined three models (previously described in
section 4.5) for SemEval to achieve 84.6% accu-
racy and three models for ReLocaR to achieve
84.8% for the new dataset. Training separate mod-
els with different parameters and/or on different
datasets does increase classification capability as
various models learn distinct aspects of the task,
enabling the 1.2 - 1.5% improvement.

5.6 Dimensionality of Word Embeddings

We found that increasing dimension size (up to
300) did not materially improve performance.

1254

The neural network tended to overfit, even with
fewer epochs, the results were comparable to
our default 50-dimensional embeddings. We
posit that fewer dimensions of the distributed
word representations force the abstraction level
higher as the meaning of words must be expressed
more succinctly. We think this helps the model
generalise better, particularly for smaller datasets.
Lastly, learning word embeddings from scratch on
datasets this small (around 1,000 samples) is pos-
sible but impractical, the performance typically
decreases by around 5% if word embeddings are
not initialised first.

Dataset / Method Literal Non-Literal

SemEval / PreWin 90.6 57.3
SemEval / SOTA 91.6 59.1

ReLocaR / PreWin 84.4 84.8

Table 3: Per class f-scores - all figures obtained us-
ing the Ensemble method, averaged over 10 runs.
Note the model class bias for SemEval.

5.7 F-Scores and Class Imbalance

Table 3 shows the SOTA f-scores, our best results
for SemEval 2007 and the best f-scores for ReLo-
caR. The class imbalance inside SemEval (80%
literal, 18% metonymic, 2% mixed) is reflected
as a high bias in the final model. This is not
the case with ReLocaR and its 49% literal, 49%
metonymic and 2% mixed ratio of 3 classes. The
model was equally capable of distinguishing be-
tween literal and non-literal cases.

5.8 Another baseline

There was another baseline we tested, however, it
was not covered anywhere so far because of its
low performance. It was a type of extreme parse
tree pruning, during which most of the sentence
gets discarded and we only retain 3 to 4 content
words. The method uses non-local (long range)
dependencies to construct a short input sequence.
However, the method was a case of ignoring too
many relevant words and accuracy was fluctuating
in the mid-60% range, which is why we did not re-
port the results. However, it serves to further jus-
tify the choice of 5 words as the predicate window
as fewer words caused the model to underperform.

6 Discussion

6.1 NER, GP and Metonymy

We think the next frontier is a NER tagger, which
actively handles metonymy. The task of labelling
entities should be mainly driven by context rather
than the word’s surface form. If the target entity
looks like “London”, this should not mean the
entity is automatically a location. Metonymy is a
frequent linguistic phenomenon (around 20% of
location mentions are metonymic, see section 3.1)
and could be handled by NER taggers to enable
many innovative downstream NLP applications.

Geographical Parsing is a pertinent use case.
In order to monitor/mine text documents for geo-
graphical information only, the current NER tech-
nology does not have a solution. We think it is in-
correct for any NER tagger to label “Vancouver”
as a location in “Vancouver welcomes you!”. A
better output might be something like the follow-
ing: Vancouver = location AND metonymy = True.
This means Vancouver is usually a location but is
used metonymically in this case. How this infor-
mation is used will be up to the developer. Organ-
isations behaving as persons, share prices or prod-
ucts are but a few other examples of metonymy.

6.2 Simplicity and Minimalism

Previous work in MR such as most of the SemEval
2007 participants (Farkas et al., 2007; Nicolae
et al., 2007; Leveling, 2007; Brun et al., 2007;
Poibeau, 2007) and the more recent contributions
used a selection of many of the following fea-
tures/tools for classification: handmade trigger
word lists, WordNet, VerbNet, FrameNet, extra
features generated/learnt from parsing Wikipedia
(approx 3B words) and BNC (approx 100M
words), custom databases, handcrafted features,
multiple (sometimes proprietary) parsers, Levin’s
verb classes, 3,000 extra training instances from
a corpus called MAScARA9 by Markert and Nis-
sim (2002) and other extra resources including the
SemEval Task 8 features. We managed to achieve
comparable performance with a small neural net-
work typically trained in no more than 5 epochs,
minimal training data, a basic dependency parser
and the new PreWin method by being highly dis-
criminating in choosing signal over noise.

9http://homepages.inf.ed.ac.uk/mnissim/mascara/

1255

7 Conclusions and Future Work

We showed how a minimalist neural approach can
replace substantial external resources, handcrafted
features and how the PreWin method can even
ignore most of the paragraph where the entity is
positioned and still achieve competitive perfor-
mance in metonymy resolution. The pressing new
question is: “How much better the performance
could have been if our method availed itself of the
extra training data and resources used by previous
works?” Indeed this may be the next research
chapter for PreWin.

We discussed how tasks such as Geographical
Parsing can benefit from “metonymy-enhanced”
NER tagging. We have also presented a case
for better annotation guidelines for MR (after
consulting with a number of linguists), which now
means that a government is not a literal class,
rather it is a metonymic one. We fully agreed with
the rest of the previous annotation guidelines.
We also introduced ReLocaR, a new corpus for
(location) metonymy resolution and encourage
researchers to make effective use of it (including
the additional CoNLL 2003 subset we annotated
for metonymy).

Future work may involve testing PreWin on an
NER task to see if and how it can generalise to
a different classification task and how the results
compare to the SOTA and similar methods such as
that of Collobert et al. (2011) using the CoNLL
2003 NER datasets. Word Sense Disambigua-
tion (Yarowsky, 2010; Pilehvar and Navigli, 2014)
with neural networks (Melamud et al., 2016) is an-
other related classification task suitable for test-
ing PreWin. If it does perform better, this will be
of considerable interest to classification research
(and beyond) in NLP.

Acknowledgments

We gratefully acknowledge the funding support
of the Natural Environment Research Council
(NERC) PhD Studentship NE/M009009/1 (Milan
Gritta, DREAM CDT), EPSRC (Nigel Collier and
Nut Limsopatham - Grant No. EP/M005089/1)
and MRC (Mohammad Taher Pilehvar) Grant No.
MR/M025160/1 for PheneBank.

References
Marco Baroni, Georgiana Dinu, and Germán

Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In ACL (1).
pages 238–247.

Caroline Brun, Maud Ehrmann, and Guillaume
Jacquet. 2007. XRCE-M: A hybrid system for
named entity metonymy resolution. In Proceedings
of the 4th International Workshop on Semantic Eval-
uations. pages 488–491.

Razvan C Bunescu and Raymond J Mooney. 2005. A
shortest path dependency kernel for relation extrac-
tion. In Proceedings of the conference on human
language technology and empirical methods in nat-
ural language processing. pages 724–731.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Seana Coulson and Todd Oakley. 2003. Metonymy and
conceptual blending. Pragmatics and beyond - new
series pages 51–80.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive recursive neural
network for target-dependent twitter sentiment clas-
sification. In ACL (2). pages 49–54.

Richárd Farkas, Eszter Simon, György Szarvas, and
Dániel Varga. 2007. Gyder: maxent metonymy res-
olution. In Proceedings of the 4th International
Workshop on Semantic Evaluations. pages 161–164.

J. R. Firth. 1957 1952-59:1–32.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In Acoustics, speech and sig-
nal processing (icassp), 2013 ieee international con-
ference on. IEEE, pages 6645–6649.

Milan Gritta, Mohammad Taher Pilehvar, Nut Lim-
sopatham, and Nigel Collier. 2017. What’s missing
in geographical parsing? Language Resources and
Evaluation pages 1–21.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing. Lisbon, Portugal, pages 1373–1378.
https://aclweb.org/anthology/D/D15/D15-1162.

1256

Mahesh Joshi and Carolyn Penstein-Rosé. 2009. Gen-
eralizing dependency features for opinion mining.
In Proceedings of the ACL-IJCNLP 2009 conference
short papers. pages 313–316.

Johannes Leveling. 2007. Fuh (fernuniversität in ha-
gen): Metonymy recognition using different kinds
of context for a memory-based learner. In Proceed-
ings of the 4th International Workshop on Semantic
Evaluations. pages 153–156.

David D Lewis, Yiming Yang, Tony G Rose, and Fan
Li. 2004. Rcv1: A new benchmark collection for
text categorization research. Journal of machine
learning research 5(Apr):361–397.

Yang Liu, Furu Wei, Sujian Li, Heng Ji, Ming Zhou,
and Houfeng Wang. 2015. A dependency-based
neural network for relation classification. arXiv
preprint arXiv:1507.04646 .

Yuan Luo, Aliyah R Sohani, Ephraim P Hochberg, and
Peter Szolovits. 2014. Automatic lymphoma classi-
fication with sentence subgraph mining from pathol-
ogy reports. Journal of the American Medical Infor-
matics Association 21(5):824–832.

Katja Markert and Malvina Nissim. 2002. Metonymy
resolution as a classification task. In Proceedings
of the ACL-02 conference on Empirical methods in
natural language processing-Volume 10. pages 204–
213.

Katja Markert and Malvina Nissim. 2007. Semeval-
2007 task 08: Metonymy resolution at semeval-
2007. In Proceedings of the 4th International Work-
shop on Semantic Evaluations. pages 36–41.

Katja Markert and Malvina Nissim. 2009. Data and
models for metonymy resolution. Language Re-
sources and Evaluation 43(2):123–138.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional lstm. In Proceedings of
CONLL.

Grégoire Mesnil, Xiaodong He, Li Deng, and Yoshua
Bengio. 2013. Investigation of recurrent-neural-
network architectures and learning methods for spo-
ken language understanding. In Interspeech. pages
3771–3775.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In C. J. C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Q. Wein-
berger, editors, Advances in Neural Information
Processing Systems 26, Curran Associates, Inc.,
pages 3111–3119. http://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.pdf.

Bruno R Monteiro, Clodoveu A Davis, and Fred Fon-
seca. 2016. A survey on the geographic scope of tex-
tual documents. Computers & Geosciences 96:23–
34.

Vivi Nastase, Alex Judea, Katja Markert, and Michael
Strube. 2012. Local and global context for super-
vised and unsupervised metonymy resolution. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning. pages
183–193.

Vivi Nastase and Michael Strube. 2009. Combining
collocations, lexical and encyclopedic knowledge
for metonymy resolution. In Proceedings of the
2009 Conference on Empirical Methods in Natural
Language Processing: Volume 2-Volume 2. pages
910–918.

Vivi Nastase and Michael Strube. 2013. Transform-
ing wikipedia into a large scale multilingual concept
network. Artificial Intelligence 194:62–85.

Cristina Nicolae, Gabriel Nicolae, and Sanda
Harabagiu. 2007. Utd-hlt-cg: Semantic archi-
tecture for metonymy resolution and classification
of nominal relations. In Proceedings of the 4th
International Workshop on Semantic Evaluations.
pages 454–459.

Malvina Nissim and Katja Markert. 2003a. Syn-
tactic features and word similarity for supervised
metonymy resolution. In Proceedings of the 41st
Annual Meeting on Association for Computational
Linguistics-Volume 1. pages 56–63.

Malvina Nissim and Katja Markert. 2003b. Syn-
tactic features and word similarity for supervised
metonymy resolution. In Proceedings of the 41st
Annual Meeting on Association for Computational
Linguistics-Volume 1. pages 56–63.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1532–
1543. http://www.aclweb.org/anthology/D14-1162.

Mohammad Taher Pilehvar and Roberto Navigli. 2014.
A large-scale pseudoword-based evaluation frame-
work for state-of-the-art word sense disambiguation.
Computational Linguistics .

Thierry Poibeau. 2007. Up13: Knowledge-poor meth-
ods (sometimes) perform poorly. In Proceedings of
the 4th International Workshop on Semantic Evalu-
ations. pages 418–421.

Haşim Sak, Andrew Senior, and Françoise Beaufays.
2014. Long short-term memory based recurrent
neural network architectures for large vocabulary
speech recognition. arXiv preprint arXiv:1402.1128
.

1257

Ekaterina Shutova, Jakub Kaplan, Simone Teufel, and
Anna Korhonen. 2013. A computational model of
logical metonymy. ACM Transactions on Speech
and Language Processing (TSLP) 10(3):11.

David Yarowsky. 2010. Word sense disambiguation.
In Handbook of Natural Language Processing, Sec-
ond Edition, Chapman and Hall/CRC, pages 315–
338.

Jinchao Zhang, Fandong Meng, Mingxuan Wang, Daqi
Zheng, Wenbin Jiang, and Qun Liu. 2016. Is
local window essential for neural network based
chinese word segmentation? In China National
Conference on Chinese Computational Linguistics.
Springer, pages 450–457.

Wei Zhang and Judith Gelernter. 2015. Explor-
ing metaphorical senses and word representa-
tions for identifying metonyms. arXiv preprint
arXiv:1508.04515 .

1258

Figure 2: The neural architecture of the final model. The sentence is Vancouver is the host city of the ACL
2017. Small, separate sequential models are merged and trained as one. The 50-dimensional embeddings
were initiated using GloVe. The right hand input is processed from right to left, the left hand input is
processed from left to right. This is to emphasise the importance of the words closer to the entity.

Figure 3: Why it is important for PreWin to always skip the conjunct dependency relation.

Figure 4: A lot of irrelevant input is skipped such as “is” and “Peter Pan in an interview.”.

Figure 5: By looking for the predicate window, the model skips many irrelevant words.

1259

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1260–1272
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1116

Unifying Text, Metadata, and User Network Representations
with a Neural Network for Geolocation Prediction

Yasuhide Miura†,‡

yasuhide.miura@fujixerox.co.jp

Motoki Taniguchi†
motoki.taniguchi@fujixerox.co.jp

Tomoki Taniguchi†
taniguchi.tomoki@fujixerox.co.jp

Tomoko Ohkuma†

ohkuma.tomoko@fujixerox.co.jp

†Fuji Xerox Co., Ltd.
‡Tokyo Institute of Technology

Abstract

We propose a novel geolocation prediction
model using a complex neural network.
Our model unifies text, metadata, and user
network representations with an attention
mechanism to overcome previous ensem-
ble approaches. In an evaluation using two
open datasets, the proposed model exhib-
ited a maximum 3.8% increase in accuracy
and a maximum of 6.6% increase in ac-
curacy@161 against previous models. We
further analyzed several intermediate lay-
ers of our model, which revealed that their
states capture some statistical characteris-
tics of the datasets.

1 Introduction
Social media sites have become a popular source
of information to analyze current opinions of nu-
merous people. Many researchers have worked
to realize various automated analytical methods
for social media because manual analysis of such
vast amounts of data is difficult. Geolocation
prediction is one such analytical method that has
been studied widely to predict a user location
or a document location. Location information
is crucially important information for analyses
such as disaster analysis (Sakaki et al., 2010), dis-
ease analysis (Culotta, 2010), and political anal-
ysis (Tumasjan et al., 2010). Such information is
also useful for analyses such as sentiment analysis
(Martı́nez-Cámara et al., 2014) and user attribute
analysis (Rao et al., 2010) to undertake detailed
region-specific analyses.

Geolocation prediction has been per-
formed for Wikipedia (Overell, 2009), Flickr
(Serdyukov et al., 2009; Crandall et al., 2009),
Facebook (Backstrom et al., 2010), and Twitter
(Cheng et al., 2010; Eisenstein et al., 2010).

Among these sources, Twitter is often preferred
because of its characteristics, which are suited
for geolocation prediction. First, some tweets
include geotags, which are useful as ground truth
locations. Secondly, tweets include metadata
such as timezones and self-declared locations that
can facilitate geolocation prediction. Thirdly, a
user network is obtainable by consideration of the
interaction between two users as a network link.

Herein, we propose a neural network model
to tackle geolocation prediction in Twitter. Past
studies have combined text, metadata, and user
network information with ensemble approaches
(Han et al., 2013, 2014; Rahimi et al., 2015a;
Jayasinghe et al., 2016) to achieve state-of-the-art
performance. Our model combines text, metadata,
and user network information using a complex
neural network. Neural networks have recently
shown effectiveness to capture complex represen-
tations combining simpler representations from
large-scale datasets (Goodfellow et al., 2016). We
intend to obtain unified text, metadata, and user
network representations with an attention mecha-
nism (Bahdanau et al., 2014) that is superior to the
earlier ensemble approaches. The contributions of
this paper are the following:

1. We propose a neural network model that
learns unified text, metadata, and user net-
work representations with an attention mech-
anism.

2. We show that the proposed model outper-
forms the previous ensemble approaches in
two open datasets.

3. We analyze some components of the pro-
posed model to gain insight into the unifica-
tion processes of the model.

Our model specifically emphasizes geolocation
prediction in Twitter to use benefits derived from
the characteristics described above. However, our

1260

https://doi.org/10.18653/v1/P17-1116

model can be readily extended to other social me-
dia analyses such as user attribute analysis and po-
litical analysis, which can benefit from metadata
and user network information.

In subsequent sections of this paper, we explain
the related works in four perspectives in Section 2.
The proposed neural network model is described
in Section 3 along with two open datasets that we
used for evaluations in Section 4. Details of an
evaluation are reported in Section 5 with discus-
sions in Section 6. Finally, Section 7 concludes
the paper with some future directions.

2 Related Works
2.1 Text-based Approach
Probability distributions of words over locations
have been used to estimate the geolocations
of users. Maximum likelihood estimation ap-
proaches (Cheng et al., 2010, 2013) and language
modeling approaches minimizing KL-divergence
(Wing and Baldridge, 2011; Kinsella et al., 2011;
Roller et al., 2012) have succeeded in predicting
user locations using word distributions. Topic
modeling approaches to extract latent topics
with geographical regions (Eisenstein et al., 2010,
2011; Hong et al., 2012; Ahmed et al., 2013) have
also been explored considering word distributions.

Supervised machine learning methods with
word features are also popular in text-based
geolocation prediction. Multinomial Naive Bayes
(Han et al., 2012, 2014; Wing and Baldridge,
2011), logistic regression (Wing and Baldridge,
2014; Han et al., 2014), hierarchical logistic
regression (Wing and Baldridge, 2014), and a
multilayer neural network with stacked denois-
ing autoencoder (Liu and Inkpen, 2015) have
realized geolocation prediction from text. A
semi-supervised machine learning approach by
Cha et al. (2015) has also been produced using a
sparse-coding and dictionary learning.

2.2 User-network-based Approach
Social media often include interactions of several
kinds among users. These interactions can be re-
garded as links that form a network among users.
Several studies have used such user network in-
formation to predict geolocation. Backstrom et al.
(2010) introduced a probabilistic model to pre-
dict the location of a user using friendship in-
formation in Facebook. Friend and follower in-
formation in Twitter were used to predict user
locations with a most frequent friend algorithm

(Davis Jr. et al., 2011), a unified descriptive model
(Li et al., 2012b), location-based generative mod-
els (Li et al., 2012a), dynamic Bayesian networks
(Sadilek et al., 2012), a support vector machine
(Rout et al., 2013), and maximum likelihood es-
timation (McGee et al., 2013). Mention informa-
tion in Twitter is also used with label propaga-
tion models (Jurgens, 2013; Compton et al., 2014)
and an energy and social local coefficient model
(Kong et al., 2014). Jurgens et al. (2015) com-
pared nine user-network-based approaches target-
ing Twitter, controlling data conditions.

2.3 Metadata-based Approach
Metadata such as location fields are useful as ef-
fective clues to predict geolocation. Hecht et al.
(2011) reported that decent accuracy of geolo-
cation prediction can be achieved using location
fields. Approaches to combine metadata with texts
are also proposed to extend text-based approaches.
Combinatory approaches such as a dynami-
cally weighted ensemble method (Mahmud et al.,
2012), polygon stacking (Schulz et al., 2013),
stacking (Han et al., 2013, 2014), and average
pooling with a neural network (Miura et al., 2016)
have strengthened geolocation prediction.

2.4 Combinatory Approach Extending
User-network-based Approach

Several attempts have been made to combine user-
network-based approaches with other approaches.
A text-based approach with logistic regression
was combined with label propagation approaches
to enhance geolocation prediction (Rahimi et al.,
2015a,b, 2016). Jayasinghe et al. (2016) com-
bined nine components including text-based ap-
proaches, metadata-based approaches, and a user-
network-based approach with a cascade ensemble
method.

2.5 Comparisons with Proposed Model
A model we propose in Section 3 which com-
bines text, metadata, and user network informa-
tion with a neural network, can be regarded as
an alternative to approaches using text and meta-
data (Mahmud et al., 2012; Schulz et al., 2013;
Han et al., 2013, 2014; Miura et al., 2016), ap-
proaches with text and user network informa-
tion (Rahimi et al., 2015a,b), and an approach
with text, metadata, and user network information
(Jayasinghe et al., 2016). In Section 5, we demon-
strate that our model outperforms earlier models.

1261

messages
(timeline)	

RNNL	

AttentionL	

FCU	

label	

location	 description	 timezone	

Timezone
Embedding	

AttentionTL	

RNND	

AttentionD	

RNNM	

AttentionM	

AttentionU	

Word Embedding	

linked
cities	

linked
users	

+	
AttentionN	

City
Embedding	

User
Embedding	

AttentionUN	

FCUN	

TEXT	

TEXT&META	

USERNET	

Figure 1: Overview of the proposed model. RNN denotes a recurrent neural network layer. FC denotes
a fully connected layer. The striped layers are message-level processes. ⊕ represents element-wise
addition.

In terms of machine learning methods, our
model is a neural network model that shares some
similarity with previous neural network models
(Liu and Inkpen, 2015; Miura et al., 2016). Our
model and these previous models have two key
differences. First, our model integrates user net-
work information along with other information.
Secondly, our model combines text and metadata
with an attention mechanism (Bahdanau et al.,
2014).

3 Model
3.1 Proposed Model
Figure 1 presents an overview of our model: a
complex neural network for classification with a
city as a label. For each user, the model accepts
inputs of messages, a location field, a description
field, a timezone, linked users, and the cities of
linked users.

User network information is incorporated by
city embeddings and user embeddings of linked
users. User embeddings are introduced along with
city embeddings because linked users with city in-
formation1 are limited. We chose to let the model
learn geolocation representations of linked users
directly via user embeddings. The model can be

1City information are provided by a dataset. The detail of
the city information is explained in Section 4.

broken down to several components, details of
which are described in Section 3.1.1–3.1.4.

3.1.1 Text Component
We describe the text component of the model,
which is the “TEXT” section in Figure 1. Figure 2
presents an overview of the text component. The
component consists of a recurrent neural network
(RNN) (Graves, 2012) layer and attention layers.
An input of the component is a timeline of a user,
which consists of messages in a time sequence.

As an implementation of RNN, we used Gated
Recurrent Unit (GRU) (Cho et al., 2014) with a bi-
directional setting. In the RNN layer, word em-
beddings x of a message are processed with the
following transition functions:

zt = σ (W zxt + U zht−1 + bz) (1)

rt = σ (W rxt + U rht−1 + br) (2)

h̃t = tanh (W hxt + Uh (rt ⊙ ht−1) + bh)
(3)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t (4)

where zt is an update gate, rt is a reset
gate, h̃t is a candidate state, ht is a state,
W z,W r,W h, U z, U r, Uh are weight matrices,
bz, br, bh are bias vectors, σ is a logistic sigmoid
function, and ⊙ is an element-wise multiplica-
tion operator. The bi-directional GRU outputs

−→
h

1262

messages
(timeline)�

timeline
representation�

AttentionTL�

RNNM�

AttentionM�

Word Embedding�

x1� xT�

…�input�

h1�

bi-directional
recurrent

states�
…�

g1� g2� gT�

RNN
features�

…�

x2�

u1�

context
vectors�

+�
…�α1g1� α2g2� αTgT�

Attention
features� m�

u2� uT�

Attention
Layer�

RNN
Layer� h1�

h2�

h2�

hT�

hT�

Figure 2: Overview of the text component with
detailed description of RNNM and AttentionM.

and
←−
h are concatenated to form g where gt =−→

ht∥
←−
ht and are passed to the first attention layer

AttentionM.
AttentionM computes a message representa-

tion m as a weighted sum of gt with weight αt:

m =
∑

t

αtgt (5)

αt =
exp

(
vT

αut

)
∑

t exp (vT
αut)

(6)

ut = tanh (W αgt + bα) (7)

where vα is a weight vector, W α is a weight ma-
trix, and bα a bias vector. ut is an attention con-
text vector calculated from gt with a single fully-
connected layer (Eq. 7). ut is normalized with
softmax to obtain αt as a probability (Eq. 6). The
message representation m is passed to the second
attention layer AttentionTL to obtain a timeline
representation from message representations.

3.1.2 Text and Metadata Component
We describe text and metadata components of the
model, which is the “TEXT&META” section in
Figure 1. This component considers the following
three types of metadata along with text: location
a text field in which a user is allowed to write the
user location freely, description a text field a user
can use for self-description, and timezone a selec-
tive field from which a user can choose a timezone.
Note that certain percentages of these fields are not
available2, and unknown tokens are used for inputs
in such cases.

2Han et al. (2014) reported missing percentages of 19%
for location, 24% for description, and 25%for timezone.

linked
cities	

+	
AttentionN	

City
Embedding	

User
Embedding	

user network
representation	

linked
users	

linked
user 1	

linked
user N	

current
user	

User
Network	 …	

c1� cN�

…�inputs�

p1� p2� pN�

…�

c2�

u1�

context
vectors�

+�
…�α1p1� α2p2� αNpN�

Attention
features� m�

u2� uN�

Attention
Layer�

a1� aN�

…�
a2�

+� +�+�

Figure 3: Overview of the user network compo-
nent with a detailed description of the element-
wise addition and AttentionN.

We process location fields and description fields
similarly to messages using an RNN layer and an
attention layer. Because there is only one loca-
tion and one description per user, a second atten-
tion layer is not required, as it is in the text com-
ponent. We also chose to share word embeddings
among the messages, the location, and the descrip-
tion processes because these inputs are all textual
information. For the timezone, an embedding is
assigned for each timezone value. A processed
timeline representation, a location representation,
and a description representation are then passed
to the attention layer AttentionU with a timezone
representation. AttentionU combines these four
representations and outputs a user representation.
This combination is done as in AttentionTL with
four representations as g1 . . . g4 in Eq. 5.

3.1.3 User Network Component
We describe the user network component of the
model, which is the “USERNET” section in Fig-
ure 1. Figure 3 presents an overview of the user
network component. The model has two inputs
linked cities and linked users. Users connected
with a user network are extracted as linked users.
We treat their cities3 as linked cities. Linked cities
and linked users are assigned with city embed-
dings c and user embeddings a respectively. c
and a are then processed to output p = c ⊕ a,
where ⊕ is an element-wise addition operator. p
is then passed to the subsequent attention layer
AttentionN to obtain a user network representa-

3A user with city information implies that the user is in-
cluded in a training set.

1263

TwitterUS
(train)	

W-NUT
(train)	

#user	 279K	 782K	
#tweet	 23.8M	 9.03M	
tweet/user	 85.6	 11.6	
#edge	 3.69M	 3.21M	
#reduced-edge	 2.11M	 1.01M	
reduced-edge/user	 7.04	 1.29	
#city	 339	 3028	

Table 1: Some properties of TwitterUS (train) and
W-NUT (train). We were able to obtain approxi-
mately 70–78% of the full datasets because of ac-
cessibility changes in Twitter.

tion as in AttentionU.

3.1.4 Model Output
An output of the text and metadata component
and an output of the mention network compo-
nent are further passed to the final attention layer
AttentionUN to obtain a merged user representa-
tion as in AttentionU. The merged user represen-
tation is then connected to labels with a fully con-
nected layer FCUN.

3.2 Sub-models of the Proposed Model
SUB-NN-TEXT We prepare a sub-model SUB-
NN-TEXT by adding FCU and FCUN to the text
component. This sub-model can be considered as
a variant of a neural network model by Yang et al.
(2016), which learns a representation of hierarchi-
cal text.

SUB-NN-UNET We prepare a sub-model SUB-
NN-UNET by connecting the text component
and the user network component with FCU,
AttentionUN, and FCUN. This model can be re-
garded as a model that uses text and user network
information.

SUB-NN-META We prepare a sub-model SUB-
NN-META by adding FCU and FCUN to the
metadata component. This model is a text-meta-
based model that uses text and metadata.

4 Data
4.1 Dataset Specifications
TwitterUS The first dataset we used is Twit-
terUS assembled by Roller et al. (2012), which
consists of 429K training users, 10K development
users, and 10K test users in a North American re-
gion. The ground truth location of a user is set
to the first geotag of the user in the dataset. We

collected TwitterUS tweets using TwitterAPI to re-
construct TwitterUS to obtain metadata along with
text. Up to date versions in November–December
2016 were used for the metadata4. We additionally
assigned city centers to ground truth geotags us-
ing the city category of Han et al. (2012) to make
city prediction possible in this dataset. TwitterUS
(train) in Table 1 presents some properties related
to the TwitterUS training set.

W-NUT The second dataset we used is W-NUT,
a user-level dataset of the geolocation prediction
shared task of W-NUT 2016 (Han et al., 2016).
The dataset consists of 1M training users, 10K de-
velopment users, and 10K test users. The ground
truth location of a user is decided by majority vot-
ing of the closest city center. Like in TwitterUS,
we obtained metadata and texts using TwitterAPI.
Up to date versions in August–September 2016
were used for the metadata. W-NUT (train) in Ta-
ble 1 presents some properties related to the W-
NUT training set.

4.2 Construction of the User Network
We construct mention networks (Jurgens, 2013;
Compton et al., 2014; Rahimi et al., 2015a,b)
from datasets as user networks. To do so,
we follow the approach of Rahimi et al. (2015a)
and Rahimi et al. (2015b) who use uni-directional
mention to set edges of a mention network. An
edge is set between the two users nodes if a
user mentions another user. The number of uni-
directional mention edges for TwitterUS and W-
NUT can be found in Table 1.

The uni-directional setting results to large num-
bers of edges, which often are computationally ex-
pensive to process. We restricted edges to satisfy
one of the following conditions to reduce the size:
(1) both users have ground truth locations or (2)
one user has a ground truth location and another
user is mentioned 5 times or more in a training set.
The number of reduced-edges with these condi-
tions in TwitterUS and W-NUT can be confirmed
in Table 1.

5 Evaluation
5.1 Implemented Baselines
5.1.1 LR
LR is an l1-regularized logistic regression model
with k-d tree regions (Roller et al., 2012) used

4TwitterAPI returns the current version of metadata even
for an old tweet.

1264

in Rahimi et al. (2015a). The model uses tf-
idf weighted bag-of-words unigrams for features.
This model is simple, but it has shown state-of-
the-art performance in cases when only text is
available.

5.1.2 MADCEL-B-LR
MADCEL-B-LR, a model presented by
(Rahimi et al., 2015a), combines LR with Modi-
fied Adsorption (MAD) (Talukdar and Crammer,
2009). MAD is a graph-based label propagation
algorithm that optimizes an objective with a prior
term, a smoothness term, and an uninforma-
tiveness term. LR is combined with MAD by
introducing LR results as dongle nodes to MAD.

This model includes an algorithm for the con-
struction of a mention network. The algorithm
removes celebrity users5 and collapses a men-
tion network6. We use binary edges for user net-
work edges because they performed slightly better
than weighted edges by accuracy@161 metric in
Rahimi et al. (2015a).

5.1.3 LR-STACK
LR-STACK is an ensemble learning model that
combines four LR classifiers (LR-MSG, LR-LOC,
LR-DESC, LR-TZ) with an l2-regularized logistic
regression meta-classifier (LR-2ND). LR-MSG,
LR-LOC, LR-DESC, and LR-TZ respectively use
messages, location fields, description fields, and
timezones as their inputs. This model is simi-
lar to the stacking (Wolpert, 1992) approach taken
in Han et al. (2013) and Han et al. (2014), which
showed superior performance compared to a fea-
ture concatenation approach.

The model takes the following three steps to
combine text and metadata: Step 1 LR-MSG, LR-
LOC, LR-DESC, and LR-TZ are trained using a
training set, Step 2 the outputs of the four classi-
fiers on the training set are obtained with 10-fold
cross validation, and Step 3 LR-2ND is trained us-
ing the outputs of the four classifiers.

5.1.4 MADCEL-B-LR-STACK
MADCEL-B-LR-STACK is a combined model of
MADCEL-B-LR and LR-STACK. LR-STACK re-
sults are introduced as dongle nodes to MAD in-
stead of LR results to combine text, metadata, and
network information.

5Users with more than t unique mentions.
6Users not included in training users or test users are re-

moved and disconnected edges with the removals are con-
verted to direct edges.

5.2 Model Configurations
5.2.1 Text Processor
We applied a lower case conversion, a unicode
normalization, a Twitter user name normalization,
and a URL normalization for text pre-processing.
The pre-processed text is then segmented us-
ing Twokenizer (Owoputi et al., 2013) to obtain
words.

5.2.2 Pre-training of Embeddings
We pre-trained word embeddings using messages,
location fields, and description fields of a train-
ing set using fastText (Bojanowski et al., 2016)
with the skip-gram algorithm. We also pre-trained
user embeddings using the non-reduced mention
network described in Section 4.2 of a training
set with LINE (Tang et al., 2015). The detail of
pre-training parameters are described in Appendix
A.1.

5.2.3 Neural Network Optimization
We chose an objective function of our models to
cross-entropy loss. l2 regularization was applied
to the RNN layers, the attention context vectors,
and the FC layers of our models to avoid over-
fitting. The objective function was minimized
through stochastic gradient descent over shuffled
mini-batches with Adam (Kingma and Ba, 2014).

5.2.4 Model Parameters
The layers and the embeddings in our models have
unit size and embedding dimension parameters.
Our models and the baseline models have reg-
ularization parameter α, which is sensitive to a
dataset. The baseline models have additional k-d
tree bucket size c, celebrity threshold t, and MAD
parameters µ1, µ2, and µ3, which are also data
sensitive.

We chose optimal values for these parameters
in terms of accuracy with a grid search using the
development sets of TwitterUS and W-NUT. De-
tails of the parameter selection strategies and the
selected values are described in Appendix A.2.

5.2.5 Metrics
We evaluate the models in the following four
commonly used metrics in geolocation predic-
tion: accuracy the percentage of correctly pre-
dicted cities, accuracy@161 a relaxed accuracy
that takes prediction errors within 161 km as cor-
rect predictions, median error distance median
value of error distances in predictions, and mean
error distance mean value of error distances in
predictions.

1265

Model	 Sign. Test
ID	 Accuracy	 Accuracy

@161	
Error Distance	

Median	 Mean	

Baselines
(reported)	

Han et al. (2012)	
Wing and Baldridge (2014)	
LR (Rahimi et al. 2015b)
LR-NA (Rahimi et al. 2016)	
MADCEL-B-LR (Rahimi et al. 2015a)
MADCEL-W-LR (Rahimi et al. 2015a)

26.0	
-	
-	
-
-
-	

45.0	
49.2	
50
51	
60
60	

260	
170.5	
159
148	
77
78	

814	
703.6	
686
636	
533
529	

Baselines
(implemented)	

LR	
MADCEL-B-LR	
LR-STACK	
MADCEL-B-LR-STACK	

i	
ii	
iii	
iv	

42.0	
50.2	
50.8	
55.7	

52.7	
60.1	
64.1	
67.7	

121.1	
66.5	
42.3*	

45.1	

666.6	
582.8	
427.7	
412.7	

Our Models	

SUB-NN-TEXT	
SUB-NN-UNET	
SUB-NN-META
Proposed Model	

i	
ii	
iii	
iv	

44.9**	

51.0	
54.6**	

58.5**	

55.6**	

61.5*	

67.2**	

70.1**	

110.5	
65.0	
46.8	
41.9*	

585.1**	

481.5**	

356.3**

335.7**	

Table 2: Performances of our models and the baseline models on TwitterUS. Significance tests were per-
formed between models with same Sign. Test IDs. The shaded lines represent values copied from related
papers. Asterisks denote significant improvements against paired counterparts with 1% confidence (**)
and 5% confidence (*).

Model	 Sign. Test
ID	 Accuracy	 Accuracy

@161	
Error Distance	

Median	 Mean	
Baselines
(reported)	

Miura et al. (2016)
Jayasinghe et al. (2016)

47.6	
52.6	

-
-	

16.1	
21.7	

1122.3
1928.8	

Baselines
(implemented)	

LR	
MADCEL-B-LR	
LR-STACK	
MADCEL-B-LR-STACK	

i	
ii	
iii	
iv	

34.1	
36.2
51.2	
51.6	

46.7
49.7
64.9	
65.3	

248.7
166.3
0.0
0.0	

2216.4	
2120.6	
1496.4
1471.9	

Our Models	

SUB-NN-TEXT
SUB-NN-UNET	
SUB-NN-META
Proposed Model	

i	
ii	
iii	
iv	

35.4**	

38.1**

54.7**	

56.4**	

50.3**	

53.3**

70.2**	

71.9**	

155.8**	

99.9**	

0.0
0.0	

1592.6**	

1498.6**

825.8**	

780.5**	

Table 3: Performance of our models and baseline models on W-NUT. The same notations as those in
Table 2 are used in this table.

5.3 Result
Performance on TwitterUS
Table 2 presents results of our models and the im-
plemented baseline models on TwitterUS. We also
list values from earlier reports (Han et al., 2012;
Wing and Baldridge, 2014; Rahimi et al., 2015a,b,
2016) to make our results readily comparable with
past reported values.

We performed some statistical significance tests
among model pairs that share the same inputs.
The values in the Sign. Test ID column of Table
2 represent the IDs of these pairs. As a prepa-
ration of statistical significance tests, accuracies,
accuracy@161s, and error distances of each test
user were calculated for each model pair. Two-
sided Fisher-Pittman Permutation tests were used
for testing accuracy and accuracy@161. Mood’s
median test was used for testing error distance in
terms of median. Paired t-tests were used for test-
ing error distance in terms of mean.

We confirmed the significance of improvements

in accuracy@161 and mean distance error for all
of our models. Three of our models also im-
proved in terms of accuracy. Especially, the pro-
posed model achieved a 2.8% increase in accu-
racy and a 2.4% increase in accuracy@161 against
the counterpart baseline model MADCEL-B-LR-
STACK. One negative result we found was the me-
dian error distance between SUB-NN-META and
LR-STACK. The baseline model LR-STACK per-
formed 4.5 km significantly better than our model.

Performance on W-NUT
Table 3 presents the results of our models and
the implemented baseline models on W-NUT. As
for TwitterUS, we listed values from Miura et al.
(2016) and Jayasinghe et al. (2016). We tested the
significance of these results in the same way as we
did for TwitterUS.

We confirmed significant improvement in the
four metrics for all of our models. The proposed
model achieved a 4.8% increase in accuracy and a

1266

description	

location	timeline	

timezone	

Figure 4: Estimated probability density functions
of the four representations in AttentionU.

6.6% increase in accuracy@161 against the coun-
terpart baseline model MADCEL-B-LR-STACK.
The accuracy is 3.8% higher against the previously
reported best value (Jayasinghe et al., 2016) which
combined texts, metadata, and user network infor-
mation with an ensemble method.

6 Discussion
6.1 Analyses of Attention Probabilities

6.1.1 Unification Strategies
In the evaluation, the proposed model has implic-
itly shown effectiveness at unifying text, meta-
data, and user network representations through im-
provements in the four metrics. However, details
of the unification processes are not clear from the
model outputs because they are merely the prob-
abilities of estimated locations. To gain insight
into the unification processes, we analyzed the
states of two attention layers: AttentionU and
AttentionUN in Figure 1.

Figure 4 presents the estimated probability den-
sity functions (PDFs) of the four input represen-
tations for AttentionU. These PDFs are esti-
mated with kernel density estimation from the de-
velopment sets of TwitterUS and W-NUT, where
all four representations are available. From the
PDFs, it is apparent that the model assigns higher
probabilities to time line representations than to
other three representations in TwitterUS compared
to W-NUT. This finding is reasonable because
timelines in TwitterUS consist of more tweets
(tweet/user in Table 1) and are likely to be more
informative than in W-NUT.

Figure 5 presents the estimated PDFs of user
network representations for AttentionUN. These

user network	

Figure 5: Estimated probability density functions
of user network representations in AttentionUN.

PDFs are estimated from the development sets
of TwitterUS and W-NUT, where both input rep-
resentations are available. Strong preference of
network representation for TwitterUS against W-
NUT is found in the PDFs. This finding is in-
tuitive because TwitterUS has substantially more
user network edges (reduced-edge/user in Table 1)
than W-NUT, which is likely to benefit more from
user network information.

6.1.2 Attention Patterns
We further analyzed the proposed model by clus-
tering attention probabilities to capture typical
attention patterns. For each user, we assigned
six attention probabilities of AttentionU and
AttentionUN as features for a clustering. A k-
means clustering was performed over these users
with 9 clusters. The clustering clearly separated
the users to 5 clusters for TwitterUS users and 4
clusters for W-NUT users. We extracted typical
users of each cluster by selecting the closest users
of the cluster centroids. Figure 6 shows a cluster-
ing result and the attention probabilities of these
users.

These attention probabilities can be considered
as typical attention patterns of the proposed model
and match with the previously estimated PDFs.
For example, cluster 2 and 3 represent an atten-
tion pattern that processes users by balancing the
representations of locations along with the repre-
sentations of timelines. Additionally, the location
probabilities in this pattern are in the right tail re-
gion of the location PDF.

6.2 Limitations of Proposed Model

6.2.1 City Prediction
The evaluation produced improvements in most
of our models in the four metrics. One excep-
tion we found was the median distance error be-
tween SUB-NN-META and LR-STACKING in
TwitterUS. Because the median distance error of
SUB-NN-META was quite low (46.8 km), we

1267

1	

2	

3	

4	

5	
6	

7	 8	
9	

TwitterUS	
W-NUT	

Cluster
ID� Dataset Timeline Location Description Timezone User User

Network

1� TwitterUS� 0.843� 0.082� 0.040� 0.035� 0.359� 0.641�
2� W-NUT� 0.517� 0.317� 0.081� 0.085� 0.732� 0.268�
3� TwitterUS� 0.432� 0.430� 0.069� 0.069� 0.319� 0.681�
4� W-NUT� 0.637� 0.160� 0.097� 0.105� 0.737� 0.263�
5� TwitterUS� 0.593� 0.219� 0.114� 0.075� 0.230� 0.770�
6� TwitterUS� 0.672� 0.214� 0.069� 0.045� 0.365� 0.635�
7� W-NUT� 0.741� 0.077� 0.080� 0.102� 0.605� 0.395�
8� TwitterUS� 0.766� 0.099� 0.068� 0.067� 0.222� 0.778�
9� W-NUT� 0.800� 0.067� 0.056� 0.078� 0.730� 0.270�

Figure 6: A k-means clustering result and the attention probabilities of users that are closest to the cluster
centroids. The underlined values are the max values of the two datasets for each column.

Model	
Error Distance

Median Mean σ
Oracle	 23.3	 31.4	 30.1	

Table 4: Error distance values in TwitterUS with
oracle predictions. σ in the table denotes the stan-
dard deviation.

measured the performance of an oracle model
where city predictions are all correct (accuracy of
100%) in the test set.

Table 4 denotes this oracle performance. The
oracle mean error distance is 31.4 km. Its stan-
dard deviation is 30.1. Note that ground truth loca-
tions of TwitterUS are geotags and will not exactly
match the oracle city centers. These oracle values
imply that the current median error distances are
close to the lower bound of the city classification
approach and that they are difficult to improve.

6.2.2 Errors with High Confidences
The proposed model still contains 28–30% errors
even in accuracy@161. A qualitative analysis of
errors with high confidences was performed to in-
vestigate cases that the model fails. We found two
common types of error in the error analysis. The
first is a case when a location field is incorrect due
to a reason such as a house move. For example,
the model predicted “Hong Kong” for a user with
a location field of “Hong Kong” but has the gold
location of “Toronto”. The second is a case when
a user tweets a place name of a travel. For exam-
ple, the model predicted “San Francisco” for a user
who tweeted about a travel to “San Francisco” but
has the gold location of “Boston”.

These two types of error are difficult to han-
dle with the current architecture of the proposed
model. The architecture only supports single lo-
cation field which disables the model to track lo-
cation changes. The architecture also treats each

tweet independently which forbids the model to
express a temporal state like traveling.

7 Conclusion
As described in this paper, we proposed a complex
neural network model for geolocation prediction.
The model unifies text, metadata, and user net-
work information. The model achieved the max-
imum of a 3.8% increase in accuracy and a max-
imum of 6.6% increase in accuracy@161 against
several previous state-of-the-art models. We fur-
ther analyzed the states of several attention layers,
which revealed that the probabilities assigned to
timeline representations and user network repre-
sentations match to some statistical characteristics
of datasets.

As future works of this study, we are planning
to expand the proposed model to handle multi-
ple locations and a temporal state to capture lo-
cation changes and states like traveling. Addi-
tionally, we plan to apply the proposed model to
other social media analyses such as gender anal-
ysis and age analysis. In these analyses, meta-
data like location fields and timezones may not
be effective like in geolocation prediction. How-
ever, a user network is known to include various
user attributes information including gender and
age (McPherson et al., 2001) which suggests the
unification of text and user network information
to result in a success as in geolocation prediction.

Acknowledgments
We would like to thank the members of Okumura–
Takamura Group at Tokyo Institute of Technology
for having insightful discussions about user profil-
ing models in social media. We would also like to
thank the anonymous reviewer for their comments
to improve this paper.

1268

References
Amr Ahmed, Liangjie Hong, and Alexander J. Smola.

2013. Hierarchical geographical modeling of user
locations from social media posts. In Proceedings
of the 22nd International Conference on World Wide
Web. pages 25–36.

Lars Backstrom, Eric Sun, and Cameron Marlow. 2010.
Find me if you can: Improving geographical predic-
tion with social and spatial proximity. In Proceed-
ings of the 19th International Conference on World
Wide Web. pages 61–70.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. Com-
puting Research Repository abs/1409.0473.
http://arxiv.org/abs/1409.0473.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Miriam Cha, Youngjune Gwon, and H. T. Kung. 2015.
Twitter geolocation and regional classification via
sparse coding. In Proceedings of the Ninth Interna-
tional AAAI Conference on Web and Social Media.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee.
2010. You are where you tweet: A content-based ap-
proach to geo-locating Twitter users. In Proceedings
of the 19th ACM International Conference on In-
formation and Knowledge Management. pages 759–
768.

Zhiyuan Cheng, James Caverlee, and Kyumin Lee.
2013. A content-driven framework for geolocating
microblog users. ACM Transactions on Intelligent
Systems and Technology 4(1):1–27. Article 2.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing. pages 1724–1734.

Ryan Compton, David Jurgens, and David Allen. 2014.
Geotagging one hundred million Twitter accounts
with total variation minimization. In Proceedings
of the 2014 IEEE International Conference on Big-
Data. pages 393–401.

David J. Crandall, Lars Backstrom, Daniel Hutten-
locher, and Jon Kleinberg. 2009. Mapping the
world’s photos. In Proceedings of the 18th Interna-
tional Conference on World Wide Web. pages 761–
770.

Aron Culotta. 2010. Towards detecting influenza epi-
demics by analyzing Twitter messages. In Proceed-
ings of the First Workshop on Social Media Analyt-
ics. pages 115–122.

Clodoveu A. Davis Jr., Gisele L. Pappa, Diogo
Rennó Rocha de Oliveira, and Filipe de L. Arcanjo.
2011. Inferring the location of Twitter messages
based on user relationships. Transactions in GIS
15(6):735–751.

Jacob Eisenstein, Amr Ahmed, and Eric P. Xing. 2011.
Sparse additive generative models of text. In Pro-
ceedings of the 28th International Conference on
Machine Learning. pages 1041–1048.

Jacob Eisenstein, Brendan O’Connor, Noah A. Smith,
and Eric P. Xing. 2010. A latent variable model for
geographic lexical variation. In Proceedings of the
2010 Conference on Empirical Methods in Natural
Language Processing. pages 1277–1287.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press.

Alex Graves. 2012. Supervised Sequence Labelling
with Recurrent Neural Networks, volume 385 of
Studies in Computational Intelligence. Springer-
Verlag Berlin Heidelberg.

Bo Han, Paul Cook, and Timothy Baldwin. 2012. Ge-
olocation prediction in social media data by finding
location indicative words. In Proceedings of COL-
ING 2012. pages 1045–1062.

Bo Han, Paul Cook, and Timothy Baldwin. 2013. A
stacking-based approach to twitter user geolocation
prediction. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguis-
tics: System Demonstrations. pages 7–12.

Bo Han, Paul Cook, and Timothy Baldwin. 2014. Text-
based Twitter user geolocation prediction. Journal
of Artificial Intelligence Research 49(1):451–500.

Bo Han, Afshin Rahimi, Leon Derczynski, and Timo-
thy Baldwin. 2016. Twitter geolocation prediction
shared task of the 2016 workshop on noisy user-
generated text. In Proceedings of the Second Work-
shop on Noisy User-generated Text. pages 213–217.

Brent Hecht, Lichan Hong, Bongwon Suh, and Ed H.
Chi. 2011. Tweets from Justin Bieber’s heart: the
dynamics of the location field in user profiles. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. pages 237–246.

Liangjie Hong, Amr Ahmed, Siva Gurumurthy,
Alexander J. Smola, and Kostas Tsioutsiouliklis.
2012. Discovering geographical topics in the Twit-
ter stream. In Proceedings of the 21st International
Conference on World Wide Web. pages 769–778.

Gaya Jayasinghe, Brian Jin, James Mchugh, Bella
Robinson, and Stephen Wan. 2016. CSIRO Data61
at the WNUT geo shared task. In Proceedings of
the Second Workshop on Noisy User-generated Text.
pages 218–226.

1269

David Jurgens. 2013. That’s what friends are for: Infer-
ring location in online social media platforms based
on social relationships. In Proceedings of the Sev-
enth International AAAI Conference on Web and So-
cial Media.

David Jurgens, Tyler Finethy, James McCorriston,
Yi Xu, and Derek Ruths. 2015. Geolocation pre-
diction in Twitter using social networks: A critical
analysis and review of current practice. In Proceed-
ings of the Ninth International AAAI Conference on
Web and Social Media.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Sheila Kinsella, Vanessa Murdock, and Neil O’Hare.
2011. ”I’m eating a sandwich in Glasgow”: Mod-
eling locations with tweets. In Proceedings of the
Third International Workshop on Search and Min-
ing User-generated Contents. pages 61–68.

Longbo Kong, Zhi Liu, and Yan Huang. 2014. SPOT:
Locating social media users based on social net-
work context. Proceedings of the VLDB Endowment
7(13):1681–1684.

Rui Li, Shengjie Wang, and Kevin Chen-Chuan Chang.
2012a. Multiple location profiling for users and rela-
tionships from social network and content. Proceed-
ings of the VLDB Endowment 5(11):1603–1614.

Rui Li, Shengjie Wang, Hongbo Deng, Rui Wang, and
Kevin Chen-Chuan Chang. 2012b. Towards social
user profiling: Unified and discriminative influence
model for inferring home locations. In Proceedings
of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. pages
1023–1031.

Ji Liu and Diana Inkpen. 2015. Estimating user lo-
cation in social media with stacked denoising auto-
encoders. In Proceedings of the First Workshop on
Vector Space Modeling for Natural Language Pro-
cessing. pages 201–210.

Jalal Mahmud, Jeffrey Nichols, and Clemens Drews.
2012. Where is this tweet from? Inferring home lo-
cations of Twitter users. In Proceedings of the Sixth
International AAAI Conference on Weblogs and So-
cial Media.

Eugenio Martı́nez-Cámara, Maria Teresa Martı́n-
Valdivia, Luis Alfonso Ureña López, and Arturo
Montejo Raéz. 2014. Sentiment analysis in Twitter.
Natural Language Engineering 20(1):1–28.

Jeffrey McGee, James Caverlee, and Zhiyuan Cheng.
2013. Location prediction in social media based on
tie strength. In Proceedings of the 22nd ACM Inter-
national Conference on Information & Knowledge
Management. pages 459–468.

Miller McPherson, Lynn Smith-Lovin, and James M
Cook. 2001. Birds of a feather: Homophily in social
networks. Annual review of sociology 27(1):415–
444.

Yasuhide Miura, Motoki Taniguchi, Tomoki Taniguchi,
and Tomoko Ohkuma. 2016. A simple scalable neu-
ral networks based model for geolocation prediction
in Twitter. In Proceedings of the Second Workshop
on Noisy User-generated Text. pages 235–239.

Simon E. Overell. 2009. Geographic Information Re-
trieval: Classification, Disambiguation, and Model-
ing. Ph.D. thesis, Imperial College London.

Olutobi Owoputi, Brendan O’Connor, Chris Dyer,
Kevin Gimpel, Nathan Schneider, and Noah A.
Smith. 2013. Improved part-of-speech tagging for
online conversational text with word clusters. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
pages 380–390.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2015a. Twitter user geolocation using a unified text
and network prediction model. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 2: Short Papers). pages 630–636.

Afshin Rahimi, Trevor Cohn, and Timothy Baldwin.
2016. pigeo: A python geotagging tool. In Proceed-
ings of ACL-2016 System Demonstrations. pages
127–132.

Afshin Rahimi, Duy Vu, Trevor Cohn, and Timothy
Baldwin. 2015b. Exploiting text and network con-
text for geolocation of social media users. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. pages
1362–1367.

Delip Rao, David Yarowsky, Abhishek Shreevats, and
Manaswi Gupta. 2010. Classifying latent user at-
tributes in Twitter. In Proceedings of the Second In-
ternational Workshop on Search and Mining User-
generated Contents. pages 37–44.

Stephen Roller, Michael Speriosu, Sarat Rallapalli,
Benjamin Wing, and Jason Baldridge. 2012. Super-
vised text-based geolocation using language models
on an adaptive grid. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning. pages 1500–1510.

Dominic Rout, Kalina Bontcheva, Daniel Preoţiuc-
Pietro, and Trevor Cohn. 2013. Where’s @wally?:
A classification approach to geolocating users based
on their social ties. In Proceedings of the 24th ACM
Conference on Hypertext and Social Media. pages
11–20.

1270

Adam Sadilek, Henry Kautz, and Jeffrey P. Bigham.
2012. Finding your friends and following them to
where you are. In Proceedings of the Fifth ACM
International Conference on Web Search and Data
Mining. pages 723–732.

Takeshi Sakaki, Makoto Okazaki, and Yutaka Matsuo.
2010. Earthquake shakes Twitter users: Real-time
event detection by social sensors. In Proceedings
of the 19th International Conference on World Wide
Web. pages 851–860.

Axel Schulz, Aristotelis Hadjakos, Heiko Paulheim,
Johannes Nachtwey, and Max Mühlhäuser. 2013.
A multi-indicator approach for geolocalization of
tweets. In Proceedings of the Seventh International
AAAI Conference on Web and Social Media.

Pavel Serdyukov, Vanessa Murdock, and Roelof van
Zwol. 2009. Placing Flickr photos on a map. In
Proceedings of the 32nd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval. pages 484–491.

Partha Pratim Talukdar and Koby Crammer. 2009.
New regularized algorithms for transductive learn-
ing. In Proceedings of the European Conference
on Machine Learning and Knowledge Discovery in
Databases: Part II. pages 442–457.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. LINE: Large-scale in-
formation network embedding. In Proceedings of
the 24th International Conference on World Wide
Web. pages 1067–1077.

Andranik Tumasjan, Timm O. Sprenger, Philipp G.
Sandner, and Isabell M. Welpe. 2010. Predicting
elections with Twitter: What 140 characters reveal
about political sentiment. In Proceedings of the
Fourth International AAAI Conference on Weblogs
and Social Media. pages 178–185.

Benjamin Wing and Jason Baldridge. 2011. Simple su-
pervised document geolocation with geodesic grids.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. pages 955–964.

Benjamin Wing and Jason Baldridge. 2014. Hierar-
chical discriminative classification for text-based ge-
olocation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Pro-
cessing. pages 336–348.

David H. Wolpert. 1992. Stacked generalization. Neu-
ral Networks 5(2):241–259.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
pages 1480–1489.

1271

A Supplemental Materials
A.1 Parameters of Embedding Pre-training
Word embeddings were pre-trained with the pa-
rameters of learning rate=0.025, window size=5,
negative sample size=5, and epoch=5. User em-
beddings were pre-trained with the parameters of
initial learning rate=0.025, order=2, negative sam-
ple size=5, and training sample size=100M.

A.2 Model Parameters and Parameter
Selection Strategies

Unit Sizes, Embedding Dimensions, and a Max
Tweet Number
The layers and the embeddings in our models have
unit size and embedding dimension parameters.
We also restricted the maximum number of tweets
per user for TwitterUS to reduce memory foot-
prints. Table 5 shows the values for these param-
eters. Smaller values were set for TwitterUS be-
cause TwitterUS is approximately 2.6 times larger
in terms of tweet number. It was computationally
expensive to process TwiiterUS in the same set-
tings as W-NUT.

Regularization Parameters and Bucket Sizes
We chose optimal values of α using a grid search
with the development sets of TwitterUS and W-
NUT. The range of α was set as the following:
α ∈ {1e−4, 5e−5, 1e−5, 5e−6, 1e−6, 5e−7, 1e−7,
5e−8, 1e−8}.

We also chose optimal values of c using grid
search with the development sets of TwitterUS and
W-NUT for the baseline models. The range of c
was set as the following for TwitterUS:
c ∈ {50, 100, 150, 200, 250, 300, 339}.
The following was set for W-NUT:
c ∈ {100, 200, 300, 400, 500, 600, 700, 800, 900,
1000, 1500, 2000, 2500, 3000, 3028}.
Table 6 presents selected values of α and c. For
LR-STACK and MADCEl-B-LR-STACK, differ-
ent parameters of α and c were selected for each
logistic regression classifier.

MAD Parameters and Celebrity Threshold
The MAD parameters µ1, µ2, and µ3 and celebrity
threshold t were also chosen using grid search
with the development sets of TwitterUS and W-
NUT. The ranges of µ1, µ2, and µ3 were set as the
following:
µ1 ∈ {1.0}, µ2 ∈ {0.001, 0.01, 0.1, 1.0, 10.0},
µ3 ∈ {0.0, 0.001, 0.01, 0.1, 1.0, 10.0}.
The range of t for TwitterUS was set as t ∈
{2, . . . , 16}. The range of t for W-NUT was set

TwitterUS W-NUT
RNN unit size	 100	 200	
Attention context vector size	 200	 400	
FC unit size	 200	 400	
Word embedding dimension	 100	 200	
Timezone embedding dimension	 200	 400	
City embedding dimension	 200	 400	
User embedding dimension	 200	 400	
Max tweet number per user	 200	 -	

Table 5: Unit sizes, embedding dimensions, and
max tweet numbers of our models.

Model	 Parameter	 TwitterUS W-NUT
SUB-NN-TEXT	

α	

1e-8	 1e-7	

SUB-NN-UNET	 1e-6	 5e-8	

SUB-NN-META	 1e-8	 5e-8	

Proposed Model	 1e-6	 5e-8	

LR
MADCEL-B-LR	

α	 1e-6	 5e-7	

c	 300	 3000	

LR-STACK
MADCEL-B-LR-STACK	

αMSG	 1e-6	 5e-7	

αLOC	 1e-6	 1e-6	

αDESC	 5e-6	 1e-6	

αTZ	 1e-4	 5e-6	

α2ND	 1e-6	 1e-7	

cMSG	 300	 3000	
cLOC	 300	 3000	
cDESC	 250	 1500	
cTZ	 100	 2500	
c2ND	 300	 2000	

Table 6: Regularization parameters and bucket
sizes selected for our models and baseline models.

Model	 Parameter	 TwitterUS W-NUT

MADCEL-B-LR	

µ1	 1.0	 1.0	
µ2	 1.0	 10.0	
µ3	 0.01	 0.1	
t	 5	 4	

MADCEL-B-LR-STACK	

µ1	 1.0	 1.0	
µ2	 1.0	 1.0	
µ3	 0.1	 0.0	
t	 4	 2	

Table 7: MAD parameters and celebrity threshold
selected for baseline models.

as t ∈ {2, . . . , 6}. Table 6 presents selected val-
ues of µ1, µ2, µ3, and t.

1272

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1273–1283
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1117

Multi-Task Video Captioning with Video and Entailment Generation

Ramakanth Pasunuru and Mohit Bansal
UNC Chapel Hill

{ram, mbansal}@cs.unc.edu

Abstract

Video captioning, the task of describing
the content of a video, has seen some
promising improvements in recent years
with sequence-to-sequence models, but
accurately learning the temporal and log-
ical dynamics involved in the task still re-
mains a challenge, especially given the
lack of sufficient annotated data. We im-
prove video captioning by sharing knowl-
edge with two related directed-generation
tasks: a temporally-directed unsuper-
vised video prediction task to learn richer
context-aware video encoder representa-
tions, and a logically-directed language
entailment generation task to learn bet-
ter video-entailing caption decoder rep-
resentations. For this, we present a
many-to-many multi-task learning model
that shares parameters across the encoders
and decoders of the three tasks. We
achieve significant improvements and the
new state-of-the-art on several standard
video captioning datasets using diverse au-
tomatic and human evaluations. We also
show mutual multi-task improvements on
the entailment generation task.

1 Introduction

Video captioning is the task of automatically gen-
erating a natural language description of the con-
tent of a video, as shown in Fig. 1. It has various
applications such as assistance to a visually im-
paired person and improving the quality of online
video search or retrieval. This task has gained re-
cent momentum in the natural language process-
ing and computer vision communities, esp. with
the advent of powerful image processing features
as well as sequence-to-sequence LSTM models. It

Figure 1: A video captioning example from the
YouTube2Text dataset, with the ground truth captions
and our many-to-many multi-task model’s predicted caption.

is also a step forward from static image captioning,
because in addition to modeling the spatial visual
features, the model also needs to learn the tempo-
ral across-frame action dynamics and the logical
storyline language dynamics.

Previous work in video captioning (Venu-
gopalan et al., 2015a; Pan et al., 2016b) has shown
that recurrent neural networks (RNNs) are a good
choice for modeling the temporal information in
the video. A sequence-to-sequence model is then
used to ‘translate’ the video to a caption. Venu-
gopalan et al. (2016) showed linguistic improve-
ments over this by fusing the decoder with external
language models. Furthermore, an attention mech-
anism between the video frames and the caption
words captures some of the temporal matching re-
lations better (Yao et al., 2015; Pan et al., 2016a).
More recently, hierarchical two-level RNNs were
proposed to allow for longer inputs and to model
the full paragraph caption dynamics of long video
clips (Pan et al., 2016a; Yu et al., 2016).

Despite these recent improvements, video cap-
tioning models still suffer from the lack of suffi-
cient temporal and logical supervision to be able
to correctly capture the action sequence and story-
dynamic language in videos, esp. in the case of
short clips. Hence, they would benefit from incor-
porating such complementary directed knowledge,
both visual and textual. We address this by jointly
training the task of video captioning with two
related directed-generation tasks: a temporally-

1273

https://doi.org/10.18653/v1/P17-1117

directed unsupervised video prediction task and a
logically-directed language entailment generation
task. We model this via many-to-many multi-task
learning based sequence-to-sequence models (Lu-
ong et al., 2016) that allow the sharing of param-
eters among the encoders and decoders across the
three different tasks, with additional shareable at-
tention mechanisms.

The unsupervised video prediction task, i.e.,
video-to-video generation (adapted from Srivas-
tava et al. (2015)), shares its encoder with the
video captioning task’s encoder, and helps it learn
richer video representations that can predict their
temporal context and action sequence. The entail-
ment generation task, i.e., premise-to-entailment
generation (based on the image caption domain
SNLI corpus (Bowman et al., 2015)), shares its de-
coder with the video captioning decoder, and helps
it learn better video-entailing caption representa-
tions, since the caption is essentially an entailment
of the video, i.e., it describes subsets of objects
and events that are logically implied by or follow
from the full video content). The overall many-to-
many multi-task model combines all three tasks.

Our three novel multi-task models show statis-
tically significant improvements over the state-of-
the-art, and achieve the best-reported results (and
rank) on multiple datasets, based on several au-
tomatic and human evaluations. We also demon-
strate that video captioning, in turn, gives mutual
improvements on the new multi-reference entail-
ment generation task.

2 Related Work

Early video captioning work (Guadarrama et al.,
2013; Thomason et al., 2014; Huang et al., 2013)
used a two-stage pipeline to first extract a subject,
verb, and object (S,V,O) triple and then generate a
sentence based on it. Venugopalan et al. (2015b)
fed mean-pooled static frame-level visual features
(from convolution neural networks pre-trained on
image recognition) of the video as input to the lan-
guage decoder. To harness the important frame
sequence temporal ordering, Venugopalan et al.
(2015a) proposed a sequence-to-sequence model
with video encoder and language decoder RNNs.

More recently, Venugopalan et al. (2016) ex-
plored linguistic improvements to the caption de-
coder by fusing it with external language models.
Moreover, an attention or alignment mechanism
was added between the encoder and the decoder

to learn the temporal relations (matching) between
the video frames and the caption words (Yao et al.,
2015; Pan et al., 2016a). In contrast to static visual
features, Yao et al. (2015) also considered tem-
poral video features from a 3D-CNN model pre-
trained on an action recognition task.

To explore long range temporal relations, Pan
et al. (2016a) proposed a two-level hierarchical
RNN encoder which limits the length of input in-
formation and allows temporal transitions between
segments. Yu et al. (2016)’s hierarchical RNN
generates sentences at the first level and the sec-
ond level captures inter-sentence dependencies in
a paragraph. Pan et al. (2016b) proposed to simul-
taneously learn the RNN word probabilities and
a visual-semantic joint embedding space that en-
forces the relationship between the semantics of
the entire sentence and the visual content. Despite
these useful recent improvements, video caption-
ing still suffers from limited supervision and gen-
eralization capabilities, esp. given the complex
action-based temporal and story-based logical dy-
namics that need to be captured from short video
clips. Our work addresses this issue by bringing in
complementary temporal and logical knowledge
from video prediction and textual entailment gen-
eration tasks (respectively), and training them to-
gether via many-to-many multi-task learning.

Multi-task learning is a useful learning
paradigm to improve the supervision and the
generalization performance of a task by jointly
training it with related tasks (Caruana, 1998;
Argyriou et al., 2007; Kumar and Daumé III,
2012). Recently, Luong et al. (2016) combined
multi-task learning with sequence-to-sequence
models, sharing parameters across the tasks’
encoders and decoders. They showed improve-
ments on machine translation using parsing and
image captioning. We additionally incorporate
an attention mechanism to this many-to-many
multi-task learning approach and improve the
multimodal, temporal-logical video captioning
task by sharing its video encoder with the encoder
of a video-to-video prediction task and by sharing
its caption decoder with the decoder of a linguistic
premise-to-entailment generation task.

Image representation learning has been success-
ful via supervision from very large object-labeled
datasets. However, similar amounts of supervi-
sion are lacking for video representation learning.
Srivastava et al. (2015) address this by propos-

1274

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Figure 2: Baseline sequence-to-sequence model for video
captioning: standard encoder-decoder LSTM-RNN model.

ing unsupervised video representation learning via
sequence-to-sequence RNN models, where they
reconstruct the input video sequence or predict the
future sequence. We model video generation with
an attention-enhanced encoder-decoder and har-
ness it to improve video captioning.

The task of recognizing textual entailment
(RTE) is to classify whether the relationship be-
tween a premise and hypothesis sentence is that
of entailment (i.e., logically follows), contradic-
tion, or independence (neutral), which is help-
ful for several downstream NLP tasks. The re-
cent Stanford Natural Language Inference (SNLI)
corpus by Bowman et al. (2015) allowed training
end-to-end neural networks that outperform ear-
lier feature-based RTE models (Lai and Hocken-
maier, 2014; Jimenez et al., 2014). However, di-
rectly generating the entailed hypothesis sentences
given a premise sentence would be even more ben-
eficial than retrieving or reranking sentence pairs,
because most downstream generation tasks only
come with the source sentence and not pairs. Re-
cently, Kolesnyk et al. (2016) tried a sequence-
to-sequence model for this on the original SNLI
dataset, which is a single-reference setting and
hence restricts automatic evaluation. We modify
the SNLI corpus to a new multi-reference (and
a more challenging zero train-test premise over-
lap) setting, and present a novel multi-task training
setup with the related video captioning task (where
the caption also entails a video), showing mutual
improvements on both the tasks.

3 Models

We first discuss a simple encoder-decoder model
as a baseline reference for video captioning. Next,
we improve this via an attention mechanism. Fi-
nally, we present similar models for the unsuper-
vised video prediction and entailment generation
tasks, and then combine them with video caption-
ing via the many-to-many multi-task approach.

3.1 Baseline Sequence-to-Sequence Model
Our baseline model is similar to the stan-
dard machine translation encoder-decoder RNN

Figure 3: Attention-based sequence-to-sequence baseline
model for video captioning (similar models also used for
video prediction and entailment generation).

model (Sutskever et al., 2014) where the final state
of the encoder RNN is input as an initial state to
the decoder RNN, as shown in Fig. 2. The RNN
is based on Long Short Term Memory (LSTM)
units, which are good at memorizing long se-
quences due to forget-style gates (Hochreiter and
Schmidhuber, 1997). For video captioning, our
input to the encoder is the video frame features1

{f1, f2, ..., fn} of length n, and the caption word
sequence {w1, w2, ..., wm} of length m is gener-
ated during the decoding phase. The distribution
of the output sequence w.r.t. the input sequence is:

p(w1, ..., wm|f1, ..., fn) =
m∏

t=1

p(wt|hdt) (1)

where hdt is the hidden state at the tth time step of
the decoder RNN, obtained from hdt−1 and wt−1
via the standard LSTM-RNN equations. The dis-
tribution p(wt|hdt) is given by softmax over all the
words in the vocabulary.

3.2 Attention-based Model
Our attention model architecture is similar to Bah-
danau et al. (2015), with a bidirectional LSTM-
RNN as the encoder and a unidirectional LSTM-
RNN as the decoder, see Fig. 3. At each time step
t, the decoder LSTM hidden state hdt is a non-
linear recurrent function of the previous decoder
hidden state hdt−1, the previous time-step’s gener-
ated word wt−1, and the context vector ct:

hdt = S(hdt−1, wt−1, ct) (2)

1We use several popular image features such as VGGNet,
GoogLeNet and Inception-v4. Details in Sec. 4.1.

1275

UNSUPERVISED

VIDEO PREDICTION
VIDEO CAPTIONING

ENTAILMENT

GENERATION

Video Encoder Language Encoder

Video Decoder Language Decoder

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Figure 4: Our many-to-many multi-task learning model to share encoders and decoders of the video captioning, unsupervised
video prediction, and entailment generation tasks.

where ct is a weighted sum of encoder hidden
states {hei}:

ct =

n∑

i=1

αt,ih
e
i (3)

These attention weights {αt,i} act as an alignment
mechanism by giving higher weights to certain en-
coder hidden states which match that decoder time
step better, and are computed as:

αt,i =
exp(et,i)∑n
k=1 exp(et,k)

(4)

where the attention function et,i is defined as:

et,i = wT tanh(W e
ah

e
i +W d

ah
d
t−1 + ba) (5)

where w, W e
a , W d

a , and ba are learned parameters.
This attention-based sequence-to-sequence model
(Fig. 3) is our enhanced baseline for video caption-
ing. We next discuss similar models for the new
tasks of unsupervised video prediction and entail-
ment generation and then finally share them via
multi-task learning.

3.3 Unsupervised Video Prediction
We model unsupervised video representation by
predicting the sequence of future video frames
given the current frame sequence. Similar to
Sec. 3.2, a bidirectional LSTM-RNN encoder and
an LSTM-RNN decoder is used, along with at-
tention. If the frame level features of a video
of length n are {f1, f2, ..., fn}, these are di-
vided into two sets such that given the current
frames {f1, f2, .., fk} (in its encoder), the model
has to predict (decode) the rest of the frames
{fk+1, fk+2, .., fn}. The motivation is that this

helps the video encoder learn rich temporal rep-
resentations that are aware of their action-based
context and are also robust to missing frames and
varying frame lengths or motion speeds. The opti-
mization function is defined as:

minimize
φ

n−k∑

t=1

||fdt − ft+k||22 (6)

where φ are the model parameters, ft+k is the true
future frame feature at decoder time step t and fdt
is the decoder’s predicted future frame feature at
decoder time step t, defined as:

fdt = S(hdt−1, f
d
t−1, ct) (7)

similar to Eqn. 2, with hdt−1 and fdt−1 as the
previous time step’s hidden state and predicted
frame feature respectively, and ct as the attention-
weighted context vector.

3.4 Entailment Generation
Given a sentence (premise), the task of entail-
ment generation is to generate a sentence (hypoth-
esis) which is a logical deduction or implication
of the premise. Our entailment generation model
again uses a bidirectional LSTM-RNN encoder
and LSTM-RNN decoder with an attention mech-
anism (similar to Sec. 3.2). If the premise sp is
a sequence of words {wp1, wp2, ..., wpn} and the hy-
pothesis sh is {wh1 , wh2 , ..., whm}, the distribution
of the entailed hypothesis w.r.t. the premise is:

p(wh1 , ..., w
h
m|wp1, ..., wpn) =

m∏

t=1

p(wht |hdt) (8)

where the distribution p(wht |hdt) is again obtained
via softmax over all the words in the vocabulary
and the decoder state hdt is similar to Eqn. 2.

1276

3.5 Multi-Task Learning

Multi-task learning helps in sharing information
between different tasks and across domains. Our
primary aim is to improve the video captioning
model, where visual content translates to a tex-
tual form in a directed (entailed) generation way.
Hence, this presents an interesting opportunity to
share temporally and logically directed knowledge
with both visual and linguistic generation tasks.
Fig. 4 shows our overall many-to-many multi-task
model for jointly learning video captioning, unsu-
pervised video prediction, and textual entailment
generation. Here, the video captioning task shares
its video encoder (parameters) with the encoder of
the video prediction task (one-to-many setting) so
as to learn context-aware and temporally-directed
visual representations (see Sec. 3.3).

Moreover, the decoder of the video caption-
ing task is shared with the decoder of the textual
entailment generation task (many-to-one setting),
thus helping generate captions that can ‘entail’,
i.e., are logically implied by or follow from the
video content (see Sec. 3.4).2 In both the one-to-
many and the many-to-one settings, we also allow
the attention parameters to be shared or separated.
The overall many-to-many setting thus improves
both the visual and language representations of the
video captioning model.

We train the multi-task model by alternately op-
timizing each task in mini-batches based on a mix-
ing ratio. Let αv, αf , and αe be the number
of mini-batches optimized alternately from each
of these three tasks – video captioning, unsuper-
vised video future frames prediction, and entail-
ment generation, resp. Then the mixing ratio is de-
fined as αv

(αv+αf+αe)
:

αf

(αv+αf+αe)
: αe
(αv+αf+αe)

.

4 Experimental Setup

4.1 Datasets

Video Captioning Datasets We report results
on three popular video captioning datasets. First,
we use the YouTube2Text or MSVD (Chen and
Dolan, 2011) for our primary results, which con-

2Empirically, logical entailment helped captioning more
than simple fusion with language modeling (i.e., partial sen-
tence completion with no logical implication), because a cap-
tion also entails a video in a logically-directed sense and
hence the entailment generation task matches the video cap-
tioning task better than language modeling. Moreover, a
multi-task setup is more suitable to add directed information
such as entailment (as opposed to pretraining or fusion with
only the decoder). Details in Sec. 5.1.

tains 1970 YouTube videos in the wild with sev-
eral different reference captions per video (40 on
average). We also use MSR-VTT (Xu et al.,
2016) with 10, 000 diverse video clips (from a
video search engine) – it has 200, 000 video clip-
sentence pairs and around 20 captions per video;
and M-VAD (Torabi et al., 2015) with 49, 000
movie-based video clips but only 1 or 2 captions
per video, making most evaluation metrics (except
paraphrase-based METEOR) infeasible. We use
the standard splits for all three datasets. Further
details about all these datasets are provided in the
supplementary.

Video Prediction Dataset For our unsupervised
video representation learning task, we use the
UCF-101 action videos dataset (Soomro et al.,
2012), which contains 13, 320 video clips of 101
action categories, and suits our video captioning
task well because it also contains short video clips
of a single action or few actions. We use the stan-
dard splits – further details in supplementary.

Entailment Generation Dataset For the entail-
ment generation encoder-decoder model, we use
the Stanford Natural Language Inference (SNLI)
corpus (Bowman et al., 2015), which contains
human-annotated English sentence pairs with clas-
sification labels of entailment, contradiction and
neutral. It has a total of 570, 152 sentence pairs
out of which 190, 113 correspond to true entail-
ment pairs, and we use this subset in our multi-task
video captioning model. For improving video cap-
tioning, we use the same training/validation/test
splits as provided by Bowman et al. (2015), which
is 183, 416 training, 3, 329 validation, and 3, 368
testing pairs (for the entailment subset).

However, for the entailment generation multi-
task results (see results in Sec. 5.3), we modify
the splits so as to create a multi-reference setup
which can afford evaluation with automatic met-
rics. A given premise usually has multiple entailed
hypotheses but the original SNLI corpus is set
up as single-reference (for classification). Due to
this, the different entailed hypotheses of the same
premise land up in different splits of the dataset
(e.g., one in train and one in test/validation) in
many cases. Therefore, we regroup the premise-
entailment pairs and modify the split as follows:
among the 190, 113 premise-entailment pairs sub-
set of the SNLI corpus, there are 155, 898 unique
premises; out of which 145, 822 have only one hy-

1277

pothesis and we make this the training set, and
the rest of them (10, 076) have more than one hy-
pothesis, which we randomly shuffle and divide
equally into test and validation sets, so that each of
these two sets has approximately the same distri-
bution of the number of reference hypotheses per
premise.

These new validation and test sets hence con-
tain premises with multiple entailed hypotheses as
ground truth references, thus allowing for auto-
matic metric evaluation, where differing genera-
tions still get positive scores by matching one of
the multiple references. Also, this creates a more
challenging dataset for entailment generation be-
cause of zero premise overlap between the training
and val/test sets. We will make these split details
publicly available.

Pre-trained Visual Frame Features For the
three video captioning and UCF-101 datasets, we
fix our sampling rate to 3fps to bring unifor-
mity in the temporal representation of actions
across all videos. These sampled frames are
then converted into features using several state-
of-the-art pre-trained models on ImageNet (Deng
et al., 2009) – VGGNet (Simonyan and Zisserman,
2015), GoogLeNet (Szegedy et al., 2015; Ioffe and
Szegedy, 2015), and Inception-v4 (Szegedy et al.,
2016). Details of these feature dimensions and
layer positions are in the supplementary.

4.2 Evaluation (Automatic and Human)

For our video captioning as well as entailment
generation results, we use four diverse auto-
matic evaluation metrics that are popular for im-
age/video captioning and language generation in
general: METEOR (Denkowski and Lavie, 2014),
BLEU-4 (Papineni et al., 2002), CIDEr-D (Vedan-
tam et al., 2015), and ROUGE-L (Lin, 2004). Par-
ticularly, METEOR and CIDEr-D have been jus-
tified to be better for generation tasks, because
CIDEr-D uses consensus among the (large) num-
ber of references and METEOR uses soft match-
ing based on stemming, paraphrasing, and Word-
Net synonyms. We use the standard evaluation
code from the Microsoft COCO server (Chen
et al., 2015) to obtain these results and also to
compare the results with previous papers.3

We also present human evaluation results based

3We use avg. of these four metrics on validation set to
choose the best model, except for single-reference M-VAD
dataset where we only report and choose based on METEOR.

on relevance (i.e., how related is the generated
caption w.r.t. the video contents such as actions,
objects, and events; or is the generated hypothesis
entailed or implied by the premise) and coherence
(i.e., a score on the logic, readability, and fluency
of the generated sentence).

4.3 Training Details

We tune all hyperparameters on the dev splits:
LSTM-RNN hidden state size, learning rate,
weight initializations, and mini-batch mixing ra-
tios (tuning ranges in supplementary). We use
the following settings in all of our models (un-
less otherwise specified): we unroll video en-
coder/decoder RNNs to 50 time steps and lan-
guage encoder/decoder RNNs to 30 time steps.
We use a 1024-dimension RNN hidden state size
and 512-dim vectors to embed visual features and
word vectors. We use Adam optimizer (Kingma
and Ba, 2015). We apply a dropout of 0.5. See
subsections below and supp for full details.

5 Results and Analysis

5.1 Video Captioning on YouTube2Text

Table 1 presents our primary results on the
YouTube2Text (MSVD) dataset, reporting several
previous works, all our baselines and attention
model ablations, and our three multi-task models,
using the four automated evaluation metrics. For
each subsection below, we have reported the im-
portant training details inline, and refer to the sup-
plementary for full details (e.g., learning rates and
initialization).

Baseline Performance We first present all our
baseline model choices (ablations) in Table 1.
Our baselines represent the standard sequence-to-
sequence model with three different visual feature
types as well as those with attention mechanisms.
Each baseline model is trained with three random
seed initializations and the average is reported (for
stable results). The final baseline model ⊗ instead
uses an ensemble (E), which is a standard denois-
ing method (Sutskever et al., 2014) that performs
inference over ten randomly initialized models,
i.e., at each time step t of the decoder, we generate
a word based on the avg. of the likelihood prob-
abilities from the ten models. Moreover, we use
beam search with size 5 for all baseline models.
Overall, the final baseline model with Inception-
v4 features, attention, and 10-ensemble performs

1278

Models METEOR CIDEr-D ROUGE-L BLEU-4
PREVIOUS WORK

LSTM-YT (V) (Venugopalan et al., 2015b) 26.9 - - 31.2
S2VT (V + A) (Venugopalan et al., 2015a) 29.8 - - -
Temporal Attention (G + C) (Yao et al., 2015) 29.6 51.7 - 41.9
LSTM-E (V + C) (Pan et al., 2016b) 31.0 - - 45.3
Glove + DeepFusion (V) (E) (Venugopalan et al., 2016) 31.4 - - 42.1
p-RNN (V + C) (Yu et al., 2016) 32.6 65.8 - 49.9
HNRE + Attention (G + C) (Pan et al., 2016a) 33.9 - - 46.7

OUR BASELINES
Baseline (V) 31.4 63.9 68.0 43.6
Baseline (G) 31.7 64.8 68.6 44.1
Baseline (I) 33.3 75.6 69.7 46.3
Baseline + Attention (V) 32.6 72.2 69.0 47.5
Baseline + Attention (G) 33.0 69.4 68.3 44.9
Baseline + Attention (I) 33.8 77.2 70.3 49.9
Baseline + Attention (I) (E) ⊗ 35.0 84.4 71.5 52.6

OUR MULTI-TASK LEARNING MODELS
⊗ + Video Prediction (1-to-M) 35.6 88.1 72.9 54.1
⊗ + Entailment Generation (M-to-1) 35.9 88.0 72.7 54.4
⊗ + Video Prediction + Entailment Generation (M-to-M) 36.0 92.4 72.8 54.5

Table 1: Primary video captioning results on Youtube2Text (MSVD), showing previous works, our several strong baselines,
and our three multi-task models. Here, V, G, I, C, A are short for VGGNet, GoogLeNet, Inception-v4, C3D, and AlexNet visual
features; E = ensemble. The multi-task models are applied on top of our best video captioning baseline ⊗, with an ensemble.
All the multi-task models are statistically significant over the baseline (discussed inline in the corresponding results sections).

well (and is better than all previous state-of-the-
art), and so we next add all our novel multi-task
models on top of this final baseline.

Multi-Task with Video Prediction (1-to-M)
Here, the video captioning and unsupervised video
prediction tasks share their encoder LSTM-RNN
weights and image embeddings in a one-to-many
multi-task setting. Two important hyperparam-
eters tuned (on the validation set of caption-
ing datasets) are the ratio of encoder vs decoder
frames for video prediction on UCF-101 (where
we found that 80% of frames as input and 20% for
prediction performs best); and the mini-batch mix-
ing ratio between the captioning and video pre-
diction tasks (where we found 100 : 200 works
well). Table 1 shows a statistically significant im-
provement4 in all metrics in comparison to the best
baseline (non-multitask) model as well as w.r.t. all
previous works, demonstrating the effectiveness
of multi-task learning for video captioning with
video prediction, even with unsupervised signals.

Multi-Task with Entailment Generation (M-
to-1) Here, the video captioning and entail-
ment generation tasks share their language de-
coder LSTM-RNN weights and word embeddings
in a many-to-one multi-task setting. We observe

4Statistical significance of p < 0.01 for CIDEr-D and
ROUGE-L, p < 0.02 for BLEU-4, p < 0.03 for METEOR,
based on the bootstrap test (Noreen, 1989; Efron and Tibshi-
rani, 1994) with 100K samples.

that a mixing ratio of 100 : 50 alternating mini-
batches (between the captioning and entailment
tasks) works well here. Again, Table 1 shows
statistically significant improvements5 in all the
metrics in comparison to the best baseline model
(and all previous works) under this multi-task set-
ting. Note that in our initial experiments, our en-
tailment generation model helped the video cap-
tioning task significantly more than the alternative
approach of simply improving fluency by adding
(or deep-fusing) an external language model (or
pre-trained word embeddings) to the decoder (us-
ing both in-domain and out-of-domain language
models), again because a caption also ‘entails’ a
video in a logically-directed sense and hence this
matches our captioning task better (also see results
of Venugopalan et al. (2016) in Table 1).

Multi-Task with Video and Entailment Gener-
ation (M-to-M) Combining the above one-to-
many and many-to-one multi-task learning mod-
els, our full model is the 3-task, many-to-many
model (Fig. 4) where both the video encoder
and the language decoder of the video caption-
ing model are shared (and hence improved) with
that of the unsupervised video prediction and en-
tailment generation models, respectively.6 A mix-
ing ratio of 100 : 100 : 50 alternate mini-batches

5Statistical significance of p < 0.01 for all four metrics.
6We found the setting with unshared attention parameters

to work best, likely because video captioning and video pre-
diction prefer very different alignment distributions.

1279

Models M C R B
Venugopalan (2015b)? 23.4 - - 32.3
Yao et al. (2015)? 25.2 - - 35.2
Xu et al. (2016) 25.9 - - 36.6
Rank1: v2t navigator 28.2 44.8 60.9 40.8
Rank2: Aalto 26.9 45.7 59.8 39.8
Rank3: VideoLAB 27.7 44.1 60.6 39.1
Our Model (New Rank1) 28.8 47.1 60.2 40.8

Table 2: Results on MSR-VTT dataset on the 4 metrics.
?Results are reimplementations as per Xu et al. (2016).
We also report the top 3 leaderboard systems – our model
achieves the new rank 1 based on their ranking method.

Models METEOR
Yao et al. (2015) 5.7
Venugopalan et al. (2015a) 6.7
Pan et al. (2016a) 6.8
Our M-to-M Multi-Task Model 7.4

Table 3: Results on M-VAD dataset.

of video captioning, unsupervised video predic-
tion, and entailment generation, resp. works well.
Table 1 shows that our many-to-many multi-task
model again outperforms our strongest baseline
(with statistical significance of p < 0.01 on all
metrics), as well as all the previous state-of-the-
art results by large absolute margins on all met-
rics. It also achieves significant improvements on
some metrics over the one-to-many and many-to-
one models.7 Overall, we achieve the best results
to date on YouTube2Text (MSVD) on all metrics.

5.2 Video Captioning on MSR-VTT, M-VAD

In Table 2, we also train and evaluate our fi-
nal many-to-many multi-task model on two other
video captioning datasets (using their standard
splits; details in supplementary). First, we eval-
uate on the new MSR-VTT dataset (Xu et al.,
2016). Since this is a recent dataset, we list pre-
vious works’ results as reported by the MSR-VTT
dataset paper itself.8 We improve over all of these
significantly. Moreover, they maintain a leader-
board9 on this dataset and we also report the top 3
systems from it. Based on their ranking method,
our multi-task model achieves the new rank 1 on
this leaderboard. In Table 3, we further eval-
uate our model on the challenging movie-based
M-VAD dataset, and again achieve improvements
over all previous work (Venugopalan et al., 2015a;

7Many-to-many model’s improvements have a statistical
significance of p < 0.01 on all metrics w.r.t. baseline, and
p < 0.01 on CIDEr-D w.r.t. both one-to-many and many-to-
one models, and p < 0.04 on METEOR w.r.t. one-to-many.

8In their updated supplementary at https:
//www.microsoft.com/en-us/research/wp-content/
uploads/2016/10/cvpr16.supplementary.pdf

9
http://ms-multimedia-challenge.com/leaderboard

Models M C R B
Entailment Generation 28.0 108.4 59.7 36.6
+Video Caption (M-to-1) 28.7 114.5 60.8 38.9

Table 4: Entailment generation results with the four metrics.

Pan et al., 2016a; Yao et al., 2015).10

5.3 Entailment Generation Results
Above, we showed that the new entailment gener-
ation task helps improve video captioning. Next,
we show that the video captioning task also
inversely helps the entailment generation task.
Given a premise, the task of entailment generation
is to generate an entailed hypothesis. We use only
the entailment pairs subset of the SNLI corpus for
this, but with a multi-reference split setup to al-
low automatic metric evaluation and a zero train-
test premise overlap (see Sec. 4.1). All the hyper-
parameter details (again tuned on the validation
set) are presented in the supplementary. Table 4
presents the entailment generation results for the
baseline (sequence-to-sequence with attention, 3-
ensemble, beam search) and the multi-task model
which uses video captioning (shared decoder) on
top of the baseline. A mixing ratio of 100 : 20 al-
ternate mini-batches of entailment generation and
video captioning (resp.) works well.11 The multi-
task model achieves stat. significant (p < 0.01)
improvements over the baseline on all metrics,
thus demonstrating that video captioning and en-
tailment generation both mutually help each other.

5.4 Human Evaluation
In addition to the automated evaluation metrics,
we present pilot-scale human evaluations on the
YouTube2Text (Table 1) and entailment genera-
tion (Table 4) results. In each case, we compare
our strongest baseline with our final multi-task
model by taking a random sample of 200 gener-
ated captions (or entailed hypotheses) from the test
set and removing the model identity to anonymize
the two models, and ask the human evaluator to
choose the better model based on relevance and
coherence (described in Sec. 4.2). As shown in
Table 5, the multi-task models are always better
than the strongest baseline for both video caption-
ing and entailment generation, on both relevance

10Following previous work, we only use METEOR be-
cause M-VAD only has a single reference caption per video.

11Note that this many-to-one model prefers a different mix-
ing ratio and learning rate than the many-to-one model for
improving video captioning (Sec. 5.1), because these hyper-
parameters depend on the primary task being improved, as
also discussed in previous work (Luong et al., 2016).

1280

(a) (b) (c)

Figure 5: Examples of generated video captions on the YouTube2Text dataset: (a) complex examples where the multi-task
model performs better than the baseline; (b) ambiguous examples (i.e., ground truth itself confusing) where multi-task model
still correctly predicts one of the possible categories (c) complex examples where both models perform poorly.

YouTube2Text Entailment
Relev. Coher. Relev. Coher.

Not Distinguish. 65.0% 93.0% 73.5% 94.5%
Baseline Wins 14.0% 1.0% 12.5% 1.5%
Multi-Task Wins 21.0% 6.0% 15.0% 4.0%

Table 5: Human evaluation on captioning and entailment.

Given Premise Generated
Entailment

a man on stilts is playing a tuba for
money on the boardwalk

a man is playing
an instrument

a girl looking through a large tele-
scope on a school trip

a girl is looking
at something

several young people sit at a table
playing poker

people are play-
ing a game

the stop sign is folded up against the
side of the bus

the sign is not
moving

a blue and silver monster truck mak-
ing a huge jump over crushed cars

a truck is being
driven

Table 6: Examples of our multi-task model’s generated en-
tailment hypotheses given a premise.

and coherence, and with similar improvements (2-
7%) as the automatic metrics (shown in Table 1).

5.5 Analysis
Fig. 5 shows video captioning generation re-
sults on the YouTube2Text dataset where our fi-
nal M-to-M multi-task model is compared with
our strongest attention-based baseline model for
three categories of videos: (a) complex examples
where the multi-task model performs better than
the baseline; (b) ambiguous examples (i.e., ground
truth itself confusing) where multi-task model still
correctly predicts one of the possible categories
(c) complex examples where both models perform
poorly. Overall, we find that the multi-task model
generates captions that are better at both temporal
action prediction and logical entailment (i.e., cor-
rect subset of full video premise) w.r.t. the ground
truth captions. The supplementary also provides

ablation examples of improvements by the 1-to-M
video prediction based multi-task model alone, as
well as by the M-to-1 entailment based multi-task
model alone (over the baseline).

On analyzing the cases where the baseline is
better than the final M-to-M multi-task model, we
find that these are often scenarios where the multi-
task model’s caption is also correct but the base-
line caption is a bit more specific, e.g., “a man is
holding a gun” vs “a man is shooting a gun”.

Finally, Table 6 presents output examples of our
entailment generation multi-task model (Sec. 5.3),
showing how the model accurately learns to pro-
duce logically implied subsets of the premise.

6 Conclusion

We presented a multimodal, multi-task learning
approach to improve video captioning by incor-
porating temporally and logically directed knowl-
edge via video prediction and entailment genera-
tion tasks. We achieve the best reported results
(and rank) on three datasets, based on multiple au-
tomatic and human evaluations. We also show mu-
tual multi-task improvements on the new entail-
ment generation task. In future work, we are ap-
plying our entailment-based multi-task paradigm
to other directed language generation tasks such as
image captioning and document summarization.

Acknowledgments

We thank the anonymous reviewers for their help-
ful comments. This work was partially supported
by a Google Faculty Research Award, an IBM
Faculty Award, a Bloomberg Data Science Re-
search Grant, and NVidia GPU awards.

1281

References

Andreas Argyriou, Theodoros Evgeniou, and Massim-
iliano Pontil. 2007. Multi-task feature learning. In
NIPS.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Samuel R Bowman, Gabor Angeli, Christopher Potts,
and Christopher D Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.

Rich Caruana. 1998. Multitask learning. In Learning
to learn, Springer, pages 95–133.

David L Chen and William B Dolan. 2011. Collect-
ing highly parallel data for paraphrase evaluation. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1. Association for Com-
putational Linguistics, pages 190–200.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. 2015. Microsoft COCO cap-
tions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325 .

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai
Li, and Li Fei-Fei. 2009. ImageNet: A large-scale
hierarchical image database. In CVPR. IEEE, pages
248–255.

Michael Denkowski and Alon Lavie. 2014. Meteor
universal: Language specific translation evaluation
for any target language. In EACL.

Bradley Efron and Robert J Tibshirani. 1994. An intro-
duction to the bootstrap. CRC press.

Sergio Guadarrama, Niveda Krishnamoorthy, Girish
Malkarnenkar, Subhashini Venugopalan, Raymond
Mooney, Trevor Darrell, and Kate Saenko. 2013.
Youtube2text: Recognizing and describing arbitrary
activities using semantic hierarchies and zero-shot
recognition. In CVPR. pages 2712–2719.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Haiqi Huang, Yueming Lu, Fangwei Zhang, and
Songlin Sun. 2013. A multi-modal clustering
method for web videos. In International Conference
on Trustworthy Computing and Services. pages 163–
169.

Sergey Ioffe and Christian Szegedy. 2015. Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift. In ICML.

Sergio Jimenez, George Duenas, Julia Baquero,
Alexander Gelbukh, Av Juan Dios Bátiz, and
Av Mendizábal. 2014. UNAL-NLP: Combining soft
cardinality features for semantic textual similarity,
relatedness and entailment. In In SemEval. pages
732–742.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Vladyslav Kolesnyk, Tim Rocktäschel, and Sebastian
Riedel. 2016. Generating natural language inference
chains. arXiv preprint arXiv:1606.01404 .

Abhishek Kumar and Hal Daumé III. 2012. Learning
task grouping and overlap in multi-task learning. In
ICML.

Alice Lai and Julia Hockenmaier. 2014. Illinois-LH: A
denotational and distributional approach to seman-
tics. Proc. SemEval 2:5.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summa-
rization Branches Out: Proceedings of the ACL-04
workshop. volume 8.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In ICLR.

Eric W Noreen. 1989. Computer-intensive methods for
testing hypotheses. Wiley New York.

Pingbo Pan, Zhongwen Xu, Yi Yang, Fei Wu, and Yuet-
ing Zhuang. 2016a. Hierarchical recurrent neural
encoder for video representation with application to
captioning. In CVPR. pages 1029–1038.

Yingwei Pan, Tao Mei, Ting Yao, Houqiang Li, and
Yong Rui. 2016b. Jointly modeling embedding and
translation to bridge video and language. In CVPR.
pages 4594–4602.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic
evaluation of machine translation. In ACL. pages
311–318.

Karen Simonyan and Andrew Zisserman. 2015. Very
deep convolutional networks for large-scale image
recognition. In ICLR.

Khurram Soomro, Amir Roshan Zamir, and Mubarak
Shah. 2012. UCF101: A dataset of 101 human ac-
tions classes from videos in the wild. arXiv preprint
arXiv:1212.0402 .

Nitish Srivastava, Elman Mansimov, and Ruslan
Salakhutdinov. 2015. Unsupervised learning of
video representations using lstms. In ICML. pages
843–852.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS. pages 3104–3112.

1282

Christian Szegedy, Sergey Ioffe, and Vincent Van-
houcke. 2016. Inception-v4, inception-resnet and
the impact of residual connections on learning. In
CoRR.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. 2015. Going deeper with convolutions. In
CVPR. pages 1–9.

Jesse Thomason, Subhashini Venugopalan, Sergio
Guadarrama, Kate Saenko, and Raymond J Mooney.
2014. Integrating language and vision to generate
natural language descriptions of videos in the wild.
In COLING.

Atousa Torabi, Christopher Pal, Hugo Larochelle, and
Aaron Courville. 2015. Using descriptive video ser-
vices to create a large data source for video annota-
tion research. arXiv preprint arXiv:1503.01070 .

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. CIDEr: Consensus-based image de-
scription evaluation. In CVPR. pages 4566–4575.

Subhashini Venugopalan, Lisa Anne Hendricks, Ray-
mond Mooney, and Kate Saenko. 2016. Improving
lstm-based video description with linguistic knowl-
edge mined from text. In EMNLP.

Subhashini Venugopalan, Marcus Rohrbach, Jeffrey
Donahue, Raymond Mooney, Trevor Darrell, and
Kate Saenko. 2015a. Sequence to sequence-video
to text. In CVPR. pages 4534–4542.

Subhashini Venugopalan, Huijuan Xu, Jeff Donahue,
Marcus Rohrbach, Raymond Mooney, and Kate
Saenko. 2015b. Translating videos to natural lan-
guage using deep recurrent neural networks. In
NAACL HLT .

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. Msr-
vtt: A large video description dataset for bridging
video and language. In CVPR. pages 5288–5296.

Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Bal-
las, Christopher Pal, Hugo Larochelle, and Aaron
Courville. 2015. Describing videos by exploiting
temporal structure. In CVPR. pages 4507–4515.

Haonan Yu, Jiang Wang, Zhiheng Huang, Yi Yang, and
Wei Xu. 2016. Video paragraph captioning using
hierarchical recurrent neural networks. In CVPR.

1283

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1284–1296
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1118

Enriching Complex Networks with Word Embeddings for Detecting Mild
Cognitive Impairment from Speech Transcripts

Leandro B. dos Santos1, Edilson A. Corrêa Jr1, Osvaldo N. Oliveira Jr2, Diego R. Amancio1,
Letı́cia L. Mansur3, Sandra M. Aluı́sio1

1 Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, São Paulo, Brazil
2 São Carlos Institute of Physics, University of São Paulo, São Carlos, São Paulo, Brazil

3 Department of Physiotherapy, Speech Pathology and Occupational Therapy,
University of São Paulo, São Paulo, São Paulo, Brazil

{leandrobs,edilsonacjr,lamansur}@usp.br, chu@ifsc.usp.br
{diego,sandra}@icmc.usp.br

Abstract

Mild Cognitive Impairment (MCI) is a
mental disorder difficult to diagnose. Lin-
guistic features, mainly from parsers,
have been used to detect MCI, but this
is not suitable for large-scale assess-
ments. MCI disfluencies produce non-
grammatical speech that requires man-
ual or high precision automatic correction
of transcripts. In this paper, we mod-
eled transcripts into complex networks
and enriched them with word embedding
(CNE) to better represent short texts pro-
duced in neuropsychological assessments.
The network measurements were applied
with well-known classifiers to automati-
cally identify MCI in transcripts, in a bi-
nary classification task. A comparison
was made with the performance of tra-
ditional approaches using Bag of Words
(BoW) and linguistic features for three
datasets: DementiaBank in English, and
Cinderella and Arizona-Battery in Por-
tuguese. Overall, CNE provided higher
accuracy than using only complex net-
works, while Support Vector Machine was
superior to other classifiers. CNE pro-
vided the highest accuracies for Dementia-
Bank and Cinderella, but BoW was more
efficient for the Arizona-Battery dataset
probably owing to its short narratives. The
approach using linguistic features yielded
higher accuracy if the transcriptions of the
Cinderella dataset were manually revised.
Taken together, the results indicate that
complex networks enriched with embed-
ding is promising for detecting MCI in
large-scale assessments.

1 Introduction

Mild Cognitive Impairment (MCI) can affect one
or multiple cognitive domains (e.g. memory,
language, visuospatial skills and executive func-
tions), and may represent a pre-clinical stage of
Alzheimer’s disease (AD). The impairment that
affects memory, referred to as amnestic MCI, is
the most frequent, with the highest conversion rate
for AD, at 15% per year versus 1 to 2% for the
general population. Since dementias are chronic
and progressive diseases, their early diagnosis en-
sures a greater chance of success to engage pa-
tients in non-pharmacological treatment strategies
such as cognitive training, physical activity and
socialization (Teixeira et al., 2012).

Language is one of the most efficient in-
formation sources to assess cognitive functions.
Changes in language usage are frequent in patients
with dementia and are normally first recognized
by the patients themselves or their family mem-
bers. Therefore, the automatic analysis of dis-
course production is promising in diagnosing MCI
at early stages, which may address potentially re-
versible factors (Muangpaisan et al., 2012). Pro-
posals to detect language-related impairment in
dementias include machine learning (Jarrold et al.,
2010; Roark et al., 2011; Fraser et al., 2014, 2015),
magnetic resonance imaging (Dyrba et al., 2015),
and data screening tests added to demographic in-
formation (Weakley et al., 2015). Discourse pro-
duction (mainly narratives) is attractive because it
allows the analysis of linguistic microstructures,
including phonetic-phonological, morphosyntac-
tic and semantic-lexical components, as well as
semantic-pragmatic macrostructures.

Automated discourse analysis based on Natural
Language Processing (NLP) resources and tools to
diagnose dementias via machine learning methods
has been used for English language (Lehr et al.,

1284

https://doi.org/10.18653/v1/P17-1118

2012; Jarrold et al., 2014; Orimaye et al., 2014;
Fraser et al., 2015; Davy et al., 2016) and for
Brazilian Portuguese (Aluı́sio et al., 2016). A va-
riety of features are required for this analysis, in-
cluding Part-of-Speech (PoS), syntactic complex-
ity, lexical diversity and acoustic features. Pro-
ducing robust tools to extract these features is ex-
tremely difficult because speech transcripts used
in neuropsychological evaluations contain disflu-
encies (repetitions, revisions, paraphasias) and
patient’s comments about the task being evalu-
ated. Another problem in using linguistic knowl-
edge is the high dependence on manually created
resources, such as hand-crafted linguistic rules
and/or annotated corpora. Even when traditional
statistical techniques (Bag of Words or ngrams)
are applied, problems still appear in dealing with
disfluencies, because mispronounced words will
not be counted together. Indeed, other types of dis-
fluencies (repetition, amendments, patient’s com-
ments about the task) will be counted, thus in-
creasing the vocabulary.

An approach applied successfully to several ar-
eas of NLP (Mihalcea and Radev, 2011), which
may suffer less from the problems mentioned
above, relies on the use of complex networks
and graph theory. The word adjacency network
model (i Cancho and Solé, 2001; Roxas and
Tapang, 2010; Amancio et al., 2012a; Amancio,
2015b) has provided good results in text classifi-
cation (de Arruda et al., 2016) and related tasks,
namely author detection (Amancio, 2015a), iden-
tification of literary movements (Amancio et al.,
2012c), authenticity verification (Amancio et al.,
2013) and word sense discrimination (Amancio
et al., 2012b).

In this paper, we show that speech transcripts
(narratives or descriptions) can be modeled into
complex networks that are enriched with word em-
bedding in order to better represent short texts pro-
duced in these assessments. When applied to a
machine learning classifier, the complex network
features were able to distinguish between control
participants and mild cognitive impairment partic-
ipants. Discrimination of the two classes could be
improved by combining complex networks with
linguistic and traditional statistical features.

With regard to the task of detecting MCI from
transcripts, this paper is, to the best of our knowl-
edge, the first to: a) show that classifiers using
features extracted from transcripts modeled into

complex networks enriched with word embedding
present higher accuracy than using only complex
networks for 3 datasets; and b) show that for lan-
guages that do not have competitive dependency
and constituency parsers to exploit syntactic fea-
tures, e.g. Brazilian Portuguese, complex net-
works enriched with word embedding constitute
a source to extract new, language independent fea-
tures from transcripts.

2 Related Work

Detection of memory impairment has been based
on linguistic, acoustic, and demographic features,
in addition to scores of neuropsychological tests.
Linguistic and acoustic features were used to auto-
matically detect aphasia (Fraser et al., 2014); and
AD (Fraser et al., 2015) or dementia (Orimaye
et al., 2014) in the public corpora of Dementia-
Bank1. Other studies distinguished different types
of dementia (Garrard et al., 2014; Jarrold et al.,
2014), in which speech samples were elicited us-
ing the Picnic picture of the Western Aphasia Bat-
tery (Kertesz, 1982). Davy et al. (2016) also used
the Picnic scene to detect MCI, where the subjects
were asked to write (by hand) a detailed descrip-
tion of the scene.

As for automatic detection of MCI in narra-
tive speech, Roark et al. (2011) extracted speech
features and linguistic complexity measures of
speech samples obtained with the Wechsler Log-
ical Memory (WLM) subtest (Wechsler et al.,
1997), and Lehr et al. (2012) fully automatized
the WLM subtest. In this test, the examiner tells
a short narrative to a subject, who then retells the
story to the examiner, immediately and after a 30-
minute delay. WLM scores are obtained by count-
ing the number of story elements recalled.

Tóth et al. (2015) and Vincze et al. (2016) used
short animated films to evaluate immediate and de-
layed recalls in MCI patients who were asked to
talk about the first film shown, then about their
previous day, and finally about another film shown
last. Tóth et al. (2015) adopted automatic speech
recognition (ASR) to extract a phonetic level seg-
mentation, which was used to calculate acoustic
features. Vincze et al. (2016) used speech, mor-
phological, semantic, and demographic features
collected from their speech transcripts to automat-
ically identify patients suffering from MCI.

For the Portuguese language, machine learning
1talkbank.org/DementiaBank/

1285

algorithms were used to identify subjects with AD
and MCI. Aluı́sio et al. (2016) used a variety of
linguistic metrics, such as syntactic complexity,
idea density (da Cunha et al., 2015), and text co-
hesion through latent semantics. NLP tools with
high precision are needed to compute these met-
rics, which is a problem for Portuguese since no
robust dependency or constituency parsers exist.
Therefore, the transcriptions had to be manually
revised; they were segmented into sentences, fol-
lowing a semantic-structural criterion and capital-
ization was applied. The authors also removed
disfluencies and inserted omitted subjects when
they were hidden, in order to reduce parsing er-
rors. This process is obviously expensive, which
has motivated us to use complex networks in the
present study to model transcriptions and avoid a
manual preprocessing step.

3 Modeling and Characterizing Texts as
Complex Networks

The theory and concepts of complex networks
have been used in several NLP tasks (Mihalcea
and Radev, 2011; Cong and Liu, 2014), such as
text classification (de Arruda et al., 2016), summa-
rization (Antiqueira et al., 2009; Amancio et al.,
2012a) and word sense disambiguation (Silva and
Amancio, 2012). In this study, we used the word
co-occurrence model (also called word adjacency
model) because most of the syntactical relations
occur among neighboring words (i Cancho et al.,
2004). Each distinct word becomes a node and
words that are adjacent in the text are connected
by an edge. Mathematically, a network is defined
as an undirected graph G = {V,E}, formed by a
set V = {v1, v2, ..., vn} of nodes (words) and a set
E = {e1, e2, ..., em} of edges (co-occurrence) that
are represented by an adjacency matrix A, whose
elements Aij are equal to 1 whenever there is an
edge connecting nodes (words) i and j, and equal
to 0 otherwise.

Before modeling texts into complex networks, it
is often necessary to do some preprocessing in the
raw text. Preprocessing starts with tokenization
where each document/text is divided into tokens
(meaningful elements, e.g., words and punctua-
tion marks) and then stopwords and punctuation
marks are removed, since they have little seman-
tic meaning. One last step we decided to eliminate
from the preprocessing pipeline is lemmatization,
which transforms each word into its canonical

1
2

5

4 0

7

6

3

11
10

9

8

water

running
floor

boy

taking

cookies

cookie

jar

stool

falling
girl

asking

Figure 1: Example of co-occurrence network en-
riched with semantic information for the following
transcription: “The water’s running on the floor.
Boy’s taking cookies out of cookie out of the cookie
jar. The stool is falling over. The girl was ask-
ing for a cookie.”. The solid edges of the net-
work represent co-occurrence edges and the dotted
edges represent connections between words that
had similarity higher than 0.5.

form. This decision was made based on two fac-
tors. First, a recent work has shown that lemma-
tization has little or no influence when network
modeling is adopted in related tasks (Machicao
et al., 2016). Second, the lemmatization process
requires part-of-speech (POS) tagging that may in-
troduce undesirable noises/errors in the text, since
the transcriptions in our work contain disfluencies.

Another problem with transcriptions in our
work is their size. As demonstrated by Aman-
cio (2015c), classification of small texts using net-
works can be impaired, since short texts have al-
most linear networks, and the topological mea-
sures of these networks have little or no informa-
tion relevant to classification. To solve this prob-
lem, we adapted the approach of inducing lan-
guage networks from word embeddings, proposed
by Perozzi et al. (2014) to enrich the networks with
semantic information. In their work, language net-
works were generated from continuous word rep-
resentations, in which each word is represented
by a dense, real-valued vector obtained by train-
ing neural networks in the language model task
(or variations, such as context prediction) (Ben-
gio et al., 2003; Collobert et al., 2011; Mikolov
et al., 2013a,b). This structure is known to cap-
ture syntactic and semantic information. Perozzi
et al. (2014), in particular, take advantage of word
embeddings to build networks where each word is

1286

(a) (b)

Figure 2: Example of (a) co-occurrence network
created for a transcript of the Cookie Theft dataset
(see Supplementary Information, Section A) and
(b) the same co-occurrence network enriched with
semantic information. Note that (b) is a more in-
formative network than (a), since (a) is practically
a linear network.

a vertex and edges are defined by similarity be-
tween words established by the proximity of the
word vectors.

Following this methodology, in our model we
added new edges to the co-occurrence networks
considering similarities between words, that is, for
all pairs of words in the text that were not con-
nected, an edge was created if their vectors (from
word embedding) had a cosine similarity higher
than a given threshold. Figure 1 shows an example
of a co-occurrence network enriched by similarity
links (the dotted edges). The gain in information
by enriching a co-occurrence network with seman-
tic information is readily apparent in Figure 2.

4 Datasets, Features and Methods

4.1 Datasets

The datasets2 used in our study consisted of: (i)
manually segmented and transcribed samples from
the DementiaBank and Cinderella story and (ii)
transcribed samples of Arizona Battery for Com-
munication Disorders of Dementia (ABCD) auto-
matically segmented into sentences, since we are
working towards a fully automated system to de-
tect MCI in transcripts and would like to evaluate
a dataset which was automatically processed.

The DementiaBank dataset is composed of
short English descriptions, while the Cinderella
dataset contains longer Brazilian Portuguese nar-
ratives. ABCD dataset is composed of very short
narratives, also in Portuguese. Below, we describe

2All datasets are made available in the same representa-
tions used in this work, upon request to the authors.

in further detail the datasets, participants, and the
task in which they were used.

4.1.1 The Cookie Theft Picture Description
Dataset

The clinical dataset used for the English lan-
guage was created during a longitudinal study con-
ducted by the University of Pittsburgh School of
Medicine on Alzheimer’s and related dementia,
funded by the National Institute of Aging. To be
eligible for inclusion in the study, all participants
were required to be above 44 years of age, have at
least 7 years of education, no history of nervous
system disorders nor be taking neuroleptic med-
ication, have an initial Mini-Mental State Exam
(MMSE) score of 10 or greater, and be able to give
informed consent. The dataset contains transcripts
of verbal interviews with AD and related Demen-
tia patients, including those with MCI (for further
details see (Becker et al., 1994)).

We used 43 transcriptions with MCI in addi-
tion to another 43 transcriptions sampled from 242
healthy elderly people to be used as the control
group. Table 1 shows the demographic informa-
tion for the two diagnostic groups.

Demographic Control MCI
Avg. Age (SD) 64.1 (7.2) 69.3 (8.2)

No. of Male/Female 23/20 27/16

Table 1: Demographic information of participants
in the Cookie Theft dataset.

For this dataset, interviews were conducted in
English and narrative speech was elicited using the
Cookie Theft picture (Goodglass et al., 2001) (Fig-
ure 3 from Goodglass et al. (2001) in Section A.1).
During the interview, patients were given the pic-
ture and were told to discuss everything they could
see happening in the picture. The patients’ ver-
bal utterances were recorded and then transcribed
into the CHAT (Codes for the Human Analysis of
Transcripts) transcription format (MacWhinney,
2000).

We extracted the word-level transcript patient
sentences from the CHAT files and discarded the
annotations, as our goal was to create a fully au-
tomated system that does not require the input of
a human annotator. We automatically removed
filled pauses such as uh, um , er , and ah (e.g. uh
it seems to be summer out), short false starts (e.g.
just t the ones), and repetition (e.g. mother’s fin-
ished certain of the the dishes), as in (Fraser et al.,

1287

2015). The control group had an average of 9.58
sentences per narrative, with each sentence having
an average of 9.18 words; while the MCI group
had an average of 10.97 sentences per narrative,
with 10.33 words per sentence in average.

4.1.2 The Cinderella Narrative Dataset
The dataset examined in this study included 20
subjects with MCI and 20 normal elderly control
subjects, as diagnosed at the Medical School of the
University of São Paulo (FMUSP). Table 2 shows
the demographic information of the two diagnos-
tic groups, which were also used in Aluı́sio et al.
(2016).

Demographic Control MCI
Avg. Age (SD) 74.8 (11.3) 73.3 (5.9)
Avg. Years of 11.4 (2.6) 10.8 (4.5)Education (SD)

No. of Male/Female 27/16 29/14

Table 2: Demographic information of participants
in the Cinderella dataset.

The criteria used to diagnose MCI came from
Petersen (2004). Diagnostics were carried out
by a multidisciplinary team consisting of psychi-
atrists, geriatricians, neurologists, neuropsycholo-
gists, speech pathologists, and occupational ther-
apists, by a criterion of consensus. Inclusion cri-
teria for the control group were elderlies with no
cognitive deficits and preservation of functional
capacity in everyday life. The exclusion criteria
for the normal group were: poorly controlled clin-
ical diseases, sensitive deficits that were not being
compensated for and interfered with the perfor-
mance in tests, and other neurological or psychi-
atric diagnoses associated with dementia or cogni-
tive deficits and use of medications in doses that
affected cognition.

Speech narrative samples were elicited by hav-
ing participants tell the Cinderella story; partici-
pants were given as much time as they needed to
examine a picture book illustrating the story (Fig-
ure 4 in Section A). When each participant had fin-
ished looking at the pictures, the examiner asked
the subject to tell the story in their own words, as
in Saffran et al. (1989). The time was recorded,
but there was no limit imposed to the narrative
length. If the participant had difficulty initiating
or continuing speech, or took a long pause, an
evaluator would use the stimulus question “What
happens next ?”, seeking to encourage the partici-
pant to continue his/her narrative. When the sub-

ject was unable to proceed with the narrative, the
examiner asked if he/she had finished the story
and had something to add. Each speech sample
was recorded and then manually transcribed at the
word level following the NURC/SP N. 338 EF and
331 D2 transcription norms3.

Other tests were applied after the narrative, in
the following sequence: phonemic verbal fluency
test, action verbal fluency, Camel and Cactus test
(Bozeat et al., 2000), and Boston Naming test (Ka-
plan et al., 2001), in order to diagnose the groups.

Since our ultimate goal is to create a fully au-
tomated system that does not require the input
of a human annotator, we manually segmented
sentences to simulate a high-quality ASR tran-
script with sentence segmentation, and we auto-
matically removed the disfluencies following the
same guidelines of TalkBank project. However,
other disfluencies (revisions, elaboration, para-
phasias and comments about the task) were kept.
The control group had an average of 30.80 sen-
tences per narrative, and each sentence averaged
12.17 words. As for the MCI group, it had an av-
erage of 29.90 sentences per narrative, and each
sentence averaged 13.03 words.

We also evaluated a different version of the
dataset used in Aluı́sio et al. (2016), where narra-
tives were manually annotated and revised to im-
prove parsing results. The revision process was the
following: (i) in the original transcript, segments
with hesitations or repetitions of more than one
word or segment of a single word were annotated
to become a feature and then removed from the
narrative to allow the extraction of features from
parsing; (ii) empty emissions, which were com-
ments unrelated to the topic of narration or con-
firmations, such as “né” (alright), were also an-
notated and removed; (iii) prolongations of vow-
els, short pauses and long pauses were also an-
notated and removed; and (iv) omitted subjects in
sentences were inserted. In this revised dataset,
the control group had an average of 45.10 sen-
tences per narrative, and each sentence averaged
8.17 words. The MCI group had an average of
31.40 sentences per narrative, with each sentence
averaging 10.91 words.

4.1.3 The ABCD Dataset
The subtest of immediate/delayed recall of narra-
tives of the ABCD battery was administered to 23

3albertofedel.blogspot.com.br/2010_11_
01_archive.html

1288

participants with a diagnosis of MCI and 20 nor-
mal elderly control participants, as diagnosed at
the Medical School of the University of São Paulo
(FMUSP).

MCI subjects produced 46 narratives while the
control group produced 39 ones. In order to carry
out experiments with a balanced corpus, as with
the previous two datasets, we excluded seven tran-
scriptions from the MCI group. We used the auto-
matic sentence segmentation method referred to as
DeepBond (Treviso et al., 2017) in the transcripts.

Table 3 shows the demographic information.
The control group had an average of 5.23 sen-
tences per narrative, with 11 words per sentence
on average, and the MCI group had an average of
4.95 sentences per narrative, with an average of
12.04 words per sentence. Interviews were con-
ducted in Portuguese and the subject listened to
the examiner read a short narrative. The subject
then retold the narrative to the examiner twice:
once immediately upon hearing it and again after
a 30-minute delay (Bayles and Tomoeda, 1991).
Each speech sample was recorded and then man-
ually transcribed at the word level following the
NURC/SP N. 338 EF and 331 D2 transcription
norms.

Demographic Control MCI
Avg. Age (SD) 61 (7.5) 72,0 (7.4)
Avg. Years of 16 (7.6) 13.3 (4.2)Education (SD)

No. of Male/Female 6/14 16/7

Table 3: Demographic information of participants
in the ABCD dataset.

4.2 Features
Features of three distinct natures were used to
classify the transcribed texts: topological metrics
of co-occurrence networks, linguistic features and
bag of words representations.

4.2.1 Topological Characterization of
Networks

Each transcription was mapped into a co-
occurrence network, and then enriched via word
embeddings using the cosine similarity of words.
Since the occurrence of out-of-vocabulary words
is common in texts of neuropsychological assess-
ments, we used the method proposed by Bo-
janowski et al. (2016) to generate word embed-
dings. This method extends the skip-gram model
to use character-level information, with each word

being represented as a bag of character n-grams.
It provides some improvement in comparison with
the traditional skip-gram model in terms of syn-
tactic evaluation (Mikolov et al., 2013b) but not
for semantic evaluation.

Once the network has been enriched, we char-
acterize its topology using the following ten mea-
surements:

1. PageRank: is a centrality measurement that
reflects the relevance of a node based on its
connections to other relevant nodes (Brin and
Page, 1998);

2. Betweenness: is a centrality measurement
that considers a node as relevant if it is highly
accessed via shortest paths. The betweenness
of a node v is defined as the fraction of short-
est paths going through node v;

3. Eccentricity: of a node is calculated by mea-
suring the shortest distance from the node to
all other vertices in the graph and taking the
maximum;

4. Eigenvector centrality: is a measurement
that defines the importance of a node based
on its connectivity to high-rank nodes;

5. Average Degree of the Neighbors of a
Node: is the average of the degrees of all its
direct neighbors;

6. Average Shortest Path Length of a Node:
is the average distance between this node and
all other nodes of the network;

7. Degree: is the number of edges connected to
the node;

8. Assortativity Degree: or degree correlation
measures the tendency of nodes to connect to
other nodes that have similar degree;

9. Diameter: is defined as the maximum short-
est path;

10. Clustering Coefficient: measures the prob-
ability that two neighbors of a node are con-
nected.

Most of the measurements described above are
local measurements, i.e. each node i possesses a
valueXi, so we calculated the average µ(X), stan-
dard deviation σ(X) and skewness γ(X) for each
measurement (Amancio, 2015b).

1289

4.2.2 Linguistic Features
Linguistic features for classification of neuropsy-
chological assessments have been used in sev-
eral studies (Roark et al., 2011; Jarrold et al.,
2014; Fraser et al., 2014; Orimaye et al., 2014;
Fraser et al., 2015; Vincze et al., 2016; Davy
et al., 2016). We used the Coh-Metrix4(Graesser
et al., 2004) tool to extract features from En-
glish transcripts, resulting in 106 features. The
metrics are divided into eleven categories: De-
scriptive, Text Easability Principal Component,
Referential Cohesion, Latent Semantic Analy-
sis (LSA), Lexical Diversity, Connectives, Situa-
tion Model, Syntactic Complexity, Syntactic Pat-
tern Density, Word Information, and Readabil-
ity (Flesch Reading Ease, Flesch-Kincaid Grade
Level, Coh-Metrix L2 Readability).

For Portuguese, Coh-Metrix-Dementia (Aluı́sio
et al., 2016) was used. The metrics affected by
constituency and dependency parsing were not
used because they are not robust with disfluen-
cies. Metrics based on manual annotation (such
as proportion short pauses, mean pause dura-
tion, mean number of empty words, and others)
were also discarded. The metrics of Coh-Metrix-
Dementia are divided into twelve categories: Am-
biguity, Anaphoras, Basic Counts, Connectives,
Co-reference Measures, Content Word Frequen-
cies, Hypernyms, Logic Operators, Latent Seman-
tic Analysis, Semantic Density, Syntactical Com-
plexity, and Tokens. The metrics used are shown
in detail in Section A.2. In total, 58 metrics were
used, from the 73 available on the website5.

4.2.3 Bag of Words
The representation of text collections under the
BoW assumption (i.e., with no information relat-
ing to word order) has been a robust solution for
text classification. In this methodology, transcripts
are represented by a table in which the columns
represent the terms (or existing words) in the tran-
scripts and the values represent frequency of a
term in a document.

4.3 Classification Algorithms

In order to quantify the ability of the topologi-
cal characterization of networks, linguistic met-
rics and BoW features were used to distinguish
subjects with MCI from healthy controls. We

4cohmetrix.com
5http://143.107.183.175:22380

employed four machine learning algorithms to
induce classifiers from a training set. These
techniques were the Gaussian Naive Bayes (G-
NB), k-Nearest Neighbor (k-NN), Support Vec-
tor Machine (SVM), linear and radial bases func-
tions (RBF), and Random Forest (RF). We also
combined these classifiers through ensemble and
multi-view learning. In ensemble learning, multi-
ple models/classifiers are generated and combined
using a majority vote or the average of class prob-
abilities to produce a single result (Zhou, 2012).

In multi-view learning, multiple classifiers are
trained in different feature spaces and thus com-
bined to produce a single result. This approach
is an elegant solution in comparison to combining
all features in the same vector or space, for two
main reasons. First, combination is not a straight-
forward step and may lead to noise insertion since
the data have different natures. Second, using dif-
ferent classifiers for each feature space allows for
different weights to be given for each type of fea-
ture, and these weights can be learned by a regres-
sion method to improve the model. In this work,
we used majority voting to combine different fea-
ture spaces.

5 Experiments and Results

All experiments were conducted using the Scikit-
learn6 (Pedregosa et al., 2011), with classifiers
evaluated on the basis of classification accuracy
i.e. the total proportion of narratives which were
correctly classified. The evaluation was per-
formed using 5-fold cross-validation instead of the
well-accepted 10-fold cross-validation because the
datasets in our study were small and the test set
would have shrunk, leading to less precise mea-
surements of accuracy. The threshold parameter
was optimized with the best values being 0.7 in
the Cookie Theft dataset and 0.4 in both the Cin-
derella and ABCD datasets.

We used the model proposed by Bojanowski
et al. (2016) with default parameters (100 di-
mensional embeddings, context window equal to
5 and 5 epochs) to generate word embedding.
We trained the models in Portuguese and English
Wikipedia dumps from October and November
2016 respectively.

The accuracy in classification is given in Tables
4 through 6. CN, CNE, LM, and BoW denote,
respectively, complex networks, complex network

6http://scikit-learn.org

1290

enriched with embedding, linguistic metrics and
Bag of Words, and CNE-LM, CNE-BoW, LM-
BoW and CNE-LM-BoW refer to combinations of
the feature spaces (multiview learning), using the
majority vote. Cells with the “–” sign mean that
it was not possible to apply majority voting be-
cause there were two classifiers. The last line rep-
resents the use of an ensemble of machine learning
algorithms, in which the combination used was the
majority voting in both ensemble and multiview
learning.

In general, CNE outperforms the approach us-
ing only complex networks (CN), while SVM
(Linear or RBF kernel) provides higher accuracy
than other machine learning algorithms. The re-
sults for the three datasets show that characteriz-
ing transcriptions into complex networks is com-
petitive with other traditional methods, such as the
use of linguistic metrics. In fact, among the three
types of features, using enriched networks (CNE)
provided the highest accuracies in two datasets
(Cookie Theft and original Cinderella). For the
ABCD dataset, which contains short narratives,
the small length of the transcriptions may have
had an effect, since BoW features led to the high-
est accuracy. In the case of the revised Cinderella
dataset, segmented into sentences and capitalized
as reported in Aluı́sio et al. (2016), Table 7 shows
that the manual revision was an important factor,
since the highest accuracies were obtained with
the approach based on linguistic metrics (LM).
However, this process of manually removing dis-
fluencies demands time; therefore it is not practi-
cal for large-scale assessments.

Ensemble and multi-view learning were helpful
for the Cookie Theft dataset, in which multi-view
learning achieved the highest accuracy (65% of ac-
curacy for narrative texts, a 3% of improvement
compared to the best individual classifier). How-
ever, neither multi-view or ensemble learning en-
hanced accuracy in the Cinderella dataset, where
SVM-RBF with CNE space achieved the highest
accuracy (65%). For the ABCD dataset, multi-
view CNE-LM-BoW with SVM-RBF and KNN
classifiers improved the accuracy to 4% and 2%,
respectively. Somewhat surprising were the results
of SVM with linear kernel in BoW feature space
(75% of accuracy).

6 Conclusions and Future Work

In this study, we employed metrics of topological
properties of CN in a machine learning classifica-
tion approach to distinguish between healthy pa-
tients and patients with MCI. To the best of our
knowledge, these metrics have never been used
to detect MCI in speech transcripts; CN were
enriched with word embeddings to better repre-
sent short texts produced in neuropsychological
assessments. The topological properties of CN
outperform traditional linguistic metrics in indi-
vidual classifiers’ results. Linguistic features de-
pend on grammatical texts to present good re-
sults, as can be seen in the results of the manu-
ally processed Cinderella dataset (Table 7). Fur-
thermore, we found that combining machine and
multi-view learning can improve accuracy. The
accuracies found here are comparable to the val-
ues reported by other authors, ranging from 60%
to 85% (Prud’hommeaux and Roark, 2011; Lehr
et al., 2012; Tóth et al., 2015; Vincze et al., 2016),
which means that it is not easy to distinguish be-
tween healthy subjects and those with cognitive
impairments. The comparison with our results is
not straightforward, though, because the databases
used in the studies are different. There is a clear
need for publicly available datasets to compare
different methods, which would optimize the de-
tection of MCI in elderly people.

In future work, we intend to explore other meth-
ods to enrich CN, such as the Recurrent Language
Model, and use other metrics to characterize an ad-
jacency network. The pursuit of these strategies is
relevant because language is one of the most ef-
ficient information sources to evaluate cognitive
functions, commonly used in neuropsychological
assessments. As this work is ongoing, we will
keep collecting new transcriptions of the ABCD
retelling subtest to increase the corpus size and
obtain more reliable results in our studies. Our
final goal is to apply neuropsychological assess-
ment batteries, such as the ABCD retelling sub-
test, to mobile devices, specifically tablets. This
adaptation will enable large-scale applications in
hospitals and facilitate the maintenance of appli-
cation history in longitudinal studies, by storing
the results in databases immediately after the test
application.

1291

Classifier CN CNE LM BoW CNE-LM CNE-BoW LM-BoW CNE-LM-BoW

SVM-Linear 52 55 56 59 – – – 60
SVM-RBF 56 62 58 60 – – – 65
k-NN 59 61 46 57 – – – 59
RF 52 47 45 48 – – – 50
G-NB 51 48 56 55 – – – 50
Ensemble 56 60 54 58 57 60 63 65

Table 4: Classification accuracy achieved on Cookie Theft dataset.

Classifier CN CNE LM BoW CNE-LM CNE-BoW LM-BoW CNE-LM-BoW

SVM-Linear 52 60 52 50 – – – 52
SVM-RBF 57 65 47 37 – – – 50
k-NN 47 50 47 37 – – – 37
RF 55 57 47 45 – – – 52
G-NB 47 52 47 55 – – – 52
Ensemble 52 60 50 37 57 52 50 47

Table 5: Classification accuracy achieved on Cinderella dataset.

Classifier CN CNE LM BoW CNE-LM CNE-BoW LM-BoW CNE-LM-BoW

SVM-Linear 56 69 51 75 – – – 74
SVM-RBF 54 57 66 67 – – – 71
k-NN 56 56 69 63 – – – 71
RF 54 62 70 64 – – – 69
G-NB 61 55 55 65 – – – 65
Ensemble 55 61 62 72 69 68 75 73

Table 6: Classification accuracy achieved on ABCD dataset.

Classifier CN CNE LM BoW

SVM-Linear 50 65 65 52
SVM-RBF 57 67 72 55
KNN 42 47 55 50
RF 52 47 70 45
G-NB 52 65 62 45
Ensemble 52 60 72 45

Table 7: Classification accuracy achieved on Cin-
derella dataset manually processed to revise non-
grammatical sentences.

Acknowledgments

This work was supported by CAPES, CNPq,
FAPESP, and Google Research Awards in Latin
America. We would like to thank NVIDIA for
their donation of GPU.

References
Sandra M. Aluı́sio, Andre L. da Cunha, and Car-

olina Scarton. 2016. Evaluating progression of
alzheimer’s disease by regression and classification
methods in a narrative language test in portuguese.
In João Silva, Ricardo Ribeiro, Paulo Quaresma,
André Adami, and António Branco, editors, Interna-

tional Conference on Computational Processing of
the Portuguese Language. Springer, pages 109–114.
https://doi.org/10.1007/978-3-319-41552-9 10.

Diego R. Amancio. 2015a. Authorship recogni-
tion via fluctuation analysis of network topol-
ogy and word intermittency. Journal of Sta-
tistical Mechanics: Theory and Experiment
2015(3):P03005. https://doi.org/10.1088/1742-
5468/2015/03/P03005.

Diego R. Amancio. 2015b. A complex network ap-
proach to stylometry. PloS one 10(8):e0136076.
https://doi.org/10.1371/journal.pone.0136076.

Diego R. Amancio. 2015c. Probing the topo-
logical properties of complex networks model-
ing short written texts. PloS one 10(2):1–17.
https://doi.org/10.1371/journal.pone.0118394.

Diego R. Amancio, Eduardo G. Altmann, Diego
Rybski, Osvaldo N. Oliveira Jr., and Luciano
da F. Costa. 2013. Probing the statistical prop-
erties of unknown texts: Application to the
voynich manuscript. PLOS ONE 8(7):1–10.
https://doi.org/10.1371/journal.pone.0067310.

Diego R. Amancio, Maria G. V. Nunes, Osvaldo N.
Oliveira Jr., and Luciano F. Costa. 2012a. Ex-
tractive summarization using complex networks and
syntactic dependency. Physica A: Statistical Me-

1292

chanics and its Applications 391(4):1855–1864.
https://doi.org/10.1016/j.physa.2011.10.015.

Diego R. Amancio, O.N. Oliveira Jr., and Luciano
da F. Costa. 2012b. Unveiling the relation-
ship between complex networks metrics and word
senses. EPL (Europhysics Letters) 98(1):18002.
https://doi.org/10.1209/0295-5075/98/18002.

Diego R. Amancio, Osvaldo N. Oliveira Jr., and Lu-
ciano F. Costa. 2012c. Identification of liter-
ary movements using complex networks to repre-
sent texts. New Journal of Physics 14(4):043029.
https://doi.org/10.1088/1367-2630/14/4/043029.

Lucas Antiqueira, Osvaldo N. Oliveira Jr., Lu-
ciano da Fontoura Costa, and Maria das Graças
Volpe Nunes. 2009. A complex network ap-
proach to text summarization. Information Sciences
179(5):584 – 599.

Kathryn A. Bayles and Cheryl K. Tomoeda. 1991.
ABCD: Arizona Battery for Communication Disor-
ders of Dementia. Tucson, AZ: Canyonlands Pub-
lishing.

James T. Becker, François Boiler, Oscar L. Lopez,
Judith Saxton, and Karen L. McGonigle. 1994.
The natural history of alzheimer’s disease:
description of study cohort and accuracy of di-
agnosis. Archives of Neurology 51(6):585–594.
https://doi.org/10.1001/archneur.1994.00540180063015.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. journal of machine learning research
3(Feb):1137–1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 .

Sasha Bozeat, Matthew A. Ralph, Karalyn Pat-
terson, Peter Garrard, and John R. Hodges.
2000. Non-verbal semantic impairment in seman-
tic dementia. Neuropsychologia 38(9):1207–1215.
https://doi.org/10.1016/S0028-3932(00)00034-8.

Sergey Brin and Lawrence Page. 1998. The anatomy
of a large-scale hypertextual web search engine. In
International Conference on World Wide Web. Else-
vier, pages 107–117.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Jin Cong and Haitao Liu. 2014. Approach-
ing human language with complex networks.
Physics of Life Reviews 11(4):598 – 618.
https://doi.org/10.1016/j.plrev.2014.04.004.

Andre L. da Cunha, Lucilene B. de Sousa, Letı́cia L.
Mansur, and Sandra M. Aluı́sio. 2015. Auto-
matic proposition extraction from dependency
trees: Helping early prediction of alzheimer’s
disease from narratives. In Proceedings of the
28th International Symposium on Computer-
Based Medical Systems. Institute of Electrical
and Electronics Engineers, pages 127–130.
https://doi.org/10.1109/CBMS.2015.19.

Weissenbacher Davy, Johnson A. Travis, Wojtulewicz
Laura, Dueck Amylou, Locke Dona, Caselli
Richard, and Gonzalez Graciela. 2016. Towards
automatic detection of abnormal cognitive decline
and dementia through linguistic analysis of writ-
ing samples. In Proceedings of the 15th An-
nual Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, pages 1198–1207.
https://doi.org/10.18653/v1/N16-1143.

Henrique F. de Arruda, Luciano F. Costa, and Diego R.
Amancio. 2016. Using complex networks for
text classification: Discriminating informative and
imaginative documents. EPL (Europhysics Let-
ters) 113(2):28007. https://doi.org/10.1209/0295-
5075/113/28007.

Martin Dyrba, Frederik Barkhof, Andreas Fellgiebel,
Massimo Filippi, Lucrezia Hausner, Karlheinz
Hauenstein, Thomas Kirste, and Stefan J. Teipel.
2015. Predicting prodromal alzheimer’s disease
in subjects with mild cognitive impairment using
machine learning classification of multimodal mul-
ticenter diffusion-tensor and magnetic resonance
imaging data. Journal of Neuroimaging 25(5):738–
747. https://doi.org/10.1111/jon.12214.

Kathleen C. Fraser, Jed A. Meltzer, Naida L. Gra-
ham, Carol Leonard, Graeme Hirst, Sandra E. Black,
and Elizabeth Rochon. 2014. Automated classi-
fication of primary progressive aphasia subtypes
from narrative speech transcripts. Cortex 55:43–60.
https://doi.org/10.1016/j.cortex.2012.12.006.

Kathleen C. Fraser, Jed A. Meltzer, and Frank
Rudzicz. 2015. Linguistic features identify
alzheimer’s disease in narrative speech. Jour-
nal of Alzheimer’s Disease 49(2):407–422.
https://doi.org/10.3233/JAD-150520.

Peter Garrard, Vassiliki Rentoumi, Benno Gesierich,
Bruce Miller, and Maria L. Gorno-Tempini.
2014. Machine learning approaches to di-
agnosis and laterality effects in semantic
dementia discourse. Cortex 55:122–129.
https://doi.org/10.1016/j.cortex.2013.05.008.

Harold Goodglass, Edith Kaplan, and Barbara Barresi.
2001. The Assessment of Aphasia and Related Dis-
orders. The Assessment of Aphasia and Related
Disorders. Lippincott Williams & Wilkins.

Arthur C. Graesser, Danielle S. McNamara,
Max M. Louwerse, and Zhiqiang Cai. 2004.

1293

Coh-metrix: Analysis of text on cohesion
and language. Behavior research methods,
instruments, & computers 36(2):193–202.
https://doi.org/10.3758/BF03195564.

Ramon F. i Cancho, Ricard V. Solé, and Rein-
hard Köhler. 2004. Patterns in syntactic depen-
dency networks. Physical Review E 69(5):051915.
https://doi.org/10.1103/PhysRevE.69.051915.

Ramon F. i Cancho and Richard V. Solé. 2001.
The small world of human language. Pro-
ceedings of the Royal Society of London B:
Biological Sciences 268(1482):2261–2265.
https://doi.org/10.1098/rspb.2001.1800.

William L. Jarrold, Bart Peintner, David Wilkins,
Dimitra Vergryi, Colleen Richey, Maria L. Gorno-
Tempini, and Jennifer Ogar. 2014. Aided diagno-
sis of dementia type through computer-based anal-
ysis of spontaneous speech. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics Workshop on Computational
Linguistics and Clinical Psychology. Association for
Computational Linguistics, pages 27–36.

William L. Jarrold, Bart Peintner, Eric Yeh, Ruth
Krasnow, Harold S. Javitz, and Gary E. Swan.
2010. Language analytics for assessing brain
health: Cognitive impairment, depression and pre-
symptomatic alzheimer’s disease. In Yiyu Yao,
Ron Sun, Tomaso Poggio, Jiming Liu, Ning Zhong,
and Jimmy Huang, editors, Proceedings of In-
ternational Conference on Brain Informatics (BI
2010), Springer Berlin Heidelberg, pages 299–307.
https://doi.org/10.1007/978-3-642-15314-3 28.

Edith Kaplan, Harold Googlass, and Sandra Weintrab.
2001. Boston naming test. Lippincott Williams &
Wilkins.

A. Kertesz. 1982. Western Aphasia Battery test man-
ual. Grune & Stratton.

Maider Lehr, Emily T. Prud’hommeaux, Izhak Shafran,
and Brian Roark. 2012. Fully automated neuropsy-
chological assessment for detecting mild cognitive
impairment. In Proceedings of the 13th Annual
Conference of the International Speech Communi-
cation Association. pages 1039–1042.

Jeaneth Machicao, Edilson A. Corrêa Jr, Gisele H. B.
Miranda, Diego R. Amancio, and Odemir M. Bruno.
2016. Authorship attribution based on life-like net-
work automata. arXiv preprint arXiv:1610.06498 .

Brian MacWhinney. 2000. The CHILDES Project:
Tools for analyzing talk. Lawrence Erlbaum Asso-
ciates, 3 edition.

Rada Mihalcea and Dragomir Radev. 2011. Graph-
based natural language processing and information
retrieval. Cambridge University Press.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever. 2013a.
Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168
.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of the 27th Annual Conference
on Neural Information Processing Systems. pages
3111–3119.

Weerasak Muangpaisan, Chonachan Petcharat, and
Varalak Srinonprasert. 2012. Prevalence of poten-
tially reversible conditions in dementia and mild
cognitive impairment in a geriatric clinic. Geri-
atrics & gerontology international 12(1):59–64.
https://doi.org/10.1111/j.1447-0594.2011.00728.x.

Sylvester O. Orimaye, Jojo Wong, and K. Jen-
nifer Golden. 2014. Learning predictive linguis-
tic features for alzheimer’s disease and related de-
mentias using verbal utterances. In Proceedings
of the 1st Workshop on Computational Linguis-
tics and Clinical Psychology (CLPsych). Associa-
tion for Computational Linguistics, pages 78–87.
www.aclweb.org/anthology/W/W14/W14-3210.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. 2011. Scikit-learn:
Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.

Bryan Perozzi, Rami Al-Rfou, Vivek Kulkarni, and
Steven Skiena. 2014. Inducing language networks
from continuous space word representations. In
Proceedings of the 5th Workshop on Complex Net-
works CompleNet 2014, Springer, pages 261–273.
https://doi.org/10.1007/978-3-319-05401-8 25.

Ronald C. Petersen. 2004. Mild cognitive impairment
as a diagnostic entity. Journal of internal medicine
256(3):183–194. https://doi.org/10.1111/j.1365-
2796.2004.01388.x.

Emily T. Prud’hommeaux and Brian Roark. 2011.
Alignment of spoken narratives for automated
neuropsychological assessment. In Proceed-
ings of Workshop on Automatic Speech Recog-
nition & Understanding,ASRU. Institute of Elec-
trical and Electronics Engineers, pages 484–489.
https://doi.org/10.1109/ASRU.2011.6163979.

Brian Roark, Margaret Mitchell, John-Paul Hosom,
Kristy Hollingshead, and Jeffrey Kaye. 2011. Spo-
ken language derived measures for detecting mild
cognitive impairment. Transactions on Audio,
Speech, and Language Processing, Institute of Elec-
trical and Electronics Engineers 19(7):2081–2090.
https://doi.org/10.1109/TASL.2011.2112351.

Ranzivelle M. Roxas and Giovanni Tapang. 2010.
Prose and poetry classification and boundary detec-

1294

tion using word adjacency network analysis. Inter-
national Journal of Modern Physics C 21(04):503–
512. https://doi.org/10.1142/S0129183110015257.

Eleanor M. Saffran, Rita S. Berndt, and Myrna F.
Schwartz. 1989. The quantitative analysis
of agrammatic production: Procedure and
data. Brain and language 37(3):440–479.
https://doi.org/10.1016/0093-934X(89)90030-8.

Thiago C. Silva and Diego R. Amancio. 2012. Word
sense disambiguation via high order of learning
in complex networks. EPL (Europhysics Letters)
98(5):58001.

Camila V. Teixeira, Lilian T. Gobbi, Danilla I.
Corazza, Florindo Stella, José L. Costa, and
Sebastião Gobbi. 2012. Non-pharmacological
interventions on cognitive functions in older
people with mild cognitive impairment (mci).
Archives of gerontology and geriatrics 54(1):175–
180. https://doi.org/10.1016/j.archger.2011.02.014.

László Tóth, Gábor Gosztolya, Veronika Vincze, Ildikó
Hoffmann, and Gréta Szatlóczki. 2015. Automatic
detection of mild cognitive impairment from spon-
taneous speech using asr. In Proceedings of the
16th Annual Conference of the International Speech
Communication Association. International Speech
and Communication Association, pages 2694–2698.

Marcos V. Treviso, Christopher Shulby, and Sandra M.
Aluı́sio. 2017. Sentence segmentation in narrative
transcripts from neuropsycological tests using recur-
rent convolutional neural networks. In Proceedings
of the 15th Conference of the European Chapter of
the Association for Computational Linguistics. As-
sociation for Computational Linguistics, pages 1–
10. https://arxiv.org/abs/1610.00211.

Veronika Vincze, Gábor Gosztolya, László Tóth, Ildikó
Hoffmann, and Gréta Szatlóczki. 2016. Detecting
mild cognitive impairment by exploiting linguistic
information from transcripts. In Proceedings of the
54th Annual Meeting of the Association Computer
Linguistics. Association for Computational Linguis-
tics. https://doi.org/10.18653/v1/P16-2030.

Alyssa Weakley, Jennifer A. Williams, Maureen
Schmitter-Edgecombe, and Diane J. Cook.
2015. Neuropsychological test selection for
cognitive impairment classification: A machine
learning approach. Journal of clinical and
experimental neuropsychology 37(9):899–916.
https://doi.org/10.1080/13803395.2015.1067290.

David Wechsler et al. 1997. Wechsler memory scale
(WMS-III). Psychological Corporation.

Zhi-Hua Zhou. 2012. Ensemble methods: foundations
and algorithms. Chapman & Hall/CRC, 1st edition.

A Supplementary Material

Figure 3 is Cookie Theft picture, which was used
in DementiaBank project.

Figure 4 is a sequence of pictures from the Cin-
derella story, which were used to elicit speech nar-
ratives.

Figure 3: The Cookie Theft Picture, taken
from the Boston Diagnostic Aphasia Examination
(Goodglass et al., 2001).

Figure 4: Sequence of Pictures of the of Cinderella
story.

A.1 Examples of transcriptions
Below follows an example of a transcript of the
Cookie Theft dataset.

1295

You just want me to start talking ? Well the little
girl is asking her brother we ’ll say for a cookie .
Now he ’s getting the cookie one for him and one
for her . He unbalances the step the little stool and
he ’s about to fall . And the lid ’s off the cookie jar
. And the mother is drying the dishes abstractly
so she ’s left the water running in the sink and it
is spilling onto the floor . And there are two there
’s look like two cups and a plate on the sink and
board . And that boy ’s wearing shorts and the lit-
tle girl is in a short skirt . And the mother has an
apron on . And she ’s standing at the window . The
window ’s opened . It must be summer or spring .
And the curtains are pulled back . And they have
a nice walk around their house . And there ’s this
nice shrubbery it appears and grass . And there ’s
a big picture window in the background that has
the drapes pulled off . There ’s a not pulled off but
pulled aside . And there ’s a tree in the background
. And the house with the kitchen has a lot of cup-
board space under the sink board and under the
cabinet from which the cookie you know cookies
are being removed .

Below follows an excerpt of a transcript of the
Cinderella dataset.

Original transcript in Portuguese:
ela morava com a madrasta as irmã né e ela era

diferenciada das três era maltratada ela tinha que
fazer limpeza na casa toda no castelo alias e as
irmãs não faziam nada até que um dia chegou um
convite do rei ele ia fazer um baile e a madrasta
então é colocou que todas as filhas elas iam menos
a cinderela bom como ela não tinha o vestido sap-
ato as coisas tudo então ela mesmo teve que fazer
a roupa dela começou a fazer ...

Translation of the transcript in English:
she lived with the stepmother the sister right

and she was differentiated from the three was mis-
treated she had to do the cleaning in the entire
house actually in the castle and the sisters didn’t
do anything until one day the king’s invitation
arrived he would invite everyone to a ball and
then the stepmother is said that all the daughters
they would go except for cinderella well since she
didn’t have a dress shoes all the things she had to
make her own clothes she started to make them ...

A.2 Coh-Metrix-Dementia metrics

1. Ambiguity: verb ambiguity, noun ambiguity,
adjective ambiguity, adverb ambiguity;

2. Anaphoras: adjacent anaphoric references,

anaphoric references;

3. Basic Counts: Flesch index, number of
word, number of sentences, number of para-
graphs, words per sentence, sentences per
paragraph, syllables per content word, verb
incidence, noun incidence, adjective inci-
dence, adverb incidence, pronoun incidence,
content word incidence, function word inci-
dence;

4. Connectives: connectives incidence, addi-
tive positive connectives incidence, addi-
tive negative connectives incidence, temporal
positive connectives incidence, temporal neg-
ative connectives incidence, casual positive
connectives incidence, casual negative con-
nectives incidence, logical positive connec-
tives incidence, logical negative connectives
incidence;

5. Co-reference Measures: adjacent argument
overlap, argument overlap, adjacent stem
overlap, stem overlap, adjacent content word
overlap;

6. Content Word Frequencies: Content words
frequency, minimum among content words
frequency;

7. Hypernyms: Mean hypernyms per verb;

8. Logic Operators: Logic operators inci-
dence, and incidence, or incidence, if inci-
dence, negation incidence;

9. Latent Semantic Analysis (LSA): Average
and standard deviation similarity between
pairs of adjacent sentences in the text, Av-
erage and standard deviation similarity be-
tween all sentence pairs in the text, Av-
erage and standard deviation similarity be-
tween pairs of adjacent paragraphs in the text,
Givenness average and standard deviation of
each sentence in the text;

10. Semantic Density: content density;

11. Syntactical Complexity: only cross entropy;

12. Tokens: personal pronouns incidence, type-
token ratio, Brunet index, Honoré Statistics.

1296

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1297–1307
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1119

Adversarial Adaptation of Synthetic or Stale Data

Young-Bum Kim† Karl Stratos‡ Dongchan Kim†

†Microsoft AI and Research
‡Bloomberg L. P.

{ybkim, dongchan.kim}@microsoft.com
me@karlstratos.com

Abstract
Two types of data shift common in prac-
tice are 1. transferring from synthetic data
to live user data (a deployment shift), and
2. transferring from stale data to current
data (a temporal shift). Both cause a dis-
tribution mismatch between training and
evaluation, leading to a model that over-
fits the flawed training data and performs
poorly on the test data. We propose a solu-
tion to this mismatch problem by framing
it as domain adaptation, treating the flawed
training dataset as a source domain and
the evaluation dataset as a target domain.
To this end, we use and build on several
recent advances in neural domain adap-
tation such as adversarial training (Ganin
et al., 2016) and domain separation net-
work (Bousmalis et al., 2016), proposing a
new effective adversarial training scheme.
In both supervised and unsupervised adap-
tation scenarios, our approach yields clear
improvement over strong baselines.

1 Introduction

Spoken language understanding (SLU) systems
analyze various aspects of a user query by clas-
sifying its domain, intent, and semantic slots.
For instance, the query how is traffic
to target in bellevue has domain
PLACES, intent CHECK ROUTE TRAFFIC,
and slots PLACE NAME: target and
ABSOLUTE LOCATION: bellevue.

We are interested in addressing two types of
data shift common in SLU applications. The
first data shift problem happens when we trans-
fer from synthetic data to live user data (a deploy-
ment shift). This is also known as the “cold-start”

problem; a model cannot be trained on the real
usage data prior to deployment simply because it
does not exist. A common practice is to gener-
ate a large quantity of synthetic training data that
mimics the expected user behavior. Such synthetic
data is crafted using domain-specific knowledge
and can be time-consuming. It is also flawed in
that it typically does not match the live user data
generated by actual users; the real queries submit-
ted to these systems are different from what the
model designers expect to see.

The second data shift problem happens when
we transfer from stale data to current data (a tem-
poral shift). In our use case, we have one set of
training data from 2013 and wish to handle data
from 2014–2016. This is problematic since the
content of the user queries changes over time (e.g.,
new restaurant or movie names may be added).
Consequently, the model performance degrades
over time.

Both shifts cause a distribution mismatch be-
tween training and evaluation, leading to a model
that overfits the flawed training data and performs
poorly on the test data. We propose a solution to
this mismatch problem by framing it as domain
adaptation, treating the flawed training dataset as
a source domain and the evaluation dataset as a
target domain. To this end, we use and build on
several recent advances in neural domain adap-
tation such as adversarial training (Ganin et al.,
2016) and domain separation network (Bousmalis
et al., 2016), proposing a new adversarial training
scheme based on randomized predictions.

We consider both supervised and unsupervised
adaptation scenarios (i.e., absence/presence of la-
beled data in the target domain). We find that un-
supervised DA can greatly improve performance
without requiring additional annotation. Super-

1297

https://doi.org/10.18653/v1/P17-1119

vised DA with a small amount of labeled data
gives further improvement on top of unsuper-
vised DA. In experiments, we show clear gains
in both deployment and temporal shifts across 5
test domains, yielding average error reductions of
74.04% and 41.46% for intent classification and
70.33% and 32.0% for slot tagging compared to
baselines without adaptation.

2 Related Work

2.1 Domain Adaptation

Our work builds on the recent success of DA in the
neural network framework. Notably, Ganin et al.
(2016) propose an adversarial training method for
unsupervised DA. They partition the model pa-
rameters into two parts: one inducing domain-
specific (or private) features and the other domain-
invariant (or shared) features. The domain-
invariant parameters are adversarially trained us-
ing a gradient reversal layer to be poor at domain
classification; as a consequence, they produce rep-
resentations that are domain agnostic. This ap-
proach is motivated by a rich literature on the the-
ory of DA pioneered by Ben-David et al. (2007).
We describe our use of adversarial training in Sec-
tion 3.2.3. A special case of Ganin et al. (2016)
is developed independently by Kim et al. (2016c)
who motivate the method as a generalization of the
feature augmentation method of Daumé III (2009).

Bousmalis et al. (2016) extend the framework
of Ganin et al. (2016) by additionally encourag-
ing the private and shared features to be mutually
exclusive. This is achieved by minimizing the dot
product between the two sets of parameters and si-
multaneously reconstructing the input (for all do-
mains) from the features induced by these param-
eters.

Both Ganin et al. (2016) and Bousmalis et al.
(2016) discuss applications in computer vision.
Zhang et al. (2017) apply the method of Bousmalis
et al. (2016) to tackle transfer learning in NLP.
They focus on transfer learning between classifi-
cation tasks over the same domain (“aspect trans-
fer”). They assume a set of keywords associated
with each aspect and use these keywords to inform
the learner of the relevance of each sentence for
that aspect.

2.2 Spoken Language Understanding

Recently, there has been much investment on the
personal digital assistant (PDA) technology in in-

dustry (Sarikaya, 2015; Sarikaya et al., 2016). Ap-
ples Siri, Google Now, Microsofts Cortana, and
Amazons Alexa are some examples of personal
digital assistants. Spoken language understanding
(SLU) is an important component of these exam-
ples that allows natural communication between
the user and the agent (Tur, 2006; El-Kahky et al.,
2014). PDAs support a number of scenarios in-
cluding creating reminders, setting up alarms, note
taking, scheduling meetings, finding and consum-
ing entertainment (i.e. movie, music, games), find-
ing places of interest and getting driving directions
to them (Kim et al., 2016a).

Naturally, there has been an extensive line of
prior studies for domain scaling problems to eas-
ily scale to a larger number of domains: pre-
training (Kim et al., 2015c), transfer learning (Kim
et al., 2015d), constrained decoding with a sin-
gle model (Kim et al., 2016a), multi-task learn-
ing (Jaech et al., 2016), neural domain adapta-
tion (Kim et al., 2016c), domainless adaptation
(Kim et al., 2016b), a sequence-to-sequence model
(Hakkani-Tür et al., 2016), domain attention (Kim
et al., 2017) and zero-shot learning(Chen et al.,
2016; Ferreira et al., 2015).

There are also a line of prior works on enhanc-
ing model capability and features: jointly mod-
eling intent and slot predictions (Jeong and Lee,
2008; Xu and Sarikaya, 2013; Guo et al., 2014;
Zhang and Wang, 2016; Liu and Lane, 2016a,b),
modeling SLU models with web search click logs
(Li et al., 2009; Kim et al., 2015a) and enhancing
features, including representations (Anastasakos
et al., 2014; Sarikaya et al., 2014; Celikyilmaz
et al., 2016, 2010; Kim et al., 2016d) and lexicon
(Liu and Sarikaya, 2014; Kim et al., 2015b).

All the above works assume that there are no
any data shift issues which our work try to solve.

3 Method

3.1 BiLSTM Encoder

We use an LSTM simply as a mapping φ : Rd ×
Rd′ → Rd′ that takes an input vector x and a state
vector h to output a new state vector h′ = φ(x, h).
See Hochreiter and Schmidhuber (1997) for a de-
tailed description.

Let C denote the set of character types and W
the set of word types. Let ⊕ denote the vec-
tor concatenation operation. We encode an utter-
ance using the wildly successful architecture given
by bidirectional LSTMs (BiLSTMs) (Schuster and

1298

Paliwal, 1997; Graves, 2012). The model parame-
ters Θ associated with this BiLSTM layer are

• Character embedding ec ∈ R25 for each c ∈
C

• Character LSTMs φCf , φ
C
b : R25×R25 → R25

• Word embedding ew ∈ R100 for each w ∈ W

• Word LSTMs φWf , φ
W
b : R150×R100 → R100

Letw1 . . . wn ∈ W denote a word sequence where
word wi has character wi(j) ∈ C at position j.
First, the model computes a character-sensitive
word representation vi ∈ R150 as

fCj = φCf
(
ewi(j), f

C
j−1

)
∀j = 1 . . . |wi|

bCj = φCb
(
ewi(j), b

C
j+1

)
∀j = |wi| . . . 1

vi = fC|wi| ⊕ b
C
1 ⊕ ewi

for each i = 1 . . . n.1 Next, the model computes

fWi = φWf
(
vi, f

W
i−1

)
∀i = 1 . . . n

bWi = φWb
(
vi, b

W
i+1

)
∀i = n . . . 1

and induces a character- and context-sensitive
word representation hi ∈ R200 as

hi = fWi ⊕ bWi (1)

for each i = 1 . . . n. For convenience, we write
the entire operation as a mapping BiLSTMΘ:

(h1 . . . hn)← BiLSTMΘ(w1 . . . wn)

3.2 Unsupervised DA
In unsupervised domain adaptation, we assume la-
beled data for the source domain but not the target
domain. Our approach closely follows the previ-
ous work on unsupervised neural domain adapta-
tion by Ganin et al. (2016) and Bousmalis et al.
(2016). We have three BiLSTM encoders de-
scribed in Section 3.1:

1. Θsrc: induces source-specific features

2. Θtgt: induces target-specific features

3. Θshd: induces domain-invariant features

We now define a series of loss functions defined
by these encoders.

1For simplicity, we assume some random initial state vec-
tors such as fC

0 and bC|wi|+1 when we describe LSTMs.

3.2.1 Source Side Tagging Loss
The most obvious objective is to minimize the
model’s error on labeled training data for the
source domain. Let w1 . . . wn ∈ W be an utter-
ance in the source domain annotated with labels
y1 . . . yn ∈ L. We induce

(hsrc
1 . . . h

src
n)← BiLSTMΘsrc(w1 . . . wn)

(hshd
1 . . . hshd

n)← BiLSTMΘshd(w1 . . . wn)

Then we define the probability of tag y ∈ L for
the i-th word as

zi = W 2
tag tanh

(
W 1

tagh̄i + b1tag

)
+ b2tag

p(y|hi) ∝ exp ([zi]y)

where h̄i = hsrci ⊕ hshd
i and Θtag =

{W 1
tag,W

2
tag, b

1
tag, b

2
tag} denotes additional feed-

foward parameters. The tagging loss is given by
the negative log likelihood

Ltag (Θsrc,Θshd,Θtag) = −
∑

i

log p
(
yi|h̄i

)

where we iterate over annotated words (wi, yi) on
the source side.

3.2.2 Reconstruction Loss
Following previous works, we ground feature
learning by reconstructing encoded utterances.
Both Bousmalis et al. (2016) and Zhang et al.
(2017) use mean squared errors for reconstruc-
tion, the former of image pixels and the latter of
words in a context window. In contrast, we use an
attention-based LSTM that fully re-generates the
input utterance and use its log loss.

More specifically, let w1 . . . wn ∈ W be an ut-
terance in domain d ∈ {src, tgt}. We first use the
relevant encoders as before

(hd1 . . . h
d
n)← BiLSTMΘd(w1 . . . wn)

(hshd
1 . . . hshd

n)← BiLSTMΘshd(w1 . . . wn)

The concatenated vectors h̄i = hdi ⊕ hshd
i are fed

into the standard attention-based decoder (Bah-
danau et al., 2014) to define the probability of
word w at each position i with state vector µi−1

(where µ0 = h̄n):

αj ∝ exp
(
µ>i−1h̄j

)
∀j ∈ {1 . . . n}

h̃i =
n∑

j=1

αj h̄j

µi = φR(µi−1 ⊕ h̃i, µi−1)

p(w|µi) ∝ exp
(
[W 1

recµi + b1rec]w
)

1299

where Θrec = {φR,W 1
rec, b

1
rec} denotes additional

parameters. The reconstruction loss is given by
the negative log likelihood

Lrec (Θsrc,Θtgt,Θshd,Θrec) = −
∑

i

log p (wi|µi)

where we iterate over words wi in both the source
and target utterances.

3.2.3 Adversarial Domain Classification Loss
Ganin et al. (2016) propose introducing an ad-
versarial loss to make shared features domain-
invariant. This is motivated by a theoretical result
of Ben-David et al. (2007) who show that the gen-
eralization error on the target domain depends on
how “different” the source and the target domains
are. This difference is approximately measured by

2

(
1− 2 inf

Θ
error(Θ)

)
(2)

where error(Θ) is the domain classification er-
ror using model Θ. It is assumed that the
source and target domains are balanced so that
infΘ error(Θ) ≤ 1/2 and the difference lies in
[0, 2]. In other words, we want to make error(Θ)
as large as possible in order to generalize well to
the target domain. The intuition is that the more
domain-invariant our features are, the easier it is
to benefit from the source side training when test-
ing on the target side. It can also be motivated as
a regularization term (Ganin et al., 2016).

Let w1 . . . wn ∈ W be an utterance in domain
d ∈ {src, tgt}. We first use the shared encoder

(hshd
1 . . . hshd

n)← BiLSTMΘshd(w1 . . . wn)

It is important that we only use the shared encoder
for this loss. Then we define the probability of
domain d for the utterance as

zi = W 2
adv tanh

(
W 1

adv

n∑

i=1

hshd
i + b1adv

)
+ b2adv

p(d|hi) ∝ exp ([zi]d)

where Θadv = {W 1
adv,W

2
adv, b

1
adv, b

2
adv} denotes addi-

tional feedfoward parameters. The adversarial do-
main classification loss is given by the positive log
likelihood

Ladv (Θshd,Θadv) =
∑

i

log p
(
d(i)|w(i)

)

where we iterate over domain-annotated utter-
ances (w(i), d(i)).

Random prediction training While past work
only consider using a negative gradient (Ganin
et al., 2016; Bousmalis et al., 2016) or positive
log likelihood (Zhang et al., 2017) to perform ad-
versarial training, it is unclear whether these ap-
proaches are optimal for the purpose of “confus-
ing” the domain predictor. For instance, mini-
mizing log likelihood can lead to a model accu-
rately predicting the opposite domain, compromis-
ing the goal of inducing domain-invariant repre-
sentations. Thus we propose to instead optimize
the shared parameters for random domain predic-
tions. Specifically, the above loss is replaced with

Ladv (Θshd,Θadv) = −
∑

i

log p
(
d(i)|w(i)

)

where d(i) is set to be src with probability 0.5
and tgt with probability 0.5. By optimizing for
random predictions, we achieve the desired effect:
the shared parameters are trained to induce fea-
tures that cannot discriminate between the source
and the target domains.

3.2.4 Non-Adversarial Domain Classification
Loss

In addition to the adversarial loss for domain-
invariant parameters, we also introduce a non-
adversarial loss for domain-specific parameters.
Given w1 . . . wn ∈ W in domain d ∈ {src, tgt},
we use the private encoder

(hd
1 . . . h

d
n)← BiLSTMΘd(w1 . . . wn)

It is important that we only use the private encoder
for this loss. Then we define the probability of
domain d for the utterance as

zi = W 2
nadv tanh

(
W 1

nadv

n∑

i=1

hd
i + b1nadv

)
+ b2nadv

p(d|hi) ∝ exp ([zi]d)

where Θnadv = {W 1
nadv,W

2
nadv, b

1
nadv, b

2
nadv} denotes

additional feedfoward parameters. The non-
adversarial domain classification loss is given by
the negative log likelihood

Lnadv (Θd,Θnadv) =
∑

i

log p
(
d(i)|w(i)

)

where we iterate over domain-annotated utter-
ances (w(i), d(i)).

1300

3.2.5 Orthogonality Loss
Finally, following Bousmalis et al. (2016), we
further encourage the domain-specific features
to be mutually exclusive with the shared fea-
tures by imposing soft orthogonality constraints.
This is achieved as follows. Given an utterance
w1 . . . wn ∈ W in domain d ∈ {src, tgt}. We
compute

(hd1 . . . h
d
n)← BiLSTMΘd(w1 . . . wn)

(hshd
1 . . . hshd

n)← BiLSTMΘshd(w1 . . . wn)

The orthogonality loss for this utterance is given
by

Lorth (Θsrc,Θtgt,Θshd) =
∑

i

(hdi)
>hshd

i

where we iterate over words i in both the source
and target utterances.

3.2.6 Joint Objective
For unsupervised DA, we optimize

Lunsup (Θsrc,Θtgt,Θshd,Θtag,Θrec,Θadv) =

Ltag (Θsrc,Θshd,Θtag) +

Lrec (Θsrc,Θtgt,Θshd,Θrec) +

Ladv (Θshd,Θadv) +

Lnadv (Θsrc,Θnadv) +

Lnadv (Θtgt,Θnadv) +

Lorth (Θsrc,Θtgt,Θshd)

with respect to all model parameters. In an online
setting, given an utterance we compute its recon-
struction, adversarial, orthogonality, and tagging
loss if in the source domain, and take a gradient
step on the sum of these losses.

3.3 Supervised DA

In supervised domain adaptation, we assume la-
beled data for both the source domain and the tar-
get domain. We can easily incorporate supervision
in the target domain by adding Ltag (Θtgt,Θshd,Θtag)
to the unsupervised DA objective:

Lsup (Θsrc,Θtgt,Θshd,Θtag,Θrec,Θadv) =

Lunsup (Θsrc,Θtgt,Θshd,Θtag,Θrec,Θadv) +

Ltag (Θtgt,Θshd,Θtag) (3)

We mention that the approach by Kim et al.
(2016c) is a special case of this objective; they op-

timize

Lsup2 (Θsrc,Θtgt,Θshd,Θtag) =Ltag (Θsrc,Θshd,Θtag) +

Ltag (Θtgt,Θshd,Θtag)
(4)

which is motivated as a neural extension of the fea-
ture augmentation method of Daumé III (2009).

4 Experiments

In this section, we conducted a series of exper-
iments to evaluate the proposed techniques on
datasets obtained from real usage.

4.1 Test Domains and Tasks
We test our approach on a suite of 5 Microsoft
Cortana domains with 2 separate tasks in spoken
language understanding: (1) intent classifica-
tion and (2) slot (label) tagging. The intent
classification task is a multi-class classification
problem with the goal of determining to which
one of the n intents a user utterance belongs
conditioning on the given domain. The slot
tagging task is a sequence labeling problem with
the goal of identifying entities and chunking of
useful information snippets in a user utterance.
For example, a user could say reserve a
table at joeys grill for thursday
at seven pm for five people. Then
the goal of the first task would be to classify
this utterance as MAKE RESERVATION intent
given the domain PLACES, and the goal of the
second task would be to tag joeys grill as
RESTAURANT, thursday as DATE, seven
pm as TIEM, and five as NUMBER PEOPLE.

Table 1 gives a summary of the 5 test domains.
We note that the domains have various levels of
label granularity.

Domain Intent Slot Description
calendar 23 43 Set appointments in calendar
comm. 38 45 Make calls & send messages
places 35 64 Find locations & directions

reminder 14 35 Remind tasks in a to-do list
weather 13 19 Get weather information

Table 1: The number of intents, the number of
slots and a short description of the test domains.

4.2 Experimental Setup
We consider 2 possible domain adaptation (DA)
scenarios: (1) adaptation of an engineered dataset
to a live user dataset and (2) adaptation of an old

1301

dataset to a new dataset. For the first DA scenario,
we test whether our approach can effectively make
a system adapt from experimental, engineered data
to real-world, live data. We use synthetic data
which domain experts manually create based on a
given domain schema2 before the system goes live
as the engineered data. We use transcribed dataset
from users’ speech input as the live user data. For
the second scenario, we test whether our approach
can effectively make a system adapt over time. A
large number of users will quickly generate a large
amount of data, and the usage pattern could also
change. We use annotation data over 1 month in
2013 (more precisely August of 2013) as our old
dataset, and use the whole data between 2014 and
2016 as our new dataset regardless of whether the
data type is engineered or live user.

As we describe in the earlier sections, we con-
sider both supervised and unsupervised DA. We
apply our DA approach with labeled data in the
target domain for the supervised setting and with
unlabeled data for the unsupervised one. We give
details of the baselines and variants of our ap-
proach below.

Unsupervised DA baselines and variants:

• SRC: a single LSTM model trained on a
source domain without DA techniques

• DAW : an unsupervised DA model with
a word-level decoder (i.e., re-generate each
word independently)

• DAS : an unsupervised DA model with a
sentence-level decoder described in Section
3.2

Supervised DA baselines and variants:

• SRC: a single LSTM model trained only on a
source domain

• TGT: a single LSTM model trained only on a
target domain

• Union: a single LSTM model trained on the
union of source and target domains.

• DA: a supervised DA model described in
Section 3.3

• DAA: DA with adversary domain training
2This is a semantic template that defines a set of intents

and slots for each domain according to the intended function-
ality of the system.

• DAU : DA with reasonably sufficient unla-
beled data

In our experiments, all the models were imple-
mented using Dynet (Neubig et al., 2017) and
were trained using Stochastic Gradient Descent
(SGD) with Adam (Kingma and Ba, 2015)—an
adaptive learning rate algorithm. We used the ini-
tial learning rate of 4× 10−4 and left all the other
hyper parameters as suggested in Kingma and Ba
(2015). Each SGD update was computed with-
out a minibatch with Intel MKL (Math Kernel Li-
brary)3. We used the dropout regularization (Sri-
vastava et al., 2014) with the keep probability of
0.4.

We encode user utterances with BiLSTMs as
described in Section 3.1. We initialize word em-
beddings with pre-trained embeddings used by
Lample et al. (2016). In the following sections,
we report intent classification results in accuracy
percentage and slot results in F1-score. To com-
pute slot F1-score, we used the standard CoNLL
evaluation script4

4.3 Results: Unsupervised DA

We first show our results in the unsupervised DA
setting where we have a labeled dataset in the
source domain, but only unlabeled data in the tar-
get domain. We assume that the amount of data
in both datasets is sufficient. Dataset statistics are
shown in Table 2.

The performance of the baselines and our model
variants are shown in Table 3. The left side of
the table shows the results of the DA scenario of
adapting from engineered data to live user data,
and the baseline which trained only on the source
domain (SRC) show a poor performance, yield-
ing on average 48.5% on the intent classification
and 42.7% F1-score on the slot tagging. Using our
DA approach with a word-level decoder (DAW)
shows a significant increase in performance in all 5
test domains, yielding on average 82.2% intent ac-
curacy and 80.5% slot F1-score. The performance
increases further using the DA approach with a
sentence-level decoder DAS , yielding on average
85.6% intent accuracy and 83.0% slot F1-score.

The right side of the table shows the results of
the DA scenario of adapting from old to new data,
and the baseline trained only on SRC also show

3https://software.intel.com/en-us/articles/intelr-mkl-and-
c-template-libraries

4http://www.cnts.ua.ac.be/conll2000/chunking/output.html

1302

Engineered → Live User Old → New
Domain Train Train* Dev Test Train Train* Dev Test
calendar 16904 50000 1878 10k 13165 13165 1463 10k

communication 32072 50000 3564 10k 12631 12631 1403 10k
places 23410 50000 2341 10k 21901 21901 2433 10k

reminder 19328 50000 1933 10k 16245 16245 1805 10k
weather 20794 50000 2079 10k 15575 15575 1731 10k

AVG 23590 50000 2359 10k 15903 15903 1767 10k

Table 2: Data statistics for unsupervised domain adaptation; In the first row, the columns are adaptation
of engineered dataset to live user dataset, and and adaptation of old dataset to new dataset. In the second
row, columns are domain, size of labeled training, unlabeled training, development and test sets. *
denotes unlabeled data

Engineered→ User Live Old→ New
Task Domain SRC DAW DAS SRC DAW DAS

Intent

calendar 47.5 82.0 84.6 50.7 85.7 88.8
communication 45.8 75.3 81.2 49.4 83.2 86.2

places 48.5 83.7 86.3 51.7 88.1 91.1
reminder 50.7 83.9 88.7 53.3 88.8 92.8
weather 50.3 86.3 87.1 53.4 89.1 92.2

AVG 48.5 82.2 85.6 51.7 86.9 90.2

Slot

calendar 42.4 79.4 81.7 42.2 84.7 87.9
communication 41.1 75.3 79.1 41.5 85.3 89.1

places 40.2 81.6 83.8 44.1 85.4 88.7
reminder 42.6 83.5 85.7 47.4 87.6 91.2
weather 47.2 82.8 84.7 43.2 85.6 89.5

AVG 42.7 80.5 83.0 43.7 85.7 89.3

Table 3: Intent classification accuracy (%) and slot tagging F1-score (%) for the unsupervised domain
adaptation. The results that perform in each domain are in bold font.

Engineered → Live User Old → New
Domain Train Train* Dev Test Train Train* Dev Test
calendar 16904 1000 100 10k 13165 1000 100 10k

communication 32072 1000 100 10k 12631 1000 100 10k
places 23410 1000 100 10k 21901 1000 100 10k

reminder 19328 1000 100 10k 16245 1000 100 10k
weather 20794 1000 100 10k 15575 1000 100 10k

AVG 23590 1000 100 10k 15903 1000 100 10k

Table 4: Data statistics for supervised domain adaptation

Engineered→ User Live Old→ New
Domain SRC TGT Union DA DAA DAU SRC TGT Union DA DAA DAU

I

calendar 47.5 69.2 48.3 80.7 80.5 82.4 50.7 69.2 49.9 74.4 75.4 75.8
comm. 45.8 67.4 47.0 77.5 78.0 79.7 49.4 65.8 50.0 70.2 70.7 71.9
places 48.5 71.2 48.5 82.0 82.4 83.2 51.7 69.6 52.2 75.8 76.4 77.3

reminder 50.7 75.0 49.9 83.9 84.1 87.3 53.3 72.3 53.9 77.2 78.0 78.5
weather 50.3 73.8 49.6 84.3 84.7 85.6 53.4 71.4 52.7 76.9 78.1 79.2

AVG 48.5 71.3 48.7 81.7 81.9 83.6 51.7 69.7 51.7 74.9 75.7 76.5

S

calendar 42.4 64.9 43.0 76.1 76.7 77.1 42.2 61.8 41.6 68.0 66.9 69.3
comm. 41.1 62.0 40.4 73.3 72.1 73.8 41.5 61.1 44.9 67.2 66.3 68.4
places 40.2 61.8 39.0 72.1 72.0 72.9 44.1 64.6 47.7 70.1 68.7 72.5

reminder 42.6 65.1 42.6 76.8 75.7 80.0 47.4 70.9 44.2 78.4 76.2 78.9
weather 47.2 71.2 46.4 82.6 83.0 84.4 43.2 64.1 44.7 71.0 69.0 70.2

AVG 42.7 65.0 42.3 76.2 75.9 77.6 43.7 64.5 44.6 71.0 69.4 71.9

Table 5: Intent classification accuracy (%) and slot tagging F1-score (%) for the supervised domain
adaptation.

a similar poor performance, yielding on average
51.7% accuracy and 43.7% F1-score. DAW ap-
proach shows a significant performance increase
in all 5 test domains, yielding on average 86.9%

intent accuracy and 85.7% slot F1-score. Simi-
larly, the performance increases further with the
DAS with 90.2% intent accuracy and 89.3% F1-
score.

1303

Our DA approach variants yield average error
reductions of 72.04% and 79.71% for intent clas-
sification and 70.33% and 80.99% for slot tag-
ging. The results suggest that our DA approach
can quickly make a model adapt from synthetic
data to real-world data and from old data to new
data with the additional use of only 2 to 2.5 more
data from the target domain. Aside from the per-
formance boost itself, the approach shows even
more power since the new data from the target
down do not need to be labeled and it only re-
quires collecting a little more data from the tar-
get domain. We note that the model development
sets were created only from the source domain for
a fully unsupervised setting. But having the de-
velopment set from the target domain shows even
more boost in performance although not shown in
the results, and labeling only the development set
from the target domain is relatively less expensive
than labeling the whole dataset.

4.4 Results: Supervised DA

Second, we show our results in the supervised
DA setting where we have a sufficient amount of
labeled data in the source domain but relatively
insufficient amount of labeled data in the target
domain. Having more labeled data in the target
domain would most likely help with the perfor-
mance, but we intentionally made the setting more
disadvantageous for our DA approach to better
simulate real-world scenarios where there is usu-
ally lack of resources and time to label a large
amount of new data. For each personal assistant
test domain, we only used 1000 training utter-
ances to simulate scarcity of newly labeled data,
and dataset statistics are shown in Table 2. Unlike
the unsupervised DA scenario, here we used the
development sets created from the target domain
shown in Table 4.

The left side of Table 5 shows the results of the
supervised DA approach of adapting from engi-
neered data to live user data. The baseline trained
only on the source (SRC) shows on average 48.5%
intent accuracy and 42.7% slot F1-score. Train-
ing only on the target domain (TGT) increases the
performance to 71.3% and 65.0%, but training on
the union of the source and target domains (Union)
again brings the performance down to 48.7% and
42.3%. As shown in the unsupervised setting, us-
ing our DA approach (DA) shows significant per-
formance increase in all 5 test domains, yielding

on average 81.7% intent accuracy and 76.2% slot
tagging. The DA approach with adversary domain
training (DAA) shows similar performance com-
pared to that ofDA, and performance shows more
increase when using our DA approach with suf-
ficient unlabeled data5 (DAU), yielding on aver-
age 83.6% and 77.6%. For the second scenario of
adapting from old to new dataset, the results show
a very similar trend in performance.

The results show that our supervised DA (DA)
approach also achieves a significant performance
gain in all 5 test domains, yielding average error
reductions of 68.18% and 51.35% for intent clas-
sification and 60.90% and 50.09% for slot tagging.
The results suggest that an effective domain adap-
tation can be done using the supervised DA by
having only a handful more data of 1k newly la-
beled data points. In addition, having both a small
amount of newly labeled data combined with suffi-
cient unlabeled data can help the models perform
even better. The poor performance of using the
union of both source and target domain data might
be due to the relatively very small size of the tar-
get domain data, overwhelmed by the data in the
source domain.

4.5 Results: Adversarial Domain
Classification Loss

Eng. → User
Task Domain RAND ADV

In
te

nt

calendar 84.6 81.1
communication 81.2 77.9

places 86.3 83.5
reminder 88.7 85.8
weather 87.1 84.2

AVG 85.6 82.5

Sl
ot

calendar 81.7 78.7
communication 79.1 75.7

places 83.8 80.6
reminder 85.7 82.4
weather 84.7 81.7

AVG 83.0 79.8

Table 6: Intent classification accuracy (%) and slot
tagging F1-score (%) for the unsupervised domain
adaptation with two different adversarial classifi-
cation losses – our claimed random domain pre-
dictions (RAND) and adversarial loss (ADVR) of
Ganin et al. (2016) as explained in 3.2.3.

5This data is used for unsupervised DA experiments (Ta-
ble 2).

1304

The impact on the performance of two different
adversarial classification losses are shown in Table
6. RAND represents the unsupervised DA model
with sentence-level decoder (DAS) using random
prediction loss. The ADV shows the performance
of same model using the adversarial loss of Ganin
et al. (2016) as described in 3.2.3. Unfortunately,
in the deployment shift scenario, using the adver-
sarial loss fails to provide any improvement on
intent classification accuracy and slot tagging F1
score, achieving 82.5% intent accuracy and 79.8%
slot F1 score. These results align with our hypoth-
esis that the adversarial loss using does not con-
fuse the classifier sufficiently.

4.6 Proxy A-distance

Eng. → User Old→ New
Domain dA dA
calendar 0.58 0.43
comm. 0.54 0.44
places 0.68 0.62

reminder 0.54 0.57
weather 0.57 0.54

AVG 0.58 0.52

Table 7: ProxyA-distance of resulting models: (1)
engineered and live user dataset and (2) old and
new dataset.

The results in shown in Table 7 show Proxy A-
distance(Ganin et al., 2016) to check if our ad-
versary domain training generalize well to the tar-
get domain. The distance between two datasets is
computed by

d̂A = 2(1− 2 min {ε, 1− ε}) (5)

where ε is a generalization error in discriminating
between the source and target datasets.

The range of d̂A distance is between 0 and
2.0. 0 is the best case where adversary training
successfully fake shared encoder to predict do-
mains. In other words, thanks to adversary train-
ing our model make the domain-invariant features
in shared encoder in order to generalize well to the
target domain.

4.7 Vocabulary distance between engineered
data and live user data

The results in shown in Table 8 show the discrep-
ancy between two datasets. We measure the de-
gree of overlap between vocabulary V employed

Eng. → User Old→ New
Domain dV dV
calendar 0.80 0.72
comm. 0.80 0.93
places 0.82 0.72

reminder 0.89 0.71
weather 0.72 0.73

AVG 0.80 0.76

Table 8: Distance between different datasets: (1)
engineered and live user dataset and (2) old and
new dataset.

by the two datasets. We simply take the Jaccard
coefficient between the two sets of such vocabu-
lary:

dV (s, t) = 1− JC(Vs, Vt),

where Vs is the set of vocabulary in source s do-
main, and Vt is the corresponding set for target
t domain and JC(A,B) = |A∩B|

|A∪B| is the Jaccard
coefficient, measuring the similarity of two sets.
The distance dV is the high it means that they are
not shared with many words. Overall, the distance
between old and new dataset are still far and the
number of overlapped are small, but better than
live user case.

5 Conclusion

In this paper, we have addressed two types of data
shift common in SLU applications: 1. transferring
from synthetic data to live user data (a deployment
shift), and 2. transferring from stale data to cur-
rent data (a temporal shift). Our method is based
on domain adaptation, treating the flawed train-
ing dataset as a source domain and the evaluation
dataset as a target domain. We use and build on
several recent advances in neural domain adapta-
tion such as adversarial training and domain sep-
aration network, proposing a new effective adver-
sarial training scheme based on randomized pre-
dictions. In both supervised and unsupervised
adaptation scenarios, our approach yields clear im-
provement over strong baselines.

1305

References
Tasos Anastasakos, Young-Bum Kim, and Anoop De-

oras. 2014. Task specific continuous word repre-
sentations for mono and multi-lingual spoken lan-
guage understanding. In Acoustics, Speech and Sig-
nal Processing (ICASSP), 2014 IEEE International
Conference on. IEEE.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Shai Ben-David, John Blitzer, Koby Crammer, Fer-
nando Pereira, et al. 2007. Analysis of represen-
tations for domain adaptation. Advances in neural
information processing systems 19:137.

Konstantinos Bousmalis, George Trigeorgis, Nathan
Silberman, Dilip Krishnan, and Dumitru Erhan.
2016. Domain separation networks. In Advances in
Neural Information Processing Systems. pages 343–
351.

Asli Celikyilmaz, Ruhi Sarikaya, Minwoo Jeong, and
Anoop Deoras. 2016. An empirical investigation
of word class-based features for natural language
understanding. IEEE/ACM Transactions on Audio,
Speech and Language Processing (TASLP) 24(6).

Asli Celikyilmaz, Silicon Valley, and Dilek Hakkani-
Tur. 2010. Convolutional neural network based se-
mantic tagging with entity embeddings. genre .

Yun-Nung Chen, Dilek Hakkani-Tür, and Xiaodong
He. 2016. Zero-shot learning of intent embed-
dings for expansion by convolutional deep struc-
tured semantic models. In Acoustics, Speech and
Signal Processing (ICASSP), 2016 IEEE Interna-
tional Conference on. IEEE.

Hal Daumé III. 2009. Frustratingly easy domain adap-
tation. arXiv preprint arXiv:0907.1815 .

Ali El-Kahky, Derek Liu, Ruhi Sarikaya, Gokhan Tur,
Dilek Hakkani-Tur, and Larry Heck. 2014. Ex-
tending domain coverage of language understand-
ing systems via intent transfer between domains us-
ing knowledge graphs and search query click logs.
IEEE, Proceedings of the ICASSP.

Emmanuel Ferreira, Bassam Jabaian, and Fabrice
Lefèvre. 2015. Zero-shot semantic parser for spoken
language understanding. In Sixteenth Annual Con-
ference of the International Speech Communication
Association.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-adversarial training of neural net-
works. Journal of Machine Learning Research
17(59):1–35.

Alex Graves. 2012. Neural networks. In Super-
vised Sequence Labelling with Recurrent Neural
Networks, Springer.

Daniel Guo, Gokhan Tur, Wen-tau Yih, and Geoffrey
Zweig. 2014. Joint semantic utterance classifica-
tion and slot filling with recursive neural networks.
In Spoken Language Technology Workshop (SLT),
2014 IEEE. IEEE.

Dilek Hakkani-Tür, Gokhan Tur, Asli Celikyilmaz,
Yun-Nung Chen, Jianfeng Gao, Li Deng, and Ye-
Yi Wang. 2016. Multi-domain joint semantic frame
parsing using bi-directional rnn-lstm. In Proceed-
ings of The 17th Annual Meeting of the International
Speech Communication Association.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8).

Aaron Jaech, Larry Heck, and Mari Ostendorf. 2016.
Domain adaptation of recurrent neural networks for
natural language understanding. arXiv preprint
arXiv:1604.00117 .

Minwoo Jeong and Gary Geunbae Lee. 2008.
Triangular-chain conditional random fields. IEEE
Transactions on Audio, Speech, and Language Pro-
cessing 16(7).

Young-Bum Kim, Minwoo Jeong, Karl Stratos, and
Ruhi Sarikaya. 2015a. Weakly supervised slot tag-
ging with partially labeled sequences from web
search click logs. In Proceedings of the NAACL. As-
sociation for Computational Linguistics.

Young-Bum Kim, Alexandre Rochette, and Ruhi
Sarikaya. 2016a. Natural language model re-
usability for scaling to different domains. Pro-
ceedings of the Empiricial Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics .

Young-Bum Kim, Karl Stratos, and Dongchan Kim.
2017. Domain attention with an ensemble of ex-
perts. In Annual Meeting of the Association for
Computational Linguistics.

Young-Bum Kim, Karl Stratos, Xiaohu Liu, and Ruhi
Sarikaya. 2015b. Compact lexicon selection with
spectral methods. In Proc. of Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2015c. Pre-training of hidden-unit crfs. In Proc.
of Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016b. Domainless adaptation by constrained de-
coding on a schema lattice. Proceedings of the
26th International Conference on Computational
Linguistics (COLING) .

1306

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016c. Frustratingly easy neural domain adaptation.
Proceedings of the 26th International Conference on
Computational Linguistics (COLING) .

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016d. Scalable semi-supervised query classifica-
tion using matrix sketching. In The 54th Annual
Meeting of the Association for Computational Lin-
guistics. page 8.

Young-Bum Kim, Karl Stratos, Ruhi Sarikaya, and
Minwoo Jeong. 2015d. New transfer learning tech-
niques for disparate label sets. ACL. Association for
Computational Linguistics .

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. The Inter-
national Conference on Learning Representations
(ICLR). .

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360 .

Xiao Li, Ye-Yi Wang, and Alex Acero. 2009. Extract-
ing structured information from user queries with
semi-supervised conditional random fields. In Pro-
ceedings of the 32nd international ACM SIGIR con-
ference on Research and development in information
retrieval.

Bing Liu and Ian Lane. 2016a. Attention-based recur-
rent neural network models for joint intent detection
and slot filling. In Interspeech 2016.

Bing Liu and Ian Lane. 2016b. Joint online spoken lan-
guage understanding and language modeling with
recurrent neural networks. In Proceedings of the
17th Annual Meeting of the Special Interest Group
on Discourse and Dialogue. Association for Com-
putational Linguistics, Los Angeles.

Xiaohu Liu and Ruhi Sarikaya. 2014. A discrimi-
native model based entity dictionary weighting ap-
proach for spoken language understanding. In Spo-
ken Language Technology Workshop (SLT). IEEE,
pages 195–199.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, et al. 2017. Dynet: The
dynamic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Ruhi Sarikaya. 2015. The technology powering per-
sonal digital assistants. Keynote at Interspeech,
Dresden, Germany.

Ruhi Sarikaya, Asli Celikyilmaz, Anoop Deoras, and
Minwoo Jeong. 2014. Shrinkage based features for
slot tagging with conditional random fields. In IN-
TERSPEECH.

Ruhi Sarikaya, Paul Crook, Alex Marin, Minwoo
Jeong, Jean-Philippe Robichaud, Asli Celikyilmaz,
Young-Bum Kim, Alexandre Rochette, Omar Zia
Khan, Xiuahu Liu, et al. 2016. An overview of end-
to-end language understanding and dialog manage-
ment for personal digital assistants. In IEEE Work-
shop on Spoken Language Technology.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11).

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1).

Gokhan Tur. 2006. Multitask learning for spoken
language understanding. In In Proceedings of the
ICASSP. Toulouse, France.

Puyang Xu and Ruhi Sarikaya. 2013. Convolutional
neural network based triangular crf for joint in-
tent detection and slot filling. In Automatic Speech
Recognition and Understanding (ASRU), 2013 IEEE
Workshop on. IEEE.

Xiaodong Zhang and Houfeng Wang. 2016. A joint
model of intent determination and slot filling for
spoken language understanding. IJCAI.

Yuan Zhang, Regina Barzilay, and Tommi Jaakkola.
2017. Aspect-augmented adversarial net-
works for domain adaptation. arXiv preprint
arXiv:1701.00188 .

1307

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1308–1319
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1120

Chat Detection in an Intelligent Assistant: Combining Task-oriented and
Non-task-oriented Spoken Dialogue Systems

Satoshi Akasaki∗
The University of Tokyo

akasaki@tkl.iis.u-tokyo.ac.jp

Nobuhiro Kaji
Yahoo Japan Corporation

nkaji@yahoo-corp.jp

Abstract

Recently emerged intelligent assistants
on smartphones and home electronics
(e.g., Siri and Alexa) can be seen as
novel hybrids of domain-specific task-
oriented spoken dialogue systems and
open-domain non-task-oriented ones. To
realize such hybrid dialogue systems, this
paper investigates determining whether or
not a user is going to have a chat with
the system. To address the lack of bench-
mark datasets for this task, we construct
a new dataset consisting of 15, 160 utter-
ances collected from the real log data of a
commercial intelligent assistant (and will
release the dataset to facilitate future re-
search activity). In addition, we investi-
gate using tweets and Web search queries
for handling open-domain user utterances,
which characterize the task of chat de-
tection. Experiments demonstrated that,
while simple supervised methods are ef-
fective, the use of the tweets and search
queries further improves the F1-score from
86.21 to 87.53.

1 Introduction

1.1 Chat detection

Conventional studies on spoken dialogue systems
(SDS) have investigated either domain-specific
task-oriented SDS1 (Williams and Young, 2007)
or open-domain non-task-oriented SDS (a.k.a.,
chatbots or chat-oriented SDS) (Wallace, 2009).
The former offers convenience by helping users
complete tasks in specific domains, while the latter

∗Work done during internship at Yahoo Japan Corpora-
tion.

1They can be classified as single-domain or multi-domain
task-oriented SDS.

offers entertainment through open-ended chatting
(or smalltalk) with users. Although the function-
alities offered by the two types of SDS are com-
plementary to each other, little practical effort has
been made to combine them. This unfortunately
has limited the potential of SDS.

This situation is now being changed by the
emergence of voice-activated intelligent assistants
on smartphones and home electronics (e.g., Siri2

and Alexa3). These intelligent assistants typically
perform various tasks (e.g., Web search, weather
checking, and alarm setting) while being able to
have chats with users. They can be seen as a
novel hybrid of multi-domain task-oriented SDS
and open-domain non-task-oriented SDS.

To realize such hybrid SDS, we have to deter-
mine whether or not a user is going to have a chat
with the system. For example, if a user says “What
is your hobby?” it is considered that she is going
to have a chat with the system. On the other hand,
if she says “Set an alarm at 8 o’clock,” she is prob-
ably trying to operate her smartphone. We refer to
this task as chat detection and treat it as a binary
classification problem.

Chat detection has not been explored enough
in past studies. This is primarily because little
attempts have been made to develop hybrids of
task-oriented and non-task-oriented SDS (see Sec-
tion 2 for related work). Although task-oriented
and non-task-oriented SDS have long research his-
tories, both of them do not require chat detec-
tion. Typically, users of task-oriented SDS do not
have chats with the systems and users of non-task-
oriented SDS always have chats with the systems.

1.2 Summary of this paper
In this work, we construct a new dataset for chat
detection. As we already discussed, chat detection

2http://www.apple.com/ios/siri
3https://developer.amazon.com/alexa

1308

https://doi.org/10.18653/v1/P17-1120

has not been explored enough, and thus there ex-
ist no benchmark datasets available. To address
this situation, we collected 15, 160 user utterances
from real log data of a commercial intelligent as-
sistant, and recruited crowd workers to annotate
those utterances with whether or not the users are
going to have chats with the intelligent assistant.
The resulting dataset will be released to facilitate
future studies.

The technical challenge in chat detection is that
we have to handle open-ended utterances of in-
telligent assistant users. Commercial intelligent
assistants have a vast amount of users and they
talk about a wide variety of topics especially when
chatting with the assistants. It consequently be-
comes labor-intensive to collect a sufficiently large
amount of annotated data for training accurate chat
detectors.

We develop supervised binary classifiers to per-
form chat detection. We address the open-ended
user utterances, which characterize chat detection,
by using unlabeled external resources. We specif-
ically utilize tweets (i.e., Twitter posts) and Web
search queries to enhance the supervised classi-
fiers.

Experimental results demonstrated that, while
simple supervised methods are effective, the ex-
ternal resources are able to further improve them.
The results demonstrated that the use of the ex-
ternal resources increases over 1 point of F1-score
(from 86.21 to 87.53).

2 Related Work

2.1 Previous studies on combining
task-oriented and non-task-oriented SDS

Task-oriented and non-task-oriented SDS have
long been investigated independently, and little at-
tempts have been made to develop hybrids of the
two types of SDS. As a consequence, previous
studies have not investigated chat detection with-
out only a few exceptions.4

Niculescu and Banchs (2015) explored using
non-task-oriented SDS as a back-off mechanism
for task-oriented SDS. They, however, did not pro-
pose any concrete methods of automatically deter-
mining when to switch to non-task-oriented SDS.

4Unfortunately, we cannot discuss little about chat detec-
tion in existing commercial intelligent assistants since most
of their technical details have not been disclosed. We make
the best effort to compensate for it by comparing the pro-
posed methods with our in-house intelligent assistant in the
experiment.

Lee et al. (2007) proposed an example-based di-
alogue manager to combine task-oriented and non-
task-oriented SDS. In such a framework, however,
it is difficult to flexibly utilize state-of-the-art su-
pervised classifiers as a component.

Other studies proposed machine-learning-based
frameworks for combining multi-domain task-
oriented SDS and non-task-oriented SDS (Wang
et al., 2014; Sarikaya, 2017). These assume that
several components including a chat detector are
already available, and explore integrating those
components. They discuss little on how to develop
each of the components. On the other hand, the fo-
cus of this work is to develop one of those compo-
nents, a chat detector. Although it lies outside the
scope of this paper to explore how to exploit chat
detection method in a full dialogue system, the
chat detection method is considered to serve, for
example, as one component within those frame-
works.

2.2 Intent and domain determination

Chat detection is related to, but different from,
intent and domain determination that have been
studied in the field of SDS (Guo et al., 2014; Xu
and Sarikaya, 2014; Ravuri and Stolcke, 2015;
Kim et al., 2016; Zhang and Wang, 2016).

Both intent and domain determination have
been investigated in domain-specific task-oriented
SDS. Intent determination aims to determine the
type of information a user is seeking in single-
domain task-oriented SDS. For example, in the
ATIS dataset, which is collected from an airline
travel information service system, the information
type includes flight, city, and so on (Tur et al.,
2010). On the other hand, domain determination
aims to determine which domain is relevant to a
given user utterance in multi-domain task-oriented
SDS (Xu and Sarikaya, 2014). Note that it is pos-
sible that domain determination is followed by in-
tent determination.

Unlike intent and domain determination, chat
detection targets hybrid systems of multi-domain
task-oriented SDS and open-domain non-task-
oriented SDS, and aims to determine whether the
non-task-oriented component is responsible to a
given user utterance or not (i.e., the user is going
to have a chat or not). Therefore, the objective of
chat detection is different from intent and domain
determination.

It may be possible to see chat detection as a spe-

1309

cific problem of domain determination (Sarikaya,
2017). We, nevertheless, discuss it as a different
problem because of the uniqueness of the “chat
domain.” It greatly differs from ordinary domains
in that it plays a role of combining the two differ-
ent types of SDS that have long been studied in-
dependently, rather than combining multiple SDS
of the same types. In addition, we discuss the use
of external resources, especially tweets, for chat
detection. This approach is unique to chat detec-
tion and is not considered effective for ordinary
domain determination.

It is interesting to note that chat detection is not
followed by slot-filling unlike intent and domain
determination, as far as we use a popular response
generator such as seq2seq model (Sutskever et al.,
2014) or an information retrieval based approach
(Yan et al., 2016). Although joint intent (or
domain) determination and slot-filling has been
widely studied to improve accuracy (Guo et al.,
2014; Zhang and Wang, 2016), the same approach
is not feasible in chat detection.

2.3 Intelligent assistant
Previous studies on intelligent assistants have not
investigated chat detection. Their research top-
ics are centered around those on user behaviors
including the prediction of user satisfaction and
engagement (Jiang et al., 2015; Kobayashi et al.,
2015; Sano et al., 2016; Kiseleva et al., 2016a,b)
and gamification (Otani et al., 2016). For example,
Jiang et al. (2015) investigated predicting whether
users are satisfied with the responses of intelligent
assistants by combining diverse features including
clicks and utterances. Sano et al. (2016) explored
predicting whether users will keep using the intel-
ligent assistants in the future by using long-term
usage histories.

Some earlier works used the Cortana dataset as
a benchmark of domain determination (Guo et al.,
2014; Xu and Sarikaya, 2014; Kim et al., 2016)
or proposed a development framework for Cortana
(Crook et al., 2016). Those studies, however, re-
garded the intelligent assistant as merely one ex-
ample of multi-domain task-oriented SDS and did
not explore chat detection.

2.4 Non-task-oriented SDS
Non-task-oriented SDS have long been studied
in the research community. While early studies
adopted rule-based methods (Weizenbaum, 1966;
Wallace, 2009), statistical approaches have re-

cently gained much popularity (Ritter et al., 2011;
Vinyals and Le, 2015). This research direction
was pioneered by Ritter et al. (2011), who applied
a phrase-based SMT model to the response gen-
eration. Later, Vinyals and Le (2015) used the
seq2seq model (Sutskever et al., 2014). To date, a
number follow-up studies have been made to im-
prove on the response quality (Hasegawa et al.,
2013; Shang et al., 2015; Sordoni et al., 2015;
Li et al., 2016a,b; Gu et al., 2016; Yan et al.,
2016). Those studies assume that users always
want to have chats with systems and investigate
only methods of generating appropriate responses
to given utterances. Chat detection is required for
integrating those response generators into intelli-
gent assistants.

2.5 Use of conversational data

The recent explosion of conversational data on
the Web, especially tweets, have triggered a va-
riety of dialogue studies. Those typically used
tweets either for training response generators (c.f.,
Section 2.4) or for discovering dialogue acts in
an unsupervised fashion (Ritter et al., 2010; Hi-
gashinaka et al., 2011). This treatment of tweets
differs from that in our work.

3 Chat Detection Dataset

In this section we explain how we constructed the
new benchmark dataset for chat detection. We
then analyze the data to provide insights into the
actual user behavior.

3.1 Construction procedure

We sampled 15, 160 unique utterances5 (i.e., au-
tomatic speech recognition results) from the real
log data of a commercial intelligent assistant, Ya-
hoo! Voice Assist.6 The log data were collected
between Jan. and Aug. 2016. In the log data, some
utterances such as “Hello” appear frequently. To
construct a dataset containing both high and low
frequency utterances, we set frequency thresh-
olds7 to divide the utterances into three groups
(high, middle, and low frequency) and then ran-
domly sampled the same number of utterances

5The utterances are all in Japanese. Example utterances
given in this paper are English translations.

6https://v-assist.yahoo.co.jp
7We cannot disclose the exact threshold values so as to

keep the detailed statistics of the original log data confiden-
tial.

1310

Label Example No. of votes
CHAT Let’s talk about something. 5

What is your hobby? 7
I don’t have any holidays this month. 5
I’m walking around now. 6
Do you like cats? 5
You are a serious geek. 7

NONCHAT Show me a picture of Mt. Fuji. 6
What’s the highest building in the world? 5
A nice restaurant near here. 7
Wake me up at 9:10. 7
Brighten the screen. 6
Turn off the alarm. 7

Table 1: Example utterances and the numbers of votes. NONCHAT utterances are further divided into
information seeking (top) and device control (bottom) to facilitate readers’ understanding.

#Votes No. of utterances
4 1701
5 2670
6 4978
7 5811

Table 2: Distribution of the numbers of votes.

from each of the three groups. During the data col-
lection, we ensured privacy by manually removing
utterances that included the full name of a person
or detailed address information.

Next, we recruited crowd workers to annotate
the 15, 160 utterances with two labels, CHAT and
NONCHAT. The workers annotated the CHAT la-
bel when users were going to have chats with the
intelligent assistant and annotated the NONCHAT

label when users were seeking some information
(e.g., searching the Web or checking the weather)
or were trying to operate the smartphones (e.g.,
setting alarms or controlling volume). Note that
our intelligent assistant works primarily on smart-
phones and thus the NONCHAT utterances include
many operational instructions such as alarm set-
ting. Example utterances are given in Table 1.

Seven workers were assigned to each utterance,
and the final labels were obtained by majority vote
to address the quality issue inherent in crowd-
sourcing. The last column in Table 1 shows the
number of votes that the majority label obtained.
For example, five workers provided the CHAT la-
bel (and the other two provided the NONCHAT la-
bel) to the first utterance “Let’s talk about some-
thing.”

3.2 Data analysis

The construction process described above yielded
a dataset made up of 4, 833 CHAT and 10, 327
NONCHAT utterances.

We investigated the annotation agreement
among the crowd workers. Table 2 shows the
distribution of the numbers of votes that the ma-
jority labels obtained. The annotation given by
the seven workers agreed perfectly in 5, 811 of
the 15, 160 utterances (38%). Also, at least six
workers agreed in the majority of cases, 10, 789
(= 4, 978 + 5, 811) utterances (71%). This indi-
cates high agreement among the workers and the
reliability of the annotation results.

During the data construction, we found that a
typical confusing case arises when the utterance
can be interpreted as an implicit information re-
quest. For example, the utterance “I am hungry”
can be seen as the user trying to have a chat with
the assistant, but it might be the case that she is
looking for a local restaurant. Similar examples
include “I have a backache” and so on. One solu-
tion in this case might be to ask the user a clari-
fication question (Schlöder and Fernandez, 2015).
Such an exploration is left for our future research.

Additionally, we manually classified the CHAT

utterances according to their dialogue acts to fig-
ure out how real users have chats with the intelli-
gent assistant (Table 3). The set of dialogue acts
was designed by referring to (Meguro et al., 2010).
As shown in Table 3, while some of the utterances
are boilerplates (e.g., those in the GREETING act)
and thus have limited variety, the majority of the
utterances exhibit tremendous diversity. We see

1311

Dialogue act (No. of Utter.) Example
GREETING (206) Hello.

Merry Christmas.
SELFDISCLOSURE (1164) I am free today.

I have a sore throat.
ORDER (716) Please cheer me up.

Give me a song!
QUESTION (1551) Do you have emotions?

Are you angry?
INVITATION (130) Let’s play with me!

Let’s go to karaoke next time.
INFORMATION (214) My cat is acting strange.

It snowed a lot.
THANKS (126) Thank you.

You are cool!
CURSE (172) You’re an idiot.

You are useless.
APOLOGY (9) I’m sorry.

I mistook, sorry.
INTERJECTION (151) Whoof.

Yeah, yeah.
MISC (394) May the force be with you.

Cock-a-doodle-doo.

Table 3: Distribution over dialogue acts and exam-
ple utterances.

a wide variety of topics including private issues
(e.g., “I am free today”) and questions to the assis-
tant (e.g., “Are you angry?”). Also, we even see a
movie quote (“May the force be with you”) and a
rooster crow (“Cock-a-doodle-doo”) in the MISC

act. These clearly represent the open-domain na-
ture of the user utterances in intelligent assistants.

Interestingly, some users curse at the intelligent
assistant probably because it failed to make appro-
priate responses (see the CURSE act). Although
such user behavior would not be observed from
paid research participants, we observe a certain
amount of curse utterances in the real data.

4 Detection Method

We formulate chat detection as a binary classifi-
cation problem to train supervised classifiers. In
this section, we first explain the two types of clas-
sifiers explored in this paper, and then investigate
the use of external resources for enhancing those
classifiers.

4.1 Base classifiers

The first classifier utilizes SVM for its popular-
ity and efficiency. It uses character and word n-
gram (n = 1 and 2) features. It also uses word
embedding features (Turian et al., 2010). A skip-
gram model (Mikolov et al., 2013) is trained on

Figure 1: Feature vector representation of the ex-
ample utterance “Today’s weather.” The upper
three parts of the vector represent the features de-
scribed in Section 4.1 (character n-gram, word n-
gram, and average of the word embeddings). The
three additional features explained in Section 4.2
are added as two real-valued features (Tweet GRU
and Query GRU) and one binary feature (Query
binary).

the entire intelligent assistant log8 to learn word
embeddings. The embeddings of the words in the
utterance are then averaged to produce additional
features.

The second classifier uses a convolutional neu-
ral network (CNN) because it has recently proven
to perform well on text classification problems
(Kim, 2014; Johnson and Zhang, 2015a,b). We
follow (Kim, 2014) to develop a simple CNN that
has a single convolution and max-pooling layer
followed by the soft-max layer. We use a recti-
fied linear unit (ReLU) as the non-linear activation
function. The same word embeddings as SVM are
used for the pre-training.

4.2 Using external resources

We next investigate using external resources for
enhancing the base classifiers. Thanks to the rapid
evolution of the Web in the past decade, a variety
of textual data including not only conversational
(i.e., chat-like) but also non-conversational ones
are abundantly available nowadays. These data of-
fer an effective way of enhancing the base classi-
fiers. We specifically use tweets and Web search
queries as conversational and non-conversational
text data, respectively.

We train character-based9 language models on
8We used the same log data used in Section 3. The de-

tailed statistics is confidential.
9We also trained word-based language models in prelim-

1312

Figure 2: Architecture of our CNN-based classi-
fier when the input utterance is “Today’s weather.”
The output layer of CNN and the three additional
features explained in Section 4.2 are concatenated.
The resulting vector is fed to the soft-max func-
tion.

tweets and Web search queries, and use their
scores (i.e., the normalized log probabilities of
the utterance) as two additional features. Let
u = c1, c2, . . . , cm be an utterance made up of
m characters. Then, the score scorer(u) of the
language model trained on the external resource
r ∈ {tweet, query} is defined as

scorer(u) =
1

m

m∑

t=1

log pr(ct | c1, . . . , ct−1).

The GRU language model is adopted for its su-
perior performance (Cho et al., 2014; Chung et al.,
2014). Let xt be the embedding of t-th character
and ht be the t-th hidden state. GRU computes the
hidden state as

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t

zt = σ(W(z)zt + U(z)ht−1)

h̃t = tanh(W(h)xt + U(h)(rt ⊙ ht−1))

rt = σ(W(r)xt + U(r)ht−1)

where ⊙ is the element-wise multiplication, σ is
the sigmoid and tanh is the hyperbolic tangent.
W(z), U(z), W(h), U(h), W(r), and U(r) are
weight matrices. The hidden states are fed to the
soft-max to predict the next word.

We also use a binary feature indicating whether
the utterance appears in the Web search query log

inary experiments and found that character-based ones per-
form consistently better.

or not. We observe that some NONCHAT utter-
ances are made up of single entities such as loca-
tion and product names. Such utterances are con-
sidered to be seeking information on those entities.
We therefore use the query log as an entity dic-
tionary to derive a feature indicating whether the
utterance is likely to be a single entity.

The resulting three features are incorporated
into the SVM-based classifier straightforwardly
(Figure 1). For the CNN-based classifier, they are
provided as additional inputs to the soft-max layer
(Figure 2).

5 Experimental Results

We empirically evaluate the proposed methods on
the chat detection dataset.

5.1 Experimental settings

We performed 10-fold cross validation on the chat
detection dataset to train and evaluate the proposed
classifiers. In each fold, we used 80%, 10%, and
10% of the data for the training, development, and
evaluation, respectively.

We used word2vec10 to learn 300 dimen-
sional word embeddings. They were used to in-
duce the additional 300 features for SVM. They
were also used as the pre-trained word embed-
dings for CNN.

We used the faster-rnn toolkit11 to train the
GRU language models. The size of the embedding
and hidden layer was set to 256. Noise contrastive
estimation (Gutmann and Hyvärinen, 2010) was
used to train the soft-max function and the num-
ber of noise samples was set to 50. Maximum en-
tropy 4-gram models were also trained to yield a
combined model (Mikolov et al., 2011).

The language models were trained on 100 mil-
lions tweets collected between Apr. and July 2016
and 100 million Web search queries issued be-
tween Mar. and Jun. 2016. The tweets were sam-
pled from those received replies to collect only
conversational tweets (Ritter et al., 2011). The
same Web search queries were used to derive the
binary feature. Although it is difficult to release
those data, we plan to make the feature values
available together with the benchmark dataset.

We used liblinear12 to train L2-regularized
L2-loss SVM. The hyperparameter c was tuned

10https://code.google.com/archive/p/word2vec
11https://github.com/yandex/faster-rnnlm
12https://www.csie.ntu.edu.tw/˜cjlin/liblinear

1313

Model Acc. P R F1

Majority 68.12 N/A N/A N/A
Tweet GRU 72.07 54.54 74.40 62.94
In-house IA 78.31 62.57 79.51 70.03

SVM 90.51 86.42 83.45 84.91
SVM+embed. 91.35 87.62 84.88 86.21
SVM+embed.+tweet-query 92.15 88.61 86.50 87.53
CNN 85.16 83.40 68.12 74.41
CNN+pre-train. 90.84 87.03 83.80 85.36
CNN+pre-train.+tweet-query 91.48 87.78 85.18 86.56

Table 4: Chat detection results.

over {2−10, 2−9, . . . , 210}.
The CNN was implemented with chainer.13

We tuned the number of feature maps over
{100, 150}, and filter region sizes over
{{2}, {3}, {1, 2}, {2, 3}, {3, 4}, {1, 2, 3}, {2, 3, 4}}.
The mini-batch size was set to 32. The dropout
rate was set to 0.5. We used Adam (α = 0.001,
β1 = 0.9, β2 = 0.999, and ϵ = 10−8) to perform
stochastic gradient descent (Kingma and Ba,
2015).

5.2 Baselines
The following baseline methods were imple-
mented for comparison:

Majority Utterances are always classified as the
majority class, NONCHAT.

Tweet GRU Utterances are classified as CHAT if
the score of the GRU language model trained
on the tweets exceeds a threshold. We used
exactly the same GRU language model as the
one that was used for deriving the feature.
The threshold was calibrated on the develop-
ment data by maximizing the F1-score of the
CHAT class.

In-house IA Our in-house intelligent assistant
system, which adopts a hybrid of rule-based
and example-based approaches. Since we
cannot disclose its technical details, the result
is presented just for reference.

5.3 Result
Table 4 gives the precision, recall, F1-score (for
the CHAT class), and overall classification accu-
racy results. We report only accuracy for Ma-
jority baseline. +embed. and +pre-train. repre-
sent using the word embedding features for SVM

13http://chainer.org

and the pre-trained word embeddings for CNN,
respectively. +tweet-query represents using the
three features derived from the tweets and Web
search query.

Table 4 represents that both of the classi-
fiers, SVM and CNN, perform accurately. We
see that both +embed. and +pre-train. im-
prove the results. The best performing method,
SVM+embed.+tweet-query, achieves 92% accu-
racy and 87% F1-score, outperforming all of the
baselines. CNN performed worse than SVM con-
trary to results reported by recent studies (Kim,
2014). We think this is because the architecture
of our CNN is rather simplistic. It might be possi-
ble to improve the CNN-based classifier by adopt-
ing more complex network, although it is likely
to come at the cost of extra training time. Another
reason would be that our SVM classifier uses care-
fully designed features beyond word 1-grams.

Table 4 also represents that the external re-
sources are effective, improving F1-scores almost
1 points in both SVM and CNN. Table 5 il-
lustrates example utterances and their language
model scores. We see that the language mod-
els trained on the tweets and queries success-
fully provide the CHAT utterances with high and
low scores, respectively. Table 6 shows chat de-
tection results when each of the three features
derived from the external resources is added to
SVM+embed. The results represent that they are
all worse than SVM+embed.+tweet-query and
thus it is crucial to combine all of them for achiev-
ing the best performance.

Table 7 shows examples of feature weights of
SVM+embed.+tweet-query. Tweet GRU and
query GRU denote the language model score fea-
tures. The others are word n-gram features. We
see that the language model scores have the large

1314

Score (tweet/query) Label Utterance
−0.964 −1.427 CHAT Halloween has already finished.
−0.957 −1.610 CHAT　　 Let’s sleep.
−1.233 −0.562 NONCHAT Pokemon Go install.
−1.837 −0.682 NONCHAT Weekly weather forecast.

Table 5: Examples of the language model scores. The first two columns represent the scores provided
by the GRU language models trained on the tweets and Web search queries, respectively. The third and
fourth columns represent the label and utterance.

Feature Acc. P R F1

tweet GRU 91.53 87.62 85.49 86.53
query GRU 91.38 87.55 85.06 86.28
query binary 91.42 87.56 85.21 86.36

Table 6: Effect of the three features derived from
the tweets and Web search queries.

Feature Weight Feature Weight
tweet GRU 1.128 query GRU −0.771

I 0.215 call to −0.217
Sing 0.195 volume −0.196

Table 7: Examples feature weights of
SVM+embed+tweet-query.

positive and negative weights, respectively. This
indicates that effectiveness of the language mod-
els. We also see that the first person has a large
positive weight, while terms related to device con-
trolling (“call to” and “volume”) have large nega-
tive weights.

Table 8 represents chat detection results of
SVM+embd.+tweet-query across the numbers of
votes that the majority label obtained. As ex-
pected, we see that all metrics get higher as the
number of agreement among the crowd workers
becomes larger. In fact, we see as much as 98%
accuracy when all seven workers agree. This im-
plies that utterances easy for humans to classify
are also easy for the classifiers.

5.4 Training data size

We next investigate the effect of the training data
size on the classification accuracy.

Figure 3 illustrates the learning curve. It rep-
resents that the classification accuracy improves
almost monotonically as the training data size in-
creases. Although our training data is by no means
small, the shape of the learning curve neverthe-
less suggests that further improvement would be
achieved by adding more training data. This im-

#Votes #Utter. Acc. P R F1

4 1701 66.67 55.41 59.81 57.53
5 2670 87.72 80.46 83.01 81.72
6 4978 96.02 92.73 93.87 93.30
7 5811 98.33 96.73 97.68 97.20

Table 8: Chat detection results across the numbers
of votes that the majority label obtained.

12.5 25.0 37.5 50.0 62.5 75.0 87.5 100.0
Training data size (%)

88

89

90

91

92

93
A

cc
ur

ac
y

(%
)

SVM+embed.
SVM+embed.+tweet+query

Figure 3: Learning curve of the proposed meth-
ods. The horizontal axis represents what percent-
age of the training portion is used in each fold of
the cross validation. The vertical axis represents
the classification accuracy.

plies that a very large amount of training data are
required for covering open-domain utterances in
intelligent assistants.

The figure at the same time represents the
usefulness of the external resources. We see
that SVM+embed.+tweet-query trained on about
25% of the training data is able to achieve compa-
rable accuracy with SVM+embed. trained on the
entire training data. This result suggests that the
external resources are able to compensate for the
scarcity of annotated data.

5.5 Utterance length

We finally investigate how the utterance length
correlates with the classification accuracy. Fig-

1315

5 6 7 8 9 10 11 12 13 14 15
Utterance Length

86

88

90

92

94
A

cc
ur

ac
y

(%
)

SVM+embed.
SVM+embed.+tweet-query

Figure 4: Classification accuracy across utterance
lengths in the number of characters.

ure 4 illustrates the classification accuracies of
SVM+embed. and SVM+embed.+tweet-query
for each utterance length in the number of char-
acters.

Figure 4 reveals that the difference between the
two proposed methods is evident in short utter-
ances (i.e., ≤ 5). This is because those utterances
are too short to contain sufficient information re-
quired for classification, and the additional fea-
tures are helpful. We note that Japanese writing
system uses ideograms and thus even five charac-
ters is enough to represent a simple sentence.

We also see a clear difference in longer utter-
ances (i.e., 15 ≤) as well. We consider those long
utterances are difficult to classify because some
words in the utterances are irrelevant for the clas-
sification and the n-gram and embedding features
include those irrelevant ones. On the other hand,
we consider that the language model scores are
good at capturing stylistic information irrespective
of the utterance length.

6 Future Work

As discussed in Section 3.2, some user utterances
such as “I am hungry” are ambiguous in nature and
thus are difficult to handle in the current frame-
work. An important future work is to develop a so-
phisticated dialogue manager to handle such utter-
ances, for example, by making clarification ques-
tions (Schlöder and Fernandez, 2015).

We manually investigated the dialogue acts in
the chat detection dataset (c.f., Section 3.2). It
is interesting to automatically determine the dia-
logue acts to help producing appropriate system
responses. Some related studies exist in such a re-
search direction (Meguro et al., 2010).

Although we used only text data to perform

chat detection, we can also utilize contextual in-
formation such as the previous utterances (Xu and
Sarikaya, 2014), the acoustic information (Jiang
et al., 2015), and the user profile (Sano et al.,
2016). It is an interesting research topic to use
such contextual information beyond text. It is con-
sidered promising to make use of a neural network
for integrating such heterogeneous information.

An automatic speech recognition (ASR) error is
a popular problem in SDS, and previous studies
have proposed sophisticated techniques, includ-
ing re-ranking (Morbini et al., 2012) and POMDP
(Williams and Young, 2007), for addressing the
ASR errors. Incorporating these techniques into
our methods is also an important future work.

Although the studies on non-task-oriented SDS
have made substantial progress in the past few
years, it unfortunately remains difficult for the
systems to fluently chat with users (Higashinaka
et al., 2015). Further efforts on improving non-
task-oriented dialogue systems is an important fu-
ture work.

7 Conclusion

This paper investigated chat detection for combin-
ing domain-specific task-oriented SDS and open-
domain non-task-oriented SDS. To address the
scarcity of benchmark datasets for this task, we
constructed a new benchmark dataset from the
real log data of a commercial intelligent assis-
tant. In addition, we investigated using the exter-
nal resources, tweets and Web search queries, to
handle open-domain user utterances, which char-
acterize the task of chat detection. The empiri-
cal experiment demonstrated that the off-the-shelf
supervised methods augmented with the external
resources perform accurately, outperforming the
baseline approaches. We hope that this study con-
tributes to remove the long-standing boundary be-
tween task-oriented and non-task-oriented SDS.

To facilitate future research, we are going to re-
lease the dataset together with the feature values
derived from the tweets and Web search queries.14

Acknowledgments

We thank Manabu Sassano, Chikara Hashimoto,
Naoki Yoshinaga, and Masashi Toyoda for fruit-
ful discussions and comments. We also thank the
anonymous reviewers.

14https://research-lab.yahoo.co.jp/en/
software

1316

References
Kyunghyun Cho, Bart van Merrienboer, Caglar

Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014.
Learning phrase representations using rnn encoder–
decoder for statistical machine translation. In
Proceedings of EMNLP. pages 1724–1734.
http://www.aclweb.org/anthology/D14-1179.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv:1412.3555.

Paul Crook, Alex Marin, Vipul Agarwal, Khushboo
Aggarwal, Tasos Anastasakos, Ravi Bikkula, Daniel
Boies, Asli Celikyilmaz, Senthilkumar Chandramo-
han, Zhaleh Feizollahi, Roman Holenstein, Min-
woo Jeong, Omar Khan, Young-Bum Kim, Eliza-
beth Krawczyk, Xiaohu Liu, Danko Panic, Vasiliy
Radostev, Nikhil Ramesh, Jean-Phillipe Robichaud,
Alexandre Rochette, Logan Stromberg, and Ruhi
Sarikaya. 2016. Task completion platform: A self-
serve multi-domain goal oriented dialogue platform.
In Proceedings of NAACL (Demonstrations). pages
47–51. http://www.aclweb.org/anthology/N16-
3010.

Jiatao Gu, Zhengdong Lu, Hang Li, and Vic-
tor O.K. Li. 2016. Incorporating copying
mechanism in sequence-to-sequence learning.
In Proceedings of ACL. pages 1631–1640.
http://www.aclweb.org/anthology/P16-1154.

Daniel (Zhaohan) Guo, Gokhan Tur, Scott Wen tau Yih,
and Geoffrey Zweig. 2014. Joint semantic utterance
classification and slot filling with recursive neural
networks. In Proceedings of IEEE SLT Workshop.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In Proceedings
of AISTATS. pages 297–304.

Takayuki Hasegawa, Nobuhiro Kaji, Naoki Yoshi-
naga, and Masashi Toyoda. 2013. Predicting
and eliciting addressee’s emotion in online dia-
logue. In Proceedings of ACL. pages 964–972.
http://www.aclweb.org/anthology/P13-1095.

Ryuichiro Higashinaka, Kotaro Funakoshi, Masahiro
Araki, Hiroshi Tsukahara, Yuka Kobayashi, and
Masahiro Mizukami. 2015. Towards taxon-
omy of errors in chat-oriented dialogue sys-
tems. In Proceedings of SIGDIAL. pages 87–95.
http://aclweb.org/anthology/W15-4611.

Ryuichiro Higashinaka, Noriaki Kawamae, Kugatsu
Sadamitsu, Yasuhiro Minami, Toyomi Meguro, Ko-
hji Dohsaka, and Hirohito Inagaki. 2011. Building a
conversational model from two-tweets. In Proceed-
ings of ASRU. pages 330–335.

Jiepu Jiang, Ahmed Hassan Awadallah, Rosie Jones,
Umut Ozertem, Imed Zitouni, Ranjitha Gurunath

Kulkarni, and Omar Zia Khan. 2015. Automatic on-
line evaluation of intelligent assistants. In Proceed-
ings of WWW. pages 506–516.

Rie Johnson and Tong Zhang. 2015a. Effec-
tive use of word order for text categoriza-
tion with convolutional neural networks.
In Proceedings of NAACL. pages 103–112.
http://www.aclweb.org/anthology/N15-1011.

Rie Johnson and Tong Zhang. 2015b. Semi-supervised
convolutional neural networks for text categoriza-
tion via region embedding. In Advances in NIPS,
pages 919–927.

Joo-Kyung Kim, Gokhan Tur, Asli Celikyilmaz, Bin
Cao, and Ye-Yi Wang. 2016. Intent detection using
semantically enriched word embeddings. In Pro-
ceedings of IEEE SLT Workshop.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. In Pro-
ceedings of EMNLP. pages 1746–1751.
http://www.aclweb.org/anthology/D14-1181.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Julia Kiseleva, Kyle Williams, Ahmed Hassan Awadal-
lah, Aidan Crook, Imed Zitouni, and Tasos Anas-
tasakos. 2016a. Predicting user satisfaction with in-
telligent assistants. In Proceedings of SIGIR. pages
45–54.

Julia Kiseleva, Kyle Williams, Ahmed Hassan Awadal-
lah, Aidan C. Crook, Imed Zitouni, and Tasos
Anastasakos. 2016b. Understanding user satisfac-
tion with intelligent assistants. In Proceedings of
SIGCHIIR. pages 121–130.

Hayato Kobayashi, Kaori Tanio, and Manabu Sassano.
2015. Effects of game on user engagement with spo-
ken dialogue system. In Proceedings of SIGDIAL.
pages 422–426. http://aclweb.org/anthology/W15-
4656.

Cheongjae Lee, Sangkeun Jung, Seokhwan Kim, and
Gary Geunbae Lee. 2007. Example-based dialog
modeling for practical multi-domain dialog system.
Speech Communication 51(5):466–484.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng
Gao, and Bill Dolan. 2016a. A diversity-promoting
objective function for neural conversation mod-
els. In Proceedings of NAACL. pages 110–119.
http://www.aclweb.org/anthology/N16-1014.

Jiwei Li, Michel Galley, Chris Brockett, Geor-
gios Spithourakis, Jianfeng Gao, and Bill Dolan.
2016b. A persona-based neural conversation
model. In Proceedings of ACL. pages 994–1003.
http://www.aclweb.org/anthology/P16-1094.

1317

Toyomi Meguro, Ryuichiro Higashinaka, Yasuhiro
Minami, and Kohji Dohsaka. 2010. Control-
ling listening-oriented dialogue using par-
tially observable markov decision processes.
In Proceedings of Coling. pages 761–769.
http://www.aclweb.org/anthology/C10-1086.

Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukas
Burget, and Jan Cernocky. 2011. Strategies for
training large scale neural network language mod-
els. In Proceedings of ASRU. pages 196–201.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Advances in NIPS. pages 3111–3119.

Fabrizio Morbini, Kartik Audhkhasi, Ron Artstein,
Maarten Van Segbroeck, Kenji Sagae, Panayiotis
Georgiou, David R. Traum, and Shri Narayanan.
2012. A reranking approach for recognition and
classification of speech input in conversational dia-
logue systems. In Proceedings of SLT . pages 49–54.

Andreea I. Niculescu and Rafael E. Banchs. 2015.
Strategies to cope with errors in human-machine
speech interactions: using chatbots as back-off
mechanism for task-oriented dialogues. In Proceed-
ings of ERRARE.

Naoki Otani, Daisuke Kawahara, Sadao Kuro-
hashi, Nobuhiro Kaji, and Manabu Sassano.
2016. Large-scale acquisition of commonsense
knowledge via a quiz game on a dialogue sys-
tem. In Proceedings of OKBQA. pages 11–20.
http://aclweb.org/anthology/W16-4402.

Suman Ravuri and Andreas Stolcke. 2015. A compara-
tive study of neural network models for lexical intent
classification. In In Proceedings of ASRU. pages
368–374.

Alan Ritter, Colin Cherry, and Bill Dolan. 2010.
Unsupervised modeling of twitter conversations.
In In Proceedings of NAACL. pages 172–180.
http://www.aclweb.org/anthology/N10-1020.

Alan Ritter, Colin Cherry, and William B. Dolan.
2011. Data-driven response generation in social me-
dia. In Proceedings of EMNLP. pages 583–593.
http://www.aclweb.org/anthology/D11-1054.

Shumpei Sano, Nobuhiro Kaji, and Manabu
Sassano. 2016. Prediction of prospective
user engagement with intelligent assistants.
In Proceedings of ACL. pages 1203–1212.
http://www.aclweb.org/anthology/P16-1114.

Ruhi Sarikaya. 2017. The technology behind personal
digital assistants: An overview of the system archi-
tecture and key components. IEEE Signal Process-
ing Magazine 34(1):67–81.

Julian J. Schlöder and Raquel Fernandez. 2015. Clar-
ifying intentions in dialogue: A corpus study.

In Proceedings of the 11th International Confer-
ence on Computational Semantics. pages 46–51.
http://www.aclweb.org/anthology/W15-0106.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conver-
sation. In Proceedings of ACL. pages 1577–1586.
http://www.aclweb.org/anthology/P15-1152.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan.
2015. A neural network approach to context-
sensitive generation of conversational responses.
In Proceedings of NAACL. pages 196–205.
http://www.aclweb.org/anthology/N15-1020.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in NIPS, pages 3104–3112.

Gokhan Tur, Dilek Hakkani-Tür, and Larry Heck.
2010. What is left to be understood in atis? In
Proceedings of IEEE SLT Workshop. pages 19–24.

Joseph Turian, Lev-Arie Ratinov, and Yoshua Ben-
gio. 2010. Word representations: A simple
and general method for semi-supervised learn-
ing. In Proceedings of ACL. pages 384–394.
http://www.aclweb.org/anthology/P10-1040.

Oriol Vinyals and Quoc Le. 2015. A neural conver-
sational model. In Proceedings of Deep Learning
Workshop.

Richard S. Wallace. 2009. The Anatomy of A.L.I.C.E.,
Springer, pages 181–210.

Zhuoran Wang, Hongliang Chen, Guanchun Wang,
Hao Tian, Hua Wu, and Haifeng Wang. 2014.
Policy learning for domain selection in an
extensible multi-domain spoken dialogue sys-
tem. In Proceedings of EMNLP. pages 57–67.
http://www.aclweb.org/anthology/D14-1007.

Joseph Weizenbaum. 1966. Eliza–a computer program
for the study of natural language communication be-
tween man and machine. Communications of the
ACM 9(1):36–45.

Jason D. Williams and Steve Young. 2007. Partially
observable markov decision processes for spoken
dialog systems. Computer Speech & Language
21(2):393–422.

Puyang Xu and Ruhi Sarikaya. 2014. Contextual do-
main classification in spoken language understand-
ing systems using recurrent neural network. In Pro-
ceedings of ICASSP. pages 136–140.

Zhao Yan, Nan Duan, Junwei Bao, Peng Chen,
Ming Zhou, Zhoujun Li, and Jianshe Zhou.
2016. Docchat: An information retrieval ap-
proach for chatbot engines using unstructured doc-
uments. In Proceedings of ACL. pages 516–525.
http://www.aclweb.org/anthology/P16-1049.

1318

Xiaodong Zhang and Houfeng Wang. 2016. A joint
model of intent determination and slot filling for
spoken language understanding. In Proceedings of
IJCAI. pages 2993–2999.

1319

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1320–1330
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1121

A Neural Local Coherence Model

Dat Tien Nguyen∗
Informatics Institute

University of Amsterdam
t.d.nguyen@uva.nl

Shafiq Joty
Qatar Computing Research Institute

HBKU, Qatar Foundation
sjoty@hbku.edu.qa

Abstract

We propose a local coherence model based
on a convolutional neural network that op-
erates over the entity grid representation of
a text. The model captures long range en-
tity transitions along with entity-specific
features without loosing generalization,
thanks to the power of distributed repre-
sentation. We present a pairwise ranking
method to train the model in an end-to-end
fashion on a task and learn task-specific
high level features. Our evaluation on
three different coherence assessment tasks
demonstrates that our model achieves state
of the art results outperforming existing
models by a good margin.

1 Introduction and Motivation

What distinguishes a coherent text from a random
sequence of sentences is that it binds the sentences
together to express a meaning as a whole — the in-
terpretation of a sentence usually depends on the
meaning of its neighbors. Coherence models that
can distinguish a coherent from incoherent texts
have a wide range of applications in text genera-
tion, summarization, and coherence scoring.

Several formal theories of coherence have been
proposed (Mann and Thompson, 1988a; Grosz
et al., 1995; Asher and Lascarides, 2003), and their
principles have inspired development of many
existing coherence models (Barzilay and Lap-
ata, 2008; Lin et al., 2011; Li and Hovy, 2014).
Among these models, the entity grid (Barzilay and
Lapata, 2008), which is based on Centering The-
ory (Grosz et al., 1995), is arguably the most pop-
ular, and has seen a number of improvements over
the years. As shown in Figure 1, the entity grid
model represents a text by a grid that captures how

∗Both authors contributed equally to this work.

grammatical roles of different entities change from
sentence to sentence. The grid is then converted
into a feature vector containing probabilities of
local entity transitions, which enables machine
learning models to learn the degree of text coher-
ence. Extensions of this basic grid model incorpo-
rate entity-specific features (Elsner and Charniak,
2011), multiple ranks (Feng and Hirst, 2012), and
coherence relations (Feng et al., 2014).

While the entity grid and its extensions have
been successful in many applications, they are
limited in several ways. First, they use discrete
representation for grammatical roles and features,
which prevents the model from considering suffi-
ciently long transitions (Bengio et al., 2003). Sec-
ond, feature vector computation in existing models
is decoupled from the target task, which limits the
model’s capacity to learn task-specific features.

In this paper, we propose a neural architecture
for coherence assessment that can capture long
range entity transitions along with arbitrary entity-
specific features. Our model obtains generaliza-
tion through distributed representations of entity
transitions and entity features. We also present an
end-to-end training method to learn task-specific
high level features automatically in our model.

We evaluate our approach on three different
evaluation tasks: discrimination, insertion, and
summary coherence rating, proposed previously
for evaluating coherence models (Barzilay and La-
pata, 2008; Elsner and Charniak, 2011). Discrim-
ination and insertion involve identifying the right
order of the sentences in a text with different lev-
els of difficulty. In the summary coherence rat-
ing task, we compare the rankings, given by the
model, against human judgments of coherence.

The experimental results show that our neu-
ral models consistently improve over the non-
neural counterparts (i.e., existing entity grid mod-
els) yielding absolute gains of about 4% on dis-

1320

https://doi.org/10.18653/v1/P17-1121

crimination, up to 2.5% on insertion, and more
than 4% on summary coherence rating. Further-
more, our model achieves state of the art results in
all these tasks. We have released our source code
for research purposes.1

The remainder of this paper is organized as fol-
lows. We describe entity grid, its extensions, and
its limitations in Section 2. In Section 3, we
present our neural model. We describe evaluation
tasks and results in Sections 4 and 5. We give a
brief account of related work in Section 6. Finally,
we conclude with future directions in Section 7.

2 Entity Grid and Its Extensions

Motivated by Centering Theory (Grosz et al.,
1995), Barzilay and Lapata (2008) proposed an
entity-based model for representing and assessing
text coherence. Their model represents a text by a
two-dimensional array called entity grid that cap-
tures transitions of discourse entities across sen-
tences. As shown in Figure 1, the rows of the grid
correspond to sentences, and the columns corre-
spond to discourse entities appearing in the text.
They consider noun phrases (NP) as entities, and
employ a coreference resolver to detect mentions
of the same entity (e.g., Obama, the president).
Each entry Gi,j in the entity grid represents the
syntactic role that entity ej plays in sentence si,
which can be one of: subject (S), object (O), or
other (X). In addition, entities not appearing in a
sentence are marked by a special symbol (-). If an
entity appears more than once with different gram-
matical roles in the same sentence, the role with
the highest rank (S � O � X) is considered.

To represent the entity grid using a feature vec-
tor, Barzilay and Lapata (2008) compute proba-
bility for each local entity transition of length k
(i.e., {S,O,X,−}k), and represent each grid by
a vector of 4k transitions probabilities. To dis-
tinguish between transitions of important entities
from unimportant ones, they consider the salience
of the entities, which they quantify by their oc-
currence frequency in the document. Assessment
of text coherence is then formulated as a ranking
problem in an SVM preference ranking framework
(Joachims, 2002).

Subsequent studies proposed to extend the ba-
sic entity grid model. Filippova and Strube (2007)
attempted to improve the model by grouping en-

1https://github.com/datienguyen/cnn_
coherence/

U
N

IT

PR
O

D
U

C
T

S

R
E

SE
A

R
C

H

C
O

M
PA

N
Y

PA
R

T
S

C
O

N
T

R
O

L
S

IN
D

U
ST

RY

E
L

E
C

T
R

O
N

IC
S

T
E

R
M

C
O

N
C

E
R

N

A
E

R
O

SP
A

C
E

E
M

PL
O

Y
E

E
S

SE
RV

IC
E

S

L
O

S
A

N
G

E
L

E
S

E
A

TO
N

s0 O − X X − − − − − − − X − − X
s1 − − − − − − − − S − − − − − −
s2 − O − − − − X − − − − O O X −
s3 − − − − X X − X − O X − − − S

s0: Eaton Corp. said it sold its Pacific Sierra Research unit
to a company formed by employees of that unit.

s1: Terms were not disclosed.

s2: Pacific Sierra, based in Los Angeles, has 200 employ-
ees and supplies professional services and advanced
products to industry.

s3: Eaton is an automotive parts, controls and aerospace
electronics concern.

Figure 1: Entity grid representation (top) for a
document (below) from WSJ (id: 0079).

tities based on semantic relatedness, but did not
get significant improvement. Elsner and Charniak
(2011) proposed a number of improvements. They
initially show significant improvement by includ-
ing non-head nouns (i.e., nouns that do not head
NPs) as entities in the grid.2 Then, they extend
the grid to distinguish between entities of different
types by incorporating entity-specific features like
named entity, noun class, modifiers, etc. These ex-
tensions led to the best results reported so far.

The Entity grid and its extensions have been
successfully applied to many downstream tasks
including coherence rating (Barzilay and Lapata,
2008), essay scoring (Burstein et al., 2010), story
generation (McIntyre and Lapata, 2010), and read-
ability assessment (Pitler et al., 2010; Barzilay and
Lapata, 2008). They have also been critical com-
ponents in state-of-the-art sentence ordering mod-
els (Soricut and Marcu, 2006; Elsner and Char-
niak, 2011; Lin et al., 2011).

2.1 Limitations of Entity Grid Models
Despite its success, existing entity grid models are
limited in several ways.

• Existing models use discrete representation for
grammatical roles and features, which leads to the
so-called curse of dimensionality problem (Ben-
gio et al., 2003). In particular, to model transitions
of length k withR different grammatical roles, the
basic entity grid model needs to computeRk tran-

2They match the nouns to detect coreferent entities.

1321

sition probabilities from a grid. One can imagine
that the estimated distribution becomes sparse as k
increases. This prevents the model from consider-
ing longer transitions – existing models use k ≤ 3.
This problem is exacerbated when we want to in-
clude entity-specific features, as the number of pa-
rameters grows exponentially with the number of
features (Elsner and Charniak, 2011).

• Existing models compute feature representa-
tions from entity grids in a task-agnostic way. In
other words, feature extraction is decoupled from
the target downstream tasks. This can limit the
model’s capacity to learn task-specific features.
Therefore, models that can be trained in an end-to-
end fashion on different target tasks are desirable.

In the following section, we present a neural ar-
chitecture that allows us to capture long range en-
tity transitions along with arbitrary entity-specific
features without loosing generalization. We also
present an end-to-end training method to learn
task-specific features automatically.

3 The Neural Coherence Model

Figure 2 summarizes our neural architecture for
modeling local coherence, and how it can be
trained in a pairwise fashion. The architecture
takes a document as input, and first extracts its en-
tity grid.3 The first layer of the neural network
transforms each grammatical role in the grid into
a distributed representation, a real-valued vector.
The second layer computes high-level features by
going over each column (transitions) of the grid.
The following layer selects the most important
high-level features, which are in turn used for co-
herence scoring. The features computed at differ-
ent layers of the network are automatically trained
by backpropagation to be relevant to the task. In
the following, we elaborate on the layers of the
neural network model.

(I) Transforming grammatical roles into fea-
ture vectors: Grammatical roles are fed to our
model as indices taken from a finite vocabulary V .
In the simplest scenario, V contains {S,O,X,−}.
However, we will see in Section 3.1 that as we in-
clude more entity-specific features, V can contain
more symbols. The first layer of our network maps
each of these indices into a distributed representa-
tion Rd by looking up a shared embedding matrix

3For clarification, pairwise input as shown in the figure is
required only to train the model.

E ∈ R|V |×d. We consider E a model parameter
to be learned by backpropagation on a given task.
We can initialize E randomly or using pretrained
vectors trained on a general coherence task.

Given an entity grid G with columns represent-
ing entity transitions over sentences in a docu-
ment, the lookup layer extracts a d-dimensional
vector for each entry Gi,j from E. More formally,

L(G) =
〈
E(G1,1) · · · E(Gi,j) · · · E(Gm,n)

〉

(1)
where E(Gi,j) refers to the row in E that corre-
sponds to the grammatical role Gi,j ∈ V ; m is the
total number of sentences and n is the total num-
ber of entities in the document. The output L(G)
is a tensor in Rm×n×d, which is fed to the next
layer of the network as we describe below.

(II) Modeling entity transitions: The vectors
produced by the lookup layer are combined by
subsequent layers of the network to generate a
coherence score for the document. To compose
higher-level features from the embedding vectors,
we make the following modeling assumptions:

• Similar to existing entity grid models, we as-
sume there is no spatio-temporal relation between
the entities in a document. In other words,
columns in a grid are treated independently.

• We are interested in modeling entity transitions
of arbitrary lengths in a location-invariant way.
This means, we aim to compose local patches of
entity transitions into higher-level representations,
while treating the patches independently of their
position in the entity grid.

Under these assumptions, the natural choice to
tackle this problem is to use a convolutional ap-
proach, used previously to solve other NLP tasks
(Collobert et al., 2011; Kim, 2014).

Convolution layer: A convolution operation in-
volves applying a filter w ∈ Rk.d (i.e., a vector
of weight parameters) to each entity transition of
length k to produce a new abstract feature

ht = f(wTLt:t+k−1,j + bt) (2)

where Lt:t+k−1,j denotes the concatenation of k
vectors in the lookup layer representing a transi-
tion of length k for entity ej in the grid, bt is a bias

1322

Figure 2: Neural architecture for modeling local coherence and the pairwise training method.

term, and f is a nonlinear activation function, e.g.,
ReLU (Nair and Hinton, 2010) in our model.

We apply this filter to each possible k-length
transitions of different entities in the grid to gener-
ate a feature map, hi = [h1, · · · , hm.n+k−1]. We
repeat this processN times withN different filters
to get N different feature maps (Figure 2). No-
tice that we use a wide convolution (Kalchbrenner
et al., 2014), as opposed to narrow, to ensure that
the filters reach entire columns of a grid, including
the boundary entities. This is done by performing
zero-padding, where out-of-range (i.e., for t < 0
or t > {m,n}) vectors are assumed to be zero.

Convolutional filters learn to compose local
transition features of a grid into higher-level rep-
resentations automatically. Since it operates over
the distributed representation of grid entries, com-
pared to traditional grid models, the transition
length k can be sufficiently large (e.g., 5 − 8
in our experiments) to capture long-range tran-
sitional dependencies without overfitting on the
training data. Moreover, unlike existing grid mod-
els that compute transition probabilities from a
single document, embedding vectors and convo-
lutional filters are learned from all training docu-
ments, which helps the neural framework to obtain
better generalization and robustness.

Pooling layer: After the convolution, we apply
a max-pooling operation to each feature map.

m = [µp(h
1), · · · , µp(hN)] (3)

where µp(hi) refers to the max operation applied

to each non-overlapping4 window of p features in
the feature map hi. Max-pooling reduces the out-
put dimensionality by a factor of p, and it drives
the model to capture the most salient local features
from each feature map in the convolutional layer.

Coherence scoring: Finally, the max-pooled
features are used in the output layer of the network
to produce a coherence score y ∈ R.

y = vTm+ b (4)

where v is the weight vector and b is a bias term.

Why it works: Intuitively, each filter detects a
specific transition pattern (e.g., ‘SS-O-X’ for a co-
herent text), and if this pattern occurs somewhere
in the grid, the resulting feature map will have a
large value for that particular region and small val-
ues for other regions. By applying max pooling on
this feature map, the network then discovers that
the transition appeared in the grid.

3.1 Incorporating Entity-Specific Features

Our model as described above neuralizes the basic
entity grid model that considers only entity transi-
tions without distinguishing between types of the
entities. However, as Elsner and Charniak (2011)
pointed out entity-specific features could be cru-
cial for modeling local coherence. One simple
way to incorporate entity-specific features into our
model is to attach the feature value (e.g., named
entity type) with the grammatical role in the grid.

4We set the stride size to be the same as the pooling length
p to get non-overlapping regions.

1323

For example, if an entity ej of type PERSON ap-
pears as a subject (S) in sentence si, the grid entry
Gi,j can be encoded as PERSON-S.

3.2 Training
Our neural model assigns a coherence score to
an input document d based on the degree of lo-
cal coherence observed in its entity grid G. Let
y = φ(G|θ) define our model that transforms an
input grid G to a coherence score y through a se-
quence of lookup, convolutional, pooling, and lin-
ear projection layers with parameter set θ. The
parameter set θ includes the embedding matrix E,
the filter matrix W , the weight vector v, and the
biases. We use a pairwise ranking approach (Col-
lobert et al., 2011) to learn θ.

The training set comprises ordered pairs
(di, dj), where document di exhibits a higher de-
gree of coherence than document dj . As we will
see in Section 4 such orderings can be obtained
automatically or through manual annotation. In
training, we seek to find θ that assigns a higher
coherence score to di than to dj . We minimize the
following ranking objective with respect to θ:

J (θ) = max{0, 1− φ(Gi|θ) + φ(Gj |θ)} (5)

where Gi and Gj are the entity grids correspond-
ing to documents di and dj , respectively. Notice
that (also shown in Figure 2) the network shares
its layers (and hence θ) to obtain φ(Gi|θ) and
φ(Gj |θ) from a pair of input grids (Gi, Gj).

Barzilay and Lapata (2008) adopted a similar
ranking criterion using an SVM preference kernel
learner as they argue coherence assessment is best
seen as a ranking problem as opposed to classifi-
cation (coherent vs. incoherent). Also, the ranker
gives a scoring function φ that a text generation
system can use to compare alternative hypotheses.

4 Evaluation Tasks

We evaluate the effectiveness of our coherence
models on two different evaluation tasks: sentence
ordering and summary coherence rating.

4.1 Sentence Ordering
Following Elsner and Charniak (2011), we eval-
uate our models on two sentence ordering tasks:
discrimination and insertion.

In the discrimination task (Barzilay and Lapata,
2008), a document is compared to a random per-

Sections # Doc. # Pairs Avg. # Sen.

TRAIN 00-13 1,378 26,422 21.5
TEST 14-24 1,053 20,411 22.3

Table 1: Statistics on the WSJ dataset.

mutation of its sentences, and the model is con-
sidered correct if it scores the original document
higher than the permuted one. We use 20 permu-
tations of each document in the test set in accor-
dance with previous work.

In the insertion task (Elsner and Charniak,
2011), we evaluate models based on their ability
to locate the original position of a sentence pre-
viously removed from a document. To measure
this, each sentence in the document is removed in
turn, and an insertion place is located for which
the model gives the highest coherence score to the
document. The insertion score is then computed
as the average fraction of sentences per document
reinserted in their actual position.

Discrimination can be easier for longer docu-
ments, since a random permutation is likely to be
different than the original one. Insertion is a much
more difficult task since the candidate documents
differ only by the position of one sentence.

Dataset: For sentence ordering tasks, we use
the Wall Street Journal (WSJ) portion of Penn
Treebank, as used by Elsner and Charniak (2008,
2011); Lin et al. (2011); Feng et al. (2014). Table 1
gives basic statistics about the dataset. Following
previous works, we use 20 random permutations
of each article, and we exclude permutations that
match the original document.5 The fourth column
(# Pairs) in Table 1 shows the resulting number
of (original, permuted) pairs used for training our
model and for testing in the discrimination task.

Some previous studies (Barzilay and Lapata,
2008; Li and Hovy, 2014) used the AIRPLANES

and the EARTHQUAKES corpora, which contain re-
ports on airplane crashes and earthquakes, respec-
tively. Each of these corpora contains 100 articles
for training and 100 articles for testing. The av-
erage number of sentences per article in these two
corpora is 10.4 and 11.5, respectively.

We preferred the WSJ corpus for several rea-
sons. First and most importantly, the WSJ cor-
pus is larger than other corpora (see Table 1). A
large training set is crucial for learning effective

5Short articles may produce many matches.

1324

deep learning models (Collobert et al., 2011), and
a large enough test set is necessary to make a gen-
eral comment about model performance. Second,
as Elsner and Charniak (2011) pointed out, texts in
AIRPLANES and EARTHQUAKES are constrained
in style, whereas WSJ documents are more like
normal informative articles. Third, we could re-
produce results on this dataset for the competing
systems (e.g., entity grid and its extensions) using
the publicly available Brown coherence toolkit.6

4.2 Summary Coherence Rating

We further evaluate our models on the summary
coherence rating task proposed by Barzilay and
Lapata (2008), where we compare rankings given
by a model to a pair of summaries against rankings
elicited from human judges.

Dataset: The summary dataset was extracted
from the Document Understanding Conference
(DUC’03), which contains 6 clusters of multi-
document summaries produced by human experts
and 5 automatic summarization systems. Each
cluster has 16 summaries of a document with pair-
wise coherence rankings given by humans judges;
see (Barzilay and Lapata, 2008) for details on the
annotation method. There are 144 pairs of sum-
maries for training and 80 pairs for testing.

5 Experiments

In this section, we present our experiments — the
models we compare, their settings, and the results.

5.1 Models Compared

We compare our coherence model against a ran-
dom baseline and several existing models.

Random: The Random baseline makes a ran-
dom decision for the evaluation tasks.

Graph-based Model: This is the graph-based
unsupervised model proposed by Guinaudeau and
Strube (2013). We use the implementation from
the cohere7 toolkit (Smith et al., 2016), and run it
on the test set with syntactic projection (command
line option ‘projection=3’) for graph construction.
This setting yielded best scores for this model.

Distributed Sentence Model: Li and Hovy
(2014) proposed this neural model for measuring

6https://bitbucket.org/melsner/browncoherence
7https://github.com/karins/CoherenceFramework

text coherence. The model first encodes each sen-
tence in a document into a fixed-length vector us-
ing a recurrent or a recursive neural network. Then
it computes the coherence score of the document
by aggregating the scores estimated for each win-
dow of three sentences in the document. We used
the implementation made publicly available by the
authors.8 We trained the model on our WSJ cor-
pus with 512, 1024 and 1536 minibatch sizes for
a maximum of 25 epochs.9 The model that used
minibatch size of 512 and completed 23 epochs
achieved the best accuracy on the DEV set. We ap-
plied this model to get the scores on the TEST set.

Grid-all nouns (E&C): This is the simple ex-
tension of the original entity grid model, where all
nouns are considered as entities. Elsner and Char-
niak (2011) report significant gains by considering
all nouns as opposed to only head-nouns. Results
for this model were obtained by training the base-
line entity grid model (command line option ‘-n’)
in the Brown coherence toolkit on our dataset.

Extended grid (E&C): This represents the ex-
tended entity grid model of Elsner and Charniak
(2011) that uses 9 entity-specific features; 4 of
them were computed from external corpora. This
model considers all nouns as entities. For this sys-
tem, we train the extended grid model (command
line option ‘-f’) in the Brown coherence toolkit.

Grid-CNN: This is our proposed neural exten-
sion of the basic entity grid (all nouns), where we
only consider entity transitions as input.

Extended Grid-CNN: This corresponds to our
neural model that incorporates entity-specific fea-
tures following the method described in Section
3.1. To keep the model simple, we include
only three entity-specific features from (Elsner
and Charniak, 2011) that are easy to compute and
do not require any external corpus. The features
are: (i) named entity type, (ii) salience as deter-
mined by occurrence frequency of the entity, and

8http://cs.stanford.edu/ bdlijiwei/code/
9Our WSJ corpus is about 14 times larger than their AC-

CIDENT or EARTHQUAKE corpus (1378 vs. 100 training arti-
cles), and the articles in our corpus are generally longer than
the articles in their corpus (on average 22 vs. 10 sentences per
article). Also, the vocabulary in our corpus is much larger
than their vocabulary (45462 vs. 4758). Considering these
factors and the fact that their Java-based implementation does
not support GPU and parallelization, it takes quite long to
train and to validate their model on our dataset. In our ex-
periments, depending on the minibatch size, it took approxi-
mately 3-5 days to complete only one epoch of training!

1325

Batch Emb. Dropout Filter Win. Pool

Grid-CNN 128 100 0.5 150 6 6
Ext. Grid-CNN 32 100 0.5 150 5 6

Table 2: Optimal hyper-parameter setting for our
neural models based on development set accuracy.

(iii) whether the entity has a proper mention.

5.2 Settings for Neural Models

We held out 10% of the training documents to
form a development set (DEV) on which we tune
the hyper-parameters of our neural models. For
discrimination and insertion tasks, the resulting
DEV set contains 138 articles and 2,678 pairs af-
ter removing the permutations that match the orig-
inal documents. For the summary rating task, DEV

contains 14 pairs of summaries.
We implement our models in Theano (Theano

Development Team, 2016). We use rectified lin-
ear units (ReLU) as activations (f). The embed-
ding matrix is initialized with samples from uni-
form distribution U(−0.01, 0.01), and the weight
matrices are initialized with samples from glorot-
uniform distribution (Glorot and Bengio, 2010).

We train the models by optimizing the pair-
wise ranking loss in Equation 5 using the gradient-
based online learning algorithm RMSprop with
parameters (ρ and ε) set to the values suggested
by Tieleman and Hinton (2012).10 We use up to
25 epochs. To avoid overfitting, we use dropout
(Srivastava et al., 2014) of hidden units, and do
early stopping by observing accuracy on the DEV

set – if the accuracy does not increase for 10
consecutive epochs, we exit with the best model
recorded so far. We search for optimal minibatch
size in {16, 32, 64, 128}, embedding size in
{80, 100, 200}, dropout rate in {0.2, 0.3, 0.5},
filter number in {100, 150, 200, 300}, window
size in {2, 3, 4, 5, 6, 7, 8}, and pooling length in
{3, 4, 5, 6, 7}. Table 2 shows the optimal hyper-
parameter setting for our models. The best model
on DEV is then used for the final evaluation on the
TEST set. We run each experiment five times, each
time with a different random seed, and we report
the average of the runs to avoid any randomness
in results. Statistical significance tests are done
using an approximate randomization test based on
the accuracy. We used SIGF V.2 (Padó, 2006) with

10Other adaptive algorithms, e.g., ADAM (Kingma and
Ba, 2014), ADADELTA (Zeiler, 2012) gave similar results.

Discr. Ins.
Acc F1

Random 50.0 50.0 12.60

Graph-based (G&S) 64.23 65.01 11.93
Dist. sentence (L&H) 77.54 77.54 19.32

Grid-all nouns (E&C) 81.58 81.60 22.13
Extended Grid (E&C) 84.95 84.95 23.28

Grid-CNN 85.57† 85.57† 23.12
Extended Grid-CNN 88.69† 88.69† 25.95†

Table 3: Coherence evaluation results on
Discrimination and Insertion tasks. † indicates a
neural model is significantly superior to its non-
neural counterpart with p-value < 0.01.

10,000 iterations.

5.3 Results on Sentence Ordering
Table 3 shows the results on discrimination and
insertion tasks. The graph-based model gets the
lowest scores. This is not surprising considering
that this model works in an unsupervised way. The
distributed sentence model surprisingly performed
poorly on our dataset. Among the existing mod-
els, the grid models get the best scores on both
tasks. This demonstrates that entity transition, as
a method to capture local coherence, is more ef-
fective than the sentence representation method.

Neuralization of the existing grid models yields
significant improvements in most cases. The Grid-
CNN model delivers absolute improvements of
about 4% in discrimination and 1% in insertion
over the basic grid model. When we compare our
Extended Grid-CNN with its non-neural counter-
part Extended Grid, we observe similar gains in
discrimination and more gains (2.5%) in insertion.
Note that the Extended Grid-CNN yields these im-
provements considering only a subset of the Ex-
tended Grid features. This demonstrates the effec-
tiveness of distributed representation and convolu-
tional feature learning method.

Compared to the discrimination task, gain in the
insertion task is less verbose. There could be two
reasons for this. First, as mentioned before, inser-
tion is a harder task than discrimination. Second,
our models were not trained specifically on the in-
sertion task. The model that is trained to distin-
guish an original document from its random per-
mutation may learn features that are not specific
enough to distinguish documents when only one
sentence differs. In the future, it will be interesting

1326

Acc F1

Random 50.0 50.0

Graph-based (G&S) 80.0 81.5

Grid (B&L) 83.8 -

Grid-CNN 85.0 85.0
Extended Grid-CNN 86.3 86.3

Pre-trained Grid-CNN 86.3 86.3
Pre-trained Ext. Grid-CNN 87.5 87.5

Table 4: Evaluation results on the Summary Co-
herence Rating task.

to see how the model performs when it is trained
on the insertion task directly.

5.4 Results on Summary Coherence Rating

Table 4 presents the results on the summary co-
herence rating task, where we compare our mod-
els with the reported results of the graph-based
method (Guinaudeau and Strube, 2013) and the
initial entity grid model (Barzilay and Lapata,
2008) on the same experimental setting.11 The ex-
tended grid model does not use pairwise training,
therefore could not be trained on the summariza-
tion dataset. Since there are not many training in-
stances, our neural models may not learn well for
this task. Therefore, we also present versions of
our model, where we use pre-trained models from
discrimination task on WSJ corpus (last two rows
in the table). The pre-trained models are then fine-
tuned on the summary rating task.

We can observe that even without pre-training
our models outperform existing models, and pre-
training gives further improvements. Specifically,
Pre-trained Grid-CNN gives an improvement of
2.5% over the Grid model, and including entity
features pushes the improvement further to 3.7%.

6 Related Work

Barzilay and Lapata (2005, 2008) introduced the
entity grid representation of discourse to model lo-
cal coherence that captures the distribution of dis-
course entities across sentences in a text. They
also introduced three tasks to evaluate the perfor-
mance of coherence models: discrimination, sum-
mary coherence rating, and readability.

11Since we do not have access to the output of their sys-
tems, we could not do a significance test for this task.

A number of extensions of the basic entity grid
model has been proposed. Elsner and Charniak
(2011) included entity-specific features to distin-
guish between entities. Feng and Hirst (2012)
used the basic grid representation, but improved
its learning to rank scheme. Their model learns
not only from original document and its permuta-
tions but also from ranking preferences among the
permutations themselves. Guinaudeau and Strube
(2013) convert a standard entity grid into a bi-
partite graph representing entity occurrences in
sentences. To model local entity transition, the
method constructs a directed projection graph rep-
resenting the connection between adjacent sen-
tences. Two sentences have a connected edge if
they share at least one entity in common. The co-
herence score of the document is then computed
as the average out-degree of sentence nodes.

In addition, there are some approaches that
model text coherence based on coreferences and
discourse relations. Elsner and Charniak (2008)
proposed the discourse-new model by taking into
account mentions of all referring expression (i.e.,
NPs) whether they are first mention (discourse-
new) or subsequent (discourse-old) mentions.
Given a document, they run a maximum-entropy
classifier to detect each NP as a label Lnp ∈
{new, old}. The coherence score of the docu-
ment is then estimated by

∏
np:NPs P (Lnp|np).

In this work, they also estimate text coherence
through pronoun coreference modeling. Lin et al.
(2011) assume that a coherent text has certain dis-
course relation patterns. Instead of modeling en-
tity transitions, they model discourse role transi-
tions between sentences. In a follow up work,
Feng et al. (2014) trained the same model but us-
ing features derived from deep discourse struc-
tures annotated with Rhetorical Structure Theory
or RST (Mann and Thompson, 1988b) relations.
Louis and Nenkova (2012) introduced a coher-
ence model based on syntactic patterns in text by
assuming that sentences in a coherent discourse
should share the same structural syntactic patterns.

In recent years, there has been a growing in-
terest in neuralizing traditional NLP approaches –
language modeling (Bengio et al., 2003), sequence
tagging (Collobert et al., 2011), syntactic parsing
(Socher et al., 2013), and discourse parsing (Li
et al., 2014), etc. Following this tradition, in this
paper we propose to neuralize the popular entity
grid models. Li and Hovy (2014) also proposed a

1327

neural framework to compute the coherence score
of a document by estimating coherence probability
for every window of L sentences (in their experi-
ments, L = 3). First, they use a recurrent or a
recursive neural network to compute the represen-
tation for each sentence in L from its words and
their pre-trained embeddings. Then the concate-
nated vector is passed through a non-linear hidden
layer, and finally the output layer decides if the
window of sentences is a coherent text or not. Our
approach is fundamentally different from their ap-
proach; our model operates over entity grids, and
we use convolutional architecture to model suffi-
ciently long entity transitions.

7 Conclusion and Future Work

We presented a local coherence model based on
a convolutional neural network that operates over
the distributed representation of entity transitions
in the grid representation of a text. Our architec-
ture can model sufficiently long entity transitions,
and can incorporate entity-specific features with-
out loosing generalization power. We described a
pairwise ranking approach to train the model on
a target task and learn task-specific features. Our
evaluation on discrimination, insertion and sum-
mary coherence rating tasks demonstrates the ef-
fectiveness of our approach yielding the best re-
sults reported so far on these tasks.

In future, we would like to include other sources
of information in our model. Our initial plan is to
include rhetorical relations, which has been shown
to benefit existing grid models (Feng et al., 2014).
We would also like to extend our model to other
forms of discourse, especially, asynchronous con-
versations, where participants communicate with
each other at different times (e.g., forum, email).

Acknowledgments

We thank Regina Barzilay and Mirella Lapata for
making their summarization data available and
Micha Elsner for making his coherence toolkit
publicly available. We also thank the three anony-
mous ACL reviewers and the program chairs for
their insightful comments on the paper.

References

N. Asher and A. Lascarides. 2003. Logics of Conver-
sation, Cambridge University Press.

Regina Barzilay and Mirella Lapata. 2005. Model-
ing local coherence: An entity-based approach. In
Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics, Ann Arbor, Michi-
gan, ACL ’05, pages 141–148.

Regina Barzilay and Mirella Lapata. 2008. Mod-
eling local coherence: An entity-based ap-
proach. Computational Linguistics 34(1):1–34.
http://www.aclweb.org/anthology/J08-1001.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent,
and Christian Janvin. 2003. A neural probabilis-
tic language model. J. Mach. Learn. Res. 3.
http://dl.acm.org/citation.cfm?id=944919.944966.

Jill Burstein, Joel Tetreault, and Slava Andreyev. 2010.
Using entity-based features to model coherence in
student essays. In Human Language Technologies:
The 2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
Los Angeles, California, HLT ’10, pages 681–684.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. The Journal of Machine Learning Research
12:2493–2537.

Micha Elsner and Eugene Charniak. 2008.
Coreference-inspired coherence modeling. In
Proceedings of the 46th Annual Meeting of the As-
sociation for Computational Linguistics on Human
Language Technologies: Short Papers. Association
for Computational Linguistics, Columbus, Ohio,
HLT-Short ’08, pages 41–44.

Micha Elsner and Eugene Charniak. 2011. Extending
the entity grid with entity-specific features. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies: Short Papers - Volume 2. As-
sociation for Computational Linguistics, Portland,
Oregon, HLT ’11, pages 125–129.

Vanessa Wei Feng and Graeme Hirst. 2012. Extend-
ing the entity-based coherence model with multi-
ple ranks. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, Avignon, France, EACL ’12,
pages 315–324.

Vanessa Wei Feng, Ziheng Lin, and Graeme Hirst.
2014. The impact of deep hierarchical discourse
structures in the evaluation of text coherence. In
COLING.

Katja Filippova and Michael Strube. 2007. Extend-
ing the entity-grid coherence model to semantically
related entities. In Proceedings of the Eleventh
European Workshop on Natural Language Gener-
ation. Association for Computational Linguistics,
Germany, ENLG ’07, pages 139–142.

1328

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neu-
ral networks. In JMLR W&CP: Proceedings of the
Thirteenth International Conference on Artificial In-
telligence and Statistics (AISTATS 2010). Sardinia,
Italy, volume 9, pages 249–256.

Barbara J. Grosz, Scott Weinstein, and Aravind K.
Joshi. 1995. Centering: A framework for modeling
the local coherence of discourse. Comput. Linguist.
21(2):203–225.

Camille Guinaudeau and Michael Strube. 2013.
Graph-based local coherence modeling. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics, ACL 2013, 4-9 Au-
gust 2013, Sofia, Bulgaria, Volume 1: Long Papers.
pages 93–103.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the
Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, Ed-
monton, Alberta, Canada, KDD ’02, pages 133–142.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers). As-
sociation for Computational Linguistics, Baltimore,
Maryland, pages 655–665.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, Doha, Qatar, pages 1746–
1751.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Jiwei Li and Eduard Hovy. 2014. A model of
coherence based on distributed sentence repre-
sentation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 2039–2048.
http://www.aclweb.org/anthology/D14-1218.

Jiwei Li, Rumeng Li, and Eduard H Hovy. 2014.
Recursive deep models for discourse parsing. In
EMNLP. pages 2061–2069.

Ziheng Lin, Hwee Tou Ng, and Min-Yen Kan. 2011.
Automatically evaluating text coherence using dis-
course relations. In Proceedings of the 49th Annual
Meeting of the Association for Computational Lin-
guistics: Human Language Technologies - Volume
1. Association for Computational Linguistics, Port-
land, Oregon, HLT ’11, pages 997–1006.

Annie Louis and Ani Nenkova. 2012. A coherence
model based on syntactic patterns. In Proceed-
ings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and
Computational Natural Language Learning. Asso-
ciation for Computational Linguistics, Stroudsburg,
PA, USA, EMNLP-CoNLL ’12, pages 1157–1168.
http://dl.acm.org/citation.cfm?id=2390948.2391078.

W. Mann and S. Thompson. 1988a. Rhetorical Struc-
ture Theory: Toward a Functional Theory of Text
Organization. Text 8(3):243–281.

William C Mann and Sandra A Thompson. 1988b.
Rhetorical structure theory: Toward a functional the-
ory of text organization. Text 8(3):243–281.

Neil McIntyre and Mirella Lapata. 2010. Plot induc-
tion and evolutionary search for story generation.
In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics, Uppsala, Swe-
den, ACL ’10, pages 1562–1572.

Vinod Nair and Geoffrey E. Hinton. 2010. Rec-
tified linear units improve restricted boltzmann
machines. In Johannes Frnkranz and Thorsten
Joachims, editors, Proceedings of the 27th
International Conference on Machine Learn-
ing (ICML-10). Omnipress, pages 807–814.
http://www.icml2010.org/papers/432.pdf.

Sebastian Padó. 2006. User’s guide to sigf: Signifi-
cance testing by approximate randomisation.

Emily Pitler, Annie Louis, and Ani Nenkova. 2010.
Automatic evaluation of linguistic quality in multi-
document summarization. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Uppsala, Sweden, ACL ’10, pages 544–
554.

Karin Sim Smith, Wilker Aziz, and Lucia Specia. 2016.
Cohere: A toolkit for local coherence. In Proceed-
ings of the Tenth International Conference on Lan-
guage Resources and Evaluation (LREC 2016). Eu-
ropean Language Resources Association (ELRA),
Portoroz, Slovenia.

Richard Socher, John Bauer, Christopher D. Man-
ning, and Ng Andrew Y. 2013. Parsing with
compositional vector grammars. In Proceed-
ings of the 51st Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 455–465.
http://www.aclweb.org/anthology/P13-1045.

Radu Soricut and Daniel Marcu. 2006. Discourse gen-
eration using utility-trained coherence models. In
Proceedings of the COLING/ACL on Main Confer-
ence Poster Sessions. Association for Computational
Linguistics, Sydney, Australia, COLING-ACL ’06,
pages 803–810.

1329

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15:1929–1958.

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

T. Tieleman and G Hinton. 2012. RMSprop, COURS-
ERA: Neural Networks

Matthew D. Zeiler. 2012. ADADELTA: an adap-
tive learning rate method. CoRR abs/1212.5701.
http://arxiv.org/abs/1212.5701.

1330

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1331–1341
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1122

Data-Driven Broad-Coverage Grammars
for Opinionated Natural Language Generation (ONLG)

Tomer Cagan
School of Computer Science
The Interdisciplinary Center

Herzeliya, Israel
cagan.tomer@idc.ac.il

Stefan L. Frank
Centre for Language Studies

Radboud University
Nijmegen, The Netherlands
s.frank@let.ru.nl

Reut Tsarfaty
Mathematics and Computer Science

The Open University of Israel
Ra’anana, Israel

reutts@openu.ac.il

Abstract

Opinionated natural language generation
(ONLG) is a new, challenging, NLG task
in which we aim to automatically gener-
ate human-like, subjective, responses to
opinionated articles online. We present
a data-driven architecture for ONLG that
generates subjective responses triggered
by users’ agendas, based on automatically
acquired wide-coverage generative gram-
mars. We compare three types of gram-
matical representations that we design for
ONLG. The grammars interleave different
layers of linguistic information, and are in-
duced from a new, enriched dataset we de-
veloped. Our evaluation shows that gener-
ation with Relational-Realizational (Tsar-
faty and Sima’an, 2008) inspired grammar
gets better language model scores than
lexicalized grammars à la Collins (2003),
and that the latter gets better human-
evaluation scores. We also show that con-
ditioning the generation on topic models
makes generated responses more relevant
to the document content.

1 Introduction

Interaction in social media has become increas-
ingly prevalent nowadays. It fundamentally
changes the way businesses and consumers behave
(Qualman, 2012), it is instrumental to the success
of individuals and businesses (Haenlein and Ka-
plan, 2009) and it also affects political regimes
(Howard et al., 2011; Lamer, 2012). In particu-
lar, automatic interaction in natural language in
social media is now a common theme, as seen
in the rapid popularization of chat applications,
chat-bots, and “smart agents” aiming to conduct
human-like interactions in natural language.

So far, generation of human-like interaction in
general has been addressed mostly commercially,
where there is a movement towards online re-
sponse automation (Owyang, 2012; Mah, 2012),
and movement away from script-based interaction
towards interactive chat bots (Mori et al., 2003;
Feng et al., 2006). These efforts provide an au-
tomated one-size-fits-all type of interaction, with
no particular expression of particular sentiments,
topics, or opinions. In academia, work on gen-
erating human-like interaction focused so far on
generating responses to tweets (Ritter et al., 2011;
Hasegawa et al., 2013) or taking turns in short di-
alogs (Li et al., 2017). However, the architectures
assumed in these studies implement sequence to
sequence (seq2seq) mappings, which do not take
into account topics, sentiments or agendas of the
intended responders.

Many real-world tasks and applications would
benefit from automatic interaction that is gener-
ated intendedly based on a certain user profile or
agenda. For instance, this can help promoting a
political candidate or a social idea in social me-
dia, aiding people forming and expressing opin-
ions on specific topics, or, in human-computer in-
terfaces (HCI), making the computer-side gener-
ated utterances more meaningful, and ultimately
more human-like (assuming that human-like inter-
action is very often affected by opinion, agenda,
style, etc.).

In this work we address the opinionated natu-
ral language generation (ONLG) task, in which
we aim to automatically generate human-like re-
sponses to opinionated articles. These responses
address particular topics and reflect diverse senti-
ments towards them, in accordance to predefined
user agendas. This is an open-ended and unstruc-
tured generation challenge, which is closely tied to
the communicative goals of actual human respon-
ders.

1331

https://doi.org/10.18653/v1/P17-1122

In previous work we addressed the ONLG chal-
lenge using a template-based approach (Cagan
et al., 2014). The proposed system generated sub-
jective responses to articles, driven by user agen-
das. While the evaluation showed promising re-
sults in human-likeness and relevance ratings, the
template-based system suffers from low output
variety, which leads to a learning effect that re-
duced the perceived human-likeness of generated
responses over time.

In this work we tackle ONLG from a data-
driven perspective, aiming to circumvent such
learning effects and repetitive patterns in template-
based generation. Here, we approach generation
via automatically inducing broad-coverage gener-
ative grammars from a large corpus, and using
them for response generation. More specifically,
we define a grammar-based generation architec-
ture and design different grammatical representa-
tions suitable for the ONLG task. Our grammars
interleave different layers of linguistic information
— including phrase-structure and dependency la-
bels, lexical items, and levels of sentiment — with
the goal of making responses both human-like and
relevant. In classical NLG terms, these grammars
offer the opportunity for both micro-planning and
surface realization (Reiter and Dale, 1997) to un-
fold together. We implement a generator and a
search strategy to carry out the generation, and sort
through possible candidates to get the best ones.

We evaluate the generated responses and the
underlying grammars using automated metrics as
well as human evaluation inspired by the Tur-
ing test (cf. Cagan et al. (2014) and Li et al.
(2017)). Our evaluation shows that while rela-
tional realizational (RR) inspired grammars (Tsar-
faty and Sima’an, 2008) get good language model
scores, simple head-driven lexicalized grammars
à la Collins (2003) get better human rating and
are more sensitive to sentiment. Furthermore,
we show that incorporating topic models into the
grammar-based generation makes the generated
responses more relevant to the document content.
Finally, our human evaluations results show no
learning effect. That is, human raters are un-
able to discover in the generated responses typi-
cal structures that would lead them to consider the
responses machine-generated.

The remainder of this paper is organized as fol-
lows. ln Section 2 we discuss the formal model,
and in Section 3 we present the proposed end-to-

end ONLG architecture. In Section 4 we introduce
the grammars we define, and we describe how we
use them for generation in Section 5. We follow
that with our empirical evaluation in Section 6. In
Section 7 we discuss related and future work, and
in Section 8 we summarize conclude.

2 The Formal Model

Task Definition. Let d be a document contain-
ing a single article, and let a be a user agenda as
in Cagan et al. (2014). Specifically, a user agenda
a can consist of one or more pairs of a topic (rep-
resented by a weighted bag-of-words) and an as-
sociated sentiment. Let c be an analysis function
on documents such that c(d) yields a set of con-
tent elements which are also pairings of topics and
sentiments. The operation ⊗ represents the inter-
section of the sets of content elements in the doc-
ument and in the user agenda. We cast ONLG as
a prediction function which maps the intersection
a⊗ c(d) to a sentence y ∈ Σ∗ in natural language
(in our case, Σ is the vocabulary of English):

fresponse(a⊗ c(d)) = y (1)

For any non-empty intersection, a response is
generated which is related to the topic of the in-
tersection and the sentiments defined towards this
topic. The relation between the sentiment in the
user agenda and the sentiment reflected in the doc-
ument is a simple xor function: when the user and
the author share a sentiment toward a topic the re-
sponse is positive, else it is negative.

Objective Function. Let G be a formal genera-
tive grammar and let T be the set of trees strongly
generated by G. In our proposed data-driven,
grammar-based, generation architecture, we de-
fine fresponse as a function selecting a most proba-
ble tree t ∈ T derived by G, given the intersection
of document content and user agenda.

fresponse(a⊗ c(d)) =

argmax
{w|w=yield(t),t∈T}

P (w, t|a⊗ c(d)) (2)

Here, w = yield(t) is the sequence of terminals
that defines the leaves of the tree, which is then
picked as the generated response.

Assuming that G is a context-free grammar, we
can spell out the probabilistic expression in Equa-
tion (2) as a history-based probabilistic model
where root(t) selects a starting point for the

1332

Figure 1: The end-to-end, data-driven, grammar-based generation architecture.

derivation, der(t) selects the sequence of syntac-
tic rules to be applied, and yield(t) selects the
sequence of terminals that forms the response all
conditioned on the derivation history.

P (w, t|.) =P (root(t)|a⊗ c(d)) (3a)

× P (der(t)|root(t), a⊗ c(d)) (3b)

× P (yield(t)|root(t), der(t), a⊗ c(d))
(3c)

Using standard independence assumptions, Eq. (3)
may be re-written as a chain of local decisions,
conditioned on selected aspects of the generation
history, marked here by the function Φ.

P (w, t|.) ≈ P (root|Φ(a⊗ c(d)))× (4a)
∏

rulej∈der(t)
P (rulej |Φ(root, a⊗ c(d)))×

(4b)
∏

wi∈yield(t)
P (wi|Φ(t, a⊗ c(d)))

(4c)

In words, the probability of the starting rule (4a) is
multiplied with the probability of each of the rules
in the derivation (4b) and the probability of each
of the terminal nodes in the tree (4c). Each deci-
sion may be conditioned on previously generated
part(s) of the structure, as well as the intersection
of the input document content and user agenda.

3 The Architecture

A bird’s-eye view of the architecture we propose is
depicted in Figure 1. The process consists of an of-
fline component containing (I) corpus collection,

(II) automatic annotation, (III) grammar induc-
tion, and (IV) topic-model training. The induced
grammar along with a predefined user agenda and
the pre-trained topic model are provided as in-
put to the online generation component, which is
marked with the dashed box in Figure 1.

In (I) corpus collection, we collect a set of docu-
ments D with corresponding user comments. The
documents in the corpus are used for training a
topic model (IV), which is used for topic infer-
ence given a new input document d. The collected
comments are used for inducing a wide-coverage
grammar G for response generation.

To realize the goal of ONLG, we aim to jointly
model opinion, structure and lexical decisions in
our induced grammars. To this end, in (II) au-
tomatic annotation we enrich the user comments
with annotations that reflect different levels of lin-
guistic information, as detailed in Section 4.

In (III) grammar induction we induce a gen-
erative grammar G from the annotated corpus,
following the common methodology of induc-
ing PCFGs from syntactically annotated corpora
(Charniak, 1995; Collins, 2003). We traverse the
annotated trees from (III) and use maximum likeli-
hood estimation for learning rule probabilities. No
smoothing is done, and in order to filter noise from
possibly erroneous parses, we use a frequency cap
to define which rules can participate in derivations.

We finally define and implement an efficient
grammar-based generator, termed here the de-
coder, which carries out the generation and cal-
culates the objective function in Eq. (4). The algo-
rithm is described in Section 5.

1333

4 The Grammars

Base Grammar. A central theme in this re-
search is generating sentences that express a cer-
tain sentiment. Our base grammatical representa-
tion is inspired by the Stanford sentiment classifi-
cation parser (Socher et al., 2013) which annotates
every non-ternminal node with one of five senti-
ment classes s ∈ {−2,−1, 0, 1, 2}.

Formally, each non-terminal in our base gram-
mar includes a constituency category C and a sen-
timent class label s. The derivation of depth-1
trees with a parent node p and two daughters d1, d2
will thus appear as follows:

Cp[sp]→ Cd1[sd1] Cd2[sd2]

The generative story imposed by this grammar is
quite simple: each non-terminal node annotated
with a sentiment can generate either a sequence of
non-terminal daughters, or a single terminal node.

An example of a subtree and its generation se-
quence is given in Figure 2(Base). Here we see a
positive NP which generates two daughters: a neu-
tral DT and a positive NX. The positive NX gen-
erates a neutral noun NN and a positive modifying
adjective JJ on its left. Such a derivation can yield
NP terms such as “the good wife” or “an awe-
some movie”, but will not generate “some terri-
ble words”. In this grammar, lexical realization is
generated conditioned on local pre-terminals only,
and independently of the syntactic structure.

While the generative story is simple, this gram-
mar can capture complex interactions of senti-
ment. Such interactions take place in tree struc-
tures that include elements that may affect polar-
ity, such as negation, modal verbs and so on (see
Socher et al. (2013) and examples therein). In
this work we assume a completely data-driven ap-
proach wherein such structures are derived based
on previously observed sentiment-interactions in
sentiment-augmented parses.

Lexicalized Grammar. Our base grammar suf-
fers from a clear pitfall: the structure lacks sensi-
tivity to lexical information, and vice versa. This
base grammar essentially generates lexical items
as an afterthought, conditioned only on the local
part-of-speech label and sentiment value. Our first
modification of the base grammar is lexicalization
in the spirit of Collins (2003).

In this representation each non-terminal node is
decorated with a phrase-structure categoryC and a

sentiment label s, and it is augmented with a lex-
ical head lh. The lexical head is common to the
parent and the left (or right) daughter. A new lex-
ical item, termed modifier lm, is introduced in the
right (left) daughter. The resulting depth-1 subtree
for a parent p with daughters d1, d2 and a lexical
head on the left (without loss of generality) is:

Cp[sp, lh]→ Cd1[sd1, lh] Cd2[sd2, lm]

Lexicalization makes the grammar more useful
for generation as lexical choices can be made at
any stage of the derivation conditioned on part of
the structure. But it has one drawback – it assumes
very strong dependence between lexical items that
happen to appear as sisters.

To overcome this, we define a head-driven gen-
erative story that follows the model of Collins
(2003), where the mother non-terminal generates
first the head node, and then, conditioned on the
head it generates a modifying constituent to the
left (right) of the head and its corresponding mod-
ifying lexical dependent. An example subtree and
its associated head-driven generative story is illus-
trated in Figure 2(Lex).

Relational-Realizational Grammar. Generat-
ing phrase-structures along with lexical realiza-
tion can manage form — control how sentences
are built. For coherent generation we would like
to also control for the function of nodes in the
derivation. To this end, we define a grammar and
a generative story in the spirit of the Relational-
Realizational (RR) grammar of Tsarfaty (2010).

In our RR-augmented trees, each non-terminal
node includes, on top of the phrase-structure cat-
egory C, the lexical head l and the sentiment s, a
relation label depi which determines its functional
role in relation to its parent. The functional com-
ponent will affect the selection of daughters so that
the derived subtree fulfils its function. A depth-1
subtree will thus appear as follows:

Ci[si, depi, li]→ Cj [sj , depj , li] Ck[sk, depk, lk]

The generative story of our RR representation
follows the three-phase process defined by Tsar-
faty and Sima’an (2008) and Tsarfaty (2010):

(i) projection: given a constituent and a senti-
ment value, generate a set of grammatical
relations which define the functions of the
daughters to be generated.

1334

(a) (b)

(Base) NP[+1]

DT[0]

The

NX[+1]

JJ[+1]

good

NN[0]

wife

Type LHS RHS
SYN NP[+1] → DT[0] NX[+1]
SYN NX[+1] → JJ[+1] NN[0]
LEX DT[0] → The
LEX JJ[+1] → good
LEX NN[0] → wife

(Lex) NP[+1,wife]

DT[0,The]

The

NX[+1,wife]

JJ[+1,good]

good

NN[0,wife]

wife

Type LHS RHS
HEAD NP[+1,wife] →r NX[+1]
MOD NP[+1,wife], NX[+1] →l DT[0]
LEX-H NP[+1,wife],NX[+1] → wife
LEX NP[+1,wife], NX[+1,wife], DT[0] → the
HEAD NX[+1,wife] →r NN[0]
MOD NX[+1,wife], NN[0] →l JJ[+1]
LEX-H NX[+1,wife], NN[0] → wife
LEX NX[+1,wife], NN[0,wife],JJ[+1] → good

(RR) NP[+1,root,wife]

DT[0,det,The]

The

NX[+1,hd,wife]

JJ[+1,amod,good]

good

NN[0,hd,wife]

wife

Type LHS RHS
PROJ NP[+1] → {amod,det,hd}@NP[+1]
CONF {amod,det,hd}@NP[+1] → <det>@NP[+1],

<{amod,hd}>@NP[+1]
REAL-C <det>@NP[+1] → DT[0]
REAL-C <{amod,hd} >@NP[+1] → NX[+1]
REAL-L DT[0,det]@NP[+1,hd,wife] → The
REAL-L NX[+1,hd]@NP[+1,hd,wife] → wife
PROJ NX[+1] → {amod,hd}@NX[+1]
CONF {amod, hd}@NX[+1] → <amod>@NX[+1] ,

<hd>@NX[+1]
REAL-C <amod>@NX[+1] → JJ[+1]
REAL-C <hd>@NX[+1] → NN[0]
REAL-L JJ[+1,amod]@NX[+1,hd,wife] → good
REAL-L NN[+1,hd]@NX[+1,hd,wife] → wife

Figure 2: Our grammatical representations, with (a) a sample tree and (b) its generation sequence. A rule
of type SYN marks syntactic rules, LEX indicates lexical realization, HEAD, MOD indicate head selection
and modifier selection, PROJ,CONF,REAL indicate projection, configuration and realization, respectively.
The @ sign indicates aspects in the generation history that the production is conditioned on (Φ in eq. 4).

(ii) configuration: given a constituent, sentiment
and an unordered set of relations, an ordering
for the relations is generated. Unlike the orig-
inal RR derivations which fully order the set,
here we partition the set into two disjoint sets
(one of which is a singleton) and order them.
This modification ensures that we adhere to
binary trees.

(iii) realization: For each function-labels’ set we
select the daughter’s constituent realizing it.
We first generate the constituent and senti-
ment realizing this function, and then, con-
ditioned on the constituent, sentiment, head
and function, we select the lexical dependent.

An example tree along with its RR derivation is
given in Figure 2(RR).

5 Grammar-Based Generation

Our grammar-based generator is a top-down algo-
rithm which starts with a frontier that includes a
selected root, and expands the tree continually by
substituting non-terminals at the left-hand-side of
rules with their daughters on the right hand side,
until no more non-terminals exist. This generation
procedure yields one sentence for any given root.
Due to independence assumptions inherent in the
generative processes we defined, there is no guar-
antee that generated sentences will be completely
grammatical, relevant and human-like. To circum-
vent this, we develop an over-generation algorithm
that modifies the basic algorithm to select multiple
rules at each generation point, and apply them to
uncover several derivation trees, or a forest.

1335

We then use a variation on the beam search al-
gorithm (Reddy, 1977) and devise a methodology
to select the k-best scoring trees to be carried on to
the next iteration. Specifically, we use a Breadth-
First algorithm for expanding the tree and define
a dynamic programming algorithm that takes the
score of a derivation tree of n−1 expanded nodes,
selects a new rule for the next non-expanded node,
and from it, calculates the score of the expanded
tree with now n nodes. For comparing the trees,
we computed a score according to Eq. (4) for the
tree generated so far, and used an average node
score to neutralize size difference between trees.

To make sure our responses target a particular
topic, we propose to condition the selection of lex-
ical items at the root on the topic at the intersec-
tion of the document content and user agenda, es-
sentially preferring derivations that yield words re-
lated to the input topic distribution. In practice we
use topic model scores to estimate the root rule
probability, selecting lexical item(s) for generation
to start with:

P̂ (root(t)|a⊗ c(d)) =

P̂ (ROOT→ l1l2|a⊗ c(d)) =∑N
c=1

∑2
i=1 tm weight(c) ∗ word weight(c, li)

(5)
where tm weight(c) is the weight of topic c in
the topic distribution at the document-agenda in-
tersection, and word weight(c, li) is the weight
of the lexical head word li within the word distri-
bution of topic c in the given topic model.

The generation process ends when all deriva-
tions reach (at most) a pre-defined height (to avoid
endless recursions). We then re-rank the generated
candidates. The re-ranking is based on a 3-grams
language model on the raw yield of the sentence,
divided by the length of the sentence to obtain a
per-word average and avoid length biases.1

6 Evaluation

Goal. We aim to evaluate the grammars’ appli-
cability to the ONLG task. Set in an open domain,
it is not trivial to find a “gold-standard” for this
task, or even a method to obtain one. Our eval-
uation thus follows two tracks: an automated as-
sessment track, where we quantitatively assess the
responses, and a Turing-like test similar to that
of Cagan et al. (2014), where we aim to gauge
human-likeness and response relevance.

1Here we use Microsoft’s WebLM API which is part of
the Microsoft Oxford Project (Microsoft, 2011).

Materials. We collected a new corpus of news
articles and corresponding user comments from
the NY-Times R©web site, using their open Com-
munity API. We focus on sports news, which gave
us 3,583 news articles and 13,100 user comments,
or 55,700 sentences. The articles are then used
for training a topic model using the Mallet library
(McCallum, 2002). Next, we use the comments
in the corpus to induce the grammars. To obtain
our Base representation we parse the sentences us-
ing the Stanford CoreNLP suite (Manning et al.,
2014) which can provide both phrase-structure
and sentiment annotation. To obtain our Lexi-
calized representation we follow the same proce-
dure, this time also using a head-finder which lo-
cates the head word for each non-terminal. To
obtain the Relational-Realizational representation
we followed the algorithm described in Tsarfaty
et al. (2011), which, given both a constituency
parse and a dependency parse of a sentence, uni-
fies them into a lexicalized and functional phrase-
structure. The merging is based on matching spans
over words within the sentence.2

Setup. We simulated several scenarios. In each,
the system generates sentences with one grammar
(G ∈ {Base, Lex, RR}) and one scoring scheme
(with/without topic model scores). The results of
each simulation are 5,000 responses for each vari-
ant of the system, consisting of 1,000 sentences
for each sentiment class, s ∈ {−2,−1, 0, 1, 2}.
The same 5000 generated sentences were used in
all experiments. We set the generator for trees
of maximum depth of 13 which can yield up to
4096 words. In reality, the realization was of
much shorter sentences. Examples for generated
responses are given in Table 1.

6.1 Comparing Grammars

Goal and Metrics. In this experiment we com-
pare and contrast the generation capacity of the
grammars, using the following metrics:

(i) Fluency measures how grammatical or nat-
ural the generated sentences are. We base
this measure on a probabilistic language model
which gives an indication of how common word-
sequences within the sentence are. We express flu-
ency as a Language Model (LM) score which is
calculated using the Microsoft Web ML API to get
aggregated minus-log probabilities of all 3-grams

2The collected corpus and supplementary annotations are
available at www.tomercagan.com/onlg.

1336

in the sentence. The aggregated score is then nor-
malized to give a per-word average in order to can-
cel any effects of sentence length.

(ii) Sentiment Agreement measures whether the
inferred sentiment of the response matches the
input sentiment parameter used for generation.
Specifically, we take the raw yield of the generated
tree (a sentence) and run it through the sentiment
classifier implemented in Socher et al. (2013), to
assign the full sentence one of 5 sentiment classes
between −2 and +2. During evaluation, we com-
pare the classified sentiment of the generated sen-
tence is with the sentiment entered as input for the
derivation of the sentence, and report the rate of
agreement on (a) level (−2.. + 2) and (b) polarity
(−/+), which is a more relaxed measure.

(iii) The Consiceness/tightness metric aims to
evaluate which grammar derives a simpler struc-
ture across generations of similar content. Our
tightness evaluation is based on the percentage of
sentences that were fully realization as terminals
within the specific height limit;3 we simply ob-
serve how many trees have all leaves as termi-
nal symbols. Intuitively, tighter grammars lead to
improved performance and better control over the
generated content. It is possible to think of what
it captures in terms Occams Razor, preferring the
simpler structure to derive comparable outcome.

Empirical Results The results of our evaluation
are presented in Table 2. With respect to the above
metrics, the RR grammar was more compact and
natural compared to the lexicalized (LEX) gram-
mar: the per-word LM Score for the RR is−5.6 as
compared to −6.5 for LEX. Also, RR has 95.7%
complete sentences as compared to only 67.3% for
LEX. The LEX grammar was more sensitive to the
sentiment input but only slightly, having a 44.6%
sentiment agreement and 63.9% sentiment polar-
ity agreement compared to 43.8% and 61.0% for
RR grammar. The BASE grammar gave the worst
performance for all measures. This provides pre-
liminary evidence in support of incorporating sur-
face realization (lexicalization) into the syntactic
generation, rather than filling slots in retrospect.

6.2 Testing Relevance

Goal and Metrics Next we aim to evaluate the
relevance of the responses to the input document
triggering the response. We do so by calculating

3A height of 13 makes a maximum sentence length of
213-1 = 212 = 4096 words.

Grammar Sentiment Sentence
-2 (and badly should doesn’t..
-1 doesn’t of the yankees..

BASE 0 who is the the game,.
1 is the the united states..
2 is the best players..

-2 is a rhyme ... mahi mahi, and, I not quote Bunny.
-1 Dumpster unpire are the villans.

LEX 0 Derogatory big names symbols wider
1 New england has been playful, and infrequent human.
2 That’s a huge award – having get fined!

-2 he is very awkward, and to any ridiculous reason.
-1 the malfeasance underscores the the widespread belief.

RR 0 the programs serve the purposes.
1 McIIroy is a courageous competitor.
2 The urgent service’s a grand idea.

Table 1: Responses generated by the system with
the different grammars and sentiment levels.

Grammar Avg. LM Score Avg. LM Score Complete Sentiment Avg.
per word Sentences Agreement Length

Mean CI Mean CI (%) / Polarity (%) (words)
BASE -79.7 ±0.054 -8.9 ±0.007 20.1 13.3 / 41.8 9.5
LEX -73.7 ±0.016 -6.5 ±0.002 67.3 44.6 / 63.9 12.3
RR -51.8 ±0.011 -5.6 ±0.001 95.7 43.8 / 61.0 9.6
HUMAN -50.1 ±0.000 -5.4 ±0.000 N/A N/A 10.3

Table 2: Mean and 95% Confidence Interval (CI)
of language model scores, and measures of com-
pactness and sentiment agreement. The last row,
HUMAN refers to the collected human responses.

Topic Agreement, a measure that, given a trained
topic model, determines how close the topic distri-
bution of the input document and that of the gener-
ated response are. We use L2 to calculate the dis-
tance between the inferred topic distribution vec-
tors. We focus here on relevance testing for the
RR grammar, which gave superior LM scores. In
this test we use two generators – RR generator as
defined above, and RRTM generator that uses the
scoring scheme of Equation (5) to select a start
rule deriving the root lexical item. Example sen-
tences of each generator are presented in Table 3.

Empirical Results The results of the two gen-
erators and their average distance from the topic
distribution of the input document are presented in
Table 4. Here we see that the generator using topic
models for selecting start rules (RRTM) gets topic
distribution that is closer to the input document’s
topic distribution. The last row, HUMAN, calcu-
lates the distance between the topic distributions
in the documents and their human responses from
the collected corpus. The fact that RRTM outper-
forms HUMAN is not necessarily surprising, as
sentences in human responses are typically from
longer paragraphs where some sentences are more
generic, used as connectives, interjections, etc.

1337

Grammar Sentiment Sentence
-2 they deserve it, but I is fear.
-1 the saga is correct.

RR 0 the indirect penalty?
1 the job is correct.
2 a salaries excels.

-2 Unfortunately, they remind that to participate in baseball.
-1 the franchise would he made?

RRTM 0 Probably the LONG time .
1 In a good addition, he is a good baseball player.
2 the baseball game sublime.

Table 3: Responses generated by the system us-
ing emission probabilities and topic models for the
start rule selection.

Generator Mean CI
RR 0.473 ± 0.003
RRTM 0.424 ± 0.003
HUMAN 0.429 ± 0.000

Table 4: Mean and 95% Confidence Interval (CI)
for generators with / without topic models scores
(RRTM / RR respectively). The last row, HUMAN
refers to the collected human responses.

6.3 Human Surveys

Goal and Procedure. We evaluate human-
likeness of the generated responses by collecting
data via an online survey on Amazon Mechani-
cal Turk. In the survey, participants were asked
to judge whether generated sentences were written
by a human or a computer. The participants were
screened to have a good level of English and reside
in the US. Each survey comprised of 50 randomly
ordered trials. In each trial the participant was
shown a response. The task was to categorize each
response on a 7-point scale with labels ‘Certainly
human/computer’, ‘Probably human/computer’,
‘Maybe human/computer’ and ‘Unsure’. In 50 tri-
als the participant was exposed to 3-4 sentences
for each grammar/sentiment combination.

Empirical Results. Average human-likeness
ratings (scale 1–7) are presented in Table 5.
Here, we see that sentences generated by the
lexicalized grammar were perceived as most
human-like. This result is in contrast with the
automatic evaluation. Such a discrepancy need
not be very surprising, as noted by others before
(Belz and Reiter, 2006). Cagan et al. (2014) show
that there are extra-grammatical factors affecting
human-likeness, e.g. world knowledge. We
hypothesise that the LEX grammar, which relies
heavily on lexical co-occurrences frequencies,
is better at replicating world knowledge and
idiomatic phrases thus judged as more human.

Grammar Mean CI
BASE 2.4561 ± 0.004
LEX 4.1681 ± 0.004
RR 3.7278 ± 0.004

Table 5: Mean and 95% Confidence Interval (CI)
for human-likeness ratings (scaling 1:low–7:high).

Factor b Std. Error z-value P (> |z|)
G-LEX 2.90 0.189 15.32 <.00001
G-RR 2.33 0.164 14.20 <.00001
SENT 0.17 0.074 2.32 .020
NWORD -1.60 0.107 -14.95 <.00001
POS 0.21 0.036 5.97 <.00001
G-LEX × SENT -0.18 0.095 -1.91 .056
G-RR × SENT 0.44 0.096 4.53 <.00001
G-LEX × NWORD 1.31 0.117 11.16 <.00001
G-RR × NWORD 1.35 0.138 9.80 <.00001
NWORD × POS 0.10 0.037 2.81 .005

Table 6: Regression analysis of the human survey.

In a qualitative inspection on a sample of the
results we could verify that the LEX grammar
tends to replicate idiomatic sequences while the
RR grammar generates novel phrases in a more
compositional fashion. Grammaticality is not
hindered by it, but apparently human-likeness is.

We also run an ordinal mixed-effects regression,
which is an appropriate way to analyse discrete
rating data. Regression model predictors were
Grammar (G), sentiment level (SENT), response
length (NWORD), position of response in rating
session (POS), and all two-way interactions be-
tween these. Quantitative predictors were stan-
dardized and non-significant (p > .05) interac-
tions were dropped from the fitted model. By-
participant random intercepts and slopes of G and
SENT were included as random effects.

Table 6 displays the fitted model fixed effects,
with BASE grammar as the reference level. Con-
sistent with Table 5, we see that LEX and RR
score significantly higher on human likeness than
BASE. These effects are modulated by sentiment:
more positive sentiment makes BASE and RR
more human-like (respectively: b = 0.17 and b =
0.44) whereas the LEX grammar becomes less hu-
man like (although this effect is only marginally
significant: b = −.18). In addition, these effects
are also modulated by sentence length in #words
– longer sentences make BASE less human-like
(b = −1.60) but RR and LEX more human-like
(respectively: b = 1.31 and b = 1.35)

Importantly, there is a weak but significant pos-
itive effect of position (b = 0.21), indicating that
human-likeness ratings increase over the course of
a rating session. This effect does not depend on
the grammar, but is somewhat stronger for longer

1338

sentences (b = 0.10). The position effect contrasts
markedly with the decrease of human-likeness rat-
ings that (Cagan et al., 2014) ascribed to a learn-
ing effect: there, raters noticed the repetitive struc-
ture and took this to be a sign that the utterances
were machine generated. The fact that we find no
such effect means that our grammars successfully
avoided such repetitiveness.

7 Related and Future Work

NLG is often cast as a concept-to-text (C2T) chal-
lenge, where a structured record is transformed
into an utterance expressing its content. C2T is
usually addressed using template-based (Becker,
2002) or data-driven (Konstas and Lapata, 2013;
Yuan et al., 2015) approaches. In particular, re-
searchers explored data-driven grammar-based ap-
proaches (Cahill and van Genabith, 2006), often
assuming a custom grammar (Konstas and Lap-
ata, 2013) or a closed-domain approach (DeVault
et al., 2008). ONLG in contrast is set in an
open domain, and expresses multiple dimensions
(grammaticality, sentiment, topic).

In the context of social media, generating re-
sponses to tweets has been cast as a sequence-to-
sequence (seq2seq) transduction problem, and has
been addressed using statistical machine transla-
tion (SMT) methods (Ritter et al., 2011; Hasegawa
et al., 2013). In this seq2seq setup, moods and
sentiments expressed in the past are replicated or
reused, but these responses do not target partic-
ular topics and are not driven by a concrete user
agenda. An exception is a recent work by Li et al.
(2016), exploring a persona-based conversational
model, and Xu et al. (2016) who encode loose
structured knowledge to condition the generation
on. These studies present a stepping stone towards
full-fledge neural ONLG architectures with some
control over the user characteristics.

The surge of interest in neural network genera-
tion architectures has spawned the development of
seq2seq models based on encoder-decoder setup
(Sordoni et al. (2015); Li et al. (2016, 2017) and
references therein). These architectures require a
very large dataset to train on. In the future we aim
to extend our dataset and explore neural network
architectures for ONLG that can encode a user-
agenda, a document, and possibly stylistic choices
(Biber and Conrad, 2009; Reiter and Williams,
2010) — in the hope of yielding more diverse, rel-
evant and coherent responses to online content.

8 Conclusion

We approached ONLG from a data-driven per-
spective, aiming to overcome the shortcomings of
previous template-based approaches. Our contri-
bution is threefold: (i) we designed three types
of broad-coverage grammars appropriate for the
task, (ii) we developed a new enriched data-set
for inducing the grammars, and (iii) we empiri-
cally demonstrated the strengths of the LEX and
RR grammars for generation, as well as the over-
all usefulness of sentiment and topic models incor-
porated into the syntactic derivation. Our results
show that the proposed grammar-based architec-
ture indeed avoids the repetitiveness and learning
effects observed in the template-based ONLG.

To the best of our knowledge, this is the first
data-driven agenda-driven baseline for ONLG,
and we believe it can be further improved. Some
future avenues for investigation include improv-
ing the relevance and human-likeness results by
improving the automatic parses quality, acquiring
more complex templates via abstract grammars,
and experimenting with more sophisticated scor-
ing functions for reranking. With the emergence
of deep learning, we further embrace the opportu-
nity to combine the sequence-to-sequence model-
ing view explored so far with conditioning gener-
ation on speakers agendas and user profiles, push-
ing the envelope of opinionated generation fur-
ther. Finally, we believe that future work should
be evaluated in situ, to examine if, and to what
extent, the generated responses participate in and
affect the discourse (feed) in social media.

References
Tilman Becker. 2002. Practical, template-based natural

language generation with TAG. In Proceedings of
the 6th International Workshop on Tree Adjoining
Grammars and Related Frameworks (TAG+6).

Anja Belz and Ehud Reiter. 2006. Comparing auto-
matic and human evaluation of NLG systems. In
Proceeding of EACL’06. pages 313–320.

D. Biber and S. Conrad. 2009. Register,
Genre, and Style. Cambridge Textbooks
in Linguistics. Cambridge University Press.
https://books.google.de/books?id=0HUhombmOJUC.

Tomer Cagan, Stefan L. Frank, and Reut Tsarfaty.
2014. Generating subjective responses to opinion-
ated articles in social media: An agenda-driven
architecture and a Turing-like test. In Proceedings
of the Joint Workshop on Social Dynamics and

1339

Personal Attributes in Social Media. Associa-
tion for Computational Linguistics, pages 58–67.
http://www.aclweb.org/anthology/W/W14/W14-
2708.

Aoife Cahill and Josef van Genabith. 2006. Ro-
bust PCFG-based generation using automatically
acquired LFG approximations. In Proceedings
of the 21st International Conference on Compu-
tational Linguistics and the 44th Annual Meet-
ing of the Association for Computational Linguis-
tics. Association for Computational Linguistics,
Stroudsburg, PA, USA, ACL-44, pages 1033–1040.
https://doi.org/10.3115/1220175.1220305.

Eugene Charniak. 1995. Parsing with context-free
grammars and word statistics. Technical report,
Providence, RI, USA.

Michael Collins. 2003. Head-driven statis-
tical models for natural language parsing.
Computational Linguistics 29(4):589–637.
https://doi.org/10.1162/089120103322753356.

David DeVault, David Traum, and Ron Artstein.
2008. Practical grammar-based NLG from
examples. In Proceedings of the Fifth Inter-
national Natural Language Generation Confer-
ence. Association for Computational Linguistics,
Stroudsburg, PA, USA, INLG ’08, pages 77–85.
http://dl.acm.org/citation.cfm?id=1708322.1708338.

Donghui Feng, Erin Shaw, Jihie Kim, and Eduard
Hovy. 2006. An intelligent discussion-bot for an-
swering student queries in threaded discussions.
In Proceedings of Intelligent User Interface (IUI-
2006). pages 171–177.

Michael Haenlein and Andreas M. Kaplan. 2009. Flag-
ship brand stores within virtual worlds: The impact
of virtual store exposure on real-life attitude toward
the brand and purchase intent. Recherche et Appli-
cations en Marketing (English Edition) 24(3):57–79.
https://doi.org/10.1177/205157070902400303.

Takayuki Hasegawa, Nobuhiro Kaji, Naoki Yoshi-
naga, and Masashi Toyoda. 2013. Predicting and
eliciting addressee’s emotion in online dialogue.
In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 964–972.
http://www.aclweb.org/anthology/P13-1095.

Philip N. Howard, Aiden Duffy, Deen Freelon, Muza-
mmil Hussain, Will Mari, and Marwa Mazaid.
2011. Opening closed regimes: What was the role
of social media during the Arab spring? Project
on Information Technology and Political Islam.
http://pitpi.org/index.php/2011/09/11/opening-
closed-regimes-what-was-the-role-of-social-media-
during-the-arab-spring/.

Ioannis Konstas and Mirella Lapata. 2013. A global
model for concept-to-text generation. Journal of Ar-
tificial Intelligence Research 48:305–346.

Wiebke Lamer. 2012. Twitter and tyrants:
New media and its effects on sovereignty in
the Middle East. Arab Media and Society
http://www.arabmediasociety.com/?article=798.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng
Gao, and Bill Dolan. 2016. A persona-based neu-
ral conversation model. CoRR abs/1603.06155.
http://arxiv.org/abs/1603.06155.

Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter, and
Dan Jurafsky. 2017. Adversarial learning for neu-
ral dialogue generation. CoRR abs/1701.06547.
http://arxiv.org/abs/1701.06547.

Paul Mah. 2012. Tools to automate your customer
service response on social media. Visited August
2013. http://www.itbusinessedge.com/blogs/smb-
tech/tools-to-automate-your-customer-service-
response-on-social-media.html.

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J. Bethard,
and David McClosky. 2014. The Stanford
CoreNLP natural language processing toolkit.
In Association for Computational Linguistics
(ACL) System Demonstrations. pages 55–60.
http://www.aclweb.org/anthology/P/P14/P14-5010.

Andrew Kachites McCallum. 2002. Mallet: A machine
learning for language toolkit. http://www.cs.
umass.edu/˜mccallum/mallet.

Microsoft. 2011. Microsoft cognitive services.
https://www.microsoft.com/cognitive-services/en-
us/web-language-model-api.

Kyoshi Mori, Adam Jatowt, and Mitsuru Ishizuka.
2003. Enhancing conversational flexibility in
multimodal interactions with embodied lifelike
agent. In Proceedings of the 8th International
Conference on Intelligent User Interfaces. ACM,
New York, NY, USA, IUI ’03, pages 270–272.
https://doi.org/10.1145/604045.604096.

Jeremiah Owyang. 2012. Brands Start Au-
tomating Social Media Responses on Face-
book and Twitter. Visited August 2013.
http://techcrunch.com/2012/06/07/brands-start-
automating-social-media-responses-on-facebook-
and-twitter/.

Erik Qualman. 2012. Socialnomics: How social media
transforms the way we live and do business. John
Wiley & Sons, Hoboken, NJ, USA, 2nd edition.
https://books.google.co.il/books?id=yAqD19i2U0UC.

D. Raj Reddy. 1977. Speech understanding systems:
summary of results of the five-year research effort
at Carnegie-Mellon University. Technical report,
Carnegie-Mellon University.

Ehud Reiter and Robert Dale. 1997. Build-
ing applied natural language generation sys-
tems. Natural Language Engineering 3(1):57–87.
https://doi.org/10.1017/S1351324997001502.

1340

Ehud Reiter and Sandra Williams. 2010. Generating
texts in different styles. In Shlomo Argamon, Kevin
Burns, and Shlomo Dubnov, editors, The Structure
of Style - Algorithmic Approaches to Understanding
Manner and Meaning., Springer, pages 59–75.

Alan Ritter, Colin Cherry, and William B. Dolan.
2011. Data-driven response generation in social
media. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.
Association for Computational Linguistics, Strouds-
burg, PA, USA, EMNLP ’11, pages 583–593.
http://dl.acm.org/citation.cfm?id=2145432.2145500.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
Stroudsburg, PA, pages 1631–1642.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. In Proceed-
ings of the 2015 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies. pages
196–205. http://www.aclweb.org/anthology/N15-
1020.

Reut Tsarfaty. 2010. Relational-Realizational Pars-
ing. Ph.D. thesis, Institute for Logic, Language and
Computation, University of Amsterdam.

Reut Tsarfaty, Joakim Nivre, and Evelina Andersson.
2011. Evaluating dependency parsing: Robust and
Heuristics-Free Cross-Annotation evaluation. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing. pages
385–396. http://www.aclweb.org/anthology/D11-
1036.

Reut Tsarfaty and Khalil Sima’an. 2008.
Relational-realizational parsing. In Proceed-
ings of the 22Nd International Conference on
Computational Linguistics. Association for
Computational Linguistics, pages 889–896.
http://dl.acm.org/citation.cfm?id=1599081.1599193.

Zhen Xu, Bingquan Liu, Baoxun Wang, Chengjie Sun,
and Xiaolong Wang. 2016. Incorporating loose-
structured knowledge into LSTM with recall gate
for conversation modeling. CoRR abs/1605.05110.
http://arxiv.org/abs/1605.05110.

Caixia Yuan, Xiaojie Wang, and Qianhui He. 2015.
Proceedings of the 15th European Workshop on Nat-
ural Language Generation (ENLG), Association for
Computational Linguistics, chapter Response Gen-
eration in Dialogue Using a Tailored PCFG Parser,
pages 81–85. http://aclweb.org/anthology/W15-
4713.

1341

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1342–1352
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1123

Learning to Ask: Neural Question Generation for
Reading Comprehension

Xinya Du1 Junru Shao2 Claire Cardie1

1Department of Computer Science, Cornell University
2Zhiyuan College, Shanghai Jiao Tong University

{xdu, cardie}@cs.cornell.edu yz_sjr@sjtu.edu.cn

Abstract

We study automatic question generation
for sentences from text passages in read-
ing comprehension. We introduce an
attention-based sequence learning model
for the task and investigate the effect of en-
coding sentence- vs. paragraph-level infor-
mation. In contrast to all previous work,
our model does not rely on hand-crafted
rules or a sophisticated NLP pipeline; it is
instead trainable end-to-end via sequence-
to-sequence learning. Automatic evalu-
ation results show that our system sig-
nificantly outperforms the state-of-the-art
rule-based system. In human evaluations,
questions generated by our system are also
rated as being more natural (i.e., grammat-
icality, fluency) and as more difficult to an-
swer (in terms of syntactic and lexical di-
vergence from the original text and reason-
ing needed to answer).

1 Introduction

Question generation (QG) aims to create natu-
ral questions from a given a sentence or para-
graph. One key application of question generation
is in the area of education — to generate ques-
tions for reading comprehension materials (Heil-
man and Smith, 2010). Figure 1, for example,
shows three manually generated questions that test
a user’s understanding of the associated text pas-
sage. Question generation systems can also be de-
ployed as chatbot components (e.g., asking ques-
tions to start a conversation or to request feed-
back (Mostafazadeh et al., 2016)) or, arguably, as
a clinical tool for evaluating or improving mental
health (Weizenbaum, 1966; Colby et al., 1971).

In addition to the above applications, question
generation systems can aid in the development of

Sentence:

Oxygen is used in cellular respiration and re-
leased by photosynthesis, which uses the en-
ergy of sunlight to produce oxygen from water.

Questions:

– What life process produces oxygen in the
presence of light?

photosynthesis

– Photosynthesis uses which energy to form
oxygen from water?

sunlight

– From what does photosynthesis get oxygen?
water

Figure 1: Sample sentence from the second para-
graph of the article Oxygen, along with the natural
questions and their answers.

annotated data sets for natural language process-
ing (NLP) research in reading comprehension and
question answering. Indeed the creation of such
datasets, e.g., SQuAD (Rajpurkar et al., 2016) and
MS MARCO (Nguyen et al., 2016), has spurred
research in these areas.

For the most part, question generation has been
tackled in the past via rule-based approaches
(e.g., Mitkov and Ha (2003); Rus et al. (2010).
The success of these approaches hinges criti-
cally on the existence of well-designed rules for
declarative-to-interrogative sentence transforma-
tion, typically based on deep linguistic knowledge.

To improve over a purely rule-based sys-
tem, Heilman and Smith (2010) introduced an
overgenerate-and-rank approach that generates
multiple questions from an input sentence using
a rule-based approach and then ranks them us-
ing a supervised learning-based ranker. Although
the ranking algorithm helps to produce more ac-

1342

https://doi.org/10.18653/v1/P17-1123

ceptable questions, it relies heavily on a manually
crafted feature set, and the questions generated of-
ten overlap word for word with the tokens in the
input sentence, making them very easy to answer.

Vanderwende (2008) point out that learning to
ask good questions is an important task in NLP
research in its own right, and should consist of
more than the syntactic transformation of a declar-
ative sentence. In particular, a natural sounding
question often compresses the sentence on which
it is based (e.g., question 3 in Figure 1), uses syn-
onyms for terms in the passage (e.g., “form” for
“produce” in question 2 and “get” for “produce”
in question 3), or refers to entities from preced-
ing sentences or clauses (e.g., the use of “pho-
tosynthesis” in question 2). Othertimes, world
knowledge is employed to produce a good ques-
tion (e.g., identifying “photosynthesis” as a “life
process” in question 1). In short, constructing nat-
ural questions of reasonable difficulty would seem
to require an abstractive approach that can pro-
duce fluent phrasings that do not exactly match the
text from which they were drawn.

As a result, and in contrast to all previous work,
we propose here to frame the task of question gen-
eration as a sequence-to-sequence learning prob-
lem that directly maps a sentence from a text pas-
sage to a question. Importantly, our approach is
fully data-driven in that it requires no manually
generated rules.

More specifically, inspired by the recent suc-
cess in neural machine translation (Sutskever
et al., 2014; Bahdanau et al., 2015), summariza-
tion (Rush et al., 2015; Iyer et al., 2016), and im-
age caption generation (Xu et al., 2015), we tackle
question generation using a conditional neural
language model with a global attention mecha-
nism (Luong et al., 2015a). We investigate several
variations of this model, including one that takes
into account paragraph- rather than sentence-level
information from the reading passage as well as
other variations that determine the importance of
pre-trained vs. learned word embeddings.

In evaluations on the SQuAD dataset (Ra-
jpurkar et al., 2016) using three automatic eval-
uation metrics, we find that our system signif-
icantly outperforms a collection of strong base-
lines, including an information retrieval-based
system (Robertson and Walker, 1994), a statistical
machine translation approach (Koehn et al., 2007),
and the overgenerate-and-rank approach of Heil-

man and Smith (2010). Human evaluations also
rated our generated questions as more grammati-
cal, fluent, and challenging (in terms of syntactic
divergence from the original reading passage and
reasoning needed to answer) than the state-of-the-
art Heilman and Smith (2010) system.

In the sections below we discuss related work
(Section 2), specify the task definition (Section 3)
and describe our neural sequence learning based
models (Section 4). We explain the experimental
setup in Section 5. Lastly, we present the evalua-
tion results as well as a detailed analysis.

2 Related Work

Reading Comprehension is a challenging task
for machines, requiring both understanding of nat-
ural language and knowledge of the world (Ra-
jpurkar et al., 2016). Recently many new datasets
have been released and in most of these datasets,
the questions are generated in a synthetic way.
For example, bAbI (Weston et al., 2016) is a fully
synthetic dataset featuring 20 different tasks. Her-
mann et al. (2015) released a corpus of cloze
style questions by replacing entities with place-
holders in abstractive summaries of CNN/Daily
Mail news articles. Chen et al. (2016) claim that
the CNN/Daily Mail dataset is easier than previ-
ously thought, and their system almost reaches the
ceiling performance. Richardson et al. (2013) cu-
rated MCTest, in which crowdworker questions
are paired with four answer choices. Although
MCTest contains challenging natural questions, it
is too small for training data-demanding question
answering models.

Recently, Rajpurkar et al. (2016) released the
Stanford Question Answering Dataset1 (SQuAD),
which overcomes the aforementioned small size
and (semi-)synthetic issues. The questions are
posed by crowd workers and are of relatively high
quality. We use SQuAD in our work, and simi-
larly, we focus on the generation of natural ques-
tions for reading comprehension materials, albeit
via automatic means.

Question Generation has attracted the atten-
tion of the natural language generation (NLG)
community in recent years, since the work of Rus
et al. (2010).

Most work tackles the task with a rule-based ap-
proach. Generally, they first transform the input
sentence into its syntactic representation, which

1https://stanford-qa.com

1343

they then use to generate an interrogative sentence.
A lot of research has focused on first manually
constructing question templates, and then apply-
ing them to generate questions (Mostow and Chen,
2009; Lindberg et al., 2013; Mazidi and Nielsen,
2014). Labutov et al. (2015) use crowdsourcing to
collect a set of templates and then rank the rel-
evant templates for the text of another domain.
Generally, the rule-based approaches make use of
the syntactic roles of words, but not their semantic
roles.

Heilman and Smith (2010) introduce an
overgenerate-and-rank approach: their system
first overgenerates questions and then ranks
them. Although they incorporate learning to
rank, their system’s performance still depends
critically on the manually constructed generating
rules. Mostafazadeh et al. (2016) introduce visual
question generation task, to explore the deep con-
nection between language and vision. Serban et al.
(2016) propose generating simple factoid ques-
tions from logic triple (subject, relation, object).
Their task tackles mapping from structured repre-
sentation to natural language text, and their gen-
erated questions are consistent in terms of format
and diverge much less than ours.

To our knowledge, none of the previous works
has framed QG for reading comprehension in an
end-to-end fashion, and nor have them used deep
sequence-to-sequence learning approach to gener-
ate questions.

3 Task Definition

In this section, we define the question generation
task. Given an input sentence x, our goal is to gen-
erate a natural question y related to information in
the sentence, y can be a sequence of an arbitrary
length: [y1, ..., y|y|]. Suppose the length of the in-
put sentence is M , x could then be represented as
a sequence of tokens [x1, ..., xM]. The QG task is
defined as finding y, such that:

y = argmax
y

P (y|x) (1)

where P (y|x) is the conditional log-likelihood of
the predicted question sequence y, given the input
x. In section 4.1, we will elaborate on the global
attention mechanism for modeling P (y|x).

4 Model

Our model is partially inspired by the way in
which a human would solve the task. To ask
a natural question, people usually pay attention
to certain parts of the input sentence, as well
as associating context information from the para-
graph. We model the conditional probability us-
ing RNN encoder-decoder architecture (Bahdanau
et al., 2015; Cho et al., 2014), and adopt the global
attention mechanism (Luong et al., 2015a) to make
the model focus on certain elements of the input
when generating each word during decoding.

Here, we investigate two variations of our mod-
els: one that only encodes the sentence and an-
other that encodes both sentence and paragraph-
level information.

4.1 Decoder
Similar to Sutskever et al. (2014) and Chopra et al.
(2016), we factorize the the conditional in equa-
tion 1 into a product of word-level predictions:

P (y|x) =
|y|∏

t=1

P (yt|x, y<t)

where probability of each yt is predicted based on
all the words that are generated previously (i.e.,
y<t), and input sentence x.

More specifically,

P (yt|x, y<t) = softmax (Wstanh (Wt[ht; ct]))
(2)

with ht being the recurrent neural networks state
variable at time step t, and ct being the attention-
based encoding of x at decoding time step t (Sec-
tion 4.2). Ws and Wt are parameters to be
learned.

ht = LSTM1 (yt−1,ht−1) (3)

here, LSTM is the Long Short-Term Memory
(LSTM) network (Hochreiter and Schmidhuber,
1997). It generates the new state ht, given the
representation of previously generated word yt−1
(obtained from a word look-up table), and the pre-
vious state ht−1.

The initialization of the decoder’s hidden state
differentiates our basic model and the model that
incorporates paragraph-level information.

For the basic model, it is initialized by the sen-
tence’s representation s obtained from the sen-
tence encoder (Section 4.2). For our paragraph-
level model, the concatenation of the sentence

1344

encoder’s output s and the paragraph encoder’s
output s′ is used as the initialization of decoder
hidden state. To be more specific, the architec-
ture of our paragraph-level model is like a “Y”-
shaped network which encodes both sentence-
and paragraph-level information via two RNN
branches and uses the concatenated representation
for decoding the questions.

4.2 Encoder

The attention-based sentence encoder is used in
both of our models, while the paragraph en-
coder is only used in the model that incorporates
paragraph-level information.

Attention-based sentence encoder:
We use a bidirectional LSTM to encode the sen-

tence,

−→
bt =

−−−−→
LSTM2

(
xt,
−−→
bt−1

)

←−
bt =

←−−−−
LSTM2

(
xt,
←−−
bt+1

)

where
−→
bt is the hidden state at time step t for the

forward pass LSTM,
←−
bt for the backward pass.

To get attention-based encoding of x at decod-
ing time step t, namely, ct, we first get the context
dependent token representation by bt = [

−→
bt;
←−
bt],

then we take the weighted average over bt (t =
1, ..., |x|),

ct =
∑

i=1,..,|x|
ai,tbi (4)

The attention weight are calculated by the bi-
linear scoring function and softmax normalization,

ai,t =
exp

(
hTt Wbbi

)
∑

j exp
(
hTt Wbbj

) (5)

To get the sentence encoder’s output for initial-
ization of decoder hidden state, we concatenate
last hidden state of the forward and backward pass,
namely, s = [

−−→
b|x|;

←−
b1].

Paragraph encoder:
Given sentence x, we want to encode the para-

graph containing x. Since in practice the para-
graph is very long, we set a length thresholdL, and
truncate the paragraph at theLth token. We call the
truncated paragraph “paragraph” henceforth.

Denoting the paragraph as z, we use another
bidirectional LSTM to encode z,

−→
dt =

−−−−→
LSTM3

(
zt,
−−→
dt−1

)

←−
dt =

←−−−−
LSTM3

(
zt,
←−−
dt+1

)

With the last hidden state of the forward and
backward pass, we use the concatenation [

−→
d|z|;
←−
d1]

as the paragraph encoder’s output s′.

4.3 Training and Inference
Giving a training corpus of sentence-question
pairs: S =

{(
x(i),y(i)

)}S
i=1

, our models’ train-
ing objective is to minimize the negative log-
likelihood of the training data with respect to all
the parameters, as denoted by θ,

L = −
S∑

i=1

logP
(
y(i)|x(i); θ

)

= −
S∑

i=1

|y(i)|∑

j=1

logP
(
y
(i)
j |x(i), y

(i)
<j ; θ

)

Once the model is trained, we do inference us-
ing beam search. The beam search is parametrized
by the possible paths number k.

As there could be many rare words in the input
sentence that are not in the target side dictionary,
during decoding many UNK tokens will be out-
put. Thus, post-processing with the replacement
of UNK is necessary. Unlike Luong et al. (2015b),
we use a simpler replacing strategy for our task.
For the decoded UNK token at time step t, we re-
place it with the token in the input sentence with
the highest attention score, the index of which is
argmaxi ai,t.

5 Experimental Setup

We experiment with our neural question genera-
tion model on the processed SQuAD dataset. In
this section, we firstly describe the corpus of the
task. We then give implementation details of our
neural generation model, the baselines to compare,
and their experimental settings. Lastly, we intro-
duce the evaluation methods by automatic metrics
and human raters.

5.1 Dataset
With the SQuAD dataset (Rajpurkar et al., 2016),
we extract sentences and pair them with the ques-

1345

0 2000 4000 6000 8000 10000 12000 14000 16000

sentence-question pairs

< 10
(10, 20]
(20, 30]
(30, 40]
(40, 50]
(50, 60]
(60, 70]
(70, 80]
(80, 90]

(90, 100]
n
o
n
-s

to
p
-w

o
rd

s
o
v
e
rl

a
p
 (

%
)

Figure 2: Overlap percentage of sentence-question
pairs in training set. y-axis is # non-stop-words
overlap with respect to the total # tokens in the
question (a percentage); x-axis is # sentence-
question pairs for a given overlap percentage
range.

tions. We train our models with the sentence-
question pairs. The dataset contains 536 articles
with over 100k questions posed about the articles.
The authors employ Amazon Mechanical Turks
crowd-workers to create questions based on the
Wikipedia articles. Workers are encouraged to use
their own words without any copying phrases from
the paragraph. Later, other crowd-workers are em-
ployed to provide answers to the questions. The
answers are spans of tokens in the passage.

Since there is a hidden part of the original
SQuAD that we do not have access to, we treat
the accessible parts (∼90%) as the entire dataset
henceforth.

We first run Stanford CoreNLP (Manning et al.,
2014) for pre-processing: tokenization and sen-
tence splitting. We then lower-case the entire
dataset. With the offset of the answer to each ques-
tion, we locate the sentence containing the answer
and use it as the input sentence. In some cases
(< 0.17% in training set), the answer spans two or
more sentences, and we then use the concatenation
of the sentences as the input “sentence”.

Figure 2 shows the distribution of the token
overlap percentage of the sentence-question pairs.
Although most of the pairs have over 50% over-
lap rate, about 6.67% of the pairs have no non-
stop-words in common, and this is mostly because
of the answer offset error introduced during an-
notation. Therefore, we prune the training set
based on the constraint: the sentence-question pair
must have at least one non-stop-word in common.
Lastly we add <SOS> to the beginning of the sen-

pairs (Train) 70484
pairs (Dev) 10570
pairs (Test) 11877

Sentence: avg. tokens 32.9
Question: avg. tokens 11.3

Avg. # questions per sentence 1.4

Table 1: Dataset (processed) statistics. Sentence
average # tokens, question average # tokens, and
average # questions per sentence statistics are
from training set. These averages are close to the
statistics on development set and test set.

tences, and <EOS> to the end of them.
We randomly divide the dataset at the article-

level into a training set (80%), a development set
(10%), and a test set (10%). We report results on
the 10% test set.

Table 1 provides some statistics on the pro-
cessed dataset: there are around 70k training sam-
ples, the sentences are around 30 tokens, and
the questions are around 10 tokens on average.
For each sentence, there might be multiple corre-
sponding questions, and, on average, there are 1.4
questions for each sentence.

5.2 Implementation Details

We implement our models 2 in Torch7 3 on top of
the newly released OpenNMT system (Klein et al.,
2017).

For the source side vocabulary V , we only keep
the 45k most frequent tokens (including <SOS>,
<EOS> and placeholders). For the target side vo-
cabulary U , similarly, we keep the 28k most fre-
quent tokens. All other tokens outside the vocab-
ulary list are replaced by the UNK symbol. We
choose word embedding of 300 dimensions and
use the glove.840B.300d pre-trained embed-
dings (Pennington et al., 2014) for initialization.
We fix the word representations during training.

We set the LSTM hidden unit size to 600 and set
the number of layers of LSTMs to 2 in both the en-
coder and the decoder. Optimization is performed
using stochastic gradient descent (SGD), with an
initial learning rate of 1.0. We start halving the
learning rate at epoch 8. The mini-batch size for
the update is set at 64. Dropout with probability

2The code is available at https://github.com/
xinyadu/nqg.

3http://torch.ch/

1346

Model BLEU 1 BLEU 2 BLEU 3 BLEU 4 METEOR ROUGEL

IRBM25 5.18 0.91 0.28 0.12 4.57 9.16
IREdit Distance 18.28 5.48 2.26 1.06 7.73 20.77
MOSES+ 15.61 3.64 1.00 0.30 10.47 17.82
DirectIn 31.71 21.18 15.11 11.20 14.95 22.47
H&S 38.50 22.80 15.52 11.18 15.95 30.98
Vanilla seq2seq 31.34 13.79 7.36 4.26 9.88 29.75

Our model (no pre-trained) 41.00 23.78 15.71 10.80 15.17 37.95
Our model (w/ pre-trained) 43.09 25.96 17.50 12.28 16.62 39.75

+ paragraph 42.54 25.33 16.98 11.86 16.28 39.37

Table 2: Automatic evaluation results of different systems by BLEU 1–4, METEOR and ROUGEL. For
a detailed explanation of the baseline systems, please refer to Section 5.3. The best performing system
for each column is highlighted in boldface. Our system which encodes only sentence with pre-trained
word embeddings achieves the best performance across all the metrics.

0.3 is applied between vertical LSTM stacks. We
clip the gradient when the its norm exceeds 5.

All our models are trained on a single GPU. We
run the training for up to 15 epochs, which takes
approximately 2 hours. We select the model that
achieves the lowest perplexity on the dev set.

During decoding, we do beam search with a
beam size of 3. Decoding stops when every beam
in the stack generates the <EOS> token.

All hyperparameters of our model are tuned us-
ing the development set. The results are reported
on the test set.

5.3 Baselines

To prove the effectiveness of our system, we com-
pare it to several competitive systems. Next, we
briefly introduce their approaches and the experi-
mental setting to run them for our problem. Their
results are shown in Table 2.

IR stands for our information retrieval baselines.
Similar to Rush et al. (2015), we implement the
IR baselines to control memorizing questions from
the training set. We use two metrics to calculate
the distance between a question and the input sen-
tence, i.e., BM-25 (Robertson and Walker, 1994)
and edit distance (Levenshtein, 1966). According
to the metric, the system retrieves the training set
to find the question with the highest score.

MOSES+ (Koehn et al., 2007) is a widely used
phrase-based statistical machine translation sys-
tem. Here, we treat sentences as source language
text, we treat questions as target language text, and
we perform the translation from sentences to ques-

tions. We train a tri-gram language model on tar-
get side texts with KenLM (Heafield et al., 2013),
and tune the system with MERT on dev set. Per-
formance results are reported on the test set.

DirectIn is an intuitive yet meaningful baseline in
which the longest sub-sentence of the sentence is
directly taken as the predicted question. 4 To split
the sentence into sub-sentences, we use a set of
splitters, i.e., {“?”, “!”, “,”, “.”, “;”}.

H&S is the rule-based overgenerate-and-rank sys-
tem that was mentioned in Section 2. When run-
ning the system, we set the parameter just-wh
true (to restrict the output of the system to being
only wh-questions) and set max-length equal
to the longest sentence in the training set. We
also set downweight-pro true, to down weight
questions with unresolved pronouns so that they
appear towards the end of the ranked list. For com-
parison with our systems, we take the top question
in the ranked list.

Seq2seq (Sutskever et al., 2014) is a basic
encoder-decoder sequence learning system for
machine translation. We implement their model
in Tensorflow. The input sequence is reversed be-
fore training or translating. Hyperparameters are
tuned with dev set. We select the model with the
lowest perplexity on the dev set.

4We also tried using the entire input sentence as the pre-
diction output, but the performance is worse than taking sub-
sentence as the prediction, across all the automatic metrics
except for METEOR.

1347

Naturalness Difficulty Best % Avg. rank

H&S 2.95 1.94 20.20 2.29
Ours 3.36 3.03* 38.38* 1.94**

Human 3.91 2.63 66.42 1.46

Table 3: Human evaluation results for question
generation. Naturalness and difficulty are rated
on a 1–5 scale (5 for the best). Two-tailed t-
test results are shown for our method compared to
H&S (statistical significance is indicated with ∗(p
< 0.005), ∗∗(p < 0.001)).

5.4 Automatic Evaluation

We use the evaluation package released by Chen
et al. (2015), which was originally used to score
image captions. The package includes BLEU 1,
BLEU 2, BLEU 3, BLEU 4 (Papineni et al., 2002),
METEOR (Denkowski and Lavie, 2014) and
ROUGEL (Lin, 2004) evaluation scripts. BLEU
measures the average n-gram precision on a set
of reference sentences, with a penalty for overly
short sentences. BLEU-n is BLEU score that uses
up to n-grams for counting co-occurrences. ME-
TEOR is a recall-oriented metric, which calculates
the similarity between generations and references
by considering synonyms, stemming and para-
phrases. ROUGE is commonly employed to eval-
uate n-grams recall of the summaries with gold-
standard sentences as references. ROUGEL (mea-
sured based on longest common subsequence) re-
sults are reported.

5.5 Human Evaluation

We also perform human evaluation studies to mea-
sure the quality of questions generated by our sys-
tem and the H&S system. We consider two modal-
ities: naturalness, which indicates the grammati-
cality and fluency; and difficulty, which measures
the sentence-question syntactic divergence and the
reasoning needed to answer the question. We ran-
domly sampled 100 sentence-question pairs. We
ask four professional English speakers to rate the
pairs in terms of the modalities above on a 1–5
scale (5 for the best). We then ask the human raters
to give a ranking of the questions according to the
overall quality, with ties allowed.

6 Results and Analysis

Table 2 shows automatic metric evaluation results
for our models and baselines. Our model which
only encodes sentence-level information achieves

Sentence 1: the largest of these is the eldon square shop-
ping centre , one of the largest city centre shopping com-
plexes in the uk .
Human: what is one of the largest city center shopping
complexes in the uk ?
H&S: what is the eldon square shopping centre one of ?
Ours: what is one of the largest city centers in the uk ?

Sentence 2: free oxygen first appeared in significant
quantities during the paleoproterozoic eon -lrb- between
3.0 and 2.3 billion years ago -rrb- .
Human: during which eon did free oxygen begin ap-
pearing in quantity ?
H&S: what first appeared in significant quantities dur-
ing the paleoproterozoic eon ?
Ours: how long ago did the paleoproterozoic exhibit ?

Sentence 3: inflammation is one of the first responses
of the immune system to infection .
Human: what is one of the first responses the immune
system has to infection ?
H&S: what is inflammation one of ?
Ours: what is one of the first objections of the immune
system to infection ?

Sentence 4: tea , coffee , sisal , pyrethrum , corn , and
wheat are grown in the fertile highlands , one of the most
successful agricultural production regions in Africa.
Human: (1) where is the most successful agricultural
prodcution regions ? (2) what is grown in the fertile
highlands ?
H&S: what are grown in the fertile highlands in africa ?
Ours: what are the most successful agricultural produc-
tion regions in africa ?

Sentence 5: as an example , income inequality did fall
in the united states during its high school movement
from 1910 to 1940 and thereafter .
Human: during what time period did income inequality
decrease in the united states ?
H&S: where did income inequality do fall during its
high school movement from 1910 to 1940 and thereafter
as an example ?
Ours: when did income inequality fall in the us ?

Sentence 6: however , the rainforest still managed to
thrive during these glacial periods , allowing for the sur-
vival and evolution of a broad diversity of species .
Human: did the rainforest managed to thrive during the
glacial periods ?
H&S: what are treaties establishing european union ?
Ours: why do the birds still grow during glacial periods
?

Sentence 7: maududi founded the jamaat-e-islami party
in 1941 and remained its leader until 1972.
Human: when did maududi found the jamaat-e-islami
party ?
H&S: who did maududi remain until 1972 ?
Ours: when was the jamaat-e-islami party founded ?

Figure 3: Sample output questions generated by
human (ground truth questions), our system and
the H&S system.

1348

Category (%) H&S Ours Ours + paragraph

BLEU-3 BLEU-4 METEOR BLEU-3 BLEU-4 METEOR BLEU-3 BLEU-4 METEOR

w/ sentence 70.23 (243) 20.64 15.81 16.76 24.45 17.63 17.82 24.01 16.39 19.19
w/ paragraph 19.65 (68) 6.34 < 0.01 10.74 3.76 < 0.01 11.59 7.23 4.13 12.13

All* 100 (346) 19.97 14.95 16.68 23.63 16.85 17.62 24.68 16.33 19.61

Table 4: An estimate of categories of questions of the processed dataset and per-category performance
comparison of the systems. The estimate is based on our analysis of the 346 pairs from the dev set.
Categories are decided by the information needed to generate the question. Bold numbers represent the
best performing method for a given metric. ∗Here, we leave out performance results for “w/ article”
category (2 samples, 0.58%) and “not askable” category (33 samples, 9.54%).

the best performance across all metrics. We note
that IR performs poorly, indicating that memoriz-
ing the training set is not enough for the task. The
baseline DirectIn performs pretty well on BLEU
and METEOR, which is reasonable given the over-
lap statistics between the sentences and the ques-
tions (Figure 2). H&S system’s performance is on
a par with DirectIn’s, as it basically performs syn-
tactic change without paraphrasing, and the over-
lap rate is also high.

Looking at the performance of our three mod-
els, it’s clear that adding the pre-trained embed-
dings generally helps. While encoding the para-
graph causes the performance to drop a little, this
makes sense because, apart from useful informa-
tion, the paragraph also contains much noise.

Table 3 shows the results of the human evalua-
tion. We see that our system outperforms H&S in
all modalities. Our system is ranked best in 38.4%
of the evaluations, with an average ranking of
1.94. An inter-rater agreement of Krippendorff’s
Alpha of 0.236 is achieved for the overall rank-
ing. The results imply that our model can generate
questions of better quality than the H&S system.

For our qualitative analysis, we examine the
sample outputs and the visualization of the align-
ment between the input and the output. In Fig-
ure 3, we present sample questions generated by
H&S and our best model. We see a large gap be-
tween our results and H&S’s. For example, in
the first sample, in which the focus should be put
on “the largest.” Our model successfully captures
this information, while H&S only performs some
syntactic transformation over the input without
paraphrasing. However, outputs from our system
are not always “perfect”, for example, in pair 6,
our system generates a question about the reason
why birds still grow, but the most related question
would be why many species still grow. But from

when
was the fir

st
tel

ete
xt

ser
vic

e

intro
duced

? <EOS>

.
1974

in
starting

,
service
teletext

first
the

,
ceefax

introduced
also
bbc
the

0.2

0.4

0.6

0.8

Figure 4: Heatmap of the attention weight matrix,
which shows the soft alignment between the sen-
tence (left) and the generated question (top).

a different perspective, our question is more chal-
lenging (readers need to understand that birds are
one kind of species), which supports our system’s
performance listed in human evaluations (See Ta-
ble 3). It would be interesting to further investigate
how to interpret why certain irrelavant words are
generated in the question. Figure 4 shows the at-
tention weights (αi,t) for the input sentence when
generating each token in the question. We see that
the key words in the output (“introduced”, “tele-
text”, etc.) aligns well with those in the input sen-
tence.

Finally, we do a dataset analysis and fine-
grained system performance analysis. We ran-
domly sampled 346 sentence-question pairs from
the dev set and label each pair with a category. 5

The four categories are determined by how much
information is needed to ask the question. To
be specific, “w/ sentence” means it only requires

5The IDs of the questions examined will be made
available at https://github.com/xinyadu/nqg/
blob/master/examined-question-ids.txt.

1349

the sentence to ask the question; “w/ paragraph”
means it takes other information in the paragraph
to ask the question; “w/ article” is similar to “w/
paragraph”; and “not askable” means that world
knowledge is needed to ask the question or there is
mismatch of sentence and question caused by an-
notation error.

Table 4 shows the per-category performance of
the systems. Our model which encodes paragraph
information achieves the best performance on the
questions of “w/ paragraph” category. This veri-
fies the effectiveness of our paragraph-level model
on the questions concerning information outside
the sentence.

7 Conclusion and Future Work

We have presented a fully data-driven neural net-
works approach to automatic question generation
for reading comprehension. We use an attention-
based neural networks approach for the task and
investigate the effect of encoding sentence- vs.
paragraph-level information. Our best model
achieves state-of-the-art performance in both au-
tomatic evaluations and human evaluations.

Here we point out several interesting future re-
search directions. Currently, our paragraph-level
model does not achieve best performance across
all categories of questions. We would like to ex-
plore how to better use the paragraph-level infor-
mation to improve the performance of QG system
regarding questions of all categories. Besides this,
it would also be interesting to consider to incor-
porate mechanisms for other language generation
tasks (e.g., copy mechanism for dialogue genera-
tion) in our model to further improve the quality
of generated questions.

Acknowledgments

We thank the anonymous ACL reviewers, Kai Sun
and Yao Cheng for their helpful suggestions. We
thank Victoria Litvinova for her careful proofread-
ing. We also thank Xanda Schofield, Wil Thoma-
son, Hubert Lin and Junxian He for doing the hu-
man evaluations.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In International
Conference on Learning Representations Workshop
(ICLR).

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In Pro-
ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 2358–2367.
http://www.aclweb.org/anthology/P16-1223.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakr-
ishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. 2015. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325 .

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, Doha, Qatar, pages
1724–1734. http://www.aclweb.org/anthology/D14-
1179.

Sumit Chopra, Michael Auli, and Alexander M.
Rush. 2016. Abstractive sentence summariza-
tion with attentive recurrent neural networks.
In Proceedings of the 2016 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, San Diego, California, pages 93–98.
http://www.aclweb.org/anthology/N16-1012.

Kenneth Mark Colby, Sylvia Weber, and Franklin Den-
nis Hilf. 1971. Artificial paranoia. Artificial In-
telligence 2(1):1–25. https://doi.org/10.1016/0004-
3702(71)90002-6.

Michael Denkowski and Alon Lavie. 2014. Me-
teor universal: Language specific translation eval-
uation for any target language. In Proceed-
ings of the Ninth Workshop on Statistical Machine
Translation. Association for Computational Lin-
guistics, Baltimore, Maryland, USA, pages 376–
380. http://www.aclweb.org/anthology/W14-3348.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H.
Clark, and Philipp Koehn. 2013. Scalable mod-
ified kneser-ney language model estimation. In
Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Vol-
ume 2: Short Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 690–696.
http://www.aclweb.org/anthology/P13-2121.

Michael Heilman and Noah A. Smith. 2010. Good
question! statistical ranking for question gener-
ation. In Human Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics. Association for Computational Linguis-
tics, Los Angeles, California, pages 609–617.
http://www.aclweb.org/anthology/N10-1086.

1350

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems (NIPS). pages
1693–1701.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source
code using a neural attention model. In Pro-
ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 2073–2083.
http://www.aclweb.org/anthology/P16-1195.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
ArXiv e-prints .

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexan-
dra Constantin, and Evan Herbst. 2007. Moses:
Open source toolkit for statistical machine transla-
tion. In Proceedings of the 45th Annual Meeting
of the ACL on Interactive Poster and Demonstra-
tion Sessions. Association for Computational Lin-
guistics, Stroudsburg, PA, USA, pages 177–180.
http://dl.acm.org/citation.cfm?id=1557769.1557821.

Igor Labutov, Sumit Basu, and Lucy Vanderwende.
2015. Deep questions without deep understand-
ing. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Con-
ference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 889–898.
http://www.aclweb.org/anthology/P15-1086.

Vladimir I Levenshtein. 1966. Binary codes capable
of correcting deletions, insertions and reversals. In
Soviet physics doklady. volume 10, page 707.

Chin-Yew Lin. 2004. Rouge: A package for au-
tomatic evaluation of summaries. In Stan Sz-
pakowicz Marie-Francine Moens, editor, Text
Summarization Branches Out: Proceedings of
the ACL-04 Workshop. Association for Com-
putational Linguistics, Barcelona, Spain, pages
74–81. http://aclweb.org/anthology/W/W04/W04-
1013.pdf.

David Lindberg, Fred Popowich, John Nesbit, and
Phil Winne. 2013. Generating natural language
questions to support learning on-line. In Proceed-
ings of the 14th European Workshop on Natural

Language Generation. Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 105–114.
http://www.aclweb.org/anthology/W13-2114.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015a. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1412–
1421. http://aclweb.org/anthology/D15-1166.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol
Vinyals, and Wojciech Zaremba. 2015b. Ad-
dressing the rare word problem in neural ma-
chine translation. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 11–19.
http://www.aclweb.org/anthology/P15-1002.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny F., Steven B., and David M. 2014. The
stanford corenlp natural language processing toolkit.
In Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: Sys-
tem Demonstrations. Association for Computational
Linguistics, Baltimore, Maryland, pages 55–60.
http://www.aclweb.org/anthology/P14-5010.

Karen Mazidi and Rodney D. Nielsen. 2014. Linguis-
tic considerations in automatic question generation.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers). Association for Computational
Linguistics, Baltimore, Maryland, pages 321–326.
http://www.aclweb.org/anthology/P14-2053.

Ruslan Mitkov and Le An Ha. 2003. Computer-
aided generation of multiple-choice tests. In
Jill Burstein and Claudia Leacock, editors,
Proceedings of the HLT-NAACL 03 Workshop
on Building Educational Applications Using
Natural Language Processing. pages 17–22.
http://www.aclweb.org/anthology/W03-0203.pdf.

Nasrin Mostafazadeh, Ishan Misra, Jacob Devlin, Mar-
garet Mitchell, Xiaodong He, and Lucy Vander-
wende. 2016. Generating natural questions about
an image. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pages 1802–
1813. http://www.aclweb.org/anthology/P16-1170.

Jack Mostow and Wei Chen. 2009. Generating instruc-
tion automatically for the reading strategy of self-
questioning. In Proceedings of the 2nd Workshop on
Question Generation (AIED 2009). pages 465–472.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine

1351

reading comprehension dataset. arXiv preprint
arXiv:1611.09268 .

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for auto-
matic evaluation of machine translation. In Pro-
ceedings of 40th Annual Meeting of the Asso-
ciation for Computational Linguistics. Associ-
ation for Computational Linguistics, Philadel-
phia, Pennsylvania, USA, pages 311–318.
https://doi.org/10.3115/1073083.1073135.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1532–1543.
http://www.aclweb.org/anthology/D14-1162.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, Austin, Texas, pages
2383–2392. https://aclweb.org/anthology/D16-
1264.

Matthew Richardson, Christopher J.C. Burges, and
Erin Renshaw. 2013. MCTest: A challenge
dataset for the open-domain machine comprehen-
sion of text. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, Seattle, Washington, USA, pages 193–203.
http://www.aclweb.org/anthology/D13-1020.

Stephen E. Robertson and Steve Walker. 1994.
Some simple effective approximations to the
2-poisson model for probabilistic weighted re-
trieval. In Proceedings of the 17th Annual
International ACM SIGIR Conference on Re-
search and Development in Information Re-
trieval. Springer-Verlag New York, Inc., New
York, NY, USA, SIGIR ’94, pages 232–241.
http://dl.acm.org/citation.cfm?id=188490.188561.

Vasile Rus, Brendan Wyse, Paul Piwek, Mihai Lin-
tean, Svetlana Stoyanchev, and Cristian Moldovan.
2010. The first question generation shared task
evaluation challenge. In Proceedings of the
6th International Natural Language Generation
Conference. Association for Computational Lin-
guistics, Stroudsburg, PA, USA, pages 251–257.
http://dl.acm.org/citation.cfm?id=1873738.1873777.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for abstrac-
tive sentence summarization. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Lisbon, Portugal, pages 379–389.
http://aclweb.org/anthology/D15-1044.

Iulian Vlad Serban, Alberto García-Durán, Caglar
Gulcehre, Sungjin Ahn, Sarath Chandar, Aaron
Courville, and Yoshua Bengio. 2016. Generat-
ing factoid questions with recurrent neural net-
works: The 30m factoid question-answer corpus.
In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 588–598.
http://www.aclweb.org/anthology/P16-1056.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems (NIPS). pages 3104–3112.

Lucy Vanderwende. 2008. The importance of being
important: Question generation. In Proceedings
of the 1st Workshop on the Question Generation
Shared Task Evaluation Challenge, Arlington, VA.

Joseph Weizenbaum. 1966. Eliza—a
computer program for the study of natu-
ral language communication between man
and machine. Commun. ACM 9(1):36–45.
https://doi.org/10.1145/365153.365168.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2016. Towards ai-complete
question answering: A set of prerequisite toy tasks.
In International Conference on Learning Represen-
tations Workshop (ICLR).

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In ICML. volume 14, pages 77–81.

1352

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1353–1363
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1124

Joint Optimization of User-desired Content in Multi-document
Summaries by Learning from User Feedback

Avinesh P.V.S and Christian M. Meyer
Research Training Group AIPHES and UKP Lab

Computer Science Department, Technische Universität Darmstadt
www.aiphes.tu-darmstadt.de, www.ukp.tu-darmstadt.de

Abstract

In this paper, we propose an extractive
multi-document summarization (MDS)
system using joint optimization and active
learning for content selection grounded in
user feedback. Our method interactively
obtains user feedback to gradually im-
prove the results of a state-of-the-art inte-
ger linear programming (ILP) framework
for MDS. Our methods complement fully
automatic methods in producing high-
quality summaries with a minimum num-
ber of iterations and feedbacks. We
conduct multiple simulation-based exper-
iments and analyze the effect of feedback-
based concept selection in the ILP setup in
order to maximize the user-desired content
in the summary.

1 Introduction

The task of producing summaries from a clus-
ter of multiple topic-related documents has gained
much attention during the Document Understand-
ing Conference1 (DUC) and the Text Analysis
Conference2 (TAC) series. Despite a lot of re-
search in this area, it is still a major challenge to
automatically produce summaries that are on par
with human-written ones. To a large extent, this
is due to the complexity of the task: a good sum-
mary must include the most relevant information,
omit redundancy and irrelevant information, sat-
isfy a length constraint, and be cohesive and gram-
matical. But an even bigger challenge is the high
degree of subjectivity in content selection, as it can
be seen in the small overlap of what is considered

1http://duc.nist.gov/
2http://www.nist.gov/tac/

important by different users. Optimizing a sys-
tem towards one single best summary that fits all
users, as it is assumed by current state-of-the-art
systems, is highly impractical and diminishes the
usefulness of a system for real-world use cases.

In this paper, we propose an interactive concept-
based model to assist users in creating a personal-
ized summary based on their feedback. Our model
employs integer linear programming (ILP) to max-
imize user-desired content selection while using a
minimum amount of user feedback and iterations.
In addition to the joint optimization framework us-
ing ILP, we explore pool-based active learning to
further reduce the required feedback. Although
there have been previous attempts to assist users in
single-document summarization, no existing work
tackles the problem of multi-document summaries
using optimization techniques for user feedback.
Additionally, most existing systems produce only
a single, globally optimal solution. Instead, we
put the human in the loop and create a personal-
ized summary that better captures the users’ needs
and their different notions of importance.

Need for personalization. Table 1 shows the
ROUGE scores (Lin, 2004) of multiple existing
summarization systems, namely TF*IDF (Luhn,
1958), LexRank (Erkan and Radev, 2004), Text-
Rank (Mihalcea and Tarau, 2004), LSA (Gong
and Liu, 2001), KL-Greedy (Haghighi and Van-
derwende, 2009), provided by the sumy package3

and ICSI4 (Gillick and Favre, 2009; Boudin et al.,
2015), a strong state-of-the-art approach (Hong
et al., 2014) in comparison to the extractive up-
per bound on DUC’04 and DBS. DUC’04 is an
English dataset of abstractive summaries from ho-

3https://github.com/miso-belica/sumy
4https://github.com/boudinfl/sume

1353

https://doi.org/10.18653/v1/P17-1124

Figure 1: Lexical overlap of a reference summary (cluster D31043t in DUC 2004) with the summary
produced by ICSI’s state-of-the-art system (Boudin et al., 2015) and the extractive upper bound

DUC’04 DBS
Systems R1 R2 SU4 R1 R2 SU4

TF*IDF .292 .055 .086 .377 .144 .144
LexRank .345 .070 .108 .434 .161 .180
TextRank .306 .057 .096 .400 .167 .167
LSA .294 .045 .081 .394 .154 .147
KL-Greedy .336 .072 .104 .369 .133 .134
ICSI .374 .090 .118 .452 .183 .190
UB .472 .210 .182 .848 .750 .532

Table 1: ROUGE-1 (R1), ROUGE-2 (R2), and
ROUGE-SU4 (SU4) scores of multiple systems
compared to the extractive upper bound (UB)

mogenous news texts, whereas DBS (Benikova
et al., 2016) is a German dataset of cohesive ex-
tracts from heterogeneous sources from the educa-
tional domain (see details in section 4.1). For each
dataset, we compute an extractive upper bound
(UB) by optimizing the sentence selection which
maximizes ROUGE-2, i.e., the occurrence of bi-
grams as in the reference summary (Cao et al.,
2016). Although some systems achieve state-of-
the-art performance, their scores are still far from
the extractive upper bound of individual reference
summaries as shown in Figure 1. This is due to
low inter-annotator agreement for concept selec-
tion: Zechner (2002) reports, for example, κ = .13
and Benikova et al. (2016) κ = .23. Most systems
try to optimize for all reference summaries instead
of personalizing, which we consider essential to
capture user-desired content.

Need for user feedback. The goal of concept
selection is finding the important information

within a given set of source documents. Although
existing summarization algorithms come up with
a generic notion of importance, it is still far from
the user-specific importance as shown in Figure 1.
In contrast, humans can easily assess importance
given a topic or a query. One way to achieve
personalized summarization is thus by combining
the advantages of both human feedback and the
generic notion of importance built in a system.
This allows users to interactively steer the summa-
rization process and integrate their user-specific
notion of importance.

Contributions. In this work, (1) we propose a
novel ILP-based model using an interactive loop
to create multi-document user-desired summaries,
and (2) we develop models using pool-based ac-
tive learning and joint optimization techniques
to collect user feedback on identifying important
concepts of a topic. In order to encourage the
community to advance research and replicate our
results, we provide our interactive summarizer im-
plementation as open-source software.5.

Our proposed method and our new interactive
summarization framework can be used in multiple
application scenarios: as an interactive annotation
tool, which highlights important sentences for the
annotators, as a journalistic writing aid that sug-
gests important, user-adapted content from multi-
ple source feeds (e.g., live blogs), and as a medical
data analysis tool that suggests key information as-
sisting a patient’s personalized medical diagnosis.

The rest of the paper is structured as follows:
In section 2, we discuss related work. Section 3

5https://github.com/UKPLab/
acl2017-interactive_summarizer

1354

introduces our computer-assisted summarization
framework using the concept-based optimization.
Section 4 describes our experiment data and setup.
In section 5, we then discuss our results and an-
alyze the performance of our models across dif-
ferent datasets. Finally, we conclude the paper in
section 6 and discuss future work.

2 Related Work

Previous works related to our research address ex-
tractive summarization as a budgeted subset selec-
tion problem, computer-assisted approaches, and
personalized summarization models.

Bugeted subset selection. Extractive summa-
rization systems that compose a summary from
a number of important sentences from the source
documents are by far the most popular solution
for MDS. This task can be modeled as a budgeted
maximum coverage problem. Given a set of sen-
tences in the document collection, the task is to
maximize the coverage of the subset of sentences
under a length constraint. The scoring function
estimates the importance of the content units for
a summary. Most previous works consider sen-
tences as content units and try different scoring
functions to optimize the summary.

One of the earliest systems by McDonald
(2007) models a scoring function by simultane-
ously maximizing the relevance scores of the se-
lected content units and minimizing their pairwise
redundancy scores. They solve the global opti-
mization problem using an ILP framework. Later,
several state-of-the-art results employed an ILP to
maximize the number of relevant concepts in the
created summary: Gillick and Favre (2009) use
an ILP with bigrams as concepts and hand-coded
deletion rules for compression. Berg-Kirkpatrick
et al. (2011) combine grammatical features relat-
ing to the parse tree and use a maximum-margin
SVM trained on annotated gold-standard com-
pressions. Woodsend and Lapata (2012) jointly
optimize content selection and surface realiza-
tion, Li et al. (2013) estimate the weights of the
concepts using supervised methods, and Boudin
et al. (2015) propose an approximation algorithm
to achieve the optimal solution. Although these
approaches achieve state-of-the-art performance,
they produce only one globally optimal summary
which is impractical for various users due to the
subjectivity of the task. Therefore, we research in-
teractive computer-assisted approaches in order to

produce personalized summaries.

Computer-assisted summarization. The ma-
jority of the existing computer-assisted summa-
rization tools (Craven, 2000; Narita et al., 2002;
Orǎsan et al., 2003; Orǎsan and Hasler, 2006)
present important elements of a document to the
user. Creating a summary then requires the hu-
man to cut, paste, and reorganize the important el-
ements in order to formulate a final text. The work
by Orǎsan and Hasler (2006) is closely related to
ours, since they assist users in creating summaries
for a source document based on the output of a
given automatic summarization system. However,
their system is neither interactive nor does it con-
sider the user’s feedback in any way. Instead, they
suggest the output of the state-of-the-art (single-
document) summarization method as a summary
draft and ask the user to construct the summary
without further interaction.

Personalized summarization. While most pre-
vious work focuses on generic summaries, there
have been a few attempts to take a user’s prefer-
ences into account. The study by Berkovsky et al.
(2008) shows that users prefer personalized sum-
maries that precisely reflect their interests. These
interests are typically modeled with the help of a
query (Park and An, 2010) or keyword annotations
reflecting the user’s opinions (Zhang et al., 2003).

In another strand of research, Dı́az and Gervás
(2007) create user models based on social tag-
ging and Hu et al. (2012) rank sentences by com-
bining informativeness scores with a user’s in-
terests based on fuzzy clustering of social tags.
Extending the use of social content, another re-
cent work showed how personalized review sum-
maries (Poussevin et al., 2015) can be useful in
recommender systems beyond rating predictions.
Although these approaches show that personal-
ized summaries are more useful than generic sum-
maries, they do not attempt to iteratively refine a
summary in an interactive user–system dialog.

3 Approach

The goal of our work is maximizing the user-
desired content in a summary within a minimum
number of iterations. To this end, we propose an
interactive loop that alternates the automatic cre-
ation of a summary and the acquisition of user
feedback to refine the next iteration’s summary.

1355

3.1 Summary Creation

Our starting point is the concept-based ILP sum-
marization framework by Boudin et al. (2015). Let
C be the set of concepts in a given set of source
documents D, ci the presence of the concept i in
the resulting summary, wi a concept’s weight, `j
the length of sentence j, sj the presence of sen-
tence j in the summary, and Occij the occurrence
of concept i in sentence j. Based on these defini-
tions, we formulate the following ILP:

max
∑

iwici (1)

∀j. ∑
j`jsj ≤ L (2)

∀i, j. ∑
jsjOccij ≥ ci (3)

∀i, j. sjOccij ≤ ci (4)

∀i. ci ∈ {0, 1} (5)

∀j. sj ∈ {0, 1} (6)

The objective function (1) maximizes the oc-
currence of concepts ci in the summary based on
their weights wi. The constraint formalized in (2)
ensures that the summary length is restricted to a
maximum length L, (3) ensures the selection of
all concepts in a sentence sj if sj has been selected
for the summary. Constraint (4) ensures that a con-
cept is only selected if it is present in at least one
of the selected sentences.

The two key factors for the performance of this
ILP are defining the concept set C and a method
to estimate the weights wi ∈ W . Previous works
have used word bigrams as concepts (Gillick and
Favre, 2009; Li et al., 2013; Boudin et al., 2015)
and either use document frequency (i.e. the num-
ber of source documents containing the concept)
as weights (Woodsend and Lapata, 2012; Gillick
and Favre, 2009) or estimate them using a su-
pervised regression model (Li et al., 2013). For
our implementation, we likewise use bigrams as
concepts and document frequency as weights, as
Boudin et al. (2015) report good results with this
simple strategy. Our approach is, however, not
limited to this setup, as our interactive approach
allows for any definition of C and W , including
potentially more sophisticated weight estimation
methods, e.g., based on deep neural networks. In
section 5.2, we additionally analyze how other no-
tions of concepts can be integrated into our ap-
proach.

3.2 Interactive Summarization Loop

Algorithm 1 provides an overview of our interac-
tive summarization approach. The system takes
the set of source documents D as input, derives
the set of concepts C, and initializes their weights
W . In line 5, we start the interactive feedback
loop iterating over t = 0, . . . , T . We first create
a summary St (line 6) by solving the ILP and then
extract a set of concepts Qt (line 7), for which
we query the user in line 11 As the user feed-
back in the current time step, we use the concepts
It ⊆ Qt that have been considered important by
the user. For updating the weights W in line 12,
we may use all feedback collected until the cur-
rent time step t, i.e., It0 =

⋃t
j=0 Ij and the set of

concepts Qt0 =
⋃t
j=0Qj seen by the user (with

Q−1
0 = ∅). If there are no more concepts to query

(i.e., Qt = ∅), we stop the iteration and return the
personalized summary St.

Algorithm 1 Interactive summarizer
1: procedure INTERACTIVESUMMARIZER()
2: input: Documents D
3: C ← extractConcepts(D)
4: W ← conceptWeights(C)
5: for t = 0...T do
6: St ← getSummary(C,W)
7: Qt ← extractConcepts(St)−Qt−1

0

8: if Qt = ∅ then
9: return St

10: else
11: It ← obtainFeedback(St, Qt)
12: W ← updateWeights(W, It0, Q

t
0)

13: end if
14: end for
15: end procedure

3.3 User Feedback Optimization

To optimize the summary creation based on
user feedback, we iteratively change the concept
weights in the objective function of the ILP setup.
We define the following models:

Accept model (ACCEPT). This model presents
the current summary St with highlighted concepts
Qt to a user and asks him/her to select all impor-
tant concepts It. We assign the maximum weight
MAX to all concepts in It and consider the re-
maining Qt − It as unimportant by setting their
weight to 0 (see equation 7 and 8). The intuition

1356

behind this baseline is that the modified scores
cause the ILP to prefer the user-desired concepts
while avoiding unimportant ones.

∀i ∈ It0. wi = MAX (7)

∀i ∈ Qt0 − It0. wi = 0 (8)

Joint ILP with User Feedback (JOINT). The
ACCEPT model fails in cases where the user could
not accept concepts that never appear in one of the
St summaries. To tackle this, in our JOINT model,
we change the objective function of the ILP in or-
der to create St by jointly optimizing importance
and user feedback. We thus replace the equation
(1) with:

max

{∑
i 6∈Qt

0
wici −

∑
i∈Qt

0
wici if t ≤ τ

∑
iwici if t > τ

(9)

Equation (9) maximizes the use of concepts for
which we yet lack feedback (i 6∈ Qt0) and min-
imizes the use of concepts for which we already
have feedback (i ∈ Qt0). In this JOINT model, we
use an exploration phase t = 0 . . . τ to collect the
feedback, which terminates when the user does not
return any important concepts (i.e., It = ∅). In the
exploratory phase, the minus term in the equation
9 helps to reduce the score of the sentences whose
concepts have received feedback already. In other
words, it causes higher scores for sentences con-
sisting of concepts which yet lack feedback. Af-
ter the exploration step, we fall back to the orig-
inal importance-based optimization function from
equation (1).

Active learning with uncertainty sampling
(AL). Our JOINT model explores well in terms
of prioritizing the concepts which yet lack user
feedback. However, it gives equal probabilities
to all the unseen concepts. The AL model em-
ploys pool-based active learning (Kremer et al.,
2014) during the exploration phase in order to pri-
oritize concepts for which the model is most un-
certain. We distinguish the unlabeled concept pool
Cu = {Φ(x̃1),Φ(x̃2), ...,Φ(x̃N)} and the labeled
concept poolC` = {(Φ(x1), y1), (Φ(x2), y2), . . . ,
(Φ(xN), yN)}, where each concept xi is repre-
sented as a d-dimensional feature vector Φ(xi) ∈
Rd. The labels yi ∈ {−1, 1} are 1 for all important
concepts in It0 and−1 for all unimportant concepts
in Qt0 − It0. Initially, the labeled concept pool C`

is small or empty, whereas the unlabeled concept
pool Cu is relatively large.

The learning algorithm is presented with a C =
C` ∪ Cu and is first called to learn a decision
function f (0) : Rd → R, where the function
f (0)(Φ(x̃)) is taken to predict the label of the input
vector Φ(x̃). Then, in each tth iteration, where t =
1, 2, . . . , τ , the querying algorithm selects an in-
stance of x̃t ∈ Cu for which the learning algorithm
is least certain. Thus, our learning goal of active
learning is to minimize the expected loss L (i.e.,
hinge loss) with limited querying opportunities to
obtain a decision function f (1), f (2), . . . , f (τ) that
can achieve low error rates:

minE(Φ(x),y)∈C`

[
L(f (t)(Φ(x)), y)

]
(10)

As the learning algorithm, we use a support vec-
tor machine (SVM) with a linear kernel. To obtain
the probability distribution over classes we use
Platt’s calibration (Platt, 1999), an effective ap-
proach for transforming classification models into
a probability distribution. Equation (11) shows the
probability estimates for f (t), where f (t) is the un-
calibrated output of the SVM in the tth iteration
and A, B are scalar parameters that are learned by
the calibration algorithm. The uncertainty scores
are calculated as described in the equation (12) for
all the concepts which lack feedback (Cu).

p(y | f (t)) =
1

1 + exp(Af (t) +B)
(11)

ui = 1− max
y∈{−1,1}

p(y | f (t)) (12)

For our AL model, we now change the objec-
tive function in order to create St by multiplying
uncertainty scores ui to the weights wi. We thus
replace the objective function from (9) with

max

{∑
i 6∈Qt

0
uiwici if t ≤ τ

∑
i wici if t > τ

(13)

Active learning with positive sampling (AL+).
One way to sample the unseen concepts is using
uncertainty as in AL, but another way is to actively
choose samples for which the learning algorithm
predicts as a possible important concept. In AL+,
we introduce the notion of certainty (1−ui) for the
positively predicted samples (f (t)(Φ(x̃i)) = 1) in

1357

Dataset Lang Topics Summary type Length

DBS de 10 Coherent extracts ≈ 500 words
DUC’01 en 30 Abstracts 100 words
DUC’02 en 59 Abstracts 100 words
DUC’04 en 50 Abstracts 100 words

Table 2: Statistics of the MDS datasets used

the objective function (1) for producing St

max

{∑
i 6∈Qt

0
(1− ui)`iwici if t ≤ τ

∑
i wici if t > τ

(14)

where `i =

{
0 if f (t)(Φ(x̃i)) = −1

1 if f (t)(Φ(x̃i)) = 1
(15)

4 Experimental Setup

4.1 Data
For our experiments, we mainly focus on the
DBS corpus, which is an MDS dataset of coher-
ent extracts created from heterogeneous sources
about multiple educational topics (Benikova et al.,
2016). This corpus is well-suited for our evalu-
ation setup, since we are able to easily simulate a
user’s feedback based on the overlap between gen-
erated and reference summary.

Additionally, we carry out experiments on the
most commonly used evaluation corpora pub-
lished by DUC/NIST from the generic multi-
document summarization task carried out in
DUC’01, DUC’02 and DUC’04. The documents
are all from the news domain and are grouped into
various topic clusters. Table 2 shows the proper-
ties of these corpora.

For evaluating the summaries against the refer-
ence summary we use ROUGE (Lin, 2004) with
the parameters suggested by (Owczarzak et al.,
2012) yielding high correlation with human judg-
ments (i.e., with stemming and without stopword
removal).6 Since DBS summaries do not have a
fixed length, we use a variable length parameter
L for evaluation, where L denotes the length of
the reference summary. All results are averaged
across all topics and reference summaries.

4.2 Data Pre-processing and Features
To pre-process the datasets, we perform tokeniza-
tion and stemming with NLTK (Loper and Bird,
2002) and constituency parsing with the Stanford
parser (Klein and Manning, 2003) for English and

6-n 4 -m -a -x -c 95 -r 1000 -f A -p 0.5 -t 0 -2 -4 -u

German. The parse trees will be used in sec-
tion 5.2 below to experiment with a syntactically
motivated concept notion.

As a concept’s feature representation Φ for
our active learning setups AL and AL+, we
use pre-trained word embeddings. We use the
Google News embeddings with 300 dimensions
by Mikolov et al. (2013) for English and the 100-
dimensional news- and Wikipedia-based embed-
dings by Reimers et al. (2014) for German. Ad-
ditionally, we add TF*IDF, number of stop words,
presence of named entities, and word capitaliza-
tion as features. Discrete features, such as part-of-
speech tags, are mapped into the word representa-
tion via lookup tables.

4.3 Oracle-Based Simulation of User
Feedback

The presence of a human in the loop typically de-
mands for a user study based evaluation, but to
collect sufficient data for various settings of our
models would be too expensive. Therefore, we
resort to an oracle-based approach, where the or-
acle is a system simulating the user by generat-
ing the feedback based on reference outputs. This
idea has been widely used in the development of
interactive systems (González-Rubio et al., 2012;
Knowles and Koehn, 2016) for studying the prob-
lem and exhibiting solutions in a theoretical and
controlled environment.

To simulate user feedback in our setting, we
consider all concepts It ⊆ Qt from the system-
suggested summary St as important if they are
present in the reference summary. Let Ref be the
set of concepts in the reference summary. In the
tth iteration, we return It = Qt ∩Ref as the simu-
lated user feedback. Thus, the goal of our system
is to reach the upper bound for a user’s reference
summary within a minimal number of iterations.

We limit our experiments to ten iterations, since
it appears unrealistic that users are willing to par-
ticipate in more feedback cycles. Petrie and Bevan
(2009) even report only three to five iterations.

5 Results and Analysis

5.1 Methods

Table 3 shows the evaluation results of our four
models. When evaluating a summarization sys-
tem, it is common to report the mean ROUGE
scores across clusters using all the reference sum-
maries. However, since we aim at personalizing

1358

Datasets ICSI UB ACCEPT JOINT AL AL+
R1 R2 SU4 R1 R2 SU4 R1 R2 SU4 R1 R2 SU4 R1 R2 SU4 R1 R2 SU4

Concept Notion: Bigrams
DBS .451 .183 .190 .848 .750 .532 .778 .654 .453 .815 .707 .484 .833 .729 .498 .828 .721 .500
DUC’04 .374 .090 .118 .470 .212 .185 .442 .176 .165 .444 .180 .166 .440 .178 .160 .427 .166 .154
DUC’02 .350 .085 .110 .474 .216 .187 .439 .178 .161 .444 .182 .165 .448 .188 .165 .448 .184 .170
DUC’01 .333 .073 .105 .450 .213 .181 .414 .171 .156 .418 .167 .149 .435 .186 .163 .426 .181 .158
Concept Notion: Content Phrases
DBS .403 .135 .154 .848 .750 .532 .691 .531 .430 .742 .597 .419 .776 .652 .448 .767 .629 .440
DUC’04 .374 .090 .118 .470 .212 .185 .441 .176 .160 .441 .179 .162 .444 .180 .162 .422 .164 .150
DUC’02 .350 .085 .110 .474 .216 .187 .436 .181 .162 .444 .183 .165 .446 .185 .168 .442 .182 .162
DUC’01 .333 .073 .105 .450 .213 .181 .410 .165 .153 .417 .170 .156 .433 .182 .161 .420 .179 .154

Table 3: ROUGE-1 (R1), ROUGE-2 (R2) and ROUGE SU-4 (SU4) achieved by our models after the
tenth iteration of the interactive loop in comparison to the upper bound and the basic ILP setup

Datasets ACCEPT JOINT AL AL+
#F #F #F #F

Concept Notion: Bigrams
DBS 313 296 348 342
DUC’04 15 14 16 14
DUC’02 14 13 15 15
DUC’01 13 11 13 13
Concept Notion: Content Phrases
DBS 110 114 133 145
DUC’04 8 9 10 10
DUC’02 7 7 8 6
DUC’01 7 7 8 6

Table 4: Average amount of user feedback (#F)
considered by our models at the end of the tenth
iteration of the interactive summarization loop

the summary for an individual user, we evaluate
our models based on the mean ROUGE scores
across clusters per reference summary. In Table 4,
we additionally evaluate the models based on the
amount of feedback (#F = |IT0 |) taken by the or-
acles to converge to the upper bound within ten
iterations.

To examine the system performance based on
user feedback, we analyze our models’ perfor-
mance on multiple datasets. The results in Table 3
show that our idea of interactive multi-document
summarization allows users to steer a general sum-
mary towards a personalized summary consis-
tently across all datasets. From the results, we
can see that the AL model starts from the concept-
based ILP summarization and nearly reaches the
upper bound for all the datasets within ten itera-
tions. AL+ performs similar to AL in terms of
ROUGE, but requires less feedback (compare Ta-
ble 4). Furthermore, the ACCEPT and JOINT
models get stuck in a local optimum due to the
less exploratory nature of the models.

5.2 Concept Notion
Our interactive summarization approach is based
on the scalable global concept-based model which
uses bigrams as concepts. Thus, it is intuitive to
use bigrams for collecting user feedback as well.7

Although our models reach the upper bound when
using bigram-based feedback, they require a sig-
nificantly large number of iterations and much
feedback to converge, as shown in Table 4.

To reduce the amount of feedback, we also con-
sider content phrases to collect feedback. That
is, syntactic chunks from the constituency parse
trees consisting of non-function words (i.e., nouns,
verbs, adjectives, and adverbs). For DBS be-
ing extractive dataset, we use bigrams and con-
tent phrases as concepts, both for the objective
function in equation (1) and as feedback items,
whereas for the DUC datasets, the concepts are
always bigrams for both the feedback types (bi-
grams/content phrases). For DUC being abstrac-
tive, in the case of feedback given on content
phrases, they are projected back to the bigrams to
change the concept weights in order to have more
overlap of simulated feedback. Table 4 shows
feedbacks based on the content phrases reduces
the number of feedbacks by a factor of 2. Further-
more, when content phrases are used as concepts
for DBS, the performance of the models is lower
compared to bigrams, as seen in Table 3.

5.3 Datasets
Figure 2 compares the ROUGE-2 scores and the
amount of feedback used over time when applied
to the DBS and the DUC’04 corpus. We can see
from the figure that all models show an improve-
ment of +.45 ROUGE-2 after merely 4 iterations

7We prune bigrams consisting of only functional words.

1359

0 1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
O

U
G

E
2

Upper bound
Active+
Active
Joint
Accept

0 1 2 3 4 5 6 7 8 9 10
Iterations

0

50

100

150

200

250

300

350

#
Fe

ed
ba

ck
s

0 1 2 3 4 5 6 7 8 9 10
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

R
O

U
G

E
2

Upper bound
Active+
Active
Joint
Accept

0 1 2 3 4 5 6 7 8 9 10
Iterations

0

2

4

6

8

10

12

14

16

#
Fe

ed
ba

ck
s

Figure 2: Analysis for the models over the DBS (left) and DUC’04 (right) datasets

on DBS. For DUC’04, the improvements are +.1
ROUGE-2 after ten iterations, which is relatively
notable considering the lower upper bound of .21
ROUGE-2. This is primarily because DBS is a
corpus of cohesive extracts, whereas DUC’04 con-
sists of abstractive summaries. As a result, the ora-
cles created using abstractive reference summaries
have lower overlap of concepts as compared to that
of the oracles created using extractive summaries.

For DBS, it becomes clear that the JOINT
model converges faster with an optimum amount
of feedback as compared to other models. AC-
CEPT takes relatively more feedbacks than
JOINT, but performs low in terms of ROUGE
scores. The best performing models are AL and
AL+, which reach closest to the upper bound.
This is clearly due to the exploratory nature of the
models which use semantic representations of the
concepts to predict uncertainty and importance of
possible concepts for user feedback.

For DUC’04, the JOINT model reaches the
closest to the upper bound, closely followed by
AL. The JOINT model consistently stays above all

other models and it gathers more important con-
cepts due to optimizing feedbacks for concepts
which lack feedback. Interestingly, AL+ performs
rather worse in terms of both ROUGE scores and
gathering important concepts. The primary reason
for this is the fewer feedback collected from the
simulation due to the abstractive property of ref-
erence summaries, which makes the AL+ model’s
prediction inconsistent.

5.4 Personalization

Figure 3 shows the performance of different mod-
els in comparison to two different oracles for the
same document cluster. For DBS, the JOINT,
AL, and AL+ models consistently converge to the
upper bound in 4 iterations for different oracles,
whereas ACCEPT takes longer for one oracle and
does not reach the upper bound for the other.

For DUC’04, JOINT and AL show consistent
performance across the oracles, whereas AL+ per-
forms worse than the state-of-the-art system (iter-
ation 0) for oracle created using abstractive sum-
maries as shown in Figure 3 (right) for User:1.

1360

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
R

O
U

G
E

2
User:1

0 1 2 3 4 5 6 7
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
O

U
G

E
2

User:2

Upper bound
Active+
Active
Joint
Accept

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

R
O

U
G

E
2

User:1

0 1 2 3 4 5 6 7
Iterations

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
O

U
G

E
2

User:2

Upper bound
Active+
Active
Joint
Accept

Figure 3: Analysis of models over cluster 7 from DBS (left) and cluster d30051t from DUC’04 (right)
respectively for different oracles

However, for User:2, we observe a ROUGE-2 im-
provement of +.1 indicating that the predictions
of the active learning system are better if there is
more feedback. Nevertheless, we expect that in
practical use, the human summarizers may give
more feedback similar to DBS in comparison to
DUC’04 simulation setting.

6 Conclusion and Future Work

We propose a novel ILP-based approach using in-
teractive user feedback to create multi-document
user-desired summaries. In this paper, we investi-
gate pool-based active learning and joint optimiza-
tion techniques to collect user feedback for iden-
tifying important concepts for a summary. Our
models show that interactively collecting feedback
consistently steers a general summary towards a
user-desired personalized summary. We empiri-
cally checked the validity of our approach on stan-
dard datasets using simulated user feedback and
observed that our framework shows promising re-
sults in terms of producing personalized multi-

document summaries.
As future work, we plan to investigate more

sophisticated sampling strategies based on active
learning and concept graphs to incorporate lexical-
semantic information for concept selection. We
also plan to look into ways to propagate feedback
to similar and related concepts with partial feed-
back, to reduce the total amount of feedback. This
is a promising direction as we have shown that in-
teractive methods help to create user-desired per-
sonalized summaries, and with minimum amount
of feedbacks, it has propitious use in scenarios
where user-adapted content is a requirement.

Acknowledgments

This work has been supported by the German Re-
search Foundation as part of the Research Training
Group Adaptive Preparation of Information from
Heterogeneous Sources (AIPHES) under grant
No. GRK 1994/1. We also acknowledge the use-
ful comments and suggestions of the anonymous
reviewers.

1361

References
Darina Benikova, Margot Mieskes, Christian M.

Meyer, and Iryna Gurevych. 2016. Bridging the gap
between extractive and abstractive summaries: Cre-
ation and evaluation of coherent extracts from het-
erogeneous sources. In Proceedings of the 26th In-
ternational Conference on Computational Linguis-
tics (COLING). Osaka, Japan, pages 1039–1050.
http://aclweb.org/anthology/C16-1099.

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan
Klein. 2011. Jointly learning to extract and
compress. In Proceedings of the 49th An-
nual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies
(ACL/HLT). Portland, OR, USA, pages 481–490.
http://aclweb.org/anthology/P11-1049.

Shlomo Berkovsky, Timothy Baldwin, and Ingrid Zuk-
erman. 2008. Aspect-based personalized text sum-
marization. In Adaptive Hypermedia and Adaptive
Web-Based Systems. Proceedings of the 5th Interna-
tional Conference, Springer, Berlin/Heidelberg, vol-
ume 5149 of Lecture Notes in Computer Science,
pages 267–270. https://doi.org/10.1007/978-3-540-
70987-9 31.

Florian Boudin, Hugo Mougard, and Benoit Favre.
2015. Concept-based summarization using in-
teger linear programming: From concept prun-
ing to multiple optimal solutions. In Pro-
ceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing
(EMLNP). Lisbon, Portugal, pages 1914–1918.
http://aclweb.org/anthology/D15-1220.

Ziqiang Cao, Chengyao Chen, Wenjie Li, Sujian
Li, Furu Wei, and Ming Zhou. 2016. TG-
Sum: Build Tweet Guided Multi-Document Sum-
marization Dataset. In Proceedings of the Thir-
tieth AAAI Conference on Artificial Intelligence
(AAAI). Phoenix, AZ, USA, pages 2906–2912.
http://www.aaai.org/ocs/index.php/AAAI/AAAI16.

T. C. Craven. 2000. Abstracts produced using
computer assistance. Journal of the American
Society for Information Science 51(8):745–756.
https://doi.org/10.1002/(SICI)1097-4571(2000)51:8
<745::AID-ASI70>3.0.CO;2-Z.

Alberto Dı́az and Pablo Gervás. 2007. User-
model based personalized summarization. In-
formation Process Management 43(6):1715–1734.
https://doi.org/10.1016/j.ipm.2007.01.009.

Günes Erkan and Dragomir R. Radev. 2004.
LexRank: Graph-based Lexical Centrality As
Salience in Text Summarization. Journal of
Artificial Intelligence Research 22(1):457–479.
https://www.jair.org/papers/paper1523.html.

Dan Gillick and Benoit Favre. 2009. A scalable global
model for summarization. In Proceedings of the
Workshop on Integer Linear Programming for Natu-
ral Langauge Processing. Boulder, CO, USA, pages
10–18. http://aclweb.org/anthology/W09-1802.

Yihong Gong and Xin Liu. 2001. Generic text sum-
marization using relevance measure and latent se-
mantic analysis. In Proceedings of the 24th An-
nual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval
(SIGIR). New Orleans, LA, USA, pages 19–25.
https://doi.org/10.1145/383952.383955.

Jesús González-Rubio, Daniel Ortiz-Martı́nez, and
Francisco Casacuberta. 2012. Active learning for
interactive machine translation. In Proceedings
of the 13th Conference of the European Chap-
ter of the Association for Computational Linguis-
tics (EACL). Avignon, France, pages 245–254.
http://aclweb.org/anthology/E12-1025.

Aria Haghighi and Lucy Vanderwende. 2009. Explor-
ing content models for multi-document summariza-
tion. In Proceedings of Human Language Tech-
nologies: The 2009 Annual Conference of the North
American Chapter of the Association for Compu-
tational Linguistics (NAACL). Boulder, CO, USA,
pages 362–370. http://aclweb.org/anthology/N09-
1041.

Kai Hong, John M. Conroy, Benoı̂t Favre, Alex
Kulesza, Hui Lin, and Ani Nenkova. 2014. A repos-
itory of state of the art and competitive baseline
summaries for generic news summarization. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC). Reyk-
javik, Iceland, pages 1608–1616. http://www.lrec-
conf.org/proceedings/lrec2014/summaries/1093.html.

Po Hu, Donghong Ji, Chong Teng, and Yujing Guo.
2012. Context-enhanced personalized social sum-
marization. In Proceedings of the 24th Inter-
national Conference on Computational Linguis-
tics (COLING). Mumbai, India, pages 1223–1238.
http://www.aclweb.org/anthology/C12-1075.

Dan Klein and Christopher D. Manning. 2003.
Accurate unlexicalized parsing. In Pro-
ceedings of the 41st Annual Meeting on
Association for Computational Linguis-
tics (ACL). Sapporo, Japan, pages 423–430.
https://doi.org/10.3115/1075096.1075150.

Rebecca Knowles and Philipp Koehn. 2016. Neural
interactive translation prediction. In Proceedings
of the Conference of the Association for Machine
Translation in the Americas (AMTA).

Jan Kremer, Kim Steenstrup Pedersen, and Christian
Igel. 2014. Active learning with support vector
machines. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 4(4):313–326.
https://doi.org/10.1002/widm.1132.

Chen Li, Xian Qian, and Yang Liu. 2013. Using super-
vised bigram-based ILP for extractive summariza-
tion. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Sofia, Bulgaria, pages 1004–
1013. http://aclweb.org/anthology/P13-1099.

1362

Chin-Yew Lin. 2004. ROUGE: A Package for Au-
tomatic Evaluation of Summaries. In Text Sum-
marization Branches Out: Proceedings of the
ACL-04 Workshop. Barcelona, Spain, pages 74–81.
http://aclweb.org/anthology/W04-1013.

Edward Loper and Steven Bird. 2002. NLTK: The
Natural Language Toolkit. In Proceedings of the
ACL-02 Workshop on Effective Tools and Method-
ologies for Teaching Natural Language Process-
ing and Computational Linguistics. pages 63–70.
https://doi.org/10.3115/1118108.1118117.

H. P. Luhn. 1958. The automatic creation of
literature abstracts. IBM Journal of Re-
search and Development 2(2):159–165.
https://doi.org/10.1147/rd.22.0159.

Ryan McDonald. 2007. A study of global inference al-
gorithms in multi-document summarization. In Ad-
vances in Information Retrieval. Proceedings of the
29th European Conference on IR Research (ECIR),
Springer, Berlin/Heidelberg, volume 4425 of Lec-
ture Notes in Computer Science, pages 557–564.
https://doi.org/10.1007/978-3-540-71496-5 51.

Rada Mihalcea and Paul Tarau. 2004. TextRank:
Bringing Order into Text. In Proceedings of the
2004 Conference on Empirical Methods in Natural
Language Processing (EMNLP). Barcelona, Spain,
pages 404–411. http://aclweb.org/anthology/W04-
3252.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

Masumi Narita, Kazuya Kurokawa, and Takehito
Utsuro. 2002. A Web-based English Abstract
Writing Tool Using a Tagged E–J Parallel Cor-
pus. In Proceedings of the Third International
Conference on Language Resources and Evalua-
tion (LREC). Las Palmas, Spain. http://www.lrec-
conf.org/proceedings/lrec2002/sumarios/137.htm.

Constantin Orǎsan and Laura Hasler. 2006. Computer-
aided Summarisation: What the User Really Wants.
In Proceedings of the 5th International Conference
on Language Resources and Evaluation (LREC).
Genoa, Italy, pages 1548–1551. http://www.lrec-
conf.org/proceedings/lrec2006/summaries/52.html.

Constantin Orǎsan, Ruslan Mitkov, and Laura Hasler.
2003. CAST: a computer-aided summarisation tool.
In Proceedings of the tenth conference on European
chapter of the Association for Computational Lin-
guistics (EACL). Budapest, Hungary, pages 135–
138. http://aclweb.org/anthology/E03-1066.

Karolina Owczarzak, John M. Conroy, Hoa Trang
Dang, and Ani Nenkova. 2012. An assessment
of the accuracy of automatic evaluation in sum-
marization. In Proceedings of Workshop on Eval-
uation Metrics and System Comparison for Auto-
matic Summarization. Montréal, Canada, pages 1–9.
http://aclweb.org/anthology/W12-2601.

Sun Park and Dong Un An. 2010. Auto-
matic Query-based Personalized Summarization
That Uses Pseudo Relevance Feedback with NMF.
In Proceedings of the 4th International Con-
ference on Ubiquitous Information Management
and Communication (ICUIMC). pages 61:1–61:7.
https://doi.org/10.1145/2108616.2108690.

Helen Petrie and Nigel Bevan. 2009. The evaluation
of accessibility, usability, and user experience. In
Constantine Stephanidis, editor, The Universal Ac-
cess Handbook, Boca Raton: CRC Press, Human
Factors and Ergonomics, chapter 20, pages 1–16.
https://doi.org/10.1201/9781420064995-c20.

John C. Platt. 1999. Probabilistic outputs for sup-
port vector machines and comparisons to regularized
likelihood methods. In Advances In Large Margin
Classifiers. MIT Press, pages 61–74.

Mickaël Poussevin, Vincent Guigue, and Patrick Gal-
linari. 2015. Extended recommendation framework:
Generating the text of a user review as a personalized
summary. In Proceedings of the 2nd Workshop on
New Trends on Content-Based Recommender Sys-
tems co-located with 9th ACM Conference on Rec-
ommender Systems (RecSys 2015), Vienna, Austria,
September 16-20, 2015. pages 34–41. http://ceur-
ws.org/Vol-1448/paper7.pdf.

Nils Reimers, Judith Eckle-Kohler, Carsten Schnober,
Jungi Kim, and Iryna Gurevych. 2014. GermEval-
2014: Nested Named Entity Recognition with Neu-
ral Networks. In Workshop Proceedings of the 12th
Edition of the KONVENS Conference. Hildesheim,
Germany, pages 117–120.

Kristian Woodsend and Mirella Lapata. 2012. Multi-
ple aspect summarization using integer linear pro-
gramming. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning (EMNLP/CoNLL). Jeju Island, Korea,
pages 233–243. http://aclweb.org/anthology/D12-
1022.

Klaus Zechner. 2002. Automatic summarization of
open-domain multiparty dialogues in diverse genres.
Journal of Computational Linguistics 28(4):447–
485. https://doi.org/10.1162/089120102762671945.

Haiqin Zhang, Zheng Chen Wei-ying Ma, and
Qingsheng Cai. 2003. A study for docu-
ments summarization based on personal annota-
tion. In Proceedings of the HLT-NAACL 03
on Text Summarization Workshop. pages 41–48.
https://doi.org/10.3115/1119467.1119473.

1363

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1364–1373
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1125

Flexible and Creative Chinese Poetry Generation Using Neural Memory
Jiyuan Zhang1,2, Yang Feng3,1,4, Dong Wang1∗,

Yang Wang1, Andrew Abel6, Shiyue Zhang1,5, Andi Zhang1,5

1Center for Speech and Language Technologies(CSLT), RIIT, Tsinghua University, China
2Shool of Software & Microelectronics, Peking University, China

3Key Laboratory of Intelligent Information Processing,Institute of Computing Technology,CAS
4Huilan Limited, Beijing, China

5Beijing University of Posts and Telecommunications, China
6Xi’an Jiaotong-Liverpool University, China

zhangjy ml@pku.edu.cn, wangdong99@mails.tsinghua.edu.cn

Abstract

It has been shown that Chinese po-
ems can be successfully generated by
sequence-to-sequence neural models, par-
ticularly with the attention mechanism. A
potential problem of this approach, how-
ever, is that neural models can only learn
abstract rules, while poem generation is a
highly creative process that involves not
only rules but also innovations for which
pure statistical models are not appropri-
ate in principle. This work proposes a
memory-augmented neural model for Chi-
nese poem generation, where the neural
model and the augmented memory work
together to balance the requirements of
linguistic accordance and aesthetic inno-
vation, leading to innovative generations
that are still rule-compliant. In addition,
it is found that the memory mechanis-
m provides interesting flexibility that can
be used to generate poems with different
styles.

1 Introduction

Classical Chinese poetry is a special cultural her-
itage with over 2,000 years of history and is stil-
l fascinating us today. Among the various gen-
res, perhaps the most popular one is the quatrain,
a special style with a strict structure (four lines
with five or seven characters per line), a regulat-
ed rhythmical form (the last characters in the sec-
ond and fourth lines must follow the same rhyth-
m), and a required tonal pattern (tones of charac-
ters in some positions should satisfy a predefined
regulation) (Wang, 2002). This genre flourished
mostly in the Tang Dynasty, and so are often called

1Corresponding author: Dong Wang; RM 1-303, FIT
BLDG, Tsinghua University, Beijing (100084), P.R. China.

‘Tang poems’. An example of a quatrain written
by Wei Wang, a famous poet in the Tang Dynasty,
is shown in Table 1.

Due to the stringent restrictions in both rhyth-
m and tone, it is not trivial to create a ful-
ly rule-compliant quatrain. More importantly,
besides such strict regulations, a good quatrain
should also read fluently, hold a consistent theme,
and express a unique affection. Therefore, poem
generation is widely recognized as a very intelli-
gent activity and can be performed only by knowl-
edgeable people with a lot of training.

Wi�
Climbing the Paradise Mound
��¿Ø·§ (* Z Z P Z)

As I was not in a good mood this
evening round,

°����"(P P P Z P)
I went by cart to climb the Ancient

Paradise Mound.
I�Ã�Ð§ (* P P Z Z)

It is now nearing dusk,
�´C�³"(* Z Z P P)

When the setting sun is infinitely fine,
which is a must.

Table 1: An example of a 5-char quatrain. The
tonal pattern is shown at the end of each line,
where ’P’ indicates a level tone, ’Z’ indicates a
downward tone, and ’*’ indicates the tone can be
either. The translation is from (Tang, 2005).

In this paper we are interested in machine poet-
ry generation. Several approaches have been stud-
ied by researchers. For example, rule-based meth-
ods (Zhou et al., 2010), statistical machine trans-
lation (SMT) models (Jiang and Zhou, 2008; He
et al., 2012) and neural models (Zhang and Lapata,
2014; Wang et al., 2016a,c). Compared to previ-

1364

https://doi.org/10.18653/v1/P17-1125

ous approaches (e.g., rule-based or SMT), the neu-
ral model approach tends to generate more fluen-
t poems and some generations are so natural that
even professional poets can not tell they are the
work of machines (Wang et al., 2016a).

In spite of these promising results, neural mod-
els suffer from a particular problem in poem gen-
eration, a lack of innovation. Due to the statistical
nature of neural models, they pay much more at-
tention to high-frequency patterns, whereas they
ignore low-frequency ones. In other words, the
more regular and common the patterns, the bet-
ter the neural model is good at learning them and
tends to use them more frequently at run-time.
This property certainly helps to generate fluen-
t sentences, but it is not always useful: the major
value of poetry is not fluency, but the aesthetic in-
novation that can stimulate some unique feelings.
This is particularly true for Chinese quatrains that
are highly compact and expressive: it is nearly im-
possible to find two similar works in the thousands
of years of history in this genre, demonstrating the
importance of uniqueness or innovation. Ironical-
ly, the most important thing, innovation, is largely
treated as trivial, if not noise, by present neural
models.

Actually this problem is shared by all gener-
ation models based on statistics (although it is
more serious for neural models) and has aroused a
long-standing criticism for machine poem genera-
tion: it can generate, and sometimes generate well,
but the generation tends to be unsurprising and not
particularly interesting. More seriously, this prob-
lem exists not only in poem generation, but also in
all generation tasks that require innovation.

This paper tries to solve this extremely chal-
lenging problem. We argue that the essential prob-
lem is that statistical models are good at learn-
ing general rules (usage of regular words and their
combinations) but are less capable of remember-
ing special instances that are difficult to cover
with general rules. In other words, there is only
rule-based reasoning, no instance-based memory.
We therefore present a memory-augmented neu-
ral model which involves a neural memory so that
special instances can be saved and referred to at
run-time. This is like a human poet who creates
poems by not only referring to common rules and
patterns, but also recalls poems that he has read
before. It is hard to say whether this combination
of rules and instances produces true innovation

(which often requires real-life motivation rather
than simple word reordering), but it indeed offers
interesting flexibility to generate new outputs that
look creative and are still rule-compliant. More-
over, this flexibility can be used in other ways, e.g.,
generating poems with different styles.

In this paper, we use the memory-augmented
neural model to generate flexible and creative Chi-
nese poems. We investigate three scenarios where
adding a memory may contribute: the first scenari-
o involves a well trained neural model where we
aim to promote innovation by adding a memory,
the second scenario involves an over-fitted neural
model where we hope the memory can regularize
the innovation, and in the third scenario, the mem-
ory is used to encourage generation of poems of
different styles.

2 Related Work

A multitude of methods have been proposed for
automatic poem generation. The first approach
is based on rules and/or templates. For example,
phrase search (Tosa et al., 2009; Wu et al., 2009),
word association norm (Netzer et al., 2009), tem-
plate search (Oliveira, 2012), genetic search (Zhou
et al., 2010), text summarization (Yan et al., 2013).
Another approach involves various SMT methods,
e.g., (Jiang and Zhou, 2008; He et al., 2012). A
disadvantage shared by the above methods is that
they are based on the surface forms of words or
characters, having no deep understanding of the
meaning of a poem.

More recently, neural models have been the sub-
ject of much attention. A clear advantage of the
neural-based methods is that they can ‘discover’
the meaning of words or characters, and can there-
fore more deeply understand the meaning of a po-
em. Here we only review studies on Chinese po-
etry generation that are mostly related to our re-
search. The first study we have found in this di-
rection is the work by Zhang and Lapata (2014),
which proposed an RNN-based approach that pro-
duces each new line character-by-character us-
ing a recurrent neural network (RNN), with al-
l the lines generated already (in the form of a
vector) as a contextual input. This model can
generate quatrains of reasonable quality. Wang
et al. (2016b) proposed a much simpler neural
model that treats a poem as an entire charac-
ter sequence, and poem generation is conduct-
ed character-by-character. This approach can be

1365

easily extended to various genres such as Song
Iambics. To avoid theme drift caused by this
long-sequence generation, Wang et al. (2016b) u-
tilized the neural attention mechanism (Bahdanau
et al., 2014) by which human intention is encod-
ed by an RNN to guide the generation. The same
model was used by Wang et al. (2016a) for Chi-
nese quatrain generation. Yan (2016) proposed
a hierarchical RNN model that conducts iterative
generation. Recently, Wang et al. (2016c) pro-
posed a similar sequence generation model, but
with the difference that attention is placed not on-
ly on the human input, but also on all the char-
acters that have been generated so far. They also
proposed a topic planning scheme to encourage a
smooth and consistent theme.

All the neural models mentioned above try
to generate fluent and meaningful poems, but
none of them consider innovation. The
memory-augmented neural model proposed in this
study intends to address this issue. Our system
was built following the model structure and train-
ing strategy proposed by Wang et al. (2016a) due
to its simplicity and demonstrated quality, but the
memory mechanism is general and can be applied
to any of the models presented above.

The idea of memory argumentation was in-
spired by the recent advance in neural Turing ma-
chine (Graves et al., 2014, 2016) and memory net-
work (Weston et al., 2014). These new model-
s equip neural networks with an external memo-
ry that can be accessed and manipulated via some
trainable operations. In comparison, the memory
in our work plays a simple role of knowledge stor-
age, and the only operation is simple pre-defined
READ. In this sense, our model can be regarded
as a simplified neural Turing machine that omits
training.

3 Memory-augmented neural model

In this section, we first present the idea of memory
augmentation, and then describe the model struc-
ture and training method.

3.1 Memory augmentation

The idea of memory augmentation is illustrated
in Fig. 1. It contains two components, the neu-
ral model component on the left, and the mem-
ory component on the right. In this work, the
attention-based RNN generation model presented
by (Wang et al., 2016a) is used as the neural mod-

Figure 1: The memory-augmented neural model
used for Chinese poetry generation.

el component, although any neural model is suit-
able. The memory component involves a set of
‘direct’ mappings from input to output, and there-
fore can be used to memorize some special cases
of the generation that can not be represented by the
neural model. For poem generation, the memory
stores the information regarding which character
should be generated in a particular context. The
output from the two components are then integrat-
ed, leading to a consolidated output.

There are several ways to understand the
memory-augmented neural model. Firstly, it can
be regarded as a way of combining reasoning (neu-
ral model) and knowledge (memory). Secondly, it
can be regarded as a way of combining rule-based
inference (neural model) and instance-based re-
trieval (memory). Thirdly, it can be regarded
as a way of combining predictions from comple-
mentary systems, where the neural model is con-
tinuous and parameter-shared, while the memo-
ry is discrete and contains no parameter sharing.
Finally, the memory can be regarded as an ef-
fective regularization that constrains and modi-
fies the behavior of the neural model, resulting
in generations with desired properties. Note that
this memory-augmented neural model is inspired
by and related to the memory network proposed
by Weston et al.(2014) and Graves et al.(2016), but
we more focus on an accompanying memory that
plays the role of assistance and regularization.

3.2 Model structure
Using the Chinese poetry generation model shown
in Fig. 1 as an example, this section discuss-
es the creation of a memory-augmented neu-
ral model. Firstly, the neural model part is
an attention-based sequence-to-sequence mod-
el (Bahdanau et al., 2014). The encoder is a bi-

1366

directional RNN (with GRU units) that converts
the input topic words, denoted by the embeddings
of the compositional characters (x1, x2, ..., xN),
into a sequence of hidden states (h1, h2, ..., hN).
The decoder then generates the whole quatrain
character-by-character, denoted by the corre-
sponding embeddings (y1, y2, ...). At each step t,
the prediction for the state st is based on the last
generation yt−1, the previous status st−1 of the de-
coder, as well as all the hidden states (h1, h2, ...)
of the encoder. Each hidden state hi contributes to
the generation according to a relevance factor αt
that measures the similarity between st−1 and hi.
This is written as:

st = fd(yt−1, st−1,
N∑

i=1

αt,ihi)

where αt,i represents the contribution of hi to the
present generation, and can be implemented as any
function. The output of the model is a posterior
probability over the whole set of characters, writ-
ten by

zt = σ(stW)

where W is the projection parameter.
The memory consists of a set of elements
{mi}Ki=1, whereK is the size of the memory. Each
element mi involves two parts, the source part
mi(s), that encodes the context, i.e. when this ele-
ment should be selected, and the target partmi(g),
that encodes what should be output if this element
is selected. In our study, the neural model is firstly
trained, and then the memory is created by running
fd (the decoder of the neural model). Specifically,
for the k-th poem selected to be in the memory,
the character sequence is input to the decoder one
by one, with the contribution from the encoder set
to zero. Denoting the starting position of this po-
em in the memory is pk, the status of the decoder
at the j-th step is used as the source part of the
(pk + j)-th element of the memory, and the em-
bedding of the corresponding character, xj , is set
to be the target part. this is formally written as:

mi(s) = fd(xj−1, sj−1, 0) (1)

and
mi(g) = xj

where
i = pk + j.

At run-time, the memory elements are selected
according to their fit to the present decoder status

st, and then the outputs of the selected elements
are averaged as the output of the memory compo-
nent. We choose cosine distance to measure the
fitting degree, and have1:

vt =
K∑

i=1

cos(st,mi(s))mi(g). (2)

The output of the neural model and the memory
can be combined in various ways. Here, a simple
linear combination before the softmax is used, i.e.,

zt = σ(stW + βvtE) (3)

where β is a pre-defined weighting factor, and E
contains word embeddings of all the characters.
Although it is possible to train β from the data,
we found that the learned β is not better than the
manually-selected one. This is probably because
β is a factor to trade-off the contribution from
the model and the memory, and how to make the
trade-off should be a ‘prior knowledge’ rather than
a tunable parameter. In fact, if it is trained, than it
will be immediately adapted to match the training
data, which will nullify our effort to encourage in-
novative generation.

3.3 Model Training

In our implementation, only the neural model
component is required to be trained. The training
algorithm follows the scheme defined in (Wang
et al., 2016a), where the cross entropy between the
distributions over Chinese characters given by the
decoder and the ground truth is used as the ob-
jective function. The optimization uses the SGD
algorithm together with AdaDelta to adjust the
learning rate (Zeiler, 2012).

4 Memory augmentation for Chinese
poetry generation

This section describes how the memory mechanis-
m can be used to trade-off between the require-
ments for rule-compliant generation and aesthetic
innovation, and how it can also be used to do more
interesting things, for example style transfer.

4.1 Memory for innovative generation

In this section, we describe how the memory
mechanism promotes innovation. Monitoring the

1In fact, we run a parallel decoder to provide st in Eq.(2).
This decoder does not accept input from the encoder and so
is consistent with the memory construction process as Eq.(1).

1367

training process for the attention-based model, we
found that the cost on the training set will keep
decreasing until approaching zero, but on the val-
idation set, the degradation stops after only one
iteration. This can be explained by the fact that
Chinese quatrains are highly unique, so the com-
mon patterns can be fully learned in one iteration,
resulting in overfitting with additional iterations.
Due to the overfitting, we observe that with the
one-iteration model, reasonable poems can be gen-
erated, and with the over-fitted model, the gener-
ated poems are meaningless, in that they do not
resemble feasible character sequences.

The energy model perspective helps to explain
this difference. For the one-iteration model, the
energy surface is smooth and the energy of the
training data is not very low, as illustrated in plot
(a) in Fig. 2, where the x-axis represents the input
and y-axis represents the output, and the z-axis
represents the energy. With this model, inputs
with small variance will be attracted to the same
low-energy area, leading to similar generations.
These generations are trivial, but at least reason-
able. If the model is overfitted, however, the ener-
gy at the locations of the training data becomes
much lower than their surrounding areas, lead-
ing to a bumpy energy surface as shown in plot
(b) in Fig. 2. With this model, inputs with a s-
mall variation may be attracted to very different
low-energy areas, leading to significantly differ-
ent generations. Since many of the low-energy ar-
eas are nothing to do with good generations but
are simply caused by the complex energy func-
tion, the generations can be highly surprising for
human readers, and the quality is not guaranteed.
In some sense, these generations can be regarded
as ‘innovative’ , but based on observations made
in our experiments, most of them are meaningless.

The augmented memory introduces a new en-
ergy function, which is combined with the energy
function of the neural model to change the energy
surface of the generation system. This can be seen
in Eq. (3), where stW and βvtE can be regarded
as the energy function of the neural model com-
ponent and the memory component, respectively,
and the energy function of the memory-augmented
system is the sum of the energy functions of these
two components. For this reason, the effect of the
memory mechanism can be regarded as a regular-
ization of the neural model that will adjust its gen-
eration behavior.

This regularization effect is illustrated in Fig. 2,
where the energy function of the memory shown in
plot (c) is added to the energy function of the one-
iteration model and the overfitted model, as shown
in plot (e) and plot (f) respectively. It can be seen
that with the memory involved, the energy sur-
face becomes more bumpy with the one-iteration
model, and more smooth with the overfitted mod-
el. In the former case, the effect of the memory
is to encourage innovation, while still focusing on
rule-compliance, and in the latter case, the effec-
t is to encourage rule compliance, while keeping
the capability for innovation.

It is important to notice that the energy function
of the memory component is a linear combination
of the energy functions of the compositional ele-
ments (see Eq.(2)), each of which is convex and
is minimized at the location represented by the
element. This means that the energy surface of
the memory is rather ‘healthy’, in the sense that
low-energy locations mostly correspond to good
generations. For this reason, the regularization
provided by the memory is safe and helpful.

4.2 Memory for style transfer

The effect of the memory is easy to control. For
example, the complexity of the behavior can be
controlled by the memory size, the featured bias
can be controlled by memory selection, and the
strength of the impact can be controlled by the
weighting parameter β. This means that the mem-
ory mechanism is very flexible and can be used to
produce poems with desired properties.

In this work, we use these capabilities to gen-
erate poems with different styles. This has been
illustrated in Fig. 2, where the energy function of
the style memory shown in plot (d) is biased to-
wards a particular style, and once it is added to
energy function of the one-iteration model, the re-
sulting energy function shown in plot (g) obtains
lower values at locations corresponding to the lo-
cations of the memory, which encourages genera-
tion of poems with similar styles as those poems
in the memory.

5 Experiments

This section describes the experiments and results
carried out in this paper. Here, The baseline sys-
tem was a reproduction of the Attention-based sys-
tem presented in (Wang et al., 2016a). the model
in This system has been shown to be rather flexi-

1368

Figure 2: The energy surface for (a) one-iteration model (b) overfitted model (c) memory (d) style
memory (e) one-iteration model augmented with memory (f) overfitted model augmented with memory
(g) one-iteration model augmented with style memory.

ble and powerful: it can generate different genres
of Chinese poems, and when generating quatrains
it has been shown to be able to fool human ex-
perts in many cases (Wang et al., 2016a) and the
authors had did a thorough comparison with com-
petitive methods mentioned in the related work
of this paper. We obtained the database and the
source code (in theano), and reproduced their sys-
tem using Tensorflow from Google2. We didn’t
make comparisons with some previous methods
such as NNLM, SMT, RNNPG as they had been
fully compared in (Wang et al., 2016a) and all of
them were much worse than the attention-based
system. Another reason was that the experts were
not happy to evaluate poems with clearly bad qual-
ity. We also reproduced the model in (Wang et al.,
2016c) with the help of the first author. Howev-
er, since their implementation did not involve any
restrictions on rhythm and tone, the experts were
reluctant to recognize them as good poems. With
a larger dataset (e.g., 1 Million poems), it is as-
sumed that the rhythm and tone can be learned and
their system would be good in both fluency and
rule compliance. It should be also emphasized that
the memory approach proposed in this paper is a
general technique and is complementary to other
efforts such as the planning approach (Wang et al.,
2016c) and the recursive approach (Yan, 2016).

Based on the baseline system, we built the
memory-augmented model, and conducted two

2https://www.tensorflow.org/

experiments to demonstrate its power. The first is
an innovation experiment which employs memory
to promote or regularize the generation of innova-
tive poems, and the second is a style-transfer ex-
periment which employs memory to generate flex-
ible poems in different styles.

We invited 34 experts to participate in the ex-
periments, and all of them have rich experience
not only evaluating poems, but also in writing
them. Most of the experts are from prestigious in-
stitutes, including Peking university and the Chi-
nese Academy of Social Science (CASS). Follow-
ing the suggestions of the experts, we use five met-
rics to evaluate the generation, as listed below:

• Compliance: if regulations on tones and
rhymes are satisfied;

• Fluency: if the sentences read fluently and
convey reasonable meaning;

• Theme consistency: if the entire poem ad-
heres to a single theme;

• Aesthetic innovation: if the quatrain stimu-
lates any aesthetic feeling with elaborate in-
novation;

• Scenario consistency: if the scenario remains
consistent.

5.1 Datasets
The baseline system was built with two cus-
tomized datasets. The first dataset is a Chinese po-

1369

em corpus (CPC), which we used in this work to
train the embeddings of Chinese characters. Our
CPC dataset contains 284,899 traditional Chinese
poems in various genres, including Tang quatrain-
s, Song Iambics, Yuan Songs, and Ming and Qing
poems. This large quantity of data ensures reliable
learning for the semantic content of most Chinese
characters.

Our second dataset is a Chinese quatrain cor-
pus (CQC) that we have collected from the in-
ternet, which consists of 13, 299 5-char quatrain-
s and 65, 560 7-char quatrains. This corpus was
used to train the attention-based RNN baseline.
We filtered out the poems whose characters are
all low-frequency (less than 100 counts in the
database). After the filtering, the remaining corpus
contains 9,195 5-char quatrains and 49,162 7-char
quatrains. We used 9,000 5-char and 49,000
7-char quatrains to train the attention model, and
the rest for validation.

Another two datasets were created for use in
the memory-augmented system. Our first dataset,
MEM-I, contains 500 quatrains randomly select-
ed from our CQC corpus. This dataset was used
to produce the memory in the innovation experi-
ment; the second dataset, MEM-S, contains 300
quatrains with clear styles, including 100 pastoral,
100 battlefield and 100 romantic quatrains. It was
used to generate memory with different styles in
the style-transfer experiment. All the datasets will
be released online3.

5.2 Evaluation Process

We invited 34 experts to evaluate the quality of
the poem generation. In the innovation experi-
ment, the evaluation consisted of a comparison
between different systems and configurations in
terms of the five metrics. The innovation question-
s presented the expert with two poems, and asked
them to judge which of the poems was better in
terms of the five metrics; in the style-transfer ex-
periment, the evaluation was performed by iden-
tifying the style of a generated poem. The eval-
uation was conducted online, with each question-
naire containing 11 questions focusing on innova-
tion and 4 questions concerned with style-transfer.
Each of the style-transfer questions presented the
expert with a single poem and asked them to score
it between 1 to 5, with a larger score being bet-
ter, in terms of compliance, aesthetic innovation,

3http://vivi.cslt.org

scenario consistency, and fluency. They were also
asked to specify the style of the poem.

Using the poems generated by our systems, we
generated many different questions of both types,
and then created a number of online questionnaires
that randomly selected from these questions. This
meant that as discussed above, each questionnaire
had 11 randomly selected innovation questions,
and 4 randomly selected style transfer questions.
Each question was only used once, meaning that
it was not duplicated on multiple questionnaires,
and so each questionnaire was different.

Experts could choose to answer multiple ques-
tionnaires if they wished, as each one was differ-
ent. From the 34 experts, we collected 69 complet-
ed questionnaires, which equals to 759 innovation
questions and 276 style-transfer questions.

5.3 Innovation experiment

This experiment focuses on the contribution of
memory for innovative poem generation. We ex-
perimented with two configurations: one is with
a one-iteration model (C1) and the other is with
an overfitted model (C∞). The memory was gen-
erated from the 500 quatrains in MEM-I, and the
weighting factor was defined empirically as 16 for
C1 and 49 for C∞.

The topics of the generation were 160 key-
words randomly selected from Shixuhanyinge (Li-
u, 1735). Given a pair of poems generated by t-
wo different configurations using the same topic,
the experts were asked to choose which one they
preferred. The evaluation is therefore pair-wised,
and each pair of configurations contains at least
180 evaluations. The results are shown in Table 2,
where the preference ratio for each pair of config-
urations was tested in terms of the 5 metrics.

From the first row of Table 2, we observe that
the experts have a clear preference for the poem-
s generated by the C1 model, the one that can
produce fluent yet uninteresting poems. In par-
ticular, the ‘aesthetic innovation’ score for C∞ is
not better than C1, which was different from what
we expected. Informal offline discussions with
the poetry experts found that the experts identi-
fied some innovative expression in the C∞ con-
dition, but most of the them was regarded as being
nonsense in the opinion of many of the experts.
In comparison to sparking innovation, fluency and
being meaningful is more important not only for
non-expert readers, but also for professional poet-

1370

Preference Ratio
Compliance Fluency Theme Aesthetic Scenario

Consistency Innovation Consistency
C1 vs C∞ 0.59:0.41 0.68:0.32 0.70:0.30 0.68:0.32 0.69:0.31
C1 vs C1+Mem 0.41:0.59 0.36:0.64 0.37:0.63 0.33:0.67 0.43:0.57
C∞ vs C∞+Mem 0.40:0.60 0.26:0.74 0.32:0.68 0.30:0.70 0.36:0.64
C1 vs C∞+Mem 0.43:0.57 0.58:0.42 0.59:0.41 0.50:0.50 0.59:0.41

Table 2: Preference ratios for systems with or without overfitting and with or without memory augmen-
tation.

s. In other words, only meaningful innovation is
regarded as innovation, and irrational innovation
is simply treated as junk.

From the second and third rows of Table 2, it
can be seen that involving memory significantly
improves both C1 and C∞, particularly for C∞.
For C1, the most substantial improvement is ob-
served in terms of ‘Aesthetic innovation’, which
is consistent with our argument that memory can
help encourage innovation for this model. For
C∞, ‘Fluency’ seems to be the most improved
metric. This is also consistent with our argument
that involving memory constrains over-innovation
for over-fitted models.

The last row of Table 2 is an extra experiment
that investigates if C∞ is regularized well enough
after introducing the memory. It seems that with
the regularization, the overfitting problem is large-
ly solved, and the generation is nearly as fluent
and consistent as the C1 condition. Interestingly,
the score for aesthetic innovation is also signifi-
cantly improved. Since the regularization is not
supposed to boost innovation, this seems confus-
ing at first glance (in comparison to the result on
the same metric in the first row), but this is proba-
bly because the increased fluency and consistency
makes the innovation more appreciated, therefore
doubly confirming our argument that true innova-
tion should be reasonable and meaningful.

5.4 Style-transfer experiment

In the second experiment, the memory mechanism
is used to generate poems in different styles. We
chose three styles: pastoral, battlefield, and ro-
mantic. A style-specific memory, which we cal-
l style memory, was constructed for each style
by the corresponding quatrains in the MEM-S
dataset. The system with one-iteration model C1

was used as the baseline. Two sets of topics were
used in the experiment, one is general and the oth-
er is style-biased. The experiments then investi-
gate if the memory mechanism can produce a clear
style if the topic is general, and can transfer to a

different style if the topic is style-biased already.
The experts were asked to specify the style from
four options including the three defined above and
a ‘unclear style’ option. In addition, the experts
were asked to score the poems in terms of compli-
ance, fluency, aesthetic innovation, and scenario
consistency, which we can use to check if the style
transfer impacts the quality of the poem genera-
tion. Note that we did not ask for the theme con-
sistency to be scored in this experiment because
the topic words were not presented to the experts,
in order to prevent the topic affecting their judg-
ment regarding the style. The score ranges from 1
to 5, with a larger score being better.

Table 3 presents the results with the general top-
ics. The numbers show the probabilities that the
poems generated by a particular system were la-
beled as having various styles. Since the topics
are unbiased in types, the generation of the base-
line system is assumed to be with unclear styles.
For other systems, the style of the generation is
assumed to be the same as the style of their mem-
ories. The results in Table 3 clearly demonstrates
these assumptions. The tendency that romantic
poems are recognized as pastoral poems is a lit-
tle surprising. Further analysis shows that experts
tend to recognize romantic poems as pastoral po-
ems only if there are any related symbols such as
trees, mountain, river. These words are very gen-
eral in Chinese quatrains. The indicator words of
romantic poems such as skirt, rouge, and singing
are not as popular and their indication power is not
as strong, leading to less labeling of romantic po-
ems, as shown in the results.

Probability
Model Pastoral Battlefield Romantic Unclear
C1 (Baseline) 0.09 0.04 0.18 0.69
C1 + Pastoral Mem 0.94 0.00 0.06 0.00
C1 + Battlefield Mem 0.05 0.93 0.00 0.02
C1 + Romantic Mem 0.17 0.00 0.61 0.22

Table 3: Probability that poems generated by each
configuration with general topics are labeled as
various styles.

We also tested transferring from one style to

1371

another. This was achieved by generating poem-
s with some style-biased topics, and then using a
style memory to force the generation to change the
style. Our experiments show that in 73% cases the
style can be successfully transferred.

Finally, the scores of the poems generated with
and without the style memories are shown in Ta-
ble 4, where the poems generated with both gener-
al and style-biased topics are accounted for. It can
be seen that overall, the style transfer may degrade
fluency a little. This is understandable, as enforc-
ing a particular style has to break the optimal gen-
eration with the baseline, which is assumed to be
good at generating fluent poems. Nevertheless the
sacrifice is not significant.

Method Compliance Fluency Aesthetic Scenario
Innovation Consistence

C1 (baseline) 4.10 3.01 2.53 2.94
C1 + Pastoral Mem 4.07 3.00 3.07 3.17
C1 + Battlefield Mem 3.82 2.63 2.60 2.95
C1 + Romantic Mem 4.00 2.78 2.59 3.00
C1 + All Mem 3.95 2.80 2.74 3.05

Table 4: Averaged scores for systems with or with-
out style memory.

5.5 Examples
Table 5 to Table 7 shows example poems gener-
ated by the system C1, C1+Mem and C1+Style
Mem where the style in this case is set to be ro-
mantic. The three poems were generated with the
same, very general, topic (‘g(oneself)’). More
examples are given in the supporting material.

gld¿Ã%Ô§
Nothing in my heart,
�FÀºØ�î"

Spring wind is not a pity.
#�<mÛ¤3§

Don’t ask where it is,
·8®k½�D"

I’ve noticed that and tell others.

Table 5: Example poems generated by the C1

system.

6 Conclusions

In this paper, we proposed a memory mechanis-
m to support innovative Chinese poem genera-
tion by neural models augmented with a memo-
ry. Experimental results demonstrated that mem-
ory can boost innovation from two opposite di-

�ìgkÃ<�§
Nobody speaking in the mountain,

Ø´��\Y>"
Also no green cloud stepping into the river.

#rSºNá�§
Spring wind does not stir leaves,

smÉä÷ôE"
But flowers blooming in trees and flying to

boats.

Table 6: Example poems generated by the
C1+Mem system.

s�®òD�/§
Beautiful face addressed by rouge,

ðK��ÉTD"
Mandarin duck outside the curtain.

}EùfSÚe§
Green sleeves and red flowers in cold spring,

7�ñ�Vë�"
Willow leaves gone in fragrant mist.

Table 7: Example poems generated by the
C1+Style Mem system where the style is roman-
tic.

rections: either by encouraging creative genera-
tion for regularly-trained models, or by encourag-
ing rule-compliance for overfitted models. Both s-
trategies work well, although the former generated
poetry that was preferred by experts in our exper-
iments. Furthermore, we found that the memory
can be used to modify the style of the generat-
ed poems in a flexible way. The experts we col-
laborated with feel that the present generation is
comparable to today’s experienced amateur poets.
Future work involves investigating a better memo-
ry selection scheme. Other regularization method-
s (e.g., norm or drop out) are also interesting and
may alleviate the over-fitting problem.

Acknowledgments

This paper was supported by the National
Natural Science Foundation of China (NSFC)
under the project NO.61371136, NO.61633013,
NO.61472428.

1372

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by joint-
ly learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401 .

Alex Graves, Greg Wayne, Malcolm Reynolds,
Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John Agapiou, et al.
2016. Hybrid computing using a neural net-
work with dynamic external memory. Nature
538(7626):471–476.

Jing He, Ming Zhou, and Long Jiang. 2012. Gener-
ating Chinese classical poems with statistical ma-
chine translation models. In Twenty-Sixth AAAI
Conference on Artificial Intelligence.

Long Jiang and Ming Zhou. 2008. Generating Chi-
nese couplets using a statistical mt approach. In
Proceedings of the 22nd International Conference on
Computational Linguistics. Association for Compu-
tational Linguistics, volume 1, pages 377–384.

Wenwei Liu. 1735. ShiXueHanYing.

Yael Netzer, David Gabay, Yoav Goldberg, and
Michael Elhadad. 2009. Gaiku: Generating haiku
with word associations norms. In Proceedings
of the Workshop on Computational Approaches to
Linguistic Creativity. Association for Computation-
al Linguistics, pages 32–39.

H Oliveira. 2012. Poetryme: a versatile platform for
poetry generation. In Proceedings of the ECAI 2012
Workshop on Computational Creativity, Concept
Invention, and General Intelligence.

Yihe Tang. 2005. English Translation for Tang Poems
(Ying Yi Tang Shi San Bai Shou). Tianjin People
Publisher.

Naoko Tosa, Hideto Obara, and Michihiko Minoh.
2009. Hitch haiku: An interactive supporting sys-
tem for composing haiku poem. Entertainment
Computing-ICEC 2008 pages 209–216. Springer.

Li Wang. 2002. A Summary of Rhyming Constraints
of Chinese Poems (Shi Ci Ge Lv Gai Yao), vol-
ume 1. Beijin Press.

Qixin Wang, Tianyi Luo, and Dong Wang. 2016a.
Can machine generate traditional Chinese poetry? a
feigenbaum test. In BICS 2016.

Qixin Wang, Tianyi Luo, Dong Wang, and Chao Xing.
2016b. Chinese song iambics generation with neural
attention-based model. In IJCAI 16.

Zhe Wang, Wei He, Hua Wu, Haiyang Wu, Wei Li,
Haifeng Wang, and Enhong Chen. 2016c. Chinese
poetry generation with planning based neural net-
work. In COLING 2016.

Jason Weston, Sumit Chopra, and Antoine Bor-
des. 2014. Memory networks. arXiv preprint
arXiv:1410.3916 .

Xiaofeng Wu, Naoko Tosa, and Ryohei Nakatsu. 2009.
New hitch haiku: An interactive renku poem compo-
sition supporting tool applied for sightseeing naviga-
tion system. Entertainment Computing-ICEC 2009
pages 191–196. Springer.

Rui Yan. 2016. i, Poet: Automatic poetry composition
through recurrent neural networks with iterative pol-
ishing schema. In IJCAI2016.

Rui Yan, Han Jiang, Mirella Lapata, Shou-De Lin,
Xueqiang Lv, and Xiaoming Li. 2013. i, Po-
et: automatic Chinese poetry composition through
a generative summarization framework under con-
strained optimization. In Proceedings of the
Twenty-Third international joint conference on
Artificial Intelligence. AAAI Press, pages 2197–
2203.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP).
pages 670–680.

Cheng-Le Zhou, Wei You, and Xiaojun Ding. 2010.
Genetic algorithm and its implementation of auto-
matic generation of Chinese Songci. Journal of
Software 21(3):427–437.

1373

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1374–1384
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1126

Learning to Generate Market Comments from Stock Prices
Soichiro Murakami†,∗ Akihiko Watanabe †,∗ Akira Miyazawa ‡,¶,∗ Keiichi Goshima †,∗

Toshihiko Yanase § Hiroya Takamura †,∗ Yusuke Miyao ‡,¶,∗
† Tokyo Institute of Technology ‡ The Graduate University for Advanced Studies

§ Hitachi, Ltd. ¶ National Institute of Informatics
∗ National Institute of Advanced Industrial Science and Technology

{murakami,watanabe}@lr.pi.titech.ac.jp,
goshima.k.aa@trn.dis.titech.ac.jp, takamura@pi.titech.ac.jp

toshihiko.yanase.gm@hitachi.com, {miyazawa-a,yusuke}@nii.ac.jp

Abstract

This paper presents a novel encoder-
decoder model for automatically generat-
ing market comments from stock prices.
The model first encodes both short- and
long-term series of stock prices so that it
can mention short- and long-term changes
in stock prices. In the decoding phase, our
model can also generate a numerical value
by selecting an appropriate arithmetic op-
eration such as subtraction or rounding,
and applying it to the input stock prices.
Empirical experiments show that our best
model generates market comments at the
fluency and the informativeness approach-
ing human-generated reference texts.

1 Introduction

Various industries such as finance, pharmaceuti-
cals, and telecommunications have been increas-
ingly providing opportunities to treat various types
of large-scale numerical time-series data. Such
data are hard for non-specialists to interpret in de-
tail and time-consuming even for specialists to con-
strue. As a result, there has been a growing interest
in automatically generating concise descriptions of
such data, i.e., data summarization. This interest in
data summarization is encouraged by the recent de-
velopment of neural network-based text generation
methods. Given an appropriate architecture, a neu-
ral network can generate a sentence that is mostly
grammatical and semantically reasonable.

In this study, we focus on the task of gen-
erating market comments from a time-series of
stock prices. We adopt an encoder-decoder model
(Sutskever et al., 2014) and exploit its capability
to learn to capture the behavior of the input and
generate a description of it. Although encoder-
decodermodels can learn to do this, they need to be

(1)
(2) (3)

(4)

(5)
(6)

Previous Day

(Afternoon Session)

Morning Session Afternoon Session

19200

19300

19400

19500

19600

14:00 15:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00

Time

S
to

c
k
 p

ri
c
e
 [
ye

n
]

Time Comment

(1) 09:00 Nikkei opens with a continual fall.
(2) 09:29 Nikkei turns to rise.
(3) 11:30 Nikkei continues to fall. The clos-

ing price of the morning session de-
creases by 5 yen to 19,386 yen.

(4) 12:30 Nikkei rises at the beginning of the
afternoon session.

(5) 13:54 Nikkei gains more than 100 yen.
(6) 15:00 Nikkei rebounds and closes up 102

yen to 19,494 yen.

Figure 1: Nikkei 225 and market comments.

provided with an appropriate network-architecture
and necessary information. We use Figure 1 to
illustrate the characteristic problems of comment
generation for time-series of stock prices. The fig-
ure shows the Nikkei Stock Average (Nikkei 225,
or simply Nikkei), which is a stock market index
calculated from 225 selected issues, on some con-
secutive trading days accompanied by the market
comments made at some specific time points in
the span. The first problem is that market com-
ments do not merely describe the increase and de-
crease of the price. They also often describe how
the price changes compared with the previous pe-
riod, such as “continues to fall” in (3) of Figure 1,
“turns to rise” in (2), and “rebound” in (6). Market
comments sometimes describe the change in price
compared with the prices in the previous week.
The second problem is that market comments also

1374

https://doi.org/10.18653/v1/P17-1126

contain expressions that depend on their delivery
time: e.g., “opens with” in (1), “closing price of
the morning session” in (3), and “beginning of the
afternoon session” in (4). The third problem is that
market comments typically contain numerical val-
ues, which often cannot be copied from the input
prices. Such numerical values probably cannot be
generated as other words are generated by the stan-
dard decoder. This difficulty can be easily under-
stood as analogous with the difficulty of generat-
ing named entities by encoder-decoder models. To
derive such values, the model needs arithmetic op-
erations such as subtraction as in examples (3) and
(6)mentioning the difference in price and rounding
as in example (5).

To address these problems, we present a novel
encoder-decoder model to automatically generate
market comments from stock prices. To address
the first problem of capturing various types of
change in different time scales, the model first en-
codes data consisting of both short- and long-term
time-series, where a multi-layer perceptron, a re-
current neural network, or a convolutional network
is adopted as a basic encoder. In the decoding
phase, we feed our model with the delivery time
of the market comment to generate the expressions
depending on time of day to address the second
problem. To address the third problem regarding
with numerical values mentioned in the generated
text, we allow our model to choose an arithmetic
operation such as subtraction or rounding instead
of generating a word.

The proposed methods are evaluated on the task
of generating Japanese market comments on the
Nikkei Stock Average. Automatic evaluation with
BLEU score (Papineni et al., 2002) and F-score of
time-dependent expressions reveals that our model
outperforms a baseline encoder-decoder model
significantly. Furthermore, human assessment and
error analysis prove that our best model generates
characteristic expressions discussed above almost
perfectly, approaching the fluency and the informa-
tiveness of human-generated market comments.

2 Related Work

The task of generating descriptions from time-
series or structured data has been tackled in vari-
ous domains such as weather forecasts (Belz, 2007;
Angeli et al., 2010), healthcare (Portet et al., 2009;
Banaee et al., 2013b), and sports (Liang et al.,
2009). Traditionally, many studies used hand-

crafted rules (Goldberg et al., 1994; Dale et al.,
2003; Reiter et al., 2005). On the other hand, in-
terest has recently been growing in automatically
learning a correspondence relationship from data
to text and generating a description of this relation-
ship since large-scale data in diversified formats
have become easy to acquire. In fact, a data-driven
approach has been extensively studied nowadays
for various tasks such as image caption generation
(Vinyals et al., 2015) and weather forecast genera-
tion (Mei et al., 2016b).

The task, called data-to-text or concept-to-text,
is generally divided into two subtasks: content se-
lection and surface realization. Whereas previous
studies tackled the subtasks separately (Barzilay
and Lapata, 2005; Wong and Mooney, 2007; Lu
et al., 2009), recent work has focused on solving
them jointly using a single framework (Chen and
Mooney, 2008; Kim and Mooney, 2010; Angeli
et al., 2010; Konstas and Lapata, 2012, 2013).

More recently, there has been some work on an
encoder-decoder model (Sutskever et al., 2014) for
generating a description from time-series or struc-
tured data to solve the subtasks jointly in a sin-
gle framework, and this model has been proven
to be useful (Mei et al., 2016b; Lebret et al.,
2016). However, the task of generating a descrip-
tion from numerical time-series data presents diffi-
culties such as the second and third problems men-
tioned in Section 1. For the second problem, the
model needs to be fed with information on deliv-
ery time. Also, the model needs arithmetic op-
erations such as subtraction for the third problem
because even if we simply apply a copy mecha-
nism (Gu et al., 2016; Gulcehre et al., 2016) to the
model, it cannot derive a calculated value such as
(3), (5), or (6) in Figure 1 from input. Thus, in
this work, we tackle these problems and develop a
model on the basis of the encoder-decoder model
that can mention a specific numerical value by re-
ferring to the input data or producing a processed
value with mathematical calculation and mention
time-dependent expressions by incorporating the
information on delivery time into its decoder.

There has also been some work on generating
market comments. Kukich (1983) developed a sys-
tem consisting of rule-based components for gen-
erating stock reports from a database of daily stock
quotes. Although she used several components
individually and had to define a number of rules
for the generation, our encoder-decoder model can

1375

perform it with fewer and simpler rules for the cal-
culation. Aoki and Kobayashi (2016) developed a
method on the basis of a weighted bi-gram lan-
guage model for automatically describing trends
of time-series data such as the Nikkei Stock Av-
erage. However, they did not attempt to refer to
specific numerical values such as closing prices
and amounts of rises in price although such de-
scriptions are often used in market comments as
shown in Figure 1 (3), (5), and (6). In contrast, we
present a novel approach to generate natural lan-
guage descriptions of time-series data that can not
only able to describe trends of the data but also
mention specific numerical values by referring to
the time-series data.

3 Generating Market Comments

To generate market comments on stock prices, we
introduce an encoder-decoder model. Encoder-
decoder models have been widely used and proven
useful in various tasks of natural language genera-
tion such as machine translation (Cho et al., 2014)
and text summarization (Rush et al., 2015). Our
task is similar to these tasks in that the system takes
sequential data and generates text. Therefore, it is
natural to use an encoder-decoder model in mod-
eling stock prices.

Figure 2 illustrates our model. In describing
time-series data, the model is expected to cap-
ture various types of change and important val-
ues in the given sequence, such as absolute or rel-
ative changes and maximum or minimum value,
in different time-scales. Moreover, it is neces-
sary to generate time-dependent comments and nu-
merical values that require arithmetic operations
for derivation, such as “The closing price of the
morning session decreases by 5 yen...”. To achieve
these, we present three strategies that alter the stan-
dard encoder-decoder model.

First (Section 3.1), we use several encoding
methods for time-series data, as in (1) of Figure 2,
to capture the changes and important values. Sec-
ond (Section 3.2), we incorporate delivery-time in-
formation into the decoder, as in (2) of Figure 2, to
generate time-dependent comments. For the de-
coder, we use a recurrent neural network language
model (RNNLM) (Mikolov et al., 2010), which is
widely used in language generation tasks. Finally
(Section 3.3), we extend the decoder to estimate
arithmetic operations, as in (3) of Figure 2, to gen-
erate numerical values in market comments.

S
to
ck

pr
ic
es

of
on

e
tr
ad

in
g
da

y
C
lo
si
ng

pr
ic
es

of
th
e

pr
ec

ed
in
g
tr
ad

in
g
da

ys

12167.29

12278.83

...

12451.66

12461.36

xshort

12116.57

12120.94

...

12145.70

12150.49

xlong

pr
ep

ro
ce

ss
in
g

pr
ep

ro
ce

ss
in
g

lshort hshort

(1) Encoding Numerical Time-Series Data

llong hlong

encoder

encoder

concatenation

(2) Incorporating Time Embedding

<s> T T T T T T T T

Nik
kei

gai
ns

mo
re

tha
n
<p
ri
ce
1>

yen . </
s>

(3) Estimation of Arithmetic Operations

Figure 2: Overview of our model. Here lshort and
llong represent two vectors of preprocessed values,
and hshort and hlong indicate hidden states of the
encoder. T represents a time embedding vector.

3.1 Encoding Numerical Time-Series Data

We prepare short- and long-term data, using the
five-minute chart of Nikkei 225. A vector for
short-term data consists of the prices of one trad-
ing day and has N elements. We denote it as
xshort =

(
xshort, i

) N−1
i=0 . On the other hand, a vec-

tor for long-term data consists of the closing prices
of the M preceding trading days. It is denoted as
xlong =

(
xlong, i

)M−1
i=0 .

Data are commonly preprocessed to remove
noise and enhance generalizability of a model
(Zhang and Qi, 2005; Banaee et al., 2013a). We
use two preprocessing methods: standardization
and moving reference. Standardization substitutes
each element xi of input x by

xstd
i =

xi − µ
σ
, (1)

where µ and σ are the mean and standard devia-
tion of the values in the training data, respectively.
Standardized values are less affected by scale. The
second method, moving reference (Freitas et al.,
2009), substitutes each element xi of input x by

xmove
i = xi − ri, (2)

1376

where ri is the closing price of the previous trad-
ing day of x. This is introduced to capture price
fluctuations from the previous day.

By applying one of the preprocessing methods
to xshort and xlong, we obtain two vectors of prepro-
cessed values lshort and llong. Given these, each en-
coder emits the corresponding hidden states hshort
and hlong. After obtaining the hidden states, we
concatenate the two vectors of the preprocessed
values and the outputs of the encoders as a multi-
level representation of the input time-series data.
The multi-level representation is an approach de-
veloped by Mei et al. (2016a) that enable the de-
coder to take into account both the high-level rep-
resentation, e.g., hshort, hlong, and the low-level
representation, e.g., lshort, llong, at the same time.
They have shown that it improves performance in
terms of selecting salient objects in input data. We
thus set the initial hidden state s0 of the decoder as

s0 = lshort ⊕ llong ⊕ hshort ⊕ hlong, (3)

where ⊕ is the concatenation operator.
When we use both preprocessing methods, we

have four preprocessed input vectors: lmove
short , l

std
short,

lmove
long , and lstdlong. In this case, we introduce four en-
coders, and set the initial hidden state s0 of the de-
coder as

s0 = lmove
short ⊕ lstdshort ⊕ lmove

long ⊕ lstdlong

⊕ hmove
short ⊕ hstd

short ⊕ hmove
long ⊕ hstd

long. (4)

Since several encoding methods can be used
for the time-series data, we use any one of the
three conventional neural networks: Multi-Layer
Perceptron (MLP), Convolutional Neural Network
(CNN), or Recurrent Neural Network (RNN) with
Long Short-Term Memory cells (Hochreiter and
Schmidhuber, 1997). In the experiments, we em-
pirically evaluate and compare the encoding meth-
ods.

3.2 Incorporating Time Embedding
Even if identical sequences of values are observed,
comments usually vary in accordance with price
history or the time they are observed. For instance,
when the market opens, comments usually men-
tion how much the stock price has increased or de-
creased compared with the closing price of the pre-
vious trading day, as in (1) and (3) in Figure 1.

Our model creates vectors called time embed-
ding vectors T on the basis of the time when the

comment is delivered (e.g., 9:00 a.m. or 3:00
p.m.). Then a time embedding vector is added to
each hidden state s j in decoding so that words are
generated depending on time. This mechanism is
inspired by speaker embedding introduced by Li
et al. (2016). They use an encoder-decoder model
for a conversational agent that inherits the charac-
teristics of a speaker, such as his/her manner of
speaking. They encode speaker-specific informa-
tion (e.g., dialect, age, and gender) into speaker
embedding vectors and used them in decoding.

3.3 Estimation of Arithmetic Operations
Text generation systems based on language models
such as RNNLM often generate erroneous words
for named entities; that is, they often mention a
similar but incorrect entity, e.g., Nissan for Toyota.
To overcome this problem, Gulcehre et al. (2016)
developed a text generation method called copy
mechanism. The method copies rare words miss-
ing from the vocabulary from a given sequence of
words using an attention mechanism, and emits the
copied words.

Market comments often mention numerical val-
ues that appear in the input data, but they also men-
tion values obtained through arithmetic operations,
such as differences in prices as in (3) and (6) in Fig-
ure 1, or rounded values as in (5). Thus, another
problem arises: what type of operation is suitable
for text to be generated? In this work, we solve this
problem by extending the idea of copy mechanism.

To enable our model to generate text with values
calculated from input values, we add generaliza-
tion tags to the vocabulary used in the model. Each
generalization tag represents a type of arithmetic
operation. When a generalization tag is emitted,
the model performs the operations on the desig-
nated values in accordance with the tag, replaces
the tag with the calculated value, and finally out-
puts text containing numerical values. For pre-
processing, we replace each numerical value ap-
pearing in the market comments in the training
data with generalization tags such as <price1>.
The tag for a numerical value depends on what the
value stands for in the text. Table 1 displays all the
tags and the corresponding types of calculation. To
illustrate, suppose a market comment says

(a) Nikkei rebounds. The closing price of the
morning session is 16,610 yen, which is
227 yen higher.

Since this comment omits the phrase “than the

1377

Tag Arithmetic operation

<price1> Return ∆
<price2> Round down ∆ to the nearest 10
<price3> Round down ∆ to the nearest 100
<price4> Round up ∆ to the nearest 10
<price5> Round up ∆ to the nearest 100
<price6> Return z as it is
<price7> Round down z to the nearest 100
<price8> Round down z to the nearest 1,000
<price9> Round down z to the nearest 10,000

<price10> Round up z to the nearest 100
<price11> Round up z to the nearest 1,000
<price12> Round up z to the nearest 10,000

Table 1: Generalization tags and corresponding
arithmetic operations. Here z and ∆ stand for latest
price and difference between z and closing price of
previous trading day.

closing price of the previous day”, 227 in this ex-
ample indicates the difference between the clos-
ing price of the previous trading day xlong, M−1
and the latest price xshort, N−1 denoted by z in Ta-
ble 1. Therefore, we replace 227 with the tag
<price1>. Likewise, we replace 16,610 with
<price6> because it represents the latest price
z. To find the optimal tag for each value, we try all
the types of operations listed in Table 1 using the
values appearing in the text, i.e., 227 and 16,610 in
this case. Then, we select the tag that has the op-
eration that yields the value closest to the original
one.

In prediction, the model first generates a ten-
tative comment, which includes tags as well as
words. Suppose that the input vectors are xshort
and xlong, with xshort, N−1 = 14508 and xlong, M−1 =
14612, and that the model generates the comment
below:

(b) Nikkei opens turning down. The loss ex-
ceeds <price2> yen, and it falls to the
<price7> yen level.

Since the tag <price2> represents “the differ-
ence between xshort, N−1 and xlong, M−1 rounded
down to the nearest 10”, we replace the tag with
100. Similarly, we replace <price7>, which is
“the last price xshort, N−1 rounded down to the near-
est 100”, with 14,500. Finally, we have a market
comment containing the numbers as below:

(c) Nikkei opens turning down. The loss ex-
ceeds 100 yen, and it falls to the 14,500
yen level.

4 Experiments

4.1 Experimental Settings

We used the five-minute chart of Nikkei 225 from
March 2013 to October 2016 as numerical time-
series data, which were collected from IBI-Square
Stocks1, and 7,351 descriptions as market com-
ments, which are written in Japanese and provided
by Nikkei QUICK News. We divided the dataset
into three parts: 5,880 for training, 730 for val-
idation, and 741 for testing. For a human eval-
uation, we randomly selected 100 comments and
their time-series data included in the test set.

We set N = 62, which is the number of time
steps for stock prices for one trading day, and M =
7, which is the number of the time steps for clos-
ing prices of the preceding trading days. We used
Adam (Kingma and Ba, 2015) for optimization
with a learning rate of 0.001 and a mini-batch size
of 100. The dimensions of word embeddings, time
embeddings, and hidden states for both the encoder
and decoder are set to 128, 64, and 256, respec-
tively. For CNN, we used a single convolutional
layer and set the filter size to 3.

In the experiments, we conducted three types of
evaluation: two for automatic evaluation, and one
for human evaluation. For one automatic evalua-
tion, we used BLEU (Papineni et al., 2002) to mea-
sure the matching degree between the market com-
ments written by humans as references and out-
put comments generated by our model. We ap-
plied paired bootstrap resampling (Koehn, 2004)
for a significance test. For the other automatic
evaluation metric, we calculate F-measures for
time-dependent expressions, using market com-
ments written by humans as references, to investi-
gate whether our model can correctly output time-
dependent expressions such as “open with” and de-
scribe how the price changes compared with the
previous period referring to the series of preced-
ing prices such as “continual fall”. Specifically,
we calculate F-measures for 13 expressions shown
in Figure 3.

For the human evaluation, we recruited a spe-
cialist in financial engineering as a judge to eval-
uate the quality of generated market comments.
To evaluate the difference in the quality of gener-
ated comments between our models and human,
we showed both system-generated and human-
generated market comments together with their

1http://www.ibi-square.jp/index.htm

1378

0.00

0.25

0.50

0.75

1.00

continual
rise

(zoku-shin)

continual
fall

(zoku-raku)

rebound
(han-patsu)

turn down
(han-raku)

X yen higher
(X en daka

no)

X yen lower
(X en yasu

no)

turn to rise
(age ni tenjiru)

turn to fall
(sage ni
tenjiru)

gain
(age-haba)

loss
(sage-haba)

open
(hajimaru)

closing price
of the morning

session (zen-bike)

closing price
(oo-bike)

F
-m

e
a
s
u
re

Model baseline mlp-enc cnn-enc rnn-enc -short -long -std -move -multi -num -time

Figure 3: F-measure values for the expressions on the test set. Each expression is accompanied by its
original Japanese expression transliterated into English alphabet in parenthesis. Out of the 13 expressions,
10 on the left are expressions that describe how the price changes compared with the previous period, and
3 on the right are time-dependent expressions.

Model baseline mlp-enc cnn-enc rnn-enc -short -long -std -move -multi -num -time

Encoder MLP MLP CNN RNN MLP MLP MLP MLP MLP MLP MLP

Input data xshort X X X X − X X X X X X
xlong − X X X X − X X X X X

Preprocessing Standardization X X X X X X − X X X X
Moving reference X X X X X X X − X X X

Multi-level − X X X X X X X − X X
Arithmetic operation − X X X X X X X X − X
Time-embedding − X X X X X X X X X −

Table 2: Overview of the models we used in the experiments.

time-series data consisting of xshort and xlong, with-
out letting the judge know which comment is gen-
erated by which method. We asked the judge to
give each market comment two scores: one for in-
formativeness and one for fluency. Both scores
have two levels, 0 or 1, where 1 indicates high in-
formativeness or fluency. For informativeness, the
judge used both generated comments and their in-
put stock prices to rate the comments. Specifically,
if the judge deem that a generated comment de-
scribes an important price movement or an outline
of the movement properly, such comments are con-
sidered to be informative. For fluency, the judge
read only the generated comments and rate them
in terms of readability, regardless of their content
of the comment.

In addition, since some of the market comments
written by humans sometimes include external in-
formation such as “Nikkei opens with a continual
fall as yen pressures exporters”, we also asked the
judge to ignore the correctness of external informa-
tion mentioned in comments, for the sake of fair-
ness in comparison, because external information
cannot be retrieved from the time-series data.

To assess the effectiveness of the techniques
we introduced, we conducted experiments with 11
models. Table 2 shows an overview of the models

Model baseline mlp-enc cnn-enc rnn-enc -short -long
BLEU 0.243 0.464 0.449 0.454 0.380 0.433

Model -std -move -multi -num -time
BLEU 0.455 0.393 0.435 0.318 0.395

Table 3: BLEU scores on the test set. Differences
between the best model, mlp-enc, and other models
are statistically significant at p < 0.05.

we compared. We compared three types of mod-
els: a baseline, full models (e.g., mlp-enc), and ab-
latedmodels (e.g., -short). For example, -short is a
model that does not use the short-term time series.

4.2 Results

Table 3 shows the BLEU scores on the test set.
Figure 3 presents the F-measure of the models for
each phrase. We also present output examples with
human-generated market comments (Human) for
reference in Figure 4.

In the results for the automatic evaluation in
BLEU, the model using both MLP as encoders and
all the techniques we developed, mlp-enc, outper-
formed baseline and the other models. The BLEU
scores and F-measure values revealed differences
among themodels usingMLP, CNN, or RNN (mlp-

1379

15000

15500

16000

16500

17000

0 20 40 60
Time step [i]

S
to

c
k
 p

ri
c
e
 [
ye

n
]

Short-term data

15000

15500

16000

16500

17000

0 2 4 6
Time step [i]

Long-term data

(a) Price movements of Nikkei on Feb. 15, 2016.

15000

15500

16000

16500

17000

0 20 40 60
Time step [i]

S
to

c
k
 p

ri
c
e
 [
ye

n
]

Short-term data

15000

15500

16000

16500

17000

0 2 4 6
Time step [i]

Long-term data

(b) Price movements of Nikkei on July 21, 2016.

Model F I Generated comment

baseline 1 0
Nikkei heikin, han-patsu zen-bike wa 81 en daka no <unk> en
Nikkei average, rebound-pop first_half-closing top 81 yen higher gen <unk> yen
Nikkei rebounds. The closing price of the morning session is <unk> yen, which is 81 yen higher.

mlp-enc 1 1
Nikkei heikin, oo-haba han-patsu oo-bike wa 1,069 en daka no 16,022 en
Nikkei average, big-range rebound-pop big-closing top 1,069 yen higher gen 16,022 yen
Nikkei significantly rebounds. The closing price is 16,022 yen, which is 1,069 yen higher.

human 1 1
Nikkei heikin, oo-haba han-patsu oo-bike wa 1,069 en daka no 16,022 en
Nikkei average, big-range rebound-pop big-closing top 1,069 yen higher gen 16,022 yen
Nikkei significantly rebounds. The closing price is 16,022 yen, which is 1,069 yen higher.

(c) Comments on price at 3:00 p.m. on February 15, 2016.

Model F I Generated comment

baseline 1 0
Nikkei heikin, zoku-shin de hajimaru age-haba 100 en koeru
Nikkei average, continual-advance instr open-imperf raise-range 100 yen exceed-imperf
Nikkei opens with a continual rise. The gain exceeds 100 yen.

mlp-enc 1 1
Nikkei heikin, age-haba 200 en koeru
Nikkei average, raise-range 200 yen exceed-imperf
Nikkei gains more than 200 yen.

human 1 1
Nikkei heikin, age-haba 200 en kosu
Nikkei average, raise-range 200 yen exceed-imperf
Nikkei gains more than 200 yen.

(d) Comments on price at 9:00 a.m. on July 21, 2016.

Figure 4: Examples of short- and long-term movements of Nikkei, and comments models made on them,
where <unk> represents an unknownword. Columns F and I show scores on fluency and informativeness
in human evaluation. Each example is accompanied by original Japanese comment transliterated into
English alphabet, its literal translation, and the corresponding English sentence. Abbreviations used here
are as follows. top: topic case, gen: genitive case, instr: instrumental case, and imperf: imperfect form
of a verb.

enc, cnn-enc, rnn-enc). In the comparison between
the models that took two types of the time-series
data xshort, xlong as input (e.g., mlp-enc or rnn-enc)
and the models that only used one of them (-short,
-long), the models using both types of data such as
mlp-enc and rnn-enc gained higher BLEU scores
than -short and -long. Also, the models that en-
coded the two types of time-series data to capture
their short- and long-term changes correctly output
more expressions that described the changes such
as “turn to rise”, “continue to fall”, and “rebound”
than -short and -long as shown in Figure 3.

According to the comparison between prepro-

cessing methods, mlp-enc, which used both stan-
dardization and moving reference as preprocessing
methods, obtained a higher BLEU score than the
models that used neither (-std, -move). In terms
of the F-measure values, mlp-enc output phrases
mentioning changes more appropriately and there-
fore achieved the higher values than the other two
models as in “turn to rise” or “turn to fall” in Fig-
ure 3. Furthermore, we found that the BLEU score
of -multi, which did not use the multi-level repre-
sentation of the data, was inferior. In other words,
incorporating the multi-level representation along
with an output of an encoder into a decoder seems

1380

0.1

0.2

0.3

0.4

0.5

0 2000 4000 6000

Size of training data

B
L

E
U

Model

baseline

mlp-enc

cnn-enc

rnn-enc

-short

-long

-std

-move

-multi

-num

-time

Figure 5: BLEU scores of market comments gen-
erated by models for each size of training data on
the validation set.

to contribute to improving the automatic evalua-
tion and producing a better representation of the
input data.

baseline and -num output numerical values as
“words” from the vocabulary for RNNLM because
these models do not use any arithmetic opera-
tion. Therefore, there were many cases including
<unk> that should be output as a numerical value
as shown in Figure 4 (a). We found that -num had a
lower BLEU score than themodels such asmlp-enc
and -std that used arithmetic operations. Further-
more, we observed that the models with arithmetic
operations correctly generated stock prices in most
cases.

By comparing -time, which did not incorporate
time-embeddings into a decoder, and other mod-
els such as mlp-enc with respect to the F-measure
of expressions depending on delivery time (e.g.,
“open with” or “closing session”), we found that
themodels that took time information into account,
such as mlp-enc, generated those phrases more ac-
curately than -time.

Moreover, we analyzed the effect of different
sizes of training data. Figure 5 shows BLEU scores
of market comments generated by our models for
each size of training data on the validation set. Ac-
cording to the results, we found that the BLEU
scores for the models saturated when we used 3000
training data. In addition, there was not much dif-
ference in convergence speed among the models.

The human evaluation results in Table 4 in-
dicate that market comments generated by our
model (mlp-enc) achieved a quality comparable
even to that of market comments written by hu-
mans. Moreover, we found that mlp-enc signifi-

Model Informativeness Fluency External

Human 95 95 25
mlp-enc 85 93 1
baseline 28 100 6

Table 4: Results of human evaluation. Each score
indicates number of market comments judged to
be level-1. External shows number of market com-
ments including external information.

cantly outperformed baseline in terms of informa-
tiveness but was outperformed by baseline in terms
of fluency. The reason was that mlp-enc occasion-
ally generated a market comment such as “Nikkei
gains more than 0 yen” because of an error in the
prediction of the operation, and such comments
were not considered not to be fluent or informative
by the judge, although most of comments gener-
ated by mlp-enc were as fluent as those of baseline.
Note that baseline does not generate expressions
like “0 yen” because they are not normally used in
market comments and so not included in the vo-
cabulary. Therefore, the judge considered all the
comments generated by baseline to be fluent.

For another possibility to enhance our model,
we have to consider that the model should men-
tion a difference or gain for a duration from when
to when. For example, our current model some-
times generated a market comment such as “Nikkei
gains more than 200 yen”, although Nikkei actu-
ally gained more than 300 yen. Such a comment is
not incorrect but is imprecise. Therefore, we con-
sider that a mechanism is needed to select the pe-
riod to be mentioned when the model generates a
comment to this problem and increase the general-
izability of our model for generating a description
from various time-series data.

5 Conclusion and Future Work

In this study, we presented a novel encoder-decoder
model to automatically generate market comments
from numerical time-series data of stock prices,
using the Nikkei Stock Average as an example.
Descriptions of numerical time-series data writ-
ten by humans such as market comments have sev-
eral writing style characteristics. For example, (1)
content to be mentioned in the market comments
varies depending on short- or long-term changes
of the time-series data, (2) expressions depending
on delivery time at which text is written are used,
and (3) numerical values obtained through arith-

1381

metic operations applied to the input data are often
described. We developed approaches for generat-
ing comments that have these characteristics and
showed the effectiveness of the proposed model.

In future work, we plan to apply our model to
descriptions of time-series data in various domains
such as weather forecasts and sports, which share
the above writing-style characteristics. We also
plan to use multiple time-series as input such as
multiple brands of stock.

Acknowledgements

This paper is based on results obtained from a
project commissioned by the New Energy and
Industrial Technology Development Organization
(NEDO).

References
Gabor Angeli, Percy Liang, and Dan Klein. 2010. A

simple domain-independent probabilistic approach
to generation. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, pages 502–512. http://aclweb.org/anthology/
D10-1049.

Kasumi Aoki and Ichiro Kobayashi. 2016. Linguis-
tic summarization using a weighted n-gram language
model based on the similarity of time-series data. In
Proceedings of IEEE International Conference on
Fuzzy Systems. pages 595–601. https://doi.org/10.
1109/FUZZ-IEEE.2016.7737741.

Hadi Banaee, Mobyen Uddin Ahmed, and Amy Loutfi.
2013a. A framework for automatic text generation of
trends in physiological time series data. In Process-
ing of IEEE International Conference on Systems,
Man, and Cybernetics. pages 3876–3881. https:
//doi.org/10.1109/SMC.2013.661.

Hadi Banaee, Mobyen Uddin Ahmed, and Amy Loutfi.
2013b. Towards NLG for physiological data moni-
toring with body area networks. In Proceedings of
the 14th European Workshop on Natural Language
Generation. Association for Computational Linguis-
tics, pages 193–197. http://aclweb.org/anthology/
W13-2127.

Regina Barzilay and Mirella Lapata. 2005. Collec-
tive content selection for concept-to-text generation.
In Proceedings of the conference on Human Lan-
guage Technology and Empirical Methods in Nat-
ural Language Processing. pages 331–338. http:
//aclweb.org/anthology/H05-1042.

Anja Belz. 2007. Probabilistic generation of weather
forecast texts. In Proceedings of the 2007 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human

Language Technologies. Association for Computa-
tional Linguistics, pages 164–171. http://aclweb.
org/anthology/N07-1021.

David L. Chen and Raymond J. Mooney. 2008. Learn-
ing to sportscast: A test of grounded language acqui-
sition. In Proceedings of the 25th international con-
ference on Machine learning. pages 128–135. https:
//doi.org/10.1145/1390156.1390173.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, pages 1724–1734. https://doi.org/
10.3115/v1/D14-1179.

Robert Dale, Sabine Geldof, and Jean-Philippe Prost.
2003. CORAL: Using natural language genera-
tion for navigational assistance. In Proceedings
of the 26th Australasian Computer Science Confer-
ence. pages 35–44. http://dl.acm.org/citation.cfm?
id=783106.783111.

Fabio D. Freitas, Alberto F. De Souza, and Ailson R.
de Almeida. 2009. Prediction-based portfolio opti-
mization model using neural networks. Neurocom-
puting 72(10):2155–2170. https://doi.org/10.1016/j.
neucom.2008.08.019.

Eli Goldberg, Norbert Driedger, and Richard I. Kit-
tredge. 1994. Using natural-language processing to
produce weather forecasts. IEEE Expert 9(2):45–53.
https://doi.org/10.1109/64.294135.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K.
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In Proceedings of
the 54th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, pages 1631–1640. https://doi.
org/10.18653/v1/P16-1154.

Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati,
Bowen Zhou, and Yoshua Bengio. 2016. Pointing
the unknown words. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, pages 140–149. https://doi.org/10.18653/v1/
P16-1014.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computa-
tion 9(8):1735–1780. https://doi.org/10.1162/neco.
1997.9.8.1735.

Joohyun Kim and Raymond J. Mooney. 2010. Gen-
erative alignment and semantic parsing for learn-
ing from ambiguous supervision. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics. pages 543–551. http://aclweb.
org/anthology/C10-2062.

1382

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceed-
ings of the 3rd International Conference on Learning
Representations. https://arxiv.org/abs/1412.6980.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, pages 388–395. http://aclweb.
org/anthology/W04-3250.

Ioannis Konstas and Mirella Lapata. 2012. Unsuper-
vised concept-to-text generation with hypergraphs.
In Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
pages 752–761. http://aclweb.org/anthology/N12-
1093.

Ioannis Konstas and Mirella Lapata. 2013. Induc-
ing document plans for concept-to-text generation.
In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing.
Association for Computational Linguistics, pages
1503–1514. http://aclweb.org/anthology/D13-1157.

Karen Kukich. 1983. Design of a knowledge-based re-
port generator. In Proceedings of the 21st Annual
Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics,
pages 145–150. http://aclweb.org/anthology/P83-
1022.

Rémi Lebret, David Grangier, and Michael Auli. 2016.
Neural text generation from structured data with ap-
plication to the biography domain. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, pages 1203–1213. https://doi.org/
10.18653/v1/D16-1128.

Jiwei Li, Michel Galley, Chris Brockett, Georgios Sp-
ithourakis, Jianfeng Gao, and Bill Dolan. 2016. A
persona-based neural conversation model. In Pro-
ceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics. Association for
Computational Linguistics, pages 994–1003. https:
//doi.org/10.18653/v1/P16-1094.

Percy Liang, Michael Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of Association for Compu-
tational Linguistics and International Joint Confer-
ence on Natural Language Processing. Association
for Computational Linguistics, pages 91–99. http:
//aclweb.org/anthology/P09-1011.

Wei Lu, Hwee Tou Ng, and Wee Sun Lee. 2009. Nat-
ural language generation with tree conditional ran-
dom fields. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 400–409. http://aclweb.org/anthology/D09-
1042.

Hongyuan Mei, Mohit Bansal, and Matthew R. Wal-
ter. 2016a. Listen, attend, and walk: Neural map-
ping of navigational instructions to action sequences.
In Proceedings of Association for the Advancement
of Artificial Intelligence. https://arxiv.org/abs/1506.
04089.

Hongyuan Mei, Mohit Bansal, and Matthew R. Wal-
ter. 2016b. What to talk about and how? selec-
tive generation using lstms with coarse-to-fine align-
ment. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies. Association for Computational Linguistics,
pages 720–730. https://doi.org/10.18653/v1/N16-
1086.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černocký, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In
Proceedings of the 11th Annual Conference of the
International Speech Communication Association.
International Speech Communication Association,
9, pages 1045–1048. http://www.isca-speech.org/
archive/interspeech_2010/i10_1045.html.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: A method for automatic
evaluation of machine translation. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics. Association for Compu-
tational Linguistics, pages 311–318. http://aclweb.
org/anthology/P02-1040.

François Portet, Ehud Reiter, Albert Gatt, Jim Hunter,
Somayajulu Sripada, Yvonne Freer, and Cindy
Sykes. 2009. Automatic generation of textual sum-
maries from neonatal intensive care data. Artificial
Intelligence 173(7-8):789–816. https://doi.org/10.
1016/j.artint.2008.12.002.

Ehud Reiter, Somayajulu Sripada, Jim Hunter, Jin Yu,
and Ian Davy. 2005. Choosing words in computer-
generated weather forecasts. Artificial Intelligence
167(1-2):137–169. https://doi.org/10.1016/j.artint.
2005.06.006.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for abstrac-
tive sentence summarization. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, pages 379–389. https://doi.org/
10.18653/v1/D15-1044.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.
2014. Sequence to sequence learning with
neural networks. In Proceedings of the 27th
International Conference on Neural Informa-
tion Processing Systems. pages 3104–3112.
https://papers.nips.cc/paper/5346-sequence-to-
sequence-learning-with-neural-networks.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural

1383

image caption generator. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition. pages 3156–3164. https://arxiv.org/
abs/1411.4555.

Yuk Wah Wong and Raymond Mooney. 2007. Genera-
tion by inverting a semantic parser that uses statisti-
cal machine translation. In Proceedings of the 2007
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, pages 172–179. http://aclweb.
org/anthology/N07-1022.

G. Peter Zhang andMin Qi. 2005. Neural network fore-
casting for seasonal and trend time series. European
journal of operational research 160(2):501–514.
https://doi.org/10.1016/j.ejor.2003.08.037.

1384

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1385–1393
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1127

Can Syntax Help? Improving an LSTM-based
Sentence Compression Model for New Domains

Liangguo Wang†∗, Jing Jiang∗, Hai Leong Chieu?, Chen Hui Ong?, Dandan Song†, Lejian Liao†
chenwangliangguo@bit.edu.cn, jingjiang@smu.edu.sg
{chaileon, ochenhui}@dso.org.sg, {sdd, liaolj}@bit.edu.cn

† School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
∗ School of Information Systems, Singapore Management University, Singapore

? DSO National Laboratories, Singapore

Abstract
In this paper, we study how to improve the
domain adaptability of a deletion-based
Long Short-Term Memory (LSTM) neu-
ral network model for sentence compres-
sion. We hypothesize that syntactic in-
formation helps in making such models
more robust across domains. We propose
two major changes to the model: using
explicit syntactic features and introducing
syntactic constraints through Integer Lin-
ear Programming (ILP). Our evaluation
shows that the proposed model works bet-
ter than the original model as well as a tra-
ditional non-neural-network-based model
in a cross-domain setting.

1 Introduction

Sentence compression is the task of compress-
ing long, verbose sentences into short, concise
ones. It can be used as a component of a text
summarization system. Figure 1 shows two ex-
ample input sentences and the compressed sen-
tences written by human. The task has been stud-
ied for almost two decades. Early work on this
task mostly relies on syntactic information such
as constituency-based parse trees to help decide
what to prune from a sentence or how to re-write
a sentence (Jing, 2000; Knight and Marcu, 2000).
Recently, there has been much interest in apply-
ing neural network models to solve the problem,
where little or no linguistic analysis is performed
except for tokenization (Filippova et al., 2015;
Rush et al., 2015; Chopra et al., 2016).

Although neural network-based models have
achieved good performance on this task recently,
they tend to suffer from two problems: (1) They
require a large amount of data for training. For ex-
ample, Filippova et al. (2015) used close to two

In-domain
Input: The southern Chinese city of Guangzhou has set
up a special zone allowing foreign consulates to build per-
manent offices and residences and avoid prohibitive local
rents, the china daily reported Tuesday.
Compressed (by human): Guangzhou opens new consulate
area.
Compressed (by machine): Guangzhou sets up special
zone for foreign consulates.

Out-of-domain
Input: Wherever she was, she helped other loyal and flexi-
ble wives cope.
Compressed (by human): she helped other wives cope.
Compressed (by machine): wives and flexible wives

Figure 1: Examples of in-domain and out-of-
domain results by a standard abstractive sequence-
to-sequence model trained on the Gigaword cor-
pus. The first input sentence comes from the Gi-
gaword corpus while the second input sentence
comes from the written news corpus used by
Clarke and Lapata (2008).

million sentence pairs to train an LSTM-based
sentence compression model. Rush et al. (2015)
used about four million title-article pairs from the
Gigaword corpus (Napoles et al., 2012) as train-
ing data. Although it may be easy to automati-
cally obtain such training data in some domains
(e.g., the news domain), for many other domains,
it is not possible to obtain such a large amount of
training data. (2) These neural network models
trained on data from one domain may not work
well on out-of-domain data. For example, when
we trained a standard neural sequence-to-sequence
model1 on 3.8 million title-article pairs from the
Gigaword corpus and applied it to both in-domain
data and out-of-domain data, we found that the
performance on in-domain data was good but the
performance on out-of-domain data could be very

1http://opennmt.net/

1385

https://doi.org/10.18653/v1/P17-1127

poor. Two example compressed sentences by this
trained model are shown in Figure 1 to illustrate
the comparison between in-domain and out-of-
domain performance.

The two limitations above imply that these neu-
ral network-based models may not be good at
learning generalizable patterns, or in other words,
they tend to overfit the training data. This is not
surprising because these models do not explicitly
use much syntactic information, which is more
general than lexical information.

In this paper, we aim to study how syntactic in-
formation can be incorporated into neural network
models for sentence compression to improve their
domain adaptability. We hope to train a model
that performs well on both in-domain and out-of-
domain data. To this end, we extend the deletion-
based LSTM model for sentence compression by
Filippova et al. (2015). Although deletion-based
sentence compression is not as flexible as abstrac-
tive sentence compression, we chose to work on
deletion-based sentence compression for the fol-
lowing reason. Abstractive sentence compression
allows new words to be used in a compressed sen-
tence, i.e., words that do not occur in the input sen-
tence. Oftentimes these new words serve as para-
phrases of some words or phrases in the source
sentence. But to generate such paraphrases, the
model needs to have seen them in the training data.
Because we are interested in a cross-domain set-
ting, the paraphrases learned in one domain may
not work well in another domain if the two do-
mains have very different vocabularies. On the
other hand, a deletion-based method does not face
such a problem in a cross-domain setting.

Specifically, we propose two major changes to
the model by Filippova et al. (2015): (1) We
explicitly introduce POS embeddings and depen-
dency relation embeddings into the neural network
model. (2) Inspired by a previous method (Clarke
and Lapata, 2008), we formulate the final pre-
dictions as an Integer Linear Programming prob-
lem to incorporate constraints based on syntactic
relations between words and expected lengths of
the compressed sentences. In addition to the two
major changes above, we also use bi-directional
LSTM to include contextual information from
both directions into the model.

We evaluate our method using around 10,000
sentence pairs released by Filippova et al. (2015)
and two other data sets representing out-of-

domain data. We test both in-domain and out-
of-domain performance. The experimental results
showed that our proposed method can achieve
competitive performance compared with the origi-
nal method in the single-domain setting but with
much less training data (around 8,000 sentence
pairs for training instead of close to two mil-
lion sentence pairs). In the cross-domain setting,
our proposed method can clearly outperform the
original method. We also compare our method
with a traditional ILP-based method using syntac-
tic structures of sentences but not based on neural
networks (Clarke and Lapata, 2008). We find that
our method can outperform this baseline for both
in-domain and out-of-domain data.

2 Method

In this section, we present our sentence compres-
sion method that is aimed at working in a cross-
domain setting.

2.1 Problem Definition

Recall that we focus on deletion-based sentence
compression. Our problem setup is the same
as that by Filippova et al. (2015). Let us use
s = (w1, w2, . . . , wn) to denote an input sen-
tence, which consists of a sequence of words. Here
wi ∈ V , where V is the vocabulary. We would like
to delete some of the words in s to obtain a com-
pressed sentence that still contains the most im-
portant information in s. To represent such a com-
pressed sentence, we can use a sequence of binary
labels y = (y1, y2, . . . , yn), where yi ∈ {0, 1}.
Here yi = 0 indicates that wi is deleted, and
yi = 1 indicates that wi is retained.

We assume that we have a set of training sen-
tences and their corresponding deletion/retention
labels, denoted as D = {(sj ,yj)}Nj=1. Our goal is
to learn a sequence labeling model from D so that
for any unseen sentence s we can predict its label
sequence y and thus compress the sentence.

2.2 Our Base Model

We first introduce our base model, which uses
LSTM to perform sequence labeling. This base
model is largely based on the model by Filippova
et al. (2015) with some differences, which will be
explained below.

We assume that each word in the vocabulary has
a d-dimensional embedding vector. For input sen-
tence s, let us use (w1,w2, . . . ,wn) to denote the

1386

y1

h1

y2

h2

yn

hn

Right LSTM

Left LSTM

Word Pos Dep

Figure 2: Our three-layered bi-LSTM model.
Word embeddings, POS tag embeddings and de-
pendency type embeddings are concatenated in the
input layer.

sequence of the word embedding vectors, where
wi ∈ Rd. We use a standard bi-directional LSTM
model to process these embedding vectors sequen-
tially from both directions to obtain a sequence of
hidden vectors (h1,h2, . . . ,hn), where hi ∈ Rh.
We omit the details of the bi-LSTM and refer the
interested readers to the work by Graves et al.
(2013) for further explanation. Following Filip-
pova et al. (2015), our bi-LSTM has three layers,
as shown in Figure 2.

We then use the hidden vectors to predict the
label sequence. Specifically, label yi is predicted
from hi as follows:

p(yi | hi) = softmax(Whi + b), (1)

where W ∈ R2×h and b ∈ R2 are a weight matrix
and a weight vector to be learned.

There are some differences between our base
model and the LSTM model by Filippova et al.
(2015). (1) Filippova et al. (2015) first encoded
the input sentence in its reverse order using the
same LSTM before processing the sentence for
sequence labeling. (2) Filippova et al. (2015)
used only a single-directional LSTM while we
use bi-LSTM to capture contextual information
from both directions. (3) Although Filippova et al.
(2015) did not use any syntactic information in
their basic model, they introduced some features
based on dependency parse trees in their advanced
models. Here we follow their basic model be-
cause later we will introduce more explicit syntax-
based features. (4) Filippova et al. (2015) com-

bined the predicted yi−1 with wi to help predict
yi. This adds some dependency between consecu-
tive labels. We do not do this because later we will
introduce an ILP layer to introduce dependencies
among labels.

2.3 Incorporation of Syntactic Features

Note that in the base model that we presented
above, there is no explicit use of any syntactic in-
formation such as the POS tags of the words or the
parse tree structures of the sentences. Because we
believe that syntactic information is important for
learning a generalizable model for sentence com-
pression, we would like to introduce syntactic fea-
tures into our model.

First, we perform part-of-speech tagging on
the input sentences. For sentence s, let us use
(t1, t2, . . . , tn) to denote the POS tags of the
words inside, where ti ∈ T and T is a POS
tag set. We further assume that each t ∈ T has
an embedding vector (to be learned). Let us use
(t1, t2, . . . , tn) (ti ∈ Rp, p < |T |) to denote the
sequence of POS embedding vectors of this sen-
tence. We can then simply concatenate wi with ti
as a new vector to be processed by the bi-LSTM
model.

Next, we perform dependency parsing on the in-
put sentences. For each word wi in sentence s, let
ri ∈ R denote the dependency relation between
wi and its parent word in the sentence, whereR is
the set of all dependency relation types. We then
assume that each r ∈ R has an embedding vec-
tor (to be learned). Let (r1, r2, . . . , rn) (r ∈ Rq,
q < |R|) denote corresponding dependency em-
bedding vectors of this sentence. We can also con-
catenate wi with ri and feed the new vector to the
bi-LSTM model.

In our model, we combine the word embedding,
POS embedding and dependency embedding into
a single vector to be processed by the bi-LSTM
model:

xi = wi ⊕ ti ⊕ ri,
−→
h i = LSTM−→

Θ
(
−→
h i−1,xi),

←−
h i = LSTM←−

Θ
(
←−
h i+1,xi),

hi =
−→
h i ⊕

←−
h i,

where ⊕ represents concatenation of vectors, and−→
Θ and

←−
Θ are parameters of the bi-LSTM model.

The complete model is shown in Figure 2.

1387

2.4 Global Inference through ILP
Although the method above has explicitly incor-
porated some syntactic information into the bi-
LSTM model, the syntactic information is used in
a soft manner through the learned model weights.
We hypothesize that there are also hard constraints
we can impose on the compressed sentences. For
example, the method above as well as the origi-
nal method by Filippova et al. (2015) cannot im-
pose any length constraint on the compressed sen-
tences. This is because the labels y1, y2, . . . , yn
are not jointly predicted.

We propose to use Integer Linear Programming
(ILP) to find an optimal combination of the la-
bels y1, y2, . . . , yn for a sentence, subject to some
constraints. Specifically, the ILP problem consists
of two parts: the objective function, and the con-
straints.

The Objective Function
Recall that the trained bi-LSTM model above pro-
duces a probability distribution for each label yi,
as defined in Eqn. (1). Let us use αi to denote the
probability of yi = 1 as estimated by the bi-LSTM
model. Intuitively, we would like to set yi to 1 if
αi is large.

Besides the probability estimated by the bi-
LSTM model, here we also consider the depth of
the word wi in the dependency parse tree of the
sentence. Intuitively, a word closer to the root of
the tree is more likely to be retained. In order to
incorporate this observation, we define dep(wi) to
be the depth of the word wi in the dependency
parse tree of the sentence. The root node of the
tree has a depth of 0, an immediate child of the
root has a depth of 1, and so on. For example,
the dependency parse tree of an example sentence
together with the depth of each word is shown in
Figure 3. We can see that some of the words that
are deleted according to the ground truth have a
relatively larger depth, such as the first “she” (with
a depth of 4) and the word “flexible” (with a depth
of 5).

Based on these considerations, we define the
objective function to be the following:

max

n∑

i=1

yi(αi − λ · dep(wi)), (2)

where λ is a positive parameter to be manually set,
and yi is the same as defined before, which is ei-
ther 0 or 1 to indicate whether wi is deleted or not.

Constraints

We further introduce some constraints to capture
tow considerations. The first consideration is re-
lated to the syntactic structure of a sentence, and
the second consideration is related to the length of
the compressed sentence. Some of the constraints
are inspired by Clarke and Lapata (2008).

Our constraints are listed below: (1) No miss-
ing parent: Generally, we believe that if a word is
retained in the compressed sentence, its parent in
the dependency parse tree should also be retained.
(2) No missing child: For some dependency rela-
tions such as nsubj, if the parent word is retained,
it makes sense to also keep the child word; oth-
erwise the sentence may become ungrammatical.
(3) Max length: Since we are trying to compress
a sentence, we may need to impose a minimum
compression rate. This could be achieved by set-
ting a maximum value of the sum of yi. (4) Min
length: We observe that the original model some-
times produces very short compressed sentences.
We therefore believe that it is also important to
maintain a mininum length of the compressed sen-
tence. This can be achieved by setting a minimum
value of the sum of yi.

Formally, the constraints are listed as follows:

n∑

i=1

yi <= βn,

n∑

i=1

yi >= γn,

∀yi : yi ≤ ypi ,

∀ri ∈ T ′ : yi ≥ ypi ,

where wpi is the parent word of wi in the depen-
dency parse tree, ri is the dependency relation type
between wi and wpi , and T ′ is a set of depen-
dency relations for which the child word is often
retained when the parent word is retained in the
compressed sentence.

The set T ′ is derived as follows. For each
dependency relation type, based on the training
data, we compute the conditional probability of
the child word being retained given that the parent
word is retained. If this probability is higher than
90%, we include this dependency relation type in
T ′.

1388

Figure 3: Dependency parse tree of an example sentence. The numbers below the words indicate the
depths of the words in the tree. Words in gray are supposed to be deleted based on the ground truth.

3 Experiments

3.1 Datasets and Experiment Settings

Because we are mostly interested in a cross-
domain setting where the model is trained on one
domain and test on a different domain, we need
data from different domains for our evaluation.
Here we use three datasets.
Google News: The first dataset contains 10,000
sentence pairs collected and released by Filippova
et al. (2015)2. The sentences were automatically
acquired from the web through Google News us-
ing a method introduced by Filippova and Altun
(2013). The news articles were from 2013 and
2014.
BNC News: The second dataset contains around
1,500 sentence pairs collected by Clarke and Lap-
ata (2008)3. The sentences were from British Na-
tional Corpus (BNC) and the American News Text
corpus before 2008.
Research Papers: The last dataset contains 100
sentences taken from 10 randomly selected papers
published at the ACL conference in 2016.

For Google News and BNC News, we have
the ground truth compressed sentences, which are
deletion-based compressions, i.e., subsequences
of the original sentences. For Research Papers,
we use it only for manual evaluation in terms of
readability and informativeness, as we will explain
below.

We evaluate three settings of our method:
BiLSTM: In this setting, we use only the base bi-
LSTM model without incorporating any syntactic
feature.
BiLSTM+SynFeat: In this setting, we combine
word embeddings with POS embeddings and de-

2Available at http://storage.googleapis.
com/sentencecomp/compression-data.json.

3Available at http://jamesclarke.net/
research/resources/.

pendency embeddings as input to the bi-LSTM
model and use the predictions of y from the bi-
LSTM model.
BiLSTM+SynFeat+ILP: In this setting, on top of
BiLSTM+SynFeat, we solve the ILP problem as
described in Section 2.4 to predict the final label
sequence y.

In the experiments, our model was trained us-
ing the Adam (Kingma and Ba, 2015) algorithm
with a learning rate initialized at 0.001. The di-
mension of the hidden layers of bi-LSTM is 100.
Word embeddings are initialized from GloVe 100-
dimensional pre-trained embeddings (Pennington
et al., 2014). POS and dependency embeddings
are randomly initialized with 40-dimensional vec-
tors. The embeddings are all updated during train-
ing. Dropping probability for dropout layers be-
tween stacked LSTM layers is 0.5. The batch size
is set as 30. For the ILP part, λ is set to 0.5, β and
γ are turned by the validation data and finally they
are set to 0.7 and 0.2, respectively. We utilize an
open source ILP solver4 in our method.

We compare our methods with a few baselines:
LSTM: This is the basic LSTM-based deletion
method proposed by (Filippova et al., 2015). We
report both the performance they achieved using
close to two million training sentence pairs and
the performance of our re-implementation of their
model trained on the 8,000 sentence pairs.
LSTM+: This is advanced version of the model
proposed by Filippova et al. (2015), where the au-
thors incorporated some dependency parse tree in-
formation into the LSTM model and used the pre-
diction on the previous word to help the prediction
on the current word.
Traditional ILP: This is the ILP-based method
proposed by Clarke and Lapata (2008). This
method does not use neural network models and

4gnu.org/software/glpk

1389

is an unsupervised method that relies heavily on
the syntactic structures of the input sentences5.
Abstractive seq2seq: This is an abstractive
sequence-to-sequence model trained on 3.8 mil-
lion Gigaword title-article pairs as described in
Section 1.

3.2 Automatic Evaluation

With the two datasets Google News and BNC News
that have the ground truth compressed sentences,
we can perform automatic evaluation. We first
split the Google News dataset into a training set,
a validation set and a test set. We took the first
1,000 sentence pairs from Google News as the
test set, following the same practice as Filippova
et al. (2015). We then use 8,000 of the remain-
ing sentence pairs for training and the other 1,000
sentence pairs for validation. For the NBC News
dataset, we use it only as a test set, applying
the sentence compression models trained from the
8,000 sentence pairs from Google News.

We use the ground truth compressed sentences
to compute accuracy and F1 scores. Accuracy is
defined as the percentage of tokens for which the
predicted label yi is correct. F1 scores are derived
from precision and recall values, where precision
is defined as the percentage of retained words that
overlap with the ground truth, and recall is de-
fined as the percentage of words in the ground
truth compressed sentences that overlap with the
generated compressed sentences.

We report both in-domain performance and
cross-domain performance in Table 1. From the
table, we have the following observations: (1)
For the abstractive sequence-to-sequence model,
it was trained on the Gigaword data, so for
both Google News and NBC News, the perfor-
mance shown is cross-domain performance. We
can see that indeed this abstractive method per-
formed poorly in cross-domain settings. (2) In
the in-domain setting, with the same amount of
training data (8,000), our BiLSTM method with
syntactic features (BiLSTM+SynFeat and BiL-
STM+SynFeat+ILP) performs similarly to or bet-
ter than the LSTM+ method proposed by Filip-
pova et al. (2015), in terms of both F1 and accu-
racy. This shows that our method is comparable to
the LSTM+ method in the in-domain setting. (3)
In the in-domain setting, even compared with the

5We use an open source implementation: https://
github.com/cnap/sentence-compression.

1000 2000 3000 4000 5000 6000 7000 8000
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

F1
 v
a
lu
e

In-domain data

LSTM+(Filippova et al.)

Bi_LSTM

Bi_LSTM+SynFeat

Bi_LSTM+SynFeat+ILP

Traditional ILP

1000 2000 3000 4000 5000 6000 7000 8000
training size

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

F1
 v
a
lu
e

Out-of-domain data

Figure 4: F1 scores with different sizes of training
data for in-domain and cross-domain settings.

performance of LSTM+ trained on 2 million sen-
tence pairs, our method trained on 8,000 sentence
pairs does not perform substantially worse. (4) In
the out-of-domain setting, our BiLSTM+SynFeat
and BiLSTM+SynFeat+ILP methods clearly out-
perform the LSTM and LSTM+ methods. This
shows that by incorporating more syntactic fea-
tures, our methods learn a sentence compression
model that is less domain-dependent. (5) The Tra-
ditional ILP method also works better than the
LSTM and LSTM+ methods in the out-of-domain
setting. This is probably because the Traditional
ILP method relies heavily on syntax, which is less
domain-dependent compared with lexical patterns.
But the Traditional ILP method performs worse
in the in-domain setting than both the LSTM and
LSTM+ methods and our methods.

Overall, Table 1 shows that our proposed
method combines both the strength of neural net-
work models in the in-domain setting and the
strength of the syntax-based methods in the cross-
domain setting. Therefore, our method works
reasonably well for both in-domain and out-of-
domain data.

We also notice that on Google News, adding the
ILP layer decreased the sentence compression per-
formance. After some analysis, we think the rea-
son is that some of the constraints used in the ILP
layer have led to less deletion but the ground truth
compressed sentences in the Google News data
tend to be shorter compared with those in the NBC
News data.

We also conduct additional experiments to see
the effect of the training data size on our meth-

1390

size of Google News NBC News
training data F1 Acc CR F1 Acc CR

LSTM (Filippova et al., 2015) 2 million 0.80 - 0.39 - - -
LSTM+ (Filippova et al., 2015) 2 million 0.82 - 0.38 - - -

Traditional ILP (Clarke and Lapata, 2008) N/A 0.54 0.56 0.62 0.64 0.56 0.56
Abstractive seq2seq 3.8M 0.09 0.02 0.16 0.14 0.06 0.21

LSTM (our implementation) 8000 0.74 0.75 0.45 0.51 0.48 0.37
LSTM+ (our implementation) 8000 0.77 0.78 0.47 0.54 0.51 0.38
BiLSTM 8000 0.75 0.76 0.43 0.52 0.50 0.34
BiLSTM+SynFeat 8000 0.80 0.82 0.43 0.57 0.54 0.37
BiLSTM+SynFeat+ILP 8000 0.78 0.78 0.57 0.66 0.58 0.53

Table 1: Automatic evaluation of our sentence compression methods. CR standards for compression rate
and is defined as the average percentage of words that are retained after compression.

ods and the LSTM+ method. Figure 4 shows the
F1 scores on the in-domain Google News data and
the out-of-domain NBC News data when we train
the models using different amounts of sentence
pairs. We can see that in the in-domain setting,
our method does not have any advantage over the
LSTM+ method. But in the cross-domain setting,
our method that uses ILP to impose syntax-based
constraints clearly performs better than LSTM+
when the amount of training data is relatively
small.

3.3 Manual Evaluation

The evaluation above does not look at the readabil-
ity of the compressed sentences. In order to eval-
uate whether sentences generated by our method
are readable, we adopt the manual evaluation pro-
cedure by Filippova et al. (2015) to compare our
method with LSTM+ and Traditional ILP in terms
of readability and informativeness. We asked two
raters to score a randomly selected set of 100 sen-
tences from the Research Papers dataset. The
compressed sentences were randomly ordered and
presented to the human raters to avoid any bias.
The raters were asked to score the sentences on
a five-point scale in terms of both readability and
informativeness. We show the average scores of
the three methods we compare in Table 3. We
can see that our BiLSTM+SynFeat+ILP method
clearly outperforms the two baseline methods in
the manual evaluation.

We also show a small sample of input sentences
from the Research Papers dataset and the automat-
ically compressed sentences by different methods
in Table 2. As we can see from the table, a gen-

eral weakness of the LSTM+ method is that the
compressed sentences may not be grammatical. In
comparison, our method does better in terms of
preserving grammaticality.

4 Related Work

Sentence compression can be seen as sentence-
level summarization. Similar to document sum-
marization, sentence compression methods can
be divided into extractive compression and ab-
stractive compression methods, based on whether
words in the compressed sentence all come from
the source sentence. In this paper, we focus on
deletion-based sentence compression, which is a
spacial case of extractive sentence compression.

An early work on sentence compression was
done by Jing (2000), who proposed to use sev-
eral resources to decide whether a phrase in a sen-
tence should be removed or not. Knight and Marcu
(2000) proposed to apply a noisy-channel model
from machine translation to the sentence compres-
sion task, but their model encountered the problem
that many SCFG rules have unreliable probability
estimates with inadequate data. Galley and McKe-
own (2007) tried to solve this problem by utilizing
parent annotation, Markovization and lexicaliza-
tion, which have all been shown to improve the
quality of the rule probability estimates. Cohn and
Lapata (2007) formulated sentence compression
as a tree-to-tree rewrite problem. They utilized
a synchronous tree substitution grammar (STSG)
to license the space of all possible rewrites. Each
rule has a weight learned from the training data.
For prediction, an algorithm was used to search
for the best scoring compression using the gram-

1391

Although dynamic oracles are widely used in dependency parsing and available for most standard transition systems , no
dynamic oracle parsing model has yet been proposed for phrase structure grammars
T: Although are used for transition systems model has been proposed for structure grammars .
S: Although dynamic oracles are .
B: Although oracles are used no model has been proposed for structure grammars .

As described above , we used Bayesian Optimization to find optimal hyperparameter configurations in fewer steps than in
regular grid search .
T: As described we used Optimization to find configurations in steps in search .
S: As described above Optimization to find optimal hyperparameter configurations steps than in grid search .
B: As described , we used Bayesian Optimization to find optimal hyperparameter configurations in steps.

Following the phrase structure of a source sentence , we encode the sentence recursively in a bottom-up fashion to produce a
vector representation of the sentence and decode it while aligning the input phrases and words with the output .
T: Following structure of a sentence we encode sentence recursively to produce a representation of the sentence and decode it
while aligning phrases and words with output .
S: Following the structure of a source sentence encode the sentence recursively in a bottom-up fashion .
B: Following the structure , we encode the sentence recursively in a bottom-up fashion to produce a vector representation and
decode it .

Table 2: Some input sentences from the Research Papers dataset and the automatically compressed
sentences using different methods. T: Traditional ILP method. S: LSTM+. B: BiLSTM+SynFeat+ILP.

readability informativeness

Traditional ILP 3.94 3.33
LSTM+ 3.69 3.07
BiLSTM+SynFeat+ILP 4.29 3.46

Table 3: Manual evaluation.

mar rules. Besides, Cohn and Lapata (2008) ex-
tended this model to abstractive sentence compres-
sion, which includes substitution, reordering and
insertion. McDonald (2006) proposed a graph-
based sentence compression method. The general
idea is that each word pair in the original sentence
has a score. The task then becomes how to find a
compressed sentence with a length limit according
word pair scores. Their method is similar to graph-
based dependency parsing. Clarke and Lapata
(2008) first used an ILP framework for sentence
compression. In the paper, the author put forward
three models. The first model is a language model
reformulated by ILP. As the first model treats all
the words equally, the second model uses a corpus
to learn an importance score for each word and
then incorporates it in the ILP model. The Last
model, which is based on (McDonald, 2006), re-
places the decoder with an ILP model and adds
many linguistic constraints such as dependency
parsing compared with the previous two ILP mod-
els. Filippova and Strube (2008) represented sen-
tences with dependency parse trees and an ILP-
based method was used to decide whether the de-
pendencies were preserved or not. Different from
most previous work that treats sentence extrac-

tion and sentence compression separately, Berg-
Kirkpatrick et al. (2011) jointly model the two pro-
cesses in one ILP problem. Bigrams and subtrees
are represented by some features, and feature are
learned on some training data. The ILP problem
maximizes the coverage of weighted bigrams and
deleted subtrees of the summary.

In recent years, neural network models, espe-
cially sequence-to-sequence models, have been
applied to sentence compression. Our work is
based on the deletion-based LSTM model for
sentence compression by Filippova et al. (2015).
There has also been much interest in applying
sequence-to-sequence models for abstractive sen-
tence compression (Rush et al., 2015; Chopra
et al., 2016). As we pointed out in Section 1, in
a cross-domain setting, abstractive sentence com-
pression may not be suitable.

5 Conclusions

In this paper, we studied how to modify an LSTM
model for deletion-based sentence compression so
that the model works well in a cross-domain set-
ting. We hypothesized that incorporation of syn-
tactic information into the training of the LSTM
model would help. We thus proposed two ways
to incorporate syntactic information, one through
directly adding POS tag embeddings and depen-
dency type embeddings, and the other through the
objective function and constraints of an Integer
Linear Programming (ILP) model. The experi-
ments showed that our proposed bi-LSTM model
with syntactic features and an ILP layer works

1392

well in both in-domain and cross-domain settings.
In comparison, the original LSTM model does
not work well in the cross-domain setting, and
a traditional ILP method does not work well in
the in-domain setting. Therefore, our proposed
method is relatively more robust than these base-
lines. We also manually evaluated the compressed
sentences generated by our method and found that
the method works better than the baselines in
terms of both readability and informativeness.

Acknowledgment

This work is supported by DSO grant
DSOCL15223. The work was conducted
during the first author’s visit to the Singapore
Management University.

References

Taylor Berg-Kirkpatrick, Dan Gillick, and Dan Klein.
2011. Jointly learning to extract and compress. In
Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings
the 2016 Conference of the North American Chapter
of the Association for Computational Linguistics.

James Clarke and Mirella Lapata. 2008. Global in-
ference for sentence compression: An integer linear
programming approach. Journal of Artificial Intelli-
gence Research .

Trevor Cohn and Mirella Lapata. 2007. Large margin
synchronous generation and its application to sen-
tence compression. In Joint Meeting of Conference
on Empirical Methods in Natural Language and
Conference on Computational Natural Language
Learning.

Trevor Cohn and Mirella Lapata. 2008. Sentence com-
pression beyond word deletion. In Proceedings
of the 22nd International Conference on Computa-
tional Linguistics.

Katja Filippova, Enrique Alfonseca, Carlos A. Col-
menares, Lukasz Kaiser, and Oriol Vinyals. 2015.
Sentence compression by deletion with LSTMs. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing.

Katja Filippova and Yasemin Altun. 2013. Overcom-
ing the lack of parallel data in sentence compres-
sion. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing.

Katja Filippova and Michael Strube. 2008. Depen-
dency tree based sentence compression. In Proceed-
ings of the Fifth International Natural Language
Generation Conference.

Michel Galley and Kathleen McKeown. 2007. Lexi-
calized markov grammars for sentence compression.
In Proceedings of Annual Conference of the North
American Chapter of the Association for Computa-
tional Linguistics.

Alex Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional lstm. In Automatic Speech Recognition
and Understanding (ASRU), 2013 IEEE Workshop
on.

Hongyan Jing. 2000. Sentence reduction for automatic
text summarization. In Proceedings of the sixth con-
ference on Applied natural language processing.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the International Conference on Learning Repre-
sentations.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization step one: Sentence compres-
sion. In Proceedings of the 17th National Confer-
ence on Artificial Intelligence.

Ryan T McDonald. 2006. Discriminative sentence
compression with soft syntactic evidence. In Pro-
ceedings of European Chapter of the Association for
Computational Linguistics Valencia.

Courtney Napoles, Matthew Gormley, and Benjamin
Van Durme. 2012. Annotated Gigaword. In Pro-
ceedings of the Joint Workshop on Automatic Knowl-
edge Base Construction and Web-scale Knowledge
Extraction.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

1393

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1394–1404
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1128

Transductive Non-linear Learning for Chinese Hypernym Prediction

Chengyu Wang1, Junchi Yan2,1, Aoying Zhou1, Xiaofeng He1∗
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University

2 IBM Research – China
chywang2013@gmail.com, yanesta13@163.com

{ayzhou,xfhe}@sei.ecnu.edu.cn

Abstract

Finding the correct hypernyms for entities
is essential for taxonomy learning, fine-
grained entity categorization, knowledge
base construction, etc. Due to the flexi-
bility of the Chinese language, it is chal-
lenging to identify hypernyms in Chinese
accurately. Rather than extracting hyper-
nyms from texts, in this paper, we present
a transductive learning approach to es-
tablish mappings from entities to hyper-
nyms in the embedding space directly. It
combines linear and non-linear embedding
projection models, with the capacity of
encoding arbitrary language-specific rules.
Experiments on real-world datasets illus-
trate that our approach outperforms pre-
vious methods for Chinese hypernym pre-
diction.

1 Introduction

A hypernym of an entity characterizes the type
or the class of the entity. For example, the word
country is the hypernym of the entity Canada.
The accurate prediction of hypernyms benefits a
variety of NLP tasks, such as taxonomy learn-
ing (Wu et al., 2012; Fu et al., 2014), fine-grained
entity categorization (Ren et al., 2016), knowledge
base construction (Suchanek et al., 2007), etc.

In previous work, the detection of hypernyms
requires lexical, syntactic and/or semantic analy-
sis of relations between entities and their respec-
tive hypernyms from a language-specific knowl-
edge source. For example, Hearst (1992) is the pi-
oneer work to extract is-a relations from a text cor-
pus based on handcraft patterns. The following-
up work mostly focuses on is-a relation extrac-
tion using automatically generated patterns (Snow

∗Corresponding author.

et al., 2004; Ritter et al., 2009; Sang and Hof-
mann, 2009; Kozareva and Hovy, 2010) and re-
lation inference based on distributional similar-
ity measures (Kotlerman et al., 2010; Lenci and
Benotto, 2012; Shwartz et al., 2016).

While these approaches have relatively high
precision over English corpora, extracting hy-
pernyms for entities is still challenging for Chi-
nese. From the linguistic perspective, Chinese
is a lower-resourced language with very flexible
expressions and grammatical rules (Wang et al.,
2015). For instance, there are no word spaces, ex-
plicit tenses and voices, and distinctions between
singular and plural forms in Chinese. The order
of words can be changed flexibly in sentences.
Hence, as previous research indicates, hypernym
extraction methods for English are not necessarily
suitable for the Chinese language (Fu et al., 2014;
Wang et al., 2015; Wang and He, 2016).

Based on such conditions, several classification
methods are proposed to distinguish is-a and not-
is-a relations based on Chinese encyclopedias (Lu
et al., 2015; Li et al., 2015). Similar to Prince-
ton WordNet, a few Chinese wordnets have also
been developed (Huang et al., 2004; Xu et al.,
2008; Wang and Bond, 2013). The most recent ap-
proaches for Chinese is-a relation extraction (Fu
et al., 2014; Wang and He, 2016) use word em-
bedding based linear projection models to map
embeddings of hyponyms to those of their hyper-
nyms, which outperform previous algorithms.

However, we argue that these projection-based
methods may have three potential limitations: (i)
Only positive is-a relations are used for projec-
tion learning. The distinctions between is-a and
not-is-a relations in the embedding space are not
modeled. (ii) These methods lack the capacity to
encode linguistic rules, which are designed by lin-
guists and usually have high precision. (iii) It as-
sumes that the linguistic regularities of is-a rela-

1394

https://doi.org/10.18653/v1/P17-1128

tions can be solely captured by single or multiple
linear projection models.

In this paper, we address these limitations by a
two-stage transductive learning approach. It dis-
tinguishes is-a and not-is-a relations given a Chi-
nese word/phrase pair as input. In the initial stage,
we train linear projection models on positive and
negative training data separately and predict is-
a relations jointly. In the transductive learning
stage, the initial prediction results, linguistic rules
and the non-linear mappings from entities to hy-
pernyms are optimized simultaneously in a uni-
fied framework. This optimization problem can be
efficiently solved by blockwise gradient descent.
We evaluate our method over two public datasets
and show that it outperforms state-of-the-art ap-
proaches for Chinese hypernym prediction.

The rest of this paper is organized as follows.
We summarize the related work in Section 2. Our
approach is introduced in Section 3. Experimental
results are presented in Section 4. We conclude
our paper in Section 5.

2 Related Work

In this section, we overview the related work on
hypernym prediction and discuss the challenges of
Chinese hypernym detection.

Pattern based methods identify is-a relations
from texts by handcraft or automatically generated
patterns. Hearst patterns (Hearst, 1992) are lexical
patterns in English that are employed to extract is-
a relations for taxonomy construction (Wu et al.,
2012). Automatic approaches mostly use itera-
tive learning paradigms such that the system learns
new is-a relations and patterns simultaneously. A
few relevant studies can be found in (Caraballo,
1999; Etzioni et al., 2004; Sang, 2007; Pantel and
Pennacchiotti, 2006; Kozareva and Hovy, 2010).
To avoid “semantic drift” in iterations, Snow et al.
(2004) train a hypernym classifier based on syn-
tactic features based on parse trees. Carlson et al.
(2010) exploit multiple learners to extract relations
via coupled learning. These approaches are not ef-
fective for Chinese for two reasons: i) Chinese is-a
relations are expressed in a highly flexible man-
ner (Fu et al., 2014) and ii) the accuracy of basic
NLP tasks such as dependency parsing still need
improvement for Chinese (Li et al., 2013).

Inference based methods take advantage of
distributional similarity measures (DSM) to in-
fer relations between words. They assume that a

hypernym may appear in all contexts of the hy-
ponyms and a hyponym can only appear in part
of the contexts of its hypernyms. In previous
work, Kotlerman et al. (2010) design directional
DSMs to model the asymmetric property of is-a
relations. Other DSMs are introduced in (Bha-
gat et al., 2007; Szpektor et al., 2007; Lenci and
Benotto, 2012; Santus et al., 2014). Shwartz et al.
(2016) combine dependency parsing and DSM to
improve the performance of hypernymy detection.
The reason why DSM is not effective for Chinese
is that the contexts of entities in Chinese are flexi-
ble and sparse.

Encyclopedia based methods take encyclo-
pedias as knowledge sources to construct tax-
onomies. Ponzetto and Strube (2007) design fea-
tures from multiple aspects to predict is-a rela-
tions between entities and categories in English
Wikipedia. The taxonomy in YAGO (Suchanek
et al., 2007) is constructed by linking concep-
tual categories in Wikipedia to WordNet synsets
(Miller, 1995). For Chinese, Li et al. (2015) pro-
pose an SVM-based approach to build a large Chi-
nese taxonomy from Wikipedia. Similar clas-
sification based algorithms are presented in (Fu
et al., 2013; Lu et al., 2015). Due to the lack of
Chinese version of WordNet, several Chinese se-
mantic dictionaries have been conducted, such as
Sinica BOW (Huang et al., 2004), SEW (Xu et al.,
2008), COW (Wang and Bond, 2013), etc. These
approaches have higher accuracy than mining hy-
pernym relations from texts directly. However,
they heavily rely on existing knowledge sources
and are difficult to extend to different domains.

To tackle these challenges, word embedding
based methods directly model the task of hyper-
nym prediction as learning a mapping from en-
tity vectors to their respective hypernym vectors
in the embedding space. The vectors can be pre-
trained by neural language models (Mikolov et al.,
2013). For the Chinese language, Fu et al. (2014)
train piecewise linear projection models based on
a Chinese thesaurus. The state-of-the-art method
(Wang and He, 2016) combines an iterative learn-
ing procedure and Chinese Hearst-style patterns
to improve the performance of projection mod-
els. They can reduce data noise by avoiding direct
parsing of Chinese texts, but still capture the lin-
guistic regularities of is-a relations based on word
embeddings. Additionally, several work aims to
study how to combine word embeddings for re-

1395

lation classification, such as (Mirza and Tonelli,
2016). In our paper, we extend these approaches
by modeling non-linear mappings from entities to
hypernyms and adding linguistic rules via a uni-
fied transductive learning framework.

3 Proposed Approach

This section begins with a brief overview of our
approach. After that, the detailed steps and the
learning algorithm are introduced in detail.

3.1 Overview

Given a word/phrase pair (xi, yi), the goal of our
task is to learn a classification model to predict
whether yi is the hypernym of xi.

As illustrated in Figure 1, our approach has
two stages: initial stage and transductive learning
stage. The input is a positive is-a set D+, a neg-
ative is-a set D− and an unlabeled set DU , all of
which are the collections of word/phrase pairs.

Denote xi as the embedding vector of word xi,
pre-trained and stored in a lookup table. In the ini-
tial stage, we train a linear projection model over
D+ such that for each (xi, yi) ∈ D+, a projection
matrix maps the entity vector xi to its hypernym
vector yi. A similar model is also trained over
D−. Based on the two models, we estimate the
prediction score and the confidence score for each
(xi, yi) ∈ DU . In the transductive learning stage,
a joint optimization problem is formed to learn the
final prediction score for each (xi, yi) ∈ DU . It
aims to minimize the prediction errors based on
the human labeled data, the initial model predic-
tion and linguistic rules. It also employs non-
linear mappings to capture linguistic regularities
of is-a relations other than linear projections.

Initial Stage

Positive
Is-a Set

Negative
Is-a Set

Unlabeled
Set

Positive
Projection Model

Negative
Projection Model

Lookup Table

Linguistic Rules

Transductive Learning Model

Transductive
Learning Stage

Figure 1: General framework of our approach.

3.2 Initial Model Training

The initial stage models how entities are mapped
to their hypernyms or non-hypernyms by projec-
tion learning. We first train a Skip-gram model
(Mikolov et al., 2013) to learn word embeddings
over a large text corpus. Inspired by (Fu et al.,
2014; Wang and He, 2016), for each (xi, yi) ∈
D+, we assume there is a positive projection
model such that M+xi ≈ yi where M+ is an
|xi|×|xi| projection matrix1. However, this model
does not capture the semantics of not-is-a rela-
tions. Thus, we learn a negative projection model
M−xi ≈ yi where (xi, yi) ∈ D−. This approach
is equivalent to learning two separate translation
models within the same semantic space. For pa-
rameter estimation, we minimize the two follow-
ing objectives:

J(M+) =
1

2

∑

(xi,yi)∈D+

‖M+xi−yi‖22+
λ

2
‖M+‖2F

J(M−) =
1

2

∑

(xi,yi)∈D−
‖M−xi−yi‖22+

λ

2
‖M−‖2F

where λ > 0 is a Tikhonov regularization param-
eter (Golub et al., 1999).

In the testing phase, for each (xi, yi) ∈
DU , denote d+(xi, yi) = ‖M+xi − yi‖2 and
d−(xi, yi) = ‖M−xi−yi‖2. The prediction score
is defined as:

score(xi, yi) = tanh(d−(xi, yi)− d+(xi, yi))

where score(xi, yi) ∈ (−1, 1). Higher prediction
score indicates there is a larger probability of an
is-a relation between xi and yi. We choose the hy-
perbolic tangent function rather than the sigmoid
function to avoid the widespread saturation of sig-
moid function (Menon et al., 1996). Because the
semantics of Chinese is-a and not-is-a relations
are complicated and difficult to model (Fu et al.,
2014), we do not impose explicit connections be-
tween M+ and M− and let the algorithm learn the
parameters automantically.

The difference between d+(xi, yi) and
d−(xi, yi) can be also used to indicate whether the
models are confident enough to make a prediction.

1We have also examined piecewise linear projection mod-
els proposed in (Fu et al., 2014; Wang and He, 2016) as the
initial models for transductive learning. However, we found
that this practice is less efficient and the performance does
not improve significantly.

1396

In this paper, we calculate the confidence score as:

conf(xi, yi) =
|d+(xi, yi)− d−(xi, yi)|

max{d+(xi, yi), d−(xi, yi)}

where conf(xi, yi) ∈ (0, 1). Higher confidence
score means that there is a larger probability that
the models can predict whether there is an is-a
relation between xi and yi correctly. This score
gives different data instances different weights in
the transductive learning stage.

3.3 Transductive Non-linear Learning

Although linear projection methods are effective
for Chinese hypernym prediction, it does not en-
code non-linear transformation and only leverages
the positive data. We present an optimization
framework for non-linear mapping utilizing both
labeled and unlabeled data and linguistic rules by
transductive learning (Gammerman et al., 1998;
Chapelle et al., 2006).

Let Fi be the final prediction score of the
word/phrase pair (xi, yi). In the initialization
stage of our algorithm, we set Fi = 1 if (xi, yi) ∈
D+, Fi = −1 if (xi, yi) ∈ D− and set Fi ran-
domly in (−1, 1) if (xi, yi) ∈ DU . In matrix rep-
resentation, denote F as the m× 1 final prediction
vector where m = |D+| + |D−| + |DU |. Fi is
the ith element in F. The three components in our
transductive learning model are as follows:

3.3.1 Initial Prediction
Denote S as an m×1 initial prediction vector. We
set Si = 1 if (xi, yi) ∈ D+, Si = −1 if (xi, yi) ∈
D− and Si = score(xi, yi) if (xi, yi) ∈ DU . In
order to encode the confidence of model predic-
tion, we define W as an m ×m diagonal weight
matrix. The element in the ith row and the jth col-
umn of W is set as follows:

Wi,j =





conf(xi, yi) i = j, (xi, yi) ∈ DU

1 i = j, (xi, yi) ∈ D+ ∪D−
0 Otherwise

The objective function is defined as: Os =
‖W(F−S)‖22, which encodes the hypothesis that
the final prediction should be similar to the initial
prediction for unlabeled data or human labeling
for training data. The weight matrix W gives the
largest weight (i.e., 1) to all the pairs in D+ ∪D−
and a larger weight to the pair (xi, yi) ∈ DU if the
initial prediction is more confident.

3.3.2 Linguistic Rules
Although linguistic rules can only cover a few cir-
cumstances, they are effective to guide the learn-
ing process. For Chinese hypernym prediction,
Li et al. (2015) study the word formation of con-
ceptual categories in Chinese Wikipedia. In our
model, let C be the collection of linguistic rules.
γi is the true positive (or negative) rate with re-
spect to the respective positive (or negative) rule
ci ∈ C, estimated over the training set. Consid-
ering the word formation of Chinese entities and
hypernyms, we design one positive rule (i.e., P1)
and two negative rules (i.e., N1 and N2), shown in
Table 1.

Let R be an m × 1 linguistic rule vector and
Ri is the ith element in R. For training data, we
set Ri = 1 if (xi, yi) ∈ D+ and Ri = −1 if
(xi, yi) ∈ D−, which follows the same settings as
those in S. For unlabeled pairs that do not match
any linguistic rules in C, we update Ri = Fi in
each iteration of the learning process, meaning no
loss for errors imposed in this part.

For other conditions, denote C(xi,yi) ⊆ C as the
collection of rules that (xi, yi) matches. If C(xi,yi)

are positive rules, we set Ri as follows:

Ri = max{Fi, max
cj∈C(xi,yi)

γj}

Similarly, if C(xi,yi) are negative rules, we have:

Ri = −max{−Fi, max
cj∈C(xi,yi)

γj}

which means Fi receives a penalty only if Fi <
maxcj∈C(xi,yi)

γj for pairs that match positive
rules or Fi > −maxcj∈C(xi,yi)

γj for negative
rules2. The objective function is: Or = ‖F−R‖22.
In this way, our model can integrate arbitrary
“soft” constraints, making it robust to false posi-
tives or negatives introduced by these rules.

3.3.3 Non-linear Learning
TransLP is a transductive label propagation frame-
work (Liu and Yang, 2015) for link prediction,
previously used for applications such as text clas-
sification (Xu et al., 2016). In our work, we extend
their work for our task, modeling non-linear map-
pings from entities to hypernyms.

2We do not consider the cases where a pair matches both
positive and negative rules because such cases are very rare,
and even non-existent in our datasets. However, our method
can deal with these cases by using some simple heuristics.
For example, we can update Ri using either of the following
two ways: i) Ri = Fi and ii) Ri = Fi +

∑
cj∈C(xi,yi)

γj .

1397

P1 The head word of the entity x matches that of the candidate hypernym y. For example,动物
(Animal) is the correct hypernym of哺乳动物 (Mammal).

N1 The head word of the entity x matches the non-head word of the candidate hypernym y. For
example,动物学 (Zoology) is not a hypernym of哺乳动物 (Mammal).

N2 The head word of the candidate hypernym y matches an entry in a Chinese lexicon extended
based on the lexicon used in Li et al. (2015). It consists of 184 non-taxonomic, thematic words
such as政治(Politics),军事(Military), etc.

Table 1: Three linguistic rules used in our work for Chinese hypernym prediction.

For is-a relations, we find that if y is the hyper-
nym of x, it is likely that y is the hypernym of enti-
ties that are semantically close to x. For example,
if we know United States is a country, we
can infer country is the hypernym of similar en-
tities such as Canada, Australia, etc. This in-
tuition can be encoded in the similarity of the two
pairs pi = (xi, yi) and pj = (xj , yj):

sim(pi, pj) =

{
cos(xi,xj) yi = yj

0 otherwise
(1)

where xi is the embedding vector of xi3.
This similarity indicates there exists a non-

linear mapping from entities to hypernyms, which
can not be encoded in linear projection based
methods (Fu et al., 2014; Wang and He, 2016).
Based on TransLP (Liu and Yang, 2015), this
intuition can be model as propagating class la-
bels (is-a or not-is-a) of labeled word/phrase pairs
to similar unlabeled ones based on Eq. (1).
For example, the score of is-a relations between
United State and country will propagate
to pairs such as (Canada, country) and
(Australia, country) by random walks.

Denote F∗ as the optimal solution of the prob-
lem min Os + Or. Inspired by (Liu and Yang,
2015; Xu et al., 2016), we can add a Gaussian
prior N(F∗,Σ) to F where Σ is the covariance
matrix and Σi,j = sim(pi, pj). Hence the opti-
mization objective of this part is defined as: On =
FTΣ−1F which is linearly proportional to the
negative likelihood of the Gaussian random field
prior. This means we minimize the training er-
ror and encourage F to have a smooth propagation
with respect to the similarities among pairs defined
by Eq. (1) at the same time.

3We only consider the similarity between entities and
not candidate hypernyms because the similar rule for
candidate hypernyms is not true. For example, nouns
close to country in our Skip-gram model are region,
department, etc. They are not all correct hypernyms of
United States, Canada, Australia, etc.

3.3.4 Joint Optimization

By combining the three components together, we
minimize the following function:

J(F) = Os + Or +
µ1
2

On +
µ2
2
‖F‖22 (2)

where ‖F‖22 imposes an additional smooth l2-
regularization on F. µ1 and µ2 are regularization
parameters that can be tuned manually.

Based on the convexity of the optimization
problem, we can learn the optimal values of F is
via gradient descent. The derivative of F with re-
spect to J(F) is:

dJ(F)

dF
= W2(F−S)+(F−R)+µ1Σ

−1F+µ2F

which is computationally expensive when m is
large. After W2, S, R and Σ−1 are pre-computed,
the runtime complexity of the loop of gradient de-
scent is O(tm2) where t is the number of itera-
tions.

To speed up the learning process, we introduce
a blockwise gradient descent technique. From the
definition of Eq. (2), we can see that the optimal
values of Fi and Fj with respect to (xi, yi) and
(xj , yj) are irrelevant if yi 6= yj . Therefore, the
original optimization problem can be decomposed
and solved separately according to different can-
didate hypernyms.

LetH be the collection of candidate hypernyms
in DU . For each h ∈ H , denote Dh as the col-
lection of word/phase pairs in D+ ∪ D− ∪ DU

that share the same candidate hypernym h. The
original problem can be decomposed into |H| op-
timization subproblems over Dh for each h ∈ H .
Denote Wh, Sh, Rh, Fh and Σh as the weight
matrix, the initial prediction vector, the rule pre-
diction vector, the final prediction vector and the
entity similarity covariance matrix with respect
Dh. The objective function can be rewritten as:

1398

J(F) =
∑

h∈H J̃(Fh) where

J̃(Fh) = ‖Wh(Fh − Sh)‖22 + ‖Fh −Rh‖22
+
µ1
2

FT
hΣ−1h Fh +

µ2
2
‖Fh‖22

We additionally use (n) to denote the values of
matrices or vectors in the nth iteration. F

(n)
h is it-

eratively updated based on the following equation:

F
(n+1)
h = F

(n)
h − η ·

dJ̃(F
(n)
h)

dF
(n)
h

where η is the learning rate. To this end, we
present the learning algorithm in Algorithm 1.

Algorithm 1 Learning Algorithm
1: Initialize Wh and Sh based on the initial pre-

diction model;
2: Randomly initialize F

(0)
h ;

3: Compute Σ−1h based on entity similarities;
4: Initialize counter n = 1;
5: for each linguistic rule ci ∈ C do
6: Estimate γi over the training set;
7: end for
8: while ‖F(n)

h − F
(n+1)
h ‖2 < 10−3 do

9: Compute R
(n)
h based on C and F

(n)
h ;

10: Calculate dJ̃(F(n)
h)

dF(n)
h

= W2
h(F

(n)
h − Sh) +

(F
(n)
h −R

(n)
h) + µ1Σ

−1
h F

(n)
h + µ2F

(n)
h ;

11: Compute F
(n+1)
h for the next iteration:

F
(n+1)
h = F

(n)
h − η ·

dJ̃(F(n)
h)

dF(n)
h

;

12: Update counter n = n+ 1;
13: end while
14: return Final prediction vector F

(n+1)
h ;

The runtime complexity of this algorithm is
O(
∑

h∈Dh
th|Dh|2) where th is the number of it-

erations to solve the subproblem over Dh. Al-
though we do not know the upper bounds on the
numbers of iterations of these two learning tech-
niques, the runtime complexity can be reduced
by blockwise gradient descent for two reasons: i)∑

h∈Dh
|Dh| ≤ m and ii) th has a large probabil-

ity to be smaller than t due to the smaller num-
ber of data instances. This technique can be also
viewed as optimizing Eq. (2) based on blockwise
matrix computation.

Finally, for each (xi, yi) ∈ DU , we predict that
yi is a hypernym of xi if Fi > θ where θ ∈ (−1, 1)
is a threshold tuned on the development set.

4 Experiments

In this section, we conduct experiments to eval-
uate our method. Section 4.1 to Section 4.5 re-
port the experimental steps on Chinese datasets.
We present the performance on English datasets
in Section 4.6 and a discussion in Section 4.7.

4.1 Experimental Data

We have two collections of Chinese word/phase
pairs as ground truth datasets. Each pair is labeled
with an is-a or not-is-a tag. The first one (denoted
as FD) is from Fu et al. (2014), containing 1,391
is-a pairs and 4,294 not-is-a pairs, which is the
first publicly available dataset to evaluate this task.
The second one (denoted as BK) is larger in size
and crawled from Baidu Baike by ourselves, con-
sisting of <entity, category> pairs. For each pair
in BK, we ask multiple human annotators to label
the tag and discard the pair with inconsistent la-
bels by different annotators. In total, it contains
3,870 is-a pairs and 3,582 not-is-a pairs4.

The Chinese text corpus is extracted from the
contents of 1.2M entity pages from Baidu Baike5,
a Chinese online encyclopedia. It contains ap-
proximately 1.1B words. We use the open source
toolkit Ansj6 for Chinese word segmentation. Chi-
nese words/phrases in our test sets may consist
of multiple Chinese characters. We treat such
word/phrase as a whole to learn embeddings, in-
stead of using character-level embeddings.

In the following experiments, we use 60% of the
data for training, 20% for development and 20%
for testing, partitioned randomly. By rotating the
5-fold subsets of the datasets, we report the per-
formance of each method on average.

4.2 Parameter Analysis

The word embeddings are pre-trained by ourselves
on the Chinese corpus. In total, we obtain the 100-
dimensional embedding vectors of 5.8M distinct
words. The regularization parameters are set to
λ = 10−3 and µ1 = µ2 = 10−4, fine tuned on the
development set.

The choice of θ reflects the precision-recall
trade-off in our model. A larger value of θ means
we pay more attention to precision rather than re-
call. Figure 2 illustrates the precision-recall curves

4https://chywang.github.io/data/acl17.zip
5https://baike.baidu.com/
6https://github.com/NLPchina/ansj seg/

1399

Dataset FD BK
Method P R F P R F
Fu et al. (2014) (S) 64.1 56.0 59.8 71.4 64.8 67.9
Fu et al. (2014) (P) 66.4 59.3 62.6 72.7 67.5 70.0
Li et al. (2015) 54.3 38.4 45.0 61.2 47.5 53.5
Mirza and Tonelli (2016) (C) 67.7 75.2 69.7 80.3 75.9 78.0
Mirza and Tonelli (2016) (A) 65.3 60.7 62.9 72.7 65.6 68.9
Mirza and Tonelli (2016) (S) 71.9 60.6 65.7 78.4 60.7 68.4
Wang and He (2016) 69.3 64.5 66.9 73.9 69.8 71.8
Ours (Initial) 70.7 69.2 69.9 81.7 78.5 80.0
Ours 72.8 70.5 71.6 83.6 80.6 82.1

Table 2: Performance comparison on test sets for Chinese hypernym prediction (%).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

(a) Dataset: FD

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Recall

Pr
ec
is
io
n

(b) Dataset: BK

Figure 2: Precision-recall curve with respect to the tuning of θ on development sets.

on both datasets. It can be seen that the perfor-
mance of our method is generally better in BK than
FD. The most probable cause is that BK is a large
dataset with more “balanced” numbers of positive
and negative data. Finally, θ is set to 0.05 on FD
and 0.1 on BK.

4.3 Performance

In a series of previous work (Fu et al., 2013,
2014; Wang and He, 2016), several pattern-based,
inference-based and encyclopedia-based is-a re-
lation extraction methods for English have been
implemented for the Chinese language. As their
experiments show, these methods achieve the F-
measure of lower than 60% in most cases, which
are not suggested to be strong baselines for Chi-
nese hypernym prediction. Interested readers may
refer to their papers for the experimental results.

To make the convincing conclusion, we employ
two recent state-of-the-art approaches for Chinese
is-a relation identification (Fu et al., 2014; Wang
and He, 2016) as baselines. We also take the word
embedding based classification approach (Mirza
and Tonelli, 2016)7 and Chinese Wikipedia based

7Although the experiments in their paper are mostly re-
lated to temporal relations, the method can be applied to is-a

SVM model (Li et al., 2015) as baselines to predict
is-a relations between words8. The experimental
results are illustrated in Table 2.

For Fu et al. (2014), we test the performance
using a linear projection model (denoted as S in
Table 2) and piecewise projection models (P). It
shows that the semantics of is-a relations are bet-
ter modeled by multiple projection models, with
a slight improvement in F-measure. By combin-
ing iterative projection models and pattern-based
validation, the most recent approach (Wang and
He, 2016) increases the F-measure by 4% and
2% in two datasets. In this method, the pattern-
based statistics are calculated using the same cor-
pus over which we train word embedding models.
The main reason of the improvement may be that
the projection models have a better generalization
power by applying an iterative learning paradigm.

Mirza and Tonelli (2016) is implemented using
three different strategies in combining the word
vectors of a pair: i) concatenation xi ⊕ yi (de-

relations without modification.
8Previously, these methods used different knowledge

sources to train models and thus the results in their papers
are not directly comparable with ours. To make fair compar-
ison, we take the training data as the same knowledge source
to train models for all methods.

1400

Candidate Hypernym P T Candidate Hypernym P T
Entity: 乙烯(Ethylene) Entity: 孙燕姿(Stefanie Sun)
化学品(Chemical)

√ √
歌手(Singer)

√ √
有机化学(Organic Chemistry) × × 明星(Star)

√ √
有机物(Organics)

√ √
人物(Person)

√ √
气体(Gas)

√ √
金曲奖 (Golden Melody Award)

√ ×
自然科学(Natural Science) × × 音乐人(Musician)

√ √
Entity: 显卡(Graphics Card) Entity: 核反应堆(Nuclear Reactor)
硬件(Hardware)

√ √
建筑学(Architecture) × ×

电子产品(Electronic Product)
√ √

核科学(Nuclear Science) × ×
电脑硬件(Computer Hardware)

√ √
核能 (Nuclear Energy)

√ ×
数码(Digit) × × 自然科学(Natural Science) × ×

Table 3: Examples of model prediction. (P: prediction result, T: ground truth,
√

: positive, ×: negative)

TP/TN Rate Rule P1 Rule N1 Rule N2
Dataset FD 98.6 92.3 94.1
Dataset BK 97.6 96.8 97.3

Table 4: TP/TN rates of three linguistic rules (%).

noted as C), ii) addition xi + yi (A) and iii) sub-
traction xi − yi (S). As seen, the classification
models using addition and subtraction have sim-
ilar performance in two datasets, while the con-
catenation strategy outperforms previous two ap-
proaches. Although Li et al. (2015) achieve a high
performance in their dataset, this method does not
perform well in ours. The most likely cause is that
the features in that work are designed specifically
for the Chinese Wikipedia category system. Our
initial model has a higher accuracy than all the
baselines. By utilizing the transductive learning
framework, we boost the F-measure by 1.7% and
2.1%, respectively. Therefore, our method is ef-
fective to predict hypernyms of Chinese entities.
We further conduct statistical tests which show our
method significantly (p < 0.01) improves the F-
measure over the state-of-the-art method (Wang
and He, 2016).

4.4 Effectiveness of Linguistic Rules

To illustrate the effectiveness of linguistic rules,
we present the true positive (or negative) rate by
using one positive (or negative) rule solely, shown
in Table 4. These values serve as γis in the trans-
ductive learning stage. The results indicate that
these rules have high precision (over 90%) over
both datasets for our task.

We state that currently we only use a few hand-
craft linguistic rules in our work. The proposed
approach is a general framework that can encode
arbitrary numbers of rules and in any language.

4.5 Error Analysis and Case Studies

We analyze correct and error cases in the exper-
iments. Some examples of prediction results are
shown in Table 3. We can see that our method
is generally effective. However, some mistakes
occur mostly because it is difficult to distinguish
strict is-a and topic-of relations. For example, the
entity Nuclear Reactor is semantically close
to Nuclear Energy. The error statistics show
that such kind of errors account for approximately
80.2% and 78.6% in two test sets, respectively.

Based on the literature study, we find that such
problem has been also reported in (Fu et al., 2013;
Wang and He, 2016). To reduce such errors, we
employ the Chinese thematic lexicon based on Li
et al. (2015) in the transductive learning stage but
the coverage is still limited. Two possible solu-
tions are: i) adding more negative training data
of this kind; and ii) constructing a large-scale the-
matic lexicon automatically from the Web.

4.6 Experiments on English Datasets

To examine how our method can benefit hyper-
nym prediction for the English language, we use
two standard datasets in this paper. The first one
is a benchmark dataset for distributional semantic
evaluation, i.e., BLESS (Baroni and Lenci, 2011).
Because the number of pairs in BLESS is relatively
small, we also use the Shwartz (Shwartz et al.,
2016) dataset. In the experiments, we treat the
HYPER relations as positive data (1,337 pairs) and
randomly sample 30% of the RANDOM relations
as negative data (3,754 pairs) in BLESS. To create
a relatively balanced dataset, we take the random
split of Shwartz as input and use only 30% of the
negative pairs. The dataset contains 14,135 posi-
tive pairs and 16,956 negative pairs. We use En-
glish Wikipedia as the text corpus to estimate the

1401

Dataset BLESS Shwartz
Method P R F P R F
Lenci and Benotto (2012) 42.8 38.6 40.6 38.5 50.1 43.5
Santus et al. (2014) 59.2 52.3 55.4 51.2 71.5 59.6
Fu et al. (2014) (S) 65.3 62.4 63.8 65.6 66.1 65.8
Fu et al. (2014) (P) 68.1 64.2 66.1 62.3 71.9 67.3
Mirza and Tonelli (2016) (C) 79.4 84.1 81.7 79.3 80.9 80.1
Mirza and Tonelli (2016) (A) 80.7 72.3 76.3 79.1 79.6 79.4
Mirza and Tonelli (2016) (S) 78.0 81.2 79.6 80.5 77.5 79.0
Wang and He (2016) 76.2 75.4 75.8 75.1 76.3 75.6
Ours (Initial) 79.3 76.3 77.7 77.2 76.8 77.0
Ours 84.4 79.5 81.9 79.1 77.5 78.3

Table 5: Performance comparison on test sets for English hypernym prediction (%).

statistics, and the pre-trained embedding vectors
of English words9.

For comparison, we test all the baselines over
English datasets except Li et al. (2015). This is
because most features in Li et al. (2015) can only
be used in the Chinese environment. To imple-
ment Wang and He (2016) for English, we use the
original Hearst patterns (Hearst, 1992) to perform
relation selection and do not consider not-is-a pat-
terns. We also take two recent DSM based ap-
proaches (Lenci and Benotto, 2012; Santus et al.,
2014) as baselines. As for our own method, we
do not use linguistic rules in Table 1 for English.
The results are illustrated in Table 5. As seen, our
method is superior to all the baselines over BLESS,
with an F-measure of 81.9%. In Shwartz, while
the approach (Mirza and Tonelli, 2016) has the
highest F-measure of 80.1%, our method is gen-
erally comparable to theirs and outperforms oth-
ers. The results suggest that although our method
is not necessarily the state-of-the-art for English
hypernym prediction, it has several potential ap-
plications. Refer to Section 4.7 for discussion.

4.7 Discussion

From the experiments, we can see that the pro-
posed approach outperforms the state-of-the-art
methods for Chinese hypernym prediction. Al-
though the English language is not our focus,
our approach still has relatively high performance.
Additionally, our work has potential values for the
following applications:

• Domain-specific or Context-sparse Rela-
tion Extraction. If the task is to predict re-

9http://nlp.stanford.edu/projects/glove/

lations between words when it is related to
a specific domain or the contexts are sparse,
even for English, traditional pattern-based
methods are likely to fail. Our method can
predict the existence of relations without ex-
plicit textual patterns and requires a relatively
small amount of pairs as training data.

• Under-resourced Language Learning. Our
method can be adapted for relation ex-
traction in languages with flexible expres-
sions, few knowledge resources and/or low-
performance NLP tools. Our method does
not require deep NLP parsing of sentences in
a text corpus and thus the performance is not
affected by parsing errors.

5 Conclusion

In summary, this paper introduces a transuctive
learning approach for Chinese hypernym predic-
tion. By modeling linear projection models, lin-
guistic rules and non-linear mappings, our method
is able to identify Chinese hypernyms with high
accuracy. Experiments show that the performance
of our method outperforms previous approaches.
We also discuss the potential applications of our
method besides Chinese hypernym prediction. In
our work, the candidate Chinese hyponyms and
hypernyms are extracted from user generated cat-
egories. In the future, we will study how to con-
struct a taxonomy from texts in Chinese.

Acknowledgements

This work is supported by the National Key Re-
search and Development Program of China under
Grant No. 2016YFB1000904.

1402

References
Marco Baroni and Alessandro Lenci. 2011. How we

blessed distributional semantic evaluation. In Pro-
ceedings of the GEMS 2011 Workshop on GEomet-
rical Models of Natural Language Semantics. pages
1—-10.

Rahul Bhagat, Patrick Pantel, and Eduard H. Hovy.
2007. LEDIR: an unsupervised algorithm for learn-
ing directionality of inference rules. In Proceedings
of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning. pages 161–170.

Sharon A. Caraballo. 1999. Automatic construction of
a hypernym-labeled noun hierarchy from text. In
27th Annual Meeting of the Association for Compu-
tational Linguistics.

Andrew Carlson, Justin Betteridge, Richard C. Wang,
Estevam R. Hruschka Jr., and Tom M. Mitchell.
2010. Coupled semi-supervised learning for infor-
mation extraction. In Proceedings of the Third Inter-
national Conference on Web Search and Web Data
Mining. pages 101–110.

Olivier Chapelle, Bernhard Schölkopf, and Alexan-
der Zien. 2006. Transductive Inference and Semi-
Supervised Learning. MIT Press.

Oren Etzioni, Michael J. Cafarella, Doug Downey,
Stanley Kok, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S. Weld, and Alexan-
der Yates. 2004. Web-scale information extraction
in knowitall: (preliminary results). In Proceedings
of the 13th international conference on World Wide
Web. pages 100–110.

Ruiji Fu, Jiang Guo, Bing Qin, Wanxiang Che, Haifeng
Wang, and Ting Liu. 2014. Learning semantic hier-
archies via word embeddings. In Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics. pages 1199–1209.

Ruiji Fu, Bing Qin, and Ting Liu. 2013. Exploiting
multiple sources for open-domain hypernym discov-
ery. In Proceedings of the 2013 Conference on Em-
pirical Methods in Natural Language Processing.
pages 1224–1234.

Alexander Gammerman, Katy S. Azoury, and Vladimir
Vapnik. 1998. Learning by transduction. In Pro-
ceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence. pages 148–155.

Gene H. Golub, Per Christian Hansen, and Dianne P.
O’Leary. 1999. Tikhonov regularization and total
least squares. SIAM J. Matrix Analysis Applications
21(1):185–194.

Marti A. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In 14th Inter-
national Conference on Computational Linguistics.
pages 539–545.

Chu-Ren Huang, Ru-Yng Chang, and Hshiang-Pin
Lee. 2004. Sinica BOW (bilingual ontological
wordnet): Integration of bilingual wordnet and
SUMO. In Proceedings of the Fourth International
Conference on Language Resources and Evaluation.

Lili Kotlerman, Ido Dagan, Idan Szpektor, and Maayan
Zhitomirsky-Geffet. 2010. Directional distribu-
tional similarity for lexical inference. Natural Lan-
guage Engineering 16(4):359–389.

Zornitsa Kozareva and Eduard H. Hovy. 2010. Learn-
ing arguments and supertypes of semantic relations
using recursive patterns. In Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics. pages 1482–1491.

Alessandro Lenci and Giulia Benotto. 2012. Identify-
ing hypernyms in distributional semantic spaces. In
Proceedings of the Sixth International Workshop on
Semantic Evaluation. pages 543–546.

Hai-Guang Li, Xindong Wu, Zhao Li, and Gong-Qing
Wu. 2013. A relation extraction method of chinese
named entities based on location and semantic fea-
tures. Appl. Intell. 38(1):1–15.

Jinyang Li, Chengyu Wang, Xiaofeng He, Rong Zhang,
and Ming Gao. 2015. User generated content ori-
ented chinese taxonomy construction. In Web Tech-
nologies and Applications - 17th Asia-Pacific Web
Conference. pages 623–634.

Hanxiao Liu and Yiming Yang. 2015. Bipartite edge
prediction via transductive learning over product
graphs. In Proceedings of the 32nd International
Conference on Machine Learning. pages 1880–
1888.

Weiming Lu, Renjie Lou, Hao Dai, Zhenyu Zhang,
Shansong Yang, and Baogang Wei. 2015. Taxon-
omy induction from chinese encyclopedias by com-
binatorial optimization. In Proceedings of the 4th
CCF Conference on Natural Language Processing
and Chinese Computing. pages 299–312.

Anil Menon, Kishan Mehrotra, Chilukuri K. Mohan,
and Sanjay Ranka. 1996. Characterization of a class
of sigmoid functions with applications to neural net-
works. Neural Networks 9(5):819–835.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781.

George A. Miller. 1995. Wordnet: a lexical database
for english. Communications of the Acm 38(11):39–
41.

Paramita Mirza and Sara Tonelli. 2016. On the con-
tribution of word embeddings to temporal relation
classification. In Proceedings of the 26th Inter-
national Conference on Computational Linguistics.
pages 2818–2828.

1403

Patrick Pantel and Marco Pennacchiotti. 2006.
Espresso: Leveraging generic patterns for automati-
cally harvesting semantic relations. In Proceedings
of the 21st International Conference on Computa-
tional Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics.

Simone Paolo Ponzetto and Michael Strube. 2007. De-
riving a large-scale taxonomy from wikipedia. In
Proceedings of the Twenty-Second AAAI Conference
on Artificial Intelligence. pages 1440–1445.

Xiang Ren, Wenqi He, Meng Qu, Lifu Huang, Heng
Ji, and Jiawei Han. 2016. AFET: automatic fine-
grained entity typing by hierarchical partial-label
embedding. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing. pages 1369–1378.

Alan Ritter, Stephen Soderland, and Oren Etzioni.
2009. What is this, anyway: Automatic hypernym
discovery. In Learning by Reading and Learning to
Read, the 2009 AAAI Spring Symposium. pages 88–
93.

Erik F. Tjong Kim Sang. 2007. Extracting hypernym
pairs from the web. In Proceedings of the 45th An-
nual Meeting of the Association for Computational
Linguistics.

Erik F. Tjong Kim Sang and Katja Hofmann. 2009.
Lexical patterns or dependency patterns: Which is
better for hypernym extraction? In Proceedings of
the Thirteenth Conference on Computational Natu-
ral Language Learning. pages 174–182.

Enrico Santus, Alessandro Lenci, Qin Lu, and
Sabine Schulte im Walde. 2014. Chasing hyper-
nyms in vector spaces with entropy. In Proceed-
ings of the 14th Conference of the European Chap-
ter of the Association for Computational Linguistics.
pages 38–42.

Vered Shwartz, Yoav Goldberg, and Ido Dagan. 2016.
Improving hypernymy detection with an integrated
path-based and distributional method. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics.

Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. 2004.
Learning syntactic patterns for automatic hypernym
discovery. In Advances in Neural Information Pro-
cessing Systems 17, NIPS 2004. pages 1297–1304.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th International Con-
ference on World Wide Web. pages 697–706.

Idan Szpektor, Eyal Shnarch, and Ido Dagan. 2007.
Instance-based evaluation of entailment rule acqui-
sition. In Proceedings of the 45th Annual Meeting of
the Association for Computational Linguistics. page
456–463.

Chengyu Wang, Ming Gao, Xiaofeng He, and Rong
Zhang. 2015. Challenges in chinese knowledge
graph construction. In Proceedings of the 31st
IEEE International Conference on Data Engineer-
ing Workshops. pages 59–61.

Chengyu Wang and Xiaofeng He. 2016. Chinese
hypernym-hyponym extraction from user generated
categories. In Proceedings of the 26th Interna-
tional Conference on Computational Linguistics.
pages 1350–1361.

Shan Wang and Francis Bond. 2013. Cbuilding the
chinese open wordnet (cow): Starting from core
synsets. In Proceedings of the 11th Workshop on
Asian Language Resources: ALR-2013 a Workshop
of The 6th International Joint Conference on Natu-
ral Language Processing. pages 10–18.

Wentao Wu, Hongsong Li, Haixun Wang, and
Kenny Qili Zhu. 2012. Probase: a probabilistic tax-
onomy for text understanding. In Proceedings of the
ACM SIGMOD International Conference on Man-
agement of Data. pages 481–492.

Renjie Xu, Zhiqiang Gao, Yingji Pan, Yuzhong Qu, and
Zhisheng Huang. 2008. An integrated approach for
automatic construction of bilingual chinese-english
wordnet. In The Semantic Web, Proceedings of the
3rd Asian Semantic Web Conference. pages 302–
314.

Ruochen Xu, Yiming Yang, Hanxiao Liu, and An-
drew Hsi. 2016. Cross-lingual text classification via
model translation with limited dictionaries. In Pro-
ceedings of the 25th ACM International on Confer-
ence on Information and Knowledge Management.
pages 95–104.

1404

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1405–1414
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1129

A Constituent-Centric Neural Architecture for Reading Comprehension

Pengtao Xie*† and Eric P. Xing†
*Machine Learning Department, Carnegie Mellon University

†Petuum Inc.
pengtaox@cs.cmu.edu, eric.xing@petuum.com

Abstract

Reading comprehension (RC), aiming to
understand natural texts and answer ques-
tions therein, is a challenging task. In
this paper, we study the RC problem on
the Stanford Question Answering Dataset
(SQuAD). Observing from the training set
that most correct answers are centered
around constituents in the parse tree, we
design a constituent-centric neural archi-
tecture where the generation of candidate
answers and their representation learning
are both based on constituents and guided
by the parse tree. Under this architec-
ture, the search space of candidate answers
can be greatly reduced without sacrificing
the coverage of correct answers and the
syntactic, hierarchical and compositional
structure among constituents can be well
captured, which contributes to better rep-
resentation learning of the candidate an-
swers. On SQuAD, our method achieves
the state of the art performance and the ab-
lation study corroborates the effectiveness
of individual modules.

1 Introduction

Reading comprehension (RC) aims to answer
questions by understanding texts, which is a chal-
lenge task in natural language processing. Var-
ious RC tasks and datasets have been devel-
oped, including Machine Comprehension Test
(Richardson et al., 2013) for multiple-choice ques-
tion answering (QA) (Sachan et al., 2015; Wang
and McAllester, 2015), Algebra (Hosseini et al.,
2014) and Science (Clark and Etzioni, 2016) for
passing standardized tests (Clark et al., 2016),
CNN/Daily Mail (Hermann et al., 2015) and Chil-
dren’s Book Test (Hill et al., 2015) for cloze-style

 The most authoritative account at the time came from

the medical faculty in Paris in a report to the king of

France that blamed the heavens. This report became

the first and most widely circulated of a series of

plague tracts that sought to give advice to sufferers.

That the plague was caused by bad air became the most

widely accepted theory. Today, this is known as the

Miasma theory.

1. Who was the medical report written for?

the king of France

2. What is the newer, more widely accepted theory

behind the spread of the plague?

bad air

3. What is the bad air theory officially known as?

Miasma theory

Figure 1: An example of the SQuAD QA task

QA (Chen et al., 2016; Shen et al., 2016), Wik-
iQA (Yang et al., 2015), Stanford Question An-
swering Dataset (SQuAD) (Rajpurkar et al., 2016)
and Microsoft Machine Reading Comprehension
(Nguyen et al., 2016) for open domain QA. In this
paper, we are specifically interested in solving the
SQuAD QA task (Figure 1 shows an example),
in light of its following features: (1) large scale:
107,785 questions, 23,215 paragraphs; (2) non-
synthetic: questions are generated by crowdwork-
ers; (3) large search space of candidate answers.

We study two major problems: (1) how to
generate candidate answers? Unlike in multiple-
choice QA and cloze-style QA where a small
amount of answer choices are given, an answer in
SQuAD could be any span in the text, resulting
in a large search space with sizeO(n2) (Rajpurkar
et al., 2016), where n is the number of words in the
sentence. This would incur a lot of noise, ambigu-

1405

https://doi.org/10.18653/v1/P17-1129

ity and uncertainty, making it highly difficult to
pick up the correct answer. (2) how to effectively
represent the candidate answers? First, long-range
semantics spanning multiple sentences need to be
captured. As noted in (Rajpurkar et al., 2016), the
answering of many questions requires multiple-
sentence reasoning. For instance, in Figure 1, the
last two sentences in the passages are needed to
answer the third question. Second, local syntac-
tic structure needs to be incorporated into repre-
sentation learning. The study by (Rajpurkar et al.,
2016) shows that syntax plays an important role in
SQuAD QA: there are a wide range of syntactic di-
vergence between a question and the sentence con-
taining the answer; the answering of 64.1% ques-
tions needs to deal with syntactic variation; exper-
iments show that syntactic features are the major
contributing factors to good performance.

To tackle the first problem, motivated by the
observation in (Rajpurkar et al., 2016) that the
correct answers picked up by human are not ar-
bitrary spans, but rather centered around con-
stituents in the parse tree, we generate candidate
answers based upon constituents, which signifi-
cantly reduces the search space. Different from
(Rajpurkar et al., 2016) who only consider ex-
act constituents, we adopt a constituent expansion
mechanism which greatly improves the coverage
of correct answers.

For the representation learning of candidate an-
swers which are sequences of constituents, we
first encode individual constituents using a chain-
of-trees LSTM (CT-LSTM) and tree-guided at-
tention mechanism, then feed these encodings
into a chain LSTM (Hochreiter and Schmidhu-
ber, 1997) to generate representations for the con-
stituent sequences. The CT-LSTM seamlessly
integrates intra-sentence tree LSTMs (Tai et al.,
2015) which capture the local syntactic properties
of constituents and an inter-sentence chain LSTM
which glues together the sequence of tree LSTMs
such that the semantics of each sentence can be
propagated to others. The tree-guided attention
leverages the hierarchical relations among con-
stituents to learn question-aware representations.

Putting these pieces together, we design
a constituent-centric neural network (CCNN),
which contains four layers: a chain-of-trees LSTM
encoding layer, a tree-guided attention layer and
a candidate-answer generation layer, a prediction
layer. Evaluation on SQuAD demonstrates the ef-

0

20

40

60

80

0 1 2 3 4 5 6 7 8 >8

P
e

rc
e

n
ta

ge
 o

f

A
n

sw
e

rs
 (

%
)

Number of different words N

Figure 2: Percentage of answers that differ from
their closest constituents by N words

That	
 the	
 plague	
 was	
 caused	
 by	
 bad	
 air	

became	
 the	
 most	
 widely	
 accepted	
 theory.	

Today,	
 this	
 is	
 known	
 as	
 the	
 Miasma	
 theory.

Chain-­‐of-­‐Trees LSTM
for Passage Encoding

What	
 is	
 the	
 bad	
 air	
 theory	
 officially	
 known as?

Tree LSTM for
Question Encoding

Tree-­‐Guided Attention
Encoder

Candidate Answer
Generation

the	
 plague bad	
 air …… is	
 known	
 as Miasma	
 theory

Answer Prediction

Miasma	
 theory

Passage
Question

Candidate
Answers

Correct Answer

Figure 3: Constituent-centric neural network.

fectiveness of CCNN.

2 Constituent-Centric Neural Network
for Reading Comprehension

2.1 Overall Architecture

As observed in (Rajpurkar et al., 2016), almost
all correct answers are centered around the con-
stituents. To formally confirm this, we compare
the correct answers in the training set with con-
stituents generated by the Stanford parser (Man-
ning et al., 2014): for each correct answer, we find
its “closest” constituent – the longest constituent
that is a substring of the answer, and count how
many words they differ from (let N denote this
number). Figure 2 shows the percentage of an-
swers whose N equals to 0, · · · , 8 and N > 8.
As can be seen, ∼70% answers are exactly con-
stituents (N = 0) and ∼97% answers differ from
the closest constituents by less equal to 4 words.
This observation motivates us to approach the

1406

reading comprehension problem in a constituent-
centric manner, where the generation of candidate
answers and their representation learning are both
based upon constituents.

Specifically, we design a Constituent-Centric
Neural Network (CCNN) to perform end-to-end
reading comprehension, where the inputs are the
passage and question, and the output is a span in
the passage that is mostly suitable to answer this
question. As shown in Figure 3, the CCNN con-
tains four layers. In the encoding layer, the chain-
of-trees LSTM and tree LSTM encode the con-
stituents in the passage and question respectively.
The encodings are fed to the tree-guided atten-
tion layer to learn question-aware representations,
which are passed to the candidate-answer gener-
ation layer to produce and encode the candidate
answers based on constituent expansion. Finally,
the prediction layer picks up the best answer from
the candidates using a feed-forward network.

2.2 Encoding

Given the passages and questions, we first use
the Stanford parser to parse them into constituent
parse trees, then the encoding layer of CCNN
learns representations for constituents in questions
and passages, using tree LSTM (Tai et al., 2015)
and chain-of-trees LSTM respectively. These
LSTM encoders are able to capture the syntactic
properties of constituents and long-range seman-
tics across multiple sentences, which are crucial
for SQuAD QA.

2.2.1 Tree LSTM for Question Encoding

Each question is a single sentence, having one
constituent parse tree. Internal nodes in the tree
represent constituents having more than one word
and leaf nodes represent single-word constituent.
Inspired by (Tai et al., 2015; Teng and Zhang,
2016), we build a bi-directional tree LSTM which
consists of a bottom-up LSTM and a top-down
LSTM, to encode these constituents (as shown in
Figure 4). Each node (constituent) has two hid-
den states: h↑ produced by the LSTM in bottom-
up direction and h↓ produced by the LSTM in
top-down direction. Let T denote the maximum
number of children an internal node could have.
For each particular node, let L (0 ≤ L ≤ T) be
the number of children it has, h(l)

↑ and c
(l)
↑ be the

bottom-up hidden state and memory cell of the l-
th (1 ≤ l ≤ L) child (if any) respectively and h

(p)
↓

S

N VP

V NP

D N

John hit the ball.

S

NP VBZ

DT NP

N

The refereeyoung

ADJ

whistled.

…... …...

Figure 4: Chain-of-trees LSTM

and c
(p)
↓ be the top-down hidden state and memory

cell of the parent.
In the bottom-up LSTM, each node has an input

gate i↑, L forget gates {f (l)↑ }Ll=1 corresponding to
different children, an output gate o↑ and a memory
cell c↑. For an internal node, the inputs are the
hidden states and memory cells of its children and
the transition equations are defined as:

i↑ = σ(
∑L

l=1W
(i,l)
↑ h

(l)
↑ + b

(i)
↑)

∀l, f (l)↑ = σ(W
(f,l)
↑ h

(l)
↑ + b

(f,l)
↑)

o↑ = σ(
∑L

l=1W
(o,l)
↑ h

(l)
↑ + b

(o)
↑)

u↑ = tanh(
∑L

l=1W
(u,l)
↑ h

(l)
↑ + b

(u)
↑)

c↑ = i↑ � u↑ +
∑L

l=1 f
(l)
↑ � c

(l)
↑

h↑ = o↑ � tanh(c↑)

(1)

where the weight parameters W and bias parame-
ters b with superscript l such as W(i,l)

↑ are specific
to the l-th child. For a leaf node which represents
a single word, it has no forget gate and the input is
the wording embedding (Pennington et al., 2014)
of this word.

In the top-down direction, the gates, memory
cell and hidden state are defined in a similar fash-
ion as the bottom-up direction (Eq.(1)). For an in-
ternal node except the root, the inputs are the hid-
den state h

(p)
↓ and memory cell c(p)↓ of its parents.

For a leaf node, in addition to h
(p)
↓ and c

(p)
↓ , the

inputs also contain the word embedding. For the
root node, the top-down hidden state h

(r)
↓ is set to

its bottom-up hidden state h
(r)
↑ . h

(r)
↑ captures the

semantics of all constituents, which is then repli-
cated as hr↓ and propagated downwards to each in-
dividual constituent.

Concatenating the hidden states of two direc-
tions, we obtain the LSTM encoding for each node

1407

h = [h↑;h↓] which will be the input of the atten-
tion layer. The bottom-up hidden state h↑ com-
poses the semantics of sub-constituents contained
in this constituent and the top-down hidden state
h↓ captures the contextual semantics manifested
in the entire sentence.

2.2.2 Chain-of-Trees LSTM for Passage
Encoding

To encode the passage which contains multiple
sentences, we design a chain-of-trees LSTM (Fig-
ure 4). A bi-directional tree LSTM is built for
each sentence to capture the local syntactic struc-
ture and these tree LSTMs are glued together via
a bi-directional chain LSTM (Graves et al., 2013)
to capture long-range semantics spanning multi-
ple sentences. The hidden states generated by the
bottom-up tree LSTM serves as the input of the
chain LSTM. Likewise, the chain LSTM states are
fed to the top-down tree LSTM. This enables the
encoding of every constituent to be propagated to
all other constituents in the passage.

In the chain LSTM, each sentence t is treated as
a unit. The input of this unit is generated by the
tree LSTM of sentence t, which is the bottom-up
hidden state h↑t at the root. Sentence t is associ-
ated with a forward hidden state

−→
h t and a back-

ward state
←−
h t. In the forward direction, the tran-

sition equations among the input gate
−→
i t, forget

gate
−→
f t, output gate −→o t and memory cell −→c t are:

−→
i t = σ(

−→
W(i)h↑t +

−→
U(i)−→h t−1 +

−→
b (i))−→

f t = σ(
−→
W(f)h↑t +

−→
U(f)−→h t−1 +

−→
b (f))

−→o t = σ(
−→
W(o)h↑t +

−→
U(o)−→h t−1 +

−→
b (o))

−→u t = tanh(
−→
W(u)h↑t +

−→
U(u)−→h t−1 +

−→
b (u))

−→c t =
−→
i t �−→u t +

−→
f t �−→c t−1−→

h t =
−→o t � tanh(−→c t)

(2)
The backward LSTM is defined in a similar way.
Subsequently,

−→
h t and

←−
h t, which encapsulate the

semantics of all sentences, are inputted to the root
of the top-down tree LSTM and propagated to all
the constituents in sentence t.

To sum up, the CT-LSTM encodes a passage in
the following way: (1) the bottom-up tree LSTMs
compute hidden states h↑ for each sentence and
feed h↑ of the root node into the chain LSTM; (2)
the chain LSTM computes forward and backward
states and feed them into the root of the top-down
tree LSTMs; (3) the top-down tree LSTMs com-

pute hidden states h↓. At each constituent C, the
bottom-up state h↑ captures the semantics of sub-
constituents in C and the top-down state h↓ cap-
tures the semantics of the entire passage.

2.3 Tree-Guided Attention Mechanism
We propose a tree-guided attention (TGA) mech-
anism to learn a question-aware representation for
each constituent in the passage, which consists of
three ingredients: (1) constituent-level attention
score computation; (2) tree-guided local normal-
ization; (3) tree-guided attentional summarization.
Given a constituent h(p) in the passage, for each
constituent h(q) in the question, an unnormalized
attention weight score a is computed as a = h(p) ·
h(q) which measures the similarity between the
two constituents. Then we perform a tree-guided
local normalization of these scores. At each in-
ternal node in the parse tree, where the unnormal-
ized attention scores of its L children are {al}Ll=1,
a local normalization is performed using a softmax
operation ãl = exp(al)/

∑L
m=1 exp(am) which

maps these scores into a probabilistic simplex.
This normalization scheme stands in contrast with
the global normalization adopted in word-based
attention (Wang and Jiang, 2016; Wang et al.,
2016), where a single softmax is globally applied
to the attention scores of all the words in the ques-
tion.

Given these locally normalized attention scores,
we merge the LSTM encodings of constituents in
the question into an attentional representation in
a recursive and bottom-up way. At each internal
node, let h be its LSTM encoding, a and {al}Ll=1

be the normalized attention scores of this node and
its L children, and {bl}Ll=1 be the attentional rep-
resentations (which we will define later) generated
at the children, then the attentional representation
b of this node is defined as:

b = a(h+
L∑

l=1

albl) (3)

which takes the weighted representation∑L
l=1 albl contributed from its children, adds in

its own encoding h, then performs a re-weighting
using the attention score a. The attentional rep-
resentation b(r) at the root node acts as the final
summarization of constituents in the question. We
concatenate it to the LSTM encoding h(p) of the
passage constituent and obtain a concatenated
representation z = [h(p);b(r)] which will be the
input of the candidate answer generation layer.

1408

C5

It C4

C2 C3came

from C1 in

the medical faculty

Paris

Expansion	
 of	
 C1	
 (“the	
 medical	
 faculty”)
1. C1
2. from	
 the	
 medical	
 faculty	
 	
 è C2
3. came	
 from	
 the	
 medical	
 faculty	
 è came	
 C2
4. the	
 medical	
 faculty	
 in	
 è C1	
 in
5. the medical	
 faculty	
 in	
 Paris	
 è C1 C3
6. from	
 the	
 medical	
 faculty	
 	
 in	
 è C2 in
7. from	
 the	
 medical	
 faculty	
 in	
 Paris	
 è C2 C3
8. came	
 from	
 the	
 medical	
 faculty	
 in	
 è came C2	
 in
9. came	
 from	
 the	
 medical	
 faculty	
 in	
 Paris	
 è C4

came C2 in

Figure 5: Constituent expansion. (Left) Parse tree
of a sentence in the passage. (Top Right) Expan-
sions of constituent C1 and their reductions (de-
noted by arrow). (Bottom Right) Learning the
representation of an expansion using bidirectional
chain-LSTM.

Unlike the word-based flat-structure attention
mechanism (Wang and Jiang, 2016; Wang et al.,
2016) where the attention scores are computed be-
tween words and normalized using a single global
softmax, and the attentional summary is computed
in a flat manner, the tree-guided attention calcu-
lates attention scores between constituents, nor-
malizes them locally at each node in the parse tree
and computes the attentional summary in a hierar-
chical way. Tailored to the parse tree, TGA is able
to capture the syntactic, hierarchical and composi-
tional structures among constituents and arguably
generate better attentional representations, as we
will validate in the experiments.

2.4 Candidate Answer Generation

As shown in Figure 2, while most correct answers
in the training set are exactly constituents, some of
them are not the case. To cover the non-constituent
answers, we propose to expand each constituent
by appending words adjacent to it. Let C denote
a constituent and S = “ · · ·wi−1wiCwjwj+1 · · · ”
be the sentence containingC. We expandC by ap-
pending words preceding C (such as wi−1 and wi)
and words succeeding C (such as wj and wj+1) to
C. We define an (l, r)-expansion of a constituent
C as follows: append l words preceding C in the
sentence to C; append r words succeeding C to
C. Let M be the maximum expansion number
that l ≤ M and r ≤ M . Figure 5 shows an ex-
ample. On the left is the constituent parse tree
of the sentence “it came from the medical fac-
ulty in Paris”. On the upper right are the expan-
sions of the constituent C1 – “the medical fac-
ulty”. To expand this constituent, we trace it back
to the sentence and look up the M (M=2 in this

case) words preceding C1 (which are “came” and
“from”) and succeeding C1 (which are “in” and
“Paris”). Then combinations of C1 and the preced-
ing/succeeding words are taken to generate con-
stituent expansions. On both the left and right side
of C1, we have three choices of expansion: ex-
panding 0,1,2 words. Taking combination of these
cases, we obtain 9 expansions, including C1 itself
((0, 0)-expansion).

The next step is to perform reduction of con-
stituent expansions. Two things need to be re-
duced. First, while expanding the current con-
stituent, new constituents may come into being.
For instance, in the expansion “came from C1 in
Paris”, “in” and “Paris” form a constituent C3;
“from” and C1 form a constituent C2; “came”, C2
and C3 form a constituent C4. Eventually, this
expansion is reduced to C4. Second, the expan-
sions generated from different constituents may
have overlap and the duplicated expansions need
to be removed. For example, the (2, 1)-expansion
of C1 – “came from the medical faculty in” – can
be reduced to “came C2 in”, which is the (1, 1)-
expansion of C2. After reduction, each expansion
is a sequence of constituents.

Next we encode these candidate answers and
the encodings will be utilized in the prediction
layer. In light of the fact that each expansion is
a constituent sequence, we build a bi-directional
chain LSTM (Figure 5, bottom right) to synthe-
size the representations of individual constituents
therein. Let E = C1 · · ·Cn be an expansion con-
sisting of n constituents. In the chain LSTM, the
input of unit i is the combined representation of
Ci. We concatenate the forward hidden state at
Cn and backward state at C1 as the final represen-
tation of E.

2.5 Answer Prediction and Parameter
Learning

Given the representation of candidate answers, we
use a feed-forward network f : Rd → R to predict
the correct answer. The input of the network is the
feature vector of a candidate answer and the output
is a confidence score. The one with the largest
score is chosen as the the correct answer.

For parameter learning, we normalize the con-
fidence scores into a probabilistic simplex using
softmax and define a cross entropy loss thereupon.
Let Jk be the number of candidate answers pro-
duced from the k-th passage-question pair and

1409

{z(k)j }Jkj=1 be their representations. Let tk be the
index of the correct answer. Then the cross en-
tropy loss of K pairs is defined as

K∑

k=1

(−f(ztk) + log

Jk∑

j=1

exp(f(z
(k)
j))) (4)

Model parameters are learned by minimizing this
loss using stochastic gradient descent.

3 Experiments

3.1 Experimental Setup
The experiments are conducted on the Stan-
ford Question Answering Dataset (SQuAD) v1.1,
which contains 107,785 questions and 23,215 pas-
sages coming from 536 Wikipedia articles. The
data was randomly partitioned into a training set
(80%), a development set (10%) and an unreleased
test set (10%). Rajpurkar et al. (2016) build a
leaderboard to evaluate and publish results on the
test set. Due to software copyright issues, we did
not participate this online evaluation. Instead, we
use the development set (which is untouched dur-
ing model training) as test set. In training, if the
correct answer is not in the candidate-answer set,
we use the shortest candidate containing the cor-
rect answer as the target.

The Stanford parser is utilized to obtain the con-
stituent parse trees for questions and passages.
In the parse tree, any internal node which has
one child is merged together with its child. For
instance, in “(NP (NNS sufferers))”, the parent
“NP” has only one child “(NNS sufferers)”, we
merge them into “(NP sufferers)”. We use 300-
dimensional word embeddings from GloVe (Pen-
nington et al., 2014) to initialize the model. Words
not found in GloVe are initialized as zero vectors.

We use a feed-forward network with 2 hidden
layers (both having the same amount of units)
for answer prediction. The activation function is
set to rectified linear. Hyperparameters in CCNN
are tuned via 5-fold cross validation (CV) on the
training set, summarized in Table 1. We use the
ADAM (Kingma and Ba, 2014) optimizer to train
the model with an initial learning rate 0.001 and a
mini-batch size 100. An ensemble model is also
trained, consisting of 10 training runs using the
same hyperparameters. The performance is eval-
uated by two metrics (Rajpurkar et al., 2016): (1)
exact match (EM) which measures the percentage
of predictions that match any one of the ground

truth answers exactly; (2) F1 score which mea-
sures the average overlap between the prediction
and ground truth answer. In the development set
each question has about three ground truth an-
swers. F1 scores with the best matching answers
are used to compute the average F1 score.

3.2 Results

Table 2 shows the performance of our model
and previous approaches on the development set.
CCNN (single model) achieves an EM score
of 69.3% and an F1 score of 78.5%, signifi-
cantly outperforming all previous approaches (sin-
gle model). Through ensembling, the perfor-
mance of CCNN is further improved and out-
performs the baseline ensemble methods. The
key difference between our method and previous
approaches is that CCNN is constituent-centric
where the generation and encoding of candidate
answers are both based on constituents while
the baseline approaches are mostly word-based
where the candidate answer is an arbitrary span
of words and the encoding is performed over in-
dividual words rather than at the constituent level.
The constituent-centric model-design enjoys two
major benefits. First, restricting the candidate
answers from arbitrary spans to neighborhoods
around the constituents greatly reduces the search
space, which mitigates the ambiguity and uncer-
tainty in picking up the correct answer. Sec-
ond, the tree LSTMs and tree-guided attention
mechanism encapsulate the syntactic, hierarchical
and compositional structure among constituents,
which leads to better representation learning of the
candidate answers. We conjecture these are the
primary reasons that CCNN outperforms the base-
lines and provide a validation in the next section.

3.3 Ablation Study

To further understand the individual modules in
CCNN, we perform an ablation study. The results
are shown in Table 2.

Tree LSTM To evaluate the effectiveness of tree
LSTM in learning syntax-aware representations,
we replace it with a syntax-agnostic chain LSTM.
We build a bi-directional chain LSTM (denoted by
A) over the entire passage to encode the individ-
ual words. Given a constituent C = wi · · ·wj ,
we build another bi-directional chain LSTM (de-
noted by B) over C where the inputs are the en-
codings of words wi, · · · , wj generated by LSTM

1410

Parameter Tuning Range Best Choice
Maximum expansion number M in constituent expansion 0, 1, 2, 3, 4, 5 2
Size of hidden state in all LSTMs 50, 100, 150, 200, 250, 300 100
Size of hidden state in prediction network 100, 200, 300, 400, 500 400

Table 1: Hyperparameter Tuning

Exact Match (EM,%) F1 (%)
Single model
Logistic Regression (Rajpurkar et al., 2016) 40.0 51.0
Fine Grained Gating (Yang et al., 2016) 60.0 71.3
Dynamic Chunk Reader (Yu et al., 2016) 62.5 71.2
Match-LSTM with Answer Pointer (Wang and Jiang, 2016) 64.1 73.9
Dynamic Coattentation Network (Xiong et al., 2016) 65.4 75.6
Multi-Perspective Context Matching (Wang et al., 2016) 66.1 75.8
Recurrent Span Representations (Lee et al., 2016) 66.4 74.9
Bi-Directional Attention Flow (Seo et al., 2016) 68.0 77.3
Ensemble
Fine Grained Gating (Yang et al., 2016) 62.4 73.4
Match-LSTM with Answer Pointer (Wang and Jiang, 2016) 67.6 76.8
Recurrent Span Representations (Lee et al., 2016) 68.2 76.7
Multi-Perspective Context Matching (Wang et al., 2016) 69.4 78.6
Dynamic Coattentation Network (Xiong et al., 2016) 70.3 79.4
Bi-Directional Attention Flow (Seo et al., 2016) 73.3 81.1
CCNN Ablation (single model)
Replacing tree LSTM with chain LSTM 63.5 73.9
Replacing chain-of-trees LSTM with independent tree LSTMs 64.8 75.2
Removing the attention layer 63.9 74.3
Replacing tree-guided attention with flat attention 65.6 75.9
CCNN (single model) 69.3 78.5
CCNN (ensemble) 74.1 82.6

Table 2: Results on the development set

A. In LSTM B, the forward hidden state of wj and
backward state of wi are concatenated to represent
C. Note that the attention mechanism remains in-
tact, which is still guided by the parse tree. This
replacement cause 5.8% and 4.6% drop of the EM
and F1 scores respectively, which demonstrates
the necessity of incorporating syntactic structure
(via tree LSTM) into representation learning.

Chain-of-Trees LSTM (CT-LSTM) We evalu-
ate the effectiveness of CT-LSTM by comparing
it with a bag of tree LSTMs: instead of using
a chain LSTM to glue the tree LSTMs, we treat
them as independent. Keeping the other modules
intact and replacing CT-LSTM with a bag of inde-
pendent tree LSTMs, the EM and F1 score drop
4.5% and 3.3% respectively. The advantage of
CT-LSTM is that it enables the semantics of one

sentence to be propagated to others, which makes
multiple-sentence reasoning possible.

Tree-Guided Attention (TGA) Mechanism To
evaluate the effectiveness of TGA, we performed
two studies. First, we take it off from the architec-
ture. Then constituents in the passage are solely
represented by the chain-of-trees LSTM encod-
ings and the question sentence is represented by
the tree LSTM encoding at the root of the parse
tree. At test time, we concatenate the encodings
of a candidate answer and the question as inputs
of the prediction network. Removing the attention
layer decreases the EM and F1 by 5.4% and 4.2%
respectively, demonstrating the effectiveness of at-
tention mechanism for question-aware representa-
tion learning.

Second, we compare the tree-structured mech-

1411

0 69 49.6 63.7

1 91 61.8 72.1

2 69.3 78.5

3 66.2 77.1

4 57.4 72.8

5 52.9 70.1

0

20

40

60

80

100

0 1 2 3 4 5

Maximum Expansion Number M

EM

F1

40

50

60

70

80

90

1 2 3 4 5 6 7 >=8

Answer Length

EM (MPCM)

F1 (MPCM)

EM (Our method)

F1 (Our method)
0

20

40

60

80

100

F1 (DCN)

F1 (Our method)

Figure 6: Performance for different (a) M (expansion number), (b) answer length, (c) question type.

anism in TGA with a flat-structure mechanism.
For each constituent h(p)

i in the passage, we com-
pute its unnormalized score aij = h

(p)
i · h(q)

j

with every constituent h(q)
j in the question (which

has R constituents). Then a global softmax op-
eration is applied to these scores, {ãij}Rj=1 =

softmax({aij}Rj=1), to project them into a prob-
abilistic simplex. Finally, a flat summariza-
tion

∑R
j=1 ãijh

(q)
j is computed and appended to

h
(p)
i . Replacing TGA with flat-structure attention

causes the EM and F1 to drop 3.7% and 2.6% re-
spectively, which demonstrates the advantage of
the tree-guided mechanism.

Constituent Expansion We study how the max-
imum expansion number M affects performance.
If M is too small, many correct answers are not
contained in the candidate set, which results in low
recall. If M is too large, excessive candidates are
generated, making it harder to pick up the correct
one. Figure 6(a) shows how EM and F1 vary asM
increases, from which we can see a value of M in
the middle ground achieves the best tradeoff.

3.4 Analysis

In this section, we study how CCNN behaves
across different answer length (number of words
in the answer) and question types, which are
shown in Figure 6(b) and (c). In Figure 6(b), we
compare with the MPCM method (Wang et al.,
2016). As answer length increases, the perfor-
mance of both methods decreases. This is be-
cause for longer answers, it is more difficult to
pinpoint the precise boundaries. The decreasing
of F1 is slower than EM, because F1 is more elas-
tic to small mismatches. Our method achieves
larger improvement over MPCM at longer an-
swers. We conjecture the reason is: longer
answers have more complicated syntactic struc-
ture, which can be better captured by the tree
LSTMs and tree-guided attention mechanism in

our method. MPCM is built upon individual words
and is syntax-agnostic.

In Figure 6(c), we compare with DCN (Xiong
et al., 2016) on 8 question types. Our method
achieves significant improvement over DCN on
four types: “what”, “where”, “why” and “other”.
The answers of questions in these types are typi-
cally longer and have more complicated syntactic
structure than the other four types where the an-
swers are mostly entities (person, numeric, time,
etc.). The syntax-aware nature of our method
makes it outperform DCN whose model design
does not explicitly consider syntactic structures.

4 Related Works

Several neural network based approaches have
been proposed to solve the SQuAD QA problem,
which we briefly review from three aspects: can-
didate answer generation, representation learning
and attention mechanism.

Two ways were investigated for candidate an-
swer generation: (1) chunking: candidates are
preselected based on lexical and syntactic analy-
sis, such as constituent parsing (Rajpurkar et al.,
2016) and part-of-speech pattern (Yu et al., 2016);
(2) directly predicting the start and end position
of the answer span, using feed-forward neural
network (Wang et al., 2016), LSTM (Seo et al.,
2016), pointer network (Vinyals et al., 2015; Wang
and Jiang, 2016), dynamic pointer decoder (Xiong
et al., 2016).

The representation learning in previous ap-
proaches is conducted over individual words us-
ing the following encoders: LSTM in (Wang et al.,
2016; Xiong et al., 2016); bi-directional gated re-
current unit (Chung et al., 2014) in (Yu et al.,
2016); match-LSTM in (Wang and Jiang, 2016);
bi-directional LSTM in (Seo et al., 2016).

In previous approaches, the attention (Bah-
danau et al., 2014; Xu et al., 2015) mechanism
is mostly word-based and flat-structured (Kadlec
et al., 2016; Sordoni et al., 2016; Wang and Jiang,

1412

2016; Wang et al., 2016; Yu et al., 2016): the at-
tention scores are computed between individual
words, are normalized globally and are used to
summarize word-level encodings in a flat manner.
Cui et al. (2016); Xiong et al. (2016) explored
a coattention mechanism to learn question-to-
passage and passage-to-question summaries. Seo
et al. (2016) proposed to directly use the attention
weights as augmented features instead of applying
them for early summarization.

5 Conclusions and Future Work

To solve the SQuAD question answering prob-
lem, we design a constituent centric neural net-
work (CCNN), where the generation and repre-
sentation learning of candidate answers are both
based on constituents. We use a constituent ex-
pansion mechanism to produce candidate answers,
which can greatly reduce the search space with-
out losing the recall of hitting the correct an-
swer. To represent these candidate answers, we
propose a chain-of-trees LSTM to encode con-
stituents and a tree-guided attention mechanism to
learn question-aware representations. Evaluations
on the SQuAD dataset demonstrate the effective-
ness of the constituent-centric neural architecture.

For future work, we will investigate the wider
applicability of chain-of-trees LSTM as a general
text encoder that can simultaneously capture lo-
cal syntactic structure and long-range semantic de-
pendency. It can be applied to named entity recog-
nition, sentiment analysis, dialogue generation, to
name a few. We will also apply the tree-guided at-
tention mechanism to NLP tasks that need syntax-
aware attention, such as machine translation, sen-
tence summarization, textual entailment, etc. An-
other direction to explore is joint learning of syn-
tactic parser and chain-of-trees LSTM. Currently,
the two are separated, which may lead to subopti-
mal performance.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. arXiv
preprint arXiv:1606.02858 .

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Peter Clark and Oren Etzioni. 2016. My computer is an
honor student-but how intelligent is it? standardized
tests as a measure of ai. AI Magazine 37(1):5–12.

Peter Clark, Oren Etzioni, Tushar Khot, Ashish Sab-
harwal, Oyvind Tafjord, Peter D Turney, and Daniel
Khashabi. 2016. Combining retrieval, statistics, and
inference to answer elementary science questions.
In AAAI. pages 2580–2586.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. 2016. Attention-over-
attention neural networks for reading comprehen-
sion. arXiv preprint arXiv:1607.04423 .

Alex Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional lstm. In Automatic Speech Recognition
and Understanding (ASRU), 2013 IEEE Workshop
on. IEEE, pages 273–278.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1693–
1701.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. arXiv preprint arXiv:1511.02301 .

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learning
to solve arithmetic word problems with verb catego-
rization. In EMNLP. pages 523–533.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and
Jan Kleindienst. 2016. Text understanding with
the attention sum reader network. arXiv preprint
arXiv:1603.01547 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Kenton Lee, Tom Kwiatkowski, Ankur Parikh, and Di-
panjan Das. 2016. Learning recurrent span repre-
sentations for extractive question answering. arXiv
preprint arXiv:1611.01436 .

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit.

1413

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine
reading comprehension dataset. arXiv preprint
arXiv:1611.09268 .

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250 .

Matthew Richardson, Christopher JC Burges, and Erin
Renshaw. 2013. Mctest: A challenge dataset for
the open-domain machine comprehension of text. In
EMNLP. volume 3, page 4.

Mrinmaya Sachan, Kumar Dubey, Eric P Xing, and
Matthew Richardson. 2015. Learning answer-
entailing structures for machine comprehension. In
ACL (1). pages 239–249.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2016. Reasonet: Learning to stop
reading in machine comprehension. arXiv preprint
arXiv:1609.05284 .

Alessandro Sordoni, Philip Bachman, Adam Trischler,
and Yoshua Bengio. 2016. Iterative alternating neu-
ral attention for machine reading. arXiv preprint
arXiv:1606.02245 .

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075 .

Zhiyang Teng and Yue Zhang. 2016. Bidirectional
tree-structured lstm with head lexicalization. arXiv
preprint arXiv:1611.06788 .

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems. pages 2692–2700.

Hai Wang and Mohit Bansal Kevin Gimpel David
McAllester. 2015. Machine comprehension with
syntax, frames, and semantics .

Shuohang Wang and Jing Jiang. 2016. Machine com-
prehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905 .

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu
Florian. 2016. Multi-perspective context match-
ing for machine comprehension. arXiv preprint
arXiv:1612.04211 .

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In EMNLP. Citeseer, pages 2013–
2018.

Zhilin Yang, Bhuwan Dhingra, Ye Yuan, Junjie Hu,
William W Cohen, and Ruslan Salakhutdinov. 2016.
Words or characters? fine-grained gating for reading
comprehension. arXiv preprint arXiv:1611.01724 .

Yang Yu, Wei Zhang, Kazi Hasan, Mo Yu, Bing Xiang,
and Bowen Zhou. 2016. End-to-end answer chunk
extraction and ranking for reading comprehension.
arXiv preprint arXiv:1610.09996 .

1414

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1415–1425
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1130

Cross-lingual Distillation for Text Classification

Ruochen Xu
Carnegie Mellon Universit
ruochenx@cs.cmu.edu

Yiming Yang
Carnegie Mellon Universit
yiming@cs.cmu.edu

Abstract

Cross-lingual text classification(CLTC) is
the task of classifying documents written
in different languages into the same tax-
onomy of categories. This paper presents
a novel approach to CLTC that builds on
model distillation, which adapts and ex-
tends a framework originally proposed for
model compression. Using soft proba-
bilistic predictions for the documents in a
label-rich language as the (induced) super-
visory labels in a parallel corpus of docu-
ments, we train classifiers successfully for
new languages in which labeled training
data are not available. An adversarial fea-
ture adaptation technique is also applied
during the model training to reduce dis-
tribution mismatch. We conducted experi-
ments on two benchmark CLTC datasets,
treating English as the source language
and German, French, Japan and Chinese
as the unlabeled target languages. The
proposed approach had the advantageous
or comparable performance of the other
state-of-art methods.

1 Introduction

The availability of massive multilingual data on
the Internet makes cross-lingual text classification
(CLTC) increasingly important. The task is de-
fined as to classify documents in different lan-
guages using the same taxonomy of predefined
categories.

CLTC systems build on supervised machine
learning require a sufficiently amount of labeled
training data for every domain of interest in each
language. But in reality, labeled data are not
evenly distributed among languages and across
domains. English, for example, is a label-rich lan-

guage in the domains of news stories, Wikipedia
pages and reviews of hotels, products, etc. But
many other languages do not necessarily have such
rich amounts of labeled data. This leads to an
open challenge in CLTC, i.e., how can we effec-
tively leverage the trained classifiers in a label-rich
source language to help the classification of docu-
ments in other label-poor target languages?

Existing methods in CLTC use either a bilingual
dictionary or a parallel corpus to bridge language
barriers and to translate classification models (Xu
et al., 2016) or text data(Zhou et al., 2016a).
There are limitations and challenges in using ei-
ther type of resources. Dictionary-based meth-
ods often ignore the dependency of word mean-
ing and its context, and cannot leverage domain-
specific disambiguation when the dictionary on
hand is a general-purpose one. Parallel-corpus
based methods, although more effective in de-
ploying context (when combined with word em-
bedding in particular), often have an issue of do-
main mismatch or distribution mismatch if the
available source-language training data, the paral-
lel corpus (human-aligned or machine-translation
induced one) and the target documents of in-
terest are not in exactly the same domain and
genre(Duh et al., 2011). How to solve such do-
main/distribution mismatch problems is an open
question for research.

This paper proposes a new parallel-corpus
based approach, focusing on the reduction of do-
main/distribution matches in CLTC. We call this
approach Cross-lingual Distillation with Feature
Adaptation or CLDFA in short. It is inspired
by the recent work in model compression (Hin-
ton et al., 2015) where a large ensemble model
is transformed to a compact (small) model. The
assumption of knowledge distillation for model
compression is that the knowledge learned by the
large model can be viewed as a mapping from in-

1415

https://doi.org/10.18653/v1/P17-1130

put space to output (label) space. Then, by train-
ing with the soft labels predicted by the large
model, the small model can capture most of the
knowledge from the large model. Extending this
key idea to CLTC, if we see parallel documents
as different instantiations of the same semantic
concepts in different languages, a target-language
classifier should gain the knowledge from a well-
trained source classifier by training with the target-
language part of the parallel corpus and the soft
labels made by the source classifier on the source
language side. More specifically, we propose to
distillate knowledge from the source language to
the target language in the following 2-step process:

• Firstly, we train a source-language classi-
fier with both labeled training documents and
adapt it to the unlabeled documents from the
source-language side of the parallel corpus.
The adaptation enforces our classifier to ex-
tract features that are: 1) discriminative for
the classification task and 2) invariant with
regard to the distribution shift between train-
ing and parallel data.

• Secondly, we use the trained source-language
classifier to obtain the soft labels for a par-
allel corpus, and the target-language part of
the parallel corpus to train a target classifier,
which yields a similar category distribution
over target-language documents as that over
source-language documents. We also use un-
labeled testing documents in the target lan-
guage to adapt the feature extractor in this
training step.

Intuitively, the first step addresses the potential
domain/distribution mismatch between the labeled
data and the unlabeled data in the source language.
The second step addresses the potential mismatch
between the target-domain training data (in the
parallel corpus) and the test data (not in the par-
allel corpus). The soft-label based training of tar-
get classifiers makes our approach unique among
parallel-corpus based CLTC methods (Section 2.1.
The feature adaptation step makes our framework
particularly robust in addressing the distributional
difference between in-domain documents and par-
allel corpus, which is important for the success of
CLTC with low-resource languages.

The main contributions in this paper are the fol-
lowing:

• We propose a novel framework (CLDFA) for
knowledge distillation in CLTC through a
parallel corpus. It has the flexibility to be
built on a large family of existing monolin-
gual text classification methods and enables
the use of a large amount of unlabeled data
from both source and target language.

• CLDFA has the same computational com-
plexity as the plug-in text classification
method and hence is very efficient and scal-
able with the proper choice of plug-in text
classifier.

• Our evaluation on benchmark datasets shows
that our method had a better or at least com-
parable performance than that of other state-
of-art CLTC methods.

2 Related Work

Related work can be outlined with respect to
the representative work in CLTC and the recent
progress in deep learning for knowledge distilla-
tion.

2.1 CLTC Methods

One branch of CLTC methods is to use lexical
level mappings to transfer the knowledge from the
source language to the target language. The work
by Bel et al. (Bel et al., 2003) was the first ef-
fort to solve CLTC problem. They translated the
target-language documents to source language us-
ing a bilingual dictionary. The classifier trained
in the source language was then applied on those
translated documents. Similarly, Mihalcea et al.
(Mihalcea et al., 2007) built cross-lingual classi-
fier by translating subjectivity words and phrases
in the source language into the target language.
Shi et al. (Shi et al., 2010) also utilized a bilingual
dictionary. Instead of translating the documents,
they tried to translate the classification model from
source language to target language. Prettenhofer
and Stein. (Prettenhofer and Stein, 2010) also used
the bilingual dictionary as a word translation ora-
cle and built their CLTC system on structural cor-
respondence learning, a theory for domain adap-
tation. A more recent work by (Xu et al., 2016)
extended seminal bilingual dictionaries with unla-
beled corpora in low-resource languages. Chen et
al. (Chen et al., 2016) used bilingual word em-
bedding to map documents in source and target

1416

language into the same semantic space, and adver-
sarial training was applied to enforce the trained
classifier to be language-invariant.

Some recent efforts in CLTC focus on the
use of automatic machine translation (MT) tech-
nology. For example, Wan (Wan, 2009) used
machine translation systems to give each doc-
ument a source-language and a target-language
version, where one version is machine-translated
from the another one. A co-training (Blum and
Mitchell, 1998) algorithm was applied on two ver-
sions of both source and target documents to it-
erative train classifiers in both languages. MT-
based CLTC also include the work on multi-view
learning with different algorithms, such as ma-
jority voting(Amini et al., 2009), matrix com-
pletion(Xiao and Guo, 2013) and multi-view co-
regularization(Guo and Xiao, 2012a).

Another branch of CLTC methods focuses on
representation learning or the mapping of the in-
duced representations in cross-language settings
(Guo and Xiao, 2012b; Zhou et al., 2016a, 2015,
2016b; Xiao and Guo, 2013; Jagarlamudi et al.,
2011; De Smet et al., 2011; Vinokourov et al.,
2002; Platt et al., 2010; Littman et al., 1998). For
example, Meng et al. (Meng et al., 2012) and Lu et
al. (Lu et al., 2011) used a parallel corpus to learn
word alignment probabilities in a pre-processing
step. Some other work attempts to find a language-
invariant (or interlingua) representation for words
or documents in different languages using vari-
ous techniques, such as latent semantic indexing
(Littman et al., 1998), kernel canonical correlation
analysis (Vinokourov et al., 2002), matrix comple-
tion(Xiao and Guo, 2013), principal component
analysis (Platt et al., 2010) and Bayesian graphi-
cal models (De Smet et al., 2011).

2.2 Knowledge Distillation

The idea of distilling knowledge in a neural net-
work was proposed by Hinton et al (Hinton et al.,
2015), in which they introduced a student-teacher
paradigm. Once the cumbersome teacher network
was trained, the student network was trained ac-
cording to soften predictions of the teacher net-
work. In the field of computer vision, it has been
empirically verified that student network trained
by distillation performs better than the one trained
with hard labels. (Hinton et al., 2015; Romero
et al., 2014; Ba and Caruana, 2014). Gupta et
al.(Gupta et al., 2015) transfers supervision be-

tween images from different modalities(e.g. from
RGB image to depth image). There are also some
recent works applied distillation in the field of nat-
ural language. For example, Lili et al. (Mou
et al., 2015) distilled task specific knowledge from
a set of high-dimensional embeddings to a low-
dimensional space. Zhiting et al. used an iterative
distillation method to transfer the structured infor-
mation of logic rules into the weights of a neural
network. Kim et al. (Kim and Rush, 2016) applied
knowledge distillation approaches in the field of
machine translation to reduce the size of neural
machine translation model. Our framework shares
the same purpose of existing works that trans-
fer knowledge between models of different prop-
erties, such as model complexity, modality, and
structured logic. However, our transfer happens
between models working on different languages.
To the best of knowledge, this is the first work us-
ing knowledge distillation to bridge the language
gap for NLP tasks.

3 Preliminary

3.1 Task and Notation

CLTC aims to use the training data in the source
language to build a model applicable in the target
language. In our setting, we have labeled data in
source language Lsrc = {xi, yi}Li=1, where xi is
the labeled document in source language and yi
is the label vector. We then have our test data
in the target language, given by Ttgt = {x′i}Ti=1.
Our framework can also use unlabeled documents
from both languages in transductive learning set-
tings. We use Usrc = {xi}Mi=1 to denote source-
language unlabeled documents,Utgt = {x′i}Ni=1 to
denote target-language unlabeled documents, and
Uparl = {(xi, x′i)}Pi=1 to denote a unlabeled bilin-
gual parallel corpus where xi and x′i are paired
document translations of each other. We assume
that the unlabeled parallel corpus does not overlap
with the source-language training documents and
the target-language test documents.

3.2 Convolutional Neural Network (CNN) as
a Plug-in Classifier

We use a state-of-the-art CNN-based neural net-
work classifier (Kim, 2014) as the plug-in classi-
fier in our framework. Instead of using a bag-of-
words representation for each document, the CNN
model concatenates the word embeddings (verti-
cal vectors) of each input document into a n × k

1417

matrix, where n is the length (number of word oc-
currences) of the document, and k is the dimension
of word embedding. Denoting by

x1:n = x1 ⊕ x2 ⊕ ...⊕ xn

as the resulted matrix, with ⊕ the concatena-
tion operator. One-dimensional convolutional fil-
ter w ∈ Rhk with window size h operates on ev-
ery consecutive h words, with non-linear function
f and bias b. For window of size h started at index
i, the feature after convolutional filter is given by:

ci = f(w · xi:i+h−1 + b)

A max-over-time pooling (Collobert et al., 2011)
is applied on c over all possible positions such that
each filter extracts one feature. The model uses
multiple filters with different window sizes. The
concatenated outputs from filters consist the fea-
ture of each document. We can see the convolu-
tional filters and pooling layers as feature extractor
f = Gf (x, θf), where θf contains parameters for
embedding layer and convolutional layer. Theses
features are then passed to a fully connected soft-
max layer to produce probability distributions over
labels. We see the final fully connected softmax
layer as a label classifier Gy(f , θy) that takes the
output f from the feature extractor. The final out-
put of model is given byGy(Gf (x, θf), θy), which
is jointly parameterized by {θf , θy}

We want to emphasize that our choice of the
plug-in classifier here is mainly for its simplic-
ity and scalability to demonstrate our framework.
There is a large family of neural classifiers for
monolingual text classification that could be used
in our framework as well, including other convo-
lutional neural networks by (Johnson and Zhang,
2014), the recurrent neural networks by (Lai et al.,
2015; Zhang et al., 2016; Johnson and Zhang,
2016; Sutskever et al., 2014; Dai and Le, 2015),
the attention mechanism by (Yang et al., 2016),
the deep dense network by (Iyyer et al., 2015), and
more.

4 Proposed Framework

Let us introduce two versions of our model for
cross-language knowledge distillation, i.e., the
vanilla version and the full version with feature
adaptation. Both are supported by the proposed
framework. We denote the former by CLD-KCNN
and the latter by CLDFA-KCNN.

4.1 Vanilla Distillation

Without loss of generality, assume we are learning
a multi-class classifier for the target language. We
have y ∈ 1, 2, ..., |v |where v is the set of all possi-
ble classes. We assume the base classification net-
work produces real number logits qj for each class.
For example, for the case of CNN text classifier,
the logits can be produced by a linear transforma-
tion which takes features extracted max-pooling
layer and outputs a vector of size |v |. The logits
are converted into probabilities of classes through
the softmax layer, by normalizing each qj with all
other logits.

pj =
exp(qj/T)∑|v |
k=1 exp(qk/T)

(1)

where T is a temperature and is normally set to
1. Using a higher value of T produces a softer
probability distribution over classes.

The first step of our framework is to train the
source-language classifier on labeled source docu-
ments Lsrc. We use standard temperature T = 1
and cross-entropy loss as the objective to mini-
mize. For each example and its label (xi, yi) from
the source training set, we have:

L(θsrc) =

−
∑

(xi,yi)∈Lsrc

|v |∑

k=1

1{yi = k} log p(y = k|xi; θsrc)

(2)

where p(y = k|x; θsrc) is source model con-
trolled by parameter θsrc and 1{·} is the indicator
function.

In the second step, the knowledge captured in
θsrc is transferred to the distilled model in the
target language by training it on the parallel cor-
pus. The intuition is that paired documents in
parallel corpus should have the same distribution
of class predicted by the source model and tar-
get model. In the simplest version of our frame-
work, for each source-language document in the
parallel corpus, we predict a soft class distribution
by source model with high temperature. Then we
minimize the cross-entropy between soft distribu-
tion produced by source model and the soft dis-
tribution produced by target model on the paired
documents in the target language. More formally,
we optimize θtgt according to the following loss

1418

function for each document pair (xi, x′i) in paral-
lel corpus.

L(θtgt) = −
∑

(xi,x′i)∈Uparl

|v |∑

k=1

p(y = k|xi; θsrc) log p(y = k|x′i; θtgt)
(3)

During distillation, the same high temperature is
used for training target model. After it has been
trained, we set the temperature to 1 for testing.

We can show that under some assumptions, the
two-step cross-lingual distillation is equivalent to
distilling a target-language classifier in the target-
language input space.

Lemma 1. Assume the parallel corpus {xi, x′i} ∈
Uparl is generated by x′i ∼ p(X ′; η) and xi =
t(x′i), where η controls the marginal distribution
of xi and t is a differentiable translation func-
tion with integrable derivative. Let fθsrc(t(x

′))
be the function that outputs soft labels of p(y =
k|t(x′); θsrc). The distillation given by equation 3
can be interpreted as distillation of a target lan-
guage classifier fθsrc(t(x

′)) on target language
documents sampled from p(X ′; η).

fθsrc(t(x
′)) is the classifier that takes input of

target documents, translates them into source doc-
uments through t and makes prediction using the
source classifier. If we further assume the test-
ing documents have the same marginal distribu-
tion P (X ′; η), then the distilled classifier should
have similar generalization power as fθsrc(t(x

′)).

Theorem 2. Let source training data xi ∈
Lsrc has marginal distribution p(X;λ). Un-
der the assumptions of lemma 1, further as-
sume p(t(x′);λ) = p(x′; η), p(y|t(x′)) =
p(y|x′) and t′(x′) ≈ C, where C is a
constant. Then fθsrc(t(x

′)) actually mini-
mizes the expected loss in target language data
Ex′∼p(X;η),y∼p(Y |x′)[L

(
y, f(t(x′))

)
].

Proof. By definition of equation 2,
fθsrc(x) minimizes the expected loss
Ex∼p(X;λ),y∼p(Y |x)[L

(
y, f(x)

)
], where L is

cross-entropy loss in our case. Then we can write

Ex∼p(X;λ),y∼p(Y |x)[L
(
y, f(x)

)
]

=

∫
p(x;λ)

∑

y

p(y|x)L
(
y, f(x)

)
dx

=

∫
p(t(x′);λ)

∑

y

p(y|t(x′))L
(
y, f(t(x′))

)
t′(x′)dx′

≈C
∫
p(x′; η)

∑

y

p(y|x′)L
(
y, f(t(x′))

)
dx′

=CEx′∼p(X;η),y∼p(Y |x′)[L
(
y, f(t(x′))

)
]

4.2 Distillation with Adversarial Feature
Adaptation

15 10 5 0 5 10 15 20
25

20

15

10

5

0

5

10

15

Figure 1: Extracted features for source-language
documents in the English-Chinese Yelp Hotel Re-
view dataset. Red dots represent features of the
documents in Lsrc and green dots represent the
features of documents in Uparl, which is a general-
purpose parallel corpus.

Although vanilla distillation is intuitive and
simple, it cannot handle distribution mismatch is-
sues. For example, the marginal feature distribu-
tions of source-language documents in Lsrc and
Uparl could be different, so are the distributions of
target-language documents in Uparl and Ttgt. Ac-
cording to theorem 2, the vanilla distillation works
for the best performance under unrealistic assump-
tion: p(t(x′)|λ) = p(x′|η). To further illustrate
our point, we trained a CNN classifier according
to equation 2 and used the features extracted by
Gf to present the source-language documents in
both Lsrc and Uparl. Then we projected the high-
dimensional features onto a 2-dimensional space
via t-Distributed Stochastic Neighbor Embedding
(t-SNE)(Maaten and Hinton, 2008). This resulted

1419

the visualization of the project data in Figures 1
and 2.

It is quite obvious in Figure 1 that the general-
purpose parallel corpus has a very different fea-
ture distribution from that of the labeled source
training set. Even for machine-translated paral-
lel data from the same domain, as shown in fig-
ure 2, there is still a non-negligible distribution
shift from the source language to the target lan-
guage for the extracted features. Our interpreta-
tion of this observation is that when the MT sys-
tem (e.g. Google Translate) is a general-purpose
one, it non-avoidably add translation ambiguities
which would lead the distribution shift from the
original domain. To address the distribution di-
vergence brought by either a general-purpose par-
allel corpus or an imperfect MT system, we seek
to adapt the features extraction part of our neu-
ral classifier such that the feature distributions on
both sides should be close as possible in the newly
induced feature space. We adapt the adversarial
training method by (Ganin and Lempitsky, 2014)
to the cross-lingual settings in our problems.

Given a set of training set of L =
{xi, yi}i=1,...,N and an unlabeled set U =
{x′i}i=1,...,M , our goal is to find a neural classifier
Gy(Gf (x, θf), θy), which has good discriminative
performance on L and also extracts features which
have similar distributions on L and U . One way
to maximize the similarity of two distributions is
to maximize the loss of a discriminative classifier
whose job is to discriminate the two feature dis-
tributions. We denote this classifier by Gd(·, θd),
which is parameterized by θd.

At training time, we seek θf to minimize the
loss of Gy and maximize the loss of Gd. Mean-
while, θy and θd are also optimized to minimize
their corresponding loss. The overall optimization
could be summarized as follows:

E(θf , θy, θd) =
∑

xi,yi∈L
Ly(yi, Gy(Gf (xi, θf), θy))

− α
∑

xi∈L
Ld(0, Gd(Gf (xi, θf), θd))

− α
∑

xj∈U
Ld(1, Gd(Gf (xj , θf), θd))

where Ly is the loss function for true labels
y, Ld is loss function for binary labels indicat-
ing the source of data and α is the hyperparam-
eter that controls the relative importance of two

losses. We optimize θf , θy for minimizing E
and optimize θd for maximizing E. We jointly
optimize θf , θy, θd through the gradient reversal
layer(Ganin and Lempitsky, 2014).

We use this feature adaptation technique to
firstly adapt the source-language classifier to the
source-language documents of the parallel cor-
pus. When training the target-language classifier
by matching soft labels on the parallel corpus, we
also adapt the classifier to the target testing docu-
ments. We use cross-entropy loss functions as Ly
and Ld for both feature adaptation.

5 Experiments and Discussions

5.1 Dataset

Our experiments used two benchmark datasets, as
described below.

(1) Amazon Reviews

Language Domain # of Documents

English
book 50000
DVD 30000
music 25220

German
book 165470
DVD 91516
music 60392

French
book 32870
DVD 9358
music 15940

Japanese
book 169780
DVD 68326
music 55892

Table 1: Dataset Statistics for the Amazon reviews
dataset

We used the multilingual multi-domain Ama-
zon review dataset created by Prettenhofer and
Stein (Prettenhofer and Stein, 2010). The dataset
contains Amazon reviews in three domains: book,
DVD and music. Each domain has the reviews in
four different languages: English, German, French
and Japanese. We treated English as the source
language and the rest three as the target languages,
respectively. This gives us 9 tasks (the product
of the 3 domains and the 3 target languages) in
total. For each task, there are 1000 positive and
1000 negative reviews in English and the target
language, respectively. (Prettenhofer and Stein,
2010) also provides 2000 parallel reviews per task,

1420

15 10 5 0 5 10 15 20
20

15

10

5

0

5

10

15

(a) Germany:DVD

15 10 5 0 5 10 15
20

15

10

5

0

5

10

15

20

(b) French:Music

15 10 5 0 5 10 15
15

10

5

0

5

10

15

20

(c) Japanese:Book

Figure 2: Extracted features for the source-language documents in the Amazon Reviews dataset. Red
dots represent the features of the labeled training documents inLsrc, and green dots represent the features
of the documents in Uparl, which are the machine-translated documents from a target language. Below
each figure is the target language and the domain of review (Section 5.1).

that were generated using Google Translate 1, and
used by us for cross-language distillation. There
are also several thousands of unlabeled reviews in
each language. The statistics of unlabeled data is
summarized in Table 1. All the reviews are tok-
enized using standard regular expressions except
for Japanese, for which we used a publicly avail-
able segmenter 2.

(2) English-Chinese Yelp Hotel Reviews
This dataset was firstly used for CLTC by (Chen
et al., 2016). The task is to make sentence-level
sentiment classification with 5 labels(rating scale
from 1 to 5), using English as the source language
and Chinese as the target language. The labeled
English data consists of balanced labels of 650k
Yelp reviews from Zhang et al. (Zhang et al.,
2015). The Chinese data includes 20k labeled
Chinese hotel reviews and 1037k unlabeled ones
from (Lin et al., 2015). Following the approach
by (Chen et al., 2016), we use 10k of labeled Chi-
nese data as validation set and another 10k hotel
reviews as held-out test data. We a random sample
of 500k parallel sentences from UM-courpus(Tian
et al., 2014), which is a general-purpose corpus
designed for machine translation.

5.2 Baselines

We compare the proposed method with other state-
of-the-art methods as outlined below.

(1) Parallel-Corpus based CLTC Methods
Methods in this category all use an unlabeled par-
allel corpus. Methods named PL-LSI (Littman

1translate.google.com
2https://pypi.python.org/pypi/tinysegmenter

et al., 1998), PL-OPCA (Platt et al., 2010) and
PL-KCAA (Vinokourov et al., 2002) learn la-
tent document representations in a shared low-
dimensional space by performing the Latent
Semantic Indexing (LSI), the Oriented Princi-
pal Component Analysis (OPCA) and a kernel
(namely KCAA) for the parallel text. PL-MC
(Xiao and Guo, 2013) recovers missing features
via matrix Completion, and also uses LSI to in-
duce a latent space for parallel text. All these
methods train a classifier in the shared feature
space with labeled training data from both the
source and target languages.

(2) MT-based CLTC Methods
The methods in this category all use an MT sys-
tem to translate each test document in the tar-
get language to the source language in the test-
ing phase. The prediction on each translated
document is made by a source-language classi-
fier, which can be a Logistic Regression model
(MT+LR) (Chen et al., 2016) or a deep averaging
network (MT+DAN) (Chen et al., 2016).

(3) Adversarial Deep Averaging Network
Similar to our approach, the adversarial Deep Av-
eraging Network (ADAN) also exploits adversar-
ial training for CLTC (Chen et al., 2016). How-
ever, it does not have the parallel-corpus based
knowledge distillation part (which we do). In-
stead, it uses averaged bilingual embeddings of
words as its input and adapts the feature extractor
to produce similar features in both languages.

We also include the results of mSDA for the
Yelp Hotel Reviews dataset. mSDA (Chen et al.,
2012) is a domain adaptation method based on

1421

Target Language Domain PL-LSI PL-KCCA PL-OPCA PL-MC CLD-KCNN CLDFA-KCNN

German
book 77.59 79.14 74.72 79.22 82.54 83.95*
DVD 79.22 76.73 74.59 81.34 82.24 83.14*
music 73.81 79.18 74.45 79.39 74.65 79.02

French
book 79.56 77.56 76.55 81.92 81.6 83.37
DVD 77.82 78.19 70.54 81.97 82.41 82.56
music 75.39 78.24 73.69 79.3 83.01 83.31*

Janpanese
book 72.68 69.46 71.41 72.57 74.12 77.36*
DVD 72.55 74.79 71.84 76.6 79.67 80.52*
music 73.44 73.54 74.96 76.21 73.69 76.46

Averaged Accuracy 75.78 76.31 73.64 78.72 79.33 81.08*

Table 2: Accuracy scores of methods on the Amazon Reviews dataset: the best score in each row (a
task) is highlighted in bold face. If the score of CLDFA-KCNN is statistically significantly better (in
one-sample proportion tests) than the best among the baseline methods, it is marked using a star.

Model Accuracy
mSDA 31.44%
MT-LR 34.01%
MT-DAN 39.66%
ADAN 41.04%

CLD-KCNN 40.96%
CLDFA-KCNN 41.82%

Table 3: Accuracy scores of methods on the
English-Chinese Yelp Hotel Reviews dataset

stacked denoising autoencoders, which has been
proved to be effective in cross-domain sentiment
classification evaluations. We show the results re-
ported by (Chen et al., 2012), where they used
bilingual word embedding as input for mSDA.

5.3 Implementation Detail

We pre-trained both the source and target classi-
fier with unlabeled data in each language. We ran
word2vec(Mikolov et al., 2013) 3 on the tokenized
unlabeled corpus. The learned word embeddings
are used to initialize the word embedding look-up
matrix, which maps input words to word embed-
dings and concatenates them into input matrix.

We fine-tuned the source-language classifier
on the English training data with 5-fold cross-
validation. For English-Chinese Yelp-hotel review
dataset, the temperature T (Section 4.1) in distil-
lation is tuned on validation set in the target lan-
guage. For Amazon review dataset, since there is
no default validation set, we set temperature from
low to high in {1, 3, 5, 10} and take the average
among all predictions.

3https://code.google.com/archive/p/word2vec/

5.4 Main Results

In tables 2 and 3 we compare the results of our
methods (the vanilla version CLD-KCNN and the
full version CLDFA-KCNN) with those of other
methods based on the published results in the lit-
erature. The baseline methods are different in
these two tables as they were previously evaluated
(by their authors) on different benchmark datasets.
Clearly, CLDFA-KCNN outperformed the other
methods on all except one task in these two
datasets, showing that knowledge distillation is
successfully carried out in our approach. Noticing
that CLDFA-KCNN outperformed CLD-KCNN,
showing the effectiveness of adversarial feature
extraction in reducing the distribution mismatch
between the parallel corpus and the train/test data
in the target domain. We should also point out
that in Table 2, the four baseline methods (PL-LSI,
PL-KCCA, PL-OPCA and PL-MC) were evalu-
ated under the condition of using additional 100
labeled target documents for training, according
to the author’s report (Xiao and Guo, 2013). On
the other hand, our methods (CLD-KCNN and
CLDFA-KCNN) were evaluated under a tougher
condition, i.e., not using any labeled data in the
target domains.

We also test our framework when a few train-
ing documents in the target language are available.
A simple way to utilize the target-language super-
vision is to fit the target-language model with la-
beled target data after optimizing with our cross-
lingual distillation framework. The performance
of CLD-KCNN and CLDFA-KCNN trained with
different sizes of labeled target-language data is
shown in figure 3. We also compare the perfor-
mance of training the same classifier using only

1422

the target-language labels(Target Only in figure
3). As we can see, our framework can efficiently
utilize the extra supervision and improve the per-
formance over the training using only the target-
language labels. The margin is most significant
when the size of the target-language label is rela-
tively small.

0 100 200 300 400 500 600 700 800
Size of labeled target data

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Target Only
CLD-KCNN
CLDFA-KCNN

Figure 3: Accuracy scores of methods using vary-
ing sizes of target-language labeled data on the
Amazon review dataset. The target language is
German and the domain is music. The parallel cor-
pus has a fixed size of 1000 and the size of the la-
beled target-language documents is shown on the
x-axis

6 Conclusion

This work introduces a novel framework for dis-
tillation of discriminative knowledge across lan-
guages, providing effective and efficient algorith-
mic solutions for addressing domain/distribution
mismatch issues in CLTC. The excellent perfor-
mance of our approach is evident in our evalua-
tion on two CLTC benchmark datasets, compared
to that of other state-of-the-art methods.

Acknowledgement

We thank the reviewers for their helpful com-
ments. This work is supported in part by De-
fense Advanced Research Projects Agency Infor-
mation Innovation Oce (I2O), the Low Resource
Languages for Emergent Incidents (LORELEI)
Program, Issued by DARPA/I2O under Contract
No. HR0011-15-C-0114, by the National Science
Foundation (NSF) under grant IIS-1546329.

References
Massih Amini, Nicolas Usunier, and Cyril Goutte.

2009. Learning from multiple partially observed

views-an application to multilingual text categoriza-
tion. In Advances in neural information processing
systems. pages 28–36.

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Advances in neural information
processing systems. pages 2654–2662.

Nuria Bel, Cornelis HA Koster, and Marta Ville-
gas. 2003. Cross-lingual text categorization. Re-
search and Advanced Technology for Digital Li-
braries pages 126–139.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In Pro-
ceedings of the eleventh annual conference on Com-
putational learning theory. ACM, pages 92–100.

Minmin Chen, Zhixiang Xu, Kilian Weinberger, and
Fei Sha. 2012. Marginalized denoising autoen-
coders for domain adaptation. arXiv preprint
arXiv:1206.4683 .

Xilun Chen, Ben Athiwaratkun, Yu Sun, Kilian Wein-
berger, and Claire Cardie. 2016. Adversarial deep
averaging networks for cross-lingual sentiment clas-
sification. arXiv preprint arXiv:1606.01614 .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Andrew M Dai and Quoc V Le. 2015. Semi-supervised
sequence learning. In Advances in Neural Informa-
tion Processing Systems. pages 3079–3087.

Wim De Smet, Jie Tang, and Marie-Francine Moens.
2011. Knowledge transfer across multilingual cor-
pora via latent topics. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining. Springer,
pages 549–560.

Kevin Duh, Akinori Fujino, and Masaaki Nagata. 2011.
Is machine translation ripe for cross-lingual senti-
ment classification? In Proceedings of the 49th
Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies:
short papers-Volume 2. Association for Computa-
tional Linguistics, pages 429–433.

Yaroslav Ganin and Victor Lempitsky. 2014. Unsuper-
vised domain adaptation by backpropagation. arXiv
preprint arXiv:1409.7495 .

Yuhong Guo and Min Xiao. 2012a. Cross language
text classification via subspace co-regularized multi-
view learning. arXiv preprint arXiv:1206.6481 .

Yuhong Guo and Min Xiao. 2012b. Transductive rep-
resentation learning for cross-lingual text classifica-
tion. In Data Mining (ICDM), 2012 IEEE 12th In-
ternational Conference on. IEEE, pages 888–893.

1423

Saurabh Gupta, Judy Hoffman, and Jitendra Malik.
2015. Cross modal distillation for supervision trans-
fer. arXiv preprint arXiv:1507.00448 .

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531 .

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the Association for Computational
Linguistics.

Jagadeesh Jagarlamudi, Raghavendra Udupa, Hal
Daumé III, and Abhijit Bhole. 2011. Improving
bilingual projections via sparse covariance matri-
ces. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 930–940.

Rie Johnson and Tong Zhang. 2014. Effective
use of word order for text categorization with
convolutional neural networks. arXiv preprint
arXiv:1412.1058 .

Rie Johnson and Tong Zhang. 2016. Supervised and
semi-supervised text categorization using lstm for
region embeddings. In Proceedings of The 33rd In-
ternational Conference on Machine Learning. pages
526–534.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Yoon Kim and Alexander M Rush. 2016. Sequence-
level knowledge distillation. arXiv preprint
arXiv:1606.07947 .

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In AAAI. pages 2267–2273.

Yiou Lin, Hang Lei, Jia Wu, and Xiaoyu Li. 2015. An
empirical study on sentiment classification of chi-
nese review using word embedding. arXiv preprint
arXiv:1511.01665 .

Michael L Littman, Susan T Dumais, and Thomas K
Landauer. 1998. Automatic cross-language in-
formation retrieval using latent semantic indexing.
In Cross-language information retrieval, Springer,
pages 51–62.

Bin Lu, Chenhao Tan, Claire Cardie, and Benjamin K
Tsou. 2011. Joint bilingual sentiment classifica-
tion with unlabeled parallel corpora. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies-Volume 1. Association for Computa-
tional Linguistics, pages 320–330.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research 9(Nov):2579–2605.

Xinfan Meng, Furu Wei, Xiaohua Liu, Ming Zhou,
Ge Xu, and Houfeng Wang. 2012. Cross-lingual
mixture model for sentiment classification. In Pro-
ceedings of the 50th Annual Meeting of the Associ-
ation for Computational Linguistics: Long Papers-
Volume 1. Association for Computational Linguis-
tics, pages 572–581.

Rada Mihalcea, Carmen Banea, and Janyce M Wiebe.
2007. Learning multilingual subjective language via
cross-lingual projections .

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Lili Mou, Ge Li, Yan Xu, Lu Zhang, and Zhi Jin. 2015.
Distilling word embeddings: An encoding approach.
arXiv preprint arXiv:1506.04488 .

John C Platt, Kristina Toutanova, and Wen-tau Yih.
2010. Translingual document representations from
discriminative projections. In Proceedings of the
2010 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, pages 251–261.

Peter Prettenhofer and Benno Stein. 2010. Cross-
language text classification using structural corre-
spondence learning. In Proceedings of the 48th An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, pages 1118–1127.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2014. Fitnets: Hints for thin deep nets.
arXiv preprint arXiv:1412.6550 .

Lei Shi, Rada Mihalcea, and Mingjun Tian. 2010.
Cross language text classification by model trans-
lation and semi-supervised learning. In Proceed-
ings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 1057–1067.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Liang Tian, Derek F Wong, Lidia S Chao, Paulo
Quaresma, Francisco Oliveira, and Lu Yi. 2014.
Um-corpus: A large english-chinese parallel corpus
for statistical machine translation. In LREC. pages
1837–1842.

Alexei Vinokourov, John Shawe-Taylor, and Nello
Cristianini. 2002. Inferring a semantic representa-
tion of text via cross-language correlation analysis.
In NIPS. volume 1, page 4.

Xiaojun Wan. 2009. Co-training for cross-lingual sen-
timent classification. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL

1424

and the 4th International Joint Conference on Natu-
ral Language Processing of the AFNLP: Volume 1-
Volume 1. Association for Computational Linguis-
tics, pages 235–243.

Min Xiao and Yuhong Guo. 2013. A novel two-step
method for cross language representation learning.
In Advances in Neural Information Processing Sys-
tems. pages 1259–1267.

Ruochen Xu, Yiming Yang, Hanxiao Liu, and An-
drew Hsi. 2016. Cross-lingual text classification via
model translation with limited dictionaries. In Pro-
ceedings of the 25th ACM International on Confer-
ence on Information and Knowledge Management.
ACM, pages 95–104.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. .

Rui Zhang, Honglak Lee, and Dragomir Radev. 2016.
Dependency sensitive convolutional neural networks
for modeling sentences and documents. arXiv
preprint arXiv:1611.02361 .

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems. pages 649–657.

Huiwei Zhou, Long Chen, Fulin Shi, and Degen
Huang. 2015. Learning bilingual sentiment word
embeddings for cross-language sentiment classifica-
tion. ACL.

Xinjie Zhou, Xianjun Wan, and Jianguo Xiao. 2016a.
Cross-lingual sentiment classification with bilingual
document representation learning .

Xinjie Zhou, Xiaojun Wan, and Jianguo Xiao. 2016b.
Attention-based lstm network for cross-lingual sen-
timent classification .

1425

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1426–1435
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1131

Understanding and Predicting Empathic Behavior in Counseling Therapy

Verónica Pérez-Rosas1, Rada Mihalcea1, Kenneth Resnicow2

Satinder Singh1 and Lawrence An3

1Computer Science and Engineering, 2School of Public Health
3Center for Health Communications Research

University of Michigan
{vrncapr,mihalcea,kresnic,baveja,lcan}@umich.edu

Abstract

Counselor empathy is associated with bet-
ter outcomes in psychology and behav-
ioral counseling. In this paper, we ex-
plore several aspects pertaining to coun-
seling interaction dynamics and their re-
lation to counselor empathy during mo-
tivational interviewing encounters. Par-
ticularly, we analyze aspects such as par-
ticipants’ engagement, participants’ verbal
and nonverbal accommodation, as well as
topics being discussed during the conver-
sation, with the final goal of identifying
linguistic and acoustic markers of coun-
selor empathy. We also show how we can
use these findings alongside other raw lin-
guistic and acoustic features to build ac-
curate counselor empathy classifiers with
accuracies of up to 80%.

1 Introduction

Behavioral counseling is an important tool to ad-
dress public health issues such as mental health,
substance abuse, and nutrition problems among
others. This has motivated increased interest in
the study of mechanisms associated with success-
ful interventions. Among them, counselor empa-
thy has been identified as a key intervention com-
ponent that relates to positive therapy outcomes.

Displaying empathic behavior helps counselors
to build rapport with their clients. Empathy levels
experienced during counseling have a significant
effect on treatment outcomes, as clients who per-
ceive their counselor as empathic are more likely
to improve than the ones who do not (Moyers and
Miller, 2013).

In this paper, we apply quantitative approaches
to understand the dynamics of the counseling in-
teractions and their relation to counselor empa-

thy. We focus our analysis on counseling con-
ducted using Motivational Interviewing (MI), a
well-established evidence-based counseling style,
where counselor empathy is defined as the active
interest and effort to understand the client’s per-
spective (Miller and Rollnick, 2013).

We address four main research questions. First,
are there differences in how the counselor and the
client engage during empathic conversations? We
explore this question by conducting turn-by-turn
word frequency analyses of participant’s interac-
tions across the counseling conversations. Second,
are there differences in verbal and vocal mimicry
patterns occurring during high and low empathy
interactions? We address this question by measur-
ing the degree of language matching, verbal and
nonverbal coordination, and power dynamics ex-
pressed during the interaction. Third, are there
content differences in counselor discourse during
high and low empathy interactions? We answer
this question by applying topic modeling to iden-
tify the topics that are more salient in high and
low empathy interventions (or in both). Finally,
fourth, can we build accurate classifiers of coun-
selor empathy? We show how the linguistic and
acoustic empathy markers identified in our analy-
ses, together with other raw features, can be used
to construct classifiers able to predict counselor
empathy with accuracies of up to 80%.

2 Related Work

There have been several efforts to study the role
of empathy during counseling interactions. (Xiao
et al., 2012) applied a text-based approach to dis-
criminate empathic from non-empathic encounters
using word-frequency analysis. They conducted a
set of experiments aiming to predict empathy at
the utterance and session level on a manually an-
notated dataset. Results showed that empathy can

1426

https://doi.org/10.18653/v1/P17-1131

be predicted at reasonable accuracy levels, compa-
rable to human assessments. (Gibson et al., 2015)
presented a more refined approach for this task,
which in addition to n-grams included features
derived from the Linguistic Inquire Word Count,
LIWC (Tausczik and Pennebaker, 2010) as well
as psycholinguistic norms.

Other research has focused on exploring aspects
related to counselor empathy skills, such as their
ability to match the client language. (Lord et al.,
2015) analyzed the language coordination be-
tween client and counselor using Language Style
Synchrony (LSS), a measure of the degree of sim-
ilarity in word usage among speakers in adjacent
talking turns. They found that empathy scores are
positively related to LSS, and that higher levels of
LSS are likely to result in higher empathy scores.

Another line of work has explored the use of
the acoustic component to predict empathy lev-
els during counseling encounters. (Xiao et al.,
2014) presented a study on the automatic evalua-
tion of counselor empathy based on the analysis of
correlation between prosody patterns and the de-
gree of empathy showed by the therapist during
the counseling interactions. More recently, (Xiao
et al., 2015) addressed the empathy prediction task
by deriving language models from transcripts ob-
tained by an automatic speech recognition system,
thus eliminating the need of human intervention
during speaker segmentation and transcription.

Most of this previous research has focused on
the prediction task, and explored a variety of lin-
guistic and acoustic representations for this goal.
While some of this work has explored the lin-
guistic accommodation between speakers, previ-
ous methods have not fully explored the conversa-
tional aspects of the counseling interaction.

In this paper, we seek to explore how conver-
sational aspects such as engagement, accommo-
dation, and discourse topics are related to coun-
selor empathy by using strategies such as turn-by-
turn word frequency analysis, language coordina-
tion, power dynamics analysis, and topic model-
ing. Furthermore, we build accurate empathy clas-
sifiers that rely on acoustic and linguistic cues in-
spired by our conversational analyses.

3 Counseling Empathy Dataset

The dataset used in this study consists of 276
MI audio-recorded sessions from: two clinical re-
search studies on smoking cessation and medica-

tion adherence (Catley et al., 2012; Goggin et al.,
2013); recordings of MI students from a graduate-
level MI course; wellness coaching phone calls;
brief medical encounters in dental practice and
student counseling. The dataset was obtained from
a previous study conducted by the authors. Further
details can be found in (Pérez-Rosas et al., 2016).

The counseling sessions target three behavior
changes: diet changes (72 sessions), smoking ces-
sation (95 sessions), medication adherence (93
sessions). In addition, there are 16 sessions on
miscellaneous topics. The full set comprises 97.8
hours of audio with an average session length of
20.8 minutes with a standard deviation of 11.5
minutes.

3.1 Data Preprocessing

Before conducting our analysis on the collected
dataset, we performed several preprocessing steps
to ensure the confidentiality of the data and to en-
able automatic text and audio feature extraction.

First, all the counseling recordings were sub-
jected to an anonymization process. This includes
manually trimming the audio to remove introduc-
tions, and inserting silences to replace references
to participant’s name and location.

Next, 162 sessions for which transcripts were
not readily available were transcribed via Mechan-
ical Turk (Marge et al., 2010) using the follow-
ing guidelines: 1) transcribe speech turn by turn,
2) clearly identify the speaker (either client or
counselor), 3) include speech disfluencies, such as
false starts, repetitions of whole words or parts of
words, and fillers. Transcriptions were manually
verified at random points to avoid spam and en-
sure their quality.

Since sessions were recorded in natural condi-
tions, we applied speech enhancement methods to
remove noise and improve the speech signal qual-
ity. We started by converting the audio signal
from a stereo to a mono channel and to a uniform
sample rate of 16k. We then applied the Mean
Square Error estimation of spectral amplitude for
audio denoising, as implemented in the Voicebox
Speech Processing toolbox (Brookes, 2003). To
allow for a turn-by-turn audio analysis of the coun-
seling interaction, we processed the speech sig-
nal to separate client and counselor speech seg-
ments. To accomplish this task, we used on au-
tomatic speech-to-text forced alignment API.1 We

1YouTube Data API

1427

then used the automatically-obtained time stamps
to segment the audio and derive speaker-specific
speech segments for each counseling dyad.

3.2 Data Annotation

Empathy assessments were obtained using the
Motivational Interviewing Treatment Integrity
(MITI) coding scheme version 4.1 (Moyers,
2014). Each session was assigned an empathy
score using a 5-point Likert scale, which mea-
sures the extent to which the clinician understands
or makes an effort to grasp the client’s perspec-
tive and feelings. The coding was conducted by
two independent teams of three coders who had
previous experience in MI and MI coding. An-
notations were conducted using the session audio
recording along with its transcript. The inter-rater
reliability, measured in a random sample of 20
double coded sessions using the Intra-Class Cor-
relation Coefficient was 0.60,2 suggesting that the
annotators showed moderate agreement on empa-
thy assessments. The reported annotation agree-
ment was calculated on the original 5-scale em-
pathy score and it is within the ranges reported in
previous Motivational Interviewing studies (0.60-
0.62). Because of the skewed frequency distribu-
tion of the empathy scores in the dataset, we de-
cided to conduct our analyses using empathy as a
binary outcome, by classifying scores from 1 to 3
as low empathy, and scores of 4 and 5 as high em-
pathy. This resulted in 179 high empathy sessions
and 97 low empathy sessions.

4 Empathic vs Non-Empathic
Interactions: Counselor Engagement

We start by exploring differences in verbal ex-
change length between low and high empathy en-
counters as an indirect measure of participants en-
gagement during the conversation. In this anal-
ysis, we account for the time dimension by seg-
menting the conversation into five equal portions.
First, we look at the ratio of words exchanged be-
tween the counselor and the client for the different
fractions of the conversation.3 As shown in Fig-
ure 1, low empathy interactions present noticeably

2ICC scores were obtained using a two-way mixed model
with absolute agreement.

3This ratio is calculated for each pair of turns in the con-
versation, and it is simply measured as the number of words
uttered by the counselor divided by the number of words ut-
tered by the client. The turn-level word ratios are then aver-
aged for all the turns included in a portion of the conversation.

0 20 40 60 80 100
0.6

0.7

0.8

0.9

1

Portion of conversation (% of turns)

C
lie

nt
/C

ou
ns

el
or

w
or

d
ra

tio
by

tu
rn

High empathy

Low empathy

Figure 1: Word ratio by turn between clients and
counselors as the conversation progresses.

0 20 40 60 80 100
15

20

25

30

35

Portion of conversation (% of turns)

A
ve

ra
ge

w
or

ds
pe

rt
ur

n

High empathy - Counselor

Low empathy - Counselor

High empathy - Client

Low empathy - Client

Figure 2: Average words per turn by counselors
and clients as the conversation progresses.

lower ratio of words exchanged between coun-
selors and clients across the interaction, while high
empathy exchanges show consistently higher lev-
els of interaction. This can be further observed in
Figure 2, which shows that more empathic coun-
selors speak considerably less than their clients,
and that their less empathic counterparts. This is
in line with findings in MI literature indicating that
counselors who reduce the amount of time they
talk with their clients are likely to allow more time
for the patient to talk and explore their concerns,
thus improving the perception of empathy and un-
derstanding.

5 The Role of Verbal and Nonverbal
Accommodation in Empathy

Accommodation in health care communication in-
volves counselor and client coordination includ-
ing participation in communication and decision
making, and shared understanding (D’Agostino

1428

and Bylund, 2014). We analyze the accommoda-
tion and its relation to empathy by exploring ver-
bal and nonverbal behaviors exhibited by counsel-
ing participants during MI encounters. In addi-
tion to accommodation assessments, we explore
the direction of the accommodation phenomena,
i.e., whether the counselor is mirroring or leading
the client.

5.1 Verbal Accommodation

In order to explore how verbal accommodation
phenomena in our dataset relate to the MITI
empathy assessments, we use two methods that
are drawn from the Conversation Accommoda-
tion Theory. The first one is the Linguistic Style
Matching (LSM) proposed in (Gonzales et al.,
2009) to quantify to which extent one speaker,
i.e., the counselor, matches the language of the
other, i.e., the client. The second one is the Lin-
guistic Style Coordination (LSC) metric proposed
in (Danescu-Niculescu-Mizil et al., 2011), which
quantifies the degree to which one individual im-
mediately echoes the linguistic style of the person
they are responding to. Both metrics are evaluated
across eight linguistic markers from the LIWC
dictionary (Tausczik and Pennebaker, 2010) (i.e.,
quantifiers, conjunctions, adverbs, auxiliary verbs,
prepositions, articles, personal pronouns and im-
personal pronouns).

LSM produces a score ranging between 0 and
1 indicating how much one person uses types of
words comparable to the other person, while LSC
generates a coordination score in the range of -1
to 1 indicating the degree of immediate coordi-
nation between speakers. While both measures
are designed to analyze verbal synchrony, they
can reveal different aspects of the counseling in-
teraction. We use LSM to explore the potential
match of language between counselors and clients
across the counseling interaction, and we use LSC
to quantify whether the counselor use of a spe-
cific linguistic marker in a given turn increases
the probability of the client using the same marker
during their reply. In addition, we use LSC to
investigate power differences during the conver-
sation based on the amount of coordination dis-
played by either counselor or client, under the
assumption that the speaker who accommodates
less holds the most power during the conversa-
tion (Danescu-Niculescu-Mizil et al., 2012).

Figure 3 shows the average LSM scores for

0-20 40-60 60-80 80-100

0.6

0.7

0.8

Portion of the conversation (% of turns)

L
in

gu
is

tic
St

yl
e

M
at

ch
in

g

High empathy

Low empathy

Figure 3: Linguistic style matching across five
equal segments of the conversation duration.

eight linguistic markers measured on five equal
segments of the conversation duration. As ex-
pected, we observe an increasing trend of lan-
guage style matching during the counseling in-
teraction in both high-empathic and low-empathic
encounters, as people usually match their lan-
guage unconsciously and regardless of the out-
come of the conversation (Niederhoffer and Pen-
nebaker, 2002). Interestingly, counselors and
clients present a higher degree of language match-
ing during high empathy encounters, while speak-
ers in low empathy encounters show lower levels
of style matching.

We evaluate the immediate LSC in two direc-
tions: coordination of counselors toward clients,
and coordination of clients toward counselors. Re-
sults indicate low levels of immediate coordina-
tion in both cases, with values ranging between
-0.06 and 0.1. Nonetheless, the results also sug-
gest that clients coordinate more than counselors,
with LSC(client,counselor)=-0.030 compared to
LSC(counselor, client)=-0.038, which further sug-
gests that counselors have more power (control)
during the conversation.4

Analyses of the LSC levels from counselors to
clients on different linguistic markers across high-
empathic and low-empathic interactions provide
interesting findings. While counselors generally
show lower levels of coordination in the use of
prepositions, auxiliary verbs, and personal pro-
nouns (Figure 4), low-empathic counselors show
higher LSC levels than their high-empathic coun-
terparts. This can be attributed to the use of con-

4The differences in coordination showed during the anal-
yses are statistically significant (two tailed t-test, p=0.0156)

1429

−0.06 −0.04 −0.02

PREP
AUXVERB

PPRON

OTHER

Linguistic style coordination

High empathy

Low empathy

Figure 4: Linguistic style coordination from coun-
selors to clients. OTHER include: quantifiers,
conjunctions, adverbs, articles, and impersonal
pronouns.

−0.06 −0.04 −0.02 0

OTHER

ART
QUANT

Linguistic style coordination

High empathy

Low empathy

Figure 5: Linguistic style coordination from
clients to counselors. OTHER include: conjunc-
tions, adverbs, auxiliary verbs, prepositions, per-
sonal pronouns and impersonal pronouns.

frontational language (e.g., I, could, should, and
have), which is often associated with low empa-
thy. Similar analyses on the client side, shown in
Figure 5, indicate significant differences in the use
of linguistic markers by the client (except for ar-
ticles and quantifiers). In particular, during low
empathy encounters, clients coordinate more on
the use of conjunctions, adverbs, auxiliary verbs,
prepositions, personal pronouns, and impersonal
pronouns.

5.2 Nonverbal Accommodation

Empathy is also shown through nonverbal chan-
nels such as visual and acoustics (Regenbogen
et al., 2012). We explore the role of nonverbal
mirroring in empathy by looking at vocal syn-
chrony patterns shared between counselors and
clients during the counseling interaction. We fo-
cus our analysis on vocal pitch, which is defined
as the psychological perception of the voice fre-
quency in terms of how high or how low it sounds.
Pitch carries information about the speaker’s emo-
tional state, and has been shown to be related to
the perception of empathy in psychotherapy (Re-
ich et al., 2014).

We evaluate speech synchrony during turn-
taking trajectories in the conversation. We con-

20 40 60 80 100
4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

Portion of the conversation (% of turns)

Pi
tc

h
co

rr
el

at
io

n

High empathy

Low empathy

Figure 6: Pitch correlation among participants
during counselor following turns as the conversa-
tion progresses.

sider two cases: sequences where the counselor
replies to the client statements (e.g., rephrasing),
and sequences where the counselor leads the in-
teraction (e.g., asking questions). Starting with the
turn-by-turn segmentation,5 we extract pitch (F0)
on each speaker-specific segment using OpenEar
(Eyben et al., 2009).6 We then measure the corre-
lation of all pitch values during counselor follow-
ing turns and during counselor leading turns across
the entire therapy session.7

Figures 6 and 7 show the trends in pitch syn-
chrony across high-empathic and low-empathic
encounters in the dataset. In the first figure, we
observe that when replying to clients, counselors
who are given low empathy scores show higher
vocal synchrony levels than counselors who re-
ceive higher empathy scores. A potential expla-
nation for this finding is that a counselor who mir-
rors the client pitch might amplify the emotional
distress of the client, or may suggest the coun-
selor’s lack of confidence or knowledge (Reich
et al., 2014).

On the other hand, we observe the opposite
trend for the counselor leading sequences, where
higher vocal synchrony levels are observed dur-
ing high empathy interactions, which can be at-

5On average, there are approximately 40 counselor-client
turns per conversation

6The feature extraction was done at audio-frame level ev-
ery 10ms with a 25ms Hamming window.

7The terms of “counselor following” and “counselor lead-
ing” simply refer to how the correlation is computed. In
“counselor following,” we consider the set of counselor utter-
ances and the previous client utterances; in “counselor lead-
ing,” we consider the set of counselor utterances and the fol-
lowing client utterances.

1430

20 40 60 80 100
6 · 10−2

8 · 10−2

0.1

0.12

0.14

Portion of the conversation (% of turns)

Pi
tc

h
co

rr
el

at
io

n

High empathy

Low empathy

Figure 7: Pitch correlation among participants
during counselor leading turns as the conversation
progresses.

tributed to clients mirroring the counselor speech.
The similarity is noticeably higher at the begin-
ning of the conversation and gradually decreases
as the conversation progresses. Moreover, the dif-
ferences are not significant for the 40-100% turns,
but results for the first 20% suggest significant dif-
ferences at least in the beginning of the conversa-
tion (p < 0.05). This further confirm similarities
during verbal and nonverbal accommodation, sim-
ilar to how in section 5.1 we found that during
high-empathic encounters, counselors hold con-
trol of the conversation and clients accommodate
more than counselors.

6 Topics Discussed during Counseling
Interaction and their Relation to
Empathy

We also conduct content analysis on the coun-
seling interactions, to identify themes discussed
in high-empathic and low-empathic encounters.
For this task, we employ the Meaning Extraction
Method (MEM) (Chung and Pennebaker, 2008),
a topic extraction method that identifies the most
common words used in a set of documents, and
clusters them into coherent themes by analyz-
ing their co-occurrences. MEM has been used
in the past in the psychotherapy domain to ana-
lyze salient topics in depression forums (Ramirez-
Esparza et al., 2008) and also to investigate dif-
ferences in topics discussed by patients given their
therapy outcomes, i.e., therapeutic gain or unsuc-
cessful therapy (Wolf et al., 2010).

Our analyses are conducted on counselor turns
only, thus all the client turns are removed from

Behavior target Sample words

Medication adherence
Adherence, dose, window,
target, adherent, maintain,
track

Smoking cessation Cigarette, nicotine, risk, ad-
diction, smoke, withdrawal

Weight management diet, weight, eat, food, meal,
lose, gain, cook, exercise

Table 1: Three behavior change targets in the
dataset

each session transcript. We use the Meaning Ex-
traction Helper tool (Boyd, 2016) to conduct the
text preprocessing tasks, which include tokenizing
and lemmatizing the words in each session, as well
as removing function words. We keep only words
who appear in at least 10% of the transcripts with
a minimum frequency of 50. From the resulting
list, we remove adjectives, adverbs, and verbs and
keep only nouns as they usually refer to one defi-
nite class thus helping us to identify less ambigu-
ous topics. Using the resulting noun list, with 339
entries, we generate a binary vector for each doc-
ument, indicating the presence or absence of each
noun in the document. We then run a Principal
Component Analysis (PCA), followed by varimax
rotation on the document matrix to find clusters of
co-occurring nouns.

The initial PCA shows that the first three com-
ponents consist mainly of domain specific nouns.
Notably, this accurately captures the presence of
the three main behavior change targets discussed
in the dataset, i.e., medication adherence, smoking
cessation, and weight management; sample words
from each component are shown in Table 1.

In order to identify topics potentially related to
the counseling skill, we decided to remove the do-
main words from the analysis, which resulted in
250 nouns. Next, we use the same PCA config-
uration on the binary document matrix and rerun
the experiment, which this time leads to 98 com-
ponents. Following PCA literature recommen-
dations (Velicer and Fava, 1998), we retain only
components with at least three variables with load-
ings greater than 0.30, which leads to 14 compo-
nents. We then re-run PCA forcing a 14 compo-
nents solution; these components explain 35% of
the total variance in the original matrix. Finally,
we use the method proposed in (Wilson et al.,
2016) to measure the degree to which a particu-
lar MEM topic (component) is used during high-
empathic and low-emphatic encounters.

1431

Topic Sample nouns Score

Concerns Concern, scare, overwhelm, di-
agnose 2.52

Importance Importance, reason, maintain,
sense, increase 1.41

Inform Information, schedule, discuss,
read 1.14

Reflections sound, start, look, mention, past,
notice 1.19

Change Health, past, experience, deci-
sion, realize, difficult, impact 1.27

Goals Reach, choose, period, stick,
idea, study, record 1.57

Motivation Plan, motivate, routine, motiva-
tion, group, progress, fun 1.10

Support Family, care, worry, job,
lifestyle, job, focus, issue 0.92

Feelings Worry, deal, stuck, struggle,
leave 0.91

Guide Stop, reduce, attempt, spend, re-
placement 0.79

Resistance Trouble, barrier, fear, reach, in-
volve, cover 073

Persuade Routine, track, strategy, recom-
mend, affect 0.64

Persuade Stop, increase, decrease, benefit,
consequences 0.455

Plan Activity, strategy, barrier, couple 0.292

Table 2: Topics extracted by the MEM from MI
sessions, along with sample nouns and salient
topic scores.

Table 2 shows the scores assigned to each
topic. In this table, scores greater than 1 corre-
spond to topics salient in high empathy encounters
while scores lower than 1 indicate topics salient
in low empathy encounters. From this table, we
can derive interesting observations. First, dur-
ing high-empathic encounters, counselors seem to
pay more attention to patient concerns, provide in-
formation, use reflective language, and talk about
change. Second, during less empathic encounters,
counselors seem to persuade and direct more, as
well as focus on client’s resistance to change. In-
terestingly, topics that are identified as dominant
in less empathic interactions are also related to
MI non-adherent behavior, which means the coun-
selors are not following the MI strategy (Rollnick
et al., 2008). Finally, regardless of the empathy
shown during the encounter, counselors discuss
patients’ support system and feelings at similar
rates (values closer to 1), which is expected when
following the MI strategy.

7 Prediction of Counselor Empathy

In the previous sections, we provided evidence of
important differences in linguistic and verbal be-

haviors exhibited by counselors and clients during
high-empathic and low-empathic MI encounters.
In this section, we explore the use of linguistic and
acoustic cues to build a computational model that
predicts counselor empathy during MI encounters.

The feature set consists of the cues identified
during our exploratory analyses as potential indi-
cators of counselor empathy, as well as additional
text and audio features used during standard NLP
and acoustic feature extraction.

The text-based features are extracted from the
manual transcripts of the sessions, while the
audio-based features are extracted from audio seg-
ments obtained by force-aligning each session
transcript with its corresponding audio. However,
as future work, we are considering to automatize
this process by conducting automatic speaker di-
arization and transcription via automatic speech
recognition.

During our experiments, we first explore the
predictive power of each cue separately, followed
by an integrated model that attempts to combine
the linguistic and acoustic cues to improve the pre-
diction of counselor empathy.

All the experiments are performed using a Ran-
dom Forest (Breiman, 2001) classifier. Given the
large number of features, we use feature selection
based on information gain to identify the best set
of features during each experiment. During this
process we keep at least 20% of the features in
each set. Evaluations are conducted using leave-
one-session-out cross-validation. The feature se-
lection algorithm is run on each training fold be-
fore the model is trained, and the final model in-
cludes the best subset of attributes. As a refer-
ence value, we use a majority class baseline, ob-
tained by selecting high empathy as the default
class, which corresponds to 64% accuracy.

7.1 Linguistic and Acoustic Features

Engagement: These features represent the partic-
ipant’s engagement during the conversation as de-
scribed in Section 4. They are evaluated at 20%
increments of the conversation duration and also
at conversation (session) level. The features are
listed in Table 3.
Linguistic accommodation: We measure the
LSM and LSC metrics as described in section 5.2
over 74 LIWC categories and measured at 20% in-
crements of the encounter duration.

8Calculated using the LSC metric

1432

Feature C T
Counselor talk time based on syllable
counting

X

Length of conversation setter, length of
setter response, ratio between setter and
response

X

Counselor turns, client turns X X
Average words during client and coun-
selor turns

X X

Ratio of counselor and client words in
each turn

X X

Rate of verbal mirroring on each LIWC
category 8

X

Table 3: Engagement features extracted at a) (C)
conversation level, and b) (T) 20% increments of
the conversation duration, in percentage of turns.

Nonverbal accommodation: This set includes
the counselor-leading and counselor-following
synchrony scores, calculated as described in sec-
tion 5.2, and evaluated at 20% increments of the
encounter duration.
Discourse topics: These features consist of the
14 topics identified in section 6 as frequently dis-
cussed during the MI encounters. The features are
obtained by calculating the product of the princi-
pal components matrix and the binary document-
term matrix.
Raw linguistic features: We extract a large set of
linguistic features derived from the session tran-
script to model the counselor language. We in-
clude: unigrams and bigrams (ngrams), repre-
sented as a vector containing their frequencies
in the session; psycholinguistic-inspired features
that capture differences in semantic meaning (lex-
icons), represented as the total frequency counts of
all the words in a lexicon-category that are present
in the transcript; syntactic features that encode
syntax patterns in the counselor statements (CFG),
represented as a vector containing the frequency
of lexicalized and unlexicalized production rules
from the Context Free Grammar parse trees9 of
each transcript. The final linguistic features set
consists of 13,648 features.
Raw acoustic features: This feature set includes
a large number of speech features extracted with
the OpenEar toolkit (Eyben et al., 2009). We use a
predefined feature set, EmoLarge, which consists
of a set of 6,552 features used for emotion recog-
nition tasks. The features are derived from 25 low-
level speech descriptors including intensity, loud-
ness, 12 Mel frequency coefficients, pitch (F0),

9Extracted with the Stanford parser (Klein and Manning,
2003).

Feature set
Empathy

F-score
Acc. HE LE

Linguistic
Engagement 71.01% 0.80 0.40
Ling Accom 73.19% 0.82 0.44
Topics 75.72% 0.83 0.57
N-grams 78.62% 0.86 0.58
Lexicons 76.09% 0.84 0.55
CFG 76.09% 0.84 0.53
All linguistic 80.07% 0.87 0.62

Acoustic
Nonverb Accom 64.86% 0.79 0.00
Raw acoustic 73.91% 0.82 0.53
All acoustic 75.72% 0.83 0.56

Linguistic+ Acoustic
Ling+acoustic (early) 76.81% 0.84 0.56
Ling+acoustic (late) 79.35% 0.86 0.71

Table 4: Overall prediction results and F-scores
for high empathy (HE) and low empathy (LE) us-
ing linguistic and acoustic feature sets.

probability of voicing, F0 envelope, zero-crossing
rate, and 8 line spectral frequencies.

7.2 Classification Results

Classification results for each feature set are
shown in Table 4. For the linguistic and acoustic
modalities, almost all the feature sets provide clas-
sification accuracies above the baseline, with good
F-scores for both high and low empathy. The only
exception are the nonverbal accommodation fea-
tures, which have an accuracy comparable to the
baseline (64.86% vs. 64%).

When combining all the feature sets for each
modality, we observe performance gains in the
range of 10 to 15%, as compared to the models
that use one feature set at a time.

We also conduct multimodal experiments where
we combine linguistic and acoustic features using
either early fusion by concatenating all the feature
vectors, or late fusion by aggregating the outputs
of each classifier using a rule-based score level fu-
sion that assigns a weight of 0.8 to the linguistic
classifier, and 0.2 to the acoustic classifier.10

Overall, the results show performance gains
when using late fusion as compared to early fu-
sion. While the late fusion model does not outper-
form the best linguistic model in terms of accuracy
and high empathy F-score, the multimodal late fu-
sion classifier has significantly better F-score per-
formance in the classification of low empathy en-
counters, thus suggesting potential benefits of fus-

10Weights empirically determined on a development set by
evaluating increments of 0.2 for each classifier weight.

1433

ing acoustic and linguistic cues during the predic-
tion of counselor empathy.

8 Conclusions

In this paper, we presented an extensive analysis
of counselors and clients behaviors during MI en-
counters, and found significant differences in the
way counselors and clients behave during high and
low empathy encounters. We specifically explored
the engagement, coordination, and discourse of
counselors during MI interventions. Our main
findings include:
Engagement: Empathic counselors show more
engagement during the conversation by a) showing
levels of verbal interaction consistent with their
client, and b) reducing their relative talking time
with clients.
Coordination: Empathic counselors match the
linguistic style of their clients across the session,
but maintain control of the conversation by coor-
dinating less at immediate conversation turn-level.
Conversation content: Empathic counselors use
reflective language and talk about behavior
change, while less empathic counselors persuade
more and focus on client resistance toward change.

The results of these analyses were used to build
accurate counselor empathy classifiers that rely on
linguistic and acoustic cues, with accuracies of up
to 80%.

In the future, we plan to build upon the acquired
knowledge and the developed classifiers to create
automatic tools that provide accurate evaluative
feedback of counseling practice.

Acknowledgments

We are grateful to Prof. Berrin Yanikoglu for her
very useful input on the machine learning frame-
work. This material is based in part upon work
supported by the University of Michigan under
the M-Cube program, by the National Science
Foundation (grant #1344257), the John Templeton
Foundation (grant #48503), and the Michigan In-
stitute for Data Science. Any opinions, findings,
and conclusions or recommendations expressed in
this material are those of the author and do not
necessarily reflect the views of the University of
Michigan, the National Science Foundation, the
John Templeton Foundation, or the Michigan In-
stitute for Data Science.

References
Ryan. L. Boyd. 2016. Meh: Meaning extraction helper

(version 1.4.14) [software].

Leo Breiman. 2001. Random forests. Machine learn-
ing 45(1):5–32.

Michael Brookes. 2003. Voicebox: Speech processing
toolbox for matlab.

Delwyn Catley, Kari J Harris, Kathy Goggin, Kimber
Richter, Karen Williams, Christi Patten, Ken Resni-
cow, Edward Ellerbeck, Andrea Bradley-Ewing,
Domonique Malomo, et al. 2012. Motivational in-
terviewing for encouraging quit attempts among un-
motivated smokers: study protocol of a random-
ized, controlled, efficacy trial. BMC public health
12(1):456.

Cindy K Chung and James W Pennebaker. 2008.
Revealing dimensions of thinking in open-ended
self-descriptions: An automated meaning extraction
method for natural language. Journal of Research in
Personality 42(1):96–132.

Thomas A D’Agostino and Carma L Bylund. 2014.
Nonverbal accommodation in health care communi-
cation. Health communication 29(6):563–573.

Cristian Danescu-Niculescu-Mizil, Michael Gamon,
and Susan Dumais. 2011. Mark my words!: lin-
guistic style accommodation in social media. In
Proceedings of the 20th international conference on
World Wide Web. ACM, pages 745–754.

Cristian Danescu-Niculescu-Mizil, Lillian Lee,
Bo Pang, and Jon Kleinberg. 2012. Echoes of
power: Language effects and power differences in
social interaction. In Proceedings of WWW. pages
699–708.

Florian Eyben, Martin Wöllmer, and Björn Schuller.
2009. Openear introducing the munich open-source
emotion and affect recognition toolkit. In 2009 3rd
International Conference on Affective Computing
and Intelligent Interaction and Workshops. IEEE,
pages 1–6.

James Gibson, Nikolaos Malandrakis, Francisco
Romero, David C Atkins, and Shrikanth Narayanan.
2015. Predicting therapist empathy in motivational
interviews using language features inspired by psy-
cholinguistic norms. In Sixteenth Annual Confer-
ence of the International Speech Communication As-
sociation.

Kathy Goggin, Mary M Gerkovich, Karen B Williams,
Julie W Banderas, Delwyn Catley, Jannette Berkley-
Patton, Glenn J Wagner, James Stanford, Sally
Neville, Vinutha K Kumar, et al. 2013. A random-
ized controlled trial examining the efficacy of mo-
tivational counseling with observed therapy for an-
tiretroviral therapy adherence. AIDS and Behavior
17(6):1992–2001.

1434

Amy L Gonzales, Jeffrey T Hancock, and James W
Pennebaker. 2009. Language style matching as a
predictor of social dynamics in small groups. Com-
munication Research .

Dan Klein and Christopher D Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the
41st Annual Meeting on Association for Computa-
tional Linguistics-Volume 1. Association for Com-
putational Linguistics, pages 423–430.

Sarah Peregrine Lord, Elisa Sheng, Zac E Imel, John
Baer, and David C Atkins. 2015. More than re-
flections: Empathy in motivational interviewing in-
cludes language style synchrony between therapist
and client. Behavior therapy 46(3):296–303.

Matthew Marge, Satanjeev Banerjee, Alexander Rud-
nicky, et al. 2010. Using the amazon mechanical
turk for transcription of spoken language. In Acous-
tics Speech and Signal Processing (ICASSP), 2010
IEEE International Conference on. IEEE, pages
5270–5273.

William R Miller and Stephen Rollnick. 2013. Motiva-
tional interviewing: Helping people change, Third
edition. The Guilford Press.

Theresa B. Manuel Jennifer K. Ernst Denise Moy-
ers. 2014. Motivational Interviewing Treatment In-
tegrity Coding Manual 4.1. Unpublished manual..

Theresa B Moyers and William R Miller. 2013. Is low
therapist empathy toxic? Psychology of Addictive
Behaviors 27(3):878.

Kate G Niederhoffer and James W Pennebaker. 2002.
Linguistic style matching in social interaction. Jour-
nal of Language and Social Psychology 21(4):337–
360.

Verónica Pérez-Rosas, Rada Mihalcea, Kenneth Resni-
cow, Lawrence An, and Satinder Singh. 2016.
Building a motivational interviewing dataset. In
NAACL Workshop on Clinical Psychology.

Nairan Ramirez-Esparza, Cindy K. Chung, Ewa
Kacewicz, and James W. Pennebaker. 2008. The
psychology of word use in depression forums in en-
glish and in spanish: Testing two text analytic ap-
proaches. In In Proc. ICWSM 2008.

Christina Regenbogen, Daniel A Schneider, Andreas
Finkelmeyer, Nils Kohn, Birgit Derntl, Thilo Keller-
mann, Raquel E Gur, Frank Schneider, and Ute Ha-
bel. 2012. The differential contribution of facial ex-
pressions, prosody, and speech content to empathy.
Cognition & emotion 26(6):995–1014.

Catherine M Reich, Jeffrey S Berman, Rick Dale, and
Heidi M Levitt. 2014. Vocal synchrony in psy-
chotherapy. Journal of Social and Clinical Psychol-
ogy 33(5):481.

Stephen Rollnick, William R Miller, Christopher C
Butler, and Mark S Aloia. 2008. Motivational in-
terviewing in health care: helping patients change
behavior. COPD: Journal of Chronic Obstructive
Pulmonary Disease 5(3):203–203.

Yla R Tausczik and James W Pennebaker. 2010. The
psychological meaning of words: Liwc and comput-
erized text analysis methods. Journal of language
and social psychology 29(1):24–54.

Wayne F Velicer and Joseph L Fava. 1998. Affects of
variable and subject sampling on factor pattern re-
covery. Psychological methods 3(2):231.

Steven R. Wilson, Rada Mihalcea, Ryan L. Boyd, and
James W. Pennebaker. 2016. Cultural influences on
the measurement of personal values through words,
AI Access Foundation, volume SS-16-01 - 07, pages
314–317.

Markus Wolf, Cindy K Chung, and Hans Kordy. 2010.
Inpatient treatment to online aftercare: e-mailing
themes as a function of therapeutic outcomes. Psy-
chotherapy Research 20(1):71–85.

Bo Xiao, Daniel Bone, Maarten Van Segbroeck, Zac E
Imel, David C Atkins, Panayiotis G Georgiou, and
Shrikanth S Narayanan. 2014. Modeling therapist
empathy through prosody in drug addiction counsel-
ing. In Fifteenth Annual Conference of the Interna-
tional Speech Communication Association.

Bo Xiao, Dogan Can, Panayiotis G Georgiou, David
Atkins, and Shrikanth S Narayanan. 2012. Ana-
lyzing the language of therapist empathy in motiva-
tional interview based psychotherapy. In Signal &
Information Processing Association Annual Summit
and Conference (APSIPA ASC), 2012 Asia-Pacific.
IEEE, pages 1–4.

Bo Xiao, Zac E Imel, Panayiotis G Georgiou, David C
Atkins, and Shrikanth S Narayanan. 2015. ” rate my
therapist”: Automated detection of empathy in drug
and alcohol counseling via speech and language pro-
cessing. PloS one 10(12):e0143055.

1435

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1436–1446
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1132

Leveraging Knowledge Bases in LSTMs for Improving Machine Reading

Bishan Yang
Machine Learning Department

Carnegie Mellon University
bishan@cs.cmu.edu

Tom Mitchell
Machine Learning Department

Carnegie Mellon University
tom.mitchell@cs.cmu.edu

Abstract
This paper focuses on how to take advan-
tage of external knowledge bases (KBs)
to improve recurrent neural networks for
machine reading. Traditional methods
that exploit knowledge from KBs en-
code knowledge as discrete indicator fea-
tures. Not only do these features gener-
alize poorly, but they require task-specific
feature engineering to achieve good per-
formance. We propose KBLSTM, a novel
neural model that leverages continuous
representations of KBs to enhance the
learning of recurrent neural networks for
machine reading. To effectively inte-
grate background knowledge with infor-
mation from the currently processed text,
our model employs an attention mecha-
nism with a sentinel to adaptively decide
whether to attend to background knowl-
edge and which information from KBs is
useful. Experimental results show that our
model achieves accuracies that surpass the
previous state-of-the-art results for both
entity extraction and event extraction on
the widely used ACE2005 dataset.

1 Introduction

Recurrent neural networks (RNNs), a neural archi-
tecture that can operate over text sequentially, have
shown great success in addressing a wide range
of natural language processing problems, such as
parsing (Dyer et al., 2015), named entity recogni-
tion (Lample et al., 2016), and semantic role label-
ing (Zhou and Xu, 2015)). These neural networks
are typically trained end-to-end where the input is
only text or a sequence of words and a lot of back-
ground knowledge is disregarded.

The importance of background knowledge in
natural language understanding has long been rec-
ognized (Minsky, 1988; Fillmore, 1976). Earlier
NLP systems mostly exploited restricted linguistic
knowledge such as manually-encoded morpholog-
ical and syntactic patterns. With the advanced de-
velopment of knowledge base construction, large
amounts of semantic knowledge become avail-
able, ranging from manually annotated semantic
networks like WordNet 1 to semi-automatically or
automatically constructed knowledge graphs like
DBPedia 2 and NELL 3. While traditional ap-
proaches have exploited the use of these knowl-
edge bases (KBs) in NLP tasks (Ratinov and
Roth, 2009; Rahman and Ng, 2011; Nakashole and
Mitchell, 2015), they require a lot of task-specific
engineering to achieve good performance.

One way to leverage KBs in recurrent neural
networks is by augmenting the dense representa-
tions of the networks with the symbolic features
derived from KBs. This is not ideal as the sym-
bolic features have poor generalization ability. In
addition, they can be highly sparse, e.g., using
WordNet synsets can easily produce millions of
indicator features, leading to high computational
cost. Furthermore, the usefulness of knowledge
features varies across contexts, as general KBs in-
volve polysemy, e.g., “Clinton” can refer to a per-
son or a town. Incorporating KBs irrespective
of the textual context could mislead the machine
reading process.

Can we train a recurrent neural network that
learns to adaptively leverage knowledge from KBs
to improve machine reading? In this paper,
we propose KBLSTM, an extension to bidirec-

1https://wordnet.princeton.edu
2http://wiki.dbpedia.org/
3http://rtw.ml.cmu.edu/rtw/kbbrowser/

1436

https://doi.org/10.18653/v1/P17-1132

tional Long Short-Term Memory neural networks
(BiLSTMs) (Hochreiter and Schmidhuber, 1997;
Graves et al., 2005) that is capable of leverag-
ing symbolic knowledge from KBs as it processes
each word in the text. At each time step, the model
retrieves KB concepts that are potentially related
to the current word. Then, an attention mechanism
is employed to dynamically model their semantic
relevance to the reading context. Furthermore, we
introduce a sentinel component in BiLSTMs that
allows flexibility in deciding whether to attend to
background knowledge or not. This is crucial be-
cause in some cases the text context should over-
ride the context-independent background knowl-
edge available in general KBs.

In this work, we leverage two general, readily
available knowledge bases: WordNet (WordNet,
2010) and NELL (Mitchell et al., 2015). Word-
Net is a manually created lexical database that
organizes a large number of English words into
sets of synonyms (i.e. synsets) and records con-
ceptual relations (e.g., hypernym, part of) among
them. NELL is an automatically constructed web-
based knowledge base that stores beliefs about
entities. It is organized based on an ontology
of hundreds of semantic categories (e.g., person,
fruit, sport) and relations (e.g., personPlaysInstru-
ment). We learn distributed representations (i.e.,
embeddings) of WordNet and NELL concepts us-
ing knowledge graph embedding methods. We
then integrate these learned embeddings with the
state vectors of the BiLSTM network to enable
knowledge-aware predictions.

We evaluate the proposed model on two core in-
formation extraction tasks: entity extraction and
event extraction. For entity extraction, the model
needs to recognize all mentions of entities such
as person, organization, location, and other things
from text. For event extraction, the model is re-
quired to identify event mentions or event triggers4

that express certain types of events, e.g., elections,
attacks, and travels. Both tasks are challenging
and often require the combination of background
knowledge and the text context for accurate pre-
diction. For example, in the sentence “Maigret
left viewers in tears.”, knowing that “Maigret”
can refer to a TV show can greatly help disam-
biguate its meaning. However, knowledge bases

4An event also consists of participants whose types de-
pend on the event triggers. In this work, we focus on pre-
dicting event triggers and leave the prediction of event partic-
ipants for future work.

may hurt performance if used blindly. For ex-
ample, in the sentence “Santiago is charged with
murder.”, methods that rely heavily on KBs are
likely to interpret “Santiago” as a location due to
the popular use of Santiago as a city. Similarly for
events, the same word can trigger different types
of events, for example, “release” can be used to de-
scribe different events ranging from book publish-
ing to parole. It is important for machine learning
models to learn to decide which knowledge from
KBs is relevant given the context.

Extensive experiments demonstrate that our
KBLSTM models effectively leverage background
knowledge from KBs in training BiLSTM net-
works for machine reading. They achieve signifi-
cant improvement on both entity and event extrac-
tion compared to traditional feature-based meth-
ods and LSTM networks that disregard knowledge
in KBs, resulting in new state-of-the-art results
for entity extraction and event extraction on the
widely used ACE2005 dataset.

2 Related Work

Essential to RNNs’ success on natural language
processing is the use of Long Short-Term Mem-
ory neural networks (Hochreiter and Schmidhu-
ber, 1997) (LSTMs) or Gated Recurrent Unit (Cho
et al., 2014) (GRU) as they are able to handle long-
term dependencies by adaptively memorizing val-
ues for either long or short durations. Their bidi-
rectional variants BiLSTM (Graves et al., 2005)
or BiGRU further allow the incorporation of both
past and future information. Such ability has been
shown to be generally helpful in various NLP
tasks such as named entity recognition (Huang
et al., 2015; Chiu and Nichols, 2016; Ma and
Hovy, 2016), semantic role labeling (Zhou and
Xu, 2015), and reading comprehension (Hermann
et al., 2015; Chen et al., 2016). In this work, we
also employ the BiLSTM architecture.

In parallel to the development for text process-
ing, neural networks have been successfully used
to learn distributed representations of structured
knowledge from large KBs (Bordes et al., 2011,
2013; Socher et al., 2013; Yang et al., 2015; Guu
et al., 2015). Embedding the symbolic represen-
tations into continuous space not only makes KBs
more easy to use in statistical learning approaches,
but also offers strong generalization ability. Many
attempts have been made on connecting dis-
tributed representations of KBs with text in the

1437

context of knowledge base completion (Lao et al.,
2011; Gardner et al., 2014; Toutanova et al., 2015),
relation extraction (Weston et al., 2013; Chang
et al., 2014; Riedel et al., 2013), and question an-
swering (Miller et al., 2016). However, these ap-
proaches model text using shallow representations
such as subject/relation/object triples or bag of
words. More recently, Ahn et al. (2016) proposed
a neural knowledge language model that leverages
knowledge bases in RNN language models, which
allows for better representations of words for lan-
guage modeling. Unlike their work, we leverage
knowledge bases in LSTMs and applies it to infor-
mation extraction.

The architecture of our KBLSTM model draws
on the development of attention mechanisms that
are widely employed in tasks such as machine
translation (Bahdanau et al., 2015) and image cap-
tioning (Xu et al., 2015). Attention allows the neu-
ral networks to dynamically attend to salient fea-
tures of the input. With a similar motivation, we
employ attention in KBLSTMs to allow for dy-
namic attention to the relevant knowledge given
the text context. Our model is also closely related
to a recent model of caption generation introduced
by Lu et al. (2017), where a visual sentinel is in-
troduced to allow the decoder to decide whether to
attend to image information when generating the
next word. In our model, we introduce a sentinel
to control the tradeoff between background knowl-
edge and information from the text.

3 Method

In this section, we present our KBLSTM model.
We first describe several basic recurrent neu-
ral network frameworks for machine reading, in-
cluding basic RNNs, LSTMs, and bidirectional
LSTMs (Sec. § 3.1). We then introduce our ex-
tension to bidirectional LSTMs that allows for the
incorporation of KB information at each time step
of reading (Sec. § 3.2). The KB information is en-
coded using continuous representations (i.e., em-
beddings) which are learned using knowledge em-
bedding methods (Sec. § 3.3).

3.1 RNNs, LSTMs, and Bidirectional LSTMs

RNNs are a class of neural networks that take a se-
quence of inputs and compute a hidden state vector
at each time step based on the current input and the
entire history of inputs. The hidden state vector
can be computed recursively using the following

equation (Elman, 1990):

ht = F (Wht−1 +Uxt)

where xt is the input at time step t, ht is the hid-
den state at time step t, U and W are weight ma-
trices, and F is a nonlinear function such as tanh
or ReLu. Depending on the applications, RNNs
can produce outputs based on the hidden state of
each time step or just the last time step.

A Long Short-Term Memory network (Hochre-
iter and Schmidhuber, 1997) (LSTM) is a variant
of RNNs which was design to better handle cases
where the output at time t depends on much ear-
lier inputs. It has a memory cell and three gating
units: an input gate that controls what information
to add to the current memory, a forget gate which
controls what information to remove from the pre-
vious memory, and an output gate which controls
what information to output from the current mem-
ory. Each gate is implemented as a logistic func-
tion σ that takes as input the previous hidden state
and the current input, and outputs values between
0 and 1. Multiplication with these values controls
the flow of information into or out of the memory.
In equations, the updates at each time step t are:

it = σ(Wiht−1 +Uixt)

ft = σ(Wfht−1 +Ufxt)

ot = σ(Woht−1 +Uoxt)

ct = ft � ct−1 + it � tanh(Wcht−1 +Ucxt)

ht = ot � tanh(ct)

where it is the input gate, ft is the forget gate, ot
is the output gate, ct is the memory cell, and ht is
the hidden state. � denotes element-wise multipli-
cation. Wi,Ui,Wf ,Uf ,Wo,Uo,Wc,Uc are
weight matrices to be learned.

Bidirectional LSTMs (Graves et al., 2005)
(BiLSTMs) are essentially a combination of two
LSTMs in two directions: one operates in the for-
ward direction and the other operates in the back-
ward direction. This leads to two hidden states−→
ht and

←−
ht at time step t, which can be viewed

as a summary of the past and the future respec-
tively. Their concatenation ht = [

−→
ht;
←−
ht] provides

a whole summary of the information about the in-
put around time step t. Such property is attractive
in NLP tasks, since information of both previous
words and future words can be helpful for inter-
preting the meaning of the current word.

1438

Figure 1: Architecture of the KBLSTM model.
As each time step t, the knowledge module re-
trieves a set of candidate KB concepts V (xt) that
are related to the current input xt, and then com-
putes a knowledge state vector mt that integrates
the embeddings of the candidate KB concepts
v1,v2, ...,vL and the current context vector st.
See Section § 3.2 for details.

3.2 Knowledge-aware Bidirectional LSTMs

Our model (referred to as KBLSTM) extends BiL-
STMs to allow flexibility in incorporating sym-
bolic knowledge from KBs. Instead of encoding
knowledge as discrete features, we encode it using
continuous representations. Concretely, we learn
embeddings of concepts in KBs using a knowl-
edge graph embedding method. (We will describe
the details in Section § 3.3). The KBLSTM model
then retrieves the embeddings of candidate con-
cepts that are related to the current word being pro-
cessed and integrates them into its state vector to
make knowledge-aware predictions. Figure 1 de-
picts the architecture of our model.

The core of our model is the knowledge module,
which is responsible for transferring background
knowledge into the BiLSTMs. The knowledge
at time step t consists of candidate KB concepts
V (xt) for input xt. (We will describe how to ob-
tain the candidate KB concepts from NELL and
WordNet in Section § 3.3). Each candidate KB
concept i ∈ V (xt) is associated with a vector em-
bedding vi. We compute an attention weight αti
for concept vector vi via a bilinear operator, which
reflects how relevant or important concept i is to
the current reading context ht:

αti ∝ exp(vTi Wvht) (1)

where Wv is a parameter matrix to be learned.

Note that the candidate concepts in some cases
are misleading. For example, a KB may store the
fact that “Santiago” is a city but miss the fact that
it can also refer to a person. Incorporating such
knowledge in the sentence “Santiago is charged
with murder.” could be misleading. To address
this issue, we introduce a knowledge sentinel that
records the information of the current context and
use a mixture model to allow for better tradeoff
between the impact of background knowledge and
information from the context. Specifically, we
compute a sentinel vector st as:

bt = σ(Wbht−1 +Ubxt) (2)

st = bt � tanh(ct) (3)

where Wb and Ub are weight parameters to be
learned. The weight on the local context is com-
puted as:

βt ∝ exp(sTt Wsht) (4)

where Ws is a parameter matrix to be learned.
The mixture model is defined as:

mt =
∑

i∈V (xt)

αtivi + βtst (5)

where
∑

i∈V (xt)
αti+βt = 1. mt can be viewed as

a knowledge state vector that encodes external KB
information with respect to the input at time t. We
combine it with the state vector ht of BiLSTMs to
obtain a knowledge-aware state vector ĥt:

ĥt = ht +mt (6)

If V (xt) = ∅, we set mt = 0. ĥt can be used for
predictions in the same way as the original state
vector ht (see Section § 4 for details).

3.3 Embedding Knowledge Base Concepts

Now we describe how to learn embeddings of con-
cepts in KBs. We consider two KBs: WordNet
and NELL, which are both knowledge graphs that
can be stored in the form of RDF5 triples. Each
triple consists of a subject entity, a relation, and an
object entity. Examples of triples in WordNet are
(location, hypernym of, city), and (door, has part,
lock), where both the subject and object entities
are synsets in WordNet. Examples of triples in
NELL are (New York, located in, United States)

5https://www.w3.org/TR/rdf11-concepts/

1439

and (New York, is a, city), where the subject en-
tity is a noun phrase that can refer to a real-world
entity and the object entity can be either a noun
phrase entity or a concept category.

In this work, we refer to the synsets in WordNet
and the concept categories in NELL as KB con-
cepts. They are the key components of the ontolo-
gies and provide generally useful information for
language understanding. As our KBLSTM model
reads through each word in a sentence, it retrieves
knowledge from NELL by searching for entities
with the current word and collecting the related
concept categories as candidate concepts; and it
retrieves knowledge from WordNet by treating the
synsets of the current word as candidate concepts.

We employ a knowledge graph embedding ap-
proach to learn the representations of the candidate
concepts. Denote a KB triple as (e1, r, e2), we
want to learn embeddings of the subject entity e1,
the object entity e2, and the relation r, so that the
relevance of the triple can be measured by a scor-
ing function based on the embeddings. We employ
the BILINEAR model described in (Yang et al.,
2015).6 It computes the score of a triple (e1, r, e2)
via a bilinear function: S(e1,r,e2) = vTe1Mrve2 ,
where ve1 and ve2 are vector embeddings for e1
and e2 respectively, and Mr is a relation-specific
embedding matrix. We train the embeddings using
the max-margin ranking objective:

∑

q=(e1,r,e2)∈T

∑

q′=(e1,r,e′2)∈T ′
max{0, 1− Sq + Sq′}

(7)
where T denotes the set of triples in the KB and T ′
denotes the “negative” triples that are not observed
in the KB.

For WordNet, we train the concept embeddings
using the preprocessed data provided by (Bordes
et al., 2013), which contains 151,442 triples with
40,943 synsets and 18 relations. We use the same
data splits for training, development, and testing.
During training, we use AdaGrad (Duchi et al.,
2011) to optimize objective 7 with an initial learn-
ing rate of 0.05 and a mini-batch size of 100. At
each gradient step, we sample 10 negative object
entities with respect to the positive triple. Our
implementation of the BILINEAR model achieves
top-10 accuracy of 91% for predicting missing ob-

6We also experimented with TransE (Bordes et al., 2013)
and NTN (Socher et al., 2013), and found that they perform
significantly worse than the Bilinear method, especially on
predicting the “is a” facts in NELL.

ject entities on the WordNet test set, which is com-
parable with previous work (Yang et al., 2015).

For NELL, we train the concept embeddings us-
ing a subset of the NELL data7. We filter noun
phrases with annotation confidence less than 0.9 in
order to remove erroneous labels introduced dur-
ing the automatic construction of NELL (Wijaya,
2016). This results in 180,107 noun phrases and
258 concept categories in total. We randomly split
80% of the data for training, 10% for develop-
ment and 10% for testing. For each training exam-
ple, we enumerate all the unobserved concept cat-
egories as negative labels. Instead of treating each
entity as a unit, we represent it as an average of
its constituting word vectors concatenated with its
head word vector. The word vectors are initialized
with pre-trained paraphrastic embeddings (Wiet-
ing et al., 2015) and fine-tuned during training.
Using the same optimization parameters as be-
fore, the BILINEAR model achieves 88% top-1 ac-
curacy for predicting concept categories of given
noun phrases on the test set.

4 Experiments

4.1 Entity Extraction

We first apply our model to entity extraction,
a task that is typically addressed by assigning
each word/token BIO labels (Begin, Inside, and
Outside) (Ratinov and Roth, 2009) indicating the
token’s position within an entity mention as well
as its entity type.

To allow tagging over phrases instead of words,
we address entity extraction in two steps. The first
step detects mention chunks, and the second step
assigns entity type labels to mention chunks (in-
cluding an O type indicating other types). In the
first stage, we train a BiLSTM network with a
conditional random field objective (Huang et al.,
2015) using gold-standard BIO labels regardless
of entity types, and only predict each token’s po-
sition within an entity mention. This produces a
sequence of chunks for each sentence. In the sec-
ond stage, we train another supervised BiLSTM
model to predict type labels for the previously ex-
tracted chunks. Each chunk is treated as a unit
input to the BiLSTMs and the input vector is com-
puted by averaging the input vectors of individ-
ual words within the chunk concatenated with its
head word vector. The BiLSTMs can be trained

7http://rtw.ml.cmu.edu/rtw/resources

1440

with a softmax objective that minimizes the cross-
entropy loss for each individual chunk. It com-
putes the probability of the correct type for each
chunk:

pyt =
exp(wT

ytht)∑
y′t
exp(wT

y′t
ht)

(8)

The BiLSTMs can also be trained with a CRF ob-
jective (referred to as BiLSTM-CRF) that mini-
mizes the negative log-likelihood for the entire se-
quence. It computes the probability of the correct
types for a sequence of chunks:

py =
exp(g(x,y))∑
y′ exp(g(x,y

′))
(9)

where g(x,y) =
∑l

t=1 Pt,yt +
∑l

t=0Ayt,yt+1 ,
Pt,yt = wT

ytht is the score of assigning the t-th
chunk with tag yt and Ayt,yt+1 is the score of tran-
sitioning from tag yt to yt+1. By replacing ht in
Eq. 8 and Eq. 9 with the knowledge-aware state
vector ĥt (Eq. 6), we can compute the objective
for KBLSTM and KBLSTM-CRF respectively.

4.1.1 Implementation Details
We evaluate our models on the ACE2005 cor-
pus (LDC, 2005) and the OntoNotes 5.0 cor-
pus (Hovy et al., 2006) for entity extraction. Both
datasets consist of text from a variety of sources
such as newswire, broadcast conversations, and
web text. We use the same data splits and task
settings for ACE2005 as in Li et al. (2014) and for
OntoNotes 5.0 as in Durrett and Klein (2014).

At each time step, our models take as input a
word vector and a capitalization feature (Chiu and
Nichols, 2016). We initialize the word vectors us-
ing pretrained paraphrastic embeddings (Wieting
et al., 2015), as we find that they significantly out-
performs randomly initialized embeddings. The
word embeddings are fine-tuned during training.
For the KBLSTM models, we obtain the embed-
dings of KB concepts from NELL and WordNet
as described in Section § 3.3. These embeddings
are kept fix during training.

We implement all the models using Theano on
a single GPU. We update the model parameters on
every training example using Adam with default
settings (Kingma and Ba, 2014) and apply dropout
to the input layer of the BiLSTM with a rate of
0.5. The word embedding dimension is set to 300
and the hidden vector dimension is set to 100. We
train models on ACE2005 for about 5 epochs and

Model P R F1

BiLSTM 83.5 86.4 84.9
BiLSTM-CRF 87.3 84.7 86.0
BiLSTM-Fea 86.1 84.7 85.4
BiLSTM-Fea-CRF 87.7 86.1 86.9

KBLSTM 87.8 86.6 87.2
KBLSTM-CRF 88.1 87.8 88.0∗

Table 1: Entity extraction results on the ACE2005
test set with gold-standard mention boundaries.

on OntoNotes 5.0 for about 10 epochs with early
stopping based on development results.

For each experiment, we report the average re-
sults over 10 random runs. We also apply the
Wilcoxon rank sum test to compare our models
with the baseline models.

4.1.2 Results
We compare our KBLSTM and KBLSTM-CRF
models with the following baselines: BiLSTM, a
vanilla BiLSTM network trained using the same
input, and BiLSTM-Fea, a BiLSTM network that
combines its hidden state vector with discrete KB
features (i.e., indicators of candidate KB concepts)
to produce the final state vector. We also in-
clude their variants BiLSTM-CRF and BiLSTM-
Fea-CRF, which are trained using the CRF objec-
tive instead of the standard softmax objective.

We first report results on entity extraction with
gold-standard boundaries for multi-word men-
tions. This allows us to focus on the perfor-
mance of entity type prediction without consider-
ing mention boundary errors and the noise they in-
troduce in retrieving candidate KB concepts. Ta-
ble 1 shows the results.8 We find that the CRF
objective generally outperforms the softmax ob-
jective. Our KBLSTM-CRF model significantly
improves over its counterpart BiLSTM-Fea-CRF.
This demonstrates the effectiveness of KBLSTM
architecture in leveraging KB information.

Table 2 breaks down the results of the
KBLSTM-CRF and the BiLSTM-Fea-CRF using
different KB settings. We find that the KBLSTM-
CRF outperforms the BiLSTM-Fea-CRF in all the
settings and that incorporating both KBs leads to
the best performance.

Next, we evaluate our models on entity ex-
traction with predicted mention boundaries. We
first train a BiLSTM-CRF to perform mention

8∗ indicates p < 0.05 when comparing to the BiLSTM-
based models.

1441

Model KB P R F1

BiLSTM-Fea-CRF
NELL 87.2 86.1 86.6

WordNet 86.4 86.0 86.2
Both 87.7 86.1 86.9

KBLSTM-CRF
NELL 87.4 87.6 87.5

WordNet 87.1 87.4 87.3
Both 88.1 87.8 88.0

Table 2: Ablation results with different KBs.

chunking using the same setting as described
in Section 4.1.1. We then treat the predicted
chunks as units for entity type labeling. Table 3
reports the full entity extraction results on the
ACE2005 test set. We compare our models with
the state-of-the-art feature-based linear models Li
et al. (2014), Yang and Mitchell (2016), and the
recently proposed sequence- and tree-structured
LSTMs (Miwa and Bansal, 2016). Interestingly,
we find that using BiLSTM-CRF without any
KB information already gives strong performance
compared to previous work. The KBLSTM-CRF
model demonstrates the best performance among
all the models and achieves the new state-of-the-
art performance on the ACE2005 dataset.

We also report the entity extraction results on
the OntoNotes 5.0 test set in Table 4. We compare
our models with the existing feature-based mod-
els Ratinov and Roth (2009) and Durrett and Klein
(2014), which both employ heavy feature engi-
neering to bring in external knowledge. BiLSTM-
CNN (Chiu and Nichols, 2016) employs a hy-
brid BiLSTM and Convolutional neural network
(CNN) architecture and incorporates rich lexicon
features derived from SENNA and DBPedia. Our
KBLSTM-CRF model shows competitive results
compared to their results. It also presents sig-
nificant improvements compared to the BiLSTM
and BiLSTM-Fea models. Note that the benefit of
adding KB information is smaller on OntoNotes
compared to ACE2005. We believe that there are
two main reasons. One is that NELL has a lower
coverage of entity mentions in OntoNotes than in
ACE2005 (57% vs. 65%). Second, OntoNotes
has a significantly larger amount of training data,
which allows for more accurate models without
much help from external resources.

4.2 Event Extraction

We now apply our model to the task of event ex-
traction. Event extraction is concerned with de-

Model P R F1

Li and Ji (2014) 85.2 76.9 80.8
Yang and Mitchell (2016) 83.5 80.2 81.8
Miwa and Bansal (2016) 82.9 83.9 83.4

BiLSTM 82.5 83.1 82.8
BiLSTM-CRF 84.6 82.5 83.6
BiLSTM-Fea 84.3 83.2 83.7
BiLSTM-Fea-CRF 84.7 83.5 84.1
KBLSTM 85.5 85.2 85.3
KBLSTM-CRF 85.4 86.0 85.7∗

Table 3: Entity extraction results on the ACE2005
test set.

Model P R F1

Ratinov and Roth (2009) 82.0 84.9 83.4
Durrett and Klein (2014) 85.2 82.8 84.0
BiLSTM-CNN 82.5 82.4 82.5
BiLSTM-CNN+emb 85.9 86.3 86.1
BiLSTM-CNN+emb+lexicon 86.0 86.5 86.2

BiLSTM 84.9 86.3 85.6
BiLSTM-CRF 85.3 86.6 85.9
BiLSTM-Fea 85.2 86.4 85.8
BiLSTM-Fea-CRF 85.2 86.8 86.0
KBLSTM 86.3 86.2 86.2
KBLSTM-CRF 86.1 86.8 86.4∗

Table 4: Entity extraction results on the OntoNotes
5.0 test set.

tecting event triggers, i.e., a word that expresses
the occurrence of a pre-defined type of event.
Event triggers are mostly verbs and eventive nouns
but can occasionally be adjectives and other con-
tent words. Therefore, the task is typically ad-
dressed as a classification problem where the goal
is to label each word in a sentence with an event
type or an O type if it does not express any of the
defined events. It is straightforward to apply the
BiLSTM architecture to event extraction. Simi-
larly to the models for entity extraction, we can
train the BiLSTM network with both the softmax
objective and the CRF objective.

We evaluate our models on the portion
ACE2005 corpus that has event annotations. We
use the same data split and experimental setting as
in Li et al. (2013). The training procedure is the
same as in Section 4.1.1, and we train all the mod-
els for about 5 epochs. For the KBLSTM models,
we integrate the learned embeddings of WordNet
synsets during training.

1442

(a) The X-axis represents relevant NELL concepts for the
entity mention clinton. The Y-axis represents the concept
weights and the knowledge sentinel weight.

(b) The X-axis represents relevant WordNet concepts for
the event trigger head. The Y-axis represents the concept
weights and the knowledge sentinel weight.

Figure 2: Visualization of the attention weights for KB features learned by KBLSTM-CRF. Higher
weights imply higher importance.

Model P R F1

JOINTBEAM 74.0 56.7 64.2
JOINTEVENTENTITY 75.1 63.3 68.7

DMCNN 71.8 63.8 69.0
JRNN 66.0 73.0 69.3

BiLSTM 71.3 59.3 64.7
BiLSTM-CRF 64.2 66.6 65.4
BiLSTM-Fea 68.4 62.7 65.5
BiLSTM-Fea-CRF 65.5 66.7 66.1
KBLSTM 70.1 67.3 68.7
KBLSTM-CRF 71.6 67.8 69.7∗

Table 5: event extraction results on the ACE2005
test set.

4.2.1 Results

We compare our models with the prior state-of-
the-art approaches for event extraction, including
neural and non-neural ones: JOINTBEAM refers
to the joint beam search approach with local and
global features (Li et al., 2013); JOINTENTI-
TYEVENT refers to the graphical model for joint
entity and event extraction (Yang and Mitchell,
2016); DMCNN is the dynamic multi-pooling
CNNs in Chen et al. (2015); and JRNN is an
RNN model with memory introduced by Nguyen
et al. (2016). The first block in Table 5 shows the
results of the feature-based linear models (taken
from Yang and Mitchell (2016)). The second
block shows the previously reported results for the
neural models. Note that they both make use of
gold-standard entity annotations. The third block
shows the results of our models. We can see that
our KBLSTM models significantly outperform the

BiLSTM and BiLSTM-Fea models, which again
confirms their effectiveness in leveraging KB in-
formation. The KBLSTM-CRF model achieves
the best performance and outperforms the previous
state-of-the-art methods without having access to
any gold-standard entities.

4.3 Model Analysis

In order to better understand our model, we vi-
sualize the learned attention weights α for KB
concepts and the sentinel weight β that measures
the tradeoff between knowledge and context. Fig-
ure 2a visualizes these weights for the entity men-
tion “clinton”. In the first sentence, “clinton”
refers to a LOCATION while in the second sen-
tence, “clinton” refers to a PERSON. Our model
learns to attend to different word senses for ’clin-
ton’ (KB concepts associated with ’clinton’) in
different sentences. Note that the weight on the
knowledge sentinel is higher in the first sentence.
This is because the local text alone is indicative
of the entity type for “clinton”: the word “in” is
more likely to be followed by a location than a
person. We find that BiLSTM-Fea-CRF models
often make wrong predictions on examples like
this due to its inflexibility in modeling knowl-
edge relevance with respect to context. Figure 2b
shows the learned weights for the event trigger
word “head” in two sentences, one expresses a
TRAVEL event while the other expresses a START-
POSITION event. Again, we find that our model is
capable of attending to relevant WordNet synsets
and more accurately disambiguate event types.

1443

5 Conclusion

In this paper, we introduce the KBLSTM net-
work architecture as one approach to incorporat-
ing background KBs for improving recurrent neu-
ral networks for machine reading. This archi-
tecture employs an adaptive attention mechanism
with a sentinel that allows for learning an ap-
propriate tradeoff for blending knowledge from
the KBs with information from the currently pro-
cessed text, as well as selecting among relevant
KB concepts for each word (e.g., to select the cor-
rect semantic categories for “clinton” as a town or
person in figure 2a). Experimental results show
that our model achieves state-of-the-art perfor-
mance on standard benchmarks for both entity ex-
traction and event extraction.

We see many additional opportunities to in-
tegrate background knowledge with training of
neural network models for language processing.
Though our model is evaluated on entity extrac-
tion and event extraction, it can be useful for other
machine reading tasks. Our model can also be ex-
tended to integrate knowledge from a richer set of
KBs in order to capture the diverse variety and
depth of background knowledge required for ac-
curate and deep language understanding.

Acknowledgments

This research was supported in part by DARPA
under contract number FA8750-13-2-0005, and by
NSF grants IIS-1065251 and IIS-1247489. We
also gratefully acknowledge the support of the Mi-
crosoft Azure for Research program and the AWS
Cloud Credits for Research program. In addition,
we would like to thank anonymous reviewers for
their helpful comments.

References
Sungjin Ahn, Heeyoul Choi, Tanel Pärnamaa, and

Yoshua Bengio. 2016. A neural knowledge lan-
guage model. arXiv preprint arXiv:1608.00318 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR).

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Advances in Neural Information
Processing Systems (NIPS). pages 2787–2795.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelli-
gence.

Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and
Christopher Meek. 2014. Typed tensor decompo-
sition of knowledge bases for relation extraction. In
Empirical Methods in Natural Language Processing
(EMNLP).

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng,
and Jun Zhao. 2015. Event extraction via dynamic
multi-pooling convolutional neural networks. In
Proceedings of the Annual Meeting of the Associ-
ation for Computational Linguistics (ACL). pages
167–176.

Jason PC Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics 4:357–370.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP).

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

Greg Durrett and Dan Klein. 2014. A joint model for
entity analysis: Coreference, typing, and linking.
Transactions of the Association for Computational
Linguistics 2:477–490.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics
(ACL).

Jeffrey L Elman. 1990. Finding structure in time. Cog-
nitive science 14(2):179–211.

Charles J Fillmore. 1976. Frame semantics and the na-
ture of language. Annals of the New York Academy
of Sciences 280(1):20–32.

Matt Gardner, Partha Pratim Talukdar, Jayant Krishna-
murthy, and Tom Mitchell. 2014. Incorporating vec-
tor space similarity in random walk inference over
knowledge bases. In Empirical Methods in Natural
Language Processing (EMNLP).

1444

Alex Graves, Santiago Fernández, and Jürgen Schmid-
huber. 2005. Bidirectional lstm networks for im-
proved phoneme classification and recognition. In
International Conference on Artificial Neural Net-
works. Springer, pages 799–804.

Kelvin Guu, John Miller, and Percy Liang. 2015.
Traversing knowledge graphs in vector space. In
Proceedings of the 2015 Conference on Empir-
ical Methods in Natural Language Processing
(EMNLP).

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems (NIPS). pages
1693–1701.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Eduard Hovy, Mitchell Marcus, Martha Palmer, Lance
Ramshaw, and Ralph Weischedel. 2006. Ontonotes:
the 90% solution. In Proceedings of the human lan-
guage technology conference of the NAACL, Com-
panion Volume: Short Papers. pages 57–60.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirec-
tional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. Proceedings of
the International Conference on Learning Represen-
tations (ICLR) .

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics (NAACL).

Ni Lao, Tom Mitchell, and William W Cohen. 2011.
Random walk inference and learning in a large scale
knowledge base. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP). pages 529–539.

LDC. 2005. The ace 2005 evaluation plan. In NIST .

Qi Li and Heng Ji. 2014. Incremental joint extraction
of entity mentions and relations. In Proceedings of
the Annual Meeting of the Association for Computa-
tional Linguistics (ACL). pages 402–412.

Qi Li, Heng Ji, Yu Hong, and Sujian Li. 2014. Con-
structing information networks using one single
model. In Empirical Methods in Natural Language
Processing (EMNLP). pages 1846–1851.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics (ACL).
pages 73–82.

Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard
Socher. 2017. Knowing when to look: Adaptive at-
tention via a visual sentinel for image captioning. In
Proceedings of the 30th IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (ACL).

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for directly
reading documents. In Empirical Methods in Natu-
ral Language Processing (EMNLP).

Marvin Minsky. 1988. Society of mind. Simon and
Schuster.

T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar,
J. Betteridge, A. Carlson, B. Dalvi, M. Gardner,
B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis,
T. Mohamed, N. Nakashole, E. Platanios, A. Rit-
ter, M. Samadi, B. Settles, R. Wang, D. Wijaya,
A. Gupta, X. Chen, A. Saparov, M. Greaves, and
J. Welling. 2015. Never-ending learning. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence (AAAI).

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(ACL) .

Ndapandula Nakashole and Tom M Mitchell. 2015. A
knowledge-intensive model for prepositional phrase
attachment. In Proceedings of the Annual Meet-
ing of the Association for Computational Linguistics
(ACL). pages 365–375.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent
neural networks. In North American Chapter of the
Association for Computational Linguistics (NAACL-
HLT). pages 300–309.

Altaf Rahman and Vincent Ng. 2011. Coreference res-
olution with world knowledge. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics (ACL). pages 814–824.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning (CoNLL).
pages 147–155.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. 2013. Relation extraction with
matrix factorization and universal schemas. In Pro-
ceedings of HLT-NAACL.

1445

Richard Socher, Danqi Chen, Christopher D Manning,
and Andrew Ng. 2013. Reasoning with neural ten-
sor networks for knowledge base completion. In
Advances in Neural Information Processing Systems
(NIPS). pages 926–934.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Pallavi
Choudhury, and Michael Gamon. 2015. Represent-
ing text for joint embedding of text and knowledge
bases. In Association for Computational Linguistics
(ACL).

Jason Weston, Antoine Bordes, Oksana Yakhnenko,
and Nicolas Usunier. 2013. Connecting language
and knowledge bases with embedding models for re-
lation extraction. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP).

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. Towards universal paraphrastic sen-
tence embeddings. Proceedings of the International
Conference on Learning Representations (ICLR) .

Derry Tanti Wijaya. 2016. VerbKB: A Knowledge
Base of Verbs for Natural Language Understanding.
Ph.D. thesis, Carnegie Mellon University.

WordNet. 2010. About wordnet.
http://wordnet.princeton.edu.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In International Conference for Machine
Learning (ICML).

Bishan Yang and Tom Mitchell. 2016. Joint extrac-
tion of events and entities within a document con-
text. In North American Chapter of the Association
for Computational Linguistics (NAACL-HLT). pages
289–299.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. 2015. Embedding entities and
relations for learning and inference in knowledge
bases. International Conference on Learning Rep-
resentations (ICLR) .

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics (ACL).

1446

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1447–1456
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1133

Prerequisite Relation Learning for Concepts in MOOCs

Liangming Pan, Chengjiang Li, Juanzi Li∗ and Jie Tang
Knowledge Engineering Laboratory

Department of Computer Science and Technology
Tsinghua University, Beijing 100084, China (∗ corresponding author)

{panlm14@mails,licj17@mails,lijuanzi,tangjie}tsinghua.edu.cn

Abstract

What prerequisite knowledge should stu-
dents achieve a level of mastery be-
fore moving forward to learn subsequent
coursewares? We study the extent to
which the prerequisite relation between
knowledge concepts in Massive Open On-
line Courses (MOOCs) can be inferred
automatically. In particular, what kinds of
information can be leveraged to uncover
the potential prerequisite relation between
knowledge concepts. We first propose a
representation learning-based method for
learning latent representations of course
concepts, and then investigate how differ-
ent features capture the prerequisite rela-
tions between concepts. Our experiments
on three datasets form Coursera show that
the proposed method achieves significant
improvements (+5.9-48.0% by F1-score)
comparing with existing methods.

1 Introduction

Mastery learning was first formally proposed by
Benjamin Bloom in 1968 (Bloom, 1981), suggest-
ing that students must achieve a level of mastery
(e.g., 90% on a knowledge test) in prerequisite
knowledge before moving forward to learn sub-
sequent knowledge concepts. From then on, pre-
requisite relations between knowledge concepts
become a cornerstone for designing curriculum
in schools and universities. Prerequisite relations
essentially can be considered as the dependency
among knowledge concepts. It is crucial for peo-
ple to learn, organize, apply, and generate knowl-
edge (Laurence and Margolis, 1999). Figure 1
shows a real example from Coursera. The student
wants to learn “Conditional Random Field” (in
video18 of CS229). The prerequisite knowledge
might be “Hidden Markov Model” (in video25 of

Figure 1: An example of prerequisite relations in MOOCs

CS224), whose prerequisite knowledge is “Maxi-
mum Likelihood” (in video12 of Math112).

Organizing the knowledge structure with pre-
requisite relations in education improves tasks
such as curriculum planning (Yang et al., 2015),
automatic reading list generation (Jardine, 2014),
and improving education quality (Rouly et al.,
2015). For example, as shown in Figure 1, with
explicit prerequisite relations among concepts (in
red), a coherent and reasonable learning sequence
can be recommended to the student (in blue).
Before, the prerequisite relationships were pro-
vided by teachers or teaching assistants (Novak,
1990); however in the era of MOOCs, it is
becoming infeasible as the teachers would find
that they are facing with hundreds of thousands
of students with various background. Meanwhile,
the rapid growth of Massive Open Online Courses
has offered thousands of courses, and students are
free to choose any course from the thousands of
candidates. Therefore, there is a clear need for
methods to automatically dig out the prerequisite
relationships among knowledge concepts from the
large course space, so that the students from differ-
ent background can easily explore the knowledge
space and better design their personalized learning
schedule.

There are a few efforts aiming to automati-
cally detect prerequisite relations for knowledge
base. For example, Talukdar and Cohen (2012)
proposed a method for inferring prerequisite rela-
tionships between entities in Wikipedia and Liang
et al. (2015) presented a more general approach

1447

https://doi.org/10.18653/v1/P17-1133

to predict prerequisite relationships. A few other
works intend to extract prerequisite relationships
from textbooks (Yosef et al., 2011; Wang et al.,
2016). However, it is far from sufficient to directly
apply these methods to the MOOC environments
due to the following reasons. First, the focus
of most previous attempts has been on prereq-
uisite inference of Wikipedia concepts (either
Wikipedia articles or Wikipedia concepts in text-
books). Many course concepts are not included in
Wikipedia (Schweitzer, 2008; Okoli et al., 2014).
We can leverage Wikipedia, in particular the exist-
ing entity relationships in Wikipedia, but cannot
only rely on Wikipedia for detecting prerequisite
relations in MOOCs. Second, with the thousands
of courses from different universities and also
very different disciplinaries, the MOOC scenario
is much more complicated — there are not only
inter-course concept relationships, but also intra-
course and even intra-disciplinary relationships.
Moreover, user interactions with the MOOC sys-
tem might be also helpful to identify the prerequi-
site relations. How to fully leverage the different
information to obtain a better performance for
inferring prerequisite relations in MOOCs is a
challenging issue.

In this paper, we attempt to figure out what
kinds of information in MOOCs can be used to
uncover the prerequisite relations among concepts.
Specifically, we consider it from three aspects,
including course concept semantics, course video
context and course structure. First, semantic
relatedness plays an important role in prerequisite
relations between concepts. If two concepts have
very different semantic meanings (e.g., “matrix”
and “anthropology”), it is unlikely that they have
prerequisite relations. However, statistical fea-
tures in MOOCs do not provide sufficient in-
formation for capturing the concept semantics
because of the short length of course videos in
MOOCs, we propose an embedding-based method
to incorporate external knowledge from Wikipedia
to learn semantic representations of concepts in
MOOCs. Based on it, we propose one seman-
tic feature to calculate the semantic relatedness
between concepts. Second, motivated by the
reference distance (RefD) (Liang et al., 2015),
we propose three new contextual features, i.e.,
Video Reference Distance, Sentence Reference
Distance and Wikipedia Reference Distance, to
infer prerequisite relations in MOOCs based on
context information from different aspects, which

are more general and informative than RefD and
overcome its sparsity problem. Third, we examine
different distributional patterns for concepts in
MOOCs, including appearing position, distribu-
tional asymmetry, video coverage and survival
time. We further propose three structural fea-
tures to utilize these patterns to help prerequisite
inference in MOOCs.

To evaluate the proposed method, we construct
three datasets, each of which consists of multiple
real courses in a specific domain from Coursera
1, the largest MOOC platform in the world. We
also compare our method with the representative
works of prerequisite learning and make a deep
analysis of the feature contribution proposed in
the paper. The experimental results show that
our method achieves the state-of-the-art results in
the prerequisite relation discovery in MOOCs. In
summary, our contributions include: a) the first
attempt, to the best of our knowledge, to detect
prerequisite relations among concepts in MOOCs;
b) proposal of a set of novel features that utilize
contextual, structural and semantic information
in MOOCs to identify prerequisite relations; c)
design of three useful datasets based on real
courses of Coursera to evaluate our method.

2 Problem Formulation

In this section, we first give some necessary
definitions and then formulate the problem of
prerequisite relation learning in MOOCs.

A MOOC corpus is composed by n courses
in the same subject area, denoted as D =
{C1, · · · , Ci, · · · , Cn}, where Ci is one course.
Each course C can be further represented as
a video sequence C = (V1, · · · ,Vi, · · · ,V|C|),
where Vi denotes the i-th teaching video of course
C. Finally, we view each video V as a document
of its video texts (video subtitles or speech script),
i.e., V = (s1 · · · si · · · s|V|), where si is the i-th
sentence of the video texts.

Course concepts are subjects taught in the
course, i.e., the concepts not only mentioned but
also discussed and taught in the course. Let us
denote the course concept set of D as K = K1 ∪
· · · ∪Kn, where Ki is the set of course concepts in
Ci.

Prerequisite relation learning in MOOCs is
formally defined as follows. Given a MOOC
corpus D and its corresponding course concepts

1https://www.coursera.org/

1448

K, the objective is to learn a function P : K2 →
{0, 1} that maps a concept pair 〈a, b〉, where a, b ∈
K, to a binary class that predicts whether a is a
prerequisite concept of b.

In order to learn this mapping, we need to
answer two crucial questions. How could we
represent a course concept? What information
regarding a concept pair is helpful to capture
their prerequisite relation? We first propose
an embedding-based method to learn appropriate
semantic representations for each course concept
in K. Based on the learned representations, we
propose 7 novel features to capture whether a
concept pair has prerequisite relation. These
features utilize different aspects of information
and can be classified into 1 semantic feature, 3
contextual features and 3 structural features. In the
following section, we first describe the semantic
representations in detail, and then formally intro-
duce our proposed features.

3 Method

3.1 Concept Representation & Semantic
Relatedness

We first learn appropriate representations for
course concepts. Given the course concepts K
as input, we utilize a Wikipedia corpus to learn
semantic representations for concepts in K. A
Wikipedia corpusW is a set of Wikipedia articles
and can be represented as a sequence of words
W = 〈w1 · · ·wi · · ·wm〉, where wi denotes a
word and m is the length of the word sequence.
Our method consists of two steps: (1) entity
annotation, and (2) representation learning.

Entity Annotation. We first automatically
annotate the entities in W to obtain an entity
set E and an entity-annotated Wikipedia corpus
W ′ = 〈x1 · · ·xi · · ·xm′〉, where xi corresponds
to a word w ∈ W or an entity e ∈ E . Note
that m′ < m because multiple adjacent words
could be labeled as one entity. Many entity
linking tools are available for entity annotation,
e.g. TAGME (Ferragina and Scaiella, 2010),
AIDA (Yosef et al., 2011) and TremenRank (Cao
et al., 2015). However, the rich hyperlinks created
by Wiki editors provide a more natural way. In
our experiments, we simply use the hyperlinks in
Wikipedia articles as annotated entities.

Representation Learning. We then learn word
embeddings (Mikolov et al., 2013b,a) on W ′ to
obtain low-dimensional, real-valued vector repre-

sentations for entities in E and words in W . Let
us denote ve and vw as the vector of e ∈ E
and w ∈ W , respectively. For a course concept
a ∈ K, suppose a is a N -gram term 〈g1 · · · gN 〉
and g1, · · · , gN ∈ W , we obtain its semantic
representations va as follows.

va =

{
ve, if a ≡ e and e ∈ E
vg1 + · · ·+ vgN , otherwise

(1)

It means that if a is a Wikipedia entity, we
can directly obtain its semantic representations;
otherwise, we obtain its vector via the vector
addition of its individual word vectors. In this
way, a has no corresponding vector only if any
of its constituent word is absence in the whole
Wikipedia corpus. This case is unusual because a
large online encyclopedia corpus can easily cover
almost all individual words of the vocabulary. Our
experimental results verify that over 98% of the
course concepts have vector representations.

Feature 1: Semantic Relatedness

For a given concept pair 〈a, b〉, the semantic
relatedness between a and b, denoted as ω(a, b),
is our first feature (the only semantic feature).
With learned semantic representations, semantic
relatedness of two concepts can be easily reflected
by their distance in the vector space. We define
ω(a, b) ∈ [0, 1] as the normalized cosine distance
between va and vb, as follows.

ω(a, b) =
1

2
(1 +

va · vb
‖va‖ · ‖vb‖

) (2)

3.2 Contextual Features

Context information in course videos provides
important clues to infer prerequisite relations. In
videos where concept A is taught, if the teacher
also mentions concept B for a lot but not vice
versa, then B is more likely to be a prerequisite of
A than A of B. For example, “gradient descent” is
a prerequisite concept of “back propagation”. In
teaching videos of “back propagation”, the con-
cept “gradient descent” is frequently mentioned
when illustrating the optimization detail of back
propagation. On the contrary, however, “back
propagation” is unlikely to be mentioned when
teaching “gradient descent”. A similar observation
also exists in Wikipedia, based on which Liang
et al. (2015) proposed an indicator, namely
reference distance (RefD), to infer prerequisite
relations among Wikipedia articles. However,
RefD is computed based on the link structure of
Wikipedia, thus is only feasible for Wikipedia

1449

concepts and is not applicable in plain text. We
overcome the above shortcomings of RefD to pro-
pose three novel features, which utilize different
aspects of context information—course videos,
video sentences and Wikipedia articles—to infer
prerequisite relations in MOOCs.

Feature 2: Video Reference Distance
Given a concept pair 〈a, b〉 where a, b ∈ K,

we propose the video reference weight (V rw) to
quantify how b is referred by videos of a, defined
as follows.

V rw (a, b) =

∑
C∈D

∑
V∈C

f (a,V) · r (V, b)
∑
C∈D

∑
V∈C

f (a,V) (3)

where f (a,V) indicates the term frequency of
concept a in video V , which reflects how im-
portant is concept a to this video. r (V, b) ∈
{0, 1} denotes whether concept b appears in video
V . Intuitively, if b appears in more important
videos of a, V rw (a, b) tends to be larger, and the
range of V rw (a, b) is between 0 and 1. Then,
the video reference distance (V rd) is defined as
the difference of V rw between two concepts, as
follows.

V rd (a, b) = V rw (b, a)− V rw (a, b) (4)

In practice, this feature may be too sparse if
the MOOC corpus is small. For an arbitrary
concept pair, they may have no co-occurrence in
all course videos. We expend the video reference
distance to a more general version by considering
the semantic relatedness among concepts. Besides
the conditions in which A refers to B, we also
consider the cases in which A-related concepts
refer to B. We first define the generalized video
reference weight (GV rw) as follows.

GV rw (a, b) =

∑M
i=1 V rw (ai, b) · ω (ai, b)∑M

i=1 ω (ai, b)
(5)

where a1, · · · , aM ∈ K are the top-M most
similar concepts of a, measured by the semantic
relatedness function ω(·, ·) in feature 1. GV rw
is the weighted average of V rw (ai, b), indicating
how b is referred by a-related concepts in their
corresponding videos. Note that a1 = a, thus
GV rw (a, b) ≡ V rw (a, b) when M = 1. Sim-
ilarly, we define the generalized video reference
distance (GV rd) as follows.

GV rd (a, b) = GV rw (b, a)−GV rw (a, b) (6)

Intuitively, if most of b-related concepts refer
to a but not vice versa, then a is likely to be
a prerequisite of b. For example, it is plausible

for the related concepts of “gradient descent”,
e.g., “steepest descent” and “Newton’s method”,
to mention “matrix” but clearly not vice versa.

Feature 3: Sentence Reference Distance
Sentence reference distance is similar to feature

2, but stands on the sentence level. Following the
same design pattern of feature 2, we define the
sentence reference weight (Srw) and sentence
reference distance (Srd) as follows.

Srw (a, b) =

∑
C∈D

∑
V∈C

∑
s∈V

r(s, a) · r(s, b)
∑
C∈D

∑
V∈C

∑
s∈V

r(s, a)
(7)

Srd (a, b) = Srw (b, a)− Srw (a, b) (8)

where r (s, a) ∈ {0, 1} is an indicator of whether
concept a appears in sentence s. Srw(a, b)
calculates the ratio of B appearing in the sentences
of a. We also define generalized sentence ref-
erence weight (GSrw) and generalized sentence
reference distance (GSrd) as follows.

GSrw (a, b) =

∑M
i=1 Srw (ai, b) · ω (ai, b)∑M

i=1 ω (ai, b)
(9)

GSrd (a, b) = GSrw (b, a)−GSrw (a, b) (10)

Feature 4: Wikipedia Reference Distance
Contextual information of Wikipedia is also

useful for detecting prerequisite relations. As
mention before, RefD is not general enough to
be applied in our settings, because it is limited
to Wikipedia concepts. Therefore, we improve
this indicator to a more general one, which is also
suitable for non-wiki concepts.

Specifically, for a concept a ∈ K, let us
denote the top-M most related wiki entities of a
as Ra = 〈e1, · · · , eM 〉, where e1, · · · , eM ∈ E .
Because concepts in K and entities in E are jointly
embedded in the same vector space in Section
3.1, we can easily obtain Ra with the semantic
relatedness metric ω(·, ·) in Feature 1. We then
define the wikipedia reference weight (Wrw) as
follows.

Wrw (a, b) =

∑
e∈Ra

Erw (e, b) · ω (e, a)

∑
e∈Ra

ω (e, a)
(11)

where Erw(e, a) is a binary indicator, in which
Erw(e, a) = 1 if the Wikipedia article of e refers
to any entity in Ra, and Erw(e, a) = 0 other-
wise. Wrw (a, b) measures how frequently that a-
related wiki entities refer to b-related wiki entities.
Finally, wikipedia reference distance (Wrd) is

1450

defined as the difference of Wrw between a and
b, i.e., Wrd (a, b) =Wrw (b, a)−Wrw (a, b).

3.3 Structural Features

Since course concepts are usually introduced
based on their learning dependencies, the structure
of MOOC courses also significantly contribute
to prerequisite relation inference in MOOCs.
However, structure-based features for prerequisite
detection have not been well-studied in previous
works. In this section, we investigate different
structural information, including appearing posi-
tions of concepts, learning dependencies of videos
and complexity levels of concepts, to propose
three novel features to infer prerequisite relations
in MOOCs. Before introducing these features, let
us define two useful notations as follows. C(a) are
the courses in which a is a course concept, i.e.,
C(a) = {Ci|Ci ∈ D, a ∈ Ki}. I(C, a) are the
video indexes that contain concept a in course C.
For example, if a appears in the first and the 4-th
video of C, then I(C, a) = {1, 4}.

Feature 5: Average Position Distance
In a course, for a specific concept, its pre-

requisite concepts tend to be introduced before
this concept and its subsequent concepts tend to
be introduced after this concept. Based on this
observation, for a concept pair 〈a, b〉, we calculate
the distance of the average appearing position of
a and b as one feature, namely average position
distance (Apd). If C(a) ∩ C(b) 6= ∅, Apd (a, b) is
formally defined as follows.

Apd (a, b) =

∑
C∈C(a)∩C(b)

∣∣∣
∑

i∈I(C,a) i

|I(C,a)| −
∑

j∈I(C,b) j

|I(C,b)|

∣∣∣

|C(a) ∩ C(b)|
(12)

If C(a) ∩ C(b) = ∅, we set Apd (a, b) = 0.

Feature 6: Distributional Asymmetry Distance
We also use the learning dependency of course

videos to help infer learning dependency of course
concepts. Based on our observation, the chance
that a prerequisite concept is frequently mentioned
in its subsequent videos is larger than that a sub-
sequent concept is talked about in its prerequisite
videos. Specifically, if video Va is a precursor
video of Vb, and a is a prerequisite concept of b,
then it is likely that f(b,Va) < f(a,Vb), where
f(a,V) denotes the term frequency of a in video
V . We thus define another feature, namely distri-
butional asymmetry distance (Dad), to calculate
the extent that a given concept pair satisfies this

distributional asymmetry pattern. Formally, in
course C, for a given concept pair 〈a, b〉, we
first define S(C) = {(i, j)|i ∈ I(C, a), j ∈
I(C, b), i < j}, i.e., all possible video pairs
of 〈a, b〉 that have sequential relation. Then,
the distributional asymmetry distance of 〈a, b〉 is
formally defined as follows.

Dad (a, b) =

∑
C∈C(a)∩C(b)

∑
(i,j)∈S(C)

f(a,VC
i)−f(b,VC

j)

|S(C)|

|C(a) ∩ C(b)| (13)

where VCi denotes the i-th video of course C. If
C(a) ∩ C(b) = ∅, we set Dad (a, b) = 0.

Feature 7: Complexity Level Distance
Two related concepts with prerequisite relation-

ship tend to have a difference in their complexity
level, meaning that one concept is basic while
another one is advanced. For example, “data
set” and “training set” have learning dependencies
and the latter concept is more advanced than the
former one. However, “test set” and “training
set” have no such relation when their complexity
levels are similar. Complexity level of a course
concept is implicit in its distribution in courses.
Specifically, we observe that, for a concept in
MOOCs, if it covers more videos in a course
or it survives longer time in a course, then it
is more likely to be a basic concept rather than
an advanced one. We then formally define the
average video coverage (avc) and the average
survival time (ast) of a concept a as follows.

avc (a) =
1

|C(a)|
∑

C∈C(a)

|I(C, a)|
|C| (14)

ast (a) =
1

|C(a)|
∑

C∈C(a)

max(I(C, a))−min(I(C, a)) + 1

|C|
(15)

wheremax/min(I(C, a)) obtains the video index
where a appears the last/first time in course C.
Based on the above equations, we define the
complexity level distance (Cld) between concept
a and b as follows.

Cld (a, b) = avc (a) · ast (a)− avc (b) · ast (b) (16)

4 Experiments

4.1 Data Sets
In order to validate the efficiency of our features,
we conducted experiments on three MOOC cor-
pus with different domains: “Machine Learning”
(ML), “Data Structure and Algorithms” (DSA),
and “Calculus” (CAL). To the best of our knowl-
edge, there is no public data set for mining

1451

Dataset #courses #videos #concepts #pairs κ

− +

ML 5 548 244 5,676 1,735 0.63
DSA 8 449 201 3,877 1,148 0.65
CAL 7 359 128 1,411 621 0.59

Table 1: Dataset Statistics

prerequisite relations in MOOCs. We created
the experimental data sets through a three-stage
process.

First, for each chosen domain, we select its
relevant courses from Coursera, one of the leading
MOOC platforms, and download all course mate-
rials using coursera-dl 2, a widely-used tool for
automatically downloading Coursera.org videos.
For example, for ML, we select 5 related courses
3 from 5 different universities and obtain a total
of 548 course videos. Then, we manually label
course concepts for each course: (1) Extract
candidate concepts from documents of video sub-
titles following the method of Parameswaran et
al. (2010). (2) Label the candidates as “course
concept” or “not course concept” and obtain a set
of course concepts for this course.

Finally, we manually annotate the prerequisite
relations among the labeled course concepts. If
the number of course concepts is n, the number
of all possible pairs to be checked could reach
n × (n − 1)/2, which requires arduous human
labeling work. Therefore, for each dataset, we
randomly select 25 percent of all possible pairs
for evaluation. For each course concept pair
〈a, b〉, three human annotators majoring in the
corresponding domain were asked to label them
as “a is b’s prerequisite”, “b is a’s prerequisite”
or “no prerequisite relationship” using their own
knowledge background and additional textbook
resources. We take a majority vote of the anno-
tators to create final labels and access the inter-
annotator agreement using the average of pairwise
κ statistics (Landis and Koch, 1981) between all
pairs of the three annotators.

The statistics of the three datasets are listed
in Table 1, where #courses and #videos are the
total number of courses and videos in each dataset
and #concepts is the number of labeled course
concepts. The #pairs denotes the number of
labeled concept pairs for evaluation, in which ‘+’

2https://github.com/coursera-dl/coursera-dl
3These courses are: “Machine Learning (Stanford)”,

“Machine Learning (Washington)”, “Practical Machine
Learning (JHU)”, “Machine Learning With Big Data
(UCSD)” and “Neural Networks for Machine Learning
(UofT)”

Classifier ML DSA CAL
M 1 10 1 10 1 10

SVM
P 63.2 60.1 60.7 62.3 61.1 61.9
R 68.5 72.4 69.3 67.5 67.9 68.3
F1 65.8 65.7 64.7 64.8 64.3 64.9

NB
P 58.0 58.2 62.9 62.6 60.1 60.6
R 58.1 60.5 62.3 61.8 61.2 62.1
F1 58.1 59.4 62.6 62.2 60.6 61.3

LR
P 66.8 67.6 63.1 62.0 62.7 63.3
R 60.8 61.0 64.8 66.8 63.6 64.1
F1 63.7 64.2 63.9 64.3 61.6 62.9

RF
P 68.1 71.4 69.1 72.7 67.3 70.3
R 70.0 73.8 68.4 72.3 67.8 71.9
F1 69.1 72.6 68.7 72.5 67.5 71.1

Table 2: Classification results of the proposed method(%).

denotes the number of positive instances, i.e. pairs
who have prerequisite relations, and ‘−’ denotes
the number of negative instances.

4.2 Evaluation Results

For each dataset, we apply 5-fold cross valida-
tion to evaluate the performance of the proposed
method, i.e., testing our method on one fold while
training the classifier using the other 4 folds.
Usually, there are much fewer positive instances
than negative instances, so we balance the training
set by oversampling the positive instances (Yosef
et al., 2011; Talukdar and Cohen, 2012). In
our experiments, we employ 4 different binary
classifiers, including Naı̈veBayes (NB), Logistic
Regression (LR), SVM with linear kernel (SVM)
and Random Forest (RF). We use precision (P),
recall (R), and F1-score (F1) to evaluate the pre-
requisite classification results. The experimental
results are presented in Table 2.

Contextual features are shaped by the parameter
M , i.e., the number of related concepts being
considered. In our experiments, we tried different
settings of M and report the results when M=1
and M=10 in Table 2. As for the semantic
representation, we use the latest publicly available
Wikipedia dump 4 and apply the skip-gram model
(Mikolov et al., 2013b) to train word embeddings
using the Python library gensim 5 with default
parameters.

As shown in Table 2, the evaluation results
varies by different classifiers. It turns out that
Naı̈veBayes performs the worst. This seems
to be caused by the fact that the independence
assumption is not satisfied for our features; for

4https://dumps.wikimedia.org/enwiki/20170120/
5http://radimrehurek.com/gensim/

1452

example, Feature 2 and Feature 3 both utilize
the local context information, only with different
granularity, thus are quite co-related. Random
Forest beats others, with best F1 across all three
datasets. Its average F1 outperforms SVM, NB
and LR by 7.0%, 11.1% and 8.3%, respectively
(M=10). The reason is as follows. Instead of a
simple descriptive feature, each of our proposed
feature determines whether a concept pair has pre-
requisite relation from a specific aspect; its func-
tion is similar to an independent weak classifier.
Therefore, rather than using a linear combination
of features for classification (e.g., SVM and LR),
a boosting model (e.g., Random Forest) is more
suitable for this task. The performance is slightly
better when M=10 for all classifiers, with +0.20%
for SVM, +0.53% for NB, +0.73% for LR and
+3.63% for RF, with respect to the average F1.
The results verify the effectiveness of considering
related concepts in contextual features. We use RF
and set M=10 in the following experiments.

4.3 Comparison with Baselines

We further compare our approach with three rep-
resentative methods for prerequisite inference.

4.3.1 Baseline Approaches
Hyponym Pattern Method (HPM). Prerequi-
site relationships often exists between hyponym-
hypernym concept pairs (e.g., “Machine Learn-
ing” and “Supervised Learning”). As a baseline,
we adopt the 10 lexico-syntactic patterns used by
Wang et al. (2016) to extract hyponym relation-
ships between concepts. If a concept pair matches
at least one of these patterns in the MOOC corpus,
we judge them to have prerequisite relations.
Reference Distance (RD) We also employ the
RefD proposed by Liang et al. (2015) as one
of our baselines. However, this method is only
appliable to Wikipedia concepts. To make it
comparable with our method, for each of our
datasets, we construct a subset of it by picking out
the concept pairs 〈a, b〉 in which a and b are both
Wikipedia concepts. For example, we find 49% of
course concepts in ML have their corresponding
Wikipedia articles and 28% percent of concept
pairs in ML meet the above condition. We use
the new datasets constructed from ML, DSA and
CAL, namely W-ML, W-DSA, and W-CAL, to
compare our method with RefD.
Supervised Relationship Identification (SRI)
Wang et al. (2016) has employed several fea-

Method ML DSA CAL
W-
ML

W-
DSA

W-
CAL

HPM
P 67.3 71.4 69.5 79.9 72.3 73.5
R 18.4 14.8 16.5 25.5 27.3 23.3
F1 29.0 24.5 26.7 38.6 39.6 35.4

RD
P − − − 73.4 77.8 74.4
R − − − 42.8 44.8 43.1
F1 − − − 54.1 56.8 54.6

T-SRI
P 61.4 62.3 62.5 58.1 60.1 62.7
R 62.9 64.6 65.5 67.6 65.3 67.9
F1 62.1 63.4 64.0 62.5 62.6 65.2

F-SRI
P − − − 64.3 64.3 64.8
R − − − 62.1 65.6 65.2
F1 − − − 63.2 64.9 65.0

MOOC
P 71.4 72.7 70.3 72.8 68.4 71.4
R 73.8 72.3 71.9 71.3 72.0 70.8
F1 72.6 72.5 71.1 72.0 70.2 71.1

Table 3: Comparison with baselines(%).

tures to infer prerequisite relations of Wikipedia
concepts in textbooks, including 3 Textbook fea-
tures and 6 Wikipedia features. Based on these
features, they performed a binary classification
using SVM to identify prerequisite relationships
and has achieved state-of-the-art results. Because
the Wikipedia features can only be applied to
Wikipedia concepts, in order to make a compar-
ison, we create two versions of their method: (1)
T-SRI: only textbook features are used to train the
classifier and (2) F-SRI: the original version, all
features are used. We compare the performance
of our method with T-SRI on ML, DSA and CAL
datasets; we also compare our method with F-SRI
on W-ML, W-DSA and W-CAL datasets.

4.3.2 Performance Comparison
In Table 3 we summarize the comparing results
of different methods across different datasets
(“MOOC” refers to our method). We find that our
method outperforms baseline methods across all
six datasets 6. For example, the F1 of our method
on ML outperforms T-SRI and HPM by 10.5%
and 43.6%, respectively. Specifically, we have
the following observations. First, HPM achieves
relatively high precision but low recall. This is
because when A “is a” B, a prerequisite relation
often exists from B to A, but clearly not vise versa.
Second, T-SRI has certain effectiveness for learn-
ing prerequisite relations, with F1 ranging from
62.1 to 65.2%. However, T-SRI only considers
relatively simple features, such as the sequential
and co-occurrence among concepts. With more

6The improvements are all statistically significant tested
with bootstrap re-sampling with 95% confidence.

1453

comprehensive feature engineering, the F1 of our
method significantly outperforms T-SRI (+10.5%
on ML, +9.1% on DSA and +7.1% on CAL).
Third, incorporating Wikipedia-based features (F-
SRI) achieves certain promotion in performance
(+0.93% comparing with T-SRI in average F1).

4.4 Feature Contribution Analysis

In order to get an insight into the importance
of each feature in our method, we perform a
contribution analysis with different features. Here,
we run our approach 10 times on the ML dataset.
In each of the first 7 times, one feature is removed;
in each of the rest 3 times, one group of features
are removed, e.g., removing contextual features
means removing Gvrd, Gsrd and Wrd at the
same time. We record the decrease of F1-score for
each setting. Table 4 lists the evaluation results
after ignoring different features.

According to the decrement of F1-scores, we
find that all the proposed features are useful in pre-
dicting prerequisite relations. Especially, we ob-
serve that Cld (Feature 7), decreasing our best F1-
score by 7.4%, plays the most important role. This
suggests that most concepts do exist difference in
complexity level. For two concepts, the difference
of their coverage and survival times in courses
are important for prerequisite relation detection.
On the contrary, with 1.9% decrease, Sr (Feature
1) is relatively less important. We may easily
find two concepts which have related semantic
meanings (e.g., “test set” and “training set”) but
have no prerequisite relationship. However, se-
mantic relatedness is critical for the contextual
features because it overcomes the problem of the
sparsity of context in calculation. We experience a
decrease of 5.4% when we further do not consider
related concepts in contextual features, i.e., set
M=1. As for the feature group contribution, we
observe that Structural Features, with a decrease
of 9.2%, has a greater impact than the other two
groups. This is as expected because it includes
Cld. Among the three structural features, Apd
makes relatively less contribution. The reason
is that sometimes the professor may frequently
mention a prerequisite concept after introducing
a subsequent concept orally, for helping students
better understand the concept.

5 Related Works
To the best of our knowledge, there has been no
previous work on mining prerequisite relations

Ignored
Feature(s)

P R F1

Single

Sr 69.6 72.9 71.2(-1.4)
GVrd 68.8 71.4 70.1(-2.5)
GSrd 67.9 71.4 69.6(-3.0)
Wrd 70.1 72.1 71.1(-1.5)
Apd 69.7 70.8 70.2(-2.4)
Dad 69.2 69.5 69.4(-3.2)
Cld 64.9 65.6 65.2(-7.4)

Group
Semantic 69.6 72.9 71.2(-1.4)

Contextual 66.4 68.9 67.6(-5.0)
Structural 63.7 64.2 63.4(-9.2)

Table 4: Contribution analysis of different features(%).

among concepts in MOOCs. Some researchers
have been engaged in detecting other type of
prerequisite relations. For example, Yang et al.
(2015) proposed to induce prerequisite relations
among courses to support curriculum planning.
Liu et al. (2011) studied learning-dependency
between knowledge units, a special text fragment
containing concepts, using a classification-based
method. In the area of education, researchers
have tried to find general prerequisite structures
from students’ test performance (Vuong et al.,
2011; Scheines et al., 2014; Huang et al., 2015).
Different from them, we focus on more fine-
grained prerequisite relations, i.e., the prerequisite
relations among course concepts.

Among the few related works of mining pre-
requisite relations among concepts, Liang et al.
(2015) and Talukdar and Cohen (Talukdar and
Cohen, 2012) studied prerequisite relationships
between Wikipedia articles. They assumed that
hyperlinks between Wikipedia pages indicate a
prerequisite relationship and design several useful
features. Based on these Wikipedia features plus
some textbook features, Wang et al. (Wang et al.,
2016) proposed a method to construct a concept
map from textbooks, which jointly learns the key
concepts and their prerequisite relations. How-
ever, the investigation of only Wikipedia concepts
is also the bottleneck of their studies. In our
work, we propose more general features to infer
prerequisite relations among concepts, regardless
of whether the concept is in Wikipedia or not.
Liang et al. (2017) propose an optimization
based framework to discover concept prerequisite
relations from course dependencies. Gordon et
al. (2016) utilize cross-entropy to learn concept
dependencies in scientific corpus. Besides local
statistical information, our method also utilize
external knowledge to enrich concept semantics,
which is more informativeness.

1454

Our work is also related to the study of auto-
matic relation extraction. Different research lines
have been proposed around this topic, includ-
ing hypernym-hyponym relation extraction (Ritter
et al., 2009; Wei et al., 2012), entity relation
extraction (Zhou et al., 2006; Fan et al., 2014;
Lin et al., 2015) and open relation extraction
(Fader et al., 2011). However, previous works
mainly focus on factual relations, the extraction of
cognitive relations (e.g. prerequisite relations) has
not been well studied yet.

6 Conclusions and Future Work
We conducted a new investigation on automati-
cally inferring prerequisite relations among con-
cepts in MOOCs. We precisely define the problem
and propose several useful features from different
aspects, i.e., contextual, structural and semantic
features. Moreover, we apply an embedding-
based method that jointly learns the semantic
representations of Wikipedia concepts and MOOC
concepts to help implement the features. Exper-
imental results on online courses with different
domains validate the effectiveness of the proposed
method. Promising future directions would be
to investigate how to utilize user interaction in
MOOCs for better prerequisite learning, as well
as how deep learning models can be used to
automatically learn useful features to help infer
prerequisite relations.

Acknowledgments

This work is supported by 973 Program (No.
2014CB340504), NSFC Key Program (No.
61533018), Fund of Online Education Research
Center, Ministry of Education (No. 2016ZD102),
Key Technologies Research and Development
Program of China (No. 2014BAK04B03) and
NSFC-NRF (No. 61661146007).

References
Benjamin Samuel Bloom. 1981. All our children

learning: A primer for parents, teachers, and other
educators. McGraw-Hill Companies.

Yixin Cao, Juanzi Li, Xiaofei Guo, Shuanhu Bai, Heng
Ji, and Jie Tang. 2015. Name list only? target entity
disambiguation in short texts. In Proceedings of
EMNLP. pages 654–664.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information

extraction. In Proceedings of EMNLP. pages 1535–
1545.

Miao Fan, Deli Zhao, Qiang Zhou, Zhiyuan Liu,
Thomas Fang Zheng, and Edward Y. Chang. 2014.
Distant supervision for relation extraction with ma-
trix completion. In Proceedings of ACL. pages 839–
849.

Paolo Ferragina and Ugo Scaiella. 2010. TAGME:
on-the-fly annotation of short text fragments (by
wikipedia entities). In Proceedings of CIKM. pages
1625–1628.

Jonathan Gordon, Linhong Zhu, Aram Galstyan, Prem
Natarajan, and Gully Burns. 2016. Modeling
concept dependencies in a scientific corpus. In
Proceedings of ACL.

Xiaopeng Huang, Kyeong Yang, and Victor B.
Lawrence. 2015. An efficient data mining approach
to concept map generation for adaptive learning. In
Proceedings of ICDM. pages 247–260.

James Gregory Jardine. 2014. Automatically gener-
ating reading lists. Ph.D. thesis, University of
Cambridge, UK.

RJ Landis and GG Koch. 1981. The measurement of
interrater agreement. Statistics methods for rates
and proportions 2:212–236.

Stephen Laurence and Eric Margolis. 1999. Concepts
and cognitive science. Concepts: core readings
pages 3–81.

Chen Liang, Zhaohui Wu, Wenyi Huang, and C. Lee
Giles. 2015. Measuring prerequisite relations
among concepts. In Proceedings of EMNLP. pages
1668–1674.

Chen Liang, Jianbo Ye, Zhaohui Wu, Bart Pursel, and
C. Lee Giles. 2017. Recovering concept prerequisite
relations from university course dependencies. In
Proceedings of AAAI. pages 4786–4791.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu,
and Xuan Zhu. 2015. Learning entity and relation
embeddings for knowledge graph completion. In
Proceedings of AAAI. pages 2181–2187.

Jun Liu, Lu Jiang, Zhaohui Wu, Qinghua Zheng, and
Ya-nan Qian. 2011. Mining learning-dependency
between knowledge units from text. The VLDB
Journal 20(3):335–345.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word repre-
sentations in vector space. International Journal of
CoRR abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed
representations of words and phrases and their com-
positionality. In Proceedings of NIPS. pages 3111–
3119.

1455

Joseph D. Novak. 1990. Concept mapping: A useful
tool for science education. International Journal of
Research in Science Teaching 27(10):937C949.

Chitu Okoli, Mohamad Mehdi, Mostafa Mesgari,
Finn Årup Nielsen, and Arto Lanamäki. 2014.
Wikipedia in the eyes of its beholders: A systematic
review of scholarly research on wikipedia readers
and readership. International Journal of the Ameri-
can Society for Information Science and Technology
(JASIST) 65(12):2381–2403.

Aditya G. Parameswaran, Hector Garcia-Molina, and
Anand Rajaraman. 2010. Towards the web of
concepts: Extracting concepts from large datasets.
Proceedings of the VLDB Endowment (PVLDB)
3(1):566–577.

Alan Ritter, Stephen Soderland, and Oren Etzioni.
2009. What is this, anyway: Automatic hypernym
discovery. In Proceedings of AAAI. pages 88–93.

Jean Michel Rouly, Huzefa Rangwala, and Aditya
Johri. 2015. What are we teaching?: Automated
evaluation of CS curricula content using topic mod-
eling. In Proceedings of ICER. pages 189–197.

Richard Scheines, Elizabeth Silver, and Ilya M. Goldin.
2014. Discovering prerequisite relationships among
knowledge components. In Proceedings of EDM.
pages 355–356.

Nick J Schweitzer. 2008. Wikipedia and psychology:
Coverage of concepts and its use by undergraduate
students. International Journal of Teaching of
Psychology 35(2):81–85.

Partha Pratim Talukdar and William W Cohen. 2012.
Crowdsourced comprehension: predicting prerequi-
site structure in wikipedia. In Proceedings of the
Seventh Workshop on Building Educational Appli-
cations Using NLP. pages 307–315.

Annalies Vuong, Tristan Nixon, and Brendon Towle.
2011. A method for finding prerequisites within a
curriculum. In Proceedings of EDM. pages 211–
216.

Shuting Wang, Alexander Ororbia, Zhaohui Wu, Kyle
Williams, Chen Liang, Bart Pursel, and C Lee Giles.
2016. Using prerequisites to extract concept maps
fromtextbooks. In Proceedings of CIKM. pages
317–326.

Bifan Wei, Jun Liu, Jian Ma, Qinghua Zheng, Wei
Zhang, and Boqin Feng. 2012. MOTIF-RE: motif-
based hypernym/hyponym relation extraction from
wikipedia links. In Proceedings of ICONIP. pages
610–619.

Yiming Yang, Hanxiao Liu, Jaime G. Carbonell, and
Wanli Ma. 2015. Concept graph learning from
educational data. In Proceedings of WSDM. pages
159–168.

Mohamed Amir Yosef, Johannes Hoffart, Ilaria Bor-
dino, Marc Spaniol, and Gerhard Weikum. 2011.
AIDA: an online tool for accurate disambiguation of
named entities in text and tables. Proceedings of the
VLDB Endowment (PVLDB) 4(12):1450–1453.

Guodong Zhou, Jian Su, and Min Zhang. 2006. Mod-
eling commonality among related classes in relation
extraction. In Proceedings of ACL.

1456

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1457–1469
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1134

Unsupervised Text Segmentation Based on Native Language
Characteristics

Shervin Malmasi1,2 Mark Dras2 Mark Johnson2 Lan Du3 Magdalena Wolska4

1Harvard Medical School, Harvard University
smalmasi@bwh.harvard.edu

2Department of Computing, Macquarie University
{ shervin.malmasi, mark.dras, mark.johnson }@mq.edu.au

3Faculty of IT, Monash University
lan.du@monash.edu

4LEAD Graduate School, Universität Tübingen
magdalena.wolska@uni-tuebingen.de

Abstract

Most work on segmenting text does so on
the basis of topic changes, but it can be of
interest to segment by other, stylistically
expressed characteristics such as change
of authorship or native language. We pro-
pose a Bayesian unsupervised text seg-
mentation approach to the latter. While
baseline models achieve essentially ran-
dom segmentation on our task, indicating
its difficulty, a Bayesian model that incor-
porates appropriately compact language
models and alternating asymmetric priors
can achieve scores on the standard metrics
around halfway to perfect segmentation.

1 Introduction

Most work on automatically segmenting text has
been on the basis of topic: segment boundaries
correspond to topic changes (Hearst, 1997). There
are various contexts, however, in which it is of in-
terest to identify changes in other characteristics;
for example, there has been work on identifying
changes in authorship (Koppel et al., 2011) and
poetic voice (Brooke et al., 2012). In this paper
we investigate text segmentation on the basis of
change in the native language of the writer.

Two illustrative contexts where this task might
be of interest are patchwriting detection and lit-
erary analysis. Patchwriting is the heavy use of
text from a different source with some modifica-
tion and insertion of additional words and sen-
tences to form a new text. Pecorari (2003) notes
that this is a kind of textual plagiarism, but is
a strategy for learning to write in an appropri-
ate language and style, rather than for deception.
Keck (2006), Gilmore et al. (2010) and Vieyra
et al. (2013) found that non-native speakers, not

surprisingly in situations of imperfect mastery of
a language, are strongly over-represented in this
kind of textual plagiarism. In these cases the
boundaries between the writer’s original text and
(near-)copied native text are often quite appar-
ent to the reader, as in this short example from
Li and Casanave (2012) (copied text italicised):
“Nevertheless, doubtfulness can be cleared rea-
sonably by the experiments conducted upon the
‘split-brain patients’, in whom intra-hemispheric
communication is no longer possible. To illustrate,
one experiment has the patient sit at a table with
a non-transparent screen blocking the objects be-
hind, who is then asked to reach the objects with
different hand respectively.” Because patchwrit-
ing can indicate imperfect comprehension of the
source (Jamieson and Howard, 2013), identifying
it and supporting novice writers to improve it has
become a focus of programmes like the Citation
Project.1

For the second, perhaps more speculative con-
text of literary analysis, consider Joseph Conrad,
known for having written a number of famous
English-language novels, such as Heart of Dark-
ness; he was born in Poland and moved to England
at the age of 21. His writings have been the subject
of much manual analysis, with one particular di-
rection of such research being the identification of
likely influences on his English writing, including
his native Polish language and the French he learnt
before English. Morzinski (1994), for instance,
notes aspects of his writing that exhibit Polish-like
syntax, verb inflection, or other linguistic charac-
teristics (e.g. “Several had still their staves in their
hands” where the awkwardly placed adverb still is
typical of Polish). These appear both in isolated
sentences and in larger chunks of text, and part of

1http://citationproject.net/

1457

https://doi.org/10.18653/v1/P17-1134

an analysis can involve identifying these chunks.
This raises the question: Can NLP and com-

putational models identify the points in a text
where native language changes? Treating this as
an unsupervised text segmentation problem, we
present the first Bayesian model of text segmen-
tation based on authorial characteristics, applied
to native language.

2 Related Work

Topic Segmentation The most widely-
researched text segmentation task has as its
goal to divide a text into topically coherent
segments. Lexical cohesion (Halliday and Hasan,
1976) is an important concept here: the principle
that text is not formed by a random set of words
and sentences but rather logically ordered sets
of related words that together form a topic.
In addition to the semantic relation between
words, other methods such as back-references and
conjunctions also help achieve cohesion. Based
on this, Morris and Hirst (1991) proposed the
use of lexical chains, sequences of related words
(defined via thesaurus), to break up a text into
topical segments: breaks in lexical chains indicate
breaks in topic. The TextTiling algorithm (Hearst,
1994, 1997) took a related approach, defining a
function over lexical frequency and distribution
information to determine topic boundaries, and
assuming that each topic has its own vocabulary
and that large shifts in this vocabulary usage
correspond to topic shifts.

There have been many approaches since that
time. A key one, which is the basis for our
own work, is the unsupervised Bayesian technique
BAYESSEG of Eisenstein and Barzilay (2008),
based on a generative model that assumes that
each segment has its own language model. Un-
der this assumption the task can be framed as pre-
dicting boundaries at points which maximize the
probability of a text being generated by a given
language model. Their method is based on lexical
cohesion — expressed in this context as topic seg-
ments having compact and consistent lexical dis-
tributions — and implements this within a prob-
abilistic framework by modelling words within
each segment as draws from a multinomial lan-
guage model associated with that segment.

Much other subsequent work either uses this as
a baseline, or extends it in some way: Jeong and
Titov (2010), for example, who propose a model
for joint discourse segmentation and alignment for

documents with parallel structures, such as a text
with commentaries or presenting alternative views
on the same topic; or Du et al. (2013), who use
hierarchical topic structure to improve the linear
segmentation.

Bible Authorship Koppel et al. (2011) consider
the task of decomposing a document into its au-
thorial components based on their stylistic proper-
ties and propose an unsupervised method for do-
ing so. The authors use as their data two bibli-
cal books, Jeremiah and Ezekiel, that are gener-
ally believed to be single-authored: their task was
to segment a single artificial text constructed by
interleaving chapters of the two books. Their most
successful method used work in biblical scholar-
ship on lexical choice: they give as an example
the case that in Hebrew there are seven synonyms
for the word fear, and that different authors may
choose consistently from among them. Then, hav-
ing constructed their own synsets using available
biblical resources and annotations, they represent
texts by vectors of synonyms and apply a modified
cosine similarity measure to compare and cluster
these vectors. While the general task is relevant to
this paper, the particular notion of synonymy here
means the approach is specific to this problem, al-
though their approach is extended to other kinds
of text in Akiva and Koppel (2013). Aldebei et al.
(2015) proposed a new approach motivated by this
work, similarly clustering sentences, then using a
Naive Bayes classifier with modified prior proba-
bilities to classify sentences.

Poetry Voice Detection Brooke et al. (2012)
perform stylistic segmentation of a well-known
poem, The Waste Land by T.S. Eliot. This poem is
renowned for the great number of voices that ap-
pear throughout the text and has been the subject
of much literary analysis (Bedient and Eliot, 1986;
Cooper, 1987). These distinct voices, conceived of
as representing different characters, have differing
tones, lexis and grammatical styles (e.g. reflecting
the level of formality). The transitions between
the voices are not explicitly marked in the poem
and the task here is to predict the breaks where
these voice changes occur. The authors argue that
the use of generative models is not feasible for
this task, noting: “Generative models, which use
a bag-of-words assumption, have a very different
problem: in their standard form, they can capture
only lexical cohesion, which is not the (primary)
focus of stylistic analysis.”

1458

They instead present a method based on a curve
that captures stylistic change, similar to the Text-
Tiling approach but generalised to use a range of
features. The local maxima in this change curve
represent potential breaks in the text. The features
are both internal to the poem (e.g. word length,
syllable count, POS tag) as well as external (e.g.
average unigram counts in the 1T Corpus or senti-
ment polarity from a lexicon). Results on an artifi-
cially constructed mixed-style poem achieve a Pk
of 0.25. Brooke et al. (2013) extend this by consid-
ering clustering following an initial segmentation.

Native Language Identification (NLI) NLI
casts the detecting of native language (L1) influ-
ence in writing in a non-native (L2) language as a
classification task: the framing of the task in this
way comes from Koppel et al. (2005). There has
been much activity on it in the last few years, with
Tetreault et al. (2012) providing a comprehensive
analysis of features that had been used up until that
point, and a shared task in 2013 (Tetreault et al.,
2013) that attracted 29 entrants. The shared task
introduced a new, now-standard dataset, TOEFL11,
and work has continued on improving classifica-
tion results, e.g. by Bykh and Meurers (2014) and
Ionescu et al. (2014).

In addition to work on the classification task
itself, there have also been investigations of the
features used, and how they might be employed
elsewhere. Malmasi and Cahill (2015) examine
the effectiveness of individual feature types used
in the shared task and the diversity of those fea-
tures. Of relevance to the present paper, sim-
ple part-of-speech n-grams alone are fairly ef-
fective, with classification accuracies of between
about 40% and 65%; higher-order n-grams are
more effective than lower, and the more fine-
grained CLAWS2 tagset more effective than the
Penn Treebank tagset. An area for application
of these features is in Second Language Acquisi-
tion (SLA), as a data-driven approach to finding
L1-related characteristics that might be a result of
cross-linguistic influence and consequently a pos-
sible starting for an SLA hypothesis (Ellis, 2008);
Swanson and Charniak (2013) and Malmasi and
Dras (2014) propose methods for this.

Tying It Together Contra Brooke et al. (2012),
we show that it is possible to develop effective
generative models for segmentation on stylistic
factors, of the sort used for topic segmentation.
To apply it specifically to segmentation based on a
writer’s L1, we draw on work in NLI.

3 Experimental Setup

We investigate the task of L1-based segmentation
in three stages:
1. Can we define any models that do better than
random, in a best case scenario? For this best case
scenario, we determine results over a devset with
the best prior found by a grid search, for a single
language pair likely to be relatively easily distin-
guishable. Note that as this is unsupervised seg-
mentation, it is a devset in the sense that it is used
to find the best prior, and also in a sense that some
models as described in §4 use information from a
related NLI task on the underlying data.
2. If the above is true, do the results also hold for
test data, using priors derived from the devset?
3. Further, do the results also hold for all language
pairs available in our dataset, not just a single eas-
ily distinguishable pair?

We first describe the evaluation data — artifi-
cial texts generated from learner essays, similar to
the artificially constructed texts of previously de-
scribed work on Bible authorship and poetry seg-
mentation — and evaluation metrics, followed in
§4 by the definitions of our Bayesian models.

3.1 Source Data

We use as the source of data the TOEFL11 dataset
used for the NLI shared task (Blanchard et al.,
2013) noted in §2. The data consists of 12100
essays by writers with 11 different L1s, taken
from TOEFL tests where the test-taker is given a
prompt2 as the topic for the essay. The corpus is
balanced across L1s and prompts (which allows us
to verify that segmentation isn’t occurring on the
basis of topic), and is split into standard training,
dev and test sets.

3.2 Document Generation

As the main task is to segment texts by the author’s
L1, we want to ensure that we are not segment-
ing by topic and thus use texts written by authors
from different L1 backgrounds on the same topic
(prompt). We will also create one dataset to verify
that segmentation by topic works in this domain;
for this we use texts written by authors from the
same L1 background on different topics.

For our L1-varying datasets, we construct com-
posite documents to be segmented as alternat-

2For example, prompt P7 is: “Do you agree or disagree
with the following statement? It is more important for stu-
dents to understand ideas and concepts than it is for them to
learn facts. Use reasons and examples to support your an-
swer.”

1459

ing segments drawn from TOEFL11 from two dif-
ferent L1s holding the topic (prompt) constant,
broadly following a standard approach (Brooke
et al., 2012, for example) (see Appendix A.1 for
details). We follow the same process for our topic-
varying datasets, but hold the L1 constant while
alternating the topic (prompt). For our single pair
of L1s, we choose German and Italian. German
is the class with the highest NLI accuracy in the
TOEFL11 corpus across the shared task results and
Italian also performs very well. Additionally, there
is very little confusion between the two; a bi-
nary NLI classifier we trained on the language pair
achieved 97% accuracy. For our all-pairs results,
given the 11 languages in the TOEFL11 corpus, we
have 55 sets of documents of alternating L1s (one
of which is German–Italian).

We generate four distinct types of datasets for
our experiments using the above methodology.
The documents in these datasets, as described be-
low, differ in the parameters used to select the es-
says for each segment and what type of tokens are
used. Tokens (words) can be represented in their
original form and used for performing segmenta-
tion. Alternatively, using an insight from Wong
et al. (2012), we can represent the documents at a
level other than lexical: the text could consist of
the POS tags corresponding to all of the tokens,
or n-grams over those POS tags. The POS repre-
sentation is motivated by the usefulness of POS-
based features for capturing L1-based stylistic dif-
ferences as noted in §2. Our method for encoding
n-grams is described in Appendix A.2.

TOPICSEG-TOKENS This data is generated by
keeping the L1 class constant and alternating seg-
ments between two topics. We chose Italian for
the L1 class and essays from the prompts “P7”
and “P8” are used. The dataset, constructed from
TOEFL11-TRAIN and TOEFL11-DEV, contains a
total of 53 artificial documents, and will be used
to verify that topic segmentation as discussed in
Eisenstein and Barzilay (2008) functions as ex-
pected for data from this domain: that is, that topic
change is detectable.

TOPICSEG-PTB Here the tokens in each text
are replaced with their POS tags or n-grams over
those tags, and the segmentation is performed over
this data. In this dataset the tags are obtained via
the Stanford Tagger and use the Penn Treebank
(PTB) tagset. The same source data (TOEFL11-
TRAIN and TOEFL11-DEV), L1 and topics as
TOPICSEG-TOKENS are used for a total of 53

documents. This dataset will be used to investi-
gate, inter alia, whether segmentation over these
stylistically related features could take advantage
of topic cues. We would expect not.

L1SEG-PTB This dataset is used for segmenta-
tion based on native language, also using (n-grams
over) the PTB POS tags. We choose a specific
topic and then retrieve all essays from the corpus
that match this; here we chose prompt “P7”, since
it had the largest number of essays for our cho-
sen single L1 pair, German–Italian. For the dataset
constructed from TOEFL11-TRAIN and TOEFL11-
DEV (which we will refer to as L1SEG-PTB-GI-
DEV), this resulted in 57 documents. Documents
that are composites of two L1s are then generated
as described above. For investigating questions
2 and 3 above, we similarly have datasets con-
structed from the the smaller TOEFL11-TEST data
(L1SEG-PTB-GI-TEST), which consist of 5 doc-
uments of 5 segments each for the single L1 pair,
and from all language pairs (L1SEG-PTB-ALL-
DEV, L1SEG-PTB-ALL-TEST). We would ex-
pect that these datasets should not be segmentable
by topic, as all the segments are on the same topic;
the segments should however, differ in stylistic
characteristics related to the L1.

L1SEG-CLAWS2 This dataset is generated us-
ing the same methodology as L1SEG-PTB, with
the exception that the essays are tagged using the
RASP tagger which uses the more fine-grained
CLAWS2 tagset, noting that the CLAWS2 tagset
performed better in the NLI classification task
(Malmasi and Cahill, 2015).

3.3 Evaluation

We use the standard Pk (Beeferman et al., 1999)
and WindowDiff (WD) (Pevzner and Hearst,
2002) metrics, which (broadly speaking) select
sentences using a moving window of size k and
determines whether these sentences correctly or
incorrectly fall into the same or different reference
segmentations. Pk and WD scores range between
0 and 1, with a lower score indicating better per-
formance, and 0 a perfect segmentation. It has
been noted that some “degenerate” algorithms —
such as placing boundaries randomly or at every
possible position — can score 0.5 (Pevzner and
Hearst, 2002). WD scores are typically similar
to Pk, correcting for differential penalties between
false positive boundaries and false negatives im-
plicit in Pk. Pk and WD scores reported in §5 are

1460

averages across all documents in a dataset. Formal
definitions are given in Appendix A.3.

4 Segmentation Models

For all of our segmentation we use as a starting
point the unsupervised Bayesian method of Eisen-
stein and Barzilay (2008); see §2.3 We recap the
important technical definitions here.

In Equation 1 of their work they define the ob-
servation likelihood as,

p(X | z,Θ) =

T∏

t

p(xt | θzt), (1)

where X is the set of all T sentences, z is the
vector of segment assignments for each sentence,
xt is the bag of words drawn from the language
model and Θ is the set of all K language models
Θ1 . . .ΘK . As is standard in segmentation work,
K is assumed to be fixed and known (Malioutov
and Barzilay, 2006); it is set to the actual num-
ber of segments. The authors also impose an ad-
ditional constraint, that zt must be equal to either
zt−1 (the previous sentence’s segment) or zt−1 +1
(the next segment), in order to ensure a linear seg-
mentation.

This segmentation model has two parameters:
the set of language models Θ and the segment as-
signment indexes z. The authors note that since
this task is only concerned with the segment as-
signments, searching in the space of language
models is not desirable. They offer two alterna-
tives to overcome this: (1) taking point estimates
of the language models, which is considered to
be theoretically unsatisfying and (2) marginalizing
them out, which yields better performance. Equa-
tion 7 of Eisenstein and Barzilay (2008), repro-
duced here, shows how they marginalize over the
language models, supposing that each language
model is drawn from a symmetric Dirichlet prior
(i.e. θj ∼ Dir(θ0)):

p(X | z, θ0) =

K∏

j

pdcm({xt : zt = j} | θ0) (2)

The Dirichlet compound multinomial distribu-
tion pdcm expresses the expectation over all the
multinomial language models, when conditioned
on the symmetric Dirichlet prior θ0:

3An open-source implementation of the method, called
BAYESSEG, is made available by the authors at http://
groups.csail.mit.edu/rbg/code/bayesseg/

pdcm({xt : zt = j} | θ0) =

Γ(Wθ0)

Γ(Nj +Wθo)

W∏

i

Γ(nj,i + θ0)

Γ(θ0)
(3)

whereW is the number of words in the vocabulary
and Nj =

∑W
i nj,i, the total number of words in

the segment j. They then observe that the optimal
segmentation maximizes the joint probability

p(X, z | θ0) = p(X | z, θ0)p(z)

and assume a uniform p(z) over valid segmen-
tations with no probability mass assigned to in-
valid segmentations. The hyperparameter θ0 can
be chosen, or can be learned via an Expectation-
Maximization process.

Inference Eisenstein and Barzilay (2008) de-
fined two methods of inference, a dynamic pro-
gramming (DP) one and one using Metropolis-
Hastings (MH). Only MH is applicable where
shifting a boundary will affect the probability of
every segment, not just adjacent segments, as in
their model incorporating cue phrases. Where this
is not the case, they use DP inference. Their DP
inference algorithm is suitable for all of our mod-
els, so we also use that.

Priors For our priors, we carry out a grid search
on the devsets (that is, the datasets derived from
TOEFL11-TRAIN and TOEFL11-DEV) in the in-
terval [0.1, 3.0], partitioned into 30 evenly spaced
values; this includes both weak and strong priors.4

4.1 TOPICSEG

Our first model is exactly the one proposed by
Eisenstein and Barzilay (2008) described above.
The aim here is to look at how we perform at seg-
menting learner essays by topic in order to con-
firm that topic segmentation works for this domain
and these types of topics. We apply this model
to the TOPICSEG-TOKENS and TOPICSEG-PTB
datasets where the texts have the same L1 and
boundaries are placed between essays of differing
topics (prompts).

4.2 L1SEG

Our second model modifies that of Eisenstein and
Barzilay (2008) by revising the generative story.

4The Eisenstein and Barzilay (2008) code does implement
an EM method for finding priors in the symmetric case, but
we found that perhaps surprisingly the grid search almost al-
ways found better ones.

1461

Where they assume a standard generative model
over words with constraints on topic change be-
tween sentences, we make minor modifications to
adapt the model for our task. The standard gen-
erative story (Blei, 2012) — an account of how a
model generates the observed data — usually gen-
erates words in a two-stage process: (1) For each
document, randomly choose a distribution of top-
ics. (2) For each word in the document: (a) Assign
a topic from those chosen in step 1. (b) Randomly
choose a word from that topic’s vocabulary.

Here we modify this story to be over part-of-
speech data instead of lexical items. By using this
representation (which as noted in §2 is useful for
NLI classification) we aim to segment our texts
based on the L1 of the author for each segment.
For this model we only make use of the L1SEG-
PTB-GI-DEV dataset.5

4.3 L1SEG-COMP

It is not obvious that the same properties that
produce compact distributions in standard lexical
chains would also be the case for POS data, par-
ticularly if extended to POS n-grams which can
result in a very large number of potential tokens.
In this regard Eisenstein and Barzilay (2008) note:
“To obtain a high likelihood, the language mod-
els associated with each segment should concen-
trate their probability mass on a compact subset of
words. Language models that spread their proba-
bility mass over a broad set of words will induce a
lower likelihood. This is consistent with the prin-
ciple of lexical cohesion.”

Eisenstein and Barzilay (2008) discuss this
within the context of topic segmentation.6 How-
ever, it is unclear if this would also would happen
for POS tags; there is no syntactic analogue for the
sort of lexical chains important in topic segmenta-
tion. It may then turn out that using all POS tags
or n-grams over them as in the previous model
would not achieve a strong performance. We thus
use knowledge from the NLI classification task to
help.

Discarding Non-Discriminative Features One
approach that could possibly overcome these lim-

5We also looked at including words. The results of these
models were always worse, and we do not discuss them in
this paper.

6For example, a topic segment related to the previously
mentioned essay prompt P7 might concentrate its proba-
bility mass on the following set of words: {education,
learning, understanding, fact, theory,
idea, concept, knowledge}.

itations is the removal of features from the in-
put space that have been found to be non-
discriminative in NLI classification. This would
allow us to encode POS sequence information via
n-grams while also keeping the model’s vocabu-
lary sufficiently small. Doing this requires the use
of extrinsic information for filtering the n-grams.
The use of such extrinsic information has proven
to be useful for other similar tasks such as the po-
etry style change segmentation work of Brooke
et al. (2012), as noted in §2.

We perform this filtering using the discrimina-
tive feature lists derived from the NLI classifica-
tion task using the system and method described
in Malmasi and Dras (2014), also noted in §2. We
extract the top 300 most discriminative POS n-
gram features for each L1 from TOEFL11-TRAIN

and TOEFL11-DEV, resulting in two lists of 600
POS bigrams and trigrams; these are thus inde-
pendent of our test datasets. (We illustrate a text
with respect to these discriminative features in Ap-
pendix A.4.) Note that discriminative n-grams can
overlap with each other within the same class and
also between two classes. We resolve such con-
flicts by using the weights of the features from
the classification task as described in Malmasi and
Dras (2014) and choosing the feature with the
higher weight.

4.4 L1SEG-ASYMP
Looking at the distribution of discriminative fea-
tures in our documents, one idea is that incorpo-
rating knowledge about which features are asso-
ciated with which L1 could potentially help im-
prove the results. One approach to do this is the
use of asymmetric priors. We note that features as-
sociated with an L1 often dominate in a segment.
Accordingly, priors can represent evidence exter-
nal to the data that some some aspect should be
weighted more strongly: for us, this is evidence
from the NLI classification task. The segmenta-
tion models discussed so far only make use of a
symmetric prior but later work mentions that it
would be possible to modify this to use an asym-
metric prior (Eisenstein, 2009).

Given that priors are effective for incorporat-
ing external information, recent work has high-
lighted the importance of optimizing over such
priors, and in particular, the use of asymmetric pri-
ors. Key work on this is by Wallach et al. (2009)
on LDA, who report that “an asymmetric Dirich-
let prior over the document-topic distributions has
substantial advantages over a symmetric prior”,

1462

with prior values being determined through hyper-
parameter optimization. Such methods have since
been applied in other tasks such as sentiment anal-
ysis (Lin and He, 2009; Lin et al., 2012) to achieve
substantial improvements. For sentiment analysis,
Lin and He (2009) incorporate external informa-
tion from a subjectivity lexicon. In applying LDA,
instead of using a uniform Dirichlet prior for the
document–sentiment distribution, they use asym-
metric priors for positive and negative sentiment,
determined empirically.

For our task, we assign a prior to each of two
languages in a document, one corresponding to
L1a and the other to L1b. Given this, we can
assume that segments will alternate between L1a
and L1b. And instead of a single θ0, we have two
asymmetric priors that we call θa, θb correspond-
ing to L1a and L1b respectively. This will require
reworking the definition of pdcm in Equation 3.
First adapting Equation 2,

p(X | z, θa, θb) =
∏

{jo}
pdcm({xt : zt = jo} | θa) ·

∏

{je}
pdcm({xt : zt = je} | θb), (4)

with {jo} = {j | j mod 2 = 1, 1 ≤ j ≤ K} the
set of indices over odd segments and {je} = {j | j
mod 2 = 0, 1 ≤ j ≤ K} the set over evens. K is
the (usual) total number of segments. Then

pdcm({xt : zt = jo} | θa) =

Γ(
∑W

k θa[k])

Γ(Njo +
∑W

k θa[k])

W∏

i

Γ(nj,i + θa[i])

Γ(θa[i])
(5)

W is now more generally the number of items in
our vocabulary (whether words or POS n-grams).
A notational addition here is θa[k] which refers to
the L1a prior for the kth word or POS n-gram.
There is an analogous pdcm for θb.

The next issue is how to construct the θa and
θb. The simplest scenario would require a single
constant value for all elements in one L1 and an-
other for all elements in the other L1. Specifically,
using discrim(L1x) to denote “the ranked list of
discriminative n-grams for L1x”, we define

θa[i] =

{
c1 if θa[i] ∈ discrim(L1a)
c2 if θa[i] ∈ discrim(L1b)

and analogously for θb[i]. We would expect that
c1 > c2 (i.e. the prior is stronger for elements that

come from the appropriate ranked list of discrimi-
native features), but these values will be learned.

In principle we would calculate versions of
p(X | z, θa, θb) twice: once where we assign θa to
segment 1, and the second time where we assign
θb. We’d then compare the two p(X | z, θa, θb),
and see which one fits better. In this work, how-
ever, we will fix the initial L1: segment 1 corre-
sponds to L1a and consequently has prior θa.7

5 Results

5.1 Segmenting by Topic

We begin by testing the TOPICSEG model to en-
sure that the Bayesian segmentation methodol-
ogy can achieve reasonable results for segment-
ing learner essays by topic. The results on the
TOPICSEG-TOKENS dataset (Table 1) show that
content words are very effective at segmenting
the writings by topic, achieving Pk values in the
range 0.19–0.21. These values are similar to those
reported for segmenting Wall Street Journal text
(Beeferman et al., 1999). On the other hand, us-
ing the PTB POS tag version of the data in the
TOPICSEG-PTB dataset results in very poor seg-
mentation results, with Pk values around 0.45.
This is essentially the same as the performance of
degenerate algorithms (noted in §3.3) of 0.5. This
demonstrates that, as expected, POS unigrams do
not provide enough information for topic segmen-
tation; it is not possible to construct even an ap-
proximation to lexical chains using them.

5.2 L1-based Segmentation

Having verified that the Bayesian segmentation
approach is effective for topic segmentation on
this data, we now turn to the L1SEG model for
segmenting by the native language.

From the results in Table 1 we see very poor
performance with a Pk value of 0.466 for segment-
ing the texts in L1SEG-PTB-GI-DEV using the
unigrams as is. This was a somewhat unexpected
result given than we know POS unigram distribu-
tions are able to capture differences between L1-
groups (Malmasi and Cahill, 2015), albeit with
limited accuracy. Moreover, neither bigram nor
trigram encodings, which perform better at NLI,
resulted in any improvement in our results.

7This requires an extension of the BAYESSEG software
to support asymmetric priors. We will make this extended
version of the code available under the same conditions as
BAYESSEG. Please contact the first or second author for this.

1463

Model Dataset Prior(s) Pk WD
TOPICSEG TOPICSEG-TOKENS 0.1 0.203 0.205
TOPICSEG TOPICSEG-PTB 0.8 0.444 0.480

L1SEG L1SEG-PTB-GI-DEV unigrams 0.1 0.466 0.489
L1SEG L1SEG-PTB-GI-DEV bigrams 0.8 0.466 0.487
L1SEG L1SEG-PTB-GI-DEV trigrams 0.8 0.480 0.489

L1SEG-COMP L1SEG-PTB-GI-DEV bigrams 0.1 0.476 0.490
L1SEG-COMP L1SEG-PTB-GI-DEV trigrams 0.4 0.393 0.398
L1SEG-COMP L1SEG-CLAWS2-GI-DEV bigrams 0.4 0.387 0.400
L1SEG-COMP L1SEG-CLAWS2-GI-DEV trigrams 0.4 0.370 0.373

L1SEG-ASYMP L1SEG-CLAWS2-GI-DEV trigrams (0.6,0.3) 0.316 0.318

Table 1: Results on devsets for single L1 pair (German–Italian).

Model Pk WD
L1SEG-COMP 0.358 0.360
L1SEG-ASYMP 0.266 0.271

Table 2: Results on testset L1SEG-CLAWS2-GI-
TEST for single L1 pair (German–Italian). Priors
are the ones from the corresponding devsets in Ta-
ble 1.

Model Pk WD
L1SEG-COMP 0.365 (0.014) 0.369 (0.019)
L1SEG-ASYMP 0.299 (0.022) 0.312 (0.027)
L1SEG-COMP 0.376 (0.032) 0.381 (0.033)
L1SEG-ASYMP 0.314 (0.043) 0.319 (0.045)

Table 3: Results on dev and test datasets (upper:
L1SEG-CLAWS2-ALL-DEV, lower: L1SEG-
CLAWS2-ALL-TEST): means and standard de-
viations (in parentheses) across datasets for all 55
L1 pairs.

5.3 Incorporating Discriminative Features
Filtering the bigrams results in some minor im-
provements over the best results from the L1SEG

model. However, there are substantial improve-
ments when using the filtered POS trigrams, with
a Pk value of 0.393. We did not test unigrams as
they were the weakest NLI feature of the three.

This improvement is, we believe, because the
Bayesian modelling of lexical cohesion over the
input tokens requires that each segment concen-
trates its probability mass on a compact subset of
words. In the context of the n-gram tokenization
method tested in the previous section, the L1SEG

model with n-grams would most likely exacerbate
the issue by substantially increasing the number
of tokens in the language model: while the uni-
grams do not capture enough information to distin-
guish non-lexical shifts, the n-grams provide too

many features.
We also see that using the CLAWS2 tagset out-

performs the PTB tagset. The results achieved for
bigrams are much higher, while the trigram results
are also better, with Pk = 0.370. NLI experiments
using different POS tagsets have established that
more fine-grained tagsets (i.e. those with more tag
categories) provide greater classification accuracy
when used as n-gram features for classification.8

Results here comport with the previous findings.
As one of the two best models, we run it on the

held-out test data, using the best priors found from
the grid search on the devset data (Table 2); we
find the Pk and WD values are comparable (and in
fact slightly better), so the model still works if the
filtering uses discriminative NLI features from the
devset. Looking at results across all 55 L1 pairs
(Table 3), we also see similar mean Pk and WD
values with only a small standard deviation, indi-
cating the approach works just as well across all
language pairs. Priors here are all also weak, in
the range [0.1, 0.9].

In sum, the results here demonstrate the impor-
tance of inducing a compact distribution, which
we did here by reducing the vocabulary size by
stripping non-informative features.

5.4 Applying Two Asymmetric Priors

Our final model, L1SEG-ASYMP, assesses
whether setting different priors for each L1 can
improve performance. Our grid search over two
priors gives 900 possible prior combinations.
These combinations also include cases where θa
and θb are symmetric, which is equivalent to the
L1SEG-COMP model. We observe (Table 1) that

8In §2 we noted the comparison of PTB and CLAWS2
tagsets in Malmasi and Cahill (2015); also, Gyawali et al.
(2013) compared Penn Treebank and Universal POS tagsets
and found that the more fine-grained PTB ones did better.

1464

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

1
.4

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

2
.1

2
.2

2
.3

2
.4

2
.5

2
.6

2
.7

2
.8

2
.9

3
.0

L1 B

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0

L1
 A

Prior Grid Search Results (Coarse)

0.330

0.345

0.360

0.375

0.390

0.405

0.420

0.435

0.450

Figure 1: Heatmap over asymmetric priors on
L1SEG-CLAWS2-ALL-DEV

the prior pair of (0.6, 0.3) achieves a Pk value
of 0.321, a substantial improvement over the
previous best result of 0.370. Inspecting priors
(see Figure 1 for a heatmap over priors) shows
that the best results are in the region of weak
priors for both values, which is consistent with the
emphasis on compactness since weak priors result
in more compact models (noted by e.g. Wang and
Blei (2009)). Moreover, they are away from the
diagonal, i.e. the L1SEG-COMP model will not
produce the best results. A more fine-grained grid
search, focusing on the range that provided the
best results in the coarse search, can improve the
results further still: over the interval [0.3, 0.9],
partitioned into 60 evenly spaced values, finds a
prior pair of (0.64, 0.32) that provides a slight
improvement of the Pk value to 0.316.

As with L1SEG-COMP, we also evaluate this on
the same held-out test set (Table 2). Applying the
best asymmetric prior from the devset grid search,
this improves to 0.266. Again, results across all
55 L1 pairs (Table 3) show the same pattern, and
much as for L1SEG-COMP, priors are all weak
or neutral (range [0.1, 1.0]). These results thus
demonstrate that setting an asymmetric prior gives
the best performance on this task.

6 Conclusion and Future Work

Applying the approach to our two illustrative ap-
plications of §1, patchwriting and literary analysis,
would require development of relevant corpora. In
both cases the distinction would be between native
writing and writing that shows characteristics of a
non-native speaker, rather than between two non-

native L1s. There isn’t yet a topic-balanced cor-
pus like TOEFL11 which includes native speaker
writing for evaluation, although we expect (given
recent results on distinguishing native from non-
native text in Malmasi and Dras (2015)) that the
techniques should carry over. For the literary anal-
ysis, as well, to bridge the gap between work like
Morzinski (1994) and a computational applica-
tion, it remains to be seen how precise an anno-
tation is possible for this task. Additionally, the
granularity of segmentation may need to be finer
than sentence-level, as suggested by the examples
in §1; this level of granularity hasn’t previously
been tackled in unsupervised segmentation.

In terms of possible developments for the mod-
els presented for the task here, previous NLI work
has shown that other, syntactic features can be
useful for capturing L1-based differences. The
incorporation of these features for this segmen-
tation task could be a potentially fruitful avenue
for future work. We have taken a fairly straight-
forward approach which modifies the generative
story. A more sophisticated approach would be to
incorporate features into the unsupervised model.
One such example is the work of Berg-Kirkpatrick
et al. (2010) which demonstrates that each com-
ponent multinomial of a generative model can be
turned into a miniature logistic regression model
with the use of a modified EM algorithm. Their
results showed that the feature-enhanced unsu-
pervised models which incorporate linguistically-
motivated features achieve substantial improve-
ments for tasks such as POS induction and word
segmentation. We note also that the models are
potentially applicable to other stylistic segmenta-
tion tasks beyond L1 influence.

As far as this initial work is concerned we have
shown that, framed as a segmentation task, it is
possible to identify units of text that differ stylisti-
cally in their L1 influence. We demonstrated that
it is possible to define a generative story and asso-
ciated Bayesian models for stylistic segmentation,
and further that segmentation results improve sub-
stantially by compacting the n-gram distributions,
achieved by incorporating knowledge about dis-
criminative features extracted from NLI models.
Our best results come from a model that uses al-
ternating asymmetric priors for each L1, with the
priors selected using a grid search and then evalu-
ated on a held-out test set.

1465

Acknowledgements

The authors thank John Pate for very helpful dis-
cussions in the early stages of the paper, and the
three anonymous referees for useful suggestions.

A Details on Dataset Generation and
Evaluation

A.1 Document Generation

For our L1-varying datasets, we construct com-
posite documents to be segmented as alternating
segments drawn from TOEFL11 from two differ-
ent L1s. Broadly following a standard approach
(Brooke et al., 2012, for example), to generate
such a document, we randomly draw TOEFL11 es-
says — each of which constitutes a segment —
from the appropriate L1s and concatenate them,
alternating the L1 class after each segment. This is
repeated until the maximum number of segments
per document, s, is reached. We generate multi-
ple composite documents until all TOEFL11 have
been used. In this work we use datasets generated
with s = 5.9 We follow the same process for
our topic-varying datasets, but hold the L1 con-
stant while alternating the topic (prompt).

A.2 Encoding n-gram information

Lau et al. (2013) investigated the importance of
n-grams within topic models over lexical items.
They note that in topic modelling each token re-
ceives a topic label and that the words in a collo-
cation — e.g. stock market, White House or health
care — may receive different topic assignments
despite forming a single semantic unit. They
found that identifying collocations (via a t-test)
and preprocessing the text to turn these into sin-
gle tokens provides a notable improvement over a
unigram bag of words.

We implement a similar preprocessing step that
converts each sentence within each document to a
set of bigrams or trigrams using a sliding window,
where each n-gram is represented by a single to-
ken. So, for example, the trigram DT JJ NN be-
comes a single token: DT-JJ-NN.

A.3 Evaluation: Metric Definitions

Given two segmentations r (reference) and h (hy-
pothesis) for a corpus of N sentences,

9This is the average number of segments per chapter in the
written text used by Eisenstein and Barzilay (2008). How-
ever, we have also successfully replicated our results us-
ing s = 7, 9.

□ □ □ □ □ □ □ ■ ■ ■ ■
□ □ □ □ □ □ □ □ ■ ■ ■ □ □ □ □ ■ ■ ■ ■
□ ■ ■ ■ □ □ □ ■ ■ ■ □ □ □ □ □ □ ■ ■ ■
□ □ □ □ □ □ ■ ■ ■ □ □ □ □ ■ ■ ■ □ □ □ □ □ □ □ ■ ■ ■
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ ■ ■ ■ □ □ ■ ■ ■ □ □ □ ■ ■ ■ □ □ □ □ □ ■ ■ ■ ■ ■ ■ ■ ■ ■
■ ■ ■ □ □ □ □ ■ ■ ■ □ □ ■ ■ ■ □ □ □ □ □ □ □ □ □ □ ■ ■ ■ □ □
□ □ □ □ □ □ ■ ■ ■ □ □ □ □ □
□ □ □ □ □ ■ ■ ■ □ □
□ ■ ■ ■ □ ■ ■ ■ ■ ■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ ■ ■ ■ ■ ■ ■
□ □ □ ■ ■ ■ □ □ □ □ □ □ □ □ □ ■ ■ ■ □ □ ■ ■ ■ □ ■ ■ ■ ■
□ □ □ □ □ □ ■ ■ ■ □
□ □ □ □ □ □ □ □ □ □ □ □ □ □ ■ ■ ■ □ □ □ □ ■ ■ ■ ■ □ ■ ■ ■ □ □ □ □ □ □ □ ■ ■ ■
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ ■ ■ ■ □ □ □ □ □ □ □ ■ ■ ■
□ □ □ □ □ □ □ □ □ □ □ □ □ □ ■ ■ ■ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
□ □ □ □ □ □ □ □ □ □ □ □ ■ ■ ■
□ □ □ □ □ □ □ □ ■ ■ ■ □ □
□
■ ■ ■ □ □ □ □ □ ■ ■ ■ ■ □ ■ ■ ■
□ □ □ □ □ □ □ ■ ■ ■

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Figure 2: A visualization of sentences from a sin-
gle segment. Each row represents a sentence and
each token is represented by a square. Token tri-
grams considered discriminative for either of our
two L1 classes are shown in blue or red, with the
rest being considered non-discriminative.

PD(r, h) =
∑

1≤i≤j≤N

D(i, j)(δr(i, j) ⊕̄ δh(i, j)) (6)

where δr(i, j) is an indicator function specifying
whether i and j lie in the same reference segment,
δh(i, j) similarly for a hypothesised segment, ⊕̄ is
the XNOR function, and D is a distance probabil-
ity distribution over the set of possible distances
between sentences. For Pk, this D is defined by
a fixed window of size k which contains all the
probability mass, and k is set to be half the aver-
age reference segment length. The WD definition
is:

WD(r, h) =

1

N − k
N−k∑

i=1

(|b(ri, ri+k)− b(hi, hi+k)| > 0) (7)

where b(ri, rj) represents the number of bound-
aries between positions i and j in the reference
text (similarly, the hypothesis text).

A.4 Visualisation of Discriminative Features

Figure 2 shows a visualization of the discrimi-
native features of a single segment where each
row represents a sentence and each token is rep-
resented by a square. Tokens that are part of a
trigram which is considered discriminative for ei-
ther of our two L1 classes are shown in blue or
red. Note that discriminative n-grams can over-
lap with each other within the same class (e.g. on
lines 1 and 2 where two overlapping trigrams form
a group of four consecutive tokens) and also be-
tween two classes (e.g. on lines 10 and 11).

1466

References
Navot Akiva and Moshe Koppel. 2013. A Generic Un-

supervised Method for Decomposing Multi-Author
Documents. Journal of the American Society
for Information Science and Technology (JASIST)
64(11):2256–2264.

Khaled Aldebei, Xiangjian He, and Jie Yang. 2015.
Unsupervised decomposition of a multi-author doc-
ument based on naive-bayesian model. In Proceed-
ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers). Association for
Computational Linguistics, Beijing, China, pages
501–505. http://www.aclweb.org/anthology/P15-
2082.

Calvin Bedient and Thomas Stearns Eliot. 1986. He
Do the Police in Different Voices: The Waste Land
and its protagonist. University of Chicago Press.

Doug Beeferman, Adam Berger, and John Laf-
ferty. 1999. Statistical Models for Text Seg-
mentation. Machine Learning 34(1-3):177–210.
https://doi.org/10.1023/A:1007506220214.

Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté,
John DeNero, and Dan Klein. 2010. Pain-
less unsupervised learning with features. In
Human Language Technologies: The 2010 An-
nual Conference of the North American Chap-
ter of the Association for Computational Lin-
guistics. Association for Computational Linguis-
tics, Los Angeles, California, pages 582–590.
http://www.aclweb.org/anthology/N10-1083.

Daniel Blanchard, Joel Tetreault, Derrick Hig-
gins, Aoife Cahill, and Martin Chodorow. 2013.
TOEFL11: A Corpus of Non-Native English. Tech-
nical report, Educational Testing Service.

David M. Blei. 2012. Probabilistic topic models. Com-
munications of the ACM 55(4):77–84.

Julian Brooke, Adam Hammond, and Graeme
Hirst. 2012. Unsupervised Stylistic Segmenta-
tion of Poetry with Change Curves and Extrin-
sic Features. In Proceedings of the NAACL-
HLT 2012 Workshop on Computational Linguis-
tics for Literature. Association for Computa-
tional Linguistics, Montréal, Canada, pages 26–35.
http://www.aclweb.org/anthology/W12-2504.

Julian Brooke, Graeme Hirst, and Adam Hammond.
2013. Clustering voices in the waste land. In Pro-
ceedings of the Workshop on Computational Lin-
guistics for Literature. Association for Computa-
tional Linguistics, Atlanta, Georgia, pages 41–46.
http://www.aclweb.org/anthology/W13-1406.

Serhiy Bykh and Detmar Meurers. 2014. Exploring
Syntactic Features for Native Language Identifica-
tion: A Variationist Perspective on Feature Encoding

and Ensemble Optimization. Proceedings of COL-
ING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers pages
1962–1973.

John Xiros Cooper. 1987. TS Eliot and the politics of
voice: The argument of The Waste Land. 79. UMI
Research Press.

Lan Du, Wray Buntine, and Mark Johnson. 2013.
Topic segmentation with a structured topic model.
In Proceedings of the 2013 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies. Association for Computational
Linguistics, Atlanta, Georgia, pages 190–200.
http://www.aclweb.org/anthology/N13-1019.

Jacob Eisenstein. 2009. Hierarchical text segmentation
from multi-scale lexical cohesion. In Proceedings of
the North American Chapter of the Association for
Computational Linguistics (NAACL). Boulder, CO,
pages 353–361. www.aclweb.org/anthology/N09-
1040.

Jacob Eisenstein and Regina Barzilay. 2008. Bayesian
unsupervised topic segmentation. In Proceedings of
the 2008 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Honolulu, Hawaii, pages 334–
343. http://www.aclweb.org/anthology/D08-1035.

Rod Ellis. 2008. The Study of Second Language Ac-
quisition, 2nd edition. Oxford University Press, Ox-
ford, UK.

Joanna Gilmore, Denise Strickland, Briana Timmer-
man, Michelle Maher, and David Feldon. 2010.
Weeds in the flower garden: An exploration of pla-
giarism in graduate students research proposals and
its connection to enculturation, ESL, and contextual
factors. International Journal for Educational In-
tegrity 6(1):13–28.

Binod Gyawali, Gabriela Ramirez, and Thamar
Solorio. 2013. Native Language Identification: a
Simple n-gram Based Approach. In Proceedings of
the Eighth Workshop on Innovative Use of NLP for
Building Educational Applications. Association for
Computational Linguistics, Atlanta, Georgia, pages
224–231. http://www.aclweb.org/anthology/W13-
1729.

M. A. K. Halliday and Ruqaiya Hasan. 1976. Cohesion
in English. Longman Publishing Group.

Marti A. Hearst. 1994. Multi-paragraph segmentation
of expository text. In Proceedings of the 32nd An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, Las Cruces, New Mexico, USA, pages 9–16.
https://doi.org/10.3115/981732.981734.

Marti A. Hearst. 1997. Texttiling: Segment-
ing text into multi-paragraph subtopic pas-
sages. Computational Lingustics 23(1):33–64.
http://www.aclweb.org/anthology/J97-1003.

1467

Radu Tudor Ionescu, Marius Popescu, and Aoife
Cahill. 2014. Can characters reveal your native lan-
guage? A language-independent approach to native
language identification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for Com-
putational Linguistics, Doha, Qatar, pages 1363–
1373. http://www.aclweb.org/anthology/D14-1142.

Sandra Jamieson and Rebecca Moore Howard. 2013.
Sentence-Mining: Uncovering the Amount Of
Reading and Reading Comprehension In College
Writers’ Researched Writing. In Randall Mc-
Clure and James P. Purdy, editors, The New Digi-
tal Scholar: Exploring and Enriching the Research
and Writing Practices of NextGen Students, Amer-
ican Society for Information Science and Technol-
ogy, Medford, NJ, pages 111–133.

Minwoo Jeong and Ivan Titov. 2010. Unsupervised
discourse segmentation of documents with inher-
ently parallel structure. In Proceedings of the
ACL 2010 Conference Short Papers. Association for
Computational Linguistics, Uppsala, Sweden, pages
151–155. http://www.aclweb.org/anthology/P10-
2028.

Casey Keck. 2006. The use of paraphrase in summary
writing: A comparison of L1 and L2 writers. Jour-
nal of Second Language Writing 15(4):261–278.

Moshe Koppel, Navot Akiva, Idan Dershowitz, and
Nachum Dershowitz. 2011. Unsupervised decom-
position of a document into authorial components.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Portland, Oregon, USA, pages
1356–1364. http://www.aclweb.org/anthology/P11-
1136.

Moshe Koppel, Jonathan Schler, and Kfir Zigdon.
2005. Automatically determining an anonymous au-
thor’s native language. In Intelligence and Secu-
rity Informatics. Springer-Verlag, volume 3495 of
LNCS, pages 209–217.

Jey Han Lau, Timothy Baldwin, and David Newman.
2013. On Collocations and Topic Models. ACM
Transactions on Speech and Language Processing
(TSLP) 10(3).

Yongyan Li and Christine Pearson Casanave. 2012.
Two first-year students strategies for writing from
sources: Patchwriting or plagiarism? Journal of
Second Language Writing 21:165–180.

Chenghua Lin and Yulan He. 2009. Joint sen-
timent/topic model for sentiment analysis. In
Proceedings of the 18th ACM Conference
on Information and Knowledge Management.
ACM, New York, NY, USA, pages 375–384.
http://doi.acm.org/10.1145/1645953.1646003.

Chenghua Lin, Yulan He, Richard Everson, and Stefan
Rüger. 2012. Weakly supervised joint sentiment-
topic detection from text. Knowledge and Data En-
gineering, IEEE Transactions on 24(6):1134–1145.

Igor Malioutov and Regina Barzilay. 2006. Min-
imum cut model for spoken lecture segmenta-
tion. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th
Annual Meeting of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Sydney, Australia, pages 25–32.
https://doi.org/10.3115/1220175.1220179.

Shervin Malmasi and Aoife Cahill. 2015. Mea-
suring feature diversity in native language iden-
tification. In Proceedings of the Tenth Work-
shop on Innovative Use of NLP for Building Ed-
ucational Applications. Association for Computa-
tional Linguistics, Denver, Colorado, pages 49–55.
http://www.aclweb.org/anthology/W15-0606.

Shervin Malmasi and Mark Dras. 2014. Lan-
guage Transfer Hypotheses with Linear SVM
Weights. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1385–1390.
http://aclweb.org/anthology/D14-1144.

Shervin Malmasi and Mark Dras. 2015.
Multilingual Native Language Identifi-
cation. Natural Language Engineering
https://doi.org/10.1017/S1351324915000406.

Jane Morris and Graeme Hirst. 1991. Lexical cohe-
sion computed by thesaural relations as an indicator
of the structure of text. Computational linguistics
17(1):21–48.

Mary Morzinski. 1994. The Linguistic influence of Pol-
ish on Joseph Conrad’s style. Columbia University
Press, New York, NY.

Diane Pecorari. 2003. Good and original: Plagia-
rism and patchwriting in academic second-language
writing. Journal of Second Language Writing
12(4):317–345.

Lev Pevzner and Marti A. Hearst. 2002. A critique and
improvement of an evaluation metric for text seg-
mentation. Computational Linguistics 28(1):19–36.
https://doi.org/10.1162/089120102317341756.

Ben Swanson and Eugene Charniak. 2013. Extract-
ing the Native Language Signal for Second Lan-
guage Acquisition. In Proceedings of the 2013 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Atlanta, Georgia, pages 85–94.
http://www.aclweb.org/anthology/N13-1009.

Joel Tetreault, Daniel Blanchard, and Aoife Cahill.
2013. A report on the first native language identi-
fication shared task. In Proceedings of the Eighth

1468

Workshop on Innovative Use of NLP for Building
Educational Applications. Association for Compu-
tational Linguistics, Atlanta, Georgia, pages 48–57.
http://www.aclweb.org/anthology/W13-1706.

Joel Tetreault, Daniel Blanchard, Aoife Cahill, and
Martin Chodorow. 2012. Native tongues, lost
and found: Resources and empirical evaluations
in native language identification. In Proceedings
of COLING 2012. The COLING 2012 Organiz-
ing Committee, Mumbai, India, pages 2585–2602.
http://www.aclweb.org/anthology/C12-1158.

Michelle Vieyra, Denise Strickland, and Brianna Tim-
merman. 2013. Patterns in plagiarism and patch-
writing in science and engineering graduate stu-
dents’ research proposals. International Journal for
Educational Integrity 9(1):35–49.

Hanna M. Wallach, David M. Mimno, and Andrew Mc-
Callum. 2009. Rethinking lda: Why priors matter.
In Y. Bengio, D. Schuurmans, J.D. Lafferty, C.K.I.
Williams, and A. Culotta, editors, Advances in Neu-
ral Information Processing Systems 22, Curran As-
sociates, Inc., pages 1973–1981.

Chong Wang and David M Blei. 2009. Decoupling
sparsity and smoothness in the discrete hierarchical
dirichlet process. In Advances in Neural Informa-
tion Processing Systems. pages 1982–1989.

Sze-Meng Jojo Wong, Mark Dras, and Mark Johnson.
2012. Exploring Adaptor Grammars for Native Lan-
guage Identification. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natu-
ral Language Learning. Association for Computa-
tional Linguistics, Jeju Island, Korea, pages 699–
709. http://www.aclweb.org/anthology/D12-1064.

1469

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1470–1480
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1135

Weakly Supervised Cross-Lingual Named Entity Recognition
via Effective Annotation and Representation Projection

Jian Ni and Georgiana Dinu and Radu Florian
IBM T. J. Watson Research Center

1101 Kitchawan Road, Yorktown Heights, NY 10598, USA
{nij, gdinu, raduf}@us.ibm.com

Abstract

The state-of-the-art named entity recog-
nition (NER) systems are supervised ma-
chine learning models that require large
amounts of manually annotated data to
achieve high accuracy. However, anno-
tating NER data by human is expensive
and time-consuming, and can be quite dif-
ficult for a new language. In this pa-
per, we present two weakly supervised ap-
proaches for cross-lingual NER with no
human annotation in a target language.
The first approach is to create automati-
cally labeled NER data for a target lan-
guage via annotation projection on compa-
rable corpora, where we develop a heuris-
tic scheme that effectively selects good-
quality projection-labeled data from noisy
data. The second approach is to project
distributed representations of words (word
embeddings) from a target language to
a source language, so that the source-
language NER system can be applied to
the target language without re-training.
We also design two co-decoding schemes
that effectively combine the outputs of
the two projection-based approaches. We
evaluate the performance of the proposed
approaches on both in-house and open
NER data for several target languages.
The results show that the combined sys-
tems outperform three other weakly super-
vised approaches on the CoNLL data.

1 Introduction

Named entity recognition (NER) is a fundamen-
tal information extraction task that automatically
detects named entities in text and classifies them
into pre-defined entity types such as PERSON,
ORGANIZATION, GPE (GeoPolitical Entities),

EVENT, LOCATION, TIME, DATE, etc. NER
provides essential inputs for many information ex-
traction applications, including relation extraction,
entity linking, question answering and text min-
ing. Building fast and accurate NER systems is
a crucial step towards enabling large-scale auto-
mated information extraction and knowledge dis-
covery on the huge volumes of electronic docu-
ments existing today.

The state-of-the-art NER systems are super-
vised machine learning models (Nadeau and
Sekine, 2007), including maximum entropy
Markov models (MEMMs) (McCallum et al.,
2000), conditional random fields (CRFs) (Lafferty
et al., 2001) and neural networks (Collobert et al.,
2011; Lample et al., 2016). To achieve high ac-
curacy, a NER system needs to be trained with
a large amount of manually annotated data, and
is often supplied with language-specific resources
(e.g., gazetteers, word clusters, etc.). Annotating
NER data by human is rather expensive and time-
consuming, and can be quite difficult for a new
language. This creates a big challenge in building
NER systems of multiple languages for supporting
multilingual information extraction applications.

The difficulty of acquiring supervised annota-
tion raises the following question: given a well-
trained NER system in a source language (e.g.,
English), how can one go about extending it to
a new language with decent performance and no
human annotation in the target language? There
are mainly two types of approaches for building
weakly supervised cross-lingual NER systems.

The first type of approaches create weakly la-
beled NER training data in a target language. One
way to create weakly labeled data is through an-
notation projection on aligned parallel corpora or
translations between a source language and a tar-
get language, e.g., (Yarowsky et al., 2001; Zitouni
and Florian, 2008; Ehrmann et al., 2011). An-
other way is to utilize the text and structure of

1470

https://doi.org/10.18653/v1/P17-1135

Wikipedia to generate weakly labeled multilingual
training annotations, e.g., (Richman and Schone,
2008; Nothman et al., 2013; Al-Rfou et al., 2015).

The second type of approaches are based on di-
rect model transfer, e.g., (Täckström et al., 2012;
Tsai et al., 2016). The basic idea is to train a single
NER system in the source language with language
independent features, so the system can be applied
to other languages using those universal features.

In this paper, we make the following contri-
butions to weakly supervised cross-lingual NER
with no human annotation in the target languages.
First, for the annotation projection approach, we
develop a heuristic, language-independent data se-
lection scheme that seeks to select good-quality
projection-labeled NER data from comparable
corpora. Experimental results show that the data
selection scheme can significantly improve the ac-
curacy of the target-language NER system when
the alignment quality is low and the projection-
labeled data are noisy.

Second, we propose a new approach for direct
NER model transfer based on representation pro-
jection. It projects word representations in vector
space (word embeddings) from a target language
to a source language, to create a universal repre-
sentation of the words in different languages. Un-
der this approach, the NER system trained for the
source language can be directly applied to the tar-
get language without the need for re-training.

Finally, we design two co-decoding schemes
that combine the outputs (views) of the two
projection-based systems to produce an output that
is more accurate than the outputs of individual sys-
tems. We evaluate the performance of the pro-
posed approaches on both in-house and open NER
data sets for a number of target languages. The re-
sults show that the combined systems outperform
the state-of-the-art cross-lingual NER approaches
proposed in Täckström et al. (2012), Nothman
et al. (2013) and Tsai et al. (2016) on the CoNLL
NER test data (Tjong Kim Sang, 2002; Tjong
Kim Sang and De Meulder, 2003).

We organize the paper as follows. In Section
2 we introduce three NER models that are used
in the paper. In Section 3 we present an anno-
tation projection approach with effective data se-
lection. In Section 4 we propose a representation
projection approach for direct NER model trans-
fer. In Section 5 we describe two co-decoding
schemes that effectively combine the outputs of

two projection-based approaches. In Section 6
we evaluate the performance of the proposed ap-
proaches. We describe related work in Section 7
and conclude the paper in Section 8.

2 NER Models

The NER task can be formulated as a sequence
labeling problem: given a sequence of words
x1, ..., xn, we want to infer the NER tag li for each
word xi, 1 ≤ i ≤ n. In this section we introduce
three NER models that are used in the paper.

2.1 CRFs and MEMMs
Conditional random fields (CRFs) are a class of
discriminative probabilistic graphical models that
provide powerful tools for labeling sequential data
(Lafferty et al., 2001). CRFs learn a conditional
probability model pλ(l|x) from a set of labeled
training data, where x = (x1, ...,xn) is a random
sequence of input words, l = (l1, ..., ln) is the se-
quence of label variables (NER tags) for x, and l
has certain Markov properties conditioned on x.
Specifically, a general-order CRF with order o as-
sumes that label variable li is dependent on a fixed
number o of previous label variables li−1, ..., li−o,
with the following conditional distribution:

pλ(l|x) =
e
∑n

i=1

∑K
k=1 λkfk(li,li−1,...,li−o,x)

Zλ(x)
(1)

where fk’s are feature functions, λk’s are weights
of the feature functions (parameters to learn), and
Zλ(x) is a normalization constant. When o = 1,
we have a first-order CRF which is also known as
a linear-chain CRF.

Given a set of labeled training data D =
(x(j), l(j))j=1,...,N , we seek to find an optimal set
of parameters λ∗ that maximize the conditional
log-likelihood of the data:

λ∗ = arg max
λ

N∑

j=1

log pλ(l(j)|x(j)) (2)

Once we obtain λ∗, we can use the trained model
pλ∗(l|x) to decode the most likely label sequence
l∗ for any new input sequence of words x (via the
Viterbi algorithm for example):

l∗ = arg max
l
pλ∗(l|x) (3)

A related conditional probability model, called
maximum entropy Markov model (MEMM) (Mc-
Callum et al., 2000), assumes that l is a Markov

1471

chain conditioned on x:

pλ(l|x) =

n∏

i=1

pλ(li|li−1, ..., li−o,x)

=
n∏

i=1

e
∑K

k=1 λkfk(li,li−1,...,li−o,x)

Zλ(li−1, ..., li−o,x)
(4)

The main difference between CRFs and
MEMMs is that CRFs normalize the conditional
distribution over the whole sequence as in (1),
while MEMMs normalize the conditional distribu-
tion per token as in (4). As a result, CRFs can bet-
ter handle the label bias problem (Lafferty et al.,
2001). This benefit, however, comes at a price.
The training time of order-o CRFs grows exponen-
tially (O(Mo+1)) with the number of output labels
M , which is typically slow even for moderate-size
training data ifM is large. In contrast, the training
time of order-o MEMMs is linear (O(M)) with
respect to M independent of o, so it can handle
larger training data with higher order of depen-
dency. We have implemented both a linear-chain
CRF model and a general-order MEMM model.

2.2 Neural Networks

With the increasing popularity of distributed (vec-
tor) representations of words, neural network
models have recently been applied to tackle many
NLP tasks including NER (Collobert et al., 2011;
Lample et al., 2016).

We have implemented a feedforward neural net-
work model which maximizes the log-likelihood
of the training data similar to that of (Collobert
et al., 2011). We adopt a locally normalized model
(the conditional distribution is normalized per to-
ken as in MEMMs) and introduce context depen-
dency by conditioning on the previously assigned
tags. We use a target word and its surrounding
context as features. We do not use other common
features such as gazetteers or character-level rep-
resentations as such features might not be readily
available or might not transfer to other languages.

We have deployed two neural network architec-
tures. The first one (called NN1) uses the word
embedding of a word as the input. The sec-
ond one (called NN2) adds a smoothing proto-
type layer that computes the cosine similarity be-
tween a word embedding and a fixed set of proto-
type vectors (learned during training) and returns
a weighted average of these prototype vectors as
the input. In our experiments we find that with the

Figure 1: Architecture of the two neural network
models: left-NN1, right-NN2.

smoothing layer, NN2 tends to have a more bal-
anced precision and recall than NN1. Both net-
works have one hidden layer, with sigmoid and
softmax activation functions on the hidden and
output layers respectively. The two neural network
models are depicted in Figure 1.

3 Annotation Projection Approach

The existing annotation projection approaches re-
quire parallel corpora or translations between
a source language and a target language with
alignment information. In this paper, we de-
velop a heuristic, language-independent data se-
lection scheme that seeks to select good-quality
projection-labeled data from noisy comparable
corpora. We use English as the source language.

Suppose we have comparable1 sentence
pairs (X,Y) between English and a target lan-
guage, where X includes N English sentences
x(1), ...,x(N), Y includes N target-language
sentences y(1), ...,y(N), and y(j) is aligned to
x(j) via an alignment model, 1 ≤ j ≤ N . We use
a sentence pair (x,y) as an example to illustrate
how the annotation projection procedure works,
where x = (x1, x2, ..., xs) is an English sentence,
and y = (y1, y2, ..., yt) is a target-language
sentence that is aligned to x.

Annotation Projection Procedure

1. Apply the English NER system on the En-
glish sentence x to generate the NER tags
l = (l1, l2, ..., ls) for x.

2. Project the NER tags to the target-language
sentence y using the alignment informa-
tion. Specifically, if a sequence of English
words (xi, ..., xi+p) is aligned to a sequence
of target-language words (yj , ..., yj+q), and
(xi, ..., xi+p) is recognized (by the English
NER system) as an entity with NER tag l,

1Ideally, the sentences would be translations of each other,
but we only require possibly parallel sentences.

1472

then (yj , ..., yj+q) is labeled with l2.
Let l′ = (l′1, l

′
2, ..., l

′
t) be the projected NER

tags for the target-language sentence y.

We can apply the annotation projection proce-
dure on all the sentence pairs (X,Y), to generate
projected NER tags L′ for the target-language sen-
tences Y. (Y, L′) are automatically labeled NER
data with no human annotation in the target lan-
guage. One can use those projection-labeled data
to train an NER system in the target language. The
quality of such weakly labeled NER data, and con-
sequently the accuracy of the target-language NER
system, depend on both 1) the accuracy of the En-
glish NER system, and 2) the alignment accuracy
of the sentence pairs.

Since we don’t require actual translations, but
only comparable data, the downside is that if some
of the data are not actually parallel and if we use
all for weakly supervised learning, the accuracy
of the target-language NER system might be ad-
versely affected. We are therefore motivated to
design effective data selection schemes that can
select good-quality projection-labeled data from
noisy data, to improve the accuracy of the anno-
tation projection approach for cross-lingual NER.

3.1 Data Selection Scheme
We first design a metric to measure the annotation
quality of a projection-labeled sentence in the tar-
get language. We construct a frequency table T
which includes all the entities in the projection-
labeled target-language sentences. For each entity
e, T also includes the projected NER tags for e
and the relative frequency (empirical probability)
P̂ (l|e) that entity e is labeled with tag l. Table 1
shows a snapshot of the frequency table where the
target language is Portuguese.

We use P̂ (l|e) to measure the reliability of la-
beling entity e with tag l in the target language.
The intuition is that if an entity e is labeled by a
tag l with higher frequency than other tags in the
projection-labeled data, it is more likely that the
annotation is correct. For example, if the joint ac-
curacy of the source NER system and alignment
system is greater than 0.5, then the correct tag of
a random entity will have a higher relative fre-
quency than other tags in a large enough sample.

Based on the frequency scores, we calculate
the quality score of a projection-labeled target-

2If the IOB (Inside, Outside, Beginning) tagging format is
used, then (yj , yj+1, ..., yj+q) is labeled with (B-l, I-l,...,I-l).

Entity Name NER Tag Frequency
Estados Unidos GPE 0.853
Estados Unidos ORGANIZATION 0.143
Estados Unidos PEOPLE 0.001
Estados Unidos PRODUCT 0.001
Estados Unidos TITLEWORK 0.001
Estados Unidos EVENT 0.001

Table 1: A snapshot of the frequency table where
the target language is Portuguese. Estados Unidos
means United States. The correct NER tag for Es-
tados Unidos is GPE which has the highest relative
frequency in the weakly labeled data.

language sentence y by averaging the frequency
scores of the projected entities in the sentence:

q(y) =
Σe∈yP̂ (l′(e)|e)

n(y)
(5)

where l′(e) is the projected NER tag for e, and
n(y) is the total number of entities in sentence y.

We use q(y) to measure the annotation quality
of sentence y, and n(y) to measure the amount
of annotation information contained in sentence y.
We design a heuristic data selection scheme which
selects projection-labeled sentences in the target
language that satisfy the following condition:

q(y) ≥ q; n(y) ≥ n (6)

where q is a quality score threshold and n is an
entity number threshold. We can tune the two pa-
rameters to make tradeoffs among the annotation
quality of the selected sentences, the annotation
information contained in the selected sentences,
and the total number of sentence selected.

One way to select the threshold parameters q
and n is via a development set - either a small
set of human-annotated data or a sample of the
projection-labeled data. We select the threshold
parameters via coordinate search using the devel-
opment set: we first fix n = 3 and search the best q̂
in [0, 0.9] with a step size of 0.1; we then fix q = q̂
and select the best n̂ in [1, 5] with a step size of 1.

3.2 Accuracy Improvements
We evaluate the effectiveness of the data selection
scheme via experiments on 4 target languages:
Japanese, Korean, German and Portuguese. We
use comparable corpora between English and each
target language (ranging from 2M to 6M tokens)
with alignment information. For each target lan-
guage, we also have a set of manually anno-
tated NER data (ranging from 30K to 45K tokens)

1473

Language (q, n) Training Size F1 Score
Japanese (0, 0) 4.9M 41.2

(0.7, 4) 1.3M 53.4
Korean (0, 0) 4.5M 25.0

(0.4, 2) 1.5M 38.7
German (0, 0) 5.2M 67.2

(0.4, 4) 2.6M 67.5
Portuguese (0, 0) 2.1M 61.5

(0.1, 4) 1.5M 62.7

Table 2: Performance comparison of weakly su-
pervised NER systems trained without data se-
lection ((q, n) = (0, 0)) and with data selection
((q̂, n̂) determined by coordinate search).

which are served as the test data for evaluating the
target-language NER system.

The source (English) NER system is a linear-
chain CRF model which achieves an accuracy of
88.9 F1 score on an independent NER test set.
The alignment systems between English and the
target languages are maximum entropy models
(Ittycheriah and Roukos, 2005), with an accu-
racy of 69.4/62.0/76.1/88.0 F1 score on indepen-
dent Japanese/Korean/German/Portuguese align-
ment test sets.

For each target language, we randomly select
5% of the projection-labeled data as the develop-
ment set and the remaining 95% as the training
set. We compare an NER system trained with all
the projection-labeled training data with no data
selection (i.e., (q, n) = (0, 0)) and an NER sys-
tem trained with projection-labeled data selected
by the data selection scheme where the develop-
ment set is used to select the threshold parame-
ters q and n via coordinate search. Both NER sys-
tems are 2nd-order MEMM models3 which use the
same template of features.

The results are shown in Table 2. For differ-
ent target languages, we use the same source (En-
glish) NER system for annotation projection, so
the differences in the accuracy improvements are
mainly due to the alignment quality of the com-
parable corpora between English and different tar-
get languages. When the alignment quality is low
(e.g., as for Japanese and Korean) and hence the
projection-labeled NER data are quite noisy, the
proposed data selection scheme is very effective
in selecting good-quality projection-labeled data
and the improvement is big: +12.2 F1 score for

3In our experiments, CRFs cannot handle training data
with a few million words, since our NER system has over
50 entity types, and the training time of CRFs grows at least
quadratically in the number of entity types.

Japanese and +13.7 F1 score for Korean. Us-
ing a stratified shuffling test (Noreen, 1989), for
a significance level of 0.05, data-selection is sta-
tistically significantly better than no-selection for
Japanese, Korean and Portuguese.

4 Representation Projection Approach

In this paper, we propose a new approach for di-
rect NER model transfer based on representation
projection. Under this approach, we train a single
English NER system that uses only word embed-
dings as input representations. We create mapping
functions which can map words in any language
into English and we simply use the English NER
system to decode. In particular, by mapping all
languages into English, we are using one univer-
sal NER system and we do not need to re-train the
system when a new language is added.

4.1 Monolingual Word Embeddings

We first build vector representations of words
(word embeddings) for a language using mono-
lingual data. We use a variant of the Con-
tinuous Bag-of-Words (CBOW) word2vec model
(Mikolov et al., 2013a), which concatenates the
context words surrounding a target word instead
of adding them (similarly to (Ling et al., 2015)).
Additionally, we employ weights w = 1

dist(x,xc)
that decay with the distance of a context word xc
to a target word x. Tests on word similarity bench-
marks show this variant leads to small improve-
ments over the standard CBOW model.

We train 300-dimensional word embeddings for
English. Following (Mikolov et al., 2013b), we
use larger dimensional embeddings for the target
languages, namely 800. We train word2vec for
1 epoch for English/Spanish and 5 epochs for the
rest of the languages for which we have less data.

4.2 Cross-Lingual Representation Projection

We learn cross-lingual word embedding map-
pings, similarly to (Mikolov et al., 2013b). For a
target language f , we first extract a small train-
ing dictionary from a phrase table that includes
word-to-word alignments between English and the
target language f . The dictionary contains En-
glish and target-language word pairs with weights:
(xi, yi, wi)i=1,...,n, where xi is an English word,
yi is a target-language word, and the weight wi =
P̂ (xi|yi) is the relative frequency of xi given yi as
extracted from the phrase table.

1474

Suppose we have monolingual word embed-
dings for English and the target language f . Let
ui ∈ Rd1 be the vector representation for English
word xi, vi ∈ Rd2 be the vector representation for
target-language word yi. We find a linear mapping
Mf→e by solving the following weighted least
squares problem where the dictionary is used as
the training data:

Mf→e = arg min
M

n∑

i=1

wi||ui −Mvi||2 (7)

In (7) we generalize the formulation in
(Mikolov et al., 2013b) by adding frequency
weights to the word pairs, so that more frequent
pairs are of higher importance. Using Mf→e, for
any new word in f with vector representation v,
we can project it into the English vector space as
the vector Mf→ev.

The training dictionary plays a key role in find-
ing an effective cross-lingual embedding mapping.
To control the size of the dictionary, we only
include word pairs with a minimum frequency
threshold. We set the threshold to obtain approx-
imately 5K to 6K unique word pairs for a target
language, as our experiments show that larger-size
dictionaries might harm the performance of repre-
sentation projection for direct NER model transfer.

4.3 Direct NER Model Transfer
The source (English) NER system is a neural net-
work model (with architecture NN1 or NN2) that
uses only word embedding features (embeddings
of a word and its surrounding context) in the En-
glish vector space. Model transfer is achieved sim-
ply by projecting the target language word embed-
dings into the English vector space and decoding
these using the English NER system.

More specifically, given the word embeddings
of a sequence of words in a target language f ,
(v1, ...,vt), we project them into the English vec-
tor space by applying the linear mapping Mf→e:
(Mf→ev1, ...,Mf→evt). The English NER sys-
tem is then applied on the projected input to pro-
duce NER tags. Words not in the target-language
vocabulary are projected into their English embed-
dings if they are found in the English vocabulary,
or into an NER-trained UNK vector otherwise.

5 Co-Decoding

Given two weakly supervised NER systems which
are trained with different data using different mod-

els (MEMM model for annotation projection and
neural network model for representation projec-
tion), we would like to design a co-decoding
scheme that can combine the outputs (views) of
the two systems to produce an output that is more
accurate than the outputs of individual systems.

Since both systems are statistical models and
can produce confidence scores (probabilities), a
natural co-decoding scheme is to compare the con-
fidence scores of the NER tags generated by the
two systems and select the tags with higher con-
fidences scores. However, confidence scores of
two weakly supervised systems may not be di-
rectly comparable, especially when comparing O
tags with non-O tags (i.e., entity tags). We con-
sider an exclude-O confidence-based co-decoding
scheme which we find to be more effective empir-
ically. It is similar to the pure confidence-based
scheme, with the only difference that it always
prefers a non-O tag of one system to an O tag
of the other system, regardless of their confidence
scores.

In our experiments we find that the annotation
projection system tends to have a high precision
and low recall, i.e., it detects fewer entities, but
for the detected entities the accuracy is high. The
representation projection system tends to have a
more balanced precision and recall. Based on this
observation, we develop the following rank-based
co-decoding scheme that gives higher priority to
the high-precision annotation projection system:

1. The combined output includes all the entities
detected by the annotation projection system.

2. It then adds all the entities detected by the
representation projection system that do not
conflict4 with entities detected by the annota-
tion projection system (to improve recall).

Note that an entity X detected by the rep-
resentation projection system does not conflict
with the annotation projection system if the an-
notation projection system produces O tags for
the entire span of X. For example, suppose the
output tag sequence of annotation projection is
(B-PER,O,O,O,O), of representation projection is
(B-ORG,I-ORG,O,B-LOC,I-LOC), then the com-
bined output under the rank-based scheme will be
(B-PER,O,O,B-LOC,I-LOC).

4Two entities detected by two different systems conflict
with each other if either 1) the two entities have different
spans but overlap with each other; or 2) the two entities have
the same span but with different NER tags.

1475

Japanese P R F1

Annotation-Projection (AP) 69.9 43.2 53.4
Representation-Projection (NN1) 71.5 36.6 48.4
Representation-Projection (NN2) 59.9 42.4 49.7
Co-Decoding (Conf): AP+NN1 65.7 49.5 56.5
Co-Decoding (Rank): AP+NN1 68.3 51.6 58.8
Co-Decoding (Conf): AP+NN2 59.5 53.3 56.2
Co-Decoding (Rank): AP+NN2 61.6 54.5 57.8

Supervised (272K) 84.5 80.9 82.7
Korean P R F1

Annotation-Projection (AP) 69.5 26.8 38.7
Representation-Projection (NN1) 66.1 23.2 34.4
Representation-Projection (NN2) 68.5 43.4 53.1
Co-Decoding (Conf): AP+NN1 68.2 41.0 51.2
Co-Decoding (Rank): AP+NN1 71.3 42.8 53.5
Co-Decoding (Conf): AP+NN2 68.9 53.4 60.2
Co-Decoding (Rank): AP+NN2 70.0 53.3 60.5

Supervised (97K) 88.2 74.0 80.4
German P R F1

Annotation-Projection (AP) 76.5 60.5 67.5
Representation-Projection (NN1) 69.0 48.8 57.2
Representation-Projection (NN2) 63.7 66.1 64.9
Co-Decoding (Conf): AP+NN1 68.5 61.7 64.9
Co-Decoding (Rank): AP+NN1 72.7 65.0 68.6
Co-Decoding (Conf): AP+NN2 64.7 71.3 67.9
Co-Decoding (Rank): AP+NN2 67.1 72.6 69.7

Supervised (125K) 77.8 68.1 72.6
Portuguese P R F1

Annotation-Projection (AP) 84.0 50.1 62.7
Representation-Projection (NN1) 70.5 47.6 56.8
Representation-Projection (NN2) 66.0 63.4 64.7
Co-Decoding (Conf): AP+NN1 72.0 55.8 62.9
Co-Decoding (Rank): AP+NN1 77.5 59.7 67.4
Co-Decoding (Conf): AP+NN2 68.1 67.1 67.6
Co-Decoding (Rank): AP+NN2 70.9 68.3 69.6

Supervised (173K) 79.8 71.9 75.6

Table 3: In-house NER data: Precision, Recall and
F1 score on exact phrasal matches. The highest F1

score among all the weakly supervised approaches
is shown in bold. Same for Tables 4 and 5.

6 Experiments

In this section, we evaluate the performance of the
proposed approaches for cross-lingual NER, in-
cluding the 2 projection-based approaches and the
2 co-decoding schemes for combining them:
(1) The annotation projection (AP) approach with
heuristic data selection;
(2) The representation projection approach (with
two neural network architectures NN1 and NN2);
(3) The exclude-O confidence-based co-decoding
scheme;
(4) The rank-based co-decoding scheme.

6.1 NER Data Sets

We have used various NER data sets for evalu-
ation. The first group includes in-house human-
annotated newswire NER data for four languages:

Japanese, Korean, German and Portuguese, anno-
tated with over 50 entity types. The main motiva-
tion of deploying such a fine-grained entity type
set is to build cognitive question answering appli-
cations on top of the NER systems. The entity type
set has been engineered to cover many of the fre-
quent entity types that are targeted by naturally-
phrased questions. The sizes of the test data sets
are ranging from 30K to 45K tokens.

The second group includes open human-
annotated newswire NER data for Spanish, Dutch
and German from the CoNLL NER data sets
(Tjong Kim Sang, 2002; Tjong Kim Sang and
De Meulder, 2003). The CoNLL data have 4 en-
tity types: PER (persons), ORG (organizations),
LOC (locations) and MISC (miscellaneous enti-
ties). The sizes of the development/test data sets
are ranging from 35K to 70K tokens. The devel-
opment data are used for tuning the parameters of
learning methods.

6.2 Evaluation for In-House NER Data

In Table 3, we show the results of different ap-
proaches for the in-house NER data. For annota-
tion projection, the source (English) NER system
is a linear-chain CRF model trained with 328K to-
kens of human-annotated English newswire data.
The target-language NER systems are 2nd-order
MEMM models trained with 1.3M, 1.5M, 2.6M
and 1.5M tokens of projection-labeled data for
Japanese, Korean, German and Portuguese, re-
spectively. The projection-labeled data are se-
lected using the heuristic data selection scheme
(see Table 2). For representation projection, the
source (English) NER systems are neural network
models with architectures NN1 and NN2 (see Fig-
ure 1), both trained with 328K tokens of human-
annotated English newswire data.

The results show that the annotation projection
(AP) approach has a relatively high precision and
low recall. For representation projection, neural
network model NN2 (with a smoothing layer) is
better than NN1, and NN2 tends to have a more
balanced precision and recall. The rank-based co-
decoding scheme is more effective for combining
the two projection-based approaches. In particu-
lar, the rank-based scheme that combines AP and
NN2 achieves the highest F1 score among all the
weakly supervised approaches for Korean, Ger-
man and Portuguese (second highest F1 score for
Japanese), and it improves over the best of the two

1476

Spanish P R F1

Annotation-Projection (AP) 65.5 59.1 62.1
Representation-Projection (NN1) 63.9 52.2 57.4
Representation-Projection (NN2) 55.3 51.8 53.5
Co-Decoding (Conf): AP+NN1 64.3 66.8 65.5
Co-Decoding (Rank): AP+NN1 63.7 65.3 64.5
Co-Decoding (Conf): AP+NN2 58.0 63.9 60.8
Co-Decoding (Rank): AP+NN2 60.8 64.5 62.6

Supervised (264K) 81.3 79.8 80.6
Dutch P R F1

Annotation-Projection (AP) 73.3 63.0 67.8
Representation-Projection (NN1) 82.6 47.4 60.3
Representation-Projection (NN2) 66.3 43.5 52.5
Co-Decoding (Conf): AP+NN1 72.3 66.5 69.3
Co-Decoding (Rank): AP+NN1 72.8 65.3 68.8
Co-Decoding (Conf): AP+NN2 65.3 64.7 65.0
Co-Decoding (Rank): AP+NN2 69.7 66.0 67.8

Supervised (199K) 82.9 81.7 82.3
German P R F1

Annotation-Projection (AP) 71.8 54.7 62.1
Representation-Projection (NN1) 79.4 41.4 54.4
Representation-Projection (NN2) 64.6 42.7 51.4
Co-Decoding (Conf): AP+NN1 70.1 59.5 64.4
Co-Decoding (Rank): AP+NN1 71.0 59.4 64.7
Co-Decoding (Conf): AP+NN2 64.2 59.9 62.0
Co-Decoding (Rank): AP+NN2 66.8 60.6 63.6

Supervised (206K) 81.2 64.3 71.8

Table 4: CoNLL NER development data.

projection-based systems by 2.2 to 7.4 F1 score.
We also provide the performance of supervised

learning where the NER system is trained with
human-annotated data in the target language (with
size shown in the bracket). While the performance
of the weakly supervised systems is not as good as
supervised learning, it is important to build weakly
supervised systems with decent performance when
supervised annotation is unavailable. Even if su-
pervised annotation is feasible, the weakly super-
vised systems can be used to pre-annotate the data,
and we observed that pre-annotation can improve
the annotation speed by 40%-60%, which greatly
reduces the annotation cost.

6.3 Evaluation for CoNLL NER Data

For the CoNLL data, the source (English) NER
system for annotation projection is a linear-
chain CRF model trained with the CoNLL En-
glish training data (203K tokens), and the target-
language NER systems are 2nd-order MEMM
models trained with 1.3M, 7.0M and 1.2M to-
kens of projection-labeled data for Spanish, Dutch
and German, respectively. The projection-labeled
data are selected using the heuristic data selection
scheme, where the threshold parameters q and n
are determined via coordinate search based on the

CoNLL development sets. Compared with no data
selection, the data selection scheme improves the
annotation projection approach by 2.7/2.0/2.7 F1

score on the Spanish/Dutch/German development
data. In addition to standard NER features such
as n-gram word features, word type features, pre-
fix and suffix features, the target-language NER
systems also use the multilingual Wikipedia en-
tity type mappings developed in (Ni and Florian,
2016) to generate dictionary features and as de-
coding constraints, which improve the annotation
projection approach by 3.0/5.4/7.9 F1 score on the
Spanish/Dutch/German development data.

For representation projection, the source (En-
glish) NER systems are neural network models
(NN1 and NN2) trained with the CoNLL En-
glish training data. Compared with the stan-
dard CBOW word2vec model, the concatenated
variant improves the representation projection ap-
proach (NN1) by 8.9/11.4/6.8 F1 score on the
Spanish/Dutch/German development data, as well
as by 2.0 F1 score on English. In addition,
the frequency-weighted cross-lingual word em-
bedding projection (7) improves the representation
projection approach (NN1) by 2.2/6.3/3.7 F1 score
on the Spanish/Dutch/German development data,
compared with using uniform weights on the same
data. We do observe, however, that using uni-
form weights when keeping only the most frequent
translation of a word instead of all word pairs
above a threshold in the training dictionary, leads
to performance similar to that of the frequency-
weighted projection.

In Table 4 we show the results for the CoNLL
development data. For representation projection,
NN1 is better than NN2. Both the annotation pro-
jection approach and NN1 tend to have a high pre-
cision. In this case, the exclude-O confidence-
based co-decoding scheme that combines AP and
NN1 achieves the highest F1 score for Spanish and
Dutch (second highest F1 score for German), and
improves over the best of the two projection-based
systems by 1.5 to 3.4 F1 score.

In Table 5 we compare our top systems (confi-
dence or rank-based co-decoding of AP and NN1,
determined by the development data) with the best
results of the cross-lingual NER approaches pro-
posed in Täckström et al. (2012), Nothman et al.
(2013) and Tsai et al. (2016) on the CoNLL test
data. Our systems outperform the previous state-
of-the-art approaches, closing more of the gap to

1477

Spanish P R F1

Täckström et al. (2012) x x 59.3
Nothman et al. (2013) x x 61.0

Tsai et al. (2016) x x 60.6
Co-Decoding (Conf): AP+NN1 64.9 65.2 65.1
Co-Decoding (Rank): AP+NN1 64.6 63.9 64.3

Supervised (264K) 82.5 82.3 82.4
Dutch P R F1

Täckström et al. (2012) x x 58.4
Nothman et al. (2013) x x 64.0

Tsai et al. (2016) x x 61.6
Co-Decoding (Conf): AP+NN1 69.1 62.0 65.4
Co-Decoding (Rank): AP+NN1 69.3 61.0 64.8

Supervised (199K) 85.1 83.9 84.5
German P R F1

Täckström et al. (2012) x x 40.4
Nothman et al. (2013) x x 55.8

Tsai et al. (2016) x x 48.1
Co-Decoding (Conf): AP+NN1 68.5 51.0 58.5
Co-Decoding (Rank): AP+NN1 68.3 50.4 58.0

Supervised (206K) 79.6 65.3 71.8

Table 5: CoNLL NER test data.

supervised learning.

7 Related Work

The traditional annotation projection approaches
(Yarowsky et al., 2001; Zitouni and Florian, 2008;
Ehrmann et al., 2011) project NER tags across
language pairs using parallel corpora or transla-
tions. Wang and Manning (2014) proposed a vari-
ant of annotation projection which projects expec-
tations of tags and uses them as constraints to train
a model based on generalized expectation crite-
ria. Annotation projection has also been applied
to several other cross-lingual NLP tasks, includ-
ing word sense disambiguation (Diab and Resnik,
2002), part-of-speech (POS) tagging (Yarowsky
et al., 2001) and dependency parsing (Rasooli and
Collins, 2015).

Wikipedia has been exploited to generate
weakly labeled multilingual NER training data.
The basic idea is to first categorize Wikipedia
pages into entity types, either based on manually
constructed rules that utilize the category informa-
tion of Wikipedia (Richman and Schone, 2008) or
Freebase attributes (Al-Rfou et al., 2015), or via a
classifier trained with manually labeled Wikipedia
pages (Nothman et al., 2013). Heuristic rules are
then developed in these works to automatically la-
bel the Wikipedia text with NER tags. Ni and
Florian (2016) built high-accuracy, high-coverage
multilingual Wikipedia entity type mappings us-
ing weakly labeled data and applied those map-
pings as decoding constrains or dictionary features

to improve multilingual NER systems.
For direct NER model transfer, Täckström et al.

(2012) built cross-lingual word clusters using
monolingual data in source/target languages and
aligned parallel data between source and target
languages. The cross-lingual word clusters were
then used to generate universal features. Tsai
et al. (2016) applied the cross-lingual wikifier
developed in (Tsai and Roth, 2016) and mul-
tilingual Wikipedia dump to generate language-
independent labels (FreeBase types and Wikipedia
categories) for n-grams in a document, and those
labels were used as universal features.

Different ways of obtaining cross-lingual em-
beddings have been proposed in the literature. One
approach builds monolingual representations sep-
arately and then brings them to the same space
typically using a seed dictionary (Mikolov et al.,
2013b; Faruqui and Dyer, 2014). Another line of
work builds inter-lingual representations simulta-
neously, often by generating mixed language cor-
pora using the supervision at hand (aligned sen-
tences, documents, etc.) (Vulić and Moens, 2015;
Gouws et al., 2015). We opt for the first solution in
this paper because of its flexibility: we can map all
languages to English rather than requiring separate
embeddings for each language pair. Additionally
we are able to easily add a new language without
any constraints on the type of data needed. Note
that although we do not specifically create inter-
lingual representations, by training mappings to
the common language, English, we are able to map
words in different languages to a common space.
Similar approaches for cross-lingual model trans-
fer have been applied to other NLP tasks such as
document classification (Klementiev et al., 2012),
dependency parsing (Guo et al., 2015) and POS
tagging (Gouws and Søgaard, 2015).

8 Conclusion

In this paper, we developed two weakly super-
vised approaches for cross-lingual NER based on
effective annotation and representation projection.
We also designed two co-decoding schemes that
combine the two projection-based systems in an
intelligent way. Experimental results show that
the combined systems outperform three state-of-
the-art cross-lingual NER approaches, providing
a strong baseline for building cross-lingual NER
systems with no human annotation in target lan-
guages.

1478

References

Rami Al-Rfou, Vivek Kulkarni, Bryan Per-
ozzi, and Steven Skiena. 2015. Polyglot-ner:
Massive multilingual named entity recog-
nition. In Proceedings of the 2015 SIAM
International Conference on Data Mining.
SIAM, Vancouver, British Columbia, Canada.
https://doi.org/10.1137/1.9781611974010.66.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. 2011. Natural language pro-
cessing (almost) from scratch. Journal of
Machine Learning Research 12:2493–2537.
http://dl.acm.org/citation.cfm?id=1953048.2078186.

Mona Diab and Philip Resnik. 2002. An un-
supervised method for word sense tagging us-
ing parallel corpora. In Proceedings of the
40th Annual Meeting of the Association for
Computational Linguistics. Association for Com-
putational Linguistics, ACL’02, pages 255–262.
https://doi.org/10.3115/1073083.1073126.

Maud Ehrmann, Marco Turchi, and Ralf Stein-
berger. 2011. Building a multilingual named
entity-annotated corpus using annotation projec-
tion. In Proceedings of Recent Advances
in Natural Language Processing. Association
for Computational Linguistics, pages 118–124.
http://aclweb.org/anthology/R11-1017.

Manaal Faruqui and Chris Dyer. 2014. Improving vec-
tor space word representations using multilingual
correlation. In Proceedings of the 14th Conference
of the European Chapter of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Gothenburg, Sweden, pages 462–
471. http://www.aclweb.org/anthology/E14-1049.

Stephan Gouws, Yoshua Bengio, and Greg Cor-
rado. 2015. Bilbowa: Fast bilingual distributed
representations without word alignments. In
Proceedings of the 32nd International Confer-
ence on Machine Learning. JMLR Workshop
and Conference Proceedings, pages 748–756.
http://jmlr.org/proceedings/papers/v37/gouws15.pdf.

Stephan Gouws and Anders Søgaard. 2015. Sim-
ple task-specific bilingual word embeddings. In
Proceedings of the 2015 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, Denver, Colorado, pages 1386–1390.
http://www.aclweb.org/anthology/N15-1157.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual de-
pendency parsing based on distributed representa-
tions. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics

and the 7th International Joint Conference on Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Beijing, China, pages 1234–
1244. http://www.aclweb.org/anthology/P15-1119.

Abraham Ittycheriah and Salim Roukos. 2005. A max-
imum entropy word aligner for arabic-english ma-
chine translation. In Proceedings of the Confer-
ence on Human Language Technology and Empiri-
cal Methods in Natural Language Processing. pages
89–96. http://aclweb.org/anthology/H05-1012.

Alexandre Klementiev, Ivan Titov, and Binod Bhat-
tarai. 2012. Inducing crosslingual distributed
representations of words. In Proceedings of
COLING 2012. The COLING 2012 Organizing
Committee, Mumbai, India, pages 1459–1474.
http://www.aclweb.org/anthology/C12-1089.

John D. Lafferty, Andrew McCallum, and Fer-
nando C. N. Pereira. 2001. Conditional random
fields: Probabilistic models for segmenting and
labeling sequence data. In Proceedings of the
Eighteenth International Conference on Machine
Learning. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, ICML’01, pages 282–289.
http://dl.acm.org/citation.cfm?id=645530.655813.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, pages
260–270. https://doi.org/10.18653/v1/N16-1030.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies. Association for
Computational Linguistics, Denver, Colorado, pages
1299–1304. http://www.aclweb.org/anthology/N15-
1142.

Andrew McCallum, Dayne Freitag, and Fernando
C. N. Pereira. 2000. Maximum entropy markov
models for information extraction and segmen-
tation. In Proceedings of the Seventeenth In-
ternational Conference on Machine Learning.
Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, ICML’00, pages 591–598.
http://dl.acm.org/citation.cfm?id=645529.658277.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word repre-
sentations in vector space. CoRR abs/1301.3781.
http://arxiv.org/abs/1301.3781.

Tomas Mikolov, Quoc V. Le, and Ilya Sutskever.
2013b. Exploiting similarities among languages
for machine translation. CoRR abs/1309.4168.
http://arxiv.org/abs/1309.4168.

1479

David Nadeau and Satoshi Sekine. 2007. A sur-
vey of named entity recognition and classifica-
tion. Linguisticae Investigationes 30(1):3–26.
Publisher: John Benjamins Publishing Company.
https://doi.org/10.1075/li.30.1.03nad.

Jian Ni and Radu Florian. 2016. Improving multi-
lingual named entity recognition with wikipedia
entity type mapping. In Proceedings of the
2016 Conference on Empirical Methods in
Natural Language Processing. Association for
Computational Linguistics, pages 1275–1284.
https://doi.org/10.18653/v1/D16-1135.

Eric W. Noreen. 1989. Computer-Intensive Methods
for Testing Hypotheses: An Introduction. John Wi-
ley & Sons, Inc., New York, NY, USA.

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R. Curran. 2013. Learning mul-
tilingual named entity recognition from wikipedia.
Journal of Artificial Intelligence 194:151–175.
https://doi.org/10.1016/j.artint.2012.03.006.

Sadegh Mohammad Rasooli and Michael Collins.
2015. Density-driven cross-lingual transfer
of dependency parsers. In Proceedings of
the 2015 Conference on Empirical Methods
in Natural Language Processing. Association
for Computational Linguistics, pages 328–338.
https://doi.org/10.18653/v1/D15-1039.

E. Alexander Richman and Patrick Schone. 2008. Min-
ing wiki resources for multilingual named entity
recognition. In Proceedings of ACL-08: HLT . As-
sociation for Computational Linguistics, pages 1–9.
http://aclweb.org/anthology/P08-1001.

Oscar Täckström, Ryan McDonald, and Jakob Uszko-
reit. 2012. Cross-lingual word clusters for di-
rect transfer of linguistic structure. In Proceed-
ings of the 2012 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies. Associa-
tion for Computational Linguistics, pages 477–487.
http://aclweb.org/anthology/N12-1052.

Erik F. Tjong Kim Sang. 2002. Introduction to
the conll-2002 shared task: Language-independent
named entity recognition. In Proceedings of the
Sixth Conference on Natural Language Learning -
Volume 20. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, CONLL’02, pages 1–4.
https://doi.org/10.3115/1118853.1118877.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003 - Vol-
ume 4. Association for Computational Linguistics,
Stroudsburg, PA, USA, CONLL’03, pages 142–147.
https://doi.org/10.3115/1119176.1119195.

Chen-Tse Tsai, Stephen Mayhew, and Dan Roth. 2016.
Cross-lingual named entity recognition via wikifica-
tion. In Proceedings of The 20th SIGNLL Confer-
ence on Computational Natural Language Learning.
Association for Computational Linguistics, pages
219–228. https://doi.org/10.18653/v1/K16-1022.

Chen-Tse Tsai and Dan Roth. 2016. Cross-lingual wik-
ification using multilingual embeddings. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 589–
598. https://doi.org/10.18653/v1/N16-1072.

Ivan Vulić and Marie-Francine Moens. 2015. Bilin-
gual word embeddings from non-parallel document-
aligned data applied to bilingual lexicon induc-
tion. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Beijing, China, pages 719–725.
http://www.aclweb.org/anthology/P15-2118.

Mengqiu Wang and D. Christopher Manning. 2014.
Cross-lingual projected expectation regularization
for weakly supervised learning. Transactions of the
Association of Computational Linguistics 2:55–66.
http://aclweb.org/anthology/Q14-1005.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analy-
sis tools via robust projection across aligned cor-
pora. In Proceedings of the First International
Conference on Human Language Technology Re-
search. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, HLT’01, pages 1–8.
https://doi.org/10.3115/1072133.1072187.

Imed Zitouni and Radu Florian. 2008. Mention de-
tection crossing the language barrier. In Pro-
ceedings of the 2008 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 600–609.
http://aclweb.org/anthology/D08-1063.

1480

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1481–1491
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1136

Context Sensitive Lemmatization Using Two Successive Bidirectional
Gated Recurrent Networks

Abhisek Chakrabarty Onkar Arun Pandit
Computer Vision and Pattern Recognition Unit

Indian Statistical Institute
203 B.T. Road, Kolkata-700108, India

abhisek0842@gmail.com, oapandit@gmail.com, utpal@isical.ac.in

Utpal Garain

Abstract

We introduce a composite deep neural
network architecture for supervised and
language independent context sensitive
lemmatization. The proposed method con-
siders the task as to identify the correct
edit tree representing the transformation
between a word-lemma pair. To find
the lemma of a surface word, we exploit
two successive bidirectional gated recur-
rent structures - the first one is used to ex-
tract the character level dependencies and
the next one captures the contextual infor-
mation of the given word. The key ad-
vantages of our model compared to the
state-of-the-art lemmatizers such as Lem-
ming and Morfette are - (i) it is indepen-
dent of human decided features (ii) except
the gold lemma, no other expensive mor-
phological attribute is required for joint
learning. We evaluate the lemmatizer on
nine languages - Bengali, Catalan, Dutch,
Hindi, Hungarian, Italian, Latin, Roma-
nian and Spanish. It is found that ex-
cept Bengali, the proposed method outper-
forms Lemming and Morfette on the other
languages. To train the model on Ben-
gali, we develop a gold lemma annotated
dataset1 (having 1, 702 sentences with a
total of 20, 257 word tokens), which is an
additional contribution of this work.

1 Introduction

Lemmatization is the process to determine the
root/dictionary form of a surface word. Morpho-
logically rich languages suffer due to the existence

1The dataset and the code of model architecture are re-
leased with the paper. They are also available in http:
//www.isical.ac.in/˜utpal/resources.php

of various inflectional and derivational variations
of a root depending on several linguistic proper-
ties such as honorificity, parts of speech (POS),
person, tense etc. Lemmas map the related word
forms to lexical resources thus identifying them
as the members of the same group and providing
their semantic and syntactic information. Stem-
ming is a way similar to lemmatization producing
the common portion of variants but it has several
limitations - (i) there is no guarantee of a stem to
be a legitimate word form (ii) words are consid-
ered in isolation. Hence, for context sensitive lan-
guages i.e. where same inflected word form may
come from different sources and can only be dis-
ambiguated by considering its neighbouring infor-
mation, there lemmatization defines the foremost
task to handle diverse text processing problems
(e.g. sense disambiguation, parsing, translation).

The key contributions of this work are as fol-
lows. We address context sensitive lemmatiza-
tion introducing a two-stage bidirectional gated
recurrent neural network (BGRNN) architecture.
Our model is a supervised one that needs lemma
tagged continuous text to learn. Its two most
important advantages compared to the state-of-
the-art supervised models (Chrupala et al., 2008;
Toutanova and Cherry, 2009; Gesmundo and
Samardzic, 2012; Müller et al., 2015) are - (i) we
do not need to define hand-crafted features such
as the word form, presence of special characters,
character alignments, surrounding words etc. (ii)
parts of speech and other morphological attributes
of the surface words are not required for joint
learning. Additionally, unknown word forms are
also taken care of as the transformation between
word-lemma pair is learnt, not the lemma itself.
We exploit two steps learning in our method. At
first, characters in the words are passed sequen-
tially through a BGRNN to get a syntactic em-
bedding of each word and then the outputs are

1481

https://doi.org/10.18653/v1/P17-1136

combined with the corresponding semantic em-
beddings. Finally, mapping between the combined
embeddings to word-lemma transformations are
learnt using another BGRNN.

For the present work, we assess our model on
nine languages having diverse morphological vari-
ations. Out of them, two (Bengali and Hindi) be-
long to the Indic languages family and the rests
(Catalan, Dutch, Hungarian, Italian, Latin, Roma-
nian and Spanish) are taken from the European
languages. To evaluate the proposed model on
Bengali, a lemma annotated continuous text has
been developed. As so far there is no such stan-
dard large dataset for supervised lemmatization in
Bengali, the prepared one would surely contribute
to the respective NLP research community. For the
remaining languages, standard datasets are used
for experimentation. Experimental results reveal
that our method outperforms Lemming (Müller
et al., 2015) and Morfette (Chrupala et al., 2008)
on all the languages except Bengali.

1.1 Related Works

Efforts on developing lemmatizers can be divided
into two principle categories (i) rule/heuristics
based approaches (Koskenniemi, 1984; Plisson
et al., 2004) which are usually not portable to
different languages and (ii) learning based meth-
ods (Chrupala et al., 2008; Toutanova and Cherry,
2009; Gesmundo and Samardzic, 2012; Müller
et al., 2015; Nicolai and Kondrak, 2016) requir-
ing prior training dataset to learn the morphologi-
cal patterns. Again, the later methods can be fur-
ther classified depending on whether context of the
current word is considered or not. Lemmatiza-
tion without context (Cotterell et al., 2016; Nico-
lai and Kondrak, 2016) is closer to stemming and
not the focus of the present work. It is notewor-
thy here that the supervised lemmatization meth-
ods do not try to classify the lemma of a given
word form as it is infeasible due to having a large
number of lemmas in a language. Rather, learn-
ing the transformation between word-lemma pair
is more generalized and it can handle the unknown
word forms too. Several representations of word-
lemma transformation have been introduced so far
such as shortest edit script (SES), label set, edit
tree by Chrupala et al. (2008), Gesmundo and
Samardzic (2012) and Müller et al. (2015) respec-
tively. Following Müller et al. (2015), we con-
sider lemmatization as the edit tree classification

problem. Toutanova and Cherry (2009); Müller
et al. (2015) also showed that joint learning of
lemmas with other morphological attributes is mu-
tually beneficial but obtaining the gold annotated
datasets is very expensive. In contrast, our model
needs only lemma annotated continuous text (not
POS and other tags) to learn the word morphology.

Since our experiments include the Indic lan-
guages also, it would not be an overstatement to
say that there have been little efforts on lemmati-
zation so far (Faridee et al., 2009; Loponen and
Järvelin, 2010; Paul et al., 2013; Bhattacharyya
et al., 2014). The works by Faridee et al. (2009);
Paul et al. (2013) are language specific rule based
for Bengali and Hindi respectively. (Loponen and
Järvelin, 2010)’s primary objective was to improve
the retrieval performance. Bhattacharyya et al.
(2014) proposed a heuristics based lemmatizer us-
ing WordNet but they did not consider context of
the target word which is an important basis to lem-
matize Indic languages. Chakrabarty and Garain
(2016) developed an unsupervised language in-
dependent lemmatizer and evaluated it on Ben-
gali. They consider the contextual information but
the major disadvantage of their method is depen-
dency on dictionary as well as POS information.
Very recently, a supervised neural lemmatization
model has been introduced by Chakrabarty et al.
(2016). They treat the problem as lemma trans-
duction rather than classification. The particular
root in the dictionary is chosen as the lemma with
which the transduced vector possesses maximum
cosine similarity. Hence, their approach fails when
the correct lemma of a word is not present in the
dictionary. Besides, the lemmatization accuracy
obtained by the respective method is not very sig-
nificant. Apart from the mentioned works, there is
no such commendable effort so far.

Rest of this paper is organized as follows. In
section 2, we describe the proposed lemmatization
method. Experimental setup and the results are
presented in section 3. Finally, in section 4 we
conclude the paper.

2 The Proposed Method

As stated earlier in section 1.1, we represent the
mapping between a word to its lemma using edit
tree (Chrupała, 2008; Müller et al., 2015). An
edit tree embeds all the necessary edit operations
within it i.e. insertions, deletions and substitutions
of strings required throughout the transformation

1482

Figure 1: Edit trees for the word-lemma pairs
‘sang-sing’ and ‘achieving-achieve’.

process. Figure 1 depicts two edit trees that map
the inflected English words ‘sang’ and ‘achieving’
to their respective lemmas ‘sing’ and ‘achieve’.
For generalization, edit trees encode only the sub-
stitutions and the length of prefixes and suffixes
of the longest common substrings. Initially, all
unique edit trees are extracted from the associated
surface word-lemma pairs present in the training
set. The extracted trees refer to the class labels
in our model. So, for a test word, the goal is to
classify the correct edit tree which, applied on the
word, returns the lemma.

Next, we will describe the architecture of the
proposed neural lemmatization model. It is evi-
dent that for morphologically rich languages, both
syntactic and semantic knowledge help in lemma-
tizing a surface word. Now a days, it is a com-
mon practice to embed the functional properties
of words into vector representations. Despite the
word vectors prove very effectual in semantic pro-
cessing tasks, they are modelled using the distribu-
tional similarity obtained from a raw corpus. Mor-
phological regularities, local and non-local depen-
dencies in character sequences that play deciding
roles to find the lemmas, are not taken into account
where each word has its own vector interpreta-
tion. We address this issue by incorporating two
different embeddings into our model. Semantic
embedding is achieved using word2vec (Mikolov
et al., 2013a,b), which has been empirically found
highly successful. To devise the syntactic embed-
ding of a word, we follow the work of Ling et al.
(2015) that uses compositional character to word
model using bidirectional long-short term memory
(BLSTM) network. In our experiments, different

Figure 2: Syntactic vector composition for a word.

gated recurrent cells such as LSTM (Graves, 2013)
and GRU (Cho et al., 2014), are explored. The
next subsection describes the module to construct
the syntactic vectors by feeding the character se-
quences into BGRNN architecture.

2.1 Forming Syntactic Embeddings
Our goal is to build syntactic embeddings of
words that capture the similarities in morpholog-
ical level. Given an input word w, the target is
to obtain a d dimensional vector representing the
syntactic structure of w. The procedure is illus-
trated in Figure 2. At first, an alphabet of char-
acters is defined as C. We represent w as a se-
quence of characters c1, . . . , cm where m is the
word length and each character ci is defined as a
one hot encoded vector 1ci , having one at the in-
dex of ci in the alphabet C. An embedding layer
is defined as Ec ∈ Rdc×|C|, that projects each one
hot encoded character vector to a dc dimensional
embedded vector. For a character ci, its projected
vector eci is obtained from the embedding layer
Ec, using this relation eci = Ec · 1ci where ‘·’ is
the matrix multiplication operation.

Given a sequence of vectors x1, . . . , xm as in-
put, a LSTM cell computes the state sequence
h1, . . . , hm using the following equations:

ft = σ(Wf xt + Uf ht−1 + Vf ct−1 + bf)

it = σ(Wixt + Uiht−1 + Vict−1 + bi)

ct = ft ⊙ ct−1

+ it ⊙ tanh(Wcxt + Ucht−1 + bc)

ot = σ(Woxt + Uoht−1 + Voct + bo)

ht = ot ⊙ tanh(ct),

1483

Whereas, the updation rules for GRU are as fol-
lows

zt = σ(Wzxt + Uzht−1 + bz)

rt = σ(Wrxt + Urht−1 + br)

ht = (1 − zt) ⊙ ht−1

+ zt ⊙ tanh(Whxt + Uh(rt ⊙ ht−1) + bh),

σ denotes the sigmoid function and ⊙ stands for
the element-wise (Hadamard) product. Unlike the
simple recurrent unit, LSTM uses an extra mem-
ory cell ct that is controlled by three gates - in-
put (it), forget (ft) and output (ot). it controls the
amount of new memory content added to the mem-
ory cell, ft regulates the degree to which the exist-
ing memory is forgotten and ot finally adjusts the
memory content exposure. W, U, V (weight ma-
trices), b (bias) are the parameters.

Without having a memory cell like LSTM, a
GRU uses two gates namely update (zt) and re-
set (rt). The gate, zt decides the amount of up-
date needed for activation and rt is used to ignore
the previous hidden states (when close to 0, it for-
gets the earlier computation). So, for a sequence
of projected characters ec1 , . . . , ecm , the forward
and the backward networks produce the state se-
quences hf

1 , . . . , hf
m and hb

m, . . . , hb
1 respectively.

Finally, we obtain the syntactic embedding of w,
denoted as esyn

w , by concatenating the final states
of these two sequences.

esyn
w = [hb

1, hf
m]

2.2 Model
We present the sketch of the final integrated model
in Figure 3. For a word w, let esem

w denotes its se-
mantic embedding obtained using word2vec. Both
the vectors, esyn

w and esem
w are concatenated to-

gether to shape the composite representation ecom
w

which carries the morphological and distributional
information within it. Firstly, for all the words
present in the training set, their composite vec-
tors are generated. Next, they are fed sentence-
wise into the next level of BGRNN to train the
model for the edit tree classification task. This
second level bidirectional network accounts the
local context in both forward and backward di-
rections, which is essential for lemmatization in
context sensitive languages. Let, ecom

w1
, . . . , ecom

wn

be the input sequence of composite vectors to the
BGRNN model, representing a sentence having n
words w1, . . . , wn. For the ith vector ecom

wi
, hf

i and

Figure 3: Second level BGRNN model for edit
tree classification.

hb
i denote the forward and backward states respec-

tively carrying the informations of w1, . . . , wi and
wi, . . . , wn.

2.2.1 Incorporating Applicable Edit Trees
Information

One aspect that we did not look into so far, is that
for a word all unique edit trees extracted from the
training set are not applicable as this would lead to
incompatible substitutions. For example, the edit
tree for the word-lemma pair ‘sang-sing’ depicted
in Figure 1, cannot be applied on the word ‘achiev-
ing’. This information is prior before training the
model i.e. for any arbitrary word, we can sort out
the subset of unique edit trees from the training
samples in advance, which are applicable on it.
In general, if all the unique edit trees in the train-
ing data are set as the class labels, the model will
learn to distribute the probability mass over all the
classes which is a clear-cut bottleneck. In order
to alleviate this problem, we take a novel strategy
so that for individual words in the input sequence,
the model will learn, to which classes, the output
probability should be apportioned.

Let T = {t1, . . . , tk} be the set of distinct edit
trees found in the training set. For the word wi

in the input sequence w1, . . . , wn, we define its
applicable edit trees vector as Ai = (a1

i , . . . , a
k
i)

where ∀j ∈ {1, . . . , k}, aj
i = 1 if tj is applicable

for wi, otherwise 0. Hence, Ai holds the informa-
tion regarding the set of edit trees to concentrate

1484

upon, while processing the word wi. We combine
Ai together with hf

i and hb
i for the final classifica-

tion task as following,

li = softplus(Lf hf
i + Lbhb

i + LaAi + bl),

where ‘softplus’ denotes the activation function
f(x) = ln(1 + ex) and Lf , Lb, La and bl are the
parameters trained by the network. At the end, li is
passed through the softmax layer to get the output
labels for wi.

To pick the correct edit tree from the output of
the softmax layer, we exploit the prior informa-
tion Ai. Instead of choosing the class that gets
the maximum probability, we select the maximum
over the classes corresponding to the applicable
edit trees. The idea is expressed as follows. Let
Oi = (o1

i , . . . , o
k
i) be the output of the softmax

layer. Instead of opting for the maximum over
o1
i , . . . , o

k
i as the class label, the highest probable

class out of those corresponding to the applicable
edit trees, is picked up. That is, the particular edit
tree tj ∈ T is considered as the right candidate for
wi, where

j = argmax
j′∈{1,...,k} ∧ aj′

i =1
oj′
i

In this way, we cancel out the non-applicable
classes and focus only on the plausible candidates.

3 Experimentation

Out of the nine reference languages, initially we
choose four of them (Bengali, Hindi, Latin and
Spanish) for in-depth analysis. We conduct an ex-
haustive set of experiments - such as determin-
ing the direct lemmatization accuracy, accuracy
obtained without using applicable edit trees in
training, measuring the model’s performance on
the unseen words etc. on these four languages.
Later we consider five more languages (Catalan,
Dutch, Hungarian, Italian and Romanian) mostly
for testing the generalization ability of the pro-
posed method. For these additional languages, we
present only the lemmatization accuracy in sec-
tion 3.2.

Datasets: As Bengali is a low-resourced lan-
guage, a relatively large lemma annotated dataset
is prepared for the present work using Tagore’s
short stories collection2 and randomly selected
news articles from miscellaneous domains. One

2www.rabindra-rachanabali.nltr.org

Sentences # Word Tokens
Bengali 1,702 20,257
Hindi 36,143 819,264
Latin 15,002 165,634
Spanish 15,984 477,810

Table 1: Dataset statistics of the 4 languages.

linguist took around 2 months to complete the an-
notation which was checked by another person
and differences were sorted out. Out of the 91
short stories of Tagore, we calculate the value
of (# tokens / # distinct tokens) for each story.
Based on this value (lower is better), top 11 sto-
ries are selected. The news articles3 are crafted
from the following domains: animal, archaeology,
business, country, education, food, health, poli-
tics, psychology, science and travelogue. In Hindi,
we combine the COLING’12 shared task data for
dependency parsing and Hindi WSD health and
tourism corpora4 (Khapra et al., 2010) together5.
For Latin, the data is taken from the PROIEL tree-
bank (Haug and Jøhndal, 2008) and for Spanish,
we merge the training and development datasets
of CoNLL’09 (Hajič et al., 2009) shared task on
syntactic and semantic dependencies. The dataset
statistics are given in Table 1. We assess the
lemmatization performance by measuring the di-
rect accuracy which is the ratio of the number of
correctly lemmatized words to the total number of
input words. The experiments are performed using
4 fold cross validation technique i.e. the datasets
are equi-partitioned into 4 parts at sentence level
and then each part is tested exactly once using the
model trained on the remaining 3 parts. Finally,
we report the average accuracy over 4 fold.

Induction of Edit Tree Set: Initially, distinct
edit trees are induced from the word-lemma pairs
present in the training set. Next, the words in the
training data are annotated with their correspond-
ing edit trees. Training is accomplished on this
edit tree tagged text. Figure 4 plots the growth of
the edit tree set against the number of word-lemma
samples in the four languages. With the increase
of samples, the size of edit tree set gradually con-
verges revealing the fact that most of the frequent
transformation patterns (both regular and irregu-
lar) are covered by the induction process. From

3http://www.anandabazar.com/
4http://www.cfilt.iitb.ac.in/wsd/

annotated_corpus/
5We also release the Hindi dataset with this paper as it is

a combination of two different datasets.

1485

 500

 1000

 1500

 2000

 2500

 3000

 3500

 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

N
u
m

b
e
r

o
f
d
is

ti
n
c
t
e
d
it
 t
re

e
s

Number of word-lemma samples

Bengali
Hindi
Latin

Spanish

Figure 4: Increase of the edit tree set size with the
number of word-lemma samples.

Figure 4, morphological richness can be compared
across the languages. When convergence hap-
pens quickly i.e. at relatively less number of sam-
ples, it evidences that the language is less com-
plex. Among the four reference languages, Latin
stands out as the most intricate, followed by Ben-
gali, Spanish and Hindi.

Semantic Embeddings: We obtain the distri-
butional word vectors for Bengali and Hindi by
training the word2vec model on FIRE Bengali
and Hindi news corpora6. Following the work
by Mikolov et al. (2013a), continuous-bag-of-
words architecture with negative sampling is used
to get 200 dimensional word vectors. For Latin
and Spanish, we use the embeddings released
by Bamman and Smith (2012)7 and Cardellino
(2016)8 respectively.

Syntactic Representation: We acquire the
statistics of word length versus frequency from the
datasets and find out that irrespective of the lan-
guages, longer words (have more than 20-25 char-
acters) are few in numbers. Based on this finding,
each word is limited to a sequence of 25 charac-
ters. Smaller words are padded null characters at
the end and for the longer words, excess characters
are truncated out. So, each word is represented as
a 25 length array of one hot encoded vectors which
is given input to the embedding layer that works
as a look up table producing an equal length ar-
ray of embedded vectors. Initialization of the em-
bedding layer is done randomly and the embedded
vector dimension is set to 10. Eventually, the out-
put of the embedding layer is passed to the first

6http://fire.irsi.res.in/fire
7http://www.cs.cmu.edu/˜dbamman/latin.

html
8http://crscardellino.me/SBWCE/

level BGRNN for learning the syntactic represen-
tation.

Hyper Parameters: There are several hyper
parameters in our model such as the number of
neurons in the hidden layer (ht) of both first and
second level BGRNN, learning mode, number of
epochs to train the models, optimization algo-
rithm, dropout rate etc. We experiment with differ-
ent settings of these parameters and report where
optimum results are achieved. For both the bidi-
rectional networks, number of hidden layer neu-
rons is set to 64. Online learning is applied for
updation of the weights. Number of epochs varies
across languages to converge the training. It is
maximum for Bengali (around 80 epochs), fol-
lowed by Latin, Spanish and Hindi taking around
50, 35 and 15 respectively. Throughout the exper-
iments, we set the dropout rate as 0.2 to prevent
over-fitting. Different optimization algorithms
like AdaDelta (Zeiler, 2012), Adam (Kingma and
Ba, 2014), RMSProp (Dauphin et al., 2015) are
explored. Out of them, Adam yields the best re-
sult. We use the categorical cross-entropy as the
loss function in our model.

Baselines: We compare our method with Lem-
ming9 and Morfette10. Both the model jointly
learns lemma and other morphological tags in con-
text. Lemming uses a 2nd-order linear-chain CRF
to predict the lemmas whereas, the current ver-
sion of Morfette is based on structured perceptron
learning. As POS information is a compulsory re-
quirement of these two models, the Bengali data
is manually POS annotated. For the other lan-
guages, the tags were already available. Although
this comparison is partially biased as the proposed
method does not need POS information, but the
experimental results show the effectiveness of our
model. There is an option in Lemming and Mor-
fette to provide an exhaustive set of root words
which is used to exploit the dictionary features i.e.
to verify if a candidate lemma is a valid form or
not. To make the comparisons consistent, we do
not exploit any external dictionary in our experi-
ments.

3.1 Results

The lemmatization results are presented in Table 2.
We explore our proposed model with two types of
gated recurrent cells - LSTM and GRU. As there

9http://cistern.cis.lmu.de/lemming/
10https://github.com/gchrupala/morfette

1486

Bengali Hindi Latin Spanish
BLSTM-BLSTM 90.84/91.14 94.89/94.90 89.35/89.52 97.85/97.91
BGRU-BGRU 90.63/90.84 94.44/94.50 89.40/89.59 98.07/98.11
Lemming 91.69 91.64 88.50 93.12
Morfette 90.69 90.57 87.10 92.90

Table 2: Lemmatization accuracy (in %) without/with restricting output classes.

Bengali Hindi Latin Spanish
BLSTM-BLSTM 86.46/89.52 94.34/94.52 85.70/87.35 97.39/97.62
BGRU-BGRU 86.39/88.90 93.84/94.04 85.49/86.87 97.51/97.73

Table 3: Lemmatization accuracy (in %) without using applicable edit trees in training.

are two successive bidirectional networks - the
first one for building the syntactic embedding and
the next one for the edit tree classification, so basi-
cally we deal with two different models BLSTM-
BLSTM and BGRU-BGRU. Table 2 shows the
comparison results of these models with Lemming
and Morfette. In all cases, the average accuracy
over 4 fold cross validation on the datasets is re-
ported. For an entry ‘x/y’ in Table 2, x denotes
the accuracy without output classes restriction,
i.e. taking the maximum over all edit tree classes
present in the training set, whereas y refers to the
accuracy when output is restricted in only the ap-
plicable edit tree classes of the input word. Except
for Bengali, the proposed models outperform the
baselines for the other three languages. In Hindi,
BLSTM-BLSTM gives the best result (94.90%).
For Latin and Spanish, the highest accuracy is
achieved by BGRU-BGRU (89.59% and 98.11%
respectively). In the Bengali dataset, Lemming
produces the optimum result (91.69%) beating its
closest performer BLSTM-BLSTM by 0.55%. It
is to note that the training set size in Bengali is
smallest compared to the other languages (on av-
erage, 16, 712 tokens in each of the 4 folds). Over-
all, BLSTM-BLSTM and BGRU-BGRU perform
equally good. For Bengali and Hindi, the for-
mer model is better and for Latin and Spanish, the
later yields more accuracy. Throughout the ex-
periments, restricting the output over applicable
classes improves the performance significantly.
The maximum improvements we get are: 0.30%
in Bengali using BLSTM-BLSTM (from 90.84%
to 91.14%), 0.06% in Hindi using BGRU-BGRU
(from 94.44% to 94.50%), 0.19% in Latin us-
ing BGRU-BGRU (from 89.40% to 89.59%) and
0.06% in Spanish using BLSTM-BLSTM (from
97.85% to 97.91%). To compare between the two
baselines, Lemming consistently performs better

Bengali Hindi Latin Spanish
27.17 5.25 15.74 7.54

Table 4: Proportion of unknown word forms (in
%) present in the test sets.

than Morfette (the maximum difference between
their accuracies is 1.40% in Latin).

Effect of Training without Applicable Edit
Trees: We also explore the impact of applicable
edit trees in training. To see the effect, we train our
model without giving the applicable edit trees in-
formation as input. In the model design, the equa-
tion for the final classification task is changed as
follows,

li = softplus(Lf hf
i + Lbhb

i + bl),

The results are presented in Table 3. Except for
Spanish, BLSTM-BLSTM outperforms BGRU-
BGRU in all the other languages. As compared
with the results in Table 2, for every model,
training without applicable edit trees degrades the
lemmatization performance. In all cases, BGRU-
BGRU model gets more affected than BLSTM-
BLSTM. Language-wise, the drops in its accuracy
are: 1.94% in Bengali (from 90.84% to 88.90%),
0.46% in Hindi (from 94.50% to 94.04%), 2.72%
in Latin (from 89.59% to 86.87%) and 0.38% in
Spanish (from 98.11% to 97.73%).

One important finding to note in Table 3 is that
irrespective of any particular language and model
used, the amount of increase in accuracy due to the
output restriction on the applicable classes is much
more than that observed in Table 2. For instance,
in Table 2 the accuracy improvement for Bengali
using BLSTM-BLSTM is 0.30% (from 90.84% to
91.14%), whereas in Table 3 the corresponding
value is 3.06% (from 86.46% to 89.52%). These
outcomes signify the fact that training with the ap-

1487

Bengali Hindi Latin Spanish
BLSTM-BLSTM 71.06/72.10 87.80/88.18 60.85/61.63 88.06/88.79
BGRU-BGRU 70.44/71.22 88.34/88.40 60.65/61.52 91.48/92.25
Lemming 74.10 90.35 57.19 58.89
Morfette 70.27 88.59 47.41 57.61

Table 5: Lemmatization accuracy (in %) on unseen words.

Bengali Hindi Latin Spanish
BLSTM-BLSTM 56.16/66.26 87.42/88.41 49.80/56.05 86.22/87.97
BGRU-BGRU 59.45/66.84 87.19/88.26 50.24/55.35 86.74/88.49

Table 6: Lemmatization accuracy (in %) on unseen words without using applicable edit trees in training.

plicable edit trees already learns to dispense the
output probability to the legitimate classes over
which, output restriction cannot yield much en-
hancement.

Results for Unseen Word Forms: Next, we
discuss about the lemmatization performance on
those words which were absent in the training
set. Table 4 shows the proportion of unseen
forms averaged over 4 folds on the datasets.
In Table 5, we present the accuracy obtained
by our models and the baselines. For Bengali
and Hindi, Lemming produces the best results
(74.10% and 90.35%). For Latin and Spanish,
BLSTM-BLSTM and BGRU-BGRU obtain the
highest accuracy (61.63% and 92.25%) respec-
tively. In Spanish, our model gets the maximum
improvement over the baselines. BGRU-BGRU
beats Lemming with 33.36% margin (on aver-
age, out of 9, 011 unseen forms, 3, 005 more to-
kens are correctly lemmatized). Similar to the re-
sults in Table 2, the results in Table 5 evidences
that restricting the output in applicable classes en-
hances the lemmatization performance. The max-
imum accuracy improvements due to the output
restriction are: 1.04% in Bengali (from 71.06%
to 72.10%), 0.38% in Hindi (from 87.80% to
88.18%) using BLSTM-BLSTM and 0.87% in
Latin (from 60.65% to 61.52%), 0.77% in Spanish
(from 91.48% to 92.25%) using BGRU-BGRU.

Further, we investigate the performance of our
models trained without the applicable edit trees in-
formation, on the unseen word forms. The results
are given in Table 6. As expected, for every model,
the accuracy drops compared to the results shown
in Table 5. The only exception that we find out
is in the entry for Hindi with BLSTM-BLSTM.
Though without restricting the output, the accu-
racy in Table 5 (87.80%) is higher than the corre-
sponding value in Table 6 (87.42%), but after out-

Sem. Embedding Syn. Embedding
Bengali 90.76/91.02 86.61/86.82
Hindi 94.86/94.86 91.24/91.25
Latin 88.90/89.09 85.31/85.49
Spanish 97.95/98 96.07/96.10

Table 7: Results (in %) obtained using semantic
and syntactic embeddings separately.

Sentences # Word Tokens
Catalan 14,832 474,069
Dutch 13,050 197,925
Hungarian 1,351 31,584
Italian 13,402 282,611
Romanian 8,795 202,187

Table 8: Dataset statistics of the 5 additional lan-
guages.

put restriction, the performance changes (88.18%
in Table 5, 88.41% in Table 6) which reveals that
only selecting the maximum probable class over
the applicable ones would be a better option for
the unseen word forms in Hindi.

Effects of Semantic and Syntactic Embed-
dings in Isolation: To understand the impact of
the combined word vectors on the model’s per-
formance, we measure the accuracy experiment-
ing with each one of them separately. While us-
ing the semantic embedding, only distributional
word vectors are used for edit tree classification.
On the other hand, to test the effect of the syntac-
tic embedding exclusively, output from the char-
acter level recurrent network is fed to the sec-
ond level BGRNN. We present the results in Ta-
ble 7. For Bengali and Hindi, experiments are
carried out with the BLSTM-BLSTM model as
it gives better results for these languages com-
pared to BGRU-BGRU (given in Table 2). Sim-
ilarly for Latin and Spanish, the results obtained
from BGRU-BGRU are reported. From the out-
come of these experiments, use of semantic vec-

1488

Catalan Dutch Hungarian Italian Romanian
BLSTM-BLSTM 97.93/97.95 93.20/93.44 91.03/91.46 96.06/96.09 94.25/94.32
Lemming 89.80 86.95 87.95 92.51 93.34
Morfette 89.46 86.62 86.52 92.02 94.13

Table 9: Lemmatization accuracy (in %) for the 5 languages.

tor proves to be more effective than the charac-
ter level embedding. However, to capture the dis-
tributional properties of words efficiently, a huge
corpus is needed which may not be available for
low resourced languages. In that case, making
use of syntactic embedding is a good alternative.
Nonetheless, use of both types of embedding to-
gether improves the result.

3.2 Experimental Results for Another Five
Languages

As mentioned earlier, five additional languages
(Catalan, Dutch, Hungarian, Italian and Roma-
nian) are considered to test the generalization abil-
ity of the method. The datasets are taken from
the UD Treebanks11 (Nivre et al., 2017). For each
language, we merge the training and development
data together and perform 4 fold cross validation
on it to measure the average accuracy. The dataset
statistics are shown in Table 8. For experimen-
tation, we use the pre-trained semantic embed-
dings released by (Bojanowski et al., 2016). Only
BLSTM-BLSTM model is explored and it is com-
pared with Lemming and Morfette. The hyper pa-
rameters are kept same as described previously ex-
cept for the number of epochs needed for training
across the languages. We present the results in Ta-
ble 9. For all the languages, BLSTM-BLSTM out-
performs Lemming and Morfette. The maximum
improvement over the baselines we get is for Cata-
lan (beats Lemming and Morfette by 8.15% and
8.49% respectively). Similar to the results in Ta-
ble 2, restricting the output over applicable classes
yields consistent performance improvement.

4 Conclusion

This article presents a neural network based con-
text sensitive lemmatization method which is lan-
guage independent and supervised in nature. The
proposed model learns the transformation patterns
between word-lemma pairs and hence, can handle
the unknown word forms too. Additionally, it does
not rely on human defined features and various

11http://universaldependencies.org/

morphological tags except the gold lemma anno-
tated continuous text. We explore different vari-
ations of the model architecture by changing the
type of recurrent units. For evaluation, nine lan-
guages are taken as the references. Except Ben-
gali, the proposed method outperforms the state-
of-the-art models (Lemming and Morfette) on all
the other languages. For Bengali, it produces the
second best performance (91.14% using BLSTM-
BLSTM). We measure the accuracy on the partial
data (keeping the data size comparable to the Ben-
gali dataset) for Hindi, Latin and Spanish to check
the effect of the data amount on the performance.
For Hindi, the change in accuracy is insignifi-
cant but for Latin and Spanish, accuracy drops by
3.50% and 6% respectively. The time requirement
of the proposed method is also analyzed. Train-
ing time depends on several parameters such as
size of the data, number of epochs required for
convergence, configuration of the system used etc.
In our work, we use the ‘keras’ software keeping
‘theano’ as backend. The codes were run on a sin-
gle GPU (Nvidia GeForce GTX 960, 2GB mem-
ory). Once trained, the model takes negligible
time to predict the appropriate edit trees for test
words (e.g. 844 and 930 words/second for Ben-
gali and Hindi respectively). We develop a Ben-
gali lemmatization dataset which is definitely a no-
table contribution to the language resources. From
the present study, one important finding comes out
that for the unseen words, the lemmatization ac-
curacy drops by a large margin in Bengali and
Spanish, which may be the area of further research
work. Apart from it, we intend to propose a neural
architecture that accomplishes the joint learning of
lemmas with other morphological attributes.

References
David Bamman and David Smith. 2012. Extract-

ing two thousand years of latin from a million
book library. J. Comput. Cult. Herit. 5(1):2:1–2:13.
https://doi.org/10.1145/2160165.2160167.

Pushpak Bhattacharyya, Ankit Bahuguna, Lavita
Talukdar, and Bornali Phukan. 2014. Facilitating
multi-lingual sense annotation: Human mediated

1489

lemmatizer. In Heili Orav, Christiane Fellbaum,
and Piek Vossen, editors, Proceedings of the Seventh
Global Wordnet Conference. Tartu, Estonia, pages
224–231. http://www.aclweb.org/anthology/W14-
0130.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606 https://arxiv.org/abs/1607.04606.

Cristian Cardellino. 2016. Spanish Bil-
lion Words Corpus and Embeddings.
http://crscardellino.me/SBWCE/.

Abhisek Chakrabarty, Akshay Chaturvedi, and
Utpal Garain. 2016. A neural lemmatizer for
bengali. In Proceedings of the Tenth Inter-
national Conference on Language Resources
and Evaluation (LREC 2016). European Lan-
guage Resources Association (ELRA), Paris,
France, pages 2558–2561. http://www.lrec-
conf.org/proceedings/lrec2016/pdf/955P aper.pdf .

Abhisek Chakrabarty and Utpal Garain. 2016. Ben-
lem (a bengali lemmatizer) and its role in wsd.
ACM Trans. Asian Low-Resour. Lang. Inf. Process.
15(3):12:1–12:18. https://doi.org/10.1145/2835494.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. arXiv preprint arXiv:1409.1259
https://arxiv.org/abs/1409.1259.

Grzegorz Chrupała. 2008. Towards a machine-
learning architecture for lexical functional gram-
mar parsing. Ph.D. thesis, Dublin City University.
http://doras.dcu.ie/550/.

Grzegorz Chrupala, Georgiana Dinu, and
Josef van Genabith. 2008. Learning mor-
phology with morfette. In Proceedings of
the Sixth International Conference on Lan-
guage Resources and Evaluation (LREC’08).
European Language Resources Association
(ELRA), Marrakech, Morocco. http://www.lrec-
conf.org/proceedings/lrec2008/pdf/594paper.pdf .

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The sigmorphon 2016 shared task—
morphological reinflection. In Proceedings of
the 2016 Meeting of SIGMORPHON. Association
for Computational Linguistics, Berlin, Germany.
http://aclweb.org/anthology/sigmorphon.html.

Yann N. Dauphin, Harm de Vries, and Yoshua Ben-
gio. 2015. Equilibrated adaptive learning rates
for non-convex optimization. In Proceedings
of the 28th International Conference on Neural
Information Processing Systems. MIT Press, Cam-
bridge, MA, USA, NIPS’15, pages 1504–1512.
http://dl.acm.org/citation.cfm?id=2969239.2969407.

Abu Zaher Md Faridee, Francis M Tyers, et al. 2009.
Development of a morphological analyser for ben-
gali. In Proceedings of the First International Work-
shop on Free/Open-Source Rule-Based Machine
Translation. Universidad de Alicante. Departamento
de Lenguajes y Sistemas Informáticos, pages 43–
50. http://www.mt-archive.info/FreeRBMT-2009-
Faridee.pdf.

Andrea Gesmundo and Tanja Samardzic. 2012. Lem-
matisation as a tagging task. In Proceed-
ings of the 50th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
2: Short Papers). Association for Computational
Linguistics, Jeju Island, Korea, pages 368–372.
http://www.aclweb.org/anthology/P12-2072.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 https://arxiv.org/abs/1308.0850.

Jan Hajič, Massimiliano Ciaramita, Richard Johans-
son, Daisuke Kawahara, Maria Antònia Martı́,
Lluı́s Màrquez, Adam Meyers, Joakim Nivre, Se-
bastian Padó, Jan Štěpánek, Pavel Straňák, Mi-
hai Surdeanu, Nianwen Xue, and Yi Zhang. 2009.
The conll-2009 shared task: Syntactic and seman-
tic dependencies in multiple languages. In Pro-
ceedings of the Thirteenth Conference on Com-
putational Natural Language Learning (CoNLL
2009): Shared Task. Association for Computa-
tional Linguistics, Boulder, Colorado, pages 1–18.
http://www.aclweb.org/anthology/W09-1201.

Dag TT Haug and Marius Jøhndal. 2008. Creating
a parallel treebank of the old indo-european bible
translations. In Proceedings of the Second Work-
shop on Language Technology for Cultural Heritage
Data (LaTeCH 2008). pages 27–34.

Mitesh Khapra, Anup Kulkarni, Saurabh Sohoney, and
Pushpak Bhattacharyya. 2010. All words domain
adapted wsd: Finding a middle ground between su-
pervision and unsupervision. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Uppsala, Sweden, pages 1532–1541.
http://www.aclweb.org/anthology/P10-1155.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 https://arxiv.org/abs/1412.6980.

Kimmo Koskenniemi. 1984. A general computational
model for word-form recognition and production.
In Proceedings of the 10th International Confer-
ence on Computational Linguistics and 22nd An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, Stanford, California, USA, pages 178–181.
https://doi.org/10.3115/980491.980529.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:

1490

Compositional character models for open vocabu-
lary word representation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1520–
1530. http://aclweb.org/anthology/D15-1176.

Aki Loponen and Kalervo Järvelin. 2010. A dic-
tionary and corpus independent statistical lemma-
tizer for information retrieval in low resource lan-
guages. In Multilingual and Multimodal Infor-
mation Access Evaluation, Springer, pages 3–14.
https://doi.org/10.1007/978-3-642-15998-53.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg
Corrado, and Jeffrey Dean. 2013a. Dis-
tributed representations of words and phrases
and their compositionality. In Proceedings of
the 26th International Conference on Neural
Information Processing Systems. Curran As-
sociates Inc., USA, NIPS’13, pages 3111–3119.
http://dl.acm.org/citation.cfm?id=2999792.2999959.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies. Association for Computa-
tional Linguistics, Atlanta, Georgia, pages 746–751.
http://www.aclweb.org/anthology/N13-1090.

Thomas Müller, Ryan Cotterell, Alexander Fraser, and
Hinrich Schütze. 2015. Joint lemmatization and
morphological tagging with lemming. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing. Association for
Computational Linguistics, Lisbon, Portugal, pages
2268–2274. http://aclweb.org/anthology/D15-1272.

Garrett Nicolai and Grzegorz Kondrak. 2016. Lever-
aging inflection tables for stemming and lemmati-
zation. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pages 1138–
1147. http://www.aclweb.org/anthology/P16-1108.

Joakim Nivre, Željko Agić, Lars Ahrenberg, Maria Je-
sus Aranzabe, Masayuki Asahara, Aitziber Atutxa,
Miguel Ballesteros, John Bauer, Kepa Ben-
goetxea, Riyaz Ahmad Bhat, Eckhard Bick,
Cristina Bosco, Gosse Bouma, Sam Bowman,
Marie Candito, Gülşen Cebirolu Eryiit, Giuseppe
G. A. Celano, Fabricio Chalub, Jinho Choi, Çar
Çöltekin, Miriam Connor, Elizabeth Davidson,
Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Tim-
othy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Tomaž Erjavec, Richárd Farkas, Jen-
nifer Foster, Cláudia Freitas, Katarı́na Gajdošová,
Daniel Galbraith, Marcos Garcia, Filip Ginter, Iakes
Goenaga, Koldo Gojenola, Memduh Gökrmak,
Yoav Goldberg, Xavier Gómez Guinovart, Berta
Gonzáles Saavedra, Matias Grioni, Normunds

Grūzītis, Bruno Guillaume, Nizar Habash, Jan
Hajič, Linh Hà M, Dag Haug, Barbora Hladká,
Petter Hohle, Radu Ion, Elena Irimia, Anders Jo-
hannsen, Fredrik Jørgensen, Hüner Kaşkara, Hiroshi
Kanayama, Jenna Kanerva, Natalia Kotsyba, Simon
Krek, Veronika Laippala, Phng Lê Hng, Alessan-
dro Lenci, Nikola Ljubešić, Olga Lyashevskaya,
Teresa Lynn, Aibek Makazhanov, Christopher Man-
ning, Cătălina Mărănduc, David Mareček, Héctor
Martı́nez Alonso, André Martins, Jan Mašek,
Yuji Matsumoto, Ryan McDonald, Anna Mis-
silä, Verginica Mititelu, Yusuke Miyao, Simon-
etta Montemagni, Amir More, Shunsuke Mori, Bo-
hdan Moskalevskyi, Kadri Muischnek, Nina Musta-
fina, Kaili Müürisep, Lng Nguyn Th, Huyn Nguyn
Th Minh, Vitaly Nikolaev, Hanna Nurmi, Stina
Ojala, Petya Osenova, Lilja Øvrelid, Elena Pascual,
Marco Passarotti, Cenel-Augusto Perez, Guy Per-
rier, Slav Petrov, Jussi Piitulainen, Barbara Plank,
Martin Popel, Lauma Pretkalnia, Prokopis Proko-
pidis, Tiina Puolakainen, Sampo Pyysalo, Alexan-
dre Rademaker, Loganathan Ramasamy, Livy Real,
Laura Rituma, Rudolf Rosa, Shadi Saleh, Manuela
Sanguinetti, Baiba Saulīte, Sebastian Schuster,
Djamé Seddah, Wolfgang Seeker, Mojgan Seraji,
Lena Shakurova, Mo Shen, Dmitry Sichinava, Na-
talia Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Mária Šimková, Kiril Simov, Aaron Smith,
Alane Suhr, Umut Sulubacak, Zsolt Szántó, Dima
Taji, Takaaki Tanaka, Reut Tsarfaty, Francis Tyers,
Sumire Uematsu, Larraitz Uria, Gertjan van No-
ord, Viktor Varga, Veronika Vincze, Jonathan North
Washington, Zdeněk Žabokrtský, Amir Zeldes,
Daniel Zeman, and Hanzhi Zhu. 2017. Universal
dependencies 2.0. LINDAT/CLARIN digital library
at the Institute of Formal and Applied Linguistics,
Charles University. http://hdl.handle.net/11234/1-
1983.

Snigdha Paul, Nisheeth Joshi, and Iti Mathur.
2013. Development of a hindi lemmatizer. In-
ternational Journal of Computational Linguistics
and Natural Language Processing 2(5):380–384.
https://arxiv.org/abs/1305.6211.

Joël Plisson, Nada Lavrac, Dunja Mladenic, et al. 2004.
A rule based approach to word lemmatization. Pro-
ceedings of IS-2004 pages 83–86.

Kristina Toutanova and Colin Cherry. 2009. A
global model for joint lemmatization and part-
of-speech prediction. In Proceedings of the
Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Con-
ference on Natural Language Processing of the
AFNLP. Association for Computational Lin-
guistics, Suntec, Singapore, pages 486–494.
http://aclweb.org/anthology/P/P09/P09-1055.pdf.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701
https://arxiv.org/abs/1212.5701.

1491

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1492–1502
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1137

Learning to Create and Reuse Words in
Open-Vocabulary Neural Language Modeling

Kazuya Kawakami♠ Chris Dyer♣ Phil Blunsom♠♣
♠Department of Computer Science, University of Oxford, Oxford, UK

♣DeepMind, London, UK
{kazuya.kawakami,phil.blunsom}@cs.ox.ac.uk,cdyer@google.com

Abstract

Fixed-vocabulary language models fail to
account for one of the most characteristic
statistical facts of natural language: the fre-
quent creation and reuse of new word types.
Although character-level language models
offer a partial solution in that they can cre-
ate word types not attested in the training
corpus, they do not capture the “bursty” dis-
tribution of such words. In this paper, we
augment a hierarchical LSTM language
model that generates sequences of word to-
kens character by character with a caching
mechanism that learns to reuse previously
generated words. To validate our model
we construct a new open-vocabulary lan-
guage modeling corpus (the Multilingual
Wikipedia Corpus; MWC) from compara-
ble Wikipedia articles in 7 typologically
diverse languages and demonstrate the ef-
fectiveness of our model across this range
of languages.

1 Introduction

Language modeling is an important problem in nat-
ural language processing with many practical ap-
plications (translation, speech recognition, spelling
autocorrection, etc.). Recent advances in neural
networks provide strong representational power
to language models with distributed representa-
tions and unbounded dependencies based on recur-
rent networks (RNNs). However, most language
models operate by generating words by sampling
from a closed vocabulary which is composed of
the most frequent words in a corpus. Rare tokens
are typically replaced by a special token, called
the unknown word token, 〈UNK〉. Although fixed-
vocabulary language models have some important
practical applications and are appealing models

for study, they fail to capture two empirical facts
about the distribution of words in natural languages.
First, vocabularies keep growing as the number of
documents in a corpus grows: new words are con-
stantly being created (Heaps, 1978). Second, rare
and newly created words often occur in “bursts”,
i.e., once a new or rare word has been used once in
a document, it is often repeated (Church and Gale,
1995; Church, 2000).

The open-vocabulary problem can be solved
by dispensing with word-level models in favor
of models that predict sentences as sequences of
characters (Sutskever et al., 2011; Chung et al.,
2017). Character-based models are quite success-
ful at learning what (new) word forms look like
(e.g., they learn a language’s orthographic conven-
tions that tell us that sustinated is a plausible En-
glish word and bzoxqir is not) and, when based on
models that learn long-range dependencies such as
RNNs, they can also be good models of how words
fit together to form sentences.

However, existing character-sequence models
have no explicit mechanism for modeling the fact
that once a rare word is used, it is likely to be used
again. In this paper, we propose an extension to
character-level language models that enables them
to reuse previously generated tokens (§2). Our
starting point is a hierarchical LSTM that has been
previously used for modeling sentences (word by
word) in a conversation (Sordoni et al., 2015), ex-
cept here we model words (character by character)
in a sentence. To this model, we add a caching
mechanism similar to recent proposals for caching
that have been advocated for closed-vocabulary
models (Merity et al., 2017; Grave et al., 2017).
As word tokens are generated, they are placed in
an LRU cache, and, at each time step the model
decides whether to copy a previously generated
word from the cache or to generate it from scratch,
character by character. The decision of whether

1492

https://doi.org/10.18653/v1/P17-1137

to use the cache or not is a latent variable that
is marginalised during learning and inference. In
summary, our model has three properties: it creates
new words, it accounts for their burstiness using
a cache, and, being based on LSTM s over word
representations, it can model long range dependen-
cies.

To evaluate our model, we perform ablation ex-
periments with variants of our model without the
cache or hierarchical structure. In addition to stan-
dard English data sets (PTB and WikiText-2), we
introduce a new multilingual data set: the Multi-
lingual Wikipedia Corpus (MWC), which is con-
structed from comparable articles from Wikipedia
in 7 typologically diverse languages (§3) and show
the effectiveness of our model in all languages (§4).
By looking at the posterior probabilities of the gen-
eration mechanism (language model vs. cache) on
held-out data, we find that the cache is used to gen-
erate “bursty” word types such as proper names,
while numbers and generic content words are gen-
erated preferentially from the language model (§5).

2 Model

In this section, we describe our hierarchical char-
acter language model with a word cache. As is
typical for RNN language models, our model uses
the chain rule to decompose the problem into incre-
mental predictions of the next word conditioned on
the history:

p(w) =

|w|∏

t=1

p(wt | w<t).

We make two modifications to the traditional
RNN language model, which we describe in turn.
First, we begin with a cache-less model we call
the hierarchical character language model (HCLM;
§2.1) which generates words as a sequence of char-
acters and constructs a “word embedding” by en-
coding a character sequence with an LSTM (Ling
et al., 2015). However, like conventional closed-
vocabulary, word-based models, it is based on an
LSTM that conditions on words represented by
fixed-length vectors.1

The HCLM has no mechanism to reuse words
that it has previously generated, so new forms will

1The HCLM is an adaptation of the hierarchical recurrent
encoder-decoder of Sordoni et al. (2015) which was used
to model dialog as a sequence of actions sentences which
are themselves sequences of words. The original model was
proposed to compose words into query sequences but we use
it to compose characters into word sequences.

only be repeated with very low probability. How-
ever, since the HCLM is not merely generating
sentences as a sequence of characters, but also seg-
menting them into words, we may add a word-
based cache to which we add words keyed by the
hidden state being used to generate them (§2.2).
This cache mechanism is similar to the model pro-
posed by Merity et al. (2017).

Notation. Our model assigns probabilities to se-
quences of wordsw = w1, . . . , w|w|, where |w| is
the length, and where each word wi is represented
by a sequence of characters ci = ci,1, . . . , ci,|ci| of
length |ci|.

2.1 Hierarchical Character-level Language
Model (HCLM)

This hierarchical model satisfies our linguistic intu-
ition that written language has (at least) two differ-
ent units, characters and words.

The HCLM consists of four components, three
LSTMs (Hochreiter and Schmidhuber, 1997):
a character encoder, a word-level context en-
coder, and a character decoder (denoted LSTMenc,
LSTMctx, and LSTMdec, respectively), and a soft-
max output layer over the character vocabulary.
Fig. 1 illustrates an unrolled HCLM.

Suppose the model reads word wt−1 and pre-
dicts the next word wt. First, the model reads the
character sequence representing the word wt−1 =
ct−1,1, . . . , ct−1,|ct−1| where |ct−1| is the length
of the word generated at time t − 1 in charac-
ters. Each character is represented as a vector
vct−1,1 , . . . ,vct−1,|ct−1|

and fed into the encoder
LSTMenc . The final hidden state of the encoder
LSTMenc is used as the vector representation of
the previously generated word wt−1,

henc
t = LSTMenc(vct−1,1 , . . . ,vct−1,|ct|

).

Then all the vector representations of words
(vw1 , . . . ,vw|w|) are processed with a context
LSTMctx . Each of the hidden states of the con-
text LSTMctx are considered representations of the
history of the word sequence.

hctx
t = LSTMctx(h

enc
1 , . . . ,henc

t)

Finally, the initial state of the decoder LSTM
is set to be hctx

t and the decoder LSTM reads a
vector representation of the start symbol v〈S〉 and
generates the next word wt+1 character by charac-
ter. To predict the j-th character in wt, the decoder

1493

P o k é m o n </s>

The Pokémon Company International (formerly Pokémon USA Inc.), a subsidiary of Japan's Pokémon Co., oversees all Pokémon licensing …

C o m p a n y </s> …. (f o r m e r l y </s>

Cache rt

.

<s> P o k é m o n

P o k é m o n </s>

henc
t

hctx
t

wt−1

wt

p(Pokémon) = λtplm(Pokémon) + (1 − λt)pptr(Pokémon)

ut

λtpptr(Pokémon) plm(Pokémon)

Figure 1: Description of Hierarchical Character Language Model with Cache.

LSTM reads vector representations of the previous
characters in the word, conditioned on the context
vector hctx

t and a start symbol.

hdec
t,j = LSTMdec(vct,1 , . . . ,vct,j−1 ,h

ctx
t ,v〈S〉).

The character generation probability is defined
by a softmax layer for the corresponding hidden
representation of the decoder LSTM .

p(ct,j | w<t, ct,<j) = softmax(Wdech
dec
t,j + bdec)

Thus, a word generation probability from
HCLM is defined as follows.

plm(wt | w<t) =

|ct|∏

j=1

p(ct,j | w<t, ct,<j)

2.2 Continuous cache component

The cache component is an external memory struc-
ture which store K elements of recent history. Sim-
ilarly to the memory structure used in Grave et al.
(2017), a word is added to a key-value memory
after each generation of wt. The key at position
i ∈ [1,K] is ki and its value mi. The memory slot
is chosen as follows: if the wt exists already in the
memory, its key is updated (discussed below). Oth-
erwise, if the memory is not full, an empty slot is
chosen or the least recently used slot is overwritten.
When writing a new word to memory, the key is
the RNN representation that was used to generate

the word (ht) and the value is the word itself (wt).
In the case when the word already exists in the
cache at some position i, the ki is updated to be
the arithmetic average of ht and the existing ki.

To define the copy probability from the cache
at time t, a distribution over copy sites is defined
using the attention mechanism of Bahdanau et al.
(2015). To do so, we construct a query vector (rt)
from the RNN’s current hidden state ht,

rt = tanh(Wqht + bq),

then, for each element i of the cache, a ‘copy score,’
ui,t is computed,

ui,t = vT tanh(Wuki + rt).

Finally, the probability of generating a word via
the copying mechanism is:

pmem(i | ht) = softmaxi(ut)

pptr(wt | ht) = pmem(i | ht)[mi = wt],

where [mi = wt] is 1 if the ith value in memory
is wt and 0 otherwise. Since pmem defines a distri-
bution of slots in the cache, pptr translates it into
word space.

2.3 Character-level Neural Cache Language
Model

The word probability p(wt | w<t) is defined as a
mixture of the following two probabilities. The first

1494

one is a language model probability, plm(wt | w<t)
and the other is pointer probability , pptr(wt | w<t).
The final probability p(wt | w<t) is

λtplm(wt | w<t) + (1− λt)pptr(wt | w<t),

where λt is computed by a multi-layer perceptron
with two non-linear transformations using ht as its
input, followed by a transformation by the logistic
sigmoid function:

γt = MLP(ht), λt =
1

1− e−γt .

We remark that Grave et al. (2017) use a clever trick
to estimate the probability, λt of drawing from the
LM by augmenting their (closed) vocabulary with
a special symbol indicating that a copy should be
used. This enables word types that are highly pre-
dictive in context to compete with the probability of
a copy event. However, since we are working with
an open vocabulary, this strategy is unavailable in
our model, so we use the MLP formulation.

2.4 Training objective
The model parameters as well as the character pro-
jection parameters are jointly trained by maximiz-
ing the following log likelihood of the observed
characters in the training corpus,

L = −
∑

log p(wt | w<t).

3 Datasets

We evaluate our model on a range of datasets, em-
ploying preexisting benchmarks for comparison to
previous published results, and a new multilingual
corpus which specifically tests our model’s perfor-
mance across a range of typological settings.

3.1 Penn Tree Bank (PTB)
We evaluate our model on the Penn Tree Bank.
For fair comparison with previous works, we fol-
lowed the standard preprocessing method used
by Mikolov et al. (2010). In the standard prepro-
cessing, tokenization is applied, words are lower-
cased, and punctuation is removed. Also, less fre-
quent words are replaced by unknown an token
(UNK),2 constraining the word vocabulary size to
be 10k. Because of this preprocessing, we do not
expect this dataset to benefit from the modeling
innovations we have introduced in the paper. Fig.1
summarizes the corpus statistics.

2When the unknown token is used in character-level model,
it is treated as if it were a normal word (i.e. UNK is the

Train Dev Test

Character types 50 50 48
Word types 10000 6022 6049
OOV rate - 0.00% 0.00%
Word tokens 0.9M 0.1M 0.1M
Characters 5.1M 0.4M 0.4M

Table 1: PTB Corpus Statistics.

3.2 WikiText-2
Merity et al. (2017) proposed the WikiText-2 Cor-
pus as a new benchmark dataset.3 They pointed out
that the preprocessed PTB is unrealistic for real lan-
guage use in terms of word distribution. Since the
vocabulary size is fixed to 10k, the word frequency
does not exhibit a long tail. The wikiText-2 corpus
is constructed from 720 articles. They provided
two versions. The version for word level language
modeling was preprocessed by discarding infre-
quent words. But, for character-level models, they
provided raw documents without any removal of
word or character types or lowercasing, but with
tokenization. We make one change to this corpus:
since Wikipedia articles make extensive use of char-
acters from other languages; we replaced character
types that occur fewer than 25 times were replaced
with a dummy character (this plays the role of the
〈UNK〉 token in the character vocabulary). Tab. 2
summarizes the corpus statistics.

Train Dev Test

Character types 255 128 138
Word types 76137 19813 21109
OOV rate - 4.79% 5.87%
Word tokens 2.1M 0.2M 0.2M
Characters 10.9M 1.1M 1.3M

Table 2: WikiText-2 Corpus Statistics.

3.3 Multilingual Wikipedia Corpus (MWC)
Languages differ in what word formation processes
they have. For character-level modeling it is there-
fore interesting to compare a model’s performance

sequence U, N, and K). This is somewhat surprising modeling
choice, but it has become conventional (Chung et al., 2017).

3http://metamind.io/research/the-
wikitext-long-term-dependency-language-
modeling-dataset/

1495

across languages. Since there is at present no stan-
dard multilingual language modeling dataset, we
created a new dataset, the Multilingual Wikipedia
Corpus (MWC), a corpus of the same Wikipedia
articles in 7 languages which manifest a range of
morphological typologies. The MWC contains En-
glish (EN), French (FR), Spanish (ES), German
(DE), Russian (RU), Czech (CS), and Finnish (FI).

To attempt to control for topic divergences across
languages, every language’s data consists of the
same articles. Although these are only comparable
(rather than true translations), this ensures that the
corpus has a stable topic profile across languages.4

Construction & Preprocessing We constructed
the MWC similarly to the WikiText-2 corpus. Arti-
cles were selected from Wikipedia in the 7 target
languages. To keep the topic distribution to be
approximately the same across the corpora, we ex-
tracted articles about entities which explained in
all the languages. We extracted articles which ex-
ist in all languages and each consist of more than
1,000 words, for a total of 797 articles. These cross-
lingual articles are, of course, not usually transla-
tions, but they tend to be comparable. This filtering
ensures that the topic profile in each language is
similar. Each language corpus is approximately the
same size as the WikiText-2 corpus.

Wikipedia markup was removed with WikiEx-
tractor,5 to obtain plain text. We used the
same thresholds to remove rare characters in the
WikiText-2 corpus. No tokenization or other nor-
malization (e.g., lowercasing) was done.

Statistics After the preprocessing described
above, we randomly sampled 360 articles. The
articles are split into 300, 30, 30 sets and the first
300 articles are used for training and the rest are
used for dev and test respectively. Table 3 summa-
rizes the corpus statistics.

Additionally, we show in Fig. 2 the distribution
of frequencies of OOV word types (relative to the
training set) in the dev+test portions of the corpus,
which shows a power-law distribution, which is
expected for the burstiness of rare words found in
prior work. Curves look similar for all languages
(see Appendix A).

4The Multilingual Wikipedia Corpus (MWC) is avail-
able for download from http://k-kawakami.com/
research/mwc

5https://github.com/attardi/
wikiextractor

Figure 2: Histogram of OOV word frequencies in
the dev+test part of the MWC Corpus (EN).

4 Experiments

We now turn to a series of experiments to show
the value of our hierarchical character-level cache
language model. For each dataset we trained the
model with LSTM units. To compare our results
with a strong baseline, we also train a model with-
out the cache.

Model Configuration For HCLM and HCLM
with cache models, We used 600 dimensions for
the character embeddings and the LSTMs have 600
hidden units for all the experiments. This keeps the
model complexity to be approximately the same as
previous works which used an LSTM with 1000
dimension. Our baseline LSTM have 1000 dimen-
sions for embeddings and reccurence weights.

For the cache model, we used cache size 100
in every experiment. All the parameters includ-
ing character projection parameters are randomly
sampled from uniform distribution from −0.08
to 0.08. The initial hidden and memory state of
LSTMenc and LSTMctx are initialized with zero.
Mini-batches of size 25 are used for PTB experi-
ments and 10 for WikiText-2, due to memory lim-
itations. The sequences were truncated with 35
words. Then the words are decomposed to charac-
ters and fed into the model. A Dropout rate of 0.5
was used for all but the recurrent connections.

Learning The models were trained with the
Adam update rule (Kingma and Ba, 2015) with
a learning rate of 0.002. The maximum norm of
the gradients was clipped at 10.

Evaluation We evaluated our models with bits-
per-character (bpc) a standard evaluation metric

1496

Char. Types Word Types OOV rate Tokens Characters

Train Valid Test Train Valid Test Valid Test Train Valid Test Train Valid Test

EN 307 160 157 193808 38826 35093 6.60% 5.46% 2.5M 0.2M 0.2M 15.6M 1.5M 1.3M
FR 272 141 155 166354 34991 38323 6.70% 6.96% 2.0M 0.2M 0.2M 12.4M 1.3M 1.6M
DE 298 162 183 238703 40848 41962 7.07% 7.01% 1.9M 0.2M 0.2M 13.6M 1.2M 1.3M
ES 307 164 176 160574 31358 34999 6.61% 7.35% 1.8M 0.2M 0.2M 11.0M 1.0M 1.3M
CS 238 128 144 167886 23959 29638 5.06% 6.44% 0.9M 0.1M 0.1M 6.1M 0.4M 0.5M
FI 246 123 135 190595 32899 31109 8.33% 7.39% 0.7M 0.1M 0.1M 6.4M 0.7M 0.6M
RU 273 184 196 236834 46663 44772 7.76% 7.20% 1.3M 0.1M 0.1M 9.3M 1.0M 0.9M

Table 3: Summary of MWC Corpus.

for character-level language models. Following the
definition in Graves (2013), bits-per-character is
the average value of − log2 p(wt | w<t) over the
whole test set,

bpc = − 1

|c| log2 p(w),

where |c| is the length of the corpus in characters.

4.1 Results

PTB Tab. 4 summarizes results on the PTB
dataset.6 Our baseline HCLM model achieved
1.276 bpc which is better performance than the
LSTM with Zoneout regularization (Krueger et al.,
2017). And HCLM with cache outperformed the
baseline model with 1.247 bpc and achieved com-
petitive results with state-of-the-art models with
regularization on recurrence weights, which was
not used in our experiments.

Expressed in terms of per-word perplexity (i.e.,
rather than normalizing by the length of the corpus
in characters, we normalize by words and expo-
nentiate), the test perplexity on HCLM with cache
is 94.79. The performance of the unregularized
2-layer LSTM with 1000 hidden units on word-
level PTB dataset is 114.5 and the same model
with dropout achieved 87.0. Considering the fact
that our character-level models are dealing with
an open vocabulary without unknown tokens, the
results are promising.

WikiText-2 Tab. 5 summarizes results on the
WikiText-2 dataset. Our baseline, LSTM achieved
1.803 bpc and HCLM model achieved 1.670 bpc.
The HCLM with cache outperformed the baseline
models and achieved 1.500 bpc. The word level
perplexity is 227.30, which is quite high compared
to the reported word level baseline result 100.9

6Models designated with a * have more layers and more
parameters.

Method Dev Test

CW-RNN (Koutnik et al., 2014) - 1.46
HF-MRNN (Mikolov et al., 2012) - 1.41
MI-RNN (Wu et al., 2016) - 1.39
ME n-gram (Mikolov et al., 2012) - 1.37
RBN (Cooijmans et al., 2017) 1.281 1.32
Recurrent Dropout (Semeniuta et al., 2016) 1.338 1.301
Zoneout (Krueger et al., 2017) 1.362 1.297
HM-LSTM (Chung et al., 2017) - 1.27
HyperNetwork (Ha et al., 2017) 1.296 1.265
LayerNorm HyperNetwork (Ha et al., 2017) 1.281 1.250
2-LayerNorm HyperLSTM (Ha et al., 2017)* - 1.219
2-Layer with New Cell (Zoph and Le, 2016)* - 1.214

LSTM (Our Implementation) 1.369 1.331
HCLM 1.308 1.276
HCLM with Cache 1.266 1.247

Table 4: Results on PTB Corpus (bits-per-
character). HCLM augmented with a cache obtains
the best results among models which have approx-
imately the same numbers of parameter as single
layer LSTM with 1,000 hidden units.

with LSTM with ZoneOut and Variational Dropout
regularization (Merity et al., 2017). However, the
character-level model is dealing with 76,136 types
in training set and 5.87% OOV rate where the word
level models only use 33,278 types without OOV
in test set. The improvement rate over the HCLM
baseline is 10.2% which is much higher than the
improvement rate obtained in the PTB experiment.

Method Dev Test

LSTM 1.758 1.803
HCLM 1.625 1.670
HCLM with Cache 1.480 1.500

Table 5: Results on WikiText-2 Corpus .

Multilingual Wikipedia Corpus (MWC)
Tab. 6 summarizes results on the MWC dataset.
Similarly to WikiText-2 experiments, LSTM

1497

is strong baseline. We observe that the cache
mechanism improve performance in every lan-
guages. In English, HCLM with cache achieved
1.538 bpc where the baseline is 1.622 bpc. It
is 5.2% improvement. For other languages,
the improvement rates were 2.7%, 3.2%, 3.7%,
2.5%, 4.7%, 2.7% in FR, DE, ES, CS, FI, RU
respectively. The best improvement rate was
obtained in Finnish.

5 Analysis

In this section, we analyse the behavior of proposed
model qualitatively. To analyse the model, we com-
pute the following posterior probability which tell
whether the model used the cache given a word and
its preceding context. Let zt be a random variable
that says whether to use the cache or the LM to gen-
erate the word at time t. We would like to know,
given the text w, whether the cache was used at
time t. This can be computed as follows:

p(zt | w) =
p(zt, wt | ht, cachet)
p(wt | ht, cachet)

=
(1− λt)pptr(wt | ht, cachet)

p(wt | ht, cachet)
,

where cachet is the state of the cache at time t. We
report the average posterior probability of cache
generation excluding the first occurrence of w,
p(z | w).

Tab. 7 shows the words in the WikiText-2 test
set that occur more than 1 time that are most/least
likely to be generated from cache and character
language model (words that occur only one time
cannot be cache-generated). We see that the model
uses the cache for proper nouns: Lesnar, Gore, etc.,
as well as very frequent words which always stored
somewhere in the cache such as single-token punc-
tuation, the, and of. In contrast, the model uses the
language model to generate numbers (which tend
not to be repeated): 300, 770 and basic content
words: sounds, however, unable, etc. This pattern
is similar to the pattern found in empirical distri-
bution of frequencies of rare words observed in
prior wors (Church and Gale, 1995; Church, 2000),
which suggests our model is learning to use the
cache to account for bursts of rare words.

To look more closely at rare words, we also in-
vestigate how the model handles words that oc-
curred between 2 and 100 times in the test set, but
fewer than 5 times in the training set. Fig. 3 is a
scatter plot of p(z | w) vs the empirical frequency

in the test set. As expected, more frequently re-
peated words types are increasingly likely to be
drawn from the cache, but less frequent words show
a range of cache generation probabilities.

Figure 3: Average p(z | w) of OOV words in test
set vs. term frequency in the test set for words
not obsered in the training set. The model prefers
to copy frequently reused words from cache com-
ponent, which tend to names (upper right) while
character level generation is used for infrequent
open class words (bottom left).

Tab. 8 shows word types with the highest and
lowest average p(z | w) that occur fewer than
5 times in the training corpus. The pattern here
is similar to the unfiltered list: proper nouns are
extremely likely to have been cache-generated,
whereas numbers and generic (albeit infrequent)
content words are less likely to have been.

6 Discussion

Our results show that the HCLM outperforms a
basic LSTM. With the addition of the caching
mechanism, the HCLM becomes consistently more
powerful than both the baseline HCLM and the
LSTM. This is true even on the PTB, which
has no rare or OOV words in its test set (because
of preprocessing), by caching repetitive common
words such as the. In true open-vocabulary settings
(i.e., WikiText-2 and MWC), the improvements are
much more pronounced, as expected.

Computational complexity. In comparison with
word-level models, our model has to read and gen-
erate each word character by character, and it also
requires a softmax over the entire memory at ev-
ery time step. However, the computation is still
linear in terms of the length of the sequence, and
the softmax over the memory cells and character

1498

EN FR DE ES CS FI RU

dev test dev test dev test dev test dev test dev test dev test

LSTM 1.793 1.736 1.669 1.621 1.780 1.754 1.733 1.667 2.191 2.155 1.943 1.913 1.942 1.932
HCLM 1.683 1.622 1.553 1.508 1.666 1.641 1.617 1.555 2.070 2.035 1.832 1.796 1.832 1.810
HCLM with Cache 1.591 1.538 1.499 1.467 1.605 1.588 1.548 1.498 2.010 1.984 1.754 1.711 1.777 1.761

Table 6: Results on MWC Corpus (bits-per-character).

Word p(z | w) ↓ Word p(z | w) ↑
. 0.997 300 0.000
Lesnar 0.991 act 0.001
the 0.988 however 0.002
NY 0.985 770 0.003
Gore 0.977 put 0.003
Bintulu 0.976 sounds 0.004
Nerva 0.976 instead 0.005
, 0.974 440 0.005
UB 0.972 similar 0.006
Nero 0.967 27 0.009
Osbert 0.967 help 0.009
Kershaw 0.962 few 0.010
Manila 0.962 110 0.010
Boulter 0.958 Jersey 0.011
Stevens 0.956 even 0.011
Rifenburg 0.952 y 0.012
Arjona 0.952 though 0.012
of 0.945 becoming 0.013
31B 0.941 An 0.013
Olympics 0.941 unable 0.014

Table 7: Word types with the highest/lowest av-
erage posterior probability of having been copied
from the cache while generating the test set. The
probability tells whether the model used the cache
given a word and its context. Left: Cache is
used for frequent words (the, of) and proper nouns
(Lesnar, Gore). Right: Character level generation
is used for basic words and numbers.

vocabulary are much smaller than word-level vo-
cabulary. On the other hand, since the recurrent
states are updated once per character (rather than
per word) in our model, the distribution of opera-
tions is quite different. Depending on the hardware
support for these operations (repeated updates of
recurrent states vs. softmaxes), our model may be
faster or slower. However, our model will have
fewer parameters than a word-based model since
most of the parameters in such models live in the
word projection layers, and we use LSTMs in place
of these.

Non-English languages. For non-English lan-
guages, the pattern is largely similar for non-
English languages. This is not surprising since
morphological processes may generate forms that
are related to existing forms, but these still have

Word p(z | w) ↓ Word p(z | w) ↑
Gore 0.977 770 0.003
Nero 0.967 246 0.037
Osbert 0.967 Lo 0.074
Kershaw 0.962 Pitcher 0.142
31B 0.941 Poets 0.143
Kirby 0.935 popes 0.143
CR 0.926 Yap 0.143
SM 0.924 Piso 0.143
impedance 0.923 consul 0.143
Blockbuster 0.900 heavyweight 0.143
Superfamily 0.900 cheeks 0.154
Amos 0.900 loser 0.164
Steiner 0.897 amphibian 0.167
Bacon 0.893 squads 0.167
filters 0.889 los 0.167
Lim 0.889 Keenan 0.167
Selfridge 0.875 sculptors 0.167
filter 0.875 Gen. 0.167
Lockport 0.867 Kipling 0.167
Germaniawerft 0.857 Tabasco 0.167

Table 8: Same as Table 7, except filtering for word
types that occur fewer than 5 times in the training
set. The cache component is used as expected even
on rare words: proper nouns are extremely likely
to have been cache-generated, whereas numbers
and generic content words are less likely to have
been; this indicates both the effectiveness of the
prior at determining whether to use the cache and
the burstiness of proper nouns.

slight variations. Thus, they must be generated by
the language model component (rather than from
the cache). Still, the cache demonstrates consistent
value in these languages.

Finally, our analysis of the cache on English
does show that it is being used to model word
reuse, particularly of proper names, but also of
frequent words. While empirical analysis of rare
word distributions predicts that names would be
reused, the fact that cache is used to model frequent
words suggests that effective models of language
should have a means to generate common words as
units. Finally, our model disfavors copying num-
bers from the cache, even when they are available.
This suggests that it has learnt that numbers are not
generally repeated (in contrast to names).

1499

7 Related Work

Caching language models were proposed to ac-
count for burstiness by Kuhn and De Mori (1990),
and recently, this idea has been incorporated to
augment neural language models with a caching
mechanism (Merity et al., 2017; Grave et al., 2017).

Open vocabulary neural language models have
been widely explored (Sutskever et al., 2011;
Mikolov et al., 2012; Graves, 2013, inter alia). At-
tempts to make them more aware of word-level
dynamics, using models similar to our hierarchical
formulation, have also been proposed (Chung et al.,
2017).

The only models that are open vocabulary lan-
guage modeling together with a caching mech-
anism are the nonparametric Bayesian language
models based on hierarchical Pitman–Yor pro-
cesses which generate a lexicon of word types us-
ing a character model, and then generate a text
using these (Teh, 2006; Goldwater et al., 2009;
Chahuneau et al., 2013). These, however, do not
use distributed representations on RNNs to capture
long-range dependencies.

8 Conclusion

In this paper, we proposed a character-level lan-
guage model with an adaptive cache which selec-
tively assign word probability from past history
or character-level decoding. And we empirically
show that our model efficiently model the word
sequences and achieved better perplexity in every
standard dataset. To further validate the perfor-
mance of our model on different languages, we
collected multilingual wikipedia corpus for 7 typo-
logically diverse languages. We also show that our
model performs better than character-level models
by modeling burstiness of words in local context.

The model proposed in this paper assumes the
observation of word segmentation. Thus, the model
is not directly applicable to languages, such as Chi-
nese and Japanese, where word segments are not
explicitly observable. We will investigate a model
which can marginalise word segmentation as latent
variables in the future work.

Acknowledgements

We thank the three anonymous reviewers for their
valuable feedback. The third author acknowledges
the support of the EPSRC and nvidia Corporation.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR.

Victor Chahuneau, Noah A. Smith, and Chris Dyer.
2013. Knowledge-rich morphological priors for
bayesian language models. In Proc. NAACL.

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio.
2017. Hierarchical multiscale recurrent neural net-
works. In Proc. ICLR.

Kenneth W Church. 2000. Empirical estimates of adap-
tation: the chance of two Noriegas is closer to p/2
than p2. In Proc. COLING.

Kenneth W Church and William A Gale. 1995. Poisson
mixtures. Natural Language Engineering 1(2):163–
190.

Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar
Gülçehre, and Aaron Courville. 2017. Recurrent
batch normalization. In Proc. ICLR.

Sharon Goldwater, Thomas L Griffiths, and Mark John-
son. 2009. A Bayesian framework for word segmen-
tation: Exploring the effects of context. Cognition
112(1):21–54.

Edouard Grave, Armand Joulin, and Nicolas Usunier.
2017. Improving neural language models with a con-
tinuous cache. In Proc. ICLR.

Alex Graves. 2013. Generating sequences with
recurrent neural networks. arXiv preprint
arXiv:1308.0850 .

David Ha, Andrew Dai, and Quoc V Le. 2017. Hyper-
networks. In Proc. ICLR.

Harold Stanley Heaps. 1978. Information retrieval:
Computational and theoretical aspects. Academic
Press, Inc.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8):1735–
1780.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proc. ICLR.

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juer-
gen Schmidhuber. 2014. A clockwork RNN. In
Proc. ICML.

David Krueger, Tegan Maharaj, János Kramár, Moham-
mad Pezeshki, Nicolas Ballas, Nan Rosemary Ke,
Anirudh Goyal, Yoshua Bengio, Hugo Larochelle,
Aaron Courville, et al. 2017. Zoneout: Regulariz-
ing rnns by randomly preserving hidden activations.
In Proc. ICLR.

Roland Kuhn and Renato De Mori. 1990. A cache-
based natural language model for speech recogni-
tion. IEEE transactions on pattern analysis and ma-
chine intelligence 12(6):570–583.

1500

Wang Ling, Tiago Luís, Luís Marujo, Ramón Fernan-
dez Astudillo, Silvio Amir, Chris Dyer, Alan W
Black, and Isabel Trancoso. 2015. Finding function
in form: Compositional character models for open
vocabulary word representation. In Proc. EMNLP.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2017. Pointer sentinel mixture mod-
els. In Proc. ICLR.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proc. In-
terspeech.

Tomáš Mikolov, Ilya Sutskever, Anoop Deoras, Hai-
Son Le, Stefan Kombrink, and Jan Cernocky.
2012. Subword language modeling with neu-
ral networks. preprint (http://www. fit. vutbr.
cz/imikolov/rnnlm/char. pdf) .

Stanislau Semeniuta, Aliaksei Severyn, and Erhardt
Barth. 2016. Recurrent dropout without memory
loss. In Proc. COLING.

Alessandro Sordoni, Yoshua Bengio, Hossein Vahabi,
Christina Lioma, Jakob Grue Simonsen, and Jian-
Yun Nie. 2015. A hierarchical recurrent encoder-
decoder for generative context-aware query sugges-
tion. In Proc. CIKM.

Ilya Sutskever, James Martens, and Geoffrey E Hin-
ton. 2011. Generating text with recurrent neural net-
works. In Proc. ICML.

Yee Whye Teh. 2006. A hierarchical Bayesian lan-
guage model based on Pitman-Yor processes. In
Proc. ACL.

Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua Ben-
gio, and Ruslan R Salakhutdinov. 2016. On multi-
plicative integration with recurrent neural networks.
In Proc. NIPS.

Barret Zoph and Quoc V Le. 2016. Neural architecture
search with reinforcement learning. arXiv preprint
arXiv:1611.01578 .

A Corpus Statistics

Fig. 4 show distribution of frequencies of OOV
word types in 6 languages.

1501

FR DE

ES CS

FI RU

Figure 4: Histogram of OOV word frequencies in MWC Corpus in different languages.

1502

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1503–1513
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1138

Bandit Structured Prediction
for Neural Sequence-to-Sequence Learning

Julia Kreutzer∗ and Artem Sokolov∗ and Stefan Riezler†,∗
∗Computational Linguistics & †IWR, Heidelberg University, Germany

{kreutzer,sokolov,riezler}@cl.uni-heidelberg.de

Abstract

Bandit structured prediction describes a
stochastic optimization framework where
learning is performed from partial feed-
back. This feedback is received in
the form of a task loss evaluation to
a predicted output structure, without
having access to gold standard struc-
tures. We advance this framework by
lifting linear bandit learning to neural
sequence-to-sequence learning problems
using attention-based recurrent neural net-
works. Furthermore, we show how to in-
corporate control variates into our learning
algorithms for variance reduction and im-
proved generalization. We present an eval-
uation on a neural machine translation task
that shows improvements of up to 5.89
BLEU points for domain adaptation from
simulated bandit feedback.

1 Introduction

Many NLP tasks involve learning to predict a
structured output such as a sequence, a tree or a
graph. Sequence-to-sequence learning with neu-
ral networks has recently become a popular ap-
proach that allows tackling structured prediction
as a mapping problem between variable-length se-
quences, e.g., from foreign language sentences
into target-language sentences (Sutskever et al.,
2014), or from natural language input sentences
into linearized versions of syntactic (Vinyals et al.,
2015) or semantic parses (Jia and Liang, 2016).
A known bottleneck in structured prediction is
the requirement of large amounts of gold-standard
structures for supervised learning of model pa-
rameters, especially for data-hungry neural net-
work models. Sokolov et al. (2016a,b) presented
a framework for stochastic structured prediction
under bandit feedback that alleviates the need for

labeled output structures in learning: Following
an online learning protocol, on each iteration the
learner receives an input, predicts an output struc-
ture, and receives partial feedback in form of a task
loss evaluation of the predicted structure.1 They
“banditize” several objective functions for linear
structured predictions, and evaluate the resulting
algorithms with simulated bandit feedback on var-
ious NLP tasks.

We show how to lift linear structured predic-
tion under bandit feedback to non-linear models
for sequence-to-sequence learning with attention-
based recurrent neural networks (Bahdanau et al.,
2015). Our framework is applicable to sequence-
to-sequence learning from various types of weak
feedback. For example, extracting learning signals
from the execution of structured outputs against
databases has been established in the communi-
ties of semantic parsing and grounded language
learning since more than a decade (Zettlemoyer
and Collins, 2005; Clarke et al., 2010; Liang et al.,
2011). Our work can build the basis for neural se-
mantic parsing from weak feedback.

In this paper, we focus on the application of ma-
chine translation via neural sequence-to-sequence
learning. The standard procedure of training neu-
ral machine translation (NMT) models is to com-
pare their output to human-generated translations
and to infer model updates from this comparison.
However, the creation of reference translations or
post-edits requires professional expertise of users.
Our framework allows NMT models to learn from
feedback that is weaker than human references or
post-edits. One could imagine a scenario of per-
sonalized machine translation where translations
have to be adapted to the user’s specific purpose
and domain. The feedback required by our meth-
ods can be provided by laymen users or can even

1The name “bandit feedback” is inherited from the prob-
lem of maximizing the reward for a sequence of pulls of arms
of so-called “one-armed bandit” slot machines.

1503

https://doi.org/10.18653/v1/P17-1138

be implicit, e.g., inferred from user interactions
with the translated content on a web page.

Starting from the work of Sokolov et al.
(2016a,b), we lift their objectives to neural
sequence-to-sequence learning. We evaluate the
resulting algorithms on the task of French-to-
English translation domain adaptation where a
seed model trained on Europarl data is adapted
to the NewsCommentary and the TED talks do-
main with simulated weak feedback. By learn-
ing from this feedback, we find 4.08 BLEU points
improvements on NewsCommentary, and 5.89
BLEU points improvement on TED. Furthermore,
we show how control variates can be integrated
in our algorithms, yielding faster learning and im-
proved generalization in our experiments.

2 Related Work

NMT models are most commonly trained un-
der a word-level maximum likelihood objective.
Even though this objective has successfully been
applied to many sequence-to-sequence learning
tasks, the resulting models suffer from exposure
bias, since they learn to generate output words
based on the history of given reference words, not
on their own predictions. Ranzato et al. (2016) ap-
ply techniques from reinforcement learning (Sut-
ton and Barto, 1998; Sutton et al., 2000) and im-
itation learning (Schaal, 1999; Ross et al., 2011;
Daumé et al., 2009) to learn from feedback to the
model’s own predictions. Furthermore, they ad-
dress the mismatch between word-level loss and
sequence-level evaluation metric by using a mix-
ture of the REINFORCE (Williams, 1992) algo-
rithm and the standard maximum likelihood train-
ing to directly optimize a sequence-level loss.
Similarly, Shen et al. (2016) lift minimum risk
training (Och, 2003; Smith and Eisner, 2006; Gim-
pel and Smith, 2010; Yuille and He, 2012; He
and Deng, 2012) from linear models for machine
translation to NMT. These works are closely re-
lated to ours in that they use the technique of score
function gradient estimators (Fu, 2006; Schulman
et al., 2015) for stochastic learning. However, the
learning environment of Shen et al. (2016) is dif-
ferent from ours in that they approximate the true
gradient of the risk objective in a full information
setting by sampling a subset of translations and
computing the expectation over their rewards. In
our bandit setting, feedback to only a single sam-
ple per sentence is available, making the learning

problem much harder. The approach by Ranzato
et al. (2016) approximates the expectation with
single samples, but still requires reference trans-
lations which are unavailable in the bandit setting.

To our knowledge, the only work on training
NMT from weak feedback is the work by He et al.
(2016). They propose a dual-learning mechanism
where two translation models are jointly trained
on monolingual data. The feedback in this case is
a reward signal from language models and a recon-
struction error. This is attractive because the feed-
back can automatically be generated from mono-
lingual data and does not require any human ref-
erences. However, we are interested in using esti-
mates of human feedback on translation quality to
directly adapt the model to the users’ needs.

Our approach follows most closely the work of
Sokolov et al. (2016a,b). They introduce ban-
dit learning objectives for structured prediction
and apply them to various NLP tasks, including
machine translation with linear models. Their
approach can be seen as an instantiation of re-
inforcement learning to one-state Markov deci-
sion processes under linear policy models. In
this paper, we transfer their algorithms to non-
linear sequence-to-sequence learning. Sokolov
et al. (2016a) showed applications of linear bandit
learning to tasks such as multiclass-classification,
OCR, and chunking, where learning can be done
from scratch. We focus on lifting their linear ma-
chine translation experiments to the more complex
NMT that requires a warm start for training. This
is done by training a seed model on one domain
and adapting it to a new domain based on bandit
feedback only. For this task we build on the work
of Freitag and Al-Onaizan (2016), who investigate
strategies to find the best of both worlds: models
that adapt well to the new domain without deteri-
orating on the old domain. In contrast to previous
approaches to domain adaptation for NMT, we do
not require in-domain parallel data, but consult di-
rect feedback to the translations generated for the
new domain.

3 Neural Machine Translation

Neural models for machine translation are based
on a sequence-to-sequence learning architecture
consisting of an encoder and a decoder (Cho et al.,
2014; Sutskever et al., 2014; Bahdanau et al.,
2015). An encoder Recurrent Neural Network
(RNN) reads in the source sentence and a decoder

1504

RNN generates the target sentence conditioned on
the encoded source.

The input to the encoder is a sequence of vec-
tors x = (x1, . . . , xTx) representing a sequence
of source words of length Tx. In the approach
of Sutskever et al. (2014), they are encoded into
a single vector c = q({h1, . . . , hTx}), where
ht = f(xt, ht−1) is the hidden state of the RNN
at time t. Several choices are possible for the
non-linear functions f and q: Here we are using a
Gated Recurrent Unit (GRU) (Chung et al., 2014)
for f , and for q an attention mechanism that de-
fines the context vector as a weighted sum over
encoder hidden states (Bahdanau et al., 2015; Lu-
ong et al., 2015a).

The decoder RNN predicts the next target word
yt at time t given the context vector c and the pre-
vious target words y<t = {y1, . . . , yt−1} from
a probability distribution over the target vocab-
ulary V . This distribution is the result of a
softmax transformation of the decoder outputs
o = {o1, . . . , oTy}, such that

pθ(yt = wi|y<t, c) =
exp(owi)∑V
v=1 exp(owv)

.

The probability of a full sequence of outputs y =
(y1, . . . , yTy) of length Ty is defined as the product
of the conditional word probabilities:

pθ(y|x) =

Ty∏

t=1

pθ(yt|y<t, c).

Since this encoder-decoder architecture is fully
differentiable, it can be trained with gradient de-
scent methods. Given a parallel training set of S
source sentences and their reference translations
D = {(x(s),y(s))}Ss=1, we can define a word-
level Maximum Likelihood Estimation (MLE) ob-
jective, which aims to find the parameters

θ̂MLE = arg max
θ

LMLE(θ)

of the following loss function:

LMLE(θ) =

S∑

s=1

log pθ(y
(s)|x(s))

=

S∑

s=1

Ty∑

t=1

log pθ(yt|x(s),y
(s)
<t).

This loss function is non-convex for the case of
neural networks. Clever initialization strategies,

Algorithm 1 Neural Bandit Structured Prediction
Input: Sequence of learning rates γk
Output: Optimal parameters θ̂

1: Initialize θ0
2: for k = 0, . . . ,K do
3: Observe xk
4: Sample ỹk ∼ pθ(y|xk)
5: Obtain feedback ∆(ỹk)
6: θk+1 = θk − γk sk
7: Choose a solution θ̂ from the list {θ0, . . . , θK}

adaptive learning rates and momentum techniques
are required to find good local maxima and to
speed up convergence (Sutskever et al., 2013).
Another trick of the trade is to ensemble several
models with different random initializations to im-
prove over single models (Luong et al., 2015a).

At test time, we face a search problem to find
the sequence of target words with the highest prob-
ability. Beam search reduces the search error in
comparison to greedy search, but also exponen-
tially increases decoding time.

4 Neural Bandit Structured Prediction

Algorithm 1 is an adaptation of the Bandit Struc-
tured Prediction algorithm of Sokolov et al.
(2016b) to neural models: For K rounds, a model
with parameters θ receives an input, samples
an output structure, and receives user feedback.
Based on this feedback, a stochastic gradient sk is
computed and the model parameters are updated.
As a post-optimization step, a solution θ̂ is se-
lected from the iterates. This is done with online-
to-batch conversion by choosing the model with
optimal performance on held-out data.

The core of the algorithm is the sampling: if the
model distribution is very peaked, the model ex-
ploits, i.e., it presents the most probable outputs
to the user. If the distribution is close to uniform,
the model explores, i.e., it presents random out-
puts to the user. The balance between exploitation
and exploration is crucial to the learning process:
in the beginning the model is rather uninformed
and needs to explore in order to find outputs with
high reward, while in the end it ideally converges
towards a peaked distribution that exactly fits the
user’s needs. Pre-training the model, i.e. set-
ting θ0 wisely, ensures a reasonable exploitation-
exploration trade-off.

This online learning algorithm can be applied

1505

to any objective L provided the stochastic gradi-
ents sk are unbiased estimators of the true gradi-
ent of the objective, i.e., we require ∇L = E[sk].
In the following, we will present objectives from
Sokolov et al. (2016b) transferred to neural mod-
els, and explain how they can be enhanced by con-
trol variates.

4.1 Expected Loss (EL) Minimization
The first objective is defined as the expectation of
a task loss ∆(ỹ), e.g. −BLEU(ỹ), over all input
and output structures:

LEL(θ) =Ep(x) pθ(ỹ|x) [∆(ỹ)] . (1)

In the case of full-information learning where ref-
erence outputs are available, we could evaluate all
possible outputs against the reference to obtain an
exact estimation of the loss function. However,
this is not feasible in our setting since we only re-
ceive partial feedback for a single output structure
per input. Instead, we use stochastic approxima-
tion to optimize this loss. The stochastic gradient
for this objective is computed as follows:

sEL
k =∆(ỹ)

∂ log pθ(ỹ|xk)
∂θ

. (2)

Objective (1) is known from minimum risk train-
ing (Och, 2003) and has been lifted to NMT by
Shen et al. (2016) – but not for learning from weak
feedback. Equation (2) is an instance of the score
function gradient estimator (Fu, 2006) where

∇ log pθ(ỹ|xk) (3)

denotes the score function. We give an algorithm
to sample structures from an encoder-decoder
model in Algorithm 2. It corresponds to the algo-
rithm presented by Shen et al. (2016) with the dif-
ference that it samples single structures, does not
assume a reference structure, and additionally re-
turns the sample probabilities. A similar objective
has also been used in the REINFORCE algorithm
(Williams, 1992) which has been adapted to NMT
by Ranzato et al. (2016).

4.2 Pairwise Preference Ranking (PR)
The previous objective requires numerical feed-
back as an estimate of translation quality. Alterna-
tively, we can learn from pairwise preference judg-
ments that are formalized in preference ranking
objectives. Let P(x) = {〈yi,yj〉 |yi,yj ∈ Y(x)}
denote the set of output pairs for an input x, and

let ∆(〈yi,yj〉) : P(x) → [0, 1] denote a task loss
function that specifies a dispreference of yi over
yj . In our experimental simulations we use two
types of pairwise feedback. Firstly, continuous
pairwise feedback2 is computed as

∆(〈yi,yj〉) = ∆(yj)−∆(yi),

and secondly, binary feedback is computed as

∆(〈yi,yj〉) =

{
1 if ∆(yj) > ∆(yi),

0 otherwise.

Analogously to the sequence-level sampling for
linear models (Sokolov et al., 2016b), we define
the following probabilities for word-level sam-
pling:

p+θ (ỹt = wi|x, ŷ<t) =
exp(owi)∑V
v=1 exp(owv)

,

p−θ (ỹt = wj |x, ŷ<t) =
exp(−owj)∑V
v=1 exp(−owv)

.

The effect of the negation within the softmax is
that the two distributions p+θ and p−θ rank the next
candidate target words ỹt (given the same his-
tory, here the greedy output ŷ<t) in opposite or-
der. Globally normalized models as in the linear
case, or LSTM-CRFs (Huang et al., 2015) for the
non-linear case would allow sampling full struc-
tures such that the ranking over full structures is
reversed. But in the case of locally normalized
RNNs we retrieve only locally reversed-rank sam-
ples. Since we want the model to learn to rank
ỹi over ỹj , we would have to sample ỹi word-by-
word from p+θ and ỹj from p−θ . However, sam-
pling all words of ỹj from p−θ leads to transla-
tions that are neither fluent nor source-related, so
we propose to randomly choose one position of
ỹj where the next word is sampled from p−θ and
sample the remaining words from p+θ . We found
that this method produces suitable negative sam-
ples, which are only slightly perturbed and still
relatively fluent and source-related. A detailed al-
gorithm is given in Algorithm 3.

In the same manner as for linear models, we de-
fine the probability of a pair of sequences as

pθ(〈ỹi, ỹj〉 |x) = p+θ (ỹi|x)× p−θ (ỹj |x).

2Note that our definition of continuous feedback is
slightly different from the one proposed in Sokolov et al.
(2016b) where updates are only made for misrankings.

1506

Algorithm 2 Sampling Structures

Input: Model θ, target sequence length limit Ty
Output: Sequence of words w = (w1, . . . , wT y)

and log-probability p
1: w0 = START, p0 = 0
2: w = (w0)
3: for t← 1 . . . Ty do
4: wt ∼ pθ(w|x,w<t)
5: pt = pt−1 + log pθ(w|x,w<t)
6: w = (w1, . . . , wt−1, wt)
7: end for
8: Return w and pT

Note that with the word-based sampling scheme
described above, the sequence ỹj also includes
words sampled from p+θ .
The pairwise preference ranking objective ex-
presses an expectation over losses over these pairs:

LPR(θ) =Ep(x) pθ(〈ỹi,ỹj〉|x) [∆(〈ỹi, ỹj〉)] . (4)

The stochastic gradient for this objective is

sPR
k =∆(〈ỹi, ỹj〉) (5)

×
(
∂ log p+θ (ỹi|xk)

∂θ
+
∂ log p−θ (ỹj |xk)

∂θ

)
.

This training procedure resembles well-known ap-
proaches for noise contrastive estimation (Gut-
mann and Hyvärinen, 2010) with negative sam-
pling that are commonly used for neural language
modeling (Collobert et al., 2011; Mnih and Teh,
2012; Mikolov et al., 2013). In these approaches,
negative samples are drawn from a non-parametric
noise distribution, whereas we draw them from the
perturbed model distribution.

4.3 Control Variates
The stochastic gradients defined in equations (2)
and (5) can be used in stochastic gradient descent
optimization (Bottou et al., 2016) where the full
gradient is approximated using a minibatch or a
single example in each update. The stochastic
choice, in our case on inputs and outputs, intro-
duces noise that leads to slower convergence and
degrades performance. In the following, we ex-
plain how antithetic and additive control variate
techniques from Monte Carlo simulation (Ross,
2013) can be used to remedy these problems.

The idea of additive control variates is to aug-
ment a random variable X whose expectation is

Algorithm 3 Sampling Pairs of Structures

Input: Model θ, target sequence length limit Ty
Output: Pair of sequences 〈w,w′〉 and their log-

probability p
1: p0 = 0
2: w,w′, ŵ = (START)
3: i ∼ U(1, T)
4: for t← 1 . . . Ty do
5: ŵt = arg maxw∈V p

+
θ (w|x, ŵ<t)

6: wt ∼ p+θ (w|x, ŵ<t)
7: pt = pt−1 + log p+θ (wt|x, ŵ<t)
8: if i = t then
9: w′t ∼ p−θ (w|x, ŵ<t)

10: pt = pt + log p−θ (w′t|x, ŵ<t)
11: else
12: w′t ∼ p+θ (w|x, ŵ<t)
13: pt = pt + log p+θ (w′t|x, ŵ<t)
14: end if
15: w = (w1, . . . , wt−1, wt)
16: w′ = (w′1, . . . , w

′
t−1, w

′
t)

17: ŵ = (ŵ1, . . . , ŵt−1, ŵt)
18: end for
19: Return 〈w,w′〉 and pT

sought, by another random variable Y to which X
is highly correlated. Y is then called the control
variate. Let Ȳ furthermore denote its expectation.
Then the following quantityX−ĉ Y+ĉ Ȳ is an un-
biased estimator of E[X]. In our case, the random
variable of interest is the noisy gradient X = sk
from Equation (2). The variance reduction effect
of control variates can be seen by computing the
variance of this quantity:

Var(X − ĉ Y) = Var(X) + ĉ2Var(Y) (6)

− 2ĉCov(X,Y).

Choosing a control variate such that Cov(X,Y)
is positive and high enough, the variance of the
gradient estimate will be reduced.

An example is the average reward baseline
known from reinforcement learning (Williams,
1992), yielding

Yk = ∇ log pθ(ỹ|xk)
1

k

k∑

j=1

∆(ỹj). (7)

The optimal scalar ĉ can be derived easily by tak-
ing the derivative of (6), leading to ĉ = Cov(X,Y)

Var(X) .
This technique has been applied to using the score

1507

function (Equation (3)) as control variate in Ran-
ganath et al. (2014), yielding the following control
variate:

Y k = ∇ log pθ(ỹ|xk). (8)

Note that for both types of control variates, (7) and
(8), the expectation Ȳ is zero, simplifying the im-
plementation. However, the optimal scalar ĉ has
to be estimated for every entry of the gradient sep-
arately for the score function control variate. We
will explore both types of control variates for the
stochastic gradient (2) in our experiments.

A further effect of control variates is to reduce
the magnitude of the gradient, the more so the
more the stochastic gradient and the control vari-
ate covary. For L-Lipschitz continuous functions,
a reduced gradient norm directly leads to a bound
on L which appears in the algorithmic stability
bounds of Hardt et al. (2016). This effect of im-
proved generalization by control variates is empir-
ically validated in our experiments.

A similar variance reduction effect can be ob-
tained by antithetic control variates. Here E[X] is
approximated by the estimator X1+X2

2 whose vari-
ance is

Var
(
X1 +X2

2

)
=

1

4

(
Var(X1) (9)

+ Var(X2) + 2Cov(X1, X2)
)
.

Choosing the variates X1 and X2 such that
Cov(X1, X2) is negative will reduce the variance
of the gradient estimate. Under certain assump-
tions, the stochastic gradient (5) of the pairwise
preference objective can be interpreted as an an-
tithetic estimator of the score function (3). The
antithetic variates in this case would be

X1 = ∇ log p+θ (ỹi|xk), (10)

X2 = ∇ log p−θ (ỹj |xk),

where an antithetic dependence of X2 on X1 can
be achieved by construction of p+θ and p−θ (see
Capriotti (2008) which is loosely related to our
approach). Similar to control variates, antithetic
variates have the effect of shrinking the gradient
norm, the more so the more the variates are anti-
thetically correlated, leading to possible improve-
ments in algorithmic stability (Hardt et al., 2016).

5 Experiments

In the following, we present an experimental eval-
uation of the learning objectives presented above

Domain Version Train Valid. Test

Europarl v.5 1.6M 2k 2k
News Commentary WMT07 40k 1k 2k
TED TED2013 153k 2k 2k

Table 1: Number of parallel sentences for train-
ing, validation and test sets for French-to-English
domain adaptation.

on machine translation domain adaptation. We
compare how the presented neural bandit learn-
ing objectives perform in comparison to linear
models, then discuss the handling of unknown
words and eventually investigate the impact of
techniques for variance reduction.

5.1 Setup

Data. We perform domain adaptation from Eu-
roparl (EP) to News Commentary (NC) and TED
talks (TED) for translations from French to En-
glish. Table 1 provides details about the datasets.
For data pre-processing we follow the procedure
of Sokolov et al. (2016a,b) using cdec tools for
filtering, lowercasing and tokenization. The chal-
lenge for the bandit learner is to adapt from the EP
domain to NC or TED with weak feedback only.

NMT Models. We choose a standard encoder-
decoder architecture with single-layer GRU RNNs
with 800 hidden units, a word embedding size of
300 and tanh activations. The encoder consists
of a bidirectional RNN, where the hidden states
of backward and forward RNN are concatenated.
The decoder uses the attention mechanism pro-
posed by Bahdanau et al. (2015).3 Source and
target vocabularies contain the 30k most frequent
words of the respective parts of the training cor-
pus. We limit the maximum sentence length to
50. Dropout (Srivastava et al., 2014) with a prob-
ability of 0.5 is applied to the network in several
places: on the embedded inputs, before the output
layer, and on the initial state of the decoder RNN.
The gradient is clipped when its norms exceeds
1.0 to prevent exploding gradients and stabilize
learning (Pascanu et al., 2013). All models are im-
plemented and trained with the sequence learning
framework Neural Monkey (Libovickỳ et al.,

3We do not use beam search nor ensembling, although we
are aware that higher performance is almost guaranteed with
these techniques. Our goal is to show relative differences be-
tween different models, so a simple setup is sufficient for the
purpose of our experiments.

1508

2016; Bojar et al., 2016).4 They are trained with a
minibatch size of 20, fitting onto single 8GB GPU
machines. The training dataset is shuffled before
each epoch.

Baselines. The out-of-domain baseline is trained
on the EP training set with standard MLE. For
both NC and TED domains, we train two full-
information in-domain baselines: The first in-
domain baseline is trained on the relatively small
in-domain training data. The second in-domain
baseline starts from the out-of-domain model and
is further trained on the in-domain data. All base-
lines are trained with MLE and Adam (Kingma
and Ba, 2014) (α = 1× 10−4, β1 = 0.9,
β2 = 0.999) until their performance stops in-
creasing on respective held-out validation sets.
The gap between the performance of the out-of-
domain model and the in-domain models defines
the range of possible improvements for bandit
learning. All models are evaluated with Neural
Monkey’s mteval. For statistical significance
tests we used Approximate Randomization testing
(Noreen, 1989).

Bandit Learning. Bandit learning starts with
the parameters of the out-of-domain baseline.
The bandit models are expected to improve over
the out-of-domain baseline by receiving feedback
from the new domain, but at most to reach the in-
domain baseline since the feedback is weak. The
models are trained with Adam on in-domain data
for at most 20 epochs. Adam’s step-size param-
eter α was tuned on the validation set and was
found to perform best when set to 1× 10−5 for
non-pairwise, 1× 10−6 for pairwise objectives on
NC, 1× 10−7 for pairwise objectives on TED.
The best model parameters, selected with early
stopping on the in-domain validation set, are eval-
uated on the held-out in-domain test set. In the
spirit of Freitag and Al-Onaizan (2016) they are
additionally evaluated on the out-of-domain test
set to investigate how much knowledge of the old
domain the models lose while adapting to the new
domain. Bandit learning experiments are repeated
two times, with different random seeds, and mean
BLEU scores with standard deviation are reported.

4The Neural Monkey fork https://github.
com/juliakreutzer/bandit-neuralmonkey con-
tains bandit learning objectives and the configuration files for
our experiments.

Feedback Simulation. Weak feedback is simu-
lated from the target side of the parallel corpus,
but references are never revealed to the learner.
Sokolov et al. (2016a,b) used a smoothed version
of per-sentence BLEU for simulating the weak
feedback for generated translations from the com-
parison with reference translations. Here, we use
gGLEU instead, which Wu et al. (2016) recently
introduced for learning from sentence-level re-
ward signals correlating well with corpus BLEU.
This metric is closely related to BLEU, but does
not have a brevity penalty and considers the recall
of matching n-grams. It is defined as the mini-
mum of recall and precision over the total n-grams
up to a certain n. Hence, for our experiments
∆(ỹ) = −gGLEU(ỹ,y), where ỹ is a sample
translation and y is the reference translation.

Unknown words. One drawback of NMT mod-
els is their limitation to a fixed source- and target
vocabulary. In a domain adaptation setting, this
limitation has a critical impact to the translation
quality. The larger the distance between old and
new domain, the more words in the new domain
are unknown to the models trained on the old do-
main (represented with a special UNK token). We
consider two strategies for this problem for our ex-
periments:

1. UNK-Replace: Jean et al. (2015) and Luong
et al. (2015b) replace generated UNK tokens
with aligned source words or their lexical
translations in a post-processing step. Fre-
itag and Al-Onaizan (2016) and Hashimoto
et al. (2016) demonstrated that this technique
is beneficial for NMT domain adaptation.

2. BPE: Sennrich et al. (2016) introduce byte
pair encoding (BPE) for word segmenta-
tion to build translation models on sub-word
units. Rare words are decomposed into sub-
word units, while the most frequent words re-
main single vocabulary items.

For UNK-Replace we use fast align to gen-
erate lexical translations on the EP training data.
When an UNK token is generated, we look up the
attention weights and find the source token that
receives most attention in this step. If possible,
we replace the UNK token by its lexical trans-
lation. If it is not included in the lexical trans-
lations, it is replaced by the source token. The
main benefit of this technique is that it deals well

1509

Algorithm Train data Iter. EP NC TED

MLE EP 12.3M 31.44 26.98 23.48
MLE-UNK 31.82 28.00 24.59
MLE-BPE 12.0M 31.81 27.20 24.35

Table 2: Out-of-domain NMT baseline results
(BLEU) on in- and out-of-domain test sets trained
only on EP data.

with unknown named entities that are just passed
through from source to target. However, since
it is a non-differentiable post-processing step, the
NMT model cannot directly be trained for this be-
havior. Therefore we also train sub-word level
NMT with BPE. We apply 29,800 merge opera-
tions to obtain a vocabulary of 29,908 sub-words.
The procedure for training these models is exactly
the same as for the word-based models. The ad-
vantage of this method is that the model is in prin-
ciple able to generate any word composing it from
sub-word units. However, training sequences be-
come longer and candidate translations are sam-
pled on a sub-word level, which introduces the risk
of sampling nonsense words.

Control variates. We implement the average
baseline control variate as defined in Equation 7,
which results in keeping an running average over
previous losses. Intuitively, absolute gGLEU feed-
back is turned into relative feedback that reflects
the current state of the model. The sign of the up-
date is switched when the gGLEU for the current
sample is worse than the average gGLEU, so the
model makes a step away from it, while in the case
of absolute feedback it would still make a small
step towards it. In addition, we implement the
score function control variate with a running es-
timate ĉk = 1

k

∑k
j=1

Cov(sj ,∇ log pθ(ỹj |xj))
Var(sj)

.

5.2 Results

In the following, we discuss the results of the
experimental evaluation of the models described
above. The out-of-domain baseline results are
given in Table 2, those for the in-domain baselines
in 3. The results for bandit learning on NC and
TED are reported in Table 4. For bandit learning
we give mean improvements over the respective
out-of-domain baselines in the Diff.-columns.

Baselines. The NMT out-of-domain baselines,
reported in Table 2, perform comparable to the
linear baseline from Sokolov et al. (2016a,b) on

Algorithm Train data Iter. EP NC

MLE NC 978k 13.67 22.32
MLE-UNK 13.83 22.56
MLE-BPE 1.0M 14.09 23.01

MLE EP→NC 160k 26.66 31.91
MLE-UNK 27.19 33.19
MLE-BPE 160k 27.14 33.31

Algorithm Train data Iter. EP TED

MLE TED 2.2M 14.16 32.71
MLE-UNK 15.15 33.16
MLE-BPE 3.0M 14.18 32.81

MLE EP→TED 460k 23.88 33.65
MLE-UNK 24.64 35.57
MLE-BPE 2.2M 23.39 36.23

Table 3: In-domain NMT baselines results
(BLEU) on in- and out-of-domain test sets. The
EP→NC is first trained on EP, then fine-tuned on
NC. The EP→TED is first trained on EP, then fine-
tuned on TED.

NC, but the in-domain EP→NC (Table 3) base-
lines outperform the linear baseline by more than 3
BLEU points. Continuing training of a pre-trained
out-of-domain model on a small amount of in do-
main data is very hence effective, whilst the per-
formance of the models solely trained on small in-
domain data is highly dependent on the size of this
training data set. For TED, the in-domain dataset
is almost four times as big as the NC training set,
so the in-domain baselines perform better. This ef-
fect was previously observed by Luong and Man-
ning (2015) and Freitag and Al-Onaizan (2016).

Bandit Learning. The NMT bandit models that
optimize the EL objective yield generally a much
higher improvement over the out-of-domain mod-
els than the corresponding linear models: As listed
in Table 4, we find improvements of between 2.33
and 2.89 BLEU points on the NC domain, and be-
tween 4.18 and 5.18 BLEU points on the TED do-
main. In contrast, the linear models with sparse
features and hypergraph re-decoding achieved a
maximum improvement of 0.82 BLEU points on
NC.

Optimization of the PR objective shows im-
provements of up to 1.79 BLEU points on NC
(compared to 0.6 BLEU points for linear mod-
els), but no significant improvement on TED. The
biggest impact of this variance reduction tech-

1510

Algorithm Iter. EP NC Diff.
EL 317k 30.36±0.20 29.34±0.29 2.36
EL-UNK* 317k 30.73±0.20 30.33±0.42 2.33
EL-UNK** 349k 30.67±0.04 30.45±0.27 2.45
EL-BPE 543k 30.09±0.31 30.09±0.01 2.89

PR-UNK** (bin) 22k 30.76±0.03 29.40±0.02 1.40
PR-BPE (bin) 14k 31.02±0.09 28.92±0.03 1.72
PR-UNK** (cont) 12k 30.81±0.02 29.43±0.02 1.43
PR-BPE (cont) 8k 30.91±0.01 28.99±0.00 1.79

SF-EL-UNK** 713k 29.97±0.09 30.61±0.05 2.61
SF-EL-BPE 375k 30.46±0.10 30.20±0.11 3.00

BL-EL-UNK** 531k 30.19±0.37 31.47±0.09 3.47
BL-EL-BPE 755k 29.88±0.07 31.28±0.24 4.08

(a) Domain adaptation from EP to NC.

Algorithm Iter. EP TED Diff.
EL 976k 29.34±0.42 27.66±0.03 4.18
EL-UNK* 976k 29.68±0.29 29.44±0.06 4.85
EL-UNK** 1.1M 29.62±0.15 29.77±0.15 5.18
EL-BPE 831k 30.03±0.43 28.54±0.04 4.18

PR-UNK** (bin) 14k 31.84±0.01 24.85±0.00 0.26
PR-BPE (bin) 69k 31.77±0.01 24.55±0.01 0.20
PR-UNK** (cont) 9k 31.85±0.02 24.85±0.01 0.26
PR-BPE (cont) 55k 31.79±0.02 24.59±0.01 0.24

SF-EL-UNK** 658k 30.18±0.15 29.12±0.10 4.53
SF-EL-BPE 590k 30.32±0.26 28.51±0.18 4.16

BL-EL-UNK** 644k 29.91±0.03 30.44±0.13 5.85
BL-EL-BPE 742k 29.84±0.61 30.24±0.46 5.89

(b) Domain adaptation from EP to TED.

Table 4: Bandit NMT results (BLEU) on EP, NC and TED test sets. UNK* models involve UNK
replacement only during testing, UNK** include UNK replacement already during training. For PR,
either binary (bin) or continuous feedback (cont) was used. Control variates: average reward baseline
(BL) and score function (SF). Results are averaged over two independent runs and standard deviation is
given in subscripts. Improvements over respective out-of-domain models are given in the Diff.-columns.

nique is a considerable speedup of training speed
of 1 to 2 orders of magnitude compared to EL.

A beneficial side-effect of NMT learning from
weak feedback is that the knowledge from the
out-domain training is not simply “overwritten”.
This happens to full-information in-domain tun-
ing where more than 4 BLEU points are lost in
an evaluation on the out-domain data. On the con-
trary, the bandit learning models still achieve high
results on the original domain. This is useful for
conservative domain adaptation, where the perfor-
mance of the models in the old domain is still rel-
evant.

Unknown words. By handling unknown words
with UNK-Replace or BPEs, we find consistent
improvements over the plain word-based models
for all baselines and bandit learning models. We
observe that the models with UNK replacement
essentially benefit from passing through source
tokens, and only marginally from lexical trans-
lations. Bandit learning models take particular
advantage of UNK replacement when it is in-
cluded already during training. The sub-word
models achieve the overall highest improvement
over the baselines, although sometimes generating
nonsense words.

Control variates. Applying the score function
control variate to EL optimization does not largely
change learning speed or BLEU results. How-
ever, the average reward control variate leads to

improvements of around 1 BLEU over the EL op-
timization without variance reduction on both do-
mains.

6 Conclusion

In this paper, we showed how to lift structured pre-
diction under bandit feedback from linear models
to non-linear sequence-to-sequence learning us-
ing recurrent neural networks with attention. We
introduced algorithms to train these models un-
der numerical feedback to single output structures
or under preference rankings over pairs of struc-
tures. In our experimental evaluation on the task of
neural machine translation domain adaptation, we
found relative improvements of up to 5.89 BLEU
points over out-of-domain seed models, outper-
forming also linear bandit models. Furthermore,
we argued that pairwise ranking under bandit feed-
back can be interpreted as a use of antithetic vari-
ates, and we showed how to include average re-
ward and score function baselines as control vari-
ates for improved training speed and generaliza-
tion. In future work, we would like to apply the
presented non-linear bandit learners to other struc-
tured prediction tasks.

Acknowledgments

This research was supported in part by the Ger-
man research foundation (DFG), and in part by a
research cooperation grant with the Amazon De-
velopment Center Germany.

1511

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR. San Diego,
CA.

Ondřej Bojar, Roman Sudarikov, Tom Kocmi, Jindřich
Helcl, and Ondřej Cıfka. 2016. UFAL submissions
to the IWSLT 2016 MT track. In IWSLT . Seattle,
WA.

Leon Bottou, Frank E. Curtis, and Jorge Nocedal.
2016. Optimization methods for large-scale ma-
chine learning. eprint arXiv:1606.04838v1 .

Luca Capriotti. 2008. Reducing the variance of likeli-
hood ratio greeks in Monte Carlo. In WCS. Miami,
FL.

Kyunghyun Cho, Bart van Merriënboer, Çalar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In EMNLP.
Doha, Qatar.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. eprint arXiv:1412.3555 .

James Clarke, Dan Goldwasser, Wing-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from the
world’s response. In CoNLL. Portland, OR.

Ronan Collobert, Jason Weston, Leon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. JMLR 12:2461–2505.

Hal Daumé, John Langford, and Daniel Marcu. 2009.
Search-based structured prediction. Machine learn-
ing 75(3):297–325.

Markus Freitag and Yaser Al-Onaizan. 2016. Fast
domain adaptation for neural machine translation.
eprint arXiv:1612.06897 .

Michael C. Fu. 2006. Gradient estimation. In S.G.
Henderson and B.L. Nelson, editors, Handbook in
Operations Research and Management Science, vol-
ume 13, pages 575–616.

Kevin Gimpel and Noah A. Smith. 2010. Softmax-
margin training for structured log-linear models.
Technical Report CMU-LTI-10-008, Carnegie Mel-
lon University.

Michael Gutmann and Aapo Hyvärinen. 2010. Noise-
contrastive estimation: A new estimation principle
for unnormalized statistical models. In AISTATS.
Sardinia, Italy.

Moritz Hardt, Ben Recht, and Yoram Singer. 2016.
Train faster, generalize better: Stability of stochastic
gradient descent. In ICML. New York, NY.

Kazuma Hashimoto, Akiko Eriguchi, and Yoshimasa
Tsuruoka. 2016. Domain adaptation and attention-
based unknown word replacement in chinese-to-
japanese neural machine translation. In COLING
Workshop on Asian Translation. Osaka, Japan.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tieyan Liu, and Wei-Ying Ma. 2016. Dual learning
for machine translation. In NIPS. Barcelona, Spain.

Xiaodong He and Li Deng. 2012. Maximum expected
BLEU training of phrase and lexicon translation
models. In ACL. Jeju Island, Korea.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
eprint arXiv:1508.01991 .

Sébastien Jean, Orhan Firat, Kyunghyun Cho, Roland
Memisevic, and Yoshua Bengio. 2015. Montreal
neural machine translation systems for WMT’15. In
WMT . Lisbon, Portugal.

Robin Jia and Percy Liang. 2016. Data recombination
for neural semantic parsing. In ACL. Berlin, Ger-
many.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. eprint
arXiv:1412.6980 .

Percy Liang, Michael I. Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In ACL-HLT . Portland, OR.

Jindřich Libovickỳ, Jindřich Helcl, Marek Tlustỳ,
Pavel Pecina, and Ondřej Bojar. 2016. CUNI system
for WMT16 automatic post-editing and multimodal
translation tasks. In WMT . Berlin, Germany.

Minh-Thang Luong and Christopher D. Manning.
2015. Stanford neural machine translation systems
for spoken language domains. In IWSLT . Da Nang,
Vietnam.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015a. Effective approaches to attention-
based neural machine translation. In EMNLP. Lis-
bon, Portugal.

Thang Luong, Ilya Sutskever, Quoc Le, Oriol Vinyals,
and Wojciech Zaremba. 2015b. Addressing the rare
word problem in neural machine translation. In
ACL. Beijing, China.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS. Lake Tahoe, CA.

Andriy Mnih and Yee Whye Teh. 2012. A fast and sim-
ple algorithm for training neural probabilistic lan-
guage models. In ICML. Edinburgh, Scotland.

Eric W. Noreen. 1989. Computer Intensive Methods
for Testing Hypotheses. An Introduction. Wiley.

1512

Franz J. Och. 2003. Minimum error rate training in
statistical machine translation. In HLT-NAACL. Ed-
monton, Canada.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In ICML. Atlanta, GA.

Rajesh Ranganath, Sean Gerrish, and David M. Blei.
2014. Black box variational inference. In AISTATS.
Reykjavik, Iceland.

MarcAurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks. In ICLR. San
Juan, Puerto Rico.

Sheldon M. Ross. 2013. Simulation. Elsevier, fifth edi-
tion.

Stéphane Ross, Geoffrey J Gordon, and Drew Bagnell.
2011. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In AIS-
TATS. Ft. Lauderdale, FL.

Stefan Schaal. 1999. Is imitation learning the route
to humanoid robots? Trends in Cognitive Sciences
3(6):233–242.

John Schulman, Nicolas Heess, Theophane Weber, and
Pieter Abbeel. 2015. Gradient estimation using
stochastic computation graphs. In NIPS. Montreal,
Canada.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In ACL. Berlin, Germany.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In ACL.
Berlin, Germany.

David A. Smith and Jason Eisner. 2006. Minimum
risk annealing for training log-linear models. In
COLING-ACL. Sydney, Australia.

Artem Sokolov, Julia Kreutzer, Christopher Lo, and
Stefan Riezler. 2016a. Learning structured predic-
tors from bandit feedback for interactive NLP. In
ACL. Berlin, Germany.

Artem Sokolov, Julia Kreutzer, Christopher Lo, and
Stefan Riezler. 2016b. Stochastic structured pre-
diction under bandit feedback. In NIPS. Barcelona,
Spain.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. JMLR 15(1):1929–1958.

Ilya Sutskever, James Martens, George E. Dahl, and
Geoffrey E. Hinton. 2013. On the importance of
initialization and momentum in deep learning. In
ICML. Atlanta, GA.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS. Montreal, Canada.

Richard S. Sutton and Andrew G. Barto. 1998. Re-
inforcement Learning. An Introduction. The MIT
Press.

Richard S. Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 2000. Policy gradient methods
for reinforcement learning with function approxima-
tion. In NIPS. Vancouver, Canada.

Oriol Vinyals, Lukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In NIPS. Montreal,
Canada.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning 20:229–256.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural machine
translation system: Bridging the gap between human
and machine translation. eprint arXiv:1609.08144 .

Alan Yuille and Xuming He. 2012. Probabilistic mod-
els of vision and max-margin methods. Frontiers of
Electrical and Electronic Engineering 7(1):94–106.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In UAI. Edinburgh, Scotland.

1513

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1514–1523
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1139

Prior Knowledge Integration for Neural Machine Translation
using Posterior Regularization

Jiacheng Zhang†, Yang Liu†‡∗, Huanbo Luan†, Jingfang Xu# and Maosong Sun†‡
†State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing, China
‡Jiangsu Collaborative Innovation Center for Language Competence, Jiangsu, China

#Sogou Inc., Beijing, China

Abstract

Although neural machine translation has
made significant progress recently, how
to integrate multiple overlapping, arbitrary
prior knowledge sources remains a chal-
lenge. In this work, we propose to use pos-
terior regularization to provide a general
framework for integrating prior knowl-
edge into neural machine translation. We
represent prior knowledge sources as fea-
tures in a log-linear model, which guides
the learning process of the neural trans-
lation model. Experiments on Chinese-
English translation show that our approach
leads to significant improvements.

1 Introduction

The past several years have witnessed the rapid de-
velopment of neural machine translation (NMT)
(Sutskever et al., 2014; Bahdanau et al., 2015),
which aims to model the translation process using
neural networks in an end-to-end manner. With
the capability of capturing long-distance depen-
dencies due to the gating (Hochreiter and Schmid-
huber, 1997; Cho et al., 2014) and attention (Bah-
danau et al., 2015) mechanisms, NMT has shown
remarkable superiority over conventional statisti-
cal machine translation (SMT) across a variety
of natural languages (Junczys-Dowmunt et al.,
2016).

Despite the apparent success, NMT still suffers
from one significant drawback: it is difficult to in-
tegrate prior knowledge into neural networks. On
one hand, neural networks use continuous real-
valued vectors to represent all language structures
involved in the translation process. While these
vector representations prove to be capable of cap-
turing translation regularities implicitly (Sutskever

∗Corresponding author: Yang Liu.

et al., 2014), it is hard to interpret each hidden state
in neural networks from a linguistic perspective.
On the other hand, prior knowledge in machine
translation is usually represented in discrete sym-
bolic forms such as dictionaries and rules (Niren-
burg, 1989) that explicitly encode translation regu-
larities. It is difficult to transform prior knowledge
represented in discrete forms to continuous repre-
sentations required by neural networks.

Therefore, a number of authors have endeav-
ored to integrate prior knowledge into NMT in re-
cent years, either by modifying model architec-
tures (Tu et al., 2016; Cohn et al., 2016; Tang
et al., 2016; Feng et al., 2016) or by modifying
training objectives (Cohn et al., 2016; Feng et al.,
2016; Cheng et al., 2016). For example, to address
the over-translation and under-translation prob-
lems widely observed in NMT, Tu et al. (2016)
directly extend standard NMT to model the cover-
age constraint that each source phrase should be
translated into exactly one target phrase (Koehn
et al., 2003). Alternatively, Cohn et al. (2016) and
Feng et al. (2016) propose to control the fertilities
of source words by appending additional additive
terms to training objectives.

Although these approaches have demonstrated
clear benefits of incorporating prior knowledge
into NMT, how to combine multiple overlapping,
arbitrary prior knowledge sources still remains a
major challenge. It is difficult to achieve this end
by directly modifying model architectures because
neural networks usually impose strong indepen-
dence assumptions between hidden states. As a
result, extending a neural model requires that the
interdependence of information sources be mod-
eled explicitly (Tu et al., 2016; Tang et al., 2016),
making it hard to extend. While this drawback can
be partly alleviated by appending additional addi-
tive terms to training objectives (Cohn et al., 2016;
Feng et al., 2016), these terms are restricted to a

1514

https://doi.org/10.18653/v1/P17-1139

limited number of simple constraints.
In this work, we propose a general frame-

work for integrating multiple overlapping, arbi-
trary prior knowledge sources into NMT using
posterior regularization (Ganchev et al., 2010).
Our framework is capable of incorporating in-
direct supervision via posterior distributions of
neural translation models. To represent prior
knowledge sources as arbitrary real-valued fea-
tures, we define the posterior distribution as a log-
linear model instead of a constrained posterior set
(Ganchev et al., 2010). This treatment not only
leads to a simpler and more efficient training al-
gorithm but also achieves better translation per-
formance. Experiments show that our approach
is able to incorporate a variety of features and
achieves significant improvements over posterior
regularization using constrained posterior sets on
NIST Chinese-English datasets.

2 Background

2.1 Neural Machine Translation

Given a source sentence x = x1, . . . , xi, . . . , xI
and a target sentence y = y1, . . . , yj , . . . , yJ , a
neural translation model (Sutskever et al., 2014;
Bahdanau et al., 2015) is usually factorized as a
product of word-level translation probabilities:

P (y|x;θ) =
J∏

j=1

P (yj |x,y<j ;θ), (1)

where θ is a set of model parameters and y<j =
y1, . . . , yj−1 denotes a partial translation.

The word-level translation probability is de-
fined using a softmax function:

P (yj |x,y<j ;θ) ∝ exp
(
f(vyj ,vx,vy<j ,θ)

)
, (2)

where f(·) is a non-linear function, vyj is a vector
representation of the j-th target word yj , vx is a
vector representation of the source sentence x that
encodes the context on the source side, and vy<j

is a vector representation of the partial translation
y<j that encodes the context on the target side.

Given a training set {〈x(n),y(n)〉}Nn=1, the stan-
dard training objective is to maximize the log-
likelihood of the training set:

θ̂MLE = argmax
θ

{
L(θ)

}
, (3)

where

L(θ) =
N∑

n=1

logP (y(n)|x(n);θ). (4)

Although the introduction of vector represen-
tations into machine translation has resulted in
substantial improvements in terms of translation
quality (Junczys-Dowmunt et al., 2016), it is dif-
ficult to incorporate prior knowledge represented
in discrete symbolic forms into NMT. For ex-
ample, given a Chinese-English dictionary con-
taining ground-truth translational equivalents such
as 〈baigong, the White House〉, it is non-trivial
to leverage the dictionary to guide the learning
process of NMT. To address this problem, Tang
et al. (2016) propose a new architecture called
phraseNet on top of RNNsearch (Bahdanau et al.,
2015) that equips standard NMT with an external
memory storing phrase tables.

Another important prior knowledge source is
the coverage constraint (Koehn et al., 2003): each
source phrase should be translated into exactly
one target phrase. To encode this linguistic in-
tuition into NMT, Tu et al. (2016) extend standard
NMT with a coverage vector to keep track of the
attention history.

While these approaches are capable of incor-
porating individual prior knowledge sources sep-
arately, how to combine multiple overlapping, ar-
bitrary knowledge sources still remains a major
challenge. This can be hardly addressed by mod-
ifying model architectures because of the lack of
interpretability in NMT and the incapability of
neural networks in modeling arbitrary knowledge
sources. Although modifying training objectives
to include additional knowledge sources as ad-
ditive terms can partially alleviate this problem,
these terms have been restricted to a limited num-
ber of simple constraints (Cheng et al., 2016; Cohn
et al., 2016; Feng et al., 2016) and incapable of
combining arbitrary knowledge sources.

Therefore, it is important to develop a new
framework for integrating arbitrary prior knowl-
edge sources into NMT.

2.2 Posterior Regularization
Ganchev et al. (2010) propose posterior regular-
ization for incorporating indirect supervision via
constraints on posterior distributions of structured
latent-variable models. The basic idea is to penal-
ize the log-likelihood of a neural translation model

1515

with the KL divergence between a desired distri-
bution that incorporates prior knowledge and the
model posteriors. The posterior regularized likeli-
hood is defined as

F (θ, q)

= λ1L(θ)−

λ2

N∑

n=1

min
q∈Q

KL
(
q(y)

∣∣∣
∣∣∣P (y|x(n);θ),

)
(5)

where λ1 and λ2 are hyper-parameters to balance
the preference between likelihood and posterior
regularization,Q is a set of constrained posteriors:

Q = {q(y) : Eq[φ(x,y)] ≤ b}, (6)

where φ(x,y) is constraint feature and b is the
bound of constraint feature expectations. Ganchev
et al. (2010) use constraint features to encode
structural bias and define the set of valid distribu-
tions with respect to the expectations of constraint
features to facilitate inference.

As maximizing F (θ, q) involves minimizing
the KL divergence, Ganchev et al. (2010) present a
minorization-maximization algorithm akin to EM
at sentence level:

E : q(t+1) = argmin
q

KL
(
q(y)

∣∣∣
∣∣∣P (y|x(n);θ(t))

)

M : θ(t+1) = argmax
θ

Eq(t+1)

[
logP (y|x(n);θ)

]

However, directly applying posterior regulariza-
tion to neural machine translation faces a major
difficulty: it is hard to specify the hyper-parameter
b to effectively bound the expectation of features,
which are usually real-valued in translation (Och
and Ney, 2002; Koehn et al., 2003; Chiang, 2005).
For example, the coverage penalty constraint (Wu
et al., 2016) proves to be an essential feature for
controlling the length of a translation in NMT. As
the value of coverage penalty varies significantly
over different sentences, it is difficult to set an ap-
propriate bound for all sentences on the training
data. In addition, the minorization-maximization
algorithm involves an additional step to find q(t+1)

as compared with standard NMT, which increases
training time significantly.

3 Posterior Regularization for Neural
Machine Translation

3.1 Modeling
In this work, we propose to adapt posterior reg-
ularization (Ganchev et al., 2010) to neural ma-

chine translation. The major difference is that we
represent the desired distribution as a log-linear
model (Och and Ney, 2002) rather than a con-
strained posterior set as described in (Ganchev
et al., 2010):

J (θ,γ)
= λ1L(θ)−

λ2

N∑

n=1

KL
(
Q(y|x(n);γ)

∣∣∣
∣∣∣P (y|x(n);θ)

)
, (7)

where the desired distribution that encodes prior
knowledge is defined as: 1

Q(y|x;γ) =
exp

(
γ · φ(x,y)

)

∑
y′ exp

(
γ · φ(x,y′)

) . (8)

As compared to previous work on integrating
prior knowledge into NMT (Tu et al., 2016; Cohn
et al., 2016; Tang et al., 2016), our approach pro-
vides a general framework for combining arbi-
trary knowledge sources. This is due to log-linear
models that offer sufficient flexibility to repre-
sent arbitrary prior knowledge sources as features.
We tackle the representation discrepancy prob-
lem by associating the Q distribution that encodes
discrete representations of prior knowledge with
neural models using continuous representations
learned from data in the KL divergence. Another
advantage of our approach is the transparency to
model architectures. In principle, our approach
can be applied to any neural models for natural
language processing.

Our approach also differs from the original ver-
sion of posterior regularization (Ganchev et al.,
2010) in the definition of desired distribution. We
resort to log-linear models (Och and Ney, 2002) to
incorporate features that have proven effective in
SMT. Another benefit of using log-linear models
is the differentiability of our training objective (see
Eq. (7)). It is easy to leverage standard stochastic
gradient descent algorithms to optimize model pa-
rameters (Section 3.3).

3.2 Feature Design
In this section, we introduce how to design fea-
tures to encode prior knowledge in the desired dis-

1Ideally, the desired distribution Q should be fixed to
guide the learning process of P . However, it is hard to man-
ually specify the feature weights γ. Therefore, we propose
to train both θ and λ jointly (see Section 3.3). We find that
joint training results in significant improvements in practice
(see Table 1).

1516

tribution.
Note that not all features in SMT can be adopted

to our framework. This is because features in SMT
are defined on latent structures such as phrase
pairs and synchronous CFG rules, which are not
accessible to the decoding process of NMT. For-
tunately, we can still leverage internal information
in neural models that is linguistically meaningful
such as the attention matrix a (Bahdanau et al.,
2015).

We will introduce a number of features used in
our experiments as follows.

3.2.1 Bilingual Dictionary
It is natural to leverage a bilingual dictionary D to
improve neural machine translation. Arthur et al.
(2016) propose to incorporate discrete translation
lexicons into NMT by using the attention vector to
select lexical probabilities on which to be focused.

In our work, for each entry 〈x, y〉 ∈ D in the
dictionary, a bilingual dictionary (BD) feature is
defined at the sentence level:

φBD〈x,y〉(x,y) =

{
1 if x ∈ x ∧ y ∈ y
0 otherwise

. (9)

Note that number of bilingual dictionary features
depends on the vocabulary of the neural transla-
tion model. Entries containing out-of-vocabulary
words has to be discarded.

3.2.2 Phrase Table
Phrases, which are sequences of consecutive
words, are capable of memorizing local context to
deal with word ordering within phrases and trans-
lation of short idioms, word insertions or deletions
(Koehn et al., 2003; Chiang, 2005). As a result,
phrase tables that specify phrase-level correspon-
dences between the source and target languages
also prove to be an effective knowledge source in
NMT (Tang et al., 2016).

Similar to the bilingual dictionary features, we
define a phrase table (PT) feature for each entry
〈x̃, ỹ〉 in a phrase table P:

φPT〈x̃,ỹ〉(x,y) =

{
1 if x̃ ∈ x ∧ ỹ ∈ y
0 otherwise

. (10)

The number of phrase table features also depends
on the vocabulary of the neural translation model.

3.2.3 Coverage Penalty
To overcome the over-translation and under-
translation problems widely observed in NMT, a

number of authors have proposed to model the fer-
tility (Brown et al., 1993) and converge constraint
(Koehn et al., 2003) to improve the adequacy of
translation (Tu et al., 2016; Cohn et al., 2016; Feng
et al., 2016; Wu et al., 2016; Mi et al., 2016).

We follow Wu et al. (2016) to define a coverage
penalty (CP) feature to penalize source words with
lower sum of attention weights: 2

φCP(x,y) =

|x|∑

i=1

log

(
min

(|y|∑

j=1

ai,j , 1.0
))

, (11)

where ai,j is the attention probability of the j-th
target word on the i-th source word. Note that
the value of coverage penalty feature varies sig-
nificantly over sentences of different lengths.

3.2.4 Length Ratio
Controlling the length of translations is very im-
portant in NMT as neural models tend to gener-
ate short translations for long sentences, which
deteriorates the translation performance of NMT
for long sentences as compared with SMT (Shen
et al., 2016).

Therefore, we define the length ratio (LR) fea-
ture to encourage the length of a translation to fall
in a reasonable range:

φLR(x,y) =

{
(β|x|)/|y| if β|x| < |y|
|y|/(β|x|) otherwise

, (12)

where β is a hyper-parameter for penalizing too
long or too short translations.

For example, to convey the same meaning, an
English sentence is usually about 1.2 times longer
than a Chinese sentence. As a result, we can set
β = 1.2. If the length of a Chinese sentence |x| is
10 and the length of an English sentence |y| is 12,
then, φLR(x,y) = 1. If the translation is too long
(e.g., |y| = 100), then the feature value is 0.12.
If the translation is too short (e.g., |y| = 6), the
feature value is 0.5.

3.3 Training

In training, our goal is to find a set of model pa-
rameters that maximizes the posterior regularized
likelihood:

θ̂, γ̂ = argmax
θ,γ

{
J (θ,γ)

}
. (13)

2For simplicity, we omit the attention matrix a in the input
of the coverage feature function.

1517

Note that unlike the original version of poste-
rior regularization (Ganchev et al., 2010) that re-
lies on a minorization-maximization algorithm to
optimize model parameters, our training objective
is differentiable with respect to model parameters.
Therefore, it is easy to use standard stochastic gra-
dient descent algorithms to train our model.

However, a major difficulty in calculating gra-
dients is that the algorithm needs to sum over
all candidate translations in an exponential search
space for KL divergence. For example, the partial
derivative of J (θ,γ) with respect to γ is given by

∂J (θ,γ)
∂γ

= −λ2 ×
N∑

n=1

∂

∂γ
KL
(
Q(y|x(n);γ)

∣∣∣
∣∣∣P (y|x(n);θ)

)
. (14)

The KL divergence is defined as

KL
(
Q(y|x(n);γ)

∣∣∣
∣∣∣P (y|x(n);θ)

)

=
∑

y∈Y(x(n))

Q(y|x(n);γ) log
Q(y|x(n);γ)

P (y|x(n);θ)
, (15)

where Y(x(n)) is a set of all possible candidate
translations for the source sentence x(n).

To alleviate this problem, we follow Shen
et al. (2016) to approximate the full search
space Y(x(n)) with a sampled sub-space S(x(n)).
Therefore, the KL divergence can be approxi-
mated as

KL
(
Q(y|x(n);γ)

∣∣∣
∣∣∣P (y|x(n);θ)

)

≈
∑

y∈S(x(n))

Q̃(y|x(n);γ) log
Q̃(y|x(n);γ)

P̃ (y|x(n);θ)
. (16)

Note that the Q distribution is also approxi-
mated on the sub-space:

Q̃(y|x(n);γ)

=
exp(γ · φ(x(n),y))∑

y′∈S(x(n)) exp(γ · φ(x(n),y′))
. (17)

We follow Shen et al. (2016) to control the
sharpness of approximated neural translation dis-
tribution normalized on the sampled sub-space:

P̃ (y|x(n);θ) =
P (y|x(n);θ)α∑

y′∈S(x(n)) P (y
′|x(n);θ)α

. (18)

3.4 Search
Given learned model parameters θ̂ and γ̂, the deci-
sion rule for translating an unseen source sentence
x is given by

ŷ = argmax
Y(x)

{
P (y|x; θ̂)

}
. (19)

The search process can be factorized at the word
level:

ŷj = argmax
y∈Vy

{
P (y|x, ŷ<j ; θ̂)

}
, (20)

where Vy is the target language vocabulary.
Although this decision rule shares the same ef-

ficiency and simplicity with standard NMT (Bah-
danau et al., 2015), it does not involve prior knowl-
edge in decoding. Previous studies reveal that in-
corporating prior knowledge in decoding also sig-
nificantly boosts translation performance (Arthur
et al., 2016; He et al., 2016; Wang et al., 2016).

As directly incorporating prior knowledge into
the decoding process of NMT depends on both
model structure and the locality of features, we re-
sort to a coarse-to-fine approach instead to keep
the architecture transparency of our approach.
Given a source sentence x in the test set, we first
use the neural translation model P (y|x; θ̂) to gen-
erate a k-best list of candidate translation C(x).
Then, the algorithm decides on the most probable
candidate translation using the following decision
rule:

ŷ = argmax
y∈C(x)

{
logP (y|x; θ̂) + γ̂ · φ(x,y)

}
. (21)

4 Experiments

4.1 Setup
We evaluate our approach on Chinese-English
translation. The evaluation metric is case-
insensitive BLEU calculated by the multi-
bleu.perl script. Our training set3 consists of
1.25M sentence pairs with 27.9M Chinese words
and 34.5M English words. We use the NIST 2002
dataset as validation set and the NIST 2003, 2004,
2005, 2006, 2008 datasets as test sets.

In the experiments, we compare our approach
with the following two baseline approaches:

3The training set includes LDC2002E18, LDC2003E07,
LDC2003E14, part of LDC2004T07, LDC2004T08 and
LDC2005T06.

1518

Method Feature MT02 MT03 MT04 MT05 MT06 MT08 All
RNNSEARCH N/A 33.45 30.93 32.57 29.86 29.03 21.85 29.11

CPR N/A 33.84 31.18 33.26 30.67 29.63 22.38 29.72

POSTREG

BD 34.65 31.53 33.82 30.66 29.81 22.55 29.97
PT 34.56 31.32 33.89 30.70 29.84 22.62 29.99
LR 34.39 31.41 34.19 30.80 29.82 22.85 30.14
BD+PT 34.66 32.05 34.54 31.22 30.70 22.84 30.60
BD+PT+LR 34.37 31.42 34.18 30.99 29.90 22.87 30.20

this work

BD 36.61 33.47 36.04 32.96 32.46 24.78 32.27
PT 35.07 32.11 34.73 31.84 30.82 23.23 30.86
CP 34.68 31.99 34.67 31.37 30.80 23.34 30.76
LR 34.57 31.89 34.95 31.80 31.43 23.75 31.12
BD+PT 36.30 33.83 36.02 32.98 32.53 24.54 32.29
BD+PT+CP 36.11 33.64 36.36 33.11 32.53 24.57 32.39
BD+PT+CP+LR 36.10 33.64 36.48 33.08 32.90 24.63 32.51

Table 1: Comparison of BLEU scores on the Chinese-English datasets. RNNSEARCH is an attention-
based neural machine translation model (Bahdanau et al., 2015) that does not incorporate prior knowl-
edge. CPR extends RNNSEARCH by introducing coverage penalty refinement (Eq. (11)) in decoding.
POSTREG extends RNNSEARCH with posterior regularization (Ganchev et al., 2010), which uses con-
straint features to represent prior knowledge and a constrained posterior set to denote the desired distri-
bution. Note that POSTREG cannot use the CP feature (Section 3.2.3) because it is hard to bound the
feature value appropriately. On top of RNNSEARCH, our approach also exploits posterior regularization
to incorporate prior knowledge but uses a log-linear model to denote the desired distribution. All results
of this work are significantly better than RNNSEARCH (p < 0.01).

1. RNNSEARCH (Bahdanau et al., 2015):
a standard attention-based neural machine
translation model,

2. CPR (Wu et al., 2016): extending
RNNSEARCH by introducing coverage
penalty refinement (Eq. (11)) in decoding,

3. POSTREG (Ganchev et al., 2010): extend-
ing RNNSEARCH with posterior regulariza-
tion using constrained posterior set.

For RNNSEARCH, we use an in-house
attention-based NMT system that achieves com-
parable translation performance with GROUND-
HOG (Bahdanau et al., 2015), which serves as a
baseline approach in our experiments. We limit
vocabulary size to 30K for both languages. The
word embedding dimension is set to 620. The
dimension of hidden layer is set to 1,000. In
training, the batch size is set to 80. We use the
AdaDelta algorithm (Zeiler, 2012) for optimizing
model parameters. In decoding, the beam size is
set to 10.

For CPR, we simply follow Wu et al. (2016)
to incorporate the coverage penalty into the beam

search algorithm of RNNSEARCH.
For POSTREG, we adapt the original version

of posterior regularization (Ganchev et al., 2010)
to NMT on top of RNNSEARCH. Following
Ganchev et al. (2010), we use a ten-step pro-
jected gradient descent algorithm to search for an
approximate desired distribution in the E step and
a one-step gradient descent for the M step.

Our approach extends RNNSEARCH by incor-
porating prior knowledge. For each source sen-
tence, we sample 80 candidate translations to ap-
proximate the P̃ and Q̃ distributions. The hyper-
parameter α is set to 0.2. The batch size is 1. The
hyper-parameters λ1 and λ2 are set to 8×10−5 and
2.5 × 10−4. Note that they not only balance the
preference between likelihood and posterior regu-
larization, but also control the values of gradients
to fall in a reasonable range for optimization.

We construct bilingual dictionary and phrase ta-
ble in an automatic way. First, we run the statis-
tical machine translation system MOSES (Koehn
and Hoang, 2007) to obtain probabilistic bilin-
gual dictionary and phrase table. For the bilin-
gual dictionary, we retain entries with probabili-
ties higher than 0.1 in both source-to-target and

1519

Feature Rerank MT02 MT03 MT04 MT05 MT06 MT08 All

BD
w/o 36.06 32.99 35.62 32.59 32.13 24.36 31.87
w/ 36.61 33.47 36.04 32.96 32.46 24.78 32.27

PT
w/o 34.98 32.01 34.71 31.77 30.77 23.20 30.81
w/ 35.07 32.11 34.73 31.84 30.82 23.23 30.86

CP
w/o 34.68 31.99 34.67 31.37 30.80 23.34 30.76
w/ 34.68 31.99 34.67 31.37 30.80 23.34 30.76

LR
w/o 34.60 31.89 34.79 31.72 31.39 23.63 31.03
w/ 34.57 31.89 34.95 31.80 31.43 23.75 31.12

BD+PT
w/o 35.76 33.27 35.64 32.47 32.03 24.17 31.83
w/ 36.30 33.83 36.02 32.98 32.53 24.54 32.29

BD+PT+CP
w/o 35.71 33.15 35.81 32.52 32.16 24.11 31.89
w/ 36.11 33.64 36.36 33.11 32.53 24.57 32.39

BD+PT+CP+LR
w/o 36.06 33.01 35.86 32.70 32.24 24.27 31.96
w/ 36.10 33.64 36.48 33.08 32.90 24.63 32.51

Table 2: Effect of reranking on translation quality.

target-to-source directions. For phrase table, we
first remove phrase pairs that occur less than 10
times and then retain entries with probabilities
higher than 0.5 in both directions. As a result, both
bilingual dictionary and phrase table contain high-
quality translation correspondences. We estimate
the length ratio on Chinese-English data and set
the hyper-parameter β to 1.236.

By default, both POSTREG and our approach
use reranking to search for the most probable
translations (Section 3.4).

4.2 Main Results

Table 1 shows the BLEU scores obtained by
RNNSEARCH, POSTREG, and our approach on
the Chinese-English datasets.

We find POSTREG achieves significant im-
provements over RNNSEARCH by adding features
that encode prior knowledge. The most effective
single feature for POSTREG seems to be the length
ratio (LR) feature, suggesting that it is important
for NMT to control the length of translation to im-
prove translation quality. Note that POSTREG is
unable to include the coverage penalty (CP) fea-
ture because the feature value varies significantly
over different sentences. It is hard to specify an
appropriate bound b for constraining the expected
feature value. We observe that a loose bound often
makes the training process very unstable and fail
to converge. Combining features obtains further
modest improvements.

Our approach outperforms both RNNSEARCH

and POSTREG significantly. The bilingual dictio-

nary (BD) feature turns out to make the most con-
tribution. Compared with CPR that imposes cov-
erage penalty during decoding, our approach that
using a single CP feature obtains a significant im-
provement (i.e., 30.76 over 29.72), suggesting that
incorporating prior knowledge sources in model-
ing might be more beneficial than in decoding.

We find that combining features only results in
modest improvements for our approach. One pos-
sible reason is that the bilingual dictionary and
phrase table features overlap on single word pairs.

4.3 Effect of Reranking

Table 2 shows the effect of reranking on trans-
lation quality. We find that using prior knowl-
edge features to rescore the k-best list produced
by the neural translation model usually leads to
improvements. This finding confirms that adding
prior knowledge is beneficial for NMT, either in
the training or decoding process.

4.4 Training Speed

Initialized with the best RNNSEARCH model
trained for 300K iterations, our model converges
after about 100K iterations. For each iteration, our
approach is 1.5 times slower than RNNSEARCH.
On a single GPU device Tesla M40, it takes four
days to train the RNNSEARCH model and three
extra days to train our model.

4.5 Example Translations

Table 3 gives four examples to demonstrate the
benefits of adding features.

1520

Source lijing liang tian yu bingxue de fenzhan , 31ri shenye 23 shi 50 fen , shanghai
jichang jituan yuangong yinglai le 2004nian de zuihou yige hangban .

Reference after fighting with ice and snow for two days , staff members of shanghai
airport group welcomed the last flight of 2004 at 23 : 50pm on the 31st .

RNNSEARCH after a two - day and two - day journey , the team of shanghai ’s airport in
shanghai has ushered in the last flight in 2004 .

+ BD after two days and nights fighting with ice and snow , the shanghai airport
group ’s staff welcomed the last flight in 2004 .

Source suiran tonghuopengzhang weilai ji ge yue reng jiang weizhi zai baifenzhier
yishang , buguo niandi zhiqian keneng jiangdi .

Reference although inflation will remain above 2 % for the coming few months , it
may decline by the end of the year .

RNNSEARCH although inflation has been maintained for more than two months from the
year before the end of the year , it may be lower .

+ PT although inflation will remain at more than 2 percent in the next few
months , it may be lowered before the end of the year .

Source qian ji tian ta ganggang chuyuan , jintian jianchi lai yu lao pengyou daobie
.

Reference just discharged from the hospital a few days ago , he insisted on coming
to say farewell to his old friend today .

RNNSEARCH during the previous few days , he had just been given treatment to the old
friends .

+ CP during the previous few days , he had just been discharged from the hos-
pital , and he insisted on goodbye to his old friend today .

Source (guoji) yiselie fuzongli fouren jihua kuojian gelan gaodi dingjudian
Reference (international) israeli deputy prime minister denied plans to expand golan

heights settlements
RNNSEARCH (world) israeli deputy prime minister denies the plan to expand the golan

heights in the golan heights
+ LR (international) israeli deputy prime minister denies planning to expand

golan heights

Table 3: Example translations that demonstrate the effect of adding features.

In the first example, source words “fen-
zhan” (fighting), “yuangong” (staff), and “yinglai”
(welcomed) are untranslated in the output of
RNNSEARCH. Adding the bilingual dictionary
(BD) feature encourages the model to translate
these words if they occur in the dictionary.

In the second example, while RNNSEARCH

fails to capture phrase cohesion, adding the phrase
table (PT) feature is beneficial for translating short
idioms, word insertions or deletions that are sensi-
tive to local context.

In the third example, RNNSEARCH tends
to omit many source content words such as
“chuyuan” (discharged from the hospital),
“jianchi” (insisted on), and “daobie” (say
farewell). The coverage penalty (CP) feature

helps to alleviate the word omission problem.
In the fourth example, the translation produced

by RNNSEARCH is too long and “the golan
heights” occurs twice. The length ratio (LR) fea-
ture is capable of controlling the sentence length
in a reasonable range.

5 Related Work

Our work is directly inspired by posterior regu-
larization (Ganchev et al., 2010). The major dif-
ference is that we use a log-linear model to rep-
resent the desired distribution rather than a con-
strained posterior set. Using log-linear models
not only enables our approach to incorporate ar-
bitrary knowledge sources as real-valued features,
but also is differentiable to be jointly trained with

1521

neural translation models efficiently.
Our work is closely related to recent work on in-

jecting prior knowledge into NMT (Arthur et al.,
2016; Tu et al., 2016; Cohn et al., 2016; Tang et al.,
2016; Feng et al., 2016; Wang et al., 2016). The
major difference is that our approach aims to pro-
vide a general framework for incorporating arbi-
trary prior knowledge sources while keeping the
neural translation model unchanged.

He et al. (2016) also propose to combine the
strengths of neural networks on learning represen-
tations and log-linear models on encoding prior
knowledge. But they treat neural translation mod-
els as a feature in the log-linear model. In contrast,
we connect the two models via KL divergence to
keep the transparency of our approach to model ar-
chitectures. This enables our approach to be easily
applied to other neural models in NLP.

6 Conclusion

We have presented a general framework for incor-
porating prior knowledge into end-to-end neural
machine translation based on posterior regulariza-
tion (Ganchev et al., 2010). The basic idea is to
guide NMT models towards desired behavior us-
ing a log-linear model that encodes prior knowl-
edge. Experiments show that incorporating prior
knowledge leads to significant improvements over
both standard NMT and posterior regularization
using constrained posterior sets.

Acknowledgments

We thank Shiqi Shen for useful discussions and
anonymous reviewers for insightful comments.
This work is supported by the National Natu-
ral Science Foundation of China (No.61432013),
the 973 Program (2014CB340501), and the
National Natural Science Foundation of China
(No.61522204). This research is also supported by
Sogou Inc. and the Singapore National Research
Foundation under its International Research Cen-
tre@Singapore Funding Initiative and adminis-
tered by the IDM Programme.

References
Philip Arthur, Graham Neubug, and Satoshi Naka-

mura. 2016. Incorporating discrete transla-
tion lexicons into neural machine translation.
arXiv:1606.02006v2.

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by jointly

learning to align and translate. In Proceedings of
ICLR.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics .

Yong Cheng, Shiqi Shen, Zhongjun He, Wei He,
Hua Wu, Maosong Sun, and Yang Liu. 2016.
Agreement-based learning of parallel lexicons and
phrases from non-parallel corpora. In Proceedings
of IJCAI.

David Chiang. 2005. A hirarchical phrase-based model
for statistical machine translation. In Proceedings of
ACL.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings
of EMNLP.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholamreza
Haffari. 2016. Incorporating structural alignment bi-
ases into an attentional neural translation model. In
Proceedings of NAACL.

Shi Feng, Shujie Liu, Nan Yang, Mu Li, Ming Zhou,
and Kenny Q. Zhu. 2016. Improving attention mod-
eling with implicit distortion and fertility for ma-
chine translation. In Proceedings of COLING.

Kuzman Ganchev, João Graça, Jennifer Gillenwater,
and Ben Taskar. 2010. Posterior regularization for
structured latent variable models. Journal of Ma-
chine Learning Research .

Wei He, Zhongjun He, Hua Wu, and Haifeng Wang.
2016. Improved nerual machine translation with
SMT features. In Proceedings of AAAI.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation .

Marcin Junczys-Dowmunt, Tomasz Dwojak, and Hieu
Hoang. 2016. Is neural machine translation ready
for deployment? a case study on 30 translation di-
rections. arXiv:1610.01108v2.

Philipp Koehn and Hieu Hoang. 2007. Factored trans-
lation models. In Proceedings of EMNLP.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of NAACL.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and
Abe Ittycheriah. 2016. Coverage embedding mod-
els for neural machine translation. In Proceedings
of EMNLP.

Sergei Nirenburg. 1989. Knowledge-based machine
translation. Machine Translation .

1522

Franz J. Och and Hermann Ney. 2002. Discriminative
training and maximum entropy models for statistical
machine translation. In Proceedings of ACL.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In Pro-
ceedings of ACL.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of NIPS.

Yaohua Tang, Fandong Meng, Zhengdong Lu, Hang
Li, and Philip L. H. Yu. 2016. Neural ma-
chine translation with external phrase memory.
arXiv:1606.01792v1.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proceedings of ACL.

Xing Wang, Zhengdong Lu, Zhaopeng Tu, Hang Li,
Deyi Xiong, and Min Zhang. 2016. Neural machine
translation advised by statistical machine transla-
tion. arXiv:1610.05150.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Ja-
son Riesa, Alex Rudnick, Oriol Vinyals, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
arXiv:1609.08144v2.

Matthew D. Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv:1212.5701.

1523

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1524–1534
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1140

Incorporating Word Reordering Knowledge into
Attention-based Neural Machine Translation

Jinchao Zhang1 Mingxuan Wang1 Qun Liu3,1 Jie Zhou2

1Key Laboratory of Intelligent Information Processing,
Institute of Computing Technology, Chinese Academy of Sciences

{zhangjinchao,wangmingxuan,liuqun}@ict.ac.cn
2Baidu Research - Institute of Deep Learning,

Baidu Inc.,Beijing,China
{zhoujie01}@baidu.com

3ADAPT Centre, School of Computing, Dublin City University

Abstract

This paper proposes three distor-
tion models to explicitly incorporate
the word reordering knowledge into
attention-based Neural Machine Trans-
lation (NMT) for further improving
translation performance. Our pro-
posed models enable attention mech-
anism to attend to source words re-
garding both the semantic requirement
and the word reordering penalty. Ex-
periments on Chinese-English trans-
lation show that the approaches can
improve word alignment quality and
achieve significant translation improve-
ments over a basic attention-based N-
MT by large margins. Compared with
previous works on identical corpora,
our system achieves the state-of-the-art
performance on translation quality.

1 Introduction
Word reordering model is one of the most
crucial sub-components in Statistical Machine
Translation (SMT) (Brown et al., 1993; Koehn
et al., 2003; Chiang, 2005) which provides
word reordering knowledge to ensure reason-
able translation order of source words. It is
separately trained and then incorporated into
the SMT framework in a pipeline style.

In recent years, end-to-end NMT (Kalch-
brenner and Blunsom, 2013; Sutskever et al.,
2014; Bahdanau et al., 2015) has made tremen-
dous progress (Jean et al., 2015; Luong et al.,
2015b; Shen et al., 2016; Sennrich et al., 2016;
Tu et al., 2016; Zhou et al., 2016; Johnson
et al., 2016). An encoder-decoder framework
(Cho et al., 2014b; Sutskever et al., 2014) with
attention mechanism (Bahdanau et al., 2015)

is widely used, in which an encoder compresses
the source sentence, an attention mechanism
evaluates related source words and a decoder
generates target words.
The attention mechanism evaluates the dis-

tribution of to-be-translated source words in
a content-based addressing fashion (Graves
et al., 2014) which tends to attend to the
source words regarding the content relation
with current translation status. Lack of ex-
plicit models to exploit the word reordering
knowledge may lead to attention faults and
generate fluent but inaccurate or inadequate
translations. Table 1 shows a translation in-
stance and Figure 1 depicts the corresponding
word alignment matrix that produced by the
attention mechanism. In this example, even
though the word “zuixin (latest)” is a common
adjective in Chinese and its following word
should be translated soon in Chinese to En-
glish translation direction, the word “yiju (ev-
idence)” does not obtain appropriate attention
which leads to the incorrect translation.

src

youguan(related) baodao(report)
shi(is) zhichi(support) tamen(their)
lundian(arguments) de(’s)
zuixin(latest) yiju(evidence) .

ref the report is the latest evidence that
supports their arguments .

NMT the report supports their perception
of the latest .

count zuixin yiju {0}

Table 1: An instance in Chinese-English
translation task. The row “count” represents
the frequency of the word collocation in the
training corpus. The collocation “zuixin yiju”
does not appear in the training data.

1524

https://doi.org/10.18653/v1/P17-1140

Figure 1: The source word “yiju” does not ob-
tain appropriate attention and its word sense
is completely neglected.

To enhance the attention mechanism, im-
plicit word reordering knowledge needs to be
incorporated into attention-based NMT. In
this paper, we introduce three distortion mod-
els that originated from SMT (Brown et al.,
1993; Koehn et al., 2003; Och et al., 2004; Till-
mann, 2004; Al-Onaizan and Papineni, 2006),
so as to model the word reordering knowledge
as the probability distribution of the relative
jump distances between the newly translated
source word and the to-be-translated source
word. Our focus is to extend the attention
mechanism to attend to source words regard-
ing both the semantic requirement and the
word reordering penalty.

Our models have three merits:

1. Extended word reordering knowledge. Our
models capture explicit word reordering
knowledge to guide the attending process
for attention mechanism.

2. Convenient to be incorporated into
attention-based NMT. Our distortion
models are differentiable and can be
trained in the end-to-end style. The inter-
polation approach ensures that the pro-
posed models can coordinately work with
the original attention mechanism.

3. Flexible to utilize variant context for com-
puting the word reordering penalty. In this
paper, we exploit three categories of in-
formation as distortion context conditions

to compute the word reordering penalty,
but variant context information can be u-
tilized due to our model’s flexibility.

We validate our models on the Chinese-
English translation task and achieve notable
improvements:

• On 16K vocabularies, NMT models are
usually inferior in comparison with the
phrase-based SMT, but our model sur-
passes phrase-based Moses by average
4.43 BLEU points and outperforms the
attention-based NMT baseline system by
5.09 BLEU points.

• On 30K vocabularies, the improvements
over the phrase-based Moses and the
attention-based NMT baseline system are
average 6.06 and 1.57 BLEU points re-
spectively.

• Compared with previous work on identi-
cal corpora, we achieve the state-of-the-
art translation performance on average.

The word alignment quality evaluation shows
that our model can effectively improve the
word alignment quality that is crucial for im-
proving translation quality.

2 Background
We aim to capture word reordering knowledge
for the attention-based NMT by incorporat-
ing distortion models. This section briefly in-
troduces attention-based NMT and distortion
models in SMT.

2.1 Attention-based Neural Machine
Translation

Formally, given a source sentence x =
x1, ..., xm and a target sentence y = y1, ..., yn,
NMT models the translation probability as

P (y|x) =

n∏

t=1

P (yt|y<t, x), (1)

where y<t = y1, ..., yt−1. The generation
probability of yt is

P (yt|y<t, x) = g(yt−1, ct, st), (2)

where g(·) is a softmax regression function,
yt−1 is the newly translated target word and

1525

Encoder

h1 h2 hm

Decoder
...

x1 x2 xm...

...
Attention with

Distortion

...

<s> y1 yn-1...

Ct

Softmax

y1 y2 yn...

1
~ tS

Ψ

1tS
1ty

Figure 2: The general architecture of our pro-
posed models. The dash line represents vari-
ant context can be utilized to determine the
word reordering penalty.

st is the hidden states of decoder which repre-
sents the translation status.

The attention ct denotes the related source
words for generating yt and is computed as the
weighted-sum of source representation h upon
an alignment vector αt shown in Eq.(3) where
the align(·) function is a feedforward network
with softmax normalization.

ct =

m∑

j=1

αt,jhj

αt,j = align(st, hj)

(3)

The hidden states st is updated as

st = f(st−1, yt−1, ct), (4)

where f(·) is a recurrent function.
We adopt a varietal attention mechanism1

in our in-house RNNsearch model which is im-
plemented as

s̃t = f1(st−1, yt−1),

αt,j = align(s̃t, hj),

st = f2(s̃t, ct),

(5)

where f1(·) and f2(·) are recurrent functions.
As shown in Eq.(3), the attention mecha-

nism attends to source words in a content-
based addressing way without considering any
explicit word reordering knowledge. We in-
troduce distortion models to capture explicit
word reordering knowledge for enhancing the
attention mechanism and improving transla-
tion quality.

1https://github.com/nyu-dl/dl4mt-
tutorial/tree/master/session2

2.2 Distortion Models in SMT
In SMT, distortion models are linearly com-
bined with other features, as follows,

y∗ = argmax
y

exp[λdd(x, y, b)+

R−1∑

r=1

λrhr(x, y, b)],
(6)

where d(·) is the distortion feature, hr(·) repre-
sents other features, λd and λr are the weights,
b is the latent variable that represents trans-
lation knowledge and R is the number of fea-
tures.
IBM Models (Brown et al., 1993) depict-

ed the word reordering knowledge as position-
al relations between source and target word-
s. Koehn et al. (2003) proposed a distortion
model for phrase-based SMT based on jump
distances between the newly translated phras-
es and to-be-translated phrases which does
not consider specific lexical information. Och
et al. (2004) and Tillmann (2004) proposed
orientation-based distortion models that con-
sider translation orientations. Yaser and Pa-
pineni (2006) proposed a distortion model to
estimate probability distribution on possible
relative jumps conditioned on source words.
These models are proposed for SMT and

separately trained as sub-components. In-
spired by these previous work, we introduce
the distortion models into NMT model for
modeling the word reordering knowledge. Our
proposed models are designed for NMT which
can be trained in the end-to-end style.

3 Distortion Models for
attention-based NMT

The basic idea of our proposed distortion mod-
els is to estimate the probability distribution
of the possible relative jump distances between
the newly translated source word and the to-
be-translated source word upon the context
condition. Figure 2 shows the general archi-
tecture of our proposed model.

3.1 General Architecture
We employ an interpolation approach to incor-
porate distortion models into attention-based
NMT as

αt = λ · dt + (1 − λ)α̂t, (7)

1526

Figure 3: Illustration of shift actions of the
alignment vector αt−1. If αt is the left shift
of αt−1, it represents the translation orienta-
tion of the source sentence is backward and
if αt is the right shift of αt−1, the translation
orientation is forward.

where αt is the ultimate alignment vector for
computing the related source context ct, dt is
the alignment vector calculated by the distor-
tion model, α̂t is the alignment vector com-
puted by the basic attention mechanism and
λ is a hyper-parameter to control the weight
of the distortion model.

In the proposed distortion model, relative
jumps on source words are depicted as the
“shift” actions of the alignment vector αt−1

which is shown in the Figure 3. The right shift
of αt−1 indicates that the translation orienta-
tion of source words is forward and the left
shift represents that the translation orienta-
tion is backward. The extent of a shift action
measures the word reordering distance. Align-
ment vector dt, which is produced by the dis-
tortion model, is the expectation of all possible
shifts of αt−1 conditioned on certain context.

Formally, the proposed distortion model is

dt = E[Γ(αt−1)]

=

l∑

k=−l

P (k|Ψ) · Γ(αt−1, k),
(8)

where k ∈ [−l, l] is the possible relative jump
distance, l is the window size parameter and
P (k|Ψ) stands for the probability of jump dis-
tance k that conditioned on the context Ψ.
Function Γ(·) for shifting the alignment vec-
tor is defined as

Γ(αt−1, k) =




{αt−1,−k, ..., αt−1,m, 0, ..., 0}, k<0
αt−1, k= 0
{0, ..., 0, αt−1,1, ..., αt−1,m−k}, k>0

(9)

which can be implemented as matrix multi-
plication computations.

We respectively exploit source context,
target context and translation status con-
text (hidden states of decoder) as Ψ and
derive three distortion models: Source-based
Distortion (S-Distortion) model , Target-
based Distortion (T-Distortion) model
and Translation-status-based Distortion
(H-Distortion) model. Our framework is
capable of utilizing arbitrary context as the
condition Ψ to predict the relative jump
distances.

3.2 S-Distortion model
S-Distortion model adopts previous source
context ct−1 as the context Ψ with the intu-
ition that certain source word indicate certain
jump distance. The to-be-translated source
word have intense positional relations with the
newly translated one.
The underlying linguistic intuition is that

synchronous grammars (Yamada and Knight,
2001; Galley et al., 2004) can be extracted
from language pairs. Word categories such as
verb, adjective and preposition carry general
word reordering knowledge and words carry
specific word reordering knowledge.
To further illustrate this idea, we present

some common synchronous grammar rules
that can be extracted from the example in Ta-
ble 1 as follows,

NP −→ JJ NN | JJ NN

JJ −→ zuixin | latest.
(10)

From the above grammar, we can conjecture
the speculation that after the word ”zuix-
in(latest)” is translated, the translation orien-
tation is forward with shift distance 1.
The probability function in S-Distortion

model is defined as follows,

P (·|Ψ) = z(ct−1)

= softmax(Wcct−1 + bc),
(11)

where Wc ∈ R(2l+1)×dim(ct−1) and bc ∈ R2l+1

are weight matrix and bias parameters.

3.3 T-Distortion Model
T-Distortion model exploits the embedding of
the previous generated target word yt−1 as the
context condition to predict the probability
distribution of distortion distances. It focuses
on the word reordering knowledge upon target

1527

word context. As illustrated in Eq.(10), the
target word “latest” possesses word reordering
knowledge that is identical with source word
“zuixin”.

The probability function in T-Distortion
model is defined as follows,

P (·|Ψ) = z(yt−1)

= softmax(Wyemb(yt−1) + by),
(12)

where emb(yt−1) is the embedding of yt−1,
Wy ∈ R(2l+1)×dim(emb(yt−1)) and by ∈ R2l+1

are weight matrix and bias parameters.

3.4 H-Distortion Model
The hidden states s̃t−1 reflect the translation
status and contains both source context and
target context information. Therefore, we ex-
ploit s̃t−1 as context Ψ in the H-Distortion
model to predict shift distances.

The probability function in H-Distortion
model is defined as follows,

P (·|Ψ) = z(s̃t−1)

= softmax(Wss̃t−1 + bs)
(13)

where Ws ∈ R(2l+1)×dim(s̃t−1) and bs ∈ R2l+1

are the weight matrix and bias parameters.

4 Experiments
We carry the translation task on the Chinese-
English direction to evaluate the effectiveness
of our models. To investigate the word align-
ment quality, we take the word alignmen-
t quality evaluation on the manually aligned
corpus. We also conduct the experiments to
observe effects of hyper-parameters and the
training strategies.

4.1 Data and Metrics
Data: Our Chinese-English training corpus
consists of 1.25M sentence pairs extracted
from LDC corpora2 with 27.9M Chinese word-
s and 34.5M English words respectively. 16K
vocabularies cover approximately 95.8% and
98.3% words and 30K vocabularies cover ap-
proximately 97.7% and 99.3% words in Chi-
nese and English respectively. We choose
NIST 2002 dataset as the validation set. NIST

2The corpora includes LDC2002E18, LDC2003E07,
LDC2003E14, Hansards portion of LDC2004T07, LD-
C2004T08 and LDC2005T06.

2003-2006 are used as test sets. To assess the
word alignment quality, we employ Tsinghua
dataset (Liu and Sun, 2015) which contains
900 manually aligned sentence pairs.
Metrics: The translation quality evaluation
metric is the case-insensitive 4-gram BLEU3

(Papineni et al., 2002). Sign-test (Collins
et al., 2005) is exploited for statistical signifi-
cance test. Alignment error rate (AER) (Och
and Ney, 2003) is calculated to assess the word
alignment quality.

4.2 Comparison Systems

We compare our approaches with three base-
line systems:
Moses (Koehn et al., 2007): An open source
phrase-based SMT system with default set-
tings. Words are aligned with GIZA++ (Och
and Ney, 2003). The 4-gram language mod-
el with modified Kneser-Ney smoothing is
trained on the target portion of training da-
ta by SRILM (Stolcke et al., 2002).
Groundhog4: An open source attention-
based NMT system with default settings.
RNNsearch∗: Our in-house implementation
of NMT system with the varietal attention
mechanism and other settings that presented
in section 4.3.

4.3 Training

Hyper parameters: The sentence length for
training NMTs is up to 50, while SMT model
exploits whole training data without any re-
strictions. Following Bahdanau et al. (2015),
we use bi-directional Gated Recurrent Unit
(GRU) as the encoder. The forward repre-
sentation and the backward representation are
concatenated at the corresponding position as
the ultimate representation of a source word.
The word embedding dimension is set to 620
and the hidden layer size is 1000. The interpo-
lation parameter λ is 0.5 and the window size
l is set to 3.
Training details:
Square matrices are initialized in a random or-
thogonal way. Non-square matrices are ini-
tialized by sampling each element from the

3ftp://jaguar.ncsl.nist.gov/mt/resources/
mteval-v11b.pl

4https://github.com/lisa-groundhog/
GroundHog

1528

Systems MT03 MT04 MT05 MT06 Average Average Increase
Moses 31.61 33.48 30.75 30.85 31.67 −
Groundhog(16K) 29.14 31.23 28.11 27.77 29.06 −
RNNsearch∗(16K) 30.77 33.92 30.82 28.56 31.02 −

+ T-Distortion 35.71‡ 37.81‡ 33.78‡ 33.79‡ 35.27 +(4.26, 3.60, 6.21)
+ S-Distortion 36.58‡ 38.47 ‡ 34.85‡ 33.86‡ 35.94 +(4.92, 4.27, 6.88)
+ H-Distortion 35.95‡ 38.77‡ 35.33‡ 34.36‡ 36.10 +(5.09, 4.43, 7.04)

Groundhog(30K) 31.92 34.09 31.56 31.12 32.17 −
RNNsearch∗(30K) 36.47 39.17 35.04 33.97 36.16 −

+ T-Distortion 37.93† 40.40‡ 36.81‡ 35.77‡ 37.73 +(1.57, 6.06, 5.56)
+ S-Distortion 37.47† 40.52‡ 36.16‡ 35.32 37.37 +(1.21, 5.70, 5.20)
+ H-Distortion 38.33‡ 40.11‡ 36.71† 35.29‡ 37.61 +(1.45, 5.94, 5.44)

Table 2: BLEU-4 scores (%) on NIST test set 03-06 of Moses (default settings), Groundhog
(default settings), RNNsearch∗ and RNNsearch∗ with distortion models respectively. The val-
ues in brackets are increases on RNNsearch∗, Moses and Groundhog respectively. ‡ indicates
statistical significant difference (p<0.01) from RNNsearch∗ and † means statistical significant
difference (p<0.05) from RNNsearch∗.

Gaussian distribution with mean 0 and vari-
ance 0.012. All bias are initialized to 0.

Parameters are updated by Mini-batch Gra-
dient Descent and the learning rate is con-
trolled by the AdaDelta (Zeiler, 2012) algorith-
m with decay constant ρ = 0.95 and denomi-
nator constant ϵ = 1e − 6. The batch size is
80. Dropout strategy (Srivastava et al., 2014)
is applied to the output layer with the dropout
rate 0.5 to avoid over-fitting. The gradients of
the cost function which have L2 norm larger
than a predefined threshold 1.0 is normalized
to the threshold to avoid gradients explosion
(Pascanu et al., 2013). We exploit length nor-
malization (Cho et al., 2014a) on candidate
translations and the beam size for decoding is
12. For NMT with distortion models, we use
trained RNNsearch∗ model to initialize param-
eters except for those related to distortions.

4.4 Results
The translation quality experiment results are
shown in Table 2. We carry the experiments
on different vocabulary sizes for that different
vocabulary sizes cause different degrees of the
rare word collocations. Through this way, we
can validate the effects of our proposed models
in alleviating the rare word collocations prob-
lem that leads to incorrect word alignments.
On 16K vocabularies: The phrase-based
Moses performs better than the basic NMTs
including Groundhog and RNNsearch∗. Be-

sides the differences between model archi-
tectures, restricted vocabularies and sentence
length also affect the performance of NMTs.
However, RNNsearch∗ with distortion models
surpass phrase-based Moses by average 3.60,
4.27 and 4.43 BLEU points. RNNsearch∗ out-
performs Groundhog by average 1.96 BLEU
points due to the varietal attention mech-
anism, length normalization and dropout s-
trategies. Distortion models bring about re-
markable improvements as 4.26, 4.92 and 5.09
BLEU points over the RNNsearch∗ model.
On 30K vocabularies: RNNsearch∗ with
distortion models yield average gains by 1.57,
1.21 and 1.45 BLEU points over RNNsearch∗

and outperform phrase-based Moses by aver-
age 6.06, 5.70 and 5.94 BLEU points and sur-
pass GroundHog by average 5.56, 5.20 and
5.44 BLEU points. RNNsearch∗(16K) with
distortion models achieve close performances
with RNNsearch∗(30K). The improvements on
16K vocabularies are larger than that on 30K
vocabularies for the intuition that more ”UN-
K” words lead to more rare word collocations,
which results in serious attention ambiguities.
The RNNsearch∗ with distortion models

yield tremendous improvements on BLEU s-
cores proves the effectiveness of proposed ap-
proaches in improving translation quality.
Comparison with previous work: We
present the performance comparison with pre-

1529

System Length MT03 MT04 MT05 MT06 Average
Coverage 80 - - 32.73 32.47 -
MEMDEC 50 36.16 39.81 35.91 35.98 36.95
NMTIA 80 35.69 39.24 35.74 35.10 36.44
Our work 50 37.93 40.40 36.81 35.77 37.73

Table 3: Comparison with previous work on identical training corpora. Coverage (Tu et al.,
2016) is a basic RNNsearch model with a coverage model to alleviate the over-translation and
under-translation problems. MEMDEC (Wang et al., 2016) is to improve translation quality
with external memory. NMTIA (Meng et al., 2016) exploits a readable and writable attention
mechanism to keep track of interactive history in decoding. Our work is NMT with H-Distortion
model. The vocabulary sizes of all work are 30K and maximum lengths of sentence differ.

(a) (b)

Figure 4: (a) is the output of the distortion model and is calculated on shift actions of previous
alignment vector. (b) is the ultimate word alignment matrix of attention-based NMT with
H-Distortion model. Compared with Figure 1, (b) is more centralized and accurate.

Systems BLEU AER
RNNsearch∗(30K) 20.90 49.73

+ T-Distortion 24.33‡ 46.92
+ S-Distortion 24.10‡ 47.37
+ H-Distortion 24.42‡ 47.05

Table 4: BLEU-4 scores (%) and AER scores
on Tsinghua manually aligned Chinese-English
evaluation set. The lower the AER score, the
better the alignment quality.

vious work that employ identical training cor-
pora in Table 3. Our work evidently outper-
forms previous work on average performance.
Although we restrict the maximum length of
sentence to 50, our model achieves the state-

of-the-art BLEU scores on almost all test sets
except NIST2006.

4.5 Analysis
We investigate the effects on the alignment
quality of our models and conduct the exper-
iments to evaluate the influence of the hyper-
parameter settings and the training strategies.

4.5.1 Alignment Quality
Distortion models concentrate on attending
to to-be-translated words based on the word
reordering knowledge and can intuitively en-
hance the word alignment quality. To in-
vestigate the effect on word alignment qual-
ity, we apply the BLEU and AER evalua-
tions on Tsinghua manually aligned data set.

1530

(a) (b)

Figure 5: Translation performance on the test sets with respect to the hyper-parameter λ and l.

System MT03 MT04 MT05 MT06 Average
Pre-training 35.95 38.77 35.33 34.36 36.10
No pre-training 36.99 38.42 34.56 34.01 36.00

Table 5: Comparison between pre-training and no pre-training H-Distortion model. The per-
formances are consistent.

Table 4 lists the BLEU and AER scores of
Chinese-English translation with 30K vocabu-
lary. RNNsearch*(30K) with distortion mod-
els achieve significant improvements on BLEU
scores and obvious decrease on AER scores.
The results shows that the proposed model can
effectively improve the word alignment quality

Figure 4 shows the output of distortion
model and ultimate alignment matrix of the
above-mentioned instance. Compared with
Figure 1, the alignment matrix produced by
NMT with distortion models is more concen-
trated and accurate. The output of distortion
model shows its capacity of modeling word re-
ordering knowledge.

4.5.2 Effect of Hyper-parameters

To investigate the effect of the weight hyper-
parameter λ and window hyper-parameter l
in the proposed model, we carry experiments
on H-Distortion model with variable hyper-
parameter settings. We fix l = 3 for exploring
the effect of λ and fix λ = 0.5 for observing
the effect of l. Figure 5 presents the trans-
lation performances with respect to hyper-
parameters. With the increase of weight
λ, the BLEU scores first rise and then drop,
which shows the distortion model provides ad-
ditional helpful information while can not fully
cover the attention mechanism for its insuffi-
cient content searching ability. For window

l, the experiments show that larger windows
bring slight further improvements, which in-
dicates that distortion model pays more at-
tention to the short-distance reordering knowl-
edge.

4.5.3 Pre-training VS No Pre-training
We conduct the experiment without using pre-
training strategy to observe the effect of the
initialization. As is shown in Table 5, the
no-pre-training model achieves consistent im-
provements with the pre-training one which
verifies the stable effectiveness of our ap-
proach. Initialization with pre-training strate-
gy provides a fast approach to obtain the mod-
el for it needs fewer training iterations.

5 Related Work

Our work is inspired by the distortion model-
s that widely used in SMT. The most related
work in SMT is the distortion model proposed
by Yaser and Papineni (2006). Their mod-
el is identical to our S-Distortion model that
captures the relative jump distance knowledge
on source words. However, our approach is
deliberately designed for the attention-based
NMT system and is capable of exploiting vari-
ant context information to predict the relative
jump distances.
Our work is related to the work (Luong

et al., 2015a; Feng et al., 2016; Tu et al., 2016;

1531

Cohn et al., 2016; Meng et al., 2016; Wang
et al., 2016) that concentrate on the improve-
ment of the attention mechanism. To remit
the computing cost of the attention mecha-
nism when dealing with long sentences, Lu-
ong et al. (2015a) proposed the local atten-
tion mechanism by just focusing on a sub-
scope of source positions. Cohn et al. (2016)
incorporated structural alignment biases in-
to the attention mechanism and obtained
improvements across several challenging lan-
guage pairs in low-resource settings. Feng
et al. (2016) passed the previous attention con-
text to the attention mechanism by adding re-
current connections as the implicit distortion
model. Tu et al. (2016) maintained a cover-
age vector for keeping the attention history
to acquire accurate translations. Meng et al.
(2016) proposed the interactive attention with
the attentive read and attentive write opera-
tion to keep track of the interaction history.
Wang et al. (2016) utilized an external memo-
ry to store additional information for guiding
the attention computation. These works are
different from ours, as our distortion models
explicitly capture word reordering knowledge
through estimating the probability distribu-
tion of relative jump distances on source words
to incorporate word reordering knowledge into
the attention-based NMT.

6 Conclusions

We have presented three distortion models to
enhance attention-based NMT through incor-
porating the word reordering knowledge. The
basic idea of proposed distortion models is to
enable the attention mechanism to attend to
the source words regarding both semantic re-
quirement and the word reordering penalty.
Experiments show that our models can ev-
idently improve the word alignment quality
and translation performance. Compared with
previous work on identical corpora, our mod-
el achieves the state-of-the-art performance on
average. Our model is convenient to be ap-
plied in the attention-based NMT and can be
trained in the end-to-end style. We also in-
vestigated the effect of hyper-parameters and
pre-training strategy and further proved the
stable effectiveness of our model. In the fu-
ture, we plan to validate the effectiveness of

our model on more language pairs.

7 Acknowledgement

Qun Liu’s work is partially supported by
Science Foundation Ireland in the ADAP-
T Centre for Digital Content Technology
(www.adaptcentre.ie) at Dublin City Univer-
sity funded under the SFI Research Centres
Programme (Grant 13/RC/2106) co-funded
under the European Regional Development
Fund. We are grateful to Qiuye Zhao, Fan-
dong Meng and Daqi Zheng for their helpful
suggestions. We thank the anonymous review-
ers for their insightful comments.

References
Yaser Al-Onaizan and Kishore Papineni. 2006.

Distortion models for statistical machine trans-
lation. In Proceedings of ACL2006. pages
529–536.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In Pro-
ceedings of ICLR2015.

Peter F. Brown, Vincent J. Della Pietra, Stephen
A. Della Pietra, and Robert L. Mercer. 1993.
The mathematics of statistical machine transla-
tion:parameter estimation. Computational Lin-
guistics 19(2):263––311.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In
Proceedings of ACL2005. pages 263–270.

Kyunghyun Cho, Bart Van Merrienboer, Dzmitry
Bahdanau, and Yoshua Bengio. 2014a. On the
properties of neural machine translation: En-
coder–decoder approaches. In Eighth Workshop
on Syntax,Semantics and Structure in Statistical
Translation.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014b.
Learning phrase representations using rnn en-
coder–decoder for statistical machine transla-
tion. In Proceedings of EMNLP 2014. Doha,
Qatar, pages 1724–1734.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gho-
lamreza Haffari. 2016. Incorporating struc-
tural alignment biases into an attentional neu-
ral translation model. In Proceedings of NAA-
CL2016. pages 876––885.

1532

Michael Collins, Philipp Koehn, and Ivona
Kučerová. 2005. Clause restructuring for sta-
tistical machine translation. In Proceedings of
ACL2005. pages 531–540.

Shi Feng, Shu jie Liu, Mu Li, and Ming Zhou.
2016. Implicit distortion and fertility models
for attention-based encoder-decoder nmt mod-
el. arXiv preprint arXiv:1601.03317 .

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation
rule. In Proceedings of HLT/NAACL. Boston,
volume 4, pages 273–280.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401 .

Sébastien Jean, Kyunghyun Cho, Roland Memi-
sevic, and Yoshua Bengio. 2015. On using
very large target vocabulary for neural machine
translation. In Proceedings of ACL2014. vol-
ume 1, pages 1–10.

Melvin Johnson, Mike Schuster, Quoc V. Le, Max-
im Krikun, Yonghui Wu, Zhifeng Chen, Nikhil
Thorat, Fernanda Viégas, Martin Wattenberg,
and Greg Corrado. 2016. Google’s multilingual
neural machine translation system: Enabling
zero-shot translation. In arXiv preprint arX-
iv:1609.08144.

Nal Kalchbrenner and Phil Blunsom. 2013. Re-
current continuous translation models. In Pro-
ceedings of EMNLP2013. Seattle, Washington,
USA, pages 1700–1709.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nico-
la Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Chris Dyer, Ondrej
Bojar, Alexandra Constantin, and Evan Herbst.
2007. Moses: Open source toolkit for statisti-
cal machine translation. In Proceedings of the
ACL2007 Demo and Poster Sessions. Prague,
Czech Republic, pages 177–180.

Philipp Koehn, Franz Josef Och, and Daniel Mar-
cu. 2003. Statistical phrase-based translation.
In Proceedings NAACL2003. pages 48–54.

Yang Liu and Maosong Sun. 2015. Contrastive un-
supervised word alignment with non-local fea-
tures. In Proceedings of AAAI2015. pages
2295–2301.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D. Manning. 2015a. Effective approaches
to attention-based neural machine translation.
In Proceedings of EMNLP2015. Lisbon, Portu-
gal.

Minh Thang Luong, Ilya Sutskever, Quoc V. Le,
Oriol Vinyals, and Wojciech Zaremba. 2015b.
Addressing the rare word problem in neural

machine translation. Proceedings of ACL2015
27(2):82–86.

Fandong Meng, Zhengdong Lu, Hang Li, and
Qun Liu. 2016. Interactive attention for neural
machine translation. In Proceedings of COL-
ING2016.

Franz Josef Och, Daniel Gildea, Sanjeev Khu-
danpur, Anoop Sarkar, Kenji Yamada, Alexan-
der M Fraser, Shankar Kumar, Libin Shen,
David Smith, Katherine Eng, et al. 2004. A s-
morgasbord of features for statistical machine
translation. In HLT-NAACL. pages 161–168.

Franz Josef Och and Hermann Ney. 2003. A
systematic comparison of various statistical
alignment models. Computational linguistics
29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for au-
tomatic evaluation of machine translation. In
Proceedings of ACL2002. Association for Com-
putational Linguistics, pages 311–318.

Razvan Pascanu, Tomas Mikolov, and Yoshua Ben-
gio. 2013. On the difficulty of training recurrent
neural networks. ICML (3) 28:1310–1318.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016. Neural machine translation of rare
words with subword units. In Proceedings of A-
CL2016. pages 1715–1725.

Shiqi Shen, Yong Cheng, Zhongjun He, Hua Wu,
Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation. In
Proceedings of ACL2016. pages 1683–1692.

Nitish Srivastava, Geoffrey E Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. 2014. Dropout: a simple
way to prevent neural networks from overfit-
ting. Journal of Machine Learning Research
15(1):1929–1958.

Andreas Stolcke et al. 2002. Srilm-an extensible
language modeling toolkit. In Proceedings of
the international conference on spoken language
processing. volume 2, pages 901–904.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
2014. Sequence to sequence learning with neural
networks. In Proceedings of NIPS2014.

Christoph Tillmann. 2004. A unigram orientation
model for statistical machine translation. In
Proceedings of HLT-NAACL 2004: Short Pa-
pers. pages 101–104.

Zhaopeng Tu, Zhengdong Lu, yang Liu, Xiaohua
Liu, and Hang Li. 2016. Modeling coverage for
neural machine translation. In Proceedings of
ACL. pages 76–85.

1533

Mingxuan Wang, Zhengdong Lu, Hang Li, and
Qun Liu. 2016. Memory-enhanced decoder for
neural machine translation. In Proceedings of
EMNLP2016.

Kenji Yamada and Kevin Knight. 2001. A syntax-
based statistical translation model. In Proceed-
ings of ACL2001. pages 523–530.

Al-Onaizan Yaser and Kishore Papineni. 2006.
Distortion models for statistical machine trans-
lation. In Proceedings of ACL2006. pages
529–536.

Matthew D Zeiler. 2012. Adadelta: an adap-
tive learning rate method. arXiv preprint arX-
iv:1212.5701 .

Jie Zhou, Ying Cao, Xuguang Wang, Peng Li, and
Wei Xu. 2016. Deep recurrent models with fast-
forward connections for neural machine transla-
tion. In Proceedings of EMNLP2016.

1534

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1535–1546
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1141

Lexically Constrained Decoding for Sequence Generation Using Grid
Beam Search

Chris Hokamp
ADAPT Centre

Dublin City University
chris.hokamp@computing.dcu.ie

Qun Liu
ADAPT Centre

Dublin City University
qun.liu@dcu.ie

Abstract

We present Grid Beam Search (GBS), an
algorithm which extends beam search to
allow the inclusion of pre-specified lex-
ical constraints. The algorithm can be
used with any model that generates a se-
quence ŷ = {y0 . . . yT }, by maximizing
p(y|x) =

∏
t
p(yt|x; {y0 . . . yt−1}). Lex-

ical constraints take the form of phrases
or words that must be present in the out-
put sequence. This is a very general way
to incorporate additional knowledge into
a model’s output without requiring any
modification of the model parameters or
training data. We demonstrate the feasibil-
ity and flexibility of Lexically Constrained
Decoding by conducting experiments on
Neural Interactive-Predictive Translation,
as well as Domain Adaptation for Neural
Machine Translation. Experiments show
that GBS can provide large improvements
in translation quality in interactive scenar-
ios, and that, even without any user in-
put, GBS can be used to achieve signifi-
cant gains in performance in domain adap-
tation scenarios.

1 Introduction

The output of many natural language processing
models is a sequence of text. Examples include
automatic summarization (Rush et al., 2015), ma-
chine translation (Koehn, 2010; Bahdanau et al.,
2014), caption generation (Xu et al., 2015), and di-
alog generation (Serban et al., 2016), among oth-
ers.

In some real-world scenarios, additional infor-
mation that could inform the search for the opti-
mal output sequence may be available at inference

time. Humans can provide corrections after view-
ing a system’s initial output, or separate classifi-
cation models may be able to predict parts of the
output with high confidence. When the domain of
the input is known, a domain terminology may be
employed to ensure specific phrases are present in
a system’s predictions. Our goal in this work is to
find a way to force the output of a model to contain
such lexical constraints, while still taking advan-
tage of the distribution learned from training data.

For Machine Translation (MT) usecases in par-
ticular, final translations are often produced by
combining automatically translated output with
user inputs. Examples include Post-Editing
(PE) (Koehn, 2009; Specia, 2011) and Interactive-
Predictive MT (Foster, 2002; Barrachina et al.,
2009; Green, 2014). These interactive scenarios
can be unified by considering user inputs to be lex-
ical constraints which guide the search for the op-
timal output sequence.

In this paper, we formalize the notion of lexi-
cal constraints, and propose a decoding algorithm
which allows the specification of subsequences
that are required to be present in a model’s out-
put. Individual constraints may be single tokens or
multi-word phrases, and any number of constraints
may be specified simultaneously.

Although we focus upon interactive applica-
tions for MT in our experiments, lexically con-
strained decoding is relevant to any scenario
where a model is asked to generate a sequence
ŷ = {y0 . . . yT } given both an input x, and a
set {c0...cn}, where each ci is a sub-sequence
{ci0 . . . cij}, that must appear somewhere in ŷ.
This makes our work applicable to a wide range
of text generation scenarios, including image de-
scription, dialog generation, abstractive summa-
rization, and question answering.

The rest of this paper is organized as follows:
Section 2 gives the necessary background for our

1535

https://doi.org/10.18653/v1/P17-1141

Figure 1: A visualization of the decoding process for an actual example from our English-German MT experiments. The output
token at each timestep appears at the top of the figure, with lexical constraints enclosed in boxes. Generation is shown in
blue, Starting new constraints in green, and Continuing constraints in red. The function used to create the hypothesis at each
timestep is written at the bottom. Each box in the grid represents a beam; a colored strip inside a beam represents an individual
hypothesis in the beam’s k-best stack. Hypotheses with circles inside them are closed, all other hypotheses are open. (Best
viewed in colour).

discussion of GBS, Section 3 discusses the lex-
ically constrained decoding algorithm in detail,
Section 4 presents our experiments, and Section 5
gives an overview of closely related work.

2 Background: Beam Search for
Sequence Generation

Under a model parameterized by θ, let the best
output sequence ŷ given input x be Eq. 1.

ŷ = argmax
y∈{y[T]}

pθ(y|x), (1)

where we use {y[T]} to denote the set of all se-
quences of length T . Because the number of pos-
sible sequences for such a model is |v|T , where |v|
is the number of output symbols, the search for ŷ
can be made more tractable by factorizing pθ(y|x)
into Eq. 2:

pθ(y|x) =
T∏

t=0

pθ(yt|x; {y0 . . . yt−1}). (2)

The standard approach is thus to generate the
output sequence from beginning to end, condition-
ing the output at each timestep upon the input x,

and the already-generated symbols {y0 . . . yi−t}.
However, greedy selection of the most probable
output at each timestep, i.e.:

ŷt = argmax
yi∈{v}

p(yi|x; {y0 . . . yt−1}), (3)

risks making locally optimal decisions which are
actually globally sub-optimal. On the other hand,
an exhaustive exploration of the output space
would require scoring |v|T sequences, which is
intractable for most real-world models. Thus, a
search or decoding algorithm is often used as a
compromise between these two extremes. A com-
mon solution is to use a heuristic search to at-
tempt to find the best output efficiently (Pearl,
1984; Koehn, 2010; Rush et al., 2013). The key
idea is to discard bad options early, while trying
to avoid discarding candidates that may be locally
risky, but could eventually result in the best overall
output.

Beam search (Och and Ney, 2004) is probably
the most popular search algorithm for decoding se-
quences. Beam search is simple to implement, and
is flexible in the sense that the semantics of the

1536

Figure 2: Different structures for beam search. Boxes repre-
sent beams which hold k-best lists of hypotheses. (A) Chart
Parsing using SCFG rules to cover spans in the input. (B)
Source coverage as used in PB-SMT. (C) Sequence timesteps
(as used in Neural Sequence Models), GBS is an extension of
(C). In (A) and (B), hypotheses are finished once they reach
the final beam. In (C), a hypothesis is only complete if it has
generated an end-of-sequence (EOS) symbol.

graph of beams can be adapted to take advantage
of additional structure that may be available for
specific tasks. For example, in Phrase-Based Sta-
tistical MT (PB-SMT) (Koehn, 2010), beams are
organized by the number of source words that are
covered by the hypotheses in the beam – a hypoth-
esis is “finished” when it has covered all source
words. In chart-based decoding algorithms such as
CYK, beams are also tied to coverage of the input,
but are organized as cells in a chart, which facili-
tates search for the optimal latent structure of the
output (Chiang, 2007). Figure 2 visualizes three
common ways to structure search. (A) and (B) de-
pend upon explicit structural information between
the input and output, (C) only assumes that the
output is a sequence where later symbols depend
upon earlier ones. Note also that (C) corresponds
exactly to the bottom rows of Figures 1 and 3.

With the recent success of neural models for
text generation, beam search has become the
de-facto choice for decoding optimal output se-
quences (Sutskever et al., 2014). However,
with neural sequence models, we cannot organize
beams by their explicit coverage of the input. A
simpler alternative is to organize beams by output
timesteps from t0 · · · tN , where N is a hyperpa-
rameter that can be set heuristically, for example
by multiplying a factor with the length of the in-
put to make an educated guess about the maximum
length of the output (Sutskever et al., 2014). Out-
put sequences are generally considered complete
once a special “end-of-sentence”(EOS) token has
been generated. Beam size in these models is also
typically kept small, and recent work has shown

Figure 3: Visualizing the lexically constrained decoder’s
complete search graph. Each rectangle represents a beam
containing k hypotheses. Dashed (diagonal) edges indicate
starting or continuing constraints. Horizontal edges repre-
sent generating from the model’s distribution. The horizontal
axis covers the timesteps in the output sequence, and the ver-
tical axis covers the constraint tokens (one row for each token
in each constraint). Beams on the top level of the grid contain
hypotheses which cover all constraints.

that the performance of some architectures can ac-
tually degrade with larger beam size (Tu et al.,
2016).

3 Grid Beam Search

Our goal is to organize decoding in such a way that
we can constrain the search space to outputs which
contain one or more pre-specified sub-sequences.
We thus wish to use a model’s distribution both to
“place” lexical constraints correctly, and to gener-
ate the parts of the output which are not covered
by the constraints.

Algorithm 1 presents the pseudo-code for lex-
ically constrained decoding, see Figures 1 and 3
for visualizations of the search process. Beams
in the grid are indexed by t and c. The t vari-
able tracks the timestep of the search, while the
c variable indicates how many constraint tokens
are covered by the hypotheses in the current beam.
Note that each step of c covers a single constraint
token. In other words, constraints is an array of
sequences, where individual tokens can be indexed
as constraintsij , i.e. tokenj in constrainti. The
numC parameter in Algorithm 1 represents the to-
tal number of tokens in all constraints.

The hypotheses in a beam can be separated
into two types (see lines 9-11 and 15-19 of Algo-
rithm 1):

1. open hypotheses can either generate from the
model’s distribution, or start available con-
straints,

2. closed hypotheses can only generate the next

1537

Algorithm 1 Pseudo-code for Grid Beam Search, note that t and c indices are 0-based
1: procedure CONSTRAINEDSEARCH(model, input, constraints, maxLen, numC, k)
2: startHyp⇐ model.getStartHyp(input, constraints)
3: Grid⇐ initGrid(maxLen, numC, k) . initialize beams in grid
4: Grid[0][0] = startHyp
5: for t = 1, t++, t < maxLen do
6: for c = max(0, (numC + t)−maxLen), c++, c ≤ min(t, numC) do
7: n, s, g = ∅
8: for each hyp ∈ Grid[t− 1][c] do
9: if hyp.isOpen() then

10: g ⇐ g
⋃

model.generate(hyp, input, constraints) . generate new open hyps
11: end if
12: end for
13: if c > 0 then
14: for each hyp ∈ Grid[t− 1][c− 1] do
15: if hyp.isOpen() then
16: n⇐ n

⋃
model.start(hyp, input, constraints) . start new constrained hyps

17: else
18: s⇐ s

⋃
model.continue(hyp, input, constraints) . continue unfinished

19: end if
20: end for
21: end if
22: Grid[t][c] = k-argmax

h∈n⋃
s
⋃
g

model.score(h) . k-best scoring hypotheses stay on the beam

23: end for
24: end for
25: topLevelHyps⇐ Grid[:][numC] . get hyps in top-level beams
26: finishedHyps⇐ hasEOS(topLevelHyps) . finished hyps have generated the EOS token
27: bestHyp⇐ argmax

h∈finishedHyps
model.score(h)

28: return bestHyp
29: end procedure

token for in a currently unfinished constraint.

At each step of the search the beam at
Grid[t][c] is filled with candidates which may be
created in three ways:

1. the open hypotheses in the beam to the
left (Grid[t − 1][c]) may generate con-
tinuations from the model’s distribution
pθ(yi|x, {y0 . . . yi−1}),

2. the open hypotheses in the beam to the left
and below (Grid[t−1][c−1]) may start new
constraints,

3. the closed hypotheses in the beam to the left
and below (Grid[t−1][c−1]) may continue
constraints.

Therefore, the model in Algorithm 1 imple-
ments an interface with three functions: generate,

start, and continue, which build new hypotheses
in each of the three ways. Note that the scoring
function of the model does not need to be aware of
the existence of constraints, but it may be, for ex-
ample via a feature which indicates if a hypothesis
is part of a constraint or not.

The beams at the top level of the grid (beams
where c = numConstraints) contain hypothe-
ses which cover all of the constraints. Once a hy-
pothesis on the top level generates the EOS token,
it can be added to the set of finished hypotheses.
The highest scoring hypothesis in the set of fin-
ished hypotheses is the best sequence which cov-
ers all constraints.1

1Our implementation of GBS is available at https:
//github.com/chrishokamp/constrained_
decoding

1538

3.1 Multi-token Constraints
By distinguishing between open and closed hy-
potheses, we can allow for arbitrary multi-token
phrases in the search. Thus, the set of constraints
for a particular output may include both individ-
ual tokens and phrases. Each hypothesis main-
tains a coverage vector to ensure that constraints
cannot be repeated in a search path – hypotheses
which have already covered constrainti can only
generate, or start constraints that have not yet
been covered.

Note also that discontinuous lexical constraints,
such as phrasal verbs in English or German, are
easy to incorporate into GBS, by adding filters to
the search, which require that one or more con-
ditions must be met before a constraint can be
used. For example, adding the phrasal verb “ask
〈someone〉 out” as a constraint would mean using
“ask” as constraint0 and “out” as constraint1,
with two filters: one requiring that constraint1
cannot be used before constraint0, and another
requiring that there must be at least one generated
token between the constraints.

3.2 Subword Units
Both the computation of the score for a hypoth-
esis, and the granularity of the tokens (character,
subword, word, etc...) are left to the underlying
model. Because our decoder can handle arbitrary
constraints, there is a risk that constraints will con-
tain tokens that were never observed in the training
data, and thus are unknown by the model. Espe-
cially in domain adaptation scenarios, some user-
specified constraints are very likely to contain un-
seen tokens. Subword representations provide an
elegant way to circumvent this problem, by break-
ing unknown or rare tokens into character n-grams
which are part of the model’s vocabulary (Sen-
nrich et al., 2016; Wu et al., 2016). In the ex-
periments in Section 4, we use this technique to
ensure that no input tokens are unknown, even if
a constraint contains words which never appeared
in the training data.2

3.3 Efficiency
Because the number of beams is multiplied by the
number of constraints, the runtime complexity of
a naive implementation of GBS is O(ktc). Stan-
dard time-based beam search is O(kt); therefore,

2If a character that was not observed in training data is
observed at prediction time, it will be unknown. However,
we did not observe this in any of our experiments.

some consideration must be given to the efficiency
of this algorithm. Note that the beams in each col-
umn c of Figure 3 are independent, meaning that
GBS can be parallelized to allow all beams at each
timestep to be filled simultaneously. Also, we find
that the most time is spent computing the states for
the hypothesis candidates, so by keeping the beam
size small, we can make GBS significantly faster.

3.4 Models
The models used for our experiments are state-
of-the-art Neural Machine Translation (NMT) sys-
tems using our own implementation of NMT with
attention over the source sequence (Bahdanau
et al., 2014). We used Blocks and Fuel to im-
plement our NMT models (van Merrinboer et al.,
2015). To conduct the experiments in the fol-
lowing section, we trained baseline translation
models for English–German (EN-DE), English–
French (EN-FR), and English–Portuguese (EN-
PT). We created a shared subword representation
for each language pair by extracting a vocabulary
of 80000 symbols from the concatenated source
and target data. See the Appendix for more de-
tails on our training data and hyperparameter con-
figuration for each language pair. The beamSize
parameter is set to 10 for all experiments.

Because our experiments use NMT models, we
can now be more explicit about the implemen-
tations of the generate, start, and continue
functions for this GBS instantiation. For an
NMT model at timestep t, generate(hypt−1) first
computes a vector of output probabilities ot =
softmax(g(yt−1, si, ci))3 using the state infor-
mation available from hypt−1. and returns the best
k continuations, i.e. Eq. 4:

gt = k-argmax
i

oti. (4)

The start and continue functions simply index
into the softmax output of the model, selecting
specific tokens instead of doing a k-argmax over
the entire target language vocabulary. For exam-
ple, to start constraint ci, we find the score of to-
ken ci0 , i.e. otci0 .

4 Experiments

4.1 Pick-Revise for Interactive Post Editing
Pick-Revise is an interaction cycle for MT Post-
Editing proposed by Cheng et al. (2016). Starting

3we use the notation for the g function from Bahdanau
et al. (2014)

1539

ITERATION 0 1 2 3
Strict Constraints
EN-DE 18.44 27.64 (+9.20) 36.66 (+9.01) 43.92 (+7.26)
EN-FR 28.07 36.71 (+8.64) 44.84 (+8.13) 45.48 +(0.63)
EN-PT* 15.41 23.54 (+8.25) 31.14 (+7.60) 35.89 (+4.75)
Relaxed Constraints
EN-DE 18.44 26.43 (+7.98) 34.48 (+8.04) 41.82 (+7.34)
EN-FR 28.07 33.8 (+5.72) 40.33 (+6.53) 47.0 (+6.67)
EN-PT* 15.41 23.22 (+7.80) 33.82 (+10.6) 40.75 (+6.93)

Table 1: Results for four simulated editing cycles using WMT test data. EN-DE uses newstest2013, EN-FR uses newstest2014,
and EN-PT uses the Autodesk corpus discussed in Section 4.2. Improvement in BLEU score over the previous cycle is shown
in parentheses. * indicates use of our test corpus created from Autodesk post-editing data.

with the original translation hypothesis, a (sim-
ulated) user first picks a part of the hypothesis
which is incorrect, and then provides the correct
translation for that portion of the output. The user-
provided correction is then used as a constraint for
the next decoding cycle. The Pick-Revise process
can be repeated as many times as necessary, with
a new constraint being added at each cycle.

We modify the experiments of Cheng et al.
(2016) slightly, and assume that the user only pro-
vides sequences of up to three words which are
missing from the hypothesis.4 To simulate user
interaction, at each iteration we chose a phrase
of up to three tokens from the reference transla-
tion which does not appear in the current MT hy-
potheses. In the strict setting, the complete phrase
must be missing from the hypothesis. In the re-
laxed setting, only the first word must be missing.
Table 1 shows results for a simulated editing ses-
sion with four cycles. When a three-token phrase
cannot be found, we backoff to two-token phrases,
then to single tokens as constraints. If a hypoth-
esis already matches the reference, no constraints
are added. By specifying a new constraint of up to
three words at each cycle, an increase of over 20
BLEU points is achieved in all language pairs.

4.2 Domain Adaptation via Terminology

The requirement for use of domain-specific termi-
nologies is common in real-world applications of
MT (Crego et al., 2016). Existing approaches in-
corporate placeholder tokens into NMT systems,
which requires modifying the pre- and post- pro-
cessing of the data, and training the system with

4NMT models do not use explicit alignment between
source and target, so we cannot use alignment information
to map target phrases to source phrases

data that contains the same placeholders which oc-
cur in the test data (Crego et al., 2016). The MT
system also loses any possibility to model the to-
kens in the terminology, since they are represented
by abstract tokens such as “〈TERM 1〉”. An at-
tractive alternative is to simply provide term map-
pings as constraints, allowing any existing system
to adapt to the terminology used in a new test do-
main.

For the target domain data, we use the Autodesk
Post-Editing corpus (Zhechev, 2012), which is a
dataset collected from actual MT post-editing ses-
sions. The corpus is focused upon software local-
ization, a domain which is likely to be very dif-
ferent from the WMT data used to train our gen-
eral domain models. We divide the corpus into ap-
proximately 100,000 training sentences, and 1000
test segments, and automatically generate a termi-
nology by computing the Pointwise Mutual Infor-
mation (PMI) (Church and Hanks, 1990) between
source and target n-grams in the training set. We
extract all n-grams from length 2-5 as terminology
candidates.

pmi(x;y) = log
p(x, y)

p(x)p(y)
(5)

npmi(x;y) =
pmi(x;y)

h(x,y)
(6)

Equations 5 and 6 show how we compute the
normalized PMI for a terminology candidate pair.
The PMI score is normalized to the range [−1,+1]
by dividing by the entropy h of the joint prob-
ability p(x,y). We then filter the candidates to
only include pairs whose PMI is≥ 0.9, and where
both the source and target phrases occur at least
five times in the corpus. When source phrases
that match the terminology are observed in the test

1540

data, the corresponding target phrase is added to
the constraints for that segment. Results are shown
in Table 2.

As a sanity check that improvements in BLEU
are not merely due to the presence of the terms
somewhere in the output, i.e. that the placement
of the terms by GBS is reasonable, we also eval-
uate the results of randomly inserting terms into
the baseline output, and of prepending terms to the
baseline output.

This simple method of domain adaptation leads
to a significant improvement in the BLEU score
without any human intervention. Surprisingly,
even an automatically created terminology com-
bined with GBS yields performance improve-
ments of approximately +2 BLEU points for En-
De and En-Fr, and a gain of almost 14 points
for En-Pt. The large improvement for En-Pt is
probably due to the training data for this sys-
tem being very different from the IT domain
(see Appendix). Given the performance improve-
ments from our automatically extracted terminol-
ogy, manually created domain terminologies with
good coverage of the test domain are likely to lead
to even greater gains. Using a terminology with
GBS is likely to be beneficial in any setting where
the test domain is significantly different from the
domain of the model’s original training data.

System BLEU
EN-DE
Baseline 26.17
Random 25.18 (-0.99)
Beginning 26.44 (+0.26)
GBS 27.99 (+1.82)
EN-FR
Baseline 32.45
Random 31.48 (-0.97)
Beginning 34.51 (+2.05)
GBS 35.05 (+2.59)
EN-PT
Baseline 15.41
Random 18.26 (+2.85)
Beginning 20.43 (+5.02)
GBS 29.15 (+13.73)

Table 2: BLEU Results for EN-DE, EN-FR, and EN-PT ter-
minology experiments using the Autodesk Post-Editing Cor-
pus. ”Random’ indicates inserting terminology constraints
at random positions in the baseline translation. ”Beginning”
indicates prepending constraints to baseline translations.

4.3 Analysis

Subjective analysis of decoder output shows that
phrases added as constraints are not only placed
correctly within the output sequence, but also have
global effects upon translation quality. This is a
desirable effect for user interaction, since it im-
plies that users can bootstrap quality by adding the
most critical constraints (i.e. those that are most
essential to the output), first. Table 3 shows several
examples from the experiments in Table 1, where
the addition of lexical constraints was able to
guide our NMT systems away from initially quite
low-scoring hypotheses to outputs which perfectly
match the reference translations.

5 Related Work

Most related work to date has presented modifica-
tions of SMT systems for specific usecases which
constrain MT output via auxilliary inputs. The
largest body of work considers Interactive Ma-
chine Translation (IMT): an MT system searches
for the optimal target-language suffix given a com-
plete source sentence and a desired prefix for
the target output (Foster, 2002; Barrachina et al.,
2009; Green, 2014). IMT can be viewed as sub-
case of constrained decoding, where there is only
one constraint which is guaranteed to be placed at
the beginning of the output sequence. Wuebker
et al. (2016) introduce prefix-decoding, which
modifies the SMT beam search to first ensure that
the target prefix is covered, and only then contin-
ues to build hypotheses for the suffix using beams
organized by coverage of the remaining phrases
in the source segment. Wuebker et al. (2016) and
Knowles and Koehn (2016) also present a simple
modification of NMT models for IMT, enabling
models to predict suffixes for user-supplied pre-
fixes.

Recently, some attention has also been given to
SMT decoding with multiple lexical constraints.
The Pick-Revise (PRIMT) (Cheng et al., 2016)
framework for Interactive Post Editing introduces
the concept of edit cycles. Translators specify con-
straints by editing a part of the MT output that is
incorrect, and then asking the system for a new
hypothesis, which must contain the user-provided
correction. This process is repeated, maintain-
ing constraints from previous iterations and adding
new ones as needed. Importantly, their approach
relies upon the phrase segmentation provided by
the SMT system. The decoding algorithm can

1541

EN-DE
Source
He was also an anti- smoking activist and took part in several campaigns .
Original Hypothesis
Es war auch ein Anti- Rauch- Aktiv- ist und nahmen an mehreren Kampagnen teil .
Reference Constraints
Ebenso setzte er sich gegen das Rauchen ein und nahm an mehreren Kampagnen teil . (1) Ebenso setzte er
Constrained Hypothesis (2) gegen das Rauchen
Ebenso setzte er sich gegen das Rauchen ein und nahm an mehreren Kampagnen teil . (3) nahm

EN-FR
Source
At that point I was no longer afraid of him and I was able to love him .
Original Hypothesis
Je n’avais plus peur de lui et j’ètais capable de l’aimer .
Reference Constraints
Lá je n’ai plus eu peur de lui et j’ai pu l’aimer . (1) Lá je n’ai
Constrained Hypothesis (2) j’ai pu
Lá je n’ai plus eu peur de lui et j’ai pu l’aimer . (3) eu

EN-PT
Source
Mo- dif- y drain- age features by selecting them individually .
Original Hypothesis
- Já temos as caracterı́sticas de extracção de idade , com eles individualmente .
Reference Constraints
Modi- fique os recursos de drenagem ao selec- ion- á-los individualmente . (1) drenagem ao selec-
Constrained Hypothesis (2) Modi- fique os
Modi- fique os recursos de drenagem ao selec- ion- á-los individualmente . (3) recursos

Table 3: Manual analysis of examples from lexically constrained decoding experiments. “-” followed by whitespace indicates
the internal segmentation of the translation model (see Section 3.2)

only make use of constraints that match phrase
boundaries, because constraints are implemented
as “rules” enforcing that source phrases must be
translated as the aligned target phrases that have
been selected as constraints. In contrast, our ap-
proach decodes at the token level, and is not de-
pendent upon any explicit structure in the underly-
ing model.

Domingo et al. (2016) also consider an interac-
tive scenario where users first choose portions of
an MT hypothesis to keep, then query for an up-
dated translation which preserves these portions.
The MT system decodes the source phrases which
are not aligned to the user-selected phrases un-
til the source sentence is fully covered. This ap-
proach is similar to the system of Cheng et al., and
uses the “XML input” feature in Moses (Koehn
et al., 2007).

Some recent work considers the inclusion of
soft lexical constraints directly into deep models
for dialog generation, and special cases, such as
recipe generation from a list of ingredients (Wen
et al., 2015; Kiddon et al., 2016). Such constraint-
aware models are complementary to our work, and
could be used with GBS decoding without any
change to the underlying models.

To the best of our knowledge, ours is the
first work which considers general lexically con-
strained decoding for any model which outputs
sequences, without relying upon alignments be-
tween input and output, and without using a search

organized by coverage of the input.

6 Conclusion

Lexically constrained decoding is a flexible way
to incorporate arbitrary subsequences into the out-
put of any model that generates output sequences
token-by-token. A wide spectrum of popular text
generation models have this characteristic, and
GBS should be straightforward to use with any
model that already uses beam search.

In translation interfaces where translators can
provide corrections to an existing hypothesis,
these user inputs can be used as constraints, gener-
ating a new output each time a user fixes an error.
By simulating this scenario, we have shown that
such a workflow can provide a large improvement
in translation quality at each iteration.

By using a domain-specific terminology to gen-
erate target-side constraints, we have shown that
a general domain model can be adapted to a new
domain without any retraining. Surprisingly, this
simple method can lead to significant performance
gains, even when the terminology is created auto-
matically.

In future work, we hope to evaluate GBS with
models outside of MT, such as automatic sum-
marization, image captioning or dialog genera-
tion. We also hope to introduce new constraint-
aware models, for example via secondary attention
mechanisms over lexical constraints.

1542

Acknowledgments

This project has received funding from Science
Foundation Ireland in the ADAPT Centre for Dig-
ital Content Technology (www.adaptcentre.ie) at
Dublin City University funded under the SFI Re-
search Centres Programme (Grant 13/RC/2106)
co-funded under the European Regional Develop-
ment Fund and the European Union Horizon 2020
research and innovation programme under grant
agreement 645452 (QT21). We thank the anony-
mous reviewers, as well as Iacer Calixto, Peyman
Passban, and Henry Elder for helpful feedback on
early versions of this work.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Sergio Barrachina, Oliver Bender, Francisco Casacu-
berta, Jorge Civera, Elsa Cubel, Shahram Khadivi,
Antonio Lagarda, Hermann Ney, Jesús Tomás, En-
rique Vidal, and Juan-Miguel Vilar. 2009. Sta-
tistical approaches to computer-assisted transla-
tion. Computational Linguistics 35(1):3–28.
https://doi.org/10.1162/coli.2008.07-055-R2-06-29.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Carolina Scarton, Lucia
Specia, and Marco Turchi. 2015. Findings of the
2015 workshop on statistical machine translation.
In Proceedings of the Tenth Workshop on Statisti-
cal Machine Translation. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1–46.
http://aclweb.org/anthology/W15-3001.

Shanbo Cheng, Shujian Huang, Huadong Chen, Xinyu
Dai, and Jiajun Chen. 2016. PRIMT: A pick-
revise framework for interactive machine trans-
lation. In NAACL HLT 2016, The 2016 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, San Diego Califor-
nia, USA, June 12-17, 2016. pages 1240–1249.
http://aclweb.org/anthology/N/N16/N16-1148.pdf.

David Chiang. 2007. Hierarchical phrase-based
translation. Comput. Linguist. 33(2):201–228.
https://doi.org/10.1162/coli.2007.33.2.201.

Kyunghyun Cho, Bart van Merriënboer, Çalar
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of

the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, Doha, Qatar, pages
1724–1734. http://www.aclweb.org/anthology/D14-
1179.

Kenneth Ward Church and Patrick Hanks. 1990.
Word association norms, mutual information, and
lexicography. Comput. Linguist. 16(1):22–29.
http://dl.acm.org/citation.cfm?id=89086.89095.

Josep Maria Crego, Jungi Kim, Guillaume Klein, An-
abel Rebollo, Kathy Yang, Jean Senellart, Egor
Akhanov, Patrice Brunelle, Aurelien Coquard,
Yongchao Deng, Satoshi Enoue, Chiyo Geiss,
Joshua Johanson, Ardas Khalsa, Raoum Khiari,
Byeongil Ko, Catherine Kobus, Jean Lorieux, Leid-
iana Martins, Dang-Chuan Nguyen, Alexandra Pri-
ori, Thomas Riccardi, Natalia Segal, Christophe Ser-
van, Cyril Tiquet, Bo Wang, Jin Yang, Dakun Zhang,
Jing Zhou, and Peter Zoldan. 2016. Systran’s
pure neural machine translation systems. CoRR
abs/1610.05540. http://arxiv.org/abs/1610.05540.

Miguel Domingo, Alvaro Peris, and Francisco Casacu-
berta. 2016. Interactive-predictive translation based
on multiple word-segments. Baltic J. Modern Com-
puting 4(2):282–291.

George F. Foster. 2002. Text Prediction for Transla-
tors. Ph.D. thesis, Montreal, P.Q., Canada, Canada.
AAINQ72434.

Spence Green. 2014. Mixed-Initiative Natural Lan-
guage Translation. Ph.D. thesis, Stanford, CA,
United States.

Chloé Kiddon, Luke Zettlemoyer, and Yejin Choi.
2016. Globally coherent text generation with
neural checklist models. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016. pages 329–339.
http://aclweb.org/anthology/D/D16/D16-1032.pdf.

Rebecca Knowles and Philipp Koehn. 2016. Neural
interactive translation prediction. AMTA 2016, Vol.
page 107.

Philipp Koehn. 2009. A process study of computer-
aided translation. Machine Translation 23(4):241–
263. https://doi.org/10.1007/s10590-010-9076-3.

Philipp Koehn. 2010. Statistical Machine Translation.
Cambridge University Press, New York, NY, USA,
1st edition.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation.
In Proceedings of the 45th Annual Meeting of the
ACL on Interactive Poster and Demonstration Ses-
sions. Association for Computational Linguistics,

1543

Stroudsburg, PA, USA, ACL ’07, pages 177–180.
http://dl.acm.org/citation.cfm?id=1557769.1557821.

Franz Josef Och and Hermann Ney. 2004. The
alignment template approach to statistical machine
translation. Comput. Linguist. 30(4):417–449.
https://doi.org/10.1162/0891201042544884.

Judea Pearl. 1984. Heuristics: Intelligent Search
Strategies for Computer Problem Solving. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Alexander Rush, Yin-Wen Chang, and Michael
Collins. 2013. Optimal beam search for machine
translation. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, Seattle, Washington, USA, pages 210–221.
http://www.aclweb.org/anthology/D13-1022.

Alexander M. Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for abstrac-
tive sentence summarization. In Llus Mrquez, Chris
Callison-Burch, Jian Su, Daniele Pighin, and Yuval
Marton, editors, EMNLP. The Association for Com-
putational Linguistics, pages 379–389.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2016, August 7-12,
2016, Berlin, Germany, Volume 1: Long Papers.
http://aclweb.org/anthology/P/P16/P16-1162.pdf.

Iulian V. Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau. 2016. Building
end-to-end dialogue systems using generative
hierarchical neural network models. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intel-
ligence. AAAI Press, AAAI’16, pages 3776–3783.
http://dl.acm.org/citation.cfm?id=3016387.3016435.

Jason R. Smith, Herve Saint-amand, Chris Callison-
burch, Magdalena Plamada, and Adam Lopez. 2013.
Dirt cheap web-scale parallel text from the common
crawl. In In Proceedings of the Conference of the
Association for Computational Linguistics (ACL.

Lucia Specia. 2011. Exploiting objective annotations
for measuring translation post-editing effort. In Pro-
ceedings of the European Association for Machine
Translation. May.

Ralf Steinberger, Bruno Pouliquen, Anna Widiger,
Camelia Ignat, Toma Erjavec, and Dan Tufi. 2006.
The jrc-acquis: A multilingual aligned parallel cor-
pus with 20+ languages. In In Proceedings of the 5th
International Conference on Language Resources
and Evaluation (LREC’2006. pages 2142–2147.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.
2014. Sequence to sequence learning with
neural networks. In Proceedings of the 27th

International Conference on Neural Informa-
tion Processing Systems. MIT Press, Cam-
bridge, MA, USA, NIPS’14, pages 3104–3112.
http://dl.acm.org/citation.cfm?id=2969033.2969173.

Zhaopeng Tu, Yang Liu, Lifeng Shang, Xiaohua Liu,
and Hang Li. 2016. Neural machine translation with
reconstruction. arXiv preprint arXiv:1611.01874 .

Bart van Merrinboer, Dzmitry Bahdanau, Vincent Du-
moulin, Dmitriy Serdyuk, David Warde-Farley, Jan
Chorowski, and Yoshua Bengio. 2015. Blocks
and fuel: Frameworks for deep learning. CoRR
abs/1506.00619.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems.
In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, ukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2016. Google’s
neural machine translation system: Bridging the gap
between human and machine translation. CoRR
abs/1609.08144. http://arxiv.org/abs/1609.08144.

Joern Wuebker, Spence Green, John DeNero, Sasa
Hasan, and Minh-Thang Luong. 2016. Models
and inference for prefix-constrained machine trans-
lation. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Compu-
tational Linguistics, Berlin, Germany, pages 66–75.
http://www.aclweb.org/anthology/P16-1007.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. 2015. Show, attend and tell:
Neural image caption generation with visual atten-
tion. In David Blei and Francis Bach, editors,
Proceedings of the 32nd International Conference
on Machine Learning (ICML-15). JMLR Workshop
and Conference Proceedings, pages 2048–2057.
http://jmlr.org/proceedings/papers/v37/xuc15.pdf.

Matthew D. Zeiler. 2012. ADADELTA: an adap-
tive learning rate method. CoRR abs/1212.5701.
http://arxiv.org/abs/1212.5701.

Ventsislav Zhechev. 2012. Machine Translation Infras-
tructure and Post-editing Performance at Autodesk.

1544

In AMTA 2012 Workshop on Post-Editing Technol-
ogy and Practice (WPTP 2012). Association for Ma-
chine Translation in the Americas (AMTA), San
Diego, USA, pages 87–96.

1545

A NMT System Configurations

We train all systems for 500000 iterations, with
validation every 5000 steps. The best single model
from validation is used in all of the experiments for
a language pair. We use `2 regularization on all pa-
rameters with α = 1e−5. Dropout is used on the
output layers with p(drop) = 0.5. We sort mini-
batches by source sentence length, and reshuffle
training data after each epoch.

All systems use a bidirectional GRUs (Cho
et al., 2014) to create the source representation
and GRUs for the decoder transition. We use
AdaDelta (Zeiler, 2012) to update gradients, and
clip large gradients to 1.0.

Training Configurations
EN-DE
Embedding Size 300
Recurrent Layers Size 1000
Source Vocab Size 80000
Target Vocab Size 90000
Batch Size 50
EN-FR
Embedding Size 300
Recurrent Layers Size 1000
Source Vocab Size 66000
Target Vocab Size 74000
Batch Size 40
EN-PT
Embedding Size 200
Recurrent Layers Size 800
Source Vocab Size 60000
Target Vocab Size 74000
Batch Size 40

A.1 English-German
Our English-German training corpus consists of
4.4 Million segments from the Europarl (Bojar
et al., 2015) and CommonCrawl (Smith et al.,
2013) corpora.

A.2 English-French
Our English-French training corpus consists of 4.9
Million segments from the Europarl and Com-
monCrawl corpora.

A.3 English-Portuguese
Our English-Portuguese training corpus consists
of 28.5 Million segments from the Europarl, JRC-

Aquis (Steinberger et al., 2006) and OpenSubti-
tles5 corpora.

5http://www.opensubtitles.org/

1546

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1547–1556
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1142

Combating Human Trafficking with Deep Multimodal Models
Edmund Tong*

Language Technologies Institute
Carnegie Mellon University

edtong@cmu.edu

Amir Zadeh*
Language Technologies Institute

Carnegie Mellon University
abagherz@cs.cmu.edu

Cara Jones
Marinus Analytics, LLC

cara@marinusanalytics.com

Louis-Philippe Morency
Language Technologies Institute

Carnegie Mellon University
morency@cs.cmu.edu

Abstract

Human trafficking is a global epidemic af-
fecting millions of people across the planet.
Sex trafficking, the dominant form of hu-
man trafficking, has seen a significant rise
mostly due to the abundance of escort web-
sites, where human traffickers can openly
advertise among at-will escort advertise-
ments. In this paper, we take a major
step in the automatic detection of advertise-
ments suspected to pertain to human traf-
ficking. We present a novel dataset called
Trafficking-10k, with more than 10,000 ad-
vertisements annotated for this task. The
dataset contains two sources of informa-
tion per advertisement: text and images.
For the accurate detection of trafficking ad-
vertisements, we designed and trained a
deep multimodal model called the Human
Trafficking Deep Network (HTDN).

1 Introduction

Human trafficking “a crime that shames us all”
(UNODC, 2008), has seen a steep rise in the United
States since 2012. The number of cases reported
rose from 3,279 in 2012 to 7,572 in 2016—more
than doubling over the course of five years (Hot-
line). Sex trafficking is a form of human trafficking,
and is a global epidemic affecting millions of peo-
ple each year (McCarthy, 2014). Victims of sex
trafficking are subjected to coercion, force, and con-
trol, and are not able to ask for help. Put plainly,
sex trafficking is modern-day slavery and is one of
the top priorities of law enforcement agencies at all
levels.

A major advertising ground for human traffickers
is the World Wide Web. The Internet has brought

* Authors contributed equally.

traffickers the ability to advertise online and has
fostered the growth of numerous adult escort sites.
Each day, there are tens of thousands of Internet
advertisements posted in the United States and
Canada that market commercial sex. Hiding among
the noise of at-will adult escort ads are ads posted
by sex traffickers. Often long undetected, traffick-
ing rings and escort websites form a profit cycle
that fuels the increase of both trafficking rings and
escort websites.

For law enforcement, this presents a significant
challenge: how should we identify advertisements
that are associated with sex trafficking? Police
have limited human and technical resources, and
manually sifting through thousands of ads in the
hopes of finding something suspicious is a poor
use of those resources, even if they know what
they are looking for. Leveraging state-of-the-art
machine learning approaches in Natural Language
Processing and computer vision to detect and re-
port advertisements suspected of trafficking is the
main focus of our work. In other words, we strive
to find the victims and perpetrators of trafficking
who hide in plain sight in the massive amounts
of data online. By narrowing down the number
of advertisements that law enforcement must sift
through, we endeavor to provide a real opportunity
for law enforcement to intervene in the lives of
victims. However, there are non-trivial challenges
facing this line of research:

Adversarial Environment. Human trafficking
rings are aware that law enforcement monitors their
online activity. Over the years, law enforcement
officers have populated lists of keywords that fre-
quently occur in trafficking advertisements. How-
ever, these simplistic queries fail when traffickers
use complex obfuscation. Traffickers, again aware
of this, move to new keywords to blend in with the
at-will escort advertisements. This trend creates an
adversarial environment for any machine learning

1547

https://doi.org/10.18653/v1/P17-1142

system that attempts to find trafficking rings hiding
in plain sight.

Defective Language Compositionality. Online
escort advertisements are difficult to analyze, be-
cause they lack grammatical structures such as
constituency. Therefore, any form of inference
must rely more on context than on grammar. This
presents a significant challenge to the NLP commu-
nity. Furthermore, the majority of the ads contain
emojis and non-English characters.

Generalizable Language Context. Machine
learning techniques can easily learn unreliable cues
in training sets such as phone numbers, keywords,
and other forms of semantically unreliable discrim-
inators to reduce the training loss. Due to limited
similarity between the training and test data due to
the large number of ads available online, relying on
these cues is futile. Learned discriminative features
should be generalizable and model semantics of
trafficking.

Multimodal Nature. Escort advertisements are
composed of both textual and visual information.
Our model should treat these features interdepen-
dently. For instance, if the text indicates that the
escort is in a hotel room, our model should con-
sider the effect that such knowledge may have on
the importance of certain visual features.

We believe that studying human trafficking ad-
vertisements can be seen as a fundamental chal-
lenge to the NLP, computer vision, and machine
learning communities dealing with language and vi-
sion problems. In this paper, we present the follow-
ing contributions to this research direction. First,
we study the language and vision modalities of the
escort advertisements through deep neural model-
ing. Second, we take a significant step in automatic
detection of advertisements suspected of sex traf-
ficking. While previous methods (Dubrawski et al.,
2015) have used simplistic classifiers, we build an
end-to-end-trained multimodal deep model called
the Human Trafficking Deep Network (HTDN).
The HTDN uses information from both text and
images to extract cues of human trafficking, and
shows outstanding performance compared to pre-
viously used models. Third, we present the first
rigorously annotated dataset for detection of human
trafficking, called Trafficking-10k, which includes
more than 10,000 trafficking ads labeled with like-
lihoods of having been posted by traffickers.1

1Due to the sensitive nature of this dataset, access can only
be granted by emailing Cara Jones. Different levels of access

2 Related Works

Automatic detection of human trafficking has been
a relatively unexplored area of machine learning
research. Very few machine learning approaches
have been proposed to detect signs of human traf-
ficking online. Most of these approaches use sim-
plistic methods such as multimedia matching (Zhou
et al., 2016), text-based filtering classifiers such
as random forests, logistic regression, and SVMs
(Dubrawski et al., 2015), and named-entity recog-
nition to isolate the instances of trafficking (Nagpal
et al., 2015). Studies have suggested using statis-
tical methods to find keywords and signs of traf-
ficking from data to help law enforcement agencies
(Kennedy, 2012) as well as adult content filtering
using textual information (Zhou et al., 2016).

Multimodal approaches have gained popularity
over the past few years. These multimodal models
have been used for medical purposes, such as detec-
tion of suicidal risk, PTSD and depression (Scherer
et al., 2016; Venek et al., 2016; Yu et al., 2013; Val-
star et al., 2016); sentiment analysis (Zadeh et al.,
2016b; Poria et al., 2016; Zadeh et al., 2016a);
emotion recognition (Poria et al., 2017); image cap-
tioning and media description (You et al., 2016;
Donahue et al., 2015); question answering (Antol
et al., 2015); and multimodal translation (Specia
et al., 2016).

To the best of our knowledge, this paper presents
the first multimodal and deep model for detection
of human trafficking.

3 Trafficking-10k Dataset

In this section, we present the dataset for our stud-
ies. We formalize the problem of recognizing sex
trafficking as a machine learning task. The input
data is text and images; this is mapped to a measure
of how suspicious the advertisement is with regards
to human trafficking.

3.1 Data Acquisition and Preprocessing

A subset of 10,000 ads were sampled randomly
from a large cache of escort ads for annotation in
Trafficking-10k dataset. The distribution of adver-
tisements across the United States and Canada is
shown in Figure 1, which indicates the diversity of
advertisements in Trafficking-10k. This diversity
ensures that models trained on Trafficking-10k can
be applicable nationwide. The 10,000 collected ads

are provided only to scientific community.

1548

Figure 1: Distribution of advertisements in
Trafficking-10k dataset across United States and
Canada.

each consist of text and zero or more images. The
text in the dataset is in plain text format, derived
by stripping the HTML tags from the raw source
of the ads. The set of characters in each advertise-
ment is encoded as UTF-8, because there is ample
usage of smilies and non-English characters. Ad-
vertisements are truncated to the first 184 words, as
this covers more than 90% of the ads. Images are
resized to 224× 224 pixels with RGB channels.

3.2 Trafficking Annotation

Detecting whether or not an advertisement is suspi-
cious requires years of practice and experience in
working closely with law enforcement. As a result,
annotation is a highly complicated and expensive
process, which cannot be scaled using crowdsourc-
ing. In our dataset, annotation is carried out by two
expert annotators, each with at least five years of
experience, in detection of human trafficking and
another annotator with one year of experience. In
our dataset, annotations were done by three experts.
One expert has over a year of experience, and the
other two have over five years of experience in the
human trafficking domain. To calculate the inter-
annotator agreement, each annotator is given the
same set of 1000 ads to annotate and the nomi-
nal agreement is found: there was a 83% pairwise
agreement (0.62 Krippendorff’s alpha). Also, to
make sure that annotations are generalizable across
the annotators and law enforcement officers, two
law enforcement officers annotated, respectively, a
subset of 500 and 100 of the advertisements. We
found a 62% average pairwise agreement (0.42
Krippendorff’s alpha) with our annotators. This
gap is reasonable, as law enforcement officers only
have experience with local advertisements, while

Trafficking-10k annotators have experience with
cases across the United States.

Annotators used an annotation interface specifi-
cally designed for the Trafficking-10k dataset. In
the annotation interface, each advertisement was
displayed on a separate webpage. The order of
the advertisements is determined uniformly ran-
domly, and annotators were unable to move to
the next advertisement without labeling the cur-
rent one. For each advertisement, the annotator
was presented with the question: “In your opin-
ion, would you consider this advertisement suspi-
cious of human trafficking?” The annotator is pre-
sented with the following options: “Certainly no,”
“Likely no,” “Weakly no,” “Unsure,”2 “Weakly yes,”
“Likely yes,” and “Certainly yes.” Thus, the degree
to which advertisements are suspicious is quantized
into seven levels.

3.3 Analysis of Language

The language used in these advertisements intro-
duces fundamental challenges to the field of NLP.
The nature of the textual content in these adver-
tisements raises the question of how we can make
inferences in a linguistic environment with a con-
stantly evolving lexicon. Language used in the
Trafficking-10k dataset is highly inconsistent with
standard grammar. Often, words are obfuscated
by emojis and symbols. The word ordering is in-
consistent, and there is rarely any form of con-
stituency. This form of language is completely
different from spoken and written English. These
attributes make escort advertisements appear some-
what similar to tweets, specifically since these ads
are normally short (more than 90% of the ads have
at most 184 words). Another point of complex-
ity in these advertisements is the high number of
unigrams, due to usage of uncommon words and
obfuscation. On top of unigram complexity, ad-
vertisers continuously change their writing pattern,
making this problem more complex.

3.4 Dataset Statistics

There are 106,954 distinct unigrams, 353,324
distinct bigrams, and 565,403 trigrams in the
Trafficking-10k dataset. There are 60,337 images.
The total number of distinct characters including
whitespace, punctuations, and hex characters is 182.
The average length of an ad is 137 words, with a

2This option is greyed out for 10 seconds to encourage
annotators to make an intuitive decision.

1549

0 40 80 120 160 200

0

500

1,000

1,500

+

Number of unigrams

Advertisement lengths

Positive
Negative

Figure 2: Distribution of the length of advertise-
ments in Trafficking-10k. There is no significant
difference between positive and negative cases
purely based on length.

standard deviation of 74, median 133. The short-
est advertisement has 7 unigrams, and the longest
advertisement has 1810 unigrams. There are of
106,954 distinct unigrams, 353,324 distinct bi-
grams and 565,403 trigrams in the Trafficking-10k
dataset. The average number of images in an ad-
vertisement is 5.9; the median is 5, the minimum
is 0, and the maximum is 90.

The length of suspected advertisements is 134
unigrams; the standard deviation is 39, the mini-
mum is 12, and the maximum is 666. The length
of non-suspected ads is 141; the standard deviation
is 85, the minimum is 7, and the maximum is 1810.
The total number of suspected ads is 3257; and the
total number of non-suspected ads is 6992. Fig-
ure 2 shows the histogram of number of ads based
on their length. Both the positive and negative dis-
tributions are similar. This means that there is no
obvious length difference between the two classes.
Most of the ads have a length of 80–180 words.

4 Model

In this section, we present our deep multimodal net-
work called the Human Trafficking Deep Network
(HTDN). The HTDN is a multimodal network with
language and vision components. The input to the
HTDN is an ad, text and images. The HTDN is
shown in Figure 3. In the remainder of this section,
we will outline the different parts of the HTDN,
and the input features to each component.

4.1 Trafficking Word Embeddings
Our approach to deal with the adversarial environ-
ment of escort ads is to use word vectors, defining

words not based on their constituent characters, but
rather based on their context. For instance, consider
the two unigrams “cash” and “©a$h.” While these
contain different characters, semantically they are
the same, and they occur in the same context. Thus,
our expectation is that both the unigrams will be
mapped to similar vectors. Word embeddings pre-
trained on general domains do not cover most of
the unigrams in Trafficking-10k. For instance,
the GloVe embedding (Pennington et al., 2014)
trained on Wikipedia covers only 49.7% of our
unigrams. The first step of the HTDN pipeline
is to train word vectors (Mikolov et al., 2013)
based on the skip-gram model. This is especially
suitable for escort ads, because skip-gram mod-
els are able to capture context without relying on
word order. We train the word embedding using
1,000,000 unlabeled ads from a dataset that does
not include the Trafficking-10k data. For each ad-
vertisement, the input to the trained embedding is a
sequence of words ŵ = [ŵ1, . . . , ŵt], and the out-
put is a sequence of 100-dimensional word vectors
w = [w1, . . . , wt], where t is the size of the adver-
tisement and wi ∈ R100. Our trained word vectors
cover 94.9% of the unigrams in the Trafficking-10k
dataset.

4.2 Language Network

Our language network is designed to deal with
two challenging aspects of escort advertisements:
(1) violation of constituency, and (2) presence of
irrelevant information not related to trafficking but
present in ads. We address both of these issues
by learning a time dependent embedding at word
level. This allows the model to not rely on con-
stituency and also remember useful information
from the past, should the model get overwhelmed
by irrelevant information. Our proposed language
network, Fl, takes as input a sequence of word
vectors w = [w1, . . . , wt], and outputs a neural
language representation hl. As a first step, Fl uses
the word embeddings as input to a Long-Short
Term Memory (LSTM) network and produces a
new supervised context-aware word embedding
u = [u1, . . . , ut] where ui ∈ R300 is the output
of the LSTM at time i. Then, u is fed into a fully
connected layer with dropout p = 0.5 to produce
the neural language representation hl ∈ R300 ac-
cording to the following formulas with weights
Wl for the LSTM and implicit weights in the fully

1550

Language Network Fl

d0ll@r

to
...

g r 8

skype

· · · LSTM

· · · LSTM

· · · LSTM

· · · LSTM

hl ∈ R300
Trafficking
embedding

...
...

...

300σ

Visual Network Fv

ı̂1
ı̂2
ı̂3
ı̂4
ı̂5

Trafficking
VGG

...
...

...

20
0σ
20
0σ
20
0σ

hv ∈ R5×200

Convolutional Decision Network Fd

conv

hm ∈ R5×200×300

⊗

5× 200× 300

max
pooling

conv

5× 100× 150

max
pooling

150 linear

...
P[τ | hm;Wd]

σ

Figure 3: Overview of our proposed Human Trafficking Deep Network (HTDN). The input to HTDN is text
and a set of 5 images. The text goes through the Language Network Fl to get the language representation
hl and the set of 5 images go through the Vision Network Fv to get the visual representation hv. hl and hv
are then fused together to get the multimodal representation hm. The Convolutional Decision Network Fd
conditioned on the hm makes inference about whether or not the advertisement is suspected of trafficking

connected layers, which we represent by FC :

ui = LSTM (i, wi;Wl) (1)

u = [u1, . . . , ut] (2)

hl = FC (u). (3)

The generated hl is then used as part of the HTDN
pipeline, and is also trained independently to as-
sess the performance of the language-only model.
The language network Fl is the combination of the
LSTM and the fully-connected network.

4.3 Vision Network
Parallel to the language network, the vision net-
work Fv takes as input advertisement images and
extracts visual representations hv. The vision net-
work takes at most five images; the median num-
ber of images per advertisement in Trafficking-10k
is 5. To learn contextual and abstract information
from images, we use a deep convolutional neural
network called Trafficking-VGG (T-VGG), a fine-
tuned instance of the well-known VGG network
(Simonyan and Zisserman, 2014). T-VGG is a deep
model with 13 consecutive convolutional layers fol-
lowed by 2 fully connected layers; it does not in-
clude the softmax layer of VGG. The procedure for
fine-tuning T-VGG maps each individual image to
a label that comes from the advertisement, and then
performs end-to-end training. For example, if there

are five images in an advertisement with positive
label, all five images are mapped to positive label.
After fine-tuning, three fully connected layers of
200 neurons with dropout p = 0.5 are added to
the network. The combination of T-VGG and the
fully connected layers is the vision network Fl. We
consider five images ı̂ = {ı̂1, . . . , ı̂5} from each
input advertisement. If the advertisement has fewer
than five images, zero-filled images are added. For
each image, the output of Fv is a representation
of five images i = {i1, . . . , i5}. The visual repre-
sentation hv ∈ R5×200 is a matrix with a size-200
representation of each of the 5 images:

hv = Fv (̂ı;Wv). (4)

4.4 Multimodal Fusion
Escort advertisements have complex dynamics be-
tween text and images. Often, neither linguistic nor
visual cues alone can suffice to classify whether
an ad is suspicious. Interactions between linguistic
and visual cues can be non-trivial, so this requires
an explicit joint representation for each neuron in
the linguistic and visual representations. In our
multimodal fusion approach we address this by cal-
culating an outer product between language and
visual representations hl and hv to build the full
space of possible outcomes:

hm = hl ⊗ hv, (5)

1551

Figure 4: 2D t-SNE representation of different input features for baseline models. Clockwise from top left:
one hot vectors with expert data, one hot vectors without expert data, visual features from Vision Network
Fv, and average word vectors. These representations show that inference is not trivial in Trafficking-10k
dataset.

where ⊗ is an outer product of the two representa-
tions. This creates a joint multimodal tensor called
hm for language and visual modalities. In this ten-
sor, every neuron in the language representation
is multiplied by every neuron in vision representa-
tion, thus creating a new representation containing
the information of both of them. Thus, the final
fusion tensor hm ∈ R5×200×300 contains informa-
tion from the joint interaction of the language and
visual modalities.

4.5 Convolutional Decision Network

The multimodal representation hm is used as the
input to the convolutional decision network Fd. Fd
has two layers of convolution and max pooling with
a dropout rate of p = 0.5, followed by a fully con-
nected layer of 150 neurons with a dropout rate of
p = 0.5. Performing convolutions in this space en-
ables the model to attend to small areas of linguistic
and visual cues. It can thus find correspondences

between specific combinations of the linguistic and
visual representations. The final decision is made
by a single sigmoid neuron.

5 Experiments

In our experiments, we compare the HTDN with
previously used approaches for detection of traf-
ficking suspicious ads. Furthermore, we compare
the HTDN to the performance of its unimodal com-
ponents. In all our experiments we perform binary
classification of whether the advertisement is sus-
pected of being related to trafficking. The main
comparison method that we use is the weighted ac-
curacy and F1-score (due to imbalance it dataset).
The formulation for weighted accuracy is as fol-
lows:

Wt. Acc. =
TP×N/P + TN

2N
(6)

1552

Model Wt. Acc. (%) F1 (%) Acc. (%) Precision (%) Recall (%)

Random 50.0 - 68.2 - -
Keywords

Random Forest 67.0 55.2 78.1 78.2 42.6
Logistic Regression 69.9 57.8 78.4 75.5 46.8
Linear SVM 69.5 57.0 78.6 78.0 44.9

Average Trafficking Vectors
Random Forest 67.3 54.1 78.0 79.3 41.1
Logistic Regression 72.2 61.7 80.2 79.2 50.6
Linear SVM 70.3 57.7 79.2 80.7 44.9

108 One-Hot
Random Forest 62.4 60.7 72.6 61.5 60.0
Logistic Regression 62.5 45.1 72.2 60.0 36.1
Linear SVM 61.7 45.1 71.8 58.6 36.7

Bag of Words
Random Forest 57.6 24.5 70.4 63.2 15.2
Logistic Regression 71.1 24.5 70.4 63.2 15.2
Linear SVM 71.2 24.5 70.4 63.2 15.2

HTDN Unimodal
Fl 74.5 65.8 78.8 69.8 62.3
Fv [VGG] 69.1 58.4 74.2 66.7 52.0
Fv [T-VGG] 70.4 59.5 77.3 78.3 48.0

HTDN 75.3 66.5 80.0 71.4 62.2

Human 83.7 73.7 84.0 76.7 70.9

Table 1: Results of our experiments. We compare our HTDN model to various baselines using different
inputs. HTDN ourperforms other baselines in both weighted accuracy and F-score.

where TP (resp. TN) is true positive (resp. true
negative) predictions, and P (resp. N) is the total
number of positive (resp. negative) examples.

5.1 Baselines

We compare the performance of the HTDN network
with baseline models divided in 4 major categories

Bag-of-Words Baselines. This set of baselines
is designed to assess performance of off-the-shelf
basic classifiers and basic language features. We
train random forest, logistic regression and linear
SVMs to show the performance of simple language-
only models.

Keyword Baselines. These demonstrate the per-
formance of models that use a set of 108 keywords,
all highly related to trafficking, provided by law
enforcement officers.3 A binary one-hot vector
representing these keywords is used to train the

3Not presented in this paper due to sensitive nature of these
keywords.

random forest, logistic regression, and linear SVM
models.

108 One-Hot Baselines. Similar to Keywords
Baseline, we use feature selection technique to fil-
ter the most informative 108 words for detection
of trafficking. We compare the performance of this
baseline to Keywords baseline to evaluate the use-
fulness of expert knowledge in keywords selection
vs automatic data-driven keyword selection.

Average Trafficking Vectors Baselines. We as-
sess the magnitude of success for the trafficking
word embeddings for different classifiers. For the
random forest, logistic regression, and linear SVM
models, the average word vector is calculated and
used as input.

HTDN Unimodal. These baselines show the
performance of unimodal components of HTDN.
For language we only use Fl component of the
pipeline and for visual we use Fv, using both pre-
trained a VGG and finetuned T-VGG.

1553

Random and Human. Random is based on as-
signing the more frequent class in training set to all
the test data, and can be considered a lower bound
for our model. Human performance metrics are
upper bounds for this task’s metrics.

We visualize the different inputs to our baseline
models to show the complexity of the dataset when
using different feature sets. Figure 4 shows the 2D
t-SNE (Maaten and Hinton, 2008) representation
of the training data in our dataset according to the
Bag-of-Words (top right) models, expert keywords
(top left), average word vectors (bottom right), and
the visual representation hv bottom left. The distri-
bution of points suggests that none of the feature
representations make the classification task trivial.

5.2 Training Parameters

All the models in our experiments are trained on the
Trafficking-10k designated training set and tested
on the designated test set. Hyperparameter eval-
uation is performed using a subset of training set
as validation set. The HTDN model is trained us-
ing the Adam optimizer (Kingma and Ba, 2014).
The neural weights were initialized randomly using
Xavier initialization technique (Glorot and Bengio,
2010). The random forest model uses 10 estimators,
with no maximum depth, and minimum-samples-
per-split value of 2. The linear SVM model uses
an `2-penalty and a square hinge loss with C = 1.

6 Results and Discussion

The results of our experiments are shown in Table 1.
We report the results on three metrics: F1-score,
weighted accuracy, and accuracy. Due to the imbal-
ance between the numbers of positive and negative
samples, weighted accuracy is more informative
than unweighted accuracy, so we focus on the for-
mer.

HTDN. The first observation from Table 1 is
that the HTDN model outperforms all the pro-
posed baselines. There is a significant gap between
the HTDN (and variants) and other non-neural ap-
proaches. This better performance is an indicator
of complex interactions in detecting dynamics of
human trafficking, which is captured by the HTDN.

Both Modalities are Helpful. Both modalities
are helpful in predicting signs of trafficking (Fl and
Fv [T-VGG]). Fine-tuning VGG network param-
eters shows improvement over pre-trained VGG
parameters.

Language is More Important. Since Fl shows

better performance than Fv [T-VGG], the language
modality appears to be the more informative modal-
ity for detecting trafficking suspicious ads.

7 Conclusion and Future Work

In this paper, we took a major step in multimodal
modeling of suspected online trafficking advertise-
ments. We presented a novel dataset, Trafficking-
10k, with more than 10,000 advertisements anno-
tated for this task. The dataset contains two modal-
ities of information per advertisement: text and im-
ages. We designed a deep multimodal model called
the Human Trafficking Deep Network (HTDN). We
compared the performance of the HTDN to various
models that use language and vision alone. The
HTDN outperformed all of these, indicating that
using information from both sources may be more
helpful than using just one.

Exploring language through character mod-
eling. In order to eliminate the need for retraining
the word vectors as the language of the domain
evolves, we plan to use character models to learn
a better language model for trafficking. As new
obfuscated words are introduced in escort adver-
tisements, our hope is that character models will
stay invariant to these obfuscations.

Understanding images. While CNNs have
proven to be useful for many different computer
vision tasks, we seek to improve the learning ca-
pability of the visual network. Future direction
involves using graphical modeling to understand in-
teractions in the scene. Another direction involves
working to understand text in images, which can
provide more information about the subjects of the
images.

Given that the current state of the art in this area
generally does not use deep models, this may be a
major opportunity for improvement. To this end,
we encourage the research community to reach out
to Cara Jones, an author of this paper, to obtain a
copy of Trafficking-10k and other training data.

Acknowledgements

We would like to thank William Chargin for creat-
ing figures and revising this paper. We would also
like to thank Torsten Wörtwein for his assistance in
visualizing our data. Furthermore, we would like to
thank our anonymous reviewers for their valuable
feedback. Finally, we would like to acknowledge
collaborators from Marinus Analytics for the time
and effort that they put into annotating advertise-

1554

ments for the dataset, and for allowing us to use
their advertisement data.

References
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-

garet Mitchell, Dhruv Batra, C Lawrence Zitnick,
and Devi Parikh. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE International
Conference on Computer Vision. pages 2425–2433.

Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadar-
rama, Marcus Rohrbach, Subhashini Venugopalan,
Kate Saenko, and Trevor Darrell. 2015. Long-term
recurrent convolutional networks for visual recogni-
tion and description. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion. pages 2625–2634.

Artur Dubrawski, Kyle Miller, Matthew Barnes,
Benedikt Boecking, and Emily Kennedy. 2015.
Leveraging publicly available data to discern pat-
terns of human-trafficking activity. Journal of Hu-
man Trafficking 1(1):65–85.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Aistats. volume 9, pages 249–256.

National Human Trafficking Hotline. ???? Hotline
statistics.

Emily Kennedy. 2012. Predictive patterns of sex traf-
ficking online. Dietrich College Honors Theses .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research 9(Nov):2579–2605.

Lauren A McCarthy. 2014. Human trafficking and the
new slavery. Annual Review of Law and Social Sci-
ence 10:221–242.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Chirag Nagpal, Kyle Miller, Benedikt Boecking, and
Artur Dubrawski. 2015. An entity resolution ap-
proach to isolate instances of human trafficking on-
line. arXiv preprint arXiv:1509.06659 .

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Soujanya Poria, Erik Cambria, Rajiv Bajpai, and Amir
Hussain. 2017. A review of affective computing:
From unimodal analysis to multimodal fusion. In-
formation Fusion 1:34.

Soujanya Poria, Iti Chaturvedi, Erik Cambria, and
Amir Hussain. 2016. Convolutional mkl based mul-
timodal emotion recognition and sentiment analy-
sis. In 2016 IEEE 16th International Conference on
Data Mining (ICDM). IEEE, pages 439–448.

Stefan Scherer, Gale M Lucas, Jonathan Gratch, Al-
bert Skip Rizzo, and Louis-Philippe Morency. 2016.
Self-reported symptoms of depression and ptsd are
associated with reduced vowel space in screening in-
terviews. IEEE Transactions on Affective Comput-
ing 7(1):59–73.

Karen Simonyan and Andrew Zisserman. 2014. Very
deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556 .

Lucia Specia, Stella Frank, Khalil Sima’an, and
Desmond Elliott. 2016. A shared task on multi-
modal machine translation and crosslingual image
description. In Proceedings of the First Conference
on Machine Translation, Berlin, Germany. Associa-
tion for Computational Linguistics.

UNODC. 2008. Human trafficking:
An overview. Web, New York.
http://www.ungift.org/doc/knowledgehub/resource-
centre/GIFT˙Human˙Trafficking˙An˙Overview˙2008.pdf.

Michel Valstar, Jonathan Gratch, Björn Schuller, Fa-
bien Ringeval, Dennis Lalanne, Mercedes Tor-
res Torres, Stefan Scherer, Giota Stratou, Roddy
Cowie, and Maja Pantic. 2016. Avec 2016: De-
pression, mood, and emotion recognition workshop
and challenge. In Proceedings of the 6th Inter-
national Workshop on Audio/Visual Emotion Chal-
lenge. ACM, pages 3–10.

Verena Venek, Stefan Scherer, Louis-Philippe Morency,
Albert Rizzo, and John Pestian. 2016. Adolescent
suicidal risk assessment in clinician-patient interac-
tion. IEEE Transactions on Affective Computing .

Quanzeng You, Hailin Jin, Zhaowen Wang, Chen Fang,
and Jiebo Luo. 2016. Image captioning with seman-
tic attention. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pages
4651–4659.

Zhou Yu, Stefen Scherer, David Devault, Jonathan
Gratch, Giota Stratou, Louis-Philippe Morency, and
Justine Cassell. 2013. Multimodal prediction of psy-
chological disorders: Learning verbal and nonverbal
commonalities in adjacency pairs. In Semdial 2013
DialDam: Proceedings of the 17th Workshop on the
Semantics and Pragmatics of Dialogue. pages 160–
169.

1555

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-
Philippe Morency. 2016a. Mosi: Multimodal cor-
pus of sentiment intensity and subjectivity anal-
ysis in online opinion videos. arXiv preprint
arXiv:1606.06259 .

Amir Zadeh, Rowan Zellers, Eli Pincus, and Louis-
Philippe Morency. 2016b. Multimodal sentiment in-
tensity analysis in videos: Facial gestures and verbal
messages. IEEE Intelligent Systems 31(6):82–88.

Andrew Jie Zhou, Jiyun Luo, and Lewis John McGibb-
ney. 2016. Multimedia metadata-based forensics
in human trafficking web data. Vanessa Murdock,
Charles LA Clarke, Jaap page 10.

1556

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1557–1567
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1143

MalwareTextDB: A Database for Annotated Malware Articles

Swee Kiat Lim and Aldrian Obaja Muis and Wei Lu
Singapore University of Technology and Design

8 Somapah Road, Singapore, 487372
limsweekiat@gmail.com, {aldrian_muis,luwei}@sutd.edu.sg

Chen Hui Ong
DSO National Laboratories

20 Science Park Drive, Singapore, 118230
ochenhui@dso.org.sg

Abstract

Cybersecurity risks and malware threats
are becoming increasingly dangerous and
common. Despite the severity of the prob-
lem, there has been few NLP efforts fo-
cused on tackling cybersecurity.

In this paper, we discuss the construction
of a new database for annotated malware
texts. An annotation framework is intro-
duced based around the MAEC vocabu-
lary for defining malware characteristics,
along with a database consisting of 39 an-
notated APT reports with a total of 6,819
sentences. We also use the database to
construct models that can potentially help
cybersecurity researchers in their data col-
lection and analytics efforts.

1 Introduction

In 2010, the malware known as Stuxnet physically
damaged centrifuges in Iranian nuclear facilities
(Langner, 2011). More recently in 2016, a botnet
known as Mirai used infected Internet of Things
(IoT) devices to conduct large-scale Distributed
Denial of Service (DDoS) attacks and disabled In-
ternet access for millions of users in the US West
Coast (US-CERT, 2016). These are only two cases
in a long list ranging from ransomeware on per-
sonal laptops (Andronio et al., 2015) to taking over
control of moving cars (Checkoway et al., 2011).
Attacks such as these are likely to become increas-
ingly frequent and dangerous as more devices and
facilities become connected and digitized.

Recently, cybersecurity defense has also been
recognized as one of the “problem areas likely
to be important both for advancing AI and for

Figure 1: Annotated sentence and sentence frag-
ment from MalwareTextDB. Such annotations
provide semantic-level information to the text.

its long-run impact on society" (Sutskever et al.,
2016). In particular, we feel that natural language
processing (NLP) has the potential for substantial
contribution in cybersecurity and that this is a crit-
ical research area given the urgency and risks in-
volved.

There exists a large repository of malware-
related texts online, such as detailed malware re-
ports by various cybersecurity agencies such as
Symantec (DiMaggio, 2015) and Cylance (Gross,
2016) and in various blog posts. Cybersecurity
researchers often consume such texts in the pro-
cess of data collection. However, the sheer vol-
ume and diversity of these texts make it difficult
for researchers to quickly obtain useful informa-
tion. A potential application of NLP can be to
quickly highlight critical information from these
texts, such as the specific actions taken by a cer-
tain malware. This can help researchers quickly
understand the capabilities of a specific malware
and search in other texts for malware with similar
capabilities.

An immediate problem preventing application
of NLP techniques to malware texts is that such

1557

https://doi.org/10.18653/v1/P17-1143

texts are mostly unannotated. This severely limits
their use in supervised learning techniques.

In light of that, we introduce a database of anno-
tated malware reports for facilitating future NLP
work in cybersecurity. To the best of our knowl-
edge, this is the first database consisting of anno-
tated malware reports. It is intended for public re-
lease, where we hope to inspire contributions from
other research groups and individuals.

The main contributions of this paper are:

• We initiate a framework for annotating mal-
ware reports and annotate 39 Advanced Per-
sistent Threat (APT) reports (containing 6,819
sentences) with attribute labels from the Mal-
ware Attribute Enumeration and Characteri-
zation (MAEC) vocabulary (Kirillov et al.,
2010).

• We propose the following tasks, construct
models for tackling them, and discuss the chal-
lenges:

• Classify if a sentence is useful for infer-
ring malware actions and capabilities,
• Predict token, relation and attribute labels

for a given malware-related text, as de-
fined by the earlier framework, and
• Predict a malware’s signatures based only

on text describing the malware.

2 Background

2.1 APTnotes
The 39 APT reports in this database are sourced
from APTnotes, a GitHub repository of publicly-
released reports related to APT groups (Blanda,
2016). The repository is constantly updated,
which means it is a constant source of reports for
annotations. While the repository consists of 384
reports (as of writing), we have chosen 39 reports
from the year 2014 to initialize the database.

2.2 MAEC
The MAEC vocabulary was devised by The
MITRE Corporation as a standardized language
for describing malware (Kirillov et al., 2010). The
MAEC vocabulary is used as a source of labels
for our annotations. This will facilitate cross-
applications in other projects and ensure relevance
in the cybersecurity community.

2.3 Related Work
There are datasets available, which are used for
more general tasks such as content extraction

(Walker et al., 2006) or keyword extraction (Kim
et al., 2010). These may appear similar to our
dataset. However, a big difference is that we are
not performing general-purpose annotation and
not all tokens are annotated. Instead, we only
annotated tokens relevant to malware capabilities
and provide more valuable information by anno-
tating the type of malware capability or action im-
plied. These are important differentiating factors,
specifically catered to the cybersecurity domain.

While we are not aware of any database catering
specifically to malware reports, there are various
databases in the cybersecurity domain that provide
malware hashes, such as the National Software
Reference Library (NSRL) (NIST, 2017; Mead,
2006) and the File Hash Repository (FHR) by the
Open Web Application Security Project (OWASP,
2015).

Most work on classifying and detecting mal-
ware has also been focusing on detecting system
calls (Alazab et al., 2010; Briones and Gomez,
2008; Willems et al., 2007; Qiao et al., 2013).
More recently, Rieck et al. (2011) has incorpo-
rated machine learning techniques for detecting
malware, again through system calls. To the best
of our knowledge, we are not aware of any work
on classifying malware based on analysis of mal-
ware reports. By building a model that learns to
highlight critical information on malware capabili-
ties, we feel that malware-related texts can become
a more accessible source of information and pro-
vide a richer form of malware characterization be-
yond detecting file hashes and system calls.

3 Data Collection

We worked together with cybersecurity re-
searchers while choosing the preliminary dataset,
to ensure that it is relevant for the cybersecurity
community. The factors considered when select-
ing the dataset include the mention of most current
malware threats, the range of author sources, with
blog posts and technical security reports, and the
range of actor attributions, from several suspected
state actors to smaller APT groups.

3.1 Preprocessing

After the APT reports have been downloaded in
PDF format, the PDFMiner tool (Shinyama, 2004)
is used to convert the PDF files into plaintext for-
mat. The reports often contain non-sentences,
such as the cover page or document header and

1558

footer. We went through these non-sentences man-
ually and subsequently removed them before the
annotation. Hence only complete sentences are
considered for subsequent steps.

3.2 Annotation

The Brat Rapid Annotation Tool (Stenetorp et al.,
2012) is used to annotate the reports. The main
aim of the annotation is to map important word
phrases that describe malware actions and behav-
iors to the relevant MAEC vocabulary, such as
the ones shown in Figure 1. We first extract and
enumerate the labels from the MAEC vocabulary,
which we call attribute labels. This gives us a total
of 444 attribute labels, consisting of 211 Action-
Name labels, 20 Capability labels, 65 StrategicOb-
jectives labels and 148 TacticalObjectives labels.
These labels are elaborated in Section 3.5.

There are three main stages to the annotation
process. These are cumulative and eventually
build up to the annotation of the attribute labels.

3.3 Stage 1 - Token Labels

The first stage involves annotating the text with
the following token labels, illustrated in Fig-
ure 2:

Action This refers to an event, such as “regis-
ters”, “provides” and “is written”.

Subject This refers to the initiator of the Action
such as “The dropper” and “This module”.

Object This refers to the recipient of the Action
such as “itself ”, “remote persistent access”
and “The ransom note”; it also refers to word
phrases that provide elaboration on the Action
such as “a service”, “the attacker” and “disk”.

Modifier This refers to tokens that link to other
word phrases that provide elaboration on the
Action such as “as” and “to”.

This stage helps to identify word phrases that
are relevant to the MAEC vocabulary. Notice that
for the last sentence in Figure 2, “The ransom
note” is tagged as an Object instead of a Subject.
This is because the Action “is written” is not be-
ing initiated by “The ransom note”. Instead, the
Subject is absent in this sentence.

3.4 Stage 2 - Relation Labels

The second stage involves annotating the text with
the following relation labels:

Figure 2: Examples of annotated sentences.

Figure 3: Examples of irrelevant sentences.

SubjAction This links an Action with its relevant
Subject.

ActionObj This links an Action with its relevant
Object.

ActionMod This links an Action with its relevant
Modifier.

ModObj This links a Modifier with the Object
that provides elaboration.

This stage helps to make the links between
the labelled tokens explicit, which is important in
cases where a single Action has multiple Subjects,
Objects or Modifiers. Figure 2 demonstrates how
the relation labels are used to link the token labels.

3.5 Stage 3 - Attribute Labels

The third stage involves annotating the text with
the attribute labels extracted from the MAEC vo-
cabulary. Since the Action is the main indicator
of a malware’s action or capability, the attribute
labels are annotated onto the Actions tagged in
Stage 1. Each Action should have one or more
attribute labels.

There are four classes of attribute labels: Ac-
tionName, Capability, StrategicObjectives and
TacticalObjectives. These labels describe differ-
ent actions and capabilities of the malware. Refer
to Appendix A for examples and elaboration.

3.6 Summary

The above stages complete the annotation process
and is done for each document. There are also sen-
tences that are not annotated at all since they do
not provide any indication of malware actions or
capabilities, such as the sentences in Figure 3. We
call these sentences irrelevant sentences.

At the time of writing, the database consists of
39 annotated APT reports with a combined total
of 6,819 sentences. Out of the 6,819 sentences,

1559

Figure 4: Two different ways for annotating a sentence, where both seem to be equally satisfactory to a
human annotator. In this case, both serve to highlight the malware’s ability to hide its DLL’s functionality.

Token Labels Relation Labels Attribute Labels
(by label) (by label) (by class)

Subj 1,778 SubjAction 2,343 ActionName 982
Obj 4,411 ActionObj 2,713 Capability 2,524
Act 2,975 ActionMod 1,841 StratObj 2,004
Mod 1,819 ModObj 1,808 TactObj 1,592
Total 10,983 Total 8,705 Total 7,102

Table 1: Breakdown of annotation statistics.

2,080 sentences are annotated. Table 1 shows the
breakdown of the annotation statistics.

3.7 Annotators’ Challenges

We can calculate the Cohen’s Kappa (Cohen,
1960) to quantify the agreement between anno-
tators and to give an estimation of the difficulty
of this task for human annotators. Using annota-
tions from pairs of annotators, the Cohen’s Kappa
was calculated to be 0.36 for annotation of the
Token labels. This relatively low agreement be-
tween annotators suggests that this is a rather diffi-
cult task. In the following subsections, we discuss
some possible reasons that make this annotation
task difficult.

3.7.1 Complex Sentence Structures

In many cases, there may be no definite way to la-
bel the tokens. Figure 4 shows two ways to an-
notate the same sentence. Both annotations es-
sentially serve to highlight the Gen 2 sub-family’s
capability of hiding the DLL’s functionality. The
first annotation highlights the method used by the
malware to hide the library, i.e., employing the
Driver. The second annotation focuses on the mal-
ware hiding the library and does not include the
method. Also notice that the Modifiers highlighted
are different in the two cases, since this depends on
the Action highlighted and are hence mutually ex-
clusive. Such cases occur more commonly when
the sentences contain complex noun- and verb-
phrases that can be decomposed in several ways.
Repercussions surface later in the experiments de-

scribed in Section 5.2, specifically in the second
point under Discussion.

3.7.2 Large Quantity of Labels
Due to the large number (444) of attribute la-
bels, it is challenging for annotators to re-
member all of the attribute labels. Moreover,
some of the attribute labels are subject to in-
terpretation. For instance, should Capability:
005: MalwareCapability-command_and_control
be tagged for sentences that mention the location
or IP addresses of command and control servers,
even though such sentences may not be relevant to
the capabilities of the malware?

3.7.3 Specialized Domain Knowledge
Required

Finally, this task requires specialized cybersecu-
rity domain knowledge from the annotator and
the ability to apply such knowledge in a natu-
ral language context. For example, given the
phrase “load the DLL into memory”, the annota-
tor has to realize that this phrase matches the at-
tribute label ActionName: 119: ProcessMemory-
map_library_into_process. The abundance of la-
bels with the many ways that each label can be
expressed in natural language makes this task ex-
tremely challenging.

4 Proposed Tasks

The main goal of creating this database is to
aid cybersecurity researchers in parsing malware-
related texts for important information. To this
end, we propose several tasks that build up to this
main goal.

Task 1 Classify if a sentence is relevant for infer-
ring malware actions and capabilities

Task 2 Predict token labels for a given malware-
related text

Task 3 Predict relation labels for a given
malware-related text

1560

Task 4 Predict attribute labels for a given
malware-related text

Task 5 Predict a malware’s signatures based on
the text describing the malware and the text’s
annotations

Task 1 arose from discussions with domain ex-
perts where we found that a main challenge for
cybersecurity researchers is having to sift out crit-
ical sentences from lengthy malware reports and
articles. Figure 3 shows sentences describing
the political and military background of North
Korea in the APT report HPSR SecurityBrief-
ing_Episode16_NorthKorea. Such information is
essentially useless for cybersecurity researchers
focused on malware actions and capabilities. It
will be helpful to build a model that can filter rel-
evant sentences that pertain to malware.

Tasks 2 to 4 serve to automate the laborious an-
notation procedure as described earlier. With suf-
ficient data, we hope that it becomes possible to
build an effective model for annotating malware-
related texts, using the framework and labels we
defined earlier. Such a model will help to quickly
increase the size of the database, which in turn fa-
cilitate other supervised learning tasks.

Task 5 explores the possibility of using malware
texts and annotations to predict a malware’s sig-
natures. While conventional malware analyzers
generate a list of malware signatures based on the
malware’s activities in a sandbox, such analysis is
often difficult due to restricted distribution of mal-
ware samples. In contrast, numerous malware re-
ports are freely available and it will be helpful for
cybersecurity researchers if such texts can be used
to predict malware signatures instead of having to
rely on a limited supply of malware samples.

In the following experiments, we construct
models for tackling each of these tasks and discuss
the performance of our models.

5 Experiments and Results

Since the focus of this paper is on the introduc-
tion of a new framework and database for anno-
tating malware-related texts, we only use simple
algorithms for building the models and leave more
complex models for future work.

For the following experiments, we use linear
support vector machine (SVM) and multinomial
Naive Bayes (NB) implementations in the scikit-
learn library (Pedregosa et al., 2011). The regular-
ization parameter in SVM and smoothing parame-

P R F1

SVM 69.7 54.0 60.5
NB 59.5 68.5 63.2

Table 2: Task 1 scores: classifying relevant sen-
tences.

ter in NB were tuned (with the values 10−3 to 103

in logarithmic increments) by taking the value that
gave the best performance in development set.

For experiments where Conditional Random
Field (CRF) (Lafferty et al., 2001) is used, we uti-
lized the CRF++ implementation (Kudo, 2005).

For scoring the predictions, unless otherwise
stated, we use the metrics module in scikit-learn
for SVM and NB, as well as the CoNLL2000 con-
lleval Perl script for CRF1.

Also, unless otherwise mentioned, we make use
of all 39 annotated documents in the database. The
experiments are conducted with a 60%/20%/20%
training/development/test split, resulting in 23, 8
and 8 documents in the respective datasets. Each
experiment is conducted 5 times with a different
random allocation of the dataset splits and we re-
port averaged scores2.

Since we focus on building a database, we
weigh recall and precision as equally important
in the following experiments and hence focus on
the F1 score metric. The relative importance of
recall against precision will ultimately depend on
the downstream tasks.

5.1 Task 1 - Classify sentences relevant to
malware

We make use of the annotations in our database for
this supervised learning task and consider a sen-
tence to be relevant as long as it has an annotated
token label. For example, the sentences in Figure
2 will be labeled relevant whereas the sentences in
Figure 3 will be labeled irrelevant.

A simple bag-of-words model is used to repre-
sent each sentence. We then build two models –
SVM and NB – for tackling this task.

Results: Table 2 shows that while the NB
model outperforms the SVM model in terms of
F1 score, the performance of both models are still
rather low with F1 scores below 70 points. We
proceed to discuss possible sources of errors for
the models.

1www.cnts.ua.ac.be/conll2000/chunking/output.html
2Note that therefore the averaged F1 may not be the har-

monic mean of averaged P and R in the result tables.

1561

Figure 5: An example of a token (“a lure document”) labelled as both Subject and Object. In the first
case, it is the recipient of the Action “used”, while in the latter case, it is the initiator of the Action
“installed”.

Figure 6: Actual and predicted annotations. For predicted annotations, the Entity label replaces the
Subject and Object labels.

Discussion: We find that there are two main
types of misclassified sentences.

1. Sentences describing malware without im-
plying specific actions

These sentences often contain malware-specific
terms, such as “payload” and “malware” in the
following sentence.

This file is the main payload of the malware.

These sentences are often classified as relevant,
probably due to the presence of malware-specific
terms. However, such sentences are actually irrel-
evant because they merely describe the malware
but do not indicate specific malware actions or ca-
pabilities.

2. Sentences describing attacker actions
Such sentences mostly contain the term “at-

tacker” or names of attackers. For instance, the
following sentence is incorrectly classified as ir-
relevant.

This is another remote administration tool often
used by the Pitty Tiger crew.

Such sentences involving the attacker are often
irrelevant since the annotations focus on the mal-
ware and not the attacker. However, the above sen-
tence implies that the malware is a remote admin-
istration tool and hence is a relevant sentence that
implies malware capability.

5.2 Task 2 - Predict token labels

Task 2 concerns automating Stage 1 for the anno-
tation process described in Section 3.3. Within the
annotated database, we find several cases where
a single word-phrase may be annotated with both
Subject and Object labels (see Figure 5). In order
to simplify the model for prediction, we redefine
Task 2 as predicting Entity, Action and Modifier
labels for word-phrases. The single Entity label
is used to replace both Subject and Object labels.
Since the labels may extend beyond a single word
token, we use the BIO format for indicating the
span of the labels (Sang and Veenstra, 1999). We
use two approaches for tackling this task: a) CRF
is used to train a model for directly predicting to-
ken labels, b) A pipeline approach where the NB
model from Task 1 is used to filter relevant sen-
tences. A CRF model is then trained to predict
token labels for relevant sentences.

The CRF model in Approach 1 is trained on the
entire training set, whereas the CRF model in Ap-
proach 2 is trained only on the gold relevant sen-
tences in the training set.

For features in both approaches, we use un-
igrams and bigrams, part-of-Speech labels from
the Stanford POStagger (Toutanova et al., 2003),
and Brown clustering features after optimizing the
cluster size (Brown et al., 1992). A C++ imple-
mentation of the Brown clustering algorithm is

1562

Approach 1 Approach 2
Token Label P R F1 P R F1

Entity 48.8 25.1 32.9 42.8 33.8 37.6
Action 55.2 30.3 38.9 50.8 41.1 45.2
Modifier 55.7 28.4 37.3 48.9 37.4 42.1
Average 51.7 27.0 35.2 45.9 36.3 40.3

Table 3: Task 2 scores: predicting token labels.

used (Liang, 2005). The Brown cluster was trained
on a larger corpus of APT reports, consisting of
103 APT reports not in the annotated database and
the 23 APT reports from the training set. We group
together low-frequency words that appear 4 or less
times in the set of 126 APT reports into one cluster
and during testing we assign new words into this
cluster.

Results: Table 3 demonstrates that Approach
2 outperforms Approach 1 on most scores. Nev-
ertheless, both approaches still give low perfor-
mance for tackling Task 2 with F1-scores below
50 points.

Discussion: There seem to be three main cate-
gories of wrong predictions:

1. Sentences describing attacker actions
Such sentences are also a main source of pre-

diction errors in Task 1. Again, most sentences
describing attackers are deemed irrelevant and left
unannotated because we focus on malware ac-
tions rather than human attacker actions. How-
ever, these sentences may be annotated in cases
where the attacker’s actions imply a malware ac-
tion or capability.

For example, the Figure 6a describes the attack-
ers stealing credentials. This implies that the mal-
ware used is capable of stealing and exfiltrating
credentials. It may be challenging for the model
to distinguish whether such sentences describing
attackers should be annotated since a level of in-
ference is required.

2. Sentences containing noun-phrases made
up of participial phrases and/or prepositional
phrases

These sentences contain complex noun-phrases
with multiple verbs and prepositions, such as in
Figures 6b and 6c. In Figure 6b, “the RCS sam-
ple sent to Ahmed” is a noun-phrase annotated
as a single Subject/Entity. However, the model
decomposes the noun-phrase into the subsidiary
noun “the RCS sample” and participial phrase
“sent to Ahmed” and further decompose the par-
ticipial phrase into the constituent words, predict-

Approach 1 Approach 2
Token Label P R F1 P R F1

Entity 63.6 32.1 42.3 56.5 46.3 50.6
Action 60.2 31.4 41.0 54.6 42.8 47.7
Modifier 56.4 28.1 37.1 50.1 37.1 42.3
Average 62.7 31.8 41.9 55.9 45.3 49.8

Table 4: Task 2 relaxed/token-level scores.

Relation Label P R F1

SubjAction 86.3 82.3 84.2
ActionObj 91.6 86.2 88.8
ActionMod 98.5 96.4 97.4
ModObj 98.0 96.7 97.4
Average 89.2 89.4 89.3

Table 5: Task 3 scores: predicting relation labels.

ing Action, Modifier and Entity labels for “sent”,
“to” and “Ahmed” respectively. There are cases
where such decomposition of noun-phrases is cor-
rect, such as in Figure 6c.

As mentioned in Section 3.7, this is also a chal-
lenge for human annotators because there may be
several ways to decompose the sentence, many of
which serve equally well to highlight certain mal-
ware aspects (see Figure 4).

Whether such decomposition is correct depends
on the information that can be extracted from the
decomposition. For instance, the decomposition
in Figure 6c implies that the malware can receive
remote commands from attackers. In contrast, the
decomposition predicted by the model in Figure
6b does not offer any insight into the malware.
This is a difficult task that requires recognition of
the phrase spans and the ability to decide which
level of decomposition is appropriate.

3. Sentences containing noun-phrases made
up of determiners and adjectives

These sentences contain noun-phrases with de-
terminers and adjectives such as “All the requests”
in Figure 6d. In such cases, the model may only
predict the Entity label for part of the noun-phrase.
This is shown in Figure 6d, where the model pre-
dicts the Entity label for “the requests” instead of
“All the requests”.

Thus, we also consider a relaxed scoring
scheme where predictions are scored in token level
instead of phrase level (see Table 4). The aim of
the relaxed score is to give credit to the model
when the span for a predicted label intersects with
the span for the actual label, as in Figure 6d.

1563

Figure 7: An example of an entity with multiple parents. In this case, stage two payloads has two
parents by ActionObject relations - downloading and executing.

5.3 Task 3 - Predict relation labels

Following the prediction of token labels in Task
2, we move on to Task 3 for building a model for
predicting relation labels. Due to the low perfor-
mance of the earlier models for predicting token
labels, for this experiment we decided to use the
gold token labels as input into the model for pre-
dicting relation labels. Nevertheless, the models
can still be chained in a pipeline context.

The task initially appeared to be similar to a de-
pendency parsing task where the model predicts
dependencies between the entities demarcated by
the token labels. However, on further inspection,
we realized that there are several entities which
have more than one parent entity (see Figure 7).
As such, we treat the task as a binary classification
task, by enumerating all possible pairs of entities
and predicting whether there is a relation between
each pair.

Predicting the relation labels from the token la-
bels seem to be a relatively straightforward task
and hence we design a simple rule-based model
for the predictions. We tuned the rule-based
model on one of the documents (AdversaryIntel-
ligenceReport_DeepPanda_0 (1)) and tested it on
the remaining 38 documents. The rules are docu-
mented in Appendix B.

Results: Table 5 shows the scores from testing
the model on the remaining 38 documents.

The results from the rule-based model are better
than expected, with the average F1-scores exceed-
ing 84 points for all the labels. This shows that
the relation labels can be reliably predicted given
good predictions of the preceding token labels.

Discussion: The excellent performance from
the rule-based model suggests that there is a well-
defined structure in the relations between the enti-
ties. It may be possible to make use of this inher-
ent structure to help improve the results for pre-
dicting the token labels.

Also, notice that by predicting the SubjAction,
ActionObj and ActionMod relations, we are si-
multaneously classifying the ambiguous Entity la-
bels into specific Subject and Object labels. For
instance, Rule 1 predicts a ModObj relation be-

Attribute Category NB SVM
P R F1 P R F1

ActionName 35.2 23.9 28.0 43.9 27.9 33.9
Capability 41.5 39.8 40.6 42.5 41.1 41.8
StrategicObjectives 33.7 24.4 28.3 32.2 23.5 27.2
TacticalObjectives 27.6 17.4 21.1 30.2 18.4 22.7

Table 6: Task 4 scores: predicting attribute labels.

tween a Modifier and an Entity, implying that the
Entity is an Object, whereas Rule 3 predicts a
SubjAction relation between an Entity and an Ac-
tion, implying that the Entity is a Subject.

5.4 Task 4 - Predict attribute labels

A significant obstacle in the prediction of attribute
labels is the large number of attribute labels avail-
able. More precisely, we discover that many of
these attribute labels occur rarely, if not never, in
the annotated reports. This results in a severely
sparse dataset for training a model.

Due to the lack of substantial data, we decide
to use token groups instead of entire sentences for
predicting attribute labels. Token groups are the
set of tokens that are linked to each other via rela-
tion labels. We extract the token groups from the
gold annotations and then build a model for pre-
dicting the attribute labels for each token group.
Again, we use a bag-of-words model to represent
the token groups while SVM and NB are each used
to build a model for predicting attribute labels.

Results: Table 6 shows the average scores over
5 runs for the four separate attribute categories.
For this task, SVM appears to perform generally
better than NB, although much more data seems
to be required in order to train a reliable model
for predicting attribute labels. The Capability cat-
egory shows the best performance, which is to be
expected, since the Capability attributes occur the
most frequently.

Discussion: The main challenge for this task is
the sparse data and the abundant attribute labels
available. In fact, out of the 444 attribute labels,
190 labels do not appear in the database. For the
remaining 254 attribute labels that do occur in the
database, 92 labels occur less than five times and
50 labels occur only once. With the sparse data

1564

Features Used NB SVM
P R F1 P R F1

Text only 58.8 50.8 53.5 49.3 47.0 47.2
Ann. only 64.7 55.0 58.0 62.6 57.2 59.2
Text and Ann. 59.3 50.7 53.6 54.3 51.1 51.6

Table 7: Task 5 scores: predicting malware sig-
natures using text and annotations.

available, particularly for rare attribute labels, ef-
fective one-shot learning models might have to be
designed to tackle this difficult task.

5.5 Task 5 - Predict malware signatures using
text and annotations

Conventional malware analyzers, such as
malwr.com, generate a list of signatures based on
the malware’s activities in a sandbox. Examples
of such signatures include antisandbox_sleep,
which indicates anti-sandbox capabilities or
persistence_autorun, which indicates persistence
capabilities.

If it is possible to build an effective model to
predict malware signatures based on natural lan-
guage texts about the malware, this can help cy-
bersecurity researchers predict signatures of mal-
ware samples that are difficult to obtain, using the
malware reports freely available online.

By analyzing the hashes listed in each APT re-
port, we obtain a list of signatures for the malware
discussed in the report. However, we are unable
to obtain the signatures for several hashes due to
restricted distribution of malware samples. There
are 8 APT reports without any obtained signatures,
which are subsequently discarded for the follow-
ing experiments. This leaves us with 31 out of 39
APT reports.

The current list of malware signatures from
Cuckoo Sandbox3 consists of 378 signature types.
However, only 68 signature types have been iden-
tified for the malware discussed in the 31 doc-
uments. Furthermore, out of these 68 signature
types, 57 signature types appear less than 10 times,
which we exclude from the experiments. The ex-
periments that follow will focus on predicting the
remaining 11 signature types using the 31 docu-
ments.

The OneVsRestClassifier implementation in
scikit-learn is used in the following experiments,
since this is a multilabel classification problem.
We also use SVM and NB to build two types of

3https://cuckoosandbox.org/

models for comparison.
Three separate methods are used to generate

features for the task: a) the whole text in each APT
report is used as features via a bag-of-words rep-
resentation, without annotations, b) the gold labels
from the annotations are used as features, without
the text, and c) both the text and the gold annota-
tions are used, via a concatenation of the two fea-
ture vectors.

Results: Comparing the first two rows in Ta-
ble 7, we can see that using the annotations as fea-
tures significantly improve the results, especially
the precision. SVM model also seems to bene-
fit more from the annotations, even outperforming
NB in one case.

Discussion: The significant increase in preci-
sion suggests that the annotations provide a con-
densed source of features for predicting malware
signatures, improving the models’ confidence. We
also observe that some signatures seem to ben-
efit more from the annotations, such as persis-
tence_autorun and has_pdb. In particular, per-
sistence_autorun has a direct parallel in attribute
labels, which is MalwareCapability-persistence,
showing that using MAEC vocabulary as attribute
labels is appropriate.

6 Conclusion

In this paper, we presented a framework for
annotating malware reports. We also intro-
duced a database with 39 annotated APT re-
ports and proposed several new tasks and built
models for extracting information from the re-
ports. Finally, we discuss several factors that
make these tasks extremely challenging given cur-
rently available models. We hope that this pa-
per and the accompanying database serve as a
first step towards NLP being applied in cyber-
security and that other researchers will be in-
spired to contribute to the database and to con-
struct their own datasets and implementations.
More details about this database can be found at
http://statnlp.org/research/re/.

Acknowledgments

We would like to thank the anonymous review-
ers for their helpful comments. This work is sup-
ported by ST Electronics – SUTD Cyber Security
Laboratory Project 1 Big Data Security Analyt-
ics, and is partly supported by MOE Tier 1 grant
SUTDT12015008.

1565

References
Mamoun Alazab, Sitalakshmi Venkataraman, and Paul

Watters. 2010. Towards Understanding Malware
Behaviour by the Extraction of API Calls. In
2010 Second Cybercrime and Trustworthy Comput-
ing Workshop. IEEE, November 2009, pages 52–59.
https://doi.org/10.1109/CTC.2010.8.

Nicoló Andronio, Stefano Zanero, and Federico
Maggi. 2015. HelDroid: Dissecting and De-
tecting Mobile Ransomware, Springer International
Publishing, Cham, chapter 18, pages 382–404.
https://doi.org/10.1007/978-3-319-26362-5.

Kiran Blanda. 2016. APTnotes. https://github.com/
aptnotes/.

Ismael Briones and Aitor Gomez. 2008. Graphs, en-
tropy and grid computing: Automatic comparison of
malware. In Virus bulletin conference. pages 1–12.

Peter F. Brown, Peter V. deSouza, Robert L. Mer-
cer, Vincent J. Della Pietra, and Jenifer C. Lai.
1992. Class-based N-gram Models of Natu-
ral Language. Comput. Linguist. 18(4):467–479.
http://dl.acm.org/citation.cfm?id=176313.176316.

Stephen Checkoway, Damon McCoy, Brian Kan-
tor, Danny Anderson, Hovav Shacham, Stefan
Savage, Karl Koscher, Alexei Czeskis, Franziska
Roesner, and Tadayoshi Kohno. 2011. Compre-
hensive Experimental Analyses of Automotive
Attack Surfaces. In Proceedings of the 20th
USENIX Conference on Security. USENIX Asso-
ciation, Berkeley, CA, USA, SEC’11, pages 6–6.
http://dl.acm.org/citation.cfm?id=2028067.2028073.

Jacob Cohen. 1960. A Coefficient of Agree-
ment for Nominal Scales. Educational and
Psychological Measurement 20(1):37–46.
https://doi.org/10.1177/001316446002000104.

Jon DiMaggio. 2015. The Black Vine cyberes-
pionage group. Technical report, Syman-
tec. http://www.symantec.com/content/en/us/
enterprise/media/security_response/whitepapers/
the-black-vine-cyberespionage-group.pdf.

Jon Gross. 2016. Operation Dust Storm. Technical
report, Cylance. https://www.cylance.com/hubfs/
2015_cylance_website/assets/operation-dust-storm/
Op_Dust_Storm_Report.pdf.

Su Nam Kim, Olena Medelyan, Min-Yen Kan,
and Timothy Baldwin. 2010. Semeval-2010
task 5: Automatic keyphrase extraction from
scientific articles. In Proceedings of the 5th
International Workshop on Semantic Evalua-
tion. Association for Computational Linguistics,
Stroudsburg, PA, USA, SemEval ’10, pages 21–26.
http://dl.acm.org/citation.cfm?id=1859664.1859668.

Ivan Kirillov, Desiree Beck, Penny Chase, and Robert
Martin. 2010. Malware Attribute Enumeration and
Characterization. The MITRE Corporation, Tech.
Rep .

Taku Kudo. 2005. CRF++. https://taku910.github.io/
crfpp/.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional Random Fields: Prob-
abilistic Models for Segmenting and Labeling Se-
quence Data. In International Conference on
Machine Learning (ICML 2001). pages 282–289.
http://dl.acm.org/citation.cfm?id=655813.

R. Langner. 2011. Stuxnet: Dissecting a Cyberwar-
fare Weapon. IEEE Security Privacy 9(3):49–51.
https://doi.org/10.1109/MSP.2011.67.

Percy Liang. 2005. Semi-supervised learning for nat-
ural language. Master’s thesis, Massachusetts Insti-
tute of Technology. https://doi.org/1721.1/33296.

Steve Mead. 2006. Unique file identifica-
tion in the National Software Reference Li-
brary. Digital Investigation 3(3):138 – 150.
https://doi.org/10.1016/j.diin.2006.08.010.

NIST. 2017. National Software Reference Library.
http://www.nsrl.nist.gov/.

OWASP. 2015. OWASP File Hash Repository.
https://www.owasp.org/index.php/OWASP_File_
Hash_Repository.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, Jake Vanderplas, Alexan-
dre Passos, David Cournapeau, Matthieu Brucher,
Matthieu Perrot, and Édouard Duchesnay. 2011.
Scikit-learn: Machine Learning in Python. Jour-
nal of Machine Learning Research 12:2825–2830.
http://dl.acm.org/citation.cfm?id=2078195.

Yong Qiao, Jie He, Yuexiang Yang, and Lin
Ji. 2013. Analyzing Malware by Abstract-
ing the Frequent Itemsets in API Call Se-
quences. In 2013 12th IEEE International Con-
ference on Trust, Security and Privacy in Comput-
ing and Communications. IEEE, pages 265–270.
https://doi.org/10.1109/TrustCom.2013.36.

Konrad Rieck, Philipp Trinius, Carsten Willems,
and Thorsten Holz. 2011. Automatic analy-
sis of malware behavior using machine learn-
ing. Journal of Computer Security 19(4):639–668.
https://doi.org/10.3233/JCS-2010-0410.

Erik F. Tjong Kim Sang and Jorn Veenstra. 1999. Rep-
resenting Text Chunks. In Proceedings of the ninth
conference on European chapter of the Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, Morristown, NJ, USA,
page 173. https://doi.org/10.3115/977035.977059.

Yusuke Shinyama. 2004. PDFMiner. https://euske.
github.io/pdfminer/.

1566

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi
Tsujii. 2012. BRAT: A Web-based Tool for
NLP-assisted Text Annotation. In Proceedings
of the Demonstrations at the 13th Confer-
ence of the European Chapter of the Associ-
ation for Computational Linguistics. Associ-
ation for Computational Linguistics, Strouds-
burg, PA, USA, EACL ’12, pages 102–107.
http://dl.acm.org/citation.cfm?id=2380921.2380942.

Ilya Sutskever, Dario Amodei, and Sam Altman.
2016. Special projects. Technical report,
OpenAI, https://openai.com/blog/special-projects/.
https://openai.com/blog/special-projects/.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich
Part-of-speech Tagging with a Cyclic Dependency
Network. In Proceedings of the 2003 Confer-
ence of the North American Chapter of the As-
sociation for Computational Linguistics on Hu-
man Language Technology - Volume 1. Asso-
ciation for Computational Linguistics, Strouds-
burg, PA, USA, NAACL ’03, pages 173–180.
https://doi.org/10.3115/1073445.1073478.

US-CERT. 2016. Heightened DDoS Threat Posed
by Mirai and Other Botnets. Technical re-
port, United States Computer Emergency Readiness
Team. https://www.us-cert.gov/ncas/alerts/TA16-
288A.

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. Ace 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia 57.

Carsten Willems, Thorsten Holz, and Felix Freil-
ing. 2007. Toward Automated Dynamic Mal-
ware Analysis Using CWSandbox. IEEE
Security and Privacy Magazine 5(2):32–39.
https://doi.org/10.1109/MSP.2007.45.

A Attribute Labels

The following elaborates on the types of malware
actions described by each class of attribute labels
and gives specific examples.

A.1 ActionName
The ActionName labels describe specific actions
taken by the malware, such as downloading a
file ActionName: 090: Network- download_ file
or creating a registry key ActionName: 135:
Registry-create_registry_key.

A.2 Capability
The Capability labels describe general capa-
bilities of the malware, such as exfiltrating

stolen data Capability: 006: MalwareCapability-
data_exfiltration or spying on the victim Capabil-
ity: 019: MalwareCapability-spying.

A.3 StrategicObjectives

The StrategicObjectives labels elaborate on
the Capability labels and provide more de-
tails on the capabilities of the malware,
such as preparing stolen data for exfiltration
StrategicObjectives: 021: DataExfiltration-
stage_data_for_exfiltration or capturing informa-
tion from input devices connected to the victim’s
machine StrategicObjectives: 061: Spying-
capture_system_input_peripheral_data.

Each StrategicObjectives label belongs to a Ca-
pability label.

A.4 TacticalObjectives

The TacticalObjectives labels provide third level
of details on the malware’s capability, such as en-
crypting stolen data for exfiltration TacticalObjec-
tives: 053: DataExfiltration-encrypt_data or an
ability to perform key-logging TacticalObjectives:
140: Spying-capture_keyboard_input.

Again, each TacticalObjectives label belongs to
a Capability label.

B Rules for Rule-based Model in Task 3

The following are the rules used in the rule-based
model described in Section 5.3.
1. If a Modifier is followed by an Entity, a Mod-

Obj relation is predicted between the Modi-
fier and the Entity

2. If an Action is followed by an Entity, an Ac-
tionObj relation is predicted between the Ac-
tion and the Entity

3. If an Entity is followed by an Action of token-
length 1, a SubjAction relation is predicted
between the Entity and the Action

4. An ActionObj relation is predicted between
any Action that begins with be and the most
recent previous Entity

5. An ActionObj relation is predicted between
any Action that begins with is, was, are or
were and ends with -ing and the most recent
previous Entity

6. An ActionMod relation is predicted between
all Modifiers and the most recent previous
Action

1567

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1568–1578
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1144

A Corpus of Annotated Revisions for Studying Argumentative Writing

Fan Zhang Homa B. Hashemi Rebecca Hwa Diane Litman
University of Pittsburgh
Pittsburgh, PA, 15260

{zhangfan,hashemi,hwa,litman}@cs.pitt.edu

Abstract

This paper presents ArgRewrite, a corpus
of between-draft revisions of argumenta-
tive essays. Drafts are manually aligned
at the sentence level, and the writer’s pur-
pose for each revision is annotated with
categories analogous to those used in argu-
ment mining and discourse analysis. The
corpus should enable advanced research in
writing comparison and revision analysis,
as demonstrated via our own studies of
student revision behavior and of automatic
revision purpose prediction.

1 Introduction

Most writing-related natural language process-
ing (NLP) research focuses on the analysis of
single drafts. Examples include document-level
quality assessment (Attali and Burstein, 2006;
Burstein and Chodorow, 1999), discourse-level
analysis and mining (Burstein et al., 2003; Falak-
masir et al., 2014; Persing and Ng, 2016), and
fine-grained error detection (Leacock et al., 2010;
Grammarly, 2016). Less studied is the analysis
of changes between drafts – a comparison of re-
visions and the properties of the differences. Re-
search on this topic can support applications invol-
ing revision analysis (Zhang and Litman, 2015),
paraphrase (Malakasiotis and Androutsopoulos,
2011) and correction detection (Swanson and Ya-
mangil, 2012; Xue and Hwa, 2014).

Although there are some corpora resources for
NLP research on writing comparisons, most tend
to be between individual sentences/phrases for
tasks such as paraphrase comparison (Dolan and
Brockett, 2005; Tan and Lee, 2014) or gram-
mar error correction (Dahlmeier et al., 2013;
Yannakoudakis et al., 2011). In terms of revi-
sion analysis, the most relevant work analyzes

Wikipedia revisions (Daxenberger and Gurevych,
2013; Bronner and Monz, 2012); however, the do-
main of Wikipedia is so specialized that the prop-
erties of Wikipedia revisions do not correspond
well with other kinds of texts.

This work presents the ArgRewrite corpus1 to
facilitate revision analysis research for argumen-
tative essays. The corpus consists of a collec-
tion of three drafts of essays written by univer-
sity students and employees; the drafts are man-
ually aligned at the sentence level, then the pur-
pose of each revision is manually coded using a
revision schema closely related to argument min-
ing/discourse analysis. Within the domain of argu-
mentative essays, the corpus will be useful for sup-
porting research in argumentative revision analy-
sis and the application of argument mining tech-
niques. The corpus may also be useful for re-
search on paraphrase comparisons, grammar error
correction, and computational stylistics (Popescu
and Dinu, 2008; Flekova et al., 2016). In this pa-
per, we present two example uses of our corpus: 1)
rewriting behavior data analysis, and 2) automatic
revision purpose classification.

2 Corpus Design Decisions

Consider this scenario: Alice begins her social sci-
ence argumentative essay with the sentence “Elec-
tronic communication allows people to make con-
nections beyond physical limits.”

An analytical system might (rightly) identify
the sentence as the thesis of her essay, and an eval-
uative system might give the essay a low score due
to this sentence’s vagueness and a later lack of ev-
idence (though Alice may not know why she re-
ceived that score).

Now suppose in a revised draft, Alice expanded

1The corpus is based on the ArgRewrite system developed
in our prior work (Zhang et al., 2016).

1568

https://doi.org/10.18653/v1/P17-1144

the sentence: “Electronic communication allows
people to make connections beyond physical lim-
its location and enriches connections that would
have been impossible to make otherwise.”

An analytical system would still identify the
sentence as the thesis, and an evaluative system
might raise the overall score a little higher. Alice
may become satisfied with the increase and move
on. However, there is an opportunity lost – neither
the analytical nor the evaluative system addressed
the quality of her revision.

A revision analysis system might be helpful for
Alice because it would link “limits” to “location
and ...” and identify the reason why she made the
change – perhaps adding precision. If Alice had
intended her change as a way to add evidential
support for her thesis, she would see that her at-
tempt was not as successful as she hoped.

The above scenario highlights the application of
a revision analysis system. This paper is about cre-
ating a corpus to enable the development of such
systems. Because this is a relatively new problem,
there are many possible ways for us to design the
corpus. Here we discuss some of our decisions.

First, we need to define the unit of revision. The
example above illustrates a phrase-aligned revi-
sion. While this offers a fairly precise definition
of the scope of a revision, it may be difficult to
achieve consistent annotations. For example, the
changes may not adhere to any syntactic linguistic
unit. For this first corpus, we define our unit of re-
vision to be at the sentence level. In other words,
even if a pair of sentences contains multiple edits,
the entire sentence pair will be annotated as one
sentence revision.

Second, we need to define the quality we want
to observe about the revision sentence pair. For
this first corpus, we focus on recognizing the pur-
pose of the revision, as in the example above. It is
a useful property, and it has previously been stud-
ied by others in the literature. People have consid-
ered both binary purpose categories such as Con-
tent vs. Surface (Faigley and Witte, 1981) or Fac-
tual vs. Fluency (Bronner and Monz, 2012) as well
as more fine-grained categories (Pfeil et al., 2006;
Jones, 2008; Liu and Ram, 2009; Daxenberger
and Gurevych, 2012; Zhang and Litman, 2015).
Our corpus follows the two-tiered schema used by
(Zhang and Litman, 2015) (see Section 3.2).

Third, we not only have to decide on the annota-
tion format, we also need to decide how to obtain

Write Draft1
@home

Draft1

Revise Draft1
@home

Draft2

Revise Draft2
@lab

Draft3

Annotated
Revisions I

(Rev12)

Annotated
Revisions II

(Rev23)

Figure 1: Our collected corpus contains five com-
ponents: three drafts of an essay and two anno-
tated revisions between drafts.

the raw text: argumentative essays with multiple
drafts. We decided to sample from a population of
predominantly college students, inclusive of both
native and proficient non-native (aka L2) speakers.
Comparing to high school students, college stu-
dents are expected to produce essays having a bet-
ter organization of the argument elements. Includ-
ing native and L2 speakers allows for the explo-
ration of possible rewriting differences between
writers of varying backgrounds. We decided to
give all subjects the same writing prompt and col-
lect three drafts. The identical prompt minimizes
the impact of topic difference for argumentation-
related study. The collection of three drafts allows
for a comparison of revision differences at differ-
ent stages of rewriting.

Finally, we need a method for eliciting two re-
vised drafts from each writer. Ideally, an instructor
would give formative feedback after each draft for
each student, but we do not have the resources to
carry out such an expensive project. We simulate
instructor feedback by asking students to add more
examples after the first draft. To elicit a second re-
vised draft, we use two different systems. First,
we utilize an idealized2 version of the ArgRewrite
revision analysis system (Zhang et al., 2016). Ar-
gRewrite highlights the locations of revisions at
the sentence level and colors the revisions dif-
ferently according to the revision purpose types.
Our second system shows a character-based com-
parison between subsequent essay drafts3. This
system is designed to have a similar look as Ar-
gRewrite by highlighting the location of revisions.
However, the type of revisions are not provided.

2All automatic revision feedback was manually exam-
ined/corrected to guarantee correctness.

3Code derived from https://code.google.com/
p/google-diff-match-patch/ which implements
Myers’ algorithm (Myers, 1986).

1569

(a) Interface A. (b) Interface B.

Figure 2: Screenshot of the interfaces. (a) Interface A with the annotated revision purposes, (b) Interface
B with a streamlined character-based diff.

3 The ArgRewrite Corpus

Based on the above design decisions, we have
developed a corpus of argumentative essays with
three drafts and detailed annotations for sentence-
aligned revisions between each consecutive pair of
drafts. The main corpus has five elements, with
the relationships between them shown in Figure 1;
Section 3.1 describes the procedure for obtaining
them. Section 3.2 briefly describes the revision
schema we used and reports the inter-annotator
agreement. Additionally, we have collected meta-
data from the participants who contributed to the
corpus (discussed in Section 3.3); these data may
be useful for user behavior analysis.

3.1 Corpus Development Procedure

We have recruited 60 participants aged 18 years
and older, among whom 40 were English native
speakers and 20 were non-native speakers with
sufficient English proficiency.4 The study to col-
lect the corpus is carried out in three 40-60 minute
sessions over the duration of two weeks.

Draft1 Each participant begins by completing a
pre-study questionnaire (Section 3.3) and writing
a short essay online. Participants are instructed to
keep the essay around 400 words, making a single
main point with two supporting examples. They
are given the following prompt:

“Suppose you’ve been asked to contribute a
short op-ed piece for The New York Times.
Argue whether the proliferation of electronic

4i.e., with a TOEFL score higher than 100.

communications (e.g., email, text or other so-
cial media) enriches or hinders the develop-
ment of interpersonal relationships.”

Draft2 A few days later, participants are asked
to revise their first draft online based on the fol-
lowing feedback: Strengthen the essay by adding
one more example or reasoning for the claim; then
add a rebuttal to an opposing idea; keep the essay
at 400 words. With this feedback we try to push
participants to make revisions for later processing
by the two interfaces used to create Draft3.

Annotated Revisions I (Rev12) The two drafts
are semi-manually aligned at the sentence level.5

Then, the purpose of each pair of sentence revision
is manually coded by a trained annotator, follow-
ing the annotation guideline (see Section 3.2).

Draft3 Participants write their third draft in a lab
environment. This time, they are not given addi-
tional instructional feedback. Instead, participants
are shown a computer interface that highlights the
differences between their first and second drafts.
They are asked to revise and create a third draft
to improve the general quality of their essay. We
experimented with two variations of revision elic-
itation. Chosen at random, half of the participants
(10 L2 participants and 20 Native participants) are
shown Interface A, the interface based on the Ar-
gRewrite system (Zhang et al., 2016), which high-
lights the annotated differences between the drafts
(Figure 2(a)); half of the participants are shown In-

5Sentences are first automatically aligned (Zhang and Lit-
man, 2014), then manually corrected by human.

1570

Draft1 Revision
Purpose

Draft2 Revision
Purpose

Draft3

This world has no restriction on
who one can talk to.

Conventions/
Grammar/
Spelling

This world has no restrictions on
whom one can talk to.

This world has no restrictions on
whom one can talk to.

Rebuttal/
Reserva-
tion

Unfortunately, the younger
users of digital communication
cannot be entirely protected
from the rhetoric of any out-
sider.

Warrant/
Reasoning/
Backing

Modern society is now faced
with the issue of cyber bullying
as a result.

The only aspects of communica-
tion that this new development
improves are internet navigation
and faux internet relatability.

Word-
Usage/
Clarity

The only aspects of digital com-
munication that this new de-
velopment improves are internet
navigation and faux internet re-
latability.

Word-
Usage/
Clarity

The only aspects of digital com-
munication that this new de-
velopment improves are internet
navigation and faux internet re-
lationships.

Claims/
Ideas

Being immersed in the sphere of
new technologies can allow for
complete isolation from the ac-
tive, non-digital world.

Being immersed in the sphere of
new technologies can allow for
complete isolation from the ac-
tive, non-digital world.

Table 1: Examples from the annotated corpus. The sentences were aligned across the drafts and the
revision purposes were labeled on the aligned sentence pairs. From Draft1 to Draft2, there are two
Modify revisions (Spelling and Clarity) and one Add revision. From Draft2 to Draft3, there are two Add
revisions (Rebuttal and Reasoning) and one Modify revision (Clarity).

terface B, a streamlined character-based diff (Fig-
ure 2(b)). In Interface A, some purposes were re-
named from the original annotation categories to
help the participants better understand the system
(as detailed in Table 2)6. Both interface groups are
asked to read a tutorial about their respective in-
terfaces before beginning to revise. Participants in
group A are also asked to verify the manually an-
notated revision purposes between their first and
second drafts. This information is collected to in-
vestigate the impact of the difference between the
system’s recognized and the participant’s intended
purpose. After completing the final revision, all
participants are given a post-study survey about
their experiences (Section 3.3). Additionally, par-
ticipants in group A are asked to verify the au-
tomatically predicted revision purposes between
their second and third drafts (Section 4.2).

Annotated Revisions II (Rev23) Regardless of
which interface the participants used, the second
and third draft are compared and annotated by the
trained annotator in the same process as before.

6Figure 2(a) has two additional categories. Precision was
intended to represent revisions that make a sentence more
precise. Unknown was intended to represent revisions that
cannot be categorized to existing categories. These two cate-
gories were not used during annotation as they were reported
to be confusing in our pilot studies.

3.2 Revision Annotation Guidelines

Following our prior corpus annotations (Zhang
and Litman, 2015), sentence revisions are
first coarsely categorized as Surface or Con-
tent changes (Faigley and Witte, 1981), de-
pending on whether any informational con-
tent was modified; within each coarse cate-
gory, we distinguish between several finer cat-
egories based on the argumentative and dis-
course writing literature (Kneupper, 1978; Faigley
and Witte, 1981; Burstein et al., 2003). Our
adapted schema has three Surface categories (Or-
ganization, Word Usage/Clarity, and Conven-
tions/Grammar/Spelling) and five Content cate-
gories (Claim/Ideas, Warrant/Reasoning/Backing,
Rebuttal/Reservation, Evidence, and General
Content Development). Table 1 shows example
aligned sentences in three collected drafts and
their annotated revision categories. The edit types
of revisions (Add, Delete and Modify) are decided
according to the alignment of sentences.

Two annotators (one is experienced, and the
other is newly trained) participated in data anno-
tation. The annotators first went through a “train-
ing” phase where both annotators annotated 5 files
and discussed their disagreements to resolve mis-
understandings. Then, both annotators separately
annotated 10 new files and Kappa was calculated

1571

Name in Schema Name in System Definition
Content Content revisions that changed the information of essay

Claims/Ideas Ideas revisions that aimed to change the thesis of essay
Warrant/Reasoning/Backing Reasoning revisions that aimed to change the reasoning of thesis

Rebuttal/Reservation Rebuttal revisions that aimed to change the rebuttal of thesis
Evidence Evidence revisions that aimed to change the evidence support for thesis

General Content Other other types of content revisions
Surface Surface revisions that did not change the information of essay

Organization Reordering revisions that switched the order of sentences
Word Usage/Clarity Fluency revisions that aimed to make the essay more fluent

Conventions/Grammar/Spelling Errors revisions that aimed to fix the spelling/grammar mistakes

Table 2: Definition of category names in Interface A.

L2 (20) Draft1 Draft2 Draft3
Avg #Words 379.1 412.8 484.7

Avg #Sentences 18.6 20.2 23.7
Avg #Paragraphs 3.9 4.5 4.8

Native (40) Draft1 Draft2 Draft3
Avg #Words 372.4 394.7 531.6

Avg #Sentences 18.8 20.4 25.8
Avg #Paragraphs 4.0 4.7 5.1

Table 3: Descriptive statistics of the ArgRewrite
Corpus, including average number of words, sen-
tences and paragraphs per essay draft.

on the annotation of these 10 new files. The Kappa
on this held-out data is 0.84 on the two coarse cate-
gories of Surface vs. Content and 0.71 on the eight
fine-grained categories that appear in Table 2. The
disagreements between annotators were removed
after discussion and the final labels were used as
the gold standard annotation.

3.3 Meta-Data

In addition to the raw text and annotations, the
corpus release includes participant meta-data from
both a pre-study and a post-study survey.

Pre-Study Survey The pre-study survey asks
for participants’ demographic information as well
as their self-reported writing background, such as
participants’ confidence in their writing ability, the
number of drafts they typically make, etc. The
questions are listed in Appendix A.

Post-Study Survey The post-study survey con-
tains questions about the participants’ in-lab revi-
sion experience, such as whether they found the
computer interface helpful. All questions are an-
swered on a scale of 1 to 5, ranging from “strongly
disagree” to “strongly agree”. Details of questions
are shown in Appendix B.

3.4 Descriptive Statistics

Table 3 indicates the average number of
words/sentences/paragraphs per essay draft.

The corpus includes 180 essays: 120 (Draft1 and
Draft2) with an average of about 400 words and
60 (Draft3) with an average of around 500 words.

Among the 40 native speakers, there were 29
(72.5%) undergraduates, 6 (15%) graduate stu-
dents, and 5 (12.5%) non-students (post-docs and
lecturers). Among the 20 L2 speakers, there were
4 (20%) undergraduates, and 16 (80%) gradu-
ate students; there were 9 Chinese, 2 Bengali, 2
Marathi, 2 Persian, 1 Arabic, 1 Korean, 1 Por-
tuguese, 1 Spanish, and 1 Tamil. In terms of disci-
pline, 33 participants (55%) were from the natural
sciences, 24 (40%) from the social sciences, and 2
(3.3%) from the humanities. 1 participant (1.7%)
did not reveal his/her discipline.

3.5 Public Release

The corpus is freely available for research usage7.
The first release includes the raw text plus the re-
vision annotations and the meta-data. The revi-
sion annotations are stored as .xlsx files. There
are 60 spreadsheet files for revisions from Draft1
to Draft2 and 60 more spreadsheet files for revi-
sions from Draft2 to Draft3. Each spreadsheet file
contains two sheets: Old Draft and New Draft.
Each row in the sheet represents one sentence in
the corresponding draft. The index of the aligned
sentence row in the other draft and the type of the
revision on the sentence are recorded. The meta-
data are in .log text files. Information in the text
files are stored using the JSON data format.

4 Example Uses of the Corpus

While the development of a full fledged revision
analysis system is outside the scope of this work,
we demonstrate potential uses of our corpus with
two examples. We first perform statistical anal-
yses on the collected revision data and meta-data

7http://argrewrite.cs.pitt.edu

1572

Content Surface
Rev12 Rev23 Rev12 Rev23

L2 (20) 172 78 163 176
Interface A 91 37 71 85
Interface B 81 41 92 91
Native (40) 334 285 303 246
Interface A 177 154 149 111
Interface B 157 131 154 135

Table 4: Number of revisions, by participant
groups (language, interface), coarse-grain pur-
poses, and revision drafts (Rev12 is between
Draft1-Draft2; Rev23 is between Draft2-Draft3).

to understand aspects of participant behavior. We
also use the corpus to train a supervised classifier
to automatically predict revision purposes.

4.1 Student Revision Behavior Analysis
While it is well-established that thoughtful re-
visions improve one’s writing, and while many
college-level courses require students to submit
multiple drafts of writing assignments (Addison
and McGee, 2010), instructors rarely monitor and
provide feedback to students while they revise.
This is partly due to instructors’ time constraints
and partly due to their uncertainty about how to
support students’ revisions (Cole, 2014; Melzer,
2014). There is much we do not know about how
to stimulate students to self-reflect and revise.

4.1.1 Hypotheses
Using the ArgRewrite Corpus, we can begin to ask
and address some questions about revision habits
and behaviors. Our first question is: How do dif-
ferent types of revision feedback impact student
revision? And relatedly: Does student background
(e.g., native vs. L2) make a difference? We thus
mine the corpus to test the following hypotheses:

H1. There is a difference in participants’ re-
vising behaviors depending on which interface is
used to elicit the third draft.

H2. For participants who used Interface A, if
the recognized revision purpose differs from the
participants’ intended revision purpose, partici-
pants will further modify their revision.

H3. L2 and native speakers have different be-
haviors in making revisions.

H1 and H2 address the first question; H3 ad-
dresses the second.

4.1.2 Methodology
To test the hypotheses, we will use both subjective
and objective measures. Subjective measures are

based on participant post-study survey answers.
Ideally, objective measures should be based on an
assessment of improvements in the revised drafts;
since we do not have evaluative data at this time,
we approximate the degree of improvement using
the number of revisions, since these two quanti-
ties were demonstrated to be positively correlated
(Zhang and Litman, 2015). The objective mea-
sures are computed from Tables 4 and 5.

To compare differences between specific sub-
groups on the subjective and objective measures,
we conduct ANOVA tests with two factors. There
are multiple factors that can influence the users’
rewriting behaviors such as the user’s native lan-
guage, education level and previous revision be-
haviors, etc. In our study, we try to explore the dif-
ference between interface groups considering one
of the most salient confounding factors: language.
We use one factor as the participant’s native lan-
guage (whether the participant is native or L2) and
the other factor as the interface used. To deter-
mine correlation between quantitative measures,
we conduct Spearman (ρ) and Pearson (r) corre-
lation tests.

4.1.3 Results and Discussion
Testing for H1 Comparing Group A and Group
B participants, we observe some differences. First,
we detect that Group A agrees with the statement
“The system helps me to recognize the weakness
of my essay” more so than Group B (Group A has
a mean rating of 3.97 (“Agree”) while Group B’s
is 3.17 (“Neutral”), p < .003). Second, in Group
A, there is a trending positive correlation between
the number of revisions8 from Draft2 to Draft3
and the ratings for the statement “The system en-
courages me to make more revisions than I usu-
ally make” (ρ=.33 and p < .07); whereas there
is no such correlation for Group B. Additional
information about revision purposes may elicit a
stronger self-reflection response in Group A par-
ticipants. In contrast, in Group B, there is a signif-
icant negative correlation between the number of
Rev12 and ratings for the statement “it is conve-
nient to view my previous revisions with the sys-
tem” (ρ=-.36 and p < .05). This suggests that the
character-based interface is ineffective when par-
ticipants have to reflect on many changes.

8The results reported are the normalized numbers
#revisions
#sentences

, where #sentences represents the number of sen-
tences in the draft before revision. The absolute numbers
were also tested and similar findings were observed.

1573

Revision Purpose Draft1 to Draft2 Draft2 to Draft3 Totals#Add #Delete #Modify #Add #Delete #Modify
Content 294 179 33 320 27 16 869

Claims/Ideas 25 8 4 5 0 0 42
Warrant/Reasoning/Backing 166 83 7 191 13 3 463

Rebuttal/Reservation 23 1 0 13 0 0 37
General Content 50 80 18 86 13 13 260

Evidence 30 7 4 25 1 0 67
Surface 0 0 466 0 0 422 888

Word Usage/Clarity 0 0 362 0 0 357 719
Conventions/Grammar/Spelling 0 0 75 0 0 52 127

Organization 0 0 29 0 0 13 42

Table 5: Number of revisions, by fine-grain revision purposes and edit types (add, delete, modify).

On the other hand, when comparing the number
of revisions made by Group A and Group B on
Rev23 (controlling for their Rev12 numbers), we
did not find a significant difference.

As we did not observe a significant difference in
the number of revisions made by the two interface
groups, we cannot verify that H1 is true; possibly
a larger pool of participants is needed, or possi-
bly the writing assignment is not extensive enough
(in length and in the number of drafts). Another
possible explanation is that the system might only
motivate the users to make more revisions when
the feedback is different from the user’s intention.
To further verify the correctness of H1, we plan
to have the essays graded by experts. The graded
scores could allow us to analyze whether essays
improved more when Interface A was used.

Testing for H2 Focusing on the 30 participants
from Group A, we check the impact of the feed-
back regarding Rev12 on how they subsequently
revise (Rev23). We counted the Add and Mod-
ify revisions where the participant disagrees with
the revision purpose assigned by the annotator in
Rev12. Of those, we then count the number of
times the corresponding sentences were further re-
vised9. Of the 53 sentences where the participants
disagreed with the annotator, 45 were further re-
vised in the third draft. The ratio is 0.849, much
higher than the overall ratio of general Rev12 re-
visions being further revised in Rev23 (161/394
= 0.409) and the ratio of the agreed Rev12 revi-
sions being revised in Rev23 (67/341 = 0.196). In
further analysis, a Pearson correlation test is con-
ducted to check the correlation between the num-
ber of Rev23 and the number of disagreements for
different types of agreement/disagreements, con-
trolling for the number of Rev12. We find a nega-

9Delete revisions were ignored as the deleted sentences
are not traceable in Draft3

tive correlation between Rev23 and the number of
cases (r=-0.41, p < .03) in which the revisions an-
notated as Content are verified by the participants;
we also find a positive correlation between Rev23
and the number of cases (r=0.36, p <= .05) in
which the revisions annotated as Surface are in-
tended to be Content revisions by the participants.
Both findings are consistent with H2, suggesting
that participants will revise further if they perceive
that their intended revisions were not recognized.

Testing for H3 We observe that native and L2
speakers exhibit different behaviors. First, we
tested the difference in Content23 and Surface2310

between these speaker groups with ANOVA. We
observe significant difference in the number of
content (p < .02) and surface (p < .03) re-
visions made by L2 and native speakers. More
specifically, our native speakers make more Con-
tent changes while the L2 speakers make more
Surface changes. Second, with ANOVA we found
a significant interaction effect of the two factors
(Group and users’ L2 or native status) (p < .021)
on their ratings for the statement “the system helps
me to recognize the weakness of my essay” with
L2 speakers having a stronger Interface A pref-
erence. Third, we observe a significant positive
correlation in the native group between the num-
ber of content revisions in Rev23 and the ratings
of the statement “the system encourages me to
make more revisions than I usually make” (ρ=.4
and p < .009). This suggests that giving feedback
(from either interface) encourages native speakers
to make more content revisions. Finally, in the
L2 group, there is a significant negative correla-
tion between the number of surface revisions in
Rev12 and the ratings for the statement “the sys-
tem helps me to recognize the weakness of my es-

10content/surface revisions from Draft2 to Draft3

1574

say” (ρ=-.57 and p < .008). This shows that giv-
ing feedback to L2 speakers is less helpful when
they make more surface revisions. These results
are consistent with H3.

Summary Our findings suggest that feedback
on revisions do impact how students review and
rewrite their drafts. However, there are many fac-
tors at play, including the interface design and the
students’ linguistic backgrounds.

4.2 Automatic Revision Identification
Another use of the corpus is to serve as a gold
standard for training and testing a revision purpose
prediction component for use in an automatic revi-
sion analysis system. In the version of ArgRewrite
evaluated earlier (Interface A), the manual anno-
tation of revision purposes enabled the system to
provide revision feedback to users, which moti-
vated them to improve their writing (H2). Auto-
matic argumentative revision purpose prediction
has been previously investigated by Zhang and
Litman (2015). They developed and reported the
performance of a binary classifier for each individ-
ual revision category (1 for revisions of the cate-
gory and 0 for the rest of all revisions) using fea-
tures from prior research. The availability of our
corpus makes it possible for researchers to repli-
cate such methods and conduct further studies.

4.2.1 Hypotheses
In this paper, we repeat the experiment of Zhang
and Litman (2015) under different settings to in-
vestigate three new hypotheses that can now be
investigated given the features of our corpus:

H4. The method used in Zhang and Litman
(2015) for high school writings is also useful for
the writings of college students.

H5. The same revision classification method
works differently for first revision attempts and
second revision attempts.

H6. The revision classification model trained
on L2 essays has a different preference from the
model trained on native essays.

4.2.2 Methodology
We followed the work of (Zhang and Litman,
2015), where unigram features (words) were used
as the baseline and the SVM classifier was used.
Besides unigrams, three groups of features used in
revision analysis, argument mining and discourse
analysis research were extracted (Location, Tex-
tual and Language) as in Table 6 (Bronner and

Monz, 2012; Daxenberger and Gurevych, 2013;
Burstein et al., 2001; Falakmasir et al., 2014).

For H4, 10-fold (participant) cross-validation is
conducted on all the essays in the corpus. Un-
weighted average F-score for each revision cat-
egory is reported, using unigram features versus
using all features. Zhang and Litman (2015) ob-
served a significant improvement over the unigram
baseline using all the features. If H4 is true, we
should expect a similar improvement over the un-
igram baseline using our corpus.

For H5, 10-fold cross-validation was conducted
for the revisions from Draft1 to Draft2 and revi-
sions from Draft2 to Draft3 separately. We com-
pared the improvement ratio brought by the ad-
vanced features over the unigram baseline.

For H6, we trained two classifiers separately
with L2 and native essays with all the features. 20
native participants were first randomly selected as
the test data. Afterwards classifiers were trained
separately using the 20 L2 participants’ essays
and the remaining 20 native participants’ essays.
We would expect that the performance of the two
trained classifiers is different on the same test data.

4.2.3 Results and Discussion
The first two rows of Table 7 support H4. We ob-
serve that the method (SVM + all features) used in
Zhang and Litman (2015) significantly improves
performance (compared to a unigram baseline) for
half of the classification tasks, which is similar to
Zhang and Litman’s results on high school (pri-
marily L1) writing. In our corpus, performance on
Claim, Evidence, Rebuttal and Organization was
not significantly better than the baseline, possibly
due to the limited number of positive training sam-
ples for these categories (Table 5). For example,
one reason that the performance in Table 7 for Ev-
idence might be low is that there are less than 100
Evidence instances in Table 5.

For H5, the four rows in the middle of Table 7
show the difference of the cross-validation results
on first attempt revisions and second attempt revi-
sions. The earlier results using all the revisions,
versus now just using only Rev12 or Rev23 re-
visions are similar, which provides little support
for H5. With one exception, the features proposed
in Zhang and Litman (2015) could again signifi-
cantly improve the performance over the unigram
baseline, for the same set of categories as when
using all the revisions. However, for the Conven-
tions/Grammar/Spelling category, we did not ob-

1575

Group Illustration
Location The location of revised sentences in the paragraph/essay (e.g., whether the sentence is the first or last sen-

tence of the paragraph/essay, the index of the sentence in the paragraph)
Textual The textual features of revised sentences (e.g., whether the sentence contains a named entity, certain dis-

course markers (“because”, “due to”, etc), sentence difference (edit distance, difference in punctuations,
etc.) and edit types (Add, Delete or Modify))

Language The language features of revised sentences (e.g., difference in POS tags, spelling/grammar mistakes)

Table 6: Illustration of features used in the revision classification study.

Experiments Text-based Surface
Claim Warrant General Evidence Rebuttal Org. Word Conv

10fold + All Revs + Unigram 0.49 0.58 0.48 0.49 0.49 0.49 0.73 0.49
10fold + All Revs + All features 0.49 0.77∗ 0.55∗ 0.50 0.49 0.49 0.86∗ 0.62∗
10fold + Rev12 + Unigram 0.50 0.58 0.47 0.50 0.50 0.50 0.57 0.62
10fold + Rev12 + All features 0.50 0.77∗ 0.56∗ 0.50 0.50 0.50 0.72∗ 0.72∗
10fold + Rev23 + Unigram 0.50 0.46 0.53 0.49 0.50 0.50 0.58 0.46
10fold + Rev23 + All features 0.50 0.60∗ 0.65∗ 0.49 0.50 0.50 0.78∗ 0.50
20 L2 (train) + 20 Native (test) 0.50 0.72 0.48 0.49 0.50 0.50 0.83 0.63
20 Native (train) + 20 Native (test) 0.50 0.76 0.52 0.49 0.50 0.50 0.89 0.54

Table 7: Average unweighted F-score for each binary classification task. The first 6 rows show the
average value of 10-fold cross-validation. ∗ indicates significantly better than unigram baseline (p <
.05). The last 2 rows show the F-value for training on L2/Native data and testing on Native data. Bold
indicates larger than the number in the other row.

serve a significant improvement for revisions from
Draft2 and Draft3. A possible explanation is that
there is a bigger difference in the writers’ rewriting
behavior from Draft2 to Draft3, which increases
the difficulty of prediction.

The last two rows of Table 7 support H6. Inter-
estingly, we observe a better performance on War-
rant, General and Word Usage/Clarity with a clas-
sifier trained and tested using native essays. Per-
haps essays of native speakers are more similar to
each other when revised along these dimensions.
For Conventions/Grammar/Spelling, in contrast,
the classifier trained on L2 data yields a better per-
formance on the same native test set. This may
be because the L2 revisions usually include more
spelling/grammar corrections.

5 Conclusion and Future Work

We have presented a new corpus for writing com-
parison research. Currently the corpus focuses on
essay revisions made by both native and L2 col-
lege students. In addition to three drafts of essays,
we have analyzed the drafts to align semantically
similar sentences and to assign revision purposes
for each revised aligned sentence pair. We have
also conducted two studies to demonstrate the use
of the corpus for revision behavior analysis and for
automatic revision purpose classification.

While in this paper we explored language as

one factor influencing rewriting behavior, our cor-
pus also contains information about other potential
factors such as gender and education level which
we plan to investigate in the future. We also plan
to augment the corpus to support additional types
of research on revision analysis. Some potential
augmentations include more fine-grained revision
categories, revision properties such as statement
strength (Tan and Lee, 2014) and quality evalua-
tions, and sub-sentential revision scopes.

Acknowledgments

We want to thank Amanda Godley, Geeta Kothari,
and the members of the ArgRewrite group (Reed
Armstrong, Nicolo Manfredi and Tazin Afrin) for
their helpful feedback and the anonymous review-
ers for their suggestions. We also want to thank
Adam Hobaugh, Dennis Wakefield and Anthony
M Taliani for their assistance in the set up of study
environments. This material is based upon work
supported by the National Science Foundation un-
der Grant No. 1550635. Any opinions, findings,
and conclusions or recommendations expressed in
this material are those of the authors and do not
necessarily reflect the views of the National Sci-
ence Foundation. This research is also funded by
the Learning Research and Development Center of
the University of Pittsburgh.

1576

References

Joanne Addison and Sharon James McGee. 2010.
Writing in high school/writing in college: Research
trends and future directions. College Composition
and Communication pages 147–179.

Yigal Attali and Jill Burstein. 2006. Automated essay
scoring with e-rater R© v. 2. The Journal of Technol-
ogy, Learning and Assessment 4(3).

Amit Bronner and Christof Monz. 2012. User edits
classification using document revision histories. In
Proceedings of the 13th Conference of the European
Chapter of the Association for Computational Lin-
guistics. pages 356–366.

Jill Burstein and Martin Chodorow. 1999. Automated
essay scoring for nonnative English speakers. In
Proceedings of a Symposium on Computer Medi-
ated Language Assessment and Evaluation in Nat-
ural Language Processing. pages 68–75.

Jill Burstein, Daniel Marcu, Slava Andreyev, and Mar-
tin Chodorow. 2001. Towards automatic classifica-
tion of discourse elements in essays. In Proceedings
of the 39th annual Meeting on Association for Com-
putational Linguistics. pages 98–105.

Jill Burstein, Daniel Marcu, and Kevin Knight. 2003.
Finding the WRITE stuff: Automatic identification
of discourse structure in student essays. IEEE Intel-
ligent Systems 18(1):32–39.

Daniel Cole. 2014. What if the earth is flat? working
with, not against, faculty concerns about grammar in
student writing. The WAC Journal 25:7–35.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a large annotated corpus of learner
English: The NUS corpus of learner English. In
Proceedings of the Eighth Workshop on Innovative
Use of NLP for Building Educational Applications.
pages 22–31.

Johannes Daxenberger and Iryna Gurevych. 2012. A
corpus-based study of edit categories in featured and
non-featured Wikipedia articles. In COLING. pages
711–726.

Johannes Daxenberger and Iryna Gurevych. 2013. Au-
tomatically classifying edit categories in Wikipedia
revisions. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing. pages 578–589.

William B Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proc. of IWP.

Lester Faigley and Stephen Witte. 1981. Analyzing
revision. College composition and communication
pages 400–414.

Mohammad Hassan Falakmasir, Kevin D Ashley,
Christian D Schunn, and Diane J Litman. 2014.
Identifying thesis and conclusion statements in stu-
dent essays to scaffold peer review. In International
Conference on Intelligent Tutoring Systems. pages
254–259.

Lucie Flekova, Daniel Preoţiuc-Pietro, and Lyle Ungar.
2016. Exploring stylistic variation with age and in-
come on Twitter. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Short Papers). pages 313–319.

Grammarly. 2016. Grammarly.
http://www.grammarly.com. [Online; accessed
04-10-2017].

John Jones. 2008. Patterns of revision in online writ-
ing a study of Wikipedia’s featured articles. Written
Communication 25(2):262–289.

Charles W Kneupper. 1978. Teaching argument: An
introduction to the Toulmin model. College Compo-
sition and Communication 29(3):237–241.

Claudia Leacock, Martin Chodorow, Michael Gamon,
and Joel Tetreault. 2010. Automated grammatical
error detection for language learners. Synthesis lec-
tures on human language technologies 3(1):1–134.

Jun Liu and Sudha Ram. 2009. Who does what: Col-
laboration patterns in the Wikipedia and their impact
on data quality. In 19th Workshop on Information
Technologies and Systems. pages 175–180.

Prodromos Malakasiotis and Ion Androutsopoulos.
2011. A generate and rank approach to sentence
paraphrasing. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing. pages 96–106.

Dan Melzer. 2014. The connected curriculum: Design-
ing a vertical transfer writing curriculum. The WAC
Journal 25:78–91.

Eugene W Myers. 1986. An O(ND) difference algo-
rithm and its variations. Algorithmica 1(1-4):251–
266.

Isaac Persing and Vincent Ng. 2016. End-to-end argu-
mentation mining in student essays. In Proceedings
of NAACL-HLT . pages 1384–1394.

Ulrike Pfeil, Panayiotis Zaphiris, and Chee Siang Ang.
2006. Cultural differences in collaborative author-
ing of Wikipedia. Journal of Computer-Mediated
Communication 12(1):88–113.

Marius Popescu and Liviu P. Dinu. 2008. Rank dis-
tance as a stylistic similarity. In Coling 2008. pages
91–94.

Ben Swanson and Elif Yamangil. 2012. Correction de-
tection and error type selection as an ESL educa-
tional aid. In Proceedings of the 2012 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies. pages 357–361.

1577

Chenhao Tan and Lillian Lee. 2014. A corpus of
sentence-level revisions in academic writing: A step
towards understanding statement strength in com-
munication. In Proceedings of ACL (short paper).

Huichao Xue and Rebecca Hwa. 2014. Improved cor-
rection detection in revised ESL sentences. In ACL
(2). pages 599–604.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading ESOL texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1. pages 180–189.

Fan Zhang, Rebecca Hwa, Diane Litman, and Homa B
Hashemi. 2016. Argrewrite: A web-based revision
assistant for argumentative writings. NAACL HLT
2016 page 37.

Fan Zhang and Diane Litman. 2014. Sentence-level
rewriting detection. In Proceedings of the Ninth
Workshop on Innovative Use of NLP for Building
Educational Applications. pages 149–154.

Fan Zhang and Diane Litman. 2015. Annotation and
classification of argumentative writing revisions. In
Proceedings of the Tenth Workshop on Innovative
Use of NLP for Building Educational Applications.
pages 133–143.

A Questions of the pre-study survey

1. Is English your native language?

2. (only L2 participants) What is your native
language?

3. What is your major? Please select the closest
discipline to your major.

• Natural sciences
• Social sciences
• Humanities

4. Are you an undergraduate or graduate stu-
dent?

5. What is your current year of study?

6. When writing a paper for a class, how many
drafts of major revisions do you typically
make?

7. Overall, how confident are you with your
writings? (Not at all confident, Not very con-
fident, Somewhat confident, confident, Ex-
tremely confident)

8. (only L2 participants) Please tell us how
comfortable you feel about writing in the En-
glish language versus writing in your primary
language. (Not at all comfortable, Not very

comfortable, Somewhat comfortable, com-
fortable, Extremely comfortable)

9. What are some of your recent classes that
have an intensive writing component to
them? How did you do in these classes?

10. What aspects of writing do you think you are
good at? e.g. vocabulary choice, clear sen-
tences, writing organization.

11. What aspects of writing do you think you can
improve?

B Questions of the post-study survey

1. The system allows me to have a better under-
standing of my previous revision efforts.

2. It is convenient to view my previous revisions
with the system.

3. The system helps me to recognize the weak-
ness of my essay.

4. The system encourages me to make more re-
visions than I usually make.

5. The system encourages me to think more
about making more meaningful changes.

6. Overall the system is helpful to my writing.

1578

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1579–1590
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1145

Watset: Automatic Induction of Synsets from a Graph of Synonyms

Dmitry Ustalov†∗, Alexander Panchenko‡, and Chris Biemann‡

†Institute of Natural Sciences and Mathematics, Ural Federal University, Russia
∗Krasovskii Institute of Mathematics and Mechanics, Russia

‡Language Technology Group, Department of Informatics, Universität Hamburg, Germany
dmitry.ustalov@urfu.ru

{panchenko,biemann}@informatik.uni-hamburg.de

Abstract

This paper presents a new graph-based
approach that induces synsets using syn-
onymy dictionaries and word embeddings.
First, we build a weighted graph of syn-
onyms extracted from commonly available
resources, such as Wiktionary. Second,
we apply word sense induction to deal
with ambiguous words. Finally, we clus-
ter the disambiguated version of the am-
biguous input graph into synsets. Our
meta-clustering approach lets us use an
efficient hard clustering algorithm to per-
form a fuzzy clustering of the graph. De-
spite its simplicity, our approach shows
excellent results, outperforming five com-
petitive state-of-the-art methods in terms
of F-score on three gold standard datasets
for English and Russian derived from
large-scale manually constructed lexical
resources.

1 Introduction

A synset is a set of mutual synonyms, which can
be represented as a clique graph where nodes are
words and edges are synonymy relations. Synsets
represent word senses and are building blocks
of WordNet (Miller, 1995) and similar resources
such as thesauri and lexical ontologies. These re-
sources are crucial for many natural language pro-
cessing applications that require common sense
reasoning, such as information retrieval (Gong
et al., 2005) and question answering (Kwok et al.,
2001; Zhou et al., 2013). However, for most lan-
guages, no manually-constructed resource is avail-
able that is comparable to the English WordNet
in terms of coverage and quality. For instance,
Kiselev et al. (2015) present a comparative anal-
ysis of lexical resources available for the Russian

language concluding that there is no resource com-
pared to WordNet in terms of coverage and qual-
ity for Russian. This lack of linguistic resources
for many languages urges the development of new
methods for automatic construction of WordNet-
like resources. The automatic methods foster con-
struction and use of the new lexical resources.

Wikipedia1, Wiktionary2, OmegaWiki3 and
other collaboratively-created resources contain a
large amount of lexical semantic information—
yet designed to be human-readable and not for-
mally structured. While semantic relations can
be automatically extracted using tools such as
DKPro JWKTL4 and Wikokit5, words in these re-
lations are not disambiguated. For instance, the
synonymy pairs (bank, streambank) and (bank,
banking company) will be connected via the word
“bank”, while they refer to the different senses.
This problem stems from the fact that articles
in Wiktionary and similar resources list undis-
ambiguated synonyms. They are easy to disam-
biguate for humans while reading a dictionary ar-
ticle, but can be a source of errors for language
processing systems.

The contribution of this paper is a novel ap-
proach that resolves ambiguities in the input graph
to perform fuzzy clustering. The method takes as
an input synonymy relations between potentially
ambiguous terms available in human-readable dic-
tionaries and transforms them into a machine read-
able representation in the form of disambiguated
synsets. Our method, called WATSET, is based on
a new local-global meta-algorithm for fuzzy graph
clustering. The underlying principle is to discover
the word senses based on a local graph cluster-

1http://www.wikipedia.org
2http://www.wiktionary.org
3http://www.omegawiki.org
4https://dkpro.github.io/dkpro-jwktl
5https://github.com/componavt/wikokit

1579

https://doi.org/10.18653/v1/P17-1145

ing, and then to induce synsets using global sense
clustering. We show that our method outperforms
other methods for synset induction. The induced
resource eliminates the need in manual synset con-
struction and can be used to build WordNet-like
semantic networks for under-resourced languages.
An implementation of our method along with in-
duced lexical resources is available online.6

2 Related Work

Methods based on resource linking surveyed by
Gurevych et al. (2016) gather various existing lex-
ical resources and perform their linking to obtain
a machine-readable repository of lexical semantic
knowledge. For instance, BabelNet (Navigli and
Ponzetto, 2012) relies in its core on a linking of
WordNet and Wikipedia. UBY (Gurevych et al.,
2012) is a general-purpose specification for the
representation of lexical-semantic resources and
links between them. The main advantage of our
approach compared to the lexical resources is that
no manual synset encoding is required.

Methods based on word sense induction try to
induce sense representations without the need for
any initial lexical resource by extracting semantic
relations from text. In particular, word sense in-
duction (WSI) based on word ego networks clus-
ters graphs of semantically related words (Lin,
1998; Pantel and Lin, 2002; Dorow and Widdows,
2003; Véronis, 2004; Hope and Keller, 2013;
Pelevina et al., 2016; Panchenko et al., 2017a),
where each cluster corresponds to a word sense.
An ego network consists of a single node (ego) to-
gether with the nodes they are connected to (alters)
and all the edges among those alters (Everett and
Borgatti, 2005). In the case of WSI, such a net-
work is a local neighborhood of one word. Nodes
of the ego network are the words which are seman-
tically similar to the target word.

Such approaches are able to discover homony-
mous senses of words, e.g., “bank” as slope ver-
sus “bank” as organisation (Di Marco and Nav-
igli, 2012). However, as the graphs are usu-
ally composed of semantically related words ob-
tained using distributional methods (Baroni and
Lenci, 2010; Biemann and Riedl, 2013), the re-
sulting clusters by no means can be considered
synsets. Namely, (1) they contain words related
not only via synonymy relation, but via a mix-
ture of relations such as synonymy, hypernymy,

6https://github.com/dustalov/watset

co-hyponymy, antonymy, etc. (Heylen et al., 2008;
Panchenko, 2011); (2) clusters are not unique, i.e.,
one word can occur in clusters of different ego net-
works referring to the same sense, while in Word-
Net a word sense occurs only in a single synset.

In our synset induction method, we use word
ego network clustering similarly as in word sense
induction approaches, but apply them to a graph
of semantically clean synonyms.

Methods based on clustering of synonyms,
such as our approach, induce the resource from
an ambiguous graph of synonyms where edges a
extracted from manually-created resources. Ac-
cording to the best of our knowledge, most
experiments either employed graph-based word
sense induction applied to text-derived graphs
or relied on a linking-based method that al-
ready assumes availability of a WordNet-like re-
source. A notable exception is the ECO approach
by Gonçalo Oliveira and Gomes (2014), which
was applied to induce a WordNet of the Por-
tuguese language called Onto.PT.7 We compare
to this approach and to five other state-of-the-art
graph clustering algorithms as the baselines.

ECO (Gonçalo Oliveira and Gomes, 2014) is a
fuzzy clustering algorithm that was used to induce
synsets for a Portuguese WordNet from several
available synonymy dictionaries. The algorithm
starts by adding random noise to edge weights.
Then, the approach applies Markov Clustering
(see below) of this graph several times to esti-
mate the probability of each word pair being in the
same synset. Finally, candidate pairs over a certain
threshold are added to output synsets.

MaxMax (Hope and Keller, 2013) is a fuzzy
clustering algorithm particularly designed for the
word sense induction task. In a nutshell, pairs of
nodes are grouped if they have a maximal mu-
tual affinity. The algorithm starts by converting
the undirected input graph into a directed graph by
keeping the maximal affinity nodes of each node.
Next, all nodes are marked as root nodes. Finally,
for each root node, the following procedure is re-
peated: all transitive children of this root form a
cluster and the root are marked as non-root nodes;
a root node together with all its transitive children
form a fuzzy cluster.

Markov Clustering (MCL) (van Dongen,
2000) is a hard clustering algorithm for graphs
based on simulation of stochastic flow in graphs.

7http://ontopt.dei.uc.pt

1580

Background Corpus

Synonymy Dictionary

Learning

Word
Embeddings

Graph
Construction

Synsets

Word
Similarities

Ambiguous
Weighted Graph

Local
Clustering:
Word Sense Induction

Global
Clustering:

Synset Induction

Sense Inventory

Disambiguation
of

Neighbors

Disambiguated
Weighted Graph

Local-Global
Fuzzy
Graph
Clustering

Figure 1: Outline of the WATSET method for synset induction.

MCL simulates random walks within a graph by
alternation of two operators called expansion and
inflation, which recompute the class labels. No-
tably, it has been successfully used for the word
sense induction task (Dorow and Widdows, 2003).

Chinese Whispers (CW) (Biemann, 2006) is
a hard clustering algorithm for weighted graphs
that can be considered as a special case of MCL
with a simplified class update step. At each itera-
tion, the labels of all the nodes are updated accord-
ing to the majority labels among the neighboring
nodes. The algorithm has a meta-parameter that
controls graph weights that can be set to three val-
ues: (1) top sums over the neighborhood’s classes;
(2) nolog downgrades the influence of a neighbor-
ing node by its degree or by (3) log of its degree.

Clique Percolation Method (CPM) (Palla
et al., 2005) is a fuzzy clustering algorithm for
unweighted graphs that builds up clusters from
k-cliques corresponding to fully connected sub-
graphs of k nodes. While this method is only com-
monly used in social network analysis, we decided
to add it to the comparison as synsets are essen-
tially cliques of synonyms, which makes it natural
to apply an algorithm based on clique detection.

3 The WATSET Method

The goal of our method is to induce a set of unam-
biguous synsets by grouping individual ambigu-
ous synonyms. An outline of the proposed ap-
proach is depicted in Figure 1. The method takes
a dictionary of ambiguous synonymy relations and
a text corpus as an input and outputs synsets. Note
that the method can be used without a background
corpus, yet as our experiments will show, corpus-
based information improves the results when uti-
lizing it for weighting the word graph’s edges.

A synonymy dictionary can be perceived as a
graph, where the nodes correspond to lexical en-
tries (words) and the edges connect pairs of the
nodes when the synonymy relation between them
holds. The cliques in such a graph naturally form

densely connected sets of synonyms correspond-
ing to concepts (Gfeller et al., 2005). Given the
fact that solving the clique problem exactly in a
graph is NP-complete (Bomze et al., 1999) and
that these graphs typically contain tens of thou-
sands of nodes, it is reasonable to use efficient hard
graph clustering algorithms, like MCL and CW,
for finding a global segmentation of the graph.
However, the hard clustering property of these
algorithm does not handle polysemy: while one
word could have several senses, it will be assigned
to only one cluster. To deal with this limitation, a
word sense induction procedure is used to induce
senses for all words, one at the time, to produce a
disambiguated version of the graph where a word
is now represented with one or many word senses.
The concept of a disambiguated graph is described
in (Biemann, 2012). Finally, the disambiguated
word sense graph is clustered globally to induce
synsets, which are hard clusters of word senses.

More specifically, the method consists of five
steps presented in Figure 1: (1) learning word
embeddings; (2) constructing the ambiguous
weighted graph of synonyms G; (3) inducing the
word senses; (4) constructing the disambiguated
weighted graph G′ by disambiguating of neigh-
bors with respect to the induced word senses; (5)
global clustering of the graph G′.

3.1 Learning Word Embeddings
Since different graph clustering algorithms are
sensitive to edge weighting, we consider distribu-
tional semantic similarity based on word embed-
dings as a possible edge weighting approach for
our synonymy graph. As we show further, this
approach improves over unweighted versions and
yields the best overall results.

3.2 Construction of a Synonymy Graph
We construct the synonymy graph G = (V,E) as
follows. The set of nodes V includes every lexeme
appearing in the input synonymy dictionaries. The
set of undirected edgesE is composed of all edges

1581

Figure 2: Disambiguation of an ambiguous in-
put graph using local clustering (WSI) to facilitate
global clustering of words into synsets.

(u, v) ∈ V × V retrieved from one of the input
synonymy dictionaries. We consider three edge
weight representations:

• ones that assigns every edge the constant
weight of 1;

• count that weights the edge (u, v) as the
number of times the synonymy pair appeared
in the input dictionaries;

• sim that assigns every edge (u, v) a weight
equal to the cosine similarity of skip-gram
word vectors (Mikolov et al., 2013).

As the graph G is likely to have polysemous
words, the goal is to separate individual word
senses using graph-based word sense induction.

3.3 Local Clustering: Word Sense Induction
In order to facilitate global fuzzy clustering of the
graph, we perform disambiguation of its ambigu-
ous nodes as illustrated in Figure 2. First, we use
a graph-based word sense induction method that is
similar to the curvature-based approach of Dorow
and Widdows (2003). In particular, removal of
the nodes participating in many triangles tends to

separate the original graph into several connected
components. Thus, given a word u, we extract
a network of its nearest neighbors from the syn-
onymy graph G. Then, we remove the original
word u from this network and run a hard graph
clustering algorithm that assigns one node to one
and only one cluster. In our experiments, we test
Chinese Whispers and Markov Clustering. The
expected result of this is that each cluster repre-
sents a different sense of the word u, e.g.:

bank1 {streambank, riverbank, . . .}
bank2 {bank company, . . .}
bank3 {bank building, building, . . .}
bank4 {coin bank, penny bank, . . .}

We denote, e.g., bank1, bank2 and other items as
word senses referred to as senses(bank). We de-
note as ctx(s) a cluster corresponding to the word
sense s. Note that the context words have no sense
labels. They are recovered by the disambiguation
approach described next.

3.4 Disambiguation of Neighbors

Next, we disambiguate the neighbors of each in-
duced sense. The previous step results in split-
ting word nodes into (one or more) sense nodes.
However, nearest neighbors of each sense node are
still ambiguous, e.g., (bank3, building?). To re-
cover these sense labels of the neighboring words,
we employ the following sense disambiguation ap-
proach proposed by Faralli et al. (2016). For each
word u in the context ctx(s) of the sense s, we
find the most similar sense of that word û to the
context. We use the cosine similarity measure be-
tween the context of the sense s and the context of
each candidate sense u′ of the word u:

û = argmax
u′∈ senses(u)

cos(ctx(s), ctx(u′)).

A context ctx(·) is represented by a sparse vec-
tor in a vector space of all ambiguous words of
all contexts. The result is a disambiguated context
ĉtx(s) in a space of disambiguated words derived
from its ambiguous version ctx(s):

ĉtx(s) = {û : u ∈ ctx(s)}.

3.5 Global Clustering: Synset Induction

Finally, we construct the word sense graph G′ =
(V ′, E′) using the disambiguated senses instead of
the original words and establishing the edges be-
tween these disambiguated senses:

V ′ =
⋃

u∈V
senses(u), E′ =

⋃

s∈V ′
{s} × ĉtx(s).

1582

Running a hard clustering algorithm on G′ pro-
duces the desired set of synsets as our final result.
Figure 2 illustrates the process of disambiguation
of an input ambiguous graph on the example of
the word “bank”. As one may observe, disam-
biguation of the nearest neighbors is a necessity to
be able to construct a global version of the sense-
aware graph. Note that current approaches to WSI,
e.g., (Véronis, 2004; Biemann, 2006; Hope and
Keller, 2013), do not perform this step, but per-
form only local clustering of the graph since they
do not aim at a global representation of synsets.

3.6 Local-Global Fuzzy Graph Clustering

While we use our approach to synset induction in
this work, the core of our method is the “local-
global” fuzzy graph clustering algorithm, which
can be applied to arbitrary graphs (see Figure 1).
This method, summarized in Algorithm 1, takes
an undirected graph G = (V,E) as the input and
outputs a set of fuzzy clusters of its nodes V . This
is a meta-algorithm as it operates on top of two
hard clustering algorithms denoted as Clusterlocal
and Clusterglobal, such as CW or MCL. At the first
phase of the algorithm, for each node its senses
are induced via ego network clustering (lines 1–
7). Next, the disambiguation of each ego network
is performed (lines 8–15). Finally, the fuzzy clus-
ters are obtained by applying the hard clustering
algorithm to the disambiguated graph (line 16). As
a post-processing step, the sense labels can be re-
moved to make the cluster elements subsets of V .

4 Evaluation

We conduct our experiments on resources from
two different languages. We evaluate our approach
on two datasets for English to demonstrate its per-
formance on a resource-rich language. Addition-
ally, we evaluate it on two Russian datasets since
Russian is a good example of an under-resourced
language with a clear need for synset induction.

4.1 Gold Standard Datasets

For each language, we used two differently con-
structed lexical semantic resources listed in Ta-
ble 1 to obtain gold standard synsets.

English. We use WordNet8, a popular English
lexical database constructed by expert lexicogra-
phers. WordNet contains general vocabulary and

8https://wordnet.princeton.edu

Algorithm 1 WATSET fuzzy graph clustering
Input: a set of nodes V and a set of edges E.
Output: a set of fuzzy clusters of V .

1: for all u ∈ V do
2: C ← Clusterlocal(Ego(u)) // C = {C1, ...}
3: for i← 1 . . . |C| do
4: ctx(ui)← Ci
5: senses(u)← senses(u) ∪ {ui}
6: end for
7: end for
8: V ′ ← ⋃

u∈V senses(u)
9: for all s ∈ V ′ do

10: for all u ∈ ctx(s) do
11: û← argmax

u′∈ senses(u)
cos(ctx(s), ctx(u′))

12: end for
13: ĉtx(s)← {û : u ∈ ctx(s)}
14: end for
15: E′ ← ⋃

s∈V ′{s} × ĉtx(s)
16: return Clusterglobal(V

′, E′)

appears to be de facto gold standard in similar
tasks (Hope and Keller, 2013). We used Word-
Net 3.1 to derive the synonymy pairs from synsets.
Additionally, we use BabelNet9, a large-scale
multilingual semantic network constructed auto-
matically using WordNet, Wikipedia and other re-
sources. We retrieved all the synonymy pairs from
the BabelNet 3.7 synsets marked as English.

Russian. As a lexical ontology for Russian, we
use RuWordNet10 (Loukachevitch et al., 2016),
containing both general vocabulary and domain-
specific synsets related to sport, finance, eco-
nomics, etc. Up to a half of the words in this re-
source are multi-word expressions (Kiselev et al.,
2015), which is due to the coverage of domain-
specific vocabulary. RuWordNet is a WordNet-
like version of the RuThes thesaurus that is con-
structed in the traditional way, namely by a small
group of expert lexicographers (Loukachevitch,
2011). In addition, we use Yet Another Russ-
Net11 (YARN) by Braslavski et al. (2016) as an-
other gold standard for Russian. The resource is
constructed using crowdsourcing and mostly cov-
ers general vocabulary. Particularly, non-expert
users are allowed to edit synsets in a collaborative
way loosely supervised by a team of project cu-
rators. Due to the ongoing development of the re-

9http://www.babelnet.org
10http://ruwordnet.ru/en
11https://russianword.net/en

1583

source, we selected as the gold standard only those
synsets that were edited at least eight times in or-
der to filter out noisy incomplete synsets.

Resource # words # synsets # synonyms
WordNet En 148 730 117 659 152 254
BabelNet En 11 710 137 6 667 855 28 822 400
RuWordNet Ru 110 242 49 492 278 381
YARN Ru 9 141 2 210 48 291

Table 1: Statistics of the gold standard datasets.

4.2 Evaluation Metrics

To evaluate the quality of the induced synsets,
we transformed them into binary synonymy rela-
tions and computed precision, recall, and F-score
on the basis of the overlap of these binary re-
lations with the binary relations from the gold
standard datasets. Given a synset containing n

words, we generate a set of n(n−1)
2 pairs of syn-

onyms. The F-score calculated this way is known
as Paired F-score (Manandhar et al., 2010; Hope
and Keller, 2013). The advantage of this mea-
sure compared to other cluster evaluation mea-
sures, such as Fuzzy B-Cubed (Jurgens and Kla-
paftis, 2013), is its straightforward interpretability.

4.3 Word Embeddings

English. We use the standard 300-dimensional
word embeddings trained on the 100 billion tokens
Google News corpus (Mikolov et al., 2013).12

Russian. We use the 500-dimensional word em-
beddings trained using the skip-gram model with
negative sampling (Mikolov et al., 2013) using a
context window size of 10 with the minimal word
frequency of 5 on a 12.9 billion tokens corpus of
books. These embeddings were shown to produce
state-of-the-art results in the RUSSE shared task13

and are part of the Russian Distributional The-
saurus (RDT) (Panchenko et al., 2017b).14

4.4 Input Dictionary of Synonyms

For each language, we constructed a synonymy
graph using openly available language resources.
The statistics of the graphs used as the input in the
further experiments are shown in Table 2.

12https://code.google.com/p/word2vec
13http://www.dialog-21.ru/en/

evaluation/2015/semantic_similarity
14http://russe.nlpub.ru/downloads

English. Synonyms were extracted from the En-
glish Wiktionary15, which is the largest Wik-
tionary at the present moment in terms of the
lexical coverage, using the DKPro JWKTL tool
by Zesch et al. (2008). English words have been
extracted from the dump.

Russian. Synonyms from three sources were
combined to improve lexical coverage of the input
dictionary and to enforce confidence in jointly ob-
served synonyms: (1) synonyms listed in the Rus-
sian Wiktionary extracted using the Wikokit tool
by Krizhanovsky and Smirnov (2013); (2) the dic-
tionary of Abramov (1999); and (3) the Universal
Dictionary of Concepts (Dikonov, 2013). While
the two latter resources are specific to Russian,
Wiktionary is available for most languages. Note
that the same input synonymy dictionaries were
used by authors of YARN to construct synsets
using crowdsourcing. The results on the YARN
dataset show how close an automatic synset in-
duction method can approximate manually created
synsets provided the same starting material.16

Language # words # synonyms
English 243 840 212 163
Russian 83 092 211 986

Table 2: Statistics of the input datasets.

5 Results

We compare WATSET with five state-of-the
art graph clustering methods presented in Sec-
tion 2: Chinese Whispers (CW), Markov Clus-
tering (MCL), MaxMax, ECO clustering, and the
clique percolation method (CPM). The first two al-
gorithms perform hard clustering, while the last
three are fuzzy clustering methods just like our
method. While the hard clustering algorithms
are able to discover clusters which correspond to
synsets composed of unambigous words, they can
produce wrong results in the presence of lexical
ambiguity (one node belongs to several synsets).
In our experiments, we rely on our own implemen-
tation of MaxMax and ECO as reference imple-
mentations are not available. For CW17, MCL18

15We used the Wiktionary dumps of February 1, 2017.
16We used the YARN dumps of February 7, 2017.
17https://www.github.com/uhh-lt/

chinese-whispers
18http://java-ml.sourceforge.net

1584

CW MCL MaxMax ECO CPM Watset

0.0

0.1

0.2

0.3

WordNet (English)

F
−

s
c
o
re

CW MCL MaxMax ECO CPM Watset

0.00

0.05

0.10

0.15

0.20

RuWordNet (Russian)

F
−

s
c
o
re

CW MCL MaxMax ECO CPM Watset

0.0

0.1

0.2

0.3

BabelNet (English)

F
−

s
c
o
re

CW MCL MaxMax ECO CPM Watset

0.0

0.1

0.2

0.3

0.4

YARN (Russian)

F
−

s
c
o
re

Figure 3: Impact of the different graph weighting schemas on the performance of synset induction:
ones, count, sim. Each bar corresponds to the top performance of a method in Tables 3 and 4.

and CPM19, available implementations have been
used. During the evaluation, we delete clusters
equal or larger than the threshold of 150 words as
they hardly can represent any meaningful synset.
The notation WATSET[MCL, CWtop] means using
MCL for local clustering and Chinese Whispers in
the top mode for global clustering.

5.1 Impact of Graph Weighting Schema

Figure 3 presents an overview of the evaluation re-
sults on both datasets. The first step, common for
all of the tested synset induction methods, is graph
construction. Thus, we started with an analysis of
three ways to weight edges of the graph introduced
in Section 3.2: binary scores (ones), frequencies
(count), and semantic similarity scores (sim) based
on word vector similarity. Results across vari-
ous configurations and methods indicate that us-
ing the weights based on the similarity scores pro-
vided by word embeddings is the best strategy
for all methods except MaxMax on the English
datasets. However, its performance using the ones
weighting does not exceed the other methods us-
ing the sim weighting. Therefore, we report all
further results on the basis of the sim weights. The
edge weighting scheme impacts Russian more for
most algorithms. The CW algorithm however re-
mains sensitive to the weighting also for the En-
glish dataset due to its randomized nature.

19https://networkx.github.io

5.2 Comparative Analysis

Table 3 and 4 present evaluation results for both
languages. For each method, we show the best
configurations in terms of F-score. One may note
that the granularity of the resulting synsets, es-
pecially for Russian, is very different, ranging
from 4 000 synsets for the CPMk=3 method to
67 645 induced by the ECO method. Both ta-
bles report the number of words, synsets and syn-
onyms after pruning huge clusters larger than 150
words. Without this pruning, the MaxMax and
CPM methods tend to discover giant components
obtaining almost zero precision as we generate all
possible pairs of nodes in such clusters. The other
methods did not show such behavior.

WATSET robustly outperforms all other meth-
ods according to F-score on both English datasets
(Table 3) and on the YARN dataset for Russian
(Table 4). Also, it outperforms all other meth-
ods according to recall on both Russian datasets.
The disambiguation of the input graph performed
by the WATSET method splits nodes belonging
to several local communities to several nodes,
significantly facilitating the clustering task other-
wise complicated by the presence of the hubs that
wrongly link semantically unrelated nodes.

Interestingly, in all the cases, the toughest com-
petitor was a hard clustering algorithm—MCL
(van Dongen, 2000). We observed that the “plain”
MCL successfully groups monosemous words, but

1585

WordNet BabelNet
Method # words # synsets # synonyms P R F1 P R F1
WATSET[MCL, MCL] 243 840 112 267 345 883 0.345 0.308 0.325 0.400 0.301 0.343
MCL 243 840 84 679 387 315 0.342 0.291 0.314 0.390 0.300 0.339
WATSET[MCL, CWlog] 243 840 105 631 431 085 0.314 0.325 0.319 0.359 0.312 0.334
CWtop 243 840 77 879 539 753 0.285 0.317 0.300 0.326 0.317 0.321
WATSET[CWlog, MCL] 243 840 164 689 227 906 0.394 0.280 0.327 0.439 0.245 0.314
WATSET[CWlog, CWlog] 243 840 164 667 228 523 0.392 0.280 0.327 0.439 0.245 0.314
CPMk=2 186 896 67 109 317 293 0.561 0.141 0.225 0.492 0.214 0.299
MaxMax 219 892 73 929 797 743 0.176 0.300 0.222 0.202 0.313 0.245
ECO 243 840 171 773 84 372 0.784 0.069 0.128 0.699 0.096 0.169

Table 3: Comparison of the synset induction methods on datasets for English. All methods rely on the
similarity edge weighting (sim); best configurations of each method in terms of F-scores are shown for
each dataset. Results are sorted by F-score on BabelNet, top three values of each metric are boldfaced.

RuWordNet YARN
Method # words # synsets # synonyms P R F1 P R F1
WATSET[CWnolog, MCL] 83 092 55 369 332 727 0.120 0.349 0.178 0.402 0.463 0.430
WATSET[MCL, MCL] 83 092 36 217 403 068 0.111 0.341 0.168 0.405 0.455 0.428
WATSET[CWtop, CWlog] 83 092 55 319 341 043 0.116 0.351 0.174 0.386 0.474 0.425
MCL 83 092 21 973 353 848 0.155 0.291 0.203 0.550 0.340 0.420
WATSET[MCL, CWtop] 83 092 34 702 473 135 0.097 0.361 0.153 0.351 0.496 0.411
CWnolog 83 092 19 124 672 076 0.087 0.342 0.139 0.364 0.451 0.403
MaxMax 83 092 27 011 461 748 0.176 0.261 0.210 0.582 0.195 0.292
CPMk=3 15 555 4 000 45 231 0.234 0.072 0.111 0.626 0.060 0.110
ECO 83 092 67 645 18 362 0.724 0.034 0.066 0.904 0.002 0.004

Table 4: Results on Russian sorted by F-score on YARN, top three values of each metric are boldfaced.

isolates the neighborhood of polysemous words,
which results in the recall drop in comparison to
WATSET. CW operates faster due to a simplified
update step. On the same graph, CW tends to
produce larger clusters than MCL. This leads to
a higher recall of “plain” CW as compared to the
“plain” MCL, at the cost of lower precision.

Using MCL instead of CW for sense induc-
tion in WATSET expectedly produces more fine-
grained senses. However, at the global clustering
step, these senses erroneously tend to form coarse-
grained synsets connecting unrelated senses of the
ambiguous words. This explains the generally
higher recall of WATSET[MCL, ·]. Despite the
randomized nature of CW, variance across runs do
not affect the overall ranking: The rank of differ-
ent versions of CW (log, nolog, top) can change,
while the rank of the best CW configuration com-
pared to other methods remains the same.

The MaxMax algorithm shows mixed results.
On the one hand, it outputs large clusters uniting
more than hundred nodes. This inevitably leads
to a high recall, as it is clearly seen in the re-
sults for Russian because such synsets still pass

under our cluster size threshold of 150 words. Its
synsets on English datasets are even larger and get
pruned, which results in low recall. On the other
hand, smaller synsets having at most 10–15 words
were identified correctly. MaxMax appears to be
extremely sensible to edge weighting, which also
complicates its practical use.

The CPM algorithm showed unsatisfactory re-
sults, emitting giant components encompassing
thousands of words. Such clusters were automat-
ically pruned, but the remaining clusters are rela-
tively correctly built synsets, which is confirmed
by the high values of precision. When increasing
the minimal number of elements in the clique k,
recall improves, but at the cost of a dramatic pre-
cision drop. We suppose that the network structure
assumptions exploited by CPM do not accurately
model the structure of our synonymy graphs.

Finally, the ECO method yielded the worst re-
sults because the most cluster candidates failed to
pass through the constant threshold used for esti-
mating whether a pair of words should be included
in the same cluster. Most synsets produced by this
method were trivial, i.e., containing only a single

1586

Resource P R F1
BabelNet on WordNet En 0.729 0.998 0.843
WordNet on BabelNet En 0.998 0.699 0.822

YARN on RuWordNet Ru 0.164 0.162 0.163
BabelNet on RuWordNet Ru 0.348 0.409 0.376

RuWordNet on YARN Ru 0.670 0.121 0.205
BabelNet on YARN Ru 0.515 0.109 0.180

Table 5: Performance of lexical resources cross-
evaluated against each other.

word. The remaining synsets for both languages
have at most three words that have been connected
by a chance due to the edge noising procedure
used in this method resulting in low recall.

6 Discussion

On the absolute scores. The results obtained on
all gold standards (Figure 3) show similar trends in
terms of relative ranking of the methods. Yet ab-
solute scores of YARN and RuWordNet are sub-
stantially different due to the inherent difference
of these datasets. RuWordNet is more domain-
specific in terms of vocabulary, so our input set of
generic synonymy dictionaries has a limited cov-
erage on this dataset. On the other hand, recall
calculated on YARN is substantially higher as this
resource was manually built on the basis of syn-
onymy dictionaries used in our experiments.

The reason for low absolute numbers in evalua-
tions is due to an inherent vocabulary mismatch
between the input dictionaries of synonyms and
the gold datasets. To validate this hypothesis, we
performed a cross-resource evaluation presented
in Table 5. The low performance of the cross-
evaluation of the two resources supports the hy-
pothesis: no single resource for Russian can obtain
high recall scores on another one. Surprisingly,
even BabelNet, which integrates most of available
lexical resources, still does not reach a recall sub-
stantially larger than 0.5.20 Note that the results of
this cross-dataset evaluation are not directly com-
parable to results in Table 4 since in our experi-
ments we use much smaller input dictionaries than
those used by BabelNet.

On sparseness of the input dictionary. Table 6
presents some examples of the obtained synsets of
various sizes for the top WATSET configuration on
both languages. As one might observe, the qual-

20We used BabelNet 3.7 extracting all 3 497 327 synsets
that were marked as Russian.

ity of the results is highly plausible. However, one
limitation of all approaches considered in this pa-
per is the dependence on the completeness of the
input dictionary of synonyms. In some parts of
the input synonymy graph, important bridges be-
tween words can be missing, leading to smaller-
than-desired synsets. A promising extension of the
present methodology is using distributional mod-
els to enhance connectivity of the graph by cau-
tiously adding extra relations.

Size Synset
2 {decimal point, dot}
3 {gullet, throat, food pipe}
4 {microwave meal, ready meal, TV dinner,

frozen dinner}
5 {objective case, accusative case, oblique case,

object case, accusative}
6 {radio theater, dramatized audiobook, audio

theater, radio play, radio drama, audio play}

Table 6: Sample synsets induced by the
WATSET[MCL, MCL] method for English.

7 Conclusion

We presented a new robust approach to fuzzy
graph clustering that relies on hard graph cluster-
ing. Using ego network clustering, the nodes be-
longing to several local communities are split into
several nodes each belonging to one community.
The transformed “disambiguated” graph is then
clustered using an efficient hard graph clustering
algorithm, obtaining a fuzzy clustering as the re-
sult. The disambiguated graph facilitates cluster-
ing as it contains fewer hubs connecting unrelated
nodes from different communities. We apply this
meta clustering algorithm to the task of synset in-
duction on two languages, obtaining the best re-
sults on three datasets and competitive results on
one dataset in terms of F-score as compared to five
state-of-the-art graph clustering methods.

Acknowledgments

We acknowledge the support of the Deutsche
Forschungsgemeinschaft (DFG) foundation under
the “JOIN-T” project, the DAAD, the RFBR un-
der the project no. 16-37-00354 mol a, and the
RFH under the project no. 16-04-12019. We also
thank three anonymous reviewers for their helpful
comments, Andrew Krizhanovsky for providing a
parsed Wiktionary, Natalia Loukachevitch for the
provided RuWordNet dataset, and Denis Shirgin
who suggested the WATSET name.

1587

References
Nikolay Abramov. 1999. The dictionary of Rus-

sian synonyms and semantically related expressions
[Slovar’ russkikh sinonimov i skhodnykh po smyslu
vyrazhenii]. Russian Dictionaries [Russkie slovari],
Moscow, Russia, 7th edition. In Russian.

Marco Baroni and Alessandro Lenci. 2010.
Distributional Memory: A General Frame-
work for Corpus-based Semantics. Com-
putational Linguistics 36(4):673–721.
https://doi.org/10.1162/coli a 00016.

Chris Biemann. 2006. Chinese Whispers: An Ef-
ficient Graph Clustering Algorithm and Its Appli-
cation to Natural Language Processing Problems.
In Proceedings of the First Workshop on Graph
Based Methods for Natural Language Processing.
Association for Computational Linguistics, New
York City, NY, USA, TextGraphs-1, pages 73–80.
http://dl.acm.org/citation.cfm?id=1654774.

Chris Biemann. 2012. Structure Discovery in Natu-
ral Language. Theory and Applications of Natural
Language Processing. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-642-25923-4.

Chris Biemann and Martin Riedl. 2013. Text: now in
2D! A framework for lexical expansion with con-
textual similarity. Journal of Language Modelling
1(1):55–95. https://doi.org/10.15398/jlm.v1i1.60.

Immanuel M. Bomze, Marco Budinich, Panos M.
Pardalos, and Marcello Pelillo. 1999. The max-
imum clique problem. In Handbook of Combi-
natorial Optimization, Springer US, pages 1–74.
https://doi.org/10.1007/978-1-4757-3023-4 1.

Pavel Braslavski, Dmitry Ustalov, Mukhin Mukhin,
and Yuri Kiselev. 2016. YARN: Spinning-in-
Progress. In Proceedings of the 8th Global
WordNet Conference. Global WordNet Association,
Bucharest, Romania, GWC 2016, pages 58–65.
http://gwc2016.racai.ro/procedings.pdf.

Antonio Di Marco and Roberto Navigli. 2012.
Clustering and Diversifying Web Search Re-
sults with Graph-Based Word Sense Induc-
tion. Computational Linguistics 39(3):709–754.
https://doi.org/10.1162/COLI a 00148.

Vyachelav G. Dikonov. 2013. Development of lexi-
cal basis for the Universal Dictionary of UNL Con-
cepts. In Computational Linguistics and Intellec-
tual Technologies: Papers from the Annual Inter-
national Conference “Dialogue”. RGGU, Moscow,
volume 12 (19), pages 212–221. http://www.dialog-
21.ru/media/1238/dikonovv.pdf.

Beate Dorow and Dominic Widdows. 2003. Discov-
ering Corpus-Specific Word Senses. In Proceed-
ings of the Tenth Conference on European Chapter
of the Association for Computational Linguistics -
Volume 2. Association for Computational Linguis-
tics, Budapest, Hungary, EACL ’03, pages 79–82.
https://doi.org/10.3115/1067737.1067753.

Martin Everett and Stephen P. Borgatti. 2005. Ego net-
work betweenness. Social Networks 27(1):31–38.
https://doi.org/10.1016/j.socnet.2004.11.007.

Stefano Faralli, Alexander Panchenko, Chris Biemann,
and Simone P. Ponzetto. 2016. Linked Disam-
biguated Distributional Semantic Networks. In
The Semantic Web – ISWC 2016: 15th Interna-
tional Semantic Web Conference, Kobe, Japan, Oc-
tober 17–21, 2016, Proceedings, Part II. Springer
International Publishing, Cham, pages 56–64.
https://doi.org/10.1007/978-3-319-46547-0 7.

David Gfeller, Jean-Cédric Chappelier, and Paulo
De Los Rios. 2005. Synonym Dictionary Improve-
ment through Markov Clustering and Clustering Sta-
bility. In Proceedings of the International Sympo-
sium on Applied Stochastic Models and Data Anal-
ysis. pages 106–113. https://conferences.telecom-
bretagne.eu/asmda2005/IMG/pdf/proceedings/
106.pdf.

Hugo Gonçalo Oliveira and Paolo Gomes. 2014.
ECO and Onto.PT: a flexible approach for cre-
ating a Portuguese wordnet automatically. Lan-
guage Resources and Evaluation 48(2):373–393.
https://doi.org/10.1007/s10579-013-9249-9.

Zhiguo Gong, Chan Wa Cheang, and U. Leong Hou.
2005. Web Query Expansion by WordNet.
In Proceedings of the 16th International Con-
ference on Database and Expert Systems Ap-
plications - DEXA ’05, Springer Berlin Hei-
delberg, Copenhagen, Denmark, pages 166–175.
https://doi.org/10.1007/11546924 17.

Iryna Gurevych, Judith Eckle-Kohler, Silvana Hart-
mann, Michael Matuschek, Christian M. Meyer, and
Christian Wirth. 2012. UBY – A Large-Scale Uni-
fied Lexical-Semantic Resource Based on LMF. In
Proceedings of the 13th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, Avignon, France, EACL ’12, pages 580–590.
http://www.aclweb.org/anthology/E12-1059.

Iryna Gurevych, Judith Eckle-Kohler, and Michael Ma-
tuschek. 2016. Linked Lexical Knowledge Bases:
Foundations and Applications. Synthesis Lectures
on Human Language Technologies. Morgan & Clay-
pool Publishers.

Kris Heylen, Yves Peirsman, Dirk Geeraerts, and
Dirk Speelman. 2008. Modelling Word Simi-
larity: an Evaluation of Automatic Synonymy
Extraction Algorithms. In Proceedings of the
Sixth International Conference on Language
Resources and Evaluation. European Language
Resources Association, Marrakech, Morocco,
LREC 2008, pages 3243–3249. http://www.lrec-
conf.org/proceedings/lrec2008/pdf/818 paper.pdf.

David Hope and Bill Keller. 2013. MaxMax: A Graph-
Based Soft Clustering Algorithm Applied to Word
Sense Induction. In Computational Linguistics

1588

and Intelligent Text Processing: 14th International
Conference, CICLing 2013, Samos, Greece, March
24-30, 2013, Proceedings, Part I, Springer Berlin
Heidelberg, Berlin, Heidelberg, pages 368–381.
https://doi.org/10.1007/978-3-642-37247-6 30.

David Jurgens and Ioannis Klapaftis. 2013. SemEval-
2013 Task 13: Word Sense Induction for Graded
and Non-Graded Senses. In Second Joint Con-
ference on Lexical and Computational Semantics
(*SEM), Volume 2: Proceedings of the Seventh
International Workshop on Semantic Evaluation
(SemEval 2013). Association for Computational
Linguistics, Atlanta, GA, USA, pages 290–299.
http://www.aclweb.org/anthology/S13-2049.

Yuri Kiselev, Sergey V. Porshnev, and Mikhail Mukhin.
2015. Current Status of Russian Electronic The-
sauri: Quality, Completeness and Availability
[Sovremennoe sostoyanie elektronnykh tezaurusov
russkogo yazyka: kachestvo, polnota i dostupnost’].
Programmnaya Ingeneria 6:34–40. In Russian.
http://novtex.ru/prin/full/06 2015.pdf.

Andrew A. Krizhanovsky and Alexander V. Smirnov.
2013. An approach to automated construction
of a general-purpose lexical ontology based on
Wiktionary. Journal of Computer and Sys-
tems Sciences International 52(2):215–225.
https://doi.org/10.1134/S1064230713020068.

Cody Kwok, Oren Etzioni, and Daniel S. Weld. 2001.
Scaling Question Answering to the Web. ACM
Transactions on Information Systems 19(3):242–
262. https://doi.org/10.1145/502115.502117.

Dekang Lin. 1998. An Information-Theoretic
Definition of Similarity. In Proceedings of the
Fifteenth International Conference on Machine
Learning. Morgan Kaufmann Publishers Inc.,
Madison, WI, USA, ICML ’98, pages 296–304.
http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.55.1832&rep=rep1&type=pdf.

Natalia Loukachevitch. 2011. Thesauri in information
retrieval tasks [Tezaurusy v zadachakh informat-
sionnogo poiska]. Moscow University Press [Izd-vo
MGU], Moscow, Russia. In Russian.

Natalia V. Loukachevitch, German Lashevich, Anas-
tasia A. Gerasimova, Vladimir V. Ivanov, and
Boris V. Dobrov. 2016. Creating Russian Word-
Net by Conversion. In Computational Linguis-
tics and Intellectual Technologies: papers from the
Annual conference “Dialogue”. RSUH, Moscow,
Russia, pages 405–415. http://www.dialog-
21.ru/media/3409/loukachevitchnvetal.pdf.

Suresh Manandhar, Ioannis Klapaftis, Dmitriy Dli-
gach, and Sameer Pradhan. 2010. SemEval-2010
Task 14: Word Sense Induction & Disambiguation.
In Proceedings of the 5th International Workshop
on Semantic Evaluation. Association for Computa-
tional Linguistics, Uppsala, Sweden, pages 63–68.
http://www.aclweb.org/anthology/S10-1011.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S.
Corrado, and Jeffrey Dean. 2013. Distributed
Representations of Words and Phrases and their
Compositionality. In Advances in Neural Infor-
mation Processing Systems 26, Curran Associates,
Inc., Harrahs and Harveys, NV, USA, pages
3111–3119. https://papers.nips.cc/paper/5021-
distributed-representations-of-words-and-phrases-
and-their-compositionality.pdf.

George A. Miller. 1995. WordNet: A
Lexical Database for English. Com-
munications of the ACM 38(11):39–41.
https://doi.org/10.1145/219717.219748.

Roberto Navigli and Simone P. Ponzetto. 2012. Ba-
belNet: The automatic construction, evaluation and
application of a wide-coverage multilingual seman-
tic network. Artificial Intelligence 193:217–250.
https://doi.org/10.1016/j.artint.2012.07.001.

Gergely Palla, Imre Derenyi, Illes Farkas, and
Tamas Vicsek. 2005. Uncovering the overlap-
ping community structure of complex networks
in nature and society. Nature 435:814–818.
https://doi.org/10.1038/nature03607.

Alexander Panchenko. 2011. Comparison of the
Baseline Knowledge-, Corpus-, and Web-based
Similarity Measures for Semantic Relations Ex-
traction. In Proceedings of the GEMS 2011
Workshop on GEometrical Models of Natural
Language Semantics. Association for Computa-
tional Linguistics, Edinburgh, UK, pages 11–21.
http://www.aclweb.org/anthology/W11-2502.

Alexander Panchenko, Eugen Ruppert, Stefano Far-
alli, Simone P. Ponzetto, and Chris Biemann.
2017a. Unsupervised Does Not Mean Unin-
terpretable: The Case for Word Sense Induc-
tion and Disambiguation. In Proceedings of the
15th Conference of the European Chapter of the
Association for Computational Linguistics: Vol-
ume 1, Long Papers. Association for Computa-
tional Linguistics, Valencia, Spain, pages 86–98.
http://www.aclweb.org/anthology/E17-1009.

Alexander Panchenko, Dmitry Ustalov, Nikolay
Arefyev, Denis Paperno, Natalia Konstantinova, Na-
talia Loukachevitch, and Chris Biemann. 2017b.
Human and Machine Judgements for Russian Se-
mantic Relatedness. In Analysis of Images, Social
Networks and Texts: 5th International Conference,
AIST 2016, Yekaterinburg, Russia, April 7-9, 2016,
Revised Selected Papers. Springer International Pub-
lishing, Yekaterinburg, Russia, pages 221–235.
https://doi.org/10.1007/978-3-319-52920-2 21.

Patrick Pantel and Dekang Lin. 2002. Discovering
Word Senses from Text. In Proceedings of the
Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, Ed-
monton, Alberta, Canada, KDD ’02, pages 613–619.
https://doi.org/10.1145/775047.775138.

1589

Maria Pelevina, Nikolay Arefiev, Chris Biemann, and
Alexander Panchenko. 2016. Making Sense of Word
Embeddings. In Proceedings of the 1st Workshop on
Representation Learning for NLP. Association for
Computational Linguistics, Berlin, Germany, pages
174–183. http://anthology.aclweb.org/W16-1620.

Stijn van Dongen. 2000. Graph Clustering by Flow
Simulation. Ph.D. thesis, University of Utrecht.

Jean Véronis. 2004. HyperLex: lexical car-
tography for information retrieval. Com-
puter Speech & Language 18(3):223–252.
https://doi.org/10.1016/j.csl.2004.05.002.

Torsten Zesch, Christof Müller, and Iryna Gurevych.
2008. Extracting Lexical Semantic Knowl-
edge from Wikipedia and Wiktionary. In Pro-
ceedings of the 6th International Conference
on Language Resources and Evaluation. Euro-
pean Language Resources Association, Marrakech,
Morocco, pages 1646–1652. http://www.lrec-
conf.org/proceedings/lrec2008/pdf/420 paper.pdf.

Guangyou Zhou, Yang Liu, Fang Liu, Daojian
Zeng, and Jun Zhao. 2013. Improving Question
Retrieval in Community Question Answering
Using World Knowledge. In Proceedings of
the Twenty-Third International Joint Confer-
ence on Artificial Intelligence. AAAI Press,
Beijing, China, IJCAI ’13, pages 2239–2245.
https://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/
paper/download/6581/7029.

1590

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1591–1600
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1146

Neural Modeling of Multi-Predicate Interactions for
Japanese Predicate Argument Structure Analysis

Hiroki Ouchi1,2 Hiroyuki Shindo1,2 Yuji Matsumoto1,2

1 Nara Institute of Science and Technology
2 RIKEN Center for Advanced Intelligence Project (AIP)

{ ouchi.hiroki.nt6, shindo, matsu }@is.naist.jp

Abstract

The performance of Japanese predicate ar-
gument structure (PAS) analysis has im-
proved in recent years thanks to the joint
modeling of interactions between multi-
ple predicates. However, this approach re-
lies heavily on syntactic information pre-
dicted by parsers, and suffers from error
propagation. To remedy this problem, we
introduce a model that uses grid-type re-
current neural networks. The proposed
model automatically induces features sen-
sitive to multi-predicate interactions from
the word sequence information of a sen-
tence. Experiments on the NAIST Text
Corpus demonstrate that without syntactic
information, our model outperforms previ-
ous syntax-dependent models.

1 Introduction

Predicate argument structure (PAS) analysis is a
basic semantic analysis task, in which systems are
required to identify the semantic units of a sen-
tence, such as who did what to whom. In pro-
drop languages such as Japanese, Chinese and
Italian, arguments are often omitted in text, and
such argument omission is regarded as one of
the most problematic issues facing PAS analy-
sis (Iida and Poesio, 2011; Sasano and Kurohashi,
2011; Hangyo et al., 2013).

In response to the argument omission prob-
lem, in Japanese PAS analysis, a joint model of
the interactions between multiple predicates has
been gaining popularity and achieved the state-of-
the-art results (Ouchi et al., 2015; Shibata et al.,
2016). This approach is based on the linguistic in-
tuition that the predicates in a sentence are seman-
tically related to each other, and capturing this re-
lation can be useful for PAS analysis. In the exam-

Figure 1: Example of Japanese PAS. The upper
edges denote dependency relations, and the lower
edges denote case arguments. “NOM” and “ACC”
denote the nominative and accusative arguments,
respectively. “ϕi” is a zero pronoun, referring to
the antecedent “男 i (mani)”.

ple sentence in Figure 1, the word “男 i (mani)” is
the accusative argument of the predicate “逮捕し
た (arrested)” and is shared by the other predicate
“逃走した (escaped)” as its nominative argument.
Considering the semantic relation between “逮捕
した (arrested)” and “逃走した (escaped)”, we in-
tuitively know that the person arrested by someone
is likely to be the escaper. That is, information
about one predicate-argument relation could help
to identify another predicate-argument relation.

However, to model such multi-predicate inter-
actions, the joint approach in the previous stud-
ies relies heavily on syntactic information, such
as part-of-speech (POS) tags and dependency re-
lations predicted by POS taggers and syntactic
parsers. Consequently, it suffers from error propa-
gation caused by pipeline processing.

To remedy this problem, we propose a neural
model which automatically induces features sen-
sitive to multi-predicate interactions exclusively
from the word sequence information of a sentence.
The proposed model takes as input all predicates
and their argument candidates in a sentence at
a time, and captures the interactions using grid-
type recurrent neural networks (Grid-RNN) with-
out syntactic information.

1591

https://doi.org/10.18653/v1/P17-1146

Figure 2: Overview of neural models: (i) single-sequence and (ii) multi-sequence models.

In this paper, we first introduce a basic model
that uses RNNs. This model independently es-
timates the arguments of each predicate without
considering multi-predicate interactions (Sec. 3).
Then, extending this model, we propose a neural
model that uses Grid-RNNs (Sec. 4).

Performing experiments on the NAIST Text
Corpus (Iida et al., 2007), we demonstrate that
even without syntactic information, our neu-
ral models outperform previous syntax-dependent
models (Imamura et al., 2009; Ouchi et al., 2015).
In particular, the neural model using Grid-RNNs
achieved the best result. This suggests that
the proposed grid-type neural architecture effec-
tively captures multi-predicate interactions and
contributes to performance improvements. 1

2 Japanese Predicate Argument
Structure Analysis

2.1 Task Description
In Japanese PAS analysis, arguments are identi-
fied that each fulfills one of the three major case
roles, nominative (NOM), accusative (ACC) and da-
tive (DAT) cases, for each predicate. Arguments
can be divided into the following three categories
according to the positions relative to their predi-
cates (Hayashibe et al., 2011; Ouchi et al., 2015):

Dep: Arguments that have direct syntactic depen-
dency on the predicate.

Zero: Arguments referred to by zero pronouns
within the same sentence that have no direct
syntactic dependency on the predicate.

Inter-Zero: Arguments referred to by zero pro-
nouns outside of the same sentence.

1Our source code is publicly available at
https://github.com/hiroki13/neural-pasa-system

For example, in Figure 1, the nominative argument
“警察 (police)” for the predicate “逮捕した (ar-
rested)” is regarded as a Dep argument, because
the argument has a direct syntactic dependency
on the predicate. By contrast, the nominative ar-
gument “男 i (mani)” for the predicate “逃走し
た (escaped)” is regarded as a Zero argument, be-
cause the argument has no direct syntactic depen-
dency on the predicate.

In this paper, we focus on the analysis for
these intra-sentential arguments, i.e., Dep and
Zero. In order to identify inter-sentential argu-
ments (Inter-Zero), a much broader space must
be searched (e.g., the whole document), resulting
in a much more complicated analysis than intra-
sentential arguments.2 Owing to this complica-
tion, Ouchi et al. (2015) and Shibata et al. (2016)
focused exclusively on intra-sentential argument
analysis. Following this trend, we also restrict our
focus to intra-sentential argument analysis.

2.2 Challenging Problem

Arguments are often omitted in Japanese sen-
tences. In Figure 1, ϕi represents the omitted argu-
ment, called the zero pronoun. This zero pronoun
ϕi refers to “男 i (mani)”. In Japanese PAS anal-
ysis, when an argument of the target predicate is
omitted, we have to identify the antecedent of the
omitted argument (i.e., the Zero argument).

The analysis of such Zero arguments is much
more difficult than that for Dep arguments, ow-
ing to the lack of direct syntactic dependencies.
For Dep arguments, the syntactic dependency be-
tween an argument and its predicate is a strong
clue. In the sentence in Figure 1, for the predi-

2The F-measure remains 10-20% (Taira et al., 2008;
Imamura et al., 2009; Sasano and Kurohashi, 2011).

1592

Figure 3: Overall architecture of the single-
sequence model. This model consists of three
components: (i) Input Layer, (ii) RNN Layer and
(iii) Output Layer.

cate “逮捕した (arrested)”, the nominative argu-
ment is “警察 (police)”. This argument is easily
identified by relying on the syntactic dependency.
By contrast, because the nominative argument “男
i (mani)” has no syntactic dependency on its pred-
icate “逃走した (escaped)”, we must rely on other
information to identify the zero argument.

As a solution to this problem, we exploit two
kinds of information: (i) the context of the en-
tire sentence, and (ii) multi-predicate interactions.
For the former, we introduce single-sequence
model that induces context-sensitive representa-
tions from a sequence of argument candidates of
a predicate. For the latter, we introduce multi-
sequence model that induces predicate-sensitive
representations from multiple sequences of argu-
ment candidates of all predicates in a sentence
(shown in Figure 2).

3 Single-Sequence Model

The single-sequence model exploits stacked bidi-
rectional RNNs (Bi-RNN) (Schuster and Paliwal,
1997; Graves et al., 2005, 2013; Zhou and Xu,
2015). Figure 3 shows the overall architecture,
which consists of the following three components:

Input Layer: Map each word to a feature vector
representation.

RNN Layer: Produce high-level feature vectors
using Bi-RNNs.

Output Layer: Compute the probability of each
case label for each word using the softmax
function.

Figure 4: Example of feature extraction. The un-
derlined word is the target predicate. From the
sentence “彼女はパンを食べた。(She ate bread.)”,
three types of features are extracted for the target
predicate “食べた (ate)”.

Figure 5: Example of the process of creating a fea-
ture vector. The extracted features are mapped to
each vector, and all the vectors are concatenated
into one feature vector.

In the following subsections, we describe each of
these three components in detail.

3.1 Input Layer
Given an input sentence w1:T = (w1, · · · , wT)
and a predicate p, each word wt is mapped to a
feature representation xt, which is the concatena-
tion (⊕) of three types of vectors:

xt = xarg
t ⊕ xpred

t ⊕ xmark
t (1)

where each vector is based on the following
atomic features inspired by Zhou and Xu (2015):

ARG: Word index of each word.

PRED: Word index of the target predicate and
the words around the predicate.

MARK: Binary index that represents whether or
not the word is the predicate.

1593

Figure 4 presents an example of the atomic fea-
tures. For the ARG feature, we extract a word index
xword ∈ V for each word. Similarly, for the PRED
feature, we extract each word index xword for the
C words taking the target predicate at the center,
where C denotes the window size. The MARK fea-
ture xmark ∈ {0, 1} is a binary value that repre-
sents whether or not the word is the predicate.

Then, using feature indices, we extract feature
vector representations from each embedding ma-
trix. Figure 5 shows the process of creating the
feature vector x1 for the word w1 “彼女 (she)”.
We set two embedding matrices: (i) a word em-
bedding matrix Eword ∈ Rdword×|V|, and (ii)
a mark embedding matrix Emark ∈ Rdmark×2.
From each embedding matrix, we extract the cor-
responding column vectors and concatenate them
as a feature vector xt based on Eq. 1.

Each feature vector xt is multiplied with a pa-
rameter matrix Wx:

h
(0)
t = Wx xt (2)

The vector h
(0)
t is given to the first RNN layer as

input.

3.2 RNN Layer
In the RNN layers, feature vectors are updated re-
currently using Bi-RNNs. Bi-RNNs process an
input sequence in a left-to-right manner for odd-
numbered layers and in a right-to-left manner for
even-numbered layers. By stacking these layers,
we can construct the deeper network structures.

Stacked Bi-RNNs consist of L layers, and the
hidden state in the layer ℓ ∈ (1, · · · , L) is calcu-
lated as follows:

h
(ℓ)
t =

{
g(ℓ)(h

(ℓ−1)
t , h

(ℓ)
t−1) (ℓ = odd)

g(ℓ)(h
(ℓ−1)
t , h

(ℓ)
t+1) (ℓ = even)

(3)

Both of the odd- and even-numbered layers re-
ceive h

(ℓ−1)
t , the t-th hidden state of the ℓ−1 layer,

as the first input of the function g(ℓ), which is an
arbitrary function 3. For the second input of g(ℓ),
odd-numbered layers receive h

(ℓ)
t−1, whereas even-

numbered layers receive h
(ℓ)
t+1. By calculating the

hidden states until the L-th layer, we obtain a hid-
den state sequence h

(L)
1:T = (h

(L)
1 , · · · ,h

(L)
T). Us-

ing each vector h
(L)
t , we calculate the probability

of case labels for each word in the output layer.
3In this work, we used the Gated Recurrent Unit (GRU)

(Cho et al., 2014) as the function g(ℓ).

3.3 Output Layer
For the output layer, multi-class classification is
performed using the softmax function:

yt = softmax(Wy h
(L)
t)

where h
(L)
t denotes a vector representation propa-

gated from the last RNN layer (Fig 3). Each ele-
ment of yt is a probability value corresponding to
each label. The label with the maximum probabil-
ity among them is output as a result. In this work,
we set five labels: NOM, ACC, DAT, PRED, null.
PRED is the label for the predicate, and null de-
notes a word that does not fulfill any case role.

4 Multi-Sequence Model

Whereas the single-sequence model assumes inde-
pendence between predicates, the multi-sequence
model assumes multi-predicate interactions. To
capture such interactions between all predi-
cates in a sentence, we extend the single-
sequence model to the multi-sequence model us-
ing Grid-RNNs (Graves and Schmidhuber, 2009;
Kalchbrenner et al., 2016). Figure 6 presents the
overall architecture for the multi-sequence model,
which consists of three components:

Input Layer: Map words to M sequences of
feature vectors for M predicates.

Grid Layer: Update the hidden states over dif-
ferent sequences using Grid-RNNs.

Output Layer: Compute the probability of
each case label for each word using the soft-
max function.

In the following subsections, we describe these
three components in detail.

4.1 Input Layer
The multi-sequence model takes as input a sen-
tence w1:T = (w1, · · · , wT) and all predicates
{pm}M

1 in the sentence. For each predicate pm,
the input layer creates a sequence of feature vec-
tors Xm = (xm,1, · · · ,xm,T) by mapping each
input word wt to a feature vector xm,t based on
Eq 1. That is, for M predicates, M sequences of
feature vectors {Xm}M

1 are created.
Then, using Eq. 2, each feature vector xm,t is

mapped to h
(0)
m,t, and a feature sequence is created

for a predicate pm, i.e., H(0)
m = (h

(0)
m,1, · · · ,h

(0)
m,T).

Consequently, for M predicates, we obtain M fea-
ture sequences {H(0)

m }M
1 .

1594

Figure 6: Overall architecture of the multi-sequence model: an example of three sequences.

4.2 Grid Layer

Inter-Sequence Connections
For the grid layers, we use Grid-RNNs to propa-
gate the feature information over the different se-
quences (inter-sequence connections). The fig-
ure on the right in Figure 6 shows the first grid
layer. The hidden state is recurrently calculated
from the upper-left (m = 1, t = 1) to the lower-
right (m = M, t = T).

Formally, in the ℓ-th layer, the hidden state h
(ℓ)
m,t

is calculated as follows:

h
(ℓ)
m,t=

{
g(ℓ)(h

(ℓ−1)
m,t ⊕ h

(ℓ)
m−1,t,h

(ℓ)
m,t−1) (ℓ = odd)

g(ℓ)(h
(ℓ−1)
m,t ⊕ h

(ℓ)
m+1,t,h

(ℓ)
m,t+1) (ℓ = even)

This equation is similar to Eq. 3. The main differ-
ence is that the hidden state of a neighboring se-
quence, h

(ℓ)
m−1,t (or h

(ℓ)
m+1,t), is concatenated (⊕)

with the hidden state of the previous (ℓ − 1) layer,
h

(ℓ−1)
m,t , and is taken as input of the function g(ℓ).
In the figure on the right in Figure 6, the blue

curved lines represent the inter-sequence connec-
tions. Taking as input the hidden states of neigh-
boring sequences, the network propagates feature
information over multiple sequences (i.e., pred-
icates). By calculating the hidden states until
the L-th layer, we obtain M sequences of the
hidden states, i.e., {H(L)

m }M
1 , in which H

(L)
m =

(h
(L)
m,1, · · · ,h

(L)
m,T).

Residual Connections
As more layers are stacked, it becomes more dif-
ficult to learn the model parameters, owing to
various challenges such as the vanishing gradi-
ent problem (Pascanu et al., 2013). In this work,

we integrate residual connections (He et al., 2015;
Wu et al., 2016) with our networks to form con-
nections between layers. Specifically, the in-
put vector h

(ℓ−1)
m,t of the ℓ-th layer is added to

the output vector h
(ℓ)
m,t. Residual connections

can also be applied to the single-sequence model.
Thus, we can perform experiments on both models
with/without residual connections.

4.3 Output Layer

As with the single-sequence model, we use the
softmax function to calculate the probability of the
case labels of each word wt for each predicate pm:

ym,t = softmax(Wy h
(L)
m,t)

where h
(L)
m,t is a hidden state vector calculated in

the last grid layer.

5 Related Work

5.1 Japanese PAS Analysis Approaches

Existing approaches to Japanese PAS analy-
sis are divided into two categories: (i) the
pointwise approach and (ii) the joint approach.
The pointwise approach involves estimating the
score of each argument candidate for one pred-
icate, and then selecting the argument can-
didate with the maximum score as an argu-
ment (Taira et al., 2008; Imamura et al., 2009;
Hayashibe et al., 2011; Iida et al., 2016). The
joint approach involves scoring all the predicate-
argument combinations in one sentence, and then
selecting the combination with the highest score
(Yoshikawa et al., 2011; Sasano and Kurohashi,

1595

2011; Ouchi et al., 2015; Shibata et al., 2016).
Compared with the pointwise approach, the joint
approach achieves better results.

5.2 Multi-Predicate Interactions

Ouchi et al. (2015) reported that it is beneficial to
Japanese PAS analysis to capture the interactions
between all predicates in a sentence. This is based
on the linguistic intuition that the predicates in a
sentence are semantically related to each other,
and that the information regarding this semantic
relation can be useful for PAS analysis.

Similarly, in semantic role labeling (SRL),
Yang and Zong (2014) reported that their rerank-
ing model, which captures the multi-predicate in-
teractions, is effective for the English constituent-
based SRL task (Carreras and Màrquez, 2005).
Taking this a step further, we propose a neu-
ral architecture that effectively models the multi-
predicate interactions.

5.3 Neural Approaches

Japanese PAS
In recent years, several attempts have been made
to apply neural networks to Japanese PAS anal-
ysis (Shibata et al., 2016; Iida et al., 2016)4. In
Shibata et al. (2016), a feed-forward neural net-
work is used for the score calculation part of
the joint model proposed by Ouchi et al. (2015).
In Iida et al. (2016), multi-column convolutional
neural networks are used for the zero anaphora res-
olution task.

Both models exploit syntactic and selectional
preference information as the atomic features of
neural networks. Overall, the use of neural net-
works has resulted in advantageous performance
levels, mitigating the cost of manually designing
combination features. In this work, we demon-
strate that even without such syntactic informa-
tion, our neural models can realize comparable
performance exclusively using the word sequence
information of a sentence.

English SRL
Some neural models have achieved high perfor-
mance without syntactic information in English
SRL. Collobert et al. (2011) and Zhou and Xu
(2015) worked on the English constituent-based

4These previous studies used unpublished datasets and
evaluated the performance with different experimental set-
tings. Consequently, we cannot compare their models with
ours.

SRL task (Carreras and Màrquez, 2005) using
neural networks. In Collobert et al. (2011), their
model exploited a convolutional neural network
and achieved a 74.15% F-measure without syn-
tactic information. In Zhou and Xu (2015),
their model exploited bidirectional RNNs with
linear-chain conditional random fields (CRFs) and
achieved the state-of-the-art result, an 81.07% F-
measure. Our models should be regarded as an
extension of their model.

The main differences between Zhou and Xu
(2015) and our work are: (i) constituent-based
vs dependency-based argument identification and
(ii) the multi-predicate consideration. For the
constituent-based SRL, Zhou and Xu (2015) used
CRFs to capture the IOB label dependencies, be-
cause systems are required to identify the spans
of arguments for each predicate. By contrast, for
Japanese dependency-based PAS analysis, we re-
placed the CRFs with the softmax function, be-
cause in Japanese, arguments are rarely adjacent
to each other.5 Furthermore, whereas the model
described in Zhou and Xu (2015) predicts argu-
ments for each predicate independently, our multi-
sequence model jointly predicts arguments for all
predicates in a sentence concurrently by consider-
ing the multi-predicate interactions.

6 Experiments

6.1 Experimental Settings

Dataset
We used the NAIST Text Corpus 1.5, which con-
sists of 40,000 sentences from Japanese news-
papers (Iida et al., 2007). For the experiments,
we adopted standard data splits (Taira et al., 2008;
Imamura et al., 2009; Ouchi et al., 2015):

Train: Articles: Jan 1-11, Editorials: Jan-Aug
Dev: Articles: Jan 12-13, Editorials: Sept
Test: Articles: Jan 14-17, Editorials: Oct-Dec

We used the word boundaries annotated in the
NAIST Text Corpus and the target predicates that
have at least one argument in the same sentence.
We did not use any external resources.

Learning
We trained the model parameters by minimizing

5In our preliminary experiment, we could not confirm the
performance improvement by CRFs.

1596

the cross-entropy loss function:

L(θ) = −
∑

n

∑

t

log P (yt|xt) +
λ

2
||θ||2 (4)

where θ is a set of model parameters, and the
hyper-parameter λ is the coefficient governing the
L2 weight decay.

Implementation Details
We implemented our neural models using a deep
learning library, Theano (Bastien et al., 2012).
The number of epochs was set at 50, and we re-
ported the result of the test set in the epoch with
the best F-measure from the development set. The
parameters were optimized using the stochastic
gradient descent method (SGD) via a mini-batch,
whose size was selected from {2, 4, 8}. The learn-
ing rate was automatically adjusted using Adam
(Kingma and Ba, 2014). For the L2 weight decay,
the hyper-parameter λ in Eq. 4 was selected from
{0.001, 0.0005, 0.0001}.

In the neural models, the number of the RNN
and Grid layers were selected from {2, 4, 6, 8}.
The window size C for the PRED feature (Sec.
3.1) was set at 5. Words with a frequency of 2 or
more in the training set were mapped to each word
index, and the remaining words were mapped to
the unknown word index. The dimensions dword

and dmark of the embeddings were set at 32. In the
single-sequence model, the parameters of GRUs
were set at 32 × 32. In the multi-sequence model,
the parameters of GRUs related to the input val-
ues were set at 64 × 32, and the remaining were
set at 32 × 32. The initial values of all parameters
were sampled according to a uniform distribution
from [−

√
6√

row+col
,

√
6√

row+col
], where row and col

are the number of rows and columns of each ma-
trix, respectively.

Baseline Models
We compared our models to existing models in
previous works (Sec. 5.1) that use the NAIST Text
Corpus 1.5. As a baseline for the pointwise ap-
proach, we used the pointwise model6 proposed in
Imamura et al. (2009). In addition, as a baseline
for the joint approach, we used the model pro-
posed in Ouchi et al. (2015). These models ex-
ploit gold annotations in the NAIST Text Corpus
as POS tags and dependency relations.

6We compared the results of the model reimplemented by
Ouchi et al. (2015).

Dep Zero All
Imamura+ 09 85.06 41.65 78.15

Ouchi+ 15 86.07 44.09 79.23
Single-Seq 88.10 46.10 81.15
Multi-Seq 88.17 † 47.12 † 81.42 †

Table 1: F-measures in the test set. Single-
Seq is the single-sequence model, and Multi-Seq
is the multi-sequence model. Imamura+ 09 is
the model in Imamura et al. (2009) reimplemented
by Ouchi et al. (2015), and Ouchi+ 15 is the
ALL-Cases Joint Model in Ouchi et al. (2015).
The mark † denotes the significantly better results
with the significance level p < 0.05, comparing
Single-Seq and Multi-Seq.

6.2 Results

Neural Models vs Baseline Models
Table 1 presents F-measures from our neural se-
quence models with eight RNN or Grid layers
and the baseline models on the test set. For the
significant test, we used the bootstrap resampling
method. According to all metrics, both the single-
(Single-Seq) and multi-sequence models (Multi-
Seq) outperformed the baseline models. This
confirms that our neural models realize high per-
formance, even without syntactic information, by
learning contextual information effective for PAS
analysis from the word sequence of the sentence.

In particular, for zero arguments (Zero), our
models achieved a considerable improvement
compared to the joint model in Ouchi et al. (2015).
Specifically, the single-sequence model improved
by approximately 2.0 points, and the multi-
sequence model by approximately 3.0 points ac-
cording to the F-measure. These results suggest
that modeling the context of the entire sentence us-
ing RNNs are beneficial to Japanese PAS analysis,
particularly to zero argument identification.

Effects of Multiple Predicate Consideration
As Table 1 shows, the multi-sequence model
significantly outperformed the single-sequence
model in terms of the F-measure overall (81.42%
vs 81.15%). These results demonstrate that the
grid-type neural architecture can effectively cap-
ture multi-predicate interactions by connecting the
sequences of the argument candidates for all pred-
icates in a sentence.

Compared to the single-sequence model for dif-

1597

Single-Seq Multi-Seq
L +res. −res. +res. −res.

2
Dep 87.34 87.10 87.43 87.73
Zero 47.98 47.90 47.66 46.93
All 80.62 80.24 80.71 80.68

4
Dep 87.27 87.41 87.60 87.09
Zero 50.43 50.83 48.10 48.58
All 80.92 80.99 80.99 80.59

6
Dep 87.73 87.11 88.04 87.39
Zero 48.81 49.51 48.98 48.91
All 81.05 80.63 81.19 80.68

8
Dep 87.98 87.23 87.65 87.07
Zero 47.40 48.38 49.34 48.23
All 81.31 80.33 81.33 80.40

Table 2: Performance comparison for different
numbers of layers on the development set in F-
measures. L is the number of the RNN or Grid lay-
ers. +res. or −res. indicates whether the model
has residual connections (+) or not (−).

ferent argument types, the multi-sequence model
achieved slightly better results for direct depen-
dency arguments (Dep) (88.10% vs 88.17%). In
addition, for zero arguments (Zero), which have no
syntactic dependency on their predicate, the multi-
sequence model outperformed the single-sequence
model by approximately 1.0 point according to the
F-measure (46.10% vs 47.12%). This shows that
capturing multi-predicate interactions is particu-
larly effective for zero arguments, which is con-
sistent with the results in Ouchi et al. (2015).

Effects of Network Depth
Table 2 presents F-measures from the neural se-
quence models with different network depths and
with/without residual connections. The perfor-
mance tends to improve as the RNN or Grid layers
get deeper with residual connections. In partic-
ular, the two models with eight layers and resid-
ual connections achieved considerable improve-
ments of approximately 1.0 point according to the
F-measure compared to models without residual
connections. This means that residual connec-
tions contribute to effective parameter learning of
deeper models.

Effects of the Number of Predicates
Table 3 presents F-measures from the neural se-
quence models with different numbers of predi-
cates in a sentence. In Table 3, M denotes how

M Type No. Args Single-Seq Multi-Seq

1
Dep 2,733 89.97 89.66
Zero 154 47.62 53.54
All 2,887 88.08 88.01

2
Dep 5,674 89.64 90.11
Zero 836 53.87 54.21
All 6,510 85.39 85.95

3
Dep 6,067 87.72 88.06
Zero 1,357 49.98 51.82
All 7,424 81.43 82.11

4
Dep 4,616 87.80 87.84
Zero 1,205 47.27 48.50
All 5,821 80.31 80.69

5+
Dep 6.983 86.63 86.30
Zero 2,467 39.83 40.66
All 9,450 76.17 76.00

Table 3: Performance comparison for different
numbers (M) of predicates in a sentence on the
test set in F-measures.

many predicates appear in a sentence. For exam-
ple, the sentence in Figure 1 includes two predi-
cates, “arrested” and “escaped”, and thus in this
example M = 2.

Overall, performance of both models gradu-
ally deteriorated as the number of predicates in
a sentence increased, because sentences that con-
tain many predicates are complex and difficult
to analyze. However, compared to the single-
sequence model, the multi-sequence model sup-
pressed performance degradation, especially for
zero arguments (Zero). By contrast, for direct
dependency arguments (Dep), both models either
achieved almost equivalent performance or the
single-sequence model outperformed the multi-
sequence model. A Detailed investigation of the
relation between the number of predicates in a sen-
tence and the complexity of PAS analysis is an in-
teresting line for future work.

Comparison per Case Role
Table 4 shows F-measures for each case role. For
reference, we show the results of the previous
studies using the NAIST Text Corpus 1.4β with
external resources as well.7

7The major difference between the NAIST Text Corpus
1.4β and 1.5 is the revision of the annotation criterion for the
dative case (DAT) (corresponding to Japanese case marker “
に”). Argument and adjunct usages of the case marker “に”
are not distinguished in 1.4β, making the identification of the
dative case seemingly easy (Ouchi et al., 2015).

1598

Dep Zero
NOM ACC DAT NOM ACC DAT

NAIST Text Corpus 1.5
Imamura+ 09 86.50 92.84 30.97 45.56 21.38 0.83

Ouchi+ 15 88.13 92.74 38.39 48.11 24.43 4.80
Single-Seq 88.32 93.89 65.91 49.51 35.07 9.83
Multi-Seq 88.75 93.68 64.38 50.65 32.35 7.52

NAIST Text Corpus 1.4β
Taira+ 08* 75.53 88.20 89.51 30.15 11.41 3.66

Imamura+ 09* 87.0 93.9 80.8 50.0 30.8 0.0
Sasano+ 11* - - - 39.5 17.5 8.9

Table 4: Performance comparison for different case roles on the test set in F-measures. NOM, ACC or
DAT is the nominal, accusative or dative case, respectively. The asterisk (*) indicates that the model uses
external resources.

Comparing the models using the NAIST Text
Corpus 1.5, the single- and multi-sequence mod-
els outperformed the baseline models according to
all metrics. In particular, for the dative case, the
two neural models achieved much higher results,
by approximately 30 points. This suggests that al-
though dative arguments appear infrequently com-
pared with the other two case arguments, the neu-
ral models can learn them robustly.

In addition, for zero arguments (Zero), the
neural models achieved better results than the
baseline models. In particular, for zero argu-
ments of the nominative case (NOM), the multi-
sequence model demonstrated a considerable im-
provement of approximately 2.5 points accord-
ing to the F-measure compared with the joint
model in Ouchi et al. (2015). To achieve high ac-
curacy for the analysis of such zero arguments,
it is necessary to capture long distance depen-
dencies (Iida et al., 2005; Sasano and Kurohashi,
2011; Iida et al., 2015). Therefore, the improve-
ments of the results suggest that the neural models
effectively capture long distance dependencies us-
ing RNNs that can encode the context of the entire
sentence.

7 Conclusion

In this work, we introduced neural sequence mod-
els that automatically induce effective feature rep-
resentations from the word sequence information
of a sentence for Japanese PAS analysis. The
experiments on the NAIST Text Corpus demon-
strated that the models realize high performance
without the need for syntactic information. In par-
ticular, our multi-sequence model improved the

performance of zero argument identification, one
of the problematic issues facing Japanese PAS
analysis, by considering the multi-predicate inter-
actions with Grid-RNNs.

Because our neural models are applicable to
SRL, applying our models for multilingual SRL
tasks presents an interesting future research direc-
tion. In addition, in this work, the model param-
eters were learned without any external resources.
In future work, we plan to explore effective meth-
ods for exploiting large-scale unlabeled data to
learn the neural models.

Acknowledgments

This work was partially supported by JST CREST
Grant Number JPMJCR1513 and JSPS KAK-
ENHI Grant Number 15K16053. We are grateful
to the members of the NAIST Computational Lin-
guistics Laboratory and the anonymous reviewers
for their insightful comments.

References
Frédéric Bastien, Pascal Lamblin, Razvan Pascanu,

James Bergstra, Ian J. Goodfellow, Arnaud Berg-
eron, Nicolas Bouchard, and Yoshua Bengio. 2012.
Theano: new features and speed improvements.
Deep Learning and Unsupervised Feature Learning
NIPS 2012 Workshop.

Xavier Carreras and Lluı́s Màrquez. 2005. Introduc-
tion to the CoNLL-2005 shared task: Semantic role
labeling. In Proceedings of CoNLL. pages 152–164.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder

1599

for statistical machine translation. In Proceedings of
EMNLP. pages 1724–1734.

Ronan Collobert, Jason Weston, Leon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research .

Alan Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional LSTM. In Proceedings of Automatic
Speech Recognition and Understanding (ASRU),
2013 IEEE Workshop.

Alex Graves, Santiago Fernández, and Jürgen Schmid-
huber. 2005. Bidirectional LSTM networks for im-
proved phoneme classification and recognition. In
Proceedings of International Conference on Artifi-
cial Neural Networks. pages 799–804.

Alex Graves and Jürgen Schmidhuber. 2009. Offline
handwriting recognition with multidimensional re-
current neural networks. In Proceedings of NIPS.
pages 545–552.

Masatsugu Hangyo, Daisuke Kawahara, and Sadao
Kurohashi. 2013. Japanese zero reference resolu-
tion considering exophora and author/reader men-
tions. In Proceedings of EMNLP. pages 924–934.

Yuta Hayashibe, Mamoru Komachi, and Yuji Mat-
sumoto. 2011. Japanese predicate argument struc-
ture analysis exploiting argument position and type.
In Proceedings of IJCNLP. pages 201–209.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385 .

Ryu Iida, Kentaro Inui, and Yuji Matsumoto. 2005.
Anaphora resolution by antecedent identification
followed by anaphoricity determination. ACM
Transactions on Asian Language Information Pro-
cessing (TALIP) 4(4):417–434.

Ryu Iida, Mamoru Komachi, Kentaro Inui, and Yuji
Matsumoto. 2007. Annotating a Japanese text cor-
pus with predicate-argument and coreference rela-
tions. In Proceedings of the Linguistic Annotation
Workshop. pages 132–139.

Ryu Iida and Massimo Poesio. 2011. A cross-lingual
ILP solution to zero anaphora resolution. In Pro-
ceedings of ACL-HLT . pages 804–813.

Ryu Iida, Kentaro Torisawa, Chikara Hashimoto, Jong-
Hoon Oh, and Julien Kloetzer. 2015. Intra-
sentential zero anaphora resolution using subject
sharing recognition. In Proceedings of EMNLP.
pages 2179–2189.

Ryu Iida, Kentaro Torisawa, Jong-Hoon Oh, Cana-
sai Kruengkrai, and Julien Kloetzer. 2016. Intra-
sentential subject zero anaphora resolution using
multi-column convolutional neural network. In Pro-
ceedings of EMNLP. pages 1244–1254.

Kenji Imamura, Kuniko Saito, and Tomoko Izumi.
2009. Discriminative approach to predicate-
argument structure analysis with zero-anaphora res-
olution. In Proceedings of ACL-IJCNLP. pages 85–
88.

Nal Kalchbrenner, Ivo Danihelka, and Alex Graves.
2016. Grid long short-term memory. In Proceed-
ings of ICLR.

D.P. Kingma and J. Ba. 2014. Adam: A method
for stochastic optimization. arXiv preprint arXiv:
1412.6980.

Hiroki Ouchi, Hiroyuki Shindo, Kevin Duh, and Yuji
Matsumoto. 2015. Joint case argument identifica-
tion for Japanese predicate argument structure anal-
ysis. In Proceedings of ACL-IJCNLP. pages 961–
970.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of ICML.

Ryohei Sasano and Sadao Kurohashi. 2011. A dis-
criminative approach to Japanese zero anaphora res-
olution with large-scale lexicalized case frames. In
Proceedings of IJCNLP. pages 758–766.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing pages 2673–2681.

Tomohide Shibata, Daisuke Kawahara, and Sadao
Kurohashi. 2016. Neural network-based model for
Japanese predicate argument structure analysis. In
Proceedings of ACL. pages 1235–1244.

Hirotoshi Taira, Sanae Fujita, and Masaaki Nagata.
2008. A Japanese predicate argument structure anal-
ysis using decision lists. In Proceedings of EMNLP.
pages 523–532.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144 .

Haitong Yang and Chengqing Zong. 2014. Multi-
predicate semantic role labeling. In Proceedings of
EMNLP. pages 363–373.

Katsumasa Yoshikawa, Masayuki Asahara, and Yuji
Matsumoto. 2011. Jointly extracting Japanese
predicate-argument relation with markov logic. In
Proceedings of IJCNLP. pages 1125–1133.

Jie Zhou and Wei Xu. 2015. End-to-end learning of
semantic role labeling using recurrent neural net-
works. In Proceedings of ACL-IJCNLP.

1600

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1601–1611
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1147

TriviaQA: A Large Scale Distantly Supervised Challenge Dataset
for Reading Comprehension

Mandar Joshi† Eunsol Choi† Daniel S. Weld† Luke Zettlemoyer†‡

† Paul G. Allen School of Computer Science & Engineering, Univ. of Washington, Seattle, WA
{mandar90, eunsol, weld, lsz}@cs.washington.edu

‡ Allen Institute for Artificial Intelligence, Seattle, WA
lukez@allenai.org

Abstract

We present TriviaQA, a challenging
reading comprehension dataset contain-
ing over 650K question-answer-evidence
triples. TriviaQA includes 95K question-
answer pairs authored by trivia enthusi-
asts and independently gathered evidence
documents, six per question on average,
that provide high quality distant super-
vision for answering the questions. We
show that, in comparison to other recently
introduced large-scale datasets, TriviaQA
(1) has relatively complex, compositional
questions, (2) has considerable syntactic
and lexical variability between questions
and corresponding answer-evidence sen-
tences, and (3) requires more cross sen-
tence reasoning to find answers. We also
present two baseline algorithms: a feature-
based classifier and a state-of-the-art neu-
ral network, that performs well on SQuAD
reading comprehension. Neither approach
comes close to human performance (23%
and 40% vs. 80%), suggesting that Trivi-
aQA is a challenging testbed that is worth
significant future study.1

1 Introduction

Reading comprehension (RC) systems aim to an-
swer any question that could be posed against the
facts in some reference text. This goal is challeng-
ing for a number of reasons: (1) the questions can
be complex (e.g. have highly compositional se-
mantics), (2) finding the correct answer can re-
quire complex reasoning (e.g. combining facts
from multiple sentences or background knowl-
edge) and (3) individual facts can be difficult to

1Data and code available at http://nlp.cs.
washington.edu/triviaqa/

Question: The Dodecanese Campaign of WWII that
was an attempt by the Allied forces to capture islands in
the Aegean Sea was the inspiration for which acclaimed
1961 commando film?
Answer: The Guns of Navarone
Excerpt: The Dodecanese Campaign of World War II
was an attempt by Allied forces to capture the Italian-
held Dodecanese islands in the Aegean Sea following
the surrender of Italy in September 1943, and use them
as bases against the German-controlled Balkans. The
failed campaign, and in particular the Battle of Leros,
inspired the 1957 novel The Guns of Navarone and
the successful 1961 movie of the same name.

Question: American Callan Pinckney’s eponymously
named system became a best-selling (1980s-2000s)
book/video franchise in what genre?
Answer: Fitness
Excerpt: Callan Pinckney was an American fitness pro-
fessional. She achieved unprecedented success with her
Callanetics exercises. Her 9 books all became inter-
national best-sellers and the video series that followed
went on to sell over 6 million copies. Pinckney’s first
video release ”Callanetics: 10 Years Younger In 10
Hours” outsold every other fitness video in the US.

Figure 1: Question-answer pairs with sample ex-
cerpts from evidence documents from TriviaQA
exhibiting lexical and syntactic variability, and re-
quiring reasoning from multiple sentences.

recover from text (e.g. due to lexical and syntactic
variation). Figure 1 shows examples of all these
phenomena. This paper presents TriviaQA, a new
reading comprehension dataset designed to simul-
taneously test all of these challenges.

Recently, significant progress has been made
by introducing large new reading comprehension
datasets that primarily focus on one of the chal-
lenges listed above, for example by crowdsourc-
ing the gathering of question answer pairs (Ra-
jpurkar et al., 2016) or using cloze-style sentences
instead of questions (Hermann et al., 2015; Onishi
et al., 2016) (see Table 1 for more examples). In
general, system performance has improved rapidly
as each resource is released. The best models of-

1601

https://doi.org/10.18653/v1/P17-1147

Dataset Large scale Freeform
Answer

Well formed Independent of
Evidence

Varied
Evidence

TriviaQA 3 3 3 3 3

SQuAD (Rajpurkar et al., 2016) 3 3 3 7 7
MS Marco (Nguyen et al., 2016) 3 3 7 3 3
NewsQA(Trischler et al., 2016) 3 3 3 7* 7

WikiQA (Yang et al., 2016) 7 7 7 3 7
TREC (Voorhees and Tice, 2000) 7 3 3 3 3

Table 1: Comparison of TriviaQA with existing QA datasets. Our dataset is unique in that it is natu-
rally occurring, well-formed questions collected independent of the evidences. *NewsQA uses evidence
articles indirectly by using only article summaries.

ten achieve near-human performance levels within
months or a year, fueling a continual need to build
ever more difficult datasets. We argue that Triv-
iaQA is such a dataset, by demonstrating that a
high percentage of its questions require solving
these challenges and showing that there is a large
gap between state-of-the-art methods and human
performance levels.

TriviaQA contains over 650K question-answer-
evidence triples, that are derived by combining
95K Trivia enthusiast authored question-answer
pairs with on average six supporting evidence doc-
uments per question. To our knowledge, TriviaQA
is the first dataset where full-sentence questions
are authored organically (i.e. independently of an
NLP task) and evidence documents are collected
retrospectively from Wikipedia and the Web. This
decoupling of question generation from evidence
collection allows us to control for potential bias
in question style or content, while offering organi-
cally generated questions from various topics. De-
signed to engage humans, TriviaQA presents a
new challenge for RC models. They should be
able to deal with large amount of text from var-
ious sources such as news articles, encyclopedic
entries and blog articles, and should handle infer-
ence over multiple sentences. For example, our
dataset contains three times as many questions that
require inference over multiple sentences than the
recently released SQuAD (Rajpurkar et al., 2016)
dataset. Section 4 present a more detailed discus-
sion of these challenges.

Finally, we present baseline experiments on the
TriviaQA dataset, including a linear classifier in-
spired by work on CNN Dailymail and MCTest
(Chen et al., 2016; Richardson et al., 2013) and a
state-of-the-art neural network baseline (Seo et al.,
2017). The neural model performs best, but only
achieves 40% for TriviaQA in comparison to 68%

on SQuAD, perhaps due to the challenges listed
above. The baseline results also fall far short of
human performance levels, 79.7%, suggesting sig-
nificant room for the future work. In summary, we
make the following contributions.

• We collect over 650K question-answer-
evidence triples, with questions originat-
ing from trivia enthusiasts independent of
the evidence documents. A high percent-
age of the questions are challenging, with
substantial syntactic and lexical variabil-
ity and often requiring multi-sentence rea-
soning. The dataset and code are avail-
able at http://nlp.cs.washington.
edu/triviaqa/, offering resources for
training new reading-comprehension models.

• We present a manual analysis quantifying the
quality of the dataset and the challenges in-
volved in solving the task.

• We present experiments with two baseline
methods, demonstrating that the TriviaQA
tasks are not easily solved and are worthy of
future study.

• In addition to the automatically gath-
ered large-scale (but noisy) dataset, we
present a clean, human-annotated subset
of 1975 question-document-answer triples
whose documents are certified to contain all
facts required to answer the questions.

2 Overview

Problem Formulation We frame reading com-
prehension as the problem of answering a ques-
tion q given the textual evidence provided by doc-
ument set D. We assume access to a dataset
of tuples {(qi, ai, Di)|i = 1 . . . n} where ai
is a text string that defines the correct answer

1602

to question qi. Following recent formulations
(Rajpurkar et al., 2016), we further assume that ai
appears as a substring for some document in the
set Di.2 However, we differ by setting Di as a
set of documents, where previous work assumed
a single document (Hermann et al., 2015) or even
just a short paragraph (Rajpurkar et al., 2016).

Data and Distant Supervision Our evidence
documents are automatically gathered from either
Wikipedia or more general Web search results (de-
tails in Section 3). Because we gather evidence
using an automated process, the documents are
not guaranteed to contain all facts needed to an-
swer the question. Therefore, they are best seen
as a source of distant supervision, based on the
assumption that the presence of the answer string
in an evidence document implies that the docu-
ment does answer the question.3 Section 4 shows
that this assumption is valid over 75% of the time,
making evidence documents a strong source of
distant supervision for training machine reading
systems.

In particular, we consider two types of distant
supervision, depending on the source of our doc-
uments. For web search results, we expect the
documents that contain the correct answer a to be
highly redundant, and therefore let each question-
answer-document tuple be an independent data
point. (|Di| = 1 for all i and qi = qj for many
i, j pairs). However, in Wikipedia we generally
expect most facts to be stated only once, so we in-
stead pool all of the evidence documents and never
repeat the same question in the dataset (|Di| = 1.8
on average and qi 6= qj for all i, j). In other words,
each question (paired with the union of all of its
evidence documents) is a single data point.

These are far from the only assumptions that
could be made in this distant supervision setup.
For example, our data would also support multi-
instance learning, which makes the at least once
assumption, from relation extraction (Riedel et al.,
2010; Hoffmann et al., 2011) or many other pos-
sibilities. However, the experiments in Section 6
show that these assumptions do present a strong

2The data we will present in Section 3 would further sup-
port a task formulation where some documentsD do not have
the correct answer and the model must learn when to abstain.
We leave this to future work.

3An example context for the first question in Figure 1
where such an assumption fails would be the following ev-
idence string: The Guns of Navarone is a 1961 British-
American epic adventure war film directed by J. Lee Thomp-
son.

Total number of QA pairs 95,956
Number of unique answers 40,478
Number of evidence documents 662,659

Avg. question length (word) 14
Avg. document length (word) 2,895

Table 2: TriviaQA: Dataset statistics.

signal for learning; we believe the data will fuel
significant future study.

3 Dataset Collection

We collected a large dataset to support the read-
ing comprehension task described above. First we
gathered question-answer pairs from 14 trivia and
quiz-league websites. We removed questions with
less than four tokens, since these were generally
either too simple or too vague.

We then collected textual evidence to answer
questions using two sources: documents from
Web search results and Wikipedia articles for en-
tities in the question. To collect the former, we
posed each question4 as a search query to the Bing
Web search API, and collected the top 50 search
result URLs. To exclude the trivia websites, we
removed from the results all pages from the trivia
websites we scraped and any page whose url in-
cluded the keywords trivia, question, or answer.
We then crawled the top 10 search result Web
pages and pruned PDF and other ill formatted doc-
uments. The search output includes a diverse set
of documents such as blog articles, news articles,
and encyclopedic entries.

Wikipedia pages for entities mentioned in the
question often provide useful information. We
therefore collected an additional set of evidence
documents by applying TAGME, an off-the-shelf
entity linker (Ferragina and Scaiella, 2010), to find
Wikipedia entities mentioned in the question, and
added the corresponding pages as evidence docu-
ments.

Finally, to support learning from distant super-
vision, we further filtered the evidence documents
to exclude those missing the correct answer string
and formed evidence document sets as described
in Section 2. This left us with 95K question-
answer pairs organized into (1) 650K training ex-
amples for the Web search results, each contain-

4Note that we did not use the answer as a part of the search
query to avoid biasing the results.

1603

Property Example annotation Statistics

Avg. entities / question Which politician won the Nobel Peace Prize in 2009? 1.77 per question
Fine grained answer type What fragrant essential oil is obtained from Damask Rose? 73.5% of questions
Coarse grained answer type Who won the Nobel Peace Prize in 2009? 15.5% of questions
Time frame What was photographed for the first time in October 1959 34% of questions
Comparisons What is the appropriate name of the largest type of frog? 9% of questions

Table 3: Properties of questions on 200 annotated examples show that a majority of TriviaQA questions
contain multiple entities. The boldfaced words hint at the presence of corresponding property.

Figure 2: Distribution of hierarchical WordNet
synsets for entities appearing in the answer. The
arc length is proportional to the number of ques-
tions containing that category.

ing a single (combined) evidence document, and
(2) 78K examples for the Wikipedia reading com-
prehension domain, containing on average 1.8 ev-
idence documents per example. Table 2 con-
tains the dataset statistics. While not the focus
of this paper, we have also released the full un-
filtered dataset which contains 110,495 QA pairs
and 740K evidence documents to support research
in allied problems such as open domain and IR-
style question answering.

4 Dataset Analysis

A quantitative and qualitative analysis of Trivi-
aQA shows it contains complex questions about a
diverse set of entities, which are answerable using
the evidence documents.

Question and answer analysis TriviaQA ques-
tions, authored by trivia enthusiasts, cover various
topics of people’s interest. The average question
length is 14 tokens indicating that many questions
are highly compositional. For qualitative analy-

Type Percentage

Numerical 4.17
Free text 2.98
Wikipedia title 92.85

Person 32
Location 23
Organization 5
Misc. 40

Table 4: Distribution of answer types on 200 an-
notated examples.

sis, we sampled 200 question answer pairs and
manually analysed their properties. About 73.5%
of these questions contain phrases that describe a
fine grained category to which the answer belongs,
while 15.5% hint at a coarse grained category (one
of person, organization, location, and miscella-
neous). Questions often involve reasoning over
time frames, as well as making comparisons. A
summary of the analysis is presented in Table 3.

Answers in TriviaQA belong to a diverse set
of types. 92.85% of the answers are titles
in Wikipedia,5 4.17% are numerical expressions
(e.g., 9 kilometres) while the rest are open ended
noun and verb phrases. A coarse grained type
analysis of answers that are Wikipedia entities pre-
sented in Table 4. It should be noted that not
all Wikipedia titles are named entities; many are
common phrases such as barber or soup. Fig-
ure 2 shows diverse topics indicated by WordNet
synsets of answer entities.

Evidence analysis A qualitative analysis of
TriviaQA shows that the evidence contains an-
swers for 79.7% and 75.4% of questions from
the Wikipedia and Web domains respectively. To
analyse the quality of evidence and evaluate base-
lines, we asked a human annotator to answer 986
and 1345 (dev and test set) questions from the
Wikipedia and Web domains respectively. Trivia

5This is a very large set since Wikipedia has more than 11
million titles.

1604

Reasoning Lexical variation (synonym)
Major correspondences between the question and the answer sentence are synonyms.

Frequency 41% in Wiki documents, 39% in web documents.
Q What is solid CO2 commonly called?

Examples S The frozen solid form of CO2, known as dry ice ...
Q Who wrote the novel The Eagle Has landed?
S The Eagle Has Landed is a book by British writer Jack Higgins

Reasoning Lexical variation and world knowledge
Major correspondences between the question and the document require common sense or external knowledge.

Frequency 17% in Wiki documents, 17% in web documents.
Q What is the first name of Madame Bovary in Flaubert’s 1856 novel?
S Madame Bovary (1856) is the French writer Gustave Flaubert’s debut novel. The story focuses on a doctor’s

Examples wife, Emma Bovary
Q Who was the female member of the 1980’s pop music duo, Eurythmics?
S Eurythmics were a British music duo consisting of members Annie Lennox and David A. Stewart.

Reasoning Syntactic Variation
After the question is paraphrased into declarative form, its syntactic dependency structure does not match
that of the answer sentence

Frequency 69% in Wiki documents, 65% in web documents.
Q In which country did the Battle of El Alamein take place?

Examples S The 1942 Battle of El Alamein in Egypt was actually two pivotal battles of World War II
Q Whom was Ronald Reagan referring to when he uttered the famous phrase evil empire in a 1983 speech?
S The phrase evil empire was first applied to the Soviet Union in 1983 by U.S. President Ronald Reagan.

Reasoning Multiple sentences
Requires reasoning over multiple sentences.

Frequency 40% in Wiki documents, 35% in web documents.
Q Name the Greek Mythological hero who killed the gorgon Medusa.
S Perseus asks god to aid him. So the goddess Athena and Hermes helps him out to kill Medusa.

Examples Q Who starred in and directed the 1993 film A Bronx Tale?
S Robert De Niro To Make His Broadway Directorial Debut With A Bronx Tale: The Musical. The actor

starred and directed the 1993 film.

Reasoning Lists, Table
Answer found in tables or lists

Frequency 7% in web documents.

Examples Q In Moh’s Scale of hardness, Talc is at number 1, but what is number 2?
Q What is the collective name for a group of hawks or falcons?

Table 5: Analysis of reasoning used to answer TriviaQA questions shows that a high proportion of evi-
dence sentence(s) exhibit syntactic and lexical variation with respect to questions. Answers are indicated
by boldfaced text.

questions contain multiple clues about the an-
swer(s) not all of which are referenced in the docu-
ments. The annotator was asked to answer a ques-
tion if the minimal set of facts (ignoring temporal
references like this year) required to answer the
question are present in the document, and abstain
otherwise. For example, it is possible to answer
the question, Who became president of the Mor-
mons in 1844, organised settlement of the Mor-
mons in Utah 1847 and founded Salt Lake City?
using only the fact that Salt Lake City was founded
by Brigham Young. We found that the accu-
racy (evaluated using the original answers) for the
Wikipedia and Web domains was 79.6 and 75.3
respectively. We use the correctly answered ques-
tions (and documents) as verified sets for evalua-
tion (section 6).

Challenging problem A comparison of evi-
dence with respect to the questions shows a
high proportion of questions require reason-
ing over multiple sentences. To compare our
dataset against previous datasets, we classified 100
question-evidence pairs each from Wikipedia and
the Web according to the form of reasoning re-
quired to answer them. We focus the analysis on
Wikipedia since the analysis on Web documents
are similar. Categories are not mutually exclusive:
single example can fall into multiple categories. A
summary of the analysis is presented in Table 5.

On comparing evidence sentences with their
corresponding questions, we found that 69% of
the questions had a different syntactic structure
while 41% were lexically different. For 40% of
the questions, we found that the information re-

1605

quired to answer them was scattered over multi-
ple sentences. Compared to SQuAD, over three
times as many questions in TriviaQA require rea-
soning over multiple sentences. Moreover, 17%
of the examples required some form of world
knowledge. Question-evidence pairs in Trivi-
aQA display more lexical and syntactic variance
than SQuAD. This supports our earlier assertion
that decoupling question generation from evidence
collection results in a more challenging problem.

5 Baseline methods

To quantify the difficulty level of the dataset for
current methods, we present results on neural and
other models. We used a random entity base-
line and a simple classifier inspired from previ-
ous work (Wang et al., 2015; Chen et al., 2016),
and compare these to BiDAF (Seo et al., 2017),
one of the best performing models for the SQuAD
dataset.

5.1 Random entity baseline
We developed the random entity baseline for the
Wikipedia domain since the provided documents
can be directly mapped to candidate answers. In
this heuristic approach, we first construct a candi-
date answer set using the entities associated with
the provided Wikipedia pages for a given question
(on average 1.8 per question). We then randomly
pick a candidate that does not occur in the ques-
tion. If no such candidate exists, we pick any ran-
dom candidate from the candidate set.

5.2 Entity classifier
We also frame the task as a ranking problem over
candidate answers in the documents. More for-
mally, given a question qi, an answer a+i , and a
evidence document Di, we want to learn a scoring
function score, such that

score(a+i |qi, Di) > score(a−i |qi, Di)

where a−i is any candidate other than the answer.
The function score is learnt using LambdaMART
(Wu et al., 2010),6 a boosted tree based ranking
algorithm.

This is similar to previous entity-centric classi-
fiers for QA (Chen et al., 2016; Wang et al., 2015),
and uses context and Wikipedia catalog based fea-
tures. To construct the candidate answer set, we

6We use the RankLib implementation https://
sourceforge.net/p/lemur/wiki/RankLib/

consider sentences that contain at least one word
in common with the question. We then add every
n-gram (n ∈ [1, 5]) that occurs in these sentences
and is a title of some Wikipedia article.7

5.3 Neural model

Recurrent neural network models (RNNs) (Her-
mann et al., 2015; Chen et al., 2016) have been
very effective for reading comprehension. For our
task, we modified the BiDAF model (Seo et al.,
2017), which takes a sequence of context words as
input and outputs the start and end positions of the
predicted answer in the context. The model uti-
lizes an RNN at the character level, token level,
and phrase level to encode context and question
and uses attention mechanism between question
and context.

Authored independently from the evidence doc-
ument, TriviaQA does not contain the exact spans
of the answers. We approximate the answer span
by finding the first match of answer string in
the evidence document. Developed for a dataset
where the evidence document is a single paragraph
(average 122 words), the BiDAF model does not
scale to long documents. To overcome this, we
truncate the evidence document to the first 800
words.8

When the data contains more than one evidence
document, as in our Wikipedia domain, we predict
for each document separately and aggregate the
predictions by taking a sum of confidence scores.
More specifically, when the model outputs a can-
didate answer Ai from n documents Di,1, ...Di,n

with confidences ci,1, ...ci,n, the score of Ai is
given by

score(Ai) =
∑

k

ci,k

We select candidate answer with the highest score.

6 Experiments

An evaluation of our baselines shows that both of
our tasks are challenging, and that the TriviaQA
dataset supports significant future work.

7Using a named entity recognition system to generate can-
didate entities is not feasible as answers can be common
nouns or phrases.

8We found that splitting documents into smaller sub doc-
uments degrades performance since a majority of sub docu-
ments do not contain the answer.

1606

Train Dev Test

Wikipedia Questions 61,888 7,993 7,701
Documents 110,648 14,229 13,661

Web Questions 76,496 9,951 9,509
Documents 528,979 68,621 65,059

Wikipedia
verified

Questions - 297 584
Documents - 305 592

Web Questions - 322 733
verified Documents - 325 769

Table 6: Data statistics for each task setup. The
Wikipedia domain is evaluated over questions
while the web domain is evaluated over docu-
ments.

6.1 Evaluation Metrics

We use the same evaluation metrics as SQuAD –
exact match (EM) and F1 over words in the an-
swer(s). For questions that have Numerical and
FreeForm answers, we use a single given answer
as ground truth. For questions that have Wikipedia
entities as answers, we use Wikipedia aliases as
valid answer along with the given answer.

Since Wikipedia and the web are vastly differ-
ent in terms of style and content, we report per-
formance on each source separately. While us-
ing Wikipedia, we evaluate at the question level
since facts needed to answer a question are gen-
erally stated only once. On the other hand, due
to high information redundancy in web documents
(around 6 documents per question), we report doc-
ument level accuracy and F1 when evaluating on
web documents. Lastly, in addition to distant su-
pervision, we also report evaluation on the clean
dev and test questions collection using a human
annotator (section 4)

6.2 Experimental Setup

We randomly partition QA pairs in the dataset
into train (80%), development (10%), and test set
(10%). In addition to distant supervision evalua-
tion, we also evaluate baselines on verified subsets
(see section 4) of the dev and test partitions. Table
6 contains the number of questions and documents
for each task. We trained the entity classifier on a
random sample of 50,000 questions from the train-
ing set. For training BiDAF on the web domain,
we first randomly sampled 80,000 documents. For
both domains, we used only those (training) doc-
uments where the answer appears in the first 400
tokens to keep training time manageable. Design-
ing scalable techniques that can use the entirety of
the data is an interesting direction for future work.

6.3 Results
The performance of the proposed models is sum-
marized in Table 7. The poor performance of the
random entity baseline shows that the task is not
already solved by information retrieval. For both
Wikipedia and web documents, BiDAF (40%) out-
performs the classifier (23%). The oracle score
is the upper bound on the exact match accuracy.9

All models lag significantly behind the human
baseline of 79.7% on the Wikipedia domain, and
75.4% on the web domain.

We analyse the performance of BiDAF on the
development set using Wikipedia as the evidence
source by question length and answer type. The
accuracy of the system steadily decreased as the
length of the questions increased – with 50% for
questions with 5 or fewer words to 32% for 20 or
more words. This suggests that longer composi-
tional questions are harder for current methods.

6.4 Error analysis
Our qualitative error analysis reveals that compo-
sitionality in questions and lexical variation and
low signal-to-noise ratio in (full) documents is still
a challenge for current methods. We randomly
sampled 100 incorrect BiDAF predictions from
the development set and used Wikipedia evidence
documents for manual analysis. We found that 19
examples lacked evidence in any of the provided
documents, 3 had incorrect ground truth, and 3
were valid answers that were not included in the
answer key. Furthermore, 12 predictions were par-
tially correct (Napoleonic vs Napoleonic Wars).
This seems to be consistent with human perfor-
mance of 79.7%.

For the rest, we classified each example into one
or more categories listed in Table 8. Distractor en-
tities refers to the presence of entities similar to
ground truth. E.g., for the question, Rebecca Front
plays Detective Chief Superintendent Innocent in
which TV series?, the evidence describes all roles
played by Rebecca Front.

The first two rows suggest that long and noisy
documents make the question answering task
more difficult, as compared for example to the
short passages in SQuAD. Furthermore, a high
proportion of errors are caused by paraphrasing,
and the answer is sometimes stated indirectly. For

9A question q is considered answerable for the oracle
score if the correct answer is found in the evidence D or,
in case of the classifier, is a part of the candidate set. Since
we truncate documents, the upper bound is not 100%.

1607

Distant Supervision Verified
Method Domain Dev Test Dev Test

EM F1 Oracle EM F1 Oracle EM F1 Oracle EM F1 Oracle

Random 12.72 22.91 16.30 12.74 22.35 16.28 14.81 23.31 19.53 15.41 25.44 19.19
Classifier Wiki 23.42 27.68 71.41 22.45 26.52 71.67 24.91 29.43 80.13 27.23 31.37 77.74
BiDAF 40.26 45.74 82.55 40.32 45.91 82.82 47.47 53.70 90.23 44.86 50.71 86.81

Classifier web 24.64 29.08 66.78 24.00 28.38 66.35 27.38 31.91 77.23 30.17 34.67 76.72
BiDAF 41.08 47.40 82.93 40.74 47.05 82.95 51.38 55.47 90.46 49.54 55.80 89.99

Table 7: Performance of all systems on TriviaQA using distantly supervised evaluation. The best per-
forming system is indicated in bold.

Category Proportion

Insufficient evidence 19
Prediction from incorrect document(s) 7

Answer not in clipped document 15
Paraphrasing 29

Distractor entities 11
Reasoning over multiple sentences 18

Table 8: Qualitative error analysis of BiDAF on
Wikipedia evidence documents.

example, the evidence for the question What was
Truman Capote’s last name before he was adopted
by his stepfather? consists of the following text
Truman Garcia Capote born Truman Streckfus
Persons, was an American ... In 1933, he moved
to New York City to live with his mother and her
second husband, Joseph Capote, who adopted him
as his stepson and renamed him Truman Garca
Capote.

7 Related work

Recent interest in question answering has resulted
in the creation of several datasets. However, they
are either limited in scale or suffer from biases
stemming from their construction process. We
group existing datasets according to their associ-
ated tasks, and compare them against TriviaQA.
The analysis is summarized in Table 1.

7.1 Reading comprehension

Reading comprehension tasks aims to test the abil-
ity of a system to understand a document using
questions based upon its contents. Researchers
have constructed cloze-style datasets (Hill et al.,
2015; Hermann et al., 2015; Paperno et al., 2016;
Onishi et al., 2016), where the task is to pre-
dict missing words, often entities, in a docu-
ment. Cloze-style datasets, while easier to con-
struct large-scale automatically, do not contain
natural language questions.

Datasets with natural language questions in-
clude MCTest (Richardson et al., 2013), SQuAD
(Rajpurkar et al., 2016), and NewsQA (Trischler
et al., 2016). MCTest is limited in scale with
only 2640 multiple choice questions. SQuAD con-
tains 100K crowdsourced questions and answers
paired with short Wikipedia passages. NewsQA
uses crowdsourcing to create questions solely
from news article summaries in order to control
potential bias. The crucial difference between
SQuAD/NewsQA and TriviaQA is that TriviaQA
questions have not been crowdsourced from pre-
selected passages. Additionally, our evidence set
consists of web documents, while SQuAD and
NewsQA are limited to Wikipedia and news arti-
cles respectively. Other recently released datasets
include (Lai et al., 2017).

7.2 Open domain question answering
The recently released MS Marco dataset (Nguyen
et al., 2016) also contains independently authored
questions and documents drawn from the search
results. However, the questions in the dataset
are derived from search logs and the answers are
crowdsourced. On the other hand, trivia enthusi-
asts provided both questions and answers for our
dataset.

Knowledge base question answering involves
converting natural language questions to logical
forms that can be executed over a KB. Proposed
datasets (Cai and Yates, 2013; Berant et al., 2013;
Bordes et al., 2015) are either limited in scale or in
the complexity of questions, and can only retrieve
facts covered by the KB.

A standard task for open domain IR-style QA
is the annual TREC competitions (Voorhees and
Tice, 2000), which contains questions from var-
ious domains but is limited in size. Many ad-
vances from the TREC competitions were used in
the IBM Watson system for Jeopardy! (Ferrucci
et al., 2010). Other datasets includes SearchQA

1608

(Dunn et al., 2017) where Jeopardy! questions
are paired with search engine snippets, the Wik-
iQA dataset (Yang et al., 2015) for answer sen-
tence selection, and the Chinese language WebQA
(Li et al., 2016) dataset, which focuses on the task
of answer phrase extraction. TriviaQA contains
examples that could be used for both stages of the
pipeline, although our focus on this paper is in-
stead on using the data for reading comprehension
where the answer is always present.

Other recent approaches attempt to combine
structured high precision KBs with semi-
structured information sources like OpenIE
triples (Fader et al., 2014), HTML tables
(Pasupat and Liang, 2015), and large (and noisy)
corpora (Sawant and Chakrabarti, 2013; Joshi
et al., 2014; Xu et al., 2015). TriviaQA, which has
Wikipedia entities as answers, makes it possible
to leverage structured KBs like Freebase, which
we leave to future work. Furthermore, about 7%
of the TriviaQA questions have answers in HTML
tables and lists, which could be used to augment
these existing resources.

Trivia questions from quiz bowl have been pre-
viously used in other question answering tasks
(Boyd-Graber et al., 2012). Quiz bowl questions
are paragraph length and pyramidal.10 A num-
ber of different aspects of this problem have been
carefully studied, typically using classifiers over
a pre-defined set of answers (Iyyer et al., 2014)
and studying incremental answering to answer as
quickly as possible (Boyd-Graber et al., 2012) or
using reinforcement learning to model opponent
behavior (He et al., 2016). These competitive chal-
lenges are not present in our single-sentence ques-
tion setting. Developing joint models for multi-
sentence reasoning for questions and answer doc-
uments is an important area for future work.

8 Conclusion and Future Work

We present TriviaQA, a new dataset of 650K
question-document-evidence triples. To our
knowledge, TriviaQA is the first dataset where
questions are authored by trivia enthusiasts, inde-
pendently of the evidence documents. The evi-
dence documents come from two domains – Web
search results and Wikipedia pages – with highly
differing levels of information redundancy. Re-
sults from current state-of-the-art baselines indi-

10Pyramidal questions consist of a series of clues about the
answer arranged in order from most to least difficult.

cate that TriviaQA is a challenging testbed that de-
serves significant future study.

While not the focus of this paper, TriviaQA also
provides a provides a benchmark for a variety of
other tasks such as IR-style question answering,
QA over structured KBs and joint modeling of
KBs and text, with much more data than previ-
ously available.

Acknowledgments

This work was supported by DARPA contract
FA8750-13-2-0019, the WRF/Cable Professor-
ship, gifts from Google and Tencent, and an Allen
Distinguished Investigator Award. The authors
would like to thank Minjoon Seo for the BiDAF
code, and Noah Smith, Srinivasan Iyer, Mark
Yatskar, Nicholas FitzGerald, Antoine Bosselut,
Dallas Card, and anonymous reviewers for help-
ful comments.

References

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on free-
base from question-answer pairs. In Proceedings
of the 2013 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2013, 18-
21 October 2013, Grand Hyatt Seattle, Seattle,
Washington, USA, A meeting of SIGDAT, a Spe-
cial Interest Group of the ACL. pages 1533–1544.
http://aclweb.org/anthology/D/D13/D13-1160.pdf.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple ques-
tion answering with memory networks. CoRR
abs/1506.02075. https://arxiv.org/abs/1506.02075.

Jordan Boyd-Graber, Brianna Satinoff, He He,
and Hal Daumé III. 2012. Besting the quiz
master: Crowdsourcing incremental classification
games. In Proceedings of the 2012 Joint Con-
ference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning. Association for Computational
Linguistics, Jeju Island, Korea, pages 1290–1301.
http://www.aclweb.org/anthology/D12-1118.

Qingqing Cai and Alexander Yates. 2013. Large-scale
semantic parsing via schema matching and lexicon
extension. In Proceedings of the 51st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 423–433.
http://www.aclweb.org/anthology/P13-1042.

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the

1609

cnn/daily mail reading comprehension task. In Pro-
ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Association for Computational
Linguistics, Berlin, Germany, pages 2358–2367.
http://www.aclweb.org/anthology/P16-1223.

Matthew Dunn, Levent Sagun, Mike Higgins, Ugur
Guney, Volkan Cirik, and Kyunghyun Cho.
2017. Searchqa: A new q&a dataset aug-
mented with context from a search engine. CoRR
https://arxiv.org/abs/1704.05179.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and
extracted knowledge bases. In Proceedings of
the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM,
New York, NY, USA, KDD ’14, pages 1156–1165.
https://doi.org/10.1145/2623330.2623677.

Paolo Ferragina and Ugo Scaiella. 2010. Tagme:
On-the-fly annotation of short text fragments
(by wikipedia entities). In Proceedings of the
19th ACM International Conference on Informa-
tion and Knowledge Management. ACM, New
York, NY, USA, CIKM ’10, pages 1625–1628.
https://doi.org/10.1145/1871437.1871689.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya A. Kalyan-
pur, Adam Lally, J. William Murdock, Eric Ny-
berg, John Prager, Nico Schlaefer, and Chris Welty.
2010. Building watson: An overview of the deepqa
project. AI MAGAZINE 31(3):59–79.

He He, Jordan Boyd-Graber, Kevin Kwok, and
Hal Daumé III. 2016. Opponent modeling in
deep reinforcement learning. In Maria Flo-
rina Balcan and Kilian Q. Weinberger, editors,
Proceedings of The 33rd International Confer-
ence on Machine Learning. PMLR, New York,
New York, USA, volume 48 of Proceedings of
Machine Learning Research, pages 1804–1813.
http://proceedings.mlr.press/v48/he16.html.

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa
Suleyman, and Phil Blunsom. 2015. Teach-
ing machines to read and comprehend. In Ad-
vances in Neural Information Processing Systems.
http://arxiv.org/abs/1506.03340.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. CoRR https://arxiv.org/abs/1511.02301.

Raphael Hoffmann, Congle Zhang, Xiao Ling,
Luke Zettlemoyer, and Daniel S. Weld. 2011.
Knowledge-based weak supervision for information
extraction of overlapping relations. In Proceed-
ings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language

Technologies. Association for Computational Lin-
guistics, Portland, Oregon, USA, pages 541–550.
http://www.aclweb.org/anthology/P11-1055.

Mohit Iyyer, Jordan Boyd-Graber, Leonardo Claudino,
Richard Socher, and Hal Daumé III. 2014. A
neural network for factoid question answering over
paragraphs. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 633–644.
http://www.aclweb.org/anthology/D14-1070.

Mandar Joshi, Uma Sawant, and Soumen Chakrabarti.
2014. Knowledge graph and corpus driven segmen-
tation and answer inference for telegraphic entity-
seeking queries. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 1104–1114.
http://www.aclweb.org/anthology/D14-1117.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang,
and Eduard Hovy. 2017. Race: Large-scale reading
comprehension dataset from examinations. CoRR
https://arxiv.org/abs/1704.04683.

Peng Li, Wei Li, Zhengyan He, Xuguang Wang,
Ying Cao, Jie Zhou, and Wei Xu. 2016. Dataset
and neural recurrent sequence labeling model for
open-domain factoid question answering. CoRR
https://arxiv.org/abs/1607.06275.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. MS MARCO: A human generated machine
reading comprehension dataset. In Workshop in Ad-
vances in Neural Information Processing Systems.
https://arxiv.org/pdf/1611.09268.pdf.

Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gim-
pel, and David McAllester. 2016. Who did what:
A large-scale person-centered cloze dataset. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages
2230–2235. https://aclweb.org/anthology/D16-
1241.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Fernandez. 2016. The lambada dataset:
Word prediction requiring a broad discourse con-
text. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Berlin, Germany, pages 1525–
1534. http://www.aclweb.org/anthology/P16-1144.

Panupong Pasupat and Percy Liang. 2015. Com-
positional semantic parsing on semi-structured ta-
bles. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Confer-
ence on Natural Language Processing of the

1610

Asian Federation of Natural Language Process-
ing, ACL 2015, July 26-31, 2015, Beijing,
China, Volume 1: Long Papers. pages 1470–1480.
http://aclweb.org/anthology/P/P15/P15-1142.pdf.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 2383–2392.
https://aclweb.org/anthology/D16-1264.

Matthew Richardson, Christopher J.C. Burges, and
Erin Renshaw. 2013. MCTest: A challenge dataset
for the open-domain machine comprehension of
text. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguis-
tics, Seattle, Washington, USA, pages 193–203.
http://www.aclweb.org/anthology/D13-1020.

Sebastian Riedel, Limin Yao, and Andrew Mc-
Callum. 2010. Modeling relations and their
mentions without labeled text. In Proceedings
of the 2010 European Conference on Ma-
chine Learning and Knowledge Discovery in
Databases: Part III. Springer-Verlag, Berlin,
Heidelberg, ECML PKDD’10, pages 148–163.
http://dl.acm.org/citation.cfm?id=1889788.1889799.

Uma Sawant and Soumen Chakrabarti. 2013. Learn-
ing joint query interpretation and response rank-
ing. In Proceedings of the 22Nd International
Conference on World Wide Web. ACM, New
York, NY, USA, WWW ’13, pages 1099–1110.
https://doi.org/10.1145/2488388.2488484.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In Proceedings of
the International Conference on Learning Represen-
tations (ICLR). https://arxiv.org/abs/1611.01603.

Adam Trischler, Tong Wang, Xingdi Yuan, Justin
Harris, Alessandro Sordoni, Philip Bach-
man, and Kaheer Suleman. 2016. Newsqa:
A machine comprehension dataset. CoRR
https://arxiv.org/abs/1611.09830.

Ellen M. Voorhees and Dawn M. Tice. 2000. Build-
ing a question answering test collection. In
Proceedings of the 23rd Annual International
ACM SIGIR Conference on Research and De-
velopment in Information Retrieval. ACM, New
York, NY, USA, SIGIR ’00, pages 200–207.
https://doi.org/10.1145/345508.345577.

Hai Wang, Mohit Bansal, Kevin Gimpel, and David
McAllester. 2015. Machine comprehension with
syntax, frames, and semantics. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint

Conference on Natural Language Processing (Vol-
ume 2: Short Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 700–706.
http://www.aclweb.org/anthology/P15-2115.

Qiang Wu, Christopher J. Burges, Krysta M. Svore, and
Jianfeng Gao. 2010. Adapting boosting for infor-
mation retrieval measures. Inf. Retr. 13(3):254–270.
https://doi.org/10.1007/s10791-009-9112-1.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. 2015. Show, at-
tend and tell: Neural image caption generation
with visual attention. In Proceedings of the
International Conference on Machine Learning.
https://arxiv.org/abs/1502.03044.

Yi Yang, Wen-tau Yih, and Christopher Meek. 2015.
Wikiqa: A challenge dataset for open-domain ques-
tion answering. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Lisbon, Portugal, pages 2013–2018.
http://aclweb.org/anthology/D15-1237.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierar-
chical attention networks for document classifica-
tion. In Proceedings of the 2016 Conference of
the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies. Association for Computational Lin-
guistics, San Diego, California, pages 1480–1489.
http://www.aclweb.org/anthology/N16-1174.

1611

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1612–1622
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1148

Learning Semantic Correspondences in Technical Documentation

Kyle Richardson and Jonas Kuhn
Institute of Natural Language Processing

University of Stuttgart
{kyle,jonas}@ims.uni-stuttgart.de

Abstract

We consider the problem of translating
high-level textual descriptions to formal
representations in technical documenta-
tion as part of an effort to model the
meaning of such documentation. We fo-
cus specifically on the problem of learn-
ing translational correspondences between
text descriptions and grounded represen-
tations in the target documentation, such
as formal representation of functions or
code templates. Our approach exploits
the parallel nature of such documentation,
or the tight coupling between high-level
text and the low-level representations we
aim to learn. Data is collected by min-
ing technical documents for such paral-
lel text-representation pairs, which we use
to train a simple semantic parsing model.
We report new baseline results on sixteen
novel datasets, including the standard li-
brary documentation for nine popular pro-
gramming languages across seven natural
languages, and a small collection of Unix
utility manuals.

1 Introduction

Technical documentation in the computer domain,
such as source code documentation and other how-
to manuals, provide high-level descriptions of how
lower-level computer programs and utilities work.
Often these descriptions are coupled with formal
representations of these lower-level features, ex-
pressed in the target programming languages. For
example, Figure 1.1 shows the source code doc-
umentation (in red/bold) for the max function in
the Java programming language paired with the
representation of this function in the underlying
Java language (in black). This formal representa-
tion captures the name of the function, the return

1. Java Documentation

*Returns the greater of two long values
*
* @param a an argument
* @param b another argument
* @return the larger of a and b
* @see java.lang.Long#MAX VALUE
*/
public static long max(long a, long b)

2. Clojure Documentation

(defn random-sample
"Returns items from coll with random
probability of prob (0.0 - 1.0)"
([prob coll] ...))

3. PHP documentation (French)

Ajoute une valeur comme dernier élément
*
* @param value La valeur á ajouter
* @see ArrayIterations::next()
*/
public void append(mixed $value)

Figure 1: Example source code documentation.

value, the types of arguments the function takes,
among other details related to the function’s place
and visibility in the overall source code collection
or API.

Given the high-level nature of the textual anno-
tations, modeling the meaning of any given de-
scription is not an easy task, as it involves much
more information than what is directly provided in
the associated documentation. For example, cap-
turing the meaning of the description the greater of
might require having a background theory about
quantity/numbers and relations between different
quantities. A first step towards capturing the
meaning, however, is learning to translate this de-
scription to symbols in the target representation, in
this case to the max symbol. By doing this trans-
lation to a formal language, modeling and learn-
ing the subsequent semantics becomes easier since
we are eliminating the ambiguity of ordinary lan-

1612

https://doi.org/10.18653/v1/P17-1148

Unix Utility Manual

NAME : dappprof

profile user and lib function usage.

SYNOPSIS dappprof [-ac] -p PID | command

DESCRIPTION

-p PID examine the PID ...

EXAMPLES

Print elapsed time for PID 1871
dappprof -p PID=1871

SEE ALSO: dapptrace(1M), dtrace(1M), ...

Figure 2: An example computer utility manual in
the Unix domain. Descriptions of example uses
are shown in red.

guage. Similarly, we would want to first translate
the description two long values, which specifies
the number and type of argument taken by this
function, to the sequence long a,long b.

By focusing on translation, we can create new
datasets by mining these types of source code
collections for sets of parallel text-representation
pairs. Given the wide variety of available pro-
gramming languages, many such datasets can be
constructed, each offering new challenges related
to differences in the formal representations used
by different programming languages. Figure 1.2
shows example documentation for the Clojure pro-
gramming language, which is part of the Lisp fam-
ily of languages. In this case, the description Re-
turns random probability of should be translated
to the function name random-sample since it
describes what the overall function does. Simi-
larly, the argument descriptions from coll and of
prob should translate to coll and prob.

Given the large community of programmers
around the world, many source code collections
are available in languages other than English. Fig-
ure 1.3 shows an example entry from the French
version of the PHP standard library, which was
translated by volunteer developers. Having multi-
lingual data raises new challenges, and broadens
the scope of investigations into this type of seman-
tic translation.

Other types of technical documentation, such
as utility manuals, exhibit similar features. Fig-
ure 2 shows an example manual in the domain of
Unix utilities. The textual description in red/bold
describes an example use of the dappprof util-
ity paired with formal representations in the form
of executable code. As with the previous exam-

ples, such formal representations do not capture
the full meaning of the different descriptions, but
serve as a convenient operationalization, or trans-
lational semantics, of the meaning in Unix. Print
elapsed time, for example, roughly describes what
the dappprof utility does, whereas PID 1871
describes the second half of the code sequence.

In both types of technical documentation, infor-
mation is not limited to raw pairs of descriptions
and representations, but can include other infor-
mation and clues that are useful for learning. Java
function annotations include textual descriptions
of individual arguments and return values (shown
in green). Taxonomic information and pointers
to related functions or utilities are also annotated
(e.g., the @see section in Figure 1, or SEE ALSO
section in Figure 2). Structural information about
code sequences, and the types of abstract argu-
ments these sequences take, are described in the
SYNOPSIS section of the Unix manual. This last
piece of information allows us to generate abstract
code templates, and generalize individual argu-
ments. For example, the raw argument 1871 in
the sequence dappprof -p 1871 can be typed
as a PID instance, and an argument of the -p flag.

Given this type of data, a natural experiment is
to see whether we can build programs that trans-
late high-level textual descriptions to correct for-
mal representations. We aim to learn these trans-
lations using raw text-meaning pairs as the sole su-
pervision. Our focus is on learning function trans-
lations or representations within nine program-
ming language APIs, each varying in size, repre-
sentation style, and source natural language. To
our knowledge, our work is the first to look at
translating source code descriptions to formal rep-
resentations using such a wide variety of program-
ming and natural languages. In total, we intro-
duce fourteen new datasets in the source code do-
main that include seven natural languages, and re-
port new results for an existing dataset. As well,
we look at learning simple code templates using a
small collection of English Unix manuals.

The main goal of this paper is to establish strong
baselines results on these resources, which we
hope can be used for benchmarking and develop-
ing new semantic parsing methods. We achieved
initial baselines using the language modeling
and translation approach of Deng and Chrupała
(2014). We also show that modest improvements
can be achieved by using a more conventional

1613

discriminative model (Zettlemoyer and Collins,
2009) that, in part, exploits document-level fea-
tures from the technical documentation sets.

2 Related Work

Our work is situated within research on seman-
tic parsing, which focuses on the problem of
generating formal meaning representations from
text for natural language understanding applica-
tions. Recent interest in this topic has centered
around learning meaning representation from ex-
ample text-meaning pairs, for applications such
as automated question-answering (Berant et al.,
2013), robot control (Matuszek et al., 2012) and
text generation (Wong and Mooney, 2007a).

While generating representations for natural
language understanding is a complex task, most
studies focus on the translation or generation prob-
lem independently of other semantic or knowledge
representation issues. Earlier work looks at super-
vised learning of logical representations using ex-
ample text-meaning pairs using tools from statisti-
cal machine translation (Wong and Mooney, 2006)
and parsing (Zettlemoyer and Collins, 2009).
These methods are meant to be applicable to a
wide range of translation problems and represen-
tation types, which make new parallel datasets or
resources useful for furthering the research.

In general, however, such datasets are hard to
construct since building them requires consider-
able domain knowledge and knowledge of logic.
Alternatively, we construct parallel datasets au-
tomatically from technical documentation, which
obviates the need for annotation. While the for-
mal representations are not actual logical forms,
they still provide a good test case for testing how
well semantic parsers learn translations to repre-
sentations.

To date, most benchmark datasets are limited to
small controlled domains, such as geography and
navigation. While attempts have been made to do
open-domain semantic parsing using larger, more
complex datasets (Berant et al., 2013; Pasupat and
Liang, 2015), such resources are still scarce. In
Figure 3, we compare the details of one widely
used dataset, Geoquery (Zelle and Mooney, 1996),
to our new datasets. Our new resources are on av-
erage much larger than geoquery in terms of the
number of example pairs, and the size of the differ-
ent language vocabularies. Most existing datasets
are also primarily English-based, while we focus

on learning in a multilingual setting using several
new moderately sized datasets.

Within semantic parsing, there has also been
work on situated or grounded learning, that in-
volves learning in domains with weak supervision
and indirect cues (Liang, 2016; Richardson and
Kuhn, 2016). This has sometimes involved learn-
ing from automatically generated parallel data and
representations (Chen and Mooney, 2008) of the
type we consider in this paper. Here one can
find work in technical domains, including learning
to generate regular expressions (Manshadi et al.,
2013; Kushman and Barzilay, 2013) and other
types of source code (Quirk et al., 2015), which
ultimately aim to solve the problem of natural lan-
guage programming. We view our work as one
small step in this general direction.

Our work is also related to software components
retrieval and builds on the approach of Deng and
Chrupała (2014). Robustly learning the translation
from language to code representations can help to
facilitate natural language querying of API collec-
tions (Lv et al., 2015). As part of this effort, recent
work in machine learning has focused on the sim-
ilar problem of learning code representations us-
ing resources such as StackOverflow and Github.
These studies primarily focus on learning longer
programs (Allamanis et al., 2015) as opposed to
function representations, or focus narrowly on a
single programming language such as Java (Gu
et al., 2016) or on related tasks such as text gener-
ation (Iyer et al., 2016; Oda et al., 2015). To our
knowledge, none of this work has been applied to
languages other than English or such a wide vari-
ety of programming languages.

3 Mapping Text to Representations

In this section, we formulate the basic problem
of translating to representations in technical doc-
umentation.

3.1 Problem Description

We use the term technical documentation to re-
fer to two types of resources: textual descriptions
inside of source code collections, and computer
utility manuals. In this paper, the first type in-
cludes high-level descriptions of functions in stan-
dard library source code documentation. The sec-
ond type includes a collection of Unix manuals,
also known as man pages. Both types include pairs
of text and code representations.

1614

Dataset #Pairs #Descr. Symbols#Words Vocab. Example Pairs (x, z), Goal: learn a function x→ z

Java 7,183 4,804 4,072 82,696 3,721 x : Compares this Calendar to the specified Object.
z : boolean util.Calendar.equals(Object obj)

Ruby 6,885 1,849 3,803 67,274 5,131 x : Computes the arc tangent given y and x.
z : Math.atan2(y,x) → Float

PHPen 6,611 13,943 8,308 68,921 4,874 x : Delete an entry in the archive using its name.
z : bool ZipArchive::deleteName(string $name)

Python 3,085 429 3,991 27,012 2,768 x : Remove the specific filter from this handler.
z : logging.Filterer.removeFilter(filter)

Elisp 2,089 1,365 1,883 30,248 2,644 x : This function returns the total height, in lines, of the window.
z : (window-total-height window round)

Haskell 1,633 255 1,604 19,242 2,192 x : Extract the second component of a pair.
z : Data.Tuple.snd :: (a, b) -> b

Clojure 1,739 – 2,569 17,568 2,233 x : Returns a lazy seq of every nth item in coll.
z : (core.take-nth n coll)

C 1,436 1,478 1,452 12,811 1,835 x : Returns the current file position of the stream stream.
z : long int ftell(FILE *stream)

Scheme 1,301 376 1,343 15,574 1,756 x : Returns a new port with type port-type and the given state.
z : (make-port port-type state)

Unix 921 940 1,000 11,100 2,025 x : To get policies for a specific user account.
z : pwpolicy -u username -getpolicy

Geoquery 880 – 167 6,663 279 x : What is the tallest mountain in America?
z : (highest(mountain(loc 2(countryid usa))))

Figure 3: Description of our English corpus collection with example text/function pairs.

We will refer to the target representations in
these resources as API components, or compo-
nents. In source code, components are formal rep-
resentations of functions, or function signatures
(Deng and Chrupała, 2014). The form of a func-
tion signature varies depending on the resource,
but in general gives a specification of how a func-
tion is named and structured. The example func-
tion signatures in Figure 3 all specify a function
name, a list of arguments, and other optional in-
formation such as a return value and a names-
pace. Components in utility manuals are short ex-
ecutable code sequences intended to show an ex-
ample use of a utility. We assume typed code se-
quences following Richardson and Kuhn (2014),
where the constituent parts of the sequences are
abstracted by type.

Given a set of example text-component pairs,
D = {(xi, zi)}n

i=1, the goal is to learn how to gen-
erate correct, well-formed components z ∈ C for
each input x. Viewed as a semantic parsing prob-
lem, this treats the target components as a kind
of formal meaning representation, analogous to a
logical form. In our experiments, we assume that
the complete set of output components are known.
In the API documentation sets, this is because each
standard library contains a finite number of func-

tion representations, roughly corresponding to the
number of pairs as shown in Figure 3. For a given
input, therefore, the goal is to find the best candi-
date function translation within the space of the to-
tal API components C (Deng and Chrupała, 2014).

Given these constraints, our setup closely re-
sembles that of Kushman et al. (2014), who learn
to parse algebra word problems using a small set
of equation templates. Their approach is inspired
by template-based information extraction, where
templates are recognized and instantiated by slot-
filling. Our function signatures and code tem-
plates have a similar slot-like structure, consisting
of slots such as return value, arguments, function
name and namespace.

3.2 Language Modeling Baselines

Existing approaches to semantic parsing formalize
the mapping from language to logic using a va-
riety of formalisms including CFGs (Börschinger
et al., 2011), CCGs (Kwiatkowski et al., 2010),
synchronous CFGs (Wong and Mooney, 2007b).
Deciding to use one formalism over another is of-
ten motivated by the complexities of the target rep-
resentations being learned. For example, recent in-
terest in learning graph-based representations such
as those in the AMR bank (Banarescu et al., 2013)

1615

requires parsing models that can generate com-
plex graph shaped derivations such as CCGs (Artzi
et al., 2015) or HRGs (Peng et al., 2015). Given
the simplicity of our API representations, we opt
for a simple semantic parsing model that exploits
the finiteness of our target representations.

Following ((Deng and Chrupała, 2014); hence-
forth DC), we treat the problem of component
translation as a language modeling problem (Song
and Croft, 1999). For a given query sequence
or text x = wi, .., wI and component sequence
z = uj , .., uJ , the probability of the component
given the query is defined as follows using Bayes’
theorem: p(z|x) ∝ p(x|z)p(z).

By assuming a uniform prior over the proba-
bility of each component p(z), the problem re-
duces to computing p(x|z), which is where lan-
guage modeling is used. Given each word wi in
the query, a unigram model is defined as p(x|z) =∏I

i=1 p(wi|z). Using this formulation, we can
then define different models to estimate p(w|z).

Term Matching As a baseline for p(w|z), DC
define a term matching approach that exploits the
fact that many queries in our English datasets
share vocabulary with target component vocabu-
lary. A smoothed version of this baseline is de-
fined below, where f(w|z) is the frequency of
matching terms in the target signature, f(w|C) is
frequency of the term word in the overall docu-
mentation collection, and λ is a smoothing param-
eter (for Jelinek-Mercer smoothing):

p(x|z) =
∏

w∈x

(1 − λ)f(w|z) + λf(w|C)

Translation Model In order to account for the
co-occurrence between non-matching words and
component terms, DC employ a word-based trans-
lation model, which models the relation between
natural language words wj and individual compo-
nent terms uj . In this paper, we limit ourselves to
sequence-based word alignment models (Och and
Ney, 2003), which factor in the following manner:

p(x|z) =
I∏

i=1

J∑

j=0

pt(wi|uj)pd(l(j)|i, I, J)

Here each pt(wi|uj) defines an (unsmoothed)
multinomial distribution over a given component
term uj for all words wj . The function pd is a dis-
tortion parameter, and defines a dependency be-
tween the alignment positions and the lengths of

Algorithm 1 Rank Decoder
Input: Query x, Components C of size m, rank k, modelA,

sort function K-BEST
Output: Top k components ranked by A model score p
1: procedure RANKCOMPONENTS(x, C, k,A)
2: SCORES ← [] ▷ Initialize score list
3: for each component c ∈ C do
4: p← ALIGNA(x, c) ▷ Score using A
5: SCORES += (c, p) ▷ Add to list
6: return K-Best(SCORES,k) ▷ k best components

both input strings. This function, and the defi-
nition of l(j), assumes different forms according
to the particular alignment model being used. We
consider three different types of alignment models
each defined in the following way:

pd(l(j)|...) =





1
J+1 (1)
a(j|i, I, J) (2)
a(t(j)|i, I, tlen(J)) (3)

Models (1-2) are the classic IBM word-alignment
models of Brown et al. (1993). IBM Model
1, for example, assumes a uniform distribution
over all positions, and is the main model investi-
gated in DC. For comparison, we also experiment
with IBM Model 2, where each l(j) refers to the
string position of j in the component input, and
a(..) defines a multinomial distribution such that∑J

j=0 a(j|i, I, J) = 1.0.
We also define a new tree based alignment

model (3) that takes into account the syntax asso-
ciated with the function representations. Each l(j)
is the relative tree position of the alignment point,
shown as t(j), and tlen(J) is the length of the tree
associated with z. This approach assumes a tree
representation for each z. We generated these trees
heuristically by preserving the information that is
lost when components are converted to a linear se-
quence representation. An example structure for
PHP is shown in Figure 4, where the red solid line
indicates the types of potential errors avoided by
this model.

Learning is done by applying the standard EM
training procedure of Brown et al. (1993).

3.3 Ranking and Decoding

Algorithm 1 shows how to rank API components.
For a text input x, we iterate through all known
API components C and assign a score using a
model A. We then rank the components by their
scores using a K-BEST function. This method
serves as a type of word-based decoding algorithm

1616

bool ZipArchive::deleteName(string $name)

bool3

bool

string $name2

namestring

deleteName1

namedelete

ZipArchive0

ZipArchive

Delete entry in an archive using its name

X012 →
⟨

X
01

X
2

, X
01

X
2
bool

⟩

X01 →
⟨

X
1

in an X
0

, X
0

X
1

⟩

X1 →
⟨

Delete X
1

, delete X
1

⟩

X1 →
⟨

entry, name
⟩

X0 →
⟨

archive, ZipArchive
⟩

X2 →
⟨

using its X
2

, X
2

⟩

X2 →
⟨

name, string $name
⟩

Figure 4: An example tree structure (above) asso-
ciated with an input component. Below are Hiero
rules (Chiang, 2007) extracted from the alignment
and tree information.

which is simplified by the finite nature of the tar-
get language. The complexity of the scoring pro-
cedure, lines 3-5, is linear over the number com-
ponents m in C. In practice, we implement the
K-BEST sorting function on line 6 as a binary in-
sertion sort on line 5, resulting in an overall com-
plexity of O(m log m).

While iterating over m API components might
not be feasible given more complicated formal lan-
guages with recursion, a more clever decoding al-
gorithm could be applied, e.g., one based on the
lattice decoding approach of (Dyer et al., 2008).
Since we are interested in providing initial base-
line results, we leave this for future work.

4 Discriminative Approach

In this section, we introduce a new model that aims
to improve on the previous baseline methods.

While the previous models are restricted to
word-level information, we extend this approach
by using a discriminative reranking model that
captures phrase information to see if this leads
to an improvement. This model can also capture
document-level information from the APIs, such
as the additional textual descriptions of param-
eters, see also declarations or classes of related
functions and syntax information.

4.1 Modeling
Like in most semantic parsing approaches (Zettle-
moyer and Collins, 2009; Liang et al., 2011),
our model is defined as a conditional log-linear

z: function float cosh float $arg

x: Returns the hyperbolic cosine of arg

c4 ={ cosh ,acosh,sinh.} ’the arg of..’

ϕ(x,z) =

Model score: is it in top 5..10?
Pairs/Alignments: (hyperbolic, cosh) = 1, (cosine, cosh) = 1, ...

Phrases: (hyperbolic cosine, cosh) = 1, (of arg, float $arg) = ...

See also: (hyperbolic, c4 = {cos,..}) = 1, (arg, c4) = 1, ...
In Descr.: (arg, , $arg) = 1, (arg , float) = 0, ...

Trees/Matches (hyperbolic, cosh, NAME NODE) = 1, number of matches= ...

Figure 5: Example features used by our rerankers.

model over components z ∈ C with parameters
θ ∈ Rb, and a set of feature functions ϕ(x, z):
p(z| x; θ) ∝ eθ·ϕ(x,z).

Formally, our training objective is to maxi-
mize the conditional log-likehood of the correct
component output z for each input x: O(θ) =∑n

i=1 log p (zi | xi; θ).

4.2 Features

Our model uses word-level features, such as word
match, word pairs, as well as information from the
underlying aligner model such as Viterbi align-
ment information and model score. Two ad-
ditional categories of non-word features are de-
scribed below. An illustration of the feature ex-
traction procedure is shown in Figure 5 1.

Phrases Features We extract phrase features
(e.g., (hyper. cosine,cosh) in Figure 5) from ex-
ample text component pairs by training symmetric
word aligners and applying standard word-level
heuristics (Koehn et al., 2003). Additional fea-
tures, such as phrase match/overlap, tree positions
of phrases, are defined over the extracted phrases.

We also extract hierarchical phrases (Chiang,
2007) using a variant of the SAMT method of
Zollmann and Venugopal (2006) and the compo-
nent syntax trees. Example rules are shown in Fig-
ure 4, where gaps (i.e., symbols in square brack-
ets) are filled with smaller phrase-tree alignments.

Document Level Features Document features
are of two categories. The first includes additional
textual descriptions of parameters, return values,
and modules. One class of features is whether
certain words under consideration appear in the
@param and @return descriptions of the tar-
get components. For example, the arg token in

1A more complete description of features is included as
supplementary material, along with all source code.

1617

Algorithm 2 Online Rank Learner
Input: Dataset D, components C, iterations T , rank k, learn-

ing rate α, model A, ranker function RANK
Output: Weight vector θ
1: procedure LEARNRERANKER(D, C, T, k, α,A, RANK)
2: θ ← 0 ▷ Initialize
3: for t ∈ 1..T do
4: for pairs (xi, zi) ∈ D do
5: S = RANK(xi, C, k,A) ▷ Scored candidates
6: ∆ = ϕ(xi, zi)− Es∈S∼p(s|xi;θ)[ϕ(xi, s)]
7: θ = θ + α∆ ▷ Update online
8: return θ

Figure 5 appears in the textual description of the
$arg parameter elsewhere in the documentation
string.

Other features relate to general information
about abstract symbol categories, as specified in
see-also assertions, or hyper-link pointers. By
exploiting this information, we extract general
classes of functions, for example the set of hyper-
bolic function (e.g., sinh, cosh, shown as c4 in
Figure 5), and associate these classes with words
and phrases (e.g., hyperbolic and hyperbolic co-
sine).

4.3 Learning

To optimize our objective, we use Algorithm 2.
We estimate the model parameters θ using a K-
best approximation of the standard stochastic gra-
dient updates (lines 6-7), and a ranker function
RANK. We note that while we use the ranker de-
scribed in Algorithm 1, any suitable ranker or de-
coding method could be used here.

5 Experimental Setup

5.1 Datasets

Source code documentation Our source code
documentation collection consists of the standard
library for nine programming languages, which
are listed in Figure 3. We also use the translated
version of the PHP collection for six additional
languages, the details of which are shown in Fig-
ure 6. The Java dataset was first used in DC, while
we extracted all other datasets for this work.

The size of the different datasets are detailed in
both figures. The number of pairs is the number
of single sentences paired with function represen-
tations, which constitutes the core part of these
datasets. The number of descriptions is the num-
ber of additional textual descriptions provided in
the overall document, such as descriptions of pa-
rameters or return values.

Dataset # Pairs #Descr. Symbols Words Vocab.
PHPfr 6,155 14,058 7,922 70,800 5,904
PHPes 5,823 13,285 7,571 69,882 5,790
PHPja 4,903 11,251 6,399 65,565 3,743
PHPru 2,549 6,030 3,340 23,105 4,599
PHPtr 1,822 4,414 2,725 16,033 3,553
PHPde 1,538 3,733 2,417 17,460 3,209

Figure 6: The non-English PHP datasets.

We also quantify the different datasets in terms
of unique symbols in the target representations,
shown as Symbols. All function representations
and code sequences are linearized, and in some
cases further tokenized, for example, by convert-
ing out of camel case or removing underscores.

Man pages The collection of man pages is from
Richardson and Kuhn (2014) and includes 921
text-code pairs that span 330 Unix utilities and
man pages. Using information from the synopsis
and parameter declarations, the target code repre-
sentations are abstracted by type. The extra de-
scriptions are extracted from parameter descrip-
tions, as shown in the DESCRIPTION section in
Figure 1, as well as from the NAME sections of
each manual.

5.2 Evaluation

For evaluation, we split our datasets into sepa-
rate training, validation and test sets. For Java,
we reserve 60% of the data for training and the
remaining 40% for validation (20%) and testing
(20%). For all other datasets, we use a 70%-30%
split. From a retrieval perspective, these left out
descriptions are meant to mimic unseen queries to
our model. After training our models, we eval-
uate on these held out sets by ranking all known
components in each resource using Algorithm 1.
A predicted component is counted as correct if it
matches exactly a gold component.

Following DC, we report the accuracy of pre-
dicting the correct representation at the first posi-
tion in the ranked list (Accuracy @1) and within
the top 10 positions (Accuracy @10). We also re-
port the mean reciprocal rank MRR, or the multi-
plicative inverse of the rank of the correct answer.

Baselines For comparison, we trained a bag-of-
words classifier (the BoW Model in Table 1). This
model uses the occurrence of word-component
symbol pairs as binary features, and aims to see if
word co-occurrence alone is sufficient to for rank-
ing representations.

1618

Method Java PHPen Python Haskell Clojure Ruby Elisp C
BOW Model 16.4 63.8 31.8 08.0 40.5 18.1 04.1 33.3 13.6 05.6 55.6 21.7 03.0 49.2 16.4 07.0 38.0 16.9 09.9 54.6 23.5 08.8 48.8 20.0
Term Match 15.7 41.3 24.8 15.6 37.0 23.1 16.6 41.7 24.8 15.4 41.8 24.0 20.7 49.2 30.0 23.1 46.9 31.2 29.3 65.4 41.4 13.1 37.5 21.9
IBM M1 34.3 79.8 50.2 35.5 70.5 47.2 22.7 61.0 35.8 22.3 70.3 39.6 29.6 69.2 41.6 31.4 68.5 44.2 30.6 67.4 43.5 21.8 63.7 34.4
IBM M2 30.3 77.2 46.5 33.2 67.7 45.0 21.4 58.0 34.4 13.8 68.2 31.8 26.5 64.2 38.2 27.9 66.0 41.4 28.1 66.1 40.7 23.7 60.9 34.6
Tree Model 29.3 75.4 45.3 28.0 63.2 39.8 17.5 55.4 30.7 17.8 65.4 35.2 23.0 60.3 34.4 27.1 63.3 39.5 26.8 63.2 39.7 18.1 56.2 29.4
M1 Descr. 33.3 77.0 48.7 34.1 71.1 47.2 22.7 62.3 35.9 23.9 69.5 40.2 29.6 69.2 41.6 32.5 70.0 45.5 30.3 73.4 44.7 21.8 62.7 33.9
Reranker 35.3 81.5 51.4 36.9 74.2 49.3 25.5 66.0 38.7 24.7 73.9 43.0 35.0 76.9 47.9 35.1 72.5 48.0 37.6 80.5 53.3 29.7 67.4 40.1

Method Scheme PHPfr PHPes PHPja PHPru PHPtr PHPde Unix
BOW Model 06.1 58.1 21.4 06.1 36.9 16.0 05.9 37.8 15.8 04.7 33.2 13.8 04.4 43.6 16.6 05.4 43.4 17.6 04.3 39.2 15.3 08.6 49.6 21.0
Term Match 25.5 61.2 37.4 04.0 15.8 07.7 02.9 10.4 05.4 02.3 11.2 05.2 01.0 09.3 03.6 01.4 08.7 03.6 03.8 09.4 06.2 15.1 33.8 22.4
IBM M1 32.1 75.5 46.2 32.1 65.1 43.5 29.5 63.7 41.2 23.0 58.1 34.9 20.3 58.4 33.3 25.9 61.6 38.6 22.8 62.5 36.8 30.2 66.9 42.2
IBM M2 29.5 71.4 43.9 30.6 62.2 41.2 26.7 59.8 38.3 22.2 56.1 33.3 18.5 54.5 30.6 23.3 57.6 35.8 19.8 58.6 33.0 23.0 60.4 36.0
Tree Model 26.1 71.2 40.3 27.9 59.3 38.6 25.9 61.0 37.6 22.6 57.8 34.1 20.6 59.0 32.9 18,9 55.1 32.0 18.5 56.0 30.6 23.0 58.2 34.3
M1 Descr. 33.1 75.5 47.1 31.0 64.8 42.7 28.6 64.9 41.1 25.4 60.4 37.0 21.1 62.6 34.5 29.1 62.0 41.4 26.7 62.0 38.8 34.5 71.9 47.4
Reranker 34.6 77.5 48.9 32.7 66.8 44.2 30.6 66.3 42.6 25.8 61.8 37.8 21.1 66.8 35.9 29.9 63.8 41.2 28.0 65.9 40.5 34.5 74.8 48.5

Accuracy @1 Accuracy @10 Mean Reciprocal Rank (MRR)

Table 1: Test results according to the table below.

Since our discriminative models use more data
than the baseline models, which therefore make
the results not directly comparable, we train a
more comparable translation model, shown as M1
Descr. in Table 1, by adding the additional textual
data (i.e. parameter and return or module descrip-
tions) to the models’ parallel training data.

6 Results and Discussion

Test results are shown in Table 1. Among the base-
line models, IBM Model 1 outperforms virtually
all other models and is in general a strong baseline.
Of particular note is the poor performance of the
higher-order translation models based on Model 2
and the Tree Model. While Model 2 is known to
outperform Model 1 on more conventional trans-
lation tasks (Och and Ney, 2003), it appears that
such improvements are not reflected in this type of
semantic translation context.

The bag-of-words (BoW) and Term Match
baselines are outperformed by all other models.
This shows that translation in this context is more
complicated than simple word matching. In some
cases the term matching baseline is competitive
with other models, suggesting that API collections
differ in how language descriptions overlap with
component names and naming conventions. It is
clear, however, that this heuristic only works for
English, as shown by results on the non-English
PHP datasets in Table 1.

We achieve improvements on many datasets by
adding additional data to the translation model
(M1 Descr.). We achieve further improvements
on all datasets using the discriminative model
(Reranker), with most increases in performance
occurring at how the top ten items are ranked.

This last result suggests that phrase-level and
document-level features can help to improve the
overall ranking and translation, though in some
cases the improvement is rather modest.

Despite the simplicity of our semantic parsing
model and decoder, there is still much room for
improvement, especially on achieving better Ac-
curacy @1. While one might expect better results
when moving from a word-based model to a model
that exploits phrase and hierarchical phrase fea-
tures, the sparsity of the component vocabulary is
such that most phrase patterns in the training are
not observed in the evaluation. In many bench-
mark semantic parsing datasets, such sparsity is-
sues do not occur (Cimiano and Minock, 2009),
suggesting that state-of-the-art methods will have
similar problems when applied to our datasets.

Recent approaches to open-domain semantic
parsing have dealt with this problem by using
paraphrasing techniques (Berant and Liang, 2014)
or distant supervision (Reddy et al., 2014). We
expect that these methods can be used to improve
our models and results, especially given the wide
availability of technical documentation, for exam-
ple, distributed within the Opus project (Tiede-
mann, 2012).

Model Errors We performed analysis on some
of the incorrect predictions made by our mod-
els. For some documentation sets, such as those
in the GNU documentation collection2, informa-
tion is organized into a small and concrete set of
categories/chapters, each corresponding to vari-
ous features or modules in the language and re-
lated functions. Given this information, Figure

2https://www.gnu.org/doc/doc.en.html

1619

As
so

ci
at

io
ns

Da
ta

ty
pe

s
En

vi
ro

nm
en

ts
Pr

oc
ed

ur
es OS IO

Gr
ap

hi
cs

Er
ro

rs
Wi

nd
ow

s
Ot

he
r

Sc
he

me
Eq

ui
v.

Sp
ec

.
Fo

rm
s

Ch
ar

ac
te

rs
Nu

mb
er

s
Li

st
s

St
ri

ng
s

Bi
t

St
ri

ng
s

Ve
ct

or
s

Vectors
Bit Strings

Strings
Lists

Numbers
Characters

Spec. Forms
Equiv.
Scheme
Other

Windows
Errors

Graphics
IO
OS

Procedures
Environments

Datatypes
Associations

da
sh se
l

Fi
le
s

Ba
ck
up
s

Bu
ff
er
s

Wi
nd
ow
s

Co
mm
an
dL
oo
p

Ke
ym
ap
s

Mo
de
s

Do
cu
me
nt
at
io
n

Fr
am
es

Po
si
ti
on
s

St
ri
ng
s

Da
ta
ty
pe
s

Ch
ar
ac
te
rs

Nu
mb
er
s

Ha
sh
 T
ab
le
s

Se
qu
en
ce
s

Ev
al
ua
ti
on

Sy
mb
ol
s OS

Ga
rb
ag
e
Co
ll
.

Di
st
r.

Fu
nc
ti
on
s

Lo
ad
in
g

Cu
st
om
iz
at
io
n

De
bu
g

Mi
ni
bu
ff
er
s

No
n-
As
ci
i

Te
xt

Ma
rk
er
s

Di
sp
la
y

Pr
oc
es
se
s

Ab
br
ev
s

Sy
nt
ax
 T
ab
le
s

Se
ar
ch
/M
at
ch

Re
ad
/W
ri
te

Read/Write
Search/Match

Syntax Tables
Abbrevs

Processes
Display
Markers

Text
Non-Ascii

Minibuffers
Debug

Customization
Loading

Functions
Distr.

Garbage Coll.
OS

Symbols
Evaluation
Sequences

Hash Tables
Numbers

Characters
Datatypes

Strings
Positions

Frames
Documentation

Modes
Keymaps

CommandLoop
Windows
Buffers
Backups

Files
sel

dash

Figure 7: Function predictions by documentation category for Scheme (left) and Elisp (right).

7 shows the confusion between predicting differ-
ent categories of functions, where the rows show
the categories of functions to be predicted and the
columns show the different categories predicted.
We built these plots by finding the categories of
the top 50 non-gold (or erroneous) representations
generated for each validation example.

The step-like lines through the diagonal of both
plots show that alternative predictions (shaded ac-
cording to occurrence) are often of the same cat-
egory, most strikingly for the corner categories.
This trend seems stable across other datasets, even
among datasets with large numbers of categories.
Interestingly, many confusions appear to be be-
tween related categories. For example, when
making predictions about Strings functions in
Scheme, the model often generates function re-
lated to BitStrings, Characters and IO.
Again, this trend seems to hold for other documen-
tation sets, suggesting that the models are often
making semantically sensible decisions.

Looking at errors in other datasets, one com-
mon error involves generating functions with the
same name and/or functionality. In large libraries,
different modules sometimes implement that same
core functions, such the genericpath or
posixpath modules in Python. When generat-
ing a representation for the text return size of file,
our model confuses the getsize(filename)
function in one module with others. Similarly,
other subtle distinctions that are not explicitly ex-
pressed in the text descriptions are not captured,
such as the distinction in Haskell between safe and
unsafe bit shifting functions.

While many of these predictions might be cor-
rect, our evaluation fails to take into account these
various equivalences, which is an issue that should

be investigated in future work. Future work will
also look systematically at the effect that types
(i.e., in statically typed versus dynamic languages)
have on prediction.

7 Future Work

We see two possible use cases for this data. First,
for benchmarking semantic parsing models on the
task of semantic translation. While there has
been a trend towards learning executable seman-
tic parsers (Berant et al., 2013; Liang, 2016), there
has also been renewed interest in supervised learn-
ing of formal representations in the context of neu-
ral semantic parsing models (Dong and Lapata,
2016; Jia and Liang, 2016). We believe that good
performance on our datasets should lead to better
performance on more conventional semantic pars-
ing tasks, and raise new challenges involving spar-
sity and multilingual learning.

We also see these resources as useful for in-
vestigations into natural language programming.
While our experiments look at learning rudimen-
tary translational correspondences between text
and code, a next step might be learning to syn-
thesize executable programs via these translations,
along the lines of (Desai et al., 2016; Raza et al.,
2015). Other document-level features, such as ex-
ample input-output pairs, unit tests, might be use-
ful in this endeavor.

Acknowledgements

This work was funded by the Deutsche
Forschungsgemeinschaft (DFG) via SFB 732,
project D2. Thanks also to our IMS colleagues,
in particular Christian Scheible, for providing
feedback on earlier drafts, as well as to Jonathan
Berant for helpful discussions.

1620

References
Miltiadis Allamanis, Daniel Tarlow, Andrew D Gor-

don, and Yi Wei. 2015. Bimodal modelling of
source code and natural language. In Proceedings
of the 32th International Conference on Machine
Learning. volume 951, page 2015.

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015.
Broad-coverage CCG semantic parsing with AMR.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing. pages
1699–1710.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Martha Palmer, and Nathan Schneider.
2013. Abstract meaning representation for sem-
banking. In In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on Freebase
from question-answer pairs. In in Proceedings of
EMNLP-2013. pages 1533–1544.

Jonathan Berant and Percy Liang. 2014. Semantic
parsing via paraphrasing. In Proceedings of ACL-
2014. pages 1415–1425.

Benjamin Börschinger, Bevan K. Jones, and Mark
Johnson. 2011. Reducing grounded learning tasks to
grammatical inference. In Proceedings of EMNLP-
2011. pages 1416–1425.

Peter F Brown, Vincent J Della Pietra, Stephen A Della
Pietra, and Robert L Mercer. 1993. The mathemat-
ics of statistical machine translation: Parameter esti-
mation. Computational linguistics 19(2):263–311.

David L. Chen and Raymond J. Mooney. 2008. Learn-
ing to sportscast: A test of grounded language acqui-
sition. In Proceedings of ICML-2008. pages 128–
135.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. computational linguistics 33(2):201–228.

Philipp Cimiano and Michael Minock. 2009. Natural
language interfaces: what is the problem?–a data-
driven quantitative analysis. In International Con-
ference on Application of Natural Language to In-
formation Systems. Springer, pages 192–206.

Huijing Deng and Grzegorz Chrupała. 2014. Seman-
tic approaches to software component retrieval with
English queries. In Proceedings of LREC-14. pages
441–450.

Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi
Jain, Amey Karkare, Mark Marron, Subhajit Roy,
et al. 2016. Program synthesis using natural lan-
guage. In Proceedings of the 38th International
Conference on Software Engineering. ACM, pages
345–356.

Li Dong and Mirella Lapata. 2016. Language to
logical form with neural attention. arXiv preprint
arXiv:1601.01280 .

Christopher Dyer, Smaranda Muresan, and Philip
Resnik. 2008. Generalizing word lattice translation.
Proceedings of ACL-08 page 1012.

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and
Sunghun Kim. 2016. Deep API Learning. arXiv
preprint arXiv:1605.08535 .

Srinivasan Iyer, Ioannis Kostas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. Proceedings of ACL-
2016 .

Robin Jia and Percy Liang. 2016. Data recombina-
tion for neural semantic parsing. arXiv preprint
arXiv:1606.03622 .

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of the NACL-2003. pages 48–54.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automatically
solve algebra word problems. In Proceedings of
ACL-2014. pages 271–281.

Nate Kushman and Regina Barzilay. 2013. Using se-
mantic unification to generate regular expressions
from natural language. In Proceedings of NAACL-
2013.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Goldwa-
ter, and Mark Steedman. 2010. Inducing probabilis-
tic CCG grammars from logical form with higher-
order unification. In Proceedings of EMNLP-2010.
pages 1223–1233.

P. Liang, M. I. Jordan, and D. Klein. 2011. Learning
dependency-based compositional semantics. In Pro-
ceedings of ACL-11. pages 590–599.

Percy Liang. 2016. Learning executable semantic
parsers for natural language understanding. Com-
munications of the ACM 59(9):68–76.

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei
Wang, Dongmei Zhang, and Jianjun Zhao. 2015.
Codehow: Effective code search based on api
understanding and extended boolean model (e).
In Automated Software Engineering (ASE), 2015
30th IEEE/ACM International Conference on. IEEE,
pages 260–270.

Mehdi Hafezi Manshadi, Daniel Gildea, and James F
Allen. 2013. Integrating programming by example
and natural language programming. In Proceedings
of AAAI-2013.

Cynthia Matuszek, Evan Herbst, Luke Zettlemoyer,
and Dieter Fox. 2012. Learning to parse natural lan-
guage commands to a robot control system. In Pro-
ceedings of the International Symposium on Experi-
mental Robotics (ISER).

1621

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational linguistics 29(1):19–51.

Yusuke Oda, Hiroyuki Fudaba, Graham Neubig,
Hideaki Hata, Sakriani Sakti, Tomoki Toda, and
Satoshi Nakamura. 2015. Learning to generate
pseudo-code from source code using statistical ma-
chine translation (t). In Automated Software Engi-
neering (ASE), 2015 30th IEEE/ACM International
Conference on. IEEE, pages 574–584.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of ACL-2015.

Xiaochang Peng, Linfeng Song, and Daniel Gildea.
2015. A Synchronous Hyperedge Replacement
Grammar based approach for AMR parsing. Pro-
ceedings of CoNLL-2015 page 32.

Chris Quirk, Raymond J Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In Proceedings of ACL-
2015. pages 878–888.

Mohammad Raza, Sumit Gulwani, and Natasa Milic-
Frayling. 2015. Compositional program synthesis
from natural language and examples. In IJCAI.
pages 792–800.

Siva Reddy, Mirella Lapata, and Mark Steedman. 2014.
Large-scale semantic parsing without question-
answer pairs. Transactions of the Association for
Computational Linguistics 2:377–392.

Kyle Richardson and Jonas Kuhn. 2014. UnixMan cor-
pus: A resource for language learning in the Unix
domain. In Proceedings of LREC-2014.

Kyle Richardson and Jonas Kuhn. 2016. Learning to
make inferences in a semantic parsing task. Trans-
actions of the Association for Computational Lin-
guistics 4:155–168.

F. Song and W.B Croft. 1999. A general language
model for information retrieval. In in Proceed-
ings International Conference on Information and
Knowledge Management.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in opus. In LREC. volume 2012, pages 2214–
2218.

Yuk Wah Wong and Raymond J. Mooney. 2006. Learn-
ing for semantic parsing with statistical machine
translation. In Proceedings of HLT-NAACL-2006.
pages 439–446.

Yuk Wah Wong and Raymond J Mooney. 2007a. Gen-
eration by inverting a semantic parser that uses sta-
tistical machine translation. In Proceedings of HLT-
NAACL-2007. pages 172–179.

Yuk Wah Wong and Raymond J. Mooney. 2007b.
Learning synchronous grammars for semantic pars-
ing with lambda calculus. In Proceedings of ACL-
2007. Prague, Czech Republic.

John M Zelle and Raymond J Mooney. 1996. Learn-
ing to parse database queries using inductive logic
programming. In Proceedings of AAAI-1996. pages
1050–1055.

Luke S. Zettlemoyer and Michael Collins. 2009.
Learning context-dependent mappings from sen-
tences to logical form. In Proceedings of ACL-2009.
pages 976–984.

Andreas Zollmann and Ashish Venugopal. 2006. Syn-
tax augmented machine translation via chart pars-
ing. In Proceedings of the Workshop on Statistical
Machine Translation. pages 138–141.

1622

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1623–1633
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1149

Bridging Text and Knowledge by Learning Multi-Prototype Entity
Mention Embedding

Yixin Cao1, Lifu Huang2, Heng Ji2, Xu Chen1, Juanzi Li1∗
1 Tsinghua National Laboratory for Information Science and Technology

Dept. of Computer Science and Technology, Tsinghua University, China 100084
{caoyixin2011,successcx,lijuanzi2008}@gmail.com

2 Dept. of Computer Science, Rensselaer Polytechnic Institute, USA 12180
{huangl7,jih}@rpi.edu

Abstract

Integrating text and knowledge into a uni-
fied semantic space has attracted signifi-
cant research interests recently. However,
the ambiguity in the common space re-
mains a challenge, namely that the same
mention phrase usually refers to various
entities. In this paper, to deal with the
ambiguity of entity mentions, we propose
a novel Multi-Prototype Mention Embed-
ding model, which learns multiple sense
embeddings for each mention by jointly
modeling words from textual contexts and
entities derived from a knowledge base.
In addition, we further design an efficient
language model based approach to disam-
biguate each mention to a specific sense.
In experiments, both qualitative and quan-
titative analysis demonstrate the high qual-
ity of the word, entity and multi-prototype
mention embeddings. Using entity linking
as a study case, we apply our disambigua-
tion method as well as the multi-prototype
mention embeddings on the benchmark
dataset, and achieve state-of-the-art per-
formance.

1 Introduction

Jointly learning text and knowledge representa-
tions in a unified vector space greatly benefits
many Natural Language Processing (NLP) tasks,
such as knowledge graph completion (Han et al.,
2016; Wang and Li, 2016), relation extraction
(Weston et al., 2013), word sense disambiguation
(Mancini et al., 2016), entity classification (Huang
et al., 2017) and linking (Huang et al., 2015).

Existing work can be roughly divided into two
categories. One is encoding words and entities
into a unified vector space using Deep Neural

∗Corresponding author.

Networks (DNN). These methods suffer from the
problems of expensive training and great limita-
tions on the size of word and entity vocabulary
(Han et al., 2016; Toutanova et al., 2015; Wu et al.,
2016). The other is to learn word and entity em-
beddings separately, and then align similar words
and entities into a common space with the help of
Wikipedia hyperlinks, so that they share similar
representations (Wang et al., 2014; Yamada et al.,
2016).

m1

m1

m2

… action film ''Independence
Day'', the United States military

uses alien technology…
… holds annual Independence

Day celebrations and other
festivals …

… bands played it during
public events, such as July 4th

celebrations.
Text

d1

d2

d3

Independence Day (film)

Independence Day (US)

Entity

e2

e1

Knowledge Base

Independence Day
July 4th

Mention

m2
m1

Figure 1: Examples.

However, there are two major problems arising
from directly integrating word and entity embed-
dings into a unified semantic space. First, men-
tion phrases are highly ambiguous and can refer to
multiple entities in the common space. As shown
in Figure 1, the same mention independence day
(m1) can either refer to a holiday: Independence
Day (US) or a film: Independence Day (film). Sec-
ond, an entity often has various aliases when men-
tioned in various contexts, which implies a much
larger size of mention vocabulary compared with
entities. For example, in Figure 1, the documents
d2 and d3 describes the same entity Independence
Day (US) (e2) with distinct mentions: indepen-
dence day and July 4th. We observe tens of mil-
lions of mentions referring to 5 millions of entities
in Wikipedia.

To address these issues, we propose to learn
multiple embeddings for mentions inspired by
the Word Sense Disambiguation (WSD) task
(Reisinger and Mooney, 2010; Huang et al., 2012;

1623

https://doi.org/10.18653/v1/P17-1149

Tian et al., 2014; Neelakantan et al., 2014; Li and
Jurafsky, 2015). The basic idea behind it is to con-
sider entities in KBs that can provide a meaning
repository of mentions (i.e. words or phrases) in
texts. That is, each mention has one or multiple
meanings, namely mention senses, and each sense
corresponds to an entity. Furthermore, we assume
that different mentions referring to the same en-
tity express the same meaning and share a com-
mon mention sense embedding, which largely re-
duces the size of mention vocabulary to be learned.
For example, the mentions Independence Day in
d2 and July 4th in d3 have a common mention
sense embedding during training since they refer
to the same holiday. Thus, text and knowledge are
bridged via mention sense.

In this paper, we propose a novel Multi-
Prototype Mention Embedding (MPME) model,
which jointly learns the representations of words,
entities, and mentions at sense level. Different
mention senses are distinguished by taking ad-
vantage of both textual context information and
knowledge of reference entities. Following the
frameworks in (Wang et al., 2014; Yamada et al.,
2016), we use separate models to learn the rep-
resentations for words, entities and mentions, and
further align them by a unified optimization ob-
jective. Extending from skip-gram model and
CBOW model, our model can be trained effi-
ciently (Mikolov et al., 2013a,b) from a large
scale corpus. In addition, we also design a lan-
guage model based approach to determine the
sense for each mention in a document based on
multi-prototype mention embeddings.

For evaluation, we first provide qualitative anal-
ysis to verify the effectiveness of MPME to bridge
text and knowledge representations at the sense
level. Then, separate tasks for words and enti-
ties show improvements by using our word, en-
tity and mention representations. Finally, using
entity linking as a case study, experimental results
on the benchmark dataset demonstrate the effec-
tiveness of our embedding model as well as the
disambiguation method.

2 Preliminaries

In this section, we formally define the input and
output of multi-prototype mention embedding.

A knowledge baseKB contains a set of entities
E = {ej}, and their relations. We use Wikipedia
as the given knowledge base, and organize it as a

directed knowledge network: nodes denote enti-
ties, and edges are outlinks from Wikipedia pages.
In the directed network, we define the entities that
point to ej as its neighborsN (ej), but ignore those
entities that ej points to, so that the repeated com-
putations on the same edge would be avoided if
edges were undirected.

A text corpus D is a set of sequential words
D = {w1, · · · , wi, · · · , w|D|}, where wi is the ith
word and |D| is the length of the word sequence.
Since an entity mention ml may consist of mul-
tiple words, we define an annotated text corpus1

as D′ = {x1, · · · , xi, · · · , x|D′|}, where xi cor-
responds to either a word wi or a mention ml.
We define the words around xi within a predefined
window as its context words C(xi).

An Anchor is a Wikipedia hyperlink from a
mention ml linking to its entity ej , and is repre-
sented as a pair< mh, ej >∈ A. The anchors pro-
vide mention boundaries as well as their reference
entities from Wikipedia articles. These Wikipedia
articles are used as an annotated text corpus D′ in
this paper.

Multi-Prototype Mention Embedding . Given
a KB, an annotated text corpus D′ and a set of
anchors A, we aim to learn multi-prototype men-
tion embedding, namely multiple sense embed-
dings sj

l ∈ Rk for each mention ml as well as
word embeddings w and entity embeddings e. We
useM∗l = {slj} to denote the sense set of mention
ml, where each slj refers to an entity ej . Thus,
the vocabulary size is reduced to a fixed number
|{s∗j}| = |E|. We use s∗j to denote the shared sense
of mentions referring to entity ej .
Example As shown in Figure 1, Independence
Day (m1) has two mention senses s11, s

1
2, and July

4th (m2) has one mention sense s22. Based on the
assumption in Section 1, we have s∗2 = s12 = s22
referring to entity Independence Day (US) (e2).

3 An Overview of Our Method

Given a knowledge base KB, an annotated text
corpusD′ and a set of anchorsA, we aim to jointly
learn word, entity and mention sense representa-
tions: w, e, s.

As shown in Figure 2, our framework contains
two key components:

1Generally, the mention boundary can be obtained by
using NER tools like Standford NER (Finkel et al., 2005).
In this paper, we use Wikipedia anchors as annotations of
Wikipedia text corpus for the concentration of our main pur-
pose.

1624

Representation Learning

Entity Representation Learning

Text Representation Learning

bands played it
during public events,

such as
[[Independence Day

(US)|July 4th]]
celebrations

… In the 1996 action film [[Independence Day
(film)|Independence Day]], the United States

military uses alien technology captured …

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

computing similarity between word and mention
embeddings referring to that entity.

3 Method

In this section, we present three main components
in MPME: text model, knowledge model and joint
model, and then introduce the detailed information
on training process. Finally, we briefly introduce
the framework for entity linking.

3.1 Skip-gram model
capable of iterative learning; capable of learning
more mention names; capable of tuning mention
sense via text model; capable of NIL sense; 1. take
pre-trained word and entity embeddings as input;
2. collect mention name to entity title mapping;
use anchor to annotate each mention. each men-
tion corresponds multiple sense; each sense relates
to one entity title. 3. given the context and the
mention’s sense, predict the entity; got entity title
embedding. 4. each title has multiple vector, each
corresponds to a different entity. maintain the con-
text cluster; the cluster role. 5. text model again,
use context to predict mention sense, to predict the
context; also can predict a new sense, called NIL
in EL tasks, future work.

3.2 Text model

Lw =

TX

t=1

log P (wt+j |wm
t , si)P (si|wcontext)

+

TX

t=1

X

�cjc,j 6=0

log P (wt+j |wt)

(1)

DX CX
P (wt+j |wm

t , si)P (si|wm
t , wcontext)

3.3 Knowledge model
KBX NX

P (eneighbor|ei)

3.4 Joint model
AX

P (ej |wm
t , si) + P (ej |wcontext)

eIndependence Day (film)

eIndependence Day (US)

wm1
Independence Day

wm2
Independence Day

3.5 Training

3.6 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation

4.2 Baseline Methods

1. directly align words with entity.
2. align mention with entity using single proto-

type model.

4.3 Parameter Setting

4.4 Text Evaluation

4.5 Entity Evaluation

4.6 EL evaluation

5 Related Work

6 Conclusion

References
Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.

Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

Hongzhao Huang, Larry Heck, and Heng Ji. 2015.
Leveraging deep neural networks and knowl-
edge graphs for entity disambiguation. CoRR,
abs/1504.07678.

Massimiliano Mancini, José Camacho-Collados, Igna-
cio Iacobacci, and Roberto Navigli. 2016. Embed-
ding words and senses together via joint knowledge-
enhanced training. CoRR, abs/1612.02703.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Christopher J. C. Burges, Léon Bot-
tou, Zoubin Ghahramani, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural In-
formation Processing Systems 2013. Proceedings of
a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States., pages 3111–3119.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Pallavi
Choudhury, and Michael Gamon. 2015. Represent-
ing text for joint embedding of text and knowledge
bases. ACL Association for Computational Linguis-
tics.

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

computing similarity between word and mention
embeddings referring to that entity.

3 Method

In this section, we present three main components
in MPME: text model, knowledge model and joint
model, and then introduce the detailed information
on training process. Finally, we briefly introduce
the framework for entity linking.

3.1 Skip-gram model
capable of iterative learning; capable of learning
more mention names; capable of tuning mention
sense via text model; capable of NIL sense; 1. take
pre-trained word and entity embeddings as input;
2. collect mention name to entity title mapping;
use anchor to annotate each mention. each men-
tion corresponds multiple sense; each sense relates
to one entity title. 3. given the context and the
mention’s sense, predict the entity; got entity title
embedding. 4. each title has multiple vector, each
corresponds to a different entity. maintain the con-
text cluster; the cluster role. 5. text model again,
use context to predict mention sense, to predict the
context; also can predict a new sense, called NIL
in EL tasks, future work.

3.2 Text model

Lw =

TX

t=1

log P (wt+j |wm
t , si)P (si|wcontext)

+

TX

t=1

X

�cjc,j 6=0

log P (wt+j |wt)

(1)

DX CX
P (wt+j |wm

t , si)P (si|wm
t , wcontext)

3.3 Knowledge model
KBX NX

P (eneighbor|ei)

3.4 Joint model
AX

P (ej |wm
t , si) + P (ej |wcontext)

eIndependence Day (film)

eIndependence Day (US)

wm1
Independence Day

wm2
Independence Day

3.5 Training

3.6 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation

4.2 Baseline Methods

1. directly align words with entity.
2. align mention with entity using single proto-

type model.

4.3 Parameter Setting

4.4 Text Evaluation

4.5 Entity Evaluation

4.6 EL evaluation

5 Related Work

6 Conclusion

References
Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.

Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

Hongzhao Huang, Larry Heck, and Heng Ji. 2015.
Leveraging deep neural networks and knowl-
edge graphs for entity disambiguation. CoRR,
abs/1504.07678.

Massimiliano Mancini, José Camacho-Collados, Igna-
cio Iacobacci, and Roberto Navigli. 2016. Embed-
ding words and senses together via joint knowledge-
enhanced training. CoRR, abs/1612.02703.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Christopher J. C. Burges, Léon Bot-
tou, Zoubin Ghahramani, and Kilian Q. Weinberger,
editors, Advances in Neural Information Processing
Systems 26: 27th Annual Conference on Neural In-
formation Processing Systems 2013. Proceedings of
a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States., pages 3111–3119.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Pallavi
Choudhury, and Michael Gamon. 2015. Represent-
ing text for joint embedding of text and knowledge
bases. ACL Association for Computational Linguis-
tics.

Anchor

Text 4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

tities by modeling semantic network constructed
from the given knowledge base.

Joint model learns multiple mention embeddings
by maximizing the probability of the mention in
the context referring to target entity.

Text model .

Kg model .

Joint model .
As shown in Figure 3, for each anchor ai =

(mj , ek), we firstly replace the mention name
with entity title m⇤t via pre-defined mapping rules.
Given KB, D and the mapped anchors A, we it-
eratively train the three models until convergence
using a joint optimization objective, which will be
introduced later.

Though following the basic components of
three models in (Wang et al., 2014; Yamada et al.,
2016), MPME designs different structure in text
model and joint model to combine text and knowl-
edge in phrase level via multi-prototype mention
embedding, rather than aligning between single-
prototype word embeddings and entity embed-
dings. Actually, MPME is flexible to utilize pre-
trained entity embeddings from arbitrary knowl-
edge representation model, and enjoys their ad-
vantages of different aspects in knowledge bases2.
This is reasonable because we output two sepa-
rately semantic vector spaces for text and knowl-
edge respectively, while we can still obtain the re-
latedness between word and entity indirectly by
computing similarity between word and mention
embeddings referring to that entity.

3 Method

In this section, we present three main components
in MPME: text model, knowledge model and joint
model, and then introduce the detailed information
on training process. Finally, we briefly introduce
the framework for entity linking.

3.1 Skip-gram model
capable of iterative learning; capable of learning
more mention names; capable of tuning mention
sense via text model; capable of NIL sense; 1. take
pre-trained word and entity embeddings as input;
2. collect mention name to entity title mapping;
use anchor to annotate each mention. each men-
tion corresponds multiple sense; each sense relates

2Thus, MPME only trains text model and joint model.

to one entity title. 3. given the context and the
mention’s sense, predict the entity; got entity title
embedding. 4. each title has multiple vector, each
corresponds to a different entity. maintain the con-
text cluster; the cluster role. 5. text model again,
use context to predict mention sense, to predict the
context; also can predict a new sense, called NIL
in EL tasks, future work.

3.2 Text model

Lw =

TX

t=1

log P (wt+j |wm
t , si)P (si|wcontext)

+
TX

t=1

X

�cjc,j 6=0

log P (wt+j |wt)

(1)

DX CX
P (wt+j |wm

t , si)P (si|wm
t , wcontext)

3.3 Knowledge model

KBX NX
P (eneighbor|ei)

3.4 Joint model

AX
P (ej |wm

t , si) + P (ej |wcontext)

eIndependence Day (film)

eIndependence Day (US)

wm1
Independence Day

wm2
Independence Day

wfilm

wcelebrations

wm
Memorial Day

4

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

tities by modeling semantic network constructed
from the given knowledge base.

Joint model learns multiple mention embeddings
by maximizing the probability of the mention in
the context referring to target entity.

Text model .

Kg model .

Joint model .
As shown in Figure 3, for each anchor ai =

(mj , ek), we firstly replace the mention name
with entity title m⇤t via pre-defined mapping rules.
Given KB, D and the mapped anchors A, we it-
eratively train the three models until convergence
using a joint optimization objective, which will be
introduced later.

Though following the basic components of
three models in (Wang et al., 2014; Yamada et al.,
2016), MPME designs different structure in text
model and joint model to combine text and knowl-
edge in phrase level via multi-prototype mention
embedding, rather than aligning between single-
prototype word embeddings and entity embed-
dings. Actually, MPME is flexible to utilize pre-
trained entity embeddings from arbitrary knowl-
edge representation model, and enjoys their ad-
vantages of different aspects in knowledge bases2.
This is reasonable because we output two sepa-
rately semantic vector spaces for text and knowl-
edge respectively, while we can still obtain the re-
latedness between word and entity indirectly by
computing similarity between word and mention
embeddings referring to that entity.

3 Method

In this section, we present three main components
in MPME: text model, knowledge model and joint
model, and then introduce the detailed information
on training process. Finally, we briefly introduce
the framework for entity linking.

3.1 Skip-gram model
capable of iterative learning; capable of learning
more mention names; capable of tuning mention
sense via text model; capable of NIL sense; 1. take
pre-trained word and entity embeddings as input;
2. collect mention name to entity title mapping;
use anchor to annotate each mention. each men-
tion corresponds multiple sense; each sense relates

2Thus, MPME only trains text model and joint model.

to one entity title. 3. given the context and the
mention’s sense, predict the entity; got entity title
embedding. 4. each title has multiple vector, each
corresponds to a different entity. maintain the con-
text cluster; the cluster role. 5. text model again,
use context to predict mention sense, to predict the
context; also can predict a new sense, called NIL
in EL tasks, future work.

3.2 Text model

Lw =
TX

t=1

log P (wt+j |wm
t , si)P (si|wcontext)

+
TX

t=1

X

�cjc,j 6=0

log P (wt+j |wt)

(1)

DX CX
P (wt+j |wm

t , si)P (si|wm
t , wcontext)

3.3 Knowledge model

KBX NX
P (eneighbor|ei)

3.4 Joint model

AX
P (ej |wm

t , si) + P (ej |wcontext)

eIndependence Day (film)

eIndependence Day (US)

wm1
Independence Day

wm2
Independence Day

wfilm

wcelebrations

wm
Memorial Day

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2 Skip-gram model

g(Independence Day,)

P (N (ej)|ej)

P (ej |C(mh), tsl)

P (C(wi)|wi)P (C(mh)|tsl , mh)

3.3 Text model

Lw =
TX

t=1

log P (wt+j |wm
t , si)P (si|wcontext)

+
TX

t=1

X

�cjc,j 6=0

log P (wt+j |wt)

(1)

DX CX
P (wt+j |wm

t , si)P (si|wm
t , wcontext)

3.4 Knowledge model
KBX NX

P (eneighbor|ei)

3.5 Joint model
AX

P (ej |wm
t , si) + P (ej |wcontext)

3.6 Training

3.7 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation

4.2 Baseline Methods

1. directly align words with entity.
2. align mention with entity using single proto-

type model.

4.3 Parameter Setting

4.4 Qualitative Analysis

4.5 Entity Relatedness

4.6 Word Analogy

4.7 EL evaluation

5 Related Work

6 Conclusion

References
Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-

Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Burges et al. (Burges et al., 2013),
pages 2787–2795.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

Hongzhao Huang, Larry Heck, and Heng Ji. 2015.
Leveraging deep neural networks and knowl-
edge graphs for entity disambiguation. CoRR,
abs/1504.07678.

Massimiliano Mancini, José Camacho-Collados, Igna-
cio Iacobacci, and Roberto Navigli. 2016. Embed-
ding words and senses together via joint knowledge-
enhanced training. CoRR, abs/1612.02703.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Burges et al. (Burges et al., 2013),
pages 3111–3119.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Pallavi
Choudhury, and Michael Gamon. 2015. Represent-
ing text for joint embedding of text and knowledge
bases. ACL Association for Computational Linguis-
tics.

Zhigang Wang and Juan-Zi Li. 2016. Text-enhanced
representation learning for knowledge graph. In
Subbarao Kambhampati, editor, Proceedings of the
Twenty-Fifth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, pages 1293–1299. IJCAI/AAAI
Press.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph and text jointly em-
bedding. In Alessandro Moschitti, Bo Pang, and
Walter Daelemans, editors, Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2014, October 25-29,
2014, Doha, Qatar, A meeting of SIGDAT, a Special
Interest Group of the ACL, pages 1591–1601. ACL.

Jason Weston, Antoine Bordes, Oksana Yakhnenko,
and Nicolas Usunier. 2013. Connecting language
and knowledge bases with embedding models for re-
lation extraction. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2013, 18-21 October 2013,
Grand Hyatt Seattle, Seattle, Washington, USA, A
meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1366–1371. ACL.

Independence  
Day (US)

United 
States

Fireworks

Independence  
Day (film)

Memorial 
Day

Celebrations

Ob
se

rv
ed

 b
y

Public holidays in
the United States

category

Will 
Smith

st
ar

rin
g

Philadelphia

bo
rn country

inlink

outlin
k inlink

Knowledge Base

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2 Skip-gram model

g(Independence Day,)

P (N (ej)|ej)

P (ej |C(mh), tsl)

e1

e2

P (C(wi)|wi)

· P (C(mh)|tsl , mh)
(1)

t1
Independence Day

t2
Independence Day

t1
Memorial Day

g(Independence Day,

Independence Day (US)) (2)

g(Independence Day)

g(July 4th)
(3)

3.3 Text model

Lw =
TX

t=1

log P (wt+j |wm
t , si)P (si|wcontext)

+
TX

t=1

X

�cjc,j 6=0

log P (wt+j |wt)

(4)

DX CX
P (wt+j |wm

t , si)P (si|wm
t , wcontext)

3.4 Knowledge model
KBX NX

P (eneighbor|ei)

3.5 Joint model
AX

P (ej |wm
t , si) + P (ej |wcontext)

3.6 Training

3.7 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation

4.2 Baseline Methods

1. directly align words with entity.
2. align mention with entity using single proto-

type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
4.5 Entity Relatedness
4.6 Word Analogy
4.7 EL evaluation

5 Related Work

6 Conclusion

References
Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-

Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Burges et al. (Burges et al., 2013),
pages 2787–2795.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

Hongzhao Huang, Larry Heck, and Heng Ji. 2015.
Leveraging deep neural networks and knowl-
edge graphs for entity disambiguation. CoRR,
abs/1504.07678.

Massimiliano Mancini, José Camacho-Collados, Igna-
cio Iacobacci, and Roberto Navigli. 2016. Embed-
ding words and senses together via joint knowledge-
enhanced training. CoRR, abs/1612.02703.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Burges et al. (Burges et al., 2013),
pages 3111–3119.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Pallavi
Choudhury, and Michael Gamon. 2015. Represent-
ing text for joint embedding of text and knowledge
bases. ACL Association for Computational Linguis-
tics.

Zhigang Wang and Juan-Zi Li. 2016. Text-enhanced
representation learning for knowledge graph. In
Subbarao Kambhampati, editor, Proceedings of the
Twenty-Fifth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, pages 1293–1299. IJCAI/AAAI
Press.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2 Skip-gram model

g(Independence Day,)

P (N (ej)|ej)

P (ej |C(mh), tsl)

e1

e2

P (C(wi)|wi)

· P (C(mh)|tsl , mh)
(1)

t1
Independence Day

t2
Independence Day

t1
Memorial Day

g(Independence Day,

Independence Day (US)) (2)

g(Independence Day)

g(July 4th)
(3)

3.3 Text model

Lw =
TX

t=1

log P (wt+j |wm
t , si)P (si|wcontext)

+
TX

t=1

X

�cjc,j 6=0

log P (wt+j |wt)

(4)

DX CX
P (wt+j |wm

t , si)P (si|wm
t , wcontext)

3.4 Knowledge model
KBX NX

P (eneighbor|ei)

3.5 Joint model
AX

P (ej |wm
t , si) + P (ej |wcontext)

3.6 Training

3.7 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation

4.2 Baseline Methods

1. directly align words with entity.
2. align mention with entity using single proto-

type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
4.5 Entity Relatedness
4.6 Word Analogy
4.7 EL evaluation

5 Related Work

6 Conclusion

References
Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-

Durán, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In Burges et al. (Burges et al., 2013),
pages 2787–2795.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

Hongzhao Huang, Larry Heck, and Heng Ji. 2015.
Leveraging deep neural networks and knowl-
edge graphs for entity disambiguation. CoRR,
abs/1504.07678.

Massimiliano Mancini, José Camacho-Collados, Igna-
cio Iacobacci, and Roberto Navigli. 2016. Embed-
ding words and senses together via joint knowledge-
enhanced training. CoRR, abs/1612.02703.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In Burges et al. (Burges et al., 2013),
pages 3111–3119.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Pallavi
Choudhury, and Michael Gamon. 2015. Represent-
ing text for joint embedding of text and knowledge
bases. ACL Association for Computational Linguis-
tics.

Zhigang Wang and Juan-Zi Li. 2016. Text-enhanced
representation learning for knowledge graph. In
Subbarao Kambhampati, editor, Proceedings of the
Twenty-Fifth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2016, New York, NY, USA,
9-15 July 2016, pages 1293–1299. IJCAI/AAAI
Press.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

wi/tsl , , , w, , ej , e (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

C(·) (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

C(·) (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

C(·) (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

Mention Representation Learning

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

wi/tsl , , , w, , ej , e (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

C(·) (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

C(·) (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

C(·) (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

N (·) (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

N (·) (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

N (·) (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

played it during public
events, such as 

[[]]
celebrations

Mention Sense
Mapping

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

3.2.3 Text Representation Learning
Given the annotated text corpus, we learn word
and mention representations simultaneously by us-
ing a multi-prototype embedding model. Partic-
ularly, each word has a unique vector, and each
mention has multiple sense vectors including two
kinds of mention senses: entity-centric sense and
out-of-KB sense.

Based on the fixed number of entity-centric
senses (Section 3.1), we further learn a varying
number of out-of-KB senses for each entity title.
When encounter an mention of entity title tl, in-
spired by the idea of word sense disambiguation
(WSD) task, we use the context information to
distinguish existing mention senses, or create a
new out-of-KB sense. To be concrete, each men-
tion sense has an embedding (sense vector) tsl and
a context cluster with center µ(tsl). The repre-
sentation of the context is defined as the aver-
age of the word vectors in the context: C(wi) =

1
|C(wi)|

P
wj2C(wi)

wj.
We predict tsl , the sense of entity title tl in the

mention < tl, C(tl) >, when observed with con-
text C(tl) as the context cluster membership. For-
mally, we have:

tsl =

⇢
ts+1
l tmax

l < �
tmax
l otherwise

(5)

where � is a hyper-parameter and tmax
l =

argmaxtsl
sim(µ(tsl), C(tl)). We adopt an online

non-parametric clustering procedure to learn out-
of-KB mention senses, which means that if the
nearest distance of the context vector to sense clus-
ter center is larger than a threshold, we create a
new context cluster and a new sense vector that
doesn’t belong to any entity-centric senses. The
cluster center is the average of all the context vec-
tors belonging to that cluster. For the similarity
metric, we use cosine in our experiments.

Here, we extend Skip-gram model to learn word
embeddings as well as mention sense embeddings
by the following objective to maximize the proba-
bility of observing the context words given either
a word wi or a mention sense of entity title tsl :

Lw =
X

wi,tl2D
P (C(wi)|wi) + P (C(tl)|tl, tsl)

(6)

g(July 4th, e1) (7)

3.2.4 Entity-centric Sense Representation
Learning
Lm =

X

(mh,ej)2A
P (ej |C(mh), tsl) (8)

3.2.5 Jointly Training
3.3 Integrating into GBDT for EL

4 Experiment

4.1 Data Preparation
4.2 Baseline Methods
1. directly align words with entity.

2. align mention with entity using single proto-
type model.

4.3 Parameter Setting
4.4 Qualitative Analysis
before conducting the experiments on the tasks,
we first give qualitative analysis of words, men-
tions and entities.

firstly, we give the phrase embedding by its
nearest words and entities.

next, we give quantitative analysis on several
tasks.

4.5 Entity Relatedness
4.6 Word Similarity
4.7 EL evaluation
4.7.1 gbdt
4.7.2 unsupervised
5 Related Work

6 Conclusion

References
Alfred V Aho and Margaret J Corasick. 1975. Effi-

cient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6):333–340.

J-I Aoe. 1989. An efficient digital search algorithm by
using a double-array structure. IEEE Transactions
on Software Engineering, 15(9):1066–1077.

Christopher J. C. Burges, Léon Bottou, Zoubin Ghahra-
mani, and Kilian Q. Weinberger, editors. 2013. Ad-
vances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR,
abs/1611.04125.

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

as well as word embeddings w and entity embed-
dings e. Note that sl

j 2 m⇤l denotes that mention
sense of ml refers to entity ej , where m⇤l repre-
sents the sense set of ml. Different mentions may
share the same mention sense, denoted as s⇤j .
Example As shown in Figure 1, there are two
different mentions “Independence Day” m1 and
“July 4th” m2 in the documents. MPME is to
learn two mention senses s1

1, s
1
2 for m1, and one

mention sense s2
2 for m2. Clearly, these two men-

tions share a common sense in the last two docu-
ments: the United States holiday e2, so we have
s⇤2 = s1

2 = s2
2. Note that w,m, s are naturally em-

bedded into the same semantic space since they
are basic units in texts, and e modeling the graph
structure in KB is actually in another semantic
space.

3 Method

In this section, we firstly describe the framework
of MPME, followed by the detailed information of
each key component. Then, we introduce a well
designed mention sense disambiguation method,
which can also be used for entity linking in a un-
supervised way.

eNational Day

s⇤Independence Day (film), s
⇤
Independence Day (US)

3.1 Framework
Given KB, D and A, we are to jointly learn
word, entity and mention representations: w, e,
m. Serving as basic units in texts, Word {wi}
and entity title {tl} are naturally embedded into
a unified semantic space, meanwhile entities {ej}
are mapped to one of mention senses of its ti-
tle: tsl . Thus, text and knowledge are com-
bined via the bridge of mentions. We can eas-
ily obtain the similarity between word and en-
tity Similarity(wi, ej) by computing the similar-
ity between word and its corresponding mention
sense: Similarity(wi, f(ej)).

As shown in Figure 2, our proposed MPME
contains four key components: (1) Mention Sense
Mapping: we map the anchor < mh, ej >2 A to
the corresponding mention sense tsl to reduce the
vocabulary to learn. (2) Entity Representation
Learning given a knowledge base KB, we con-
struct a knowledge network among entities, and

learn their embeddings so that similar entities on
the graph have similar representations. (3) Text
Representation Learning given text corpus D as
well as the annotated anchors, we learn word and
entity title embeddings by maximizing the prob-
ability of co-occurring words/entity titles so that
similar words/entity titles have similar represen-
tations. (4) Mention Representation Learning
given annotated anchors tsl :< mh, ej >2 A,
we learn entity title embeddings by incorporating
both contextual words embeddings and entity em-
beddings in order to distinguish different mention
senses that has similar representations to its corre-
sponding entity embeddings.

Representation learning of (2), (3) and (4) uses
an iterative update procedure following a unified
optimization objective. The outputs of word em-
beddings wi and entity embeddings ej keep their
own semantic space and are naturally bridged via
the new learned entity title embeddings tl, which
inspires us to globally optimize the probability of
choosing mention senses of all the phrases of men-
tion names in the given document. Since each
mention sense corresponds to an entity, the men-
tion sense disambiguation process can also be re-
garded as linking entities to knowledge base in a
unsupervised way, which will be detailed in Sec-
tion ??.

3.2 Mention Sense Mapping

There are two kinds of mappings: from entities to
mention senses, and from mention names to men-
tion senses. The former is pre-defined at the very
beginning. Given the knowledge Base KB, we ex-
tract entity titles {tl} and initialize with multiple
mention senses, where the sense number depends
on how many entities share a common title. The
latter is to find possible mention senses for the
given mention name, which is similar to candidate
mention generation in entity linking task.

Conventional candidate mention generation
generally maintains a list of pairs of mention name
and entity that denotes a candidate reference in
knowledge base for the mention name, and recog-
nizes the mention name in text by accurate string
matching. Or it firstly recognizes possible mention
names in texts using NER (Named Entity Recog-
nition) tool, and then approximately retrieves can-
didate entities via an information retrieval method.

Since this component is not key point in this
paper, we adopt the first method to collect a3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

as well as word embeddings w and entity embed-
dings e. Note that sl

j 2 m⇤l denotes that mention
sense of ml refers to entity ej , where m⇤l repre-
sents the sense set of ml. Different mentions may
share the same mention sense, denoted as s⇤j .
Example As shown in Figure 1, there are two
different mentions “Independence Day” m1 and
“July 4th” m2 in the documents. MPME is to
learn two mention senses s1

1, s
1
2 for m1, and one

mention sense s2
2 for m2. Clearly, these two men-

tions share a common sense in the last two docu-
ments: the United States holiday e2, so we have
s⇤2 = s1

2 = s2
2. Note that w,m, s are naturally em-

bedded into the same semantic space since they
are basic units in texts, and e modeling the graph
structure in KB is actually in another semantic
space.

3 Method

In this section, we firstly describe the framework
of MPME, followed by the detailed information of
each key component. Then, we introduce a well
designed mention sense disambiguation method,
which can also be used for entity linking in a un-
supervised way.

eNational Day

s⇤Independence Day (film), s
⇤
Independence Day (US)

3.1 Framework
Given KB, D and A, we are to jointly learn
word, entity and mention representations: w, e,
m. Serving as basic units in texts, Word {wi}
and entity title {tl} are naturally embedded into
a unified semantic space, meanwhile entities {ej}
are mapped to one of mention senses of its ti-
tle: tsl . Thus, text and knowledge are com-
bined via the bridge of mentions. We can eas-
ily obtain the similarity between word and en-
tity Similarity(wi, ej) by computing the similar-
ity between word and its corresponding mention
sense: Similarity(wi, f(ej)).

As shown in Figure 2, our proposed MPME
contains four key components: (1) Mention Sense
Mapping: we map the anchor < mh, ej >2 A to
the corresponding mention sense tsl to reduce the
vocabulary to learn. (2) Entity Representation
Learning given a knowledge base KB, we con-
struct a knowledge network among entities, and

learn their embeddings so that similar entities on
the graph have similar representations. (3) Text
Representation Learning given text corpus D as
well as the annotated anchors, we learn word and
entity title embeddings by maximizing the prob-
ability of co-occurring words/entity titles so that
similar words/entity titles have similar represen-
tations. (4) Mention Representation Learning
given annotated anchors tsl :< mh, ej >2 A,
we learn entity title embeddings by incorporating
both contextual words embeddings and entity em-
beddings in order to distinguish different mention
senses that has similar representations to its corre-
sponding entity embeddings.

Representation learning of (2), (3) and (4) uses
an iterative update procedure following a unified
optimization objective. The outputs of word em-
beddings wi and entity embeddings ej keep their
own semantic space and are naturally bridged via
the new learned entity title embeddings tl, which
inspires us to globally optimize the probability of
choosing mention senses of all the phrases of men-
tion names in the given document. Since each
mention sense corresponds to an entity, the men-
tion sense disambiguation process can also be re-
garded as linking entities to knowledge base in a
unsupervised way, which will be detailed in Sec-
tion ??.

3.2 Mention Sense Mapping

There are two kinds of mappings: from entities to
mention senses, and from mention names to men-
tion senses. The former is pre-defined at the very
beginning. Given the knowledge Base KB, we ex-
tract entity titles {tl} and initialize with multiple
mention senses, where the sense number depends
on how many entities share a common title. The
latter is to find possible mention senses for the
given mention name, which is similar to candidate
mention generation in entity linking task.

Conventional candidate mention generation
generally maintains a list of pairs of mention name
and entity that denotes a candidate reference in
knowledge base for the mention name, and recog-
nizes the mention name in text by accurate string
matching. Or it firstly recognizes possible mention
names in texts using NER (Named Entity Recog-
nition) tool, and then approximately retrieves can-
didate entities via an information retrieval method.

Since this component is not key point in this
paper, we adopt the first method to collect a

outlink

Observed by

category

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

KB, a text corpus D and a set of anchors A, multi-
prototype mention embedding is to learn multiple
sense embeddings sj

l 2 Rk for each mention ml

as well as word embeddings w and entity embed-
dings e. Note that sl

j 2 m⇤l denotes that mention
sense of ml refers to entity ej , where m⇤l repre-
sents the sense set of ml. Different mentions may
share the same mention sense, denoted as s⇤j .
Example As shown in Figure 1, there are two
different mentions “Independence Day” m1 and
“July 4th” m2 in the documents. MPME is to
learn two mention senses s1

1, s
1
2 for m1, and one

mention sense s2
2 for m2. Clearly, these two men-

tions share a common sense in the last two docu-
ments: the United States holiday e2, so we have
s⇤2 = s1

2 = s2
2. Note that w,m, s are naturally em-

bedded into the same semantic space since they
are basic units in texts, and e modeling the graph
structure in KB is actually in another semantic
space.

3 Method

In this section, we firstly describe the framework
of MPME, followed by the detailed information of
each key component. Then, we introduce a well
designed mention sense disambiguation method,
which can also be used for entity linking in a un-
supervised way.

3.1 Framework

Given knowledge base KB, text corpus D and a set
of anchors A, we are to jointly learn word, entity
and mention representations: w, e, m. As shown
in Figure 2, our proposed MPME contains four
key components: (1) Mention Sense Mapping:
given an anchor < ml, ej >, we map it to the cor-
responding mention sense to reduce the mention
vocabulary to learn embeddings. If only a men-
tion is given, we map it to several mention senses
that requires disambiguation (Section 3.4). (2)
Entity Representation Learning based on out-
links in Wikipedia pages, we construct a knowl-
edge network to represent the semantic relatedness
among entities. And then learn entity embeddings
so that similar entities on the graph have simi-
lar representations. (3) Mention Representation
Learning given mapped anchors in contexts, we
learn mention sense embeddings by incorporating
both textual context embeddings and entity em-
beddings. (4) Text Representation Learning we
extend skip-gram model to simultaneously learn

word and mention sense embeddings on annotated
text corpus D0. Following (Yamada et al., 2016),
we use wikipedia articles as text corpus, and the
anchors provide annotated mentions1.

We jointly train (2), (3) and (4) by using a uni-
fied optimization objective. The outputs embed-
dings of word and mention are naturally in the
same semantic space since they are different units
in annotated text corpus D0 for text representation
learning. Entity embeddings keep their own se-
mantics in another vector space, because we only
use them as answers to predict in mention repre-
sentation learning by extending Continuous BOW
model, which will be further discussed in Section
??.

s⇤Memorial Day

word embeddings wi and entity embeddings ej

keep their own semantic space and are naturally
bridged via the new learned entity title embed-
dings tl, which inspires us to globally optimize
the probability of choosing mention senses of all
the phrases of mention names in the given docu-
ment. Since each mention sense corresponds to an
entity, the mention sense disambiguation process
can also be regarded as linking entities to knowl-
edge base in a unsupervised way, which will be
detailed in Section ??.

3.2 Mention Sense Mapping

There are two kinds of mappings: from entities to
mention senses, and from mention names to men-
tion senses. The former is pre-defined at the very
beginning. Given the knowledge Base KB, we ex-
tract entity titles {tl} and initialize with multiple
mention senses, where the sense number depends
on how many entities share a common title. The
latter is to find possible mention senses for the
given mention name, which is similar to candidate
mention generation in entity linking task.

Conventional candidate mention generation
generally maintains a list of pairs of mention name
and entity that denotes a candidate reference in
knowledge base for the mention name, and recog-
nizes the mention name in text by accurate string

1We can also annotate text corpus by using NER tool like
python nltk to recognize mentions, and disambiguating its
mapped mention senses as described in Section 3.4. This is
an ongoing work with the goal of learning additional out-of-
KB senses by self-training. In this paper, we will focus on
the effectiveness of our model and the quality of three kinds
of learned embeddings.

3

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

ACL 2016 Submission ***. Confidential review copy. DO NOT DISTRIBUTE.

KB, a text corpus D and a set of anchors A, multi-
prototype mention embedding is to learn multiple
sense embeddings sj

l 2 Rk for each mention ml

as well as word embeddings w and entity embed-
dings e. Note that sl

j 2 m⇤l denotes that mention
sense of ml refers to entity ej , where m⇤l repre-
sents the sense set of ml. Different mentions may
share the same mention sense, denoted as s⇤j .
Example As shown in Figure 1, there are two
different mentions “Independence Day” m1 and
“July 4th” m2 in the documents. MPME is to
learn two mention senses s1

1, s
1
2 for m1, and one

mention sense s2
2 for m2. Clearly, these two men-

tions share a common sense in the last two docu-
ments: the United States holiday e2, so we have
s⇤2 = s1

2 = s2
2. Note that w,m, s are naturally em-

bedded into the same semantic space since they
are basic units in texts, and e modeling the graph
structure in KB is actually in another semantic
space.

3 Method

In this section, we firstly describe the framework
of MPME, followed by the detailed information of
each key component. Then, we introduce a well
designed mention sense disambiguation method,
which can also be used for entity linking in a un-
supervised way.

3.1 Framework

Given knowledge base KB, text corpus D and a set
of anchors A, we are to jointly learn word, entity
and mention representations: w, e, m. As shown
in Figure 2, our proposed MPME contains four
key components: (1) Mention Sense Mapping:
given an anchor < ml, ej >, we map it to the cor-
responding mention sense to reduce the mention
vocabulary to learn embeddings. If only a men-
tion is given, we map it to several mention senses
that requires disambiguation (Section 3.4). (2)
Entity Representation Learning based on out-
links in Wikipedia pages, we construct a knowl-
edge network to represent the semantic relatedness
among entities. And then learn entity embeddings
so that similar entities on the graph have simi-
lar representations. (3) Mention Representation
Learning given mapped anchors in contexts, we
learn mention sense embeddings by incorporating
both textual context embeddings and entity em-
beddings. (4) Text Representation Learning we
extend skip-gram model to simultaneously learn

word and mention sense embeddings on annotated
text corpus D0. Following (Yamada et al., 2016),
we use wikipedia articles as text corpus, and the
anchors provide annotated mentions1.

We jointly train (2), (3) and (4) by using a uni-
fied optimization objective. The outputs embed-
dings of word and mention are naturally in the
same semantic space since they are different units
in annotated text corpus D0 for text representation
learning. Entity embeddings keep their own se-
mantics in another vector space, because we only
use them as answers to predict in mention repre-
sentation learning by extending Continuous BOW
model, which will be further discussed in Section
3.3.4.

Figure 2 shows a real example of “”
eMemorial Day

word embeddings wi and entity embeddings ej

keep their own semantic space and are naturally
bridged via the new learned entity title embed-
dings tl, which inspires us to globally optimize
the probability of choosing mention senses of all
the phrases of mention names in the given docu-
ment. Since each mention sense corresponds to an
entity, the mention sense disambiguation process
can also be regarded as linking entities to knowl-
edge base in a unsupervised way, which will be
detailed in Section ??.

3.2 Mention Sense Mapping
There are two kinds of mappings: from entities to
mention senses, and from mention names to men-
tion senses. The former is pre-defined at the very
beginning. Given the knowledge Base KB, we ex-
tract entity titles {tl} and initialize with multiple
mention senses, where the sense number depends
on how many entities share a common title. The
latter is to find possible mention senses for the
given mention name, which is similar to candidate
mention generation in entity linking task.

Conventional candidate mention generation
generally maintains a list of pairs of mention name
and entity that denotes a candidate reference in
knowledge base for the mention name, and recog-
nizes the mention name in text by accurate string
matching. Or it firstly recognizes possible mention

1We can also annotate text corpus by using NER tool like
python nltk to recognize mentions, and disambiguating its
mapped mention senses as described in Section 3.4. This is
an ongoing work with the goal of learning additional out-of-
KB senses by self-training. In this paper, we will focus on
the effectiveness of our model and the quality of three kinds
of learned embeddings.

… holds annual [[Independence Day (US)|
Independence Day]] celebrations and other

festivals …

… early Confederate [[Memorial Day]]
celebrations were simple, somber occasions for
veterans and their families to honor the dead …

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

predict the context words by maximizing the fol-
lowing objective function:

Lw =
X

wi,ml2D0
log P (C(wi)|wi)

+ log P (C(ml)|s⇤j)
(6)

where s⇤j = g(< ml, ej >) is obtained from an-
chors in wikipedia articles.

Thus, similar words and mention senses
will be closed in text space, such as wfilm

and s⇤Independence Day (film), or wcelebrations and
s⇤Independence Day (US) because they frequently oc-
cur in the same contexts.

Similar to WDS, we maintain a context cluster
for each mention sense, which can be used for dis-
ambiguation given the contexts (Section 5). For
example, in d1 of Figure 2, the context cluster of
s⇤ consists of all context vectors When encounter-
ing a mention, the context vector

we also maintain a context cluster center µ⇤j
for each mention sense s⇤j , which is computed
by averaging all the context vectors belonging
to the cluster. We define context vector as
the average sum of context word embeddings

1
|C(wi)|

P
wj2C(wi)

wj. The cluster center is help-
ful for inducing mention sense in contexts. When
encounter a mention, we map it to a set of mention
senses, and then find the nearest one according to
the distance from its context vector to each men-
tion sense cluster center, which will be discussed
in Section 5.

d1, d2, d3, s
⇤
j , wi/s⇤j

s⇤Independence Day (US)

P (ej |C(ml), s
⇤
j)

P (C(wi)|wi) · P (C(ml)|s⇤j) (7)

4.5 Joint Training

Considering all the above representation learning
components, we define the overall objective func-
tion as linear combinations:

L = Lw + Le + Lm (8)

The training of MPME is to maximize the above
function, and iteratively update three types of em-
beddings. Also, we use negative sampling tech-
nique for efficiency (Mikolov et al., 2013a).

5 Mention Sense Disambiguation

MPME learns each mention with multiple sense
embeddings, and each sense corresponds to a con-
text cluster. Given an annotated document D0 in-
cluding M mentions, and their sense sets accord-
ing to Section ??: M⇤

l = {sl
j |sl

j 2 g(ml), ml 2
M}. In this section, we describe how to determine
the mention sense for each mention ml in the doc-
ument.

Based on language model, identifying mention
senses in a document can be regarded as maximiz-
ing their joint probability. However, the global op-
timum is expensive, in which each mention gets
an optimum sense, to search over the space of all
mention senses of all mentions in the document.
Thus, we approximately assign each mention in-
dependently:

P (D0, . . . , sl
j , . . . ,)

⇡
Y

P (D0|sl
j) · P (sl

j)

⇡
Y

P (C(ml)|sl
j) · P (N̂ (ml)|sl

j) · P (sl
j)

(9)

where P (C(ml)|sl
j) is proportional to cosine sim-

ilarity between context vector and mention sense
cluster center µl

j to measure the mention’s local
similarity, namely local probability.

N̂ (ml) denotes neighbor mentions of ml co-
occurring in a piece of text (e.g. a document),
and P (N̂ (ml)|sl

j) is defined as global probabil-
ity since it measures global coherence of neighbor
mentions. The underlying idea is to achieve con-
sistent semantics in a piece of text assuming that
all mentions inside it are talking about the same
topic. In this paper, we regard the mention senses
identified first as neighbors of the rest mentions.

P (sl
j) denotes prior probability of a mention

sense occurring in texts proportional to the fre-
quency of corresponding entity in Wikipedia an-
chors:

P (sl
j) = (

|Aej |
|A|)� � 2 [0, 1]

where � is a hyper-parameter to smooth the
gaps between different entity frequencies, namely
smoothing parameter. It controls the importance5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

predict the context words by maximizing the fol-
lowing objective function:

Lw =
X

wi,ml2D0
log P (C(wi)|wi)

+ log P (C(ml)|s⇤j)
(6)

where s⇤j = g(< ml, ej >) is obtained from an-
chors in wikipedia articles.

Thus, similar words and mention senses
will be closed in text space, such as wfilm

and s⇤Independence Day (film), or wcelebrations and
s⇤Independence Day (US) because they frequently oc-
cur in the same contexts.

Similar to WDS, we maintain a context cluster
for each mention sense, which can be used for dis-
ambiguation given the contexts (Section 5). For
example, in d1 of Figure 2, the context cluster of
s⇤ consists of all context vectors When encounter-
ing a mention, the context vector

we also maintain a context cluster center µ⇤j
for each mention sense s⇤j , which is computed
by averaging all the context vectors belonging
to the cluster. We define context vector as
the average sum of context word embeddings

1
|C(wi)|

P
wj2C(wi)

wj. The cluster center is help-
ful for inducing mention sense in contexts. When
encounter a mention, we map it to a set of mention
senses, and then find the nearest one according to
the distance from its context vector to each men-
tion sense cluster center, which will be discussed
in Section 5.

d1, d2, d3, s
⇤
j , wi/s⇤j

s⇤Independence Day (US)

P (ej |C(ml), s
⇤
j)

P (C(wi)|wi) · P (C(ml)|s⇤j) (7)

4.5 Joint Training

Considering all the above representation learning
components, we define the overall objective func-
tion as linear combinations:

L = Lw + Le + Lm (8)

The training of MPME is to maximize the above
function, and iteratively update three types of em-
beddings. Also, we use negative sampling tech-
nique for efficiency (Mikolov et al., 2013a).

5 Mention Sense Disambiguation

MPME learns each mention with multiple sense
embeddings, and each sense corresponds to a con-
text cluster. Given an annotated document D0 in-
cluding M mentions, and their sense sets accord-
ing to Section ??: M⇤

l = {sl
j |sl

j 2 g(ml), ml 2
M}. In this section, we describe how to determine
the mention sense for each mention ml in the doc-
ument.

Based on language model, identifying mention
senses in a document can be regarded as maximiz-
ing their joint probability. However, the global op-
timum is expensive, in which each mention gets
an optimum sense, to search over the space of all
mention senses of all mentions in the document.
Thus, we approximately assign each mention in-
dependently:

P (D0, . . . , sl
j , . . . ,)

⇡
Y

P (D0|sl
j) · P (sl

j)

⇡
Y

P (C(ml)|sl
j) · P (N̂ (ml)|sl

j) · P (sl
j)

(9)

where P (C(ml)|sl
j) is proportional to cosine sim-

ilarity between context vector and mention sense
cluster center µl

j to measure the mention’s local
similarity, namely local probability.

N̂ (ml) denotes neighbor mentions of ml co-
occurring in a piece of text (e.g. a document),
and P (N̂ (ml)|sl

j) is defined as global probabil-
ity since it measures global coherence of neighbor
mentions. The underlying idea is to achieve con-
sistent semantics in a piece of text assuming that
all mentions inside it are talking about the same
topic. In this paper, we regard the mention senses
identified first as neighbors of the rest mentions.

P (sl
j) denotes prior probability of a mention

sense occurring in texts proportional to the fre-
quency of corresponding entity in Wikipedia an-
chors:

P (sl
j) = (

|Aej |
|A|)� � 2 [0, 1]

where � is a hyper-parameter to smooth the
gaps between different entity frequencies, namely
smoothing parameter. It controls the importance

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

predict the context words by maximizing the fol-
lowing objective function:

Lw =
X

wi,ml2D0
log P (C(wi)|wi)

+ log P (C(ml)|s⇤j)
(6)

where s⇤j = g(< ml, ej >) is obtained from an-
chors in wikipedia articles.

Thus, similar words and mention senses
will be closed in text space, such as wfilm

and s⇤Independence Day (film), or wcelebrations and
s⇤Independence Day (US) because they frequently oc-
cur in the same contexts.

Similar to WDS, we maintain a context cluster
for each mention sense, which can be used for dis-
ambiguation given the contexts (Section 5). For
example, in d1 of Figure 2, the context cluster of
s⇤ consists of all context vectors When encounter-
ing a mention, the context vector

we also maintain a context cluster center µ⇤j
for each mention sense s⇤j , which is computed
by averaging all the context vectors belonging
to the cluster. We define context vector as
the average sum of context word embeddings

1
|C(wi)|

P
wj2C(wi)

wj. The cluster center is help-
ful for inducing mention sense in contexts. When
encounter a mention, we map it to a set of mention
senses, and then find the nearest one according to
the distance from its context vector to each men-
tion sense cluster center, which will be discussed
in Section 5.

d1, d2, d3, s
⇤
j , wi/s⇤j

s⇤Independence Day (US)

P (ej |C(ml), s
⇤
j)

P (C(wi)|wi) · P (C(ml)|s⇤j) (7)

4.5 Joint Training

Considering all the above representation learning
components, we define the overall objective func-
tion as linear combinations:

L = Lw + Le + Lm (8)

The training of MPME is to maximize the above
function, and iteratively update three types of em-
beddings. Also, we use negative sampling tech-
nique for efficiency (Mikolov et al., 2013a).

5 Mention Sense Disambiguation

MPME learns each mention with multiple sense
embeddings, and each sense corresponds to a con-
text cluster. Given an annotated document D0 in-
cluding M mentions, and their sense sets accord-
ing to Section ??: M⇤

l = {sl
j |sl

j 2 g(ml), ml 2
M}. In this section, we describe how to determine
the mention sense for each mention ml in the doc-
ument.

Based on language model, identifying mention
senses in a document can be regarded as maximiz-
ing their joint probability. However, the global op-
timum is expensive, in which each mention gets
an optimum sense, to search over the space of all
mention senses of all mentions in the document.
Thus, we approximately assign each mention in-
dependently:

P (D0, . . . , sl
j , . . . ,)

⇡
Y

P (D0|sl
j) · P (sl

j)

⇡
Y

P (C(ml)|sl
j) · P (N̂ (ml)|sl

j) · P (sl
j)

(9)

where P (C(ml)|sl
j) is proportional to cosine sim-

ilarity between context vector and mention sense
cluster center µl

j to measure the mention’s local
similarity, namely local probability.

N̂ (ml) denotes neighbor mentions of ml co-
occurring in a piece of text (e.g. a document),
and P (N̂ (ml)|sl

j) is defined as global probabil-
ity since it measures global coherence of neighbor
mentions. The underlying idea is to achieve con-
sistent semantics in a piece of text assuming that
all mentions inside it are talking about the same
topic. In this paper, we regard the mention senses
identified first as neighbors of the rest mentions.

P (sl
j) denotes prior probability of a mention

sense occurring in texts proportional to the fre-
quency of corresponding entity in Wikipedia an-
chors:

P (sl
j) = (

|Aej |
|A|)� � 2 [0, 1]

where � is a hyper-parameter to smooth the
gaps between different entity frequencies, namely
smoothing parameter. It controls the importance

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

predict the context words by maximizing the fol-
lowing objective function:

Lw =
X

wi,ml2D0
log P (C(wi)|wi)

+ log P (C(ml)|s⇤j)
(6)

where s⇤j = g(< ml, ej >) is obtained from an-
chors in wikipedia articles.

Thus, similar words and mention senses
will be closed in text space, such as wfilm

and s⇤Independence Day (film), or wcelebrations and
s⇤Independence Day (US) because they frequently oc-
cur in the same contexts.

Similar to WDS, we maintain a context cluster
for each mention sense, which can be used for dis-
ambiguation given the contexts (Section 5). For
example, in d1 of Figure 2, the context cluster of
s⇤ consists of all context vectors When encounter-
ing a mention, the context vector

we also maintain a context cluster center µ⇤j
for each mention sense s⇤j , which is computed
by averaging all the context vectors belonging
to the cluster. We define context vector as
the average sum of context word embeddings

1
|C(wi)|

P
wj2C(wi)

wj. The cluster center is help-
ful for inducing mention sense in contexts. When
encounter a mention, we map it to a set of mention
senses, and then find the nearest one according to
the distance from its context vector to each men-
tion sense cluster center, which will be discussed
in Section 5.

d1, d2, d3, s
⇤
j , wi/s⇤j

s⇤Independence Day (US)

P (ej |C(ml), s
⇤
j)

P (C(wi)|wi) · P (C(ml)|s⇤j) (7)

4.5 Joint Training

Considering all the above representation learning
components, we define the overall objective func-
tion as linear combinations:

L = Lw + Le + Lm (8)

The training of MPME is to maximize the above
function, and iteratively update three types of em-
beddings. Also, we use negative sampling tech-
nique for efficiency (Mikolov et al., 2013a).

5 Mention Sense Disambiguation

MPME learns each mention with multiple sense
embeddings, and each sense corresponds to a con-
text cluster. Given an annotated document D0 in-
cluding M mentions, and their sense sets accord-
ing to Section ??: M⇤

l = {sl
j |sl

j 2 g(ml), ml 2
M}. In this section, we describe how to determine
the mention sense for each mention ml in the doc-
ument.

Based on language model, identifying mention
senses in a document can be regarded as maximiz-
ing their joint probability. However, the global op-
timum is expensive, in which each mention gets
an optimum sense, to search over the space of all
mention senses of all mentions in the document.
Thus, we approximately assign each mention in-
dependently:

P (D0, . . . , sl
j , . . . ,)

⇡
Y

P (D0|sl
j) · P (sl

j)

⇡
Y

P (C(ml)|sl
j) · P (N̂ (ml)|sl

j) · P (sl
j)

(9)

where P (C(ml)|sl
j) is proportional to cosine sim-

ilarity between context vector and mention sense
cluster center µl

j to measure the mention’s local
similarity, namely local probability.

N̂ (ml) denotes neighbor mentions of ml co-
occurring in a piece of text (e.g. a document),
and P (N̂ (ml)|sl

j) is defined as global probabil-
ity since it measures global coherence of neighbor
mentions. The underlying idea is to achieve con-
sistent semantics in a piece of text assuming that
all mentions inside it are talking about the same
topic. In this paper, we regard the mention senses
identified first as neighbors of the rest mentions.

P (sl
j) denotes prior probability of a mention

sense occurring in texts proportional to the fre-
quency of corresponding entity in Wikipedia an-
chors:

P (sl
j) = (

|Aej |
|A|)� � 2 [0, 1]

where � is a hyper-parameter to smooth the
gaps between different entity frequencies, namely
smoothing parameter. It controls the importance5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

predict the context words by maximizing the fol-
lowing objective function:

Lw =
X

wi,ml2D0
log P (C(wi)|wi)

+ log P (C(ml)|s⇤j)
(6)

where s⇤j = g(< ml, ej >) is obtained from an-
chors in wikipedia articles.

Thus, similar words and mention senses
will be closed in text space, such as wfilm

and s⇤Independence Day (film), or wcelebrations and
s⇤Independence Day (US) because they frequently oc-
cur in the same contexts.

Similar to WDS, we maintain a context cluster
for each mention sense, which can be used for dis-
ambiguation given the contexts (Section 5). For
example, in d1 of Figure 2, the context cluster of
s⇤ consists of all context vectors When encounter-
ing a mention, the context vector

we also maintain a context cluster center µ⇤j
for each mention sense s⇤j , which is computed
by averaging all the context vectors belonging
to the cluster. We define context vector as
the average sum of context word embeddings

1
|C(wi)|

P
wj2C(wi)

wj. The cluster center is help-
ful for inducing mention sense in contexts. When
encounter a mention, we map it to a set of mention
senses, and then find the nearest one according to
the distance from its context vector to each men-
tion sense cluster center, which will be discussed
in Section 5.

d1, d2, d3, s
⇤
j , wi/s⇤j

s⇤Independence Day (US)

P (ej |C(ml), s
⇤
j)

P (C(wi)|wi) · P (C(ml)|s⇤j) (7)

4.5 Joint Training

Considering all the above representation learning
components, we define the overall objective func-
tion as linear combinations:

L = Lw + Le + Lm (8)

The training of MPME is to maximize the above
function, and iteratively update three types of em-
beddings. Also, we use negative sampling tech-
nique for efficiency (Mikolov et al., 2013a).

5 Mention Sense Disambiguation

MPME learns each mention with multiple sense
embeddings, and each sense corresponds to a con-
text cluster. Given an annotated document D0 in-
cluding M mentions, and their sense sets accord-
ing to Section ??: M⇤

l = {sl
j |sl

j 2 g(ml), ml 2
M}. In this section, we describe how to determine
the mention sense for each mention ml in the doc-
ument.

Based on language model, identifying mention
senses in a document can be regarded as maximiz-
ing their joint probability. However, the global op-
timum is expensive, in which each mention gets
an optimum sense, to search over the space of all
mention senses of all mentions in the document.
Thus, we approximately assign each mention in-
dependently:

P (D0, . . . , sl
j , . . . ,)

⇡
Y

P (D0|sl
j) · P (sl

j)

⇡
Y

P (C(ml)|sl
j) · P (N̂ (ml)|sl

j) · P (sl
j)

(9)

where P (C(ml)|sl
j) is proportional to cosine sim-

ilarity between context vector and mention sense
cluster center µl

j to measure the mention’s local
similarity, namely local probability.

N̂ (ml) denotes neighbor mentions of ml co-
occurring in a piece of text (e.g. a document),
and P (N̂ (ml)|sl

j) is defined as global probabil-
ity since it measures global coherence of neighbor
mentions. The underlying idea is to achieve con-
sistent semantics in a piece of text assuming that
all mentions inside it are talking about the same
topic. In this paper, we regard the mention senses
identified first as neighbors of the rest mentions.

P (sl
j) denotes prior probability of a mention

sense occurring in texts proportional to the fre-
quency of corresponding entity in Wikipedia an-
chors:

P (sl
j) = (

|Aej |
|A|)� � 2 [0, 1]

where � is a hyper-parameter to smooth the
gaps between different entity frequencies, namely
smoothing parameter. It controls the importance

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

predict the context words by maximizing the fol-
lowing objective function:

Lw =
X

wi,ml2D0
log P (C(wi)|wi)

+ log P (C(ml)|s⇤j)
(6)

where s⇤j = g(< ml, ej >) is obtained from an-
chors in wikipedia articles.

Thus, similar words and mention senses
will be closed in text space, such as wfilm

and s⇤Independence Day (film), or wcelebrations and
s⇤Independence Day (US) because they frequently oc-
cur in the same contexts.

Similar to WDS, we maintain a context cluster
for each mention sense, which can be used for dis-
ambiguation given the contexts (Section 5). For
example, in d1 of Figure 2, the context cluster of
s⇤ consists of all context vectors When encounter-
ing a mention, the context vector

we also maintain a context cluster center µ⇤j
for each mention sense s⇤j , which is computed
by averaging all the context vectors belonging
to the cluster. We define context vector as
the average sum of context word embeddings

1
|C(wi)|

P
wj2C(wi)

wj. The cluster center is help-
ful for inducing mention sense in contexts. When
encounter a mention, we map it to a set of mention
senses, and then find the nearest one according to
the distance from its context vector to each men-
tion sense cluster center, which will be discussed
in Section 5.

d1, d2, d3, s
⇤
j , wi/s⇤j

s⇤Independence Day (US)

P (ej |C(ml), s
⇤
j)

P (C(wi)|wi) · P (C(ml)|s⇤j) (7)

4.5 Joint Training

Considering all the above representation learning
components, we define the overall objective func-
tion as linear combinations:

L = Lw + Le + Lm (8)

The training of MPME is to maximize the above
function, and iteratively update three types of em-
beddings. Also, we use negative sampling tech-
nique for efficiency (Mikolov et al., 2013a).

5 Mention Sense Disambiguation

MPME learns each mention with multiple sense
embeddings, and each sense corresponds to a con-
text cluster. Given an annotated document D0 in-
cluding M mentions, and their sense sets accord-
ing to Section ??: M⇤

l = {sl
j |sl

j 2 g(ml), ml 2
M}. In this section, we describe how to determine
the mention sense for each mention ml in the doc-
ument.

Based on language model, identifying mention
senses in a document can be regarded as maximiz-
ing their joint probability. However, the global op-
timum is expensive, in which each mention gets
an optimum sense, to search over the space of all
mention senses of all mentions in the document.
Thus, we approximately assign each mention in-
dependently:

P (D0, . . . , sl
j , . . . ,)

⇡
Y

P (D0|sl
j) · P (sl

j)

⇡
Y

P (C(ml)|sl
j) · P (N̂ (ml)|sl

j) · P (sl
j)

(9)

where P (C(ml)|sl
j) is proportional to cosine sim-

ilarity between context vector and mention sense
cluster center µl

j to measure the mention’s local
similarity, namely local probability.

N̂ (ml) denotes neighbor mentions of ml co-
occurring in a piece of text (e.g. a document),
and P (N̂ (ml)|sl

j) is defined as global probabil-
ity since it measures global coherence of neighbor
mentions. The underlying idea is to achieve con-
sistent semantics in a piece of text assuming that
all mentions inside it are talking about the same
topic. In this paper, we regard the mention senses
identified first as neighbors of the rest mentions.

P (sl
j) denotes prior probability of a mention

sense occurring in texts proportional to the fre-
quency of corresponding entity in Wikipedia an-
chors:

P (sl
j) = (

|Aej |
|A|)� � 2 [0, 1]

where � is a hyper-parameter to smooth the
gaps between different entity frequencies, namely
smoothing parameter. It controls the importance

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

predict the context words by maximizing the fol-
lowing objective function:

Lw =
X

wi,ml2D0
log P (C(wi)|wi)

+ log P (C(ml)|s⇤j)
(6)

where s⇤j = g(< ml, ej >) is obtained from an-
chors in wikipedia articles.

Thus, similar words and mention senses
will be closed in text space, such as wfilm

and s⇤Independence Day (film), or wcelebrations and
s⇤Independence Day (US) because they frequently oc-
cur in the same contexts.

Similar to WDS, we maintain a context cluster
for each mention sense, which can be used for dis-
ambiguation given the contexts (Section 5). For
example, in d1 of Figure 2, the context cluster of
s⇤ consists of all context vectors When encounter-
ing a mention, the context vector

we also maintain a context cluster center µ⇤j
for each mention sense s⇤j , which is computed
by averaging all the context vectors belonging
to the cluster. We define context vector as
the average sum of context word embeddings

1
|C(wi)|

P
wj2C(wi)

wj. The cluster center is help-
ful for inducing mention sense in contexts. When
encounter a mention, we map it to a set of mention
senses, and then find the nearest one according to
the distance from its context vector to each men-
tion sense cluster center, which will be discussed
in Section 5.

d1, d2, d3, s
⇤
j , wi/s⇤j

s⇤Independence Day (US)

P (ej |C(ml), s
⇤
j)

P (C(wi)|wi) · P (C(ml)|s⇤j) (7)

4.5 Joint Training

Considering all the above representation learning
components, we define the overall objective func-
tion as linear combinations:

L = Lw + Le + Lm (8)

The training of MPME is to maximize the above
function, and iteratively update three types of em-
beddings. Also, we use negative sampling tech-
nique for efficiency (Mikolov et al., 2013a).

5 Mention Sense Disambiguation

MPME learns each mention with multiple sense
embeddings, and each sense corresponds to a con-
text cluster. Given an annotated document D0 in-
cluding M mentions, and their sense sets accord-
ing to Section ??: M⇤

l = {sl
j |sl

j 2 g(ml), ml 2
M}. In this section, we describe how to determine
the mention sense for each mention ml in the doc-
ument.

Based on language model, identifying mention
senses in a document can be regarded as maximiz-
ing their joint probability. However, the global op-
timum is expensive, in which each mention gets
an optimum sense, to search over the space of all
mention senses of all mentions in the document.
Thus, we approximately assign each mention in-
dependently:

P (D0, . . . , sl
j , . . . ,)

⇡
Y

P (D0|sl
j) · P (sl

j)

⇡
Y

P (C(ml)|sl
j) · P (N̂ (ml)|sl

j) · P (sl
j)

(9)

where P (C(ml)|sl
j) is proportional to cosine sim-

ilarity between context vector and mention sense
cluster center µl

j to measure the mention’s local
similarity, namely local probability.

N̂ (ml) denotes neighbor mentions of ml co-
occurring in a piece of text (e.g. a document),
and P (N̂ (ml)|sl

j) is defined as global probabil-
ity since it measures global coherence of neighbor
mentions. The underlying idea is to achieve con-
sistent semantics in a piece of text assuming that
all mentions inside it are talking about the same
topic. In this paper, we regard the mention senses
identified first as neighbors of the rest mentions.

P (sl
j) denotes prior probability of a mention

sense occurring in texts proportional to the fre-
quency of corresponding entity in Wikipedia an-
chors:

P (sl
j) = (

|Aej |
|A|)� � 2 [0, 1]

where � is a hyper-parameter to smooth the
gaps between different entity frequencies, namely
smoothing parameter. It controls the importance

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

predict the context words by maximizing the fol-
lowing objective function:

Lw =
X

wi,ml2D0
log P (C(wi)|wi)

+ log P (C(ml)|s⇤j)
(6)

where s⇤j = g(< ml, ej >) is obtained from an-
chors in wikipedia articles.

Thus, similar words and mention senses
will be closed in text space, such as wfilm

and s⇤Independence Day (film), or wcelebrations and
s⇤Independence Day (US) because they frequently oc-
cur in the same contexts.

Similar to WDS, we maintain a context cluster
for each mention sense, which can be used for dis-
ambiguation given the contexts (Section 5). For
example, in d1 of Figure 2, the context cluster of
s⇤ consists of all context vectors When encounter-
ing a mention, the context vector

we also maintain a context cluster center µ⇤j
for each mention sense s⇤j , which is computed
by averaging all the context vectors belonging
to the cluster. We define context vector as
the average sum of context word embeddings

1
|C(wi)|

P
wj2C(wi)

wj. The cluster center is help-
ful for inducing mention sense in contexts. When
encounter a mention, we map it to a set of mention
senses, and then find the nearest one according to
the distance from its context vector to each men-
tion sense cluster center, which will be discussed
in Section 5.

d1, d2, d3, s
⇤
j , wi/s⇤j

s⇤Independence Day (US)

P (ej |C(ml), s
⇤
j)

P (C(wi)|wi) · P (C(ml)|s⇤j) (7)

4.5 Joint Training

Considering all the above representation learning
components, we define the overall objective func-
tion as linear combinations:

L = Lw + Le + Lm (8)

The training of MPME is to maximize the above
function, and iteratively update three types of em-
beddings. Also, we use negative sampling tech-
nique for efficiency (Mikolov et al., 2013a).

5 Mention Sense Disambiguation

MPME learns each mention with multiple sense
embeddings, and each sense corresponds to a con-
text cluster. Given an annotated document D0 in-
cluding M mentions, and their sense sets accord-
ing to Section ??: M⇤

l = {sl
j |sl

j 2 g(ml), ml 2
M}. In this section, we describe how to determine
the mention sense for each mention ml in the doc-
ument.

Based on language model, identifying mention
senses in a document can be regarded as maximiz-
ing their joint probability. However, the global op-
timum is expensive, in which each mention gets
an optimum sense, to search over the space of all
mention senses of all mentions in the document.
Thus, we approximately assign each mention in-
dependently:

P (D0, . . . , sl
j , . . . ,)

⇡
Y

P (D0|sl
j) · P (sl

j)

⇡
Y

P (C(ml)|sl
j) · P (N̂ (ml)|sl

j) · P (sl
j)

(9)

where P (C(ml)|sl
j) is proportional to cosine sim-

ilarity between context vector and mention sense
cluster center µl

j to measure the mention’s local
similarity, namely local probability.

N̂ (ml) denotes neighbor mentions of ml co-
occurring in a piece of text (e.g. a document),
and P (N̂ (ml)|sl

j) is defined as global probabil-
ity since it measures global coherence of neighbor
mentions. The underlying idea is to achieve con-
sistent semantics in a piece of text assuming that
all mentions inside it are talking about the same
topic. In this paper, we regard the mention senses
identified first as neighbors of the rest mentions.

P (sl
j) denotes prior probability of a mention

sense occurring in texts proportional to the fre-
quency of corresponding entity in Wikipedia an-
chors:

P (sl
j) = (

|Aej |
|A|)� � 2 [0, 1]

where � is a hyper-parameter to smooth the
gaps between different entity frequencies, namely
smoothing parameter. It controls the importance

5

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

ACL 2017 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

predict the context words by maximizing the fol-
lowing objective function:

Lw =
X

wi,ml2D0
log P (C(wi)|wi)

+ log P (C(ml)|s⇤j)
(6)

where s⇤j = g(< ml, ej >) is obtained from an-
chors in wikipedia articles.

Thus, similar words and mention senses
will be closed in text space, such as wfilm

and s⇤Independence Day (film), or wcelebrations and
s⇤Independence Day (US) because they frequently oc-
cur in the same contexts.

Similar to WDS, we maintain a context cluster
for each mention sense, which can be used for dis-
ambiguation given the contexts (Section 5). For
example, in d1 of Figure 2, the context cluster of
s⇤ consists of all context vectors When encounter-
ing a mention, the context vector

we also maintain a context cluster center µ⇤j
for each mention sense s⇤j , which is computed
by averaging all the context vectors belonging
to the cluster. We define context vector as
the average sum of context word embeddings

1
|C(wi)|

P
wj2C(wi)

wj. The cluster center is help-
ful for inducing mention sense in contexts. When
encounter a mention, we map it to a set of mention
senses, and then find the nearest one according to
the distance from its context vector to each men-
tion sense cluster center, which will be discussed
in Section 5.

d1, d2, d3, s
⇤
j , wi/s⇤j , e3

s⇤Independence Day (US)

P (ej |C(ml), s
⇤
j)

P (C(wi)|wi) · P (C(ml)|s⇤j) (7)

4.5 Joint Training

Considering all the above representation learning
components, we define the overall objective func-
tion as linear combinations:

L = Lw + Le + Lm (8)

The training of MPME is to maximize the above
function, and iteratively update three types of em-
beddings. Also, we use negative sampling tech-
nique for efficiency (Mikolov et al., 2013a).

5 Mention Sense Disambiguation

MPME learns each mention with multiple sense
embeddings, and each sense corresponds to a con-
text cluster. Given an annotated document D0 in-
cluding M mentions, and their sense sets accord-
ing to Section ??: M⇤

l = {sl
j |sl

j 2 g(ml), ml 2
M}. In this section, we describe how to determine
the mention sense for each mention ml in the doc-
ument.

Based on language model, identifying mention
senses in a document can be regarded as maximiz-
ing their joint probability. However, the global op-
timum is expensive, in which each mention gets
an optimum sense, to search over the space of all
mention senses of all mentions in the document.
Thus, we approximately assign each mention in-
dependently:

P (D0, . . . , sl
j , . . . ,)

⇡
Y

P (D0|sl
j) · P (sl

j)

⇡
Y

P (C(ml)|sl
j) · P (N̂ (ml)|sl

j) · P (sl
j)

(9)

where P (C(ml)|sl
j) is proportional to cosine sim-

ilarity between context vector and mention sense
cluster center µl

j to measure the mention’s local
similarity, namely local probability.

N̂ (ml) denotes neighbor mentions of ml co-
occurring in a piece of text (e.g. a document),
and P (N̂ (ml)|sl

j) is defined as global probabil-
ity since it measures global coherence of neighbor
mentions. The underlying idea is to achieve con-
sistent semantics in a piece of text assuming that
all mentions inside it are talking about the same
topic. In this paper, we regard the mention senses
identified first as neighbors of the rest mentions.

P (sl
j) denotes prior probability of a mention

sense occurring in texts proportional to the fre-
quency of corresponding entity in Wikipedia an-
chors:

P (sl
j) = (

|Aej |
|A|)� � 2 [0, 1]

where � is a hyper-parameter to smooth the
gaps between different entity frequencies, namely
smoothing parameter. It controls the importance

Knowledge Space

Text Space

Figure 2: Framework of Multi-Prototype Mention Embedding model.

Mention Sense Mapping To reduce the size of
the mention vocabulary, each mention is mapped
to a set of shared mention senses according to
a predefined dictionary. We build the dictionary
by collecting entity-mention pairs < ml, ej >
from Wikipedia anchors and page titles, then cre-
ate mention senses if there is a different entity. The
sense number of a mention depends on how many
different entity-mention pairs it is involved.

Formally, we have: M∗l = g(ml) =
⋃
g(<

ml, ej >) = {s∗j}, where g(·) denotes the map-
ping function from an entity mention to its men-
tion sense given an anchor. We directly use
the anchors contained in the annotated text cor-
pus D

′
for training. As Figure 2 shows, we re-

place the anchor <July 4th, Independence Day
(US)> with the corresponding mention sense:
s∗Independence Day (US).

Representation Learning Using KB, A and D′
as input, we design three separate models and a
unified optimization objective to jointly learn en-
tity, word and mention sense representations into
two semantic spaces. As shown in the knowledge
space in Figure 2, entity embeddings can reflect
their relatedness in the network. For example,
Independence Day (US) (e1) and Memorial Day
(e3) are close to each other because they share
some common neighbors, such as United States
and Public holidays in the United States.

Word and mention embeddings are learned in

the same semantic space. As two basic units in
D′, their embeddings represent their distributed
semantics in texts. For example, mention Inde-
pendence Day and word celebrations co-occur fre-
quently when it refers to the holiday: Indepen-
dence Day (US), thus they have similar representa-
tions. Without disambiguating the mention senses,
some words, such as film will also share similar
representations as Independence Day.

Besides, by introducing entity embeddings into
our MPME framework, the knowledge informa-
tion will also be distilled into mention sense em-
beddings, so that the mention sense Memorial Day
will be similar as Independence Day (US).

Mention Sense Disambiguation According to
our predefined dictionary, each mention has been
mapped to more than one senses, and learned with
multiple embedding vectors. Consequently, to in-
duce the correct sense for a mention within a con-
text is critical in the usage of the multiprototype
embeddings, especially in an unsupervised way.
Formally, given an annotated document D′, we
determine one sense ŝ∗j ∈ M∗l for each mention
ml ∈ D′, where ŝ∗j is the correct sense.

Based on language model, we design a mention
sense disambiguation method without using any
supervision that takes into account three aspects:
1) sense prior denotes how dominant the sense is,
2) local context information reflects how seman-
tically appropriate the sense is in the context, and

1625

3) global mention information denotes how se-
mantically consistent the sense is with the neigh-
bor mentions. To better utilize the context infor-
mation, we maintain a context cluster for each
mention sense during training, which will be de-
tailed in Section 4.4.

Since each mention sense corresponds to an en-
tity in the given KB, the disambiguation method is
equivalent to entity linking. Thus, text and knowl-
edge base is bridged via the multiprototype men-
tion embeddings. We will give more analysis in
Section 6.4.

4 Representation Learning

Distributional representation learning plays an in-
creasing important role in many fileds (Bengio
et al., 2013; Zhang et al., 2017, 2016) due to its
effectiveness for dimensionality reduction and ad-
dressing sparseness issue. For NLP tasks, this
trends has been accelerated by the Skip-gram and
CBOW models (Mikolov et al., 2013a,b) due to its
efficiency and remarkable semantic composition-
ality of embedding vectors. In this section, we first
briefly introduce the Skip-gram and CBOW mod-
els, and then extend them to three variants for the
word, mention and entity representation learning.

4.1 Skip-Gram and CBOW model

The basic idea of the Skip-gram and CBOW mod-
els is to model the predictive relations among se-
quential words. Given a sequence of words D, the
optimization objective of Skip-gram model is to
use the current word to predict its context words
by maximizing the average log probability:

L =
∑

wi∈D

∑

wo∈C(wi)

logP (wo|wi) (1)

In contrast, CBOW model aims to predict the
current word given its context words:

L =
∑

wi∈D
logP (wi|C(wi)) (2)

Formally, the conditional probability P (wo|wi)
is defined using a softmax function:

P (wo|wi) =
exp(wi ·wo)∑

wo∈D exp(wi ·wo)
(3)

where wi,wo denote the input and output word
vectors during training. Furthermore, these two

models can be accelerated by using hierarchi-
cal softmax or negative sampling (Mikolov et al.,
2013a,b).

4.2 Entity Representation Learning
Given a knowledge base KB, we aim to learn
entity embeddings by modeling “contextual” en-
tities, so that the entities sharing more common
neighbors tend to have similar representations.
Therefore, we extend Skip-gram model to a net-
work by maximizing the log probability of being a
neighbor entity.

Le =
∑

ej∈E
logP (N (ej)|ej) (4)

Clearly, the neighbor entities serve a similar
role as the context words in Skip-gram model. As
shown in Figure 2, entity Memorial Day (e3) also
share two common neighbors of United States and
Public holidays in the United States with entity In-
dependence Day (US), thus their embeddings are
close in the Knowledge Space. These entity em-
beddings will be later used to learn mention repre-
sentations.

4.3 Mention Representation Learning
As mentioned above, the textual context informa-
tion and reference entities are helpful to distin-
guish different senses for a mention. Thus, given
an anchor < ml, ej > and its context words
C(ml), we combine mention sense embeddings
with its context word embeddings to predict the
reference entity by extending CBOW model. The
objective function is as follows:

Lm =
∑

<ml,ej>∈A
logP (ej |C(ml), s

∗
j) (5)

where s∗j = g(< ml, ej >). Thus, if two mentions
refer to similar entities and share similar contexts,
they tend to be close in semantic vector space.
Take Figure 1 as an example again, mentions Inde-
pendence Day and Memorial Day refer to similar
entities Independence Day (US) (e1) and Memo-
rial Day (e2), they also share some similar context
words, such as celebrations in documents d2, d3,
so their sense embeddings are close to each other
in the text space.

4.4 Text Representation Learning
Instead of directly using a word or a mention to
predict the context words, we incorporate mention

1626

sense to joint optimize word and sense represen-
tations, which can avoid some noise introduced
by ambiguous mentions. For example, in Fig-
ure 2, without identifying the mention Indepen-
dence Day as the holiday or the film, various dis-
similar context words such as the words celebra-
tions and film in documents d1, d2 will share simi-
lar semantics, which will further affect the perfor-
mance of entity representations during joint train-
ing.

Given the annotated corpus D′, we use a word
wi or a mention sense s∗j to predict the con-
text words by maximizing the following objective
function:

Lw =
∑

wi,ml∈D′
logP (C(wi)|wi)

+ logP (C(ml)|s∗j)
(6)

where s∗j = g(< ml, ej >) is obtained from an-
chors in Wikipedia articles.

Thus, words and mention senses will share the
same vector space, where similar words and men-
tion senses are close to each other, such as cele-
brations and Independence Day (US) because they
frequently occur in the same contexts.

Similar to WDS, we maintain a context clus-
ter for each mention sense, which can be used for
mention sense disambiguation (Section 5). The
context cluster of a mention sense s∗j contains all
the context vectors of its mentionml. We compute
context vector of ml by averaging the sum of its
context word embeddings: 1

|C(ml)|
∑

wj∈C(ml)
wj.

Further, the center of a context cluster µ∗j is de-
fined as the average of context vectors of all men-
tions which refer to the sense. These context clus-
ters will be later used to disambiguate the sense of
a given mention with its contexts.

4.5 Joint Training
Considering all of the above representation learn-
ing components, we define the overall objective
function as linear combinations:

L = Lw + Le + Lm (7)

The goal of training MPME is to maximize the
above function, and iteratively update three types
of embeddings. Also, we use negative sampling
technique for efficiency (Mikolov et al., 2013a).

MPME shares the same entity representation
learning method with (Yamada et al., 2016), but

the role of entities in the entire framework as well
as mention representation learning is different in
three aspects. First, we focus on learning embed-
dings for mentions, not merely words as in (Ya-
mada et al., 2016). Clearly, MPME is more natu-
ral to integrate text and knowledge base. Second,
we propose to learn multiple embeddings for each
mention denoting its different meanings. Third,
we prefer to use both mentions and context words
to predict entities, so that the distribution of en-
tities will help improve word embeddings, mean-
while, avoid being hurt if we force entity embed-
dings to satisfy word embeddings during train-
ing (Wang et al., 2014). We will give more analy-
sis in experiments.

5 Mention Sense Disambiguation

As mentioned in Section 3, we induce a correct
sense ŝ∗j ∈ M∗l for each mention ml in an an-
notated document D′. We regard this problem
from the perspective of language model that max-
imizes a joint probability of all mention senses
contained in the document. However, the global
optimum is expensive with a time complexity of
O(|M||M∗l |). Thus, we approximately identify
each mention sense independently:

P (D′, . . . , s∗j , . . . ,)
≈
∏

P (D′|s∗j) · P (s∗j)

≈
∏

P (C(ml)|s∗j) · P (N̂ (ml)|s∗j) · P (s∗j)
(8)

where P (C(ml)|s∗j), local context information
(Section 3), denotes the probability of the local
contexts of ml given its mention sense s∗j . we
define it proportional to the cosine similarity be-
tween the current context vector and the sense con-
text cluster center µ∗j as described in Section 4.4.
It measures how likely a mention sense occurring
together with current context words. For example,
given the mention sense Independence Day (film),
word film is more likely to appear within the con-
text than the word celebrations.
P (N̂ (ml)|slj), global mention information, de-

notes the probability of the contextual mentions of
ml given its sense slj , where N̂ (ml) is the collec-
tion of the neighbor mentions occurring together
with ml in a predefined context window. We de-
fine it proportional to the cosine similarity be-
tween mention sense embeddings and the neigh-
bor mention vector, which is computed similar to

1627

context vector:
∑ 1
|N̂ (ml)|

ŝlj, where ŝlj is the cor-
rect sense for ml.

Considering there are usually multiple mentions
in a document to be disambiguated. The men-
tions disambiguated first will be helpful for induc-
ing the senses of the rest mentions. That is, how
to choose the mentions disambiguated first will in-
fluence the performance. Intuitively, we adopt two
orders similar to (Chen et al., 2014): 1) L2R (left
to right) induces senses for all the mentions in the
document following natural order that varies ac-
cording to language, normally from left to right in
the sequence. 2) S2C (simple to complex) denotes
that we determine the correct sense for those men-
tions with fewer senses, which makes the problem
easier.

Global mention information assumes that there
should be consistent semantics in a context win-
dow, and measures whether all neighbor mentions
are related. For instance, two mentions Memorial
Day and Independence Day occur in the same doc-
ument. If we already know that Memorial Day de-
notes a holiday, then obviously Independence Day
has higher probability of being a holiday than a
film.
P (s∗j), sense prior, is a prior probability of

sense s∗j indicating how possible it occurs with-
out considering any additional information. We
define it proportional to the frequency of sense s∗j
in Wikipedia anchors:

P (s∗j) = (
|As∗j |
|A|)

γ γ ∈ [0, 1]

where As∗j is the set of anchors annotated with
s∗j , and γ is a smoothing hyper-parameter to con-
trol the impact of prior on the overall probability,
which is set by experiments (Section 6.4).

6 Experiment

Setup We choose Wikipedia, the March 2016
dump, as training corpus, which contains nearly
75 millions of anchors, 180 millions of edges
among entities and 1.8 billions of tokens after pre-
processing. We then train MPME2 for 1.5 millions
of words, 5 millions of entities and 1.7 millions of
mentions. The entire training process in 10 iter-
ations costs nearly 8 hours on the server with 64
core CPU and 188GB memory.

2Our main code for MPME can be found in
https://github.com/TaoMiner/bridgeGap.

We use the default settings in word2vec3, and
set our embedding dimension as 200 and context
window size as 5. For each positive example, we
sample 5 negative examples4.

Baseline Methods As far as we know, this is the
first work to deal with mention ambiguity in the
integration of text and knowledge representations,
so there is no exact baselines for comparison. We
use the method in (Yamada et al., 2016) as a base-
line, marked as ALIGN5, because (1) this is the
most similar work that directly aligns word and en-
tity embeddings. (2) it achieves the state-of-the-art
performance in entity linking task.

To investigate the effect of multi-prototype, we
degrade our method to single-prototype as another
baseline, which means to use one sense to repre-
sent all mentions with the same phrase, namely
Single-Prototype Mention Embedding (SPME).
For example, SPME only learns one unique sense
vector for Independence Day whatever it denotes
a holiday or a film.

6.1 Qualitative Analysis

We use cosine similarity to measure the similar-
ity of two vectors, and present the top 5 nearest
words and entities for two most popular senses of
the mention Independence Day. Because ALIGN
is incapable of dealing with multiple words, we
only present the results of SPME and MPME.

As shown in Figure 1, without considering men-
tion sense, the mention Independence Day can
only show a dominant holiday sense based on
SPME and ignore all other senses. Instead, MPME
successfully learns two clear and distinct senses.
For the sense Independence Day (US), all of its
nearest words and entities, such as parades, cele-
brations, and Memorial Day, are holiday related,
while for another sense Independence Day (film),
its nearest words and entities, like robocop and
The Terminator, are all science fiction films. The
results verify the effectiveness of our framework
in learning mention embeddings at the sense level.

3https://code.google.com/archive/p/word2vec/
4We tested different parameters (e.g. window size of 10

and dimension of 500) which achieve similar results, and re-
port the current settings considering program runtime effi-
ciency.

5We carefully re-implemented ALIGN and used the same
shared parameters in our model for fairly comparison. How-
ever, we failed to fully reproduce the positive result in the
original paper, meanwhile the authors are unable to release
their code.

1628

Mention Sense Nearest words Nearest entities
SPME Independence

Day
lee-jackson, thanksgiving, di-
wali, strassenfest, chiraghan

National Aboriginal and Torres Strait Islander Educa-
tion Policy, E. Chandrasekharan Nair, Jean Aileen Lit-
tle, Thessalian barbel, 1825 in birding and ornithology

MPME Independence
Day (US)

thanksgiving, parades, lee-
jackson, festivities, celebrations

Memorial Day, Labor Day, Thanksgiving, Thanksgiv-
ing (United States), Saint Patrick’s Day

Independence
Day (film)

robocop, clockstoppers, mind-
hunters, tarantino, terminator

The Terminator, True Lies, Total Recall (1990 film),
RoboCop 2, Die Hard

Table 1: The nearest neighbors of mention Independence Day.

6.2 Entity Relatedness

To evaluate the quality of entity embeddings, we
conduct experiments using the dataset which is de-
signed for measuring entity relatedness (Ceccarelli
et al., 2013; Huang et al., 2015; Yamada et al.,
2016). The dataset contains 3,314 entities, and
each mention has 91 candidate entities on average
with gold-standard labels indicating whether they
are semantically related.

We compute cosine similarity between entity
embeddings to measure their relatedness, and rank
them in a descending order. To evaluate the
ranking quality, we use two standard metrics:
normalized discounted cumulative gain (NDCG)
(Järvelin and Kekäläinen, 2002) and mean average
precision (MAP) (Schütze, 2008).

We design another baseline method: En-
tity2vec, which learns entity embeddings using
the method described in Section 4.2, without joint
training with word and mention sense embed-
dings.

Table 2: Entity Relatedness.
NDCG MAP

@1 @5 @10
ALIGN 0.416 0.432 0.472 0.410
Entity2vec 0.593 0.595 0.636 0.566
SPME 0.593 0.594 0.636 0.566
MPME 0.613 0.613 0.654 0.582

As shown in Table 2, ALIGN achieves lower
performance than Entity2vec, because it doesn’t
consider the mention phrase ambiguity and yields
lots of noise when forcing entity embeddings to
satisfy word embeddings and aligning them into
the unified space. For example, the entity Gente
(magazine) should be more relevant to the en-
tity France, the place where its company lo-
cates. However, ALIGN mixed various meanings
of mention Gente (e.g., the song) and ranked some
bands higher (e.g., entity Poolside (band)).

SPME also doesn’t consider the ambiguity of

mentions but achieves comparative results with
Entity2vec. We analyze the reasons and find that,
it can avoid some noise by using word embed-
dings to predict entities. MPME outperforms all
the other methods, which demonstrates that the
unambiguous textual information is helpful to re-
fine the entity embeddings.

6.3 Word Analogical Reasoning

Following (Mikolov et al., 2013a; Wang et al.,
2014), we use the word analogical reasoning
task to evaluate the quality of word embeddings.
The dataset consists of 8,869 semantic questions
(“Paris”:“France”::“Rome”:?), and 10,675 syn-
tactic questions (e.g., “sit”:“sitting”::“walk”:?).
We solve it by finding the closest word vector w?

to wFrance−wParis+wRome according to cosine
similarity. We compute accuracy for top 1 nearest
word to measure the performance.

Table 3: Word Analogical Reasoning.
Word2vec ALIGN SPME MPME

Semantic 66.78 68.34 71.65 71.65
Syntactic 61.58 59.73 55.28 54.75

We also adopt Word2vec6 as an additional base-
line method, which provides a standard to measure
the impact from other components on word em-
beddings.

Table 3 shows the results. We can see that
ALIGN, SPME and MPME, achieve higher
performance in dealing with semantic ques-
tions, because relations among entities (e.g.,
country-capital relation for entity France and
Paris) enhance the semantics in word embeddings
through jointly training. On the other hand, their
performance for syntactic questions is weakened
because more accurate semantics yields a bias
to predict semantic relations even though given
a syntactic query. For example, given the query
“pleasant”:“unpleasant”::“possibly”:?, our

6https://code.google.com/archive/p/word2vec/

1629

model tends to return the word (e.g., probably)
highly semantical related to query words, such
as possibly, instead of the syntactical similar
word impossibly. In this scenario, we are more
concerned about semantic task to incorporate
knowledge of reference entities into word embed-
dings, and this issue could be tackled, to some
extent, by using syntactic tool like stemming.

The word embeddings of MPME achieve the
best performance for semantic questions mainly
because (1) text representation learning has bet-
ter generalization ability due to the larger size
of training examples than entities (e.g., 1.8b v.s.
0.18b) as well as relatively smaller size of vocab-
ulary (e.g., 1.5m v.s. 5m). (2) unambiguous men-
tion embeddings capture both textual context in-
formation and knowledge, and thus enhance word
and entity embeddings.

6.4 A Case Study: Entity Linking

Entity linking is a core NLP task of identifying
the reference entity for mentions in texts. The
main difficulty lies in the ambiguity of various en-
tities sharing the same mention phrase. Previous
work addressed this issue by taking advantage of
the similarity between words and entities (Francis-
Landau et al., 2016; Sun et al., 2015), and/or
the relations among entities (Thien Huu Nguyen,
2016; Cao et al., 2015). Therefore, we use en-
tity linking as a case study for a comprehensive
measurement of the multi-prototype mention em-
beddings. Given mentions in a text, entity linking
aims to link them to a predefined knowledge base.
One of the main challenges in this task is the am-
biguity of entity mentions.

We use the public dataset AIDA created by
(Hoffart et al., 2011), which includes 1,393 docu-
ments and 27,816 mentions referring to Wikipedia
entries. The dataset has been divided into 946,
216 and 231 documents for the purpose of train-
ing, developing and testing. Following (Pershina
et al., 2015; Yamada et al., 2016), we use a pub-
licly available dictionary to generate candidate en-
tities and mention senses. For evaluation, we rank
the candidate entities for each mention and report
both standard micro (aggregates over all mentions)
and macro (aggregates over all documents) preci-
sion over top-ranked entities.

Supervised Entity Linking
Yamada et al. (2016) designed a list of fea-

tures for each mention and candidate entity pair.

By incorporating these features into a supervised
learning-to-rank algorithm, Gradient Boosting Re-
gression Tree (GBRT), each pair is assigned a
relevance score indicating whether they should
be linked to each other. Following their recom-
mended parameters, we set the number of trees as
10,000, the learning rate as 0.02 and the maximum
depth of the decision tree as 4.

Based on word and entity embeddings learned
by ALIGN, the key features in (Yamada et al.,
2016) are from two aspects: (1) the cosine simi-
larity between context words and candidate entity,
and (2) the coherence among “contextual” entities
in the same document.

To evaluate the performance of multi-prototype
mention embeddings, we incorporate the follow-
ing features into GBDT for comparison: (1) the
cosine similarity between the current context vec-
tor and the sense context cluster center µ∗j , which
denotes how likely the mention sense refers to the
candidate entity, (2) the cosine similarity between
the current context vector and the mention sense
embeddings.

Table 4: Performance of Supervised Method
ALIGN SPME MPME

Micro P@1 0.828 0.820 0.851
Macro P@1 0.862 0.844 0.881

As shown in Table 4, we can see that ALIGN
performs better than SPME. This is because
SPME learns word embeddings and entity em-
beddings in separate semantic spaces, and fails to
measure the similarity between context words and
candidate entities. However, MPME computes
the similarity between context words with mention
sense instead of entities, thus achieves the best per-
formance, which also demonstrates the high qual-
ity of the mention sense embeddings.

Unsupervised Entity Linking
Linking a mention to a specific entity equals to

disambiguating mention senses since each candi-
date entity corresponds to a mention sense. As de-
scribed in Section 5, we disambiguate senses in
two orders: (1) L2R (from left to right), and (2)
S2C (from simple to complex).

We evaluate our unsupervised disambiguation
methods on the entire AIDA dataset. To be fair, we
choose the state-of-the-art unsupervised methods,
which are proposed in (Hoffart et al., 2011; Al-
helbawy and Gaizauskas, 2014; Cucerzan, 2007;

1630

Table 5: Performance of Unsupervised Methods
Cucerzan Kulkarni Hoffart Shirakawa Alhelbawy MPME (L2R) MPME (S2C)

Micro P@1 0.510 0.729 0.818 0.823 0.842 0.882 0.885
Macro P@1 0.437 0.767 0.819 0.830 0.875 0.875 0.890

Kulkarni et al., 2009; Masumi Shirakawa and
Nishio, 2011) using the same dataset.

Table 5 shows the results. We can see that
our two methods outperform all other methods.
MPME (L2R) is more efficient and easy to ap-
ply, while MPME (S2C) slightly outperforms it
because the additional step of ranking mentions
according to their candidates number guarantees
a higher disambiguation performance for those
simple mentions, which consequently help disam-
biguate those complex mentions through global
mention information in Equation 8.

We analyze the results and observe a disam-
biguation bias to popular senses. For example,
there are three mentions in the sentence “Japan
began the defence of their Asian Cup I title with a
lucky 2-1 win against Syria in a Group C cham-
pionship match on Friday”, where the country
name Japan and Syria actually denote their na-
tional football teams, while the football match
name Asian Cup I has little ambiguity. Compared
to the team, the sense of country occurs more fre-
quently and has a dominant prior, which greatly
affects the disambiguation. By incorporating lo-
cal context information and global mention infor-
mation, both the context words (e.g., defence or
match) and the neighbor mentions (e.g., Asian Cup
I) provide us enough clues to identify a soccer re-
lated mention sense instead of the country.

Influence of Smoothing Parameter As men-
tioned above, a mention sense may possess a dom-
inant prior and greatly affect the disambiguation.
So we introduce a smoothing parameter γ to con-
trol its importance to the overall probability. Fig-
ure 3 shows the linking accuracy under different
values of γ on the dataset of AIDA. γ = 0 indi-
cates we don’t use any prior knowledge, and γ = 1
indicates the case without smoothing parameter.

We can see that both micro and macro accu-
racy decrease a lot if we don’t use the parameter
(γ = 1). Only using local and global probabilities
for disambiguation (γ = 0) achieves a comparable
performance when γ = 0.05, both accuracy reach
their peaks, which is optimal and default value in
our experiments.

Figure 3: Impact of Smoothing Parameter γ.

7 Conclusions and Future Work

In this paper, we propose a novel Multi-Prototype
Mention Embedding model that jointly learns
word, entity and mention sense embeddings.
These mention senses capture both textual con-
text information and knowledge from reference
entities, and provide an efficient approach to dis-
ambiguate mention sense in text. We conduct a
series of experiments to demonstrate that multi-
prototype mention embedding improves the qual-
ity of both word and entity representations. Using
entity linking as a study case, we apply our disam-
biguation method as well as the multi-prototype
mention embeddings on the benchmark dataset,
and achieve the state-of-the-art.

In the future, we will improve the scalability of
our model and learn multi-prototype embeddings
for the mentions without reference entities in a
knowledge base, and introduce compositional ap-
proaches to model the internal structures of multi-
word mentions.

8 Acknowledgement

This work is supported by NSFC Key Pro-
gram (No. 61533018), 973 Program (No.
2014CB340504), Fund of Online Educa-
tion Research Center, Ministry of Education
(No. 2016ZD102), Key Technologies Re-
search and Development Program of China
(No. 2014BAK04B03), NSFC-NRF (No.
61661146007) and the U.S. DARPA LORELEI
Program No. HR0011-15-C-0115.

1631

References
Ayman Alhelbawy and Robert J Gaizauskas. 2014.

Graph ranking for collective named entity disam-
biguation. In ACL (2). pages 75–80.

Yoshua Bengio, Aaron Courville, and Pascal Vincent.
2013. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis
and machine intelligence 35(8):1798–1828.

Yixin Cao, Juanzi Li, Xiaofei Guo, Shuanhu Bai, Heng
Ji, and Jie Tang. 2015. Name list only? target en-
tity disambiguation in short texts. In EMNLP. pages
654–664. https://doi.org/10.18653/v1/D15-1077.

Diego Ceccarelli, Claudio Lucchese, Salvatore Or-
lando, Raffaele Perego, and Salvatore Trani. 2013.
Learning relatedness measures for entity linking. In
Proceedings of the 22nd ACM international con-
ference on Information & Knowledge Management.
ACM, pages 139–148.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In EMNLP. Citeseer, pages 1025–
1035. https://doi.org/10.3115/v1/D14-1110.

Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on wikipedia data .

Jenny Rose Finkel, Trond Grenager, and Christopher
Manning. 2005. Incorporating non-local informa-
tion into information extraction systems by gibbs
sampling. In Proceedings of the 43rd annual meet-
ing on association for computational linguistics. As-
sociation for Computational Linguistics, pages 363–
370.

Matthew Francis-Landau, Greg Durrett, and Dan
Klein. 2016. Capturing semantic similarity for
entity linking with convolutional neural networks.
In Proceedings of NAACL-HLT . pages 1256–1261.
https://doi.org/10.18653/v1/N16-1150.

Xu Han, Zhiyuan Liu, and Maosong Sun. 2016.
Joint representation learning of text and knowl-
edge for knowledge graph completion. CoRR
abs/1611.04125.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named
entities in text. In Proceedings of the Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
pages 782–792.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proc. ACL.

Hongzhao Huang, Larry Heck, and Heng Ji. 2015.
Leveraging deep neural networks and knowledge

graphs for entity disambiguation. arXiv preprint
arXiv:1504.07678 .

Lifu Huang, Jonathan May, Xiaoman Pan, Heng Ji,
Xiang Ren, Jiawei Han, Lin Zhao, and James A
Hendler. 2017. Liberal entity extraction: Rapid con-
struction of fine-grained entity typing systems. Big
Data 5(1):19–31.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cu-
mulated gain-based evaluation of ir techniques.
ACM Transactions on Information Systems (TOIS)
20(4):422–446.

Sayali Kulkarni, Amit Singh, Ganesh Ramakrishnan,
and Soumen Chakrabarti. 2009. Collective annota-
tion of wikipedia entities in web text. In Proceed-
ings of the 15th ACM SIGKDD international con-
ference on Knowledge discovery and data mining.
ACM, pages 457–466.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Proc. EMNLP. https://doi.org/10.18653/v1/D15-
1200.

Massimiliano Mancini, José Camacho-Collados, Igna-
cio Iacobacci, and Roberto Navigli. 2016. Embed-
ding words and senses together via joint knowledge-
enhanced training. CoRR abs/1612.02703.

Haixun Wang Yangqiu Song Zhongyuan Wang Kotaro
Nakayama Takahiro Hara Masumi Shirakawa and
Shojiro Nishio. 2011. Entity disambiguation based
on a. technical report. In Technical Report MSR-TR-
2011-125. Microsoft Research.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013b. Distributed rep-
resentations of words and phrases and their compo-
sitionality. In NIPS. pages 3111–3119.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient
non-parametric estimation of multiple embeddings
per word in vector space. In Proc. EMNLP.
https://doi.org/10.3115/v1/D14-1113.

Maria Pershina, Yifan He, and Ralph Grishman. 2015.
Personalized page rank for named entity disam-
biguation. In HLT-NAACL. pages 238–243.

Joseph Reisinger and Raymond J Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Proc. NAACL.

Hinrich Schütze. 2008. Introduction to information
retrieval. In Proceedings of the international com-
munication of association for computing machinery
conference.

1632

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhenzhou
Ji, and Xiaolong Wang. 2015. Modeling mention,
context and entity with neural networks for entity
disambiguation. In IJCAI. pages 1333–1339.

Nicolas Fauceglia Mariano Rodriguez-Muro Oktie
Hassanzadeh Alfio Massimiliano Gliozzo Moham-
mad Sadoghi Thien Huu Nguyen. 2016. Joint learn-
ing of local and global features for entity linking
via neural networks. In COLING 2016, 26th Inter-
national Conference on Computational Linguistics,
Proceedings of the Conference: Technical Papers,
December 11-16, 2016, Osaka, Japan. pages 2310–
2320.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In COLING.

Kristina Toutanova, Danqi Chen, Patrick Pantel, Pallavi
Choudhury, and Michael Gamon. 2015. Represent-
ing text for joint embedding of text and knowledge
bases. ACL Association for Computational Linguis-
tics https://doi.org/10.18653/v1/D15-1174.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and
Zheng Chen. 2014. Knowledge graph and
text jointly embedding. In Proc. EMNLP.
https://doi.org/10.3115/v1/D14-1167.

Zhigang Wang and Juan-Zi Li. 2016. Text-enhanced
representation learning for knowledge graph. In
Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence.

Jason Weston, Antoine Bordes, Oksana Yakhnenko,
and Nicolas Usunier. 2013. Connecting language
and knowledge bases with embedding models for re-
lation extraction. In Proc. ACL.

Jiawei Wu, Ruobing Xie, Zhiyuan Liu, and Maosong
Sun. 2016. Knowledge representation via joint
learning of sequential text and knowledge graphs.
CoRR .

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda,
and Yoshiyasu Takefuji. 2016. Joint learn-
ing of the embedding of words and entities for
named entity disambiguation. In Proc. CoNLL.
https://doi.org/10.18653/v1/K16-1025.

Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and
Tat-Seng Chua. 2017. Visual translation embedding
network for visual relation detection. arXiv preprint
arXiv:1702.08319 .

Hanwang Zhang, Xindi Shang, Wenzhuo Yang, Huan
Xu, Huanbo Luan, and Tat-Seng Chua. 2016. On-
line collaborative learning for open-vocabulary vi-
sual classifiers. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition.
pages 2809–2817.

1633

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1634–1644
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1150

Interactive Learning of Grounded Verb Semantics towards
Human-Robot Communication

Lanbo She and Joyce Y. Chai
Department of Computer Science and Engineering

Michigan State University
East Lansing, Michigan 48824, USA

{shelanbo, jchai}@cse.msu.edu

Abstract

To enable human-robot communication
and collaboration, previous works repre-
sent grounded verb semantics as the poten-
tial change of state to the physical world
caused by these verbs. Grounded verb
semantics are acquired mainly based on
the parallel data of the use of a verb
phrase and its corresponding sequences
of primitive actions demonstrated by hu-
mans. The rich interaction between teach-
ers and students that is considered impor-
tant in learning new skills has not yet been
explored. To address this limitation, this
paper presents a new interactive learning
approach that allows robots to proactively
engage in interaction with human partners
by asking good questions to learn mod-
els for grounded verb semantics. The pro-
posed approach uses reinforcement learn-
ing to allow the robot to acquire an op-
timal policy for its question-asking be-
haviors by maximizing the long-term re-
ward. Our empirical results have shown
that the interactive learning approach leads
to more reliable models for grounded verb
semantics, especially in the noisy environ-
ment which is full of uncertainties. Com-
pared to previous work, the models ac-
quired from interactive learning result in a
48% to 145% performance gain when ap-
plied in new situations.

1 Introduction

In communication with cognitive robots, one of
the challenges is that robots do not have sufficient
linguistic or world knowledge as humans do. For
example, if a human asks a robot to boil the wa-
ter but the robot has no knowledge what this verb

phrase means and how this verb phrase relates to
its own actuator, the robot will not be able to exe-
cute this command. Thus it is important for robots
to continuously learn the meanings of new verbs
and how the verbs are grounded to its underlying
action representations from its human partners.

To support learning of grounded verb seman-
tics, previous works (She et al., 2014; Misra et al.,
2015; She and Chai, 2016) rely on multiple in-
stances of human demonstrations of correspond-
ing actions. From these demonstrations, robots
capture the state change of the environment caused
by the actions and represent verb semantics as
the desired goal state. One advantage of such
state-based representation is that, when robots en-
counter the same verbs/commands in a new situa-
tion, the desired goal state will trigger the action
planner to automatically plan a sequence of prim-
itive actions to execute the command.

While the state-based verb semantics provides
an important link to connect verbs to the robot’s
actuator, previous works also present several limi-
tations. First of all, previous approaches were de-
veloped under the assumption of perfect percep-
tion of the environment (She et al., 2014; Misra
et al., 2015; She and Chai, 2016). However, this
assumption does not hold in real-world situated
interaction. The robot’s representation of the envi-
ronment is often incomplete and error-prone due
to its limited sensing capabilities. Thus it is not
clear whether previous approaches can scale up to
handle noisy and incomplete environment.

Second, most previous works rely on multi-
ple demonstration examples to acquire grounded
verb models. Each demonstration is simply a
sequence of primitive actions associated with a
verb. No other type of interaction between humans
and robots is explored. Previous cognitive stud-
ies (Bransford et al., 2000) on how people learn
have shown that social interaction (e.g., conver-

1634

https://doi.org/10.18653/v1/P17-1150

sation with teachers) can enhance student learn-
ing experience and improve learning outcomes.
For robotic learning, previous work (Cakmak and
Thomaz, 2012) has also demonstrated the neces-
sity of question answering in the learning process.
Thus, in our view, interactive learning beyond
demonstration of primitive actions should play a
vital role in the robot’s acquisition of more reliable
models of grounded verb semantics. This is es-
pecially important because the robot’s perception
of the world is noisy and incomplete, human lan-
guage can be ambiguous, and the robot may lack
the relevant linguistic or world knowledge during
the learning process.

To address these limitations, we have developed
a new interactive learning approach where robots
actively engage with humans to acquire models
of grounded verb semantics. Our approach ex-
plores the space of interactive question answering
between humans and robots during the learning
process. In particular, motivated by previous work
on robot learning (Cakmak and Thomaz, 2012),
we designed a set of questions that are pertinent
to verb semantic representations. We further ap-
plied reinforcement learning to learn an optimal
policy that guides the robot in deciding when to
ask what questions. Our empirical results have
shown that this interactive learning process leads
to more reliable representations of grounded verb
semantics, which contribute to significantly better
action performance in new situations. When the
environment is noisy and uncertain (as in a realis-
tic situation), the models acquired from interactive
learning result in a performance gain between 48%
and 145% when applied in new situations. Our re-
sults further demonstrate that the interaction pol-
icy acquired from reinforcement learning leads to
the most efficient interaction and the most reliable
verb models.

2 Related Work

To enable human-robot communication and col-
laboration, recent years have seen an increasing
amount of works which aim to learn semantics
of language that are grounded to agents’ percep-
tion (Gorniak and Roy, 2007; Tellex et al., 2014;
Kim and Mooney, 2012; Matuszek et al., 2012a;
Liu et al., 2014; Liu and Chai, 2015; Thomason
et al., 2015, 2016; Yang et al., 2016; Gao et al.,
2016) and action (Matuszek et al., 2012b; Artzi
and Zettlemoyer, 2013; She et al., 2014; Misra

et al., 2014, 2015; She and Chai, 2016). Specif-
ically for verb semantics, recent works explored
the connection between verbs and action plan-
ning (She et al., 2014; Misra et al., 2014, 2015;
She and Chai, 2016), for example, by represent-
ing grounded verbs semantics as the desired goal
state of the physical world that is a result of the
corresponding actions. Such representations are
learned based on example actions demonstrated
by humans. Once acquired, these representations
will allow agents to interpret verbs/commands is-
sued by humans in new situations and apply action
planning to execute actions. Given its clear advan-
tage in connecting verbs with actions, our work
also applies the state-based representation for verb
semantics. However, we have developed a new ap-
proach which goes beyond learning from demon-
strated examples by exploring how rich interaction
between humans and agents can be used to acquire
models for grounded verb semantics.

This approach was motivated by previous cog-
nitive studies (Bransford et al., 2000) on how peo-
ple learn as well as recent findings on robot skill
learning (Cakmak and Thomaz, 2012). One of
the principles for human learning is that “learning
is enhanced through socially supported interac-
tions”. Studies have shown that social interaction
with teachers and peers (e.g., substantive conver-
sation) can enhance student learning experience
and improve learning outcomes. In recent work
on interactive robot learning of new skills (Cak-
mak and Thomaz, 2012), researchers identified
three types of questions that can be used by a hu-
man/robot student to enhance learning outcomes:
1) demonstration query (i.e., asking for a full or
partial demonstration of the task), 2) label query
(i.e., asking whether an execution is correct), and
3) feature query (i.e., asking for a specific feature
or aspect of the task). Inspired by these previous
findings, our work explores interactive learning to
acquire grounded verb semantics. In particular, we
aim to address when to ask what questions during
interaction to improve learning.

3 Acquisition of Grounded Verb
Semantics

This section gives a brief review on acquisition of
grounded verb semantics and illustrates the differ-
ences between previous approaches and our ap-
proach using interactive learning.

1635

Figure 1: An example of acquiring state-based representation for verb semantics based on an initial
environment Ei, and a language command Li, the primitive action sequence

−→Ai demonstrated by the
human, and the final environment E ′i that results from the execution of

−→Ai in Ei.

3.1 State-based Representation

As shown in Figure 1, the verb semantics (e.g.,
boil(x)) is represented by the goal state (e.g.,
Status(x, TempHigh)) which is the result of the
demonstrated primitive actions. Given the verb
phrase boil the water (i.e., Li), the human teaches
the robot how to accomplish the corresponding ac-
tion based on a sequence of primitive actions

−→Ai.
By comparing the final environment E ′i with the
initial environment Ei, the robot is able to iden-
tify the state change of the environment, which be-
comes a hypothesis of goal state to represent verb
semantics. Compared to procedure-based repre-
sentations, the state-based representation supports
automated planning at the execution time. It is
environment-independent and more generalizable.
In (She and Chai, 2016), instead of one hypoth-
esis, it maintains a specific-to-general hypothesis
space as shown in Figure 2 to capture all goal hy-
potheses of a particular verb frame. Specifically,
it assumes that one verb frame may lead to differ-
ent outcomes under different environments, where
each possible outcome is represented by one node
in the hierarchical graph and each node is a con-
junction of multiple atomic fluents. 1

Given a language command (i.e., a verb phrase),
a robot will engage in the following processes:

• Execution. In this process, the robot will se-
lect a hypothesis from the space of hypothe-
ses that is most relevant to the current situa-
tion and use the corresponding goal state to
plan for actions to execute.

• Learning. When the robot fails to select
a hypothesis or fails to execute the action,
it will ask the human for a demonstration.

1In this work, we assume the set of atomic fluents rep-
resenting environment state are given and do not address the
question of whether these predicates are adequate to represent
a domain.

Figure 2: An example hypothesis space for the
verb frame fill(x, y).

Based on the demonstrated actions, the robot
will learn a new representation (i.e., new
nodes) and update the hypothesis space.

3.2 Noisy Environment

Figure 3: An example probabilistic sensing result.

Previous works represent the environment Ei as
a conjunction of grounded state fluents. Each flu-
ent consists of a predicate and one or more argu-
ments (i.e., objects in the physical world, or ob-
ject status), representing one aspect of the per-
ceived environment. An example of a fluent is
“Has(Kettle1,WATER)” meaning object Kettle1

has some water inside, where Has is the predi-
cate, and Kettle1 and WATER are arguments. The
set of fluents include the status of the robot (e.g.,
Grasping(Kettle1)), the status of different objects
(e.g., Status(WATER, TempHigh)), and relations
between objects (e.g., On(Kettle1, Stove)). One
limitation of the previous works is that the envi-

1636

Figure 4: A general framework of robot interactive learning. KB stands for knowledge base, θE stands
for Interaction Strategy for Execution, and θD stands for Interaction Strategy for Learning.

Only demonstration(She and Chai, 2016) Interactive learning (this work)
Execution Example Execution Example

H1: Boil the water. H1: Boil the water.
R1: (select a hypothesis and execute the action accordingly) R1: I see a silver object on the table, is that a pot?
H2: (provide true/false feedback on whether the execution is H2: Yes.
correct) R2: Should I leave the pot on the stove after boil?

H3: Yes.
R3: Ok. (select a hypothesis to execute)
H4: Thank you.

Learning Example Learning Example
H3: Boil the water. H5: Boil the water.
R3: I don’t know how to boil, could you show me an example? R5: I don’t know how to boil, could you show me an example?
H4: (human shows the robot how to achieve the corresponding
action through a sequence of primitive actions)

H6: Ok. (demonstrate the task, at the end put the pot on a
heat pad)

R4: (indicate the acceptance and induce a hypothesis to rep- R6: So after boiling something, should I put it on a heat pad?
resent verb semantics) H7: No, you don’t have to.

R7: I see. (induce goal state hypothesis)

Table 1: Examples to show differences between learning through demonstrations as in the previous
works (She and Chai, 2016) and the proposed learning from interaction.

ronment has a perfect, deterministic representa-
tion, as shown in Figure 1. This is clearly not the
case in the realistic physical world.

In reality, given limitations of sensor capabili-
ties, the environment representation is often par-
tial, error prone, and full of uncertainties. Figure 3
shows an example of a more realistic representa-
tion where each fluent comes with a confidence
between 0 and 1 to indicate how likely that par-
ticular fluent can be detected in the current envi-
ronment. Thus, it is unclear whether the previous
work is able to handle representations with uncer-
tainties. Our interactive learning approach aims
to address these uncertainties through interactive
question answering with human partners.

4 Interactive Learning

4.1 Framework of Interactive Learning
Figure 4 shows a general framework for interac-
tive learning of action verbs. It aims to support a
life-long learning cycle for robots, where the robot
can continuously (1) engage in collaboration and

communication with humans based on its exist-
ing knowledge; (2) acquire new verbs by learn-
ing from humans and experiencing the change of
the world (i.e., grounded verb semantics as in this
work); and (3) learn how to interact (i.e., update
interaction policies). The lifelong learning cycle
is composed by a sequence of interactive learn-
ing episodes (Episode 1, 2...) where each episode
consists of either an execution phase or a learning
phase or both.

The execution phase starts with a human request
for action (e.g., boil the water). According to its
interaction policy, the robotic agent may choose to
ask one or more questions (i.e., Q+

i) and wait for
human answers (i.e., A+

i), or select a hypothesis
from its existing knowledge base to execute the
command (i.e., Execute). With the human feed-
back of the execution, the robot can update its in-
teraction policy and existing knowledge.

In the learning phase, the robot can initiate
the learning by requesting a demonstration from
the human. After the human performs the task,

1637

the robotic agent can either choose to update its
knowledge if it feels confident, or it can choose to
ask the human one or more questions before up-
dating its knowledge.

4.2 Examples of Interactive Learning
Table 1 illustrates the differences between the pre-
vious approach that acquires verb models based
solely on demonstrations and our current work that
acquires models based on interactive learning. As
shown in Table 1, under the demonstration setting,
humans only provide a demonstration of primitive
actions and there’s no interactive question answer-
ing. In the interactive learning setting, the robot
can proactively choose to ask questions regard-
ing the uncertainties either about the environment
(e.g., R1), the goal (e.g., R2), or the demonstra-
tions (e.g., R6). Our hypothesis is that rich inter-
actions based on question answering will allow the
robot to learn more reliable models for grounded
verb semantics, especially in a noisy environment.

Then the question is how to manage such inter-
action: when to ask and what questions to ask to
most efficiently acquire reliable models and apply
them in execution. Next we describe the appli-
cation of reinforcement learning to manage inter-
active question answering for both the execution
phase and the learning phase.

4.3 Formulation of Interactive Learning
Markov Decision Process (MDP) and its closely
related Reinforcement Learning (RL) have been
applied to sequential decision-making problems
in dynamic domains with uncertainties, e.g.,
dialogue/interaction management (Singh et al.,
2002; Paek and Pieraccini, 2008; Williams and
Zweig, 2016), mapping language commands to
actions (Branavan et al., 2009), interactive robot
learning (Knox and Stone, 2011), and interactive
information retrieval (Li et al., 2017). In this work,
we formulate the choice of when to ask what ques-
tions during interaction as a sequential decision-
making problem and apply reinforcement learning
to acquire an optimal policy to manage interaction.

Specifically, each of the execution and learning
phases is governed by one policy (i.e., θE and θD),
which is updated by the reinforcement learning al-
gorithm. The use of RL intends to obtain opti-
mal policies that can lead to the highest long-term
reward by balancing the cost of interaction (e.g.,
the length of interaction and difficulties of ques-
tions) and the quality of the acquired models. The

reinforcement formulation for both the execution
phase and the learning phase are described below.

State For the execution phase, each state se ∈
SE is a five tuple: se = <l, e,KB,Grd,Goal>.
l is a language command, including a verb and
multiple noun phrases extracted by the Stan-
ford parser. For example, the command “Mi-
crowave the ramen” is represented as l =
microwave(ramen). The environment e is a
probabilistic representation of the currently per-
ceived physical world, consisting of a set of
grounded fluents and the confidence of perceiv-
ing each fluent (an example is shown in Figure 3).
KB stands for the existing knowledge of verb
models. Grd accounts for the agent’s current be-
lief of object grounding: the probability of each
noun in the l being grounded to different objects.
Goal represents the agent’s belief of different goal
state hypotheses of the current command. Within
one interaction episode, command l and knowl-
edge KB will stay the same, while e, Grd, and
Goal may change accordingly due to interactive
question answering and robot actions. In the ex-
ecution phase, Grd and Goal are initialized with
existing knowledge of learned verb models. For
the learning phase, a state sd ∈ SD is a four tu-
ple: sd = <l, estart, eend, Grd>. estart and eend
stands for the environment before the demonstra-
tion and after the demonstration.

Action Motivated by previous studies on
how humans ask questions while learning new
skills (Cakmak and Thomaz, 2012), the agent’s
question set includes two categories: yes/no ques-
tions and wh- questions. These questions are
designed to address ambiguities in noun phrase
grounding, uncertain environment sensing, and
goal states. They are domain independent in
nature. For example, one of the questions is
np grd ynq(n, o). It is a yes/no question asking
whether the noun phrase n refers to an object o
(e.g., “I see a silver object, is that the pot?”).
Other questions are env pred ynq(p) (i.e., whether
a fluent p is present in the environment; e.g., “Is
the microwave door open?”) and goal pred ynq(p)
(i.e., whether a predicate p should be part of the
goal; “Should the pot be on a pot stand?”). Ta-
ble 2 lists all the actions available in the execu-
tion and learning phases. The select hypo action
(i.e., select a goal hypothesis to execute) is only
for the execution. Ideally, after asking questions,
the agent should be more likely to select a goal hy-

1638

Action Name Explanation Question Example Reward

1. np grd whq(n) Ask for the grounding of a np. “Which is the cup, can you show me?” -6.51

2. np grd ynq(n, o) Confirm the grounding of a np. “I see a silver object, is that the pot?” -1.0 / -2.0

3. env pred ynq(p) Confirm a predicate in current environment. “Is the microwave door open?” -1.0 / -2.0

4. goal pred ynq(p) Confirm whether a predicate p should be in
the final environment.

“Is it true the pot should be on the
counter?”

-1.0 / -2.0

5. select hypo(h) Choose a hypothesis to use as goal and ex-
ecute.

100 / -2.0

6. bulk np grd ynq(n, o) Confirm the grounding of multiple nps. “I think the pot is the red object and
milk is in the white box, am I right?”

-3.0 / -6.02

7. pred change ynq(p) Ask whether a predicate p has been changed
by the action demonstration.

“The pot is on a stand after the action,
is that correct?”

-1.0 / -2.0

8. include fluent(∧p) Include ∧p into the goal state representa-
tion. Update the verb semantic knowledge.

100 / -2.0

Table 2: The action space for reinforcement learning, where n stands for a noun phrase, o a physical
object, p a fluent representation of the current state of the world, h a goal hypothesis. Action 1 and 2 are
shared by both the execution and learning phases. Action 3, 4, 5 are for the execution phase, and 6, 7, 8
are only used for the learning phase. -1.0/-2.0 are typically used for yes/no questions. When the human
answers the question with a “yes”, the reward is -1.0, otherwise it’s -2.0.

pothesis that best describes the current situation.
For the learning phase, the include fluent(∧p) ac-
tion forms a goal hypothesis by conjoining a set of
fluents ps where each p should have high probabil-
ity of being part of the goal.
Transition The transition function takes action
a in state s, and gives the next state s′ according
to human feedback. Note that the command l does
not change during interaction. But the agent’s be-
lief of environment e, object grounding Grd, and
goal hypotheses Goal is changed according to the
questions and human answers. For example, sup-
pose the agent asks whether noun phrase n refers
to the object o, if the human confirms it, the prob-
ability of n being grounded to o becomes 1.0, oth-
erwise it will become 0.0.
Reward Finding a good reward function is a
hard problem in reinforcement learning. Our cur-
rent approach has followed the general practice
in the spoken dialogue community (Schatzmann
et al., 2006; Fang et al., 2014; Su et al., 2016).
The immediate robot questions are assigned small
costs to favor shorter and more efficient interac-
tion. Furthermore, motivated by how humans ask

1According to the study in (Cakmak and Thomaz, 2012),
the frequency of y/n questions used by humans is about 6.5
times the frequency of open questions (wh question), which
motivates our assignment of -6.5 to wh questions.

2bulk np grd ynq asks multiple object grounding all at
once. This is harder to answer than asking for a single np.
Therefore, its cost is assigned three times of the other yes/no
questions.

Algorithm 1: Policy learning. The execution and

learning phases share the same learning process, but with

different state s, action a spaces, and feature vectors φ.

The eend is only available to the learning phase.
Input : e, l (, eend);

Feature function φ;
Old policy θ (i.e., a weight vector)
Verb Goal States HypothesesH;

Initialize : state s initialized with e, l (, eend);
first action a ∼ P (a|s; θ) with ε greedy

1 while s is not terminal do
2 Take action a, receive reward r;
3 s′ = T (s, a);
4 Choose a′ ∼ P (a′|s′; θ) with ε greedy;

δ ← r + γ · θT · φ(s′, a′)− θT · φ(s, a);
5 θ ← θ + δ · η · φ(s, a);
6 end
7 if s terminates with positive feedback then
8 UpdateH;
9 end

Output : UpdatedH and θ.

questions (Cakmak and Thomaz, 2012), yes/no
questions are easier for a human to answer than
the open questions (e.g., wh-questions) and thus
are given smaller costs. A large positive reward
is given at the end of interaction when the task is
completed successfully. Detailed reward assign-
ment for different actions are shown in Table 2.
Learning The SARSA algorithm with linear
function approximation is utilized to update poli-
cies θE and θD (Sutton and Barto, 1998). Specif-
ically, the objective of training is to learn an opti-
mal value function Q(s, a) (i.e., the expected cu-

1639

Features shared by both phases
If a is a np grd whq(n).
The entropy of candidate groundings of n.
If n has more than 4 grounding candidates.
If a is a np grd ynq(n, o).
The probability of n grounded to o.

Additional Features specific for the Execution phase
If a is a select hypo(h) action.
The probability of hypo h not satisfied in current envi-
ronment.
Similarity between the ns used by command l and the
commands from previous experiences.

Additional Features specific for the Learning phase
If a is a pred change ynq(p).
The probability of p been changed by demo.

Table 3: Example features used by the two phases.
a stands for action. Other notations are the same
as used in Table 2. The“If” features are binary, and
the other features are real-valued.

mulative reward of taking action a in a state s).
This value function is approximated by a linear
function Q(s, a) = θᵀ · φ(s, a), where φ(s, a) is
a feature vector and θ is a weight updated during
training. Details of the algorithm is shown in Al-
gorithm 1. During testing, the agent can take an
action a that maximizes the Q value at a state s.
Feature Example features used by the two
phases are listed in Table 3. These features in-
tend to capture different dimensions of informa-
tion such as specific types of questions, how well
noun phrases are grounded to the environment, un-
certainties of the environment, and consistencies
between a hypothesis and the current environment.

5 Evaluation

5.1 Experiment Setup
Dataset. To evaluate our approach, we utilized
the benchmark made available by (Misra et al.,
2015). Individual language commands and corre-
sponding action sequences are extracted similarly
as (She and Chai, 2016). This dataset includes
common tasks in the kitchen and living room do-
mains, where each data instance comes with a lan-
guage command (e.g., “boil the water”, “throw
the beer into the trashcan”) and the correspond-
ing sequence of primitive actions. In total, there
are 979 instances, including 75 different verbs and
215 different noun phrases. The length of primi-
tive action sequences range from 1 to 51 with an
average of 4.82 (+/-4.8). We divided the dataset
into three groups: (1) 200 data instances were used
by reinforcement learning to acquire optimal inter-

action policies; (2) 600 data instances were used
by different approaches (i.e., previous approaches
and our interactive learning approach) to acquire
grounded verb semantics models; and (3) 179 data
instances were used as testing data to evaluate the
learned verb models. The performance on apply-
ing the learned models to execute actions for the
testing data is reported.

To learn interaction policies, a simulated human
model is created from the dataset (Schatzmann
et al., 2006) to continuously interact with the
robot learner3. This simulated user can answer
the robot’s different types of questions and make
decisions on whether the robot’s execution is
correct. During policy learning, one data instance
can be used multiple times. At each time, the in-
teraction sequence is different due to exploitation
and exploration in RL in selecting the next action.
The RL discount factor γ is set to 0.99, the ε in ε-
greedy is 0.1, and the learning rate is 0.01.

Noisy Environment Representation. The origi-
nal data provided by (Misra et al., 2015) is based
on the assumption that environment sensing is per-
fect and deterministic. To enable incomplete and
noisy environment representation, for each fluent
(e.g., grasping(Cup3), near(robot1, Cup3)) in
the original data, we independently sampled a con-
fidence value to simulate the likelihood that a par-
ticular fluent can be detected correctly from the
environment. We applied the following four dif-
ferent variations in sampling the confidence val-
ues, which correspond to different levels of sensor
reliability.
(1) PerfectEnv represents the most reliable sensor.
If a fluent is true in the original data, its sampled
confidence is 1, and 0 otherwise.
(2) NormStd3 represents a relatively reliable sen-
sor. For each fluent in the original environment, a
confidence is sampled according to a normal dis-
tribution N (1, 0.32) with an interval [0,1]. This
distribution has a large probability of sampling a
number larger than 0.5, meaning the correspond-
ing fluent is still more likely to be true.
(3) NormStd5 represents a less reliable sensor.
The sampling distribution is N (1, 0.52), which
has a larger probability of generating a number
smaller than 0.5 compared to NormStd3.

3In our future work, interacting with real humans will be
conducted through Amazon Mechanical Turk. And the poli-
cies acquired with a simulated user in this work will be used
as initial policies.

1640

(4) UniEnv represents an unreliable sensor. Each
number is sampled with a uniform distribution be-
tween 0 and 1. This means the sensor works ran-
domly. A fluent has a equal change to be true or
false no matter what the true environment is.
Evaluation Metrics. We used the same evalua-
tion metrics as in the previous works (Misra et al.,
2015; She and Chai, 2016) to evaluate the perfor-
mance of applying the learned models to testing
instances on action planning.

• IED: Instruction Editing Distance. This is a
number between 0 and 1 measuring the sim-
ilarity between the predicted action sequence
and the ground-truth action sequence. IED
equals 1 if the two sequences are exactly the
same.

• SJI: State Jaccard Index. This is a num-
ber between 0 and 1 measuring the similarity
between the predicted and the ground-truth
state changes. SJI equals 1 if action planning
leads to exactly the same state change as in
the ground-truth.

Configurations. To understand the role of interac-
tive learning in model acquisition and action plan-
ning, we first compared the interactive learning ap-
proach with the previous leading approach (pre-
sented as She16). To further evaluate the interac-
tion policies acquired by reinforcement learning,
we also compared the learned policy (i.e., RLPol-
icy) with the following two baseline policies:

• RandomPolicy which randomly selects ques-
tions to ask during interaction.

• ManualPolicy which continuously asks for
yes/no confirmations (i.e., object grounding
questions (GroundQ), environment ques-
tions (EnvQ), goal prediction questions
(GoalQ)) until there’s no more questions be-
fore making a decision on model acquisition
or action execution.

5.2 Results
5.2.1 The Effect of Interactive Learning
Table 4 shows the performance comparison on the
testing data between the previous approach She16
and our interactive learning approach based on en-
vironment representations with different levels of
noise. The verb models acquired by interactive
learning perform better consistently across all four

She16 RL policy % improvement

IED SJI IED SJI IED SJI

PerfectEnv 0.430 0.426 0.453 0.468 5.3%∗ 9.9%∗

NormStd3 0.284 0.273 0.420 0.431 47.9%∗ 57.9%∗

NormStd5 0.172 0.168 0.392 0.411 127.9%∗ 144.6%∗

UniEnv 0.168 0.163 0.332 0.347 97.6%∗ 112.9%∗

Table 4: Performance comparison between She16
and our interactive learning based on environment
representations with different levels of noise. All
the improvements (marked *) are statistically sig-
nificant (p < 0.01).

0 100 200 300 400 500 600
Number of data used to acquire verb models in learning phase

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

P
e
rf

o
rm

a
n
ce

 i
n
 a

ct
io

n
 p

la
n
n
in

g
 (

S
JI
)

RL policy
Manual policy
Random policy
She16

Figure 5: Performance (SJI) comparison by ap-
plying models acquired based on different interac-
tion policies to the testing data.

environment conditions. When the environment
becomes noisy (i.e., NormStd3, NormStd5, and
UniEnv), the performance of She16 that only relies
on demonstrations decreases significantly. While
the interactive learning improves the performance
under the perfect environment condition, its effect
in noisy environment is more remarkable. It leads
to a significant performance gain between 48%
and 145%. These results validate our hypothe-
sis that interactive question answering can help to
alleviate the problem of uncertainties in environ-
ment representation and goal prediction.

Figure 5 shows the performance of the vari-
ous learned models on the testing data, based on
a varying number of training instances and dif-
ferent interaction policies. The interactive learn-
ing guided by the policy acquired from RL out-
performs the previous approach She16. The RL
policy slightly outperforms interactive learning us-
ing manually defined policy (i.e., ManualPolicy).
However, as shown in the next section, the Man-

1641

Average number of questions Performance
Learning Phase Execution Phase

GroundQ EnvQ TotalQ GroundQ EnvQ GoalQ TotalQ IED SJI

RLPolicy
2.130∗ 2.615∗ 4.746∗ 0.383∗ 0.650∗ 2.626 3.665∗ 0.420 0.430∗

+/-0.231 +/-0.317 +/-0.307 +/-0.137 +/-0.366 +/-0.331 +/-0.469 +/-0.015 +/-0.018

ManualPolicy
2.495 5.338 7.833 1.236 3.202 2.353 6.792 0.406 0.404

+/-0.025 +/-0.008 +/-0.025 +/-0.002 +/-0.012 +/-0.023 +/-0.025 +/-0.002 +/-0.004

RandomPolicy
0.545 0.368 0.913 0.678 0.081 0.151 0.909 0.114 0.113

+/-0.016 +/-0.033 +/-0.040 +/-0.055 +/-0.030 +/-0.024 +/-0.018 +/-0.025 +/-0.029

Table 5: Comparison between different policies including the average number (and standard deviation)
of different types of questions asked during the execution phase and the learning phase respectively, and
the performance on action planning for the testing data. The results are based on the noisy environment
sampled by NormStd3. * indicates statistically significant difference (p < 0.05) comparing RLPolicy
with ManualPolicy.

ualPolicy results in much longer interaction (i.e.,
more questions) than the RL acquired policy.

5.2.2 Comparison of Interaction Policies
Table 5 compares the performance of different in-
teraction policies. It shows the average number of
questions asked under different policies. It is not
surprising the RandomPolicy has the worst perfor-
mance. For the ManualPolicy, its performance is
similar to the RLPolicy. However, the average in-
teraction length of ManualPolicy is 6.792, which
is much longer than the RLPolicy (which is 3.127).
These results further demonstrate that the policy
learned from RL enables efficient interactions and
the acquisition of more reliable verb models.

6 Conclusion

Robots live in a noisy environment. Due to the
limitations in their external sensors, their repre-
sentations of the shared environment can be er-
ror prone and full of uncertainties. As shown in
previous work (Mourão et al., 2012), learning ac-
tion models from the noisy and incomplete obser-
vation of the world is extremely challenging. The
same problem applies to the acquisition of verb se-
mantics that are grounded to the perceived world.
To address this problem, this paper presents an
interactive learning approach which aims to han-
dle uncertainties of the environment as well as in-
completeness and conflicts in state representation
by asking human partners intelligent questions.
The interaction strategies are learned through re-
inforcement learning. Our empirical results have
shown a significant improvement in model acqui-
sition and action prediction. When applying the
learned models in new situations, the models ac-

quired through interactive learning leads to over
140% performance gain in noisy environment.

The current investigation also has several lim-
itations. As in previous works, we assume the
world can be described by a closed set of predi-
cates. This causes significant simplification for the
physical world. One of the important questions to
address in the future is how to learn new predicates
through interaction with humans. Another limita-
tion is that the current utility function is learned
based on a set of pre-identified features. Future
work can explore deep neural network to alleviate
feature engineering.

As cognitive robots start to enter our daily
lives, data-driven approaches to learning may not
be possible in new situations. Human partners
who work side-by-side with these cognitive robots
are great resources that the robots can directly
learn from. Recent years have seen an increasing
amount of work on task learning from human part-
ners (Saunders et al., 2006; Chernova and Veloso,
2008; Cantrell et al., 2012; Mohan et al., 2013;
Asada et al., 2009; Mohseni-Kabir et al., 2015;
Nejati et al., 2006; Liu et al., 2016). Our future
work will incorporate interactive learning of verb
semantics with task learning to enable autonomy
that can learn by communicating with humans.

Acknowledgments

This work was supported by the National Science
Foundation (IIS-1208390 and IIS-1617682) and
the DARPA SIMPLEX program under a subcon-
tract from UCLA (N66001-15-C-4035). The au-
thors would like to thank Dipendra K. Misra and
colleagues for providing the evaluation data, and
the anonymous reviewers for valuable comments.

1642

References
Yoav Artzi and Luke Zettlemoyer. 2013. Weakly su-

pervised learning of semantic parsers for mapping
instructions to actions. Transactions of the Associa-
tion for Computational Linguistics Volume1(1):49–
62.

Minoru Asada, Koh Hosoda, Yasuo Kuniyoshi, Hiroshi
Ishiguro, Toshio Inui, Yuichiro Yoshikawa, Masaki
Ogino, and Chisato Yoshida. 2009. Cognitive devel-
opmental robotics: A survey. IEEE Transactions on
Autonomous Mental Development 1(1):12–34.

S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer,
and Regina Barzilay. 2009. Reinforcement learn-
ing for mapping instructions to actions. In Pro-
ceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the
AFNLP: Volume 1 - Volume 1. Association for Com-
putational Linguistics, Stroudsburg, PA, USA, ACL
’09, pages 82–90.

John D. Bransford, Ann L. Brown, and Rodney R.
Cocking. 2000. How People Learn: Brain, Mind,
Experience, and School: Expanded Edition. Na-
tional Academy Press., Washington, DC.

Maya Cakmak and Andrea L. Thomaz. 2012. De-
signing robot learners that ask good questions. In
Proceedings of the 7th Annual ACM/IEEE Inter-
national Conference on Human-Robot Interaction.
ACM, New York, NY, USA, HRI ’12, pages 17–24.

R. Cantrell, K. Talamadupula, P. Schermerhorn, J. Ben-
ton, S. Kambhampati, and M. Scheutz. 2012. Tell
me when and why to do it! run-time planner
model updates via natural language instruction. In
Proceedings of the 7th Annual ACM/IEEE Inter-
national Conference on Human-Robot Interaction.
ACM, New York, NY, USA, HRI ’12, pages 471–
478.

Sonia Chernova and Manuela Veloso. 2008. Teach-
ing multi-robot coordination using demonstration
of communication and state sharing. In Proceed-
ings of the 7th international joint conference on
Autonomous agents and multiagent systems-Volume
3. International Foundation for Autonomous Agents
and Multiagent Systems, pages 1183–1186.

Rui Fang, Malcolm Doering, and Joyce Y. Chai. 2014.
Collaborative models for referring expression gen-
eration in situated dialogue. In Proceedings of
the 28th AAAI Conference on Artificial Intelligence.
AAAI Press, AAAI’14, pages 1544–1550.

Qiaozi Gao, Malcolm Doering, Shaohua Yang, and
Joyce Y. Chai. 2016. Physical causality of action
verbs in grounded language understanding. In ACL
(1). The Association for Computer Linguistics.

P. Gorniak and D. Roy. 2007. Situated language under-
standing as filtering perceived affordances. In Cog-
nitive Science, volume 31(2), pages 197–231.

Joohyun Kim and Raymond J. Mooney. 2012. Un-
supervised pcfg induction for grounded language
learning with highly ambiguous supervision. In Pro-
ceedings of the Conference on Empirical Methods
in Natural Language Processing and Natural Lan-
guage Learning (EMNLP-CoNLL ’12). Jeju Island,
Korea, pages 433–444.

W. Bradley Knox and Peter Stone. 2011. Under-
standing human teaching modalities in reinforce-
ment learning environments: A preliminary report.
In IJCAI 2011 Workshop on Agents Learning Inter-
actively from Human Teachers (ALIHT).

Jiwei Li, Alexander H. Miller, Sumit Chopra,
Marc’Aurelio Ranzato, and Jason Weston. 2017.
Learning through dialogue interactions. In ICLR.

Changsong Liu and Joyce Y. Chai. 2015. Learning to
mediate perceptual differences in situated human-
robot dialogue. In Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence. AAAI
Press, AAAI’15, pages 2288–2294.

Changsong Liu, Lanbo She, Rui Fang, and Joyce Y.
Chai. 2014. Probabilistic labeling for efficient ref-
erential grounding based on collaborative discourse.
In Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics, pages 13–18.

Changsong Liu, Shaohua Yang, Sari Saba-Sadiya, Nis-
hant Shukla, Yunzhong He, Song-chun Zhu, and
Joyce Y. Chai. 2016. Jointly learning grounded
task structures from language instruction and visual
demonstration. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing. Association for Computational Linguis-
tics, Austin, Texas, pages 1482–1492.

Cynthia Matuszek, Nicholas Fitzgerald, Luke Zettle-
moyer, Liefeng Bo, and Dieter Fox. 2012a. A
joint model of language and perception for grounded
attribute learning. In John Langford and Joelle
Pineau, editors, Proceedings of the 29th Interna-
tional Conference on Machine Learning (ICML-12).
ACM, New York, NY, USA, pages 1671–1678.

Cynthia Matuszek, Evan Herbst, Luke S. Zettlemoyer,
and Dieter Fox. 2012b. Learning to parse nat-
ural language commands to a robot control sys-
tem. In Jaydev P. Desai, Gregory Dudek, Oussama
Khatib, and Vijay Kumar, editors, ISER. Springer,
volume 88 of Springer Tracts in Advanced Robotics,
pages 403–415.

Dipendra K Misra, Jaeyong Sung, Kevin Lee, and
Ashutosh Saxena. 2014. Tell me dave: Context-
sensitive grounding of natural language to manipula-
tion instructions. Proceedings of Robotics: Science
and Systems (RSS), Berkeley, USA .

Dipendra Kumar Misra, Kejia Tao, Percy Liang, and
Ashutosh Saxena. 2015. Environment-driven lexi-
con induction for high-level instructions. In Pro-
ceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the

1643

7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Associ-
ation for Computational Linguistics, Beijing, China,
pages 992–1002.

Shiwali Mohan, James Kirk, and John Laird. 2013. A
computational model for situated task learning with
interactive instruction. In Proceedings of ICCM
2013 - 12th International Conference on Cognitive
Modeling.

Anahita Mohseni-Kabir, Charles Rich, Sonia Cher-
nova, Candace L. Sidner, and Daniel Miller. 2015.
Interactive hierarchical task learning from a single
demonstration. In Proceedings of the Tenth Annual
ACM/IEEE International Conference on Human-
Robot Interaction. ACM, HRI ’15, pages 205–212.

Kira Mourão, Luke S. Zettlemoyer, Ronald P. A. Pet-
rick, and Mark Steedman. 2012. Learning STRIPS
operators from noisy and incomplete observations.
In Proceedings of the Twenty-Eighth Conference on
Uncertainty in Artificial Intelligence. Catalina Is-
land, CA, USA, pages 614–623.

Negin Nejati, Pat Langley, and Tolga Konik. 2006.
Learning hierarchical task networks by observation.
In Proceedings of the 23rd international conference
on Machine learning. ACM, pages 665–672.

Tim Paek and Roberto Pieraccini. 2008. Automating
spoken dialogue management design using machine
learning: An industry perspective. Speech Commu-
nication 50(8-9):716–729.

Joe Saunders, Chrystopher L Nehaniv, and Kerstin
Dautenhahn. 2006. Teaching robots by moulding
behavior and scaffolding the environment. In Pro-
ceedings of the 1st ACM SIGCHI/SIGART confer-
ence on Human-robot interaction. ACM, pages 118–
125.

Jost Schatzmann, Karl Weilhammer, Matt Stuttle, and
Steve Young. 2006. A survey of statistical user sim-
ulation techniques for reinforcement-learning of di-
alogue management strategies. Knowl. Eng. Rev.
21(2):97–126.

Lanbo She and Joyce Y. Chai. 2016. Incremental ac-
quisition of verb hypothesis space towards physical
world interaction. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers.

Lanbo She, Shaohua Yang, Yu Cheng, Yunyi Jia,
Joyce Y. Chai, and Ning Xi. 2014. Back to the
blocks world: Learning new actions through situ-
ated human-robot dialogue. In Proceedings of the
SIGDIAL 2014 Conference, The 15th Annual Meet-
ing of the Special Interest Group on Discourse and
Dialogue, 18-20 June 2014, Philadelphia, PA, USA.
pages 89–97.

Satinder Singh, Diane Litman, Michael Kearns, and
Marilyn Walker. 2002. Optimizing dialogue man-
agement with reinforcement learning: Experiments
with the njfun system. Journal of Artificial Intelli-
gence Research 16:105–133.

Pei-Hao Su, Milica Gasic, Nikola Mrkšić, Lina M. Ro-
jas Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016. On-line active
reward learning for policy optimisation in spoken di-
alogue systems. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, Berlin, Germany, pages
2431–2441.

Richard S. Sutton and Andrew G. Barto. 1998. In-
troduction to Reinforcement Learning. MIT Press,
Cambridge, MA, USA, 1st edition.

Stefanie Tellex, Pratiksha Thaker, Joshua Joseph,
and Nicholas Roy. 2014. Learning perceptually
grounded word meanings from unaligned parallel
data. Machine Learning 94(2):151–167.

Jesse Thomason, Jivko Sinapov, Maxwell Svetlik, Pe-
ter Stone, and Raymond J. Mooney. 2016. Learning
multi-modal grounded linguistic semantics by play-
ing ”i spy”. In Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI-
16). New York City, pages 3477–3483.

Jesse Thomason, Shiqi Zhang, Raymond Mooney, and
Peter Stone. 2015. Learning to interpret natural lan-
guage commands through human-robot dialog. In
Proceedings of the 24th International Joint Confer-
ence on Artificial Intelligence (IJCAI). pages 1923–
1929.

Jason D Williams and Geoffrey Zweig. 2016. End-
to-end lstm-based dialog control optimized with su-
pervised and reinforcement learning. arXiv preprint
arXiv:1606.01269 .

Shaohua Yang, Qiaozi Gao, Changsong Liu, Caiming
Xiong, Song-Chun Zhu, and Joyce Y. Chai. 2016.
Grounded semantic role labeling. In NAACL HLT
2016, The 2016 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, San Diego
California, USA, June 12-17, 2016. pages 149–159.

1644

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1645–1656
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1151

Multimodal Word Distributions

Ben Athiwaratkun
Cornell University

pa338@cornell.edu

Andrew Gordon Wilson
Cornell University

andrew@cornell.edu

Abstract

Word embeddings provide point represen-
tations of words containing useful seman-
tic information. We introduce multimodal
word distributions formed from Gaussian
mixtures, for multiple word meanings, en-
tailment, and rich uncertainty informa-
tion. To learn these distributions, we pro-
pose an energy-based max-margin objec-
tive. We show that the resulting approach
captures uniquely expressive semantic in-
formation, and outperforms alternatives,
such as word2vec skip-grams, and Gaus-
sian embeddings, on benchmark datasets
such as word similarity and entailment.

1 Introduction

To model language, we must represent words.
We can imagine representing every word with a
binary one-hot vector corresponding to a dictio-
nary position. But such a representation contains
no valuable semantic information: distances be-
tween word vectors represent only differences in
alphabetic ordering. Modern approaches, by con-
trast, learn to map words with similar meanings
to nearby points in a vector space (Mikolov et al.,
2013a), from large datasets such as Wikipedia.
These learned word embeddings have become
ubiquitous in predictive tasks.

Vilnis and McCallum (2014) recently proposed
an alternative view, where words are represented
by a whole probability distribution instead of a de-
terministic point vector. Specifically, they model
each word by a Gaussian distribution, and learn
its mean and covariance matrix from data. This
approach generalizes any deterministic point em-
bedding, which can be fully captured by the mean
vector of the Gaussian distribution. Moreover, the
full distribution provides much richer information

than point estimates for characterizing words, rep-
resenting probability mass and uncertainty across
a set of semantics.

However, since a Gaussian distribution can have
only one mode, the learned uncertainty in this rep-
resentation can be overly diffuse for words with
multiple distinct meanings (polysemies), in or-
der for the model to assign some density to any
plausible semantics (Vilnis and McCallum, 2014).
Moreover, the mean of the Gaussian can be pulled
in many opposing directions, leading to a biased
distribution that centers its mass mostly around
one meaning while leaving the others not well rep-
resented.

In this paper, we propose to represent each
word with an expressive multimodal distribution,
for multiple distinct meanings, entailment, heavy
tailed uncertainty, and enhanced interpretability.
For example, one mode of the word ‘bank’ could
overlap with distributions for words such as ‘fi-
nance’ and ‘money’, and another mode could
overlap with the distributions for ‘river’ and
‘creek’. It is our contention that such flexibility
is critical for both qualitatively learning about the
meanings of words, and for optimal performance
on many predictive tasks.

In particular, we model each word with a mix-
ture of Gaussians (Section 3.1). We learn all
the parameters of this mixture model using a
maximum margin energy-based ranking objective
(Joachims, 2002; Vilnis and McCallum, 2014)
(Section 3.3), where the energy function describes
the affinity between a pair of words. For analytic
tractability with Gaussian mixtures, we use the in-
ner product between probability distributions in a
Hilbert space, known as the expected likelihood
kernel (Jebara et al., 2004), as our energy func-
tion (Section 3.4). Additionally, we propose trans-
formations for numerical stability and initializa-
tion A.2, resulting in a robust, straightforward, and

1645

https://doi.org/10.18653/v1/P17-1151

scalable learning procedure, capable of training on
a corpus with billions of words in days. We show
that the model is able to automatically discover
multiple meanings for words (Section 4.3), and
significantly outperform other alternative meth-
ods across several tasks such as word similarity
and entailment (Section 4.4, 4.5, 4.7). We have
made code available at http://github.com/
benathi/word2gm, where we implement our
model in Tensorflow (Abadi et. al, 2015).

2 Related Work

In the past decade, there has been an explo-
sion of interest in word vector representations.
word2vec, arguably the most popular word em-
bedding, uses continuous bag of words and skip-
gram models, in conjunction with negative sam-
pling for efficient conditional probability estima-
tion (Mikolov et al., 2013a,b). Other popular ap-
proaches use feedforward (Bengio et al., 2003)
and recurrent neural network language models
(Mikolov et al., 2010, 2011b; Collobert and We-
ston, 2008) to predict missing words in sentences,
producing hidden layers that can act as word em-
beddings that encode semantic information. They
employ conditional probability estimation tech-
niques, including hierarchical softmax (Mikolov
et al., 2011a; Mnih and Hinton, 2008; Morin and
Bengio, 2005) and noise contrastive estimation
(Gutmann and Hyvärinen, 2012).

A different approach to learning word em-
beddings is through factorization of word co-
occurrence matrices such as GloVe embeddings
(Pennington et al., 2014). The matrix factoriza-
tion approach has been shown to have an implicit
connection with skip-gram and negative sampling
Levy and Goldberg (2014). Bayesian matrix fac-
torization where row and columns are modeled as
Gaussians has been explored in Salakhutdinov and
Mnih (2008) and provides a different probabilistic
perspective of word embeddings.

In exciting recent work, Vilnis and McCallum
(2014) propose a Gaussian distribution to model
each word. Their approach is significantly more
expressive than typical point embeddings, with the
ability to represent concepts such as entailment,
by having the distribution for one word (e.g. ‘mu-
sic’) encompass the distributions for sets of related
words (‘jazz’ and ‘pop’). However, with a uni-
modal distribution, their approach cannot capture
multiple distinct meanings, much like most deter-

ministic approaches.
Recent work has also proposed deterministic

embeddings that can capture polysemies, for ex-
ample through a cluster centroid of context vec-
tors (Huang et al., 2012), or an adapted skip-gram
model with an EM algorithm to learn multiple la-
tent representations per word (Tian et al., 2014).
Neelakantan et al. (2014) also extends skip-gram
with multiple prototype embeddings where the
number of senses per word is determined by a
non-parametric approach. Liu et al. (2015) learns
topical embeddings based on latent topic models
where each word is associated with multiple top-
ics. Another related work by Nalisnick and Ravi
(2015) models embeddings in infinite-dimensional
space where each embedding can gradually repre-
sent incremental word sense if complex meanings
are observed.

Probabilistic word embeddings have only re-
cently begun to be explored, and have so far shown
great promise. In this paper, we propose, to the
best of our knowledge, the first probabilistic word
embedding that can capture multiple meanings.
We use a Gaussian mixture model which allows
for a highly expressive distributions over words.
At the same time, we retain scalability and analytic
tractability with an expected likelihood kernel en-
ergy function for training. The model and train-
ing procedure harmonize to learn descriptive rep-
resentations of words, with superior performance
on several benchmarks.

3 Methodology

In this section, we introduce our Gaussian mix-
ture (GM) model for word representations, and
present a training method to learn the parameters
of the Gaussian mixture. This method uses an
energy-based maximum margin objective, where
we wish to maximize the similarity of distribu-
tions of nearby words in sentences. We propose an
energy function that compliments the GM model
by retaining analytic tractability. We also pro-
vide critical practical details for numerical stabil-
ity and initialization. The code for model training
and evaluation is available at http://github.
com/benathi/word2gm.

3.1 Word Representation

We represent each word w in a dictionary as a
Gaussian mixture with K components. Specif-
ically, the distribution of w, fw, is given by the

1646

density

fw(~x) =

K∑

i=1

pw,i N [~x; ~µw,i,Σw,i] (1)

=
K∑

i=1

pw,i√
2π|Σw,i|

e−
1
2

(~x−~µw,i)>Σ−1
w,i(~x−~µw,i) ,

where
∑K

i=1 pw,i = 1. The mean vectors ~µw,i
represent the location of the ith component of
word w, and are akin to the point embeddings
provided by popular approaches like word2vec.
pw,i represents the component probability (mix-
ture weight), and Σw,i is the component covari-
ance matrix, containing uncertainty information.
Our goal is to learn all of the model parameters
~µw,i, pw,i,Σw,i from a corpus of natural sentences
to extract semantic information of words. Each
Gaussian component’s mean vector of word w can
represent one of the word’s distinct meanings. For
instance, one component of a polysemous word
such as ‘rock’ should represent the meaning re-
lated to ‘stone’ or ‘pebbles’, whereas another com-
ponent should represent the meaning related to
music such as ‘jazz’ or ‘pop’. Figure 1 illustrates
our word embedding model, and the difference be-
tween multimodal and unimodal representations,
for words with multiple meanings.

3.2 Skip-Gram

The training objective for learning θ =
{~µw,i, pw,i,Σw,i} draws inspiration from the
continuous skip-gram model (Mikolov et al.,
2013a), where word embeddings are trained to
maximize the probability of observing a word
given another nearby word. This procedure
follows the distributional hypothesis that words
occurring in natural contexts tend to be semanti-
cally related. For instance, the words ‘jazz’ and
‘music’ tend to occur near one another more often
than ‘jazz’ and ‘cat’; hence, ‘jazz’ and ‘music’
are more likely to be related. The learned word
representation contains useful semantic informa-
tion and can be used to perform a variety of NLP
tasks such as word similarity analysis, sentiment
classification, modelling word analogies, or as a
preprocessed input for complex system such as
statistical machine translation.

music

rock

jazz

basalt

pop

stone

rock

stone

jazz

pop

music

basalt

music

jazz

rock

basalt

pop

stone

rock

music

rock

jazz

basalt
stone

pop

rock

basalt

stone

music

jazz

pop

Figure 1: Top: A Gaussian Mixture embed-
ding, where each component corresponds to a dis-
tinct meaning. Each Gaussian component is rep-
resented by an ellipsoid, whose center is specified
by the mean vector and contour surface specified
by the covariance matrix, reflecting subtleties in
meaning and uncertainty. On the left, we show ex-
amples of Gaussian mixture distributions of words
where Gaussian components are randomly initial-
ized. After training, we see on the right that
one component of the word ‘rock’ is closer to
‘stone’ and ‘basalt’, whereas the other component
is closer to ‘jazz’ and ‘pop’. We also demonstrate
the entailment concept where the distribution of
the more general word ‘music’ encapsulates words
such as ‘jazz’, ‘rock’, ‘pop’. Bottom: A Gaussian
embedding model (Vilnis and McCallum, 2014).
For words with multiple meanings, such as ‘rock’,
the variance of the learned representation becomes
unnecessarily large in order to assign some proba-
bility to both meanings. Moreover, the mean vec-
tor for such words can be pulled between two clus-
ters, centering the mass of the distribution on a re-
gion which is far from certain meanings.

3.3 Energy-based Max-Margin Objective

Each sample in the objective consists of two pairs
of words, (w, c) and (w, c′). w is sampled from a
sentence in a corpus and c is a nearby word within
a context window of length `. For instance, a word
w = ‘jazz’ which occurs in the sentence ‘I listen
to jazz music’ has context words (‘I’, ‘listen’, ‘to’
, ‘music’). c′ is a negative context word (e.g. ‘air-
plane’) obtained from random sampling.

The objective is to maximize the energy be-
tween words that occur near each other, w and c,
and minimize the energy between w and its nega-
tive context c′. This approach is similar to neg-

1647

ative sampling (Mikolov et al., 2013a,b), which
contrasts the dot product between positive context
pairs with negative context pairs. The energy func-
tion is a measure of similarity between distribu-
tions and will be discussed in Section 3.4.

We use a max-margin ranking objective
(Joachims, 2002), used for Gaussian embeddings
in Vilnis and McCallum (2014), which pushes the
similarity of a word and its positive context higher
than that of its negative context by a margin m:

Lθ(w, c, c
′) = max(0,

m− logEθ(w, c) + logEθ(w, c
′))

This objective can be minimized by mini-batch
stochastic gradient descent with respect to the pa-
rameters θ = {~µw,i, pw,i,Σw,i} – the mean vec-
tors, covariance matrices, and mixture weights –
of our multimodal embedding in Eq. (1).

Word Sampling We use a word sampling
scheme similar to the implementation in
word2vec (Mikolov et al., 2013a,b) to bal-
ance the importance of frequent words and rare
words. Frequent words such as ‘the’, ‘a’, ‘to’
are not as meaningful as relatively less frequent
words such as ‘dog’, ‘love’, ‘rock’, and we are
often more interested in learning the semantics
of the less frequently observed words. We use
subsampling to improve the performance of
learning word vectors (Mikolov et al., 2013b).
This technique discards word wi with probability
P (wi) = 1 −

√
t/f(wi), where f(wi) is the

frequency of word wi in the training corpus and t
is a frequency threshold.

To generate negative context words, each word
type wi is sampled according to a distribution
Pn(wi) ∝ U(wi)

3/4 which is a distorted version
of the unigram distribution U(wi) that also serves
to diminish the relative importance of frequent
words. Both subsampling and the negative distri-
bution choice are proven effective in word2vec
training (Mikolov et al., 2013b).

3.4 Energy Function

For vector representations of words, a usual choice
for similarity measure (energy function) is a dot
product between two vectors. Our word repre-
sentations are distributions instead of point vec-
tors and therefore need a measure that reflects not
only the point similarity, but also the uncertainty.
We propose to use the expected likelihood kernel,

which is a generalization of an inner product be-
tween vectors to an inner product between distri-
butions (Jebara et al., 2004). That is,

E(f, g) =

∫
f(x)g(x) dx = 〈f, g〉L2

where 〈·, ·〉L2 denotes the inner product in Hilbert
space L2. We choose this form of energy since it
can be evaluated in a closed form given our choice
of probabilistic embedding in Eq. (1).

For Gaussian mixtures f, g representing the
words wf , wg, f(x) =

∑K
i=1 piN (x; ~µf,i,Σf,i)

and g(x) =
∑K

i=1 qiN (x; ~µg,i,Σg,i),
∑K

i=1 pi =

1, and
∑K

i=1 qi = 1, we find (see Section A.1) the
log energy is

logEθ(f, g) = log
K∑

j=1

K∑

i=1

piqje
ξi,j (2)

where

ξi,j ≡ logN (0; ~µf,i − ~µg,j ,Σf,i + Σg,j)

= −1

2
log det(Σf,i + Σg,j)−

D

2
log(2π)

−1

2
(~µf,i − ~µg,j)>(Σf,i + Σg,j)

−1(~µf,i − ~µg,j)
(3)

We call the term ξi,j partial (log) energy. Observe
that this term captures the similarity between the
ith meaning of word wf and the jth meaning of
word wg. The total energy in Equation 2 is the
sum of possible pairs of partial energies, weighted
accordingly by the mixture probabilities pi and qj .

The term−(~µf,i−~µg,j)>(Σf,i+Σg,j)
−1(~µf,i−

~µg,j) in ξi,j explains the difference in mean vectors
of semantic pair (wf , i) and (wg, j). If the seman-
tic uncertainty (covariance) for both pairs are low,
this term has more importance relative to other
terms due to the inverse covariance scaling. We
observe that the loss function Lθ in Section 3.3 at-
tains a low value when Eθ(w, c) is relatively high.
High values of Eθ(w, c) can be achieved when the
component means across different words ~µf,i and
~µg,j are close together (e.g., similar point repre-
sentations). High energy can also be achieved by
large values of Σf,i and Σg,j , which washes out
the importance of the mean vector difference. The
term− log det(Σf,i+Σg,j) serves as a regularizer
that prevents the covariances from being pushed
too high at the expense of learning a good mean
embedding.

1648

At the beginning of training, ξi,j roughly are on
the same scale among all pairs (i, j)’s. During this
time, all components learn the signals from the
word occurrences equally. As training progresses
and the semantic representation of each mixture
becomes more clear, there can be one term of ξi,j’s
that is predominantly higher than other terms, giv-
ing rise to a semantic pair that is most related.

The negative KL divergence is another sensible
choice of energy function, providing an asymmet-
ric metric between word distributions. However,
unlike the expected likelihood kernel, KL diver-
gence does not have a closed form if the two dis-
tributions are Gaussian mixtures.

4 Experiments

We have introduced a model for multi-prototype
embeddings, which expressively captures word
meanings with whole probability distributions.
We show that our combination of energy and ob-
jective functions, proposed in Section 3, enables
one to learn interpretable multimodal distribu-
tions through unsupervised training, for describing
words with multiple distinct meanings. By rep-
resenting multiple distinct meanings, our model
also reduces the unnecessarily large variance of a
Gaussian embedding model, and has improved re-
sults on word entailment tasks.

To learn the parameters of the proposed mix-
ture model, we train on a concatenation of
two datasets: UKWAC (2.5 billion tokens) and
Wackypedia (1 billion tokens) (Baroni et al.,
2009). We discard words that occur fewer than
100 times in the corpus, which results in a vocab-
ulary size of 314, 129 words. Our word sampling
scheme, described at the end of Section 4.3, is sim-
ilar to that of word2vec with one negative con-
text word for each positive context word.

After training, we obtain learned parameters
{~µw,i,Σw,i, pi}Ki=1 for each word w. We treat the
mean vector ~µw,i as the embedding of the ith mix-
ture component with the covariance matrix Σw,i

representing its subtlety and uncertainty. We per-
form qualitative evaluation to show that our em-
beddings learn meaningful multi-prototype repre-
sentations and compare to existing models using a
quantitative evaluation on word similarity datasets
and word entailment.

We name our model as Word to Gaussian Mix-
ture (w2gm) in constrast to Word to Gaussian
(w2g) (Vilnis and McCallum, 2014). Unless

stated otherwise, w2g refers to our implementa-
tion of w2gm model with one mixture component.

4.1 Hyperparameters

Unless stated otherwise, we experiment with K =
2 components for the w2gm model, but we have
results and discussion of K = 3 at the end of sec-
tion 4.3. We primarily consider the spherical case
for computational efficiency. We note that for di-
agonal or spherical covariances, the energy can be
computed very efficiently since the matrix inver-
sion would simply require O(d) computation in-
stead of O(d3) for a full matrix. Empirically, we
have found diagonal covariance matrices become
roughly spherical after training. Indeed, for these
relatively high dimensional embeddings, there are
sufficient degrees of freedom for the mean vec-
tors to be learned such that the covariance matrices
need not be asymmetric. Therefore, we perform
all evaluations with spherical covariance models.

Models used for evaluation have dimension
D = 50 and use context window ` = 10 unless
stated otherwise. We provide additional hyperpa-
rameters and training details in the supplementary
material (A.2).

4.2 Similarity Measures

Since our word embeddings contain multiple vec-
tors and uncertainty parameters per word, we use
the following measures that generalizes similarity
scores. These measures pick out the component
pair with maximum similarity and therefore deter-
mine the meanings that are most relevant.

4.2.1 Expected Likelihood Kernel
A natural choice for a similarity score is the ex-
pected likelihood kernel, an inner product between
distributions, which we discussed in Section 3.4.
This metric incorporates the uncertainty from the
covariance matrices in addition to the similarity
between the mean vectors.

4.2.2 Maximum Cosine Similarity
This metric measures the maximum similarity of
mean vectors among all pairs of mixture com-
ponents between distributions f and g. That is,

d(f, g) = max
i,j=1,...,K

〈µf,i,µg,j〉
||µf,i|| · ||µg,j ||

, which corre-

sponds to matching the meanings of f and g that
are the most similar. For a Gaussian embedding,
maximum similarity reduces to the usual cosine
similarity.

1649

Word Co. Nearest Neighbors

rock 0 basalt:1, boulder:1, boulders:0, stalagmites:0, stalactites:0, rocks:1, sand:0, quartzite:1, bedrock:0
rock 1 rock/:1, ska:0, funk:1, pop-rock:1, punk:1, indie-rock:0, band:0, indie:0, pop:1
bank 0 banks:1, mouth:1, river:1, River:0, confluence:0, waterway:1, downstream:1, upstream:0, dammed:0
bank 1 banks:0, banking:1, banker:0, Banks:1, bankas:1, Citibank:1, Interbank:1, Bankers:0, transactions:1

Apple 0 Strawberry:0, Tomato:1, Raspberry:1, Blackberry:1, Apples:0, Pineapple:1, Grape:1, Lemon:0
Apple 1 Macintosh:1, Mac:1, OS:1, Amiga:0, Compaq:0, Atari:1, PC:1, Windows:0, iMac:0

star 0 stars:0, Quaid:0, starlet:0, Dafoe:0, Stallone:0, Geena:0, Niro:0, Zeta-Jones:1, superstar:0
star 1 stars:1, brightest:0, Milky:0, constellation:1, stellar:0, nebula:1, galactic:1, supernova:1, Ophiuchus:1
cell 0 cellular:0, Nextel:0, 2-line:0, Sprint:0, phones.:1, pda:1, handset:0, handsets:1, pushbuttons:0
cell 1 cytoplasm:0, vesicle:0, cytoplasmic:1, macrophages:0, secreted:1, membrane:0, mitotic:0, endocytosis:1
left 0 After:1, back:0, finally:1, eventually:0, broke:0, joined:1, returned:1, after:1, soon:0
left 1 right-hand:0, hand:0, right:0, left-hand:0, lefthand:0, arrow:0, turn:0, righthand:0, Left:0

Word Nearest Neighbors

rock band, bands, Rock, indie, Stones, breakbeat, punk, electronica, funk
bank banks, banking, trader, trading, Bank, capital, Banco, bankers, cash
Apple Macintosh, Microsoft, Windows, Macs, Lite, Intel, Desktop, WordPerfect, Mac

star stars, stellar, brightest, Stars, Galaxy, Stardust, eclipsing, stars., Star
cell cells, DNA, cellular, cytoplasm, membrane, peptide, macrophages, suppressor, vesicles
left leaving, turned, back, then, After, after, immediately, broke, end

Table 1: Nearest neighbors based on cosine similarity between the mean vectors of Gaussian components
for Gaussian mixture embedding (top) (forK = 2) and Gaussian embedding (bottom). The notation w:i
denotes the ith mixture component of the word w.

4.2.3 Minimum Euclidean Distance
Cosine similarity is popular for evaluating em-
beddings. However, our training objective di-
rectly involves the Euclidean distance in Eq. (3),
as opposed to dot product of vectors such as in
word2vec. Therefore, we also consider the Eu-
clidean metric: d(f, g) = min

i,j=1,...,K
[||µf,i−µg,j ||].

4.3 Qualitative Evaluation

In Table 1, we show examples of polysemous
words and their nearest neighbors in the embed-
ding space to demonstrate that our trained em-
beddings capture multiple word senses. For in-
stance, a word such as ‘rock’ that could mean ei-
ther ‘stone’ or ‘rock music’ should have each of its
meanings represented by a distinct Gaussian com-
ponent. Our results for a mixture of two Gaussians
model confirm this hypothesis, where we observe
that the 0th component of ‘rock’ being related to
(‘basalt’, ‘boulders’) and the 1st component being
related to (‘indie’, ‘funk’, ‘hip-hop’). Similarly,
the word bank has its 0th component representing
the river bank and the 1st component representing
the financial bank.

By contrast, in Table 1 (bottom), see that for
Gaussian embeddings with one mixture compo-
nent, nearest neighbors of polysemous words are
predominantly related to a single meaning. For in-
stance, ‘rock’ mostly has neighbors related to rock

music and ‘bank’ mostly related to the financial
bank. The alternative meanings of these polyse-
mous words are not well represented in the embed-
dings. As a numerical example, the cosine simi-
larity between ‘rock’ and ‘stone’ for the Gaussian
representation of Vilnis and McCallum (2014) is
only 0.029, much lower than the cosine similarity
0.586 between the 0th component of ‘rock’ and
‘stone’ in our multimodal representation.

In cases where a word only has a single popu-
lar meaning, the mixture components can be fairly
close; for instance, one component of ‘stone’ is
close to (‘stones’, ‘stonework’, ‘slab’) and the
other to (‘carving, ‘relic’, ‘excavated’), which re-
flects subtle variations in meanings. In general, the
mixture can give properties such as heavy tails and
more interesting unimodal characterizations of un-
certainty than could be described by a single Gaus-
sian.

Embedding Visualization We provide an
interactive visualization as part of our code repos-
itory: https://github.com/benathi/
word2gm#visualization that allows real-
time queries of words’ nearest neighbors (in the
embeddings tab) for K = 1, 2, 3 components.
We use a notation similar to that of Table 1, where
a token w:i represents the component i of a
word w. For instance, if in the K = 2 link we
search for bank:0, we obtain the nearest neigh-

1650

bors such as river:1, confluence:0,
waterway:1, which indicates that the 0th

component of ‘bank’ has the meaning ‘river
bank’. On the other hand, searching for bank:1
yields nearby words such as banking:1,
banker:0, ATM:0, indicating that this com-
ponent is close to the ‘financial bank’. We also
have a visualization of a unimodal (w2g) for
comparison in the K = 1 link.

In addition, the embedding link for our Gaus-
sian mixture model with K = 3 mixture compo-
nents can learn three distinct meanings. For in-
stance, each of the three components of ‘cell’ is
close to (‘keypad’, ‘digits’), (‘incarcerated’, ‘in-
mate’) or (‘tissue’, ‘antibody’), indicating that the
distribution captures the concept of ‘cellphone’,
‘jail cell’, or ‘biological cell’, respectively. Due
to the limited number of words with more than 2
meanings, our model with K = 3 does not gen-
erally offer substantial performance differences to
our model with K = 2; hence, we do not further
display K = 3 results for compactness.

4.4 Word Similarity

We evaluate our embeddings on several standard
word similarity datasets, namely, SimLex (Hill
et al., 2014), WS or WordSim-353, WS-S (sim-
ilarity), WS-R (relatedness) (Finkelstein et al.,
2002), MEN (Bruni et al., 2014), MC (Miller and
Charles, 1991), RG (Rubenstein and Goodenough,
1965), YP (Yang and Powers, 2006), MTurk(-
287,-771) (Radinsky et al., 2011; Halawi et al.,
2012), and RW (Luong et al., 2013). Each dataset
contains a list of word pairs with a human score of
how related or similar the two words are.

We calculate the Spearman correlation (Spear-
man, 1904) between the labels and our scores gen-
erated by the embeddings. The Spearman corre-
lation is a rank-based correlation measure that as-
sesses how well the scores describe the true labels.

The correlation results are shown in Table 2 us-
ing the scores generated from the expected like-
lihood kernel, maximum cosine similarity, and
maximum Euclidean distance.

We show the results of our Gaussian mixture
model and compare the performance with that
of word2vec and the original Gaussian em-
bedding by Vilnis and McCallum (2014). We
note that our model of a unimodal Gaussian
embedding w2g also outperforms the original
model, which differs in model hyperparame-

ters and initialization, for most datasets. Our
multi-prototype model w2gm also performs better
than skip-gram or Gaussian embedding methods
on many datasets, namely, WS, WS-R, MEN,
MC, RG, YP, MT-287, RW. The maximum
cosine similarity yields the best performance on
most datasets; however, the minimum Euclidean
distance is a better metric for the datasets MC
and RW. These results are consistent for both the
single-prototype and the multi-prototype models.

We also compare out results on WordSim-353
with the multi-prototype embedding method by
Huang et al. (2012) and Neelakantan et al. (2014),
shown in Table 3. We observe that our single-
prototype model w2g is competitive compared to
models by Huang et al. (2012), even without us-
ing a corpus with stop words removed. This could
be due to the auto-calibration of importance via
the covariance learning which decrease the impor-
tance of very frequent words such as ‘the’, ‘to’,
‘a’, etc. Moreover, our multi-prototype model sub-
stantially outperforms the model of Huang et al.
(2012) and the MSSG model of Neelakantan et al.
(2014) on the WordSim-353 dataset.

4.5 Word Similarity for Polysemous Words

We use the dataset SCWS introduced by Huang
et al. (2012), where word pairs are chosen to
have variations in meanings of polysemous and
homonymous words.

We compare our method with multiprototype
models by Huang (Huang et al., 2012), Tian
(Tian et al., 2014), Chen (Chen et al., 2014), and
MSSG model by (Neelakantan et al., 2014). We
note that Chen model uses an external lexical
source WordNet that gives it an extra advantage.

We use many metrics to calculate the scores for
the Spearman correlation. MaxSim refers to the
maximum cosine similarity. AveSim is the aver-
age of cosine similarities with respect to the com-
ponent probabilities.

In Table 4, the model w2g performs the best
among all single-prototype models for either 50
or 200 vector dimensions. Our model w2gm
performs competitively compared to other multi-
prototype models. In SCWS, the gain in flexibility
in moving to a probability density approach ap-
pears to dominate over the effects of using a multi-
prototype. In most other examples, we see w2gm
surpass w2g, where the multi-prototype structure
is just as important for good performance as the

1651

Dataset sg* w2g* w2g/mc w2g/el w2g/me w2gm/mc w2gm/el w2gm/me

SL 29.39 32.23 29.35 25.44 25.43 29.31 26.02 27.59
WS 59.89 65.49 71.53 61.51 64.04 73.47 62.85 66.39
WS-S 69.86 76.15 76.70 70.57 72.3 76.73 70.08 73.3
WS-R 53.03 58.96 68.34 54.4 55.43 71.75 57.98 60.13
MEN 70.27 71.31 72.58 67.81 65.53 73.55 68.5 67.7
MC 63.96 70.41 76.48 72.70 80.66 79.08 76.75 80.33
RG 70.01 71 73.30 72.29 72.12 74.51 71.55 73.52
YP 39.34 41.5 41.96 38.38 36.41 45.07 39.18 38.58
MT-287 - - 64.79 57.5 58.31 66.60 57.24 60.61
MT-771 - - 60.86 55.89 54.12 60.82 57.26 56.43
RW - - 28.78 32.34 33.16 28.62 31.64 35.27

Table 2: Spearman correlation for word similarity datasets. The models sg, w2g, w2gm denote
word2vec skip-gram, Gaussian embedding, and Gaussian mixture embedding (K=2). The measures
mc, el, me denote maximum cosine similarity, expected likelihood kernel, and minimum Euclidean
distance. For each of w2g and w2gm, we underline the similarity metric with the best score. For each
dataset, we boldface the score with the best performance across all models. The correlation scores for
sg*, w2g* are taken from Vilnis and McCallum (2014) and correspond to cosine distance.

MODEL ρ× 100
HUANG 64.2
HUANG* 71.3
MSSG 50D 63.2
MSSG 300D 71.2
W2G 70.9
W2GM 73.5

Table 3: Spearman’s correlation (ρ) on WordSim-
353 datasets for our Word to Gaussian Mixture
embeddings, as well as the multi-prototype em-
bedding by Huang et al. (2012) and the MSSG
model by Neelakantan et al. (2014). Huang* is
trained using data with all stop words removed.
All models have dimension D = 50 except for
MSSG 300D with D = 300 which is still outper-
formed by our w2gm model.

probabilistic representation.

4.6 Reduction in Variance of Polysemous
Words

One motivation for our Gaussian mixture embed-
ding is to model word uncertainty more accurately
than Gaussian embeddings, which can have overly
large variances for polysemous words (in order
to assign some mass to all of the distinct mean-
ings). We see that our Gaussian mixture model
does indeed reduce the variances of each compo-
nent for such words. For instance, we observe that
the word rock in w2g has much higher variance
per dimension (e−1.8 ≈ 1.65) compared to that of
Gaussian components of rock in w2gm (which
has variance of roughly e−2.5 ≈ 0.82). We also

MODEL DIMENSION ρ× 100
WORD2VEC SKIP-GRAM 50 61.7
HUANG-S 50 58.6
W2G 50 64.7
CHEN-S 200 64.2
W2G 200 66.2

HUANG-M AVGSIM 50 62.8
TIAN-M MAXSIM 50 63.6
W2GM MAXSIM 50 62.7
MSSG AVGSIM 50 64.2
CHEN-M AVGSIM 200 66.2
W2GM MAXSIM 200 65.5

Table 4: Spearman’s correlation ρ on dataset
SCWS. We show the results for single proto-
type (top) and multi-prototype (bottom) The suffix
-(S,M) refers to single and multiple prototype
models, respectively.

see, in the next section, that the Gaussian mixture
model has desirable quantitative behavior for word
entailment.

4.7 Word Entailment
We evaluate our embeddings on the word entail-
ment dataset from Baroni et al. (2012). The lexical
entailment between words is denoted by w1 |= w2

which means that all instances of w1 are w2. The
entailment dataset contains positive pairs such as
aircraft |= vehicle and negative pairs such as air-
craft 6|= insect.

We generate entailment scores of word pairs
and find the best threshold, measured by Average
Precision (AP) or F1 score, which identifies neg-
ative versus positive entailment. We use the max-

1652

MODEL SCORE BEST AP BEST F1
W2G (5) COS 73.1 76.4
W2G (5) KL 73.7 76.0

W2GM (5) COS 73.6 76.3
W2GM (5) KL 75.7 77.9

W2G (10) COS 73.0 76.1
W2G (10) KL 74.2 76.1

W2GM (10) COS 72.9 75.6
W2GM (10) KL 74.7 76.3

Table 5: Entailment results for models w2g and
w2gm with window size 5 and 10. The metrics
used are the maximum cosine similarity, or the
maximum negative KL divergence. We calculate
the best average precision as well as the best F1
score. In most cases, w2gm outperforms w2g for
describing entailment.

imum cosine similarity and the minimum KL di-
vergence, d(f, g) = min

i,j=1,...,K
KL(f ||g), for en-

tailment scores. The minimum KL divergence is
similar to the maximum cosine similarity, but also
incorporates the embedding uncertainty. In addi-
tion, KL divergence is an asymmetric measure,
which is more suitable for certain tasks such as
word entailment where a relationship is unidirec-
tional. For instance, w1 |= w2 does not imply
w2 |= w1. Indeed, aircraft |= vehicle does not im-
ply vehicle |= aircraft, since all aircraft are vehi-
cles but not all vehicles are aircraft. The difference
between KL(w1||w2) versus KL(w2||w1) distin-
guishes which word distribution encompasses an-
other distribution, as demonstrated in Figure 1.

Table 5 shows the results of our w2gm model
versus the Gaussian embedding model w2g. We
observe a trend for both models with window size
5 and 10 that the KL metric yields improvement
(both AP and F1) over cosine similarity. In ad-
dition, w2gm has a better performance compared
to w2g. The multi-prototype model estimates the
meaning uncertainty better since it is no longer
constrained to be unimodal, leading to better char-
acterizations of entailment. On the other hand,
the Gaussian embedding model suffers from large
variance problem for polysemous words, which
results in less informative word distribution and
inferior entailment scores.

5 Discussion

We introduced a model that represents words with
expressive multimodal distributions formed from
Gaussian mixtures. To learn the properties of each

mixture, we proposed an analytic energy function
for combination with a maximum margin objec-
tive. The resulting embeddings capture different
semantics of polysemous words, uncertainty, and
entailment, and also perform favorably on word
similarity benchmarks.

Elsewhere, latent probabilistic representations
are proving to be exceptionally valuable, able to
capture nuances such as face angles with varia-
tional autoencoders (Kingma and Welling, 2013)
or subtleties in painting strokes with the InfoGAN
(Chen et al., 2016). Moreover, classically deter-
ministic deep learning architectures are now being
generalized to probabilistic deep models, for full
predictive distributions instead of point estimates,
and significantly more expressive representations
(Wilson et al., 2016b,a; Al-Shedivat et al., 2016;
Gan et al., 2016; Fortunato et al., 2017).

Similarly, probabilistic word embeddings can
capture a range of subtle meanings, and advance
the state of the art in predictive tasks. Multimodal
word distributions naturally represent our belief
that words do not have single precise meanings:
indeed, the shape of a word distribution can ex-
press much more semantic information than any
point representation.

In the future, multimodal word distributions
could open the doors to a new suite of applica-
tions in language modelling, where whole word
distributions are used as inputs to new probabilis-
tic LSTMs, or in decision functions where un-
certainty matters. As part of this effort, we can
explore different metrics between distributions,
such as KL divergences, which would be a natu-
ral choice for order embeddings that model entail-
ment properties. It would also be informative to
explore inference over the number of components
in mixture models for word distributions. Such an
approach could potentially discover an unbounded
number of distinct meanings for words, but also
distribute the support of each word distribution to
express highly nuanced meanings. Alternatively,
we could imagine a dependent mixture model
where the distributions over words are evolving
with time and other covariates. One could also
build new types of supervised language models,
constructed to more fully leverage the rich infor-
mation provided by word distributions.

Acknowledgements

We thank NSF IIS-1563887 for support.

1653

References
Maruan Al-Shedivat, Andrew Gordon Wilson, Yunus

Saatchi, Zhiting Hu, and Eric P Xing. 2016. Learn-
ing scalable deep kernels with recurrent structure. arXiv
preprint arXiv:1610.08936 .

Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, and
Chung-chieh Shan. 2012. Entailment above the word
level in distributional semantics. In EACL 2012, 13th
Conference of the European Chapter of the Association
for Computational Linguistics, Avignon, France, April
23-27, 2012. pages 23–32. http://aclweb.org/anthology-
new/E/E12/E12-1004.pdf.

Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros
Zanchetta. 2009. The wacky wide web: a collection
of very large linguistically processed web-crawled cor-
pora. Language Resources and Evaluation 43(3):209–
226. https://doi.org/10.1007/s10579-009-9081-4.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic language
model. Journal of Machine Learning Research 3:1137–
1155.

Elia Bruni, Nam Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Int. Res.
49(1):1–47.

Xi Chen, Xi Chen, Yan Duan, Rein Houthooft, John Schul-
man, Ilya Sutskever, and Pieter Abbeel. 2016. Infogan:
Interpretable representation learning by information maxi-
mizing generative adversarial nets. In Advances in Neural
Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, Decem-
ber 5-10, 2016, Barcelona, Spain. pages 2172–2180.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014. A
unified model for word sense representation and disam-
biguation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL. pages 1025–
1035. http://aclweb.org/anthology/D/D14/D14-1110.pdf.

Ronan Collobert and Jason Weston. 2008. A unified architec-
ture for natural language processing: deep neural networks
with multitask learning. In Machine Learning, Proceed-
ings of the Twenty-Fifth International Conference (ICML
2008), Helsinki, Finland, June 5-9, 2008. pages 160–167.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011. Adap-
tive subgradient methods for online learning and stochas-
tic optimization. Journal of Machine Learning Research
12:2121–2159.

Martı́n Abadi et al. 2015. TensorFlow: Large-scale machine
learning on heterogeneous systems. Software available
from tensorflow.org.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud
Rivlin, Zach Solan, Gadi Wolfman, and Eytan Ruppin.
2002. Placing search in context: the concept revisited.
ACM Trans. Inf. Syst. 20(1):116–131.

Meire Fortunato, Charles Blundell, and Oriol Vinyals. 2017.
Bayesian recurrent neural networks. arXiv preprint
arXiv:1704.02798 .

Zhe Gan, Chunyuan Li, Changyou Chen, Yunchen Pu, Qin-
liang Su, and Lawrence Carin. 2016. Scalable bayesian
learning of recurrent neural networks for language model-
ing. arXiv preprint arXiv:1611.08034 .

Michael Gutmann and Aapo Hyvärinen. 2012. Noise-
contrastive estimation of unnormalized statistical models,
with applications to natural image statistics. Journal of
Machine Learning Research 13:307–361.

Guy Halawi, Gideon Dror, Evgeniy Gabrilovich, and Yehuda
Koren. 2012. Large-scale learning of word relatedness
with constraints. In The 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’12, Beijing, China, August 12-16, 2012. pages
1406–1414.

Felix Hill, Roi Reichart, and Anna Korhonen. 2014. Simlex-
999: Evaluating semantic models with (genuine) similar-
ity estimation. CoRR abs/1408.3456.

Eric H. Huang, Richard Socher, Christopher D. Manning, and
Andrew Y. Ng. 2012. Improving word representations via
global context and multiple word prototypes. In The 50th
Annual Meeting of the Association for Computational Lin-
guistics, Proceedings of the Conference, July 8-14, 2012,
Jeju Island, Korea - Volume 1: Long Papers. pages 873–
882. http://www.aclweb.org/anthology/P12-1092.

Tony Jebara, Risi Kondor, and Andrew Howard. 2004. Prob-
ability product kernels. Journal of Machine Learning Re-
search 5:819–844.

Thorsten Joachims. 2002. Optimizing search engines using
clickthrough data. In Proceedings of the Eighth ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, July 23-26, 2002, Edmonton, Al-
berta, Canada. pages 133–142.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method
for stochastic optimization. CoRR abs/1412.6980.

Diederik P. Kingma and Max Welling. 2013. Auto-
encoding variational bayes. CoRR abs/1312.6114.
http://arxiv.org/abs/1312.6114.

Y. LeCun, L. Bottou, G. Orr, and K. Muller. 1998. Efficient
backprop. In G. Orr and Muller K., editors, Neural Net-
works: Tricks of the trade. Springer.

Omer Levy and Yoav Goldberg. 2014. Neural word em-
bedding as implicit matrix factorization. In Advances in
Neural Information Processing Systems 27: Annual Con-
ference on Neural Information Processing Systems 2014,
December 8-13 2014, Montreal, Quebec, Canada. pages
2177–2185.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong
Sun. 2015. Topical word embeddings. In
Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA.. pages 2418–2424.
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9314.

Minh-Thang Luong, Richard Socher, and Christopher D.
Manning. 2013. Better word representations with recur-
sive neural networks for morphology. In CoNLL. Sofia,
Bulgaria.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
2013a. Efficient estimation of word representations in
vector space. CoRR abs/1301.3781.

1654

Tomas Mikolov, Anoop Deoras, Daniel Povey, Lukás
Burget, and Jan Cernocký. 2011a. Strategies for
training large scale neural network language mod-
els. In 2011 IEEE Workshop on Automatic Speech
Recognition & Understanding, ASRU 2011, Waikoloa,
HI, USA, December 11-15, 2011. pages 196–201.
https://doi.org/10.1109/ASRU.2011.6163930.

Tomas Mikolov, Martin Karafiát, Lukás Burget, Jan Cer-
nocký, and Sanjeev Khudanpur. 2010. Recurrent neu-
ral network based language model. In INTERSPEECH
2010, 11th Annual Conference of the International Speech
Communication Association, Makuhari, Chiba, Japan,
September 26-30, 2010. pages 1045–1048.

Tomas Mikolov, Stefan Kombrink, Lukás Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2011b. Exten-
sions of recurrent neural network language model.
In Proceedings of the IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing,
ICASSP 2011, May 22-27, 2011, Prague Congress
Center, Prague, Czech Republic. pages 5528–5531.
https://doi.org/10.1109/ICASSP.2011.5947611.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Cor-
rado, and Jeffrey Dean. 2013b. Distributed representa-
tions of words and phrases and their compositionality. In
Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Process-
ing Systems 2013. Proceedings of a meeting held Decem-
ber 5-8, 2013, Lake Tahoe, Nevada, United States.. pages
3111–3119.

George A. Miller and Walter G. Charles. 1991.
Contextual Correlates of Semantic Similarity.
Language & Cognitive Processes 6(1):1–28.
https://doi.org/10.1080/01690969108406936.

Andriy Mnih and Geoffrey E. Hinton. 2008. A scalable hi-
erarchical distributed language model. In Advances in
Neural Information Processing Systems 21, Proceedings
of the Twenty-Second Annual Conference on Neural Infor-
mation Processing Systems, Vancouver, British Columbia,
Canada, December 8-11, 2008. pages 1081–1088.

Frederic Morin and Yoshua Bengio. 2005. Hierarchical prob-
abilistic neural network language model. In Proceedings
of the Tenth International Workshop on Artificial Intelli-
gence and Statistics, AISTATS 2005, Bridgetown, Barba-
dos, January 6-8, 2005.

Eric T. Nalisnick and Sachin Ravi. 2015. Infinite dimensional
word embeddings. CoRR abs/1511.05392.

Arvind Neelakantan, Jeevan Shankar, Alexandre Passos, and
Andrew McCallum. 2014. Efficient non-parametric esti-
mation of multiple embeddings per word in vector space.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, EMNLP 2014,
October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL. pages 1059–1069.
http://aclweb.org/anthology/D/D14/D14-1113.pdf.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word repre-
sentation. In Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Processing, EMNLP
2014, October 25-29, 2014, Doha, Qatar, A meeting of
SIGDAT, a Special Interest Group of the ACL. pages 1532–
1543. http://aclweb.org/anthology/D/D14/D14-1162.pdf.

Kira Radinsky, Eugene Agichtein, Evgeniy Gabrilovich, and
Shaul Markovitch. 2011. A word at a time: Comput-
ing word relatedness using temporal semantic analysis.
In Proceedings of the 20th International Conference on
World Wide Web. WWW ’11, pages 337–346.

Herbert Rubenstein and John B. Goodenough. 1965. Contex-
tual correlates of synonymy. Commun. ACM 8(10):627–
633.

Ruslan Salakhutdinov and Andriy Mnih. 2008. Bayesian
probabilistic matrix factorization using markov chain
monte carlo. In Machine Learning, Proceedings of
the Twenty-Fifth International Conference (ICML 2008),
Helsinki, Finland, June 5-9, 2008. pages 880–887.
https://doi.org/10.1145/1390156.1390267.

C. Spearman. 1904. The proof and measurement of associa-
tion between two things. American Journal of Psychology
15:88–103.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilistic
model for learning multi-prototype word embeddings. In
COLING 2014, 25th International Conference on Com-
putational Linguistics, Proceedings of the Conference:
Technical Papers, August 23-29, 2014, Dublin, Ireland.
pages 151–160. http://aclweb.org/anthology/C/C14/C14-
1016.pdf.

Luke Vilnis and Andrew McCallum. 2014. Word representa-
tions via gaussian embedding. CoRR abs/1412.6623.

Andrew G Wilson, Zhiting Hu, Ruslan R Salakhutdinov, and
Eric P Xing. 2016a. Stochastic variational deep kernel
learning. In Advances in Neural Information Processing
Systems. pages 2586–2594.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov,
and Eric P Xing. 2016b. Deep kernel learning. In Pro-
ceedings of the 19th International Conference on Artificial
Intelligence and Statistics. pages 370–378.

Dongqiang Yang and David M. W. Powers. 2006. Verb sim-
ilarity on the taxonomy of wordnet. In In the 3rd Interna-
tional WordNet Conference (GWC-06), Jeju Island, Korea.

A Supplementary Material

A.1 Derivation of Expected Likelihood
Kernel

We derive the form of expected likelihood kernel for
Gaussian mixtures. Let f, g be Gaussian mixture
distributions representing the words wf , wg . That
is, f(x) =

∑K
i=1 piN (x;µf,i,Σf,i) and g(x) =∑K

i=1 qiN (x;µg,i,Σg,i),
∑K
i=1 pi = 1, and

∑K
i=1 qi = 1.

1655

The expected likelihood kernel is given by

Eθ(f, g) =

∫ (K∑

i=1

piN (x;µf,i,Σf,i)

)
·

(
K∑

j=1

qjN (x;µg,j ,Σg,j)

)
dx

=

K∑

i=1

K∑

j=1

piqj

∫
N (x;µf,i,Σf,i) · N (x;µg,j ,Σg,j) dx

=

K∑

i=1

K∑

j=1

piqjN (0;µf,i − µg,j ,Σf,i + Σg,j)

=

K∑

i=1

K∑

j=1

piqje
ξi,j

where we note that
∫
N (x;µi,Σi)N (x;µj ,Σj) dx =

N (0, µi − µj ,Σi + Σj) (Vilnis and McCallum, 2014) and
ξi,j is the log partial energy, given by equation 3.

A.2 Implementation
In this section we discuss practical details for training the pro-
posed model.

Reduction to Diagonal Covariance
We use a diagonal Σ, in which case inverting the covariance
matrix is trivial and computations are particularly efficient.

Let df ,dg denote the diagonal vectors of Σf ,Σg The ex-
pression for ξi,j reduces to

ξi,j = −1

2

D∑

r=1

log(dpr + dqr)

−1

2

∑[
(µp,i − µq,j) ◦ 1

dp + dq
◦ (µp,i − µq,j)

]

where ◦ denotes element-wise multiplication. The spherical
case which we use in all our experiments is similar since we
simply replace a vector d with a single value.

Optimization Constraint and Stability
We optimize logd since each component of diagonal vector
d is constrained to be positive. Similarly, we constrain the
probability pi to be in [0, 1] and sum to 1 by optimizing over
unconstrained scores si ∈ (−∞,∞) and using a softmax
function to convert the scores to probability pi = esi∑K

j=1 e
sj .

The loss computation can be numerically unstable if ele-
ments of the diagonal covariances are very small, due to the
term log(dfr + dgr) and 1

dq+dp . Therefore, we add a small
constant ε = 10−4 so that dfr + dgr and dq + dp becomes
dfr + dgr + ε and dq + dp + ε.

In addition, we observe that ξi,j can be very small which
would result in eξi,j ≈ 0 up to machine precision. In order to
stabilize the computation in eq. 2, we compute its equivalent
form

logE(f, g) = ξi′,j′ + log

K∑

j=1

K∑

i=1

piqje
ξi,j−ξi′,j′

where ξi′,j′ = maxi,j ξi,j .

Model Hyperparameters and Training Details
In the loss function Lθ , we use a margin m = 1 and a batch
size of 128. We initialize the word embeddings with a uni-

form distribution over [−
√

3
D
,
√

3
D

] so that the expectation
of variance is 1 and the mean is zero (LeCun et al., 1998).
We initialize each dimension of the diagonal matrix (or a sin-
gle value for spherical case) with a constant value v = 0.05.
We also initialize the mixture scores si to be 0 so that the
initial probabilities are equal among all K components. We
use the threshold t = 10−5 for negative sampling, which is
the recommended value for word2vec skip-gram on large
datasets.

We also use a separate output embeddings in addition
to input embeddings, similar to word2vec implementation
(Mikolov et al., 2013a,b). That is, each word has two sets of
distributions qI and qO , each of which is a Gaussian mixture.
For a given pair of word and context (w, c), we use the input
distribution qI for w (input word) and the output distribution
qO for context c (output word). We optimize the parameters
of both qI and qO and use the trained input distributions qI
as our final word representations.

We use mini-batch asynchronous gradient descent with
Adagrad (Duchi et al., 2011) which performs adaptive learn-
ing rate for each parameter. We also experiment with Adam
(Kingma and Ba, 2014) which corrects the bias in adaptive
gradient update of Adagrad and is proven very popular for
most recent neural network models. However, we found
that it is much slower than Adagrad (≈ 10 times). This is
because the gradient computation of the model is relatively
fast, so a complex gradient update algorithm such as Adam
becomes the bottleneck in the optimization. Therefore, we
choose to use Adagrad which allows us to better scale to large
datasets. We use a linearly decreasing learning rate from 0.05
to 0.00001.

1656

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1657–1668
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1152

Enhanced LSTM for Natural Language Inference

Qian Chen
University of Science and

Technology of China
cq1231@mail.ustc.edu.cn

Xiaodan Zhu
National Research Council Canada

xiaodan.zhu@nrc-cnrc.gc.ca

Zhenhua Ling
University of Science and

Technology of China
zhling@ustc.edu.cn

Si Wei
iFLYTEK Research

siwei@iflytek.com

Hui Jiang
York University

hj@cse.yorku.ca

Diana Inkpen
University of Ottawa

diana@site.uottawa.ca

Abstract

Reasoning and inference are central to hu-
man and artificial intelligence. Modeling
inference in human language is very chal-
lenging. With the availability of large an-
notated data (Bowman et al., 2015), it has
recently become feasible to train neural
network based inference models, which
have shown to be very effective. In this
paper, we present a new state-of-the-art re-
sult, achieving the accuracy of 88.6% on
the Stanford Natural Language Inference
Dataset. Unlike the previous top models
that use very complicated network architec-
tures, we first demonstrate that carefully de-
signing sequential inference models based
on chain LSTMs can outperform all previ-
ous models. Based on this, we further show
that by explicitly considering recursive ar-
chitectures in both local inference model-
ing and inference composition, we achieve
additional improvement. Particularly, in-
corporating syntactic parsing information
contributes to our best result—it further im-
proves the performance even when added
to the already very strong model.

1 Introduction

Reasoning and inference are central to both human
and artificial intelligence. Modeling inference in
human language is notoriously challenging but is
a basic problem towards true natural language un-
derstanding, as pointed out by MacCartney and
Manning (2008), “a necessary (if not sufficient)

condition for true natural language understanding
is a mastery of open-domain natural language in-
ference.” The previous work has included extensive
research on recognizing textual entailment.

Specifically, natural language inference (NLI)
is concerned with determining whether a natural-
language hypothesis h can be inferred from a
premise p, as depicted in the following example
from MacCartney (2009), where the hypothesis is
regarded to be entailed from the premise.

p: Several airlines polled saw costs grow more than
expected, even after adjusting for inflation.

h: Some of the companies in the poll reported cost
increases.

The most recent years have seen advances in
modeling natural language inference. An impor-
tant contribution is the creation of a much larger
annotated dataset, the Stanford Natural Language
Inference (SNLI) dataset (Bowman et al., 2015).
The corpus has 570,000 human-written English
sentence pairs manually labeled by multiple human
subjects. This makes it feasible to train more com-
plex inference models. Neural network models,
which often need relatively large annotated data to
estimate their parameters, have shown to achieve
the state of the art on SNLI (Bowman et al., 2015,
2016; Munkhdalai and Yu, 2016b; Parikh et al.,
2016; Sha et al., 2016; Paria et al., 2016).

While some previous top-performing models use
rather complicated network architectures to achieve
the state-of-the-art results (Munkhdalai and Yu,
2016b), we demonstrate in this paper that enhanc-
ing sequential inference models based on chain

1657

https://doi.org/10.18653/v1/P17-1152

models can outperform all previous results, sug-
gesting that the potentials of such sequential in-
ference approaches have not been fully exploited
yet. More specifically, we show that our sequential
inference model achieves an accuracy of 88.0% on
the SNLI benchmark.

Exploring syntax for NLI is very attractive to us.
In many problems, syntax and semantics interact
closely, including in semantic composition (Partee,
1995), among others. Complicated tasks such as
natural language inference could well involve both,
which has been discussed in the context of rec-
ognizing textual entailment (RTE) (Mehdad et al.,
2010; Ferrone and Zanzotto, 2014). In this pa-
per, we are interested in exploring this within the
neural network frameworks, with the presence of
relatively large training data. We show that by
explicitly encoding parsing information with re-
cursive networks in both local inference modeling
and inference composition and by incorporating
it into our framework, we achieve additional im-
provement, increasing the performance to a new
state of the art with an 88.6% accuracy.

2 Related Work

Early work on natural language inference has been
performed on rather small datasets with more con-
ventional methods (refer to MacCartney (2009)
for a good literature survey), which includes a
large bulk of work on recognizing textual entail-
ment, such as (Dagan et al., 2005; Iftene and
Balahur-Dobrescu, 2007), among others. More
recently, Bowman et al. (2015) made available the
SNLI dataset with 570,000 human annotated sen-
tence pairs. They also experimented with simple
classification models as well as simple neural net-
works that encode the premise and hypothesis in-
dependently. Rocktäschel et al. (2015) proposed
neural attention-based models for NLI, which cap-
tured the attention information. In general, atten-
tion based models have been shown to be effec-
tive in a wide range of tasks, including machine
translation (Bahdanau et al., 2014), speech recogni-
tion (Chorowski et al., 2015; Chan et al., 2016), im-
age caption (Xu et al., 2015), and text summariza-
tion (Rush et al., 2015; Chen et al., 2016), among
others. For NLI, the idea allows neural models to
pay attention to specific areas of the sentences.

A variety of more advanced networks have been
developed since then (Bowman et al., 2016; Ven-
drov et al., 2015; Mou et al., 2016; Liu et al., 2016;

Munkhdalai and Yu, 2016a; Rocktäschel et al.,
2015; Wang and Jiang, 2016; Cheng et al., 2016;
Parikh et al., 2016; Munkhdalai and Yu, 2016b;
Sha et al., 2016; Paria et al., 2016). Among them,
more relevant to ours are the approaches proposed
by Parikh et al. (2016) and Munkhdalai and Yu
(2016b), which are among the best performing mod-
els.

Parikh et al. (2016) propose a relatively sim-
ple but very effective decomposable model. The
model decomposes the NLI problem into subprob-
lems that can be solved separately. On the other
hand, Munkhdalai and Yu (2016b) propose much
more complicated networks that consider sequen-
tial LSTM-based encoding, recursive networks,
and complicated combinations of attention mod-
els, which provide about 0.5% gain over the results
reported by Parikh et al. (2016).

It is, however, not very clear if the potential of
the sequential inference networks has been well
exploited for NLI. In this paper, we first revisit this
problem and show that enhancing sequential infer-
ence models based on chain networks can actually
outperform all previous results. We further show
that explicitly considering recursive architectures
to encode syntactic parsing information for NLI
could further improve the performance.

3 Hybrid Neural Inference Models

We present here our natural language inference net-
works which are composed of the following major
components: input encoding, local inference mod-
eling, and inference composition. Figure 1 shows a
high-level view of the architecture. Vertically, the
figure depicts the three major components, and hor-
izontally, the left side of the figure represents our
sequential NLI model named ESIM, and the right
side represents networks that incorporate syntactic
parsing information in tree LSTMs.

In our notation, we have two sentences a =
(a1, . . . ,a`a) and b = (b1, . . . ,b`b), where a is a
premise and b a hypothesis. The ai or bj ∈ Rl is
an embedding of l-dimensional vector, which can
be initialized with some pre-trained word embed-
dings and organized with parse trees. The goal is to
predict a label y that indicates the logic relationship
between a and b.

3.1 Input Encoding

We employ bidirectional LSTM (BiLSTM) as one
of our basic building blocks for NLI. We first use it

1658

Figure 1: A high-level view of our hybrid neural
inference networks.

to encode the input premise and hypothesis (Equa-
tion (1) and (2)). Here BiLSTM learns to represent
a word (e.g., ai) and its context. Later we will also
use BiLSTM to perform inference composition to
construct the final prediction, where BiLSTM en-
codes local inference information and its interac-
tion. To bookkeep the notations for later use, we
write as āi the hidden (output) state generated by
the BiLSTM at time i over the input sequence a.
The same is applied to b̄j :

āi = BiLSTM(a, i),∀i ∈ [1, . . . , `a], (1)

b̄j = BiLSTM(b, j),∀j ∈ [1, . . . , `b]. (2)

Due to the space limit, we will skip the descrip-
tion of the basic chain LSTM and readers can refer
to Hochreiter and Schmidhuber (1997) for details.
Briefly, when modeling a sequence, an LSTM em-
ploys a set of soft gates together with a memory
cell to control message flows, resulting in an effec-
tive modeling of tracking long-distance informa-
tion/dependencies in a sequence.

A bidirectional LSTM runs a forward and back-
ward LSTM on a sequence starting from the left
and the right end, respectively. The hidden states

generated by these two LSTMs at each time step
are concatenated to represent that time step and
its context. Note that we used LSTM memory
blocks in our models. We examined other recurrent
memory blocks such as GRUs (Gated Recurrent
Units) (Cho et al., 2014) and they are inferior to
LSTMs on the heldout set for our NLI task.

As discussed above, it is intriguing to explore
the effectiveness of syntax for natural language
inference; for example, whether it is useful even
when incorporated into the best-performing models.
To this end, we will also encode syntactic parse
trees of a premise and hypothesis through tree-
LSTM (Zhu et al., 2015; Tai et al., 2015; Le and
Zuidema, 2015), which extends the chain LSTM to
a recursive network (Socher et al., 2011).

Specifically, given the parse of a premise or hy-
pothesis, a tree node is deployed with a tree-LSTM
memory block depicted as in Figure 2 and com-
puted with Equations (3–10). In short, at each node,
an input vector xt and the hidden vectors of its two
children (the left child hLt−1 and the right hRt−1) are
taken in as the input to calculate the current node’s
hidden vector ht.

ct

Cell

× ht×

fLt

Left Forget Gate

× fRt

Right Forget Gate

×

itInput Gate otOutput Gate

xt

hL
t−1

hR
t−1

xt hR
t−1hL

t−1
xt hR

t−1hL
t−1

xt h
R
t−1hL

t−1xt h
R
t−1hL

t−1 cLt−1 cRt−1

Figure 2: A tree-LSTM memory block.

We describe the updating of a node at a high level
with Equation (3) to facilitate references later in the
paper, and the detailed computation is described
in (4–10). Specifically, the input of a node is used
to configure four gates: the input gate it, output
gate ot, and the two forget gates fLt and fRt . The
memory cell ct considers each child’s cell vector,
cLt−1 and cRt−1, which are gated by the left forget

1659

gate fLt and right forget gate fRt , respectively.

ht = TrLSTM(xt,h
L
t−1,h

R
t−1), (3)

ht = ot � tanh(ct), (4)

ot = σ(Woxt + UL
o h

L
t−1 + UR

o h
R
t−1), (5)

ct = fLt � cLt−1 + fRt � cRt−1 + it � ut, (6)

fLt = σ(Wfxt + ULL
f hL

t−1 + ULR
f hR

t−1), (7)

fRt = σ(Wfxt + URL
f hL

t−1 + URR
f hR

t−1), (8)

it = σ(Wixt + UL
i h

L
t−1 + UR

i h
R
t−1), (9)

ut = tanh(Wcxt + UL
c h

L
t−1 + UR

c h
R
t−1), (10)

where σ is the sigmoid function, � is the element-
wise multiplication of two vectors, and all W ∈
Rd×l, U ∈ Rd×d are weight matrices to be learned.

In the current input encoding layer, xt is used to
encode a word embedding for a leaf node. Since
a non-leaf node does not correspond to a specific
word, we use a special vector x′t as its input, which
is like an unknown word. However, in the inference
composition layer that we discuss later, the goal
of using tree-LSTM is very different; the input xt
will be very different as well—it will encode local
inference information and will have values at all
tree nodes.

3.2 Local Inference Modeling

Modeling local subsentential inference between a
premise and hypothesis is the basic component for
determining the overall inference between these
two statements. To closely examine local infer-
ence, we explore both the sequential and syntactic
tree models that have been discussed above. The
former helps collect local inference for words and
their context, and the tree LSTM helps collect lo-
cal information between (linguistic) phrases and
clauses.

Locality of inference Modeling local inference
needs to employ some forms of hard or soft align-
ment to associate the relevant subcomponents be-
tween a premise and a hypothesis. This includes
early methods motivated from the alignment in
conventional automatic machine translation (Mac-
Cartney, 2009). In neural network models, this is
often achieved with soft attention.

Parikh et al. (2016) decomposed this process:
the word sequence of the premise (or hypothesis)
is regarded as a bag-of-word embedding vector
and inter-sentence “alignment” (or attention) is
computed individually to softly align each word

to the content of hypothesis (or premise, respec-
tively). While their basic framework is very effec-
tive, achieving one of the previous best results, us-
ing a pre-trained word embedding by itself does not
automatically consider the context around a word
in NLI. Parikh et al. (2016) did take into account
the word order and context information through an
optional distance-sensitive intra-sentence attention.

In this paper, we argue for leveraging attention
over the bidirectional sequential encoding of the
input, as discussed above. We will show that this
plays an important role in achieving our best results,
and the intra-sentence attention used by Parikh et al.
(2016) actually does not further improve over our
model, while the overall framework they proposed
is very effective.

Our soft alignment layer computes the attention
weights as the similarity of a hidden state tuple
<āi, b̄j> between a premise and a hypothesis with
Equation (11). We did study more complicated
relationships between āi and b̄j with multilayer
perceptrons, but observed no further improvement
on the heldout data.

eij = āTi b̄j . (11)

In the formula, āi and b̄j are computed earlier
in Equations (1) and (2), or with Equation (3) when
tree-LSTM is used. Again, as discussed above, we
will use bidirectional LSTM and tree-LSTM to en-
code the premise and hypothesis, respectively. In
our sequential inference model, unlike in Parikh
et al. (2016) which proposed to use a function
F (āi), i.e., a feedforward neural network, to map
the original word representation for calculating eij ,
we instead advocate to use BiLSTM, which en-
codes the information in premise and hypothesis
very well and achieves better performance shown in
the experiment section. We tried to apply the F (.)
function on our hidden states before computing eij
and it did not further help our models.

Local inference collected over sequences Lo-
cal inference is determined by the attention weight
eij computed above, which is used to obtain the
local relevance between a premise and hypothesis.
For the hidden state of a word in a premise, i.e., āi
(already encoding the word itself and its context),
the relevant semantics in the hypothesis is iden-
tified and composed using eij , more specifically

1660

with Equation (12).

ãi =

`b∑

j=1

exp(eij)∑`b
k=1 exp(eik)

b̄j ,∀i ∈ [1, . . . , `a], (12)

b̃j =

`a∑

i=1

exp(eij)∑`a
k=1 exp(ekj)

āi,∀j ∈ [1, . . . , `b], (13)

where ãi is a weighted summation of {b̄j}`bj=1. In-

tuitively, the content in {b̄j}`bj=1 that is relevant to
āi will be selected and represented as ãi. The same
is performed for each word in the hypothesis with
Equation (13).

Local inference collected over parse trees We
use tree models to help collect local inference in-
formation over linguistic phrases and clauses in
this layer. The tree structures of the premise and
hypothesis are produced by a constituency parser.

Once the hidden states of a tree are all computed
with Equation (3), we treat all tree nodes equally
as we do not have further heuristics to discrimi-
nate them, but leave the attention weights to figure
out their relationship. So, we use Equation (11)
to compute the attention weights for all node pairs
between a premise and hypothesis. This connects
all words, constituent phrases, and clauses between
the premise and hypothesis. We then collect the in-
formation between all the pairs with Equations (12)
and (13) and feed them into the next layer.

Enhancement of local inference information
In our models, we further enhance the local in-
ference information collected. We compute the
difference and the element-wise product for the tu-
ple <ā, ã> as well as for <b̄, b̃>. We expect that
such operations could help sharpen local inference
information between elements in the tuples and cap-
ture inference relationships such as contradiction.
The difference and element-wise product are then
concatenated with the original vectors, ā and ã,
or b̄ and b̃, respectively (Mou et al., 2016; Zhang
et al., 2017). The enhancement is performed for
both the sequential and the tree models.

ma = [ā; ã; ā− ã; ā� ã], (14)

mb = [b̄; b̃; b̄− b̃; b̄� b̃]. (15)

This process could be regarded as a special case
of modeling some high-order interaction between
the tuple elements. Along this direction, we have

also further modeled the interaction by feeding the
tuples into feedforward neural networks and added
the top layer hidden states to the above concate-
nation. We found that it does not further help the
inference accuracy on the heldout dataset.

3.3 Inference Composition
To determine the overall inference relationship be-
tween a premise and hypothesis, we explore a com-
position layer to compose the enhanced local in-
ference information ma and mb. We perform the
composition sequentially or in its parse context
using BiLSTM and tree-LSTM, respectively.

The composition layer In our sequential infer-
ence model, we keep using BiLSTM to compose
local inference information sequentially. The for-
mulas for BiLSTM are similar to those in Equations
(1) and (2) in their forms so we skip the details, but
the aim is very different here—they are used to cap-
ture local inference information ma and mb and
their context here for inference composition.

In the tree composition, the high-level formulas
of how a tree node is updated to compose local
inference is as follows:

va,t = TrLSTM(F (ma,t),h
L
t−1,h

R
t−1), (16)

vb,t = TrLSTM(F (mb,t),h
L
t−1,h

R
t−1). (17)

We propose to control model complexity in this
layer, since the concatenation we described above
to compute ma and mb can significantly increase
the overall parameter size to potentially overfit the
models. We propose to use a mapping F as in
Equation (16) and (17). More specifically, we use a
1-layer feedforward neural network with the ReLU
activation. This function is also applied to BiLSTM
in our sequential inference composition.

Pooling Our inference model converts the result-
ing vectors obtained above to a fixed-length vector
with pooling and feeds it to the final classifier to
determine the overall inference relationship.

We consider that summation (Parikh et al., 2016)
could be sensitive to the sequence length and hence
less robust. We instead suggest the following strat-
egy: compute both average and max pooling, and
concatenate all these vectors to form the final fixed
length vector v. Our experiments show that this
leads to significantly better results than summa-
tion. The final fixed length vector v is calculated

1661

as follows:

va,ave =

`a∑

i=1

va,i

`a
, va,max =

`a
max
i=1

va,i, (18)

vb,ave =

`b∑

j=1

vb,j

`b
, vb,max =

`b
max
j=1

vb,j , (19)

v = [va,ave;va,max;vb,ave;vb,max]. (20)

Note that for tree composition, Equation (20)
is slightly different from that in sequential com-
position. Our tree composition will concatenate
also the hidden states computed for the roots with
Equations (16) and (17), which are not shown here.

We then put v into a final multilayer perceptron
(MLP) classifier. The MLP has a hidden layer with
tanh activation and softmax output layer in our ex-
periments. The entire model (all three components
described above) is trained end-to-end. For train-
ing, we use multi-class cross-entropy loss.

Overall inference models Our model can be
based only on the sequential networks by removing
all tree components and we call it Enhanced Se-
quential Inference Model (ESIM) (see the left part
of Figure 1). We will show that ESIM outperforms
all previous results. We will also encode parse in-
formation with tree LSTMs in multiple layers as
described (see the right side of Figure 1). We train
this model and incorporate it into ESIM by averag-
ing the predicted probabilities to get the final label
for a premise-hypothesis pair. We will show that
parsing information complements very well with
ESIM and further improves the performance, and
we call the final model Hybrid Inference Model
(HIM).

4 Experimental Setup

Data The Stanford Natural Language Inference
(SNLI) corpus (Bowman et al., 2015) focuses on
three basic relationships between a premise and a
potential hypothesis: the premise entails the hy-
pothesis (entailment), they contradict each other
(contradiction), or they are not related (neutral).
The original SNLI corpus contains also “the other”
category, which includes the sentence pairs lacking
consensus among multiple human annotators. As
in the related work, we remove this category. We
used the same split as in Bowman et al. (2015) and
other previous work.

The parse trees used in this paper are produced
by the Stanford PCFG Parser 3.5.3 (Klein and Man-
ning, 2003) and they are delivered as part of the
SNLI corpus. We use classification accuracy as the
evaluation metric, as in related work.

Training We use the development set to select
models for testing. To help replicate our results,
we publish our code1. Below, we list our training
details. We use the Adam method (Kingma and
Ba, 2014) for optimization. The first momentum
is set to be 0.9 and the second 0.999. The initial
learning rate is 0.0004 and the batch size is 32. All
hidden states of LSTMs, tree-LSTMs, and word
embeddings have 300 dimensions.

We use dropout with a rate of 0.5, which is
applied to all feedforward connections. We use
pre-trained 300-D Glove 840B vectors (Penning-
ton et al., 2014) to initialize our word embeddings.
Out-of-vocabulary (OOV) words are initialized ran-
domly with Gaussian samples. All vectors includ-
ing word embedding are updated during training.

5 Results

Overall performance Table 1 shows the results
of different models. The first row is a baseline
classifier presented by Bowman et al. (2015) that
considers handcrafted features such as BLEU score
of the hypothesis with respect to the premise, the
overlapped words, and the length difference be-
tween them, etc.

The next group of models (2)-(7) are based
on sentence encoding. The model of Bowman
et al. (2016) encodes the premise and hypothe-
sis with two different LSTMs. The model in Ven-
drov et al. (2015) uses unsupervised “skip-thoughts”
pre-training in GRU encoders. The approach pro-
posed by Mou et al. (2016) considers tree-based
CNN to capture sentence-level semantics, while
the model of Bowman et al. (2016) introduces a
stack-augmented parser-interpreter neural network
(SPINN) which combines parsing and interpreta-
tion within a single tree-sequence hybrid model.
The work by Liu et al. (2016) uses BiLSTM to gen-
erate sentence representations, and then replaces
average pooling with intra-attention. The approach
proposed by Munkhdalai and Yu (2016a) presents
a memory augmented neural network, neural se-
mantic encoders (NSE), to encode sentences.

The next group of methods in the table, models

1https://github.com/lukecq1231/nli

1662

Model #Para. Train Test

(1) Handcrafted features (Bowman et al., 2015) - 99.7 78.2

(2) 300D LSTM encoders (Bowman et al., 2016) 3.0M 83.9 80.6
(3) 1024D pretrained GRU encoders (Vendrov et al., 2015) 15M 98.8 81.4
(4) 300D tree-based CNN encoders (Mou et al., 2016) 3.5M 83.3 82.1
(5) 300D SPINN-PI encoders (Bowman et al., 2016) 3.7M 89.2 83.2
(6) 600D BiLSTM intra-attention encoders (Liu et al., 2016) 2.8M 84.5 84.2
(7) 300D NSE encoders (Munkhdalai and Yu, 2016a) 3.0M 86.2 84.6

(8) 100D LSTM with attention (Rocktäschel et al., 2015) 250K 85.3 83.5
(9) 300D mLSTM (Wang and Jiang, 2016) 1.9M 92.0 86.1
(10) 450D LSTMN with deep attention fusion (Cheng et al., 2016) 3.4M 88.5 86.3
(11) 200D decomposable attention model (Parikh et al., 2016) 380K 89.5 86.3
(12) Intra-sentence attention + (11) (Parikh et al., 2016) 580K 90.5 86.8
(13) 300D NTI-SLSTM-LSTM (Munkhdalai and Yu, 2016b) 3.2M 88.5 87.3
(14) 300D re-read LSTM (Sha et al., 2016) 2.0M 90.7 87.5
(15) 300D btree-LSTM encoders (Paria et al., 2016) 2.0M 88.6 87.6

(16) 600D ESIM 4.3M 92.6 88.0
(17) HIM (600D ESIM + 300D Syntactic tree-LSTM) 7.7M 93.5 88.6

Table 1: Accuracies of the models on SNLI. Our final model achieves the accuracy of 88.6%, the best
result observed on SNLI, while our enhanced sequential encoding model attains an accuracy of 88.0%,
which also outperform the previous models.

(8)-(15), are inter-sentence attention-based model.
The model marked with Rocktäschel et al. (2015)
is LSTMs enforcing the so called word-by-word
attention. The model of Wang and Jiang (2016) ex-
tends this idea to explicitly enforce word-by-word
matching between the hypothesis and the premise.
Long short-term memory-networks (LSTMN) with
deep attention fusion (Cheng et al., 2016) link the
current word to previous words stored in memory.
Parikh et al. (2016) proposed a decomposable atten-
tion model without relying on any word-order in-
formation. In general, adding intra-sentence atten-
tion yields further improvement, which is not very
surprising as it could help align the relevant text
spans between premise and hypothesis. The model
of Munkhdalai and Yu (2016b) extends the frame-
work of Wang and Jiang (2016) to a full n-ary tree
model and achieves further improvement. Sha et al.
(2016) proposes a special LSTM variant which con-
siders the attention vector of another sentence as an
inner state of LSTM. Paria et al. (2016) use a neu-
ral architecture with a complete binary tree-LSTM
encoders without syntactic information.

The table shows that our ESIM model achieves
an accuracy of 88.0%, which has already outper-
formed all the previous models, including those
using much more complicated network architec-
tures (Munkhdalai and Yu, 2016b).

We ensemble our ESIM model with syntactic
tree-LSTMs (Zhu et al., 2015) based on syntactic
parse trees and achieve significant improvement
over our best sequential encoding model ESIM, at-
taining an accuracy of 88.6%. This shows that syn-
tactic tree-LSTMs complement well with ESIM.

Model Train Test

(17) HIM (ESIM + syn.tree) 93.5 88.6
(18) ESIM + tree 91.9 88.2
(16) ESIM 92.6 88.0
(19) ESIM - ave./max 92.9 87.1
(20) ESIM - diff./prod. 91.5 87.0
(21) ESIM - inference BiLSTM 91.3 87.3
(22) ESIM - encoding BiLSTM 88.7 86.3
(23) ESIM - P-based attention 91.6 87.2
(24) ESIM - H-based attention 91.4 86.5
(25) syn.tree 92.9 87.8

Table 2: Ablation performance of the models.

Ablation analysis We further analyze the ma-
jor components that are of importance to help us
achieve good performance. From the best model,
we first replace the syntactic tree-LSTM with the
full tree-LSTM without encoding syntactic parse
information. More specifically, two adjacent words
in a sentence are merged to form a parent node, and

1663

1 -

3 -

5 -

7 -

21 -

23 -

25 -

27 -

29
standing

28
while

26
newspaper

24
a

22
reading

8 -

16 -

18 -

20
jeans

19
blue

17
a

9 -

15
and

10 -

12 -

14
shirt

13
white

11
a

6
wearing

4
man

2
A

(a) Binarized constituency tree of premise

1 -

5 -

17
.

6 -

8 -

12 -

14 -

16
newspaper

15
a

13
reading

9 -

11
down

10
sitting

7
is

2 -

4
man

3
A

(b) Binarized constituency tree of hypothesis

(c) Normalized attention weights of tree-LSTM

(d) Input gate of tree-LSTM in inference composi-
tion (l2-norm)

(e) Input gate of BiLSTM in inference composition
(l2-norm)

(f) Normalized attention weights of BiLSTM

Figure 3: An example for analysis. Subfigures (a) and (b) are the constituency parse trees of the premise
and hypothesis, respectively. “-” means a non-leaf or a null node. Subfigures (c) and (f) are attention
visualization of the tree model and ESIM, respectively. The darker the color, the greater the value. The
premise is on the x-axis and the hypothesis is on y-axis. Subfigures (d) and (e) are input gates’ l2-norm of
tree-LSTM and BiLSTM in inference composition, respectively.

this process continues and results in a full binary
tree, where padding nodes are inserted when there
are no enough leaves to form a full tree. Each tree
node is implemented with a tree-LSTM block (Zhu
et al., 2015) same as in model (17). Table 2 shows
that with this replacement, the performance drops

to 88.2%.
Furthermore, we note the importance of the layer

performing the enhancement for local inference in-
formation in Section 3.2 and the pooling layer in
inference composition in Section 3.3. Table 2 sug-
gests that the NLI task seems very sensitive to the

1664

layers. If we remove the pooling layer in infer-
ence composition and replace it with summation
as in Parikh et al. (2016), the accuracy drops to
87.1%. If we remove the difference and element-
wise product from the local inference enhancement
layer, the accuracy drops to 87.0%. To provide
some detailed comparison with Parikh et al. (2016),
replacing bidirectional LSTMs in inference compo-
sition and also input encoding with feedforward
neural network reduces the accuracy to 87.3% and
86.3% respectively.

The difference between ESIM and each of the
other models listed in Table 2 is statistically signif-
icant under the one-tailed paired t-test at the 99%
significance level. The difference between model
(17) and (18) is also significant at the same level.
Note that we cannot perform significance test be-
tween our models with the other models listed in
Table 1 since we do not have the output of the other
models.

If we remove the premise-based attention from
ESIM (model 23), the accuracy drops to 87.2% on
the test set. The premise-based attention means
when the system reads a word in a premise, it uses
soft attention to consider all relevant words in hy-
pothesis. Removing the hypothesis-based atten-
tion (model 24) decrease the accuracy to 86.5%,
where hypothesis-based attention is the attention
performed on the other direction for the sentence
pairs. The results show that removing hypothesis-
based attention affects the performance of our
model more, but removing the attention from the
other direction impairs the performance too.

The stand-alone syntactic tree-LSTM model
achieves an accuracy of 87.8%, which is compa-
rable to that of ESIM. We also computed the or-
acle score of merging syntactic tree-LSTM and
ESIM, which picks the right answer if either is
right. Such an oracle/upper-bound accuracy on test
set is 91.7%, which suggests how much tree-LSTM
and ESIM could ideally complement each other. As
far as the speed is concerned, training tree-LSTM
takes about 40 hours on Nvidia-Tesla K40M and
ESIM takes about 6 hours, which is easily extended
to larger scale of data.

Further analysis We showed that encoding syn-
tactic parsing information helps recognize natural
language inference—it additionally improves the
strong system. Figure 3 shows an example where
tree-LSTM makes a different and correct decision.
In subfigure (d), the larger values at the input gates

on nodes 9 and 10 indicate that those nodes are
important in making the final decision. We observe
that in subfigure (c), nodes 9 and 10 are aligned to
node 29 in the premise. Such information helps the
system decide that this pair is a contradiction. Ac-
cordingly, in subfigure (e) of sequential BiLSTM,
the words sitting and down do not play an impor-
tant role for making the final decision. Subfigure (f)
shows that sitting is equally aligned with reading
and standing and the alignment for word down is
not that useful.

6 Conclusions and Future Work

We propose neural network models for natural lan-
guage inference, which achieve the best results
reported on the SNLI benchmark. The results are
first achieved through our enhanced sequential in-
ference model, which outperformed the previous
models, including those employing more compli-
cated network architectures, suggesting that the
potential of sequential inference models have not
been fully exploited yet. Based on this, we further
show that by explicitly considering recursive ar-
chitectures in both local inference modeling and
inference composition, we achieve additional im-
provement. Particularly, incorporating syntactic
parsing information contributes to our best result: it
further improves the performance even when added
to the already very strong model.

Future work interesting to us includes exploring
the usefulness of external resources such as Word-
Net and contrasting-meaning embedding (Chen
et al., 2015) to help increase the coverage of word-
level inference relations. Modeling negation more
closely within neural network frameworks (Socher
et al., 2013; Zhu et al., 2014) may help contradic-
tion detection.

Acknowledgments

The first and the third author of this paper were
supported in part by the Science and Technology
Development of Anhui Province, China (Grants
No. 2014z02006), the Fundamental Research
Funds for the Central Universities (Grant No.
WK2350000001) and the Strategic Priority Re-
search Program of the Chinese Academy of Sci-
ences (Grant No. XDB02070006).

1665

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR abs/1409.0473.
http://arxiv.org/abs/1409.0473.

Samuel Bowman, Gabor Angeli, Christopher Potts, and
D. Christopher Manning. 2015. A large annotated
corpus for learning natural language inference. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 632–642.
https://doi.org/10.18653/v1/D15-1075.

Samuel Bowman, Jon Gauthier, Abhinav Rastogi,
Raghav Gupta, D. Christopher Manning, and
Christopher Potts. 2016. A fast unified model for
parsing and sentence understanding. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, pages
1466–1477. https://doi.org/10.18653/v1/P16-1139.

William Chan, Navdeep Jaitly, Quoc V. Le, and
Oriol Vinyals. 2016. Listen, attend and spell:
A neural network for large vocabulary conversa-
tional speech recognition. In 2016 IEEE Interna-
tional Conference on Acoustics, Speech and Sig-
nal Processing, ICASSP 2016, Shanghai, China,
March 20-25, 2016. IEEE, pages 4960–4964.
https://doi.org/10.1109/ICASSP.2016.7472621.

Qian Chen, Xiaodan Zhu, Zhenhua Ling, Si Wei,
and Hui Jiang. 2016. Distraction-based neural net-
works for modeling document. In Subbarao Kamb-
hampati, editor, Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intel-
ligence, IJCAI 2016, New York, NY, USA, 9-15
July 2016. IJCAI/AAAI Press, pages 2754–2760.
http://www.ijcai.org/Abstract/16/391.

Zhigang Chen, Wei Lin, Qian Chen, Xiaoping Chen,
Si Wei, Hui Jiang, and Xiaodan Zhu. 2015. Re-
visiting word embedding for contrasting meaning.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers). Associ-
ation for Computational Linguistics, pages 106–115.
https://doi.org/10.3115/v1/P15-1011.

Jianpeng Cheng, Li Dong, and Mirella Lapata. 2016.
Long short-term memory-networks for machine
reading. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, pages
551–561. http://aclweb.org/anthology/D16-1053.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the proper-
ties of neural machine translation: Encoder-decoder
approaches. In Dekai Wu, Marine Carpuat, Xavier
Carreras, and Eva Maria Vecchi, editors, Proceed-
ings of SSST@EMNLP 2014, Eighth Workshop on

Syntax, Semantics and Structure in Statistical Trans-
lation, Doha, Qatar, 25 October 2014. Associ-
ation for Computational Linguistics, pages 103–
111. http://aclweb.org/anthology/W/W14/W14-
4012.pdf.

Jan Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, and Yoshua Bengio. 2015.
Attention-based models for speech recognition. In
Corinna Cortes, Neil D. Lawrence, Daniel D.
Lee, Masashi Sugiyama, and Roman Garnett, ed-
itors, Advances in Neural Information Process-
ing Systems 28: Annual Conference on Neu-
ral Information Processing Systems 2015, De-
cember 7-12, 2015, Montreal, Quebec, Canada.
pages 577–585. http://papers.nips.cc/paper/5847-
attention-based-models-for-speech-recognition.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The PASCAL recognising textual entailment
challenge. In Machine Learning Challenges, Eval-
uating Predictive Uncertainty, Visual Object Classi-
fication and Recognizing Textual Entailment, First
PASCAL Machine Learning Challenges Workshop,
MLCW 2005, Southampton, UK, April 11-13, 2005,
Revised Selected Papers. pages 177–190.

Lorenzo Ferrone and Massimo Fabio Zanzotto. 2014.
Towards syntax-aware compositional distributional
semantic models. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: Technical Papers. Dublin City Univer-
sity and Association for Computational Linguistics,
pages 721–730. http://aclweb.org/anthology/C14-
1068.

Sepp Hochreiter and Jürgen Schmidhu-
ber. 1997. Long short-term memory.
Neural Computation 9(8):1735–1780.
https://doi.org/10.1162/neco.1997.9.8.1735.

Adrian Iftene and Alexandra Balahur-Dobrescu. 2007.
Proceedings of the ACL-PASCAL Workshop on
Textual Entailment and Paraphrasing, Association
for Computational Linguistics, chapter Hypothe-
sis Transformation and Semantic Variability Rules
Used in Recognizing Textual Entailment, pages 125–
130. http://aclweb.org/anthology/W07-1421.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR
abs/1412.6980. http://arxiv.org/abs/1412.6980.

Dan Klein and Christopher D. Manning. 2003. Ac-
curate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Computa-
tional Linguistics. http://aclweb.org/anthology/P03-
1054.

Phong Le and Willem Zuidema. 2015. Compositional
distributional semantics with long short term mem-
ory. In Proceedings of the Fourth Joint Conference
on Lexical and Computational Semantics. Associ-
ation for Computational Linguistics, pages 10–19.
https://doi.org/10.18653/v1/S15-1002.

1666

Yang Liu, Chengjie Sun, Lei Lin, and Xiao-
long Wang. 2016. Learning natural language
inference using bidirectional LSTM model
and inner-attention. CoRR abs/1605.09090.
http://arxiv.org/abs/1605.09090.

Bill MacCartney. 2009. Natural Language Inference.
Ph.D. thesis, Stanford University.

Bill MacCartney and Christopher D. Manning.
2008. Modeling semantic containment and
exclusion in natural language inference. In
Proceedings of the 22Nd International Confer-
ence on Computational Linguistics - Volume 1.
Association for Computational Linguistics, Strouds-
burg, PA, USA, COLING ’08, pages 521–528.
http://dl.acm.org/citation.cfm?id=1599081.1599147.

Yashar Mehdad, Alessandro Moschitti, and Mas-
simo Fabio Zanzotto. 2010. Syntactic/semantic
structures for textual entailment recognition. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the
Association for Computational Linguistics. Associ-
ation for Computational Linguistics, pages 1020–
1028. http://aclweb.org/anthology/N10-1146.

Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang,
Rui Yan, and Zhi Jin. 2016. Natural language
inference by tree-based convolution and heuris-
tic matching. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 130–136.
https://doi.org/10.18653/v1/P16-2022.

Tsendsuren Munkhdalai and Hong Yu. 2016a. Neu-
ral semantic encoders. CoRR abs/1607.04315.
http://arxiv.org/abs/1607.04315.

Tsendsuren Munkhdalai and Hong Yu. 2016b. Neu-
ral tree indexers for text understanding. CoRR
abs/1607.04492. http://arxiv.org/abs/1607.04492.

Biswajit Paria, K. M. Annervaz, Ambedkar Dukkipati,
Ankush Chatterjee, and Sanjay Podder. 2016. A neu-
ral architecture mimicking humans end-to-end for
natural language inference. CoRR abs/1611.04741.
http://arxiv.org/abs/1611.04741.

Ankur Parikh, Oscar Täckström, Dipanjan Das, and
Jakob Uszkoreit. 2016. A decomposable attention
model for natural language inference. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, pages 2249–2255.
http://aclweb.org/anthology/D16-1244.

Barbara Partee. 1995. Lexical semantics and composi-
tionality. Invitation to Cognitive Science 1:311–360.

Jeffrey Pennington, Richard Socher, and Christo-
pher Manning. 2014. GloVe: Global vectors
for word representation. In Proceedings of the
2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association

for Computational Linguistics, pages 1532–1543.
https://doi.org/10.3115/v1/D14-1162.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomás Kociský, and Phil Blun-
som. 2015. Reasoning about entailment
with neural attention. CoRR abs/1509.06664.
http://arxiv.org/abs/1509.06664.

Alexander Rush, Sumit Chopra, and Jason We-
ston. 2015. A neural attention model for ab-
stractive sentence summarization. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 379–389.
https://doi.org/10.18653/v1/D15-1044.

Lei Sha, Baobao Chang, Zhifang Sui, and Sujian Li.
2016. Reading and thinking: Re-read LSTM unit
for textual entailment recognition. In Proceedings
of COLING 2016, the 26th International Confer-
ence on Computational Linguistics: Technical Pa-
pers. The COLING 2016 Organizing Committee,
pages 2870–2879. http://aclweb.org/anthology/C16-
1270.

Richard Socher, Cliff Chiung-Yu Lin, Andrew Y. Ng,
and Christopher D. Manning. 2011. Parsing natu-
ral scenes and natural language with recursive neu-
ral networks. In Lise Getoor and Tobias Scheffer,
editors, Proceedings of the 28th International Con-
ference on Machine Learning, ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011. Omnipress,
pages 129–136.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, D. Christopher Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, pages
1631–1642. http://aclweb.org/anthology/D13-1170.

Sheng Kai Tai, Richard Socher, and D. Christopher
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers).
Association for Computational Linguistics, pages
1556–1566. https://doi.org/10.3115/v1/P15-1150.

Ivan Vendrov, Ryan Kiros, Sanja Fidler, and
Raquel Urtasun. 2015. Order-embeddings of
images and language. CoRR abs/1511.06361.
http://arxiv.org/abs/1511.06361.

Shuohang Wang and Jing Jiang. 2016. Learning nat-
ural language inference with LSTM. In Proceed-
ings of the 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 1442–
1451. https://doi.org/10.18653/v1/N16-1170.

1667

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron C. Courville, Ruslan Salakhutdi-
nov, Richard S. Zemel, and Yoshua Bengio.
2015. Show, attend and tell: Neural image
caption generation with visual attention. In
Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015. pages 2048–2057.
http://jmlr.org/proceedings/papers/v37/xuc15.html.

Junbei Zhang, Xiaodan Zhu, Qian Chen, Lirong
Dai, Si Wei, and Hui Jiang. 2017. Ex-
ploring question understanding and adapta-
tion in neural-network-based question an-
swering. CoRR abs/arXiv:1703.04617v2.
https://arxiv.org/abs/1703.04617.

Xiaodan Zhu, Hongyu Guo, Saif Mohammad, and Svet-
lana Kiritchenko. 2014. An empirical study on the
effect of negation words on sentiment. In Proceed-
ings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 304–313. https://doi.org/10.3115/v1/P14-
1029.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo.
2015. Long short-term memory over recursive
structures. In Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015. pages 1604–1612.
http://jmlr.org/proceedings/papers/v37/zhub15.html.

1668

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1669–1678
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1153

Linguistic analysis of differences in portrayal of movie characters

Anil Ramakrishna1, Victor R. Martı́nez1, Nikolaos Malandrakis1, Karan Singla1, and Shrikanth Narayanan1,2

1Department of Computer Science
2Department of Electrical Engineering

University of Southern California, Los Angeles, USA
{akramakr, victorrm, malandra, singlak}@usc.edu, shri@sipi.usc.edu

Abstract

We examine differences in portrayal of
characters in movies using psycholinguis-
tic and graph theoretic measures computed
directly from screenplays. Differences are
examined with respect to characters’ gen-
der, race, age and other metadata. Psy-
cholinguistic metrics are extrapolated to
dialogues in movies using a linear regres-
sion model built on a set of manually anno-
tated seed words. Interesting patterns are
revealed about relationships between gen-
ders of production team and the gender ra-
tio of characters. Several correlations are
noted between gender, race, age of charac-
ters and the linguistic metrics.

1 Introduction

Movies are often described as having the power to
influence individual beliefs and values. In (Cape,
2003), the authors assert movies’ influence in both
creating new thinking patterns in previously unex-
plored social phenomena, especially in children,
as well as their ability to update an individual’s ex-
isting social boundaries based on what is shown on
screen as the ”norm”. Some authors claim the in-
verse (Wedding and Boyd, 1999): that movies re-
flect existing cultural values of the society, adding
weight to their ability in influencing individual be-
liefs of what is accepted as the norm. As a result,
they are studied in multiple disciplines to analyze
their influence.

Movies are particularly scrutinized in aspects
involving negative stereotyping (Cape, 2003;
Dimnik and Felton, 2006; Ter Bogt et al., 2010;
Hedley, 1994) since this may introduce question-
able beliefs in viewers. Negative stereotyping is
believed to impact society in multiple aspects such
as self-induced undermining of ability (Davies

et al., 2005) as well as causing forms of prej-
udice that can impact leadership or employment
prospects (Eagly and Karau, 2002; Niven, 2006).
Studies in analyzing stereotyping in movies typi-
cally rely on collecting manual annotations on a
small set of movies on which hypotheses tests are
conducted (Behm-Morawitz and Mastro, 2008;
Benshoff and Griffin, 2011; Hooks, 2009). In this
work, we present large scale automated analyses
of movie characters using language used in dialogs
to study stereotyping along factors such as gender,
race and age.

Language use has been long known as a strong
indicator of the speaker’s psychological and emo-
tional state (Gottschalk and Gleser, 1969) and is
well studied in a number of applications such as
automatic personality detection (Mairesse et al.,
2007) and psychotherapy (Xiao et al., 2015; Pen-
nebaker et al., 2003). Computational analysis of
language has been particularly popular thanks to
advancements in computing and the ease of con-
ducting large scale analysis of text on computers
(Pennebaker et al., 2015).

To perform our analysis, we construct a new
movie screenplay corpus 1 that includes nearly
1000 movie scripts obtained from the Internet. For
each movie in the corpus, we obtain additional
metadata such as cast, genre, writers and directors,
and also collect actor level demographic informa-
tion such as gender, race and age.

We use two kinds of measures in our analy-
ses: (i) linguistic metrics that capture various psy-
chological constructs and behaviors, estimated us-
ing dialogues from the screenplay; and (ii) graph
theoretic metrics estimated from character net-
work graphs, which are constructed to model inter-
character interactions in the movie. The linguis-
tic metrics include psycholinguistic normatives,

1http://sail.usc.edu/mica/text_corpus_
release.php

1669

https://doi.org/10.18653/v1/P17-1153

which provide word level scores on a numeric
scale which are then aggregated at the dialog level,
and metrics from the Linguistic Inquiry and Word
Counts tool (LIWC) which capture usage of well
studied stereotyping dimensions such as sexuality.
We estimate centrality metrics from the character
network graphs to measure relative importance of
the different characters, which are analyzed with
respect to the different factors of gender, race and
age.

The main contributions of this work are as fol-
lows: (i) we present a scalable analysis of differ-
ences in portrayal of various character subgroups
in movies using their language use, (ii) we con-
struct a new corpus with detailed annotations for
our analysis and (iii) we highlight several differ-
ences in the portrayal of characters along factors
such as race, age and gender.

The rest of the paper is organized as follows: in
section 2 we describe related work. We explain
the data collection process in section 3 and exper-
imental procedure in section 4. We explain results
in section 5 and conclude in section 6.

2 Related work

Previous works in studying representation in
movies largely focus on relative frequencies, par-
ticularly on character gender. In (Smith et al.,
2014), the authors studied 120 movies from
around the globe which were manually annotated
to capture information about character gender,
age, careers, writer gender and director gender.
However, since the annotations are done manually,
collecting information on new movies is a labori-
ous process. We avoided this by estimating the
metadata computationally, enabling us to scale up
efficiently.

Automated analyses of movies using computa-
tional techniques to analyze representation has re-
cently gained some attention. In (NYFA, 2013;
Polygraph, 2016), the authors examine differences
in relative frequency of female characters and note
considerable disparities in gender ratio in these
movies. However, the analyses there too are lim-
ited to comparing relative frequencies. Our work
is closest to (Ramakrishna et al., 2015) where
the authors study difference in language used in
movies across genders, but their analysis is one
dimensional. In our work we perform fine grained
comparisons of character portrayal using multiple
language based metrics along factors such as gen-

der, race and age on a newly created corpus.

3 Data

3.1 Raw screenplay

We fetch movie screenplay files from two primary
sources: imsdb (IMSDb, 2017) and daily scripts
(DailyScript, 2017). In total, we retrieved 1547
movies. After removing duplicates we retain 1434
raw screenplay files, of which 489 were corrupted
or empty leaving us with 945 usable screenplays.
Tables 1, 3 and 4 list statistics about the corpus.

3.2 Script parser

The screenplay files are formatted in human read-
able format and include dialogues tagged with
character names along with auxiliary informa-
tion of the scene such as shot location (inte-
rior/exterior), character placement and scene con-
text. The screenplays are from a diverse set of
writers and include a significant amount of noise
and inconsistencies in their structure. To ex-
tract the relevant information, we developed a text
parser 2 that accepts raw script files and outputs
utterances along with character names. We ignore
scene context information and primarily focus on
spoken dialogues to study language usage in the
movies.

3.3 Movie and character meta-data

For each parsed movie, we fetch relevant meta-
data such as year of release, directors, writers,
and producers from the Internet Movie Database
(IMDb, 2017).

Since most screenplays are drafts and subject
to revisions such as changes in character names,
matching them to an entry from IMDb is non-
trivial. We first start with a list of all movies
that have a close match with the screenplay name;
given this list of potential matches we compute
name alignment scores for each entry as the per-
centage of character names from the script found
online. The character names are mapped us-
ing term frequency-inverse document frequency
(TFIDF) to compute the name alignment score fol-
lowing (Cohen et al., 2003). Finally, the entry with
highest alignment score is chosen. For all actors
listed in the aligned result, we collect their age,
gender and race as detailed below.

2https://bitbucket.org/anil_
ramakrishna/scriptparser

1670

3.3.1 Gender
Given the names of actors and other members of
production team found in a movie, we use a name
based gender classifier to predict their gender in-
formation. Table 4 lists statistics on gender ratios
for the production team in the corpus. Female-
to-male ratios were found in close agreement with
previous works (Smith et al., 2014).

As mentioned above, several screenplays get
revised during production. In particular charac-
ter names get changed, sometimes even gender.
As a result, some characters may not be aligned
to the correct entry from IMDb. In addition,
digitized screenplays sometime include significant
noise thanks to optical character recognition er-
rors, leading to character names failing to align
with entries from IMDb. To correct these, we
perform manual cleanup of all the movie align-
ments, fix incorrect gender maps, and manually
force match movies if they’re mapped to the wrong
IMDb entry.

3.3.2 Age
We also extract age for each actor to study possi-
ble age related biases in movies. We include age in
our analysis since studies report preferential biases
with age in employment particularly when com-
bined with gender (Lincoln and Allen, 2004). In
addition, there may be biases in portrayal of spe-
cific age groups when combined with gender and
race.

For each actor in the mapped IMDb entry, we
collect his/her birthday information. We sub-
tract the movie production year obtained also from
IMDb from the actor’s birthday to get an estimate
of the actor’s age during the movie’s production.
We note however that the age obtained in this man-
ner may be different from the portrayed age of the
character. To account for this we bin the actors
into fifteen year age groups before our analysis,
since its generally unlikely to have actors further
than fifteen years from their portrayed age.

3.3.3 Race
We parse ethnicity information from the website
(ethnicelebs.com, 2017), which includes ethnicity
for approximately 8000 different actors. The in-
formation obtained from this site is primarily sub-
mitted by independent users, and exhibits signifi-
cant amount of variation among the possible eth-
nicities with about 750 different unique ethnicity
types. Since we are more specifically interested in

Race # Actors Percentage
African 585 7.44%

Caucasian 6539 83.24%
East Asian 73 0.93%

Latino/Hispanic 161 2.05%
Native American 15 0.19%
Pacific Islander 5 0.063%

South Asian 43 0.547%
Mixed 434 5.52%

Table 1: Racial categories

racial representations, we map the ethnicity types
to race using Amazon Mechanical Turk (MTurk).
We use a modified version of the racial categories
from the US census which are listed in Table 1
along with frequency of actors from each racial
category in our corpus.

The ethnicities obtained from the site above pri-
marily cover major actors with a fan base with
no information for several actors who play minor
roles. We annotate racial information for nearly
2000 such actors using MTurk with two annota-
tions for each actor, manually correcting nearly
400 cases in which the annotators disagreed.

4 Experiments

4.1 Character portrayal using language
To study differences in portrayal of characters, we
use two different metrics: psycholinguistic norma-
tives, which are designed to capture the underlying
emotional state of the speaker; and LIWC metrics,
which provide a measure of the speaker’s affinity
to different social and physical constructs such as
religion and death. We explain these two metrics
in detail below.

4.1.1 Psycholinguistic normatives
Psycholinguistic normatives provide a measure of
various emotional and psychological constructs of
the speaker, such as arousal, valence, concrete-
ness, intelligibility, etc. and are computed entirely
from language usage. They are relatively easy to
compute, provide reliable indicators of the above
constructs, and have been used in a variety of tasks
in natural language processing such as information
retrieval (Tanaka et al., 2013), sentiment analysis
(Nielsen, 2011), text based personality prediction
(Mairesse et al., 2007) and opinion mining.

The numeric ratings are typically extrapolated
from a small set of keywords which are annotated

1671

by psychologists. Manual annotations of word rat-
ings is a laborious process and is hence limited to
a few thousand words (Clark and Paivio, 2004).
Automatic extrapolation of these ratings to words
not covered by the manual annotations can be done
using structured databases which provide relation-
ships between words such as synonymy and hy-
ponymy (Liu et al., 2014), or using context based
semantic similarity.

In this work, we use the model described in
(Malandrakis and Narayanan, 2015) where the au-
thors use linear regression to compute normative
scores for an input word w based on its similarity
to a set of concept words si.

r(w) = θ0 +
∑

i

θi · sim(w, si) (1)

where, r(w) is the computed normative score
for word w, θ0 and θi are regression coefficients
and sim is similarity between the given word w
and concept words si.

The concept words can either be hand crafted
suitably for the domain or chosen automati-
cally from data. Similar to (Malandrakis and
Narayanan, 2015), we create training data by pos-
ing queries on the Yahoo search engine from
words of the aspell spell checker of which top
500 previews are collected from each query. From
this corpus, the top 10000 most frequent words
with atleast 3 characters were were used as con-
cept words in extrapolation of all the norms. The
linear regression model is trained using normative
ratings for the manually annotated words by com-
puting their similarity to the concept words. The
similarity function sim is the cosine of binary con-
text vectors with window size 1. The computed
normatives are in the range [−1, 1].

The psycholinguistic normatives used in this
work are listed in Table 2. Valence is the degree of
positive or negative emotion evoked by the word.
Arousal is a measure of excitement in the speaker.
Valence and arousal combined are common indi-
cators used to map emotions. Age of Acquisition
refers to the average age at which the word is
learned and it denotes sophistication of language
use. Gender Ladenness is a measure of mascu-
line or feminine association of a word. 10 fold
Cross Validation tests are performed on the nor-
mative scores predicted by the regression model
given by equation 1. Correlation coefficients of
the selected normatives with the manual annota-

tions are as follows: Arousal (0.7), Valence (0.88),
Age of Acquisition (0.86) and Gender Ladenness
(0.8). The high correlations render confidence in
the psycholinguistic models.

In our experiments, the normative scores are
computed on content words from each dialog. We
filter out all words other than nouns, verbs, adjec-
tives and adverbs. Word level scores are aggre-
gated at the dialog level using arithmetic mean.

4.1.2 Linguistic inquiry and word counts
(LIWC)

LIWC is a text processing application that pro-
cesses raw text and outputs percentage of words
from the text that belong to linguistic, affective,
perceptual and other dimensions. It operates by
maintaining a diverse set of dictionaries of words
each belonging to a unique dimension. Input
texts are processed word by word; each word is
searched in the internal dictionaries and the corre-
sponding counter is incremented if a word is found
in that dictionary. Finally, percentage of words
from the input text belonging to the different di-
mensions are returned.

For our experiments, we treat each utterance in
the movie as a unique document and obtain values
for the LIWC metrics. Table 2 lists the metrics
used in our experiments.

4.2 Character network analytics

In order to study representation of the different
subgroups as major characters in movies, we con-
struct a network of interaction between characters
using which we compute importance measures for
each character. From each movie script, we con-
struct an undirected and unweighted graph where
nodes represent characters. We place an edge eab
if two characters A and B interact at least once
in the movie. For our experiments we assume
interaction between A and B if there is at least
one scene in which one speaks right after another.
This graph creation method based on scene co-
occurrence is similar to the approach used in (Bev-
eridge and Shan, 2016).

We estimate different measures of a node’s im-
portance within the character network and use it as
proxy for the character’s importance. We employ
two types of centralities: betweenness centrality,
the number of shortest paths that go through the
node, and degree centrality, which is the number
of edges incident on a node. These centrality mea-
surements have been previously used in the con-

1672

Psycholinguistic norms Valence, Arousal, Age of Acquisition, Gender Ladenness
LIWC metrics Achievement, Religion, Death, Sexual, Swear

Table 2: Psycholinguistic Normatives and LIWC metrics used in analysis

male female total
Characters 4899 2008 6907
Dialogues 375711 154897 530608

Number of movies 945

Table 3: Character statistics

role male female total
Writers 1326 169 1495

Directors 544 46 590
Producers 2866 870 3736

Casting Directors 135 275 410
Distributing Companies 2701

Table 4: Production team statistics

text of books, films and comics (Beveridge and
Shan, 2016; Bonato et al., 2016; Alberich et al.,
2002; Ribeiro et al., 2016).

5 Results

We study differences in various subgroups along
multiple facets. We first report results on dif-
ferences in character ratios from each subgroup
since this has implications on employment and can
have social-economic effects (Niven, 2006). We
next use psycholinguistic normatives and LIWC
metrics described in the previous section to study
differences in character portrayal along the pri-
mary markers: age, gender and race. We finally
use the graph theoretic centrality measures to es-
timate characters’ importance and analyze differ-
ences among the different subgroups.

Since we are interested in character level an-
alytics, we treat all utterances from the charac-
ter as a single document to compute the aggre-
gate language metrics. We perform all our exper-
iments using non-parametric statistical tests since
the data fails to satisfy preconditions such as nor-
mality and homoscedasticity required for paramet-
ric tests such as ANOVA.

5.1 Difference in relative frequency of
subgroups

We first filter our characters with unknown gen-
der/race/age leaving us with 6907 characters in to-

character genders
f (28.9%) m (71.1%)

f 249 (41.2%) 356 (58.8%)
m 1541 (27.6%) 4040 (72.4%)

(a) writers gender

f 114 (39.3%) 176 (60.7%)
m 1676 (28.4%) 4220 (71.6%)

(b) directors gender

f 1374 (29.1%) 3350 (70.9%)
m 416 (28.5%) 1046 (71.5%)

(c) casting directors gender

Table 5: Contingency tables for character gender
v/s writers, directors and casting directors’ gender;
f: female and m: male; each cell gives frequency
of character gender for that column and production
member gender for that row, numbers in braces in-
dicate row wise proportion of character gender

tal. Table 3 lists the number of characters and di-
alogues from each gender. As noted in previous
studies, the ratio is considerably skewed with male
actors having nearly twice as many roles and dia-
logues compared to female actors. Table 4 lists
relative frequency among male and female mem-
bers of the production team. Table 1 lists the per-
centage of actors belonging to different racial cat-
egories in the corpus.

We perform chi-squared tests between character
gender and gender of production team members
who are most likely to influence characters gen-
der: writers, directors and casting directors. Ta-
ble 5 shows contingency tables with gender fre-
quencies for each of these cases along with per-
centages. Note we filter out nearly 100 movies
for this test in which the gender of the produc-
tion team members was unknown. Of the three
tests we perform, character gender distributions
for writer and director genders are significantly
different from the overall character gender distri-
bution (p < 10−10 and p < 10−4 respectively;
α = 0.05). In particular, female writers and di-
rectors appear to produce movies with relatively
balanced gender proportions (still slightly skewed
towards the male side) compared to male writers

1673

0

100

200

300

400

500

600
fe

m
al

e
< 10−5

0

1

2

3

4

5
0.0081

0

5

10

15

20

25

30

35

40

45
< 10−5

0

1

2

3

4

5
0.12

0

10

20

30

40

50

60

70

80
0.0034

0

1

2

3

4

5

6
0.12

0

5

10

15

20

25
0.09

0

1

2

3

4

5
*

caucasian
0

100

200

300

400

500

600

m
al

e

eastasian
0

1

2

3

4

5

mixed
0

5

10

15

20

25

30

35

40

45

nativeamerican
0

1

2

3

4

5

african
0

10

20

30

40

50

60

70

80

southasian
0

1

2

3

4

5

6

latino
0

5

10

15

20

25

pacificislander
0

1

2

3

4

5

Figure 1: Histogram of age for actors belonging to different gender and racial categories with p-values
on top; significant values at α = 0.05 are highlighted; *: no test performed since the female group is
empty

and directors. Casting directors however appear to
have no influence on gender of the characters.

Studies report potential biases in actor employ-
ment with age (Lincoln and Allen, 2004), partic-
ularly in female actors. To evaluate this, we plot
histograms of age for male and female characters
for each of the racial categories in Figure 1. The
distribution of age for each category appears ap-
proximately normal, except for the nativeamer-
ican and pacificislander character groups which
have a small sample size. For most categories of
race, the mode of the distribution for female actors
appears to be at least five years less than the mode
for male actors. To check for significance in this
difference we conduct Mann-Whitney U tests on
male and female age groups for each race with the
resulting p-values shown in the figure. We ignore
characters belonging to the pacificislander racial
group since there are no female actors from this
race in our corpus. The difference in age groups
is significant in most categories with large sam-
ple sizes, suggesting possible preferences towards
casting younger people when casting female ac-
tors.

5.2 Character portrayal using language
To analyze differences in portrayal of subgroups,
we compute psycholinguistic normatives and
LIWC metrics as described before. For each of
the metrics listed in Table 2, we conduct non-

m (4894) f (2008) p

age of acq. −0.1590 −0.1715 < 10−5

arousal 0.0253 0.0246 0.41

gender −0.0312 −0.0055 < 10−5

valence 0.2284 0.2421 < 10−5

sex 0.00015 0.0000 0.08

achieve 0.0087 0.0080 < 10−5

religion 0.0025 0.0022 0.10

death 0.0025 0.0016 < 10−5

swear 0.0037 0.0015 < 10−5

Table 6: Median values for male and female char-
acters along with p values obtained by comparing
the two groups using Mann-Whitney U test; high-
lighted differences are significant at α = 0.05

parametric hypothesis tests to look for differences
in samples from the subgroups. We treat the dif-
ferent metrics independently, performing statisti-
cal tests along each separately. We avoid statistical
tests combining two or more factors since some of
the resulting groups would be empty due to the
skewed group sizes along race. We defer such
analyses to future work.

5.2.1 Gender

We perform Mann-Whitney U tests between male
and female characters along the nine dimensions
and the results are shown in Table 6. In all of

1674

the cases, higher values imply higher degree of
the corresponding dimension, except for valence
in which higher values imply positive valence (at-
tractiveness) and lower values imply negative va-
lence (averseness). The difference between male
and female characters are statistically significant
along six of the nine dimensions. The results
indicate slightly higher age of acquisition scores
for male characters. Regarding gender ladenness,
male characters appear to be closer to the mascu-
line side than female characters on average, agree-
ing with previous results.

Our results also indicate that female charac-
ter utterances tend to be more positive in valence
compared to male characters while male charac-
ters seem to have higher percentage of words re-
lated to achievement. In addition, male characters
appear to be more frequent in using words related
to death as well as swear words compared to fe-
male characters.

5.2.2 Race
To study differences in portrayal of the racial cate-
gories, we perform Kruskal-Wallis test (a general-
ization of Mann-Whitney U test for more than two
groups) on each of the nine metrics with race as the
independent variable. We found significant differ-
ences in distribution of samples for gender laden-
ness, sexuality, religion and swear words. For gen-
der ladenness, caucasian and mixed race charac-
ters have significantly higher medians than african
and nativeamerican characters. In sexuality, latino
and mixed race characters were found to have
higher median than at least one other racial group
with significance indicating a higher degree of
sexualization in these characters. Eastasian char-
acters were found to be significantly lower than
medians of three other races (caucasian, african
and mixed) in using words with religious conno-
tations. In swear word usage, the only signifi-
cant difference found is between caucasian and
african characters with african characters using
higher percentage of swear words. In all of the
above cases, significance was tested at α = 0.05.

5.2.3 Age
To examine the relationship between age and the
different metrics, we build separate linear regres-
sion models with each dimension as the dependent
variable and character age as the independent vari-
able. Table 7 reports regression coefficients for
age along with p values for each dimension. The

β1(×10−3) p-value
age of acq. 3.9 < 10−10

arousal -1.1 < 10−10

gender -2.5 < 10−10

valence 0.078 0.7

sex -0.25 < 10−5

achieve 0.26 < 10−10

religion 0.12 0.001

death −0.039 0.2

swear -0.34 < 10−5

Table 7: Coefficients of age for linear regression
models along each dimension along with p-values;
highlighted cells are significant at α = 0.05

positive coefficient for age of acquisition indicates
an increase in sophistication of word usage with
age. Arousal, on the other hand, has a signifi-
cant negative coefficient indicating a decrease in
activation, on average, as character age increases.
Gender ladenness also has a significant negative
coefficient indicating that as age increases, the av-
erage gender ladenness value decreases. Similar
trends are observed for sexuality and swear word
usage. Usage of words related to achievement and
religion however, seem to increase with age.

5.3 Character network analytics

To study differences in major roles assigned to
the different subgroups, we compute two central-
ity metrics from the character network graph con-
structed for each movie: degree centrality mea-
sures the number of unique characters that inter-
act with a given character, betweenness centrality
measures how much would the plot be disrupted
if said character was to disappear completely, i.e.,
how important is a character to the overall plot.
Similar to the language analyses from previous
section, we test differences in these metrics along
the three factors of gender, race and age. All
statistical tests reported below are conducted at
α = 0.05.

5.3.1 Gender
Male characters were found to have higher val-
ues in the two metrics compared to female charac-
ters but the differences were not statistically sig-
nificant. Motivated by studies (Sapolsky et al.,
2003; Linz et al., 1984) which report interactions
between genre and gender, we performed Mann-
Whitney U tests between male and female char-

1675

acters given different genres. To avoid type I er-
rors we corrected for multiple comparisons using
the Holm-Bonferroni correction. Significant dif-
ferences were found only in horror movies where
the median degree centrality for females (0.221)
was higher than the median degree centrality of
males (0.166). This is in agreement with prior
studies which report female characters to have a
more prominent presence in horror movies, par-
ticularly as victims of violent scenes (Welsh and
Brantford, 2009).

5.3.2 Race
To examine differences in major roles across the
racial categories, we perform Kruskal-Wallis tests
similar to previous subsection. Significant differ-
ences were found with both degree and between-
ness centrality measures (p < 0.001; α = 0.05).

Latino characters were found to have sig-
nificantly lower degree centralities compared to
caucasian and southasian races suggesting non-
central roles in these characters. Caucasian
characters were found to have median between-
ness centralities significantly higher than at least
one other race. Characters from the nativeam-
erican race exhibit significantly lower medians
in both degree and betweenness centralities than
caucasian, african and mixed characters, which
agrees with (Rosenthal, 2012).

5.3.3 Age
We investigate the effects of age on importance
of character roles by building a linear regression
model on the two centralities with age as the inde-
pendent variable. In both cases, age was found to
be significant (p < 0.001; α = 0.05). With degree
centrality, the regression coefficient β was found
to be equal to 0.003. In betweenness centrality,
the regression coefficient was also positive, given
by β = 8.41×10−4. Both these metrics indicate a
positive correlation for character importance with
age, i.e. as characters age, there is an increased
interaction with other characters in the movie as
well as higher prominence in the movie plot.

6 Conclusion

We present a scalable automated analyses of dif-
ferences in character portrayal along multiple fac-
tors such as gender, race and age using word us-
age, psycholinguistic and graph theoretic mea-
sures. Several interesting patterns are revealed

in the analysis. In particular, movies with fe-
male writers and directors in the production team
are observed to have balanced gender ratios in
characters compared to male writers/directors.
Across several races, female actors are found to
be younger than male actors on average.

Female characters appear to be more positive in
language use with fewer references to death and
fewer swear words compared to male characters.
Female characters also appear to be more promi-
nent in horror movies compared to male charac-
ters. Latino and mixed race characters appear to
have higher usage of sexual words. Eastasian char-
acters seem to use significantly fewer religious
words. As characters aged, their word sophistica-
tion seems to increase along with usage of words
related to achievement and religion; there was also
a significant reduction in word activation, usage of
sexual and swear words as character age increases.

Future work includes expanding the analyses to
non-English movies and combining the linguis-
tic metrics with character networks. Specifically,
character network edges can be weighted using the
psycholinguistic metrics to analyze the emotional
patterns in inter-character interactions.

7 Acknowledgments

We acknowledge support from NSF and our part-
nership with Google and the Geena Davis Institute
on Gender in Media.

We thank Naveen Kumar for all the helpful dis-
cussions and feedback during this work.

References
Ricardo Alberich, Joe Miro-Julia, and Francesc

Rosselló. 2002. Marvel universe looks almost
like a real social network. arXiv preprint cond-
mat/0202174 .

Elizabeth Behm-Morawitz and Dana E Mastro. 2008.
Mean girls? the influence of gender portrayals in
teen movies on emerging adults’ gender-based atti-
tudes and beliefs. Journalism & Mass Communica-
tion Quarterly 85(1):131–146.

Harry M Benshoff and Sean Griffin. 2011. America on
film: Representing race, class, gender, and sexuality
at the movies. John Wiley & Sons.

Andrew Beveridge and Jie Shan. 2016. Network of
thrones. Math Horizons 23(4):18–22.

Anthony Bonato, David Ryan D’Angelo, Ethan R
Elenberg, David F Gleich, and Yangyang Hou. 2016.

1676

Mining and modeling character networks. In Al-
gorithms and Models for the Web Graph: 13th In-
ternational Workshop, WAW 2016, Montreal, QC,
Canada, December 14–15, 2016, Proceedings 13.
Springer, pages 100–114.

Gavin S Cape. 2003. Addiction, stigma and movies.
Acta Psychiatrica Scandinavica 107(3):163–169.

James M Clark and Allan Paivio. 2004. Extensions of
the paivio, yuille, and madigan (1968) norms. Be-
havior Research Methods, Instruments, & Comput-
ers 36(3):371–383.

William Cohen, Pradeep Ravikumar, and Stephen Fien-
berg. 2003. A comparison of string metrics for
matching names and records. In Kdd workshop on
data cleaning and object consolidation. volume 3,
pages 73–78.

DailyScript. 2017. The daily script. [Online; accessed
1-February-2017]. http://dailyscript.com/.

Paul G Davies, Steven J Spencer, and Claude M Steele.
2005. Clearing the air: identity safety moderates the
effects of stereotype threat on women’s leadership
aspirations. Journal of personality and social psy-
chology 88(2):276.

Tony Dimnik and Sandra Felton. 2006. Accountant
stereotypes in movies distributed in north america
in the twentieth century. Accounting, Organizations
and Society 31(2):129–155.

Alice H Eagly and Steven J Karau. 2002. Role con-
gruity theory of prejudice toward female leaders.
Psychological review 109(3):573.

ethnicelebs.com. 2017. Celebrity ethnicity. [Online;
accessed 1-February-2017]. http://ethnicelebs.com.

Louis August Gottschalk and Goldine C Gleser. 1969.
The measurement of psychological states through
the content analysis of verbal behavior. Univ of
California Press.

Mark Hedley. 1994. The presentation of gendered con-
flict in popular movies: Affective stereotypes, cul-
tural sentiments, and men’s motivation. Sex Roles
31(11-12):721–740.

Bell Hooks. 2009. Reel to real: race, class and sex at
the movies. Routledge.

IMDb. 2017. Internet movie database. [Online; ac-
cessed 1-February-2017]. http://www.imdb.com/.

IMSDb. 2017. Internet movie script database.
[Online; accessed 1-February-2017].
http://www.imsdb.com/.

Anne E Lincoln and Michael Patrick Allen. 2004. Dou-
ble jeopardy in hollywood: Age and gender in the
careers of film actors, 1926–1999. In Sociological
Forum. Springer, volume 19, pages 611–631.

Daniel Linz, Edward Donnerstein, and Steven Penrod.
1984. The effects of multiple exposures to filmed
violence against women. Journal of Communication
34(3):130–147.

Ting Liu, Kit Cho, George Aaron Broadwell, Samira
Shaikh, Tomek Strzalkowski, John Lien, Sarah M
Taylor, Laurie Feldman, Boris Yamrom, Nick Webb,
et al. 2014. Automatic expansion of the mrc
psycholinguistic database imageability ratings. In
LREC. pages 2800–2805.

François Mairesse, Marilyn A Walker, Matthias R
Mehl, and Roger K Moore. 2007. Using linguis-
tic cues for the automatic recognition of personality
in conversation and text. Journal of artificial intelli-
gence research 30:457–500.

Nikolaos Malandrakis and Shrikanth S Narayanan.
2015. Therapy language analysis using automati-
cally generated psycholinguistic norms. In INTER-
SPEECH. pages 1952–1956.

Finn Årup Nielsen. 2011. A new anew: Evaluation of a
word list for sentiment analysis in microblogs. arXiv
preprint arXiv:1103.2903 .

David Niven. 2006. Throwing your hat out of the
ring: Negative recruitment and the gender imbal-
ance in state legislative candidacy. Politics & Gen-
der 2(04):473–489.

NYFA. 2013. Gender inequality in film.
[Online; accessed 1-February-2017].
https://www.nyfa.edu/film-school-blog/gender-
inequality-in-film/.

James W Pennebaker, Ryan L Boyd, Kayla Jordan, and
Kate Blackburn. 2015. The development and psy-
chometric properties of liwc2015. Technical report.

James W Pennebaker, Matthias R Mehl, and Kate G
Niederhoffer. 2003. Psychological aspects of nat-
ural language use: Our words, our selves. Annual
review of psychology 54(1):547–577.

Polygraph. 2016. Film dialogue from 2,000
screenplays, broken down by gender and
age. [Online; accessed 1-February-2017].
http://polygraph.cool/films/.

Anil Ramakrishna, Nikolaos Malandrakis, Elizabeth
Staruk, and Shrikanth S Narayanan. 2015. A quan-
titative analysis of gender differences in movies us-
ing psycholinguistic normatives. In EMNLP. pages
1996–2001.

Mauricio Aparecido Ribeiro, Roberto Antonio Vos-
gerau, Maria Larissa Pereira Andruchiw, and San-
dro Ely de Souza Pinto. 2016. The complex social
network of the lord of rings. Revista Brasileira de
Ensino de Fı́sica 38(1).

Nicolas G Rosenthal. 2012. Reimagining Indian coun-
try: native American migration and identity in
twentieth-century Los Angeles. Univ of North Car-
olina Press.

1677

Burry S Sapolsky, Fred Molitor, and Sarah Luque.
2003. Sex and violence in slasher films: Re-
examining the assumptions. Journalism & Mass
Communication Quarterly 80(1):28–38.

Stacy L Smith, Marc Choueiti, and Katherine Pieper.
2014. Gender bias without borders: An investiga-
tion of female characters in popular films across 11
countries. USC Annenberg 5.

Shinya Tanaka, Adam Jatowt, Makoto P Kato, and Kat-
sumi Tanaka. 2013. Estimating content concrete-
ness for finding comprehensible documents. In Pro-
ceedings of the sixth ACM international conference
on Web search and data mining. ACM, pages 475–
484.

Tom FM Ter Bogt, Rutger CME Engels, Sanne Bogers,
and Monique Kloosterman. 2010. “shake it baby,
shake it”: Media preferences, sexual attitudes and
gender stereotypes among adolescents. Sex Roles
63(11-12):844–859.

Danny Wedding and Mary Ann Boyd. 1999. Movies
& mental illness: Using films to understand psy-
chopathology. .

Andrew Welsh and Laurier Brantford. 2009. Sex and
violence in the slasher horror film: A content anal-
ysis of gender differences in the depiction of vio-
lence. Journal of Criminal Justice and Popular Cul-
ture 16(1):1–25.

Bo Xiao, Zac E Imel, Panayiotis G Georgiou, David C
Atkins, and Shrikanth S Narayanan. 2015. ”rate my
therapist”: Automated detection of empathy in drug
and alcohol counseling via speech and language pro-
cessing. PloS one 10(12):e0143055.

1678

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1679–1689
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1154

Linguistically Regularized LSTM for Sentiment Classification

Qiao Qian1, Minlie Huang1∗, Jinhao Lei2, Xiaoyan Zhu1

1State Key Laboratory of Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology

Dept. of Computer Science and Technology, Tsinghua University, Beijing 100084, PR China
2Dept. of Thermal Engineering, Tsinghua University, Beijing 100084, PR China
qianqiaodecember29@126.com, aihuang@tsinghua.edu.cn

leijh14@gmail.com , zxy-dcs@tsinghua.edu.cn

Abstract

This paper deals with sentence-level sen-
timent classification. Though a variety
of neural network models have been pro-
posed recently, however, previous models
either depend on expensive phrase-level
annotation, most of which has remark-
ably degraded performance when trained
with only sentence-level annotation; or do
not fully employ linguistic resources (e.g.,
sentiment lexicons, negation words, inten-
sity words). In this paper, we propose sim-
ple models trained with sentence-level an-
notation, but also attempt to model the lin-
guistic role of sentiment lexicons, nega-
tion words, and intensity words. Results
show that our models are able to cap-
ture the linguistic role of sentiment words,
negation words, and intensity words in
sentiment expression.

1 Introduction

Sentiment classification aims to classify text to
sentiment classes such as positive or negative, or
more fine-grained classes such as very positive,
positive, neutral, etc. There has been a variety of
approaches for this purpose such as lexicon-based
classification (Turney, 2002; Taboada et al., 2011),
and early machine learning based methods (Pang
et al., 2002; Pang and Lee, 2005), and recently
neural network models such as convolutional neu-
ral network (CNN) (Kim, 2014; Kalchbrenner
et al., 2014; Lei et al., 2015), recursive autoen-
coders (Socher et al., 2011, 2013), Long Short-
Term Memory (LSTM) (Mikolov, 2012; Chung
et al., 2014; Tai et al., 2015; Zhu et al., 2015), and
many more.

∗Corresponding Author: Minlie Huang

In spite of the great success of these neural mod-
els, there are some defects in previous studies.
First, tree-structured models such as recursive au-
toencoders and Tree-LSTM (Tai et al., 2015; Zhu
et al., 2015), depend on parsing tree structures
and expensive phrase-level annotation, whose per-
formance drops substantially when only trained
with sentence-level annotation. Second, linguis-
tic knowledge such as sentiment lexicon, negation
words or negators (e.g., not, never), and intensity
words or intensifiers (e.g., very, absolutely), has
not been fully employed in neural models.

The goal of this research is to developing sim-
ple sequence models but also attempts to fully em-
ploying linguistic resources to benefit sentiment
classification. Firstly, we attempts to develop sim-
ple models that do not depend on parsing trees and
do not require phrase-level annotation which is too
expensive in real-world applications. Secondly,
in order to obtain competitive performance, sim-
ple models can benefit from linguistic resources.
Three types of resources will be addressed in this
paper: sentiment lexicon, negation words, and in-
tensity words. Sentiment lexicon offers the prior
polarity of a word which can be useful in deter-
mining the sentiment polarity of longer texts such
as phrases and sentences. Negators are typical sen-
timent shifters (Zhu et al., 2014), which constantly
change the polarity of sentiment expression. In-
tensifiers change the valence degree of the modi-
fied text, which is important for fine-grained sen-
timent classification.

In order to model the linguistic role of senti-
ment, negation, and intensity words, our central
idea is to regularize the difference between the
predicted sentiment distribution of the current po-
sition 1, and that of the previous or next positions,
in a sequence model. For instance, if the cur-

1Note that in sequence models, the hidden state of the cur-
rent position also encodes forward or backward contexts.

1679

https://doi.org/10.18653/v1/P17-1154

rent position is a negator not, the negator should
change the sentiment distribution of the next posi-
tion accordingly. To summarize, our contributions
lie in two folds:

• We discover that modeling the linguistic role
of sentiment, negation, and intensity words
can enhance sentence-level sentiment classi-
fication. We address the issue by imposing
linguistic-inspired regularizers on sequence
LSTM models.

• Unlike previous models that depend on pars-
ing structures and expensive phrase-level an-
notation, our models are simple and efficient,
but the performance is on a par with the state-
of-the-art.

The rest of the paper is organized as follows:
In the following section, we survey related work.
In Section 3, we briefly introduce the background
of LSTM and bidirectional LSTM, and then de-
scribe in detail the lingistic regularizers for senti-
ment/negation/intensity words in Section 4. Ex-
periments are presented in Section 5, and Conclu-
sion follows in Section 6.

2 Related Work

2.1 Neural Networks for Sentiment
Classification

There are many neural networks proposed for sen-
timent classification. The most noticeable models
may be the recursive autoencoder neural network
which builds the representation of a sentence from
subphrases recursively (Socher et al., 2011, 2013;
Dong et al., 2014; Qian et al., 2015). Such recur-
sive models usually depend on a tree structure of
input text, and in order to obtain competitive re-
sults, usually require annotation of all subphrases.
Sequence models, for instance, convolutional neu-
ral network (CNN), do not require tree-structured
data, which are widely adopted for sentiment clas-
sification (Kim, 2014; Kalchbrenner et al., 2014;
Lei et al., 2015). Long short-term memory models
are also common for learning sentence-level rep-
resentation due to its capability of modeling the
prefix or suffix context (Hochreiter and Schmid-
huber, 1997). LSTM can be commonly applied to
sequential data but also tree-structured data (Zhu
et al., 2015; Tai et al., 2015).

2.2 Applying Linguistic Knowledge for
Sentiment Classification

Linguistic knowledge and sentiment resources,
such as sentiment lexicons, negation words (not,
never, neither, etc.) or negators, and intensity
words (very, extremely, etc.) or intensifiers, are
useful for sentiment analysis in general.

Sentiment lexicon (Hu and Liu, 2004; Wilson
et al., 2005) usually defines prior polarity of a lex-
ical entry, and is valuable for lexicon-based mod-
els (Turney, 2002; Taboada et al., 2011), and ma-
chine learning approaches (Pang and Lee, 2008).
There are recent works for automatic construction
of sentiment lexicons from social data (Vo and
Zhang, 2016) and for multiple languages (Chen
and Skiena, 2014). A noticeable work that ultilizes
sentiment lexicons can be seen in (Teng et al.,
2016) which treats the sentiment score of a sen-
tence as a weighted sum of prior sentiment scores
of negation words and sentiment words, where the
weights are learned by a neural network.

Negation words play a critical role in modify-
ing sentiment of textual expressions. Some early
negation models adopt the reversing assumption
that a negator reverses the sign of the sentiment
value of the modified text (Polanyi and Zaenen,
2006; Kennedy and Inkpen, 2006). The shifting
hyothesis assumes that negators change the senti-
ment values by a constant amount (Taboada et al.,
2011; Liu and Seneff, 2009). Since each negator
can affect the modified text in different ways, the
constant amount can be extended to be negator-
specific (Zhu et al., 2014), and further, the ef-
fect of negators could also depend on the syntax
and semantics of the modified text (Zhu et al.,
2014). Other approaches to negation modeling can
be seen in (Jia et al., 2009; Wiegand et al., 2010;
Benamara et al., 2012; Lapponi et al., 2012).

Sentiment intensity of a phrase indicates the
strength of associated sentiment, which is quite
important for fine-grained sentiment classification
or rating. Intensity words can change the valence
degree (i.e., sentiment intensity) of the modified
text. In (Wei et al., 2011) the authors propose a lin-
ear regression model to predict the valence value
for content words. In (Malandrakis et al., 2013),
a kernel-based model is proposed to combine se-
mantic information for predicting sentiment score.
In the SemEval-2016 task 7 subtask A, a learning-
to-rank model with a pair-wise strategy is pro-
posed to predict sentiment intensity scores (Wang

1680

et al., 2016). Linguistic intensity is not limited to
sentiment or intensity words, and there are works
that assign low/medium/high intensity scales to
adjectives such as okay, good, great (Sharma et al.,
2015) or to gradable terms (e.g. large, huge, gi-
gantic) (Shivade et al., 2015).

In (Dong et al., 2015), a sentiment parser is
proposed, and the authors studied how sentiment
changes when a phrase is modified by negators or
intensifiers.

Applying linguistic regularization to text clas-
sification can be seen in (Yogatama and Smith,
2014) which introduces three linguistically moti-
vated structured regularizers based on parse trees,
topics, and hierarchical word clusters for text cat-
egorization. Our work differs in that (Yogatama
and Smith, 2014) applies group lasso regularizers
to logistic regression on model parameters while
our regularizers are applied on intermediate out-
puts with KL divergence.

3 Long Short-term Memory Network

3.1 Long Short-Term Memory (LSTM)
Long Short-Term Memory has been widely
adopted for text processing. Briefly speaking, in
LSTM, the hidden states ht and memory cell ct

is a function of their previous ct−1 and ht−1 and
input vector xt, or formally as follows:

ct, ht = g(LSTM)(ct−1, ht−1, xt) (1)

The hidden state ht ∈ Rd denotes the represen-
tation of position t while also encoding the pre-
ceding contexts of the position. For more details
about LSTM, we refer readers to (Hochreiter and
Schmidhuber, 1997).

3.2 Bidirectional LSTM
In LSTM, the hidden state of each position (ht)
only encodes the prefix context in a forward di-
rection while the backward context is not consid-
ered. Bidirectional LSTM (Graves et al., 2013)
exploited two parallel passes (forward and back-
ward) and concatenated hidden states of the two
LSTMs as the representation of each position. The
forward and backward LSTMs are respectively
formulated as follows:

−→c t,
−→
h t = g(LSTM)(−→c t−1,

−→
h t−1, xt) (2)

←−c t,
←−
h t = g(LSTM)(←−c t+1,

←−
h t+1, xt) (3)

where g(LSTM) is the same as that in Eq (1).
Particularly, parameters in the two LSTMs are
shared. The representation of the entire sentence
is [
−→
h n,
←−
h 1], where n is the length of the sen-

tence. At each position t, the new representa-
tion is ht = [

−→
h t,
←−
h t], which is the concatenation

of hidden states of the forward LSTM and back-
ward LSTM. In this way, the forward and back-
ward contexts can be considered simultaneously.

4 Linguistically Regularized LSTM

Figure 1: The overview of Linguistically Regular-
ized LSTM. Note that we apply a backward LSTM
(from right to left) to encode sentence since most
negators and intensifiers are modifying their fol-
lowing words.

The central idea of the paper is to model the
linguistic role of sentiment, negation, and inten-
sity words in sentence-level sentiment classifica-
tion by regularizing the outputs at adjacent posi-
tions of a sentence. For example in Fig 1, in sen-
tence “It’s not an interesting movie”, the predicted
sentiment distributions at “*an interesting movie2”
and “*interesting movie” should be close to each
other, while the predicted sentiment distribution
at “*interesting movie” should be quite different
from the preceding positions (in the backward di-
rection) (“*movie”) since a sentiment word (“in-
teresting”) is seen.

We propose a generic regularizer and three spe-
cial regularizers based on the following linguistic
observations:

• Non-Sentiment Regularizer: if the two ad-
jacent positions are all non-opinion words,
the sentiment distributions of the two posi-
tions should be close to each other. Though

2The asterisk denotes the current position.

1681

this is not always true (e.g., soap movie), this
assumption holds at most cases.

• Sentiment Regularizer: if the word is a sen-
timent word found in a lexicon, the sentiment
distribution of the current position should be
significantly different from that of the next
or previous positions. We approach this phe-
nomenon with a sentiment class specific shift-
ing distribution.

• Negation Regularizer: Negation words such
as “not” and “never” are critical sentiment
shifter or converter: in general they shift sen-
timent polarity from the positive end to the
negative end, but sometimes depend on the
negation word and the words they modify.
The negation regularizer models this linguis-
tic phenomena with a negator-specific trans-
formation matrix.

• Intensity Regularizer: Intensity words such
as “very” and “extremely” change the va-
lence degree of a sentiment expression: for
instance, from positive to very positive. Mod-
eling this effect is quite important for fine-
grained sentiment classification, and the in-
tensity regularizer is designed to formulate
this effect by a word-specific transformation
matrix.

More formally, the predicted sentiment distri-
bution (pt, based on ht, see Eq. 5) at position t
should be linguistically regularized with respect to
that of the preceding (t − 1) or following (t + 1)
positions. In order to enforce the model to produce
coherent predictions, we plug a new loss term into
the original cross entropy loss:

L(θ) = −
∑

i

ŷi log yi + α
∑

i

∑

t

Lt,i + β||θ||2

(4)
where ŷi is the gold distribution for sentence i,
yi is the predicted distribution, Lt,i is one of the
above regularizers or combination of these regu-
larizers on sentence i, α is the weight for the reg-
ularization term, and t is the word position in a
sentence.

Note that we do not consider the modification
span of negation and intensity words to preserve
the simplicity of the proposed models. Nega-
tion scope resolution is another complex problem
which has been extensively studied (Zou et al.,
2013; Packard et al., 2014; Fancellu et al., 2016),

which is beyond the scope of this work. Instead,
we resort to sequence LSTMs for encoding sur-
rounding contexts at a given position.

4.1 Non-Sentiment Regularizer (NSR)
This regularizer constrains that the sentiment dis-
tributions of adjacent positions should not vary
much if the additional input word xt is not a senti-
ment word, formally as follows:

L
(NSR)
t = max(0, DKL(pt||pt−1)−M) (5)

where M is a hyperparameter for margin, pt is the
predicted distribution at state of position t, (i.e.,
ht), and DKL(p||q) is a symmetric KL divergence
defined as follows:

DKL(p||q) =
1

2

C∑

l=1

p(l) log q(l) + q(l) log p(l)

(6)
where p, q are distributions over sentiment labels l
and C is the number of labels.

4.2 Sentiment Regularizer (SR)
The sentiment regularizer constrains that the sen-
timent distributions of adjacent positions should
drift accordingly if the input word is a sentiment
word. Let’s revisit the example “It’s not an inter-
esting movie” again. At position t = 2 (in the
backward direction) we see a positive word “in-
teresting” so the predicted distribution would be
more positive than that at position t = 1 (movie).
This is the issue of sentiment drift.

In order to address the sentiment drift issue, we
propose a polarity shifting distribution sc ∈ RC

for each sentiment class defined in a lexicon. For
instance, a sentiment lexicon may have class labels
like strong positive, weakly positive, weakly nega-
tive, and strong negative, and for each class, there
is a shifting distribution which will be learned by
the model. The sentiment regularizer states that
if the current word is a sentiment word, the senti-
ment distribution drift should be observed in com-
parison to the previous position, in more details:

p
(SR)
t−1 = pt−1 + sc(xt) (7)

L
(SR)
t = max(0, DKL(pt||p(SR)

t−1)−M) (8)

where p
(SR)
t−1 is the drifted sentiment distribution

after considering the shifting sentiment distribu-
tion corresponding to the state at position t, c(xt)

1682

is the prior sentiment class of word xt, and sc ∈ θ
is a parameter to be optimized but could also be set
fixed with prior knowledge. Note that in this way
all words of the same sentiment class share the
same drifting distribution, but in a refined setting,
we can learn a shifting distribution for each senti-
ment word if large-scale datasets are available.

4.3 Negation Regularizer (NR)
The negation regularizer approaches how negation
words shift the sentiment distribution of the modi-
fied text. When the input xt is a negation word, the
sentiment distribution should be shifted/reversed
accordingly. However, the negation role is more
complex than that by sentiment words, for exam-
ple, the word “not” in “not good” and “not bad”
have different roles in polarity change. The former
changes the polarity to negative, while the latter
changes to neutral instead of positive.

To respect such complex negation effects, we
propose a transformation matrix Tm ∈ RC×C for
each negation word m, and the matrix will be
learned by the model. The regularizer assumes
that if the current position is a negation word,
the sentiment distribution of the current position
should be close to that of the next or previous po-
sition with the transformation.

p
(NR)
t−1 = softmax(Txj × pt−1) (9)

p
(NR)
t+1 = softmax(Txj × pt+1) (10)

L
(NR)
t = min

{
max(0, DKL(pt||p(NR)

t−1)−M)

max(0, DKL(pt||p(NR)
t+1)−M)

(11)
where p

(NR)
t−1 and p

(NR)
t+1 is the sentiment distuibu-

tion after transformation, Txj ∈ θ is the transfor-
mation matrix for a negation word xj , a parameter
to be learned during training. In total, we train
m transformation matrixs for m negation words.
Such negator-specific transformation is in accor-
dance with the finding that each negator has its in-
dividual negation effect (Zhu et al., 2014).

4.4 Intensity Regularizer (IR)
Sentiment intensity of a phrase indicates the
strength of associated sentiment, which is quite
important for fine-grained sentiment classification
or rating. Intensifier can change the valence de-
gree of the content word. The intensity regularizer

models how intensity words influence the senti-
ment valence of a phrase or a sentence.

The formulation of the intensity effect is quite
the same as that in the negation regularizer, but
with different parameters of course. For each in-
tensity word, there is a transform matrix to favor
the different roles of various intensifiers on sen-
timent drift. For brevity, we will not repeat the
formulas here.

4.5 Applying Linguistic Regularizers to
Bidirectional LSTM

To preserve the simplicity of our proposals, we
do not consider the modification span of negation
and intensity words, which is a quite challenging
problem in the NLP community (Zou et al., 2013;
Packard et al., 2014; Fancellu et al., 2016). How-
ever, we can alleviate the problem by leveraging
bidirectional LSTM.

For a single LSTM, we employ a backward
LSTM from the end to the beginning of a sentence.
This is because, at most times, the modified words
of negation and intensity words are usually at the
right side of the modified text. But sometimes, the
modified words are at the left side of negation and
intensity words. To better address this issue, we
employ bidirectional LSTM and let the model de-
termine which side should be chosen.

More formally, in Bi-LSTM, we compute a
transformed sentiment distribution on−→p t−1 of the
forward LSTM and also that on←−p t+1 of the back-
ward LSTM, and compute the minimum distance
of the distribution of the current position to the two
distributions. This could be formulated as follows:

−→p (R)
t−1 = softmax(Txj ×−→p t−1) (12)

←−p (R)
t+1 = softmax(Txj ×←−p t+1) (13)

L
(R)
t = min

{
max(0, DKL(−→p t||−→p (R)

t−1)−M)

max(0, DKL(←−p t||←−p (R)
t+1)−M)

(14)
where −→p (R)

t−1 and←−p (R)
t+1 are the sentiment distribu-

tions transformed from the previous distribution
−→p t−1 and next distribution ←−p t+1 respectively.
Note that R ∈ {NR, IR} indicating the formu-
lation works for both negation and intensity regu-
larizers.

1683

Due to the same consideration, we redefine
L

(NSR)
t and L

(SR)
t with bidirectional LSTM simi-

larly. The formulation is the same and omitted for
brevity.

4.6 Discussion

Our models address these linguistic factors
with mathematical operations, parameterized with
shifting distribution vectors or transformation ma-
trices. In the sentiment regularizer, the senti-
ment shifting effect is parameterized with a class-
specific distribution (but could also be word-
specific if with more data). In the negation and
intensity regularizers, the effect is parameterized
with word-specific transformation matrices. This
is to respect the fact that the mechanism of how
negation and intensity words shift sentiment ex-
pression is quite complex and highly dependent on
individual words. Negation/Intensity effect also
depends on the syntax and semantics of the mod-
ified text, however, for simplicity we resort to se-
quence LSTM for encoding surrounding contexts
in this paper. We partially address the modification
scope issue by applying the minimization operator
in Eq. 11 and Eq. 14, and the bidirectional LSTM.

5 Experiment

5.1 Dataset and Sentiment Lexicon

Two datasets are used for evaluating the proposed
models: Movie Review (MR) (Pang and Lee,
2005) where each sentence is annotated with two
classes as negative, positive and Stanford Senti-
ment Treebank (SST) (Socher et al., 2013) with
five classes { very negative, negative, neutral, pos-
itive, very positive}. Note that SST has provided
phrase-level annotation on all inner nodes, but we
only use the sentence-level annotation since one of
our goals is to avoid expensive phrase-level anno-
tation.

The sentiment lexicon contains two parts. The
first part comes from MPQA (Wilson et al., 2005),
which contains 5, 153 sentiment words, each with
polarity rating. The second part consists of the
leaf nodes of the SST dataset (i.e., all sentiment
words) and there are 6, 886 polar words except
neural ones. We combine the two parts and ignore
those words that have conflicting sentiment labels,
and produce a lexicon of 9, 750 words with 4 senti-
ment labels. For negation and intensity words, we
collect them manually since the number is small,
some of which can be seen in Table 2.

Dataset MR SST
sentences in total 10,662 11,885

#sen containing sentiment word 10,446 11,211
#sen containing negation word 1,644 1,832
#sen containing intensity word 2,687 2,472

Table 1: The data statistics.

5.2 The Details of Experiment Setting
In order to let others reproduce our results, we
present all the details of our models. We adopt
Glove vectors (Pennington et al., 2014) as the ini-
tial setting of word embeddings V . The shifting
vector for each sentiment class (sc), and the trans-
formation matrices for negation and intensity (Tm)
are initialized with a prior value. The other pa-
rameters for hidden layers (W (∗), U (∗), S) are ini-
tialized with Uniform(0, 1/sqrt(d)), where d is
the dimension of hidden representation, and we
set d=300. We adopt adaGrad to train the models,
and the learning rate is 0.1. It’s worth noting that,
we adopt stochastic gradient descent to update the
word embeddings (V), with a learning rate of 0.2
but without momentum.

The optimal setting for α and β is 0.5 and
0.0001 respectively. During training, we adopt the
dropout operation before the softmax layer, with a
probability of 0.5. Mini-batch is taken to train the
models, each batch containing 25 samples. After
training with 3,000 mini-batch (about 9 epochs on
MR and 10 epochs on SST), we choose the results
of the model that performs best on the validation
dataset as the final performance.

Negation word
no, nothing, never, neither,
not, seldom, scarcely, etc.

Intensity word
terribly, greatly, absolutely,
too, very, completely, etc.

Table 2: Examples of negation and intensity
words.

5.3 Overall Comparison
We include several baselines, as listed below:

RNN/RNTN: Recursive Neural Network over
parsing trees, proposed by (Socher et al., 2011)
and Recursive Tensor Neural Network (Socher
et al., 2013) employs tensors to model correlations
between different dimensions of child nodes’ vec-
tors.

LSTM/Bi-LSTM: Long Short-Term Memory

1684

(Cho et al., 2014) and the bidirectional variant as
introduced previously.

Tree-LSTM: Tree-Structured Long Short-Term
Memory (Tai et al., 2015) introduces memory cells
and gates into tree-structured neural network.

CNN: Convolutional Neural Network (Kalch-
brenner et al., 2014) generates sentence represen-
tation by convolution and pooling operations.

CNN-Tensor: In (Lei et al., 2015), the convo-
lution operation is replaced by tensor product and
a dynamic programming is applied to enumerate
all skippable trigrams in a sentence. Very strong
results are reported.

DAN: Deep Average Network (DAN) (Iyyer
et al., 2015) averages all word vectors in a sen-
tence and connects an MLP layer to the output
layer.

Neural Context-Sensitive Lexicon: NCSL
(Teng et al., 2016) treats the sentiment score of
a sentence as a weighted sum of prior scores
of words in the sentence where the weights are
learned by a neural network.

Method MR
SST

Phrase-level
SST

Sent.-level
RNN 77.7* 44.8# 43.2*
RNTN 75.9# 45.7* 43.4#
LSTM 77.4# 46.4* 45.6#
Bi-LSTM 79.3# 49.1* 46.5#
Tree-LSTM 80.7# 51.0* 48.1#
CNN 81.5* 48.0* 46.9#
CNN-Tensor - 51.2* 50.6*
DAN - - 47.7*
NCSL 82.9 51.1* 47.1#
LR-Bi-LSTM 82.1 50.6 48.6
LR-LSTM 81.5 50.2 48.2

Table 3: The accuracy on MR and SST. Phrase-
level means the models use phrase-level annota-
tion for training. And Sent.-level means the mod-
els only use sentence-level annotation. Results
marked with * are re-printed from the references,
while those with # are obtained either by our own
implementation or with the same codes shared by
the original authors.

Firstly, we evaluate our model on the MR
dataset and the results are shown in Table 3. We
have the following observations:

First, both LR-LSTM and LR-Bi-LSTM out-
performs their counterparts (81.5% vs. 77.4% and
82.1% vs. 79.3%, resp.), demonstrating the ef-

fectiveness of the linguistic regularizers. Second,
LR-LSTM and LR-Bi-LSTM perform slightly bet-
ter than Tree-LSTM but Tree-LSTM leverages a
constituency tree structure while our model is a
simple sequence model. As future work, we will
apply such regularizers to tree-structured models.

Last, on the MR dataset, our model is compa-
rable to or slightly better than CNN.

For fine-grained sentiment classification, we
evaluate our model on the SST dataset which has
five sentiment classes { very negative, negative,
neutral, positive, very positive} so that we can
evaluate the sentiment shifting effect of intensity
words. The results are shown in Table 3. We have
the following observations:

First, linguistically regularized LSTM and Bi-
LSTM are better than their counterparts. It’s
worth noting that LR-Bi-LSTM (trained with just
sentence-level annotation) is even comparable to
Bi-LSTM trained with phrase-level annotation.
That means, LR-Bi-LSTM can avoid the heavy
phrase-level annotation but still obtain compara-
ble results.

Second, our models are comparable to Tree-
LSTM but our models are not dependent on a
parsing tree and more simple, and hence more
efficient. Further, for Tree-LSTM, the model is
heavily dependent on phrase-level annotation, oth-
erwise the performance drops substantially (from
51% to 48.1%).

Last, on the SST dataset, our model is better
than CNN, DAN, and NCSL. We conjecture that
the strong performance of CNN-Tensor may be
due to the tensor product operation, the enumer-
ation of all skippable trigrams, and the concate-
nated representations of all pooling layers for final
classification.

5.4 The Effect of Different Regularizers

In order to reveal the effect of each individual reg-
ularizer, we conduct ablation experiments. Each
time, we remove a regularizer and observe how
the performance varies. First of all, we conduct
this experiment on the entire datasets, and then we
experiment on sub-datasets that only contain nega-
tion words or intensity words.

The experiment results are shown in Table 4
where we can see that the non-sentiment regular-
izer (NSR) and sentiment regularizer (SR) play
a key role3, and the negation regularizer and in-

3Kindly note that almost all sentences contain sentiment

1685

Method MR SST
LR-Bi-LSTM 82.1 48.6
LR-Bi-LSTM (-NSR) 80.8 46.9
LR-Bi-LSTM (-SR) 80.6 46.9
LR-Bi-LSTM (-NR) 81.2 47.6
LR-Bi-LSTM (-IR) 81.7 47.9
LR-LSTM 81.5 48.2
LR-LSTM (-NSR) 80.2 46.4
LR-LSTM (-SR) 80.2 46.6
LR-LSTM (-NR) 80.8 47.4
LR-LSTM (-IR) 81.2 47.4

Table 4: The accuracy for LR-Bi-LSTM and LR-
LSTM with regularizer ablation. NSR, SR, NR and
IR denotes Non-sentiment Regularizer, Sentiment
Regularizer, Negation Regularizer, and Intensity
Regularizer respectively.

tensity regularizer are effective but less important
than NSR and SR. This may be due to the fact that
only 14% of sentences contains negation words
in the test datasets, and 23% contains intensity
words, and thus we further evaluate the models on
two subsets, as shown in Table 5.

The experiments on the subsets show that: 1)
With linguistic regularizers, LR-Bi-LSTM outper-
forms Bi-LSTM remarkably on these subsets; 2)
When the negation regularizer is removed from
the model, the performance drops significantly on
both MR and SST subsets; 3) Similar observations
can be found regarding the intensity regularizer.

Method
Neg. Sub. Int. Sub.
MR SST MR SST

BiLSTM 72.0 39.8 83.2 48.8
LR-Bi-LSTM (-NR) 74.2 41.6 - -
LR-Bi-LSTM (-IR) - - 85.2 50.0
LR-Bi-LSTM 78.5 44.4 87.1 53.2

Table 5: The accuracy on the negation sub-dataset
(Neg. Sub.) that only contains negators, and in-
tensity sub-dataset (Int. Sub.) that only contains
intensifiers.

5.5 The Effect of the Negation Regularizer
To further reveal the linguistic role of negation
words, we compare the predicted sentiment distri-
butions of a phrase pair with and without a nega-
tion word. The experimental results performed on
MR are shown in Fig. 2. Each dot denotes a phrase

words, see Tab. 1.

pair (for example, <interesting, not interesting>),
where the x-axis denotes the positive score4 of a
phrase without negators (e.g., interesting), and the
y-axis indicates the positive score for the phrase
with negators (e.g., not interesting). The curves
in the figures show this function: [1 − y, y] =
softmax(Tnw ∗ [1 − x, x]) where [1 − x, x] is a
sentiment distribution on [negative, positive], x
is the positive score of the phrase without negators
(x-axis) and y that of the phrase with negators (y-
axis), and Tnw is the transformation matrix for the
negation word nw (see Eq. 9). By looking into the

Figure 2: The sentiment shifts with negators. Each
dot < x, y > indicates that x is the sentiment score
of a phrase without negator and y is that of the
phrase with a negator.

detailed results of our model, we have the follow-
ing statements:

First, there is no dot at the up-right and bottom-
left blocks, indicating that negators generally
shift/convert very positive or very negative phrases
to other polarities. Typical phrases include not
very good, not too bad.

Second, the dots at the up-left and bottom-right
respectively indicates the negation effects: chang-
ing negative to positive and positive to negative.
Typical phrases include never seems hopelessly
(up-left), no good scenes (bottom-right), not in-
teresting (bottom-right), etc. There are also some
positive/negative phrases shifting to neutral senti-
ment such as not so good, and not too bad.

Last, the dots located at the center indicate that
neutral phrases maintain neutral sentiment with
negators. Typical phrases include not at home,
not here, where negators typically modify non-
sentiment words.

5.6 The Effect of the Intensity Regularizer

To further reveal the linguistic role of inten-
sity words, we perform experiments on the SST
dataset, as illustrated in Figure 3. We show the

4 The score is obtained from the predicted distribution,
where 1 means positive and 0 means negative.

1686

matrix that indicates how the sentiment shifts af-
ter being modified by intensifiers. Each number
in a cell (mij) indicates how many phrases are
predicted with a sentiment label i but the predic-
tion of the phrases with intensifiers changes to la-
bel j. For instance, the number 20 (m21) in the
second matrix , means that there are 20 phrases
predicted with a class of negative (-) but the pre-
diction changes to very negative (- -) after being
modified by intensifier “very”. Results in the first

Figure 3: The sentiment shifting with intensi-
fiers. The number in cell(mij) indicates how many
phrases are predicted with sentiment label i but the
prediction of phrases with intensifiers changes to
label j.

matrix show that, for intensifier “most”, there are
21/21/13/12 phrases whose sentiment is shifted af-
ter being modified by intensifiers, from negative
to very negative (eg. most irresponsible picture),
positive to very positive (eg. most famous author),
neutral to negative (eg. most plain), and neutral to
positive (eg. most closely), respectively.

There are also many phrases retaining the senti-
ment after being modified with intensifiers. Not
surprisingly, for very positive/negative phrases,
phrases modified by intensifiers still maintain the
strong sentiment. For the left phrases, they fall
into three categories: first, words modified by in-
tensifiers are non-sentiment words, such as most
of us, most part; second, intensifiers are not strong
enough to shift sentiment, such as most complex
(from neg. to neg.), most traditional (from pos. to
pos.); third, our models fail to shift sentiment with
intensifiers such as most vital, most resonant film.

6 Conclusion and Future Work

We present linguistically regularized LSTMs for
sentence-level sentiment classification. The pro-
posed models address the sentient shifting effect
of sentiment, negation, and intensity words. Fur-
thermore, our models are sequence LSTMs which
do not depend on a parsing tree-structure and do

not require expensive phrase-level annotation. Re-
sults show that our models are able to address the
linguistic role of sentiment, negation, and intensity
words.

To preserve the simplicity of the proposed mod-
els, we do not consider the modification scope of
negation and intensity words, though we partially
address this issue by applying a minimization op-
erartor (see Eq. 11, Eq. 14) and bi-directional
LSTM. As future work, we plan to apply the lin-
guistic regularizers to tree-LSTM to address the
scope issue since the parsing tree is easier to indi-
cate the modification scope explicitly.

Acknowledgments

This work was partly supported by the Na-
tional Basic Research Program (973 Program)
under grant No. 2013CB329403, and the Na-
tional Science Foundation of China under grant
No.61272227/61332007.

References
Farah Benamara, Baptiste Chardon, Yannick Math-

ieu, Vladimir Popescu, and Nicholas Asher. 2012.
How do negation and modality impact on opin-
ions? In Proceedings of the Workshop on Extra-
Propositional Aspects of Meaning in Computational
Linguistics. pages 10–18.

Yanqing Chen and Steven Skiena. 2014. Building sen-
timent lexicons for all major languages. In ACL.
pages 383–389.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078 .

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Li Dong, Furu Wei, Shujie Liu, Ming Zhou, and Ke Xu.
2015. A statistical parsing framework for sentiment
classification. Computational Linguistics .

Li Dong, Furu Wei, Ming Zhou, and Ke Xu. 2014.
Adaptive multi-compositionality for recursive neu-
ral models with applications to sentiment analysis.
In AAAI. AAAI.

Federico Fancellu, Adam Lopez, and Bonnie Webber.
2016. Neural networks for negation scope detection.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics. pages 495–
504.

1687

Alex Graves, Navdeep Jaitly, and Abdel-rahman Mo-
hamed. 2013. Hybrid speech recognition with deep
bidirectional lstm. In Automatic Speech Recognition
and Understanding (ASRU), 2013 IEEE Workshop
on. IEEE, pages 273–278.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation
9(8):1735–1780.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In Proceedings of the tenth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pages 168–
177.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the Association for Computational
Linguistics.

Lifeng Jia, Clement Yu, and Weiyi Meng. 2009. The
effect of negation on sentiment analysis and retrieval
effectiveness. In Proceedings of the 18th ACM con-
ference on Information and knowledge management.
pages 1827–1830.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In ACL. pages 655–665.

Alistair Kennedy and Diana Inkpen. 2006. Senti-
ment classification of movie reviews using contex-
tual valence shifters. Computational intelligence
22(2):110–125.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP. pages 1746–
1751.

Emanuele Lapponi, Jonathon Read, and Lilja Øvrelid.
2012. Representing and resolving negation for sen-
timent analysis. In 2012 IEEE 12th International
Conference on Data Mining Workshops. pages 687–
692.

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2015.
Molding cnns for text: non-linear, non-consecutive
convolutions. ACL .

Jingjing Liu and Stephanie Seneff. 2009. Review senti-
ment scoring via a parse-and-paraphrase paradigm.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing. pages
161–169.

Nikolaos Malandrakis, Alexandros Potamianos, Elias
Iosif, and Shrikanth Narayanan. 2013. Distribu-
tional semantic models for affective text analysis.
IEEE Transactions on Audio, Speech, and Language
Processing 21(11):2379–2392.

Tomáš Mikolov. 2012. Statistical language models
based on neural networks. Presentation at Google,
Mountain View, 2nd April .

Woodley Packard, M. Emily Bender, Jonathon Read,
Stephan Oepen, and Rebecca Dridan. 2014. Simple
negation scope resolution through deep parsing: A
semantic solution to a semantic problem. In Pro-
ceedings of the 52nd Annual Meeting of the Associ-
ation for Computational Linguistics. pages 69–78.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In ACL. pages 115–
124.

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in infor-
mation retrieval 2(1-2):1–135.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In ACL. pages 79–86.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. EMNLP 12:1532–1543.

Livia Polanyi and Annie Zaenen. 2006. Contextual va-
lence shifters. In Computing attitude and affect in
text: Theory and applications, Springer, pages 1–10.

Qiao Qian, Bo Tian, Minlie Huang, Yang Liu, Xuan
Zhu, and Xiaoyan Zhu. 2015. Learning tag embed-
dings and tag-specific composition functions in re-
cursive neural network. In ACL. volume 1, pages
1365–1374.

Raksha Sharma, Mohit Gupta, Astha Agarwal, and
Pushpak Bhattacharyya. 2015. Adjective intensity
and sentiment analysis. EMNLP2015 .

Chaitanya Shivade, Marie-Catherine de Marneffe, Eric
Folser-Lussier, and Albert Lai. 2015. Corpus-based
discovery of semantic intensity scales. In Proceed-
ings of NAACL-HTL .

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In EMNLP. pages 151–
161.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP. pages 1631–1642.

Maite Taboada, Julian Brooke, Milan Tofiloski, Kim-
berly Voll, and Manfred Stede. 2011. Lexicon-based
methods for sentiment analysis. Computational lin-
guistics 37(2):267–307.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075 .

1688

Zhiyang Teng, Duy-Tin Vo, and Yue Zhang. 2016.
Context-sensitive lexicon features for neural senti-
ment analysis. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing. pages 1629–1638.

Peter D Turney. 2002. Thumbs up or thumbs down?:
semantic orientation applied to unsupervised classi-
fication of reviews. In ACL. pages 417–424.

Duy Tin Vo and Yue Zhang. 2016. Dont count, predict!
an automatic approach to learning sentiment lexi-
cons for short text. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics. volume 2, pages 219–224.

Feixiang Wang, Zhihua Zhang, and Man Lan. 2016.
Ecnu at semeval-2016 task 7: An enhanced super-
vised learning method for lexicon sentiment inten-
sity ranking. Proceedings of SemEval pages 491–
496.

Wen-Li Wei, Chung-Hsien Wu, and Jen-Chun Lin.
2011. A regression approach to affective rating of
chinese words from anew. In Affective Comput-
ing and Intelligent Interaction, Springer, pages 121–
131.

Michael Wiegand, Alexandra Balahur, Benjamin Roth,
Dietrich Klakow, and Andrés Montoyo. 2010. A
survey on the role of negation in sentiment analy-
sis. In Proceedings of the workshop on negation and
speculation in natural language processing. Associ-
ation for Computational Linguistics, pages 60–68.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In EMNLP. pages 347–
354.

Dani Yogatama and Noah A. Smith. 2014. Linguis-
tic structured sparsity in text categorization. In Pro-
ceedings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics. pages 786–796.

Xiaodan Zhu, Hongyu Guo, Saif Mohammad, and
Svetlana Kiritchenko. 2014. An empirical study on
the effect of negation words on sentiment. In ACL.
pages 304–313.

Xiaodan Zhu, Parinaz Sobhani, and Hongyu Guo.
2015. Long short-term memory over recursive
structures. In ICML. pages 1604–1612.

Bowei Zou, Guodong Zhou, and Qiaoming Zhu. 2013.
Tree kernel-based negation and speculation scope
detection with structured syntactic parse features.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing. pages
968–976.

1689

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1690–1700
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1155

Sarcasm SIGN: Interpreting Sarcasm with Sentiment Based
Monolingual Machine Translation

Lotem Peled and Roi Reichart
Faculty of Industrial Engineering and Management, Technion, IIT

splotem@campus.technion.ac.il, roiri@ie.technion.ac.il

Abstract

Sarcasm is a form of speech in which
speakers say the opposite of what they
truly mean in order to convey a strong sen-
timent. In other words, ”Sarcasm is the
giant chasm between what I say, and the
person who doesn’t get it.”. In this pa-
per we present the novel task of sarcasm
interpretation, defined as the generation
of a non-sarcastic utterance conveying the
same message as the original sarcastic one.
We introduce a novel dataset of 3000 sar-
castic tweets, each interpreted by five hu-
man judges. Addressing the task as mono-
lingual machine translation (MT), we ex-
periment with MT algorithms and evalu-
ation measures. We then present SIGN:
an MT based sarcasm interpretation algo-
rithm that targets sentiment words, a defin-
ing element of textual sarcasm. We show
that while the scores of n-gram based au-
tomatic measures are similar for all inter-
pretation models, SIGN’s interpretations
are scored higher by humans for adequacy
and sentiment polarity. We conclude with
a discussion on future research directions
for our new task.1

1 Introduction

Sarcasm is a sophisticated form of communica-
tion in which speakers convey their message in
an indirect way. It is defined in the Merriam-
Webster dictionary (Merriam-Webster, 1983) as
the use of words that mean the opposite of what

1Our dataset, consisting of 3000 sarcastic tweets
each augmented with five interpretations, is available in
the project page: https://github.com/Lotemp/
SarcasmSIGN. The page also contains the sarcasm inter-
pretation guidelines, the code of the SIGN algorithms and
other materials related to this project.

one would really want to say in order to insult
someone, to show irritation, or to be funny. Con-
sidering this definition, it is not surprising to find
frequent use of sarcastic language in opinionated
user generated content, in environments such as
Twitter, Facebook, Reddit and many more.

In textual communication, knowledge about the
speaker’s intent is necessary in order to fully un-
derstand and interpret sarcasm. Consider, for ex-
ample, the sentence ”what a wonderful day”. A
literal analysis of this sentence demonstrates a
positive experience, due to the use of the word
wonderful. However, if we knew that the sentence
was meant sarcastically, wonderful would turn into
a word of a strong negative sentiment. In spoken
language, sarcastic utterances are often accompa-
nied by a certain tone of voice which points out
the intent of the speaker, whereas in textual com-
munication, sarcasm is inherently ambiguous, and
its identification and interpretation may be chal-
lenging even for humans.

In this paper we present the novel task of in-
terpretation of sarcastic utterances. We define the
purpose of the interpretation task as the capability
to generate a non-sarcastic utterance that captures
the meaning behind the original sarcastic text.

Our work currently targets the Twitter domain
since it is a medium in which sarcasm is preva-
lent, and it allows us to focus on the interpretation
of tweets marked with the content tag #sarcasm.
And so, for example, given the tweet ”how I love
Mondays. #sarcasm” we would like our system to
generate interpretations such as ”how I hate Mon-
days” or ”I really hate Mondays”. In order to
learn such interpretations, we constructed a paral-
lel corpus of 3000 sarcastic tweets, each of which
has five non-sarcastic interpretations (Section 3).

Our task is complex since sarcasm can be ex-
pressed in many forms, it is ambiguous in nature
and its understanding may require world knowl-

1690

https://doi.org/10.18653/v1/P17-1155

edge. Following are several examples taken from
our corpus:

1. loving life so much right now. #sarcasm
2. Way to go California! #sarcasm
3. Great, a choice between two excellent can-

didates, Donald Trump or Hillary Clinton.
#sarcasm

In example (1) it is quite straightforward to see
the exaggerated positive sentiment used in order to
convey strong negative feelings. Examples (2) and
(3), however, do not contain any excessive senti-
ment. Instead, previous knowledge is required if
one wishes to fully understand and interpret what
went wrong with California, or who Hillary Clin-
ton and Donald Trump are.

Since sarcasm is a refined and indirect form of
speech, its interpretation may be challenging for
certain populations. For example, studies show
that children with deafness, autism or Asperger’s
Syndrome struggle with non literal communica-
tion such as sarcastic language (Peterson et al.,
2012; Kimhi, 2014). Moreover, since sarcasm
transforms the polarity of an apparently positive
or negative expression into its opposite, it poses a
challenge for automatic systems for opinion min-
ing, sentiment analysis and extractive summariza-
tion (Popescu et al., 2005; Pang and Lee, 2008;
Wiebe et al., 2004). Extracting the honest mean-
ing behind the sarcasm may alleviate such issues.

In order to design an automatic sarcasm inter-
pretation system, we first rely on previous work
in established similar tasks (section 2), particu-
larly machine translation (MT), borrowing algo-
rithms as well as evaluation measures. In section
4 we discuss the automatic evaluation measures
we apply in our work and present human based
measures for: (a) the fluency of a generated non-
sarcastic utterance, (b) its adequacy as interpre-
tation of the original sarcastic tweet’s meaning,
and (c) whether or not it captures the sentiment
of the original tweet. Then, in section 5, we ex-
plore the performance of prominent phrase-based
and neural MT systems on our task in develop-
ment data experiments. We next present the Sar-
casm SIGN (Sarcasm Sentimental Interpretation
GeNerator, section 6), our novel MT based al-
gorithm which puts a special emphasis on senti-
ment words. Lastly, in Section 7 we assess the
performance of the various algorithms and show
that while they perform similarly in terms of auto-
matic MT evaluation, SIGN is superior according

to the human measures. We conclude with a dis-
cussion on future research directions for our task,
regarding both algorithms and evaluation.

2 Related Work

The use of irony and sarcasm has been well stud-
ied in the linguistics (Muecke, 1982; Stingfellow,
1994; Gibbs and Colston, 2007) and the psychol-
ogy (Shamay-Tsoory et al., 2005; Peterson et al.,
2012) literature. In computational work, the in-
terest in sarcasm has dramatically increased over
the past few years. This is probably due to factors
such as the rapid growth in user generated content
on the web, in which sarcasm is used excessively
(Maynard et al., 2012; Kaplan and Haenlein, 2011;
Bamman and Smith, 2015; Wang, 2013) and the
challenge that sarcasm poses for opinion mining
and sentiment analysis systems (Pang and Lee,
2008; Maynard and Greenwood, 2014). Despite
this rising interest, and despite many works that
deal with sarcasm identification (Tsur et al., 2010;
Davidov et al., 2010; González-Ibánez et al., 2011;
Riloff et al., 2013; Barbieri et al., 2014), to the best
of our knowledge, generation of sarcasm interpre-
tations has not been previously attempted.

Therefore, the following sections are dedicated
to previous work from neighboring NLP fields
which are relevant to our work: sarcasm detection,
MT, paraphrasing and text summarization.

Sarcasm Detection Recent computational work
on sarcasm revolves mainly around detection. Due
to the large volume of detection work, we survey
only several representative examples.

Tsur et al. (2010) and Davidov et al. (2010) pre-
sented a semi-supervised approach for detecting
irony and sarcasm in product-reviews and tweets,
where features are based on ironic speech patterns
extracted from a labeled dataset. González-Ibánez
et al. (2011) used lexical and pragmatic features,
e.g. emojis and whether the utterance is a com-
ment to another person, in order to train a classifier
that distinguishes sarcastic utterances from tweets
of positive and negative sentiment.

Riloff et al. (2013) observed that a certain type
of sarcasm is characterized by a contrast between a
positive sentiment and a negative situation. Conse-
quently, they described a bootstrapping algorithm
that learns distinctive phrases connected to nega-
tive situations along with a positive sentiment and
used these phrases to train their classifier. Barbi-
eri et al. (2014) avoided using word patterns and

1691

instead employed features such as the length and
sentiment of the tweet, and the use of rare words.

Despite the differences between detection and
interpretation, this line of work is highly relevant
to ours in terms of feature design. Moreover, it
presents fundamental notions, such as the senti-
ment polarity of the sarcastic utterance and of its
interpretation, that we adopt. Finally, when utter-
ances are not marked for sarcasm as in the Twitter
domain, or when these labels are not reliable, de-
tection is a necessary step before interpretation.

Machine Translation We approach our task as
one of monolingual MT, where we translate sar-
castic English into non-sarcastic English. There-
fore, our starting point is the application of MT
techniques and evaluation measures. The three
major approaches to MT are phrase based (Koehn
et al., 2007), syntax based (Koehn et al., 2003)
and the recent neural approach. For automatic MT
evaluation, often an n-gram co-occurrence based
scoring is performed in order to measure the lexi-
cal closeness between a candidate and a reference
translations. Example measures are NIST (Dod-
dington, 2002), METEOR (Denkowski and Lavie,
2011), and the widely used BLEU (Papineni et al.,
2002), which represents precision: the fraction of
n-grams from the machine generated translation
that also appear in the human reference.

Here we employ the phrase based Moses system
(Koehn et al., 2007) and an RNN-encoder-decoder
architecture, based on Cho et al. (2014). Later we
will show that these algorithms can be further im-
proved and will explore the quality of the MT eval-
uation measures in the context of our task.

Paraphrasing and Summarization Tasks such
as paraphrasing and summarization are often ad-
dressed as monolingual MT, and so they are close
in nature to our task. Quirk et al. (2004) pro-
posed a model of paraphrasing based on monolin-
gual MT, and utilized alignment models used in
the Moses translation system (Koehn et al., 2007;
Wubben et al., 2010; Bannard and Callison-Burch,
2005). Xu et al. (2015) presented the task of para-
phrase generation while targeting a particular writ-
ing style, specifically paraphrasing modern En-
glish into Shakespearean English, and approached
it with phrase based MT.

Work on paraphrasing and summarization is
often evaluated using MT evaluation measures
such as BLEU. As BLEU is precision-oriented,

complementary recall-oriented measures are often
used as well. A prominent example is ROUGE
(Lin, 2004), a family of measures used mostly for
evaluation in automatic summarization: candidate
summaries are scored according to the fraction of
n-grams from the human references they contain.

We also utilize PINC (Chen and Dolan, 2011),
a measure which rewards paraphrases for being
different from their source, by introducing new
n-grams. PINC is often combined with BLEU
due to their complementary nature: while PINC
rewards n-gram novelty, BLEU rewards similar-
ity to the reference. The highest correlation with
human judgments is achieved by the product of
PINC with a sigmoid function of BLEU (Chen and
Dolan, 2011).

3 A Parallel Sarcastic Tweets Corpus

To properly investigate our task, we collected a
dataset, first of its kind, of sarcastic tweets and
their non-sarcastic (honest) interpretations. This
data, as well as the instructions provided for our
human judges, will be made publicly available and
will hopefully provide a basis for future work re-
garding sarcasm on Twitter. Despite the focus of
the current work on the Twitter domain, we con-
sider our task as a more general one, and hope that
our discussion, observations and algorithms will
be beneficial for other domains as well.

Using the Twitter API2, we collected tweets
marked with the content tag #sarcasm, posted be-
tween Januray and June of 2016. Following Tsur
et al. (2010), González-Ibánez et al. (2011) and
Bamman and Smith (2015), we address the prob-
lem of noisy tweets with automatic filtering: we
remove all tweets not written in English, dis-
card retweets (tweets that have been forwarded
or shared) and remove tweets containing URLs
or images, so that the sarcasm in the tweet re-
gards to the text only and not to an image or a
link. This results in 3000 sarcastic tweets con-
taining text only, where the average sarcastic tweet
length is 13.87 utterances, the average interpreta-
tion length is 12.10 words and the vocabulary size
is 8788 unique words.

In order to obtain honest interpretations for our
sarcastic tweets, we used Fiverr3 – a platform for
selling and purchasing services from independent
suppliers (also referred to as workers). We em-

2http://apiwiki.twitter.com
3https://www.fiverr.com

1692

Sarcastic Tweets Honest Interpretations

What a great way to end my night. #sarcasm

1. Such a bad ending to my night
2. Oh what a great way to ruin my night
3. What a horrible way to end a night
4. Not a good way to end the night
5. Well that wasn’t the night I was hoping for

Staying up till 2:30 was a brilliant idea, very
productive #sarcasm

1. Bad idea staying up late, not very productive
2. It was not smart or productive for me to stay up so late
3. Staying up till 2:30 was not a brilliant idea, very non-productive
4. I need to go to bed on time
5. Staying up till 2:30 was completely useless

Table 1: Examples from our parallel sarcastic tweet corpus.

ployed ten Fiverr workers, half of them from the
field of comedy writing, and half from the field of
literature paraphrasing. The chosen workers were
made sure to have an active Twitter account, in or-
der to ensure their acquaintance with social net-
works and with Twitter’s colorful language (hash-
tags, common acronyms such as LOL, etc.).

We then randomly divided our tweet corpus to
two batches of size 1500 each, and randomly as-
signed five workers to each batch. We instructed
the workers to translate each sarcastic tweet into
a non sarcastic utterance, while maintaining the
original meaning. We encouraged the workers to
use external knowledge sources (such as Google)
if they came across a subject they were not famil-
iar with, or if the sarcasm was unclear to them.

Although our dataset consists only of tweets
that were marked with the hashtag #sarcasm, some
of these tweets were not identified as sarcastic by
all or some of our Fiverr workers. In such cases
the workers were instructed to keep the original
tweet unchanged (i.e, uninterpreted). We keep
such tweets in our dataset since we expect a sar-
casm interpretation system to be able to recognize
non-sarcastic utterances in its input, and to leave
them in their original form.

Table 1 presents two examples from our corpus.
The table demonstrates the tendency of the work-
ers to generally agree on the core meaning of the
sarcastic tweets. Yet, since sarcasm is inherently
vague, it is not surprising that the interpretations
differ from one worker to another. For example,
some workers change only one or two words from
the original sarcastic tweet, while others rephrase
the entire utterance. We regard this as beneficial,
since it brings a natural, human variance into the
task. This variance makes the evaluation of auto-
matic sarcasm interpretation algorithms challeng-
ing, as we further discuss in the next section.

4 Evaluation Measures

As mentioned above, in certain cases world
knowledge is mandatory in order to correctly eval-
uate sarcasm interpretations. For example, in the
case of the second sarcastic tweet in table 1, we
need to know that 2:30 is considered a late hour so
that staying up till 2:30 and staying up late would
be considered equivalent despite the lexical differ-
ence. Furthermore, we notice that transforming
a sarcastic utterance into a non sarcastic one of-
ten requires to change a small number of words.
For example, a single word change in the sarcastic
tweet ”How I love Mondays. #sarcasm” leads to
the non-sarcastic utterance How I hate Mondays.

This is not typical for MT, where usually the en-
tire source sentence is translated to a new sentence
in the target language and we would expect lexical
similarity between the machine generated transla-
tion and the human reference it is compared to.
This raises a doubt as to whether n-gram based
MT evaluation measures such as the aforemen-
tioned are suitable for our task. We hence asses the
quality of an interpretation using automatic eval-
uation measures from the tasks of MT, paraphras-
ing, and summarization (Section 2), and compare
these measures to human-based measures.
Automatic Measures We use BLEU and
ROUGE as measures of n-gram precision and re-
call, respectively. We report scores of ROUGE-1,
ROUGE-2 and ROUGE-L (recall based on uni-
grams, bigrams and longest common subsequence
between candidate and reference, respectively).
In order to asses the n-gram novelty of interpreta-
tions (i.e, difference from the source), we report
PINC and PINC∗sigmoid(BLEU) (see Section 2).

Human judgments We employed an additional
group of five Fiverr workers and asked them
to score each generated interpretations with two
scores on a 1-7 scale, 7 being the best. The scores

1693

Sarcastic Tweet Moses Interpretation Neural Interpretation
Boy , am I glad the rain’s here #sarcasm Boy, I’m so annoyed that the rain is here I’m not glad to go today
Another night of work, Oh, the joy #sarcasm Another night of work, Ugh, unbearable Another night, I don’t like it
Being stuck in an airport is fun #sarcasm Be stuck in an airport is not fun Yay, stuck at the office again
You’re the best. #sarcasm You’re the best You’re my best friend

Table 2: Sarcasm interpretations generated by Moses and by the RNN.

Evaluation Measure Moses RNN
Precision
Oriented

BLEU 62.91 41.05

Novelty
Oriented

PINC 51.81 76.45
PINC∗sigmoid(BLEU) 33.79 45.96

Recall
Oriented

ROUGE-1 66.44 42.20
ROUGE-2 41.03 29.97
ROUGE-l 65.31 40.87

Human
Judgments

Fluency 6.46 5.12
Adequacy 2.54 2.08
% correct sentiment 28.84 17.93

Table 3: Development data results for MT models.

are: adequacy: the degree to which the interpre-
tation captures the meaning of the original tweet;
and fluency: how readable the interpretation is. In
addition, reasoning that a high quality interpreta-
tion is one that captures the true intent of the sar-
castic utterance by using words suitable to its sen-
timent, we ask the workers to assign the interpre-
tation with a binary score indicating whether the
sentiment presented in the interpretation agrees
with the sentiment of the original sarcastic tweet.4

The human measures enjoy high agreement lev-
els between the human judges. The averaged
root mean squared error calculated on the test set
across all pairs of judges and across the various al-
gorithms we experiment with are: 1.44 for fluency
and 1.15 for adequacy. For sentiment scores the
averaged agreement at the same setup is 93.2%.

5 Sarcasm Interpretations as MT

As our task is about the generation of one English
sentence given another, a natural starting point is
treating it as monolingual MT. We hence begin
with utilizing two widely used MT systems, rep-
resenting two different approaches: Phrase Based
MT vs. Neural MT. We then analyze the perfor-
mance of these two systems, and based on our con-
clusions we design our SIGN model.

4For example, we consider ”Best day ever #sarcasm” and
its interpretation ”Worst day ever” to agree on the sentiment,
despite the use of opposite sentiment words.

Phrase Based MT We employ Moses5, using
word alignments extracted by GIZA++ (Och and
Ney, 2003) and symmetrized with the grow-diag-
final strategy. We use phrases of up to 8 words to
build our phrase table, and do not filter sentences
according to length since tweets contain at most
140 characters. We employ the KenLM algorithm
(Heafield, 2011) for language modeling, and train
it on the non-sarcastic tweet interpretations (the
target side of the parallel corpus).

Neural Machine Translation We use Ground-
Hog, a publicly available implementation of an
RNN encoder-decoder, with LSTM hidden states.6

Our encoder and decoder contain 250 hidden units
each. We use the minibatch stochastic gradient
descent (SGD) algorithm together with Adadelta
(Zeiler, 2012) to train each model, where each
SGD update is computed using a minibatch of 16
utterances. Following Sutskever et al. (2014), we
use beam search for test time decoding. Hence-
forth we refer to this system as RNN.
Performance Analysis We divide our corpus
into training, development and test sets of sizes
2400, 300 and 300 respectively. We train Moses
and the RNN on the training set and tune their pa-
rameters on the development set. Table 3 presents
development data results, as these are preliminary
experiments that aim to asses the compatibility of
MT algorithms to our task.

Moses scores much higher in terms of BLEU
and ROUGE, meaning that compared to the RNN
its interpretations capture more n-grams appearing
in the human references while maintaining high
precision. The RNN outscores Moses in terms
of PINC and PINC∗sigmoid(BLEU), meaning that
its interpretations are more novel, in terms of n-
grams. This alone might not be a negative trait;
However, according to human judgments Moses
performs better in terms of fluency, adequacy and
sentiment, and so the novelty of the RNN’s inter-
pretations does not necessarily contribute to their

5http://www.statmt.org/moses
6https://github.com/lisa-groundhog/

GroundHog

1694

“How I love Mondays # sarcasm

“How I cluster-i Mondays # sarcasm MOSES

love
like
...

cluster-i

“How I hate Mondays

“How I cluster-j Mondays # sarcasm

hate
despise
...

cluster-j
de-clusteringclustering

Figure 1: An illustration of the application of SIGN to the tweet ”How I love Mondays # sarcasm”.

quality, and even possibly reduces it.

Table 2 illustrates several examples of the inter-
pretations generated by both Moses and the RNN.
While the interpretations generated by the RNN
are readable, they generally do not maintain the
meaning of the original tweet. We believe that
this is the result of the neural network overfitting
the training set, despite regularization and dropout
layers, probably due to the relatively small train-
ing set size. In light of these results when we ex-
periment with the SIGN algorithm (Section 7), we
employ Moses as its MT component.

The final example of Table 2 is representative of
cases where both Moses and the RNN fail to cap-
ture the sarcastic sense of the tweet, incorrectly
interpreting it or leaving it unchanged. In order to
deal with such cases, we wish to utilize a property
typical of sarcastic language. Sarcasm is mostly
used to convey a certain emotion by using strong
sentiment words that express the exact opposite
of their literal meaning. Hence, many sarcastic
utterances can be correctly interpreted by keep-
ing most of their words, replacing only sentiment
words with expressions of the opposite sentiment.
For example, the sarcasm in the utterance ”You’re
the best. #sarcasm” is hidden in best, a word of
a strong positive sentiment. If we transform this
word into a word of the opposite sentiment, such
as worst, then we get a non-sarcastic utterance
with the correct sentiment.

We next present the Sarcasm SIGN (Sarcasm
Sentimental Interpretation GeNerator), an algo-
rithm which capitalizes on sentiment words in or-
der to produce accurate interpretations.

6 The Sarcasm SIGN Algorithm

SIGN (Figure 1) targets sentiment words in sarcas-
tic utterances. First, it clusters sentiment words ac-
cording to semantic relatedness. Then, each sen-

Positive
Clusters

merit, wonder,
props, praise,
congratulations..

patience, dignity,
truth, chivalry,
rationality...

Negative
Clusters

hideous, horrible,
nasty, obnoxious,
scary, pathetic...

shame, sadness,
sorrow, fear,
disappointment,
regret, danger...

Table 4: Examples of two positive and two nega-
tive clusters created by the SIGN algorithm.

timent word is replaced with its cluster 7 and the
transformed data is fed into an MT system (Moses
in this work), at both its training and test phases.
Consequently, at test time the MT system out-
puts non-sarcastic utterances with clusters replac-
ing sentiment words. Finally, SIGN performs a de-
clustering process on these MT outputs, replacing
sentiment clusters with suitable words.

In order to detect the sentiment of words, we
turn to SentiWordNet (Esuli and Sebastiani, 2006),
a lexical resource based on WordNet (Miller et al.,
1990). Using SentiWordNet’s positivity and neg-
ativity scores, we collect from our training data a
set of distinctly positive words (∼ 70) and a set of
distinctly negative words (∼ 160).8 We then uti-
lize the pre-trained dependency-based word em-
beddings of Levy and Goldberg (2014)9 and clus-
ter each set using the k-means algorithm with L2
distance. We aim to have ten words on average
in each cluster, and so the positive set is clustered
into 7 clusters, and the negative set into 16 clus-
ters. Table 4 presents examples from our clusters.

Upon receiving a sarcastic tweet, at both train-
ing and test, SIGN searches it for sentiment words
according to the positive and negative sets. If such

7This means that we replace a word with cluster-j where j
is the number of the cluster to which the word belongs.

8The scores are in the [0,1] range. We set the threshold of
0.6 for both distinctly positive and distinctly negative words.

9https://levyomer.wordpress.com/2014/
04/25/dependency-based-word-embeddings/.
We choose these embeddings since they are believed to better
capture the relations between a word and its context, having
been trained on dependency-parsed sentences.

1695

Evaluation Measure Moses SIGN-centroid SIGN-context SIGN-oracle
Precision Oriented BLEU 65.24 63.52 66.96 67.49

Novelty Oriented PINC 45.92 47.11 46.65 46.10
PINC∗sigmoid(BLEU) 30.21 30.79 31.13 30.54

Recall Oriented
ROUGE-1 70.26 68.43 69.67 70.34
ROUGE-2 42.18 40.34 40.96 42.81
ROUGE-l 69.82 68.24 69.98 70.01

Table 5: Test data results with automatic evaluation measures.

a word is found, it is replaced with its cluster. For
example, given the sentence ”How I love Mon-
days. #sarcasm”, love will be recognized as a pos-
itive sentiment word, and the sarcastic tweet will
become: ”How I cluster-i Mondays. #sarcasm”
where i is the cluster number of the word love.

During training, this process is also applied to
the non-sarcastic references. And so, if one such
reference is ”I dislike Mondays.”, then dislike will
be identified and the reference will become ”I
cluster-j Mondays.”, where j is the cluster num-
ber of the word dislike. Moses is then trained on
these new representations of the corpus, using the
exact same setup as before. This training process
produces a mapping between positive and nega-
tive clusters, and outputs sarcastic interpretations
with clustered sentiment words (e.g, ”I cluster-j
Mondays.”). At test time, after Moses generates an
utterance containing clusters, a de-clustering pro-
cess takes place: the clusters are replaced with the
appropriate sentiment words.

We experiment with several de-clustering ap-
proaches: (1) SIGN-centroid: the chosen sen-
timent word will be the one closest to the cen-
troid of cluster j. For example in the tweet ”I
cluster-j Mondays.”, the sentiment word closest to
the centroid of cluster j will be chosen; (2) SIGN-
context: the cluster is replaced with its word that
has the highest average Pointwise Mutual Infor-
mation (PMI) with the words in a symmetric con-
text window of size 3 around the cluster’s location
in the output. For example, for ”I cluster-j Mon-
days.”, the sentiment word from cluster j which
has the highest average PMI with the words in
{’I’,’Mondays’} will be chosen. The PMI values
are computed on the training data; and (3) SIGN-
Oracle: an upper bound where a person manually
chooses the most suitable word from the cluster.

We expect this process to improve the quality
of sarcasm interpretations in two aspects. First,
as mentioned earlier, sarcastic tweets often differ
from their non sarcastic interpretations in a small

Fluency Adequacy % correct
sentiment

% changed

Moses 6.67 2.55 25.7 42.3
SIGN-Centroid 6.38 3.23* 42.2* 67.4
SIGN-Context 6.66 3.61* 46.2* 68.5
SIGN-Oracle 6.69 3.67* 46.8* 68.8

Table 6: Test set results with human measures.
%changed provides the fraction of tweets that
were changed during interpretation (i.e. the tweet
and its interpretation are not identical). In cases
where one of our models presents significant im-
provement over Moses, the results are decorated
with a star. Statistical significance is tested with
the paired t-test for fluency and adequacy, and with
the McNemar paired test for labeling disagree-
ments (Gillick and Cox, 1989) for % correct sen-
timent, in both cases with p < 0.05.

number of sentiment words (sometimes even in a
single word). SIGN should help highlight the sen-
timent words most in need of interpretation. Sec-
ond, under the pre-processing SIGN performs to
the input examples of Moses, the latter is inclined
to learn a mapping from positive to negative clus-
ters, and vice versa. This is likely to encourage
the Moses output to generate outputs of the same
sentiment as the original sarcastic tweet, but with
honest sentiment words. For example, if the sar-
castic tweet expresses a negative sentiment with
strong positive words, the non-sarcastic interpreta-
tion will express this negative sentiment with neg-
ative words, thus stripping away the sarcasm.

7 Experiments and Results

We experiment with SIGN and the Moses and
RNN baselines at the same setup of section 5.
We report test set results for automatic and human
measures, in Tables 5 and 6 respectively. As in
the development data experiments (Table 3), the
RNN presents critically low adequacy scores of
2.11 across the entire test set and of 1.89 in cases
where the interpretation and the tweet differ. This,
along with its low fluency scores (5.74 and 5.43

1696

respectively) and its very low BLEU and ROUGE
scores make us deem this model immature for our
task and dataset, hence we exclude it from this sec-
tion’s tables and do not discuss it further.

In terms of automatic evaluation (Table 5),
SIGN and Moses do not perform significantly dif-
ferent. When it comes to human evaluation (Ta-
ble 6) however, SIGN-context presents substantial
gains. While for fluency Moses and SIGN-context
perform similarly, SIGN-context performs much
better in terms of adequacy and the percentage of
tweets with the correct sentiment. The differences
are substantial as well as statistically significant:
adequacy of 3.61 for SIGN-context compared to
2.55 of Moses, and correct sentiment for 46.2% of
the SIGN interpretations, compared to only 25.7%
of the Moses interpretations.

Table 6 further provides an initial explanation
to the improvement of SIGN over Moses: Moses
tends to keep interpretations identical to the origi-
nal sarcastic tweet, altering them in only 42.3% of
the cases, 10 while SIGN-context’s interpretations
differ from the original sarcastic tweet in 68.5%
of the cases, which comes closer to the 73.8% in
the gold standard human interpretations. If for
each of the algorithms we only regard to interpre-
tations that differ from the original sarcastic tweet,
the differences between the models are less sub-
stantial. Nonetheless, SIGN-context still presents
improvement by correctly changing sentiment in
67.5% of the cases compared to 60.8% for Moses.

Both tables consistently show that the context-
based selection strategy of SIGN outperforms the
centroid alternative. This makes sense as, be-
ing context-ignorant, SIGN-centroid might pro-
duce non-fluent or inadequate interpretations for a
given context. For example, the tweet ”Also gotta
move a piano as well. joy #sarcasm” is changed
to ”Also gotta move a piano as well. bummer”
by SIGN-context, while SIGN-centroid changes it
to the less appropriate ”Also gotta move a piano
as well. boring”. Nonetheless, even this naive
de-clustering approach substantially improves ad-
equacy and sentiment accuracy over Moses.

Finally, comparison to SIGN-oracle reveals that
the context selection strategy is not far from hu-
man performance with respect to both automatic
and human evaluation measures. Still, some gain
can be achieved, especially for the human mea-
sures on tweets that were changed at interpreta-

10We elaborate on this in section 8.

tion. This indicates that SIGN can improve mostly
through a better clustering of sentiment words,
rather than through a better selection strategy.

8 Discussion and Future Work

Automatic vs. Human Measures The perfor-
mance gap between Moses and SIGN may stem
from the difference in their optimization criteria.
Moses aims to optimize the BLEU score and given
the overall lexical similarity between the origi-
nal tweets and their interpretations, it therefore
tends to keep them identical. SIGN, in contrast,
targets sentiment words and changes them fre-
quently. Consequently, we do not observe sub-
stantial differences between the algorithms in the
automatic measures that are mostly based on n-
gram differences between the source and the inter-
pretation. Likewise, the human fluency measure
that accounts for the readability of the interpreta-
tion is not seriously affected by the translation pro-
cess. When it comes to the human adequacy and
sentiment measures, which account for the under-
standing of the tweet’s meaning, SIGN reveals its
power and demonstrates much better performance
compared to Moses.

To further understand the relationship between
the automatic and the human based measures we
computed the Pearson correlations for each pair
of (automatic, human) measures. We observe that
all correlation values are low (up to 0.12 for flu-
ency, 0.13-0.18 for sentiment and 0.19-0.24 for
adequacy). Moreover, for fluency the correlation
values are insignificant (using a correlation signif-
icance t-test with p = 0.05). We believe this indi-
cates that these automatic measures do not provide
appropriate evaluation for our task. Designing au-
tomatic measures is hence left for future research.

Sarcasm Interpretation as Sentiment Based
Monolingual MT: Strengths and Weaknesses
The SIGN models’ strength is revealed when in-
terpreting sarcastic tweets with strong sentiment
words, transforming expressions such as ”Audits
are a blast to do #sarcasm” and ”Being stuck in
an airport is fun #sarcasm” into ”Audits are a
bummer to do” and ”Being stuck in an airport
is boring”, respectively. Even when there are no
words of strong sentiment, the MT component
of SIGN still performs well, interpreting tweets
such as ”the Cavs aren’t getting any calls, this is
new #sarcasm” into ”the Cavs aren’t getting any
calls, as usuall”.

1697

The SIGN models perform well even in cases
where there are several sentiment words but not
all of them require change. For example, for the
sarcastic tweet ”Constantly being irritated, anx-
ious and depressed is a great feeling! #sarcasm”,
SIGN-context produces the adequate interpreta-
tion: ”Constantly being irritated, anxious and de-
pressed is a terrible feeling”.

Future research directions rise from cases in
which the SIGN models left the tweet unchanged.
One prominent set of examples consists of tweets
that require world knowledge for correct interpre-
tation. Consider the tweet ”Can you imagine if
Lebron had help? #sarcasm”. The model requires
knowledge of who Lebron is and what kind of help
he needs in order to fully understand and interpret
the sarcasm. In practice the SIGN models leave
this tweet untouched.

Another set of examples consists of tweets that
lack an explicit sentiment word, for example, the
tweet ”Clear example they made of Sharapova
then, ey? #sarcasm”. While for a human reader
it is apparent that the author means a clear exam-
ple was not made of Sharapova, the lack of strong
sentiment words results in all SIGN models leav-
ing this tweet uninterpreted.

Finally, tweets that present sentiment in phrases
or slang words are particularly challenging for our
approach which relies on the identification and
clustering of sentiment words. Consider, for ex-
ample, the following two cases: (a) the sarcas-
tic tweet ”Can’t wait until tomorrow #sarcasm”,
where the positive sentiment is expressed in the
phrase can’t wait; and (b) the sarcastic tweet ”an-
other shooting? yeah we totally need to make
guns easier for people to get #sarcasm”, where
the word totally receives a strong sentiment de-
spite its normal use in language. While we believe
that identifying the role of can’t wait and of totally
in the sentiment of the above tweets can be a key
to properly interpreting them, our approach that
relies on a sentiment word lexicon is challenged
by such cases.

Summary We presented a first attempt to ap-
proach the problem of sarcasm interpretation. Our
major contributions are:

• Construction of a dataset, first of its kind,
that consists of 3000 tweets each augmented
with five non-sarcastic interpretations gener-
ated by human experts.

• Discussion of the proper evaluation in our
task. We proposed a battery of human mea-
sures and compared their performance to the
accepted measures in related fields such as
machine translation.

• An algorithmic approach: sentiment based
monolingual machine translation. We
demonstrated the strength of our approach
and pointed on cases that are currently be-
yond its reach.

Several challenges are still to be addressed in
future research so that sarcasm interpretation can
be performed in a fully automatic manner. These
include the design of appropriate automatic evalu-
ation measures as well as improving the algorith-
mic approach so that it can take world knowledge
into account and deal with cases where the sen-
timent of the input tweet is not expressed with a
clear sentiment words.

We are releasing our dataset with its sarcasm in-
terpretation guidelines, the code of the SIGN algo-
rithms, and the output of the various algorithms
considered in this paper (https://github.
com/Lotemp/SarcasmSIGN). We hope this
new resource will help researchers make further
progress on this new task.

References
David Bamman and Noah A Smith. 2015.

Contextualized sarcasm detection on twit-
ter. In Ninth International AAAI Conference
on Web and Social Media. http://dblp.uni-
trier.de/rec/bib/conf/icwsm/BammanS15.

Colin Bannard and Chris Callison-Burch. 2005. Para-
phrasing with bilingual parallel corpora. In Pro-
ceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 597–604.
www.aclweb.org/anthology/P05-1074.

Francesco Barbieri, Horacio Saggion, and Francesco
Ronzano. 2014. Proceedings of the 5th workshop
on computational approaches to subjectivity, sen-
timent and social media analysis. pages 50–58.
https://doi.org/10.3115/v1/W14-2609.

David L Chen and William B Dolan. 2011. Col-
lecting highly parallel data for paraphrase evalua-
tion. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics:
Human Language Technologies-Volume 1. Associa-
tion for Computational Linguistics, pages 190–200.
www.aclweb.org/anthology/P11-1020.

1698

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Proc. of
EMNLP. https://doi.org/10.3115/v1/d14-1179.

Dmitry Davidov, Oren Tsur, and Ari Rappoport.
2010. Semi-supervised recognition of sarcastic
sentences in twitter and amazon. In Proceed-
ings of the fourteenth conference on computa-
tional natural language learning. Association
for Computational Linguistics, pages 107–116.
https://www.aclweb.org/anthology/W/W10/W10-
2914.pdf.

Michael Denkowski and Alon Lavie. 2011. Me-
teor 1.3: Automatic metric for reliable opti-
mization and evaluation of machine translation
systems. In Proceedings of the Sixth Work-
shop on Statistical Machine Translation. Associa-
tion for Computational Linguistics, pages 85–91.
www.aclweb.org/anthology/W11-2107.

George Doddington. 2002. Automatic evalua-
tion of machine translation quality using n-
gram co-occurrence statistics. In Proceed-
ings of the second international conference on
Human Language Technology Research. Mor-
gan Kaufmann Publishers Inc., pages 138–145.
https://doi.org/10.3115/1289189.1289273.

Andrea Esuli and Fabrizio Sebastiani. 2006. Sen-
tiwordnet: A publicly available lexical resource
for opinion mining. In Proceedings of LREC.
http://aclweb.org/anthology/L06-1225.

Raymond W Gibbs and Herbert L Colston. 2007.
Irony in language and thought: A cognitive science
reader. Psychology Press.

Laurence Gillick and Stephen J Cox. 1989. Some sta-
tistical issues in the comparison of speech recog-
nition algorithms. In Proc. of ICASSP. IEEE.
https://doi.org/10.1109/ICASSP.1989.266481.

Roberto González-Ibánez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in
twitter: a closer look. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Tech-
nologies: short papers-Volume 2. Association
for Computational Linguistics, pages 581–586.
http://www.aclweb.org/anthology/P11-2102.

Kenneth Heafield. 2011. Kenlm: Faster and smaller
language model queries. In Proceedings of the Sixth
Workshop on Statistical Machine Translation. Asso-
ciation for Computational Linguistics, pages 187–
197. www.aclweb.org/anthology/W11-2123.

Andreas M Kaplan and Michael Haenlein.
2011. Two hearts in three-quarter time:
How to waltz the social media/viral market-
ing dance. Business Horizons 54(3):253–263.
https://doi.org/10.1016/j.bushor.2011.01.006.

Yael Kimhi. 2014. Theory of mind abilities and
deficits in autism spectrum disorders. Top-
ics in Language Disorders 34(4):329–343.
https://doi.org/10.1097/tld.0000000000000033.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, et al. 2007. Moses: Open source
toolkit for statistical machine translation. In Pro-
ceedings of the 45th annual meeting of the ACL on
interactive poster and demonstration sessions. As-
sociation for Computational Linguistics, pages 177–
180. https://www.aclweb.org/anthology/P/P07/P07-
2.pdf.

Philipp Koehn, Franz Josef Och, and Daniel
Marcu. 2003. Statistical phrase-based transla-
tion. In Proceedings of the 2003 Conference
of the North American Chapter of the Associ-
ation for Computational Linguistics on Human
Language Technology-Volume 1. Association
for Computational Linguistics, pages 48–54.
www.aclweb.org/anthology/N/N03/N03-1017.ps.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers). Associ-
ation for Computational Linguistics, pages 302–308.
https://doi.org/10.3115/v1/P14-2050.

Chin-Yew Lin. 2004. Text summariza-
tion branches out (acl-04 workshop).
http://aclweb.org/anthology/W04-1013.

Diana Maynard, Kalina Bontcheva, and Dominic Rout.
2012. Challenges in developing opinion mining
tools for social media. Proceedings of the@ NLP
can u tag# usergeneratedcontent (LREC-12 work-
shop) pages 15–22.

Diana Maynard and Mark A Greenwood. 2014.
Who cares about sarcastic tweets? investigat-
ing the impact of sarcasm on sentiment analy-
sis. In LREC. pages 4238–4243. http://dblp.uni-
trier.de/rec/bib/conf/lrec/MaynardG14.

Inc Merriam-Webster. 1983. Webster’s ninth
new collegiate dictionary. Merriam-Webster.
https://doi.org/10.1353/dic.1984.0017.

George A Miller, Richard Beckwith, Christiane Fell-
baum, Derek Gross, and Katherine J Miller.
1990. Introduction to wordnet: An on-line lexi-
cal database. International journal of lexicography
3(4):235–244. https://doi.org/10.1093/ijl/3.4.235.

Douglas Colin Muecke. 1982. Irony and the Ironic.
Methuen.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Computational linguistics 29(1):19–51.
http://aclweb.org/anthology/J03-1002.

1699

Bo Pang and Lillian Lee. 2008. Opinion mining and
sentiment analysis. Foundations and trends in in-
formation retrieval 2(1-2):1–135. http://dblp.uni-
trier.de/rec/bib/journals/ftir/PangL07.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. Bleu: a method for au-
tomatic evaluation of machine translation. In
Proceedings of the 40th annual meeting on as-
sociation for computational linguistics. Associa-
tion for Computational Linguistics, pages 311–318.
www.aclweb.org/anthology/P02-1040.pdf.

Candida C Peterson, Henry M Wellman, and Vir-
ginia Slaughter. 2012. The mind behind the mes-
sage: Advancing theory-of-mind scales for typi-
cally developing children, and those with deafness,
autism, or asperger syndrome. Child development
83(2):469–485. https://doi.org/10.1111/j.1467-
8624.2011.01728.x.

Ana-Maria Popescu, Bao Nguyen, and Oren Et-
zioni. 2005. Opine: Extracting product features
and opinions from reviews. In Proceedings of
HLT/EMNLP interactive demonstrations. Associa-
tion for Computational Linguistics, pages 32–33.
https://doi.org/10.3115/1225733.1225750.

Chris Quirk, Chris Brockett, and William B Dolan.
2004. Proceedings of the 2004 conference on empir-
ical methods in natural language processing. pages
142–149. http://aclweb.org/anthology/W04-3219.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, Lalin-
dra De Silva, Nathan Gilbert, and Ruihong Huang.
2013. Sarcasm as contrast between a positive
sentiment and negative situation. In Proceed-
ings of the Conference on Empirical Methods
in Natural Language Processing. pages 704–714.
http://aclweb.org/anthology/D13-1066.

SG Shamay-Tsoory, Rachel Tomer, and Judith
Aharon-Peretz. 2005. The neuroanatomical ba-
sis of understanding sarcasm and its relationship
to social cognition. Neuropsychology 19(3):288.
https://doi.org/10.1037/0894-4105.19.3.288.

FJ Stingfellow. 1994. The Meaning of Irony. New
York: State University of NY.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
2014. Sequence to sequence learning with
neural networks. In Advances in neural infor-
mation processing systems. pages 3104–3112.
http://papers.nips.cc/paper/5346-sequence-to-
sequence-learning-with-neural-networks.pdf.

Oren Tsur, Dmitry Davidov, and Ari Rappoport.
2010. Icwsm-a great catchy name: Semi-
supervised recognition of sarcastic sentences in on-
line product reviews. In ICWSM. http://dblp.uni-
trier.de/rec/bib/conf/icwsm/TsurDR10.

Po-Ya Angela Wang. 2013. # irony or# sarcasma quan-
titative and qualitative study based on twitter. In
Proceedings of the 27th Pacific Asia Conference on

Language, Information, and Computation (PACLIC
27). https://aclweb.org/anthology/Y/Y13/Y13-
1035.pdf.

Janyce Wiebe, Theresa Wilson, Rebecca Bruce,
Matthew Bell, and Melanie Martin. 2004. Learn-
ing subjective language. Computational linguistics
30(3):277–308. http://aclweb.org/anthology/J04-
3002.

Sander Wubben, Antal Van Den Bosch, and Emiel
Krahmer. 2010. Paraphrase generation as mono-
lingual translation: Data and evaluation. In Pro-
ceedings of the 6th International Natural Language
Generation Conference. Association for Computa-
tional Linguistics, pages 203–207. http://dblp.uni-
trier.de/rec/bib/conf/inlg/WubbenBK10.

Wei Xu, Chris Callison-Burch, and William B Dolan.
2015. Semeval-2015 task 1: Paraphrase and se-
mantic similarity in twitter (pit). Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval 2015) https://doi.org/10.18653/v1/s15-
2001.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701
http://dblp2.uni-trier.de/rec/bib/journals/corr/abs-
1212-5701.

1700

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1701–1711
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1156

Active Sentiment Domain Adaptation

Fangzhao Wu†, Yongfeng Huang†∗, and Jun Yan‡
†Department of Electronic Engineering, Tsinghua University

‡Microsoft Research Asia, Beijing, China
wufangzhao@gmail.com, yfhuang@tsinghua.edu.cn, junyan@microsoft.com

Abstract

Domain adaptation is an important techno-
logy to handle domain dependence pro-
blem in sentiment analysis field. Existing
methods usually rely on sentiment classi-
fiers trained in source domains. Howe-
ver, their performance may heavily decline
if the distributions of sentiment features
in source and target domains have signifi-
cant difference. In this paper, we propose
an active sentiment domain adaptation ap-
proach to handle this problem. Instead
of the source domain sentiment classifiers,
our approach adapts the general-purpose
sentiment lexicons to target domain with
the help of a small number of labeled
samples which are selected and annota-
ted in an active learning mode, as well as
the domain-specific sentiment similarities
among words mined from unlabeled sam-
ples of target domain. A unified model is
proposed to fuse different types of senti-
ment information and train sentiment clas-
sifier for target domain. Extensive expe-
riments on benchmark datasets show that
our approach can train accurate sentiment
classifier with less labeled samples.

1 Introduction

Sentiment classification is widely known as a
domain-dependent problem (Liu, 2012; Pang and
Lee, 2008; Blitzer et al., 2007; Pan et al., 2010).
This is because different domains usually have
many different sentiment expressions. For exam-
ple, “lengthy” and “boring” are popularly used in
Book domain to express negative sentiment. Ho-
wever, they are rare in Kitchen appliance domain.
Moreover, the same word or phrase may convey

∗Corresponding author.

different sentiments in different domains. For in-
stance, “unpredictable” is frequently used to ex-
press positive sentiment in Movie domain (e.g.,
“The plot of this movie is fun and unpredictable”).
However, it tends to be used as a negative word
in Kitchen appliance domain (e.g., “Even holding
heat is unpredictable. It is just terrible!”). Thus,
every domain has many domain-specific sentiment
expressions, which cannot be captured by other
domains. The performance of directly applying a
general sentiment classifier or a sentiment classi-
fier trained in other domains to target domain is
usually suboptimal.

Since there are a large number of domains in
user-generated content, it is impractical to ma-
nually annotate enough samples for each dom-
ain to train an accurate domain-specific sentiment
classifier. Thus, sentiment domain adaptation,
which transfers the sentiment classifier trained in
a source domain with sufficient labeled data to a
target domain with no or scarce labeled data, has
been widely studied (Blitzer et al., 2007; Pan et al.,
2010; He et al., 2011; Glorot et al., 2011). Existing
sentiment domain adaptation methods are mainly
based on transfer learning techniques. Many of
them try to learn a new feature representation to
augment or replace the original feature space in
order to reduce the gap of sentiment feature distri-
butions between source and target domains (Pan
et al., 2010; Glorot et al., 2011). For example,
Blitzer et al. (2007) proposed to learn a latent re-
presentation for domain-specific words from both
source and target domains by using pivot features
as bridge. The advantage of these methods is that
no labeled data in target domain is needed. Howe-
ver, when the distributions of sentiment features in
source and target domains have significant diffe-
rence, the performance of domain adaptation will
heavily decline (Li et al., 2013). In some cases,
the performance of adaptation is even lower than

1701

https://doi.org/10.18653/v1/P17-1156

that without adaptation, which is usually known as
negative transfer (Pan and Yang, 2010).

In this paper, we propose an active sentiment
domain adaptation approach to handle this pro-
blem by incorporating both general sentiment in-
formation and a small number of actively selected
labeled samples from target domain. More specifi-
cally, in our approach the general sentiment infor-
mation extracted from sentiment lexicons is adap-
ted to target domain using domain-specific senti-
ment similarities among words. The general sen-
timent information is regarded as a “background”
domain to transfer. The word similarities are ex-
tracted from unlabeled samples of target domain
using both syntactic rules and co-occurrence pat-
terns. Then we actively select and annotate a small
number of informative samples from target dom-
ain in an active learning manner. These labeled
samples are incorporated into our approach to im-
prove the performance of sentiment domain adap-
tation. A unified model is proposed to incorporate
different types of sentiment information to train
sentiment classifier for target domain. Extensive
experiments were conducted on benchmark data-
sets. The experimental results show that our ap-
proach can train accurate sentiment classifiers and
reduce the manual annotation effort.

2 Related Work

2.1 Sentiment Domain Adaptation

Sentiment classification is well known as a highly
domain-dependent task, and domain adaptation
is widely studied in sentiment analysis field to
handle this problem (Blitzer et al., 2007; Pan et al.,
2010; He et al., 2011; Glorot et al., 2011). Existing
sentiment domain adaptation methods are mainly
based on transfer learning technique (Pan and
Yang, 2010), where sentiment classifiers are trai-
ned in one or multiple source domains with suf-
ficient labeled samples, and then applied to target
domain where there is no or only scarce labeled
samples. In order to reduce the gap of sentiment
feature distributions between source and target
domains, many sentiment domain adaptation met-
hods try to learn a new feature representation to
augment or replace the original feature space. For
example, Pan et al. (2010) proposed a sentiment
domain adaptation method based on spectral fea-
ture alignment (SFA) algorithm. They first manu-
ally selected several domain-independent features
and computed the associations between domain-

specific features and domain-independent featu-
res. After that they built a bipartite graph where
domain-independent and domain-specific featu-
res were regarded as two types of nodes. Then
domain-specific features were grouped into se-
veral clusters using spectral clustering algorithm.
These clusters were used to augment the original
feature representations. Glorot et al. (2011) propo-
sed a sentiment domain adaptation method based
on a deep learning technique, i.e., Stacked Denoi-
sing Autoencoders. They learned the parameters
of neural networks using unlabeled samples from
both source and target domains, and used the hid-
den nodes of the neural networks as the latent fe-
ature representations of both domains. Then they
trained sentiment classifiers using source domain
labeled data in this new feature space and app-
lied it to target domain. The advantage of these
sentiment domain adaptation methods is that they
do not rely on the labeled data in target dom-
ain. However, they have a common shortcoming,
i.e., when the distributions of sentiment features in
source and target domains have significant diffe-
rence, the performance of domain adaptation will
heavily decline (Li et al., 2013). In some cases,
negative transfer may happen (Blitzer et al., 2007;
Li et al., 2013), which means the performance
of adaptation is worse than that without adapta-
tion (Pan and Yang, 2010). Different from many
existing sentiment domain adaptation methods, in
our approach we adapt the general sentiment in-
formation in sentiment lexicons to target domain
with the help of a small number of labeled samples
which are selected and annotated in an active lear-
ning mode. Since the sentiment words in general-
purpose sentiment lexicons usually convey con-
sistent sentiment polarities in different domains,
and the actively selected labeled samples contain
rich domain-specific sentiment information of tar-
get domain, our approach can effectively reduce
the risk of negative transfer.

The usefulness of labeled samples from target
domain in sentiment domain adaptation has been
observed by previous research works (Choi and
Cardie, 2009; Chen et al., 2011; Li et al., 2013;
Wu et al., 2016). For example, Choi and Cardie
(2009) proposed to adapt a sentiment lexicon to
a specific domain by exploiting both the relations
among words which co-occur in the same senti-
ment expressions and the relations between words
and labeled sentiment expressions. However, the

1702

labeled samples used in these methods are rand-
omly selected, while in our approach we actively
select informative samples from target domain to
annotate. Thus, our approach has the potential to
reduce the manual annotation effort.

2.2 Active Learning

Active learning is a useful technique in scena-
rios where unlabeled data is abundant but their
labels are difficult or expensive to obtain (Tong
and Koller, 2002; Settles, 2010). By actively se-
lecting informative samples to label, active lear-
ning can effectively reduce the annotation effort,
and improve the classification performance with
limited budget (Li et al., 2012). An important
problem in active learning is how to evaluate the
informativeness of unlabeled samples (Fu et al.,
2013). Different methods have been applied to se-
lect informative samples, such as uncertainty sam-
pling (Zhu et al., 2010; Yang et al., 2015), query-
by-committee (Freund et al., 1997; Li et al., 2013)
and so on. In our approach, uncertainty combined
with density is used to measure the informative-
ness of samples. A major difference between our
approach and existing active learning methods is
that in existing methods the parameters of the ini-
tial classifier are either initialized as zero (Cesa-
Bianchi et al., 2006) or learned from a set of rand-
omly selected samples (Settles, 2010). In contrast,
the initial sentiment classifier in our approach is
constructed by adapting the general sentiment in-
formation to target domain via the domain-specific
sentiment similarities among words.

There are a few works that apply active learning
methods to sentiment domain adaptation task (Rai
et al., 2010; Li et al., 2013). For example, Rai
et al. (2010) proposed an online active learning al-
gorithm for sentiment domain adaptation. They
started with a sentiment classifier trained on the
labeled samples of a source domain. Then they
sequentially selected informative samples in target
domain to annotate with a probability positively
related to classification uncertainty. The newly an-
notated samples were used to update the sentiment
classifier in an online learning manner. Li et al.
(2013) proposed another active learning method
for cross-domain sentiment classification. In their
method they trained two sentiment classifiers, one
on the labeled samples of source domain, and the
other one on the labeled samples of target domain.
Then query-by-committee strategy was used to se-

lect the informative instances from target domain.
Different from these methods, our approach does
not rely on the labeled data of source domains.
Instead, in our approach the general sentiment in-
formation in sentiment lexicons is actively adapted
to target domain, which usually has better genera-
lization ability in various domains than the senti-
ment classifier trained in a source domain. In ad-
dition, our approach can incorporate the domain-
specific sentiment similarities among words mined
from unlabeled samples of target domain, which
are not considered in these methods.

3 Active Sentiment Domain Adaptation

3.1 Notations

First we introduce several notations that will be
used in remaining part of this paper. Denote the
general sentiment information extracted from a
general-purpose sentiment lexicon as p ∈ RD×1,
where D is the vocabulary size. If the ith word is
labeled as positive (or negative) in the sentiment
lexicon, then pi = +1 (or pi = −1). Otherwise,
pi = 0. Following many previous works in senti-
ment classification field (Blitzer et al., 2007; Pan
et al., 2010), here we select linear classifier as sen-
timent classifier, and denote the linear classifica-
tion model as w ∈ RD×1. We use f(xi, yi,w)
to represent the loss of classifying the ith labe-
led sample in target domain under the classifica-
tion model w, where f is the classification loss
function, xi ∈ RD×1 is the feature vector of this
sample and yi is its sentiment label. In this paper
we focus on binary sentiment classification and
yi ∈ {+1,−1}. In addition, we select log loss for
f . Thus, f(xi, yi,w) = log(1+ exp(−yiwTxi)).
Besides, we use S ∈ RD×D to represent the senti-
ment similarities among words extracted from un-
labeled samples of target domain.

3.2 Domain-Specific Sentiment Similarities

Next we introduce the extraction of domain-
specific sentiment similarities among words from
unlabeled samples of target domain. Two types of
similarities are extracted in this paper. The first
one is based on syntactic rules, which is inspired
by (Hatzivassiloglou and McKeown, 1997; Huang
et al., 2014; Wu and Huang, 2016). If two words
have the same POS-tag such as adjective, verb, and
adverb, and they are connected by coordinating
conjunction “and” in the same sentence, then we
regard they convey the same sentiment polarity. In

1703

addition, if two words are connected by adversa-
tive conjunction “but” and have the same POS-tag,
then they are assumed to have opposite sentiment
polarities. Denote Sr ∈ RD×D as the sentiment
similarities extracted from unlabeled samples ac-
cording to syntactic rules, and the similarity score
between words i and j is defined as:

Sr
i,j =

Ns
i,j −No

i,j

Ns
i,j +No

i,j + α1
, (1)

where N s
i,j and No

i,j are the frequencies of words
i and j having the same or opposite sentiments re-
spectively according to the syntactic rules, and α1

is a positive smoothing factor. If two words have
much higher frequency of sharing the same senti-
ment than opposite sentiments, then they will have
a larger positive sentiment similarity score. Note
that Sri,j can be negative according to Eq. (1). Here
we focus on sentiment similarity rather than dissi-
milarity, and set all the negative values in Sr to
zero. The range of Sri,j is [0, 1].

The second type of sentiment similarities are
extracted according to the co-occurrence patterns
among words. It is inspired by the observation
that words frequently co-occurring with each ot-
her not only have a high probability to have simi-
lar semantics, but also tend to share similar senti-
ments (Turney, 2002; Velikovich et al., 2010; Yo-
gatama and Smith, 2014; Tang et al., 2015; Ha-
milton et al., 2016). In this paper, we compute the
co-occurrence between words in the context of do-
cument. DenoteD as the set of all documents, and
N i
d as the frequency of word i appearing in docu-

ment d. Then, the sentiment similarity score bet-
ween words i and j based on their co-occurrence
patterns is defined as:

Sc
i,j =

∑
d∈Dmin{N i

d, N
j
d}∑

d∈Dmax{N i
d, N

j
d}+ α2

, (2)

where α2 is a positive smoothing parameter. If
two words frequently co-occur with each other in
many documents, then they will have a high sen-
timent similarity score according to Eq. (2). The
range of Sci,j is also [0, 1]. Denote Sc ∈ RD×D
as the set of all sentiment similarities extracted ac-
cording to co-occurrence patterns.

The sentiment similarities extracted according
to syntactic rules are usually of high accuracy.
However, their coverage is limited, because the
word pairs detected by these syntactic rules are
sparse. In contrast, the coverage of sentiment si-
milarities extracted from co-occurrence patterns is

quite wide because document is a long context,
while their accuracies are not as high as the simi-
larities based on syntactic rules. Thus, we pro-
pose to combine these two types of sentiment si-
milarities to obtain a balance between accuracy
and coverage. Denote S ∈ RD×D as the final
sentiment similarities among words, and Si,j =
θSri,j + (1− θ)Sci,j , where θ ∈ [0, 1] is the combi-
nation coefficient. In this paper we set θ to 0.5,
which means that we regard these two types of
sentiment similarities as equally important.

3.3 Initial Sentiment Classifier Construction

In this section, we introduce the construction of
the initial sentiment classifier to start the active le-
arning process. Existing active learning methods
usually randomly select a set of unlabeled sam-
ples to annotate and then train the initial classifier
on them (Settles, 2010). However, these randomly
selected samples may be redundant and not infor-
mative enough. In this paper, we propose to build
the initial sentiment classifier by adapting the ge-
neral sentiment information to target domain via
domain-specific sentiment similarities as follows:

w0 = argmin
w
−

D∑

i=1

piwi + α

D∑

i=1

∑

j 6=i

Si,j(wi − wj)
2,

(3)

where w0 ∈ RD×1 is the initial sentiment clas-
sifier, α is a positive regularization coefficient, pi
is the prior sentiment polarity of word i in sen-
timent lexicons, and Si,j is the sentiment simila-
rity score between words i and j. Eq. (3) is mo-
tivated by (Bengio et al., 2006), and the quadratic
cost criterion is equivalent to label propagation. In
Eq. (3), −∑D

i=1 piwi means that if a word i is la-
beled as a positive (or negative) word in a general-
purpose sentiment lexicon, i.e., pi > 0 (or pi < 0),
then we constrain that its sentiment weight in the
sentiment classifier is also positive (or negative).
Otherwise, a penalty will be added to the objective
function. In addition,

∑D
i=1

∑
j 6=i Si,j(wi − wj)2

represents that if two words share high sentiment
similarity, then we constrain they have similar sen-
timent weights in sentiment classifier. For exam-
ple, if we find that “great” and “easy” have high
sentiment similarities in Kitchen appliances dom-
ain (e.g., “This is a great pan and easy to wash”),
and “great” is a positive sentiment word in many
sentiment lexicons, then we can infer that “easy”
may also be a positive sentiment word in this dom-
ain by propagating the sentiment information from

1704

“great” to “easy”. In this way, the general senti-
ment information can be adapted to many domain-
specific sentiment expressions in target domain.

3.4 Query Strategy
Active learning methods iteratively select the most
informative instances to label and add them to the
training set (Settles, 2010). Thus, an important is-
sue in these methods is how to measure the infor-
mativeness of unlabeled samples. In this paper, we
select classification uncertainty as the informative-
ness measure, which has been proven effective in
many active learning methods (Zhu et al., 2010;
Yang et al., 2015). Since we focus on binary
sentiment classification and the classification loss
function is log loss, the classification uncertainty
of an unlabeled instance x is defined as:

U(x) = 1−
∣∣∣∣1−

2

1 + exp(−wTx)

∣∣∣∣ , (4)

where w is the linear sentiment classification mo-
del. The range of U(x) is [0, 1]. If |wTx| is large,
which means that current sentiment classifier is
confident in classifying this instance, then the un-
certainty of x (i.e., U(x)) will be low. If |wTx| is
close to 0, then the sentiment classifier is very un-
certain about this instance, probably because the
sentiment expressions in this instance are not co-
vered by current sentiment classifier, and the un-
certainty of the instance x will be high. In this
case, annotating this instance and adding it to the
training set are beneficial, because it can provide
the information of unknown sentiment expressions
and has the potential to quickly improve the qua-
lity of target domain sentiment classifier.

However, many researchers have found that un-
labeled instances with high uncertainties can be
outliers, whose labels are useless and even misle-
ading (Settles, 2010; Zhu et al., 2010). Thus, here
we combine uncertainty with representativeness to
avoid outliers. Density is proven to be an effective
measure of representativeness in active learning
methods (Zhu et al., 2010; Hajmohammadi et al.,
2015). Here we use the k-nearest neighbour based
density proposed by Zhu et al. (2010) as the re-
presentativeness measure, which is formulated as:

D(x) =
1

k

∑

xi∈N (x)

xTxi

‖x‖2 · ‖xi‖2
, (5)

where N (x) is the set of k most similar instances
of x. The final informativeness score of an unlabe-
led sample is a linear combination of uncertainty

and density which is formulated as follows:

I(x) = η(t)U(x) + (1− η(t))D(x), (6)

where η(t) ∈ [0, 1] is the combination coeffi-
cient at the tth iteration. In this paper, we select
a monotonically increasing function for η(t), i.e.,
η(t) = 1

1+exp(2− 4t
T
)
, where T is the total number

of iterations. It means that at initial iterations we
put more emphasis on instances with high repre-
sentativeness, because the initial sentiment classi-
fier built by adapting the general sentiment infor-
mation via the domain-specific sentiment simila-
rities is relatively weak, and we prefer to select
instances with more popular sentiment expressi-
ons to annotate. As more and more labeled sam-
ples are added to the training set and the sentiment
classifier becomes stronger, we gradually focus on
more difficult instances, i.e., those having higher
classification uncertainty scores.

3.5 Active Domain Adaptation

Based on previous discussions, in this section we
introduce the complete procedure of our active
sentiment domain adaptation (ASDA) approach.
Different from existing sentiment domain adapta-
tion methods which rely on the sentiment classi-
fier trained in source domains to transfer, in our
approach we regard the general sentiment infor-
mation in sentiment lexicons as the “background”
domain and adapt it to target domain with the help
of a small number of labeled samples which are
selected and annotated in an active learning mode.
First, we build an initial sentiment classifier accor-
ding to Eq. (3) by adapting the general sentiment
information to target domain using the domain-
specific sentiment similarities among words mined
from unlabeled samples of target domain. Second,
we compute the density of each unlabeled sample
in U according to Eq. (5). Then we repeat fol-
lowing steps until the annotation budget has run
out. First, we compute the uncertainty of each un-
labeled sample in U according to Eq. (4), and furt-
her we compute their informativeness by combi-
ning uncertainty with density according to Eq. (6).
Next, we select the unlabeled sample with the hig-
hest informativeness from U and manually anno-
tate its sentiment polarity. Then we add it to the set
of labeled samples L and remove it from U . Af-
ter that we retrain the sentiment classifier for tar-
get domain based on the general sentiment infor-
mation p, the labeled samples L, and the domain-

1705

specific sentiment similarities S as follows:

argmin
w
−

D∑

i=1

piwi + α

D∑

i=1

∑

j 6=i

Si,j(wi − wj)
2

+ β
∑

xi∈L
log(1 + exp(−yiwTxi)) + λ‖w‖22,

(7)

where α, β, and λ are nonnegative coefficients.
By the term −∑D

i=1 piwi we constrain that the
target domain sentiment classifier learned by our
approach is consistent with the general sentiment
information. Through this way, the general sen-
timent information extracted from sentiment lex-
icons can be adapted to target domain. The term∑D

i=1

∑
j 6=i Si,j(wi − wj)2 is motivated by label

propagation (Bengio et al., 2006). If two words
tend to have high sentiment similarity with each
other according to many unlabeled samples of tar-
get domain, then we constrain that their senti-
ment weights in the target domain sentiment clas-
sifier are also similar. The term

∑
xi∈L log(1 +

exp(−yiwTxi)) means that we hope to minimize
the empirical classification loss on labeled sam-
ples of target domain. By this term the sentiment
information in the labeled samples is incorporated
into the learning of target domain sentiment clas-
sifier. The L2-norm regularization term is introdu-
ced to control model complexity. The sentiment
classifier trained in Eq. (7) is further used at the
next iteration of active sentiment domain adapta-
tion until all the budget of manual annotation has
been used. Then we obtain the final sentiment
classifier of target domain. The complete algo-
rithm of our active sentiment domain adaptation
(ASDA) approach is summarized in Algorithm 1.

Algorithm 1 Active sentiment domain adaptation.
1: Input: The set of unlabeled samples U , the general sen-

timent information p, the domain-specific sentiment si-
milarities S, and the total annotation budget N .

2: Output: Target domain sentiment classifier w.
3: Train the initial sentiment classifier w0 (Eq. (3)).
4: Compute the density of each sample xi in U (Eq. (5)).
5: Initialize the set of labeled samples L = ∅, the iteration

number t = 0, and the sentiment classifier w = w0.
6: while t < N do
7: t = t+ 1.
8: Compute the uncertainty score of each sample xi

in U (Eq. (4)).
9: Compute the informativeness score of each sample

xi in U (Eq. (6)).
10: Select x∗ from U which has the highest informati-

veness score.
11: Annotate x∗ and obtain its sentiment label y.
12: L = L+ {x∗, y}, U = U − x∗.
13: Update sentiment classifier w according to Eq. (7).
14: end while

4 Experiments

4.1 Datasets

The dataset used in our experiments is the Amazon
product review dataset1 collected by Blitzer et al.
(2007), which is widely used in sentiment analysis
and domain adaptation research (Pan et al., 2010;
Bollegala et al., 2011). This dataset contains pro-
duct reviews in four domains, i.e., Book, DVD,
Electronics, and Kitchen appliances. In each dom-
ain, 1,000 positive and 1,000 negative reviews as
well as a large number of unlabeled samples are
included. The detailed statistics of this dataset are
summarized in Table 1.

Book DVD Electronics Kitchen
positive 1,000 1,000 1,000 1,000
negative 1,000 1,000 1,000 1,000

unlabeled 973,194 122,438 21,009 17,856

Table 1: The statistics of the Amazon dataset.

Following many previous works (Blitzer et al.,
2007; Bollegala et al., 2011), unigrams and bi-
grams were used to build feature vectors in our
experiments. We randomly split the labeled sam-
ples in each domain into two parts with equal size.
The first part was used as test data, and the second
part was used as the pool of “unlabeled” samples
to perform active learning. The general sentiment
information was extracted from Bing Liu’s senti-
ment lexicon2 (Hu and Liu, 2004), which is one of
the state-of-the-art general-purpose sentiment lex-
icons. The domain-specific sentiment similarities
among words were extracted from the large-scale
unlabeled samples. The total number of samples
actively selected by our approach to annotate was
set to 100. The values of α, β, and λ were set to
0.1, 1, and 1 respectively. We repeated each ex-
periment 10 times independently and the average
results were reported.

4.2 Algorithm Effectiveness

First we conducted several experiments to explore
the effectiveness of our active sentiment domain
adaptation (ASDA) approach. We hope to answer
two questions via these experiments: 1) whether
the domain-specific sentiment similarities among
words mined from unlabeled samples of target

1https://www.cs.jhu.edu/˜mdredze/
datasets/sentiment/

2https://www.cs.uic.edu/liub/FBS/
sentiment-analysis.html

1706

Book DVD Electronics Kitchen
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

A
cc

ur
ac

y

Lexicon
Lexicon+SentiSim
Lexicon+SentiSim+Label

Figure 1: The performance of our approach
with different combinations of sentiment informa-
tion. Lexicon, SentiSim, and Label represent the
general-purpose sentiment lexicon, the domain-
specific sentiment similarities among words, and
a small number of actively selected and annotated
samples in target domain respectively.

domain are useful for adapting the general senti-
ment information to target domain; 2) whether a
small number of samples which are actively se-
lected and annotated in target domain can help
improve the domain adaptation performance. In
our experiments, we implemented different versi-
ons of our ASDA approach using different combi-
nations of sentiment information. The first one is
Lexicon, which means only using the general sen-
timent information and no domain adaptation is
conducted. It serves as a baseline. The second one
is Lexicon+SentiSim, which means adapting gene-
ral sentiment information to target domain using
domain-specific sentiment similarities, but labe-
led samples of target domain are not incorporated.
The third one is Lexicon+SentiSim+Label, which
is the complete ASDA approach. The experimental
results are summarized in Fig. 1.

According to Fig. 1, the performance of Lexicon
is suboptimal. This is because the general senti-
ment lexicons cannot capture the domain-specific
sentiment expressions in target domain (Choi and
Cardie, 2009). Lexicon+SentiSim performs signi-
ficantly better than Lexicon, which validates that
the sentiment similarities among words extracted
from unlabeled samples of target domain contain
rich domain-specific sentiment information, and
can help propagate the general sentiment informa-
tion to many domain-specific sentiment expressi-
ons. Besides, after incorporating a small number
of labeled samples which are actively selected and
annotated by our approach in an active learning
mode, the performance of our sentiment dom-

Book DVD Electronics Kitchen
0.7

0.75

0.8

0.85

A
cc

ur
ac

y

ASDA_Random
ASDA_Constant
ASDA_Dynamic

Figure 2: The performance of our approach with
labeled samples selected by different strategies.

ain adaptation approach is significantly improved.
This is because although these labeled samples are
in limited size and cannot cover all the sentiment
expressions in target domain, they can provide
sentiment information of popular domain-specific
sentiment expressions, which can be propagated to
other sentiment expressions in target domain du-
ring the domain adaptation process. Thus, above
experimental results validate the effectiveness of
our approach.

We also conducted several experiments to ve-
rify the advantage of the actively selected samples
over randomly selected samples and validate the
effectiveness of our active learning algorithm. We
also compared the dynamic weighting scheme for
combining uncertainty and density with the con-
stant weighting scheme. The experimental results
are summarized in Fig. 2. According to Fig. 2, our
approach with actively selected samples performs
better than that with randomly selected samples. It
indicates that these actively selected samples are
more informative than randomly selected samples
for sentiment domain adaptation. In addition, our
approach with dynamic weighting scheme in com-
bining uncertainty and density outperforms that
with constant weighting scheme, which implies
that it is beneficial to emphasize representative
samples at initial iterations and gradually focus on
difficult samples at later iterations. Thus, the ex-
perimental results validate the effectiveness of our
active learning algorithm.

4.3 Performance Evaluation

In this section we conducted experiments to eva-
luate the performance of our approach by compa-
ring it with several baseline methods. The met-
hods to be compared include: 1) MPQA and Bing-
Liu, using two state-of-the-art sentiment lexicons,

1707

i.e., MPQA (Wilson et al., 2005) and Bing Liu’s
lexicon (Hu and Liu, 2004) for sentiment clas-
sification following the suggestions in (Hu and
Liu, 2004); 2) SVM, LS, and LR, three popular
supervised sentiment classification methods, i.e.,
support vector machine (Pang et al., 2002), le-
ast squares (Hu et al., 2013) and logistic regres-
sion (Wu et al., 2015); 3) ZIAL, the zero initiali-
zed active learning method (Cesa-Bianchi et al.,
2006); 4) LIAL, the active learning method ini-
tialized by randomly selected labeled data (Sett-
les, 2010); 5) SCL and SFA, two famous sentiment
domain adaptation methods proposed in (Blitzer
et al., 2007) and (Pan et al., 2010) respectively; 6)
ILP, adapting sentiment lexicons to target domain
via integer linear programming (Choi and Cardie,
2009); 7) AODA, the active online domain adapta-
tion method (Rai et al., 2010); 8) ALCD, the active
learning method for cross-domain sentiment clas-
sification (Li et al., 2013); 9) ASDA, our active
sentiment domain adaptation approach. For above
methods, if labeled target domain samples are nee-
ded in training, the number of labeled samples was
set to 100, and if source domain labeled samples
are needed in training, the number of labeled sam-
ples was set to 1,000. The parameters in baseline
methods were tuned via cross-validation. The ex-
perimental results are summarized in Table 2.

Book DVD Electronics Kitchen
Acc Fscore Acc Fscore Acc Fscore Acc Fscore

MPQA 0.5953 0.5673 0.6149 0.5936 0.6150 0.6070 0.6392 0.6258
BingLiu 0.6015 0.6048 0.6539 0.6604 0.6248 0.6320 0.6765 0.6930

SVM 0.6580 0.6511 0.6688 0.6652 0.7138 0.7129 0.7386 0.7412
LS 0.6543 0.6542 0.6692 0.6687 0.7194 0.7185 0.7479 0.7465
LR 0.6606 0.6582 0.6774 0.6742 0.7257 0.7226 0.7492 0.7480

RIAL 0.6693 0.6663 0.6850 0.6821 0.7310 0.7299 0.7574 0.7568
LIAL 0.6756 0.6731 0.6866 0.6838 0.7374 0.7360 0.7599 0.7595
SCL 0.7233 0.7201 0.7469 0.7438 0.7768 0.7730 0.8099 0.8095
SFA 0.7307 0.7285 0.7513 0.7485 0.7846 0.7812 0.8174 0.8153
ILP 0.6942 0.6931 0.7153 0.7124 0.7463 0.7445 0.7793 0.7768

AODA 0.6928 0.6912 0.7172 0.7165 0.7518 0.7512 0.7698 0.7690
ALCD 0.7237 0.7221 0.7369 0.7364 0.7768 0.7788 0.7979 0.7970
ASDA 0.7508 0.7501 0.7764 0.7759 0.8014 0.8011 0.8329 0.8328

Table 2: Sentiment classification performance of
different methods in different domains. Acc and
Fscore represent accuracy and macro-averaged
Fscore respectively.

According to Table 2, the performance of di-
rectly applying sentiment lexicons to target dom-
ain is suboptimal. This is because there are many
domain-specific sentiment expressions that are not
covered by these general-purpose sentiment lex-
icons (Choi and Cardie, 2009). In addition, the
performance of supervised sentiment classifica-
tion methods such as SVM, LS, and LR is also

200 400 600 800 1000
0.65

0.7

0.75

0.8

0.85

Number of labeled samples

A
cc

ur
ac

y

ASDA
SVM

Figure 3: The performance of ASDA and SVM
with different numbers of labeled samples.

limited, because the labeled samples for training
are extremely scarce. The active learning met-
hods such as ZIAL (Cesa-Bianchi et al., 2006) and
LIAL (Settles, 2010) perform relatively better, be-
cause they can actively select informative samples
to annotate and learn. Our approach can outper-
form both of them. This is because besides the
labeled samples, our approach also adapts the ge-
neral sentiment information in sentiment lexicons
to target domain and incorporates it into the le-
arning of target domain sentiment classifier. Our
approach also performs better than state-of-the-art
domain adaptation methods such as SCL (Blitzer
et al., 2007) and SFA (Pan et al., 2010). It im-
plies that a small number of actively selected la-
beled samples from target domain are beneficial
for sentiment domain adaptation. ILP (Choi and
Cardie, 2009) tries to adapt a sentiment lexicon
to target domain, which is similar with our ap-
proach. ILP relies on labeled samples to extract
the relations among words and relations between
words and sentiment expressions. However, labe-
led samples in target domain are usually limited
and the sentiment information in many unlabeled
samples is not exploited in ILP. Thus, our appro-
ach can outperform it. Similar with our approach,
AODA (Rai et al., 2010) and ALCD (Li et al., 2013)
also apply active learning to domain adaptation.
The major difference is that in our approach the
general sentiment information extracted from sen-
timent lexicons is adapted to target domain, while
in AODA and ALCD the sentiment classifier trai-
ned in source domains is transferred. The superior
performance of our approach implies that the ge-
neral sentiment information has better generaliza-
tion ability than the sentiment classifier trained in
a specific source domain, and is more suitable for
sentiment domain adaptation.

1708

−4 −3 −2 −1 0
0.72

0.74

0.76

0.78

0.8

0.82

0.84

log
10

(α)

A
cc

ur
ac

y

Kitchen
Electronics
DVD
Book

(a) Parameter α.

−2 −1.5 −1 −0.5 0 0.5 1
0.7

0.75

0.8

0.85

log
10

(β)

A
cc

ur
ac

y

Kitchen
Electronics
DVD
Book

(b) Parameter β.

Figure 4: The influence of the parameter settings
of α and β on the performance of our approach.

We further conducted several experiments to
validate the advantage of our approach in trai-
ning accurate sentiment classifier for target dom-
ain with only a few labeled samples. We varied the
annotation budget, i.e., the number of labeled sam-
ples, from 100 to 1,000. The learning curve of our
ASDA approach in Book domain is shown in Fig. 3.
We also included a purely supervised sentiment
classification method, i.e., SVM, in Fig. 3 as a ba-
seline for comparison. Fig. 3 shows that our ASDA
approach can consistently outperform SVM when
the same number of labeled samples are used. The
performance advantage of our approach is more
significant when labeled samples are scarce. For
example, the performance of our approach with
only 200 labeled samples is similar to SVM with
more than 800 labeled samples. Thus, the expe-
rimental results validate that by adapting the ge-
neral sentiment information to target domain and
selecting the most informative samples to annotate
and learn, our approach can effectively reduce the
manual annotation effort, and can train accurate
sentiment classifier for target domain with much
less labeled samples.

4.4 Parameter Analysis

In this section, we conducted several experiments
to explore the influence of parameter settings on
the performance of our approach. α and β are the
two most important parameters in our approach,
which control the relative importance of domain-
specific sentiment similarities and the actively se-
lected samples in training sentiment classifier for
target domain. The experimental results of para-
meters α and β are summarized in Fig. 4.

According to Fig. 4, when α and β are too
small, the performance of our approach is not op-
timal. This is because the useful sentiment infor-
mation in domain-specific sentiment similarities
mined from unlabeled samples and the actively

selected labeled samples of target domain is not
fully exploited. Thus, the performance of our ap-
proach improves when these parameters increase
from a small value. However, when these para-
meters become too large, the performance of our
approach starts to decline. This is because when
β is too large the sentiment classifier learned by
our approach is mainly decided by the limited la-
beled samples, and the general sentiment informa-
tion extracted from sentiment lexicons is not fully
exploited. When α is too large, the information
in domain-specific sentiment similarities is over-
emphasized, and many different words will have
nearly the same sentiment weights. Thus, the per-
formance of our approach in these scenarios is also
not optimal. A moderate value of α and β is most
suitable for our approach.

5 Conclusion

In this paper we present an active sentiment dom-
ain adaptation approach to train accurate senti-
ment classifier for target domain with less labe-
led samples. In our approach, the general senti-
ment information in sentiment lexicons is adapted
to target domain with the help of a small number
of labeled samples which are selected and anno-
tated in an active learning mode. Both classifica-
tion uncertainty and density are considered when
selecting informative samples to label. In addi-
tion, we extract domain-specific sentiment simila-
rities among words from unlabeled samples of tar-
get domain based on both syntactic rules and co-
occurrence patterns, and incorporate them into the
domain adaptation process to propagate the gene-
ral sentiment information to many domain-specific
sentiment words in target domain. We also pro-
pose a unified model to incorporate different types
of sentiment information to train sentiment clas-
sifier for target domain. Experimental results on
benchmark datasets show that our approach can
train accurate sentiment classifier and at same time
reduce the manual annotation effort.

Acknowledgements

This research is supported by the Key Research
Project of the Ministry of Science and Technology
of China (Grant no. 2016YFB0800402) and the
Key Program of National Natural Science Founda-
tion of China (Grant nos. U1536201, U1536207,
and U1405254).

1709

References
Yoshua Bengio, Olivier Delalleau, and Nicolas

Le Roux. 2006. Label propagation and quadratic
criterion. Semi-supervised learning 10.

John Blitzer, Mark Dredze, Fernando Pereira, et al.
2007. Biographies, bollywood, boom-boxes and
blenders: Domain adaptation for sentiment clas-
sification. In ACL. volume 7, pages 440–447.
http://aclweb.org/anthology-new/P/P07/P07-1056.

Danushka Bollegala, David Weir, and John Carroll.
2011. Using multiple sources to construct a sen-
timent sensitive thesaurus for cross-domain senti-
ment classification. In ACL:HLT . pages 132–141.
http://aclweb.org/anthology/P11-1014.

Nicolo Cesa-Bianchi, Claudio Gentile, and Luca Zani-
boni. 2006. Worst-case analysis of selective sam-
pling for linear classification. Journal of Machine
Learning Research 7(Jul):1205–1230.

Minmin Chen, Kilian Q Weinberger, and John Blitzer.
2011. Co-training for domain adaptation. In NIPS.
pages 2456–2464.

Yejin Choi and Claire Cardie. 2009. Adap-
ting a polarity lexicon using integer linear
programming for domain-specific sentiment
classification. In EMNLP. pages 590–598.
http://aclweb.org/anthology/D09-1062.

Yoav Freund, H. Sebastian Seung, Eli Shamir,
and Naftali Tishby. 1997. Selective sam-
pling using the query by committee algo-
rithm. Machine Learning 28(2-3):133–168.
http://dx.doi.org/10.1023/A:1007330508534.

Yifan Fu, Xingquan Zhu, and Bin Li. 2013. A sur-
vey on instance selection for active learning. Kno-
wledge and Information Systems 35(2):249–283.
https://doi.org/10.1007/s10115-012-0507-8.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio.
2011. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In ICML.
pages 513–520.

Mohammad Sadegh Hajmohammadi, Roliana Ibrahim,
Ali Selamat, and Hamido Fujita. 2015. Combination
of active learning and self-training for cross-lingual
sentiment classification with density analysis of un-
labelled samples. Information sciences 317:67–77.
http://dx.doi.org/10.1016/j.ins.2015.04.003.

William L. Hamilton, Kevin Clark, Jure Le-
skovec, and Dan Jurafsky. 2016. Inducing
domain-specific sentiment lexicons from un-
labeled corpora. In EMNLP. pages 595–605.
http://aclweb.org/anthology/D/D16/D16-1057.

Vasileios Hatzivassiloglou and Kathleen R McKe-
own. 1997. Predicting the semantic orienta-
tion of adjectives. In ACL. pages 174–181.
http://aclweb.org/anthology/P/P97/P97-1023.

Yulan He, Chenghua Lin, and Harith Alani. 2011.
Automatically extracting polarity-bearing topics for
cross-domain sentiment classification. In ACL:HLT .
pages 123–131. http://aclweb.org/anthology/P11-
1013.

Minqing Hu and Bing Liu. 2004. Mining and summa-
rizing customer reviews. In KDD. pages 168–177.
http://doi.acm.org/10.1145/1014052.1014073.

Xia Hu, Lei Tang, Jiliang Tang, and Huan Liu. 2013.
Exploiting social relations for sentiment analysis
in microblogging. In WSDM. pages 537–546.
http://doi.acm.org/10.1145/2433396.2433465.

Sheng Huang, Zhendong Niu, and Chongyang Shi.
2014. Automatic construction of domain-specific
sentiment lexicon based on constrained label pro-
pagation. Knowledge-Based Systems 56:191–200.
http://dx.doi.org/10.1016/j.knosys.2013.11.009.

Lianghao Li, Xiaoming Jin, Sinno Jialin Pan, and
Jian-Tao Sun. 2012. Multi-domain active learning
for text classification. In KDD. pages 1086–1094.
http://doi.acm.org/10.1145/2339530.2339701.

Shoushan Li, Yunxia Xue, Zhongqing Wang, and Guo-
dong Zhou. 2013. Active learning for cross-domain
sentiment classification. In IJCAI. pages 2127–
2133.

Bing Liu. 2012. Sentiment analysis and opinion mi-
ning. Synthesis Lectures on Human Language
Technologies 5(1):1–167.

Sinno Jialin Pan, Xiaochuan Ni, Jian-Tao Sun, Qi-
ang Yang, and Zheng Chen. 2010. Cross-
domain sentiment classification via spectral fea-
ture alignment. In WWW. ACM, pages 751–760.
http://doi.acm.org/10.1145/1772690.1772767.

Sinno Jialin Pan and Qiang Yang. 2010. A survey
on transfer learning. TKDE 22(10):1345–1359.
http://dx.doi.org/10.1109/TKDE.2009.191.

Bo Pang and Lillian Lee. 2008. Opinion mi-
ning and sentiment analysis. Foundations and
trends in information retrieval 2(1-2):1–135.
http://dx.doi.org/10.1561/1500000011.

Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan.
2002. Thumbs up?: sentiment classification using
machine learning techniques. In EMNLP. pages 79–
86. https://doi.org/10.3115/1118693.1118704.

Piyush Rai, Avishek Saha, Hal Daumé III, and Su-
resh Venkatasubramanian. 2010. Domain adap-
tation meets active learning. In Proceedings of
the NAACL HLT 2010 Workshop on Active Lear-
ning for Natural Language Processing. pages 27–
32. http://aclweb.org/anthology/W10-0104.

Burr Settles. 2010. Active learning literature survey.
University of Wisconsin, Madison 52(55-66):11.

1710

Jian Tang, Meng Qu, and Qiaozhu Mei.
2015. Pte: Predictive text embedding
through large-scale heterogeneous text net-
works. In KDD. ACM, pages 1165–1174.
http://doi.acm.org/10.1145/2783258.2783307.

Simon Tong and Daphne Koller. 2002. Sup-
port vector machine active learning with ap-
plications to text classification. The Jour-
nal of Machine Learning Research 2:45–66.
http://dx.doi.org/10.1162/153244302760185243.

Peter D Turney. 2002. Thumbs up or thumbs down?:
semantic orientation applied to unsupervised clas-
sification of reviews. In ACL. pages 417–424.
http://dx.doi.org/10.3115/1073083.1073153.

Leonid Velikovich, Sasha Blair-Goldensohn, Kerry
Hannan, and Ryan McDonald. 2010. The viability
of web-derived polarity lexicons. In NAACL. pages
777–785. http://www.aclweb.org/anthology/N10-
1119.

Theresa Wilson, Janyce Wiebe, and Paul Hoffmann.
2005. Recognizing contextual polarity in phrase-
level sentiment analysis. In EMNLP. pages 347–
354. http://dx.doi.org/10.3115/1220575.1220619.

Fangzhao Wu and Yongfeng Huang. 2016. Sentiment
domain adaptation with multiple sources. In ACL.
pages 301–310. http://aclweb.org/anthology/P16-
1029.

Fangzhao Wu, Yangqiu Song, and Yongfeng Huang.
2015. Microblog sentiment classification with con-
textual knowledge regularization. In AAAI. pages
2332–2338.

Fangzhao Wu, Sixing Wu, Yongfeng Huang, Son-
gfang Huang, and Yong Qin. 2016. Sentiment
domain adaptation with multi-level contextual sen-
timent knowledge. In CIKM. ACM, pages 949–958.
https://doi.org/10.1145/2983323.2983851.

Yi Yang, Zhigang Ma, Feiping Nie, Xiaojun
Chang, and Alexander G. Hauptmann. 2015.
Multi-class active learning by uncertainty sam-
pling with diversity maximization. Internatio-
nal Journal of Computer Vision 113(2):113–127.
http://dx.doi.org/10.1007/s11263-014-0781-x.

Dani Yogatama and Noah A. Smith. 2014. Making
the most of bag of words: Sentence regularization
with alternating direction method of multipliers. In
ICML. pages 656–664.

Jingbo Zhu, Huizhen Wang, Benjamin K Tsou,
and Matthew Ma. 2010. Active learning with
sampling by uncertainty and density for data an-
notations. IEEE Transactions on Audio, Speech,
and Language Processing 18(6):1323–1331.
http://dx.doi.org/10.1109/TASL.2009.2033421.

1711

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1712–1721
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1157

Volatility Prediction using Financial Disclosures Sentiments with
Word Embedding-based IR Models

Navid Rekabsaz1, Mihai Lupu1, Artem Baklanov2, Allan Hanbury1, Alexander Dür3, Linda Anderson1

1 3TU WIEN
2International Institute for Applied Systems Analysis (IIASA)

2N.N. Krasovskii Institute of Mathematics and Mechanics
1{family name}@ifs.tuwien.ac.at

2baklanov@iiasa.ac.at
3alexander.duer@tuwien.ac.at

Abstract

Volatility prediction—an essential concept
in financial markets—has recently been
addressed using sentiment analysis meth-
ods. We investigate the sentiment of an-
nual disclosures of companies in stock
markets to forecast volatility. We specif-
ically explore the use of recent Informa-
tion Retrieval (IR) term weighting mod-
els that are effectively extended by related
terms using word embeddings. In paral-
lel to textual information, factual market
data have been widely used as the main-
stream approach to forecast market risk.
We therefore study different fusion meth-
ods to combine text and market data re-
sources. Our word embedding-based ap-
proach significantly outperforms state-of-
the-art methods. In addition, we investi-
gate the characteristics of the reports of the
companies in different financial sectors.

1 Introduction

Financial volatility is an essential indicator of in-
stability and risk of a company, sector or econ-
omy. Volatility forecasting has gained consider-
able attention during the last three decades. In
addition to using historic stock prices, new meth-
ods in this domain use sentiment analysis to ex-
ploit various text resources, such as financial re-
ports (Kogan et al., 2009; Wang et al., 2013;
Tsai and Wang, 2014; Nopp and Hanbury, 2015),
news (Kazemian et al., 2014; Ding et al., 2015),
message boards (Nguyen and Shirai, 2015), and
earning calls (Wang and Hua, 2014).

An interesting resource of textual information
are the companies’ annual disclosures, known as
10-K filing reports. They contain comprehensive
information about the companies’ business as well
as risk factors. Specifically, section Item 1A - Risk
Factors of the reports contains information about

the most significant risks for the company. These
reports are however long, redundant, and written
in a style that makes them complex to process.
Dyer et al. (2016) notes that: “10-K reports are
getting more redundant and complex [...] (it) re-
quires a reader to have 21.6 years of formal ed-
ucation to fully comprehend”. Dyer et al. also
analyse the topics discussed in the reports and ob-
serve a constant increase over the years in both the
length of the documents as well as the number of
topics. They claim that the increase in length is
not the result of economic factors but is due to ver-
boseness and redundancy in the reports. They sug-
gest that only the risk factors topic appears to be
useful and informative to investors. Their analysis
motivates us to study the effectiveness of the Risk
Factors section for volatility prediction.

Our research builds on previous studies on
volatility prediction and information analysis of
10-K reports using sentiment analysis (Kogan
et al., 2009; Tsai and Wang, 2014; Wang et al.,
2013; Nopp and Hanbury, 2015; Li, 2010; Camp-
bell et al., 2014), in the sense that since the reports
are long (average length of 5000 words), different
approaches are required, compared with studies of
sentiment analysis on short-texts. Such previous
studies on 10-K reports have mostly used the data
before 2008 and there is little work on the analy-
sis of the informativeness and effectiveness of the
recent reports with regards to volatility prediction.
We will indeed show that the content of the re-
ports changes significantly not only before and af-
ter 2008, but rather in a cycle of 3-4 years.

In terms of use of the textual content for volatil-
ity prediction, this paper shows that state-of-
the-art Information Retrieval (IR) term weighting
models, which benefit from word embedding in-
formation, have a significantly positive impact on
prediction accuracy. The most recent study on
the topic (Tsai and Wang, 2014) used related
terms obtained by word embeddings to expand the

1712

https://doi.org/10.18653/v1/P17-1157

lexicon of sentiment terms. In contrast, similar
to Rekabsaz et al. (2016b), we define the weight
of each lexicon term by extending it to the similar
terms in the document. The significant improve-
ment of this approach for document retrieval by
capturing the importance of the terms motivates us
to apply it on sentiment analysis. We extensively
evaluate various state-of-the-art sentiment analy-
sis methods to investigate the effectiveness of our
approach.

In addition to text, factual market data (i.e.
historical prices) provide valuable resources for
volatility prediction e.g. in the framework of
GARCH models (Engle, 1982). An emerging
question is how to approach the combination of
the textual and factual market information. We
propose various methods for this issue and show
the performance and characteristics of each.

The financial system covers a wide variety of
industries, from daily-consumption products to
space mission technologies. It is intuitive to con-
sider that the factors of instability and uncertainty
are different between the various sectors while
similar inside them. We therefore also analyse the
sentiment of the reports of each sector separately
and study their particular characteristics.

The present study shows the value of infor-
mation in the 10-K reports for volatility predic-
tion. Our proposed approach to sentiment analy-
sis significantly outperforms state-of-the-art meth-
ods (Kogan et al., 2009; Tsai and Wang, 2014;
Wang et al., 2013). We also show that per-
formance can be further improved by effectively
combining textual and factual market information.
In addition, we shed light on the effects of tailor-
ing the analysis to each sector: despite the rea-
sonable expectation that domain-specific training
would lead to improvements, we show that our
general model generalizes well and outperforms
sector-specific trained models.

The remainder of the paper is organized as fol-
lows: in the next section, we review the state-of-
the-art and related studies. Section 3 formulates
the problem, followed by a detailed explanation of
our approach in Section 4. We explain the dataset
and settings of the experiments in Section 5, fol-
lowed by the full description of the experiments in
Section 6. We conclude the work in Section 7.

2 Related Work

Market prediction has been attracting much at-
tention in recent years in the natural language
processing community. Kazemian et al. (2014)
use sentiment analysis for predicting stock price
movements in a simulated security trading system
using news data, showing the advantages of the
method against simple trading strategies. Ding et
al. (2015) address a similar objective while using
deep learning to extract and learn events in the
news. Xie et al. (2013) introduce a semantic tree-
based model to represent news data for predict-
ing stock price movement. Luss et al. (2015) also
exploit news in combination with return prices to
predict intra-day price movements. They use the
Multi Kernel Learning (MKL) algorithm for com-
bining the two features. The combination shows
improvement in final prediction in comparison to
using each of the features alone. Motivated by
this study, we investigate the performance of the
MKL algorithm as one of the methods to combine
the textual with non-textual information. Other
data resources, such as stocks’ message boards,
are used by Nguyen and Shirai (2015) to study
topic modelling for aspect-based sentiment anal-
ysis. Wang and Hua (2014) investigate the senti-
ment of the transcript of earning calls for volatility
prediction using the Gaussian Copula regression
model.

While the mentioned studies use short-length
texts (sentence or paragraph level), approaching
long texts (document level) for market prediction
is mainly based on n-gram bag of words methods.
Nopp and Hanbury (2015) study the sentiment of
banks’ annual reports to assess banking systems
risk factors using a finance-specific lexicon, pro-
vided by Loughran and McDonald (2011), in both
unsupervised and supervised manner.

More directly related to the informativeness of
the 10-K reports for volatility prediction, Kogan
et al. (2009) use a linear Support Vector Ma-
chine (SVM) algorithm on the reports published
between 1996–2006. Wang et al. (2013) improve
upon this by using the Loughran and McDonald
(2011) lexicon, observing improvement in the pre-
diction. Later, Tsai and Wang (2014) apply the
same method as Wang et al. (2013) while addition-
ally using word embedding to expand the financial
lexicon. We reproduce all the methods in these
studies, and show the advantage of our sentiment
analysis approach.

1713

3 Problem Formulation

In this section, we formulate the volatility fore-
casting problem and the prediction objectives
of our experiments. Similar to previous stud-
ies (Christiansen et al., 2012; Kogan et al., 2009;
Tsai and Wang, 2014), volatility is defined as the
natural log of the standard deviation of (adjusted)
return prices in a window of τ days. This defi-
nition is referred to as standard volatility (Li and
Hong, 2011) or realized volatility (Liu and Tse,
2013), defined as follows:

v[s,s+τ] = ln



√∑s+τ

t=s (rt − r̄)2
τ


 (1)

where rt is the return price and r̄ the mean of
return prices. The return price is calculated by
rt = ln(Pt)−ln(Pt−1), where Pt is the (adjusted)
closing price of a given stock at the trading date t.

Given an arbitrary report i, we define a predic-
tion label yki as the volatility of the stock of the re-
porting company in the kth quarter-sized window
starting from the issue date of the report si:

yki = v[si+64(k−1),si+64k] (2)

Every quarter is considered as per convention, 64
working days, while the full year is assumed to
have 256 working days.

We use 8 learners for labels y1 to y8. For
brevity, unless otherwise mentioned, we report the
volatility of the first year by calculating the mean
of the first four quartiles after the publication of
each report.

4 Methodology

We first describe our text sentiment analysis meth-
ods, followed by the features obtained from fac-
tual market data, and finally explain the methods
to combine textual and market feature sets.

4.1 Sentiment Analysis
Similar to previous studies (Nopp and Hanbury,
2015; Wang et al., 2013), we extract the keyword
set from a finance-specific lexicon (Loughran and
McDonald, 2011) using the positive, negative, and
uncertain groups, stemmed using the Porter stem-
mer. We refer to this keyword set as Lex. Tsai
and Wang (2014) expanded this set by adding the
top 20 related terms to each term to the origi-
nal set. The related terms are obtained using the
Word2Vec (Mikolov et al., 2013) model, built on

the corpus of all the reports, with Cosine similar-
ity. We also use this expanded set in our experi-
ments and refer to it as LexExt.

The following word weighting schemes are
commonly used in Information Retrieval and we
consider them as well in our study:
TC : log(1 + tcdi(t))

TF :
log(1+tcdi (t))

‖di‖

TFIDF :
log(1+tcdi (t))

‖di‖ log(1 + |di|
df(t))

BM25 :
(k+1)tfdi (t)

k+tfdi (t)
, tfdi(t) =

tcdi (t)

(1−b)+b |di|
avgdl

where tcdi(t) is the number of occurrences
of keyword t in report i, ‖di‖ denotes the Eu-
clidean norm of the keyword weights of the
report, |di| is the length of the report (number of
the words in the report), avgdl is the average doc-
ument length, and finally k and b are parameters.
For them, we use the settings used in previous
studies (Rekabsaz et al., 2016b) i.e. k = 1.2 and
b = 0.65.

In addition to the standard weighting schemes,
we use state-of-the-art weighting methods in
Information Retrieval (Rekabsaz et al., 2016b)
which benefit directly from word embedding mod-
els: They exploit similarity values between words
provided by the word embedding model into the
weighting schemes by extending the weight of
each lexicon keyword with its similar words:

t̂cdi(t) = tcdi(t) +
∑

t′∈R(t)

sim(t, t′)tcdi(t
′) (3)

where R(t) is the list of similar words to the
keyword t, and sim(t, t′) is the Cosine similar-
ity value between the vector representations of the
words t and t′. As previously suggested by Rek-
absaz et al. (2016a, 2017), we use the Cosine sim-
ilarity function with threshold 0.70 for selecting
the set R(t) of similar words.

We define the extended versions of the standard
weighting schemes as T̂C, T̂F, T̂FIDF, and
B̂M25 by replacing tcdi(t) with t̂cdi(t) in each
of the schemes.

The feature vector generated by the weights of
the Lex or LexExt lexicons is highly sparse, as
the number of dimensions is larger than the num-
ber of data-points. We therefore reduce the dimen-
sions by applying Principle Component Analysis
(PCA). Our initial experiments show 400 dimen-

1714

sion as the optimum by trying on a range of di-
mensions from 50 to 1000.

Given the final feature vector x with l dimen-
sions, we apply SVM as a well-known method for
training both regression and classification meth-
ods. Support Vector Regression (Drucker et al.,
1997) formulates the training as the following op-
timization problem:

min
w∈IRl

1

2
‖w‖2+C

N

N∑

i=1

max(0, ‖yi − f(xi;w)‖ − ε)

(4)
Similar to previous studies (Tsai and Wang,

2014; Kogan et al., 2009), we set C = 1.0 and
ε = 0.1. To solve the above problem, the func-
tion f can be re-parametrized in terms of a kernel
function K with weights αi:

f(xi;w) =

N∑

i=1

αiK(xi, x) (5)

The kernel can be considered as a (similarity)
function between the feature vector of the docu-
ment and vectors of all the other documents. Our
initial experiments showed better performance of
the Radial Basis Function (RBF) kernel in com-
parison to linear and cosine kernels and is there-
fore used in this paper.

In addition, motivated by Moraes et al.(Moraes
et al., 2013), we use of an Artificial Neural Net-
work (ANN) algorithm to test the effectiveness
of neural networks for automatic feature learning.
We tried several neural network architectures with
different regularization methods (early-stopping,
regularization term, dropout). The best perform-
ing results were achieved with two hidden layers
(400 and 500 nodes respectively), tanh for activa-
tion function, and learning rate of 0.001 in gra-
dient decent with early stopping. However, the
networks could not provide superior results than
the SVM regressors. Therefore, for this report, we
only report the SVM methods.

4.2 Market Features

In addition to textual features, we define three fea-
tures using the factual market data and histori-
cal prices—referred to as market features—as fol-
lows:
Current Volatility is calculated on the window
of one quartile before the issue date of the report:
v[si−64,si].

GARCH (Bollerslev, 1986) is a common econo-
metric time-series model used for predicting stock
price volatility. We use a GARCH (1, 1) model,
trained separately for each report on intra-day re-
turn prices. We use all price data available be-
fore the issue date of the report for fitting the
model. The GARCH (1, 1) model used predicts
the volatility of the next day by looking at the
previous day’s volatility. When forecasting fur-
ther than one day into the future one needs to use
the model’s own predictions in order to be able
to make predictions for more than one day ahead.
When forecasting further into the future these con-
ditional forecasts of the variance will converge to a
value called unconditional variance. As our fore-
cast period is one quarter, we will approximate the
volatility of future quarters with the unconditional
variance.
Sector is the sector that the corresponding com-
pany of the report belongs to, namely energy
(ene), basic industries (ind), finance (fin), technol-
ogy (tech), miscellaneous (misc), consumer non-
durables (n-dur), consumer durables (dur), capital
goods (capt), consumer services (serv), public util-
ities (pub), and health care (hlth)1. The feature is
converted to numerical representation using one-
hot encoding.

4.3 Feature Fusion

To combine the text and market feature sets, the
first approach, used also in previous studies ((Ko-
gan et al., 2009; Wang et al., 2013)) is simply join-
ing all the features in one feature space. In the
context of multi-model learning, the method is re-
ferred to as early fusion.

In contrast, late fusion approaches first learn a
model on each feature set and then use/learn a
meta model to combine their results. As our sec-
ond approach, we use stacking (Wolpert, 1992), a
special case of late fusion. In stacking, we first
split the training set into two parts (70%-30% por-
tions). Using the first portion, we train separate
machine learning models for each of the text and
market feature sets. Next, we predict labels of the
second portion with the trained models and finally
train another model to capture the combinations
between the outputs of the base models. In our ex-
periments, the final model is always trained with
SVM with RBF kernel.

Stacking is computationally inexpensive. How-

1We follow NASDAQ categorization of sectors.

1715

ever, due to the split of the training set, the base
models or the meta model may suffer from lack of
training data. A potential approach to learn both
the feature sets in one model is the MKL method.

The MKL algorithm (also called intermediate
fusion (Noble et al., 2004)) extends the kernel of
the SVM model by learning (simultaneous to the
parameter learning) an optimum combination of
several kernels. The MKL algorithm as formu-
lated in Lanckriet et al. (2004) adds the following
criterion to Eq. 5 for kernel learning:

K∗ =
∑

i

diKi where
∑

i

di = 1, di ≥ 0 (6)

where Ki is a predefined kernel. Gönen and Al-
paydın (2011) mention two uses of MKL: learn-
ing the optimum kernel in SVM, and combining
multiple modalities (feature sets) via each kernel.

However, the optimization can be compu-
tationally challenging. We use the mklaren
method (Stražar and Curk, 2016) which has lin-
ear complexity in the number of data instances and
kernels. It has been shown to outperform recent
multi kernel approximation approaches. We use
RBF kernels for both the text and market feature
sets.

5 Experiment Setup

In this section, we first describe the data, followed
by introducing the baselines. We report the param-
eters applied in various algorithms and describe
the evaluation metrics.

Dataset We download the reports of companies
of the U.S. stock markets from 2006 to 2015
from the U.S. Securities and Exchange Commis-
sion (SEC) website2. We remove HTML tags and
extract the text parts. We extract the Risk Factors
section using term matching heuristics. Finally,
the texts are stemmed using the Porter stemmer.
We calculate the volatility values (Eq 1) and the
volatility of the GARCH model based on the stock
prices, collected from the Yahoo website. We filter
the volatility values greater/smaller than the mean
plus/minus three times the standard deviation of
all the volatility values3.

Baselines GARCH: although the GARCH
model is of market factual information, we use

2https://www.sec.gov
3The complete dataset is available in http://ifs.

tuwien.ac.at/˜admire/financialvolatility

it as a baseline to compare the effectiveness of
text-based methods with mainstream approaches.

Market: uses all the market features. For both
the GARCH and Market baselines, we use an
SVM learner with RBF kernel.

Wang et al. (2013): they use the Lex key-
word set with TC weighting scheme and the SVM
method. They combine the textual features with
current volatility using the early fusion method.

Tsai et al. (2014): similar to Wang et al. (2013),
while they use the LexExt keyword set.

Evaluation Metrics As a common metric in
volatility prediction, we use the r2 metric (square
of the correlation coefficient) for evaluation:

r2 =




∑n
i=1(ŷi − ¯̂y)(yi − ȳ)√∑n

i=1(ŷi − ¯̂y)2
√∑n

i=1(yi − ȳ)2




2

(7)
where ŷi is the predicted value, yi denotes the la-
bels and ȳ, their mean. The r2 metric indicates the
proportion of variance in the labels explained by
the prediction. The measure is close to 1 when
the predicted values can explain a large propor-
tion of the variability in the labels and 0 when it
fails to explain the labels’ variabilities. An alterna-
tive metric, used in previous studies (Wang et al.,
2013; Tsai and Wang, 2014; Kogan et al., 2009)
is Mean Squared Error MSE =

∑
i(ŷi − yi)2/n.

However, especially when comparing models, ap-
plied on different test sets (e.g. performance of
first quartile with second quartile), r2 has better
interpretability since it is independent of the scale
of y. We use r2 in all the experiments while the
MSE measure is reported only when the models
are evaluated on the same test set.

6 Experiments and Results

In this section, first we analyse the contents of the
reports, followed by studying our sentiment anal-
ysis methods for volatility prediction. Finally, we
investigate the effect of sentiment analysis of the
reports in different industry sectors.

6.1 Content Analysis of 10-K Reports

Let us start our experiment with observing
changes in the feature vectors of the reports over
the years. To compare them, we use the state-of-
the-art sentiment analysis method, introduced by
Tsai and Wang (2014). We first represent the fea-
ture vector of each year by calculating the centroid

1716

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

2015
2014
2013
2012
2011
2010
2009
2008
2007
2006

0.8

0.4

0.0

0.4

0.8

(a)

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

0.0

0.1

0.2

0.3

0.4

0.5

r
2

(b)

Figure 1: (a) Cosine similarity between the cen-
troid vectors of the years. (b) Volatility prediction
performance when using reports from the speci-
fied year to 2015

(element-wise mean) of the feature vectors of all
reports published that year and then calculate the
Cosine similarity of each pair of centroid vectors,
for the years 2006–2015.

Figure 1a shows the similarity heat-map for
each pair of the years. We observe a high simi-
larity between three ranges of years: 2006–2008,
2009–2011, and 2012–2015. These considerable
differences between the centroid reports in years
across these three groups hints at probable issues
when using the data of the older years for the more
recent ones.

To validate this, we apply 5-fold cross valida-
tion, first on all the data (2006–2015), and then
on smaller sets by dropping the oldest year i.e.
the next subsets use the reports 2007–2015, 2008–
2015 and so forth. The results of the r2 measure
are shown in Figure 1b. We observe that by drop-
ping the oldest years one by one (from left to right
in the figure), the performance starts improving.
We argue that this improvement is due to the re-
duction of noise in data, noise caused by concep-
tual drifts in the reports as also mentioned by Dyer
et al. (2016). In fact, although in machine learning
in general using more data results in better gener-
alization of the model and therefore better predic-
tion, the reports of the older years introduce noise.

As shown, the most coherent and largest data
consists of the subset of the reports published be-
tween 2012 to 2015. This subset is also the most
recent cluster and presumably more similar to the
future reports. Therefore, in the following, we
only use this subset, which consists of 3892 re-
ports, belonging to 1323 companies.

Table 1: Performance of sentiment analysis meth-
ods for the first year.

Component Method Text Text+Market
(r2) (MSE) (r2) (MSE)

Weighting
Schema
(+Stacking)

B̂M25 0.439 0.132 0.527 0.111
BM25 0.433 0.136 0.523 0.114
T̂C 0.427 0.136 0.517 0.115
TC 0.425 0.137 0.521 0.114
̂TFIDF 0.301 0.166 0.502 0.118

TFIDF 0.264 0.189 0.497 0.119
T̂F 0.218 0.190 0.495 0.120
TF 0.233 0.200 0.495 0.120

Feature Fusion

(+B̂M25)

Stacking - - 0.527 0.111
MKL - - 0.488 0.126

Early Fusion - - 0.473 0.125

Table 2: Performance of the methods using 5-fold
cross validation.

Method (r2) (MSE)
GARCH 0.280 0.170

Text
Wang (2013) 0.345 0.154
Tsai (2014) 0.395 0.142
Our method 0.439 0.132
Market 0.485 0.122

Text+Market
Wang (2013) 0.499 0.118
Tsai (2014) 0.484 0.122
Our method 0.527 0.111

6.2 Volatility Prediction

Given the dataset of the 2012–2015 reports, we
try all combinations of different term weighting
schemes using the LexExt keyword set. All
weighting schemes are then combined with the
market features with the introduced fusion meth-
ods. The prediction is done with 5-fold cross val-
idation. The averages of the results of the first
four quartiles (first year) are reported in Table 1.
To make showing the results tractable, we use the
best fusion (stacking) for the weighting schemes
and the best scheme (B̂M25) for fusions.

Regarding the weighting schemes, B̂M25,
BM25, and T̂C show the best results. In general,
the extended schemes (with hat) improve upon
their normal forms. For the feature fusion meth-
ods, stacking outperforms the other approaches
in both evaluation measures. MKL however has
better performance than early fusion while it has
the highest computational complexity among the
methods. Based on these results, as our best per-
forming approach in the remainder of the paper,
we use B̂M25 (with LexExt set), reduced to
400 dimensions and stacking as the fusion method.
Table 2 summarizes the results of our best per-

1717

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

r
2 Text+Market

Text
Market
GARCH

(a)
CV 2013 2014 2015

0.0

0.1

0.2

0.3

0.4

0.5

0.6

r
2

Text
Text+Market

(b)

en
e

in
d fin

te
ch

m
is

c
n-

du
r

ca
pt du
r

se
rv

pu
b

hl
th

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

r
2

Text
Text+Market

(c)

Figure 2: (a) Performance of our approach on 8 quartiles using the Text and Text+Market feature sets.
The dashed lines show the market-based baselines. (b) Performance of volatility prediction of each
year given the past data. The hashed areas show corresponding baselines. (c) Performance per sector.
Abbreviations are defined in Section 4.2

forming method compared with previously exist-
ing methods. Our method outperforms all state-of-
the-art methods both when using textual features
only as well as a combination of textual and mar-
ket features.

Let us now take a closer look on the changes
in the performance of the prediction in time. The
results of 5-fold cross validation for both tasks
on the dataset of the reports, published between
2012–2015 are shown in Figure 2a. The X-axes
show eight quartiles after the publication date of
the report. For comparison, the GARCH and only
market features are depicted with dashed lines.

As shown, the performance of the GARCH
method as well as that using only market features
(Market) decrease faster in the later quartiles since
the historical prices used for prediction become
less relevant as time goes by. Using only text fea-
tures (Text), we see a roughly similar performance
between the first four quartiles (first year), while
the performance, in general, slightly decreases in
the second year. By combining the textual and
market features (Text+Market), we see a consis-
tent improvement in comparison to each of them
alone. In comparison to using only market fea-
tures, the combination of the features shows more
stable results in the later quartiles. These results
support the informativeness of the 10-K reports to
more effectively foreseen volatility in long-term
windows.

While the above experiments are based on
cross-validation, for the sake of completeness it
is noteworthy to consider the scenarios of real-
world applications where the future prediction is
based on past data. We therefore design three
experiments by considering the reports published

in 2013, 2014, and 2015 as test set and the re-
ports published before each year as training set
(only 2012, 2012–2013, and 2012–2014 respec-
tively). The results of predicting the reports of
each year together with the cross validation sce-
nario (CV) are shown in Figure 2b. While the
performance becomes slightly worse in the target
years 2013 and 2015, in general the combination
of textual and market features can explain approx-
imately half of volatility in the financial system.

6.3 Sectors

Corporations in the same sector share not only
similar products or services but also risks and in-
stability factors. Considering the sentiment of the
financial system as a homogeneous body may ne-
glect the specific factors of each sector. We there-
fore set out to investigate the existence and nature
of these differences.

We start by observing the prediction perfor-
mance on different sectors: We use our method
from the previous section, but split the test set
across sectors and plot the results in Figure 2c.
The hashed areas indicate the GARCH and Mar-
ket baselines for the Text and Text+Market feature
sets, respectively. We observe considerable differ-
ences between the performance of the sectors, es-
pecially when using only sentiment analysis meth-
ods (i.e. only text features).

Given these differences and also the probable
similarities between the risk factors of the reports
in the same sector, a question immediately arises:
can training different models for different sectors
improve the performance of prediction?

To answer it, for each sector, we train a model
using only the subset of the reports in that sec-

1718

en
e

in
d fin

te
ch

m
is

c

n-
du

r

ca
pt du
r

se
rv

pu
b

hl
th

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

r
2

Sector-agnostic
Sector-specific
General model

(a) Text

en
e

in
d fin

te
ch

m
is

c

n-
du

r

ca
pt du
r

se
rv

pu
b

hl
th

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

r
2

Sector-agnostic
Sector-specific
General model

(b) Text+Market

Figure 3: Results when retraining on sector-specific subsets versus the general model and versus subsets
of the same size but sector-agnostic. The hashed area in (a) indicates the GARCH and in (b) the Market
baseline.

Table 3: Number of reports per sectors

ene ind hlth fin tech pub
187 160 305 847 408 217

n-dur dur capt serv misc
151 115 255 639 153

tor and use 5-fold validation to observe perfor-
mance. We refer to these models as sector-specific
in contrast to the general model, trained on all the
data. Figures 3a and 3b compare their results:
we can see that the sector-specific bars are lower
than the general model ones. This is to some ex-
tent surprising, as one would expect that domain-
specific training would improve the performance
of sentiment analysis in text. However, we need
to consider the size of the training set. By train-
ing on each sector we have reduced the size of
our training sets to those reported in Table 3. To
verify the effect of the size of training data, we
train a sector-agnostic model for each sector. Each
sector-agnostic model is trained by random sam-
pling of a training set of the same size as the set
available for its sector from all the reports, but
evaluated–similar to sector-specific models–on the
test set of the sector. Figures 3a and 3b also plot
the results of the sector-agnostic models.

The large performance differences between
sector-agnostic and -specific show the existence of
particular risk factors in each sector and their im-
portance. Results also confirm the hypothesis that
the data for training in each sector is simply too
small, and as additional data is accumulated, we
can further improve on the results by training on
different sectors independently.

We continue by examining some examples of
essential terms in sectors. To address this, we have
to train a linear regression method on all the re-
ports of each sector, without using any dimension-
ality reduction. Linear regression without dimen-
sionality reduction has the benefit of interpretabil-
ity: the coefficient of each feature (i.e. term in the
lexicon) can be seen as its importance with regards
to volatility prediction. After training, we observe
that some keywords e.g. crisis, or delist constantly
have high coefficient values in the sector-specific
as well as general model. However, some key-
words are particularly weighted high in specific-
sector models.

For instance, the keyword fire has a high coeffi-
cient in the energy sector, but very low in the oth-
ers. The reason is due to the problem of ambiguity
i.e. in the energy sector, fire is widely used to re-
fer to explosion e.g. ‘fire and explosion hazards’
while in the lexicon, it is stemmed from firing
and fired: the act of dismissing from a job. This
later sense of word is however weighted as a low
risk-sensitive keyword in the other sectors. Such
an ambiguity can indeed be mitigated by sector-
specific models since the variety of the words’
senses are more restricted inside each sector. An-
other example is an interesting observation on the
word beneficial. The word is introduced as a pos-
itive sentiment in the lexicon while it gains highly
negative sentiments in some sectors (health care,
and basic industries). Investigating in the reports,
we observe the broad use of the expression ‘bene-
ficial owner’ which is normally followed by risk-
full sentences since the beneficial owners can po-
tentially influence shareholders’ decision power.

1719

7 Conclusion

In this work, we studied the sentiment of recent
10-K annual disclosures of companies in stock
markets for forecasting volatility. Our bag-of-
words sentiment analysis approach benefits from
state-of-the-art models in information retrieval
which use word embeddings to extend the weight
of the terms to the similar terms in the docu-
ment. Additionally, we explored fusion meth-
ods to combine the text features with factual mar-
ket features, achieved from historical prices i.e.
GARCH prediction model, and current volatility.
In both cases, our approach outperforms state-of-
the-art volatility prediction methods with 10-K re-
ports and demonstrates the effectiveness of senti-
ment analysis in long-term volatility forecasting.

In addition, we studied the characteristics of
each individual sector with regard to risk-sensitive
terms. Our analysis shows that reports in same
sectors considerably share particular risk and in-
stability factors. However, despite expectations,
training different models on different sectors does
not improve performance compared to the general
model. We traced this to the size of the avail-
able data in each sector, and show that there are
still benefits in considering sectors, which could
be further explored in the future as more data be-
comes available.

8 Acknowledgement

This paper follows work produced during the
Young Scientists Summer Program (YSSP) 2016
at the International Institute for Applied Systems
Analysis (IIASA) in Laxenburg, Austria. This
work is funded by: Self-Optimizer (FFG 852624)
in the EUROSTARS programme, funded by EU-
REKA, the BMWFW and the European Union,
ADMIRE (P 25905-N23) by FWF, and the Aus-
trian Ministry for Science, Research and Econ-
omy. Thanks to Joni Sayeler and Linus Wret-
blad for their contributions in the SelfOptimizer
project.

References
Tim Bollerslev. 1986. Generalized autoregressive con-

ditional heteroskedasticity. Journal of econometrics
31(3):307–327.

John L Campbell, Hsinchun Chen, Dan S Dhaliwal,
Hsin-min Lu, and Logan B Steele. 2014. The infor-
mation content of mandatory risk factor disclosures

in corporate filings. Review of Accounting Studies
19(1):396–455.

Charlotte Christiansen, Maik Schmeling, and Andreas
Schrimpf. 2012. A comprehensive look at financial
volatility prediction by economic variables. Journal
of Applied Econometrics 27(6):956–977.

Xiao Ding, Yue Zhang, Ting Liu, and Junwen Duan.
2015. Deep learning for event-driven stock predic-
tion. In Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI’15).
pages 2327–2333.

Harris Drucker, Christopher JC Burges, Linda Kauf-
man, Alex Smola, Vladimir Vapnik, et al. 1997.
Support vector regression machines. Advances in
neural information processing systems 9:155–161.

Travis Dyer, Mark H Lang, and Lorien Stice-Lawrence.
2016. The ever-expanding 10-k: Why are 10-ks get-
ting so much longer (and does it matter)? Available
at SSRN 2741682 .

Robert F Engle. 1982. Autoregressive conditional
heteroscedasticity with estimates of the variance of
united kingdom inflation. Econometrica: Journal of
the Econometric Society pages 987–1007.

Mehmet Gönen and Ethem Alpaydın. 2011. Multi-
ple kernel learning algorithms. Journal of Machine
Learning Research 12(Jul):2211–2268.

Siavash Kazemian, Shunan Zhao, and Gerald Penn.
2014. Evaluating sentiment analysis evaluation: A
case study in securities trading. Proceedings of the
Conference of the Association for Computational
Linguistics (ACL) page 119.

Shimon Kogan, Dimitry Levin, Bryan R Routledge, Ja-
cob S Sagi, and Noah A Smith. 2009. Predicting
risk from financial reports with regression. In Pro-
ceedings of Annual Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics. pages 272–280.

Gert RG Lanckriet, Nello Cristianini, Peter Bartlett,
Laurent El Ghaoui, and Michael I Jordan. 2004.
Learning the kernel matrix with semidefinite pro-
gramming. Journal of Machine learning research
5(Jan):27–72.

Feng Li. 2010. The information content of forward-
looking statements in corporate filings–a naı̈ve
bayesian machine learning approach. Journal of Ac-
counting Research 48(5):1049–1102.

Hongquan Li and Yongmiao Hong. 2011. Financial
volatility forecasting with range-based autoregres-
sive volatility model. Finance Research Letters
8(2):69–76.

Shouwei Liu and Yiu Kuen Tse. 2013. Estimation of
monthly volatility: An empirical comparison of real-
ized volatility, garch and acd-icv methods. Research
Collection School Of Economics .

1720

Tim Loughran and Bill McDonald. 2011. When is a
liability not a liability? textual analysis, dictionaries,
and 10-ks. The Journal of Finance 66(1):35–65.

Ronny Luss and Alexandre d’Aspremont. 2015. Pre-
dicting abnormal returns from news using text clas-
sification. Quantitative Finance 15(6):999–1012.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Rodrigo Moraes, JoãO Francisco Valiati, and Wilson
P GaviãO Neto. 2013. Document-level sentiment
classification: An empirical comparison between
svm and ann. Expert Systems with Applications
40(2):621–633.

Thien Hai Nguyen and Kiyoaki Shirai. 2015. Topic
modeling based sentiment analysis on social media
for stock market prediction. In ACL.

William Stafford Noble et al. 2004. Support vector ma-
chine applications in computational biology. Kernel
methods in computational biology pages 71–92.

Clemens Nopp and Allan Hanbury. 2015. Detect-
ing risks in the banking system by sentiment anal-
ysis. Proceedings of the Conference of Empirical
Methods in Natural Language Processing (EMNLP)
pages 591–600.

Navid Rekabsaz, Mihai Lupu, and Allan Hanbury.
2016a. Uncertainty in neural network word embed-
ding: Exploration of threshold for similarity. arXiv
preprint arXiv:1606.06086 .

Navid Rekabsaz, Mihai Lupu, Allan Hanbury, and
Guido Zuccon. 2016b. Generalizing translation
models in the probabilistic relevance framework.
Proceedings of ACM International Conference on
Information and Knowledge Management (CIKM) .

Navid Rekabsaz, Mihai Lupu, Allan Hanbury, and
Guido Zuccon. 2017. Exploration of a threshold for
similarity based on uncertainty in word embedding.
In European Conference on IR Research (ECIR).

Martin Stražar and Tomaž Curk. 2016. Learning the
kernel matrix via predictive low-rank approxima-
tions. arXiv preprint arXiv:1601.04366 .

Ming-Feng Tsai and Chuan-Ju Wang. 2014. Financial
keyword expansion via continuous word vector rep-
resentations. In Proceedings of the Conference of
Empirical Methods in Natural Language Processing
(EMNLP). pages 1453–1458.

Chuan-Ju Wang, Ming-Feng Tsai, Tse Liu, and Chin-
Ting Chang. 2013. Financial sentiment analysis for
risk prediction. In Proceedings of the Joint Con-
ference on Natural Language Processing (IJCNLP).
pages 802–808.

William Yang Wang and Zhenhao Hua. 2014. A semi-
parametric gaussian copula regression model for
predicting financial risks from earnings calls. In
ACL.

David H Wolpert. 1992. Stacked generalization. Neu-
ral networks 5(2):241–259.

Boyi Xie, Rebecca J Passonneau, and Leon Wu. 2013.
Semantic Frames to Predict Stock Price Movement.
In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics.

1721

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1722–1731
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1158

CANE: Context-Aware Network Embedding for Relation Modeling

Cunchao Tu1,2∗, Han Liu3∗, Zhiyuan Liu1,2†, Maosong Sun1,2

1Department of Computer Science and Technology, State Key Lab on Intelligent Technology and Systems,
National Lab for Information Science and Technology, Tsinghua University, China

2Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, China
3Northeastern University, China

Abstract

Network embedding (NE) is playing a
critical role in network analysis, due to
its ability to represent vertices with ef-
ficient low-dimensional embedding vec-
tors. However, existing NE models aim to
learn a fixed context-free embedding for
each vertex and neglect the diverse roles
when interacting with other vertices. In
this paper, we assume that one vertex usu-
ally shows different aspects when interact-
ing with different neighbor vertices, and
should own different embeddings respec-
tively. Therefore, we present Context-
Aware Network Embedding (CANE), a
novel NE model to address this issue.
CANE learns context-aware embeddings
for vertices with mutual attention mecha-
nism and is expected to model the seman-
tic relationships between vertices more
precisely. In experiments, we compare
our model with existing NE models on
three real-world datasets. Experimen-
tal results show that CANE achieves sig-
nificant improvement than state-of-the-art
methods on link prediction and compara-
ble performance on vertex classification.
The source code and datasets can be ob-
tained from https://github.com/
thunlp/CANE.

1 Introduction

Network embedding (NE), i.e., network represen-
tation learning (NRL), aims to map vertices of a
network into a low-dimensional space according
to their structural roles in the network. NE pro-
vides an efficient and effective way to represent

∗ Indicates equal contribution
†Corresponding Author: Z. Liu (liuzy@tsinghua.edu.cn)

and manage large-scale networks, alleviating the
computation and sparsity issues of conventional
symbol-based representations. Hence, NE is at-
tracting many research interests in recent years
(Perozzi et al., 2014; Tang et al., 2015; Grover and
Leskovec, 2016), and achieves promising perfor-
mance on many network analysis tasks including
link prediction, vertex classification, and commu-
nity detection.

I am studying NLP problems,

including syntactic parsing,

machine translation and so on.

My research focuses on typical

NLP tasks, including word

segmentation, tagging and

syntactic parsing.

I am a NLP researcher in machine

translation, especially using deep

learning models to improve

machine translation.

Figure 1: Example of a text-based information
network. (Red, blue and green fonts represent con-
cerns of the left user, right user and both respec-
tively.)

In real-world social networks, it is intuitive that
one vertex may demonstrate various aspects when
interacting with different neighbor vertices. For
example, a researcher usually collaborates with
various partners on diverse research topics (as il-
lustrated in Fig. 1), a social-media user contacts
with various friends sharing distinct interests, and
a web page links to multiple pages for different
purposes. However, most existing NE methods
only arrange one single embedding vector to each
vertex, and give rise to the following two invertible
issues: (1) These methods cannot flexibly cope
with the aspect transition of a vertex when inter-
acting with different neighbors. (2) In these mod-
els, a vertex tends to force the embeddings of its

1722

https://doi.org/10.18653/v1/P17-1158

neighbors close to each other, which may be not
the case all the time. For example, the left user
and right user in Fig. 1, share less common inter-
ests, but are learned to be close to each other since
they both link to the middle person. This will ac-
cordingly make vertex embeddings indiscrimina-
tive.

To address these issues, we aim to propose
a Context-Aware Network Embedding (CANE)
framework for modeling relationships between
vertices precisely. More specifically, we present
CANE on information networks, where each ver-
tex also contains rich external information such as
text, labels or other meta-data, and the significance
of context is more critical for NE in this scenario.
Without loss of generality, we implement CANE
on text-based information networks in this paper,
which can easily extend to other types of informa-
tion networks.

In conventional NE models, each vertex is rep-
resented as a static embedding vector, denoted as
context-free embedding. On the contrary, CANE
assigns dynamic embeddings to a vertex according
to different neighbors it interacts with, named as
context-aware embedding. Take a vertex u and
its neighbor vertex v for example. The context-
free embedding of u remains unchanged when in-
teracting with different neighbors. On the con-
trary, the context-aware embedding of u is dy-
namic when confronting different neighbors.

When u interacting with v, their context em-
beddings concerning each other are derived from
their text information, Su and Sv respectively. For
each vertex, we can easily use neural models, such
as convolutional neural networks (Blunsom et al.,
2014; Johnson and Zhang, 2014; Kim, 2014) and
recurrent neural networks (Kiros et al., 2015; Tai
et al., 2015), to build context-free text-based em-
bedding. In order to realize context-aware text-
based embeddings, we introduce the selective at-
tention scheme and build mutual attention be-
tween u and v into these neural models. The mu-
tual attention is expected to guide neural models
to emphasize those words that are focused by its
neighbor vertices and eventually obtain context-
aware embeddings.

Both context-free embeddings and context-
aware embeddings of each vertex can be effi-
ciently learned together via concatenation using
existing NE methods such as DeepWalk (Per-
ozzi et al., 2014), LINE (Tang et al., 2015) and

node2vec (Grover and Leskovec, 2016).
We conduct experiments on three real-world

datasets of different areas. Experimental results
on link prediction reveal the effectiveness of our
framework as compared to other state-of-the-art
methods. The results suggest that context-aware
embeddings are critical for network analysis, in
particular for those tasks concerning about com-
plicated interactions between vertices such as link
prediction. We also explore the performance of
our framework via vertex classification and case
studies, which again confirms the flexibility and
superiority of our models.

2 Related Work

With the rapid growth of large-scale social net-
works, network embedding, i.e. network repre-
sentation learning has been proposed as a critical
technique for network analysis tasks.

In recent years, there have been a large num-
ber of NE models proposed to learn efficient ver-
tex embeddings (Tang and Liu, 2009; Cao et al.,
2015; Wang et al., 2016; Tu et al., 2016a). For ex-
ample, DeepWalk (Perozzi et al., 2014) performs
random walks over networks and introduces an ef-
ficient word representation learning model, Skip-
Gram (Mikolov et al., 2013a), to learn network
embeddings. LINE (Tang et al., 2015) optimizes
the joint and conditional probabilities of edges
in large-scale networks to learn vertex represen-
tations. Node2vec (Grover and Leskovec, 2016)
modifies the random walk strategy in DeepWalk
into biased random walks to explore the network
structure more efficiently. Nevertheless, most of
these NE models only encode the structural infor-
mation into vertex embeddings, without consider-
ing heterogeneous information accompanied with
vertices in real-world social networks.

To address this issue, researchers make great
efforts to incorporate heterogeneous information
into conventional NE models. For instance,
Yang et al. (2015) present text-associated Deep-
Walk (TADW) to improve matrix factorization
based DeepWalk with text information. Tu
et al. (2016b) propose max-margin DeepWalk
(MMDW) to learn discriminative network rep-
resentations by utilizing labeling information of
vertices. Chen et al. (2016) introduce group-
enhanced network embedding (GENE) to inte-
grate existing group information in NE. Sun et
al. (2016) regard text content as a special kind

1723

of vertices, and propose context-enhanced net-
work embedding (CENE) through leveraging both
structural and textural information to learn net-
work embeddings.

To the best of our knowledge, all existing NE
models focus on learning context-free embed-
dings, but ignore the diverse roles when a vertex
interacts with others. In contrast, we assume that
a vertex has different embeddings according to
which vertex it interacts with, and propose CANE
to learn context-aware vertex embeddings.

3 Problem Formulation

We first give basic notations and definitions in this
work. Suppose there is an information network
G = (V,E, T), where V is the set of vertices,
E ⊆ V ×V are edges between vertices, and T de-
notes the text information of vertices. Each edge
eu,v ∈ E represents the relationship between two
vertices (u, v), with an associated weight wu,v.
Here, the text information of a specific vertex
v ∈ V is represented as a word sequence Sv =
(w1, w2, . . . , wnv), where nv = |Sv|. NRL aims
to learn a low-dimensional embedding v ∈ Rd for
each vertex v ∈ V according to its network struc-
ture and associated information, e.g. text and la-
bels. Note that, d � |V | is the dimension of rep-
resentation space.

Definition 1. Context-free Embeddings: Con-
ventional NRL models learn context-free embed-
ding for each vertex. It means the embedding of
a vertex is fixed and won’t change with respect to
its context information (i.e., another vertex it in-
teracts with).

Definition 2. Context-aware Embeddings:
Different from existing NRL models that learn
context-free embeddings, CANE learns various
embeddings for a vertex according to its differ-
ent contexts. Specifically, for an edge eu,v, CANE
learns context-aware embeddings v(u) and u(v).

4 The Method

4.1 Overall Framework
To take full use of both network structure and as-
sociated text information, we propose two types
of embeddings for a vertex v, i.e., structure-
based embedding vs and text-based embedding
vt. Structure-based embedding can capture the
information in the network structure, while text-
based embedding can capture the textual mean-
ings lying in the associated text information. With

these embeddings, we can simply concatenate
them and obtain the vertex embeddings as v =
vs ⊕ vt, where ⊕ indicates the concatenation op-
eration. Note that, the text-based embedding vt

can be either context-free or context-aware, which
will be introduced detailedly in section 4.4 and 4.5
respectively. When vt is context-aware, the over-
all vertex embeddings v will be context-aware as
well.

With above definitions, CANE aims to maxi-
mize the overall objective of edges as follows:

L =
∑

e∈E
L(e). (1)

Here, the objective of each edge L(e) consists of
two parts as follows:

L(e) = Ls(e) + Lt(e), (2)

where Ls(e) denotes the structure-based objective
and Lt(e) represents the text-based objective.

In the following part, we give the detailed intro-
duction to the two objectives respectively.

4.2 Structure-based Objective
Without loss of generality, we assume the network
is directed, as an undirected edge can be consid-
ered as two directed edges with opposite directions
and equal weights.

Thus, the structure-based objective aims to
measure the log-likelihood of a directed edge us-
ing the structure-based embeddings as

Ls(e) = wu,v log p(v
s|us). (3)

Following LINE (Tang et al., 2015), we define
the conditional probability of v generated by u in
Eq. (3) as

p(vs|us) = exp(us · vs)∑
z∈V exp(us · zs) . (4)

4.3 Text-based Objective
Vertices in real-world social networks usually ac-
company with associated text information. There-
fore, we propose the text-based objective to take
advantage of these text information, as well as
learn text-based embeddings for vertices.

The text-based objective Lt(e) can be defined
with various measurements. To be compatible
with Ls(e), we define Lt(e) as follows:

Lt(e) = α ·Ltt(e) + β ·Lts(e) + γ ·Lst(e), (5)

1724

where α, β and γ control the weights of various
parts, and

Ltt(e) = wu,v log p(v
t|ut),

Lts(e) = wu,v log p(v
t|us),

Lst(e) = wu,v log p(v
s|ut).

(6)

The conditional probabilities in Eq. (6) map the
two types of vertex embeddings into the same rep-
resentation space, but do not enforce them to be
identical for the consideration of their own char-
acteristics. Similarly, we employ softmax function
for calculating the probabilities, as in Eq. (4).

The structure-based embeddings are regarded as
parameters, the same as in conventional NE mod-
els. But for text-based embeddings, we intend to
obtain them from associated text information of
vertices. Besides, the text-based embeddings can
be obtained either in context-free ways or context-
aware ones. In the following sections, we will give
detailed introduction respectively.

4.4 Context-Free Text Embedding
There has been a variety of neural models to obtain
text embeddings from a word sequence, such as
convolutional neural networks (CNN) (Blunsom
et al., 2014; Johnson and Zhang, 2014; Kim, 2014)
and recurrent neural networks (RNN) (Kiros et al.,
2015; Tai et al., 2015).

In this work, we investigate different neural net-
works for text modeling, including CNN, Bidi-
rectional RNN (Schuster and Paliwal, 1997) and
GRU (Cho et al., 2014), and employ the best per-
formed CNN, which can capture the local seman-
tic dependency among words.

Taking the word sequence of a vertex as input,
CNN obtains the text-based embedding through
three layers, i.e. looking-up, convolution and
pooling.

Looking-up. Given a word sequence S =
(w1, w2, . . . , wn), the looking-up layer transforms
each word wi ∈ S into its corresponding word
embedding wi ∈ Rd′ and obtains embedding se-
quence as S = (w1,w2, . . . ,wn). Here, d′ indi-
cates the dimension of word embeddings.

Convolution. After looking-up, the convolu-
tion layer extracts local features of input embed-
ding sequence S. To be specific, it performs con-
volution operation over a sliding window of length
l using a convolution matrix C ∈ Rd×(l×d′) as fol-
lows:

xi = C · Si:i+l−1 + b, (7)

where Si:i+l−1 denotes the concatenation of word
embeddings within the i-th window and b is the
bias vector. Note that, we add zero padding vec-
tors (Hu et al., 2014) at the edge of the sentence.

Max-pooling. To obtain the text embedding vt,
we operate max-pooling and non-linear transfor-
mation over {xi0, . . . ,xin} as follows:

ri = tanh(max(xi0, . . . ,x
i
n)), (8)

At last, we encode the text information of a ver-
tex with CNN and obtain its text-based embedding
vt = [r1, . . . , rd]

T . As vt is irrelevant to the other
vertices it interacts with, we name it as context-
free text embedding.

4.5 Context-Aware Text Embedding

Text

Description

Text

Description

Convolutional

Unit

Convolutional

Unit

u v

P Q

A

tanh(PTAQ)

Row-pooling +

softmax

Column-pooling +

softmax

a
p a

q

u
t
(v)=P·a

p
v

t
(u)=Q·a

q

F

Edge

Text

Embedding

Figure 2: An illustration of context-aware text em-
bedding.

As stated before, we assume that a specific ver-
tex plays different roles when interacting with oth-
ers vertices. In other words, each vertex should
have its own points of focus about a specific ver-
tex, which leads to its context-aware text embed-
dings.

To achieve this, we employ mutual attention to
obtain context-aware text embedding. It enables
the pooling layer in CNN to be aware of the vertex
pair in an edge, in a way that text information from
a vertex can directly affect the text embedding of
the other vertex, and vice versa.

1725

In Fig. 2, we give an illustration of the gen-
erating process of context-aware text embedding.
Given an edge eu,v with two corresponding text
sequences Su and Sv, we can get the matrices
P ∈ Rd×m and Q ∈ Rd×n through convolution
layer. Here, m and n represent the lengths of Su
and Sv respectively. By introducing an attentive
matrix A ∈ Rd×d, we compute the correlation ma-
trix F ∈ Rm×n as follows:

F = tanh(PTAQ). (9)

Note that, each element Fi,j in F represents the
pair-wise correlation score between two hidden
vectors, i.e., Pi and Qj .

After that, we conduct pooling operations along
rows and columns of F to generate the importance
vectors, named as row-pooling and column pool-
ing respectively. According to our experiments,
mean-pooling performs better than max-pooling.
Thus, we employ mean-pooling operation as fol-
lows:

gpi = mean(Fi,1, . . . ,Fi,n),

gqi = mean(F1,i, . . . ,Fm,i).
(10)

The importance vectors of P and Q are ob-
tained as gp = [gp1 , . . . , g

p
m]T and gq =

[gq1, . . . , g
q
n]T .

Next, we employ softmax function to transform
importance vectors gp and gq to attention vectors
ap and aq. For instance, the i-th element of ap is
formalized as follows:

api =
exp(gpi)∑

j∈[1,m] exp(g
p
j)
. (11)

At last, the context-aware text embeddings of u
and v are computed as

ut(v) = Pap,

vt(u) = Qaq.
(12)

Now, given an edge (u, v), we can obtain the
context-aware embeddings of vertices with their
structure embeddings and context-aware text em-
beddings as u(v) = us⊕ut(v) and v(u) = vs⊕vt(u).

4.6 Optimization of CANE

According to Eq. (3) and Eq. (6), CANE aims
to maximize several conditional probabilities be-
tween u ∈ {us,ut(v)} and v ∈ {vs,vt(u)}. It

is intuitive that optimizing the conditional prob-
ability using softmax function is computation-
ally expensive. Thus, we employ negative sam-
pling (Mikolov et al., 2013b) and transform the
objective into the following form:

log σ(uT ·v)+
k∑

i=1

Ez∼P (v)[log σ(−uT ·z)], (13)

where k is the number of negative samples and σ
represents the sigmoid function. P (v) ∝ dv

3/4

denotes the distribution of vertices, where dv is the
out-degree of v.

Afterward, we employ Adam (Kingma and Ba,
2015) to optimize the transformed objective. Note
that, CANE is exactly capable of zero-shot scenar-
ios, by generating text embeddings of new vertices
with well-trained CNN.

5 Experiments

To investigate the effectiveness of CANE on mod-
eling relationships between vertices, we conduct
experiments of link prediction on several real-
world datasets. Besides, we also employ vertex
classification to verify whether context-aware em-
beddings of a vertex can compose a high-quality
context-free embedding in return.

5.1 Datasets

Datasets Cora HepTh Zhihu

#Vertices 2, 277 1, 038 10, 000
#Edges 5, 214 1, 990 43, 894
#Labels 7 − −

Table 1: Statistics of Datasets.

We select three real-world network datasets as
follows:

Cora1 is a typical paper citation network con-
structed by (McCallum et al., 2000). After filter-
ing out papers without text information, there are
2, 277 machine learning papers in this network,
which are divided into 7 categories.

HepTh2 (High Energy Physics Theory) is
another citation network from arXiv3 released
by (Leskovec et al., 2005). We filter out papers
without abstract information and retain 1, 038 pa-
pers at last.

1https://people.cs.umass.edu/∼mccallum/data.html
2https://snap.stanford.edu/data/cit-HepTh.html
3https://arxiv.org/

1726

%Training edges 15% 25% 35% 45% 55% 65% 75% 85% 95%

MMB 54.7 57.1 59.5 61.9 64.9 67.8 71.1 72.6 75.9
DeepWalk 56.0 63.0 70.2 75.5 80.1 85.2 85.3 87.8 90.3

LINE 55.0 58.6 66.4 73.0 77.6 82.8 85.6 88.4 89.3
node2vec 55.9 62.4 66.1 75.0 78.7 81.6 85.9 87.3 88.2

Naive Combination 72.7 82.0 84.9 87.0 88.7 91.9 92.4 93.9 94.0
TADW 86.6 88.2 90.2 90.8 90.0 93.0 91.0 93.4 92.7
CENE 72.1 86.5 84.6 88.1 89.4 89.2 93.9 95.0 95.9

CANE (text only) 78.0 80.5 83.9 86.3 89.3 91.4 91.8 91.4 93.3
CANE (w/o attention) 85.8 90.5 91.6 93.2 93.9 94.6 95.4 95.1 95.5

CANE 86.8 91.5 92.2 93.9 94.6 94.9 95.6 96.6 97.7

Table 2: AUC values on Cora. (α = 1.0, β = 0.3, γ = 0.3)

Zhihu4 is the largest online Q&A website in
China. Users follow each other and answer ques-
tions on this site. We randomly crawl 10, 000 ac-
tive users from Zhihu, and take the descriptions of
their concerned topics as text information.

The detailed statistics are listed in Table 1.

5.2 Baselines

We employ the following methods as baselines:
Structure-only:
MMB (Airoldi et al., 2008) (Mixed Membership

Stochastic Blockmodel) is a conventional graphi-
cal model of relational data. It allows each vertex
to randomly select a different ”topic” when form-
ing an edge.

DeepWalk (Perozzi et al., 2014) performs ran-
dom walks over networks and employ Skip-Gram
model (Mikolov et al., 2013a) to learn vertex em-
beddings.

LINE (Tang et al., 2015) learns vertex embed-
dings in large-scale networks using first-order and
second-order proximities.

Node2vec (Grover and Leskovec, 2016) pro-
poses a biased random walk algorithm based on
DeepWalk to explore neighborhood architecture
more efficiently.

Structure and Text:
Naive Combination: We simply concatenate the

best-performed structure-based embeddings with
CNN based embeddings to represent the vertices.

TADW (Yang et al., 2015) employs matrix fac-
torization to incorporate text features of vertices
into network embeddings.

CENE (Sun et al., 2016) leverages both struc-
ture and textural information by regarding text
content as a special kind of vertices, and optimizes
the probabilities of heterogeneous links.

4https://www.zhihu.com/

5.3 Evaluation Metrics and Experiment
Settings

For link prediction, we adopt a standard evaluation
metric AUC (Hanley and McNeil, 1982), which
represents the probability that vertices in a random
unobserved link are more similar than those in a
random nonexistent link.

For vertex classification, we employ L2-
regularized logistic regression (L2R-LR) (Fan
et al., 2008) to train classifiers, and evaluate the
classification accuracies of various methods.

To be fair, we set the embedding dimension to
200 for all methods. In LINE, we set the number
of negative samples to 5; we learn the 100 dimen-
sional first-order and second-order embeddings re-
spectively, and concatenate them to form the 200
dimensional embeddings. In node2vec, we em-
ploy grid search and select the best-performed
hyper-parameters for training. We also apply grid
search to set the hyper-parameters α, β and γ in
CANE. Besides, we set the number of negative
samples k to 1 in CANE to speed up the train-
ing process. To demonstrate the effectiveness of
considering attention mechanism and two types of
objectives in Eqs. (3) and (6), we design three
versions of CANE for evaluation, i.e., CANE with
text only, CANE without attention and CANE.

5.4 Link Prediction

As shown in Table 2, Table 3 and Table 4, we eval-
uate the AUC values while removing different ra-
tios of edges on Cora, HepTh and Zhihu respec-
tively. Note that, when we only keep 5% edges
for training, most vertices are isolated, which re-
sults in the poor and meaningless performance of
all the methods. Thus, we omit the results under
this training ratio. From these tables, we have the
following observations:

1727

%Training edges 15% 25% 35% 45% 55% 65% 75% 85% 95%

MMB 54.6 57.9 57.3 61.6 66.2 68.4 73.6 76.0 80.3
DeepWalk 55.2 66.0 70.0 75.7 81.3 83.3 87.6 88.9 88.0

LINE 53.7 60.4 66.5 73.9 78.5 83.8 87.5 87.7 87.6
node2vec 57.1 63.6 69.9 76.2 84.3 87.3 88.4 89.2 89.2

Naive Combination 78.7 82.1 84.7 88.7 88.7 91.8 92.1 92.0 92.7
TADW 87.0 89.5 91.8 90.8 91.1 92.6 93.5 91.9 91.7
CENE 86.2 84.6 89.8 91.2 92.3 91.8 93.2 92.9 93.2

CANE (text only) 83.8 85.2 87.3 88.9 91.1 91.2 91.8 93.1 93.5
CANE (w/o attention) 84.5 89.3 89.2 91.6 91.1 91.8 92.3 92.5 93.6

CANE 90.0 91.2 92.0 93.0 94.2 94.6 95.4 95.7 96.3

Table 3: AUC values on HepTh. (α = 0.7, β = 0.2, γ = 0.2)

%Training edges 15% 25% 35% 45% 55% 65% 75% 85% 95%

MMB 51.0 51.5 53.7 58.6 61.6 66.1 68.8 68.9 72.4
DeepWalk 56.6 58.1 60.1 60.0 61.8 61.9 63.3 63.7 67.8

LINE 52.3 55.9 59.9 60.9 64.3 66.0 67.7 69.3 71.1
node2vec 54.2 57.1 57.3 58.3 58.7 62.5 66.2 67.6 68.5

Naive Combination 55.1 56.7 58.9 62.6 64.4 68.7 68.9 69.0 71.5
TADW 52.3 54.2 55.6 57.3 60.8 62.4 65.2 63.8 69.0
CENE 56.2 57.4 60.3 63.0 66.3 66.0 70.2 69.8 73.8

CANE (text only) 55.6 56.9 57.3 61.6 63.6 67.0 68.5 70.4 73.5
CANE (w/o attention) 56.7 59.1 60.9 64.0 66.1 68.9 69.8 71.0 74.3

CANE 56.8 59.3 62.9 64.5 68.9 70.4 71.4 73.6 75.4

Table 4: AUC values on Zhihu. (α = 1.0, β = 0.3, γ = 0.3)

(1) Our proposed CANE consistently achieves
significant improvement comparing to all the base-
lines on all different datasets and different train-
ing ratios. It indicates the effectiveness of CANE
when applied to link prediction task, and verifies
that CANE has the capability of modeling rela-
tionships between vertices precisely.

(2) What calls for special attention is that, both
CENE and TADW exhibit unstable performance
under various training ratios. Specifically, CENE
performs poorly under small training ratios, be-
cause it reserves much more parameters (e.g.,
convolution kernels and word embeddings) than
TADW, which need more data for training. Differ-
ent from CENE, TADW performs much better un-
der small training ratios, because DeepWalk based
methods can explore the sparse network struc-
ture well through random walks even with lim-
ited edges. However, it achieves poor performance
under large ones, as its simplicity and the limita-
tion of bag-of-words assumption. On the contrary,
CANE has a stable performance in various situa-
tions. It demonstrates the flexibility and robust-
ness of CANE.

(3) By introducing attention mechanism, the
learnt context-aware embeddings obtain consider-

able improvements than the ones without atten-
tion. It verifies our assumption that a specific ver-
tex should play different roles when interacting
with other vertices, and thus benefits the relevant
link prediction task.

To summarize, all the above observations
demonstrate that CANE can learn high-quality
context-aware embeddings, which are conducive
to estimating the relationship between vertices
precisely. Moreover, the experimental results on
link prediction task state the effectiveness and ro-
bustness of CANE.

5.5 Vertex Classification

In CANE, we obtain various embeddings of a ver-
tex according to the vertex it connects to. It’s intu-
itive that the obtained context-aware embeddings
are naturally applicable to link prediction task.
However, network analysis tasks, such as vertex
classification and clustering, require a global em-
bedding, rather than several context-aware embed-
dings for each vertex.

To demonstrate the capability of CANE to solve
these issues, we generate the global embedding
of a vertex u by simply averaging all the context-

1728

aware embeddings as follows:

u =
1

N

∑

(u,v)|(v,u)∈E
u(v),

where N indicates the number of context-aware
embeddings of u.

50

60

70

80

90

100

M
M

B

Dee
pW

alk
LIN

E

nod
e2

ve
c

NC

TADW
CENE

CANE(te
xt

 on
ly)

CANE(w
/0

at
ten

tio
n)

CANE

A
cc

ur
ac

y
(×

 1
00

)

Figure 3: Vertex classification results on Cora.

With the generated global embeddings, we con-
duct 2-fold cross-validation and report the aver-
age accuracy of vertex classification on Cora. As
shown in Fig. 3, we observe that:

(1) CANE achieves comparable performance
with state-of-the-art model CENE. It states that the
learnt context-aware embeddings can transform
into high-quality context-free embeddings through
simple average operation, which can be further
employed to other network analysis tasks.

(2) With the introduction of mutual attention
mechanism, CANE has an encouraging improve-
ment than the one without attention, which is in
accordance with the results of link prediction. It
denotes that CANE is flexible to various network
analysis tasks.

5.6 Case Study
To demonstrate the significance of mutual atten-
tion on selecting meaningful features from text in-
formation, we visualize the heat maps of two ver-
tex pairs in Fig. 4. Note that, every word in this
figure accompanies with various background col-
ors. The stronger the background color is, the
larger the weight of this word is. The weight of
each word is calculated according to the attention
weights as follows.

For each vertex pair, we can get the attention
weight of each convolution window according to
Eq. (11). To obtain the weights of words, we as-
sign the attention weight to each word in this win-
dow, and add the attention weights of a word to-
gether as its final weight.

Figure 4: Visualizations of mutual attention.

The proposed attention mechanism makes the
relations between vertices explicit and inter-
pretable. We select three connected vertices in
Cora for example, denoted as A, B and C. From
Fig. 4, we observe that, though there exists cita-
tion relations with identical paper A, paper B and
C concern about different parts of A. The atten-
tion weights over A in edge #1 are assigned to
“reinforcement learning”. On the contrary, the
weights in edge #2 are assigned to “machine learn-
ing’”, “supervised learning algorithms” and “com-
plex stochastic models”. Moreover, all these key
elements in A can find corresponding words in B
and C. It’s intuitive that these key elements give
an exact explanation of the citation relations. The
discovered significant correlations between vertex
pairs reflect the effectiveness of mutual attention
mechanism, as well as the capability of CANE for
modeling relations precisely.

6 Conclusion and Future Work

In this paper, we propose the concept of Context-
Aware Network Embedding (CANE) for the first

1729

time, which aims to learn various context-aware
embeddings for a vertex according to the neigh-
bors it interacts with. Specifically, we implement
CANE on text-based information networks with
proposed mutual attention mechanism, and con-
duct experiments on several real-world informa-
tion networks. Experimental results on link pre-
diction demonstrate that CANE is effective for
modeling the relationship between vertices. Be-
sides, the learnt context-aware embeddings can
compose high-quality context-free embeddings.

We will explore the following directions in fu-
ture:

(1) We have investigated the effectiveness of
CANE on text-based information networks. In fu-
ture, we will strive to implement CANE on a wider
variety of information networks with multi-modal
data, such as labels, images and so on.

(2) CANE encodes latent relations between ver-
tices into their context-aware embeddings. Fur-
thermore, there usually exist explicit relations in
social networks (e.g., families, friends and col-
leagues relations between social network users),
which are expected to be critical to NE. Thus, we
want to explore how to incorporate and predict
these explicit relations between vertices in NE.

Acknowledgements

This work is supported by the 973 Program (No.
2014CB340501), the National Natural Science
Foundation of China (NSFC No. 61572273,
61532010, 61661146007), and Tsinghua Uni-
versity Initiative Scientific Research Program
(20151080406).

References
Edoardo M Airoldi, David M Blei, Stephen E Fienberg,

and Eric P Xing. 2008. Mixed membership stochas-
tic blockmodels. JMLR 9(Sep):1981–2014.

Phil Blunsom, Edward Grefenstette, and Nal Kalch-
brenner. 2014. A convolutional neural network for
modelling sentences. In Proceedings of ACL.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015.
Grarep: Learning graph representations with global
structural information. In Proceedings of CIKM.
pages 891–900.

Jifan Chen, Qi Zhang, and Xuanjing Huang. 2016.
Incorporate group information to enhance network
embedding. In Proceedings of CIKM.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Proceedings
of EMNLP.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. JMLR 9:1871–
1874.

Aditya Grover and Jure Leskovec. 2016. Node2vec:
Scalable feature learning for networks. In Proceed-
ings of KDD.

James A Hanley and Barbara J McNeil. 1982. The
meaning and use of the area under a receiver operat-
ing characteristic (roc) curve. Radiology 143(1):29–
36.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network architec-
tures for matching natural language sentences. In
Proceedings of NIPS. pages 2042–2050.

Rie Johnson and Tong Zhang. 2014. Effective
use of word order for text categorization with
convolutional neural networks. arXiv preprint
arXiv:1412.1058 .

Yoon Kim. 2014. Convolutional neural networks for
sentence classification.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of ICLR.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Proceedings of NIPS. pages 3294–3302.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos.
2005. Graphs over time: densification laws, shrink-
ing diameters and possible explanations. In Pro-
ceedings of KDD. pages 177–187.

Andrew McCallum, Kamal Nigam, Jason Rennie, and
Kristie Seymore. 2000. Automating the construc-
tion of internet portals with machine learning. In-
formation Retrieval Journal 3:127–163.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word represen-
tations in vector space. In Proceedings of ICIR.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Proceedings of NIPS. pages 3111–3119.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena.
2014. Deepwalk: Online learning of social repre-
sentations. In Proceedings of KDD. pages 701–710.

Mike Schuster and Kuldip K Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673–2681.

1730

Xiaofei Sun, Jiang Guo, Xiao Ding, and Ting Liu.
2016. A general framework for content-enhanced
network representation learning. arXiv preprint
arXiv:1610.02906 .

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of ACL.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun
Yan, and Qiaozhu Mei. 2015. Line: Large-scale in-
formation network embedding. In Proceedings of
WWW. pages 1067–1077.

Lei Tang and Huan Liu. 2009. Relational learning
via latent social dimensions. In Proceedings of
SIGKDD. pages 817–826.

Cunchao Tu, Hao Wang, Xiangkai Zeng, Zhiyuan Liu,
and Maosong Sun. 2016a. Community-enhanced
network representation learning for network analy-
sis. arXiv preprint arXiv:1611.06645 .

Cunchao Tu, Weicheng Zhang, Zhiyuan Liu, and
Maosong Sun. 2016b. Max-margin deepwalk: Dis-
criminative learning of network representation. In
Proceedings of IJCAI.

Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Struc-
tural deep network embedding. In Proceedings of
KDD.

Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun,
and Edward Y Chang. 2015. Network representa-
tion learning with rich text information. In Proceed-
ings of IJCAI.

1731

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1732–1744
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1159

Universal Dependencies Parsing for Colloquial Singaporean English

Hongmin Wang†, Yue Zhang†,
GuangYong Leonard Chan‡, Jie Yang†, Hai Leong Chieu‡

† Singapore University of Technology and Design
{hongmin wang, yue zhang}@sutd.edu.sg

jie yang@mymail.sutd.edu.sg
‡ DSO National Laboratories, Singapore

{cguangyo, chaileon}@dso.org.sg

Abstract

Singlish can be interesting to the ACL
community both linguistically as a ma-
jor creole based on English, and compu-
tationally for information extraction and
sentiment analysis of regional social me-
dia. We investigate dependency pars-
ing of Singlish by constructing a depen-
dency treebank under the Universal De-
pendencies scheme, and then training a
neural network model by integrating En-
glish syntactic knowledge into a state-of-
the-art parser trained on the Singlish tree-
bank. Results show that English knowl-
edge can lead to 25% relative error reduc-
tion, resulting in a parser of 84.47% ac-
curacies. To the best of our knowledge,
we are the first to use neural stacking to
improve cross-lingual dependency parsing
on low-resource languages. We make both
our annotation and parser available for fur-
ther research.

1 Introduction

Languages evolve temporally and geographically,
both in vocabulary as well as in syntactic struc-
tures. When major languages such as English or
French are adopted in another culture as the pri-
mary language, they often mix with existing lan-
guages or dialects in that culture and evolve into a
stable language called a creole. Examples of cre-
oles include the French-based Haitian Creole, and
Colloquial Singaporean English (Singlish) (Mian-
Lian and Platt, 1993), an English-based creole.
While the majority of the natural language pro-
cessing (NLP) research attention has been focused
on the major languages, little work has been done
on adapting the components to creoles. One no-
table body of work originated from the featured

translation task of the EMNLP 2011 Workshop
on Statistical Machine Translation (WMT11) to
translate Haitian Creole SMS messages sent dur-
ing the 2010 Haitian earthquake. This work high-
lights the importance of NLP tools on creoles in
crisis situations for emergency relief (Hu et al.,
2011; Hewavitharana et al., 2011).

Singlish is one of the major languages in Sin-
gapore, with borrowed vocabulary and grammars1

from a number of languages including Malay,
Tamil, and Chinese dialects such as Hokkien, Can-
tonese and Teochew (Leimgruber, 2009, 2011),
and it has been increasingly used in written forms
on web media. Fluent English speakers unfamiliar
with Singlish would find the creole hard to com-
prehend (Harada, 2009). Correspondingly, fun-
damental English NLP components such as POS
taggers and dependency parsers perform poorly on
such Singlish texts as shown in Table 2 and 4. For
example, Seah et al. (2015) adapted the Socher
et al. (2013) sentiment analysis engine to the
Singlish vocabulary, but failed to adapt the parser.
Since dependency parsers are important for tasks
such as information extraction (Miwa and Bansal,
2016) and discourse parsing (Li et al., 2015), this
hinders the development of such downstream ap-
plications for Singlish in written forms and thus
makes it crucial to build a dependency parser that
can perform well natively on Singlish.

To address this issue, we start with investigat-
ing the linguistic characteristics of Singlish and
specifically the causes of difficulties for under-
standing Singlish with English syntax. We found
that, despite the obvious attribute of inheriting a
large portion of basic vocabularies and grammars
from English, Singlish not only imports terms
from regional languages and dialects, its lexical

1We follow Leimgruber (2011) in using “grammar” to de-
scribe “syntactic constructions” and we do not differentiate
the two expressions in this paper.

1732

https://doi.org/10.18653/v1/P17-1159

Singlish dependency

parser trained with small

Singlish treebank

English syntactic and

semantic knowledge learnt

from large treebank

Singlish sentences

Singlish dependency trees

Figure 1: Overall model diagram

semantics and syntax also deviate significantly
from English (Leimgruber, 2009, 2011). We cate-
gorize the challenges and formalize their interpre-
tation using Universal Dependencies (Nivre et al.,
2016), which extends to the creation of a Singlish
dependency treebank with 1,200 sentences.

Based on the intricate relationship between
Singlish and English, we build a Singlish parser by
leveraging knowledge of English syntax as a ba-
sis. This overall approach is illustrated in Figure 1.
In particular, we train a basic Singlish parser with
the best off-the-shelf neural dependency parsing
model using biaffine attention (Dozat and Man-
ning, 2017), and improve it with knowledge trans-
fer by adopting neural stacking (Chen et al., 2016;
Zhang and Weiss, 2016) to integrate the English
syntax. Since POS tags are important features for
dependency parsing (Chen and Manning, 2014;
Dyer et al., 2015), we train a POS tagger for
Singlish following the same idea by integrating
English POS knowledge using neural stacking.

Results show that English syntax knowledge
brings 51.50% and 25.01% relative error reduction
on POS tagging and dependency parsing respec-
tively, resulting in a Singlish dependency parser
with 84.47% unlabeled attachment score (UAS)
and 77.76% labeled attachment score (LAS).

We make our Singlish dependency treebank, the
source code for training a dependency parser and
the trained model for the parser with the best per-
formance freely available online2.

2https://github.com/wanghm92/Sing_Par

2 Related Work

Neural networks have led to significant advance in
the performance for dependency parsing, includ-
ing transition-based parsing (Chen and Manning,
2014; Zhou et al., 2015; Weiss et al., 2015; Dyer
et al., 2015; Ballesteros et al., 2015; Andor et al.,
2016), and graph-based parsing (Kiperwasser and
Goldberg, 2016; Dozat and Manning, 2017). In
particular, the biaffine attention method of Dozat
and Manning (2017) uses deep bi-directional long
short-term memory (bi-LSTM) networks for high-
order non-linear feature extraction, producing the
highest-performing graph-based English depen-
dency parser. We adopt this model as the basis
for our Singlish parser.

Our work belongs to a line of work on trans-
fer learning for parsing, which leverages En-
glish resources in Universal Dependencies to im-
prove the parsing accuracies of low-resource lan-
guages (Hwa et al., 2005; Cohen and Smith, 2009;
Ganchev et al., 2009). Seminal work employed
statistical models. McDonald et al. (2011) inves-
tigated delexicalized transfer, where word-based
features are removed from a statistical model for
English, so that POS and dependency label knowl-
edge can be utilized for training a model for low-
resource language. Subsequent work considered
syntactic similarities between languages for better
feature transfer (Täckström et al., 2012; Naseem
et al., 2012; Zhang and Barzilay, 2015).

Recently, a line of work leverages neural net-
work models for multi-lingual parsing (Guo et al.,
2015; Duong et al., 2015; Ammar et al., 2016).
The basic idea is to map the word embedding
spaces between different languages into the same
vector space, by using sentence-aligned bilingual
data. This gives consistency in tokens, POS and
dependency labels thanks to the availability of
Universal Dependencies (Nivre et al., 2016). Our
work is similar to these methods in using a neu-
ral network model for knowledge sharing between
different languages. However, ours is different in
the use of a neural stacking model, which respects
the distributional differences between Singlish and
English words. This empirically gives higher ac-
curacies for Singlish.

Neural stacking was previously used for
cross-annotation (Chen et al., 2016) and cross-
task (Zhang and Weiss, 2016) joint-modelling on
monolingual treebanks. To the best of our knowl-
edge, we are the first to employ it on cross-lingual

1733

feature transfer from resource-rich languages to
improve dependency parsing for low-resource lan-
guages. Besides these three dimensions in deal-
ing with heterogeneous text data, another popular
area of research is on the topic of domain adap-
tion, which is commonly associated with cross-
lingual problems (Nivre et al., 2007). While this
large strand of work is remotely related to ours,
we do not describe them in details.

Unsupervised rule-based approaches also offer
an competitive alternative for cross-lingual depen-
dency parsing (Naseem et al., 2010; Gillenwater
et al., 2010; Gelling et al., 2012; Søgaard, 2012a,b;
Martı́nez Alonso et al., 2017), and recently been
benchmarked for the Universal Dependencies for-
malism by exploiting the linguistic constraints in
the Universal Dependencies to improve the robust-
ness against error propagation and domain adap-
tion (Martı́nez Alonso et al., 2017). However, we
choose a data-driven supervised approach given
the relatively higher parsing accuracy owing to the
availability of resourceful treebanks from the Uni-
versal Dependencies project.

3 Singlish Dependency Treebank

3.1 Universal Dependencies for Singlish

Since English is the major genesis of Singlish,
we choose English as the source of lexical fea-
ture transfer to assist Singlish dependency pars-
ing. Universal Dependencies provides a set
of multilingual treebanks with cross-lingually
consistent dependency-based lexicalist annota-
tions, designed to aid development and evalua-
tion for cross-lingual systems, such as multilin-
gual parsers (Nivre et al., 2016). The current
version of Universal Dependencies comprises not
only major treebanks for 47 languages but also
their siblings for domain-specific corpora and di-
alects. With the aligned initiatives for creating
transfer-learning-friendly treebanks, we adopt the
Universal Dependencies protocol for constructing
the Singlish dependency treebank, both as a new
resource for the low-resource languages and to fa-
cilitate knowledge transfer from English.

On top of the general Universal Dependencies
guidelines, English-specific dependency relation
definitions including additional subtypes are em-
ployed as the default standards for annotating the
Singlish dependency treebank, unless augmented
or redefined when necessary. The latest English

UD English Singlish
Sentences Words Sentences Words

Train 12,543 204,586 900 8,221
Dev 2,002 25,148 150 1,384
Test 2,077 25,096 150 1,381

Table 1: Division of training, development, and
test sets for Singlish Treebank

corpus in Universal Dependencies v1.43 collec-
tion is constructed from the English Web Tree-
bank (Bies et al., 2012), comprising of web me-
dia texts, which potentially smooths the knowl-
edge transfer to our target Singlish texts in similar
domains. The statistics of this dataset, from which
we obtain English syntactic knowledge, is shown
in Table 1 and we refer to this corpus as UD-Eng.
This corpus uses 47 dependency relations and we
show below how to conform to the same standard
while adapting to unique Singlish grammars.

3.2 Challenges and Solutions for Annotating
Singlish

The deviations of Singlish from English come
from both the lexical and the grammatical lev-
els (Leimgruber, 2009, 2011), which bring chal-
lenges for analysis on Singlish using English NLP
tools. The former involves imported vocabular-
ies from the first languages of the local people
and the latter can be represented by a set of rela-
tively localized features which collectively form 5
unique grammars of Singlish according to Leim-
gruber (2011). We find empirically that all these
deviations can be accommodated by applying the
existing English dependency relation definitions
while ensuring consistency with the annotations
in other non-English UD treebanks, which are ex-
plained with examples as follows.

Imported vocabulary: Singlish borrows a
number of words and expressions from its non-
English origins (Leimgruber, 2009, 2011), such as
“Kiasu”, which originates from Hokkien meaning
“very anxious not to miss an opportunity”.4 These
imported terms often constitute out-of-vocabulary
(OOV) words with respect to a standard En-
glish treebank and result in difficulties for us-
ing English-trained tools on Singlish. All bor-
rowed words are annotated based on their usages
in Singlish, which mainly inherit the POS from
their genesis languages. Table A4 in Appendix A

3Only guidelines for Universal Dependencies v2 but not
the English corpus is available when this work is completed.

4Definition by the Oxford living Dictionaries for English.

1734

(1) Drive this car sure draw looks .

root

det
dobj

csubj

advmod dobj
punct

(2) SG where got attap chu ?

root
nsubj

advmod
dobj

compound

punct

(3) Inside tent can not see leh !

rootnmod
aux

neg discourse

punct

case

(4) U betting more downside from here ?

root

nsubj
dobj

amod case

nmod
punct

(5) Hope can close 22 today .

root
ccomp

aux dobj
nmod:tmod

punct

(6) Best to makan all , tio boh ?

root

mark
xcomp

dobj

punct

neg

discourse

punct

(7) I never get it free one !

root

advmod
nsubj

dobj
xcomp

discourse
punct

Figure 2: Unique Singlish grammars. (Arcs rep-
resent dependencies, pointing from the head to
the dependent, with the dependency relation label
right on top of the arc)

summarizes all borrowed terms in our treebank.
Topic-prominence: This type of sentences start

with establishing its topic, which often serves as
the default one that the rest of the sentence refers
to, and they typically employ an object-subject-
verb sentence structure (Leimgruber, 2009, 2011).
In particular, three subtypes of topic-prominence
are observed in the Singlish dependency treebank
and their annotations are addressed as follows:

First, topics framed as clausal arguments at the
beginning of the sentence are labeled as “csubj”
(clausal subject), as shown by “Drive this car” of
(1) in Figure 2, which is consistent with the depen-
dency relations in its Chinese translation.

Second, noun phrases used to modify the pred-
icate with the absence of a preposition is regarded
as a “nsubj” (nominal subject). Similarly, this is a
common order of words used in Chinese and one
example is the “SG” of (2) in Figure 2.

Third, prepositional phrases moved in front are
still treated as “nmod” (nominal modifier) of their

intended heads, following the exact definition but
as a Singlish-specific form of exemplification, as
shown by the “Inside tent” of (3) in Figure 2.

Although the “dislocated” (dislocated elements)
relation in UD is also used for preposed elements,
but it captures the ones “that do not fulfill the usual
core grammatical relations of a sentence” and “not
for a topic-marked noun that is also the subject of
the sentence” (Nivre et al., 2016). In these three
scenarios, the topic words or phrases are in rel-
atively closer grammatical relations to the predi-
cate, as subjects or modifiers.

Copula deletion: Imported from the corre-
sponding Chinese sentence structure, this cop-
ula verb is often optional and even deleted in
Singlish, which is one of its diagnostic character-
istics (Leimgruber, 2009, 2011). In UD-Eng stan-
dards, predicative “be” is the only verb used as a
copula and it often depends on its complement to
avoid copular head. This is explicitly designed in
UD to promote parallelism for zero-copula phe-
nomenon in languages such as Russian, Japanese,
and Arabic. The deleted copula and its “cop” (cop-
ula) arcs are simply ignored, as shown by (4) in
Figure 2.

NP deletion: Noun-phrase (NP) deletion of-
ten results in null subjects or objects. It may be
regarded as a branch of “Topic-prominence” but
is a distinctive feature of Singlish with relatively
high frequency of usage (Leimgruber, 2011). NP
deletion is also common in pronoun-dropping lan-
guages such as Spanish and Italian, where the
anaphora can be morphologically inferred. In one
example, “Vorrei ora entrare brevemente nel mer-
ito.”5, from the Italian treebank in UD, “Vorrei”
means “I would like to” and depends on the sen-
tence root, “entrare”, with the “aux”(auxiliary) re-
lation, where the subject “I” is absent but implic-
itly understood. Similarly, we do not recover such
relations since the deleted NP imposes negligible
alteration to the dependency tree, as exemplified
by (5) in Figure 2.

Inversion: Inversion in Singlish involves ei-
ther keeping the subject and verb in interrogative
sentences in the same order as in statements, or
tag questions in polar interrogatives (Leimgruber,
2011). The former also exists in non-English lan-
guages, such as Spanish and Italian, where the
subject can prepose the verb in questions (La-

5In English: (I) would now like to enter briefly on the
merit (of the discussion).

1735

housse and Lamiroy, 2012). This simply involves
a change of word orders and thus requires no spe-
cial treatments. On the other hand, tag questions
should be carefully analyzed in two scenarios.
One type is in the form of “isn’t it?” or “haven’t
you?”, which are dependents of the sentence root
with the “parataxis” relation.6 The other type is
exemplified as “right?”, and its Singlish equivalent
“tio boh?” (a transliteration from Hokkien) are la-
beled with the “discourse” (discourse element) re-
lation with respect to the sentence root. See exam-
ple (6) in Figure 2.

Discourse particles: Usage of clausal-final dis-
course particles, which originates from Hokkien
and Cantonese, is one of the most typical feature
of Singlish (Leimgruber, 2009, 2011; Lim, 2007).
All discourse particles that appear in our treebank
are summarized in Table A3 in Appendix A with
the imported vocabulary:. These words express
the tone of the sentence and thus have the “INTJ”
(interjection) POS tag and depend on the root of
the sentence or clause labeled with “discourse”, as
is shown by the “leh” of (3) in Figure 2. The word
“one” is a special instance of this type with the
sole purpose being a tone marker in Singlish but
not English, as shown by (7) in Figure 2.

3.3 Data Selection and Annotation

Data Source: Singlish is used in written form
mainly in social media and local Internet forums.
After comparison, we chose the SG Talk Fo-
rum7 as our data source due to its relative abun-
dance in Singlish contents. We crawled 84,459
posts using the Scrapy framework8 from pages
dated up to 25th December 2016, retaining sen-
tences of length between 5 and 50, which total
58,310. Sentences are reversely sorted accord-
ing to the log likelihood of the sentence given
by an English language model trained using the
KenLM toolkit (Heafield et al., 2013)9 normalized
by the sentence length, so that those most differ-
ent from standard English can be chosen. Among
the top 10,000 sentences, 1,977 sentences con-
tain unique Singlish vocabularies defined by The

6In UD: Relation between the main verb of a clause and
other sentential elements, such as sentential parenthetical
clause, or adjacent sentences without any explicit coordina-
tion or subordination.

7http://sgTalk.com
8https://scrapy.org/
9Trained using the afp eng and xin eng sources of English

Gigaword Fifth Edition (Gigaword).

Coxford Singlish Dictionary10, A Dictionary of
Singlish and Singapore English11, and the Singlish
Vocabulary Wikipedia page12. The average nor-
malized log likelihood of these 10,000 sentences
is -5.81, and the same measure for all sentences
in UD-Eng is -4.81. This means these sentences
with Singlish contents are 10 times less probable
expressed as standard English than the UD-Eng
contents in the web domain. This contrast indi-
cates the degree of lexical deviation of Singlish
from English. We chose 1,200 sentences from
the first 10,000. More than 70% of the selected
sentences are observed to consist of the Singlish
grammars and imported vocabularies described in
section 3.2. Thus the evaluations on this treebank
can reflect the performance of various POS taggers
and parsers on Singlish in general.

Annotation: The chosen texts are divided by
random selection into training, development, and
testing sets according to the proportion of sen-
tences in the training, development, and test di-
vision for UD-Eng, as summarized in Table 1.
The sentences are tokenized using the NLTK To-
kenizer,13 and then annotated using the Depen-
dency Viewer.14 In total, all 17 UD-Eng POS tags
and 41 out of the 47 UD-Eng dependency labels
are present in the Singlish dependency treebank.
Besides, 100 sentences are randomly selected and
double annotated by one of the coauthors, and the
inter-annotator agreement has a 97.76% accuracy
on POS tagging and a 93.44% UAS and a 89.63%
LAS for dependency parsing. A full summary of
the numbers of occurrences of each POS tag and
dependency label are included in Appendix A.

4 Part-of-Speech Tagging

In order to obtain automatically predicted POS
tags as features for a base English dependency
parser, we train a POS tagger for UD-Eng using
the baseline model of Chen et al. (2016), depicted
in Figure 3. The bi-LSTM networks with a CRF
layer (bi-LSTM-CRF) have shown state-of-the-art
performance by globally optimizing the tag se-
quence (Huang et al., 2015; Chen et al., 2016).

10http://72.5.72.93/html/lexec.php
11http://www.singlishdictionary.com
12https://en.wikipedia.org/wiki/

Singlish_vocabulary
13http://www.nltk.org/api/nltk.

tokenize.html
14http://nlp.nju.edu.cn/tanggc/tools/

DependencyViewer.exe

1736

x2 x1

…

h1

h1

h2

h2

xn

hn

hn

Tanh Tanh Tanh

Linear Linear Linear

CRF

…

…

…

…

…

t1 t2 tn …

Output
layer

Feature
layer

Input
layer

Figure 3: Base POS tagger

Based on this English POS tagging model, we
train a POS tagger for Singlish using the feature-
level neural stacking model of Chen et al. (2016).
Both the English and Singlish models consist of
an input layer, a feature layer, and an output layer.

4.1 Base Bi-LSTM-CRF POS Tagger

Input Layer: Each token is represented as a vec-
tor by concatenating a word embedding from a
lookup table with a weighted average of its char-
acter embeddings given by the attention model of
Bahdanau et al. (2014). Following Chen et al.
(2016), the input layer produces a dense represen-
tation for the current input token by concatenating
its word vector and the ones for its surrounding
context tokens in a window of finite size.

Feature Layer: This layer employs a bi-LSTM
network to encode the input into a sequence of hid-
den vectors that embody global contextual infor-
mation. Following Chen et al. (2016), we adopt
bi-LSTM with peephole connections (Graves and
Schmidhuber, 2005).

Output layer: This is a CRF layer to predict
the POS tags for the input words by maximizing
the conditional probability of the sequence of tags
given input sentence.

4.2 POS Tagger with Neural Stacking

We adopt the deep integration neural stacking
structure presented in Chen et al. (2016). As
shown in Figure 4, the distributed vector represen-
tation for the target word at the input layer of the
Singlish Tagger is augmented by concatenating the
emission vector produced by the English Tagger
with the original word and character-based embed-
dings, before applying the concatenation within a
context window in section 4.1. During training,
loss is back-propagated to all trainable parameters

…

h1

h1

h2

h2

hn

hn

Tanh Tanh Tanh

Singlish Tagger output layer

…

…

…

English Tagger feature layer

…

x2

Linear
x1

Linear

xn

Linear

x1 x2 xn

Output

layer

Feature

layer

Input

layer

Base English Tagger

Figure 4: POS tagger with neural stacking

System Accuracy
ENG-on-SIN 81.39%
Base-ICE-SIN 78.35%
Stack-ICE-SIN 89.50%

Table 2: POS tagging accuracies

in both the Singlish Tagger and the pre-trained fea-
ture layer of the base English Tagger. At test time,
the input sentence is fed to the integrated tagger
model as a whole for inference.

4.3 Results

We use the publicly available source code15

by Chen et al. (2016) to train a 1-layer bi-
LSTM-CRF based POS tagger on UD-Eng, using
50-dimension pre-trained SENNA word embed-
dings (Collobert et al., 2011). We set the hidden
layer size to 300, the initial learning rate for Ada-
grad (Duchi et al., 2011) to 0.01, the regularization
parameter λ to 10−6, and the dropout rate to 15%.
The tagger gives 94.84% accuracy on the UD-Eng
test set after 24 epochs, chosen according to de-
velopment tests, which is comparable to the state-
of-the-art accuracy of 95.17% reported by Plank
et al. (2016). We use these settings to perform 10-
fold jackknifing of POS tagging on the UD-Eng
training set, with an average accuracy of 95.60%.

Similarly, we trained a POS tagger using the
Singlish dependency treebank alone with pre-
trained word embeddings on The Singapore Com-
ponent of the International Corpus of English
(ICE-SIN) (Nihilani, 1992; Ooi, 1997), which
consists of both spoken and written texts. How-
ever, due to limited amount of training data, the

15https://github.com/chenhongshen/
NNHetSeq

1737

Output

layer

Input

layer

Feature

layer

x2x1

…

xn

…
…

…

…

…
……

…

ℎ1
1

ℎ1
1

ℎ𝑚
1

ℎ𝑚
1

ℎ𝑚
2

ℎ𝑚
2

ℎ1
2

ℎ1
2

ℎ𝑚
𝑛

ℎ𝑚
𝑛

ℎ1
𝑛

ℎ1
𝑛

MLPd MLPh MLPd MLPh MLPd MLPh

1
…

1

1
… … …

=

…

Hd
+ HhU +1 w S

Figure 5: Base parser

tagging accuracy is not satisfactory even with a
larger dropout rate to avoid over-fitting. In con-
trast, the neural stacking structure on top of the
English base model trained on UD-Eng achieves
a POS tagging accuracy of 89.50%16, which cor-
responds to a 51.50% relative error reduction over
the baseline Singlish model, as shown in Table 2.
We use this for 10-fold jackknifing on Singlish
parsing training data, and tagging the Singlish de-
velopment and test data.

5 Dependency Parsing

We adopt the Dozat and Manning (2017) parser17

as our base model, as displayed in Figure 5, and
apply neural stacking to achieve improvements
over the baseline parser. Both the base and neural
stacking models consist of an input layer, a feature
layer, and an output layer.

5.1 Base Parser with Bi-affine Attentions
Input Layer: This layer encodes the current input
word by concatenating a pre-trained word embed-
ding with a trainable word embedding and POS
tag embedding from the respective lookup tables.

Feature Layer: The two recurrent vectors pro-
duced by the multi-layer bi-LSTM network from
each input vector are concatenated and mapped to
multiple feature vectors in lower-dimension space
by a set of parallel multilayer perceptron (MLP)

16We empirically find that using ICE-SIN embeddings in
neural stacking model performs better than using English
SENNA embeddings. Similar findings are found for the
parser, of which more details are given in section 6.

17https://github.com/tdozat/Parser

…

…

…

…

…

…

…

ℎ𝑚
𝑖

ℎ𝑚
𝑖

ℎ1
𝑖

ℎ1
𝑖

ℎ𝑚
𝑗

ℎ𝑚
𝑗

ℎ1
𝑗

ℎ1
𝑗

MLPd MLPh MLPd MLPh

English Parser Bi-LSTM

xi

ℎ𝑚
𝑖

ℎ𝑚
𝑖

xi

…

MLPd MLPh MLPd MLPh

…

…

…

…

…

…

…

…

Singlish Parser output layer

+ +… …

…… …

xj

ℎ𝑚
𝑗

ℎ𝑚
𝑗

+ +

……

xj

…… …

Output

layer

Input

layer

Feature

layer

Base English Parser

Figure 6: Parser with neural stacking

layers. Following Dozat and Manning (2017), we
adopt Cif-LSTM cells (Greff et al., 2016).

Output Layer: This layer applies biaffine
transformation on the feature vectors to calculate
the score of the directed arcs between every pair
of words. The inferred trees for input sentence
are formed by choosing the head with the high-
est score for each word and a cross-entropy loss is
calculated to update the model parameters.

5.2 Parser with Neural Stacking

Inspired by the idea of feature-level neural stack-
ing (Chen et al., 2016; Zhang and Weiss, 2016),
we concatenate the pre-trained word embedding,
trainable word and tag embeddings, with the two
recurrent state vectors at the last bi-LSTM layer
of the English Tagger as the input vector for each
target word. In order to further preserve syntac-
tic knowledge retained by the English Tagger, the
feature vectors from its MLP layer is added to the
ones produced by the Singlish Parser, as illustrated
in Figure 6, and the scoring tensor of the Singlish
Parser is initialized with the one from the trained
English Tagger. Loss is back-propagated by re-
versely traversing all forward paths to all trainable
parameter for training and the whole model is used
collectively for inference.

6 Experiments

6.1 Experimental Settings

We train an English parser on UD-Eng with the de-
fault model settings in Dozat and Manning (2017).

1738

Sentences Words Vocabulary
GloVe6B N.A. 6000m 400,000
Giga100M 57,000 1.26m 54,554
ICE-SIN 87,084 1.26m 40,532

Table 3: Comparison of the scale of sources for
training word embeddings

Trained on System UAS LAS
English ENG-on-SIN 75.89 65.62

Baseline 75.98 66.55
Singlish Base-Giga100M 77.67 67.23

Base-GloVe6B 78.18 68.51
Base-ICE-SIN 79.29 69.27

Both ENG-plus-SIN 82.43 75.64
Stack-ICE-SIN 84.47 77.76

Table 4: Dependency parser performances

It achieves an UAS of 88.83% and a LAS of
85.20%, which are close to the state-of-the-art
85.90% LAS on UD-Eng reported by Ammar et al.
(2016), and the main difference is caused by us not
using fine-grained POS tags. We apply the same
settings for a baseline Singlish parser. We attempt
to choose a better configuration of the number of
bi-LSTM layers and the hidden dimension based
on the development set performance, but the de-
fault settings turn out to perform the best. Thus we
stick to all default hyper-parameters in Dozat and
Manning (2017) for training the Singlish parsers.

We experimented with different word embed-
dings, as with the raw text sources summarized in
Table 3 and further described in section 6.2. When
using the neural stacking model, we fix the model
configuration for the base English parser model
and choose the size of the hidden vector and the
number of bi-LSTM layers stacked on top based
on the performance on the development set. It
turns out that a 1-layer bi-LSTM with 900 hid-
den dimension performs the best, where the big-
ger hidden layer accommodates the elongated in-
put vector to the stacked bi-LSTM and the fewer
number of recurrent layers avoids over-fitting on
the small Singlish dependency treebank, given the
deep bi-LSTM English parser network at the bot-
tom. The evaluation of the neural stacking model
is further described in section 6.3.

System UAS LAS
Base-ICE-SIN 77.00 66.69
Stack-ICE-SIN 82.43 73.96

Table 5: Dependency parser performances by the
5-cross-fold validation

6.2 Investigating Distributed Lexical
Characteristics

In order to learn characteristics of distributed
lexical semantics for Singlish, we compare per-
formances of the Singlish dependency parser
using several sets of pre-trained word embed-
dings: GloVe6B, large-scale English word em-
beddings18; ICE-SIN, Singlish word embeddings
trained using GloVe (Pennington et al., 2014)
on the ICE-SIN (Nihilani, 1992; Ooi, 1997) cor-
pus; Giga100M, a small-scale English word em-
beddings trained using GloVe (Pennington et al.,
2014) with the same settings on a comparable size
of English data randomly selected from the En-
glish Gigaword Fifth Edition for a fair comparison
with ICE-SIN embeddings.

First, the English Giga100M embeddings
marginally improve the Singlish parser from the
baseline without pre-trained embeddings and also
using the UD-Eng parser directly on Singlish, rep-
resented as “ENG-on-SIN” in Table 4. With much
more English lexical semantics being fed to the
Singlish parser using the English GloVe6B em-
beddings, further enhancement is achieved. Nev-
ertheless, the Singlish ICE-SIN embeddings lead
to even more improvement, with 13.78% rela-
tive error reduction, compared with 7.04% us-
ing the English Giga100M embeddings and 9.16%
using the English GloVe6B embeddings, despite
the huge difference in sizes in the latter case.
This demonstrates the distributional differences
between Singlish and English tokens, even though
they share a large vocabulary. More detailed com-
parison is described in section 6.4.

6.3 Knowledge Transfer Using Neural
Stacking

We train a parser with neural stacking and Singlish
ICE-SIN embeddings, which achieves the best
performance among all the models, with a UAS
of 84.47%, represented as “Stack-ICE-SIN” in Ta-
ble 4, which corresponds to 25.01% relative error
reduction compared to the baseline. This demon-
strates that knowledge from English can be suc-
cessfully incorporated to boost the Singlish parser.
To further evaluate the effectiveness of the neural
stacking model, we also trained a base model with
the combination of UD-Eng and the Singlish tree-

18Trained with Wikipedia 2014 the Gigaword. Down-
loadable from http://nlp.stanford.edu/data/
glove.6B.zip

1739

Topic Prominence Copula Deletion NP Deletion Discourse Particles Others
Sentences 15 19 21 51 67

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
ENG-on-SIN 78.15 62.96 66.91 56.83 72.57 64.00 70.00 59.00 78.92 68.47
Base-Giga100M 77.78 68.52 71.94 61.15 76.57 69.14 85.25 77.25 73.13 60.63
Base-ICE 81.48 72.22 74.82 63.31 80.00 73.71 85.25 77.75 75.56 64.37
Stack-ICE 87.04 76.85 77.70 71.22 80.00 75.43 88.50 83.75 84.14 76.49

Table 6: Error analysis with respect to grammar types

bank, represented as “ENG-plus-SIN” in Table 4,
which is still outperformed by the neural stacking
model. Besides, we performed a 5-cross-fold val-
idation for the base parser with Singlish ICE-SIN
embeddings and the parser using neural stacking,
where half of the held-out fold is used as the devel-
opment set. The average UAS and LAS across the
5 folds shown in Table 5 and the relative error re-
duction on average 23.61% suggest that the overall
improvement from knowledge transfer using neu-
ral stacking remains consistent. This significant
improvement is further explained in section 6.4.

6.4 Improvements over Grammar Types

To analyze the sources of improvements for
Singlish parsing using different model configura-
tions, we conduct error analysis over 5 syntactic
categories19, including 4 types of grammars men-
tioned in section 3.220, and 1 for all other cases,
including sentences containing imported vocabu-
laries but expressed in basic English syntax. The
number of sentences and the results in each group
of the test set are shown in Table 6.

The neural stacking model leads to the biggest
improvement over all categories except for a tie
UAS performance on “NP Deletion” cases, which
explains the significant overall improvement.

Comparing the base model with ICE-SIN em-
beddings with the base parser trained on UD-Eng,
which contain syntactic and semantic knowledge
in Singlish and English, respectively, the former
outperforms the latter on all 4 types of Singlish
grammars but not for the remaining samples. This
suggests that the base English parser mainly con-
tributes to analyzing basic English syntax, while
the base Singlish parser models unique Singlish
grammars better.

Similar trends are also observed on the base
model using the English Giga100M embeddings,
but the overall performances are not as good as

19Multiple labels are allowed for one sentence.
20The “Inversion” type of grammar is not analyzed since

there is only 1 such sentence in the test set.

using ICE-SIN embeddings, especially over ba-
sic English syntax where it undermines the per-
formance to a greater extent. This suggests that
only limited English distributed lexical semantic
information can be integrated to help modelling
Singlish syntactic knowledge due to the differ-
ences in distributed lexical semantics.

7 Conclusion

We have investigated dependency parsing for
Singlish, an important English-based creole lan-
guage, through annotations of a Singlish depen-
dency treebank with 10,986 words and building
an enhanced parser by leveraging on knowledge
transferred from a 20-times-bigger English tree-
bank of Universal Dependencies. We demonstrate
the effectiveness of using neural stacking for fea-
ture transfer by boosting the Singlish dependency
parsing performance to from UAS 79.29% to UAS
84.47%, with a 25.01% relative error reduction
over the parser with all available Singlish re-
sources. We release the annotated Singlish depen-
dency treebank, the trained model and the source
code for the parser with free public access. Pos-
sible future work include expanding the investiga-
tion to other regional languages such as Malay and
Indonesian.

Acknowledgments

Yue Zhang is the corresponding author. This
research is supported by IGDSS1603031 from
Temasek Laboratories@SUTD. We appreciate
anonymous reviewers for their insightful com-
ments, which helped to improve the paper, and
Zhiyang Teng, Jiangming Liu, Yupeng Liu, and
Enrico Santus for their constructive discussions.

1740

References

Waleed Ammar, George Mulcaire, Miguel Balles-
teros, Chris Dyer, and Noah Smith. 2016. Many
languages, one parser. Transactions of the As-
sociation of Computational Linguistics 4:431–444.
http://aclweb.org/anthology/Q16-1031.

Daniel Andor, Chris Alberti, David Weiss, Aliak-
sei Severyn, Alessandro Presta, Kuzman Ganchev,
Slav Petrov, and Michael Collins. 2016. Glob-
ally normalized transition-based neural networks.
In Proceedings of the ACL 2016. Association
for Computational Linguistics, pages 2442–2452.
https://doi.org/10.18653/v1/P16-1231.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
abs/1409.0473. http://arxiv.org/abs/1409.0473.

Miguel Ballesteros, Chris Dyer, and A. Noah Smith.
2015. Improved transition-based parsing by mod-
eling characters instead of words with lstms. In
Proceedings of the EMNLP 2015. Association
for Computational Linguistics, pages 349–359.
https://doi.org/10.18653/v1/D15-1041.

Ann Bies, Justin Mott, Colin Warner, and Seth Kulick.
2012. English web treebank ldc2012t13 .

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the EMNLP 2014. Associ-
ation for Computational Linguistics, pages 740–750.
https://doi.org/10.3115/v1/D14-1082.

Hongshen Chen, Yue Zhang, and Qun Liu. 2016.
Neural network for heterogeneous annotations. In
Proceedings of the EMNLP 2016. Association
for Computational Linguistics, pages 731–741.
http://aclweb.org/anthology/D16-1070.

Shay Cohen and A. Noah Smith. 2009. Shared
logistic normal distributions for soft parameter
tying in unsupervised grammar induction. In
Proceedings of the NAACL-HLT 2009. Associa-
tion for Computational Linguistics, pages 74–82.
http://aclweb.org/anthology/N09-1009.

Ronan Collobert, Jason Weston, Léon Bottou,
Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. 2011. Natural language pro-
cessing (almost) from scratch. Journal of
Machine Learning Research 12:2493–2537.
http://dl.acm.org/citation.cfm?id=2078186.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In International Conference on Learn-
ing Representations 2017. volume abs/1611.01734.
http://arxiv.org/abs/1611.01734.

John C. Duchi, Elad Hazan, and Yoram Singer.
2011. Adaptive subgradient methods for on-
line learning and stochastic optimization. Jour-
nal of Machine Learning Research 12:2121–2159.
http://dl.acm.org/citation.cfm?id=2021068.

Long Duong, Trevor Cohn, Steven Bird, and Paul
Cook. 2015. A neural network model for
low-resource universal dependency parsing. In
Proceedings of the EMNLP 2015. Association
for Computational Linguistics, pages 339–348.
https://doi.org/10.18653/v1/D15-1040.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and A. Noah Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the ACL-IJCNLP
2015. Association for Computational Linguistics,
pages 334–343. https://doi.org/10.3115/v1/P15-
1033.

Kuzman Ganchev, Jennifer Gillenwater, and Ben
Taskar. 2009. Dependency grammar induc-
tion via bitext projection constraints. In Pro-
ceedings of the ACL-IJCNLP 2009. Association
for Computational Linguistics, pages 369–377.
http://aclweb.org/anthology/P09-1042.

Douwe Gelling, Trevor Cohn, Phil Blunsom, and Joao
Graca. 2012. The pascal challenge on grammar in-
duction. In Proceedings of the NAACL-HLT Work-
shop on the Induction of Linguistic Structure. Asso-
ciation for Computational Linguistics, pages 64–80.
http://www.aclweb.org/anthology/W12-1909.

Jennifer Gillenwater, Kuzman Ganchev, João Graça,
Fernando Pereira, and Ben Taskar. 2010. Spar-
sity in dependency grammar induction. In Pro-
ceedings of the ACL 2010 (Short Papers). Associa-
tion for Computational Linguistics, pages 194–199.
http://www.aclweb.org/anthology/P10-2036.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works 18(5):602–610.

K. Greff, R. K. Srivastava, J. Koutnk, B. R. Ste-
unebrink, and J. Schmidhuber. 2016. Lstm: A
search space odyssey. IEEE Transactions on Neu-
ral Networks and Learning Systems PP(99):1–11.
https://doi.org/10.1109/TNNLS.2016.2582924.

Jiang Guo, Wanxiang Che, David Yarowsky, Haifeng
Wang, and Ting Liu. 2015. Cross-lingual depen-
dency parsing based on distributed representations.
In Proceedings of the ACL-IJCNLP 2015. Associ-
ation for Computational Linguistics, pages 1234–
1244. https://doi.org/10.3115/v1/P15-1119.

Shinichi Harada. 2009. The roles of singapore standard
english and singlish. Information Research 40:70–
82.

1741

Kenneth Heafield, Ivan Pouzyrevsky, H. Jonathan
Clark, and Philipp Koehn. 2013. Scalable modi-
fied kneser-ney language model estimation. In Pro-
ceedings of the ACL 2013 (Short Papers). Associa-
tion for Computational Linguistics, pages 690–696.
http://aclweb.org/anthology/P13-2121.

Sanjika Hewavitharana, Nguyen Bach, Qin Gao,
Vamshi Ambati, and Stephan Vogel. 2011. Pro-
ceedings of the Sixth Workshop on Statistical Ma-
chine Translation, Association for Computational
Linguistics, chapter CMU Haitian Creole-English
Translation System for WMT 2011, pages 386–392.
http://aclweb.org/anthology/W11-2146.

Chang Hu, Philip Resnik, Yakov Kronrod, Vladimir
Eidelman, Olivia Buzek, and B. Benjamin Bed-
erson. 2011. Proceedings of the Sixth Workshop
on Statistical Machine Translation, Association for
Computational Linguistics, chapter The Value of
Monolingual Crowdsourcing in a Real-World Trans-
lation Scenario: Simulation using Haitian Cre-
ole Emergency SMS Messages, pages 399–404.
http://aclweb.org/anthology/W11-2148.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence
tagging. arXiv preprint abs/1508.01991.
http://arxiv.org/abs/1508.01991.

Rebecca Hwa, Philip Resnik, Amy Weinberg, Clara
Cabezas, and Okan Kolak. 2005. Bootstrap-
ping parsers via syntactic projection across paral-
lel texts. Natural Language Engineering 11(3):311–
325. https://doi.org/10.1017/S1351324905003840.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional lstm feature representations. Transactions of
the Association of Computational Linguistics 4:313–
327. http://aclweb.org/anthology/Q16-1023.

Karen Lahousse and Béatrice Lamiroy. 2012. Word or-
der in french, spanish and italian: A grammatical-
ization account. Folia Linguistica 46(2):387–415.

Jakob R. E. Leimgruber. 2009. Modelling variation in
Singapore English. Ph.D. thesis, Oxford University.

Jakob R. E. Leimgruber. 2011. Singapore english.
Language and Linguistics Compass 5(1):47–62.
https://doi.org/10.1111/j.1749-818X.2010.00262.x.

Jiwei Li, Thang Luong, Dan Jurafsky, and Eduard
Hovy. 2015. When are tree structures neces-
sary for deep learning of representations? In
Proceedings of the EMNLP 2015. Association
for Computational Linguistics, pages 2304–2314.
https://doi.org/10.18653/v1/D15-1278.

Lisa Lim. 2007. Mergers and acquisitions: on the ages
and origins of singapore english particles. World
Englishes 26(4):446–473.

Héctor Martı́nez Alonso, Željko Agić, Barbara
Plank, and Anders Søgaard. 2017. Parsing
universal dependencies without training. In
Proceedings of the EACL 2017. Association
for Computational Linguistics, pages 230–240.
http://www.aclweb.org/anthology/E17-1022.

Ryan McDonald, Slav Petrov, and Keith Hall. 2011.
Multi-source transfer of delexicalized dependency
parsers. In Proceedings of the EMNLP 2011. Asso-
ciation for Computational Linguistics, pages 62–72.
http://aclweb.org/anthology/D11-1006.

Ho Mian-Lian and John T. Platt. 1993. Dynamics of
a contact continuum: Singaporean English. Oxford
University Press, USA.

Makoto Miwa and Mohit Bansal. 2016. End-to-end re-
lation extraction using lstms on sequences and tree
structures. In Proceedings of the ACL 2016. Asso-
ciation for Computational Linguistics, pages 1105–
1116. https://doi.org/10.18653/v1/P16-1105.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In Proceedings of the ACL 2012. Associa-
tion for Computational Linguistics, pages 629–637.
http://aclweb.org/anthology/P12-1066.

Tahira Naseem, Harr Chen, Regina Barzilay, and Mark
Johnson. 2010. Using universal linguistic knowl-
edge to guide grammar induction. In Proceed-
ings of the EMNLP 2010. Association for Compu-
tational Linguistics, Cambridge, MA, pages 1234–
1244. http://www.aclweb.org/anthology/D10-1120.

Paroo Nihilani. 1992. The international computerized
corpus of english. Words in a cultural context. Sin-
gapore: UniPress pages 84–88.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajic, Christopher D. Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal dependencies v1: A multilingual
treebank collection. In Proceedings of the LREC
2016. European Language Resources Association.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan Mc-
Donald, Jens Nilsson, Sebastian Riedel, and Deniz
Yuret. 2007. The CoNLL 2007 shared task on de-
pendency parsing. In Proceedings of the CoNLL
Shared Task Session of EMNLP-CoNLL 2007. As-
sociation for Computational Linguistics, pages 915–
932. http://www.aclweb.org/anthology/D/D07/D07-
1096.

Vincent B Y Ooi. 1997. Analysing the Singa-
pore ICE corpus for lexicographic evidence.
ENGLISH LANGUAGE & LITERATURE.
http://scholarbank.nus.edu.sg/handle/10635/133118.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the EMNLP 2014.
Association for Computational Linguistics, pages
1532–1543. https://doi.org/10.3115/v1/D14-1162.

1742

Barbara Plank, Anders Søgaard, and Yoav Gold-
berg. 2016. Multilingual part-of-speech tag-
ging with bidirectional long short-term mem-
ory models and auxiliary loss. In Proceed-
ings of the ACL 2016 (Short Papers). Associa-
tion for Computational Linguistics, pages 412–418.
https://doi.org/10.18653/v1/P16-2067.

Chun-Wei Seah, Hai Leong Chieu, Kian Ming Adam
Chai, Loo-Nin Teow, and Lee Wei Yeong. 2015.
Troll detection by domain-adapting sentiment anal-
ysis. In 18th International Conference on Informa-
tion Fusion (Fusion) 2015. IEEE, pages 792–799.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, D. Christopher Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the EMNLP 2013. Asso-
ciation for Computational Linguistics, pages 1631–
1642. http://aclweb.org/anthology/D13-1170.

Anders Søgaard. 2012a. Two baselines for un-
supervised dependency parsing. In Proceed-
ings of the NAACL-HLT Workshop on the
Induction of Linguistic Structure. Association
for Computational Linguistics, pages 81–83.
http://www.aclweb.org/anthology/W12-1910.

Anders Søgaard. 2012b. Unsupervised de-
pendency parsing without training. Nat-
ural Language Engineering 18(2):187203.
https://doi.org/10.1017/S1351324912000022.

Oscar Täckström, Ryan McDonald, and Jakob Uszko-
reit. 2012. Cross-lingual word clusters for di-
rect transfer of linguistic structure. In Pro-
ceedings of the NAACL-HLT 2012. Association
for Computational Linguistics, pages 477–487.
http://aclweb.org/anthology/N12-1052.

David Weiss, Chris Alberti, Michael Collins, and
Slav Petrov. 2015. Structured training for neu-
ral network transition-based parsing. In Pro-
ceedings of the ACL-IJCNLP 2015. Association
for Computational Linguistics, pages 323–333.
https://doi.org/10.3115/v1/P15-1032.

Yuan Zhang and Regina Barzilay. 2015. Hierarchi-
cal low-rank tensors for multilingual transfer pars-
ing. In Proceedings of the EMNLP 2015. Associ-
ation for Computational Linguistics, pages 1857–
1867. https://doi.org/10.18653/v1/D15-1213.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proceedings of the 54th ACL. Associ-
ation for Computational Linguistics, pages 1557–
1566. https://doi.org/10.18653/v1/P16-1147.

Hao Zhou, Yue Zhang, Shujian Huang, and Jiajun
Chen. 2015. A neural probabilistic structured-
prediction model for transition-based dependency
parsing. In Proceedings of the ACL-IJCNLP 2015.
Association for Computational Linguistics, pages
1213–1222. https://doi.org/10.3115/v1/P15-1117.

A Statistics of Singlish Dependency
Treebank

POS Tags
ADJ 782 INTJ 556 PUNCT 1604
ADP 490 NOUN 1779 SCONJ 126
ADV 941 NUM 153 SYM 11
AUX 429 PART 355 VERB 1704
CONJ 167 PRON 682 X 10
DET 387 PROPN 810

Table A1: Statistics of POS tags

Dependency labels
acl 37 dobj 612
acl:relcl 29 expl 10
advcl 194 iobj 15
advmod 859 list 10
appos 18 mwe 105
amod 423 name 117
aux 377 neg 261
auxpass 47 nmod 398
case 463 nmod:npmod 26
cc 167 nmod:poss 153
ccomp 138 nmod:tmod 81
compound 420 nsubj 1005
compound:prt 30 nsubjpass 34
conj 238 nummod 94
cop 152 mark 275
csubj 30 parataxis 241
det 304 punct 1607
det:predet 7 remnant 17
discourse 552 vocative 41
dislocated 2 xcomp 190

Table A2: Statistics of dependency labels

ah aiyah ba
hah / har / huh hiak hiak hiak hor
huat la / lah lau
leh loh / lor ma / mah
wahlow / wah lau wa / wah ya ya
walaneh / wah lan eh

Table A3: List of discourse particles

1743

A-B
act blur ah beng ah ne
angpow arrowed ang ku kueh
angmoh/ang moh ahpek / ah peks atas
boh/bo boho jiak boh pian
buay lin chu buen kuey
C
chai tow kway chao ah beng chap chye png
char kway teow chee cheong fun / che cheong fen
cheesepie cheong / chiong chiam / cham
chiak liao bee / jiao liao bee chio
ching chong chio bu / chiobu chui
chop chop chow-angmoh chwee kueh
D-F
dey diam diam die kock standing
die pain pain dun eat grass
flip prata fried beehoon
G
gahmen / garment gam geylang
gone case gong kia goreng pisang
gui
H-J
hai si lang heng hiong
hoot Hosay / ho say how lian
jepun kia / jepun kias
jialat / jia lak / jia lat
K
ka kaki kong kaki song
kancheong kateks kautim
kay kiang kayu kee chia
kee siao kelong kena / kana
kiam kiasu ki seow
kkj kong si mi kopi
kopi lui kopi-o kosong
koyok ku ku bird
L
lagi lai liao laksa
lao jio kong lao sai lau chwee nua
liao / ler like dat / like that
lim peh lobang
M
mahjong kaki makan masak masak
mati mee mee pok
mee rebus mee siam mee sua
mei mei
N-S
nasi lemak pang sai piak
sabo sai same same
sia sianz / sian sia suay
sibeh siew dai siew siew dai
simi taisee soon kuey sotong
suay / suey swee
T
tahan tak pakai te te kee
tong tua tikopeh
tio tio pian/dio pian
talk cock / talk cock sing song
U-Z
umm zai up lorry / up one’s lorry
xiao zhun / buay zhun

Table A4: List of imported vocabularies

1744

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1745–1755
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1160

Generic Axiomatization of Families of Noncrossing Graphs in
Dependency Parsing

Anssi Yli-Jyrä
University of Helsinki, Finland

anssi.yli-jyra@helsinki.fi

Carlos Gómez-Rodrı́guez
Universidade da Coruña, Spain
carlos.gomez@udc.es

Abstract

We present a simple encoding for unla-
beled noncrossing graphs and show how
its latent counterpart helps us to repre-
sent several families of directed and undi-
rected graphs used in syntactic and seman-
tic parsing of natural language as context-
free languages. The families are separated
purely on the basis of forbidden patterns
in latent encoding, eliminating the need to
differentiate the families of non-crossing
graphs in inference algorithms: one algo-
rithm works for all when the search space
can be controlled in parser input.

1 Introduction

Dependency parsing has received wide attention in
recent years, as accurate and efficient dependency
parsers have appeared that are applicable to many
languages. Traditionally, dependency parsers have
produced syntactic analyses in tree form, includ-
ing exact inference algorithms that search for max-
imum projective trees (Eisner and Satta, 1999) and
maximum spanning trees (McDonald et al., 2005)
in weighted digraphs, as well as greedy and beam-
search approaches that forgo exact search for extra
efficiency (Zhang and Nivre, 2011).

Recently, there has been growing interest in pro-
viding a richer analysis of natural language by go-
ing beyond trees. In semantic dependency parsing
(Oepen et al., 2015; Kuhlmann and Oepen, 2016),
the desired syntactic representations can have in-
degree greater than 1 (re-entrancy), suggesting the
search for maximum acyclic subgraphs (Schluter,
2014, 2015). As this inference task is intractable
(Guruswami et al., 2011), noncrossing digraphs
have been studied instead, e.g. by Kuhlmann and
Johnsson (2015) who provide a O(n3) parser for
maximum noncrossing acyclic subgraphs.

Yli-Jyrä (2005) studied how to axiomatize de-
pendency trees as a special case of noncrossing di-
graphs. This gave rise to a new homomorphic rep-
resentation of context-free languages that proves
the classical Chomsky and Schützenberger theo-
rem using a quite different internal language. In
this language, the brackets indicate arcs in a de-
pendency tree in a way that is reminiscent to en-
coding schemes used earlier by Greibach (1973)
and Oflazer (2003). Cubic-time parsing algo-
rithms that are incidentally or intentionally appli-
cable to this kind of homomorphic representations
have been considered, e.g., by Nederhof and Satta
(2003), Hulden (2011), and Yli-Jyrä (2012).

Extending these insights to arbitrary noncross-
ing digraphs, or to relevant families of them, is far
from obvious. In this paper, we develop (1) a lin-
ear encoding supporting general noncrossing di-
graphs, and (2) show that the encoded noncrossing
digraphs form a context-free language. We then
give it (3) two homomorphic, nonderivative repre-
sentations and use the latent local features of the
latter to characterize various families of digraphs.

Apart from the obvious relevance to the theory
of context-free languages, this contribution has the
practical potential to enable (4) generic context-
free parsers that produce different families of non-
crossing graphs with the same set of inference
rules while the search space in each case is re-
stricted with lexical features and the grammar.

Outline After some background on graphs and
parsing as inference (Section 2), we use an on-
tology of digraphs to illustrate natural families
of noncrossing digraphs in Section 3. We then
develop, in Section 4, the first latent context-
free representation for the set of noncrossing di-
graphs, then extended in Section 5 with additional
latent states supporting our finite-state axiomati-
zation of digraph properties, and allowing us to

1745

https://doi.org/10.18653/v1/P17-1160

control the search space using the lexicon. The
experiments in Section 6 cross-validate our ax-
ioms and sample the growth of the constrained
search spaces. Section 7 outlines the applications
for practical parsing, and Section 8 concludes.

2 Background

Graphs and Digraphs A graph is a pair (V,E)
where V is a finite set of vertices and E ⊆
{{u,v} ⊆ V} is a set of edges. A sequence
of edges of the form {v0,v1}, {v1,v2}, ...,
{vm−1,vm}, with no repetitions in v1, ...,vm, is a
path between vertices v0 and vm and empty if m =
0. A graph is a forest if no vertex has a non-empty
path to itself and connected if all pairs of vertices
have a path. A tree is a connected forest.

A digraph is a pair (V,A) where A ⊆ V ×V is
a set of arcs u→ v, thus a directed graph. Its un-
derlying graph, (V,EA), has edges EA = {{u,v} |
(u,v) ∈ A}. A sequence of arcs v0 → v1,v1 →
v2, ...,vm−1→ vm, with no repetitions in v1, . . . ,vm,
is a directed path, and empty if m = 0.

A digraph without self-loops v→ v is loop-free
(property DIGRAPHLF). We will focus on loop-
free digraphs unless otherwise specified, and de-
note them just by DIGRAPH for brevity. A di-
graph is d-acyclic (ACYCD), aka a dag if no ver-
tex has a non-empty directed path to itself, u-
acyclic (ACYCU) aka a m(ixed)-forest if its under-
lying graph is a forest, and weakly connected (w.c.,
CONNW) if its underlying graph is connected.

Dependency Parsing The complete digraph
GS(V,A) of a sentence S = x1...xn consists of ver-
tices V = {1, ...,n} and all possible arcs A = V ×
V −{(i, i)}. The vertex i ∈ V corresponds to the
word xi and the arc i → j ∈ A corresponds to a
possible dependency between the words xi and x j.

The task of dependency parsing is to find a con-
strained subgraph G′S(V,A

′) of the complete di-
graph GS of the sentence. The standard solution
is a rooted directed tree called a dependency tree
or a dag called a dependency graph.

Constrained Inference In arc-factored parsing
(McDonald et al., 2005), each possible arc i→ j is
equipped with a positive weight wi j, usually com-
puted as a weighted sum wi j = w ·Φ(S, i → j)
where w is a weight vector and Φ(x, i→ j) a fea-
ture vector extracted from the sentence x, con-
sidering the dependency relation from word xi to
word x j. Parsing then consists in finding an arc

subset A′ ⊆ A that gives us a constrained sub-
graph (V,A′) ∈ Constrained(V,A) of the complete
digraph (V,A) with maximum sum of arc weights:

(V,A′) = argmax
(V,A′) ∈ Constrained(V,A)

∑
i→ j∈A′

wi, j.

The complexity of this inference task depends on
the constraints imposed on the subgraph. Un-
der no constraints, we simply set A′ = A. Infer-
ence over dags is intractable (Guruswami et al.,
2011). Efficient solutions are known for projective
trees (Eisner, 1996), various classes of mildly non-
projective trees (Gómez-Rodrı́guez, 2016), unre-
stricted spanning trees (McDonald et al., 2005),
and both unrestricted and weakly connected non-
crossing dags (Kuhlmann and Johnsson, 2015).

Parsimony Semantic parsers must be able to
produce more than projective trees because the
share of projective trees is pretty low (under 3%)
in semantic graph banks (Kuhlmann and Johnsson,
2015). However, if we know that the parses have
some restrictions, it is better to use them to restrict
the search space as much as possible.

There are two strategies for reducing the search
space. One is to develop a specialized infer-
ence algorithm for a particular natural language or
family of dags, such as weakly connected graphs
(Kuhlmann and Johnsson, 2015). The other strat-
egy is to control the local complexity of digraphs
through lexical categories (Baldridge and Kruijff,
2003) or equivalent mechanisms. This strategy
produces a more sensitive model of the language,
but requires a principled insight on how the com-
plexity of digraphs can be characterized.

3 Constraints on the Search Space

We will now present a classification of digraphs on
the basis of their formal properties.

The Noncrossing Property For convenience,
graphs and digraphs may be ordered like in a
complete digraph of a sentence. Two edges
{i, j}, {k, l} in an ordered graph or arcs i →
j,k → l in an ordered digraph are said to be
crossing if min{i, j} < min{k, l} < max{i, j} <
max{k, l}. A graph or digraph is noncrossing if
it has no crossing edges or arcs. Noncrossing
(di)graphs (NC-(DI)GRAPH) are the largest pos-
sible (di)graphs that can be drawn on a circle with-
out crossing arcs. In the following, we assume that
all digraphs and graphs are noncrossing.

1746

An arc x→ y is (properly) covered by an arc z→
t if ({x,y} 6= {z, t}) and min{z, t} ≤ min{x,y} ≤
max{x,y} ≤max{z, t}.

Ontology Fig. 1 presents an ontology of such
families of loop-free noncrossing digraphs that
can be distinguished by digraphs with 5 vertices.

In the digraph ontology, a multitree aka man-
grove is a dag with the property of being strongly
unambiguous (UNAMBS), which asserts that,
given two distinct vertices, there is at most one
repeat-free path between them (Lange, 1997).1 A
polytree (Rebane and Pearl, 1987) is a multitree
whose underlying graph is a tree. The out property
(OUT) of a digraph (V,E) means that no vertex
i ∈V has two incoming arcs { j,k}→ i s.t. j 6= k.

NC-DIGRAPH
+5460

CONNW
+43571

UNAMBS
+80

ORIENTED
+140

ACYCU
+1200

OUT
+10

w.c.unamb.
+600

w.c.or.
+1160

unamb.or.
+80

ACYCD
+840

out oriented
+130

out m-forest
+435

mixed tree
+3355

multitree
+10

w.c.dag
+2960

w.c.unamb.or.
+370

out mixed tree
+220

w.c. out oriented
+132

w.c.multitree
+50

or.forest
+300

polytree
+605

out or.forest
+481

out or.tree
+275

Figure 1: Basic properties split the set of 62464
noncrossing digraphs for 5 vertices into 23 classes

An ordered digraph is weakly projective
(PROJW) if for all vertices i, j and k, if k→ j→ i,
then either {i, j}< k or {i, j}> k. In other words,
the constraint, aka the outside-to-inside constraint
(Yli-Jyrä, 2005), states that no outgoing arc of a
vertex properly covers an incoming arc. This is
implied by a stronger constraint known as Harper,
Hays, Lecerf and Ihm projectivity (Marcus, 1967).

We can embed the ontology of graphs (un-
restricted, connected, forests and trees) into the
ontology of digraphs by viewing an undirected
graph (V,E) as an inverse digraph (V,{(i, j),(j, i) |
{i, j} ∈ E}). This kind of digraph has an inverse
property (INV). Its opposite is an oriented (or.) di-
graph (V,A) where i→ j ∈ A implies j → i /∈ A
(defines the property ORIENTED). Out forests
and trees are, by convention, oriented digraphs
with an underlying forest or tree, respectively.

1A different definition forbids diamonds as minors.

Distinctive Properties A few important proper-
ties of digraphs are local and can be verified by
inspecting each vertex separately with its incident
arcs. These include (i) the out property (OUT), (ii)
the nonstandard projectivity property (PROJW),
(iii) the inverse property (INV) and (iv) the ori-
entedness (or.) property.

Properties UNAMBS, ACYCD, CONNW, and
ACYCU are nonlocal properties of digraphs and
cannot be generally verified locally, through finite
spheres of vertices (Grädel et al., 2005). The fol-
lowing proposition covers the configurations that
we have to detect in order to decide the nonlocal
properties of noncrossing digraphs.

Proposition 1. Let G = (V,E) be a noncrossing
digraph.

• If G /∈ UNAMBS, then the digraph contains
one of the following four configurations or
their reversals:

u v y u v y u v y u v x y

• If G /∈ ACYCD, then the graph contains one
of the configurations

u v y u v y u v

• If G /∈ ACYCU, then the underlying graph
contains the following configuration:

u v y

• If G /∈ CONNW, then the underlying graph
contains one of the following configurations:

... v y ...

no arc no arc

... v ...

no arc no arc

Proposition 1 gives us a means to implement the
property tests in practice. It tells us intuitively that
although the paths can be arbitrarily long, any un-
derlying cycle containing more than 2 arcs con-
sists of one covering arc and a linear chain of
edges between its end points.

4 The Set of Digraphs as a Language

In this section, we show that the set of noncross-
ing digraphs is isomorphic to an unambiguous
context-free language over a bracket alphabet.

4.1 Basic Encoding
Any noncrossing ordered graph ([1, ...,n],E), even
with self-loops, can be encoded as a string of
brackets using the algorithm enc in Fig. 2. For
example, the output for the ordered graph

1747

func enc(n,E): func dec(stdin):
for i in [1,...,n]: n = 1; E = {}; s = []

for j in [i-1,...,2,1]: while c in stdin:
if {j,i} in E: if c == "[":

print "]" s.push(n)
for j in [n,n-1,...,i+1]: if c == "]":

if {i,j} in E: i = s.pop()
print "[" E.insert((i,n))

if {i,i} in E: if c == "{":
print "[]" n = n + 1

if i<n:
print "{}" return (n,E)

Figure 2: The encoding and decoding algorithms

1 2 3 4
n = 4, E =

{
{1,2}, {2,2}
{2,4}, {1,4}

}

is the string [[{}][[]{}{}]]. Intuitively, pairs of
brackets of the form {} can be interpreted as spaces
between vertices, and then each set of matching
brackets [...] encodes an arc that covers the
spaces represented inside the brackets.

Any noncrossing ordered digraph ([1, . . . ,n],A)
can be encoded with slight modifications to the
algorithm. Instead of printing [] for an edge
{i, j} ∈ EA, i≤ j, the algorithm should now print

/ > if (i, j) ∈ A,(j, i) 6∈ A;
<
/ if (i, j) /∈ A,(j, i) ∈ A;

[] if (i, j),(j, i) ∈ A.

In this way, we can simply encode the di-
graph ({1,2,3,4},{(1,2),(2,2),(4,1),(4,2)}) as
the string </{}><[]{}{}//.

Proposition 2. The encoding respects concatena-
tion where the adjacent nonempty operands have
a common vertex.

Context-Freeness Arbitrary strings with bal-
anced brackets form a context-free language that
is known, generically, as a Dyck language. It is
easy to see that the graphs NC-GRAPH are en-
coded with strings that belong to the Dyck lan-
guage D2 generated by the context-free gram-
mar: S→ [S]S | {S}S | ε . The encoded graphs,
LNC-GRAPH, are, however, generated exactly by
the context-free grammar S → [S′] S | {} S | ε ,
S′→ [S′] T | {} S, T → [S′] S | {} S. This lan-
guage is an unambiguous context-free language.

Proposition 3. The encoded graphs, LNC-GRAPH,
make an unambiguous context-free language.

The practical significance of Proposition 3 is
that there is a bijection between LNC-GRAPH and
the derivation trees of a context-free grammar.

4.2 Bracketing Beyond the Encoding
Non-Derivational Representation A non-
derivational representation for any context-free

language L has been given by Chomsky and
Schützenberger (1963). This replaces the stack
with a Dyck language D and the grammar rules
with co-occurrence patterns specified by a regular
language Reg. To hide the internal alphabet from
the strings of the represented language, there is
a homomorphism that cleans the internal strings
of Reg and D from internal markup to get actual
strings of the target language:

LNC-GRAPH = h(D∩Reg).

To make this concrete, replace the previous con-
text free grammar by S′′ → [′S′]′ S | {} S | ε ,
S→ [S′] S | {} S | ε , S′→ [′S′]′ T | {} S, T →
[S′] S | {} S. The homomorphism h (Fig. 3a)
would now relate this language to the original lan-
guage, mapping the string [′[′{}]′[[′{}]′{}]]′ to
the string [[{}][[{}]{}]], for example. The Dyck
language D = D3 checks that the internal brack-
ets are balanced, and the regular component Reg
(Fig. 3b) checks that the new brackets are used
correctly. A similar representation for the lan-
guage LNC-DIGRAPH of encoded digraphs can be
obtained with straightforward extensions.

�

������������
������������

�

��
�

�

�

�

�

�
�

�
��

�

�

(a) (b)
Figure 3: The h and Reg components

The representation L = h(D ∩ Reg) is unam-
biguous if, for every word w ∈ L, the preimage
h−1(w)∩D∩Reg is a single string. This implies
that L is an unambiguous context-free language.

Proposition 4. The set of encoded digraphs,
LNC-DIGRAPH, has an unambiguous representation.

Proposition 5. Let Li = h(D∩ Ri), i ∈ {0,1,2}
be unambiguous representations with R1,R2 ⊆ R0.
Then L3 = h(D∩ (R1 ∩ R2)) is an unambiguous
context-free language and the same as L1∩L2.

Proof. It is immediate that L3 ⊆ L1∩L2 and L3 is
an unambiguous context-free language. To show
that L1 ∩ L2 ⊆ L3, take an arbitrary s ∈ L1 ∩ L2.
Since R1,R2 ⊆ R0 there is a unique s′ ∈ h−1(s)
such that s′ ∈ D∩ (R1∩R2). Thus s ∈ L3.

5 Latent Bracketing

In this section, we extend the internal strings of the
non-derivational representation of LNC-DIGRAPH in

1748

such a way that the configurations given in Propo-
sition 1 can be detected locally from these.

Classification of Underlying Chains A maxi-
mal linear chain is a maximally long sequence of
one or more edges that correspond to an under-
lying left-to-right path in the underlying graph in
such a way that no edge in this chain is properly
covered by an edge that does not properly cover
all the edges in the chain. For example, the graph

[′[′{}]′[[′{}]′[{}]][[′{}]′{}[{}]]]′[{}[{ }]{}]

I

II III

II
III

II I

IV V VI

contains six maximal linear chains, indicated with
their Roman numbers on each arc. We decide non-
local properties of noncrossing digraphs by recog-
nizing maximal linear chains as parts of configu-
rations presented in Proposition 1.

Every loose chain (like V and VI) starts with
a bracket that is adjacent to a }-bracket. Such a
chain can contribute only a covering edge to an un-
derlying cycle. In contrast, a bracket with an apos-
trophe marks the beginning of a non-loose chain
that can either start at the first vertex, or share
starting point with a covering chain. When a non-
loose chain is covered, it can be touched twice by
a covering edge. The prefixes of chains are classi-
fied incrementally, from left to right, with a finite
automaton (Figure 4). All states of the automaton
are final and correspond to distinct classes of the
chains. These classes are encoded to an extended
set of brackets.

�

������

�

����
����
����
���� �

����

�����������������
�������������������������

�

����

�

����
����
����

�

����

����
����
���� ����

�

���

�

����

������
������
������

�

����

����

����
����
����

�

�

����

����

����
����
����

�

������

��������

������
������
������

�

������

�����

����
����
����

���� ����
����
����
���� �

����

������������������
����������������������������

����

����
����
����

����
����
����

����

����

����
����
����

Figure 4: The finite automaton whose state 0 be-
gins non-loose chains and state 1 loose chains

The automaton is symmetric: states with
uppercase names are symmetrically related with

corresponding lowercase states. Thus, it suffices
to define the initial and uppercase-named states:

0 the initial state for a non-loose chain;
I a bidirectional chain: u↔ (v↔)y;
A a primarily bidirectional forward chain: u↔ v→ y;
F a forward chain: u→ v→ y;
Q a primarily forward chain: u→ v↔ (· · · →)y;
C a primarily forward 1-turn chain: u→ v← y;
E a primarily forward 2-turn chain: u→ v← x→ y;
Z a 3-turn chain;
1 the initial (and only) state for a loose chain;

Recognition of ambiguous paths in configurations
u
−−−−−→←−−→→v←y and u

−−−−−−−−−−→←−−−−−−−← v→ x←←y involves three
chain levels. To support the recognition, subtypes
of edges are defined according to the chains they
cover. The brackets >I’, \I’, >I, \I, \A, >a, \Q, >Q,

>q,\q, >C, \c, \E, >e indicate edges that constitute a
cycle with the chain they cover. The brackets >V’,

\v’, >V, \v indicate edges that cover 2-turn chains.
Not all states make these distinctions.

Extended Representation The extended brack-
ets encode the latent structure of digraphs: the ori-
entation and the subtype of the edge and the class
of the chain. The total alphabet Σ of the strings
now contains the boundary brackets {} and 54
pairs of brackets (Figure 4) for edges from which
we obtain a new Dyck language, D55, and an ex-
tended homomorphism hlat.

The Reg component of the language representa-
tion is replaced with Reglat, that is, an intersection
of (1) an inverse homomorphic image of Reg to
strings over the extended alphabet, (2) a local lan-
guage that constrains adjacent edges according to
Figure 4, (3) a local language specifying how the
chains start, and (4) a local language that distin-
guishes pure oriented edges from those that cover
a cycle or a 2-turn chain. The new component re-
quires only 24 states as a deterministic automaton.

Proposition 6. hlat(D55∩Reglat) is an unambigu-
ous representation for LNC-DIGRAPH.

The internal language LNC-DIGRAPHlat = D55 ∩
Reglat is called the set of latent encoded digraphs.

Example Here is a digraph with its latent
encoding:

<f′ [I′︸ ︷︷ ︸
1

{}]I′ /0 /F′︸ ︷︷ ︸
2

{} >F′︸︷︷︸
3

{} <.︸︷︷︸
4

{} /.︸︷︷︸
5

{} >.︸︷︷︸
6

{}/. >0 /f′︸ ︷︷ ︸
7

The brackets in the extended representation con-
tain information that helps us recognize, through
local patterns, that this graph has a directed cycle

1749

Forbidden patterns in noncrossing digraphş Property Constraint language

RlooseR
a nonloose chain ACYCU AU = Σ∗−Σ∗RlooseRΣ∗

Rloose(no connecting edges) (a vertex without edges) CONNW CW = Σ∗−Σ∗Rloose(ε ∪BΣ∗)− (BΣ∗∪Σ∗B)

RrightR/ RleftR>

forward backward
inverted arc ACYCD AD = Σ∗−Σ∗(RrightR/∪RleftR>∪Σinv)Σ∗

RrightR> RleftR/ RvergentR
forward backward con/divergent

Rleft2R> Rright2R\
divergent backward forward divergent

UNAMBS US = Σ∗−Σ∗(RrightR>∪RleftR/∪RvergentR)Σ∗
−Σ∗(Rleft2R>∪Rright2R\)Σ∗

L/L< R>R/
PROJW PW = Σ∗−Σ∗(L/L<∪R>R/)Σ∗

(an arc without inverse) INV I = Σ∗−Σ∗ΣorΣ∗
(a state with more than 2 incoming arcs) OUT Out = Σ∗−Σ∗Σin(Σ−B)∗ΣinΣ∗

(an inverted edge) ORIENTED O = Σ∗−Σ∗ΣinvΣ∗

Table 1: Properties of encoded noncrossing digraphs as constraint languages

(directed path 1→ 2→ 7→ 1), is strongly am-
biguous (two directed paths 2→ 1 and 2→ 7→ 1)
and is not weakly connected (vertices 5 and 6 are
not connected to the rest of the digraph).

Expressing Properties via Forbidden Patterns
We now demonstrate that all the mentioned non-
local properties of graphs have become local in
the extended internal representation of the code
strings LNC-DIGRAPH for noncrossing digraphs.

These distinctive properties of graph families
reduce to forbidden patterns in bracket strings and
then compile into regular constraint languages.
These are presented in Table 1. To keep the pat-
terns simple, subsets of brackets are defined:

L/ [-,/-brackets L< [-,<-brackets
R>]-,>-brackets R/]-,\-brackets
B {, } R R>∪R\
Rloose }, >., /.,]. Rloose R−Rloose
Rright R reaching F,Q,I,A Rleft R reaching f,q,i,a

Rright2 >P, >2, >E, \E,]E Rleft2 \p, \2, \e, >e,]e

Σin L<∪R> B Σ−B
Rvergent non-’ R reaching I,Q,q,A,a,C,c
Σor all brackets for oriented edges
Σinv all brackets for inverted edges

6 Validation Experiments

The current experiments were designed (1) to help
in developing the components of Reglat and the
constraint languages of axiomatic properties, (2)
to validate the representation, the constraint lan-
guages and their unambiguity, (3) to learn about
the ontology and (4) to sample the integer se-
quences associated with the cardinality of each

family in the ontology.

Finding the Components Representations of
Reglat were built with scripts written using a finite-
state toolkit (Hulden, 2009) that supports rapid ex-
ploration with regular languages and transducers.

Validation of Languages Our scripts presented
alternative approaches to compute languages of
encoded digraphs with n vertices up to n = 9. We
also implemented a Python script that enumerated
elements of families of graphs up to n = 6. The
solutions were used to cross-validate one another.

The constraint Gn = B∗({}B∗)n−1 ensures n-
vertices in encoded digraphs. The finite set of
encoded acyclic 5-vertex digraphs was computed
with a finite-state approach (Yli-Jyrä et al., 2012)
that takes the input projection of the composition

Id(Reglat∩AD∩G5)◦T55◦T55◦T55◦T55◦T55◦ Id(ε)

where Id defines an identity relation and trans-
ducer T55 eliminates matching adjacent brack-
ets. This composition differs from the typical use
where the purpose is to construct a regular relation
(Kaplan and Kay, 1994) or its output projection
(Roche, 1996; Oflazer, 2003).

For digraphs with a lot of vertices, we had an
option to employ a dynamic programming scheme
(Yli-Jyrä, 2012) that uses weighted transducers.

Building the Ontology To build the ontology in
Figure 1 we first found out which combinations of
digraph properties co-occur to define distinguish-
able families of digraphs. After the nodes of the

1750

lattice were found, we were able to see the partial
order between these.

Integer Sequences We sampled, for important
families of digraphs, the prefixes of their related
integer sequences. We found out that each family
of graphs is pretty much described by its cardi-
nality, see Table 2. In many cases, the number se-
quence was already well documented (OEIS Foun-
dation Inc., 2017).

7 The Formal Basis of Practical Parsing

While presenting a practical parser implementa-
tion is outside of the scope of this paper, which
focuses in the theory, we outline in this section
the aspects to take into account when applying our
representation to build practical natural language
parsers.

Positioned Brackets In order to do inference in
arc-factored parsing, we incorporate weights to the
representation. For each vertex in Gn, the brackets
are decorated with the respective position number.
Then, we define an input-specific grammar repre-
sentation where each pair of brackets in D gets an
arc-factored weight given the directions and the
vertex numbers associated with the brackets.

Grammar Intersection We associate, to each
Gn, a quadratic-size context-free grammar that
generates all noncrossing digraphs with n vertices.
This grammar is obtained by computing (or even
precomputing) the intersection D55 ∩ Reglat ∩Gn

in any order, exploiting the closure of context-
free languages under intersection with regular
languages (Bar-Hillel et al., 1961). The intro-
duction of the position numbers and weights in
the Dyck language gives us, instead, a weighted
grammar and its intersection (Lang, 1994). This
grammar is a compact representation for a finite
set of weighted latent encoded digraphs. Addi-
tional constraints during the intersection tailors the
grammar to different families of digraphs.

Dynamic Programming The heaviest digraph
is found with a dynamic programming algorithm
that computes, for each nonterminal in the gram-
mar, the weight of the heaviest subtree. A care-
ful reader may notice some connections to Eisner
algorithm (Eisner and Satta, 1999), context-free
parsing through intersection (Nederhof and Satta,
2003), and a dynamic programming scheme that

uses contracting transducers and factorized com-
position (Yli-Jyrä, 2012). Unfortunately, space
does not permit discussing the connections here.

Lexicalized Search Space In practical parsing,
we want the parser behavior and the dependency
structure to be sensitive to the lexical entries or
features of each word. We can replace the generic
vertex description B∗ in Gn with subsets that de-
pend on respective lexical entries. Graphical con-
straints can be applied to some vertices but relaxed
for others. This application of current results gives
a principled, graphically motivated solution to lex-
icalized control over the search space.

8 Conclusion

We have investigated the search space of parsers
that produce noncrossing digraphs. Parsers that
can be adapted to different needs are less depen-
dent on artificial assumptions on the search space.
Adaptivity gives us freedom to model how the
properties of digraphs are actually distributed in
linguistic data. As the adaptive data analysis de-
serves to be treated in its own right, the current
work focuses on the separation of the parsing al-
gorithm from the properties of the search space.

This paper makes four significant contributions.

Contribution 1: Digraph Encoding The paper
introduces, for noncrossing digraphs, an encoding
that uses brackets to indicate edges.

Bracketed trees are widely used in generative
syntax, treebanks and structured document for-
mats. There are established conversions between
phrase structure and projective dependency trees,
but the currently advocated edge bracketing is ex-
pressive and captures more than just projective
dependency trees. This capacity is welcome as
syntactic and semantic analysis with dependency
graphs is a steadily growing field.

The edge bracketing creates new avenues for
the study of connections between noncrossing
graphs and context-free languages, as well as their
recognizable properties. By demonstrating that
digraphs can be treated as strings, we suggest
that practical parsing to these structures could be
implemented with existing methods that restrict
context-free grammars to a regular yield language.

Contribution 2: Context-Free Properties
Acyclicity and other important properties of
noncrossing digraphs are expressible as unam-
biguous context-free sets of encoded noncrossing

1751

Table 2: Characterizations for some noncrossing families of digraphs and graphs
Name Sequence prefix for n = 2,3, ... Example Name Sequence prefix for n = 2,3, ... Example
digraph (KJ): 4,64,1792,62464,2437120,101859328

hlat(D55 ∩Gn ∩Reglat) 1 2 3 4 5

weakly projective
digraph

4,36,480,7744,138880,2661376
hlat(D55 ∩Gn ∩Reglat ∩PW) 1 2 3 4 5

w.c.digraph 3,54,1539,53298,2051406,84339468
hlat(D55 ∩Gn ∩Reglat ∩CW) 1 2 3 4 5

w.p. w.c.digraph 3,26,339,5278,90686,1658772
hlat(D55 ∩Gn ∩Reglat ∩PW ∩CW) 1 2 3 4 5

unamb.digr. 4,39,529,8333,142995,2594378
hlat(D55 ∩Gn ∩Reglat ∩US) 1 2 3 4 5

w.p. unamb.digr. 4,29,275,3008,35884,453489
hlat(D55 ∩Gn ∩Reglat ∩PW ∩US) 1 2 3 4 5

m-forest 4,37,469,6871,109369,1837396,32062711
hlat(D55 ∩Gn ∩Reglat ∩AU) 1 2 3 4 5

w.p. m-forest 4,29,273,2939,34273,421336
hlat(D55 ∩Gn ∩Reglat ∩PW ∩AU) 1 2 3 4 5

out digraph 4,27,207,1683,14229,123840,1102365
hlat(D55 ∩Gn ∩Reglat ∩Out) 1 2 3 4 5

w.p. out digraph 4,21,129,867,6177,45840,350379
hlat(D55 ∩Gn ∩Reglat ∩PW ∩Out) 1 2 3 4 5

or. digraph 3,27,405,7533,156735,3492639,77539113
hlat(D55 ∩Gn ∩Reglat ∩O) 1 2 3 4 5

w.p. or.digraph see w.p.dag
hlat(D55 ∩Gn ∩Reglat ∩PW ∩O) see w.p.dag

dags (A246756): 3,25,335,5521,101551
hlat(D55 ∩Gn ∩Reglat ∩AD) 1 2 3 4 5

w.p. dag 3,21,219,2757,38523, 574725, 8967675
hlat(D55 ∩Gn ∩Reglat ∩PW ∩AD) 1 2 3 4 5

w.c. dag (KJ): 2,18,242,3890,69074,1306466
hlat(D55 ∩Gn ∩Reglat ∩AD ∩CW) 1 2 3 4 5

w.p. w.c. dag 2,14,142,1706,22554,316998,4480592
hlat(D55 ∩Gn ∩Reglat ∩PW ∩AD ∩CW) 1 2 3 4 5

multitree 3,19,167,1721,19447,233283,2917843
hlat(D55 ∩Gn ∩Reglat ∩AD ∩US)

see oriented forest
or w.c. multitree

w.p. multitree 3,17,129,1139,11005,112797,1203595
hlat(D55 ∩Gn ∩Reglat ∩PW ∩AD ∩US) 1 2 3 4 5

or.forest 3,19,165,1661,18191,210407,2528777
hlat(D55 ∩Gn ∩Reglat ∩AD ∪AU) 1 2 3 4 5

w.p. or.forest 3,17,127,1089,10127,99329,1010189
hlat(D55 ∩Gn ∩Reglat ∩PW ∩AD ∪AU) 1 2 3 4 5

w.c. multitree 2,12,98,930,9638,105798,1201062
hlat(D55 ∩Gn ∩Reglat ∩AD ∩US ∩CW) 1 2 3 4 5

w.p. w.c. multitree 2,10,68,538,4650,42572,404354
hlat(D55 ∩Gn ∩Reglat ∩PW ∩AD ∩US ∩CW) 1 2 3 4 5

out or.forest 3,16,105,756,5738,45088,363221
hlat(D55 ∩Gn ∩Reglat ∩AD ∩Out) 1 2 3 4 5

w.p. out or.forest (A003169): 3,14,79,494,3294,22952
hlat(D55 ∩Gn ∩Reglat ∩PW ∩AD ∩Out) 1 2 3 4 5

polytree (A153231): 2,12,96,880,8736,91392
hlat(D55 ∩Gn ∩Reglat ∩AD ∩CW ∩AU) 1 2 3 4 5

w.p. polytree (A027307):2,10,66,498,4066,34970
hlat(D55∩Gn∩Reglat∩PW ∩AD∩CW ∩AU) 1 2 3 4 5

out or.tree (A174687): 2,9,48,275,1638,9996
hlat(D55 ∩Gn ∩Reglat ∩AD ∩CW ∩Out) 1 2 3 4 5

projective
out or.tree

(A006013): 2,7,30,143,728,3876,21318
hlat(D55∩Gn∩Reglat∩PW ∩AD∩CW ∩Out) 1 2 3 4 5

graph (A054726): 2,8,48,352,2880,25216
hlat(D55 ∩Gn ∩Reglat ∩ I) 1 2 3 4 5

connected graph (A007297): 1,4,23,156,1162,9192
hlat(D55 ∩Gn ∩Reglat ∩ I∩CW) 1 2 3 4 5

forest (A054727): 2,7,33,181,1083,6854
hlat(D55 ∩Gn ∩Reglat ∩ I∩AU) 1 2 3 4 5

tree (A001764,YJ): 1,3,12,55,273,1428,7752
hlat(D55 ∩Gn ∩Reglat ∩ I∩AU ∩CW) 1 2 3 4 5

A = (OEIS Foundation Inc., 2017), KJ = Kuhlmann (2015) or Kuhlmann and Johnsson (2015), YJ = Yli-Jyrä (2012)

digraphs. This facilitates the incorporation
of property testing to dynamic programming
algorithms that implement exact inference.

Descriptive complexity helps us understand to
which degree various graphical properties are lo-
cal and could be incorporated into efficient dy-
namic programming during exact inference. It is
well known that acyclicity and connecticity are
not definable in first-order logic (FO) while they
can be defined easily in monadic second order
logic (MSO) (Courcelle, 1997). MSO involves
set-valued variables whose use in dynamic pro-
gramming algorithms and tabular parsing is inef-
ficient. MSO queries have a brute force transfor-
mation to first-order (FO) logic, but this does not
generally help either as it is well known that MSO
can express intractable problems.

The interesting observation of the current work
is that some MSO definable properties of digraphs
become local in our extended encoding. This en-
coding is linear compared to the size of digraphs:
each string over the extended bracket alphabet en-
codes a fixed assignment of MSO variables. The
properties of noncrossing digraphs now reduce to
properties of bracketed trees with linear amount of

func noncrossing_ACYCU(n,E):
for {u,y} in E and u < y: # covering edge

[v,p] = [u,u]
while p != -1: # chain continues

[v,p] = [p,-1]
for vv in [v+1,...,y]: # next vertex

if {v,vv} in E and {v,vv} != {u,y}:
if vv == y:

return False # found cycle uvy
p = vv # find longest edge

return True # acyclic

Figure 5: Testing ACYCU in logarithmic space

latent information that is fixed for each digraph.
A deeper explanation for our observation comes

from the fact that the treewidth of noncrossing and
other outerplanar graphs is bounded to 2. When
the treewidth is bounded, all MSO definable prop-
erties, including the intractable ones, become lin-
ear time decidable for individual structures (Cour-
celle, 1990). They can also be decided in a loga-
rithmic amount of writable space (Elberfeld et al.,
2010), e.g. with element indices instead of sets.
By combining this insight with Proposition 1, we
obtain a logspace solution for testing acyclicity of
a noncrossing graph (Figure 5).

Although bounded treewidth is a weaker con-
straint than so-called bounded treedepth that
would immediately guarantee first-order definabil-

1752

ity (Elberfeld et al., 2016), it can sometimes turn
intractable search problems to dynamic program-
ming algorithms (Akutsu and Tamura, 2012). In
our case, Proposition 1 gave rise to unambigu-
ous context-free subsets of LNC-DIGRAPH. These
can be recognized with dynamic programming and
used in efficient constrained inference when we
add vertex indices to the brackets and weights to
the grammar of the corresponding Dyck language.

Contribution 3: Digraph Ontology The
context-free properties of encoded digraphs have
elegant nonderivative language representations
and they generate a semi-lattice under language
intersection. Although context-free languages
are not generally closed under intersection, all
combinations of the properties in this lattice
are context-free and define natural families of
digraphs. The nonderivative representations for
our axiomatic properties share the same Dyck lan-
guage D55 and homomorphism, but differ in terms
of forbidden patterns. As a consequence, also
any conjunctive combination of these two prop-
erties shares these components and thus define a
context-free language. The obtained semilattice is
an ontology of families of noncrossing digraphs.

Our ontology contains important families of
noncrossing digraphs used in syntactic and se-
mantic dependency parsing: out trees, dags, and
weakly connected digraphs. It shows the entail-
ment between the properties and proves the exis-
tence of less known families of noncrossing di-
graphs such as strongly unambiguous digraphs
and oriented graphs, multitrees, oriented forests
and polytrees. These are generalizations of out
oriented trees. However, these families can still
be weakly projective. Table 2 shows integer se-
quences obtained by enumerating digraphs in each
family. At least twelve of these sequences are pre-
viously known, which indicates that the families
are natural.

We used a finite-state toolkit to build the com-
ponents of the nongenerative language representa-
tion for latent encoded digraphs and the axioms.2

Contribution 4: Generic Parsing The fourth
contribution of this paper is to show that parsing
algorithms can be separated from the formal prop-
erties of their search space.

2The finite-state toolkit scripts and a Python-based graph
enumerator are available at
https://github.com/amikael/ncdigraphs .

All the presented families of digraphs can be
treated by parsers and other algorithms (e.g. enu-
meration algorithms) in a uniform manner. The
parser’s inference rules can stay constant and the
choice of the search space is made by altering the
regular component of the language representation.

The ontology of the search space can be com-
bined with a constraint relaxation strategy, for ex-
ample, when an out tree is a preferred analysis, but
a dag is also possible as an analysis when no tree is
strong enough. The flexibility applies also to dy-
namic programming algorithms that complement
with the encoding and allow inference of best de-
pendency graphs in a family simply by intersec-
tion with a weighted CFG grammar for a Dyck
language that models position-indexed edges of
the complete digraph.

Since the families of digraphs are distinguished
by forbidden local patterns, the choice of search
space can be made purely on lexical grounds,
blending well with lexicalized parsing and allow-
ing possibilities such as choosing, per each word,
what kind of structures the word can go with.

Future work We are planning to extend the cov-
erage of the approach by exploring 1-endpoint-
crossing and MHk trees (Pitler et al., 2013;
Gómez-Rodrı́guez, 2016), and related digraphs
— see (Yli-Jyrä, 2004; Gómez-Rodrı́guez et al.,
2011). Properties such as weakly projective, out,
and strongly unambiguous prompt further study.

An interesting avenue for future work is to ex-
plore higher order factorizations for noncrossing
digraphs and the related inference. We would also
like to have more insight on the transformation
of MSO definable properties to the current frame-
work and to logspace algorithms.

Acknowledgements

AYJ has received funding as Research Fellow
from the Academy of Finland (dec. No 270354
- A Usable Finite-State Model for Adequate Syn-
tactic Complexity) and Clare Hall Fellow from
the University of Helsinki (dec. RP 137/2013).
CGR has received funding from the European Re-
search Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme
(grant agreement No 714150 - FASTPARSE) and
from the TELEPARES-UDC project (FFI2014-
51978-C2-2-R) from MINECO. The comments of
Juha Kontinen, Mark-Jan Nederhof and the anony-
mous reviewers helped to improve the paper.

1753

References
Tatsuya Akutsu and Takeyuki Tamura. 2012. A

polynomial-time algorithm for computing the
maximum common subgraph of outerplanar graphs
of bounded degree. In Branislav Rovan, Vladimiro
Sassone, and Peter Widmayer, editors, Mathemat-
ical Foundations of Computer Science 2012: 37th
International Symposium, MFCS 2012, Bratislava,
Slovakia, August 27-31, 2012. Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg,
pages 76–87. https://doi.org/10.1007/978-3-642-
32589-2 10.

Jason Baldridge and Geert-Jan M. Kruijff. 2003.
Multi-modal combinatory categorial gram-
mar. In Proceedings of EACL’03: the Tenth
Conference on European Chapter of the As-
sociation for Computational Linguistics -
Volume 1. Association for Computational Lin-
guistics, Budapest, Hungary, pages 211–218.
https://doi.org/10.3115/1067807.1067836.

Yehoshua Bar-Hillel, Micha Perles, and Eliahu Shamir.
1961. On formal properties of simple phrase
structure grammars. Zeitschrift für Phonologie,
Sprachwissenschaft und Kommunikationsforschung
14:113–124.

Noam Chomsky and Marcel-Paul Schützenberger.
1963. The algebraic theory of context-free lan-
guages. Computer Programming and Formal Sys-
tems pages 118–161.

Bruno Courcelle. 1990. The monadic second-order
logic of graphs. I. recognizable sets of finite
graphs. Information and Computation 85(1):12 –
75. https://doi.org/10.1016/0890-5401(90)90043-
H.

Bruno Courcelle. 1997. The expression of graph prop-
erties and graph transformations in monadic second-
order logic. In G. Rozenberg, editor, Handbook of
Graph Grammars and Computing by Graph Trans-
formations, World Scientific, New-Jersey, London,
volume 1, chapter 5, pages 313–400.

Jason Eisner. 1996. Three new probabilistic
models for dependency parsing: An explo-
ration. In Proceedings of the 16th Inter-
national Conference on Computational Linguis-
tics (COLING-96). Copenhagen, Denmark, pages
340–345. http://aclweb.org/anthology/C/C96/C96-
1058.pdf.

Jason Eisner and Giorgio Satta. 1999. Efficient parsing
for bilexical context-free grammars and Head Au-
tomaton Grammars. In Proceedings of the 37th An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, College Park, Maryland, USA, pages 457–464.
https://doi.org/10.3115/1034678.1034748.

Michael Elberfeld, Martin Grohe, and Till Tantau.
2016. Where first-order and monadic second-
order logic coincide. ACM Trans. Comput. Logic
17(4):25:1–25:18. https://doi.org/10.1145/2946799.

Michael Elberfeld, Andreas Jakoby, and Till Tan-
tau. 2010. Logspace versions of the theorems of
Bodlaender and Courcelle. In Proceedings of the
2010 IEEE 51st Annual Symposium on Founda-
tions of Computer Science. IEEE Computer Society,
Washington, DC, USA, FOCS ’10, pages 143–152.
https://doi.org/10.1109/FOCS.2010.21.

Carlos Gómez-Rodrı́guez. 2016. Restricted
non-projectivity: Coverage vs. efficiency.
Computational Linguistics 42(4):809–817.
https://doi.org/10.1162/COLI a 00267.

Carlos Gómez-Rodrı́guez, John A. Carroll, and
David J. Weir. 2011. Dependency parsing
schemata and mildly non-projective dependency
parsing. Computational Linguistics 37(3):541–586.
https://doi.org/10.1162/COLI a 00060.

Erich Grädel, P. G. Kolaitis, L. Libkin, M. Marx,
J. Spencer, Moshe Y. Vardi, Y. Venema, and Scott
Weinstein. 2005. Finite Model Theory and Its Ap-
plications (Texts in Theoretical Computer Science.
An EATCS Series). Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

Sheila Greibach. 1973. The hardest context-free lan-
guage. SIAM Journal on Computing 2(4):304–310.
https://doi.org/10.1137/0202025.

Venkatesan Guruswami, Johan Håstad, Rajsekar
Manokaran, Prasad Raghavendra, and Moses
Charikar. 2011. Beating the random ordering is
hard: Every ordering CSP is approximation resis-
tant. SIAM Journal on Computing 40(3):878914.
https://doi.org/10.1137/090756144.

Mans Hulden. 2009. Foma: a finite-state compiler
and library. In Proceedings of the Demonstrations
Session at EACL 2009. Association for Computa-
tional Linguistics, Athens, Greece, pages 29–32.
http://www.aclweb.org/anthology/E09-2008.

Mans Hulden. 2011. Parsing CFGs and PCFGs with
a Chomsky-Schützenberger representation. In Zyg-
munt Vetulani, editor, Human Language Technol-
ogy. Challenges for Computer Science and Lin-
guistics: 4th Language and Technology Confer-
ence, LTC 2009, Poznan, Poland, November 6-
8, 2009, Revised Selected Papers, Springer Berlin
Heidelberg, Berlin, Heidelberg, pages 151–160.
https://doi.org/10.1007/978-3-642-20095-3 14.

Ronald M. Kaplan and Martin Kay. 1994. Reg-
ular models of phonological rule systems.
Computational Linguistics 20(3):331–378.
http://dl.acm.org/citation.cfm?id=204915.204917.

Marco Kuhlmann. 2015. Tabulation of non-
crossing acyclic digraphs. arXiv:1504.04993.
https://arxiv.org/abs/1504.04993.

Marco Kuhlmann and Peter Johnsson. 2015. Parsing to
noncrossing dependency graphs. Transactions of the
Association for Computational Linguistics 3:559–
570. http://aclweb.org/anthology/Q/Q15/Q15-
1040.pdf.

1754

Marco Kuhlmann and Stephan Oepen. 2016. To-
wards a catalogue of linguistic graph banks.
Computational Linguistics 42(4):819–827.
https://doi.org/10.1162/COLI a 00268.

Bernard Lang. 1994. Recognition can
be harder than parsing. Compu-
tational Intelligence 10(4):486–494.
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-
8640.1994.tb00011.x/full.

Klaus-Jörn Lange. 1997. An unambiguous class
possessing a complete set. In Morvan Reis-
chuk, editor, STACKS’97 Proceedings. Springer,
volume 1200 of Lecture Notes in Computer Science.
http://dl.acm.org/citation.cfm?id=695352.

S. Marcus. 1967. Algebraic Linguistics; Analytical
Models, volume 29 of Mathematics in Science and
Engineering. Academic Press, New York and Lon-
don.

Ryan McDonald, Fernando Pereira, Kiril Ribarov,
and Jan Hajic. 2005. Non-projective depen-
dency parsing using spanning tree algorithms.
In Proceedings of Human Language Technol-
ogy Conference and Conference on Empirical
Methods in Natural Language Processing. As-
sociation for Computational Linguistics, Van-
couver, British Columbia, Canada, pages 523–
530. http://www.aclweb.org/anthology/H/H05/H05-
1066.pdf.

Mark-Jan Nederhof and Giorgio Satta. 2003. Proba-
bilistic parsing as intersection. In 8th International
Workshop on Parsing Technologies. LORIA, Nancy,
France, pages 137–148.

OEIS Foundation Inc. 2017. The on-line encyclopedia
of integer sequences. http://oeis.org, read
on 15 January 2017.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinkova, Dan Flickinger,
Jan Hajic, and Zdenka Uresova. 2015. Se-
meval 2015 task 18: Broad-coverage semantic de-
pendency parsing. In Proceedings of the 9th
International Workshop on Semantic Evaluation
(SemEval 2015). Association for Computational
Linguistics, Denver, Colorado, pages 915–926.
http://www.aclweb.org/anthology/S15-2153.

Kemal Oflazer. 2003. Dependency pars-
ing with an extended finite-state approach.
Computational Linguistics 29(4):515–544.
https://doi.org/10.1162/089120103322753338.

Emily Pitler, Sampath Kannan, and Mitchell
Marcus. 2013. Finding optimal 1-endpoint-
crossing trees. Transactions of the Associa-
tion for Computational Linguistics 1:13–24.
http://aclweb.org/anthology/Q13-1002.

George Rebane and Judea Pearl. 1987. The
recovery of causal poly-trees from statistical
data. In Proceedings of the 3rd Annual

Conference on Uncertainty in Artificial Intelli-
gence (UAI 1987). Seattle, WA, pages 222–228.
http://dl.acm.org/citation.cfm?id=3023784.

Emmanuel Roche. 1996. Transducer pars-
ing of free and frozen sentences. Natu-
ral Language Engineering 2(4):345–350.
https://doi.org/10.1017/S1351324997001605.

Natalie Schluter. 2014. On maximum spanning
DAG algorithms for semantic DAG parsing.
In Proceedings of the ACL 2014 Workshop on
Semantic Parsing. Association for Computa-
tional Linguistics, Baltimore, MD, pages 61–65.
http://www.aclweb.org/anthology/W/W14/W14-
2412.pdf.

Natalie Schluter. 2015. The complexity of finding
the maximum spanning DAG and other restrictions
for DAG parsing of natural language. In Proceed-
ings of the Fourth Joint Conference on Lexical and
Computational Semantics. Association for Compu-
tational Linguistics, Denver, Colorado, pages 259–
268. http://www.aclweb.org/anthology/S15-1031.

Anssi Yli-Jyrä. 2004. Axiomatization of re-
stricted non-projective dependency trees through
finite-state constraints that analyse crossing
bracketings. In Geert-Jan M. Kruijff and
Denys Duchier, editors, COLING 2004 Re-
cent Advances in Dependency Grammar.
COLING, Geneva, Switzerland, pages 25–32.
https://www.aclweb.org/anthology/W/W04/W04-
1504.pdf.

Anssi Yli-Jyrä. 2005. Approximating dependency
grammars through intersection of star-free regular
languages. Int. J. Found. Comput. Sci. 16(3):565–
579. https://doi.org/10.1142/S0129054105003169.

Anssi Yli-Jyrä. 2012. On dependency analysis via con-
tractions and weighted FSTs. In Diana Santos, Kris-
ter Lindén, and Wanjiku Ng’ang’a, editors, Shall
We Play the Festschrift Game?, Essays on the Oc-
casion of Lauri Carlson’s 60th Birthday. Springer,
pages 133–158. https://doi.org/10.1007/978-3-642-
30773-7 10.

Anssi Yli-Jyrä, Jussi Piitulainen, and Atro Vouti-
lainen. 2012. Refining the design of a con-
tracting finite-state dependency parser. In Iñaki
Alegria and Mans Hulden, editors, Proceedings
of the 10th International Workshop on Finite
State Methods and Natural Language Process-
ing. Association for Computational Linguistics,
Donostia–San Sebastián, Spain, pages 108–115.
http://www.aclweb.org/anthology/W12-6218.

Yue Zhang and Joakim Nivre. 2011. Transition-based
dependency parsing with rich non-local features. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Portland, Oregon, USA, pages 188–
193. http://www.aclweb.org/anthology/P11-2033.

1755

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1756–1765
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1161

Semi-supervised sequence tagging with bidirectional language models

Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, Russell Power
Allen Institute for Artificial Intelligence

{matthewp,waleeda,chandrab,russellp}@allenai.org

Abstract

Pre-trained word embeddings learned
from unlabeled text have become a stan-
dard component of neural network archi-
tectures for NLP tasks. However, in most
cases, the recurrent network that oper-
ates on word-level representations to pro-
duce context sensitive representations is
trained on relatively little labeled data.
In this paper, we demonstrate a general
semi-supervised approach for adding pre-
trained context embeddings from bidi-
rectional language models to NLP sys-
tems and apply it to sequence labeling
tasks. We evaluate our model on two stan-
dard datasets for named entity recognition
(NER) and chunking, and in both cases
achieve state of the art results, surpassing
previous systems that use other forms of
transfer or joint learning with additional
labeled data and task specific gazetteers.

1 Introduction

Due to their simplicity and efficacy, pre-trained
word embedding have become ubiquitous in NLP
systems. Many prior studies have shown that they
capture useful semantic and syntactic information
(Mikolov et al., 2013; Pennington et al., 2014) and
including them in NLP systems has been shown to
be enormously helpful for a variety of downstream
tasks (Collobert et al., 2011).

However, in many NLP tasks it is essential to
represent not just the meaning of a word, but also
the word in context. For example, in the two
phrases “A Central Bank spokesman” and “The
Central African Republic”, the word ‘Central’ is
used as part of both an Organization and Location.
Accordingly, current state of the art sequence tag-
ging models typically include a bidirectional re-

current neural network (RNN) that encodes token
sequences into a context sensitive representation
before making token specific predictions (Yang
et al., 2017; Ma and Hovy, 2016; Lample et al.,
2016; Hashimoto et al., 2016).

Although the token representation is initialized
with pre-trained embeddings, the parameters of
the bidirectional RNN are typically learned only
on labeled data. Previous work has explored meth-
ods for jointly learning the bidirectional RNN with
supplemental labeled data from other tasks (e.g.,
Søgaard and Goldberg, 2016; Yang et al., 2017).

In this paper, we explore an alternate semi-
supervised approach which does not require ad-
ditional labeled data. We use a neural language
model (LM), pre-trained on a large, unlabeled cor-
pus to compute an encoding of the context at each
position in the sequence (hereafter an LM embed-
ding) and use it in the supervised sequence tag-
ging model. Since the LM embeddings are used to
compute the probability of future words in a neu-
ral LM, they are likely to encode both the semantic
and syntactic roles of words in context.

Our main contribution is to show that the con-
text sensitive representation captured in the LM
embeddings is useful in the supervised sequence
tagging setting. When we include the LM embed-
dings in our system overall performance increases
from 90.87% to 91.93% F1 for the CoNLL 2003
NER task, a more then 1% absolute F1 increase,
and a substantial improvement over the previous
state of the art. We also establish a new state of
the art result (96.37% F1) for the CoNLL 2000
Chunking task.

As a secondary contribution, we show that us-
ing both forward and backward LM embeddings
boosts performance over a forward only LM. We
also demonstrate that domain specific pre-training
is not necessary by applying a LM trained in the
news domain to scientific papers.

1756

https://doi.org/10.18653/v1/P17-1161

2 Language model augmented sequence
taggers (TagLM)

2.1 Overview
The main components in our language-model-
augmented sequence tagger (TagLM) are illus-
trated in Fig. 1. After pre-training word embed-
dings and a neural LM on large, unlabeled corpora
(Step 1), we extract the word and LM embeddings
for every token in a given input sequence (Step 2)
and use them in the supervised sequence tagging
model (Step 3).

2.2 Baseline sequence tagging model
Our baseline sequence tagging model is a hierar-
chical neural tagging model, closely following a
number of recent studies (Ma and Hovy, 2016;
Lample et al., 2016; Yang et al., 2017; Chiu and
Nichols, 2016) (left side of Figure 2).

Given a sentence of tokens (t1, t2, . . . , tN) it
first forms a representation, xk, for each token by
concatenating a character based representation ck
with a token embedding wk:

ck = C(tk; θc)

wk = E(tk; θw)

xk = [ck;wk] (1)

The character representation ck captures morpho-
logical information and is either a convolutional
neural network (CNN) (Ma and Hovy, 2016; Chiu
and Nichols, 2016) or RNN (Yang et al., 2017;
Lample et al., 2016). It is parameterized by
C(·, θc) with parameters θc. The token embed-
dings, wk, are obtained as a lookup E(·, θw), ini-
tialized using pre-trained word embeddings, and
fine tuned during training (Collobert et al., 2011).

To learn a context sensitive representation, we
employ multiple layers of bidirectional RNNs. For
each token position, k, the hidden state hk,i of
RNN layer i is formed by concatenating the hid-
den states from the forward (

−→
h k,i) and backward

(
←−
h k,i) RNNs. As a result, the bidirectional RNN

is able to use both past and future information to
make a prediction at token k. More formally, for
the first RNN layer that operates on xk to output
hk,1:

−→
h k,1 =

−→
R 1(xk,

−→
h k−1,1; θ−→R1

)

←−
h k,1 =

←−
R 1(xk,

←−
h k+1,1; θ←−R1

)

hk,1 = [
−→
h k,1;

←−
h k,1] (2)

Step	2:	Prepare	word	
embedding	and	LM	
embedding	for	each	
token	in	the	input	
sequence.

The	need	to	capture	future	context	in	the	LM	embeddingssuggests	
itis	beneficial	to	also	consider	a	\textit{backward}	LM	in	additionalto
the	traditional	\textit{forward}	LM.		A	backward	LM	predicts	the	
previous	token	given	the	future	context.		Given	a	sentence	with	N	
tokens,	it	computes\[P(t_{k-1}	|	t_k,	t_{k+1},	...,	t_N).\]A	backward	
LM	can	be	implemTheneed	to	capture	future	context	in	the	LM	
embeddingssuggests	itis	beneficial	to	also	consider	a	
\textit{backward}	LM	in	additionaltothe	traditional	\textit{forward}	
LM.		A	backward	LM	predicts	the	previous	token	given	the	future	
context.		Given	a	sentence	with	N	tokens,	it	computes\[P(t_{k-1}	|	
t_k,	t_{k+1},	...,	t_N).\]A	backward	LM	can	be	implemented	in	an	
analogous	way	to	a	forward	LM	and	produces	an	embedding	
$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	the	sequence	$(t_k,	
t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	top	layer	LSTM.	The	
need	to	capture	future	context	in	the	LM	embeddingssuggests	itis	
beneficial	to	also	consider	a	\textit{backward}	LM	in	additionaltothe	
traditional	\textit{forward}	LM.		A	backward	LM	predicts	the	
previous	token	given	the	future	context.		Given	a	sentence	with	N	
tokens,	it	computes\[P(t_{k-1}	|	t_k,	t_{k+1},	...,	t_N).\]A	backward	
LM	can	be	implemented	in	an	analogous	way	to	a	forward	LM	and	
produces	an	embedding	$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	
the	sequence	$(t_k,	t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	
top	layer	LSTM.entedin	an	analogous	way	to	a	forward	LM	and	
produces	an	embedding	$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	
the	sequence	$(t_k,	t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	
top	layer	LSTM.

The	need	to	capture	future	context	in	the	LM	embeddingssuggests	
itis	beneficial	to	also	consider	a	\textit{backward}	LM	in	additionalto
the	traditional	\textit{forward}	LM.		A	backward	LM	predicts	the	
previous	token	given	the	future	context.		Given	a	sentence	with	N	
tokens,	it	computes\[P(t_{k-1}	|	t_k,	t_{k+1},	...,	t_N).\]A	backward	
LM	can	be	implemTheneed	to	capture	future	context	in	the	LM	
embeddingssuggests	itis	beneficial	to	also	consider	a	
\textit{backward}	LM	in	additionaltothe	traditional	\textit{forward}	
LM.		A	backward	LM	predicts	the	previous	token	given	the	future	
context.		Given	a	sentence	with	N	tokens,	it	computes\[P(t_{k-1}	|	
t_k,	t_{k+1},	...,	t_N).\]A	backward	LM	can	be	implemented	in	an	
analogous	way	to	a	forward	LM	and	produces	an	embedding	
$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	the	sequence	$(t_k,	
t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	top	layer	LSTM.	The	
need	to	capture	future	context	in	the	LM	embeddingssuggests	itis	
beneficial	to	also	consider	a	\textit{backward}	LM	in	additionaltothe	
traditional	\textit{forward}	LM.		A	backward	LM	predicts	the	
previous	token	given	the	future	context.		Given	a	sentence	with	N	
tokens,	it	computes\[P(t_{k-1}	|	t_k,	t_{k+1},	...,	t_N).\]A	backward	
LM	can	be	implemented	in	an	analogous	way	to	a	forward	LM	and	
produces	an	embedding	$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	
the	sequence	$(t_k,	t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	
top	layer	LSTM.entedin	an	analogous	way	to	a	forward	LM	and	
produces	an	embedding	$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	
the	sequence	$(t_k,	t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	
top	layer	LSTM.

The	need	to	capture	future	context	in	the	LM	embeddingssuggests	
itis	beneficial	to	also	consider	a	\textit{backward}	LM	in	additionalto
the	traditional	\textit{forward}	LM.		A	backward	LM	predicts	the	
previous	token	given	the	future	context.		Given	a	sentence	with	N	
tokens,	it	computes\[P(t_{k-1}	|	t_k,	t_{k+1},	...,	t_N).\]A	backward	
LM	can	be	implemTheneed	to	capture	future	context	in	the	LM	
embeddingssuggests	itis	beneficial	to	also	consider	a	
\textit{backward}	LM	in	additionaltothe	traditional	\textit{forward}	
LM.		A	backward	LM	predicts	the	previous	token	given	the	future	
context.		Given	a	sentence	with	N	tokens,	it	computes\[P(t_{k-1}	|	
t_k,	t_{k+1},	...,	t_N).\]A	backward	LM	can	be	implemented	in	an	
analogous	way	to	a	forward	LM	and	produces	an	embedding	
$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	the	sequence	$(t_k,	
t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	top	layer	LSTM.	The	
need	to	capture	future	context	in	the	LM	embeddingssuggests	itis	
beneficial	to	also	consider	a	\textit{backward}	LM	in	additionaltothe	
traditional	\textit{forward}	LM.		A	backward	LM	predicts	the	
previous	token	given	the	future	context.		Given	a	sentence	with	N	
tokens,	it	computes\[P(t_{k-1}	|	t_k,	t_{k+1},	...,	t_N).\]A	backward	
LM	can	be	implemented	in	an	analogous	way	to	a	forward	LM	and	
produces	an	embedding	$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	
the	sequence	$(t_k,	t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	
top	layer	LSTM.entedin	an	analogous	way	to	a	forward	LM	and	
produces	an	embedding	$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	
the	sequence	$(t_k,	t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	
top	layer	LSTM.

The	need	to	capture	future	context	in	the	LM	embeddingssuggests	
itis	beneficial	to	also	consider	a	\textit{backward}	LM	in	additionalto
the	traditional	\textit{forward}	LM.		A	backward	LM	predicts	the	
previous	token	given	the	future	context.		Given	a	sentence	with	N	
tokens,	it	computes\[P(t_{k-1}	|	t_k,	t_{k+1},	...,	t_N).\]A	backward	
LM	can	be	implemTheneed	to	capture	future	context	in	the	LM	
embeddingssuggests	itis	beneficial	to	also	consider	a	
\textit{backward}	LM	in	additionaltothe	traditional	\textit{forward}	
LM.		A	backward	LM	predicts	the	previous	token	given	the	future	
context.		Given	a	sentence	with	N	tokens,	it	computes\[P(t_{k-1}	|	
t_k,	t_{k+1},	...,	t_N).\]A	backward	LM	can	be	implemented	in	an	
analogous	way	to	a	forward	LM	and	produces	an	embedding	
$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	the	sequence	$(t_k,	
t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	top	layer	LSTM.	The	
need	to	capture	future	context	in	the	LM	embeddingssuggests	itis	
beneficial	to	also	consider	a	\textit{backward}	LM	in	additionaltothe	
traditional	\textit{forward}	LM.		A	backward	LM	predicts	the	
previous	token	given	the	future	context.		Given	a	sentence	with	N	
tokens,	it	computes\[P(t_{k-1}	|	t_k,	t_{k+1},	...,	t_N).\]A	backward	
LM	can	be	implemented	in	an	analogous	way	to	a	forward	LM	and	
produces	an	embedding	$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	
the	sequence	$(t_k,	t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	
top	layer	LSTM.entedin	an	analogous	way	to	a	forward	LM	and	
produces	an	embedding	$\overleftarrow{\mathbf{h}}^{LM}_k$,	for	
the	sequence	$(t_k,	t_{k+1},	...,	t_N)$,	the	output	embeddingsof	the	
top	layer	LSTM. unlabeled

data

Recurrent
language	
model

Word
embedding	
model

Step	1:	Pretrain word	
embeddings and	
language	model.

New				York			 is					located			…

Sequence	tagging	model

B-LOC			E-LOC					O									O							…

input	
sequence

output		
sequence

Word	
embedding

LM	
embedding

Two	representations
of	the	word	“York”

Step	3:	
Use	both	word	
embeddings and	LM	
embeddings in	the	
sequence	tagging	
model.

New				York			 is					located			…

Figure 1: The main components in TagLM,
our language-model-augmented sequence tagging
system. The language model component (in or-
ange) is used to augment the input token represen-
tation in a traditional sequence tagging models (in
grey).

The second RNN layer is similar and uses hk,1 to
output hk,2. In this paper, we use L = 2 lay-
ers of RNNs in all experiments and parameterize
Ri as either Gated Recurrent Units (GRU) (Cho
et al., 2014) or Long Short-Term Memory units
(LSTM) (Hochreiter and Schmidhuber, 1997) de-
pending on the task.

Finally, the output of the final RNN layer hk,L
is used to predict a score for each possible tag us-
ing a single dense layer. Due to the dependencies
between successive tags in our sequence label-
ing tasks (e.g. using the BIOES labeling scheme,
it is not possible for I-PER to follow B-LOC),
it is beneficial to model and decode each sen-
tence jointly instead of independently predicting
the label for each token. Accordingly, we add
another layer with parameters for each label bi-
gram, computing the sentence conditional random
field (CRF) loss (Lafferty et al., 2001) using the
forward-backward algorithm at training time, and
using the Viterbi algorithm to find the most likely
tag sequence at test time, similar to Collobert et al.
(2011).

1757

New York is located ...

Neural net

Char
CNN/
RNN

Embedding

Token
embedding

RNNDense

E-LOCB-LOC CRF

bi-RNN
(R2)

Token
representation

New York is located ...

Forward LM

Backward LM

h1
LM

Concat LM
embedding

Sequence
tagging

Pre-trained bi-LM

bi-RNN (R1)

Sequence
representation

Concatenation

Token
representation

New York is located ...

Token
representation

h1,1 h2
LMh2,1

h1,2 h2,2

Figure 2: Overview of TagLM, our language model augmented sequence tagging architecture. The
top level embeddings from a pre-trained bidirectional LM are inserted in a stacked bidirectional RNN
sequence tagging model. See text for details.

2.3 Bidirectional LM
A language model computes the probability of a
token sequence (t1, t2, . . . , tN)

p(t1, t2, . . . , tN) =

N∏

k=1

p(tk | t1, t2, . . . , tk−1).

Recent state of the art neural language models
(Józefowicz et al., 2016) use a similar architec-
ture to our baseline sequence tagger where they
pass a token representation (either from a CNN
over characters or as token embeddings) through
multiple layers of LSTMs to embed the history
(t1, t2, . . . , tk) into a fixed dimensional vector−→
h LM
k . This is the forward LM embedding of the

token at position k and is the output of the top
LSTM layer in the language model. Finally, the
language model predicts the probability of token
tk+1 using a softmax layer over words in the vo-
cabulary.

The need to capture future context in the LM
embeddings suggests it is beneficial to also con-
sider a backward LM in additional to the tradi-
tional forward LM. A backward LM predicts the
previous token given the future context. Given a
sentence with N tokens, it computes

p(t1, t2, . . . , tN) =
N∏

k=1

p(tk | tk+1, tk+2, . . . , tN).

A backward LM can be implemented in an anal-
ogous way to a forward LM and produces the
backward LM embedding

←−
h LM
k , for the sequence

(tk, tk+1, . . . , tN), the output embeddings of the
top layer LSTM.

In our final system, after pre-training the for-
ward and backward LMs separately, we remove
the top layer softmax and concatenate the for-
ward and backward LM embeddings to form
bidirectional LM embeddings, i.e., hLMk =

[
−→
h LM
k ;
←−
h LM
k]. Note that in our formulation, the

forward and backward LMs are independent, with-
out any shared parameters.

2.4 Combining LM with sequence model
Our combined system, TagLM, uses the LM em-
beddings as additional inputs to the sequence tag-
ging model. In particular, we concatenate the LM
embeddings hLM with the output from one of the
bidirectional RNN layers in the sequence model.
In our experiments, we found that introducing the
LM embeddings at the output of the first layer per-
formed the best. More formally, we simply replace
(2) with

hk,1 = [
−→
h k,1;

←−
h k,1;h

LM
k]. (3)

There are alternate possibilities for adding the
LM embeddings to the sequence model. One pos-

1758

sibility adds a non-linear mapping after the con-
catenation and before the second RNN (e.g. re-
placing (3) with f([

−→
h k,1;

←−
h k,1;h

LM
k]) where f

is a non-linear function). Another possibility in-
troduces an attention-like mechanism that weights
the all LM embeddings in a sentence before in-
cluding them in the sequence model. Our ini-
tial results with the simple concatenation were en-
couraging so we did not explore these alternatives
in this study, preferring to leave them for future
work.

3 Experiments

We evaluate our approach on two well bench-
marked sequence tagging tasks, the CoNLL 2003
NER task (Sang and Meulder, 2003) and the
CoNLL 2000 Chunking task (Sang and Buch-
holz, 2000). We report the official evaluation met-
ric (micro-averaged F1). In both cases, we use
the BIOES labeling scheme for the output tags,
following previous work which showed it out-
performs other options (e.g., Ratinov and Roth,
2009). Following Chiu and Nichols (2016), we
use the Senna word embeddings (Collobert et al.,
2011) and pre-processed the text by lowercasing
all tokens and replacing all digits with 0.

CoNLL 2003 NER. The CoNLL 2003 NER
task consists of newswire from the Reuters RCV1
corpus tagged with four different entity types
(PER, LOC, ORG, MISC). It includes standard
train, development and test sets. Following pre-
vious work (Yang et al., 2017; Chiu and Nichols,
2016) we trained on both the train and develop-
ment sets after tuning hyperparameters on the de-
velopment set.

The hyperparameters for our baseline model are
similar to Yang et al. (2017). We use two bidirec-
tional GRUs with 80 hidden units and 25 dimen-
sional character embeddings for the token charac-
ter encoder. The sequence layer uses two bidirec-
tional GRUs with 300 hidden units each. For reg-
ularization, we add 25% dropout to the input of
each GRU, but not to the recurrent connections.

CoNLL 2000 chunking. The CoNLL 2000
chunking task uses sections 15-18 from the Wall
Street Journal corpus for training and section 20
for testing. It defines 11 syntactic chunk types
(e.g., NP, VP, ADJP) in addition to other. We
randomly sampled 1000 sentences from the train-
ing set as a held-out development set.

The baseline sequence tagger uses 30 dimen-
sional character embeddings and a CNN with 30
filters of width 3 characters followed by a tanh
non-linearity for the token character encoder. The
sequence layer uses two bidirectional LSTMs with
200 hidden units. Following Ma and Hovy (2016)
we added 50% dropout to the character embed-
dings, the input to each LSTM layer (but not re-
current connections) and to the output of the final
LSTM layer.

Pre-trained language models. The primary
bidirectional LMs we used in this study were
trained on the 1B Word Benchmark (Chelba et al.,
2014), a publicly available benchmark for large-
scale language modeling. The training split has
approximately 800 million tokens, about a 4000X
increase over the number training tokens in the
CoNLL datasets. Józefowicz et al. (2016) ex-
plored several model architectures and released
their best single model and training recipes. Fol-
lowing Sak et al. (2014), they used linear projec-
tion layers at the output of each LSTM layer to
reduce the computation time but still maintain a
large LSTM state. Their single best model took
three weeks to train on 32 GPUs and achieved 30.0
test perplexity. It uses a character CNN with 4096
filters for input, followed by two stacked LSTMs,
each with 8192 hidden units and a 1024 dimen-
sional projection layer. We use CNN-BIG-LSTM
to refer to this language model in our results.

In addition to CNN-BIG-LSTM from
Józefowicz et al. (2016),1 we used the same cor-
pus to train two additional language models with
fewer parameters: forward LSTM-2048-512
and backward LSTM-2048-512. Both language
models use token embeddings as input to a single
layer LSTM with 2048 units and a 512 dimension
projection layer. We closely followed the proce-
dure outlined in Józefowicz et al. (2016), except
we used synchronous parameter updates across
four GPUs instead of asynchronous updates across
32 GPUs and ended training after 10 epochs. The
test set perplexities for our forward and backward
LSTM-2048-512 language models are 47.7 and
47.3, respectively.2

1https://github.com/tensorflow/models/
tree/master/lm_1b

2Due to different implementations, the perplexity of the
forward LM with similar configurations in Józefowicz et al.
(2016) is different (45.0 vs. 47.7).

1759

Model F1± std
Chiu and Nichols (2016) 90.91± 0.20
Lample et al. (2016) 90.94
Ma and Hovy (2016) 91.37

Our baseline without LM 90.87± 0.13
TagLM 91.93± 0.19

Table 1: Test set F1 comparison on CoNLL 2003
NER task, using only CoNLL 2003 data and unla-
beled text.

Model F1± std
Yang et al. (2017) 94.66
Hashimoto et al. (2016) 95.02
Søgaard and Goldberg (2016) 95.28

Our baseline without LM 95.00± 0.08
TagLM 96.37± 0.05

Table 2: Test set F1 comparison on CoNLL 2000
Chunking task using only CoNLL 2000 data and
unlabeled text.

Training. All experiments use the Adam opti-
mizer (Kingma and Ba, 2015) with gradient norms
clipped at 5.0. In all experiments, we fine tune
the pre-trained Senna word embeddings but fix all
weights in the pre-trained language models. In ad-
dition to explicit dropout regularization, we also
use early stopping to prevent over-fitting and use
the following process to determine when to stop
training. We first train with a constant learning
rate α = 0.001 on the training data and monitor
the development set performance at each epoch.
Then, at the epoch with the highest development
performance, we start a simple learning rate an-
nealing schedule: decrease α an order of magni-
tude (i.e., divide by ten), train for five epochs, de-
crease α an order of magnitude again, train for five
more epochs and stop.

Following Chiu and Nichols (2016), we train
each final model configuration ten times with dif-
ferent random seeds and report the mean and stan-
dard deviation F1. It is important to estimate the
variance of model performance since the test data
sets are relatively small.

3.1 Overall system results

Tables 1 and 2 compare results from TagLM
with previously published state of the art results
without additional labeled data or task specific
gazetteers. Tables 3 and 4 compare results of

TagLM to other systems that include additional la-
beled data or gazetteers. In both tasks, TagLM es-
tablishes a new state of the art using bidirectional
LMs (the forward CNN-BIG-LSTM and the back-
ward LSTM-2048-512).

In the CoNLL 2003 NER task, our model scores
91.93 mean F1, which is a statistically signifi-
cant increase over the previous best result of 91.62
±0.33 from Chiu and Nichols (2016) that used
gazetteers (at 95%, two-sided Welch t-test, p =
0.021).

In the CoNLL 2000 Chunking task, TagLM
achieves 96.37 mean F1, exceeding all previously
published results without additional labeled data
by more then 1% absolute F1. The improvement
over the previous best result of 95.77 in Hashimoto
et al. (2016) that jointly trains with Penn Treebank
(PTB) POS tags is statistically significant at 95%
(p < 0.001 assuming standard deviation of 0.1).

Importantly, the LM embeddings amounts to an
average absolute improvement of 1.06 and 1.37 F1

in the NER and Chunking tasks, respectively.

Adding external resources. Although we do
not use external labeled data or gazetteers, we
found that TagLM outperforms previous state of
the art results in both tasks when external re-
sources (labeled data or task specific gazetteers)
are available. Furthermore, Tables 3 and 4 show
that, in most cases, the improvements we obtain
by adding LM embeddings are larger then the im-
provements previously obtained by adding other
forms of transfer or joint learning. For example,
Yang et al. (2017) noted an improvement of only
0.06 F1 in the NER task when transfer learning
from both CoNLL 2000 chunks and PTB POS tags
and Chiu and Nichols (2016) reported an increase
of 0.71 F1 when adding gazetteers to their base-
line. In the Chunking task, previous work has re-
ported from 0.28 to 0.75 improvement in F1 when
including supervised labels from the PTB POS
tags or CoNLL 2003 entities (Yang et al., 2017;
Søgaard and Goldberg, 2016; Hashimoto et al.,
2016).

3.2 Analysis

To elucidate the characteristics of our LM aug-
mented sequence tagger, we ran a number of addi-
tional experiments on the CoNLL 2003 NER task.

How to use LM embeddings? In this experi-
ment, we concatenate the LM embeddings at dif-

1760

F1 F1

Model External resources Without With ∆

Yang et al. (2017) transfer from CoNLL 2000/PTB-POS 91.2 91.26 +0.06
Chiu and Nichols (2016) with gazetteers 90.91 91.62 +0.71
Collobert et al. (2011) with gazetteers 88.67 89.59 +0.92
Luo et al. (2015) joint with entity linking 89.9 91.2 +1.3

Ours no LM vs TagLM unlabeled data only 90.87 91.93 +1.06

Table 3: Improvements in test set F1 in CoNLL 2003 NER when including additional labeled data or
task specific gazetteers (except the case of TagLM where we do not use additional labeled resources).

F1 F1

Model External resources Without With ∆

Yang et al. (2017) transfer from CoNLL 2003/PTB-POS 94.66 95.41 +0.75
Hashimoto et al. (2016) jointly trained with PTB-POS 95.02 95.77 +0.75
Søgaard and Goldberg (2016) jointly trained with PTB-POS 95.28 95.56 +0.28

Ours no LM vs TagLM unlabeled data only 95.00 96.37 +1.37

Table 4: Improvements in test set F1 in CoNLL 2000 Chunking when including additional labeled data
(except the case of TagLM where we do not use additional labeled data).

Use LM embeddings at F1± std
input to the first RNN layer 91.55± 0.21
output of the first RNN layer 91.93± 0.19
output of the second RNN layer 91.72± 0.13

Table 5: Comparison of CoNLL-2003 test set F1

when the LM embeddings are included at different
layers in the baseline tagger.

ferent locations in the baseline sequence tagger. In
particular, we used the LM embeddings hLMk to:

• augment the input of the first RNN layer; i.e.,
xk = [ck;wk;h

LM
k],

• augment the output of the first RNN layer;
i.e., hk,1 = [

−→
h k,1;

←−
h k,1;h

LM
k],3 and

• augment the output of the second RNN layer;
i.e., hk,2 = [

−→
h k,2;

←−
h k,2;h

LM
k].

Table 5 shows that the second alternative per-
forms best. We speculate that the second RNN
layer in the sequence tagging model is able to cap-
ture interactions between task specific context as
expressed in the first RNN layer and general con-
text as expressed in the LM embeddings in a way
that improves overall system performance. These

3This configuration the same as Eq. 3 in §2.4. It was re-
produced here for convenience.

results are consistent with Søgaard and Goldberg
(2016) who found that chunking performance was
sensitive to the level at which additional POS su-
pervision was added.

Does it matter which language model to use?
In this experiment, we compare six different con-
figurations of the forward and backward language
models (including the baseline model which does
not use any language models). The results are re-
ported in Table 6.

We find that adding backward LM embeddings
consistently outperforms forward-only LM em-
beddings, with F1 improvements between 0.22
and 0.27%, even with the relatively small back-
ward LSTM-2048-512 LM.

LM size is important, and replacing the forward
LSTM-2048-512 with CNN-BIG-LSTM (test
perplexities of 47.7 to 30.0 on 1B Word Bench-
mark) improves F1 by 0.26 - 0.31%, about as
much as adding backward LM. Accordingly, we
hypothesize (but have not tested) that replacing
the backward LSTM-2048-512with a backward
LM analogous to the CNN-BIG-LSTM would fur-
ther improve performance.

To highlight the importance of including lan-
guage models trained on a large scale data, we
also experimented with training a language model
on just the CoNLL 2003 training and development
data. Due to the much smaller size of this data

1761

Forward language model Backward language model LM perplexity F1± std
Fwd Bwd

— — N/A N/A 90.87± 0.13

LSTM-512-256∗ LSTM-512-256∗ 106.9 104.2 90.79± 0.15

LSTM-2048-512 — 47.7 N/A 91.40± 0.18
LSTM-2048-512 LSTM-2048-512 47.7 47.3 91.62± 0.23

CNN-BIG-LSTM — 30.0 N/A 91.66± 0.13
CNN-BIG-LSTM LSTM-2048-512 30.0 47.3 91.93± 0.19

Table 6: Comparison of CoNLL-2003 test set F1 for different language model combinations. All lan-
guage models were trained and evaluated on the 1B Word Benchmark, except LSTM-512-256∗ which
was trained and evaluated on the standard splits of the NER CoNLL 2003 dataset.

set, we decreased the model size to 512 hidden
units with a 256 dimension projection and normal-
ized tokens in the same manner as input to the se-
quence tagging model (lower-cased, with all dig-
its replaced with 0). The test set perplexities for
the forward and backward models (measured on
the CoNLL 2003 test data) were 106.9 and 104.2,
respectively. Including embeddings from these
language models decreased performance slightly
compared to the baseline system without any LM.
This result supports the hypothesis that adding lan-
guage models help because they learn composi-
tion functions (i.e., the RNN parameters in the lan-
guage model) from much larger data compared to
the composition functions in the baseline tagger,
which are only learned from labeled data.

Importance of task specific RNN. To under-
stand the importance of including a task specific
sequence RNN we ran an experiment that removed
the task specific sequence RNN and used only the
LM embeddings with a dense layer and CRF to
predict output tags. In this setup, performance was
very low, 88.17 F1, well below our baseline. This
result confirms that the RNNs in the baseline tag-
ger encode essential information which is not en-
coded in the LM embeddings. This is unsurprising
since the RNNs in the baseline tagger are trained
on labeled examples, unlike the RNN in the lan-
guage model which is only trained on unlabeled
examples. Note that the LM weights are fixed in
this experiment.

Dataset size. A priori, we expect the addition
of LM embeddings to be most beneficial in cases
where the task specific annotated datasets are
small. To test this hypothesis, we replicated the
setup from Yang et al. (2017) that samples 1%
of the CoNLL 2003 training set and compared

the performance of TagLM to our baseline with-
out LM. In this scenario, test F1 increased 3.35%
(from 67.66 to 71.01%) compared to an increase
of 1.06% F1 for a similar comparison with the full
training dataset. The analogous increases in Yang
et al. (2017) are 3.97% for cross-lingual trans-
fer from CoNLL 2002 Spanish NER and 6.28%
F1 for transfer from PTB POS tags. However,
they found only a 0.06% F1 increase when using
the full training data and transferring from both
CoNLL 2000 chunks and PTB POS tags. Taken
together, this suggests that for very small labeled
training sets, transferring from other tasks yields
a large improvement, but this improvement almost
disappears when the training data is large. On the
other hand, our approach is less dependent on the
training set size and significantly improves perfor-
mance even with larger training sets.

Number of parameters. Our TagLM formula-
tion increases the number of parameters in the sec-
ond RNN layer R2 due to the increase in the input
dimension h1 if all other hyperparameters are held
constant. To confirm that this did not have a ma-
terial impact on the results, we ran two additional
experiments. In the first, we trained a system with-
out a LM but increased the second RNN layer hid-
den dimension so that number of parameters was
the same as in TagLM. In this case, performance
decreased slightly (by 0.15% F1) compared to the
baseline model, indicating that solely increasing
parameters does not improve performance. In the
second experiment, we decreased the hidden di-
mension of the second RNN layer in TagLM to
give it the same number of parameters as the base-
line no LM model. In this case, test F1 increased
slightly to 92.00 ± 0.11 indicating that the addi-
tional parameters in TagLM are slightly hurting

1762

performance.4

Does the LM transfer across domains? One
artifact of our evaluation framework is that both
the labeled data in the chunking and NER tasks
and the unlabeled text in the 1 Billion Word
Benchmark used to train the bidirectional LMs are
derived from news articles. To test the sensitiv-
ity to the LM training domain, we also applied
TagLM with a LM trained on news articles to the
SemEval 2017 Shared Task 10, ScienceIE.5 Scien-
ceIE requires end-to-end joint entity and relation-
ship extraction from scientific publications across
three diverse fields (computer science, material
sciences, and physics) and defines three broad en-
tity types (Task, Material and Process). For this
task, TagLM increased F1 on the development set
by 4.12% (from 49.93 to to 54.05%) for entity ex-
traction over our baseline without LM embeddings
and it was a major component in our winning sub-
mission to ScienceIE, Scenario 1 (Ammar et al.,
2017). We conclude that LM embeddings can im-
prove the performance of a sequence tagger even
when the data comes from a different domain.

4 Related work

Unlabeled data. TagLM was inspired by the
widespread use of pre-trained word embeddings
in supervised sequence tagging models. Besides
pre-trained word embeddings, our method is most
closely related to Li and McCallum (2005). In-
stead of using a LM, Li and McCallum (2005) uses
a probabilistic generative model to infer context-
sensitive latent variables for each token, which
are then used as extra features in a supervised
CRF tagger (Lafferty et al., 2001). Other semi-
supervised learning methods for structured pre-
diction problems include co-training (Blum and
Mitchell, 1998; Pierce and Cardie, 2001), expec-
tation maximization (Nigam et al., 2000; Mohit
and Hwa, 2005), structural learning (Ando and
Zhang, 2005) and maximum discriminant func-
tions (Suzuki et al., 2007; Suzuki and Isozaki,
2008). It is easy to combine TagLM with any
of the above methods by including LM embed-
dings as additional features in the discriminative
components of the model (except for expectation
maximization). A detailed discussion of semi-
supervised learning methods in NLP can be found

4A similar experiment for the Chunking task did not im-
prove F1 so this conclusion is task dependent.

5https://scienceie.github.io/

in (Søgaard, 2013).
Melamud et al. (2016) learned a context en-

coder from unlabeled data with an objective func-
tion similar to a bi-directional LM and applied it to
several NLP tasks closely related to the unlabeled
objective function: sentence completion, lexical
substitution and word sense disambiguation.

LM embeddings are related to a class of meth-
ods (e.g., Le and Mikolov, 2014; Kiros et al.,
2015; Hill et al., 2016) for learning sentence and
document encoders from unlabeled data, which
can be used for text classification and textual en-
tailment among other tasks. Dai and Le (2015)
pre-trained LSTMs using language models and se-
quence autoencoders then fine tuned the weights
for classification tasks. In contrast to our method
that uses unlabeled data to learn token-in-context
embeddings, all of these methods use unlabeled
data to learn an encoder for an entire text sequence
(sentence or document).

Neural language models. LMs have always
been a critical component in statistical machine
translation systems (Koehn, 2009). Recently, neu-
ral LMs (Bengio et al., 2003; Mikolov et al., 2010)
have also been integrated in neural machine trans-
lation systems (e.g., Kalchbrenner and Blunsom,
2013; Devlin et al., 2014) to score candidate trans-
lations. In contrast, TagLM uses neural LMs to
encode words in the input sequence.

Unlike forward LMs, bidirectional LMs have
received little prior attention. Most similar to
our formulation, Peris and Casacuberta (2015)
used a bidirectional neural LM in a statistical ma-
chine translation system for instance selection.
They tied the input token embeddings and soft-
max weights in the forward and backward direc-
tions, unlike our approach which uses two distinct
models without any shared parameters. Frinken
et al. (2012) also used a bidirectional n-gram LM
for handwriting recognition.

Interpreting RNN states. Recently, there has
been some interest in interpreting the activations
of RNNs. Linzen et al. (2016) showed that sin-
gle LSTM units can learn to predict singular-plural
distinctions. Karpathy et al. (2015) visualized
character level LSTM states and showed that indi-
vidual cells capture long-range dependencies such
as line lengths, quotes and brackets. Our work
complements these studies by showing that LM
states are useful for downstream tasks as a way

1763

of interpreting what they learn.

Other sequence tagging models. Current state
of the art results in sequence tagging problems are
based on bidirectional RNN models. However,
many other sequence tagging models have been
proposed in the literature for this class of problems
(e.g., Lafferty et al., 2001; Collins, 2002). LM em-
beddings could also be used as additional features
in other models, although it is not clear whether
the model complexity would be sufficient to effec-
tively make use of them.

5 Conclusion

In this paper, we proposed a simple and general
semi-supervised method using pre-trained neural
language models to augment token representations
in sequence tagging models. Our method signifi-
cantly outperforms current state of the art models
in two popular datasets for NER and Chunking.
Our analysis shows that adding a backward LM in
addition to traditional forward LMs consistently
improves performance. The proposed method is
robust even when the LM is trained on unlabeled
data from a different domain, or when the base-
line model is trained on a large number of labeled
examples.

Acknowledgments

We thank Chris Dyer, Julia Hockenmaier, Jayant
Krishnamurthy, Matt Gardner and Oren Etzioni
for comments on earlier drafts that led to substan-
tial improvements in the final version.

References
Waleed Ammar, Matthew E. Peters, Chandra Bhaga-

vatula, and Russell Power. 2017. The AI2 sys-
tem at SemEval-2017 Task 10 (ScienceIE): semi-
supervised end-to-end entity and relation extraction.
In ACL workshop (SemEval).

Rie Kubota Ando and Tong Zhang. 2005. A high-
performance semi-supervised learning method for
text chunking. In ACL.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. In JMLR.

Avrim Blum and Tom Mitchell. 1998. Combining la-
beled and unlabeled data with co-training. In COLT .

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, and Phillipp Koehn. 2014. One bil-
lion word benchmark for measuring progress in sta-
tistical language modeling. CoRR abs/1312.3005.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional LSTM-CNNs. In
TACL.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. In SSST@EMNLP.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. In JMLR.

Andrew M. Dai and Quoc V. Le. 2015. Semi-
supervised sequence learning. In NIPS.

Jacob Devlin, Rabih Zbib, Zhongqiang Huang, Thomas
Lamar, Richard M Schwartz, and John Makhoul.
2014. Fast and robust neural network joint models
for statistical machine translation. In ACL.

Volkmar Frinken, Alicia Fornés, Josep Lladós, and
Jean-Marc Ogier. 2012. Bidirectional language
model for handwriting recognition. In Joint IAPR
International Workshops on Statistical Techniques in
Pattern Recognition (SPR) and Structural and Syn-
tactic Pattern Recognition (SSPR).

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2016. A joint many-task
model: Growing a neural network for multiple nlp
tasks. CoRR abs/1611.01587.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In HLT-NAACL.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Computation 9.

Rafal Józefowicz, Oriol Vinyals, Mike Schuster, Noam
Shazeer, and Yonghui Wu. 2016. Exploring the lim-
its of language modeling. CoRR abs/1602.02410.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In EMNLP.

Andrej Karpathy, Justin Johnson, and Li Fei-Fei. 2015.
Visualizing and understanding recurrent networks.
In ICLR workshop.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Jamie Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov,
Richard S. Zemel, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. 2015. Skip-thought vectors.
In NIPS.

Philipp Koehn. 2009. Statistical machine translation.
Cambridge University Press.

1764

John D. Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In ICML.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In NAACL-HLT .

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In ICML.

Wei Li and Andrew McCallum. 2005. Semi-supervised
sequence modeling with syntactic topic models. In
AAAI.

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. In TACL.

Gang Luo, Xiaojiang Huang, Chin-Yew Lin, and Za-
iqing Nie. 2015. Joint entity recognition and disam-
biguation. In EMNLP.

Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In ACL.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional lstm. In CoNLL.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS.

Behrang Mohit and Rebecca Hwa. 2005. Syntax-based
semi-supervised named entity tagging. In ACL.

Kamal Nigam, Andrew Kachites McCallum, Sebastian
Thrun, and Tom Mitchell. 2000. Text classification
from labeled and unlabeled documents using em.
Machine learning .

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP.

Álvaro Peris and Francisco Casacuberta. 2015. A bidi-
rectional recurrent neural language model for ma-
chine translation. Procesamiento del Lenguaje Nat-
ural .

David Pierce and Claire Cardie. 2001. Limitations of
co-training for natural language learning from large
datasets. In EMNLP.

Lev-Arie Ratinov and Dan Roth. 2009. Design chal-
lenges and misconceptions in named entity recogni-
tion. In CoNLL.

Hasim Sak, Andrew W. Senior, and Franoise Beaufays.
2014. Long short-term memory recurrent neural
network architectures for large scale acoustic mod-
eling. In INTERSPEECH.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the CoNLL-2000 shared task chunk-
ing. In CoNLL/LLL.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
CoNLL.

Anders Søgaard. 2013. Semi-supervised learning and
domain adaptation in natural language processing.
Synthesis Lectures on Human Language Technolo-
gies .

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In ACL.

Jun Suzuki, Akinori Fujino, and Hideki Isozaki. 2007.
Semi-supervised structured output learning based on
a hybrid generative and discriminative approach. In
EMNLP-CoNLL.

Jun Suzuki and Hideki Isozaki. 2008. Semi-supervised
sequential labeling and segmentation using giga-
word scale unlabeled data. In ACL.

Zhilin Yang, Ruslan Salakhutdinov, and William W.
Cohen. 2017. Transfer learning for sequence tag-
ging with hierarchical recurrent networks. In ICLR.

1765

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1766–1776
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1162

Learning Symmetric Collaborative Dialogue Agents with Dynamic
Knowledge Graph Embeddings

He He and Anusha Balakrishnan and Mihail Eric and Percy Liang
Computer Science Department, Stanford University

{hehe,anusha28,meric,pliang}@cs.stanford.edu

Abstract

We study a symmetric collaborative dia-
logue setting in which two agents, each
with private knowledge, must strategically
communicate to achieve a common goal.
The open-ended dialogue state in this set-
ting poses new challenges for existing di-
alogue systems. We collected a dataset
of 11K human-human dialogues, which
exhibits interesting lexical, semantic, and
strategic elements. To model both struc-
tured knowledge and unstructured lan-
guage, we propose a neural model with dy-
namic knowledge graph embeddings that
evolve as the dialogue progresses. Au-
tomatic and human evaluations show that
our model is both more effective at achiev-
ing the goal and more human-like than
baseline neural and rule-based models.

1 Introduction

Current task-oriented dialogue systems (Young
et al., 2013; Wen et al., 2017; Dhingra et al., 2017)
require a pre-defined dialogue state (e.g., slots
such as food type and price range for a restau-
rant searching task) and a fixed set of dialogue acts
(e.g., request, inform). However, human conversa-
tion often requires richer dialogue states and more
nuanced, pragmatic dialogue acts. Recent open-
domain chat systems (Shang et al., 2015; Serban
et al., 2015b; Sordoni et al., 2015; Li et al., 2016a;
Lowe et al., 2017; Mei et al., 2017) learn a map-
ping directly from previous utterances to the next
utterance. While these models capture open-ended
aspects of dialogue, the lack of structured dialogue
state prevents them from being directly applied
to settings that require interfacing with structured
knowledge.

In order to bridge the gap between the two types

Friends of agent A:

Name School Major Company

Jessica Columbia Computer Science Google
Josh Columbia Linguistics Google
...

A: Hi! Most of my friends work for Google
B: do you have anyone who went to columbia?
A: Hello?
A: I have Jessica a friend of mine
A: and Josh, both went to columbia
B: or anyone working at apple?
B: SELECT (Jessica, Columbia, Computer Science, Google)
A: SELECT (Jessica, Columbia, Computer Science, Google)

Figure 1: An example dialogue from the Mutual-
Friends task in which two agents, A and B, each
given a private list of a friends, try to identify their
mutual friend. Our objective is to build an agent
that can perform the task with a human. Cross-
talk (Section 2.3) is italicized.

of systems, we focus on a symmetric collabora-
tive dialogue setting, which is task-oriented but
encourages open-ended dialogue acts. In our set-
ting, two agents, each with a private list of items
with attributes, must communicate to identify the
unique shared item. Consider the dialogue in Fig-
ure 1, in which two people are trying to find their
mutual friend. By asking “do you have anyone
who went to columbia?”, B is suggesting that she
has some Columbia friends, and that they probably
work at Google. Such conversational implicature
is lost when interpreting the utterance as simply
an information request. In addition, it is hard to
define a structured state that captures the diverse
semantics in many utterances (e.g., defining “most
of”, “might be”; see details in Table 1).

To model both structured and open-ended con-
text, we propose the Dynamic Knowledge Graph
Network (DynoNet), in which the dialogue state is
modeled as a knowledge graph with an embedding

1766

https://doi.org/10.18653/v1/P17-1162

for each node (Section 3). Our model is similar
to EntNet (Henaff et al., 2017) in that node/entity
embeddings are updated recurrently given new
utterances. The difference is that we structure
entities as a knowledge graph; as the dialogue
proceeds, new nodes are added and new context
is propagated on the graph. An attention-based
mechanism (Bahdanau et al., 2015) over the node
embeddings drives generation of new utterances.
Our model’s use of knowledge graphs captures the
grounding capability of classic task-oriented sys-
tems and the graph embedding provides the repre-
sentational flexibility of neural models.

The naturalness of communication in the sym-
metric collaborative setting enables large-scale
data collection: We were able to crowdsource
around 11K human-human dialogues on Amazon
Mechanical Turk (AMT) in less than 15 hours.1

We show that the new dataset calls for more flex-
ible representations beyond fully-structured states
(Section 2.2).

In addition to conducting the third-party human
evaluation adopted by most work (Liu et al., 2016;
Li et al., 2016b,c), we also conduct partner evalu-
ation (Wen et al., 2017) where AMT workers rate
their conversational partners (other workers or our
models) based on fluency, correctness, coopera-
tion, and human-likeness. We compare DynoNet
with baseline neural models and a strong rule-
based system. The results show that DynoNet can
perform the task with humans efficiently and nat-
urally; it also captures some strategic aspects of
human-human dialogues.

The contributions of this work are: (i) a new
symmetric collaborative dialogue setting and a
large dialogue corpus that pushes the boundaries
of existing dialogue systems; (ii) DynoNet, which
integrates semantically rich utterances with struc-
tured knowledge to represent open-ended dialogue
states; (iii) multiple automatic metrics based on
bot-bot chat and a comparison of third-party and
partner evaluation.

2 Symmetric Collaborative Dialogue

We begin by introducing a collaborative task be-
tween two agents and describe the human-human
dialogue collection process. We show that our data
exhibits diverse, interesting language phenomena.

1The dataset is available publicly at https://
stanfordnlp.github.io/cocoa/.

2.1 Task Definition

In the symmetric collaborative dialogue setting,
there are two agents, A and B, each with a pri-
vate knowledge base—KBA and KBB, respec-
tively. Each knowledge base includes a list of
items, where each item has a value for each at-
tribute. For example, in the MutualFriends set-
ting, Figure 1, items are friends and attributes are
name, school, etc. There is a shared item that A
and B both have; their goal is to converse with
each other to determine the shared item and select
it. Formally, an agent is a mapping from its pri-
vate KB and the dialogue thus far (sequence of ut-
terances) to the next utterance to generate or a se-
lection. A dialogue is considered successful when
both agents correctly select the shared item. This
setting has parallels in human-computer collabora-
tion where each agent has complementary exper-
tise.

2.2 Data collection

We created a schema with 7 attributes and approx-
imately 3K entities (attribute values). To elicit lin-
guistic and strategic variants, we generate a ran-
dom scenario for each task by varying the num-
ber of items (5 to 12), the number attributes (3 or
4), and the distribution of values for each attribute
(skewed to uniform). See Appendix A and B for
details of schema and scenario generation.

Figure 2: Screenshot of the chat interface.

We crowdsourced dialogues on AMT by ran-
domly pairing up workers to perform the task
within 5 minutes.2 Our chat interface is shown in
Figure 2. To discourage random guessing, we pre-
vent workers from selecting more than once every
10 seconds. Our task was very popular and we col-

2If the workers exceed the time limit, the dialogue is
marked as unsuccessful (but still logged).

1767

Type % Easy example Hard example

Inform 30.4 I know a judy. / I have someone who
studied the bible in the afternoon.

About equal indoor and outdoor friends / me too. his
major is forestry / might be kelly

Ask 17.7 Do any of them like Poi? / What does your henry
do?

What can you tell me about our friend? / Or maybe
north park college?

Answer 7.4 None of mine did / Yup / They do. / Same here. yes 3 of them / No he likes poi / yes if boston college

Table 1: Main utterance types and examples. We show both standard utterances whose meaning can
be represented by simple logical forms (e.g., ask(indoor)), and open-ended ones which require more
complex logical forms (difficult parts in bold). Text spans corresponding to entities are underlined.

Phenomenon Example

Coreference (I know one Debra) does she like the indoors? / (I have two friends named TIffany) at World airways?
Coordination keep on going with the fashion / Ok. let’s try something else. / go by hobby / great. select him. thanks!

Chit-chat Yes, that is good ole Terry. / All indoorsers! my friends hate nature
Categorization same, most of mine are female too / Does any of them names start with B

Correction I know one friend into Embroidery - her name is Emily. Sorry – Embroidery friend is named Michelle

Table 2: Communication phenomena in the dataset. Evident parts is in bold and text spans corresponding
to an entity are underlined. For coreference, the antecedent is in parentheses.

lected 11K dialogues over a period of 13.5 hours.3

Of these, over 9K dialogues are successful. Un-
successful dialogues are usually the result of either
worker leaving the chat prematurely.

2.3 Dataset statistics
We show the basic statistics of our dataset in Ta-
ble 3. An utterance is defined as a message sent
by one of the agents. The average utterance length
is short due to the informality of the chat, how-
ever, an agent usually sends multiple utterances in
one turn. Some example dialogues are shown in
Table 6 and Appendix I.

dialogues 11157
completed dialogues 9041
Vocabulary size 5325
Average # of utterances 11.41
Average time taken per task (sec.) 91.18
Average utterance length (tokens) 5.08
Number of linguistic templates4 41561

Table 3: Statistics of the MutualFriends dataset.

We categorize utterances into coarse types—
inform, ask, answer, greeting, apology—by pattern
matching (Appendix E). There are 7.4% multi-
type utterances, and 30.9% utterances contain
more than one entity. In Table 1, we show exam-
ple utterances with rich semantics that cannot be
sufficiently represented by traditional slot-values.

3Tasks are put up in batches; the total time excludes inter-
vals between batches.

4Entity names are replaced by their entity types.

Some of the standard ones are also non-trivial due
to coreference and logical compositionality.

Our dataset also exhibits some interesting com-
munication phenomena. Coreference occurs fre-
quently when people check multiple attributes
of one item. Sometimes mentions are dropped,
as an utterance simply continues from the part-
ner’s utterance. People occasionally use exter-
nal knowledge to group items with out-of-schema
attributes (e.g., gender based on names, location
based on schools). We summarize these phenom-
ena in Table 2. In addition, we find 30% utter-
ances involve cross-talk where the conversation
does not progress linearly (e.g., italic utterances
in Figure 1), a common characteristic of online
chat (Ivanovic, 2005).

One strategic aspect of this task is choosing the
order of attributes to mention. We find that people
tend to start from attributes with fewer unique val-
ues, e.g., “all my friends like morning” given the
KBB in Table 6, as intuitively it would help ex-
clude items quickly given fewer values to check.5

We provide a more detailed analysis of strategy in
Section 4.2 and Appendix F.

3 Dynamic Knowledge Graph Network

The diverse semantics in our data motivates us
to combine unstructured representation of the di-
alogue history with structured knowledge. Our

5Our goal is to model human behavior thus we do not dis-
cuss the optimal strategy here.

1768

B: anyone went to columbia?

columbia

google

KB + Dialogue history

Dynamic knowledge graph Graph
embedding

Generator

Name School Company
Jessica Columbia Google

Josh Columbia Google
Item 1
Item 2

2

1

josh

jessica

S

N

C

Message passing path of columbia

anyone went columbia

……

columbia

google

jessica

josh

… …

Yes and joshjessica

Attention + Copy

Figure 3: Overview of our approach. First, the KB and dialogue history (entities in bold) is mapped to
a graph. Here, an item node is labeled by the item ID and an attribute node is labeled by the attribute’s
first letter. Next, each node is embedded using relevant utterance embeddings through message passing.
Finally, an LSTM generates the next utterance based on attention over the node embeddings.

model consists of three components shown in Fig-
ure 3: (i) a dynamic knowledge graph, which rep-
resents the agent’s private KB and shared dialogue
history as a graph (Section 3.1), (ii) a graph em-
bedding over the nodes (Section 3.2), and (iii) an
utterance generator (Section 3.3).

The knowledge graph represents entities and re-
lations in the agent’s private KB, e.g., item-1’s
company is google. As the conversation unfolds,
utterances are embedded and incorporated into
node embeddings of mentioned entities. For in-
stance, in Figure 3, “anyone went to columbia”
updates the embedding of columbia. Next, each
node recursively passes its embedding to neigh-
boring nodes so that related entities (e.g., those
in the same row or column) also receive informa-
tion from the most recent utterance. In our exam-
ple, jessica and josh both receive new context
when columbia is mentioned. Finally, the utter-
ance generator, an LSTM, produces the next utter-
ance by attending to the node embeddings.

3.1 Knowledge Graph

Given a dialogue of T utterances, we construct
graphs (Gt)

T
t=1 over the KB and dialogue history

for agent A.6 There are three types of nodes: item
nodes, attribute nodes, and entity nodes. Edges
between nodes represent their relations. For ex-
ample, (item-1, hasSchool, columbia) means
that the first item has attribute school whose value

6 It is important to differentiate perspectives of the two
agents as they have different KBs. Thereafter we assume the
perspective of agent A, i.e., accessing KBA for A only, and
refer to B as the partner.

is columbia. An example graph is shown in Fig-
ure 3. The graph Gt is updated based on utterance
t by taking Gt�1 and adding a new node for any
entity mentioned in utterance t but not in KBA.7

3.2 Graph Embedding
Given a knowledge graph, we are interested in
computing a vector representation for each node
v that captures both its unstructured context from
the dialogue history and its structured context in
the KB. A node embedding Vt(v) for each node
v 2 Gt is built from three parts: structural prop-
erties of an entity defined by the KB, embeddings
of utterances in the dialogue history, and message
passing between neighboring nodes.

Node Features. Simple structural properties of
the KB often govern what is talked about; e.g.,
a high-frequency entity is usually interesting to
mention (consider “All my friends like dancing.”).
We represent this type of information as a fea-
ture vector Ft(v), which includes the degree and
type (item, attribute, or entity type) of node v, and
whether it has been mentioned in the current turn.
Each feature is encoded as a one-hot vector and
they are concatenated to form Ft(v).

Mention Vectors. A mention vector Mt(v) con-
tains unstructured context from utterances relevant
to node v up to turn t. To compute it, we first de-
fine the utterance representation ũt and the set of
relevant entities Et. Let ut be the embedding of
utterance t (Section 3.3). To differentiate between

7 We use a rule-based lexicon to link text spans to entities.
See details in Appendix D.

1769

the agent’s and the partner’s utterances, we repre-
sent it as ũt =

⇥
ut · {ut2Uself}, ut · {ut2Upartner}

⇤
,

where Uself and Upartner denote sets of utterances
generated by the agent and the partner, and [·, ·]
denotes concatenation. Let Et be the set of entity
nodes mentioned in utterance t if utterance t men-
tions some entities, or utterance t � 1 otherwise.8

The mention vector Mt(v) of node v incorporates
the current utterance if v is mentioned and inherits
Mt�1(v) if not:

Mt(v) = �tMt�1(v) + (1� �t)ũt; (1)

�t =

(
�
�
W inc [Mt�1(v), ũt]

�
if v 2 Et,

1 otherwise.

Here, � is the sigmoid function and W inc is a pa-
rameter matrix.

Recursive Node Embeddings. We propagate
information between nodes according to the struc-
ture of the knowledge graph. In Figure 3, given
“anyone went to columbia?”, the agent should fo-
cus on her friends who went to Columbia Univer-
sity. Therefore, we want this utterance to be sent
to item nodes connected to columbia, and one step
further to other attributes of these items because
they might be mentioned next as relevant informa-
tion, e.g., jessica and josh.

We compute the node embeddings recursively,
analogous to belief propagation:

V k
t (v) = max

v02Nt(v)
tanh (2)

⇣
W mp

h
V k�1

t (v0), R(ev!v0)
i⌘

,

where V k
t (v) is the depth-k node embedding at

turn t and Nt(v) denotes the set of nodes adjacent
to v. The message from a neighboring node v0 de-
pends on its embedding at depth-(k� 1), the edge
label ev!v0 (embedded by a relation embedding
function R), and a parameter matrix W mp. Mes-
sages from all neighbors are aggregated by max,
the element-wise max operation.9 Example mes-
sage passing paths are shown in Figure 3.

The final node embedding is the concatenation
of embeddings at each depth:

Vt(v) =
⇥
V 0

t (v), . . . , V K
t (v)

⇤
, (3)

where K is a hyperparameter (we experiment with
K 2 {0, 1, 2}) and V 0

t (v) = [Ft(v), Mt(v)].
8 Relying on utterance t � 1 is useful when utterance t

answers a question, e.g., “do you have any google friends?”
“No.”

9Using sum or mean slightly hurts performance.

3.3 Utterance Embedding and Generation
We embed and generate utterances using Long
Short Term Memory (LSTM) networks that take
the graph embeddings into account.

Embedding. On turn t, upon receiving an
utterance consisting of nt tokens, xt =
(xt,1, . . . , xt,nt), the LSTM maps it to a vector as
follows:

ht,j = LSTMenc(ht,j�1, At(xt,j)), (4)

where ht,0 = ht�1,nt�1 , and At is an entity ab-
straction function, explained below. The final hid-
den state ht,nt is used as the utterance embed-
ding ut, which updates the mention vectors as de-
scribed in Section 3.2.

In our dialogue task, the identity of an entity
is unimportant. For example, replacing google

with alphabet in Figure 1 should make little dif-
ference to the conversation. The role of an entity
is determined instead by its relation to other en-
tities and relevant utterances. Therefore, we de-
fine the abstraction At(y) for a word y as follows:
if y is linked to an entity v, then we represent an
entity by its type (school, company etc.) embed-
ding concatenated with its current node embed-
ding: At(y) = [Etype(y), Vt(v)]. Note that Vt(v)
is determined only by its structural features and its
context. If y is a non-entity, then At(y) is the word
embedding of y concatenated with a zero vector
of the same dimensionality as Vt(v). This way,
the representation of an entity only depends on its
structural properties given by the KB and the dia-
logue context, which enables the model to gener-
alize to unseen entities at test time.

Generation. Now, assuming we have embedded
utterance xt�1 into ht�1,nt�1 as described above,
we use another LSTM to generate utterance xt.
Formally, we carry over the last utterance embed-
ding ht,0 = ht�1,nt�1 and define:

ht,j = LSTMdec(ht,j�1, [At(xt,j), ct,j]), (5)

where ct,j is a weighted sum of node embeddings
in the current turn: ct,j =

P
v2Gt

↵t,j,vVt(v),
where ↵t,j,v are the attention weights over the
nodes. Intuitively, high weight should be given to
relevant entity nodes as shown in Figure 3,. We
compute the weights through standard attention
mechanism (Bahdanau et al., 2015):

↵t,j = softmax(st,j),

st,j,v = wattn · tanh
�
W attn [ht,j�1, Vt(v)]

�
,

1770

where vector wattn and W attn are parameters.
Finally, we define a distribution over both words

in the vocabulary and nodes in Gt using the copy-
ing mechanism of Jia and Liang (2016):

p(xt,j+1 = y | Gt, xt,j) / exp
�
W vocabht,j + b

�
,

p(xt,j+1 = r(v) | Gt, xt,j) / exp (st,j,v) ,

where y is a word in the vocabulary, W vocab and
b are parameters, and r(v) is the realization of the
entity represented by node v, e.g., google is real-
ized to “Google” during copying.10

4 Experiments

We compare our model with a rule-based sys-
tem and a baseline neural model. Both automatic
and human evaluations are conducted to test the
models in terms of fluency, correctness, coopera-
tion, and human-likeness. The results show that
DynoNet is able to converse with humans in a co-
herent and strategic way.

4.1 Setup
We randomly split the data into train, dev, and test
sets (8:1:1). We use a one-layer LSTM with 100
hidden units and 100-dimensional word vectors
for both the encoder and the decoder (Section 3.3).
Each successful dialogue is turned into two exam-
ples, each from the perspective of one of the two
agents. We maximize the log-likelihood of all ut-
terances in the dialogues. The parameters are opti-
mized by AdaGrad (Duchi et al., 2010) with an ini-
tial learning rate of 0.5. We trained for at least 10
epochs; after that, training stops if there is no im-
provement on the dev set for 5 epochs. By default,
we perform K = 2 iterations of message passing
to compute node embeddings (Section 3.2). For
decoding, we sequentially sample from the output
distribution with a softmax temperature of 0.5.11

Hyperparameters are tuned on the dev set.
We compare DynoNet with its static cou-

sion (StanoNet) and a rule-based system (Rule).
StanoNet uses G0 throughout the dialogue, thus
the dialogue history is completely contained in
the LSTM states instead of being injected into
the knowledge graph. Rule maintains weights for
each entity and each item in the KB to decide

10 We realize an entity by sampling from the empirical dis-
tribution of its surface forms found in the training data.

11 Since selection is a common ‘utterance’ in our dataset
and neural generation models are susceptible to over-
generating common sentences, we halve its probability dur-
ing sampling.

what to talk about and which item to select. It
has a pattern-matching semantic parser, a rule-
based policy, and a templated generator. See Ap-
pendix G for details.

4.2 Evaluation

We test our systems in two interactive settings:
bot-bot chat and bot-human chat. We perform both
automatic evaluation and human evaluation.

Automatic Evaluation. First, we compute the
cross-entropy (`) of a model on test data. As
shown in Table 4, DynoNet has the lowest test
loss. Next, we have a model chat with itself on
the scenarios from the test set.12 We evaluate the
chats with respect to language variation, effective-
ness, and strategy.

For language variation, we report the average
utterance length Lu and the unigram entropy H
in Table 4. Compared to Rule, the neural mod-
els tend to generate shorter utterances (Li et al.,
2016b; Serban et al., 2017b). However, they are
more diverse; for example, questions are asked
in multiple ways such as “Do you have ...”, “Any
friends like ...”, “What about ...”.

At the discourse level, we expect the distribu-
tion of a bot’s utterance types to match the distri-
bution of human’s. We show percentages of each
utterance type in Table 4. For Rule, the decision
about which action to take is written in the rules,
while StanoNet and DynoNet learned to behave in
a more human-like way, frequently informing and
asking questions.

To measure effectiveness, we compute the over-
all success rate (C) and the success rate per turn
(CT) and per selection (CS). As shown in Table 4,
humans are the best at this game, followed by Rule
which is comparable to DynoNet.

Next, we investigate the strategies leading to
these results. An agent needs to decide which
entity/attribute to check first to quickly reduce
the search space. We hypothesize that humans
tend to first focus on a majority entity and an
attribute with fewer unique values (Section 2.3).
For example, in the scenario in Table 6, time and
location are likely to be mentioned first. We
show the average frequency of first-mentioned en-
tities (#Ent1) and the average number of unique
values for first-mentioned attributes (|Attr1|) in Ta-

12 We limit the number of turns in bot-bot chat to be the
maximum number of turns humans took in the test set (46
turns).

1771

System ` # Lu H C " CT " CS " Sel Inf Ask Ans Greet #Ent1 |Attr1| #Ent #Attr

Human - 5.10 4.57 .82 .07 .38 .21 .31 .17 .08 .08 .55 .35 6.1 2.6

Rule - 7.61 3.37 .90 .05 .29 .18 .34 .23 .00 .12 .24 .61 9.9 3.0
StanoNet 2.20 4.01 4.05 .78 .04 .18 .19 .26 .12 .23 .09 .61 .19 7.1 2.9
DynoNet 2.13 3.37 3.90 .96 .06 .25 .22 .26 .13 .20 .12 .55 .18 5.2 2.5

Table 4: Automatic evaluation on human-human and bot-bot chats on test scenarios. We use " / # to
indicate that higher / lower values are better; otherwise the objective is to match humans’ statistics. Best
results (except Human) are in bold. Neural models generate shorter (lower Lu) but more diverse (higher
H) utterances. Overall, their distributions of utterance types match those of the humans’. (We only show
the most frequent speech acts therefore the numbers do not sum to 1.) Rule is effective in completing
the task (higher CS), but it is not information-efficient given the large number of attributes (#Attr) and
entities (#Ent) mentioned.

ble 4.13 Both DynoNet and StanoNet successfully
match human’s starting strategy by favoring enti-
ties of higher frequency and attributes of smaller
domain size.

To examine the overall strategy, we show the
average number of attributes (#Attr) and entities
(#Ent) mentioned during the conversation in Ta-
ble 4. Humans and DynoNet strategically focus on
a few attributes and entities, whereas Rule needs
almost twice entities to achieve similar success
rates. This suggests that the effectiveness of Rule
mainly comes from large amounts of unselective
information, which is consistent with comments
from their human partners.

Partner Evaluation. We generated 200 new
scenarios and put up the bots on AMT using the
same chat interface that was used for data col-
lection. The bots follow simple turn-taking rules
explained in Appendix H. Each AMT worker is
randomly paired with Rule, StanoNet, DynoNet,
or another human (but the worker doesn’t know
which), and we make sure that all four types of
agents are tested in each scenario at least once. At
the end of each dialogue, humans are asked to rate
their partner in terms of fluency, correctness, co-
operation, and human-likeness from 1 (very bad)
to 5 (very good), along with optional comments.

We show the average ratings (with significance
tests) in Table 5 and the histograms in Appendix J.
In terms of fluency, the models have similar per-
formance since the utterances are usually short.
Judgment on correctness is a mere guess since the
evaluator cannot see the partner’s KB; we will an-
alyze correctness more meaningfully in the third-
party evaluation below.

13 Both numbers are normalized to [0, 1] with respect to all
entities/attributes in the corresponding KB.

Noticeably, DynoNet is more cooperative than
the other models. As shown in the example dia-
logues in Table 6, DynoNet cooperates smoothly
with the human partner, e.g., replying with rel-
evant information about morning/indoor friends
when the partner mentioned that all her friends
prefer morning and most like indoor. StanoNet
starts well but doesn’t follow up on the morn-
ing friend, presumably because the morning node
is not updated dynamically when mentioned by
the partner. Rule follows the partner poorly. In
the comments, the biggest complaint about Rule
was that it was not ‘listening’ or ‘understanding’.
Overall, DynoNet achieves better partner satisfac-
tion, especially in cooperation.

Third-party Evaluation. We also created a
third-party evaluation task, where an independent
AMT worker is shown a conversation and the KB
of one of the agents; she is asked to rate the same
aspects of the agent as in the partner evaluation
and provide justifications. Each agent in a dia-
logue is rated by at least 5 people.

The average ratings and histograms are shown
in Table 5 and Appendix J. For correctness, we see
that Rule has the best performance since it always
tells the truth, whereas humans can make mistakes
due to carelessness and the neural models can gen-
erate false information. For example, in Table 6,
DynoNet ‘lied’ when saying that it has a morning
friend who likes outdoor.

Surprisingly, there is a discrepancy between the
two evaluation modes in terms of cooperation and
human-likeness. Manual analysis of the com-
ments indicates that third-party evaluators focus
less on the dialogue strategy and more on linguis-
tic features, probably because they were not fully
engaged in the dialogue. For example, justification

1772

System C CT CS
Partner eval Third-party eval

Flnt Crct Coop Human Flnt Crct Coop Human

Human .89 .07 .36 4.2rds 4.3rds 4.2rds 4.1rds 4.0 4.3ds 4.0ds 4.1rds

Rule .88 .06 .29 3.6 4.0 3.5 3.5 4.0 4.4hds 3.9s 4.0s

StanoNet .76 .04 .23 3.5 3.8 3.4 3.3 4.0 4.0 3.8 3.8
DynoNet .87 .05 .27 3.8s 4.0 3.8rs 3.6s 4.0 4.1 3.9 3.9

Table 5: Results on human-bot/human chats. Best results (except Human) in each column are in bold.
We report the average ratings of each system. For third-party evaluation, we first take mean of each
question then average the ratings. DynoNet has the best partner satisfaction in terms of fluency (Flnt),
correctness (Crct), cooperation (Coop), human likeness (Human). The superscript of a result indicates that
its advantage over other systems (r: Rule, s: StanoNet, d: DynoNet) is statistically significant with
p < 0.05 given by paired t-tests.

for cooperation often mentions frequent questions
and timely answers, less attention is paid to what
is asked about though.

For human-likeness, partner evaluation is
largely correlated with coherence (e.g., not repeat-
ing or ignoring past information) and task suc-
cess, whereas third-party evaluators often rely on
informality (e.g., usage of colloquia like “hiya”,
capitalization, and abbreviation) or intuition. In-
terestingly, third-party evaluators noted most phe-
nomena listed in Table 2 as indicators of human-
beings, e.g., correcting oneself, making chit-chat
other than simply finishing the task. See example
comments in Appendix K.

4.3 Ablation Studies

Our model has two novel designs: entity abstrac-
tion and message passing for node embeddings.
Table 7 shows what happens if we ablate these.
When the number of message passing iterations,
K, is reduced from 2 to 0, the loss consistently
increases. Removing entity abstraction—meaning
adding entity embeddings to node embeddings and
the LSTM input embeddings—also degrades per-
formance. This shows that DynoNet benefits from
contextually-defined, structural node embeddings
rather than ones based on a classic lookup table.

Model `

DynoNet (K = 2) 2.16
DynoNet (K = 1) 2.20
DynoNet (K = 0) 2.26
DynoNet (K = 2) w/o entity abstraction 2.21

Table 7: Ablations of our model on the dev
set show the importance of entity abstraction and
message passing (K = 2).

5 Discussion and Related Work

There has been a recent surge of interest in
end-to-end task-oriented dialogue systems, though
progress has been limited by the size of available
datasets (Serban et al., 2015a). Most work focuses
on information-querying tasks, using Wizard-of-
Oz data collection (Williams et al., 2016; Asri
et al., 2016) or simulators (Bordes and Weston,
2017; Li et al., 2016d), In contrast, collaborative
dialogues are easy to collect as natural human
conversations, and are also challenging enough
given the large number of scenarios and diverse
conversation phenomena. There are some in-
teresting strategic dialogue datasets—settlers of
Catan (Afantenos et al., 2012) (2K turns) and the
cards corpus (Potts, 2012) (1.3K dialogues), as
well as work on dialogue strategies (Keizer et al.,
2017; Vogel et al., 2013), though no full dialogue
system has been built for these datasets.

Most task-oriented dialogue systems follow the
POMDP-based approach (Williams and Young,
2007; Young et al., 2013). Despite their suc-
cess (Wen et al., 2017; Dhingra et al., 2017; Su
et al., 2016), the requirement for handcrafted slots
limits their scalability to new domains and bur-
dens data collection with extra state labeling. To
go past this limit, Bordes and Weston (2017) pro-
posed a Memory-Networks-based approach with-
out domain-specific features. However, the mem-
ory is unstructured and interfacing with KBs relies
on API calls, whereas our model embeds both the
dialogue history and the KB structurally. Williams
et al. (2017) use an LSTM to automatically infer
the dialogue state, but as they focus on dialogue
control rather than the full problem, the response is
modeled as a templated action, which restricts the
generation of richer utterances. Our network ar-

1773

Friends of A

ID Name Company Time Location

1 Kathy TRT Holdings afternoon indoor
2 Jason Dollar General afternoon indoor
3 Johnny TRT Holdings afternoon outdoor
4 Frank SFN Group afternoon indoor
5 Catherine Dollar General afternoon indoor
6 Catherine Weis Markets afternoon indoor
7 Kathleen TRT Holdings morning indoor
8 Lori TRT Holdings afternoon indoor
9 Frank L&L Hawaiian Barbecue afternoon outdoor

Friends of B

ID Name Company Time Location

1 Justin New Era Tickets morning indoor
2 Kathleen TRT Holdings morning indoor
3 Gloria L&L Hawaiian Barbecue morning indoor
4 Kathleen Advance Auto Parts morning outdoor
5 Justin Arctic Cat morning indoor
6 Anna Dollar General morning indoor
7 Steven SFN Group morning indoor
8 Wayne R.J. Corman Railroad Group morning indoor
9 Alexander R.J. Corman Railroad Group morning indoor

A: Human B: Human A: DynoNet B: Human

A: Hi
B: hey || i have one outdoor
A: I have 4 TRT Holdings || I have 2 outdoor one
Johnny, other Frank
B: i only have one TRT Holdings - Kathleen
A: SELECT 7 B: SELECT 2

A: hi
B: Hello || all my friends prefer morning
A: 1 of my morning likes the outdoors
B: and all like indoor except for one
A: do they work for trt holdings?
B: Kathleen?
A: SELECT 7 B: SELECT 2

A: StanoNet B: Human A: Human B: Rule

A: Hello
B: hi
A: Hello || I have one morning person.
B: all of my friends like mornings
A: My friend prefers afternoon works at trt holdings.
B: what is their name?
A: Likes indoors.
B: what is your fiend who likes morning name?
A: They work for trt holdings.
B: SELECT 2 A: SELECT 7

B: hiya
A: hEY
B: I have 1 indoors and kathleen.
A: Most of mine are indoors.
B: SELECT 1
A: I have one morning and rest afternoon.
B: Do you have any friend working at l hawaiian?
A: I don’t know Justin
B: I have 1 alexander.
...

Table 6: Examples of human-bot chats. The mutual friend is highlighted in blue in each KB. Bots’
utterances are in bold and selected items are represented by item IDs. Only the first half of the human-
Rule chat is shown due to limited space. Multiple utterances of one agent rae separated by ||.

chitecture is most similar to EntNet (Henaff et al.,
2017), where memories are also updated by input
sentences recurrently. The main difference is that
our model allows information to be propagated be-
tween structured entities, which is shown to be
crucial in our setting (Section 4.3).

Our work is also related to language generation
conditioned on knowledge bases (Mei et al., 2016;
Kiddon et al., 2016). One challenge here is to
avoid generating false or contradicting statements,
which is currently a weakness of neural models.
Our model is mostly accurate when generating
facts and answering existence questions about a
single entity, but will need a more advanced at-
tention mechanism for generating utterances in-
volving multiple entities, e.g., attending to items
or attributes first, then selecting entities; generat-
ing high-level concepts before composing them to
natural tokens (Serban et al., 2017a).

In conclusion, we believe the symmetric col-
laborative dialogue setting and our dataset pro-

vide unique opportunities at the interface of tra-
ditional task-oriented dialogue and open-domain
chat. We also offered DynoNet as a promising
means for open-ended dialogue state representa-
tion. Our dataset facilitates the study of prag-
matics and human strategies in dialogue—a good
stepping stone towards learning more complex di-
alogues such as negotiation.

Acknowledgments. This work is supported by
DARPA Communicating with Computers (CwC)
program under ARO prime contract no. W911NF-
15-1-0462. Mike Kayser worked on an early ver-
sion of the project while he was at Stanford. We
also thank members of the Stanford NLP group for
insightful discussions.

Reproducibility. All code, data, and
experiments for this paper are avail-
able on the CodaLab platform: https:

//worksheets.codalab.org/worksheets/

0xc757f29f5c794e5eb7bfa8ca9c945573.

1774

References

S. Afantenos, N. Asher, F. Benamara, A. Cadilhac,
C. Dégremont, P. Denis, M. Guhe, S. Keizer, A. Las-
carides, O. Lemon, P. Muller, S. Paul, V. Rieser, and
L. Vieu. 2012. Developing a corpus of strategic con-
versation in the settlers of catan. In SeineDial 2012 -
The 16th Workshop on the Semantics and Pragmat-
ics of Dialogue.

L. E. Asri, H. Schulz, S. Sharma, J. Zumer, J. Har-
ris, E. Fine, R. Mehrotra, and K. Suleman. 2016.
Frames: A corpus for adding memory to goal-
oriented dialogue systems. Maluuba Technical Re-
port .

D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neural
machine translation by jointly learning to align and
translate. In International Conference on Learning
Representations (ICLR).

A. Bordes and J. Weston. 2017. Learning end-to-end
goal-oriented dialog. In International Conference
on Learning Representations (ICLR).

B. Dhingra, L. Li, X. Li, J. Gao, Y. Chen, F. Ahmed,
and L. Deng. 2017. End-to-end reinforcement learn-
ing of dialogue agents for information access. In As-
sociation for Computational Linguistics (ACL).

J. Duchi, E. Hazan, and Y. Singer. 2010. Adaptive sub-
gradient methods for online learning and stochastic
optimization. In Conference on Learning Theory
(COLT).

M. Henaff, J. Weston, A. Szlam, A. Bordes, and Y. Le-
Cun. 2017. Tracking the world state with recur-
rent entity networks. In International Conference
on Learning Representations (ICLR).

E. Ivanovic. 2005. Dialogue act tagging for instant
messaging chat sessions. In Association for Com-
putational Linguistics (ACL).

R. Jia and P. Liang. 2016. Data recombination for neu-
ral semantic parsing. In Association for Computa-
tional Linguistics (ACL).

S. Keizer, M. Guhe, H. Cuayahuitl, I. Efstathiou,
K. Engelbrecht, M. Dobre, A. Lascarides, and
O. Lemon. 2017. Evaluating persuasion strategies
and deep reinforcement learning methods for nego-
tiation dialogue agents. In European Association for
Computational Linguistics (EACL).

C. Kiddon, L. S. Zettlemoyer, and Y. Choi. 2016. Glob-
ally coherent text generation with neural checklist
models. In Empirical Methods in Natural Language
Processing (EMNLP).

J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan.
2016a. A persona-based neural conversation model.
In Association for Computational Linguistics (ACL).

J. Li, M. Galley, C. Brockett, J. Gao, and W. B. Dolan.
2016b. A diversity-promoting objective function
for neural conversation models. In Human Lan-
guage Technology and North American Association
for Computational Linguistics (HLT/NAACL).

J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and
J. Gao. 2016c. Deep reinforcement learning for dia-
logue generation. In Empirical Methods in Natural
Language Processing (EMNLP).

X. Li, Z. C. Lipton, B. Dhingra, L. Li, J. Gao,
and Y. Chen. 2016d. A user simulator for task-
completion dialogues. arXiv .

C. Liu, R. Lowe, I. V. Serban, M. Noseworthy, L. Char-
lin, and J. Pineau. 2016. How NOT to evaluate your
dialogue system: An empirical study of unsuper-
vised evaluation metrics for dialogue response gen-
eration. In Empirical Methods in Natural Language
Processing (EMNLP).

R. T. Lowe, N. Pow, I. Serban, L. Charlin, C. Liu, and
J. Pineau. 2017. Training End-to-End dialogue sys-
tems with the ubuntu dialogue corpus. Dialogue and
Discourse 8.

H. Mei, M. Bansal, and M. R. Walter. 2016. What
to talk about and how? selective generation using
LSTMs with coarse-to-fine alignment. In Human
Language Technology and North American Associa-
tion for Computational Linguistics (HLT/NAACL).

H. Mei, M. Bansal, and M. R. Walter. 2017. Coherent
dialogue with attention-based language models. In
Association for the Advancement of Artificial Intel-
ligence (AAAI).

C. Potts. 2012. Goal-driven answers in the Cards dia-
logue corpus. In Proceedings of the 30th West Coast
Conference on Formal Linguistics.

I. Serban, T. Klinger, G. Tesauro, K. Talamadupula,
B. Zhou, Y. Bengio, and A. C. Courville. 2017a.
Multiresolution recurrent neural networks: An ap-
plication to dialogue response generation. In Asso-
ciation for the Advancement of Artificial Intelligence
(AAAI).

I. Serban, A. Sordoni, R. Lowe, L. Charlin, J. Pineau,
A. C. Courville, and Y. Bengio. 2017b. A hierarchi-
cal latent variable encoder-decoder model for gener-
ating dialogues. In Association for the Advancement
of Artificial Intelligence (AAAI).

I. V. Serban, R. Lowe, L. Charlin, and J. Pineau.
2015a. A survey of available corpora for build-
ing data-driven dialogue systems. arXiv preprint
arXiv:1512.05742 .

I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and
J. Pineau. 2015b. Building end-to-end dialogue sys-
tems using generative hierarchical neural network
models. arXiv preprint arXiv:1507.04808 .

1775

L. Shang, Z. Lu, and H. Li. 2015. Neural responding
machine for short-text conversation. In Association
for Computational Linguistics (ACL).

A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji,
M. Mitchell, J. Nie, J. Gao, and B. Dolan. 2015.
A neural network approach to context-sensitive
generation of conversational responses. In North
American Association for Computational Linguis-
tics (NAACL).

P. Su, M. Gasic, N. Mrksic, L. M. Rojas-Barahona,
S. Ultes, D. Vandyke, T. Wen, and S. J. Young. 2016.
Continuously learning neural dialogue management.
arXiv preprint arXiv:1606.02689 .

A. Vogel, M. Bodoia, C. Potts, and D. Jurafsky. 2013.
Emergence of gricean maxims from multi-agent de-
cision theory. In North American Association for
Computational Linguistics (NAACL). pages 1072–
1081.

T. Wen, M. Gasic, N. Mrksic, L. M. Rojas-Barahona,
P. Su, S. Ultes, D. Vandyke, and S. Young. 2017.
A network-based end-to-end trainable task-oriented
dialogue system. In European Association for Com-
putational Linguistics (EACL).

J. D. Williams, K. Asadi, and G. Zweig. 2017. Hy-
brid code networks: Practical and efficient end-to-
end dialog control with supervised and reinforce-
ment learning. In Association for Computational
Linguistics (ACL).

J. D. Williams, A. Raux, and M. Henderson. 2016. The
dialog state tracking challenge series: A review. Di-
alogue and Discourse 7.

J. D. Williams and S. Young. 2007. Partially observ-
able Markov decision processes for spoken dialog
systems. Computer Speech & Language 21(2):393–
422.

S. Young, M. Gasic, B. Thomson, and J. D. Williams.
2013. POMDP-based statistical spoken dialog
systems: A review. Proceedings of the IEEE
101(5):1160–1179.

1776

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1777–1788
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1163

Neural Belief Tracker: Data-Driven Dialogue State Tracking

Nikola Mrkšić1, Diarmuid Ó Séaghdha2

Tsung-Hsien Wen1, Blaise Thomson2, Steve Young1

1 University of Cambridge
2 Apple Inc.

{nm480, thw28, sjy}@cam.ac.uk
{doseaghdha, blaisethom}@apple.com

Abstract

One of the core components of modern spo-
ken dialogue systems is the belief tracker,
which estimates the user’s goal at every
step of the dialogue. However, most current
approaches have difficulty scaling to larger,
more complex dialogue domains. This is
due to their dependency on either: a) Spo-
ken Language Understanding models that
require large amounts of annotated training
data; or b) hand-crafted lexicons for captur-
ing some of the linguistic variation in users’
language. We propose a novel Neural Be-
lief Tracking (NBT) framework which over-
comes these problems by building on re-
cent advances in representation learning.
NBT models reason over pre-trained word
vectors, learning to compose them into dis-
tributed representations of user utterances
and dialogue context. Our evaluation on
two datasets shows that this approach sur-
passes past limitations, matching the per-
formance of state-of-the-art models which
rely on hand-crafted semantic lexicons and
outperforming them when such lexicons
are not provided.

1 Introduction

Spoken dialogue systems (SDS) allow users to in-
teract with computer applications through conversa-
tion. Task-based systems help users achieve goals
such as finding restaurants or booking flights. The
dialogue state tracking (DST) component of an
SDS serves to interpret user input and update the
belief state, which is the system’s internal repre-
sentation of the state of the conversation (Young
et al., 2010). This is a probability distribution over
dialogue states used by the downstream dialogue
manager to decide which action the system should

User: I’m looking for a cheaper restaurant
inform(price=cheap)

System: Sure. What kind - and where?
User: Thai food, somewhere downtown
inform(price=cheap, food=Thai,
area=centre)

System: The House serves cheap Thai food
User: Where is it?
inform(price=cheap, food=Thai,
area=centre); request(address)

System: The House is at 106 Regent Street

Figure 1: Annotated dialogue states in a sample di-
alogue. Underlined words show rephrasings which
are typically handled using semantic dictionaries.

perform next (Su et al., 2016a,b); the system action
is then verbalised by the natural language generator
(Wen et al., 2015a,b; Dušek and Jurčı́ček, 2015).

The Dialogue State Tracking Challenge (DSTC)
series of shared tasks has provided a common evalu-
ation framework accompanied by labelled datasets
(Williams et al., 2016). In this framework, the di-
alogue system is supported by a domain ontology
which describes the range of user intents the sys-
tem can process. The ontology defines a collection
of slots and the values that each slot can take. The
system must track the search constraints expressed
by users (goals or informable slots) and questions
the users ask about search results (requests), tak-
ing into account each user utterance (input via a
speech recogniser) and the dialogue context (e.g.,
what the system just said). The example in Figure
1 shows the true state after each user utterance in
a three-turn conversation. As can be seen in this
example, DST models depend on identifying men-
tions of ontology items in user utterances. This
becomes a non-trivial task when confronted with
lexical variation, the dynamics of context and noisy
automated speech recognition (ASR) output.

1777

https://doi.org/10.18653/v1/P17-1163

FOOD=CHEAP: [affordable, budget, low-cost,
low-priced, inexpensive, cheaper, economic, ...]

RATING=HIGH: [best, high-rated, highly rated,
top-rated, cool, chic, popular, trendy, ...]

AREA=CENTRE: [center, downtown, central,
city centre, midtown, town centre, ...]

Figure 2: An example semantic dictionary with
rephrasings for three ontology values in a restau-
rant search domain.

Traditional statistical approaches use separate
Spoken Language Understanding (SLU) modules
to address lexical variability within a single dia-
logue turn. However, training such models requires
substantial amounts of domain-specific annotation.
Alternatively, turn-level SLU and cross-turn DST
can be coalesced into a single model to achieve
superior belief tracking performance, as shown by
Henderson et al. (2014d). Such coupled models
typically rely on manually constructed semantic
dictionaries to identify alternative mentions of on-
tology items that vary lexically or morphologically.
Figure 2 gives an example of such a dictionary
for three slot-value pairs. This approach, which
we term delexicalisation, is clearly not scalable
to larger, more complex dialogue domains. Im-
portantly, the focus on English in DST research
understates the considerable challenges that mor-
phology poses to systems based on exact matching
in morphologically richer languages such as Italian
or German (see Vulić et al. (2017)).

In this paper, we present two new models, col-
lectively called the Neural Belief Tracker (NBT)
family. The proposed models couple SLU and DST,
efficiently learning to handle variation without re-
quiring any hand-crafted resources. To do that,
NBT models move away from exact matching and
instead reason entirely over pre-trained word vec-
tors. The vectors making up the user utterance and
preceding system output are first composed into in-
termediate representations. These representations
are then used to decide which of the ontology-
defined intents have been expressed by the user
up to that point in the conversation.

To the best of our knowledge, NBT models are
the first to successfully use pre-trained word vector
spaces to improve the language understanding ca-
pability of belief tracking models. In evaluation on
two datasets, we show that: a) NBT models match
the performance of delexicalisation-based models
which make use of hand-crafted semantic lexicons;

and b) the NBT models significantly outperform
those models when such resources are not avail-
able. Consequently, we believe this work proposes
a framework better-suited to scaling belief tracking
models for deployment in real-world dialogue sys-
tems operating over sophisticated application do-
mains where the creation of such domain-specific
lexicons would be infeasible.

2 Background

Models for probabilistic dialogue state tracking, or
belief tracking, were introduced as components of
spoken dialogue systems in order to better handle
noisy speech recognition and other sources of un-
certainty in understanding a user’s goals (Bohus
and Rudnicky, 2006; Williams and Young, 2007;
Young et al., 2010). Modern dialogue management
policies can learn to use a tracker’s distribution
over intents to decide whether to execute an action
or request clarification from the user. As men-
tioned above, the DSTC shared tasks have spurred
research on this problem and established a standard
evaluation paradigm (Williams et al., 2013; Hen-
derson et al., 2014b,a). In this setting, the task is
defined by an ontology that enumerates the goals a
user can specify and the attributes of entities that
the user can request information about. Many dif-
ferent belief tracking models have been proposed
in the literature, from generative (Thomson and
Young, 2010) and discriminative (Henderson et al.,
2014d) statistical models to rule-based systems
(Wang and Lemon, 2013). To motivate the work
presented here, we categorise prior research accord-
ing to their reliance (or otherwise) on a separate
SLU module for interpreting user utterances:1

Separate SLU Traditional SDS pipelines use
Spoken Language Understanding (SLU) decoders
to detect slot-value pairs expressed in the Auto-
matic Speech Recognition (ASR) output. The
downstream DST model then combines this in-
formation with the past dialogue context to up-
date the belief state (Thomson and Young, 2010;
Wang and Lemon, 2013; Lee and Kim, 2016; Perez,
2016; Perez and Liu, 2017; Sun et al., 2016; Jang
et al., 2016; Shi et al., 2016; Dernoncourt et al.,
2016; Liu and Perez, 2017; Vodolán et al., 2017).

1The best-performing models in DSTC2 all used both raw
ASR output and the output of (potentially more than one) SLU
decoders (Williams, 2014; Williams et al., 2016). This does
not mean that those models are immune to the drawbacks
identified here for the two model categories; in fact, they share
the drawbacks of both.

1778

Figure 3: Architecture of the NBT Model. The implementation of the three representation learning
subcomponents can be modified, as long as these produce adequate vector representations which the
downstream model components can use to decide whether the current candidate slot-value pair was
expressed in the user utterance (taking into account the preceding system act).

In the DSTC challenges, some systems used the
output of template-based matching systems such
as Phoenix (Wang, 1994). However, more robust
and accurate statistical SLU systems are available.
Many discriminative approaches to spoken dia-
logue SLU train independent binary models that
decide whether each slot-value pair was expressed
in the user utterance. Given enough data, these
models can learn which lexical features are good
indicators for a given value and can capture ele-
ments of paraphrasing (Mairesse et al., 2009). This
line of work later shifted focus to robust handling of
rich ASR output (Henderson et al., 2012; Tur et al.,
2013). SLU has also been treated as a sequence
labelling problem, where each word in an utterance
is labelled according to its role in the user’s intent;
standard labelling models such as CRFs or Recur-
rent Neural Networks can then be used (Raymond
and Ricardi, 2007; Yao et al., 2014; Celikyilmaz
and Hakkani-Tur, 2015; Mesnil et al., 2015; Peng
et al., 2015; Zhang and Wang, 2016; Liu and Lane,
2016b; Vu et al., 2016; Liu and Lane, 2016a, i.a.).
Other approaches adopt a more complex modelling
structure inspired by semantic parsing (Saleh et al.,
2014; Vlachos and Clark, 2014). One drawback
shared by these methods is their resource require-
ments, either because they need to learn indepen-
dent parameters for each slot and value or because
they need fine-grained manual annotation at the
word level. This hinders scaling to larger, more
realistic application domains.

Joint SLU/DST Research on belief tracking has
found it advantageous to reason about SLU and
DST jointly, taking ASR predictions as input and
generating belief states as output (Henderson et al.,
2014d; Sun et al., 2014; Zilka and Jurcicek, 2015;
Mrkšić et al., 2015). In DSTC2, systems which
used no external SLU module outperformed all sys-
tems that only used external SLU features. Joint
models typically rely on a strategy known as delex-
icalisation whereby slots and values mentioned in
the text are replaced with generic labels. Once
the dataset is transformed in this manner, one can
extract a collection of template-like n-gram fea-
tures such as [want tagged-value food]. To per-
form belief tracking, the shared model iterates over
all slot-value pairs, extracting delexicalised feature
vectors and making a separate binary decision re-
garding each pair. Delexicalisation introduces a
hidden dependency that is rarely discussed: how
do we identify slot/value mentions in text? For
toy domains, one can manually construct semantic
dictionaries which list the potential rephrasings for
all slot values. As shown by Mrkšić et al. (2016),
the use of such dictionaries is essential for the per-
formance of current delexicalisation-based models.
Again though, this will not scale to the rich variety
of user language or to general domains.

The primary motivation for the work presented
in this paper is to overcome the limitations that
affect previous belief tracking models. The
NBT model efficiently learns from the avail-

1779

able data by: 1) leveraging semantic informa-
tion from pre-trained word vectors to resolve lex-
ical/morphological ambiguity; 2) maximising the
number of parameters shared across ontology val-
ues; and 3) having the flexibility to learn domain-
specific paraphrasings and other kinds of variation
that make it infeasible to rely on exact matching
and delexicalisation as a robust strategy.

3 Neural Belief Tracker

The Neural Belief Tracker (NBT) is a model de-
signed to detect the slot-value pairs that make up
the user’s goal at a given turn during the flow of
dialogue. Its input consists of the system dialogue
acts preceding the user input, the user utterance
itself, and a single candidate slot-value pair that
it needs to make a decision about. For instance,
the model might have to decide whether the goal
FOOD=ITALIAN has been expressed in ‘I’m look-
ing for good pizza’. To perform belief tracking, the
NBT model iterates over all candidate slot-value
pairs (defined by the ontology), and decides which
ones have just been expressed by the user.

Figure 3 presents the flow of information in the
model. The first layer in the NBT hierarchy per-
forms representation learning given the three model
inputs, producing vector representations for the
user utterance (r), the current candidate slot-value
pair (c) and the system dialogue acts (tq, ts, tv).
Subsequently, the learned vector representations
interact through the context modelling and seman-
tic decoding submodules to obtain the intermediate
interaction summary vectors dr,dc and d. These
are used as input to the final decision-making mod-
ule which decides whether the user expressed the
intent represented by the candidate slot-value pair.

3.1 Representation Learning

For any given user utterance, system act(s) and can-
didate slot-value pair, the representation learning
submodules produce vector representations which
act as input for the downstream components of
the model. All representation learning subcompo-
nents make use of pre-trained collections of word
vectors. As shown by Mrkšić et al. (2016), special-
ising word vectors to express semantic similarity
rather than relatedness is essential for improving
belief tracking performance. For this reason, we
use the semantically-specialised Paragram-SL999
word vectors (Wieting et al., 2015) throughout this
work. The NBT training procedure keeps these

vectors fixed: that way, at test time, unseen words
semantically related to familiar slot values (i.e. in-
expensive to cheap) will be recognised purely by
their position in the original vector space (see also
Rocktäschel et al. (2016)). This means that the
NBT model parameters can be shared across all
values of the given slot, or even across all slots.

Let u represent a user utterance consisting of
ku words u1, u2, . . . , uku . Each word has an asso-
ciated word vector u1, . . . ,uku . We propose two
model variants which differ in the method used to
produce vector representations of u: NBT-DNN
and NBT-CNN. Both act over the constituent n-
grams of the utterance. Let vni be the concatenation
of the n word vectors starting at index i, so that:

vni = ui ⊕ . . .⊕ ui+n−1 (1)

where⊕ denotes vector concatenation. The simpler
of our two models, which we term NBT-DNN, is
shown in Figure 4. This model computes cumula-
tive n-gram representation vectors r1, r2 and r3,
which are the n-gram ‘summaries’ of the unigrams,
bigrams and trigrams in the user utterance:

rn =

ku−n+1∑

i=1

vni (2)

Each of these vectors is then non-linearly mapped
to intermediate representations of the same size:

r′n = σ(W s
nrn + bsn) (3)

where the weight matrices and bias terms map the
cumulative n-grams to vectors of the same dimen-
sionality and σ denotes the sigmoid activation func-
tion. We maintain a separate set of parameters for
each slot (indicated by superscript s). The three
vectors are then summed to obtain a single repre-
sentation for the user utterance:

r = r′1 + r′2 + r′3 (4)

The cumulative n-gram representations used by
this model are just unweighted sums of all word
vectors in the utterance. Ideally, the model should
learn to recognise which parts of the utterance are
more relevant for the subsequent classification task.
For instance, it could learn to ignore verbs or stop
words and pay more attention to adjectives and
nouns which are more likely to express slot values.

1780

Figure 4: NBT-DNN MODEL. Word vectors of n-grams (n = 1, 2, 3) are summed to obtain cumulative
n-grams, then passed through another hidden layer and summed to obtain the utterance representation r.

Figure 5: NBT-CNN Model. L convolutional filters of window sizes 1, 2, 3 are applied to word vectors
of the given utterance (L = 3 in the diagram, but L = 300 in the system). The convolutions are followed
by the ReLU activation function and max-pooling to produce summary n-gram representations. These are
summed to obtain the utterance representation r.

NBT-CNN Our second model draws inspiration
from successful applications of Convolutional Neu-
ral Networks (CNNs) for language understanding
(Collobert et al., 2011; Kalchbrenner et al., 2014;
Kim, 2014). These models typically apply a num-
ber of convolutional filters to n-grams in the input
sentence, followed by non-linear activation func-
tions and max-pooling. Following this approach,
the NBT-CNN model applies L = 300 differ-
ent filters for n-gram lengths of 1, 2 and 3 (Fig-
ure 5). Let F sn ∈ RL×nD denote the collection
of filters for each value of n, where D = 300 is
the word vector dimensionality. If vni denotes the
concatenation of n word vectors starting at index
i, let mn = [vn1 ;v

n
2 ; . . . ;v

n
ku−n+1] be the list of

n-grams that convolutional filters of length n run
over. The three intermediate representations are
then given by:

Rn = F sn mn (5)

Each column of the intermediate matrices Rn is
produced by a single convolutional filter of length
n. We obtain summary n-gram representations
by pushing these representations through a recti-

fied linear unit (ReLU) activation function (Nair
and Hinton, 2010) and max-pooling over time
(i.e. columns of the matrix) to get a single feature
for each of the L filters applied to the utterance:

r′n = maxpool (ReLU (Rn + bsn)) (6)

where bsn is a bias term broadcast across all filters.
Finally, the three summary n-gram representations
are summed to obtain the final utterance represen-
tation vector r (as in Equation 4). The NBT-CNN
model is (by design) better suited to longer utter-
ances, as its convolutional filters interact directly
with subsequences of the utterance, and not just
their noisy summaries given by the NBT-DNN’s
cumulative n-grams.

3.2 Semantic Decoding

The NBT diagram in Figure 3 shows that the ut-
terance representation r and the candidate slot-
value pair representation c directly interact through
the semantic decoding module. This compo-
nent decides whether the user explicitly expressed
an intent matching the current candidate pair

1781

(i.e. without taking the dialogue context into ac-
count). Examples of such matches would be ‘I
want Thai food’ with food=Thai or more de-
manding ones such as ‘a pricey restaurant’ with
price=expensive. This is where the use of
high-quality pre-trained word vectors comes into
play: a delexicalisation-based model could deal
with the former example but would be helpless in
the latter case, unless a human expert had provided
a semantic dictionary listing all potential rephras-
ings for each value in the domain ontology.

Let the vector space representations of a candi-
date pair’s slot name and value be given by cs and
cv (with vectors of multi-word slot names/values
summed together). The NBT model learns to map
this tuple into a single vector c of the same dimen-
sionality as the utterance representation r. These
two representations are then forced to interact in or-
der to learn a similarity metric which discriminates
between interactions of utterances with slot-value
pairs that they either do or do not express:

c = σ
(
W s
c (cs + cv) + bsc

)
(7)

d = r⊗ c (8)

where ⊗ denotes element-wise vector multiplica-
tion. The dot product, which may seem like the
more intuitive similarity metric, would reduce the
rich set of features in d to a single scalar. The
element-wise multiplication allows the downstream
network to make better use of its parameters by
learning non-linear interactions between sets of
features in r and c.2

3.3 Context Modelling
This ‘decoder’ does not yet suffice to extract intents
from utterances in human-machine dialogue. To
understand some queries, the belief tracker must be
aware of context, i.e. the flow of dialogue leading
up to the latest user utterance. While all previous
system and user utterances are important, the most
relevant one is the last system utterance, in which
the dialogue system could have performed (among
others) one of the following two system acts:

1. System Request: The system asks the user
about the value of a specific slot Tq. If the
system utterance is: ‘what price range would

2We also tried to concatenate r and c and pass that vector
to the downstream decision-making neural network. However,
this set-up led to very weak performance since our relatively
small datasets did not suffice for the network to learn to model
the interaction between the two feature vectors.

you like?’ and the user answers with any, the
model must infer the reference to price range,
and not to other slots such as area or food.

2. System Confirm: The system asks the user
to confirm whether a specific slot-value pair
(Ts, Tv) is part of their desired constraints. For
example, if the user responds to ‘how about
Turkish food?’ with ‘yes’, the model must be
aware of the system act in order to correctly
update the belief state.

If we make the Markovian decision to only con-
sider the last set of system acts, we can incorporate
context modelling into the NBT. Let tq and (ts, tv)
be the word vectors of the arguments for the sys-
tem request and confirm acts (zero vectors if none).
The model computes the following measures of
similarity between the system acts, candidate pair
(cs, cv) and utterance representation r:

mr = (cs · tq)r (9)

mc = (cs · ts)(cv · tv)r (10)

where · denotes dot product. The computed similar-
ity terms act as gating mechanisms which only pass
the utterance representation through if the system
asked about the current candidate slot or slot-value
pair. This type of interaction is particularly useful
for the confirm system act: if the system asks the
user to confirm, the user is likely not to mention any
slot values, but to just respond affirmatively or neg-
atively. This means that the model must consider
the three-way interaction between the utterance,
candidate slot-value pair and the slot value pair of-
fered by the system. If (and only if) the latter two
are the same should the model consider the affirma-
tive or negative polarity of the user utterance when
making the subsequent binary decision.

Binary Decision Maker The intermediate repre-
sentations are passed through another hidden layer
and then combined. If φdim(x) = σ(Wx+ b) is a
layer which maps input vector x to a vector of size
dim, the input to the final binary softmax (which
represents the decision) is given by:

y = φ2
(
φ100(d) + φ100(mr) + φ100(mc)

)

4 Belief State Update Mechanism

In spoken dialogue systems, belief tracking models
operate over the output of automatic speech recog-
nition (ASR). Despite improvements to speech

1782

recognition, the need to make the most out of im-
perfect ASR will persist as dialogue systems are
used in increasingly noisy environments.

In this work, we define a simple rule-based
belief state update mechanism which can be
applied to ASR N -best lists. For dialogue turn t,
let syst−1 denote the preceding system output, and
let ht denote the list of N ASR hypotheses hti with
posterior probabilities pti. For any hypothesis hti,
slot s and slot value v ∈ Vs, NBT models estimate
P(s, v | hti, syst−1), which is the (turn-level)
probability that (s, v) was expressed in the given
hypothesis. The predictions for N such hypotheses
are then combined as:

P(s, v | ht, syst−1) =
N∑

i=1

pti P
(
s, v | hti, syst

)

This turn-level belief state estimate is then com-
bined with the (cumulative) belief state up to time
(t− 1) to get the updated belief state estimate:

P(s, v | h1:t, sys1:t−1) = λ P
(
s, v | ht, syst−1

)

+ (1− λ) P
(
s, v | h1:t−1, sys1:t−2

)

where λ is the coefficient which determines the
relative weight of the turn-level and previous turns’
belief state estimates.3 For slot s, the set of its
detected values at turn t is then given by:

V t
s = {v ∈ Vs | P

(
s, v | h1:t, sys1:t−1

)
≥ 0.5}

For informable (i.e. goal-tracking) slots, the value
in V t

s with the highest probability is chosen as the
current goal (if V t

s 6= {∅}). For requests, all slots
in V t

req are deemed to have been requested. As
requestable slots serve to model single-turn user
queries, they require no belief tracking across turns.

5 Experiments

5.1 Datasets

Two datasets were used for training and evalua-
tion. Both consist of user conversations with task-
oriented dialogue systems designed to help users
find suitable restaurants around Cambridge, UK.
The two corpora share the same domain ontology,
which contains three informable (i.e. goal-tracking)
slots: FOOD, AREA and PRICE. The users can spec-
ify values for these slots in order to find restaurants

3This coefficient was tuned on the DSTC2 development
set. The best performance was achieved with λ = 0.55.

which best meet their criteria. Once the system sug-
gests a restaurant, the users can ask about the values
of up to eight requestable slots (PHONE NUMBER,
ADDRESS, etc.). The two datasets are:

1. DSTC2: We use the transcriptions, ASR hy-
potheses and turn-level semantic labels pro-
vided for the Dialogue State Tracking Chal-
lenge 2 (Henderson et al., 2014a). The of-
ficial transcriptions contain various spelling
errors which we corrected manually; the
cleaned version of the dataset is avail-
able at mi.eng.cam.ac.uk/˜nm480/
dstc2-clean.zip. The training data con-
tains 2207 dialogues and the test set consists
of 1117 dialogues. We train NBT models on
transcriptions but report belief tracking perfor-
mance on test set ASR hypotheses provided
in the original challenge.

2. WOZ 2.0: Wen et al. (2017) performed a Wiz-
ard of Oz style experiment in which Amazon
Mechanical Turk users assumed the role of
the system or the user of a task-oriented dia-
logue system based on the DSTC2 ontology.
Users typed instead of using speech, which
means performance in the WOZ experiments
is more indicative of the model’s capacity for
semantic understanding than its robustness to
ASR errors. Whereas in the DSTC2 dialogues
users would quickly adapt to the system’s
(lack of) language understanding capability,
the WOZ experimental design gave them free-
dom to use more sophisticated language. We
expanded the original WOZ dataset from Wen
et al. (2017) using the same data collection
procedure, yielding a total of 1200 dialogues.
We divided these into 600 training, 200 vali-
dation and 400 test set dialogues. The WOZ
2.0 dataset is available at mi.eng.cam.ac.
uk/˜nm480/woz_2.0.zip.

Training Examples The two corpora are used to
create training data for two separate experiments.
For each dataset, we iterate over all train set utter-
ances, generating one example for each of the slot-
value pairs in the ontology. An example consists
of a transcription, its context (i.e. list of preceding
system acts) and a candidate slot-value pair. The
binary label for each example indicates whether or
not its utterance and context express the example’s
candidate pair. For instance, ‘I would like Irish

1783

food’ would generate a positive example for candi-
date pair FOOD=IRISH, and a negative example for
every other slot-value pair in the ontology.

Evaluation We focus on two key evaluation met-
rics introduced in (Henderson et al., 2014a):

1. Goals (‘joint goal accuracy’): the proportion
of dialogue turns where all the user’s search
goal constraints were correctly identified;

2. Requests: similarly, the proportion of dia-
logue turns where user’s requests for infor-
mation were identified correctly.

5.2 Models

We evaluate two NBT model variants: NBT-DNN
and NBT-CNN. To train the models, we use the
Adam optimizer (Kingma and Ba, 2015) with cross-
entropy loss, backpropagating through all the NBT
subcomponents while keeping the pre-trained word
vectors fixed (in order to allow the model to deal
with unseen words at test time). The model is
trained separately for each slot. Due to the high
class bias (most of the constructed examples are
negative), we incorporate a fixed number of posi-
tive examples in each mini-batch.4

Baseline Models For each of the two datasets,
we compare the NBT models to:

1. A baseline system that implements a well-
known competitive delexicalisation-based
model for that dataset. For DSTC2, the model
is that of Henderson et al. (2014c; 2014d).
This model is an n-gram based neural net-
work model with recurrent connections be-
tween turns (but not inside utterances) which
replaces occurrences of slot names and val-
ues with generic delexicalised features. For
WOZ 2.0, we compare the NBT models to a
more sophisticated belief tracking model pre-
sented in (Wen et al., 2017). This model uses
an RNN for belief state updates and a CNN
for turn-level feature extraction. Unlike NBT-
CNN, their CNN operates not over vectors,

4Model hyperparameters were tuned on the respective val-
idation sets. For both datasets, the initial Adam learning rate
was set to 0.001, and 1

8
th of positive examples were included

in each mini-batch. The batch size did not affect performance:
it was set to 256 in all experiments. Gradient clipping (to
[−2.0, 2.0]) was used to handle exploding gradients. Dropout
(Srivastava et al., 2014) was used for regularisation (with 50%
dropout rate on all intermediate representations). Both NBT
models were implemented in TensorFlow (Abadi et al., 2015).

but over delexicalised features akin to those
used by Henderson et al. (2014c).

2. The same baseline model supplemented with
a task-specific semantic dictionary (produced
by the baseline system creators). The two
dictionaries are available at mi.eng.cam.
ac.uk/˜nm480/sem-dict.zip. The
DSTC2 dictionary contains only three rephras-
ings. Nonetheless, the use of these rephras-
ings translates to substantial gains in DST per-
formance (see Sect. 6.1). We believe this
result supports our claim that the vocabu-
lary used by Mechanical Turkers in DSTC2
was constrained by the system’s inability to
cope with lexical variation and ASR noise.
The WOZ dictionary includes 38 rephrasings,
showing that the unconstrained language used
by Mechanical Turkers in the Wizard-of-Oz
setup requires more elaborate lexicons.

Both baseline models map exact matches
of ontology-defined intents (and their lexicon-
specified rephrasings) to one-hot delexicalised n-
gram features. This means that pre-trained vectors
cannot be incorporated directly into these models.

6 Results

6.1 Belief Tracking Performance
Table 1 shows the performance of NBT models
trained and evaluated on DSTC2 and WOZ 2.0
datasets. The NBT models outperformed the base-
line models in terms of both joint goal and request
accuracies. For goals, the gains are always statis-
tically significant (paired t-test, p < 0.05). More-
over, there was no statistically significant variation
between the NBT and the lexicon-supplemented
models, showing that the NBT can handle seman-
tic relations which otherwise had to be explicitly
encoded in semantic dictionaries.

While the NBT performs well across the board,
we can compare its performance on the two datasets
to understand its strengths. The improvement over
the baseline is greater on WOZ 2.0, which cor-
roborates our intuition that the NBT’s ability to
learn linguistic variation is vital for this dataset
containing longer sentences, richer vocabulary and
no ASR errors. By comparison, the language of
the subjects in the DSTC2 dataset is less rich, and
compensating for ASR errors is the main hurdle:
given access to the DSTC2 test set transcriptions,
the NBT models’ goal accuracy rises to 0.96. This

1784

DST Model DSTC2 WOZ 2.0
Goals Requests Goals Requests

Delexicalisation-Based Model 69.1 95.7 70.8 87.1
Delexicalisation-Based Model + Semantic Dictionary 72.9* 95.7 83.7* 87.6
NEURAL BELIEF TRACKER: NBT-DNN 72.6* 96.4 84.4* 91.2*
NEURAL BELIEF TRACKER: NBT-CNN 73.4* 96.5 84.2* 91.6*

Table 1: DSTC2 and WOZ 2.0 test set accuracies for: a) joint goals; and b) turn-level requests. The
asterisk indicates statistically significant improvement over the baseline trackers (paired t-test; p < 0.05).

indicates that future work should focus on better
ASR compensation if the model is to be deployed
in environments with challenging acoustics.

6.2 The Importance of Word Vector Spaces
The NBT models use the semantic relations em-
bedded in the pre-trained word vectors to handle
semantic variation and produce high-quality inter-
mediate representations. Table 2 shows the per-
formance of NBT-CNN5 models making use of
three different word vector collections: 1) ‘random’
word vectors initialised using the XAVIER initiali-
sation (Glorot and Bengio, 2010); 2) distributional
GloVe vectors (Pennington et al., 2014), trained
using co-occurrence information in large textual
corpora; and 3) semantically specialised Paragram-
SL999 vectors (Wieting et al., 2015), which are ob-
tained by injecting semantic similarity constraints
from the Paraphrase Database (Ganitkevitch et al.,
2013) into the distributional GloVe vectors in order
to improve their semantic content.

The results in Table 2 show that the use of seman-
tically specialised word vectors leads to consider-
able performance gains: Paragram-SL999 vectors
(significantly) outperformed GloVe and XAVIER

vectors for goal tracking on both datasets. The
gains are particularly robust for noisy DSTC2
data, where both collections of pre-trained vec-
tors consistently outperformed random initialisa-
tion. The gains are weaker for the noise-free WOZ
2.0 dataset, which seems to be large (and clean)
enough for the NBT model to learn task-specific
rephrasings and compensate for the lack of seman-
tic content in the word vectors. For this dataset,
GloVe vectors do not improve over the randomly
initialised ones. We believe this happens because
distributional models keep related, yet antonymous
words close together (e.g. north and south, expen-
sive and inexpensive), offsetting the useful seman-
tic content embedded in this vector spaces.

5The NBT-DNN model showed the same trends. For
brevity, Table 2 presents only the NBT-CNN figures.

Word Vectors DSTC2 WOZ 2.0
Goals Requests Goals Requests

XAVIER (No Info.) 64.2 81.2 81.2 90.7
GloVe 69.0* 96.4* 80.1 91.4

Paragram-SL999 73.4* 96.5* 84.2* 91.6

Table 2: DSTC2 and WOZ 2.0 test set performance
(joint goals and requests) of the NBT-CNN model
making use of three different word vector collec-
tions. The asterisk indicates statistically significant
improvement over the baseline XAVIER (random)
word vectors (paired t-test; p < 0.05).

7 Conclusion

In this paper, we have proposed a novel neural
belief tracking (NBT) framework designed to over-
come current obstacles to deploying dialogue sys-
tems in real-world dialogue domains. The NBT
models offer the known advantages of coupling
Spoken Language Understanding and Dialogue
State Tracking, without relying on hand-crafted
semantic lexicons to achieve state-of-the-art perfor-
mance. Our evaluation demonstrated these benefits:
the NBT models match the performance of models
which make use of such lexicons and vastly outper-
form them when these are not available. Finally, we
have shown that the performance of NBT models
improves with the semantic quality of the under-
lying word vectors. To the best of our knowledge,
we are the first to move past intrinsic evaluation
and show that semantic specialisation boosts per-
formance in downstream tasks.

In future work, we intend to explore applications
of the NBT for multi-domain dialogue systems, as
well as in languages other than English that require
handling of complex morphological variation.

Acknowledgements

The authors would like to thank Ivan Vulić, Ulrich
Paquet, the Cambridge Dialogue Systems Group
and the anonymous ACL reviewers for their con-
structive feedback and helpful discussions.

1785

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,
Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viégas, Oriol Vinyals, Pete Warden, Mar-
tin Wattenberg, Martin Wicke, Yuan Yu, and Xiao-
qiang Zheng. 2015. TensorFlow: Large-scale ma-
chine learning on heterogeneous systems.

Dan Bohus and Alex Rudnicky. 2006. A “k hypothe-
ses + other” belief updating model. In Proceedings
of the AAAI Workshop on Statistical and Empirical
Methods in Spoken Dialogue Systems.

Asli Celikyilmaz and Dilek Hakkani-Tur. 2015. Con-
volutional Neural Network Based Semantic Tagging
with Entity Embeddings. In Proceedings of NIPS
Workshop on Machine Learning for Spoken Lan-
guage Understanding and Interaction.

Ronan Collobert, Jason Weston, Leon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
Journal of Machine Learning Research 12:2493–
2537.

Franck Dernoncourt, Ji Young Lee, Trung H. Bui, and
Hung H. Bui. 2016. Robust dialog state tracking for
large ontologies. In Proceedings of IWSDS.

Ondřej Dušek and Filip Jurčı́ček. 2015. Training a Nat-
ural Language Generator From Unaligned Data. In
Proceedings of ACL.

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of NAACL HLT .

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of AISTATS.

Matthew Henderson, Milica Gašić, Blaise Thomson,
Pirros Tsiakoulis, Kai Yu, and Steve Young. 2012.
Discriminative Spoken Language Understanding Us-
ing Word Confusion Networks. In Spoken Language
Technology Workshop, 2012. IEEE.

Matthew Henderson, Blaise Thomson, and Jason D.
Wiliams. 2014a. The Second Dialog State Tracking
Challenge. In Proceedings of SIGDIAL.

Matthew Henderson, Blaise Thomson, and Jason D.
Wiliams. 2014b. The Third Dialog State Tracking
Challenge. In Proceedings of IEEE SLT .

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014c. Robust Dialog State Tracking using

Delexicalised Recurrent Neural Networks and Unsu-
pervised Adaptation. In Proceedings of IEEE SLT .

Matthew Henderson, Blaise Thomson, and Steve
Young. 2014d. Word-Based Dialog State Tracking
with Recurrent Neural Networks. In Proceedings of
SIGDIAL.

Youngsoo Jang, Jiyeon Ham, Byung-Jun Lee, Young-
jae Chang, and Kee-Eung Kim. 2016. Neural dialog
state tracker for large ontologies by attention mecha-
nism. In Proceedings of IEEE SLT .

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A Convolutional Neural Network for
Modelling Sentences. In Proceedings of ACL.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. In Proceedings of EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
Method for Stochastic Optimization. In Proceed-
ings of ICLR.

Byung-Jun Lee and Kee-Eung Kim. 2016. Dialog His-
tory Construction with Long-Short Term Memory
for Robust Generative Dialog State Tracking. Dia-
logue & Discourse 7(3):47–64.

Bing Liu and Ian Lane. 2016a. Attention-Based Recur-
rent Neural Network Models for Joint Intent Detec-
tion and Slot Filling. In Proceedings of Interspeech.

Bing Liu and Ian Lane. 2016b. Joint Online Spoken
Language Understanding and Language Modeling
with Recurrent Neural Networks. In Proceedings of
SIGDIAL.

Fei Liu and Julien Perez. 2017. Gated End-to-End
Memory Networks. In Proceedings of EACL.

F. Mairesse, M. Gasic, F. Jurcicek, S. Keizer, B. Thom-
son, K. Yu, and S. Young. 2009. Spoken Language
Understanding from Unaligned Data using Discrim-
inative Classification Models. In Proceedings of
ICASSP.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao,
Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xi-
aodong He, Larry Heck, Dong Yu, and Geoffrey
Zweig. 2015. Using recurrent neural networks
for slot filling in spoken language understanding.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing 23(3):530–539.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Lina Rojas-Barahona, Pei-Hao
Su, David Vandyke, Tsung-Hsien Wen, and Steve
Young. 2016. Counter-fitting Word Vectors to Lin-
guistic Constraints. In Proceedings of HLT-NAACL.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gašić, Pei-Hao Su, David Vandyke,
Tsung-Hsien Wen, and Steve Young. 2015. Multi-
domain Dialog State Tracking using Recurrent Neu-
ral Networks. In Proceedings of ACL.

1786

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted Boltzmann machines.
In Proceedings of ICML.

Baolin Peng, Kaisheng Yao, Li Jing, and Kam-Fai
Wong. 2015. Recurrent Neural Networks with Ex-
ternal Memory for Language Understanding. In Pro-
ceedings of the National CCF Conference on Natu-
ral Language Processing and Chinese Computing.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global Vectors for Word
Representation. In Proceedings of EMNLP.

Julien Perez. 2016. Spectral decomposition method of
dialog state tracking via collective matrix factoriza-
tion. Dialogue & Discourse 7(3):34–46.

Julien Perez and Fei Liu. 2017. Dialog state tracking, a
machine reading approach using Memory Network.
In Proceedings of EACL.

Christian Raymond and Giuseppe Ricardi. 2007. Gen-
erative and discriminative algorithms for spoken
language understanding. In Proceedings of Inter-
speech.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomas Kocisky, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In ICLR.

Iman Saleh, Shafiq Joty, Lluı́s Màrquez, Alessandro
Moschitti, Preslav Nakov, Scott Cyphers, and Jim
Glass. 2014. A study of using syntactic and seman-
tic structures for concept segmentation and labeling.
In Proceedings of COLING.

Hongjie Shi, Takashi Ushio, Mitsuru Endo, Katsuyoshi
Yamagami, and Noriaki Horii. 2016. Convolutional
Neural Networks for Multi-topic Dialog State Track-
ing. In Proceedings of IWSDS.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search .

Pei-Hao Su, Milica Gašić, Nikola Mrkšić, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016a. Continuously
learning neural dialogue management. In arXiv
preprint: 1606.02689.

Pei-Hao Su, Milica Gašić, Nikola Mrkšić, Lina Rojas-
Barahona, Stefan Ultes, David Vandyke, Tsung-
Hsien Wen, and Steve Young. 2016b. On-line active
reward learning for policy optimisation in spoken di-
alogue systems. In Proceedings of ACL.

Kai Sun, Lu Chen, Su Zhu, and Kai Yu. 2014. The
SJTU System for Dialog State Tracking Challenge
2. In Proceedings of SIGDIAL.

Kai Sun, Qizhe Xie, and Kai Yu. 2016. Recurrent Poly-
nomial Network for Dialogue State Tracking. Dia-
logue & Discourse 7(3):65–88.

Blaise Thomson and Steve Young. 2010. Bayesian up-
date of dialogue state: A POMDP framework for
spoken dialogue systems. Computer Speech and
Language .

Gokhan Tur, Anoop Deoras, and Dilek Hakkani-Tur.
2013. Semantic Parsing Using Word Confusion Net-
works With Conditional Random Fields. In Proceed-
ings of Interspeech.

Andreas Vlachos and Stephen Clark. 2014. A new cor-
pus and imitation learning framework for context-
dependent semantic parsing. TACL 2:547–559.

Miroslav Vodolán, Rudolf Kadlec, and Jan Kleindienst.
2017. Hybrid Dialog State Tracker with ASR Fea-
tures. In Proceedings of EACL.

Ngoc Thang Vu, Pankaj Gupta, Heike Adel, and Hin-
rich Schütze. 2016. Bi-directional recurrent neural
network with ranking loss for spoken language un-
derstanding. In Proceedings of ICASSP.

Ivan Vulić, Nikola Mrkšić, Roi Reichart, Diarmuid Ó
Séaghdha, Steve Young, and Anna Korhonen. 2017.
Morph-fitting: Fine-tuning word vector spaces with
simple language-specific rules. In Proceedings of
ACL.

Wayne Wang. 1994. Extracting Information From
Spontaneous Speech. In Proceedings of Inter-
speech.

Zhuoran Wang and Oliver Lemon. 2013. A Simple and
Generic Belief Tracking Mechanism for the Dialog
State Tracking Challenge: On the believability of ob-
served information. In Proceedings of SIGDIAL.

Tsung-Hsien Wen, Milica Gašić, Dongho Kim, Nikola
Mrkšić, Pei-Hao Su, David Vandyke, and Steve
Young. 2015a. Stochastic Language Generation
in Dialogue using Recurrent Neural Networks with
Convolutional Sentence Reranking. In Proceedings
of SIGDIAL.

Tsung-Hsien Wen, Milica Gašić, Nikola Mrkšić,
Pei-Hao Su, David Vandyke, and Steve Young.
2015b. Semantically Conditioned LSTM-based Nat-
ural Language Generation for Spoken Dialogue Sys-
tems. In Proceedings of EMNLP.

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
Milica Gašić, Lina M. Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of EACL.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2015. From paraphrase database to compo-
sitional paraphrase model and back. TACL 3:345–
358.

1787

Jason D. Williams. 2014. Web-style ranking and SLU
combination for dialog state tracking. In Proceed-
ings of SIGDIAL.

Jason D. Williams, Antoine Raux, and Matthew Hen-
derson. 2016. The Dialog State Tracking Challenge
series: A review. Dialogue & Discourse 7(3):4–33.

Jason D. Williams, Antoine Raux, Deepak Ramachan-
dran, and Alan W. Black. 2013. The Dialogue State
Tracking Challenge. In Proceedings of SIGDIAL.

Jason D. Williams and Steve Young. 2007. Partially
observable markov decision processes for spoken
dialog systems. Computer Speech and Language
21:393–422.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Ge-
offrey Zweig, and Yangyang Shi. 2014. Spoken lan-
guage understanding using long short-term memory
neural networks. In Proceedings of ASRU.

Steve Young, Milica Gašić, Simon Keizer, François
Mairesse, Jost Schatzmann, Blaise Thomson, and
Kai Yu. 2010. The hidden information state model:
A practical framework for POMDP-based spoken di-
alogue management. Computer Speech and Lan-
guage 24:150–174.

Xiaodong Zhang and Houfeng Wang. 2016. A Joint
Model of Intent Determination and Slot Filling for
Spoken Language Understanding. In Proceedings
of IJCAI.

Lukas Zilka and Filip Jurcicek. 2015. Incremental
LSTM-based dialog state tracker. In Proceedings of
ASRU.

1788

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1789–1798
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1164

Exploiting Argument Information to Improve Event Detection
via Supervised Attention Mechanisms

Shulin Liu1,2, Yubo Chen1,2, Kang Liu1 and Jun Zhao1,2

1 National Laboratory of Pattern Recognition, Institute of Automation,
Chinese Academy of Sciences, Beijing, 100190, China

2 University of Chinese Academy of Sciences, Beijing, 100049, China
{shulin.liu, yubo.chen, kliu, jzhao}@nlpr.ia.ac.cn

Abstract

This paper tackles the task of event
detection (ED), which involves identi-
fying and categorizing events. We ar-
gue that arguments provide significant
clues to this task, but they are either
completely ignored or exploited in an
indirect manner in existing detection
approaches. In this work, we propose to
exploit argument information explicitly
for ED via supervised attention mech-
anisms. In specific, we systematically
investigate the proposed model under
the supervision of different attention
strategies. Experimental results show
that our approach advances state-of-
the-arts and achieves the best F1 score
on ACE 2005 dataset.

1 Introduction

In the ACE (Automatic Context Extraction)
event extraction program, an event is repre-
sented as a structure comprising an event
trigger and a set of arguments. This work
tackles event detection (ED) task, which is a
crucial part of event extraction (EE) and fo-
cuses on identifying event triggers and cate-
gorizing them. For instance, in the sentence
“He died in the hospital”, an ED system
is expected to detect a Die event along with
the trigger word “died”. Besides, the task of
EE also includes event argument extraction
(AE), which involves event argument identi-
fication and role classification. In the above
sentence, the arguments of the event include
“He”(Role = Person) and “hospital”(Role =
Place). However, this paper does not focus on
AE and only tackles the former task.

According to the above definitions, event ar-
guments seem to be not essentially necessary
to ED. However, we argue that they are capa-
ble of providing significant clues for identifying
and categorizing events. They are especially
useful for ambiguous trigger words. For exam-
ple, consider a sentence in ACE 2005 dataset:

Mohamad fired Anwar, his for-
mer protege, in 1998.

In this sentence, “fired” is the trigger word
and the other bold words are event arguments.
The correct type of the event triggered by
“fired” in this case is End-Position . How-
ever, it might be easily misidentified as At-
tack because “fired” is a multivocal word.
In this case, if we consider the phrase “for-
mer protege”, which serves as an argumen-
t (Role = Position) of the target event, we
would have more confidence in predicting it as
an End-Position event.

Unfortunately, most existing methods per-
formed event detection individually, where the
annotated arguments in training set are totally
ignored (Ji and Grishman, 2008; Gupta and Ji,
2009; Hong et al., 2011; Chen et al., 2015; N-
guyen and Grishman, 2015; Liu et al., 2016a,b;
Nguyen and Grishman, 2016). Although some
joint learning based methods have been pro-
posed, which tackled event detection and argu-
ment extraction simultaneously (Riedel et al.,
2009; Li et al., 2013; Venugopal et al., 2014;
Nguyen et al., 2016), these approaches usu-
ally only make remarkable improvements to
AE, but insignificant to ED. Table 1 illustrates
our observations. Li et al. (2013) and Nguyen
et al. (2016) are state-of-the-art joint mod-
els in symbolic and embedding methods for
event extraction, respectively. Compared with
state-of-the-art pipeline systems, both join-

1789

https://doi.org/10.18653/v1/P17-1164

Methods ED AE

Symbolic Hong’s pipeline (2011) 68.3 48.3

Methods Li’s joint (2013) 67.5 52.7

Embedding Chen’s pipeline (2015) 69.1 53.5

Methods Nguyen’s joint (2016) 69.3 55.4

Table 1: Performances of pipeline and joint
approaches on ACE 2005 dataset. The pipeline
method in each group was the state-of-the-art
system when the corresponding joint method
was proposed.

t methods achieved remarkable improvements
on AE (over 1.9 points), whereas achieved in-
significant improvements on ED (less than 0.2
points). The symbolic joint method even per-
formed worse (67.5 vs. 68.3) than pipeline sys-
tem on ED.

We believe that this phenomenon may be
caused by the following two reasons. On the
one hand, since joint methods simultaneous-
ly solve ED and AE, methods following this
paradigm usually combine the loss functions
of these two tasks and are jointly trained un-
der the supervision of annotated triggers and
arguments. However, training corpus contains
much more annotated arguments than trigger-
s (about 9800 arguments and 5300 triggers in
ACE 2005 dataset) because each trigger may
be along with multiple event arguments. Thus,
the unbalanced data may cause joint models
to favor AE task. On the other hand, in im-
plementation, joint models usually pre-predict
several potential triggers and arguments first
and then make global inference to select cor-
rect items. When pre-predicting potential trig-
gers, almost all existing approaches do not
leverage any argument information. In this
way, ED does hardly benefit from the anno-
tated arguments. By contrast, the component
for pre-prediction of arguments always exploit-
s the extracted trigger information. Thus, we
argue that annotated arguments are actually
used for AE, not for ED in existing joint meth-
ods, which is also the reason we call it an in-
direct way to use arguments for ED.

Contrast to joint methods, this paper pro-
poses to exploit argument information explic-
itly for ED. We have analyzed that arguments
are capable of providing significant clues to
ED, which gives us an enlightenment that ar-

guments should be focused on when perform-
ing this task. Therefore, we propose a neural
network based approach to detect events in
texts. And in the proposed approach, we adop-
t a supervised attention mechanism to achieve
this goal, where argument words are expect-
ed to acquire more attention than other word-
s. The attention value of each word in a giv-
en sentence is calculated by an operation be-
tween the current word and the target trigger
candidate. Specifically, in training procedure,
we first construct gold attentions for each trig-
ger candidate based on annotated arguments.
Then, treating gold attentions as the super-
vision to train the attention mechanism, we
learn attention and event detector jointly both
in supervised manner. In testing procedure,
we use the ED model with learned attention
mechanisms to detect events.

In the experiment section, we systemati-
cally conduct comparisons on a widely used
benchmark dataset ACE20051. In order to fur-
ther demonstrate the effectiveness of our ap-
proach, we also use events from FrameNet
(FN) (F. Baker et al., 1998) as extra training
data, as the same as Liu et al. (2016a) to al-
leviate the data-sparseness problem for ED to
augment the performance of the proposed ap-
proach. The experimental results demonstrate
that the proposed approach is effective for ED
task, and it outperforms state-of-the-art ap-
proaches with remarkable gains.

To sum up, our main contributions are: (1)
we analyze the problem of joint models on the
task of ED, and propose to use the annotated
argument information explicitly for this task.
(2) to achieve this goal, we introduce a su-
pervised attention based ED model. Further-
more, we systematically investigate different
attention strategies for the proposed model.
(3) we improve the performance of ED and
achieve the best performance on the widely
used benchmark dataset ACE 2005.

2 Task Description

The ED task is a subtask of ACE event eval-
uations where an event is defined as a specif-
ic occurrence involving one or more partici-
pants. Event extraction task requires certain
specified types of events, which are mentioned

1https://catalog.ldc.upenn.edu/LDC2006T06

1790

in the source language data, be detected. We
firstly introduce some ACE terminologies to
facilitate the understanding of this task:

Entity: an object or a set of objects in one
of the semantic categories of interests.

Entity mention: a reference to an entity
(typically, a noun phrase).

Event trigger: the main word that most
clearly expresses an event occurrence.

Event arguments: the mentions that are
involved in an event (participants).

Event mention: a phrase or sentence with-
in which an event is described, including the
trigger and arguments.

The goal of ED is to identify event triggers
and categorize their event types. For instance,
in the sentence “He died in the hospital”, an
ED system is expected to detect a Die event
along with the trigger word “died”. The detec-
tion of event arguments “He”(Role = Person)
and “hospital”(Role = Place) is not involved
in the ED task. The 2005 ACE evaluation in-
cluded 8 super types of events, with 33 sub-
types. Following previous work, we treat these
simply as 33 separate event types and ignore
the hierarchical structure among them.

3 The Proposed Approach

Similar to existing work, we model ED as a
multi-class classification task. In detail, given
a sentence, we treat every token in that sen-
tence as a trigger candidate, and our goal is to
classify each of these candidates into one of 34
classes (33 event types plus an NA class).

In our approach, every word along with its
context, which includes the contextual words
and entities, constitute an event trigger candi-
date. Figure 1 describes the architecture of the
proposed approach, which involves two com-
ponents: (i) Context Representation Learn-
ing (CRL), which reveals the representation
of both contextual words and entities via at-
tention mechanisms; (ii) Event Detector (ED),
which assigns an event type (including the NA
type) to each candidate based on the learned
contextual representations.

3.1 Context Representation Learning

In order to prepare for Context Representa-
tion Learning (CRL), we limit the contex-
t to a fixed length by trimming longer sen-

Figure 1: The architecture of the proposed
approach for event detection. In this figure,
w is the candidate word, [w1, ..., wn] is the
contextual words of w, and [e1, ..., en] is the
corresponding entity types of [w1, ... , wn].

tences and padding shorter sentences with a
special token when necessary. Let n be the
fixed length and w0 be the current candidate
trigger word, then its contextual words Cw is
[w− n

2
, w− n

2
+1, ..., w−1, w1, ..., wn

2
−1, wn

2
]2, and

its contextual entities, which is the corre-
sponding entity types (including an NA type)
of Cw, is [e− n

2
, e− n

2
+1, ..., e−1, e1, ..., en

2
−1, en

2
].

For convenience, we use w to denote the cur-
rent word, [w1, w2, ..., wn] to denote the con-
textual words Cw and [e1, e2, ..., en] to denote
the contextual entities Ce in figure 1. Note
that, both w, Cw and Ce mentioned above
are originally in symbolic representation. Be-
fore entering CRL component, we transform
them into real-valued vector by looking up
word embedding table and entity type embed-
ding table. Then we calculate attention vec-
tors for both contextual words and entities
by performing operations between the curren-
t word w and its contexts. Finally, the con-
textual words representation cw and contex-
tual entities representation ce are formed by
the weighted sum of the corresponding embed-
dings of each word and entity in Cw and Ce,
respectively. We will give the details in the fol-

2The current candidate trigger word w0 is not in-
cluded in the context.

1791

lowing subsections.

3.1.1 Word Embedding Table

Word embeddings learned from a large amoun-
t of unlabeled data have been shown to be
able to capture the meaningful semantic reg-
ularities of words (Bengio et al., 2003; Er-
han et al., 2010). This paper uses the learned
word embeddings as the source of basic fea-
tures. Specifically, we use the Skip-gram mod-
el (Mikolov et al., 2013) to learn word embed-
dings on the NYT corpus3.

3.1.2 Entity Type Embedding Table

The ACE 2005 corpus annotated not only
events but also entities for each given sentence.
Following existing work (Li et al., 2013; Chen
et al., 2015; Nguyen and Grishman, 2015), we
exploit the annotated entity information in our
ED system. We randomly initialize embedding
vector for each entity type (including the NA
type) and update it in training procedure.

3.1.3 Representation Learning

In this subsection, we illustrate our proposed
approach to learn representations of both con-
textual words and entities, which serve as in-
puts to the following event detector compo-
nent. Recall that, we use the matrix Cw and
Ce to denote contextual words and contextual
entities, respectively.

As illustrated in figure 1, the CRL compo-
nent needs three inputs: the current candidate
trigger word w, the contextual words Cw and
the contextual entities Ce. Then, two atten-
tion vectors, which reflect different aspects of
the context, are calculated in the next step.
The contextual word attention vector αw

is computed based on the current word w and
its contextual words Cw. We firstly transform
each word wk (including w and every word in
Cw) into a hidden representation wk by the
following equation:

wk = f(wk � Ww) (1)

where f(·) is a non-linear function such as the
hyperbolic tangent, and Ww is the transforma-
tion matrix. Then, we use the hidden represen-
tations to compute the attention value for each

3https://catalog.ldc.upenn.edu/LDC2008T19

word in Cw:

αk
w =

exp(w � wT
k)∑

i exp(w � wT
i)

(2)

The contextual entity attention vector
αe is calculated with a similar method to αw.

αk
e =

exp(we � eT
k)∑

i exp(we � eT
i)

(3)

Note that, we do not use the entity informa-
tion of the current candidate token to compute
the attention vector. The reason is that only
a small percentage of true event triggers are
entities4. Therefore, the entity type of a can-
didate trigger is meaningless for ED. Instead,
we use we, which is calculated by transform-
ing w from the word space into the entity type
space, as the attention source.

We combine αw and αe to obtain the final
attention vector, α = αw+αe. Finally, the con-
textual words representation cw and the con-
textual entities representation ce are formed
by weighted sum of Cw and Ce, respectively:

cw = CwαT (4)

ce = Ceα
T (5)

3.2 Event Detector

As illustrated in figure 1, we employ a three-
layer (an input layer, a hidden layer and a soft-
max output layer) Artificial Neural Networks
(ANNs) (Hagan et al., 1996) to model the ED
task, which has been demonstrated very effec-
tive for event detection by Liu et al. (2016a).

3.2.1 Basic ED Model

Given a sentence, as illustrated in figure 1, we
concatenate the embedding vectors of the con-
text (including contextual words and entities)
and the current candidate trigger to serve as
the input to ED model. Then, for a given in-
put sample x, ANN with parameter θ outputs
a vector O, where the i-th value oi of O is
the confident score for classifying x to the i-th
event type. To obtain the conditional proba-
bility p(i|x, θ), we apply a softmax operation
over all event types:

p(i|x, θ) =
eoi

∑m
k=1 eok

(6)

4Only 10% of triggers in ACE 2005 are entities.

1792

Given all of our (suppose T) training instances
(x(i); y(i)), we can then define the negative log-
likelihood loss function:

J(θ) = −
T∑

i=1

log p(y(i)|x(i), θ) (7)

We train the model by using a simple opti-
mization technique called stochastic gradient
descent (SGD) over shuffled mini-batches with
the Adadelta rule (Zeiler, 2012). Regulariza-
tion is implemented by a dropout (Kim, 2014;
Hinton et al., 2012) and L2 norm.

3.2.2 Supervised Attention

In this subsection, we introduce supervised at-
tention to explicitly use annotated argument
information to improve ED. Our basic idea is
simple: argument words should acquire more
attention than other words. To achieve this
goal, we first construct vectors using annotat-
ed arguments as the gold attentions. Then, we
employ them as supervision to train the atten-
tion mechanism.

Constructing Gold Attention Vectors

Our goal is to encourage argument words to
obtain more attention than other words. To
achieve this goal, we propose two strategies to
construct gold attention vectors:

S1: only pay attention to argument
words. That is, all argument words in the giv-
en context obtain the same attention, whereas
other words get no attention. For candidates
without any annotated arguments in context
(such as negative samples), we force all entities
to average the whole attention. Figure 2 illus-
trates the details, where α∗ is the final gold
attention vector.

Figure 2: An example of S1 to construct gold
attention vector. The word fired is the trigger
candidate, and underline words are arguments
of fired annotated in the corpus.

S2: pay attention to both arguments
and the words around them. The assump-
tion is that, not only arguments are important

to ED, the words around them are also help-
ful. And the nearer a word is to arguments,
the more attention it should obtain. Inspired
by Mi et al. (2016), we use a gaussian distri-
bution g(·) to model the attention distribution
of words around arguments. In detail, given an
instance, we first obtain the raw attention vec-
tor α in the same manner as S1 (see figure 2).
Then, we create a new vector α

′
with all points

initialized with zero, and for each αi = 1, we
update α

′
by the following algorithm:

Algorithm 1: Updating α
′

for k ∈ {−w, ..., 0, ..., w} do

α
′
i+k = α

′
i+k + g(|k|, µ, σ)

end

where w is the window size of the attention
mechanism and µ, σ are hyper-parameters of
the gaussian distribution. Finally, we normal-
ize α

′
to obtain the target attention vector α∗.

Similar with S1, we treat all entities in the
context as arguments if the current candidate
does not has any annotated arguments (such
as netative samples).

Jointly Training ED and Attention

Given the gold attention α∗ (see subsection
3.2.2) and the machine attention α produced
by our model (see subsection 3.1.3), we em-
ploy the square error as the loss function of
attentions:

D(θ) =
T∑

i=1

n∑

j=1

(α∗i
j − αi

j)
2 (8)

Combining equation 7 and equation 8, we de-
fine the joint loss function of our proposed
model as follows:

J
′
(θ) = J(θ) + λD(θ) (9)

where λ is a hyper-parameter for trade-off be-
tween J and D. Similar to basic ED model, we
minimize the loss function J

′
(θ) by using SGD

over shuffled mini-batches with the Adadelta
update rule.

4 Experiments

4.1 Dataset and Experimental Setup

Dataset

We conducted experiments on ACE 2005
dataset. For the purpose of comparison, we fol-

1793

lowed the evaluation of (Li et al., 2013; Chen
et al., 2015; Liu et al., 2016b): randomly se-
lected 30 articles from different genres as the
development set, and subsequently conducted
a blind test on a separate set of 40 ACE 2005
newswire documents. We used the remaining
529 articles as our training set.

Hyper-parameter Setting

Hyper-parameters are tuned on the develop-
ment dataset. We set the dimension of word
embeddings to 200, the dimension of entity
type embeddings to 50, the size of hidden lay-
er to 300, the output size of word transfor-
mation matrix Ww in equation 1 to 200, the
batch size to 100, the hyper-parameter for the
L2 norm to 10−6 and the dropout rate to 0.6.
In addition, we use the standard normal dis-
tribution to model attention distributions of
words around arguments, which means that
µ = 0.0, σ = 1.0, and the window size is set to
3 (see Subsection 3.2.2). The hyper-parameter
λ in equation 9 is various for different atten-
tion strategies, we will give its setting in the
next section.

4.2 Correctness of Our Assumption

In this section, we conduct experiments on
ACE 2005 corpus to demonstrate the correct-
ness of our assumption that argument infor-
mation is crucial to ED. To achieve this goal,
we design a series of systems for comparison.

ANN is the basic event detection model, in
which the hyper-parameter λ is set to 0. This
system does not employ argument information
and computes attentions without supervision
(see Subsection 3.1.3).

ANN-ENT assigns λ with 0, too. The dif-
ference is that it constructs the attention vec-
tor α by forcing all entities in the context to
average the attention instead of computing it
in the manner introduced in Subsection 3.1.3.
Since all arguments are entities, this system is
designed to investigate the effects of entities.

ANN-Gold1 uses the gold attentions con-
structed by strategy S1 in both training and
testing procedure.

ANN-Gold2 is akin to ANN-Gold1, but
uses the second strategy to construct its gold
attentions.

Note that, in order to avoid the interference
of attention mechanisms, the last two systems

are designed to use argument information (via
gold attentions) in both training and testing
procedure. Thus both ANN-Gold1 and ANN-
Gold2 assign λ with 0.

Methods P R F1

ANN 69.9 60.8 65.0

ANN-ENT 79.4 60.7 68.8

ANN-Gold1† 81.9 65.1 72.5

ANN-Gold2† 81.4 66.9 73.4

Table 2: Experimental results on ACE 2005
corpus. † designates the systems that employ
argument information.

Table 2 compares these systems on ACE
2005 corpus. From the table, we observe that
systems with argument information (the last
two systems) significantly outperform system-
s without argument information (the first t-
wo systems), which demonstrates that argu-
ment information is very useful for this task.
Moreover, since all arguments are entities, for
preciseness we also investigate that whether
ANN-Gold1/2 on earth benefits from entities
or arguments. Compared with ANN-ENT (re-
vising that this system only uses entity infor-
mation), ANN-Gold1/2 performs much bet-
ter, which illustrates that entity information
is not enough and further demonstrates that
argument information is necessary for ED.

4.3 Results on ACE 2005 Corpus

In this section, we conduct experiments on
ACE 2005 corpus to demonstrate the effective-
ness of the proposed approach. Firstly, we in-
troduce systems implemented in this work.

ANN-S1 uses gold attentions constructed
by strategy S1 as supervision to learn atten-
tion. In our experiments, λ is set to 1.0.

ANN-S2 is akin to ANN-S1, but use strat-
egy S2 to construct gold attentions and the
hyper-parameter λ is set to 5.0.

These two systems both employ supervised
attention mechanisms. For comparison, we use
an unsupervised-attention system ANN as our
baseline, which is introduced in Subsection 4.2.
In addition, we select the following state-of-
the-art methods for comparison.

1). Li’s joint model (Li et al., 2013) extracts
events based on structure prediction. It is the
best structure-based system.

1794

Methods P R F1

Li’s joint model (2013) 73.7 62.3 67.5

Liu’s PSL (2016) 75.3 64.4 69.4

Liu’s FN-Based (2016) 77.6 65.2 70.7

Ngyuen’s joint (2016) 66.0 73.0 69.3

Skip-CNN (2016) N/A 71.3

ANN 69.9 60.8 65.0

ANN-S1† 81.4 62.4 70.8

ANN-S2† 78.0 66.3 71.7

Table 3: Experimental results on ACE 2005.
The first group illustrates the performances of
state-of-the-art approaches. The second group
illustrates the performances of the proposed
approach. † designates the systems that em-
ploy arguments information.

2). Liu’s PSL (Liu et al., 2016b) employs
both latent local and global information for
event detection. It is the best-reported feature-
based system.

3). Liu’s FN-Based approach (Liu et al.,
2016a) leverages the annotated corpus of
FrameNet to alleviate data sparseness problem
of ED based on the observation that frames in
FN are analogous to events in ACE.

4). Ngyen’s joint model (Nguyen et al., 2016)
employs a bi-directional RNN to jointly ex-
tract event triggers and arguments. It is the
best-reported representation-based joint ap-
proach proposed on this task.

5). Skip-CNN (Nguyen and Grishman,
2016) introduces the non-consecutive convo-
lution to capture non-consecutive k-grams
for event detection. It is the best reported
representation-based approach on this task.

Table 3 presents the experimental results on
ACE 2005 corpus. From the table, we make the
following observations:

1). ANN performs unexpectedly poorly,
which indicates that unsupervised-attention
mechanisms do not work well for ED. We be-
lieve the reason is that the training data of
ACE 2005 corpus is insufficient to train a pre-
cise attention in an unsupervised manner, con-
sidering that data sparseness is an important
issue of ED (Zhu et al., 2014; Liu et al., 2016a).

2). With argument information employed
via supervised attention mechanisms, both
ANN-S1 and ANN-S2 outperform ANN with
remarkable gains, which illustrates the effec-

tiveness of the proposed approach.

3). ANN-S2 outperforms ANN-S1, but the
latter achieves higher precision. It is not d-
ifficult to understand. On the one hand, s-
trategy S1 only focuses on argument words,
which provides accurate information to iden-
tify event type, thus ANN-S1 could achieve
higher precision. On the other hand, S2 focus-
es on both arguments and words around them,
which provides more general but noised clues.
Thus, ANN-S2 achieves higher recall with a
little loss of precision.

4). Compared with state-of-the-art ap-
proaches, our method ANN-S2 achieves the
best performance. We also perform a t-test
(p 6 0.05), which indicates that our method
significantly outperforms all of the compared
methods. Furthermore, another noticeable ad-
vantage of our approach is that it achieves
much higher precision than state-of-the-arts.

4.4 Augmentation with FrameNet

Recently, Liu et al. (2016a) used events auto-
matically detected from FN as extra training
data to alleviate the data-sparseness problem
for event detection. To further demonstrate
the effectiveness of the proposed approach, we
also use the events from FN to augment the
performance of our approach.

In this work, we use the events published
by Liu et al. (2016a)5 as extra training data.
However, their data can not be used in the
proposed approach without further processing,
because it lacks of both argument and entity
information. Figure 3 shows several examples
of this data.

Figure 3: Examples of events detected from
FrameNet (published by Liu et al. (2016a)).

Processing of Events from FN

Liu et al. (2016a) detected events from
FrameNet based on the observation that
frames in FN are analogous to events in ACE

5https://github.com/subacl/acl16

1795

(lexical unit of a frame ↔ trigger of an even-
t, frame elements of a frame ↔ arguments of
an event). All events they published are also
frames in FN. Thus, we treat frame elements
annotated in FN corpus as event arguments.
Since frames generally contain more frame el-
ements than events, we only use core6 elements
in this work. Moreover, to obtain entity infor-
mation, we use RPI Joint Information Extrac-
tion System7 (Li et al., 2013, 2014; Li and Ji,
2014) to label ACE entity mentions.

Experimental Results

We use the events from FN as extra train-
ing data and keep the development and test
datasets unchanged.Table 4 presents the ex-
perimental results.

Methods P R F1

ANN 69.9 60.8 65.0

ANN-S1 81.4 62.4 70.8

ANN-S2 78.0 66.3 71.7

ANN +FrameNet 72.5 61.7 66.7

ANN-S1 +FrameNet 80.1 63.6 70.9

ANN-S2 +FrameNet 76.8 67.5 71.9

Table 4: Experimental results on ACE 2005
corpus. “+FrameNet” designates the systems
that are augmented by events from FrameNet.

From the results, we observe that:

1). With extra training data, ANN achieves
significant improvements on F1 measure (66.7
vs. 65.0). This result, to some extent, demon-
strates the correctness of our assumption that
the data sparseness problem is the reason that
causes unsupervised attention mechanisms to
be ineffective to ED.

2). Augmented with external data, both
ANN-S1 and ANN-S2 achieve higher recall
with a little loss of precision. This is to be ex-
pected. On the one hand, more positive train-
ing samples consequently make higher recal-
l. On the other hand, the extra event sam-
ples are automatically extracted from FN, thus
false-positive samples are inevitable to be in-
volved, which may result in hurting the preci-
sion. Anyhow, with events from FN, our ap-
proach achieves higher F1 score.

6FrameNet classifies frame elements into three
groups: core, peripheral and extra-thematic.

7http://nlp.cs.rpi.edu/software/

5 Related Work

Event detection is an increasingly hot and
challenging research topic in NLP. Generally,
existing approaches could roughly be divided
into two groups.

The first kind of approach tackled this
task under the supervision of annotated trig-
gers and entities, but totally ignored anno-
tated arguments. The majority of existing
work followed this paradigm, which includes
feature-based methods and representation-
based methods. Feature-based methods ex-
ploited a diverse set of strategies to convert
classification clues (i.e., POS tags, dependen-
cy relations) into feature vectors (Ahn, 2006;
Ji and Grishman, 2008; Patwardhan and Rilof-
f, 2009; Gupta and Ji, 2009; Liao and Gr-
ishman, 2010; Hong et al., 2011; Liu et al.,
2016b). Representation-based methods typi-
cally represent candidate event mentions by
embeddings and feed them into neural net-
works (Chen et al., 2015; Nguyen and Grish-
man, 2015; Liu et al., 2016a; Nguyen and Gr-
ishman, 2016).

The second kind of approach, on the con-
trast, tackled event detection and argument
extraction simultaneously, which is called joint
approach (Riedel et al., 2009; Poon and Van-
derwende, 2010; Li et al., 2013, 2014; Venu-
gopal et al., 2014; Nguyen et al., 2016). Join-
t approach is proposed to capture internal
and external dependencies of events, includ-
ing trigger-trigger, argument-argument and
trigger-argument dependencies. Theoretically,
both ED and AE are expected to benefit from
joint methods because triggers and arguments
are jointly considered. However, in practice,
existing joint methods usually only make re-
markable improvements to AE, but insignif-
icant to ED. Different from them, this work
investigates the exploitation of argument in-
formation to improve the performance of ED.

6 Conclusions

In this work, we propose a novel approach to
model argument information explicitly for ED
via supervised attention mechanisms. Besides,
we also investigate two strategies to construc-
t gold attentions using the annotated argu-
ments. To demonstrate the effectiveness of the
proposed method, we systematically conduc-

1796

t a series of experiments on the widely used
benchmark dataset ACE 2005. Moreover, we
also use events from FN to augment the per-
formance of the proposed approach. Experi-
mental results show that our approach outper-
forms state-of-the-art methods, which demon-
strates that the proposed approach is effective
for event detection.

Acknowledgments

This work was supported by the Natural Sci-
ence Foundation of China (No. 61533018) and
the National Basic Research Program of China
(No. 2014CB340503). And this research work
was also supported by Google through focused
research awards program.

References

David Ahn. 2006. Proceedings of the
workshop on annotating and reasoning
about time and events. Association for
Computational Linguistics, pages 1–8.
http://aclweb.org/anthology/W06-0901.

Yoshua Bengio, Réjean Ducharme, Pascal Vincen-
t, and Christian Janvin. 2003. A neural proba-
bilistic language model. The Journal of Machine
Learning Research 3:1137–1155.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng,
and Jun Zhao. 2015. Event extraction vi-
a dynamic multi-pooling convolutional neural
networks. In Proceedings of the 53rd An-
nual Meeting of the Association for Compu-
tational Linguistics and the 7th Internation-
al Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers). Association
for Computational Linguistics, pages 167–176.
https://doi.org/10.3115/v1/P15-1017.

Dumitru Erhan, Yoshua Bengio, Aaron Courville,
Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. 2010. Why does unsupervised
pre-training help deep learning? The Journal
of Machine Learning Research 11:625–660.

Collin F. Baker, Charles J. Fillmore, and John
B. Lowe. 1998. The berkeley framenet project.
In COLING 1998 Volume 1: The 17th Interna-
tional Conference on Computational Linguistic-
s. http://aclweb.org/anthology/C98-1013.

Prashant Gupta and Heng Ji. 2009. Predict-
ing unknown time arguments based on cross-
event propagation. In Proceedings of the ACL-
IJCNLP 2009 Conference Short Papers. Associ-
ation for Computational Linguistics, pages 369–
372. http://aclweb.org/anthology/P09-2093.

Martin T Hagan, Howard B Demuth, Mark H
Beale, et al. 1996. Neural network design. P-
ws Pub. Boston.

Geoffrey E Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan R
Salakhutdinov. 2012. Improving neural net-
works by preventing co-adaptation of feature de-
tectors. arXiv preprint arXiv:1207.0580 http-
s://arxiv.org/abs/1207.0580.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extrac-
tion. In Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistic-
s: Human Language Technologies. Association
for Computational Linguistics, pages 1127–1136.
http://aclweb.org/anthology/P11-1113.

Heng Ji and Ralph Grishman. 2008. Refining even-
t extraction through cross-document inference.
In Proceedings of ACL-08: HLT . Association
for Computational Linguistics, pages 254–262.
http://aclweb.org/anthology/P08-1030.

Yoon Kim. 2014. Convolutional neural network-
s for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in
Natural Language Processing . pages 1746–1751.
http://www.anthology.aclweb.org/D14-1181.

Qi Li and Heng Ji. 2014. Incremental join-
t extraction of entity mentions and relation-
s. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 402–412.
https://doi.org/10.3115/v1/P14-1038.

Qi Li, Heng Ji, Yu HONG, and Sujian Li. 2014.
Constructing information networks using one s-
ingle model. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). Association for
Computational Linguistics, pages 1846–1851.
https://doi.org/10.3115/v1/D14-1198.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with glob-
al features. In Proceedings of the 51st Annual
Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, pages 73–82.
http://aclweb.org/anthology/P13-1008.

Shasha Liao and Ralph Grishman. 2010. Us-
ing document level cross-event inference to
improve event extraction. In Proceedings
of the 48th Annual Meeting of the Associa-
tion for Computational Linguistics. Association
for Computational Linguistics, pages 789–797.
http://aclweb.org/anthology/P10-1081.

1797

Shulin Liu, Yubo Chen, Shizhu He, Kang Liu,
and Jun Zhao. 2016a. Leveraging framenet
to improve automatic event detection. In
Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistic-
s (Volume 1: Long Papers). Association for
Computational Linguistics, pages 2134–2143.
https://doi.org/10.18653/v1/P16-1201.

Shulin Liu, Kang Liu, Shizhu He, and Jun
Zhao. 2016b. A probabilistic soft logic based
approach to exploiting latent and global
information in event classification. In Pro-
ceedings of the thirtieth AAAI Conference
on Artificail Intelligence. pages 2993–2999.
http://www.aaai.org/ocs/index.php/AAAI
/AAAI16/paper/view/11990/12052.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah.
2016. Supervised attentions for neural machine
translation. arXiv preprint arXiv:1608.00112
https://arxiv.org/abs/1608.00112.

Tomas Mikolov, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013. Efficient estima-
tion of word representations in vector s-
pace. arXiv preprint arXiv:1301.3781 http-
s://arxiv.org/abs/1301.3781.

Huu Thien Nguyen, Kyunghyun Cho, and Ralph
Grishman. 2016. Joint event extraction via re-
current neural networks. In Proceedings of the
2016 Conference of the North American Chapter
of the Association for Computational Linguistic-
s: Human Language Technologies. Association
for Computational Linguistics, pages 300–309.
https://doi.org/10.18653/v1/N16-1034.

Huu Thien Nguyen and Ralph Grishman. 2015.
Event detection and domain adaptation with
convolutional neural networks. In Proceedings
of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language
Processing (Volume 2: Short Papers). Associa-
tion for Computational Linguistics, pages 365–
371. https://doi.org/10.3115/v1/P15-2060.

Huu Thien Nguyen and Ralph Grishman. 2016.
Modeling skip-grams for event detection with
convolutional neural networks. In Proceedings
of the 2016 Conference on Empirical Method-
s in Natural Language Processing . Association
for Computational Linguistics, pages 886–891.
http://aclweb.org/anthology/D16-1085.

Siddharth Patwardhan and Ellen Riloff. 2009. A
unified model of phrasal and sentential evi-
dence for information extraction. In Proceedings
of the 2009 Conference on Empirical Method-
s in Natural Language Processing . Association
for Computational Linguistics, pages 151–160.
http://aclweb.org/anthology/D09-1016.

Hoifung Poon and Lucy Vanderwende. 2010.
Joint inference for knowledge extraction from

biomedical literature. In Human Language
Technologies: The 2010 Annual Conference of
the North American Chapter of the Associa-
tion for Computational Linguistics. Association
for Computational Linguistics, pages 813–821.
http://aclweb.org/anthology/N10-1123.

Sebastian Riedel, Hong-Woo Chun, Toshihisa Tak-
agi, and Jun’ichi Tsujii. 2009. Proceed-
ings of the bionlp 2009 workshop compan-
ion volume for shared task. Association
for Computational Linguistics, pages 41–49.
http://aclweb.org/anthology/W09-1406.

Deepak Venugopal, Chen Chen, Vibhav Gogate,
and Vincent Ng. 2014. Relieving the
computational bottleneck: Joint inference for
event extraction with high-dimensional fea-
tures. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural
Language Processing (EMNLP). Association
for Computational Linguistics, pages 831–843.
https://doi.org/10.3115/v1/D14-1090.

Matthew D Zeiler. 2012. Adadelta: An adap-
tive learning rate method. arXiv preprint arX-
iv:1212.5701 https://arxiv.org/abs/1212.5701.

Zhu Zhu, Shoushan Li, Guodong Zhou, and
Rui Xia. 2014. Bilingual event extraction:
a case study on trigger type determination.
In Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguis-
tics (Volume 2: Short Papers). Association
for Computational Linguistics, pages 842–847.
https://doi.org/10.3115/v1/P14-2136.

1798

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1799–1809
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1165

Topical Coherence in LDA-based Models through Induced Segmentation

Hesam Amoualian
Univ. Grenoble Alps, CNRS, Grenoble INP - LIG

hesam.amoualian@imag.fr

Wei Lu
Singapore University of Technology and Design

luwei@sutd.edu.sg

Eric Gaussier
Univ. Grenoble Alps, CNRS, Grenoble INP - LIG

eric.gaussier@imag.fr

Georgios Balikas
Univ. Grenoble Alps, CNRS, Grenoble INP - LIG

georgios.balikas@imag.fr

Massih-Reza Amini
Univ. Grenoble Alps, CNRS, Grenoble INP - LIG

massih-reza.amini@imag.fr

Marianne Clausel
Univ. Grenoble Alps, CNRS, Grenoble INP - LJK

marianne.clausel@imag.fr

Abstract

This paper presents an LDA-based model
that generates topically coherent segments
within documents by jointly segmenting
documents and assigning topics to their
words. The coherence between topics is
ensured through a copula, binding the top-
ics associated to the words of a segment.
In addition, this model relies on both doc-
ument and segment specific topic distribu-
tions so as to capture fine grained differ-
ences in topic assignments. We show that
the proposed model naturally encompasses
other state-of-the-art LDA-based models de-
signed for similar tasks. Furthermore, our
experiments, conducted on six different
publicly available datasets, show the effec-
tiveness of our model in terms of perplexity,
Normalized Pointwise Mutual Information,
which captures the coherence between the
generated topics, and the Micro F1 measure
for text classification.

1 Introduction

Since the seminal works of Hofmann (1999) and
Blei et al. (2003), there have been several develop-
ments in probabilistic topic models. Many exten-
sions have indeed been proposed for different ap-
plications, including ad-hoc information retrieval
(Wei and Croft, 2006), clustering search results
(Zeng et al., 2004) and driving faceted browsing
(Mimno and McCallum, 2007). In most of these
studies, the initial exchangeability assumptions of

PLSA and LDA, stipulating that words within a
document are interdependent, has led to incoherent
topic assignments within semantically meaningful
text units, even though the importance of having
topically coherent phrases is generally admitted
(Griffiths et al., 2005). More recently, (Balikas
et al., 2016b) has shown that binding topics, so as
to obtain more coherent topic assignments, within
such text segments as noun phrases improves the
performance (e.g. in terms of perplexity) of LDA-
based models. The question nevertheless remains
as to which segmentation one should rely on.

Furthermore, text segments can refer to topics
that are barely present in other parts of the doc-
ument. For example, the segment “the Kurdish
regional capital” in the sentence1 “A thousand
protesters took to the main street in Erbil, the Kur-
dish regional capital, to condemn a new law requir-
ing all public demonstrations to have government
permits.” refers to geography in a document that
is mainly devoted to politics. Relying on a single
topic distribution, as done in most previous studies
including (Balikas et al., 2016b), may prevent one
from capturing those segment specific topics.

In this paper, we propose a novel LDA-based
model that automatically segments documents into
topically coherent sequences of words. The coher-
ence between topics is ensured through copulas
(Elidan, 2013) that bind the topics associated to the
words of a segment. In addition, this model relies
on both document and segment specific topic distri-

1This sentence is taken from New York Times news (NYT)
collection described in Section 4.

1799

https://doi.org/10.18653/v1/P17-1165

butions so as to capture fine grained differences in
topic assignments. A simple switching mechanism
is used to select the appropriate distribution (doc-
ument or segment specific) for assigning a topic
to a word. We show that this model naturally en-
compasses other state-of-the-art LDA-based models
proposed to accomplish the same task, and that it
outperforms these models over six publicly avail-
able collections in terms of perplexity, Normalized
Pointwise Mutual Information (NPMI), a measure
used to assess the coherence of topics with docu-
ments, and the Micro F1-measure in a text classifi-
cation context.

2 Related work

Probabilistic Latent Semantic Analysis (PLSA)
proposed by (Hofmann, 1999) is the first proba-
bilistic model that explains the generation of co-
occurrence data using latent random topics and, the
EM algorithm for parameter estimation. The model
was found more flexible and scalable than the La-
tent Semantic Analysis (Deerwester et al., 1990),
which is based on the singular value decomposi-
tion of the document-term matrix, however PLSA
is not a generative model as parameter estimation
should be performed at each addition of new doc-
uments. To overcome this drawback, Blei et al.
(2003) proposed the Latent Dirichlet Allocation
(LDA) by assuming that the latent topics are ran-
dom variables sampled from a Dirichlet distribu-
tion and that the generated words, occurring in a
document, are exchangeable. The interdependence
assumption allows the parameter estimation and
the inference of the LDA model to be carried out
efficiently, but it is not realistic in the sense that
topics assigned to similar words of a text span are
generally incoherent.

Different studies, presented in the following sec-
tions, attempted to remedy this problem and they
can be grouped in two broad families depending
on whether they make use of external knowledge-
based tools or not in order to exhibit text structure
for word-topic assignment.

2.1 Knowledge-based topic assignments

The main assumption behind these models are that
text-spans such as sentences, phrases or segments
are related in their content. Therefore, the inte-
gration of these dependent structures can help to
discover coherent latent topics for words. Different
attempts to combine LDA-based models with sta-

tistical tools to discover document structures have
been successfully proposed, such as the study of
Griffiths et al. (2005) who investigated the effect
of combining a Hidden Markov Model with LDA
to capture long and short distance dependencies.
Similarly, (Boyd-Graber and Blei, 2008; Balikas
et al., 2016a,b) integrated text structure exhibited
by a parser or a chunker in their topic models. In
this line, Du et al. (2013) following (Du et al.,
2010) presented a hierarchical Bayesian model for
unsupervised topic segmentation. This model in-
tegrates a boundary sampling method used in a
Bayesian segmentation model introduced by Purver
et al.(2006) to the topic model. For inference, a
non-parametric Markov Chain inference is used
that splits and merges the segments while a Pitman-
Yor process (Teh, 2006) binds the topics. Recently,
Tamura and Sumita (2016) extended this idea to the
bilingual setting. They assume that documents con-
sist of segments and the topic distribution of each
segment is generated using a Pitman-Yor process
(Teh, 2006).

Though, the topic assignments follow the struc-
ture of the text; these models suffer from the bias
of statistical or linguistic tools they rely on. To
overpass this limitation, other systems integrated
automatically the extraction of text structure, in the
form of phrases, in their process.

2.2 Knowledge-free topic assignments

This type of models extract text-spans using n-
gram counts and word collections and use bigrams
to integrate the order of words as well as to capture
the topical content of a phrase (Lau et al., 2013).
In (Wang et al., 2007), depending on the topic a
particular bigram can be either considered as a sin-
gle token or as two unigrams. Further, Wang et al.
(2009) merged topic models with a unigram model
over sentences that assigns topics to the sentences
instead of the words.

Our proposed approach also does not make use
of external statistical tools to find text segments.
The main difference with the previous knowledge-
free topic model approaches is that the proposed
approach assigns topics to words based on two,
segment-specific and document-specific distribu-
tions selected from a Bernoulli law. Topics within
segments are then constrained using copulas that
bind their distributions. In this way, segmentation
is embedded in the model and it naturally comes
along with the topic assignment.

1800

α

θd

z1 zn

w1 wn

φ βλ

|S|
D

K

. . .

. . .

(a) copLDA

α

θd

z1 zn

w1 wnS

|Sd|

φ βλ

|S|
D

K

. . .

. . .

(b) segLDAcopp=0

α

θd

fn

θd,s,n

p

θs

zn

wnS

|Sd|

φ β

|S|
D

K

(c) segLDAcopλ=0

α

θd

f1 fn

θd,s,1 θd,s,n

p

θs

z1 zn

w1 wnS

|Sd|

φ βλ

|S|
D

K

. . .

. . .

. . .

. . .

(d) segLDAcop

Figure 1: Graphical model for Copula LDA (copLDA), extension of Copula LDA with segmentation
(segLDAcopp=0), LDA with segmentation and topic shift (segLDAcopλ=0) and complete model
(segLDAcop).

3 Joint latent model for topics and
segments

We define here a segment as a topically coherent
sequence of contiguous words. By topically coher-
ent, we mean that, even though words in a segment
can be associated to different topics, these topics
are usually related. This view is in line with the
one expressed in (Balikas et al., 2016b), in which
a latent topic model, referred to as copLDA in the
remainder, includes a binding mechanism between
topics within coherent text spans, defined in their
study as noun phrases (NPs). The relation between
topics is captured through a copula that provides
a joint probability for all the topics used in a seg-
ment. That is, to generate words in a segment, one
first jointly generates all the word specific topics
z via a copula, and then generates each word in
the segment from its word specific topic and the
word-topic distribution φ. Figure 1(a) illustrates
this.

Copulas are particularly useful when mod-
eling dependencies between random variables,
as the joint cumulative distribution function
(CDF) FX1,··· ,Xn of any random vector X =
(X1, · · · , Xn) can be written as a function of its
marginals, according to Sklar’s Theorem (Nelsen,
2006):

FX1,··· ,Xn(x1, · · · , xp) = C(FX1(x1), · · · , FXn(xn))

where C is a copula. For latent topic models, as
discussed in (Amoualian et al., 2016), Frank’s cop-
ula is particularly interesting as (a) it is invariant by
permutations and associative, as are the words and
topics z in each segment due to the exchangeability
assumption, and (b) it relies on a single parameter
(denoted λ here) that controls the strength of de-
pendence between the variables and is thus easy to
implement. In Frank’s copula, when the parameter
λ approaches 0, the variables are independent of
each other, whereas when λ approaches +∞, the
variables take the same value. For further details
on copulas, we refer the reader to (Nelsen, 2006).

One important problem, however, with copLDA
is its reliance on a predefined segmentation. Al-
though the information brought by the segmenta-
tion based on NPs helps to improve topic assign-
ment, it may not be flexible enough to capture all
the possible segments of a text. It is easy to correct
this problem by considering all possible segmen-
tations of a document and by choosing the most
appropriate one at the same time that topics are
assigned to words. This is illustrated in Figure 1(b),
where a segmentation S is chosen from the set Sd
of possible segmentations for a document d, and
where each segment in S are generated in turn. We
refer to the associated model as segLDAcopp=0

for reasons that will become clear later.
Another point to be noted about copLDA (and

1801

segLDAcopp=0) is that the topics used in each
segment come from the same document specific
topic distribution θd. This entails that, in these
models, one cannot differentiate the main topics of
a document from potential segment specific topics
that can explain some parts of it. Indeed, some text
segments can refer to topics that are barely present
in other parts of the document; relying on a single
topic distribution may prevent one from capturing
those segment specific topics.

It is possible to overcome this difficulty by gen-
erating a segment specific topic distribution as il-
lustrated in Figure 1(c) (this model is referred to
as segLDAcopλ=0, again for reasons that will be-
come clear later). However, as some words in a
segment can be associated to the general topics of
a document, we introduce a mechanism to choose,
for each word in a segment, a topic either from
the segment specific topic distribution θs or from
the document specific topic distribution θd (this
mechanism is similar to the one used for routes
and levels in (Paul and Girju, 2010)). The choice
between them is based on the Bernoulli variable f ,
as explained in the generative story given below.

The above developments can be combined in a
single, complete model, illustrated in Figure 1(d)
and detailed below. We will simply refer to this
model as segLDAcop.

3.1 Complete generative model
As in standard LDA based models, with V de-
noting the size of the vocabulary of the collec-
tion and K the number of latent topics, β and
φk, 1 ≤ k ≤ K, are V dimensional vectors, α
and θ (i.e., θd, θs, θd,s,n) are K dimensional vec-
tors, whereas zn takes value in {1, · · · ,K}. Lower
indices are used to denote coordinates of the above
vectors. Lastly, Dir denotes the Dirichlet distri-
bution, Cat the categorical distribution (which is
a multinomial distribution with one draw) and we
omit, as is usual, the generation of the length of
the document. The complete model segLDAcop
is then based on the following generative process:

1. Generate, for each topic k, 1 ≤ k ≤ K, a
distribution over the words: φk ∼ Dir(β);

2. For each document d, 1 ≤ d ≤ D:

(a) Choose a document specific topic distribu-
tion: θd ∼ Dir(α);

(b) Choose a segmentation S of the document
uniformly from the set of all possible

segmentations Sd: P (S) = 1
|Sd| ;

(c) For each segment s in S:
(i) Choose a segment specific topic distri-

bution: θs ∼ Dir(α);
(ii) For each position n in s, choose fn ∼

Ber(p) and set:

θd,s,n =

{
θs if fn = 1
θd otherwise

(iii) Choose topics Zs = {z1, . . . , zn}
from Frank’s copula with parameter
λ and marginals Cat(θd,s,n);

(iv) For each position n in s, choose word
wn: wn ∼ Cat(φzn).

As on can note, the generative process relies on a
segmentation uniformly chosen from the set of pos-
sible segmentations (step 2.b) to generate related
topics within each segment (Frank’s copula in step
2.c.(iii)), the distribution underlying each word spe-
cific topic zn being either specific to the segment or
general to the document (steps 2.c.(i) and 2.c.(ii)).
The other steps are similar to the standard LDA
steps.

As in almost all previous studies on LDA, α and
β are considered fixed and symmetric, each coor-
dinate of the vector being equal: α1 = · · · = αK .
The hyperparameters p (∈ [0, 1]) of the Bernoulli
distribution and λ (∈ [0,+∞]) of Frank’s copula re-
spectively regulate the choice between the segment
specific and the document specific topic distribu-
tions and the strength of the dependence between
topics in a segment. As for the other hyperparame-
ters, we consider them fixed here (the values for all
hyperparameters are given in Section 4).

As mentioned before, all the models presented
in Figure 1 are special cases of the complete
model segLDAcop: hence segLDAcopλ=0 is
obtained by dropping the topic dependencies,
which amounts to setting λ to (a value close to)
0, segLDAcopp=0 is obtained by relying only on
the topic distribution obtained for the document,
which amounts to setting p to 0, and the previously
introduced copLDA model is obtained by setting
p to 0, and fixing the segmentation.

3.2 Inference with Gibbs sampling
The parameters of the complete model can be di-
rectly estimated through Gibbs sampling. The
Gibbs updates for the parameters φ and θ are the
same as the ones for standard LDA (Blei et al.,

1802

2003). The parameters fn are directly estimated
through: fn ∼ Ber(p). Lastly, for the variables z,
we follow the same strategy as the one described
in (Balikas et al., 2016b) and based on (Amoualian
et al., 2016), leading to:

P (Zs|Z−s,W,Θ,Φ, λ) = p(Zs|Θ, λ)
∏

n

φznwn

where W denotes the document collection, and
Θ and Φ the sets of all θ and φk, 1 ≤ k ≤ K,
vectors. p(Zs|Θ, λ) is obtained by Frank’s copula
with parameter λ and marginals Cat(θd,s,n). As is
standard in topic models, the notation −s means
excluding the information from s.

From the above equation, one can formulate an
acceptance/rejection algorithm based on the follow-
ing steps: (a) sample Zs from p(Zs|Θ, λ) using
Frank’s copula, and (b) accept the sample with
probability

∏
n φ

zn
wn , where n runs over all the po-

sitions in segment s.

3.3 Efficient segmentation

As topics may change from one sentence to another,
we assume here that segments cannot overlap sen-
tence boundaries. The different segmentations of
a document are thus based on its sentence segmen-
tations. In the remainder, we use L to denote the
maximum length of a segment and g(M ;L) to de-
note the number of segmentations in a sentence
of length M , each segment comprising at most L
words.

Generating all possible segmentations of a sen-
tence and then selecting one at random is not an
efficient process as the number of segments rapidly
grows with the length of the sentence. In practice,
however, one can define an efficient segmentation
on the basis of the following proposition, the proof
of which is given in Appendix A:

Proposition 3.1. Let lsi be the random variable
associated to the length of the segment starting
at position i in a sentence of length M (positions
go from 1 to M and lsi takes value in {1, · · · , L}).
Then P (lsi = l) := g(M+1−i−l);L)

g(M+1−i;L) defines a proba-
bility distribution over lsi .

Furthermore, the following process is equivalent
to choosing sentence segmentations uniformly from
the set of possible segmentations.

From pos. 1, repeat till end of sentence:
(a) Generate segment length acc. to P;
(b) Add segment to current segmentation;
(c) Move to position after the segment.

In practice, we thus replace steps 2.b and 2.c
of the generative story by a loop over all sen-
tences, and in each sentence use the process de-
scribed in Prop, 3.1. Furthermore, as described in
Appendix A, the values of g needed to compute
P (lsi = l) can be efficiently computed by recur-
rence.

4 Experiments

We conducted a number of experiments aimed at
studying the impact of simultaneously segment-
ing and assigning topics to words within segments
using the proposed segLDAcop model.

Datasets: We considered six publicly available
datasets derived from Pubmed2 (Tsatsaronis et al.,
2015), Wikipedia (Partalas et al., 2015), Reuters3

and New York Times (NYT)4 (Yao et al., 2016).
The first two collections were considered in (Ba-
likas et al., 2016a), we followed their setup by con-
sidering 3 subsets of Wikipedia with different num-
ber of classes (namely, Wiki0, Wiki1 and Wiki2).
The Reuters dataset comes from Reuters-21578,
Distribution 1.0 as investigated in (Bird et al., 2009)
and the NYT dataset is collected from full text of
New York Times global news, from January 1st to
December 31st, 2011.

These collections were processed following
(Blei et al., 2003) by removing a standard list of 50
stop words, lemmatizing, lowercasing and keeping
only words made of letters. To deal with relatively
homogeneous collections, we also removed doc-
uments that are too long. The statistics of these
datasets, as well as the admissible maximal length
for documents, in terms of the number of words
they contain, can be found in Table 1.

Settings: We compared our mod-
els (segLDAcopp=0, segLDAcopλ=0,
segLDAcop) with three models, namely
the standard LDA model, and two previously
introduced models aiming at binding topics within
segments:

1. LDA: Standard Latent Dirichlet Allocation im-
plemented using collapsed Gibbs sampling in-
ference (Griffiths and Steyvers, 2004)5. Note

2https://github.com/balikasg/
topicModelling/tree/master/data

3https://archive.ics.uci.edu/
ml/datasets/Reuters-21578+Text+
Categorization+Collection

4https://github.com/yao8839836/COT/
tree/master/data

5http://gibbslda.sourceforge.net

1803

Wiki0 Wiki1 Wiki2
words 32,354 70,954 103,308
– vocabulary size 7,853 12,689 14,715

docs 1,014 2,138 3,152
– maximal length 100 100 100

labels 17 42 53
Pubmed Reuters NYT

words 104,683 192,562 237,046
– vocabulary size 12,779 10,479 17,773

docs 2,059 6,708 2,564
– maximal length 75 50 200

labels 50 83 -

Table 1: Dataset statistics.

that there are neither segmentation nor topic
binding mechanisms in this model;

2. senLDA: Sentence LDA, introduced in (Ba-
likas et al., 2016a), which forces all words
within a sentence to be assigned to the same
topic. The segments considered thus corre-
spond to sentences, and the binding between
topics within segments is maximal as all word
specific topics are equal;

3. copLDA: Copula LDA, introduced in (Ba-
likas et al., 2016b) already discussed before,
which relies on two types of segments, namely
NPs (extracted with the nltk.chunk pack-
age (Bird et al., 2009)) and single words. In
addition, a copula is also used to bind topics
within NPs, from the document specific topic
distribution.

Both senLDA and copLDA implementations,
can be found in https://github.com/
balikasg/topicModelling.

In all models α and β play a symmetric role and
are respectively fixed to 1/K, following (Asuncion
et al., 2009). For copula based models, λ is set
to 5, following (Balikas et al., 2016b). As already
discussed, p is set to 0 for segLDAcopp=0; it is
set to 0.5 for segLDAcop so as not to privilege a
priori one topic distribution (document or segment
specific) over the other. For sampling from Frank’s
copula, we relied on the R copula package (Hofert
and Maechler, 2011) 6. We chose L (the maximum
length of a segment) using line search forL ∈ [2, 5]
and used L = 3 in all our experiments. Finally, to
illustrate the behaviors of the different models with
different number of topics, we present here the
results obtained with K = 20 and K = 100.

We now compare the different models along
three main dimensions: perplexity, use of topic

6Our complete code will be available for research pur-
poses.

representations for classification and topic coher-
ence.

4.1 Perplexity

We first randomly split here all the collections, us-
ing 75% of them for training, and 25% for testing.

In order to see how well the models fit the data
and following (Blei et al., 2003), we first evaluated
the methods in terms of perplexity defined as:

Perplexity = exp

(
−∑d∈D

∑
w∈d log

∑K
k=1 θ

d
kφ

k
w∑

d∈D |d|

)
,

where d is a test document from the test set D, and
|d| is the total number of words in d, and K is the
total number of topics. The lower the perplexity is,
the better the model fits the test data. Table 2 shows
perplexities of different methods for K = 20 and
K = 100 topics.

50 100 150 200 250 300 350

1,400

1,600

1,800

2,000

2,200

Iterations

Pe
rp

le
xi

ty

NYT

LDA

senLDA

copLDA

segLDAcopp=0

segLDAcopλ=0

segLDAcop

Figure 2: Perplexity with respect to training itera-
tion on NYT collection (20 topics).

From Table 2, it comes out that the best perform-
ing model in terms of perplexity over all datasets
and for different number of topics is segLDAcop.
Further, segLDAcopλ=0, that uses both document
and segment specific topic distributions, performs
better than segLDAcopp=0, which in turn outper-
forms copLDA, bringing evidence that using all
possible segmentations rather than only NPs unit
extracted using a chunker yields a more flexible
and natural topic assignment.
segLDAcop also converges faster than the

other methods to its minimum as it is shown in
Figure 2, depicting the evolution of perplexity of
different models over the number of iterations on
the NYT collection (a similar behavior is observed
on the other collections).

1804

Models
Wiki0 Wiki1 Wiki2 Pubmed Reuters NYT

20 100 20 100 20 100 20 100 20 100 20 100
LDA 853.7 370.9 1144.6 541.1 1225.2 570.6 1267.8 628.7 210.6 118.8 1600.1 1172.1
senLDA 958.4 420.5 1236.7 675.3 1253.1 625.2 1346.3 674.3 254.3 173.6 1735.9 1215.3
copLDA 753.1 264.3 954.1 411.5 1028.6 420.6 1031.5 483.2 206.3 101.3 1551.5 1063.2
segLDAcopp=0 670.2 235.4 904.2 382.4 975.7 409.2 985.5 459.3 194.2 96.7 1504.2 1033.2
segLDAcopλ=0 655.1 222.1 890.3 370.2 949.2 404.3 971.3 451.2 190.1 91.3 1474.6 1014.3
segLDAcop 621.2 213.5 861.2 358.6 934.7 394.4 960.4 442.1 182.1 87.5 1424.2 992.3

Table 2: Perplexity with respect to different number of topics (20 and 100).

Models
Wiki0 Wiki1 Wiki2 Pubmed Reuters

20 100 20 100 20 100 20 100 20 100
LDA 55.3 63.5 42.4 51.4 41.2 48.7 54.1 63.5 75.5 82.7
senLDA 41.4 53.2 33.5 44.5 36.4 40.9 50.2 62.5 69.4 74.2
copLDA 51.2 62.7 43.4 52.1 40.8 46.5 53.5 63.1 75.2 81.5
segLDAcopp=0 59.1 64.2 44.8 51.2 42.3 50.1 55.4 63.1 76.8 82.5
segLDAcopλ=0 61.1 67.4 46.5 53.8 44.1 52.2 57.1 65.2 79.6 84.4
segLDAcop 62.3 68.4 48.4 55.2 44.8 53.5 59.3 66.5 80.2 85.1

Table 3: MiF score (percent) with respect to different number of topics (20 and 100).

4.2 Topical induced representation for
classification

Some studies compare topic models using extrin-
sic tasks such as document classification. In this
case, it is possible to reduce the dimensionality
of the representation space by using the induced
topics (Blei et al., 2003). In this study, we first ran-
domly splitted the datasets, except NYT that does
not contain class information, into training (75%)
and test (25%) sets. We then applied SVMs with
a linear kernel; the value of the hyperparameter
C was found by cross-validation over the training
set {0.01, 0.1, 1, 10, 100}. For datasets where cer-
tain documents have more than one label (Pubmed,
Reuters), we used the one-versus-all approach for
performing multi-label classification.

In Table 3, we report the Micro F1 (MiF) score of
different models on the test sets. Again, the best re-
sults are obtained with segLDAcop, followed by
segLDAcopλ=0. This shows the importance of re-
lying on both document and segment specific topic
distributions. As conjectured before, our model
is able to captures fine grained topic assignments
within documents. In addition, all models rely-
ing on an inferred segmentation (segLDAcopp=0,
segLDAcopλ=0, segLDAcop) outperform the
models relying on fixed segmentations (sentences
or NPs). This shows the importance of being able
to discover flexible segmentations for assigning
topics within documents.

4.3 Topic coherence
Another common way to evaluate topic models is
by examining how coherent the produced topics

are. Doing this manually is a time consuming pro-
cess and cannot scale. To overcome this limitation
the task of automatically evaluating the coherence
of topics produced by topic models received a lot
of attention (Mimno et al., 2011). It has been found
that scoring the topics using co-occurrence mea-
sures, such as the pointwise mutual information
(PMI) between the top-words of a topic, correlates
well with human judgments (Newman et al., 2010).
For this purpose an external, large corpus is used as
a meta-document where the PMI scores of pairs of
words are estimated using a sliding window. As dis-
cussed above, calculating the co-occurrence mea-
sures requires selecting the top-N words of a topic
and performing the manual or automatic evaluation.
Hence, N is a hyper-parameter to be chosen and its
value can impact the results. Very recently, Lau and
Baldwin (2016) showed that N actually impacts
the quality of the obtained results and, in particu-
lar, the correlation with human judgments. In their
work, they found that aggregating the topic coher-
ence scores over several topic cardinalities leads to
a substantially more stable and robust evaluation.

Following the findings of Lau and Baldwin
(2016) and using (Newman et al., 2010)’s equa-
tion, we present in Figure 3 the topic coherence
scores as measured by the Normalized Pointwise
Mutual Information (NPMI) . Their values are in [-
1,1], where in the limit of -1 two words w1 and w2

never occur together, while in the limit of +1 they
always occur together (complete co-occurrence).
For the reported scores, we aggregate the topic co-
herence scores over three different topic cardinali-
ties: N ∈ {5, 10, 15}. segLDAcop model which

1805

Wiki0 Wiki1 Wiki2 PubmedReuters NYT

4

6

8

10

12

5.1

6

8

9

4.4

7.1

6.5
6.7

9.2

10.4

6.1

8.2

6.2 6.3

9.4

10.1

5.8

8.5

6.3

7.2

10.1

10.9

6.4

8.9

6

6.9

9.9
10.3

6

8.6

6.9

7.6

10.5

11.5

6.8

9.2

N
PM

I(
%

)
LDA senLDA copLDA segLDAcopp=0 segLDAcopλ=0 segLDAcop

Figure 3: Topic coherence (NPMI) score with respect to 100 of topics.

uses copulas and segmentation together, shows
the best score for the given reference meta-data
(Wikipedia) in all of the datasets. It should be
noted that segLDAcopλ=0 which has not cop-
ula binder inside the model has less improvement
against the segLDAcopp=0 which has the cop-
ula. This means using copula has more effect on
the topic coherence than only the segment-specific
topic distribution.

4.4 Visualization

In order to illustrate the results obtained by
segLDAcop, we display in Figure 4 the top 10
most probable words over 5 topics (K = 20) for
the Reuters dataset, for both segLDAcop and
LDA. In segLDAcop, topic 1, the top-ranked
words are mostly relevant to the topic “date” (e.g.,

Topic1
march, fell, rose, january, rise,
year, fall, february, pct, week

fell, mln, year, january, dlrs,
rise, rose, pct, billion, february

Topic2
currency, bank, pct, cut, rate,
day, prime, exchange, interest,
national

billion, prime, day, rate, dlrs,
pct, reserve, federal, fed, bank

Topic3
term, agreement, acquire, buy,
sell, unit, acquisition, corp,
company, sale

term, dlrs, buy, company, sell,
unit, corp, acquisition, sale,
mln

Topic4
approved, american, common,
split, merger, company, board,
stock, share, shareholder

acquire, mln, company, com-
mon, stock, shareholder, share,
corp, merger, dlrs

Topic5
tokyo, life, intent, letter, buy,
insurance, yen, japan, dealer,
dollar

central, european, japan, yen,
ec, dollar, bank, rate, dealer,
market

Figure 4: Top-10 words of segLDAcop (left) vs
LDA (right) for the Reuters (5 out of 20 topics).

Ralph Borsodi was an economics theorist and practical experimenter

interested in ways of living

Figure 5: Topic assignments with segmentation
boundaries using segLDAcop. Colors are topics
(examples from Wiki0 including stopwords with
20 topics).

march, january, year, fall, february, week). How-
ever, a similar topic learned by LDA appears to
involve less such words (year, january, february),
indicating a less coherent topic.

Figure 5 illustrates another aspect of our model,
namely the possibility to detect topically coherent
segments. In particular, as one can note, the sen-
tence is segmented in six parts by our model, the
first one is a NP, Ralph Borsodi where one single
topic is assigned to both words. We observe a sim-
ilar coherence in topic assignments on other NPs
and segments, in which a single topic is used for
the words involved. The data-driven approach we
have adopted here can discover such fine grained
differences, something the approaches based on
fixed segmentations (either based on sentences or
NPs), are less likely to achieve.

5 Discussion

In this paper, we have introduced an LDA-based
model that generates topically coherent segments
within documents by jointly segmenting documents
and assigning topics to their words. The coherence
between topics is ensured through Frank’s copula,
that binds the topics associated to the words of a
segment. In addition, this model relies on both
document and segment specific topic distributions
so as to capture fine grained differences in topic
assignments. We have shown that this model natu-
rally encompasses other state-of-the-art LDA-based
models proposed to accomplish the same task, and
that it outperforms these models over six publicly
available collections in terms of perplexity, Nor-
malized Pointwise Mutual Information (NPMI),
a measure used to assess the coherence of topics
with documents, and the Micro F1-measure in a
text classification context. Our results confirm the
importance of a flexible segmentation as well as a

1806

binding mechanism to produce topically coherent
segments.

As regards complexity, it is true that more com-
plex models, as the one we are considering, are
more prone to underfitting (when data is scarce)
and overfitting than simpler models. This said, the
experimental results on perplexity (in which the
word-topic distributions are fixed) and on classi-
fication (based on the topical induced representa-
tions) suggest that our model neither underfits nor
overfits compared to simpler models. We believe
that this is due to the fact that the main additional
parameters in our model (the segment specific topic
distribution) do not really add complexity as they
are drawn from the same distribution as the stan-
dard document specific topics. Furthermore, the
parameters p and f are simple parameters to choose
between these two distributions.

The comparison with other segmentation meth-
ods is also an important point. While state-of-the-
art supervised segmentation models can be used
before applying the LDA model, we note such a
pipeline approach comes with several limitations.
The approach requires external annotated data to
train the segmentation models, where certain do-
main and language specific information need to be
captured. By contrast, our unsupervised approach
learns both segmentations and topics jointly in a
domain and language independent manner. Fur-
thermore, existing supervised segmentation models
are largely designed for a very different purpose
with strong linguistic motivations, which may not
align well with our main goal in this paper which is
improving topic coherence in topic modeling. Sim-
ilarly, unsupervised approaches, used for example
in the TDT (Topic Detection and Tracking) cam-
paigns or more recently in Du et al. (2013), usually
consider coarse-grained topics, that can encom-
pass several sentences. In contrast, our approach
aims at identifying fine-grained topics associated
with coherent segments that do not overlap sen-
tence boundaries. These considerations, explain
the choice of the baselines retained: they are based
on segments of different granularities (words, NPs,
sentences) that do not overlap sentence boundaries.

In the future, we plan on relying on other infer-
ence approaches, based for example on variational
Bayes known to yield better estimates for perplex-
ity (Asuncion et al., 2009); it is however not certain
that the gain in perplexity one can expect from
the use of variational Bayes approaches will nec-

essarily result in a gain in, say, topic coherence.
Indeed, the impact of the inference approach on
the different usages of latent topic models for text
collections remains to be better understood.

Acknowledgments

We would like to thank the reviewers for their help-
ful comments. Most of this work was done when
Hesam Amoualian was visiting Singapore Univer-
sity of Technology and Design. This work is sup-
ported by MOE Tier 1 grant SUTDT12015008, also
partly supported by the LabEx PERSYVAL-Lab
ANR-11-LABX-0025.

References
Hesam Amoualian, Marianne Clausel, Eric Gaussier,

and Massih-Reza Amini. 2016. Streaming-lda:
A copula-based approach to modeling topic de-
pendencies in document streams. In Proceed-
ings of the 22nd International Conference on
Knowledge Discovery and Data Mining. ACM,
New York, NY, USA, SIGKDD, pages 695–704.
https://doi.org/10.1145/2939672.2939781.

Arthur Asuncion, Max Welling, Padhraic Smyth,
and Yee Whye Teh. 2009. On smoothing
and inference for topic models. In Proceed-
ings of the 25th Conference on Uncertainty
in Artificial Intelligence. AUAI Press, Arling-
ton, Virginia, United States, UAI, pages 27–34.
http://dl.acm.org/citation.cfm?id=1795114.1795118.

Georgios Balikas, Massih-Reza Amini, and Marianne
Clausel. 2016a. On a topic model for sentences. In
Proceedings of the 39th International Conference on
Research and Development in Information Retrieval.
ACM, New York, NY, USA, SIGIR, pages 921–924.
https://doi.org/10.1145/2911451.2914714.

Georgios Balikas, Hesam Amoualian, Marianne
Clausel, Eric Gaussier, and Massih R Amini. 2016b.
Modeling topic dependencies in semantically coher-
ent text spans with copulas. In Proceedings of
the 26th International Conference on Computational
Linguistics: Technical Papers. The COLING 2016
Organizing Committee, Osaka, Japan, COLING,
pages 1767–1776. http://aclweb.org/anthology/C16-
1166.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly, Beijing. http://www.nltk.org/book/.

David M. Blei, Andrew Y. Ng, and Michael I.
Jordan. 2003. Latent dirichlet allocation.
Journal of Machine Learning 3:993–1022.
http://dl.acm.org/citation.cfm?id=944919.944937.

Jordan Boyd-Graber and David Blei. 2008. Syn-
tactic topic models. In Proceedings of the

1807

21st International Conference on Neural In-
formation Processing Systems. Curran As-
sociates Inc., USA, NIPS, pages 185–192.
http://dl.acm.org/citation.cfm?id=2981780.2981804.

Scott Deerwester, Susan T. Dumais, George W.
Furnas, Thomas K. Landauer, and Richard
Harshman. 1990. Indexing by latent se-
mantic analysis. Journal of the American
Society for Information Science 41(6):391–
407. http://dx.doi.org/10.1002/(SICI)1097-
4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9.

Lan Du, Wray Buntine, and Huidong Jin.
2010. A Segmented Topic Model Based
on the Two-parameter Poisson-Dirichlet Pro-
cess. Journal of Machine learning 81(1):5–19.
https://doi.org/10.1007/s10994-010-5197-4.

Lan Du, Wray Buntine, and Mark Johnson. 2013.
Topic Segmentation with a Structured Topic Model.
In Proceedings of The Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, Human Language Technolo-
gies. HLT-NAACL, pages 190–200. http://dblp.uni-
trier.de/db/conf/naacl/naacl2013.html/DuBJ13.

Gal Elidan. 2013. Copulas in Machine Learning,
Springer Berlin Heidelberg, Berlin, Heidelberg,
pages 39–60. https://doi.org/10.1007/978-3-642-
35407-6_3.

Thomas L. Griffiths and Mark Steyvers. 2004. Find-
ing scientific topics. Journal of the National
Academy of Sciences 101(suppl 1):5228–5235.
https://doi.org/10.1073/pnas.0307752101.

Thomas L Griffiths, Mark Steyvers, David M Blei,
and Joshua B Tenenbaum. 2005. Integrating
topics and syntax. In L. K. Saul, Y. Weiss,
and L. Bottou, editors, Advances in the Inter-
national Conference on Neural Information Pro-
cessing Systems. MIT Press, NIPS, pages 537–
544. http://papers.nips.cc/paper/2587-integrating-
topics-and-syntax.pdf.

Marius Hofert and Martin Maechler. 2011. Nested
Archimedean Copulas Meet R: The nacopula Pack-
age. Journal of Statistical Software 39(i09):–.
https://doi.org/http://hdl.handle.net/10.

Thomas Hofmann. 1999. Probabilistic latent se-
mantic indexing. In Proceedings of the 22Nd
Annual International Conference on Research
and Development in Information Retrieval. ACM,
New York, NY, USA, SIGIR, pages 50–57.
https://doi.org/10.1145/312624.312649.

Jey Han Lau and Timothy Baldwin. 2016. The
sensitivity of topic coherence evaluation to topic
cardinality. In Proceedings of The Annual Con-
ference of the North American Chapter of the
Association for Computational Linguistics, Hu-
man Language Technologies, San Diego California,
USA, June 12-17, 2016. NAACL, pages 483–487.
http://aclweb.org/anthology/N/N16/N16-1057.pdf.

Jey Han Lau, Timothy Baldwin, and David Newman.
2013. On collocations and topic models. Journal
of ACM Trans. Speech Lang. Process. 10(3):10:1–
10:14. https://doi.org/10.1145/2483969.2483972.

David Mimno and Andrew McCallum. 2007. Orga-
nizing the oca: Learning faceted subjects from a
library of digital books. In Proceedings of the
7th Joint Conference on Digital Libraries. ACM,
New York, NY, USA, JCDL ’07, pages 376–385.
https://doi.org/10.1145/1255175.1255249.

David Mimno, Hanna M. Wallach, Edmund Tal-
ley, Miriam Leenders, and Andrew McCallum.
2011. Optimizing semantic coherence in topic
models. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing. Association for Computational Linguistics,
Stroudsburg, PA, USA, EMNLP, pages 262–272.
http://dl.acm.org/citation.cfm?id=2145432.2145462.

Roger B. Nelsen. 2006. An Introduction to Cop-
ulas (Springer Series in Statistics). Springer-
Verlag New York, Inc., Secaucus, NJ, USA.
http://www.springer.com/gp/book/9780387286594.

David Newman, Jey Han Lau, Karl Grieser, and
Timothy Baldwin. 2010. Automatic evalua-
tion of topic coherence. In Proceedings of
The Annual Conference of the North Ameri-
can Chapter of the Association for Computa-
tional Linguistics, Human Language Technolo-
gies. Association for Computational Linguistics,
Stroudsburg, PA, USA, NAACL, pages 100–108.
http://dl.acm.org/citation.cfm?id=1857999.1858011.

Ioannis Partalas, Aris Kosmopoulos, Nicolas Bask-
iotis, et al. 2015. LSHTC: A Benchmark for
Large-Scale Text Classification. Journal of CoRR
abs/1503.08581. http://arxiv.org/abs/1503.08581.

Michael Paul and Roxana Girju. 2010. A two-
dimensional topic-aspect model for discov-
ering multi-faceted topics. In Proceedings
of the 24th Conference on Artificial Intelli-
gence. AAAI Press, AAAI, pages 545–550.
http://dl.acm.org/citation.cfm?id=2898607.2898695.

Matthew Purver, Thomas L Griffiths, Konrad P. Körd-
ing, and Joshua B. Tenenbaum. 2006. Unsuper-
vised topic modelling for multi-party spoken dis-
course. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th Annual Meeting of the Association for Compu-
tational Linguistics. Association for Computational
Linguistics, Stroudsburg, PA, USA, ACL, pages 17–
24. https://doi.org/10.3115/1220175.1220178.

Akihiro Tamura and Eiichiro Sumita. 2016. Bilin-
gual segmented topic model. In Proceed-
ings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics. ACL.
http://aclweb.org/anthology/P/P16/P16-1120.pdf.

1808

Yee Whye Teh. 2006. A hierarchical bayesian lan-
guage model based on pitman-yor processes. In
Proceedings of the 21st International Conference
on Computational Linguistics and the 44th An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, ACL, pages 985–992.
https://doi.org/10.3115/1220175.1220299.

George Tsatsaronis, Georgios Balikas, Prodro-
mos Malakasiotis, et al. 2015. An overview
of the BIOASQ large-scale biomedical seman-
tic indexing and question answering competi-
tion. Journal of BMC Bioinformatics 16(1):138.
https://doi.org/10.1186/s12859-015-0564-6.

Dingding Wang, Shenghuo Zhu, Tao Li, and Yi-
hong Gong. 2009. Multi-document summa-
rization using sentence-based topic models.
In Proceedings of the Conference on Associ-
ation for Computational Linguistics. Associ-
ation for Computational Linguistics, Strouds-
burg, PA, USA, ACL-IJCNLP, pages 297–300.
http://dl.acm.org/citation.cfm?id=1667583.1667675.

Xuerui Wang, Andrew McCallum, and Xing Wei.
2007. Topical n-grams: Phrase and topic discov-
ery, with an application to information retrieval.
In Proceedings of the 7th International Confer-
ence on Data Mining. IEEE Computer Society,
Washington, DC, USA, ICDM, pages 697–702.
https://doi.org/10.1109/ICDM.2007.86.

Xing Wei and W. Bruce Croft. 2006. Lda-based doc-
ument models for ad-hoc retrieval. In Proceedings
of the 29th Annual International Conference on Re-
search and Development in Information Retrieval.
ACM, New York, NY, USA, SIGIR, pages 178–185.
https://doi.org/10.1145/1148170.1148204.

Liang Yao, Yin Zhang, Baogang Wei, Lei Li, Fei
Wu, Peng Zhang, and Yali Bian. 2016. Con-
cept over time: the combination of probabilistic
topic model with wikipedia knowledge. Journal
of Expert Systems with Applications 60:27 – 38.
https://doi.org/10.1016/j.eswa.2016.04.014.

Hua-Jun Zeng, Qi-Cai He, Zheng Chen, Wei-Ying
Ma, and Jinwen Ma. 2004. Learning to clus-
ter web search results. In Proceedings of the
27th Annual International Conference on Research
and Development in Information Retrieval. ACM,
New York, NY, USA, SIGIR, pages 210–217.
https://doi.org/10.1145/1008992.1009030.

A Efficient segmentation

Let us recall the property presented before:

Proposition A.1. Let lsi be the random variable
associated to the length of the segment starting
at position i in a sentence of length M (positions
go from 1 to M and lsi takes value in {1, · · · , L}).

Then P (lsi = l) := g(M+1−i−l);L)
g(M+1−i;L) defines a proba-

bility distribution over lsi .

Furthermore, the following process is equivalent
to choosing sentence segmentations uniformly from
the set of possible segmentations.
From pos. 1, repeat till end of sentence:
(a) Generate segment length acc. to P;
(b) Add segment to current segmentation;
(c) Move to position after the segment.

Proof Any segmentation of the sentence of length
M starts with either a segment of length 1, a seg-
ment of length 2, · · · , or a segment of length L.
Thus, g(M ;L) can be defined through the follow-
ing recurrence relation:

g(M ;L) =
L∑

l=1

g(M − l;L) (1)

together with the initial values
g(1;L), g(2;L), · · · , g(L;L), which can be
computed offline (for example, for L = 3, one has:
g(1; 3) = 1, g(2; 3) = 2, g(3; 3) = 4). Note that
g(1;L) = 1 for all L.

Thus:

L∑

l=1

P (lsi = l) =
L∑

l=1

g(M + 1− i− l);L)

g(M + 1− i;L)
= 1

due to the recurrence relation on g. This proves the
first part of the proposition.

Using the process described above where seg-
ments are generated one after another according
to P , for a segmentation S, comprising |S| seg-
ments, let us denote by l1, l2, · · · , l|S| the lengths
of each segment and by i1, i2, · · · , i|S| the starting
positions of each segment (with i1 = 1). One has,
as segments are independent of each other:

P (S) =

|S|∏

j=1

P (lsij = lj) =

|S|∏

j=1

g(M + 1− (ij + lj);L)

g(M + 1− ij ;L)

=
g(M − l1;L)

g(M ;L)

g(M − l1 − l2;L)

g(M − l1;L)
· · · = 1

g(M ;L)

as g(1;L) = 1. This concludes the proof of the
proposition. 2

Furthermore, as one can note from Eq. 1, the
various elements needed to compute P (lsi = l) can
be efficiently computed, the time complexity being
equal to O(M). In addition, as the number of dif-
ferent sentence lengths is limited, one can store the
values of g to reuse them during the segmentation
phase.

1809

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1810–1820
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1166

Jointly Extracting Relations with Class Ties
via Effective Deep Ranking

Hai Ye1, Wenhan Chao1, Zhunchen Luo2∗, Zhoujun Li1
1School of Computer Science and Engineering, Beihang University, Beijing 100191, China

{yehai, chaowenhan, lizj}@buaa.edu.cn
2China Defense Science and Technology Information Center, Beijing 100142, China

zhunchenluo@gmail.com

Abstract

Connections between relations in relation
extraction, which we call class ties, are
common. In distantly supervised scenario,
one entity tuple may have multiple relation
facts. Exploiting class ties between rela-
tions of one entity tuple will be promising
for distantly supervised relation extrac-
tion. However, previous models are not ef-
fective or ignore to model this property. In
this work, to effectively leverage class ties,
we propose to make joint relation extrac-
tion with a unified model that integrates
convolutional neural network (CNN) with
a general pairwise ranking framework, in
which three novel ranking loss functions
are introduced. Additionally, an effective
method is presented to relieve the severe
class imbalance problem from NR (not re-
lation) for model training. Experiments on
a widely used dataset show that leverag-
ing class ties will enhance extraction and
demonstrate the effectiveness of our model
to learn class ties. Our model outperforms
the baselines significantly, achieving state-
of-the-art performance.

1 Introduction

Relation extraction (RE) aims to classify the
relations between two given named entities from
natural-language text. Supervised machine learn-
ing methods require numerous labeled data to
work well. With the rapid growth of volume of
relation types, traditional methods can not keep
up with the step for the limitation of labeled data.
In order to narrow down the gap of data spar-
sity, Mintz et al. (2009) propose distant supervi-
sion (DS) for relation extraction, which automati-

∗ Corresponding author.

place lived (Patsy Ramsey, Atlanta)
place of birth (Patsy Ramsey, Atlanta)

Sentence Latent Label
#1 Patsy Ramsey has been living in

Atlanta since she was born.
place of birth

#2 Patsy Ramsy always loves At-
lanta since it is her hometown.

place lived

Table 1: Training instances generated by freebase.

cally generates training data by aligning a knowl-
edge facts database (ie. Freebase (Bollacker et al.,
2008)) with texts.

Class ties mean the connections between rela-
tions in relation extraction. In general, we con-
clude that class ties can have two types: weak
class ties and strong class ties. Weak class ties
mainly involve the co-occurrence of relations such
as place of birth and place lived, CEO of and
founder of. On the contrary, strong class ties
mean that relations have latent logical entailments.
Take the two relations of capital of and city of
for example, if one entity tuple has the rela-
tion of capital of, it must express the relation
fact of city of, because the two relations have the
entailment of capital of ⇒ city of. Obviously
the opposite induction is not correct. Further
take the sentence of “Jonbenet told me that her
mother [Patsy Ramsey]e1 never left [Atlanta]e2
since she was born.” in DS scenario for exam-
ple. This sentence expresses two relation facts
which are place of birth and place lived. How-
ever, the word “born” is a strong bios to extract
place of birth, so it may not be easy to predict the
relation of place lived, but if we can incorporate
the weak ties between the two relations, extracting
place of birth will provide evidence for prediction
of place lived.

Exploiting class ties is necessary for DS based
relation extraction. In DS scenario, there is a chal-
lenge that one entity tuple can have multiple rela-

1810

https://doi.org/10.18653/v1/P17-1166

tion facts as shown in Table 1, which is called rela-
tion overlapping (Hoffmann et al., 2011; Surdeanu
et al., 2012). However, the relations of one entity
tuple can have class ties mentioned above which
can be leveraged to enhance relation extraction
for it narrowing down potential searching spaces
and reducing uncertainties between relations when
predicting unknown relations. If one pair entities
has CEO of, it will contain founder of with high
possibility.

To exploit class ties between relations, we pro-
pose to make joint extraction for all positive labels
of one entity tuple with considering pairwise con-
nections between positive and negative labels in-
spired by (Fürnkranz et al., 2008; Zhang and Zhou,
2006). As the two relations with class ties shown
in Table 1, by joint extraction of two relations, we
can maintain the class ties (co-occurrence) of them
from training samples to be learned by potential
model, and then leverage this learned information
to extract instances with unknown relations, which
can not be achieved by separated extraction for
it dividing labels apart losing information of co-
occurrence. To classify positive labels from nega-
tive ones, we adopt pairwise ranking to rank pos-
itive ones higher than negative ones, exploiting
pairwise connections between them. In a word,
joint extraction exploits class ties between rela-
tions and pairwise ranking classify positive labels
from negative ones. Furthermore, combining in-
formation across sentences will be more appropri-
ate for joint extraction which provides more infor-
mation from other sentences to extract each rela-
tion (Zheng et al., 2016; Lin et al., 2016). In Table
1, sentence #1 is the evidence for place of birth,
but it also expresses the meaning of “living in
someplace”, so it can be aggregated with sentence
#2 to extract place lived. Meanwhile, the word of
“hometown” in sentence #2 can provide evidence
for place of birth which should be combined with
sentence #1 to extract place of birth.

In this work, we propose a unified model that
integrates pairwise ranking with CNN to exploit
class ties. Inspired by the effectiveness of deep
learning for modeling sentences (LeCun et al.,
2015), we use CNN to encode sentences. Simi-
lar to (Santos et al., 2015; Lin et al., 2016), we
use class embeddings to represent relation classes.
The whole model architecture is presented in Fig-
ure 1. We first use CNN to embed sentences, then
we introduce two variant methods to combine the

x2x1 xn

s1 s2 sn

s

c1 c2 cm

𝑊[#$] & 𝑠
class	

embedding

encoded	by	CNN

sentence	
embedding

bag	representation	
vector combine	

sentences

Figure 1: The main architecture of our model.

embedded sentences into one bag representation
vector aiming to aggregate information across sen-
tences, after that we measure the similarity be-
tween bag representation and relation class in real-
valued space. With two variants for combining
sentences, three novel pairwise ranking loss func-
tions are proposed to make joint extraction. Be-
sides, to relieve the bad impact of class imbalance
from NR (not relation) (Japkowicz and Stephen,
2002) for training our model, we cut down loss
propagation from NR class during training.

Our experimental results on dataset of Riedel
et al. (2010) are evident that: (1) Our model is
much more effective than the baselines; (2) Lever-
aging class ties will enhance relation extraction
and our model is efficient to learn class ties by
joint extraction; (3) A much better model can be
trained after relieving class imbalance from NR.

Our contributions in this paper can be encapsu-
lated as follows:
• We propose to leverage class ties to enhance

relation extraction. An effective deep ranking
model which integrates CNN and pairwise rank-
ing framework is introduced to exploit class ties.
• We propose an effective method to relieve

the impact of data imbalance from NR for model
training.
• Our method achieves state-of-the-art perfor-

mance.

2 Related Work

We summarize related works on two main as-
pects:

2.1 Distant Supervision Relation Extraction
Previous works on DS based RE ignore or are

not effective to leverage class ties between rela-

1811

tions.
Riedel et al. (2010) introduce multi-instance

learning to relieve the wrong labelling problem,
ignoring class ties. Afterwards, Hoffmann et al.
(2011) and Surdeanu et al. (2012) model this prob-
lem by multi-instance multi-label learning to ex-
tract overlapping relations. Though they also pro-
pose to make joint extraction of relations, they
only use information from single sentence losing
information from other sentences. Han and Sun
(2016) try to use Markov logic model to capture
consistency between relation labels, on the con-
trary, our model leverages deep ranking to learn
class ties automatically.

With the remarkable success of deep learning in
CV and NLP (LeCun et al., 2015), deep learning
has been applied to relation extraction (Zeng et al.,
2014, 2015; Santos et al., 2015; Lin et al., 2016),
the specific deep learning architecture can be CNN
(Zeng et al., 2014), RNN (Zhou et al., 2016), etc.
Zeng et al. (2015) propose a piecewise convolu-
tional neural network with multi-instance learning
for DS based relation extraction, which improves
the precision and recall significantly. Afterwards,
Lin et al. (2016) introduce the mechanism of at-
tention (Luong et al., 2015; Bahdanau et al., 2014)
to select the sentences to relieve the wrong la-
belling problem and use all the information across
sentences. However, the two deep learning based
models only make separated extraction thus can
not model class ties between relations.

2.2 Deep Learning to Rank

Deep learning to rank has been widely used in
many problems to serve as a classification model.
In image retrieval, Zhao et al. (2015) apply deep
semantic ranking for multi-label image retrieval.
In text matching, Severyn and Moschitti (2015)
adopt learning to rank combined with deep CNN
for short text pairs matching. In traditional super-
vised relation extraction, Santos et al. (2015) de-
sign a pairwise loss function based on CNN for
single label relation extraction. Based on the ad-
vantage of deep learning to rank, we propose pair-
wise learning to rank (LTR) (Liu, 2009) combined
with CNN in our model aiming to jointly extract
multiple relations.

3 Proposed Model

In this section, we first conclude the notations
used in this paper, then we introduce the used

CNN for sentence embedding, afterwards, we
present our algorithm of how to learn class ties be-
tween relations of one entity tuple.

3.1 Notation
We define the relation classes as L =
{1, 2, · · · , C}, entity tuples as T = {ti}Mi=1 and
mentions1 as X = {xi}Ni=1. Dataset is constructed
as follows: for entity tuple ti ∈ T and its rela-
tion class set Li ⊆ L, we collect all the men-
tions Xi that contain ti, the dataset we use is D =
{(ti, Li, Xi)}Hi=1. Given a data (tk, Lk, Xk) ∈
{(ti, Li, Xi)}Hi=1, the sentence embeddings of Xk

encoded by CNN are defined as Sk = {si}|Xk|
i=1 and

we use class embeddingsW ∈ R|L|×d to represent
the relation classes.

3.2 CNN for Sentence Embedding
We take the effective CNN architecture adopted

from (Zeng et al., 2015; Lin et al., 2016) to encode
sentence and we briefly introduce CNN in this sec-
tion. More details of our CNN can be obtained
from previous work.

3.2.1 Words Representations
• Word Embedding Given a word embedding
matrix V ∈ Rlw×d1 where lw is the size of
word dictionary and d1 is the dimension of
word embedding, the words of a mention x =
{w1, w2, · · · , wn} will be represented by real-
valued vectors from V .
• Position Embedding The position embedding
of a word measures the distance from the word
to entities in a mention. We add position em-
beddings into words representations by append-
ing position embedding to word embedding for
every word. Given a position embedding matrix
P ∈ Rlp×d2 where lp is the number of distances
and d2 is the dimension of position embeddings,
the dimension of words representations becomes
dw = d1 + d2 × 2.

3.2.2 Convolution, Piecewise max-pooling
After transforming words in x to real-valued

vectors, we get the sentence q ∈ Rn×dw . The set
of kernels K is {Ki}dsi=1 where ds is the number
of kernels. Define the window size as dwin and
given one kernel Kk ∈ Rdwin×dw , the convolution
operation is defined as follows:

m[i] = q[i:i+dwin−1] �Kk + b[k] (1)
1The sentence containing one certain entity is called men-

tion.

1812

where m is the vector after conducting convolu-
tion along q for n − dwin + 1 times and b ∈ Rds

is the bias vector. For these vectors whose indexes
out of range of [1, n], we replace them with zero
vectors.

By piecewise max-pooling, when pooling, the
sentence is divided into three parts: m[p0:p1],
m[p1:p2] andm[p2:p3] (p1 and p2 are the positions of
entities, p0 is the beginning of sentence and p3 is
the end of sentence). This piecewise max-pooling
is defined as follows:

z[j] = max(m[pj−1:pj]) (2)

where z ∈ R3 is the result of mention x processed
by kernel Kk; 1 ≤ j ≤ 3. Given the set of kernels
K, following the above steps, the mention x can
be embedded to o where o ∈ Rds∗3.

3.2.3 Non-Linear Layer, Regularization
To learn high-level features of mentions, we ap-

ply a non-linear layer after pooling layer. After
that, a dropout layer is applied to prevent over-
fitting. We define the final fixed sentence repre-
sentation as s ∈ Rdf (df = ds ∗ 3).

s = g(o) ◦ h (3)

where g(·) is a non-linear function and we use
tanh(·) in this paper; h is a Bernoulli random vec-
tor with probability p to be 1.

3.3 Learning Class Ties by Joint Extraction
with Pairwise Ranking

As mentioned above, to learn class ties, we
propose to make joint extraction with consider-
ing pairwise connections between positive labels
and negative ones. Pairwise ranking is applied to
achieve this goal. Besides, combining informa-
tion across sentences is necessary for joint extrac-
tion. More specifically, as shown in Figure 2, from
down to top, all information from sentences is
pre-propagated to provide enough information for
joint extraction. From top to down, pairwise rank-
ing jointly extracting positive relations by combin-
ing losses, which are back-propagated to CNN to
learn class ties.

3.3.1 Combining Information across
Sentences

We propose two options to combine sentences
to provide enough information for joint extraction.

1 2

x1 x2 xn

c1 c2 cm

s

Class	Ties

Combine	
information	from		
all	sentences

Joint	extraction	
by	combining	

losses

Figure 2: Illustration of mechanism of our model
to model class ties between relations.

• AVE The first option is average method. This
method regards all the sentences equally and di-
rectly average the values in all dimensions of sen-
tence embedding. This AVE function is defined as
follows:

s =
1

n

∑

si∈Sk

si (4)

where n is the number of sentences and s is the
representation vector combining all sentence em-
beddings. Because it weights the importance of
sentences equally, this method may bring much
noise data from two aspects: (1) the wrong la-
belling data; (2) irrelated mentions for one relation
class, for all sentences containing the same entity
tuple being combined together to construct the bag
representation.
• ATT The second one is a sentence-level atten-
tion algorithm used by Lin et al. (2016) to mea-
sure the importance of sentences aiming to relieve
the wrong labelling problem. For every sentence,
ATT will calculate a weight by comparing the sen-
tence to one relation. We first calculate the similar-
ity between one sentence embedding and relation
class as follows:

ej = a ·W[c] · sj (5)

where ej is the similarity between sentence em-
bedding sj and relation class c and a is a bias fac-
tor. In this paper, we set a as 0.5. Then we apply
Softmax to rescale e (e = {ei}|Xk|

i=1) to [0, 1]. We
get the weight αj for sj as follows:

αj =
exp(ej)∑
ei∈e exp(ei)

(6)

so the function to merge s with ATT is as follows:

1813

s =

|Xk|∑

i=1

αi · si (7)

3.3.2 Joint Extraction by Combining Losses
to Learn Class Ties

Firstly, we have to present the score function to
measure the similarity between s and relation c.
• Score Function We use dot function to produce
score for s to be predicted as relation c. The score
function is as follows:

F(s, c) =W[c] · s (8)

There are other options for score function. In
Wang et al. (2016), they propose a margin based
loss function that measures the similarity between
s and W[c] by distance. Because score function is
not an important issue in our model, we adopt dot
function, also used by Santos et al. (2015) and Lin
et al. (2016), as our score function.

Now we start to introduce the ranking loss func-
tion.

Pairwise ranking aims to learn the score func-
tion F(s, c) that ranks positive classes higher than
negative ones. This goal can be summarized as
follows:

∀c+ ∈ Lk, ∀c− ∈ L−Lk : F(s, c+) > F(s, c−)+β
(9)

where β is a margin factor which controls the min-
imum margin between the positive scores and neg-
ative scores.

To learn class ties between relations, we extend
the formula (9) to make joint extraction and we
propose three ranking loss functions with variants
of combining sentences. Followings are the pro-
posed loss functions:
• with AVE (Variant-1) We define the margin-
based loss function with option of AVE to aggre-
gate sentences as follows:

G[ave] =
∑

c+∈Lk

ρ[0, σ+ −F(s, c+)]+

+ρ|Lk|[0, σ− + F(s, c−)]+ (10)

where [0, ·]+ = max(0, ·); ρ is the rescale fac-
tor, σ+ is positive margin and σ− is negative mar-
gin. Similar to Santos et al. (2015) and Wang et al.
(2016), this loss function is designed to rank pos-
itive classes higher than negative ones controlled
by the margin of σ+ − σ−. In reality, F(s, c+)
will be higher than σ+ and F(s, c−) will be lower

than σ−. In our work, we set ρ as 2, σ+ as 2.5 and
σ− as 0.5 adopted from Santos et al. (2015).

Similar to Weston et al. (2011) and Santos et al.
(2015), we update one negative class at every
training round but to balance the loss between
positive classes and negative ones, we multiply
|Lk| before the right term in function (10) to ex-
pand the negative loss. We apply mini-bach based
stochastic gradient descent (SGD) to minimize the
loss function. The negative class is chosen as the
one with highest score among all negative classes
(Santos et al., 2015), i.e.:

c− = argmax
c∈L−Lk

F(s, c) (11)

• with ATT (Variant-2) Now we define the loss
function for the option of ATT to combine sen-
tences as follows:

G[att] =
∑

c+∈Lk

(ρ[0, σ+ −F(sc+ , c+)]+

+ρ[0, σ− + F(sc+ , c−)]+) (12)

where sc means the attention weights of represen-
tation s are merged by comparing sentence embed-
dings with relation class c and c− is chosen by the
following function:

c− = argmax
c∈L−Lk

F(sc+ , c) (13)

which means we update one negative class in ev-
ery training round. We keep the values of ρ, σ+

and σ− same as values in function (10).
According to this loss function, we can see

that: for each class c+ ∈ Lk, it will capture the
most related information from sentences to merge
sc

+
, then rank F(sc+ , c+) higher than all negative

scores which each is F(sc+ , c−) (c− ∈ L − Lk).
We use the same update algorithm to minimize this
loss.
• Extended with ATT (Variant-3) According to
function (12), for each c+, we only select one neg-
ative class to update the parameters, which only
considers the connections between positive classes
and negative ones, ignoring connections between
positive classes, so we extend function (12) to bet-
ter exploit class ties by considering the connec-
tions between positive classes. We give out the
extended loss function as follows:

G[Exatt] =
∑

c∗∈Lk

(
∑

c+∈Lk

ρ[0, σ+ −F(sc∗ , c+)]+

+ρ[0, σ− + F(sc∗ , c−)]+) (14)

1814

Pro. Training Test
SemE. 17.63% 16.71%

Riedel 72.52% 96.26%

Table 2: The proportions of NR samples from
SemEval-2010 Task 8 dataset and Riedel dataset.

Similar to function (13), we select c− as follows:

c− = argmax
c∈L−Lk

F(sc∗ , c) (15)

and we use the same method to update this loss
function as discussed above. From the function
(14), we can see that: for c∗ ∈ Lk, after merging
the bag representation s with c∗, we share s with
all the other positive classes and update the class
embeddings of other positive classes with s, in this
way, the connections between positive classes can
be captured and learned by our model.

In loss function (10), (12) and (14), we com-
bine losses from all positive labels to make joint
extraction to capture the class ties among rela-
tions. Suppose we make separated extraction, the
losses from positive labels will be divided apart
and will not get enough information of connec-
tions between positive labels, comparing to joint
extraction. Connections between positive labels
and negative ones are exploited by controlling
margins: σ+ and σ−.

3.4 Relieving Impact of NR
In relation extraction, the dataset will always

contain certain negative samples which do not ex-
press relations classified as NR (not relation). Ta-
ble 2 presents the proportion of NR samples in
SemEval-2010 Task 8 dataset2 (Erk and Strappa-
rava, 2010) and dataset from Riedel et al. (2010),
which shows almost data is about NR in the latter
dataset. Data imbalance will severely affect the
model training and cause the model only sensitive
to classes with high proportion (He and Garcia,
2009).

In order to relieve the impact of NR in DS based
relation extraction, we cut the propagation of loss
from NR, which means if relation c is NR, we set
its loss as 0. Our method is similar to Santos et al.
(2015) with slight variance. Santos et al. (2015)
directly omit the NR class embedding, but we keep
it. If we use ATT method to combine informa-
tion across sentences, we can not omit NR class

2This is a dataset for relation extraction in traditional su-
pervision framework.

Algorithm 1: Merging loss function of
Variant-3
input : L, (tk, Lk, Xk) and Sk;
output: G[Exatt];

1 G[Exatt] ← 0;
2 for c∗ ∈ Lk do
3 Merge representation sc

∗
by function (5),

(6), (7);
4 for c+ ∈ Lk do
5 if c+ is not NR then
6 G[Exatt] ← G[Exatt] + ρ[0, σ+ −

F(sc∗ , c+)]+;

7 c− ← argmaxc∈L−Lk
F(sc∗ , c);

8 G[Exatt] ←
G[Exatt] + ρ[0, σ− + F(sc∗ , c−)]+;

9 return G[Exatt];

embedding according to function (6) and (7), on
the contrary, it will be updated from the negative
classes’ loss.

In Algorithm 1, we give out the pseudocodes
of merging loss with Variant-3 and considering to
relieve the impact of NR.

4 Experiments

4.1 Dataset and Evaluation Criteria

We conduct our experiments on a widely used
dataset, developed by Riedel et al. (2010) and has
been used by Hoffmann et al. (2011), Surdeanu
et al. (2012), Zeng et al. (2015) and Lin et al.
(2016). The dataset aligns Freebase relation facts
with the New York Times corpus, in which train-
ing mentions are from 2005-2006 corpus and test
mentions from 2007.

Following Mintz et al. (2009), we adopt held-
out evaluation framework in all experiments. Ag-
gregated precision/recall curves are drawn and
precision@N (P@N) is reported to illustrate the
model performance.

4.2 Experimental Settings

Word Embeddings. We use a word2vec tool
that is gensim3 to train word embeddings on NYT
corpus. Similar to Lin et al. (2016), we keep the
words that appear more than 100 times to construct
word dictionary and use “UNK” to represent the
other ones.

3http://radimrehurek.com/gensim/models/word2vec.html

1815

Parameter Name Symbol Value
Window size dwin 3
Sentence. emb. dim. df 690
Word. emb. dim. d1 50
Position. emb. dim. d2 5
Batch size B 160
Learning rate λ 0.03
Dropout pos. p 0.5

Table 3: Hyper-parameter settings.

Hyper-parameter Settings. Three-fold valida-
tion on the training dataset is adopted to tune the
parameters following Surdeanu et al. (2012). We
use grid search to determine the optimal hyper-
parameters. We select word embedding size from
{50, 100, 150, 200, 250, 300}. Batch size is tuned
from {80, 160, 320, 640}. We determine learning
rate among {0.01, 0.02, 0.03, 0.04}. The window
size of convolution is tuned from {1, 3, 5}. We
keep other hyper-parameters same as Zeng et al.
(2015): the number of kernels is 230, position em-
bedding size is 5 and dropout rate is 0.5. Table 3
shows the detailed parameter settings.

4.3 Comparisons with Baselines

Baseline. We compare our model with the fol-
lowing baselines:
• Mintz (Mintz et al., 2009) the original dis-

tantly supervised model.
• MultiR (Hoffmann et al., 2011) a multi-

instance learning based graphical model which
aims to address overlapping relation problem.
• MIML (Surdeanu et al., 2012) also solv-

ing overlapping relations in a multi-instance multi-
label framework.
• PCNN+ATT (Lin et al., 2016) the state-of-

the-art model in dataset of Riedel et al. (2010)
which applies ATT to combine the sentences.
Results and Discussion. We compare our three
variants of loss functions with the baselines and
the results are shown in Figure 3. From the re-
sults we can see that: (1) Rank + AVE (Variant-
1) achieves comparable results with PCNN+ATT;
(2) Rank + ATT (Variant-2) and Rank + ExATT
(Variant-3) significantly outperform PCNN + ATT
with much higher precision and slightly higher re-
call in whole view; (3) Rank + ExATT (Variant-3)
exhibits the best performances comparing with all
the other methods including PCNN + ATT, Rank
+ AVE and Rank + ATT.

Recall
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
re

ci
si

on

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mintz
MultiR
MIML
PCNN+ATT
Rank+AVE
Rank+ATT
Rank+ExATT

Figure 3: Performance comparison of our model
and the baselines.

Recall

0 0.1 0.2 0.3 0.4

P
re

ci
si

on

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank+AVE+Sep.
Rank+AVE+Joint

Recall
0 0.1 0.2 0.3 0.4

P
re

ci
si

on

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank+ATT+Sep.
Rank+ATT+Joint

Recall
0 0.1 0.2 0.3 0.4

P
re

ci
si

on

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank+ExATT+Sep.
Rank+ExATT+Joint

Figure 4: Results for impact of joint extraction and
class ties with methods of Rank + AVE, Rank +
ATT and Rank + ExATT under the setting of re-
lieving impact of NR.

4.4 Impact of Joint Extraction and Class Ties

In this section, we conduct experiments to re-
veal the effectiveness of our model to learn class
ties with three variant loss functions mentioned
above, and the impact of class ties for relation ex-
traction. As mentioned above, we make joint ex-
traction to learn class ties, so to achieve the goal
of this set of experiments, we compare joint ex-
traction with separated extraction. To make sep-
arated extraction, we divide the labels of entity
tuple into single label and for one relation label
we only select the sentences expressing this rela-
tion, then we use this dataset to train our model
with the three variant loss functions. We conduct
experiments with Rank + AVE (Variant-1), Rank
+ ATT (Variant-2) and Rank + ExATT (Variant-
3) relieving impact of NR. Aggregated P/R curves
are drawn and precisions@N (100, 200, · · · , 500)
are reported to show the model performances.

1816

P@N(%) 100 200 300 400 500 Ave.
R.+AVE+J. 81.3 76.4 74.6 69.6 66.0 73.6

R.+AVE+S. 82.4 79.6 74.6 74.4 69.9 76.2
R.+ATT+J. 87.9 84.3 78.0 74.9 70.3 79.1
R.+ATT+S. 82.4 79.1 75.9 71.9 69.5 75.7
R.+ExATT+J. 83.5 82.2 78.7 77.2 73.1 79.0
R.+ExATT+S. 82.4 82.7 79.4 74.2 69.2 77.6

Table 4: Precisions for top 100, 200, 300, 400, 500
and average of them for impact of joint extraction
and class ties.

Recall
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

P
re

ci
si

on

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank+AVE
Rank+ATT
Rank+ExATT

Figure 5: Results for comparisons of variant joint
extractions.

Experimental results are shown in Figure 4 and
Table 4. From the results we can see that: (1) For
Rank + ATT and Rank + ExATT, joint extraction
exhibits better performance than separated extrac-
tion, which demonstrates class ties will improve
relation extraction and the two methods are effec-
tive to learn class ties; (2) For Rank + AVE, sur-
prisingly joint extraction does not keep up with
separated extraction. For the second phenomenon,
the explanation may lie in the AVE method to ag-
gregate sentences will incorporate noise data con-
sistent with the finding in Lin et al. (2016). When
make joint extraction, we will combine all sen-
tences containing the same entity tuple no matter
which class type is expressed, so it will engender
much noise if we only combine them equally.

4.5 Comparisons of Variant Joint Extractions

To make joint extraction, we have proposed
three variant loss functions including Rank + AVE,
Rank + ATT and Rank + ExATT in the above dis-
cussion and Figure 3 shows that the three vari-
ants achieve different performances. In this ex-
periment, we aim to compare the three variants
in detail. We conduct the experiments with the
three variants under the setting of relieving im-

P@N(%) 100 200 300 400 500 Ave.
R.+AVE 81.3 76.4 74.6 69.6 66.0 73.6

R.+ATT 87.9 84.3 78.0 74.9 70.3 79.1
R.+ExATT 83.5 82.2 78.7 77.2 73.1 79.0

Table 5: Precisions for top 100, 200, 300, 400, 500
and average of them for Rank + AVE, Rank + ATT
and Rank + ExATT.

Recall
0 0.1 0.2 0.3 0.4

P
re

ci
si

on

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank+AVE+NR
Rank+AVE

Recall
0 0.1 0.2 0.3 0.4

P
re

ci
si

on

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank+AVE+NR
Rank+AVE

Recall
0 0.1 0.2 0.3 0.4

P
re

ci
si

on

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank+ExATT+NR
Rank+ExATT

Figure 6: Results for impact of relation NR with
methods of Rank + AVE, Rank + ATT and Rank +
ExATT. “+NR” means not relieving impact of NR.

pact of NR and joint extraction. We draw the P/R
curves and report the top N (100, 200, · · · , 500)
precisions to compare model performance with the
three variants.

From the results as shown in Figure 5 and Ta-
ble 5 we can see that: (1) Comparing Rank + AVE
with Rank + ATT, from the whole view, they can
achieve the similar maximal recall point, but Rank
+ ATT exhibits higher precision in all range of
recall; (2) Comparing Rank + ATT with Rank +
ExATT, Rank + ExATT achieves much better per-
formance with broader range of recall and higher
precision in almost range of recall.

4.6 Impact of NR Relation
The goal of this experiment is to inspect how

much relation of NR can affect the model perfor-
mance. We use Rank + AVE, Rank + ATT, Rank
+ ExATT under the setting of relieving impact of
NR or not to conduct experiments. We draw the
aggregated P/R curves as shown in Figure 6, from
which we can see that after relieving the impact
of NR, the model performance can be improved
significantly.

Then we further evaluate the impact of NR for
convergence behavior of our model in model train-

1817

n-epoch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
-m

ea
su

re

0.2

0.25

0.3

0.35

0.4

0.45

AVE+NR
AVE-NR

n-epoch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
-m

ea
su

re

0.2

0.25

0.3

0.35

0.4

0.45

ATT+NR
ATT-NR

n-epoch
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

F
-m

ea
su

re

0.2

0.25

0.3

0.35

0.4

0.45

ExATT+NR
ExATT-NR

Figure 7: Impact of NR for model convergence.
“+NR” means not relieving NR impact; “-NR” is
opposite.

ing. Also with the three variant loss functions, in
each iteration, we record the maximal value of F-
measure 4 to represent the model performance at
current epoch. Model parameters are tuned for
15 times and the convergence curves are shown in
Figure 7. From the result, we can find out: “+NR”
converges quicker than “-NR” and arrives to the fi-
nal score at the around 11 or 12 epoch. In general,
“-NR” converges more smoothly and will achieve
better performance than “+NR” in the end.

4.7 Case Study

Joint vs. Sep. Extraction (Class Ties). We
randomly select an entity tuple (Cuyahoga County,
Cleveland) from test set to see its scores for every
relation class with the method of Rank + ATT un-
der the setting of relieving impact of NR with joint
extraction and separated extraction. This entity tu-
ple have two relations: /location/./county seat and
/location/./contains, which derive from the same
root class and they have weak class ties for they
all relating to topic of “location”. We rescale the
scores by adding value 10. The results are shown
in Figure 8, from which we can see that: un-
der joint extraction setting, the two gold relations
have the highest scores among the other relations
but under separated extraction setting, only /loca-
tion/./contains can be distinguished from the neg-
ative relations, which demonstrates that joint ex-
traction is better than separated extraction by cap-
turing the class ties between relations.

4F = 2 ∗ P ∗R/(P +R)

class-id
5 10 15 20 25 30 35 40 45 50

va
lu

e

6

8

10

12

14

16

18

20

Joint

class-id
5 10 15 20 25 30 35 40 45 50

va
lu

e

6

8

10

12

14
15

Sep.

/l./l./contains

/l./us./county-seat

/l./us./county-seat

/l./l./contains

Figure 8: The output scores for every relation
with method of Rank + ATT. The top is under joint
extraction setting; the bottom is under separated
extraction.

5 Conclusion and Future Works

In this paper, we leverage class ties to enhance
relation extraction by joint extraction using pair-
wise ranking combined with CNN. An effective
method is proposed to relieve the impact of NR for
model training. Experimental results on a widely
used dataset show that leveraging class ties will
enhance relation extraction and our model is ef-
fective to learn class ties. Our method significantly
outperforms the baselines.

In the future, we will focus on two aspects: (1)
Our method in this paper considers pairwise inter-
sections between labels, so to better exploit class
ties, we will extend our method to exploit all other
labels’ influences on each relation for relation ex-
traction, transferring second-order to high-order
(Zhang and Zhou, 2014); (2) We will focus on
other problems by leveraging class ties between
labels, specially on multi-label learning problems
(Zhou et al., 2012) such as multi-category text cat-
egorization (Rousu et al., 2005) and multi-label
image categorization (Zha et al., 2008).

Acknowledgments

Firstly, we would like to thank Xianpei Han and
Kang Liu for their valuable suggestions on the ini-
tial version of this paper, which have helped a lot
to improve the paper. Secondly, we also want
to express gratitudes to the anonymous review-
ers for their hard work and kind comments, which
will further improve our work in the future. This
work was supported by the National High-tech Re-
search and Development Program (863 Program)
(No. 2014AA015105) and National Natural Sci-
ence Foundation of China (No. 61602490).

1818

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473 .

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of KDD. pages
1247–1250.

Katrin Erk and Carlo Strapparava, editors. 2010. Pro-
ceedings of SemEval. The Association for Computer
Linguistics.

Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza
Mencı́a, and Klaus Brinker. 2008. Multilabel classi-
fication via calibrated label ranking. Machine learn-
ing 73(2):133–153.

Xianpei Han and Le Sun. 2016. Global distant supervi-
sion for relation extraction. In Proceedings of AAAI.
pages 2950–2956.

Haibo He and Edwardo A. Garcia. 2009. Learning
from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21(9):1263–1284.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of ACL-
HLT . Association for Computational Linguistics,
pages 541–550.

Nathalie Japkowicz and Shaju Stephen. 2002. The
class imbalance problem: A systematic study. In-
telligent data analysis 6(5):429–449.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton.
2015. Deep learning. Nature 521(7553):436–444.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In Proceed-
ings of ACL. volume 1, pages 2124–2133.

Tie-Yan Liu. 2009. Learning to rank for information
retrieval. Foundations and Trends in Information
Retrieval 3(3):225–331.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings
of EMNLP. pages 1412–1421.

Mike Mintz, Steven Bills, Rion Snow, and Dan Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of
ACL-IJCNLP. Association for Computational Lin-
guistics, pages 1003–1011.

Sebastian Riedel, Limin Yao, and Andrew McCallum.
2010. Modeling relations and their mentions with-
out labeled text. In Proceedings of ECML-PKDD.
Springer, pages 148–163.

Juho Rousu, Craig Saunders, Sandor Szedmak, and
John Shawe-Taylor. 2005. Learning hierarchical
multi-category text classification models. In Pro-
ceeding of ICML. ACM, pages 744–751.

Cicero Nogueira dos Santos, Bing Xiang, and Bowen
Zhou. 2015. Classifying relations by ranking with
convolutional neural networks. In Proceeding of
ACL. pages 626–634.

Aliaksei Severyn and Alessandro Moschitti. 2015.
Learning to rank short text pairs with convolutional
deep neural networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM,
pages 373–382.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of EMNLP. Association for Computational
Linguistics, pages 455–465.

Linlin Wang, Zhu Cao, Gerard de Melo, and Zhiyuan
Liu. 2016. Relation classification via multi-level
attention cnns. In Proceedings of ACL, Volume 1:
Long Papers.

Jason Weston, Samy Bengio, and Nicolas Usunier.
2011. WSABIE: scaling up to large vocabulary
image annotation. In Proceedings of IJCAI. pages
2764–2770.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In Pro-
ceedings of EMNLP. pages 17–21.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou,
Jun Zhao, et al. 2014. Relation classification via
convolutional deep neural network. In Proceeding
of COLING. pages 2335–2344.

Zheng-Jun Zha, Xian-Sheng Hua, Tao Mei, Jingdong
Wang, Guo-Jun Qi, and Zengfu Wang. 2008. Joint
multi-label multi-instance learning for image classi-
fication. In CVPR. IEEE, pages 1–8.

Min-Ling Zhang and Zhi-Hua Zhou. 2006. Multilabel
neural networks with applications to functional ge-
nomics and text categorization. IEEE transactions
on Knowledge and Data Engineering 18(10):1338–
1351.

Min-Ling Zhang and Zhi-Hua Zhou. 2014. A re-
view on multi-label learning algorithms. IEEE
transactions on knowledge and data engineering
26(8):1819–1837.

Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu
Tan. 2015. Deep semantic ranking based hashing
for multi-label image retrieval. In Proceedings of
CVPR. pages 1556–1564.

1819

Hao Zheng, Zhoujun Li, Senzhang Wang, Zhao Yan,
and Jianshe Zhou. 2016. Aggregating inter-sentence
information to enhance relation extraction. In Thir-
tieth AAAI Conference on Artificial Intelligence.

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen
Li, Hongwei Hao, and Bo Xu. 2016. Attention-
based bidirectional long short-term memory net-
works for relation classification. In Proceeding of
ACL. page 207.

Zhi-Hua Zhou, Min-Ling Zhang, Sheng-Jun Huang,
and Yu-Feng Li. 2012. Multi-instance multi-label
learning. Artificial Intelligence 176(1):2291–2320.

1820

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1821–1831
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1167

Search-based Neural Structured Learning for
Sequential Question Answering

Mohit Iyyer∗
Department of Computer Science and UMIACS

University of Maryland, College Park
miyyer@umd.edu

Wen-tau Yih, Ming-Wei Chang
Microsoft Research

Redmond, WA 98052
{scottyih,minchang}@microsoft.com

Abstract

Recent work in semantic parsing for ques-
tion answering has focused on long and
complicated questions, many of which
would seem unnatural if asked in a normal
conversation between two humans. In an ef-
fort to explore a conversational QA setting,
we present a more realistic task: answer-
ing sequences of simple but inter-related
questions. We collect a dataset of 6,066
question sequences that inquire about semi-
structured tables from Wikipedia, with
17,553 question-answer pairs in total. To
solve this sequential question answering
task, we propose a novel dynamic neural
semantic parsing framework trained using
a weakly supervised reward-guided search.
Our model effectively leverages the sequen-
tial context to outperform state-of-the-art
QA systems that are designed to answer
highly complex questions.

1 Introduction

Semantic parsing, which maps natural language
text to meaning representations in formal logic, has
emerged as a key technical component for building
question answering systems (Liang, 2016). Once a
natural language question has been mapped to a for-
mal query, its answer can be retrieved by executing
the query on a back-end structured database.

One of the main focuses of semantic parsing
research is how to address compositionality in lan-
guage, and complicated questions have been specif-
ically targeted in the design of a recently-released
QA dataset (Pasupat and Liang, 2015). Take for ex-
ample the following question: “of those actresses
who won a Tony after 1960, which one took the
most amount of years after winning the Tony to

∗Work done during an internship at Microsoft Research

win an Oscar?” The corresponding logical form is
highly compositional; in order to answer it, many
sub-questions must be implicitly answered in the
process (e.g., “who won a Tony after 1960?”).

While we agree that semantic parsers should be
able to answer very complicated questions, in re-
ality these questions are rarely issued by users.1

Because users can interact with a QA system re-
peatedly, there is no need to assume a single-turn
QA setting where the exact question intent has to be
captured with just one complex question. The same
intent can be more naturally expressed through a
sequence of simpler questions, as shown below:

1. What actresses won a Tony after 1960?
2. Of those, who later won an Oscar?
3. Who had the biggest gap between their two

award wins?
Decomposing complicated intents into multiple re-
lated but simpler questions is arguably a more ef-
fective strategy to explore a topic of interest, and
it reduces the cognitive burden on both the person
who asks the question and the one who answers it.2

In this work, we study semantic parsing for
answering sequences of simple related ques-
tions. We collect a dataset of question sequences
called SequentialQA (SQA; Section 2)3 by asking
crowdsourced workers to decompose complicated
questions sampled from the WikiTableQuestions
dataset (Pasupat and Liang, 2015) into multiple
easier ones. SQA, which contains 6,066 question
sequences with 17,553 total question-answer pairs,
is to the best of our knowledge the first semantic
parsing dataset for sequential question answering.
Section 3 describes our novel dynamic neural se-
mantic parsing framework (DynSP), a weakly su-

1For instance, there are only 3.75% questions with more
than 15 words in WikiAnswers (Fader et al., 2014).

2Studies have shown increased sentence complexity links
to longer reading times (Hale, 2006; Levy, 2008; Frank, 2013).

3Available at http://aka.ms/sqa

1821

https://doi.org/10.18653/v1/P17-1167

2010

Night Girl

Earth Fire breath

2011

2009

Elemental

Aarok

First
Appeared

Harmonia

Character

TeleportingGates

Earth

Home
World

Super
strength2007

Vyrga

Powers

Kathoon

XS Super
speed

2009

Dragonwing1. Who are all of the
super heroes?

2. Which of them
come from Earth?

3. Of those, who
appeared most
recently?

Original intent:
What super hero
from Earth appeared
most recently?

Legion of Super Heroes Post-Infinite Crisis

Figure 1: An example question sequence created
from a compositional question intent. Workers
must write questions whose answers are subsets of
cells in the table.

pervised structured-output learning approach based
on reward-guided search that is designed for solv-
ing sequential QA. We demonstrate in Section 4
that DynSP achieves higher accuracies than exist-
ing systems on SQA, and we offer a qualitative
analysis of question types that our method answers
effectively, as well as those on which it struggles.

2 A Dataset of Question Sequences

We collect the SequentialQA (SQA) dataset
via crowdsourcing by leveraging WikiTableQues-
tions (Pasupat and Liang, 2015, henceforth WTQ),
which contains highly compositional questions as-
sociated with HTML tables from Wikipedia. Each
crowdsourcing task contains a long, complex ques-
tion originally from WTQ as the question intent.
The workers are asked to compose a sequence of
simpler questions that lead to the final intent; an
example of this process is shown in Figure 1.

To simplify the task for workers, we only use
questions from WTQ whose answers are cells in the
table, which excludes those involving arithmetic
and counting. We likewise also restrict the ques-
tions our workers can write to those answerable by
only table cells. These restrictions speed the an-
notation process because workers can just click on
the table to answer their question. They also allow
us to collect answer coordinates (row and column
in the table) as opposed to answer text, which re-
moves many normalization issues for answer string
matching in evaluation. Finally, we only use long
questions that contain nine or more words as in-
tents; shorter questions tend to be simpler and are
thus less amenable to decomposition.

2.1 Properties of SQA

In total, we used 2,022 question intents from the
train and test folds of the WTQ for decomposi-
tion. We had three workers decompose each intent,
resulting in 6,066 unique questions sequences con-
taining 17,553 total question-answer pairs (for an
average of 2.9 questions per sequence). We divide
the dataset into train and test using the original
WTQ folds, resulting in an 83/17 train/test split.
Importantly, just like in WTQ, none of the tables
in the test set are seen in the training set.

We identify three frequently-occurring question
classes: column selection, subset selection, and
row selection.4 In column selection questions, the
answer is an entire column of the table; these ques-
tions account for 23% of all questions in SQA. Sub-
set and row selection are more complicated than
column selection, as they usually contain corefer-
ences to the previous question’s answer. In subset
selections, the answer is a subset of the previous
question’s answer; similarly, the answers to row
selections occur in the same row(s) as the previous
answer but in a different column. Subset selections
make up 27% of SQA, while row selections are an
additional 19%. The remaining 31% contains more
complex combinations of these three types.

We also observe dramatic differences in the
types of questions that are asked at each position
of the sequence. For example, 51% of the first
questions in the sequences are column selections
(e.g., “what are all of the teams?”). This number
dwindles to just 18% when we look at the second
question of each sequence, which indicates that the
collected sequences start with general questions
and progress to more specific ones.

3 Dynamic Neural Semantic Parsing

The unique setting of SQA provides both opportu-
nities and challenges. On the one hand, it contains
short questions with less compositionality, which
in theory should reduce the difficulty of the se-
mantic parsing problem; on the other hand, the
additional contextual dependencies of the preced-
ing questions and their answers increase modeling
complexity. These observations lead us to pro-
pose a dynamic neural semantic parsing framework
(DynSP) trained using a reward-guided search pro-

4In the example sequence “what are all of the tourna-
ments? in which one did he score the least points? on what
date was that?”, the first question is a column selection, the
second is a subset selection, and the last one is a row selection.

1822

cedure for solving SQA.
Given a question (optionally along with previous

questions and answers) and a table, DynSP formu-
lates the semantic parsing problem as a state–action
search problem. Each state represents a complete
or partial parse, while each action corresponds to
an operation to extend a parse. The goal during
inference is to find an end state with the highest
score as the predicted parse.

The quality of the induced semantic parse ob-
viously depends on the scoring function. In our
design, the score of a state is determined by the
scores of actions taken from the initial state to
the target state, which are predicted by differ-
ent neural network modules based on action type.
By leveraging a margin-based objective function,
the model learning procedure resembles several
structured-output learning algorithms such as struc-
tured SVMs (Tsochantaridis et al., 2005), but can
take either strong or weak supervision seamlessly.
DynSP is inspired by STAGG, a search-based

semantic parser (Yih et al., 2015), as well as the dy-
namic neural module network (DNMN) of Andreas
et al. (2016). Much like STAGG, DynSP chains
together different modules as search progresses;
however, these modules are implemented as neural
networks, which enables end-to-end training as in
DNMN. The key difference between DynSP and
DNMN is that in DynSP the network structure of
an example is not predetermined. Instead, different
network structures are constructed dynamically as
our learning procedure explores the state space. It
is straightforward to answer sequential questions
using our framework: we allow the model to take
the previous question and its answers as input, with
a slightly modified action space to reflect a depen-
dent semantic parse. The same search / learning
procedure is then able to effortlessly adapt to the
new setting. In this section, we first describe the
formal language underlying DynSP, followed by
the model formulation and learning algorithm.

3.1 Semantic parse language

Because tables are used as the data source to an-
swer questions in SQA, we decide to form our
semantic parses in an SQL-like language5. Our
parses consist of two parts: a select statement and
conjunctions of zero or more conditions.

5Our framework is not restricted to the formal language
we use in this work. In addition, the structured query can be
straightforwardly represented in other formal languages, such
as the lambda DCS logic used in (Pasupat and Liang, 2015).

A select statement is associated with a column
name, which is referred to as the answer column.
Conditions enforce additional constraints on which
cells in the answer column can be chosen; a se-
lect statement without any conditions indicates
that an entire column of the table is the answer
to the question. In particular, each condition con-
tains a column name as the condition column and
an operator with zero or more arguments. The
operators in this work include: =, 6=, >,≥, <,≤,
argmin, argmax. A cell in the answer column
is only a legitimate answer if the cell of the cor-
responding row in the condition column satisfies
the constraint defined by the operator and its argu-
ments. As a concrete example, suppose the data
source is the same table in Fig. 1. The semantic
parse of the question “Which super heroes came
from Earth and first appeared after 2009?” is “Se-
lect Character Where {Home World = Earth} ∧
{First Appeared > 2009}” and the answers are
{Dragonwing, Harmonia}.

In order to handle the sequential aspect of SQA,
we extend the semantic parse language by adding
a preamble statement subsequent. A subsequent
statement contains only conditions, as it essentially
adds constraints to the semantic parse of the previ-
ous question. For instance, if the follow-up ques-
tion is “Which of them breathes fire?”, then the cor-
responding semantic parse is “Subsequent Where
{Powers = Fire breath}”. The answer to this ques-
tion is {Dragonwing}, a subset of the previous
answer.

3.2 Model formulation

We start introducing our model design by first defin-
ing the state and action space. Let S be the set of
states and A the set of all actions. A state s ∈ S
is simply a sequence of variable length of actions
{a1, a2, a3, · · · , at}, where ai ∈ A. An empty
sequence, s0 = φ, is a special state used as the
starting point of search.

As mentioned earlier, a state represents a (partial)
semantic parse of one question. Each action is thus
a legitimate operation that can be added to grow
the semantic parse. Our action space design is tied
closely to the statements defined by our parse lan-
guage; in particular, an action instance is either a
complete or partial statement, and action instances
are grouped by type. For example, select and subse-
quent operations are two action types. A condition
statement is formed by two different action types:

1823

Id Type # Action instances
A1 Select-column # columns
A2 Cond-column # columns
A3 Op-Equal (=) # rows
A4 Op-NotEqual (6=) # rows
A5 Op-GT (>) # numbers / datetimes
A6 Op-GE (≥) # numbers / datetimes
A7 Op-LT (<) # numbers / datetimes
A8 Op-LE (≤) # numbers / datetimes
A9 Op-ArgMin # numbers / datetimes
A10 Op-ArgMax # numbers / datetimes
A11 Subsequent 1
A12 S-Cond-column # columns
A13 S-Op-Equal (=) # rows
A14 S-Op-NotEqual (6=) # rows
A15 S-Op-GT (>) # numbers / datetimes
A16 S-Op-GE (≥) # numbers / datetimes
A17 S-Op-LT (<) # numbers / datetimes
A18 S-Op-LE (≤) # numbers / datetimes
A19 S-Op-ArgMin # numbers / datetimes
A20 S-Op-ArgMax # numbers / datetimes

Table 1: Types of actions and the number of action
instances in each type. Numbers / datetimes are
the mentions discovered in the question (plus the
previous question if it is a subsequent condition).

(1) selection of the condition column, and (2) the
comparison operator. The instances of each action
type differ in their arguments (e.g., column names,
or specific cells in a column). Because conditions
in a subsequent parse rely on previous questions
and answers, they belong to different action types
from regular conditions. Table 1 summarizes the
action space defined in this work.

Any state that represents a complete and legit-
imate parse is an end state. Notice that search
does not necessarily need to stop at an end state,
because adding more actions (e.g., condition state-
ments) can lead to another end state. Take the
same example question from before: “Which su-
per heroes came from Earth and first appeared
after 2009?”. One action sequence that represents
the parse is {(A1) select-column Character, (A2)
cond-column Home World, (A3) op-equal Earth,
(A2) cond-column First Appeared, (A5) op-gt
2009}.

Notice that many states represent semantically
equivalent parses (e.g., those with the same ac-
tions ordered differently, or states with repeated
conditions). To prune the search space, we intro-
duce the function Act(s) ⊂ A, which defines the
actions that can be taken when given a state s. Bor-
rowing the idea of staged state generation in (Yih
et al., 2015), we choose a default ordering of ac-
tions based on their types, dictating that a select
action must be picked first and that a condition-

A1 A2 A3...A10

s0

A2

A11 A12 A13...A20

A12

Figure 2: Possible action transitions based on their
types (see Table 1). Shaded circles are end states.

column needs to be determined before the operator
is chosen. The full transition diagram is presented
in Fig. 2. Note that to implement this transition
order, we only need to check the last action in the
state. In addition, we also disallow adding dupli-
cates of actions that already exist in the state.

We use beam search to find an end state with
the highest score for inference. Let st be a state
consisting of a sequence of actions a1, a2, · · · , at.
The state value function V is defined recursively
as V (st) = V (st−1) + π(st−1, at), V (s0) = 0,
where the policy function π(s, a) scores an action
a ∈ Act(s) given the current state.

3.3 Policy function
The intuition behind the policy function can be
summarized as follows. Halfway through the con-
struction of a semantic parse, the policy function
measures the quality of an immediate action that
can be taken next given the current state (i.e., the
question and actions that have previously been cho-
sen). To enable integrated, end-to-end learning, the
policy function in our framework is parameterized
using neural networks. Because each action type
has very different semantics, we design different
network structures (i.e., modules) accordingly.

Most of our network structures encourage learn-
ing semantic matching functions between the
words in the question and table (either the column
names or cells). Here we illustrate the design using
the select-column action type (A1). Conceptually,
the corresponding module is a combination of vari-
ous matching scores. Let WQ be the embeddings
of words in the question and WC be the embed-
dings of words in the target column name. The
component matching functions are:

fmax =
1

|WC |
∑

wc∈WC

max
wq∈WQ

wT
q wc

favg =


 1

|WC |
∑

wc∈WC

wc




T 
 1

|WQ|
∑

wq∈WQ

wq




1824

Essentially, for each word in the column name,
fmax finds the highest matching question word and
outputs the average score. Conversely, favg simply
uses the average word vectors of the question and
column name and returns their inner product. In
another variant of favg, we replace the question
representation with the output of a bi-directional
LSTM model. These matching component func-
tions are combined by a 2-layer feed-forward neu-
ral network, which outputs a scalar value as the
action score. Details of the neural module design
for other action types can be found in Appendix A.

3.4 Model learning

Because the state value function V is defined re-
cursively as the sum of scores of actions in the se-
quence, the goal of model optimization is to learn
the parameters in the neural networks behind the
policy function. Let θ be the collection of all the
model parameters. Then the state value function
can be written as: Vθ(st) =

∑t
i=1 πθ(si−1, ai).

In a fully supervised setting where the correct se-
mantic parse of each question is available, learning
the policy function can be reduced to a sequence
prediction problem. However, while having full
supervision leads to a better semantic parser, col-
lecting the correct parses requires a much more
sophisticated UI design (Yih et al., 2016). In many
scenarios, such as the one in the SQA dataset, it is
often the case that only the answers to the questions
are available. Adapting a learning algorithm to this
weakly supervised setting is thus critical.

Generally speaking, weakly supervised semantic
parsers operate on one assumption — a candidate
semantic parse is treated as a correct one if it results
in answers that are identical to the gold answers.
Therefore, a straightforward modification of exist-
ing structured learning algorithms in our setting is
to use any semantic parse found to evaluate to the
correct answers during beam search as a reference
parse, and then update the model parameters ac-
cordingly. In practice, however, this approach is
often problematic: the search space can grow enor-
mously, and when coupled with poor model per-
formance early during training, this leads to beams
that contain no parses evaluating to the correct an-
swer. As a result, learning becomes inefficient and
takes a long time to converge.

In this work, we propose a conceptually simple
learning algorithm for weakly supervised training
that sidesteps the inefficient learning problem. Our

key insight is to conduct inference using a beam
search procedure guided by an approximate reward
function. The search procedure is executed twice
for each training example, one for finding the best
possible reference semantic parse and the other
for finding the predicted semantic parse to update
the model. Our framework is suitable for learning
from either implicit or explicit supervision, and is
detailed in a companion paper (Peng et al., 2017).
Below we describe how we adapt it to the semantic
parsing problem in this work.

Approximate reward Let A(s) be the answers
retrieved by executing the semantic parse repre-
sented by state s, and let A∗ be the set of gold
answers of a given question. We define the reward
R(s;A∗) = 1[A(s) = A∗], or the accuracy of the
retrieved answers. We use R(s) as the abbreviation
for R(s;A∗). A state s with R(s) = 1 is called a
goal state. Directly using this reward function in
search of goal states can be difficult, as rewards
of most states are 0. However, even when the an-
swers from a semantic parse are not completely
correct, some overlap with the gold answers can
still hint that the state is close to a goal state, thus
providing useful information to guide search. To
formalize this idea, we define an approximated
reward R̃(s) in this work using the Jaccard coef-
ficient (R̃(s) = |A(s) ∩ A∗|/|A(s) ∪ A∗|). If s
is a goal state, then obviously R̃(s) = R(s) = 1.
Also because our actions effectively add additional
constraints to exclude some table cells, any suc-
ceeding states of s′ with R̃(s′) = 0 will also have 0
approximate reward and can be pruned from search
immediately.

We use the approximate reward R̃ to guide our
beam search to find the reference parses (i.e., goal
states). Some variations of the approximate reward
can be used to make learning more efficient. For
instance, we use the model score for tie-breaking,
effectively making the approximate reward func-
tion depend on the model parameters:

R̃θ(s) = |A(s)∩A∗|/|A(s)∪A∗|+ εVθ(s), (1)

where ε is a small constant. When a goal state is
not found, the state with the highest approximate
reward can still be used as a surrogate reference.

Updating parameters The model parameters
are updated by first finding the most violated state
ŝ and then comparing ŝ with a reference state s∗ to
compute a loss. The idea of finding the most vio-
lated state comes from Taskar et al. (2004), with the

1825

Algorithm 1 Model parameter updates
1: for pick a labeled data (x,A∗) do
2: s∗ ← argmax

s∈E(x)
R̃(s;A∗)

3: ŝ← argmax
s∈E(x)

Vθ(s)− R̃(s;A∗)

4: update θ by minimizing max(L(s), 0)
5: end for

intuition that the learning algorithm should make
the state value function behave similarly to the re-
ward. Formally, for every state s, we would like the
value function to satisfy the following constraint:

Vθ(s
∗)− Vθ(s) ≥ R(s∗)−R(s) (2)

R(s∗) − R(s) is thus the margin. As discussed
above, we use approximate reward function R̃θ
instead of the true reward. We want to update the
model parameters θ to make sure that the constraint
is satisfied. When the constraint is violated, the
degree of violation can be written as:

L(s) = Vθ(s)− Vθ(s∗)− R̃θ(s) + R̃θ(s
∗) (3)

In the algorithm, we want to find the state such
that the corresponding constraint is most violated.
Finding the most violated state is then equivalent to
finding the state with the highest value of Vθ(s)−
R̃θ(s) as the other two terms are constant.

Algorithm 1 sketches the key steps of our
method in each iteration. It first picks a training
instance (x and y), where x represents the table
and the question, and y is the gold answer set. The
approximate reward function R̃ is defined by y,
while E(x) is the set of end states for this instance.
Line 2 finds the best reference and Line 3 finds the
most violated state, both relying on beam search
for approximate inference. Line 4 computes the
gradient of the loss in Eq. (3), which is then used in
backpropagation to update the model parameters.

4 Experiments

Since the questions in SQA are decomposed from
those in WTQ, we compare our method, DynSP, to
two existing semantic parsers designed for WTQ:
(1) the floating parser (FP) of Pasupat and Liang
(2015), and (2) the neural programmer (NP) of Nee-
lakantan et al. (2017). We describe below each
system’s configurations in more detail and qualita-
tively compare and contrast their performance on
SQA.

Floating parser: The floating parser (Pasupat
and Liang, 2015) maps questions to logical forms
and then executes them on the table to retrieve the
answers. It was designed specifically for the WTQ
task (achieving 37.0% accuracy on the WTQ test
set) and differs from other semantic parsers by not
anchoring predicates to tokens in the question, re-
lying instead on typing constraints to reduce the
search space. Using FP as-is results in poor perfor-
mance on SQA because the system is configured
for questions with single answers, while SQA con-
tains many questions with multiple-cell answers.
We address this issue by removing a pruning hyper-
parameter (tooManyValues) and features that add
bias on the denotation size.

Neural programmer: The neural programmer
proposed by Neelakantan et al. (2017) has shown
promising results on WTQ, achieving accuracies
on par with those of FP. Similar to our method, NP
contains specialized neural modules that perform
discrete operations such as argmax and argmin,
and it is able to chain together multiple modules
to answer a single question. However, module se-
lection in NP is computed via soft attention (Cho
et al., 2014), and information is propagated from
one module to the next using a recurrent neural
network. Since module selection is not tied to a
pre-defined parse language like DynSP, NP sim-
ply runs for a fixed number of recurrent timesteps
per question rather than growing a parse until it is
complete.

Comparing the baseline systems: FP and NP
exemplify two very different paradigms for design-
ing a semantic parsing system to answer questions
using structured data. FP is a feature-rich system
that aims to output the correct semantic parse (in
a logical parse language) for a given question. On
the other hand, the end-to-end neural network of
NP relies on its modular architectures to output a
probability distribution over cells in a table given a
question. While NP can learn more powerful neural
matching functions between questions and tables
than FP’s simpler feature-based matching, NP can-
not produce a complete, discrete semantic parse,
which means that its actions can only be interpreted
coarsely by looking at the order of the modules se-
lected at each timestep.6 Furthermore, FP’s design
theoretically allows it to operate on partial tables

6Since NP uses a fixed number of timesteps for each ques-
tion, the module order is not guaranteed to correspond to a
complete parse.

1826

indirectly through an API, which is necessary if
tables are large and stored in a backend database,
while NP requires upfront access to the full tables
to facilitate end-to-end model differentiability.7

Even though FP and NP are powerful systems
designed for the more difficult, compositional ques-
tions in WTQ, our method outperforms both sys-
tems on SQA when we consider all questions
within a sequence independently of each other (a
fair comparison), demonstrating the power of our
search-based semantic parsing framework. More
interestingly, when we leverage the sequential in-
formation by including the subsequent action, our
method improves almost 3% in absolute accuracy.
DynSP combines the best parts of both FP and

NP. Given a question, we try to generate its correct
semantic parse in a formal language that can be
predefined by the choice of structured data source
(e.g., SQL). However, we push the burden of fea-
ture engineering to neural networks as in NP. Our
framework is easier to extend to the sequential set-
ting of SQA than either baseline system, requir-
ing just the additional subsequent action. FP’s
reliance on a hand-designed grammar necessitates
extra rules that operate over partial tables from the
previous question, which if added would blow up
the search space. Meanwhile, modifying NP to han-
dle sequential QA is non-trivial due to soft module
and answer selection; it is not immediately clear
how to constrain predictions for one question based
on the probability distribution over table cells from
the previous question in the sequence.

To more fairly compare DynSP to the baseline
systems, we also experiment with a “concatenated
questions” setting, which allows the baselines to
access sequential context. Here, we treat concate-
nated question prefixes of a sequence as additional
training examples, where a question prefix includes
all questions prior to the current question in the se-
quence.

For example, suppose the question sequence is:
1. what are all of the teams? 2. of those, which won
championships? For the second question, in addi-
tion to the original question–answer pair, we add
the concatenated question sequence “what are all
of the teams? of those, which won championships?”
paired with the second question’s answer. We refer
to these concatenated question baselines as FP+

and NP+.
7In fact, NP is restricted during training to only questions

whose associated tables have fewer than a certain threshold of
rows and columns due to computational constraints.

4.1 DynSP implementation details

Unlike previous dynamic neural network frame-
works (Andreas et al., 2016; Looks et al., 2017),
where each example can have different but prede-
termined structure, DynSP needs to dynamically
explores and constructs different neural network
structures for each question. Therefore, we choose
DyNet (Neubig et al., 2017) as our implementation
platform for its flexibility in composing computa-
tion graphs. We optimize our model parameters
using standard stochastic gradient descent. The
word embeddings are initialized with 100-d pre-
trained GloVe vectors (Pennington et al., 2014) and
fine-tuned during training with dropout rate 0.5.
For follow-up questions, we choose uniformly at
random to use either gold answers to the previous
question or the model’s previous predictions.8 We
constrain the maximum length of actions to 3 for
computational efficiency and set the beam size to
15 in our reported models, as accuracy gains are
negligible with larger beam sizes. We train our
model for 30 epochs, although the best model on
the validation set is usually found within the first
20 epochs. Only CPU is used in model training,
and each epoch in the beam size 15 setting takes
about 30 minutes to complete.

4.2 Results & Analysis

Table 2 shows the results of the baseline systems
as well as our method on SQA’s test set. For each
system, we show both the overall accuracy, the
sequence accuracy (the percentage of sequences
for which every question was answered correctly),
and the accuracy at each position in the sequence.
Our method without any sequential information
(DynSP) outperforms the standard baselines, and
when the subsequent action is added (DynSP∗), we
improve both overall and sequence accuracy over
the concatenated-question baselines.

With that said, all of the systems struggle to
answer all questions within a sequence correctly,
despite the fact that each individual question is
simpler on average than those in WTQ. Most of
the errors made by our system are due to either
semantic matching challenges or limitations of the
underlying parse language. In the middle example
of Figure 3, the first question asks for a list of super
heroes; from the model’s point of view, Real name
is a more relevant column than Character, although
the latter is correct. The second question also con-

8Only predicted answers are used at test time.

1827

Model All Seq Pos 1 Pos 2 Pos 3

FP 34.1 7.2 52.6 25.6 25.9
NP 39.4 10.8 58.9 35.9 24.6

DynSP 42.0 10.2 70.9 35.8 20.1

FP+ 33.2 7.7 51.4 22.2 22.3
NP+ 40.2 11.8 60.0 35.9 25.5

DynSP∗ 44.7 12.8 70.4 41.1 23.6

Table 2: Accuracies of all systems on SQA; the
models in the first half of the table treat questions
independently, while those in the second half con-
sider sequential context. Our method outperforms
existing ones both in terms of overall accuracy as
well as sequence accuracy.

tains a challenging matching problem where the
unlisted home worlds referred to in the question
are marked as Unknown in the table. Many of these
matching issues are resolved by humans using com-
mon sense, which for computers requires far more
data than is available in SQA to learn.

Even when there are no tricky discrepancies be-
tween question and table text, questions are often
complex enough that their semantic parses cannot
be expressed in our parse language. Although triv-
ial on the surface, the final question in the bottom
sequence of Figure 3 is one such example; the cor-
rect semantic parse requires access to the answers
of both the first and second question, actions that
we have not currently implemented in our language
due to concerns with the search space size. In-
creasing the number of complex actions requires
designing smarter optimization procedures, which
we leave to future work.

5 Related Work

Previous work on conversational QA has focused
on small, single-domain datasets. Perhaps most re-
lated to our task is the context-dependent sentence
analysis described in (Zettlemoyer and Collins,
2009), where conversations between customers and
travel agents are mapped to logical forms after re-
solving referential expressions. Another dataset
of travel booking conversations is used by Artzi
and Zettlemoyer (2011) to learn a semantic parser
for complicated queries given user clarifications.
More recently, Long et al. (2016) collect three con-
textual semantic parsing datasets (from synthetic
domains) that contain coreferences to entities and

1. Which nations competed in the FINA women’s water polo cup?

2. Of these nations, which ones took home at least one gold medal?

3. Of those, which ranked in the top 2 positions?

SELECT Nation

SUBSEQUENT WHERE Gold != 0

SUBSEQUENT WHERE Rank <= 2

1. Who are all of the super heroes?

2. Which of those does not have a home world listed?
SELECT

SUBSEQUENT WHERE !=

CharacterReal name

Home world UnknownVyrga

1. How many naturalizations did Maghreb have in 2000?

2. How many naturalizations did North America have in 2000?

3. Which had more?

SELECT 2000

SUBSEQUENT WHERE …Origin = North America

WHERE =…Origin Maghreb

SELECT 2000 WHERE =…Origin North America

MAX SUBSEQUENT 1 SUBSEQUENT 2

SELECT …Origin WHERE 2000 =

Figure 3: Parses computed by DynSP for three test
sequences (actions in blue boxes, values from table
in white boxes). Top: all three questions are parsed
correctly. Middle: semantic matching errors cause
the model to select incorrect columns and condi-
tions. Bottom: The final question is unanswerable
due to limitations of our parse language.

actions. We differentiate ourselves from these prior
works in two significant ways: first, our dataset is
not restricted to a particular domain, and second, a
major goal of our work is to analyze the different
types of sequence progressions people create when
they are trying to express a complicated intent.

Complex, interactive QA tasks have also been
proposed in the information retrieval community,
where the data source is a corpus of newswire
text (Kelly and Lin, 2007). We also build on aspects
of some existing interactive question-answering
systems. For example, the system of Harabagiu
et al. (2005) includes a module that predicts what a
user will ask next given their current question.

Other than FP and NP, the work of Neural
Symbolic Machines (NSM) (Liang et al., 2017)
is perhaps the closest to ours. NSM aims to
generate formal semantic parses of questions
that can be executed on Freebase to retrieve an-
swers, and is trained using the REINFORCE algo-
rithm (Williams, 1992) augmented with approxi-
mate gold parses found in a separate curriculum
learning stage. In comparison, finding reference
parses is an integral part of our algorithm. Our non-

1828

probabilistic, margin-based objective function also
helps avoid the need for empirical tricks to han-
dle normalization and proper sampling, which are
crucial when applying REINFORCE in practice.

6 Conclusion & Future Work

In this work we move towards a conversational,
multi-turn QA scenario in which systems must
rely on prior context to answer the user’s cur-
rent question. To this end, we introduce SQA, a
dataset that consists of 6,066 unique sequences
of inter-related questions about Wikipedia tables,
with 17,553 questions-answer pairs in total. To the
best of our knowledge, SQA is the first semantic
parsing dataset that addresses sequential question
answering. We propose DynSP, a dynamic neu-
ral semantic parsing framework, for solving SQA.
By formulating semantic parsing as a state–action
search problem, our method learns modular neu-
ral network models through reward-guided search.
DynSP outperforms existing state-of-the-art sys-
tems designed for answering complex questions
when applied to SQA, and increases the gain after
incorporating the subsequent actions.

In the future, we plan to investigate several in-
teresting research questions triggered by this work.
For instance, although our current formal language
design covers most question types in SQA, it is
nevertheless important to extend it further to make
the semantic parser more robust (e.g., by includ-
ing UNION or allowing comparison of multiple
previous answers). Practically, allowing a more
complicated semantic parse structure—either by in-
creasing the number of primitive statements or the
length of the parse—poses serious computational
challenges in both model learning and inference.
Because of the dynamic nature of our framework, it
is not trivial to leverage the computational capabili-
ties of GPUs using minibatched training; we plan to
investigate ways to take full advantage of modern
computing machinery in the near future. Finally,
better resolution of semantic matching errors is a
top priority, and unsupervised learning from large
external corpora is one way to make progress in
this direction.

Acknowledgments

We thank the anonymous reviewers for their insight-
ful comments. We are also grateful to Panupong Pa-
supat for his help in configuring the floating parser
baseline, and to Arvind Neelakantan for his help

with the neural programmer model.

References
Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and

Dan Klein. 2016. Learning to compose neural net-
works for question answering. In Conference of the
North American Chapter of the Association for Com-
putational Linguistics.

Yoav Artzi and Luke Zettlemoyer. 2011. Bootstrap-
ping semantic parsers from conversations. In Pro-
ceedings of Empirical Methods in Natural Language
Processing.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Fethi Bougares, Holger Schwenk, and Yoshua
Bengio. 2014. Learning phrase representations
using rnn encoder-decoder for statistical machine
translation. In Proceedings of Empirical Methods
in Natural Language Processing.

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and ex-
tracted knowledge bases. In Proceedings of the 20th
ACM SIGKDD international conference on Knowl-
edge discovery and data mining. ACM, pages 1156–
1165.

Stefan L Frank. 2013. Uncertainty reduction as a mea-
sure of cognitive load in sentence comprehension.
Topics in Cognitive Science 5(3).

John Hale. 2006. Uncertainty about the rest of the sen-
tence. Cognitive Science 30(4).

Sanda Harabagiu, Andrew Hickl, John Lehmann, and
Dan Moldovan. 2005. Experiments with interactive
question-answering. In Proceedings of the Associa-
tion for Computational Linguistics.

Diane Kelly and Jimmy Lin. 2007. Overview of the
trec 2006 ciqa task. In ACM SIGIR Forum. ACM,
volume 41, pages 107–116.

Roger Levy. 2008. Expectation-based syntactic com-
prehension. Cognition 106(3).

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D.
Forbus, and Ni Lao. 2017. Neural symbolic ma-
chines: Learning semantic parsers on Freebase with
weak supervision. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, Vancouver, Canada.

Percy Liang. 2016. Learning executable semantic
parsers for natural language understanding. Commu-
nications of the ACM 59(9):68–76.

Reginald Long, Panupong Pasupat, and Percy Liang.
2016. Simpler context-dependent logical forms via
model projections. In Proceedings of the Associa-
tion for Computational Linguistics.

1829

Moshe Looks, Marcello Herreshoff, DeLesley
Hutchins, and Peter Norvig. 2017. Deep learning
with dynamic computation graphs. In Proceed-
ings of the International Conference on Learning
Representations.

Arvind Neelakantan, Quoc Le, Martin Abadi, Andrew
McCallum, and Dario Amodei. 2017. Learning a
natural language interface with neural programmer.
In Proceedings of the International Conference on
Learning Representations.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel Cloth-
iaux, Trevor Cohn, Kevin Duh, Manaal Faruqui,
Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng
Kong, Adhiguna Kuncoro, Gaurav Kumar, Chai-
tanya Malaviya, Paul Michel, Yusuke Oda, Matthew
Richardson, Naomi Saphra, Swabha Swayamdipta,
and Pengcheng Yin. 2017. DyNet: The dy-
namic neural network toolkit. arXiv preprint
arXiv:1701.03980 .

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the Association for Computational
Linguistics.

Haoruo Peng, Ming-Wei Chang, and Wen-tau Yih.
2017. Maximum margin reward networks for
learning from explicit and implicit supervision.
Manuscript Submitted for Publication.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of Empirical Meth-
ods in Natural Language Processing.

Ben Taskar, Carlos Guestrin, and Daphne Koller. 2004.
Max-margin Markov networks. In Proceedings
of Advances in Neural Information Processing Sys-
tems.

Ioannis Tsochantaridis, Thorsten Joachims, Thomas
Hofmann, and Yasemin Altun. 2005. Large mar-
gin methods for structured and interdependent out-
put variables. Journal of machine learning research
6(Sep):1453–1484.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4):229–256.

Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and
Jianfeng Gao. 2015. Semantic parsing via staged
query graph generation: Question answering with
knowledge base. In Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL). pages
1321–1331.

Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-
Wei Chang, and Jina Suh. 2016. The value of se-
mantic parse labeling for knowledge base question
answering. In Annual Meeting of the Association for
Computational Linguistics (ACL). Berlin, Germany,
pages 201–206.

Luke Zettlemoyer and Michael Collins. 2009. Learn-
ing context-dependent mappings from sentences to
logical form. In Proceedings of the Association for
Computational Linguistics.

A Action Neural Module Design

We describe here the neural module design for each
action. As most actions try to match question text
to column names or table entries, the neural net-
work architectures are essentially various kinds of
semantic similarity matching functions.

A1 Select-column Conceptually, the correspond-
ing module is a combination of various matching
scores. Let WQ be the embeddings of words in the
question and WC be the embeddings of words in
the target column name. The component matching
functions are:

fmax =
1

|WC |
∑

wc∈WC

max
wq∈WQ

wT
q wc

favg =


 1

|WC |
∑

wc∈WC

wc




T 
 1

|WQ|
∑

wq∈WQ

wq




Essentially, for each word in the column name,
fmax finds the highest matching question word and
outputs the average score. Conversely, favg simply
uses the average word vectors of the question and
column name and returns their inner product. In
another variant of favg, we replace the question rep-
resentation with the output of a bidirectional LSTM
model. These matching component functions are
combined by a 2-layer feed-forward neural net-
work, which outputs a scalar value as the action
score.

A2 Cond-column Because this action also tries
to find the correct column (but for conditions), we
use the same matching scoring functions as in A1

module. However, a different 2-layer feed-forward
neural network is used to combine the scores, as
well as two binary features that indicate whether
all the cells in this column are numeric values or
not.

A3 Op-Equal This action checks whether a par-
ticular column value matches the question text.
Suppose the average of the word vectors of the
particular cell is wx and the question word vectors
are WQ. Here the matching function is:

fmax = max
wq∈WQ

wTq wx

1830

A4 Op-NotEqual The neural module for this ac-
tion extends the design for A3. It first uses a max
function similar to fmax in A3 to compare the vec-
tor of the negation word “not”, and the question
words. This score is combined with the fmax score
in A3 using a 2-layer feed-forward neural network
as the final module score.

A5-A8 Op-GT, Op-GE, Op-LT, Op-LE The ar-
guments of these comparison operations are ex-
tracted from question in advance. Therefore, the
action modules just need to decide whether such
relations are indeed used in the question. We take a
simple strategy by initialing a special word vector
that tries to capture the semantics of the relation.
Take op-gt, greater than, for example. We use the
average of the vectors of words like more, greater
and larger to initialize the special word vector, de-
noted as wgt. Let warg be the averaged vectors of
words within a [−2,+2] window centered at the
argument in the question. The inner product of wgt
and warg is then used as the scoring function.

A9-A10 Op-ArgMin, Op-ArgMax We handle
ArgMin and ArgMax similarly to the comparison
operations. The difference is that we compare the
special word vector to the averaged vector of all
the question words, instead of a short subsequence
of words.

Subsequent actions The modules in subsequent
actions use basically the same design as their coun-
terparts in the independent question setting. The
main difference is that we extend the question repre-
sentation to words from not just the target question,
but also the question that immediately precedes it.

1831

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1832–1846
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1168

Gated-Attention Readers for Text Comprehension

Bhuwan Dhingra∗ Hanxiao Liu∗ Zhilin Yang
William W. Cohen Ruslan Salakhutdinov

School of Computer Science
Carnegie Mellon University

{bdhingra,hanxiaol,zhiliny,wcohen,rsalakhu}@cs.cmu.edu

Abstract

In this paper we study the problem of an-
swering cloze-style questions over docu-
ments. Our model, the Gated-Attention
(GA) Reader1, integrates a multi-hop ar-
chitecture with a novel attention mecha-
nism, which is based on multiplicative in-
teractions between the query embedding
and the intermediate states of a recurrent
neural network document reader. This
enables the reader to build query-specific
representations of tokens in the document
for accurate answer selection. The GA
Reader obtains state-of-the-art results on
three benchmarks for this task–the CNN &
Daily Mail news stories and the Who Did
What dataset. The effectiveness of multi-
plicative interaction is demonstrated by an
ablation study, and by comparing to alter-
native compositional operators for imple-
menting the gated-attention.

1 Introduction

A recent trend to measure progress towards ma-
chine reading is to test a system’s ability to an-
swer questions about a document it has to com-
prehend. Towards this end, several large-scale
datasets of cloze-style questions over a context
document have been introduced recently, which
allow the training of supervised machine learning
systems (Hermann et al., 2015; Hill et al., 2016;
Onishi et al., 2016). Such datasets can be eas-
ily constructed automatically and the unambigu-
ous nature of their queries provides an objective
benchmark to measure a system’s performance at
text comprehension.

∗BD and HL contributed equally to this work.
1Source code is available on github: https://

github.com/bdhingra/ga-reader

Deep learning models have been shown to out-
perform traditional shallow approaches on text
comprehension tasks (Hermann et al., 2015). The
success of many recent models can be attributed
primarily to two factors: (1) Multi-hop architec-
tures (Weston et al., 2015; Sordoni et al., 2016;
Shen et al., 2016), allow a model to scan the doc-
ument and the question iteratively for multiple
passes. (2) Attention mechanisms, (Chen et al.,
2016; Hermann et al., 2015) borrowed from the
machine translation literature (Bahdanau et al.,
2014), allow the model to focus on appropriate
subparts of the context document. Intuitively, the
multi-hop architecture allows the reader to incre-
mentally refine token representations, and the at-
tention mechanism re-weights different parts in
the document according to their relevance to the
query.

The effectiveness of multi-hop reasoning and
attentions have been explored orthogonally so far
in the literature. In this paper, we focus on com-
bining both in a complementary manner, by de-
signing a novel attention mechanism which gates
the evolving token representations across hops.
More specifically, unlike existing models where
the query attention is applied either token-wise
(Hermann et al., 2015; Kadlec et al., 2016; Chen
et al., 2016; Hill et al., 2016) or sentence-wise
(Weston et al., 2015; Sukhbaatar et al., 2015) to
allow weighted aggregation, the Gated-Attention
(GA) module proposed in this work allows the
query to directly interact with each dimension of
the token embeddings at the semantic-level, and is
applied layer-wise as information filters during the
multi-hop representation learning process. Such a
fine-grained attention enables our model to learn
conditional token representations w.r.t. the given
question, leading to accurate answer selections.

We show in our experiments that the proposed
GA reader, despite its relative simplicity, consis-

1832

https://doi.org/10.18653/v1/P17-1168

tently improves over a variety of strong baselines
on three benchmark datasets . Our key contribu-
tion, the GA module, provides a significant im-
provement for large datasets. Qualitatively, vi-
sualization of the attentions at intermediate lay-
ers of the GA reader shows that in each layer the
GA reader attends to distinct salient aspects of the
query which help in determining the answer.

2 Related Work

The cloze-style QA task involves tuples of the
form (d, q, a, C), where d is a document (context),
q is a query over the contents of d, in which a
phrase is replaced with a placeholder, and a is the
answer to q, which comes from a set of candidates
C. In this work we consider datasets where each
candidate c ∈ C has at least one token which also
appears in the document. The task can then be
described as: given a document-query pair (d, q),
find a ∈ C which answers q. Below we provide an
overview of representative neural network archi-
tectures which have been applied to this problem.

LSTMs with Attention: Several architectures in-
troduced in Hermann et al. (2015) employ LSTM
units to compute a combined document-query rep-
resentation g(d, q), which is used to rank the can-
didate answers. These include the DeepLSTM
Reader which performs a single forward pass
through the concatenated (document, query) pair
to obtain g(d, q); the Attentive Reader which first
computes a document vector d(q) by a weighted
aggregation of words according to attentions based
on q, and then combines d(q) and q to obtain
their joint representation g(d(q), q); and the Im-
patient Reader where the document representa-
tion is built incrementally. The architecture of the
Attentive Reader has been simplified recently in
Stanford Attentive Reader, where shallower re-
current units were used with a bilinear form for the
query-document attention (Chen et al., 2016).

Attention Sum: The Attention-Sum (AS)
Reader (Kadlec et al., 2016) uses two bi-
directional GRU networks (Cho et al., 2015) to
encode both d and q into vectors. A probability
distribution over the entities in d is obtained by
computing dot products between q and the entity
embeddings and taking a softmax. Then, an ag-
gregation scheme named pointer-sum attention is
further applied to sum the probabilities of the same
entity, so that frequent entities the document will
be favored compared to rare ones. Building on the

AS Reader, the Attention-over-Attention (AoA)
Reader (Cui et al., 2017) introduces a two-way
attention mechanism where the query and the doc-
ument are mutually attentive to each other.

Mulit-hop Architectures: Memory Networks
(MemNets) were proposed in Weston et al.
(2015), where each sentence in the document
is encoded to a memory by aggregating nearby
words. Attention over the memory slots given
the query is used to compute an overall memory
and to renew the query representation over multi-
ple iterations, allowing certain types of reasoning
over the salient facts in the memory and the query.
Neural Semantic Encoders (NSE) (Munkhdalai
& Yu, 2017a) extended MemNets by introducing a
write operation which can evolve the memory over
time during the course of reading. Iterative reason-
ing has been found effective in several more recent
models, including the Iterative Attentive Reader
(Sordoni et al., 2016) and ReasoNet (Shen et al.,
2016). The latter allows dynamic reasoning steps
and is trained with reinforcement learning.

Other related works include Dynamic En-
tity Representation network (DER) (Kobayashi
et al., 2016), which builds dynamic representa-
tions of the candidate answers while reading the
document, and accumulates the information about
an entity by max-pooling; EpiReader (Trischler
et al., 2016) consists of two networks, where one
proposes a small set of candidate answers, and the
other reranks the proposed candidates conditioned
on the query and the context; Bi-Directional
Attention Flow network (BiDAF) (Seo et al.,
2017) adopts a multi-stage hierarchical architec-
ture along with a flow-based attention mechanism;
Bajgar et al. (2016) showed a 10% improvement
on the CBT corpus (Hill et al., 2016) by train-
ing the AS Reader on an augmented training set
of about 14 million examples, making a case for
the community to exploit data abundance. The fo-
cus of this paper, however, is on designing models
which exploit the available data efficiently.

3 Gated-Attention Reader

Our proposed GA readers perform multiple hops
over the document (context), similar to the Mem-
ory Networks architecture (Sukhbaatar et al.,
2015). Multi-hop architectures mimic the multi-
step comprehension process of human readers, and
have shown promising results in several recent
models for text comprehension (Sordoni et al.,

1833

2016; Kumar et al., 2016; Shen et al., 2016). The
contextual representations in GA readers, namely
the embeddings of words in the document, are it-
eratively refined across hops until reaching a fi-
nal attention-sum module (Kadlec et al., 2016)
which maps the contextual representations in the
last hop to a probability distribution over candi-
date answers.

The attention mechanism has been introduced
recently to model human focus, leading to signif-
icant improvement in machine translation and im-
age captioning (Bahdanau et al., 2014; Mnih et al.,
2014). In reading comprehension tasks, ideally,
the semantic meanings carried by the contextual
embeddings should be aware of the query across
hops. As an example, human readers are able to
keep the question in mind during multiple passes
of reading, to successively mask away information
irrelevant to the query. However, existing neural
network readers are restricted to either attend to
tokens (Hermann et al., 2015; Chen et al., 2016)
or entire sentences (Weston et al., 2015), with the
assumption that certain sub-parts of the document
are more important than others. In contrast, we
propose a finer-grained model which attends to
components of the semantic representation being
built up by the GRU. The new attention mecha-
nism, called gated-attention, is implemented via
multiplicative interactions between the query and
the contextual embeddings, and is applied per hop
to act as fine-grained information filters during the
multi-step reasoning. The filters weigh individual
components of the vector representation of each
token in the document separately.

The design of gated-attention layers is moti-
vated by the effectiveness of multiplicative inter-
action among vector-space representations, e.g.,
in various types of recurrent units (Hochreiter &
Schmidhuber, 1997; Wu et al., 2016) and in re-
lational learning (Yang et al., 2014; Kiros et al.,
2014). While other types of compositional opera-
tors are possible, such as concatenation or addition
(Mitchell & Lapata, 2008), we find that multipli-
cation has strong empirical performance (section
4.3), where query representations naturally serve
as information filters across hops.

3.1 Model Details

Several components of the model use a Gated Re-
current Unit (GRU) (Cho et al., 2015) which maps
an input sequence X = [x1, x2, . . . , xT] to an

ouput sequence H = [h1, h2, . . . , hT] as follows:

rt = σ(Wrxt + Urht−1 + br),

zt = σ(Wzxt + Uzht−1 + bz),

h̃t = tanh(Whxt + Uh(rt � ht−1) + bh),

ht = (1− zt)� ht−1 + zt � h̃t.

where � denotes the Hadamard product or the
element-wise multiplication. rt and zt are called
the reset and update gates respectively, and h̃t
the candidate output. A Bi-directional GRU (Bi-
GRU) processes the sequence in both forward and
backward directions to produce two sequences
[hf1 , h

f
2 , . . . , h

f
T] and [hb1, h

b
2, . . . , h

b
T], which are

concatenated at the output
←→
GRU(X) = [hf1‖hbT , . . . , hfT ‖hb1] (1)

where
←→
GRU(X) denotes the full output of the

Bi-GRU obtained by concatenating each forward
state hfi and backward state hbT−i+1 at step i given

the inputX . Note
←→
GRU(X) is a matrix in R2nh×T

where nh is the number of hidden units in GRU.
Let X(0) = [x

(0)
1 , x

(0)
2 , . . . x

(0)
|D|] denote the to-

ken embeddings of the document, which are also
inputs at layer 1 for the document reader below,
and Y = [y1, y2, . . . y|Q|] denote the token embed-
dings of the query. Here |D| and |Q| denote the
document and query lengths respectively.

3.1.1 Multi-Hop Architecture
Fig. 1 illustrates the Gated-Attention (GA) reader.
The model reads the document and the query over
K horizontal layers, where layer k receives the
contextual embeddings X(k−1) of the document
from the previous layer. The document embed-
dings are transformed by taking the full output of
a document Bi-GRU (indicated in blue in Fig. 1):

D(k) =
←→
GRU

(k)

D (X(k−1)) (2)

At the same time, a layer-specific query represen-
tation is computed as the full output of a separate
query Bi-GRU (indicated in green in Figure 1):

Q(k) =
←→
GRU

(k)

Q (Y) (3)

Next, Gated-Attention is applied to D(k) and
Q(k) to compute inputs for the next layer X(k).

X(k) = GA(D(k), Q(k)) (4)

where GA is defined in the following subsection.

1834

Figure 1: Gated-Attention Reader. Dashed lines represent dropout connections.

3.1.2 Gated-Attention Module
For brevity, let us drop the superscript k in this
subsection as we are focusing on a particular layer.
For each token di in D, the GA module forms a
token-specific representation of the query q̃i using
soft attention, and then multiplies the query rep-
resentation element-wise with the document token
representation. Specifically, for i = 1, . . . , |D|:

αi = softmax(Q>di) (5)

q̃i = Qαi

xi = di � q̃i (6)

In equation (6) we use the multiplication operator
to model the interactions between di and q̃i. In
the experiments section, we also report results for
other choices of gating functions, including addi-
tion xi = di + q̃i and concatenation xi = di‖q̃i.
3.1.3 Answer Prediction
Let q(K)

` = qf` ‖qbT−`+1 be an intermediate out-
put of the final layer query Bi-GRU at the loca-
tion ` of the cloze token in the query, and D(K) =
←→
GRU

(K)

D (X(K−1)) be the full output of final layer
document Bi-GRU. To obtain the probability that
a particular token in the document answers the
query, we take an inner-product between these
two, and pass through a softmax layer:

s = softmax((q(K)
`)TD(K)) (7)

where vector s defines a probability distribution
over the |D| tokens in the document. The proba-
bility of a particular candidate c ∈ C as being the

answer is then computed by aggregating the prob-
abilities of all document tokens which appear in c
and renormalizing over the candidates:

Pr(c|d, q) ∝
∑

i∈I(c,d)
si (8)

where I(c, d) is the set of positions where a token
in c appears in the document d. This aggregation
operation is the same as the pointer sum attention
applied in the AS Reader (Kadlec et al., 2016).

Finally, the candidate with maximum probabil-
ity is selected as the predicted answer:

a∗ = argmaxc∈C Pr(c|d, q). (9)

During the training phase, model parameters of
GA are updated w.r.t. a cross-entropy loss between
the predicted probabilities and the true answers.

3.1.4 Further Enhancements
Character-level Embeddings: Given a token w
from the document or query, its vector space repre-
sentation is computed as x = L(w)||C(w). L(w)
retrieves the word-embedding forw from a lookup
table L ∈ R|V |×nl , whose rows hold a vector for
each unique token in the vocabulary. We also uti-
lize a character composition model C(w) which
generates an orthographic embedding of the token.
Such embeddings have been previously shown to
be helpful for tasks like Named Entity Recognition
(Yang et al., 2016) and dealing with OOV tokens
at test time (Dhingra et al., 2016). The embedding
C(w) is generated by taking the final outputs zfnc

and zbnc
of a Bi-GRU applied to embeddings from

1835

a lookup table of characters in the token, and ap-
plying a linear transformation:

z = zfnc
||zbnc

C(w) =Wz + b

Question Evidence Common Word Feature (qe-
comm): Li et al. (2016) recently proposed a sim-
ple token level indicator feature which signifi-
cantly boosts reading comprehension performance
in some cases. For each token in the document we
construct a one-hot vector fi ∈ {0, 1}2 indicating
its presence in the query. It can be incorporated
into the GA reader by assigning a feature lookup
table F ∈ RnF×2 (we use nF = 2), taking the
feature embedding ei = fTi F and appending it
to the inputs of the last layer document BiGRU
as, x(K)

i ‖fi for all i. We conducted several ex-
periments both with and without this feature and
observed some interesting trends, which are dis-
cussed below. Henceforth, we refer to this feature
as the qe-comm feature or just feature.

4 Experiments and Results

4.1 Datasets

We evaluate the GA reader on five large-scale
datasets recently proposed in the literature. The
first two, CNN and Daily Mail news stories2 con-
sist of articles from the popular CNN and Daily
Mail websites (Hermann et al., 2015). A query
over each article is formed by removing an en-
tity from the short summary which follows the
article. Further, entities within each article were
anonymized to make the task purely a comprehen-
sion one. N-gram statistics, for instance, com-
puted over the entire corpus are no longer useful
in such an anonymized corpus.

The next two datasets are formed from two dif-
ferent subsets of the Children’s Book Test (CBT)3

(Hill et al., 2016). Documents consist of 20 con-
tiguous sentences from the body of a popular chil-
dren’s book, and queries are formed by deleting a
token from the 21st sentence. We only focus on
subsets where the deleted token is either a com-
mon noun (CN) or named entity (NE) since simple
language models already give human-level perfor-
mance on the other types (cf. (Hill et al., 2016)).

2
https://github.com/deepmind/rc-data

3
http://www.thespermwhale.com/jaseweston/babi/

CBTest.tgz

The final dataset is Who Did What4 (WDW)
(Onishi et al., 2016), constructed from the LDC
English Gigaword newswire corpus. First, article
pairs which appeared around the same time and
with overlapping entities are chosen, and then one
article forms the document and a cloze query is
constructed from the other. Missing tokens are al-
ways person named entities. Questions which are
easily answered by simple baselines are filtered
out, to make the task more challenging. There are
two versions of the training set—a small but fo-
cused “Strict” version and a large but noisy “Re-
laxed” version. We report results on both set-
tings which share the same validation and test sets.
Statistics of all the datasets used in our experi-
ments are summarized in the Appendix (Table 5).

4.2 Performance Comparison

Tables 1 and 3 show a comparison of the perfor-
mance of GA Reader with previously published
results on WDW and CNN, Daily Mail, CBT
datasets respectively. The numbers reported for
GA Reader are for single best models, though
we compare to both ensembles and single models
from prior work. GA Reader-- refers to an earlier
version of the model, unpublished but described
in a preprint, with the following differences—(1)
it does not utilize token-specific attentions within
the GA module, as described in equation (5), (2)
it does not use a character composition model, (3)
it is initialized with word embeddings pretrained
on the corpus itself rather than GloVe. A detailed
analysis of these differences is studied in the next
section. Here we present 4 variants of the latest
GA Reader, using combinations of whether the
qe-comm feature is used (+feature) or not, and
whether the word lookup table L(w) is updated
during training or fixed to its initial value. Other
hyperparameters are listed in Appendix A.

Interestingly, we observe that feature engineer-
ing leads to significant improvements for WDW
and CBT datasets, but not for CNN and Daily Mail
datasets. We note that anonymization of the latter
datasets means that there is already some feature
engineering (it adds hints about whether a token
is an entity), and these are much larger than the
other four. In machine learning it is common to see
the effect of feature engineering diminish with in-
creasing data size. Similarly, fixing the word em-
beddings provides an improvement for the WDW

4
https://tticnlp.github.io/who_did_what/

1836

Table 1: Validation/Test accuracy (%) on WDW dataset for both “Strict”
and “Relaxed” settings. Results with “†” are cf previously published works.

Model Strict Relaxed

Val Test Val Test

Human † – 84 – –

Attentive Reader † – 53 – 55
AS Reader † – 57 – 59
Stanford AR † – 64 – 65
NSE † 66.5 66.2 67.0 66.7

GA-- † – 57 – 60.0
GA (update L(w)) 67.8 67.0 67.0 66.6
GA (fix L(w)) 68.3 68.0 69.6 69.1
GA (+feature, update L(w)) 70.1 69.5 70.9 71.0
GA (+feature, fix L(w)) 71.6 71.2 72.6 72.6

Table 2: Top: Performance of different gating
functions. Bottom: Effect of varying the num-
ber of hops K. Results on WDW without using
the qe-comm feature and with fixed L(w).

Gating Function Accuracy

Val Test

Sum 64.9 64.5
Concatenate 64.4 63.7
Multiply 68.3 68.0

K

1 (AS) † – 57
2 65.6 65.6
3 68.3 68.0
4 68.3 68.2

and CBT, but not for CNN and Daily Mail. This
is not surprising given that the latter datasets are
larger and less prone to overfitting.

Comparing with prior work, on the WDW
dataset the basic version of the GA Reader out-
performs all previously published models when
trained on the Strict setting. By adding the qe-
comm feature the performance increases by 3.2%
and 3.5% on the Strict and Relaxed settings re-
spectively to set a new state of the art on this
dataset. On the CNN and Daily Mail datasets the
GA Reader leads to an improvement of 3.2% and
4.3% respectively over the best previous single
models. They also outperform previous ensem-
ble models, setting a new state of that art for both
datasets. For CBT-NE, GA Reader with the qe-
comm feature outperforms all previous single and
ensemble models except the AS Reader trained on
the much larger BookTest Corpus (Bajgar et al.,
2016). Lastly, on CBT-CN the GA Reader with
the qe-comm feature outperforms all previously
published single models except the NSE, and AS
Reader trained on a larger corpus. For each of the
4 datasets on which GA achieves the top perfor-
mance, we conducted one-sample proportion tests
to test whether GA is significantly better than the
second-best baseline. The p-values are 0.319 for
CNN, <0.00001 for DailyMail, 0.028 for CBT-
NE, and <0.00001 for WDW. In other words,
GA statistically significantly outperforms all other
baselines on 3 out of those 4 datasets at the 5%
significance level. The results could be even more
significant under paired tests, however we did not
have access to the predictions from the baselines.

4.3 GA Reader Analysis

In this section we do an ablation study to see the
effect of Gated Attention. We compare the GA
Reader as described here to a model which is ex-
actly the same in all aspects, except that it passes
document embeddings D(k) in each layer directly
to the inputs of the next layer without using the
GA module. In other words X(k) = D(k) for all
k > 0. This model ends up using only one query
GRU at the output layer for selecting the answer
from the document. We compare these two vari-
ants both with and without the qe-comm feature
on CNN and WDW datasets for three subsets of
the training data - 50%, 75% and 100%. Test set
accuracies for these settings are shown in Figure 2.
On CNN when tested without feature engineering,
we observe that GA provides a significant boost
in performance compared to without GA. When
tested with the feature it still gives an improve-
ment, but the improvement is significant only with
100% training data. On WDW-Strict, which is a
third of the size of CNN, without the feature we
see an improvement when using GA versus with-
out using GA, which becomes significant as the
training set size increases. When tested with the
feature on WDW, for a small data size without GA
does better than with GA, but as the dataset size
increases they become equivalent. We conclude
that GA provides a boost in the absence of feature
engineering, or as the training set size increases.

Next we look at the question of how to gate in-
termediate document reader states from the query,
i.e. what operation to use in equation 6. Table

1837

Table 3: Validation/Test accuracy (%) on CNN, Daily Mail and CBT. Results marked with “†” are cf previously published
works. Results marked with “‡” were obtained by training on a larger training set. Best performance on standard training sets
is in bold, and on larger training sets in italics.

Model CNN Daily Mail CBT-NE CBT-CN

Val Test Val Test Val Test Val Test

Humans (query) † – – – – – 52.0 – 64.4
Humans (context + query) † – – – – – 81.6 – 81.6

LSTMs (context + query) † – – – – 51.2 41.8 62.6 56.0
Deep LSTM Reader † 55.0 57.0 63.3 62.2 – – – –
Attentive Reader † 61.6 63.0 70.5 69.0 – – – –
Impatient Reader † 61.8 63.8 69.0 68.0 – – – –
MemNets † 63.4 66.8 – – 70.4 66.6 64.2 63.0
AS Reader † 68.6 69.5 75.0 73.9 73.8 68.6 68.8 63.4
DER Network † 71.3 72.9 – – – – – –
Stanford AR (relabeling) † 73.8 73.6 77.6 76.6 – – – –
Iterative Attentive Reader † 72.6 73.3 – – 75.2 68.6 72.1 69.2
EpiReader † 73.4 74.0 – – 75.3 69.7 71.5 67.4
AoA Reader † 73.1 74.4 – – 77.8 72.0 72.2 69.4
ReasoNet † 72.9 74.7 77.6 76.6 – – – –
NSE † – – – – 78.2 73.2 74.3 71.9
BiDAF † 76.3 76.9 80.3 79.6 – – – –

MemNets (ensemble) † 66.2 69.4 – – – – – –
AS Reader (ensemble) † 73.9 75.4 78.7 77.7 76.2 71.0 71.1 68.9
Stanford AR (relabeling,ensemble) † 77.2 77.6 80.2 79.2 – – – –
Iterative Attentive Reader (ensemble) † 75.2 76.1 – – 76.9 72.0 74.1 71.0
EpiReader (ensemble) † – – – – 76.6 71.8 73.6 70.6

AS Reader (+BookTest) † ‡ – – – – 80.5 76.2 83.2 80.8
AS Reader (+BookTest,ensemble) † ‡ – – – – 82.3 78.4 85.7 83.7

GA-- 73.0 73.8 76.7 75.7 74.9 69.0 69.0 63.9
GA (update L(w)) 77.9 77.9 81.5 80.9 76.7 70.1 69.8 67.3
GA (fix L(w)) 77.9 77.8 80.4 79.6 77.2 71.4 71.6 68.0
GA (+feature, update L(w)) 77.3 76.9 80.7 80.0 77.2 73.3 73.0 69.8
GA (+feature, fix L(w)) 76.7 77.4 80.0 79.3 78.5 74.9 74.4 70.7

2 (top) shows the performance on WDW dataset
for three common choices – sum (x = d + q),
concatenate (x = d‖q) and multiply (x =
d�q). Empirically we find element-wise multipli-
cation does significantly better than the other two,
which justifies our motivation to “filter” out docu-
ment features which are irrelevant to the query.

At the bottom of Table 2 we show the effect of
varying the number of hops K of the GA Reader
on the final performance. We note that for K = 1,
our model is equivalent to the AS Reader with-
out any GA modules. We see a steep and steady
rise in accuracy as the number of hops is increased
from K = 1 to 3, which remains constant beyond

that. This is a common trend in machine learn-
ing as model complexity is increased, however we
note that a multi-hop architecture is important to
achieve a high performance for this task, and pro-
vide further evidence for this in the next section.

4.4 Ablation Study for Model Components

Table 4 shows accuracy on WDW by removing
one component at a time. The steepest reduc-
tion is observed when we replace pretrained GloVe
vectors with those pretrained on the corpus itself.
GloVe vectors were trained on a large corpus of
about 6 billion tokens (Pennington et al., 2014),
and provide an important source of prior knowl-

1838

Figure 2: Performance in accuracy with and without the Gated-Attention module over different training
sizes. p-values for an exact one-sided Mcnemar’s test are given inside the parentheses for each setting.

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

50%
 (<0.01)

75%
 (<0.01)

100%
 (<0.01)

CNN (w/o qe-comm feature)

No Gating
With Gating

 0.66

 0.68

 0.7

 0.72

 0.74

 0.76

 0.78

50%
 (0.07)

75%
 (0.13)

100%
 (<0.01)

CNN (w qe-comm feature)

No Gating
With Gating

 0.6
 0.61
 0.62
 0.63
 0.64
 0.65
 0.66
 0.67
 0.68
 0.69
 0.7

50%
 (0.28)

75%
 (<0.01)

100%
 (<0.01)

WDW (w/o qe-comm feature)

No Gating
With Gating

 0.6
 0.61
 0.62
 0.63
 0.64
 0.65
 0.66
 0.67
 0.68
 0.69
 0.7

50%
 (<0.01)

75%
 (0.42)

100%
 (0.27)

WDW (w qe-comm feature)

No Gating
With Gating

Table 4: Ablation study on WDW dataset, without using
the qe-comm feature and with fixed L(w). Results marked
with † are cf Onishi et al. (2016).

Model Accuracy

Val Test

GA 68.3 68.0
−char 66.9 66.9
−token-attentions (eq. 5) 65.7 65.0
−glove, +corpus 64.0 62.5

GA--† – 57

edge for the model. Note that the strongest base-
line on WDW, NSE (Munkhdalai & Yu, 2017b),
also uses pretrained GloVe vectors, hence the
comparison is fair in that respect. Next, we ob-
serve a substantial drop when removing token-
specific attentions over the query in the GA mod-
ule, which allow gating individual tokens in the
document only by parts of the query relevant to
that token rather than the overall query representa-
tion. Finally, removing the character embeddings,
which were only used for WDW and CBT, leads
to a reduction of about 1% in the performance.

4.5 Attention Visualization

To gain an insight into the reading process em-
ployed by the model we analyzed the attention dis-
tributions at intermediate layers of the reader. Fig-
ure 3 shows an example from the validation set of
WDW dataset (several more are in the Appendix).
In each figure, the left and middle plots visualize
attention over the query (equation 5) for candi-
dates in the document after layers 1 & 2 respec-
tively. The right plot shows attention over candi-

dates in the document of cloze placeholder (XXX)
in the query at the final layer. The full document,
query and correct answer are shown at the bottom.

A generic pattern observed in these examples
is that in intermediate layers, candidates in the
document (shown along rows) tend to pick out
salient tokens in the query which provide clues
about the cloze, and in the final layer the candi-
date with the highest match with these tokens is
selected as the answer. In Figure 3 there is a high
attention of the correct answer on financial
regulatory standards in the first layer, and
on us president in the second layer. The in-
correct answer, in contrast, only attends to one of
these aspects, and hence receives a lower score in
the final layer despite the n-gram overlap it has
with the cloze token in the query. Importantly, dif-
ferent layers tend to focus on different tokens in
the query, supporting the hypothesis that the multi-
hop architecture of GA Reader is able to combine
distinct pieces of information to answer the query.

5 Conclusion

We presented the Gated-Attention reader for an-
swering cloze-style questions over documents.
The GA reader features a novel multiplicative gat-
ing mechanism, combined with a multi-hop ar-
chitecture. Our model achieves the state-of-the-
art performance on several large-scale benchmark
datasets with more than 4% improvements over
competitive baselines. Our model design is backed
up by an ablation study showing statistically sig-
nificant improvements of using Gated Attention
as information filters. We also showed empiri-
cally that multiplicative gating is superior to addi-

1839

Figure 3: Layer-wise attention visualization of GA Reader trained on WDW-Strict. See text for details.

tion and concatenation operations for implement-
ing gated-attentions, though a theoretical justifica-
tion remains part of future research goals. Anal-
ysis of document and query attentions in interme-
diate layers of the reader further reveals that the
model iteratively attends to different aspects of the
query to arrive at the final answer. In this paper
we have focused on text comprehension, but we
believe that the Gated-Attention mechanism may
benefit other tasks as well where multiple sources
of information interact.

Acknowledgments

This work was funded by NSF under CCF1414030
and Google Research.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473, 2014.

Ondrej Bajgar, Rudolf Kadlec, and Jan Kleindi-
enst. Embracing data abundance: Booktest
dataset for reading comprehension. arXiv preprint
arXiv:1610.00956, 2016.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. A thorough examination of the cnn/daily mail
reading comprehension task. ACL, 2016.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using rnn encoder-decoder for statisti-
cal machine translation. ACL, 2015.

Yiming Cui, Zhipeng Chen, Si Wei, Shijin Wang,
Ting Liu, and Guoping Hu. Attention-over-attention
neural networks for reading comprehension. ACL,
2017.

Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick,
Michael Muehl, and William W Cohen. Tweet2vec:
Character-based distributed representations for so-
cial media. ACL, 2016.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. Teaching machines to
read and comprehend. In Advances in Neural Infor-
mation Processing Systems, pp. 1684–1692, 2015.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. The goldilocks principle: Reading chil-
dren’s books with explicit memory representations.
ICLR, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural computation, 9(8):1735–
1780, 1997.

Rudolf Kadlec, Martin Schmid, Ondrej Bajgar, and Jan
Kleindienst. Text understanding with the attention
sum reader network. ACL, 2016.

Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015.

Ryan Kiros, Richard Zemel, and Ruslan R Salakhutdi-
nov. A multiplicative model for learning distributed
text-based attribute representations. In Advances in
Neural Information Processing Systems, pp. 2348–
2356, 2014.

1840

Sosuke Kobayashi, Ran Tian, Naoaki Okazaki, and
Kentaro Inui. Dynamic entity representations with
max-pooling improves machine reading. In NAACL-
HLT, 2016.

Ankit Kumar, Ozan Irsoy, Jonathan Su, James Brad-
bury, Robert English, Brian Pierce, Peter Ondruska,
Ishaan Gulrajani, and Richard Socher. Ask me any-
thing: Dynamic memory networks for natural lan-
guage processing. ICML, 2016.

Peng Li, Wei Li, Zhengyan He, Xuguang Wang, Ying
Cao, Jie Zhou, and Wei Xu. Dataset and neu-
ral recurrent sequence labeling model for open-
domain factoid question answering. arXiv preprint
arXiv:1607.06275, 2016.

Jeff Mitchell and Mirella Lapata. Vector-based mod-
els of semantic composition. In ACL, pp. 236–244,
2008.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al.
Recurrent models of visual attention. In Advances in
Neural Information Processing Systems, pp. 2204–
2212, 2014.

Tsendsuren Munkhdalai and Hong Yu. Neural seman-
tic encoders. EACL, 2017a.

Tsendsuren Munkhdalai and Hong Yu. Reasoning with
memory augmented neural networks for language
comprehension. ICLR, 2017b.

Takeshi Onishi, Hai Wang, Mohit Bansal, Kevin Gim-
pel, and David McAllester. Who did what: A large-
scale person-centered cloze dataset. EMNLP, 2016.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
On the difficulty of training recurrent neural net-
works. ICML (3), 28:1310–1318, 2013.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pp. 1532–
1543, 2014. URL http://www.aclweb.org/
anthology/D14-1162.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. Bidirectional attention flow
for machine comprehension. ICLR, 2017.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. Reasonet: Learning to stop read-
ing in machine comprehension. arXiv preprint
arXiv:1609.05284, 2016.

Alessandro Sordoni, Phillip Bachman, and Yoshua
Bengio. Iterative alternating neural attention for ma-
chine reading. arXiv preprint arXiv:1606.02245,
2016.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
End-to-end memory networks. In Advances in Neu-
ral Information Processing Systems, pp. 2431–2439,
2015.

Theano Development Team. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688, May
2016. URL http://arxiv.org/abs/1605.
02688.

Adam Trischler, Zheng Ye, Xingdi Yuan, and Kaheer
Suleman. Natural language comprehension with the
epireader. EMNLP, 2016.

Jason Weston, Sumit Chopra, and Antoine Bordes.
Memory networks. ICLR, 2015.

Yuhuai Wu, Saizheng Zhang, Ying Zhang, Yoshua
Bengio, and Ruslan Salakhutdinov. On multiplica-
tive integration with recurrent neural networks. Ad-
vances in Neural Information Processing Systems,
2016.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng
Gao, and Li Deng. Learning multi-relational seman-
tics using neural-embedding models. NIPS Work-
shop on Learning Semantics, 2014.

Zhilin Yang, Ruslan Salakhutdinov, and William Co-
hen. Multi-task cross-lingual sequence tagging from
scratch. arXiv preprint arXiv:1603.06270, 2016.

A Implementation Details

Our model was implemented using the Theano
(Theano Development Team, 2016) and Lasagne5

Python libraries. We used stochastic gradient de-
scent with ADAM updates for optimization, which
combines classical momentum and adaptive gradi-
ents (Kingma & Ba, 2015). The batch size was 32
and the initial learning rate was 5 × 10−4 which
was halved every epoch after the second epoch.
The same setting is applied to all models and
datasets. We also used gradient clipping with a
threshold of 10 to stabilize GRU training (Pascanu
et al., 2013). We set the number of layers K to be
3 for all experiments. The number of hidden units
for the character GRU was set to 50. The remain-
ing two hyperparameters—size of document and
query GRUs, and dropout rate—were tuned on the
validation set, and their optimal values are shown
in Table 6. In general, the optimal GRU size in-
creases and the dropout rate decreases as the cor-
pus size increases.

The word lookup table was initialized with 100d
GloVe vectors6 (Pennington et al., 2014) and OOV
tokens at test time were assigned unique random
vectors. We empirically observed that initializing
with pre-trained embeddings gives higher perfor-
mance compared to random initialization for all

5
https://lasagne.readthedocs.io/en/latest/

6
http://nlp.stanford.edu/projects/glove/

1841

Table 5: Dataset statistics.

CNN Daily Mail CBT-NE CBT-CN WDW-Strict WDW-Relaxed

train 380,298 879,450 108,719 120,769 127,786 185,978
validation 3,924 64,835 2,000 2,000 10,000 10,000

test 3,198 53,182 2,500 2,500 10,000 10,000
vocab 118,497 208,045 53,063 53,185 347,406 308,602

max doc length 2,000 2,000 1,338 1,338 3,085 3,085

Table 6: Hyperparameter settings for each dataset. dim() indicates hidden state size of GRU.

Hyperparameter CNN Daily Mail CBT-NE CBT-CN WDW-Strict WDW-Relaxed

Dropout 0.2 0.1 0.4 0.4 0.3 0.3

dim(
←→
GRU∗) 256 256 128 128 128 128

datasets. Furthermore, for smaller datasets (WDW
and CBT) we found that fixing these embeddings
to their pretrained values led to higher test perfor-
mance, possibly since it avoids overfitting. We do
not use the character composition model for CNN
and Daily Mail, since their entities (and hence can-
didate answers) are anonymized to generic tokens.
For other datasets the character lookup table was
randomly initialized with 25d vectors. All other
parameters were initialized to their default values
as specified in the Lasagne library.

B Attention Plots

1842

Figure 4: Layer-wise attention visualization of GA Reader trained on WDW-Strict. See text for details.

1843

Figure 5: Layer-wise attention visualization of GA Reader trained on WDW-Strict. See text for details.

1844

Figure 6: Layer-wise attention visualization of GA Reader trained on WDW-Strict. See text for details.

1845

Figure 7: Layer-wise attention visualization of GA Reader trained on WDW-Strict. See text for details.

1846

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1847–1856
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1169

Determining Gains Acquired from Word Embedding Quantitatively
Using Discrete Distribution Clustering

Jianbo Ye?, Yanran Li†, Zhaohui Wu‡, James Z. Wang?, Wenjie Li† and Jia Li?
?The Pennsylvania State University, University Park, Pennsylvania

†The Hong Kong Polytechnic University, Hong Kong ‡Microsoft

Abstract

Word embeddings have become widely-
used in document analysis. While a large
number of models for mapping words
to vector spaces have been developed,
it remains undetermined how much net
gain can be achieved over traditional
approaches based on bag-of-words. In
this paper, we propose a new document
clustering approach by combining any
word embedding with a state-of-the-art
algorithm for clustering empirical distri-
butions. By using the Wasserstein distance
between distributions, the word-to-word
semantic relationship is taken into account
in a principled way. The new clustering
method is easy to use and consistently
outperforms other methods on a variety
of data sets. More importantly, the
method provides an effective framework
for determining when and how much word
embeddings contribute to document anal-
ysis. Experimental results with multiple
embedding models are reported.

1 Introduction

Word embeddings (a.k.a. word vectors) have been
broadly adopted for document analysis (Mikolov
et al., 2013a,b). The embeddings can be trained
from external large-scale corpus and then easily
utilized for different data. To a certain degree,
the knowledge mined from the corpus, possibly in
very intricate ways, is coded in the vector space,

Correspondence should be sent to J. Ye
(jxy198@psu.edu) and J. Li (jiali@psu.edu).
The work was done when Z. Wu was with Penn State.

the samples of which are easy to describe and
ready for mathematical modeling. Despite the
appeal, researchers will be interested in knowing
how much gain an embedding can bring forth over
the performance achievable by existing bag-of-
words based approaches. Moreover, how can the
gain be quantified? Such a preliminary evaluation
will be carried out before building a sophisticated
pipeline of analysis.

Almost every document analysis model used
in practice is constructed assuming a cer-
tain basic representation—bag-of-words or word
embeddings—for the sake of computational
tractability. For example, after word embed-
ding is done, high-level models in the embedded
space, such as entity representations, similarity
measures, data manifolds, hierarchical structures,
language models, and neural architectures, are
designed for various tasks. In order to invent
or enhance analysis tools, we want to under-
stand precisely the pros and cons of the high-
level models and the underlying representations.
Because the model and the representation are
tightly coupled in an analytical system, it is not
easy to pinpoint where the gain or loss found
in practice comes from. Should the gain be
credited to the mechanism of the model or to the
use of word embeddings? As our experiments
demonstrate, introducing certain assumptions will
make individual methods effective only if certain
constraints are met. We will address this issue
under an unsupervised learning framework.

Our proposed clustering paradigm has several
advantages. Instead of packing the information
of a document into a fixed-length vector for
subsequent analysis, we treat a document more
thoroughly as a distributional entity. In our
approach, the distance between two empirical

1847

https://doi.org/10.18653/v1/P17-1169

nonparametric measures (or discrete distributions)
over the word embedding space is defined as
the Wasserstein metric (a.k.a. the Earth Mover’s
Distance or EMD) (Wan, 2007; Kusner et al.,
2015). Comparing with a vector representation,
an empirical distribution can represent with higher
fidelity a cloud of points such as words in a
document mapped to a certain space. In the
extreme case, the empirical distribution can be set
directly as the cloud of points. In contrast, a vector
representation reduces data significantly, and its
effectiveness relies on the assumption that the
discarded information is irrelevant or nonessential
to later analysis. This simplification itself can
cause degradation in performance, obscuring the
inherent power of the word embedding space.

Our approach is intuitive and robust. In addition
to a high fidelity representation of the data, the
Wasserstein distance takes into account the cross-
term relationship between different words in a
principled fashion. According to the definition,
the distance between two documents A and B
are the minimum cumulative cost that words from
document A need to “travel” to match exactly the
set of words for document B. Here, the travel cost
of a path between two words is their (squared)
Euclidean distance in the word embedding space.
Therefore, how much benefit the Wasserstein
distance brings also depends on how well the word
embedding space captures the semantic difference
between words.

While Wasserstein distance is well suited for
document analysis, a major obstacle of approaches
based on this distance is the computational in-
tensity, especially for the original D2-clustering
method (Li and Wang, 2008). The main technical
hurdle is to compute efficiently the Wasserstein
barycenter, which is itself a discrete distribution,
for a given set of discrete distributions. Thanks
to the recent advances in the algorithms for solv-
ing Wasserstein barycenters (Cuturi and Doucet,
2014; Ye and Li, 2014; Benamou et al., 2015;
Ye et al., 2017), one can now perform document
clustering by directly treating them as empirical
measures over a word embedding space. Although
the computational cost is still higher than the
usual vector-based clustering methods, we believe
that the new clustering approach has reached a
level of efficiency to justify its usage given how
important it is to obtain high-quality clustering of
unstructured text data. For instance, clustering is

a crucial step performed ahead of cross-document
co-reference resolution (Singh et al., 2011), doc-
ument summarization, retrospective events detec-
tion, and opinion mining (Zhai et al., 2011).

1.1 Contributions

Our work has two main contributions. First, we
create a basic tool of document clustering, which
is easy to use and scalable. The new method
leverages the latest numerical toolbox developed
for optimal transport. It achieves state-of-the-
art clustering performance across heterogeneous
text data—an advantage over other methods in
the literature. Second, the method enables us to
quantitatively inspect how well a word-embedding
model can fit the data and how much gain it can
produce over the bag-of-words models.

2 Related Work

In the original D2-clustering framework proposed
by Li and Wang (2008), calculating Wasserstein
barycenter involves solving a large-scale LP prob-
lem at each inner iteration, severely limiting the
scalability and robustness of the framework. Such
high magnitude of computations had prohibited it
from deploying in many real-world applications
until recently. To accelerate the computation of
Wasserstein barycenter, and ultimately to improve
D2-clustering, multiple numerical algorithmic ef-
forts have been made in the recent few years (Cu-
turi and Doucet, 2014; Ye and Li, 2014; Benamou
et al., 2015; Ye et al., 2017).

Although the effectiveness of Wasserstein dis-
tance has been well recognized in the computer
vision and multimedia literature, the property of
Wasserstein barycenter has not been well under-
stood. To our knowledge, there still lacks sys-
tematic study of applying Wasserstein barycenter
and D2-clustering in document analysis with word
embeddings.

A closely related work by Kusner et al. (2015)
connects the Wasserstein distance to the word
embeddings for comparing documents. Our work
differs from theirs in the methodology. We
directly pursue a scalable clustering setting rather
than construct a nearest neighbor graph based on
calculated distances, because the calculation of the
Wasserstein distances of all pairs is too expensive
to be practical. Kusner et al. (2015) used a lower
bound that was less costly to compute in order to
prune unnecessary full distance calculation, but

1848

the scalability of this modified approach is still
limited, an issue to be discussed in Section 4.3. On
the other hand, our approach adopts the framework
similar to the K-means which is of complexity
O(n) per iteration and usually converges within
just tens of iterations. The computation of D2-
clustering, though in its original form was mag-
nitudes heavier than typical document clustering
methods, can now be efficiently carried out with
parallelization and proper implementations (Ye
et al., 2017).

3 The Method

This section introduces the distance, the D2-
clustering technique, the fast computation frame-
work, and how they are used in the proposed
document clustering method.

3.1 Wasserstein Distance
Suppose we represent each document dk consist-
ing mk unique words by a discrete measure or a
discrete distribution, where k = 1, . . . , N with N
being the sample size:

dk =
Xmk

i=1
w

(k)
i �

x
(k)
i

. (1)

Here �x denotes the Dirac measure with support
x, and w

(k)
i � 0 is the “importance weight”

for the i-th word in the k-th document, withPmk
i=1 w

(k)
i = 1. And x

(k)
i 2 Rd, called a

support point, is the semantic embedding vector
of the i-th word. The 2nd-order Wasserstein
distance between two documents d1 and d2 (and
likewise for any document pairs) is defined by the
following LP problem: W 2(d1, d2) :=

min
⇧

P
i,j ⇡i,jkx(1)

i � x
(2)
j k22

s.t.
Pm2

j=1 ⇡i,j = wi, 8i,
Pm1

i=1 ⇡i,j = wj , 8j
⇡i,j � 0, 8i, j ,

(2)
where ⇧ = {⇡i,j} is a m1 ⇥m2 coupling matrix,
and let {Ci,j := kx(1)

i � x
(2)
j k22} be transportation

costs between words. Wasserstein distance is
a true metric (Villani, 2003) for measures, and
its best exact algorithm has a complexity of
O(m3 log m) (Orlin, 1993), if m1 = m2 = m.

3.2 Discrete Distribution (D2-) Clustering
D2-clustering (Li and Wang, 2008) iterates be-
tween the assignment step and centroids updating
step in a similar way as the Lloyd’s K-means.

Suppose we are to find K clusters. The as-
signment step finds each member distribution its
nearest mean from K candidates. The mean of
each cluster is again a discrete distribution with
m support points, denoted by ci, i = 1, . . . , K.
Each mean is iteratively updated to minimize its
total within cluster variation. We can write the D2-
clustering problem as follows: given sample data
{dk}N

k=1, support size of means m, and desired
number of clusters K, D2-clustering solves

min
c1,...,cK

XN

k=1
min

1iK
W 2(dk, ci) , (3)

where c1, . . . , cK are Wasserstein barycenters. At
the core of solving the above formulation is an
optimization method that searches the Wasserstein
barycenters of varying partitions. Therefore,
we concentrate on the following problem. For
each cluster, we reorganize the index of member
distributions from 1, . . . , n. The Wasserstein
barycenter (Agueh and Carlier, 2011; Cuturi and
Doucet, 2014) is by definition the solution of

min
c

Xn

k=1
W 2(dk, c) , (4)

where c =
Pm

i=1 wi�xi . The above Wasserstein
barycenter formulation involves two levels of
optimization: the outer level finding the minimizer
of total variations, and the inner level solving
Wasserstein distances. We remark that in D2-
clustering, we need to solve multiple Wasserstein
barycenters rather than a single one. This consti-
tutes the third level of optimization.

3.3 Modified Bregman ADMM for
Computing Wasserstein Barycenter

The recent modified Bregman alternating direction
method of multiplier (B-ADMM) algorithm (Ye
et al., 2017), motivated by the work by Wang
and Banerjee (2014), is a practical choice for
computing Wasserstein barycenters. We briefly
sketch their algorithmic procedure of this opti-
mization method here for the sake of complete-
ness. To solve for Wasserstein barycenter defined
in Eq. (4), the key procedure of the modified Breg-
man ADMM involves iterative updates of four
block of primal variables: the support points of
c — {xi}m

i=1 (with transportation costs {Ci,j}(k)

for k = 1, . . . , n), the importance weights of c —
{wi}m

i=1, and two sets of split matching variables
— {⇡(k,1)

i,j } and {⇡(k,2)
i,j }, for k = 1, . . . , n, as well

as Lagrangian variables {�(k)
i,j } for k = 1, . . . , n.

1849

In the end, both {⇡(k,1)
i,j } and {⇡(k,2)

i,j } converge
to the matching weight in Eq. (2) with respect
to d(c, dk). The iterative algorithm proceeds as
follows until c converges or a maximum number of
iterations are reached: given constant ⌧ � 10, ⇢ /P

i,j,k C
(k)
i,jPn

k=1 mkm
and round-off tolerance ✏ = 10�10,

those variables are updated in the following order.
Update {xi}m

i=1 and {C
(k)
i,j } in every ⌧ iterations:

xi :=
1

nwi

Xn

k=1

Xmk

j=1
⇡

(k,1)
i,j x

(k)
j , 8i, (5)

C
(k)
i,j := kxi � x

(k)
j k22, 8i, j and k. (6)

Update {⇡(k,1)
i,j } and {⇡(k,2)

i,j }. For each i, j and
k,

⇡
(k,2)
i,j := ⇡

(k,2)
i,j exp

�C

(k)
i,j � �

(k)
i,j

⇢

!
+ ✏ , (7)

⇡
(k,1)
i,j := w

(k)
j ⇡

(k,2)
i,j

.⇣Xm

l=1
⇡

(k,2)
l,j

⌘
, (8)

⇡
(k,1)
i,j := ⇡

(k,1)
i,j exp

⇣
�

(k)
i,j /⇢

⌘
+ ✏ . (9)

Update {wi}m
i=1. For i = 1, . . . , m ,

wi :=

nX

k=1

Pmk
j=1 ⇡

(k,1)
i,jP

i,j ⇡
(k,1)
i,j

, (10)

wi := wi

.⇣Xm

i=1
wi

⌘
. (11)

Update {⇡(k,2)
i,j } and {�(k)

i,j }. For each i, j and k,

⇡
(k,2)
i,j := wi⇡

(k,1)
i,j

.⇣Xmk

l=1
⇡

(k,1)
i,l

⌘
, (12)

�
(k)
i,j := �

(k)
i,j + ⇢

⇣
⇡

(k,1)
i,l � ⇡(k,2)

i,l

⌘
. (13)

Eq. (5)-(13) can all be vectorized as very efficient
numerical routines. In a data parallel implementa-
tion, only Eq. (5) and Eq. (10) (involving

Pn
k=1)

needs to be synchronized. The software package
detailed in (Ye et al., 2017) was used to generate
relevant experiments. We make available our
codes and pre-processed datasets for reproducing
all experiments of our approach.

4 Experimental Results

4.1 Datasets and Evaluation Metrics
We prepare six datasets to conduct a set of ex-
periments. Two short-text datasets are created as
follows. (D1) BBCNews abstract: We concatenate

the title and the first sentence of news posts from
BBCNews dataset1 to create an abstract version.
(D2) Wiki events: Each cluster/class contains a set
of news abstracts on the same story such as “2014
Crimean Crisis” crawled from Wikipedia current
events following (Wu et al., 2015); this dataset
offers more challenges because it has more fine-
grained classes and fewer documents (with shorter
length) per class than the others. It also shows
more realistic nature of applications such as news
event clustering.

We also experiment with two long-text
datasets and two domain-specific text datasets.
(D3) Reuters-21578: We obtain the original
Reuters-21578 text dataset and process as follows:
remove documents with multiple categories,
remove documents with empty body, remove
duplicates, and select documents from the largest
ten categories. Reuters dataset is a highly
unbalanced dataset (the top category has more
than 3,000 documents while the 10-th category
has fewer than 100). This imbalance induces
some extra randomness in comparing the results.
(D4) 20Newsgroups “bydate” version: We obtain
the raw “bydate” version and process them as
follows: remove headers and footers, remove
URLs and Email addresses, delete documents
with less than ten words. 20Newsgroups have
roughly comparable sizes of categories. (D5)
BBCSports. (D6) Ohsumed and Ohsumed-full:
Documents are medical abstracts from the MeSH
categories of the year 1991. Specifically, there are
23 cardiovascular diseases categories.

Evaluating clustering results is known to be
nontrivial. We use the following three sets of
quantitative metrics to assess the quality of clus-
ters by knowing the ground truth categorical labels
of documents: (i) Homogeneity, Completeness,
and V-measure (Rosenberg and Hirschberg, 2007);
(ii) Adjusted Mutual Information (AMI) (Vinh
et al., 2010); and (iii) Adjusted Rand Index
(ARI) (Rand, 1971). For sensitivity analysis,
we use the homogeneity score (Rosenberg and
Hirschberg, 2007) as a projection dimension of
other metrics, creating a 2D plot to visualize the
metrics of a method along different homogeneity
levels. Generally speaking, more clusters leads to
higher homogeneity by chance.

1BBCNews and BBCSport are downloaded from
http://mlg.ucd.ie/datasets/bbc.html

1850

4.2 Methods in Comparison

We examine four categories of methods that
assume a vector-space model for documents, and
compare them to our D2-clustering framework.
When needed, we use K-means++ to obtain
clusters from dimension reduced vectors. To
diminish the randomness brought by K-mean
initialization, we ensemble the clustering results
of 50 repeated runs (Strehl and Ghosh, 2003),
and report the metrics for the ensembled one.
The largest possible vocabulary used, excluding
word embedding based approaches, is composed
of words appearing in at least two documents. On
each dataset, we select the same set of Ks, the
number of clusters, for all methods. Typically,
Ks are chosen around the number of ground truth
categories in logarithmic scale.

We prepare two versions of the TF-IDF vectors
as the unigram model. The ensembled K-means
methods are used to obtain clusters. (1) TF-IDF
vector (Sparck Jones, 1972). (2) TF-IDF-N vector
is found by choosing the most frequent N words
in a corpus, where N 2 {500, 1000, 1500, 2000}.
The difference between the two methods high-
lights the sensitivity issue brought by the size of
chosen vocabulary.

We also compare our approach with the fol-
lowing seven additional baselines. They are
(3) Spectral Clustering (Laplacian), (4) Latent
Semantic Indexing (LSI) (Deerwester et al., 1990),
(5) Locality Preserving Projection (LPP) (He
and Niyogi, 2004; Cai et al., 2005), (6) Non-
negative Matrix Factorization (NMF) (Lee and
Seung, 1999; Xu et al., 2003), (7) Latent Dirichlet
Allocation (LDA) (Blei et al., 2003; Hoffman et al.,
2010), (8) Average of word vectors (AvgDoc),
and (9) Paragraph Vectors (PV) (Le and Mikolov,
2014). Details on their experimental setups and
hyper-parameter search strategies can be found in
the Appendix.

4.3 Runtime

We report the runtime for our approach on two
largest datasets. The experiments regarding other
smaller datasets all terminate within minutes in
a single machine, which we omit due to space
limitation. Like K-means, the runtime by our
approach depends on the number of actual itera-
tions before a termination criterion is met. In the
Newsgroups dataset, with m = 100 and K =
45, the time per iteration is 121 seconds on 48

processors. In Reuters dataset, with m = 100 and
K = 20, the time per iteration is 190 seconds on
24 processors. Each run terminates in around tens
of iterations typically, upon which the percentage
of label changes is less than 0.1%.

Our approach adopts the Elkan’s
algorithm (2003) pruning unnecessary
computations of Wasserstein distance in
assignment steps of K-means. For the Newsgroups
data (with m = 100 and K = 45), our approach
terminates in 36 iterations, and totally computes
12, 162, 717 (⇡ 3.5% ⇥ 186122) distance pairs in
assignment steps, saving 60% (⇡ 1� 12,162,717

36⇥45⇥18612)
distance pairs to calculate in the standard D2-
clustering. In comparison, the clustering
approaches based on K-nearest neighbor (KNN)
graph with the prefetch-and-prune method
of (Kusner et al., 2015) needs substantially
more pairs to compute Wasserstein distance,
meanwhile the speed-ups also suffer from the
curse of dimensionality. Their detailed statistics
are reported in Table 1. Based on the results,
our approach is much more practical as a basic
document clustering tool.

Method EMD counts (%)
Our approach d = 400, K = 10 2.0
Our approach d = 400, K = 40 3.5

KNN d = 400, K = 1 73.9
KNN d = 100, K = 1 53.0
KNN d = 50, K = 1 23.4

Table 1: Percentage of total 186122 Wasserstein
distance pairs needed to compute on the full
Newsgroup dataset. The KNN graph based
on 1st order Wasserstein distance is computed
from the prefetch-and-prune approach according
to (Kusner et al., 2015).

4.4 Results
We now summarize our numerical results.
Regular text datasets. The first four datasets
in Table 2 cover quite general and broad topics.
We consider them to be regular and representative
datasets encountered more frequently in applica-
tions. We report the clustering performances of
the ten methods in Fig. 1, where three different
metrics are plotted against the clustering homo-
geneity. The higher result at the same level of
homogeneity is better, and the ability to achieve
higher homogeneity is also welcomed. Clearly,
D2-clustering is the only method that shows ro-

1851

Figure 1: The quantitative cluster metrics used for performance evaluation of “BBC title and abstract”,
“Wiki events”, “Reuters”, and “Newsgroups” (row-wise, from top to down). Y-axis corresponds to
AMI, ARI, and Completeness, respective (column-wise, from left to right). X-axis corresponds to
Homogeneity for sensitivity analysis.

bustly superior performances among all ten meth-
ods. Specifically, it ranks first in three datasets,
and second in the other one. In comparison,
LDA performs competitively on the “Reuters”
dataset, but is substantially unsuccessful on others.

Meanwhile, LPP performs competitively on the
“Wiki events” and “Newsgroups” datasets, but it
underperforms on the other two. Laplacian, LSI,
and Tfidf-N can achieve comparably performance
if their reduced dimensions are fine tuned, which

1852

Dataset size class length est. #voc.

BBCNews abstr. 2,225 5 26 7,452
Wiki events 1,983 54 22 5,313

Reuters 7,316 10 141 27,792
Newgroups 18,612 20 245 55,970
BBCSports 737 5 345 13,105
Ohsumed 4,340 23 - -

Ohsumed-full⇤ 34,386 23 184 43,895

Table 2: Description of corpus data that have
been used in our experiments. ⇤Ohsumed-full
dataset is used for pre-training word embeddings
only. Ohsumed is a downsampled evaluation set
resulting from removing posts from Ohsumed-full
that belong to multiple categories.

unfortunately is unrealistic in practice. NMF is a
simple and effective method which always gives
stable, though subpar, performance.
Short texts vs. long texts. D2-clustering
performs much more impressively on short texts
(“BBC abstract” and “Wiki events”) than it does
on long texts (“Reuters” and “Newsgroups”). This
outcome is somewhat expected, because the bag-
of-words method suffers from high sparsity for
short texts, and word-embedding based methods
in theory should have an edge here. As shown
in Fig. 1, D2-clustering has indeed outperformed
other non-embedding approaches by a large mar-
gin on short texts (improved by about 40% and
20% respectively). Nevertheless, we find lifting
from word embedding to document clustering is
not without a cost. Neither AvgDoc nor PV
can perform as competitively as D2-clustering
performs on both.
Domain-specific text datasets. We are also
interested in how word embedding can help group
domain-specific texts into clusters. In particu-
lar, does the semantic knowledge “embedded”
in words provides enough clues to discriminate
fine-grained concepts? We report the best AMI
achieved by each method in Table 3. Our
preliminary result indicates state-of-the-art word
embeddings do not provide enough gain here to
exceed the performance of existing methodolo-
gies. On the unchallenging one, the “BBCSport”
dataset, basic bag-of-words approaches (Tfidf and
Tfidf-N) already suffice to discriminate different
sport categories; and on the difficult one, the
“Ohsumed” dataset, D2-clustering only slightly
improves over Tfidf and others, ranking behind

LPP. Meanwhile, we feel the overall quality of
clustering “Ohsumed” texts is quite far from
useful in practice, no matter which method to use.
More discussions will be provided next.

4.5 Sensitivity to Word Embeddings.

We validate the robustness of D2-clustering with
different word embedding models, and we also
show all their results in Fig. 2. As we mentioned,
the effectiveness of Wasserstein document clus-
tering depends on how relevant the utilized word
embeddings are with the tasks. In those general
document clustering tasks, however, word embed-
ding models trained on general corpus perform
robustly well with acceptably small variations.
This outcome reveals our framework as generally
effective and not dependent on a specific word
embedding model. In addition, we also conduct
experiments with word embeddings with smaller
dimensions, at 50 and 100. Their results are not as
good as those we have reported (therefore detailed
numbers are not included due to space limitation).
Inadequate embeddings may not be disastrous.
In addition to our standard running set, we also
used D2-clustering with purely random word
embeddings, meaning each word vector is inde-
pendently sampled from spherical Gaussian at 300
dimension, to see how deficient it can be. Experi-
mental results show that random word embeddings
degrade the performance of D2-clustering, but it
still performs much better than purely random
clustering, and is even consistently better than
LDA. Its performances across different datasets
is highly correlated with the bag-of-words (Tfidf
and Tfidf-N). By comparing a pre-trained word
embedding model to a randomly generated one,
we find that the extra gain is significant (> 10%)
in clustering four of the six datasets. Their detailed
statistics are in Table 4 and Fig. 3.

5 Discussions

Performance advantage. There has been one
immediate observation from these studies, D2-
clustering always outperforms two of its degener-
ated cases, namely Tf-idf and AvgDoc, and three
other popular methods: LDA, NMF, and PV, on all
tasks. Therefore, for document clustering, users
can expect to gain performance improvements by
using our approach.
Clustering sensitivity. From the four 2D plots
in Fig. 1, we notice that the results of Laplacian,

1853

regular dataset domain-specific dataset
BBCNews
abstract

Wik events Reuters Newsgroups BBCSport Ohsumed Avg.

Tfidf-N 0.389 0.448 0.470 0.388 0.883 0.210 0.465
Tfidf 0.376 0.446 0.456 0.417 0.799 0.235 0.455

Laplacian 0.538 0.395 0.448 0.385 0.855 0.223 0.474
LSI 0.454 0.379 0.400 0.398 0.840 0.222 0.448
LPP 0.521 0.462 0.426 0.515 0.859 0.284 0.511

NMF 0.537 0.395 0.438 0.453 0.809 0.226 0.476
LDA 0.151 0.280 0.503 0.288 0.616 0.132 0.328

AvgDoc 0.753 0.312 0.413 0.376 0.504 0.172 0.422
PV 0.428 0.289 0.471 0.275 0.553 0.233 0.375

D2C (Our approach) 0.759 0.545 0.534 0.493 0.812 0.260 0.567

Table 3: Best AMIs (Vinh et al., 2010) of compared methods on different datasets and their averaging.
The best results are marked in bold font for each dataset, the 2nd and 3rd are marked by blue and magenta
colors respectively.

Figure 2: Sensitivity analysis: the clustering performances of D2C under different word embeddings.
Left: Reuters, Right: Newsgroups. An extra evaluation index (CCD (Zhou et al., 2005)) is also used.

ARI AMI V-measure
BBCNews .146 .187 .190

abstract .792+442% .759+306% .762+301%

Wiki events
.194 .369 .463
.277+43% .545+48% .611+32%

Reuters
.498 .524 .588
.515+3% .534+2% .594+1%

Newsgroups
.194 .358 .390
.305+57% .493+38% .499+28%

BBCSport
.755 .740 .760
.801+6% .812+10% .817+8%

Ohsumed
.080 .204 .292
.116+45% .260+27% .349+20%

Table 4: Comparison between random word em-
beddings (upper row) and meaningful pre-trained
word embeddings (lower row), based on their best
ARI, AMI, and V-measures. The improvements
by percentiles are also shown in the subscripts.

LSI and Tfidf-N are rather sensitive to their
extra hyper-parameters. Once the vocabulary

25%
75%

68%
32%

98% 2% 73%
27%

91% 9%
78%

22%

Figure 3: Pie charts of clustering gains in AMI
calculated from our framework. Light region is
by bag-of-words, and dark region is by pre-trained
word embeddings. Six datasets (from left to
right): BBCNews abstract, Wiki events, Reuters,
Newsgroups, BBCSport, and Ohsumed.

set, weight scheme and embeddings of words are
fixed, our framework involves only two additional
hyper-parameters: the number of intended clus-
ters, K, and the selected support size of centroid
distributions, m. We have chosen more than one
m in all related experiments (m = {64, 100}
for long documents, and m = {10, 20} for short
documents). Our empirical experiments show
that the effect of m on different metrics is less

1854

sensitive than the change of K. Results at different
K are plotted for each method (Fig. 1). The
gray dots denote results of multiple runs of D2-
clustering. They are always contracted around the
top-right region of the whole population, revealing
the predictive and robustly supreme performance.
When bag-of-words suffices. Among the results
of “BBCSport” dataset, Tfidf-N shows that by
restricting the vocabulary set into a smaller one
(which may be more relevant to the interest of
tasks), it already can achieve highest cluster-
ing AMI without any other techniques. Other
unsupervised regularization over data is likely
unnecessary, or even degrades the performance
slightly.
Toward better word embeddings. Our ex-
periments on the Ohsumed dataset have been
limited. The result shows that it could be highly
desirable to incorporate certain domain knowledge
to derive more effective vector embeddings of
words and phrases to encode their domain-specific
knowledge, such as jargons that have knowledge
dependencies and hierarchies in educational data
mining, and signal words that capture multi-
dimensional aspects of emotions in sentiment
analysis.

Finally, we report the best AMIs of all methods
on all datasets in Table 3. By looking at each
method and the average of best AMIs over six
datasets, we find our proposed clustering frame-
work often performs competitively and robustly,
which is the only method reaching more than 90%
of the best AMI on each dataset. Furthermore,
this observation holds for varying lengths of doc-
uments and varying difficulty levels of clustering
tasks.

6 Conclusions and Future Work

This paper introduces a nonparametric clustering
framework for document analysis. Its compu-
tational tractability, robustness and supreme per-
formance, as a fundamental tool, are empirically
validated. Its ease of use enables data scientists
to apply it for the pre-screening purpose of
examining word embeddings in a specific task.
Finally, the gains acquired from word embeddings
are quantitatively measured from a nonparametric
unsupervised perspective.

It would also be interesting to investigate sev-
eral possible extensions to the current cluster-
ing work. One direction is to learn a proper

ground distance for word embeddings such that
the final document clustering performance can be
improved with labeled data. The work by (Huang
et al., 2016; Cuturi and Avis, 2014) have partly
touched this goal with an emphasis on document
proximities. A more appealing direction is to
develop problem-driven methods to represent a
document as a distributional entity, taking into
consideration of phrases, sentence structures, and
syntactical characteristics. We believe the frame-
work of Wasserstein distance and D2-clustering
creates room for further investigation on complex
structures and knowledge carried by documents.

Acknowledgments

This material is based upon work supported by
the National Science Foundation under Grant Nos.
ECCS-1462230, DMS-1521092, and Research
Grants Council of Hong Kong under Grant No.
PolyU 152094/14E. The primary computational
infrastructures used were supported by the Foun-
dation under Grant Nos. ACI-0821527 (Cyber-
Star) and ACI-1053575 (XSEDE).

References
Martial Agueh and Guillaume Carlier. 2011. Barycen-

ters in the Wasserstein space. SIAM J. Math.
Analysis 43(2):904–924.

Mikhail Belkin and Partha Niyogi. 2001. Laplacian
eigenmaps and spectral techniques for embedding
and clustering. In Advances in Neural Information
Processing Systems (NIPS). volume 14, pages 585–
591.

Jean-David Benamou, Guillaume Carlier, Marco Cu-
turi, Luca Nenna, and Gabriel Peyré. 2015. It-
erative Bregman projections for regularized trans-
portation problems. SIAM J. Sci. Computing (SJSC)
37(2):A1111–A1138.

David M Blei, Andrew Y Ng, and Michael I Jordan.
2003. Latent dirichlet allocation. J. Machine
Learning Research (JMLR) 3:993–1022.

Deng Cai, Xiaofei He, and Jiawei Han. 2005. Docu-
ment clustering using locality preserving indexing.
Trans. Knowledge and Data Engineering (TKDE)
17(12):1624–1637.

Marco Cuturi and David Avis. 2014. Ground metric
learning. Journal of Machine Learning Research
15(1):533–564.

Marco Cuturi and Arnaud Doucet. 2014. Fast com-
putation of Wasserstein barycenters. In Int. Conf.
Machine Learning (ICML). pages 685–693.

1855

Scott C. Deerwester, Susan T Dumais, Thomas K. Lan-
dauer, George W. Furnas, and Richard A. Harshman.
1990. Indexing by latent semantic analysis. J.
American Soc. Information Science 41(6):391–407.

Charles Elkan. 2003. Using the triangle inequality to
accelerate k-means. In Int. Conf. Machine Learning
(ICML). volume 3, pages 147–153.

Xiaofei He and Partha Niyogi. 2004. Locality preserv-
ing projections. In Advances in Neural Information
Processing Systems (NIPS). MIT, volume 16, page
153.

Matthew Hoffman, Francis R Bach, and David M
Blei. 2010. Online learning for latent Dirichlet
allocation. In Advances in Neural Information
Processing Systems (NIPS). pages 856–864.

Gao Huang, Chuan Guo, Matt J Kusner, Yu Sun, Fei
Sha, and Kilian Q Weinberger. 2016. Supervised
word mover’s distance. In Advances in Neural In-
formation Processing Systems (NIPS). pages 4862–
4870.

Matt J Kusner, Yu Sun, Nicholas N I. Kolkin, and
K Q. Weinberger. 2015. From word embeddings to
document distances. In Int. Conf. Machine Learning
(ICML).

Quoc Le and Tomas Mikolov. 2014. Distributed
representations of sentences and documents. In Int.
Conf. Machine Learning. pages 1188–1196.

Daniel D Lee and H Sebastian Seung. 1999. Learning
the parts of objects by non-negative matrix factor-
ization. Nature 401(6755):788–791.

Jia Li and James Z Wang. 2008. Real-time computer-
ized annotation of pictures. Trans. Pattern Analysis
and Machine Intelligence (PAMI) 30(6):985–1002.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013a. Distributed rep-
resentations of words and phrases and their com-
positionality. In Advances in Neural Information
Processing Systems (NIPS). pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013b. Linguistic regularities in continuous space
word representations. In HLT-NAACL. pages 746–
751.

James B Orlin. 1993. A faster strongly polynomial
minimum cost flow algorithm. Operations research
41(2):338–350.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP). volume 14, pages
1532–1543.

William M Rand. 1971. Objective criteria for the
evaluation of clustering methods. J. American
Statistical Association 66(336):846–850.

Andrew Rosenberg and Julia Hirschberg. 2007. V-
measure: A conditional entropy-based external
cluster evaluation measure. In EMNLP-CoNLL.
volume 7, pages 410–420.

Sameer Singh, Amarnag Subramanya, Fernando
Pereira, and Andrew McCallum. 2011. Large-
scale cross-document coreference using distributed
inference and hierarchical models. In ACL-HLT .
Association for Computational Linguistics, pages
793–803.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval. J.
Documentation 28(1):11–21.

Alexander Strehl and Joydeep Ghosh. 2003. Clus-
ter ensembles—a knowledge reuse framework for
combining multiple partitions. J. Machine Learning
Research (JMLR) 3:583–617.

Cédric Villani. 2003. Topics in optimal transportation.
58. American Mathematical Soc.

Nguyen Xuan Vinh, Julien Epps, and James Bailey.
2010. Information theoretic measures for cluster-
ings comparison: Variants, properties, normaliza-
tion and correction for chance. J. Machine Learning
Research (JMLR) 11:2837–2854.

Xiaojun Wan. 2007. A novel document similarity mea-
sure based on earth movers distance. Information
Sciences 177(18):3718–3730.

Huahua Wang and Arindam Banerjee. 2014. Bregman
alternating direction method of multipliers. In
Advances in Neural Information Processing Systems
(NIPS). pages 2816–2824.

Zhaohui Wu, Chen Liang, and C Lee Giles. 2015.
Storybase: Towards building a knowledge base for
news events. In ACL-IJCNLP 2015. pages 133–138.

Wei Xu, Xin Liu, and Yihong Gong. 2003. Document
clustering based on non-negative matrix factoriza-
tion. In ACM SIGIR Conf. on Research and
Development in Informaion Retrieval. ACM, pages
267–273.

Jianbo Ye and Jia Li. 2014. Scaling up discrete
distribution clustering using admm. In Int. Conf.
Image Processing (ICIP). IEEE, pages 5267–5271.

Jianbo Ye, Panruo Wu, James Z. Wang, and Jia Li.
2017. Fast discrete distribution clustering using
Wasserstein barycenter with sparse support. IEEE
Trans. on Signal Processing (TSP) 65(9):2317–
2332.

Zhongwu Zhai, Bing Liu, Hua Xu, and Peifa Jia. 2011.
Clustering product features for opinion mining. In
Int. Conf. on Web Search and Data Mining (WSDM).
ACM, pages 347–354.

Ding Zhou, Jia Li, and Hongyuan Zha. 2005. A
new mallows distance based metric for comparing
clusterings. In Int. Conf. Machine Learning (ICML).
ACM, pages 1028–1035.

1856

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1857–1869
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1170

Towards a Seamless Integration of Word Senses
into Downstream NLP Applications

Mohammad Taher Pilehvar2, Jose Camacho-Collados1,
Roberto Navigli1 and Nigel Collier2

1Department of Computer Science, Sapienza University of Rome
2Department of Theoretical and Applied Linguistics, University of Cambridge

1{collados,navigli}@di.uniroma1.it
2{mp792,nhc30}@cam.ac.uk

Abstract

Lexical ambiguity can impede NLP sys-
tems from accurate understanding of se-
mantics. Despite its potential benefits, the
integration of sense-level information into
NLP systems has remained understudied.
By incorporating a novel disambiguation
algorithm into a state-of-the-art classifica-
tion model, we create a pipeline to inte-
grate sense-level information into down-
stream NLP applications. We show that
a simple disambiguation of the input text
can lead to consistent performance im-
provement on multiple topic categoriza-
tion and polarity detection datasets, par-
ticularly when the fine granularity of the
underlying sense inventory is reduced and
the document is sufficiently large. Our re-
sults also point to the need for sense rep-
resentation research to focus more on in
vivo evaluations which target the perfor-
mance in downstream NLP applications
rather than artificial benchmarks.

1 Introduction

As a general trend, most current Natural Language
Processing (NLP) systems function at the word
level, i.e. individual words constitute the most
fine-grained meaning-bearing elements of their in-
put. The word level functionality can affect the
performance of these systems in two ways: (1)
it can hamper their efficiency in handling words
that are not encountered frequently during train-
ing, such as multiwords, inflections and deriva-
tions, and (2) it can restrict their semantic under-
standing to the level of words, with all their am-
biguities, and thereby prevent accurate capture of
the intended meanings.

The first issue has recently been alleviated by

techniques that aim to boost the generalisation
power of NLP systems by resorting to sub-word
or character-level information (Ballesteros et al.,
2015; Kim et al., 2016). The second limitation,
however, has not yet been studied sufficiently. A
reasonable way to handle word ambiguity, and
hence to tackle the second issue, is to semantify
the input text: transform it from its surface-level
semantics to the deeper level of word senses, i.e.
their intended meanings. We take a step in this di-
rection by designing a pipeline that enables seam-
less integration of word senses into downstream
NLP applications, while benefiting from knowl-
edge extracted from semantic networks. To this
end, we propose a quick graph-based Word Sense
Disambiguation (WSD) algorithm which allows
high confidence disambiguation of words without
much computation overload on the system. We
evaluate the pipeline in two downstream NLP ap-
plications: polarity detection and topic categoriza-
tion. Specifically, we use a classification model
based on Convolutional Neural Networks which
has been shown to be very effective in various
text classification tasks (Kalchbrenner et al., 2014;
Kim, 2014; Johnson and Zhang, 2015; Tang et al.,
2015; Xiao and Cho, 2016). We show that a simple
disambiguation of input can lead to performance
improvement of a state-of-the-art text classifica-
tion system on multiple datasets, particularly for
long inputs and when the granularity of the sense
inventory is reduced. Our pipeline is quite flexible
and modular, as it permits the integration of differ-
ent WSD and sense representation techniques.

2 Motivation

With the help of an example news article from the
BBC, shown in Figure 1, we highlight some of the
potential deficiencies of word-based models.

1857

https://doi.org/10.18653/v1/P17-1170

Figure 1: Excerpt of a news article from the BBC.

Ambiguity. Language is inherently ambiguous.
For instance, Mercedes, race, Hamilton and For-
mula can refer to several different entities or mean-
ings. Current neural models have managed to
successfully represent complex semantic associ-
ations by effectively analyzing large amounts of
data. However, the word-level functionality of
these systems is still a barrier to the depth of their
natural language understanding. Our proposal is
particularly tailored towards addressing this issue.

Multiword expressions (MWE). MWE are lex-
ical units made up of two or more words which
are idiosyncratic in nature (Sag et al., 2002), e.g,
Lewis Hamilton, Nico Rosberg and Formula 1.
Most existing word-based models ignore the in-
terdependency between MWE’s subunits and treat
them as individual units. Handling MWE has
been a long-standing problem in NLP and has re-
cently received a considerable amount of interest
(Tsvetkov and Wintner, 2014; Salehi et al., 2015).
Our pipeline facilitates this goal.

Co-reference. Co-reference resolution of con-
cepts and entities is not explicitly tackled by our
approach. However, thanks to the fact that words
that refer to the same meaning in context, e.g., For-
mula 1-F1 or German Grand Prix-German GP-
Hockenheim, are all disambiguated to the same
concept, the co-reference issue is also partly ad-
dressed by our pipeline.

3 Disambiguation Algorithm

Our proposal relies on a seamless integration of
word senses in word-based systems. The goal is
to semantify the text prior to its being fed into the
system by transforming its individual units from
word surface form to the deeper level of word
senses. The semantification step is mainly tailored

Algorithm 1 Disambiguation algorithm
Input: Input text T and semantic network N
Output: Set of disambiguated senses Ŝ
1: Graph representation of T : (S,E)← getGraph(T,N)

2: Ŝ ← ∅
3: for each iteration i ∈ {1, ..., len(T)}
4: ŝ = argmaxs∈S |{(s, s′) ∈ E : s′ ∈ S}|
5: maxDeg = |{(ŝ, s′) ∈ E : s′ ∈ S}|
6: if maxDeg < θ|S| / 100 then
7: break
8: else
9: Ŝ ← Ŝ ∪ {ŝ}

10: E ← E \ {(s, s′) : s ∨ s′ ∈ getLex(ŝ)}
11: return Disambiguation output Ŝ

towards resolving ambiguities, but it brings about
other advantages mentioned in the previous sec-
tion. The aim is to provide the system with an
input of reduced ambiguity which can facilitate its
decision making.

To this end, we developed a simple graph-based
joint disambiguation and entity linking algorithm
which can take any arbitrary semantic network
as input. The gist of our disambiguation tech-
nique lies in its speed and scalability. Conven-
tional knowledge-based disambiguation systems
(Hoffart et al., 2012; Agirre et al., 2014; Moro
et al., 2014; Ling et al., 2015; Pilehvar and Nav-
igli, 2014) often rely on computationally expen-
sive graph algorithms, which limits their applica-
tion to on-the-fly processing of large number of
text documents, as is the case in our experiments.
Moreover, unlike supervised WSD and entity link-
ing techniques (Zhong and Ng, 2010; Cheng and
Roth, 2013; Melamud et al., 2016; Limsopatham
and Collier, 2016), our algorithm relies only on
semantic networks and does not require any sense-
annotated data, which is limited to English and al-
most non-existent for other languages.

Algorithm 1 shows our procedure for disam-
biguating an input document T . First, we retrieve
from our semantic network the list of candidate
senses1 for each content word, as well as seman-
tic relationships among them. As a result, we ob-
tain a graph representation (S,E) of the input text,
where S is the set of candidate senses and E is
the set of edges among different senses in S. The
graph is, in fact, a small sub-graph of the input se-
mantic network,N . Our algorithm then selects the
best candidates iteratively. In each iteration, the

1As defined in the underlying sense inventory, up to tri-
grams. We used Stanford CoreNLP (Manning et al., 2014)
for tokenization, Part-of-Speech (PoS) tagging and lemmati-
zation.

1858

Figure 2: Simplified graph-based representation of
a sample sentence.

candidate sense that has the highest graph degree
maxDeg is chosen as the winning sense:

maxDeg = max
s∈S
|{(s, s′) ∈ E : s′ ∈ S}| (1)

After each iteration, when a candidate sense ŝ
is selected, all the possible candidate senses of the
corresponding word (i.e. getLex(ŝ)) are removed
from E (line 10 in the algorithm).

Figure 2 shows a simplified version of the graph
for a sample sentence. The algorithm would dis-
ambiguate the content words in this sentence as
follows. It first associates Oasis with its rock band
sense, since its corresponding node has the high-
est degree, i.e. 3. On the basis of this, the desert
sense of Oasis and its link to the stone sense of
rock are removed from the graph. In the second it-
eration, rock band is disambiguated as music band
given that its degree is 2.2 Finally, Manchester is
associated with its city sense (with a degree of 1).

In order to enable disambiguating at differ-
ent confidence levels, we introduce a threshold θ
which determines the stopping criterion of the al-
gorithm. Iteration continues until the following
condition is fulfilled: maxDeg < θ|S| / 100. This
ensures that the system will only disambiguate
those words for which it has a high confidence and
backs off to the word form otherwise, avoiding the
introduction of unwanted noise in the data for un-
certain cases or for word senses that are not de-
fined in the inventory.

2For bigrams and trigrams whose individual words might
also be disambiguated (such as rock and band in rock band),
the longest unit has the highest priority (i.e. rock band).

Figure 3: Text classification model architecture.

4 Classification Model

In our experiments, we use a standard neural net-
work based classification approach which is simi-
lar to the Convolution Neural Network classifier of
Kim (2014) and the pioneering model of Collobert
et al. (2011). Figure 3 depicts the architecture of
the model. The network receives the concatenated
vector representations of the input words, v1:n =
v1⊕v2⊕· · ·⊕vn, and applies (convolves) filters F
on windows of h words, mi = f(F.vi:i+h−1 + b),
where b is a bias term and f() is a non-linear func-
tion, for which we use ReLU (Nair and Hinton,
2010). The convolution transforms the input text
to a feature map m = [m1,m2, . . . ,mn−h+1].
A max pooling operation then selects the most
salient feature m̂ = max{m} for each filter.

In the network of Kim (2014), the pooled fea-
tures are directly passed to a fully connected soft-
max layer whose outputs are class probabilities.
However, we add a recurrent layer before soft-
max in order to enable better capturing of long-
distance dependencies. It has been shown by Xiao
and Cho (2016) that a recurrent layer can replace
multiple layers of convolution and be beneficial,
particularly when the length of input text grows.
Specifically, we use a Long Short-Term Memory
(Hochreiter and Schmidhuber, 1997, LSTM) as
our recurrent layer which was originally proposed
to avoid the vanishing gradient problem and has
proven its abilities in capturing distant dependen-
cies. The LSTM unit computes three gate vectors

1859

(forget, input, and output) as follows:

ft = σ(Wf gt +Uf ht−1 + bf),

it = σ(Wi gt +Ui ht−1 + bi),

ot = σ(Wo gt +Uo ht−1 + bo),

(2)

where W, U, and b are model parameters and
g and h are input and output sequences, respec-
tively. The cell state vector ct is then computed as
ct = ft ct−1 + it tanh(c̃t) where c̃t = Wc gt +
Uc ht−1. Finally, the output sequence is computed
as ht = ot tanh(ct). As for regularization, we
used dropout (Hinton et al., 2012) after the em-
bedding layer.

We perform experiments with two configura-
tions of the embedding layer: (1) Random, initial-
ized randomly and updated during training, and
(2) Pre-trained, initialized by pre-trained repre-
sentations and updated during training. In the fol-
lowing section we describe the pre-trained word
and sense representation used for the initialization
of the second configuration.

4.1 Pre-trained Word and Sense Embeddings
One of the main advantages of neural models
is that they usually represent the input words as
dense vectors. This can significantly boost a
system’s generalisation power and results in im-
proved performance (Zou et al., 2013; Bordes
et al., 2014; Kim, 2014; Weiss et al., 2015, inter-
alia). This feature also enables us to directly plug
in pre-trained sense representations and check
them in a downstream application.

In our experiments we generate a set of sense
embeddings by extending DeConf, a recent tech-
nique with state-of-the-art performance on multi-
ple semantic similarity benchmarks (Pilehvar and
Collier, 2016). We leave the evaluation of other
representations to future work. DeConf gets a
pre-trained set of word embeddings and computes
sense embeddings in the same semantic space. To
this end, the approach exploits the semantic net-
work of WordNet (Miller, 1995), using the Person-
alized PageRank (Haveliwala, 2002) algorithm,
and obtains a set of sense biasing words Bs for
a word sense s. The sense representation of s is
then obtained using the following formula:

v̂(s) =
1

|Bs|

|Bs|∑

i=1

e
−i
δ v(wi), (3)

where δ is a decay parameter and v(wi) is the em-
bedding of wi, i.e. the ith word in the sense bi-

asing list of s, i.e. Bs. We follow Pilehvar and
Collier (2016) and set δ = 5. Finally, the vector
for sense s is calculated as the average of v̂(s) and
the embedding of its corresponding word.

Owing to its reliance on WordNet’s semantic
network, DeConf is limited to generating only
those word senses that are covered by this lexical
resource. We propose to use Wikipedia in order
to expand the vocabulary of the computed word
senses. Wikipedia provides a high coverage of
named entities and domain-specific terms in many
languages, while at the same time also benefiting
from a continuous update by collaborators. More-
over, it can easily be viewed as a sense inventory
where individual articles are word senses arranged
through hyperlinks and redirections.

Camacho-Collados et al. (2016b) proposed
NASARI3, a technique to compute the most salient
words for each Wikipedia page. These salient
words were computed by exploiting the struc-
ture and content of Wikipedia and proved effec-
tive in tasks such as Word Sense Disambiguation
(Tripodi and Pelillo, 2017; Camacho-Collados
et al., 2016a), knowledge-base construction (Li-
eto et al., 2016), domain-adapted hypernym dis-
covery (Espinosa-Anke et al., 2016; Camacho-
Collados and Navigli, 2017) or object recogni-
tion (Young et al., 2016). We view these lists
as biasing words for individual Wikipedia pages,
and then leverage the exponential decay function
(Equation 3) to compute new sense embeddings
in the same semantic space. In order to repre-
sent both WordNet and Wikipedia sense represen-
tations in the same space, we rely on the WordNet-
Wikipedia mapping provided by BabelNet4 (Nav-
igli and Ponzetto, 2012). For the WordNet synsets
which are mapped to Wikipedia pages in Babel-
Net, we average the corresponding Wikipedia-
based and WordNet-based sense embeddings.

4.2 Pre-trained Supersense Embeddings

It has been argued that WordNet sense distinctions
are too fine-grained for many NLP applications
(Hovy et al., 2013). The issue can be tackled by
grouping together similar senses of the same word,
either using automatic clustering techniques (Nav-
igli, 2006; Agirre and Lopez, 2003; Snow et al.,
2007) or with the help of WordNet’s lexicographer

3We downloaded the salient words for Wikipedia pages
(NASARI English lexical vectors, version 3.0) from http://lcl.
uniroma1.it/nasari/

4We used the Java API from http://babelnet.org

1860

files5. Various applications have been shown to
improve upon moving from senses to supersenses
(Rüd et al., 2011; Severyn et al., 2013; Flekova
and Gurevych, 2016). In WordNet’s lexicographer
files there are a total of 44 sense clusters, referred
to as supersenses, for categories such as event, ani-
mal, and quantity. In our experiments we use these
supersenses in order to reduce granularity of our
WordNet and Wikipedia senses. To generate su-
persense embeddings, we simply average the em-
beddings of senses in the corresponding cluster.

5 Evaluation

We evaluated our model on two classification
tasks: topic categorization (Section 5.2) and po-
larity detection (Section 5.3). In the following sec-
tion we present the common experimental setup.

5.1 Experimental setup

Classification model. Throughout all the exper-
iments we used the classification model described
in Section 4. The general architecture of the model
was the same for both tasks, with slight variations
in hyperparameters given the different natures of
the tasks, following the values suggested by Kim
(2014) and Xiao and Cho (2016) for the two tasks.
Hyperparameters were fixed across all configura-
tions in the corresponding tasks. The embedding
layer was fixed to 300 dimensions, irrespective of
the configuration, i.e. Random and Pre-trained.
For both tasks the evaluation was carried out by
10-fold cross-validation unless standard training-
testing splits were available. The disambiguation
threshold θ (cf. Section 3) was tuned on the train-
ing portion of the corresponding data, over seven
values in [0,3] in steps of 0.5.6 We used Keras
(Chollet, 2015) and Theano (Team, 2016) for our
model implementations.

Semantic network. The integration of senses
was carried out as described in Section 3. For
disambiguating with both WordNet and Wikipedia
senses we relied on the joint semantic network of
Wikipedia hyperlinks and WordNet via the map-
ping provided by BabelNet.7

5https://wordnet.princeton.edu/man/lexnames.5WN.html
6We observed that values higher than 3 led to very few dis-

ambiguations. While the best results were generally achieved
in the [1.5,2.5] range, performance differences across thresh-
old values were not statistically significant in most cases.

7For simplicity we refer to this joint sense inventory as
Wikipedia, but note that WordNet senses are also covered.

Pre-trained word and sense embeddings.
Throughout all the experiments we used
Word2vec (Mikolov et al., 2013) embeddings,
trained on the Google News corpus.8 We trun-
cated this set to its 250K most frequent words.
We also used WordNet 3.0 (Fellbaum, 1998)
and the Wikipedia dump of November 2014 to
compute the sense embeddings (see Section 4.1).
As a result, we obtained a set of 757,262 sense
embeddings in the same space as the pre-trained
Word2vec word embeddings. We used DeConf
(Pilehvar and Collier, 2016) as our pre-trained
WordNet sense embeddings. All vectors had a
fixed dimensionality of 300.

Supersenses. In addition to WordNet senses, we
experimented with supersenses (see Section 4.2)
to check how reducing granularity would affect
system performance. For obtaining supersenses
in a given text we relied on our disambiguation
pipeline and simply clustered together senses be-
longing to the same WordNet supersense.

Evaluation measures. We report the results in
terms of standard accuracy and F1 measures.9

5.2 Topic Categorization

The task of topic categorization consists of assign-
ing a label (i.e. topic) to a given document from a
pre-defined set of labels.

5.2.1 Datasets

For this task we used two newswire and one med-
ical topic categorization datasets. Table 1 sum-
marizes the statistics of each dataset.10 The BBC
news dataset11 (Greene and Cunningham, 2006)
comprises news articles taken from BBC, divided
into five topics: business, entertainment, politics,
sport and tech. Newsgroups (Lang, 1995) is a col-
lection of 11,314 documents for training and 7532
for testing12 divided into six topics: computing,
sport and motor vehicles, science, politics, reli-

8https://code.google.com/archive/p/word2vec/
9Since all models in our experiments provide full cover-

age, accuracy and F1 denote micro- and macro-averaged F1,
respectively (Yang, 1999).

10The coverage of the datasets was computed using the
250K top words in the Google News Word2vec embeddings.

11http://mlg.ucd.ie/datasets/bbc.html
12We used the train-test partition available at http://qwone.

com/∼jason/20Newsgroups/

1861

Dataset Domain No. of classes No. of docs Avg. doc. size Size of vocab. Coverage Evaluation

BBC News 5 2,225 439.5 35,628 87.4% 10 cross valid.
Newsgroups News 6 18,846 394.0 225,046 83.4% Train-Test
Ohsumed Medical 23 23,166 201.2 65,323 79.3% Train-Test

Table 1: Statistics of the topic categorization datasets.

Initialization Input type BBC News Newsgroups Ohsumed
Acc F1 Acc F1 Acc F1

Random

Word 93.0 92.8 87.7 85.6 30.1 20.7

Sense WordNet 93.5 93.3 88.1 86.9 27.2† 18.3
Wikipedia 92.7 92.5 86.7 84.9 29.7 20.9

Supersense WordNet 93.6 93.4 90.1∗ 89.0 31.8∗ 22.0
Wikipedia 94.6∗ 94.4 88.5 85.8 31.1 21.3

Pre-trained

Word 97.6 97.5 91.1 90.6 29.4 20.1

Sense WordNet 97.3 97.1 90.2 88.6 30.2 20.4
Wikipedia 96.3 96.2 89.6† 88.9 32.4 22.3

Supersense WordNet 96.8 96.7 89.6 88.9 29.5 19.9
Wikipedia 96.9 96.9 88.6 87.4 30.6∗ 20.3

Table 2: Classification performance at the word, sense, and supersense levels with random and pre-
trained embedding initialization. We show in bold those settings that improve the word-based model.

gion and sales.13 Finally, Ohsumed14 is a col-
lection of medical abstracts from MEDLINE, an
online medical information database, categorized
according to 23 cardiovascular diseases. For our
experiments we used the partition split of 10,433
documents for training and 12,733 for testing.15

5.2.2 Results
Table 2 shows the results of our classification
model and its variants on the three datasets.16

When the embedding layer is initialized randomly,
the model integrated with word senses consistently
improves over the word-based model, particularly
when the fine-granularity of the underlying sense
inventory is reduced using supersenses (with sta-
tistically significant gains on the three datasets).
This highlights the fact that a simple disambigua-
tion of the input can bring about performance gain
for a state-of-the-art classification system. Also,

13The dataset has 20 fine-grained categories clustered into
six general topics. We used the coarse-grained labels for their
clearer distinction and consistency with BBC topics.

14ftp://medir.ohsu.edu/pub/ohsumed
15http://disi.unitn.it/moschitti/corpora.htm
16Symbols ∗ and † indicate the sense-based model with the

smallest margin to the word-based model whose accuracy is
statistically significant at 0.95 confidence level according to
unpaired t-test (∗ for positive and † for negative change).

the better performance of supersenses suggests
that the sense distinctions of WordNet are too fine-
grained for the topic categorization task. How-
ever, when pre-trained representations are used to
initialize the embedding layer, no improvement is
observed over the word-based model. This can
be attributed to the quality of the representations,
as the model utilizing them was unable to benefit
from the advantage offered by sense distinctions.
Our results suggest that research in sense represen-
tation should put special emphasis on real-world
evaluations on benchmarks for downstream appli-
cations, rather than on artificial tasks such as word
similarity. In fact, research has previously shown
that word similarity might not constitute a reliable
proxy to measure the performance of word embed-
dings in downstream applications (Tsvetkov et al.,
2015; Chiu et al., 2016).

Among the three datasets, Ohsumed proves to
be the most challenging one, mainly for its larger
number of classes (i.e. 23) and its domain-specific
nature (i.e. medicine). Interestingly, unlike for the
other two datasets, the introduction of pre-trained
word embeddings to the system results in reduced
performance on Ohsumed. This suggests that gen-
eral domain embeddings might not be beneficial

1862

in specialized domains, which corroborates previ-
ous findings by Yadav et al. (2017) on a different
task, i.e. entity extraction. This performance drop
may also be due to diachronic issues (Ohsumed
dates back to the 1980s) and low coverage: the
pre-trained Word2vec embeddings cover 79.3% of
the words in Ohsumed (see Table 1), in contrast
to the higher coverage on the newswire datasets,
i.e. Newsgroups (83.4%) and BBC (87.4%). How-
ever, also note that the best overall performance
is attained when our pre-trained Wikipedia sense
embeddings are used. This highlights the effec-
tiveness of Wikipedia in handling domain-specific
entities, thanks to its broad sense inventory.

5.3 Polarity Detection

Polarity detection is the most popular evaluation
framework for sentiment analysis (Dong et al.,
2015). The task is essentially a binary classifica-
tion which determines if the sentiment of a given
sentence or document is negative or positive.

5.3.1 Datasets
For the polarity detection task we used five stan-
dard evaluation datasets. Table 1 summarizes
statistics. PL04 (Pang and Lee, 2004) is a polar-
ity detection dataset composed of full movie re-
views. PL0518 (Pang and Lee, 2005), instead, is
composed of short snippets from movie reviews.
RTC contains critic reviews from Rotten Toma-
toes19, divided into 436,000 training and 2,000
test instances. IMDB (Maas et al., 2011) includes
50,000 movie reviews, split evenly between train-
ing and test. Finally, we used the Stanford Sen-
timent dataset (Socher et al., 2013), which asso-
ciates each review with a value that denotes its
sentiment. To be consistent with the binary classi-
fication of the other datasets, we removed the neu-
tral phrases according to the dataset’s scale (be-
tween 0.4 and 0.6) and considered the reviews
whose values were below 0.4 as negative and
above 0.6 as positive. This resulted in a binary po-
larity dataset of 119,783 phrases. Unlike the previ-
ous four datasets, this dataset does not contain an
even distribution of positive and negative labels.

5.3.2 Results
Table 4 lists accuracy performance of our classi-
fication model and all its variants on five polar-

18Both PL04 and PL05 were downloaded from http://
www.cs.cornell.edu/people/pabo/movie-review-data/

19http://www.rottentomatoes.com

0
10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

−1.5
−1
−0.5

0

0.5

1

1.5

Stanford

PL05

RTC

Ohsumed

IMDB Newsgroups

BBC

PL04

Average document size

A
cc

ur
ac

y
ga

in

Figure 4: Relation between average document size
and performance improvement using Wikipedia
supersenses with random initialization.

ity detection datasets. Results are generally better
than those of Kim (2014), showing that the addi-
tion of the recurrent layer to the model (cf. Section
4) was beneficial. However, interestingly, no con-
sistent performance gain is observed in the polar-
ity detection task, when the model is provided with
disambiguated input, particularly for datasets with
relatively short reviews. We attribute this to the
nature of the task. Firstly, given that words rarely
happen to be ambiguous with respect to their senti-
ment, the semantic sense distinctions provided by
the disambiguation stage do not assist the classifier
in better decision making, and instead introduce
data sparsity. Secondly, since the datasets mostly
contain short texts, e.g., sentences or snippets, the
disambiguation algorithm does not have sufficient
context to make high-confidence judgements, re-
sulting in fewer disambiguations or less reliable
ones. In the following section we perform a more
in-depth analysis of the impact of document size
on the performance of our sense-based models.

5.4 Analysis

Document size. A detailed analysis revealed a
relation between document size (the number of
tokens) and performance gain of our sense-level
model. We show in Figure 4 how these two
vary for our most consistent configuration, i.e.
Wikipedia supersenses, with random initialization.
Interestingly, as a general trend, the performance
gain increases with average document size, irre-

19Stanford is the only unbalanced dataset, but F1 results
were almost identical to accuracy.

1863

Dataset Type No. of docs Avg. doc. size Vocabulary size Coverage Evaluation

RTC Snippets 438,000 23.4 128,056 81.3% Train-Test
IMDB Reviews 50,000 268.8 140,172 82.5% Train-Test
PL05 Snippets 10,662 21.5 19,825 81.3% 10 cross valid.
PL04 Reviews 2,000 762.1 45,077 82.4% 10 cross valid.
Stanford Phrases 119,783 10.0 19,400 81.6% 10 cross valid.

Table 3: Statistics of the polarity detection datasets.

Initialization Input type RTC IMDB PL05 PL04 Stanford

Random

Word 83.6 87.7 77.3 67.9 91.8

Sense WordNet 83.2 87.4 76.6 67.4 91.3

Wikipedia 83.1 88.0 75.9† 67.1 91.0

Supersense WordNet 84.4 88.0 75.9 66.2 91.4†

Wikipedia 83.1 88.4∗ 75.8 69.3∗ 91.0

Pre-trained

Word 85.5 88.3 80.2 72.5 93.1

Sense WordNet 83.4 88.3 79.2 69.7† 92.6

Wikipedia 83.8 87.0† 79.2 73.1 92.3

Supersense WordNet 85.2 88.8 79.5 73.8 92.7†

Wikipedia 84.2 87.9 78.3† 72.6 92.2

Table 4: Accuracy performance on five polarity detection datasets. Given that polarity datasets are
balanced17, we do not report F1 which would have been identical to accuracy.

spective of the classification task. We attribute this
to two main factors:

1. Sparsity: Splitting a word into multiple word
senses can have the negative side effect that
the corresponding training data for that word
is distributed among multiple independent
senses. This reduces the training instances
per word sense, which might affect the classi-
fier’s performance, particularly when senses
are semantically related (in comparison to
fine-grained senses, supersenses address this
issue to some extent).

2. Disambiguation quality: As also mentioned
previously, our disambiguation algorithm re-
quires the input text to be sufficiently large so
as to create a graph with an adequate num-
ber of coherent connections to function ef-
fectively. In fact, for topic categorization, in
which the documents are relatively long, our
algorithm manages to disambiguate a larger
proportion of words in documents with high
confidence. The lower performance of graph-
based disambiguation algorithms on short

texts is a known issue (Moro et al., 2014; Ra-
ganato et al., 2017), the tackling of which re-
mains an area of exploration.

Senses granularity. Our results showed that re-
ducing fine-granularity of sense distinctions can
be beneficial to both tasks, irrespective of the
underlying sense inventory, i.e. WordNet or
Wikipedia, which corroborates previous findings
(Hovy et al., 2013; Flekova and Gurevych, 2016).
This suggests that text classification does not re-
quire fine-grained semantic distinctions. In this
work we used a simple technique based on Word-
Net’s lexicographer files for coarsening senses in
this sense inventory as well as in Wikipedia. We
leave the exploration of this promising area as well
as the evaluation of other granularity reduction
techniques for WordNet (Snow et al., 2007; Bhag-
wani et al., 2013) and Wikipedia (Dandala et al.,
2013) sense inventories to future work.

6 Related Work

The past few years have witnessed a growing re-
search interest in semantic representation, mainly
as a consequence of the word embedding tsunami

1864

(Mikolov et al., 2013; Pennington et al., 2014).
Soon after their introduction, word embeddings
were integrated into different NLP applications,
thanks to the migration of the field to deep learning
and the fact that most deep learning models view
words as dense vectors. The waves of the word
embedding tsunami have also lapped on the shores
of sense representation. Several techniques have
been proposed that either extend word embedding
models to cluster contexts and induce senses, usu-
ally referred to as unsupervised sense represen-
tations (Schütze, 1998; Reisinger and Mooney,
2010; Huang et al., 2012; Neelakantan et al., 2014;
Guo et al., 2014; Tian et al., 2014; Šuster et al.,
2016; Ettinger et al., 2016; Qiu et al., 2016) or
exploit external sense inventories and lexical re-
sources for generating sense representations for
individual meanings of words (Chen et al., 2014;
Johansson and Pina, 2015; Jauhar et al., 2015; Ia-
cobacci et al., 2015; Rothe and Schütze, 2015;
Camacho-Collados et al., 2016b; Mancini et al.,
2016; Pilehvar and Collier, 2016).

However, the integration of sense representa-
tions into deep learning models has not been so
straightforward, and research in this field has of-
ten opted for alternative evaluation benchmarks
such as WSD, or artificial tasks, such as word
similarity. Consequently, the problem of integrat-
ing sense representations into downstream NLP
applications has remained understudied, despite
the potential benefits it can have. Li and Juraf-
sky (2015) proposed a “multi-sense embedding”
pipeline to check the benefit that can be gained
by replacing word embeddings with sense embed-
dings in multiple tasks. With the help of two
simple disambiguation algorithms, unsupervised
sense embeddings were integrated into various
downstream applications, with varying degrees of
success. Given the interdependency of sense rep-
resentation and disambiguation in this model, it is
very difficult to introduce alternative algorithms
into its pipeline, either to benefit from the state
of the art, or to carry out an evaluation. Instead,
our pipeline provides the advantage of being mod-
ular: thanks to its use of disambiguation in the
pre-processing stage and use of sense representa-
tions that are linked to external sense inventories,
different WSD techniques and sense representa-
tions can be easily plugged in and checked. Along
the same lines, Flekova and Gurevych (2016) pro-
posed a technique for learning supersense rep-

resentations, using automatically-annotated cor-
pora. Coupled with a supersense tagger, the rep-
resentations were fed into a neural network clas-
sifier as additional features to the word-based in-
put. Through a set of experiments, Flekova and
Gurevych (2016) showed that the supersense en-
richment can be beneficial to a range of binary
classification tasks. Our proposal is different in
that it focuses directly on the benefits that can
be gained by semantifying the input, i.e. re-
ducing lexical ambiguity in the input text, rather
than assisting the model with additional sources
of knowledge.

7 Conclusion and Future Work

We proposed a pipeline for the integration of sense
level knowledge into a state-of-the-art text classi-
fier. We showed that a simple disambiguation of
the input can lead to consistent performance gain,
particularly for longer documents and when the
granularity of the underlying sense inventory is re-
duced. Our pipeline is modular and can be used
as an in vivo evaluation framework for WSD and
sense representation techniques. We release our
code and data (including pre-trained sense and su-
persense embeddings) at https://pilehvar.github.io/
sensecnn/ to allow further checking of the choice
of hyperparameters and to allow further analy-
sis and comparison. We hope that our work will
foster future research on the integration of sense-
level knowledge into downstream applications. As
future work, we plan to investigate the exten-
sion of the approach to other languages and ap-
plications. Also, given the promising results ob-
served for supersenses, we plan to investigate task-
specific coarsening of sense inventories, particu-
larly Wikipedia, or the use of SentiWordNet (Bac-
cianella et al., 2010), which could be more suitable
for polarity detection.

Acknowledgments

The authors gratefully acknowledge the sup-
port of the MRC grant No. MR/M025160/1
for PheneBank and ERC Consolidator Grant
MOUSSE No. 726487. Jose Camacho-Collados
is supported by a Google Doctoral Fellowship in
Natural Language Processing. Nigel Collier is
supported by EPSRC Grant No. EP/M005089/1.
We thank Jim McManus for his suggestions on the
manuscript and the anonymous reviewers for their
helpful comments.

1865

References
Eneko Agirre, Oier Lopez de Lacalle, and Aitor Soroa.

2014. Random walks for knowledge-based word
sense disambiguation. Computational Linguistics
40(1):57–84.

Eneko Agirre and Oier Lopez. 2003. Clustering Word-
Net word senses. In Proceedings of Recent Ad-
vances in Natural Language Processing. Borovets,
Bulgaria, pages 121–130.

Stefano Baccianella, Andrea Esuli, and Fabrizio Sebas-
tiani. 2010. Sentiwordnet 3.0: An enhanced lexical
resource for sentiment analysis and opinion mining.
In LREC. volume 10, pages 2200–2204.

Miguel Ballesteros, Chris Dyer, and Noah A Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of EMNLP.

Sumit Bhagwani, Shrutiranjan Satapathy, and Harish
Karnick. 2013. Merging word senses. In Pro-
ceedings of TextGraphs-8 Graph-based Methods for
Natural Language Processing. Seattle, Washington,
USA, pages 11–19.

Antoine Bordes, Sumit Chopra, and Jason Weston.
2014. Question answering with subgraph embed-
dings. In EMNLP.

José Camacho-Collados, Claudio Delli Bovi, Alessan-
dro Raganato, and Roberto Navigli. 2016a. A
Large-Scale Multilingual Disambiguation of
Glosses. In Proceedings of LREC. Portoroz,
Slovenia, pages 1701–1708.

Jose Camacho-Collados and Roberto Navigli. 2017.
BabelDomains: Large-Scale Domain Labeling of
Lexical Resources. In Proceedings of EACL (2). Va-
lencia, Spain.

José Camacho-Collados, Mohammad Taher Pilehvar,
and Roberto Navigli. 2016b. Nasari: Integrating ex-
plicit knowledge and corpus statistics for a multilin-
gual representation of concepts and entities. Artifi-
cial Intelligence 240:36–64.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In Proceedings of EMNLP. Doha,
Qatar, pages 1025–1035.

Xiao Cheng and Dan Roth. 2013. Relational inference
for wikification. In Proceedings of EMNLP. Seattle,
Washington, pages 1787–1796.

Billy Chiu, Anna Korhonen, and Sampo Pyysalo. 2016.
Intrinsic evaluation of word vectors fails to predict
extrinsic performance. In Proceedings of the Work-
shop on Evaluating Vector Space Representations
for NLP, ACL.

Franois Chollet. 2015. Keras. https://github.com/
fchollet/keras.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. J. Mach. Learn. Res. 12:2493–2537.

Bharath Dandala, Chris Hokamp, Rada Mihalcea, and
Razvan C. Bunescu. 2013. Sense clustering us-
ing Wikipedia. In Proceedings of Recent Advances
in Natural Language Processing. Hissar, Bulgaria,
pages 164–171.

Li Dong, Furu Wei, Shujie Liu, Ming Zhou, and
Ke Xu. 2015. A statistical parsing framework for
sentiment classification. Computational Linguistics
41(2):293–336.

Luis Espinosa-Anke, Jose Camacho-Collados, Claudio
Delli Bovi, and Horacio Saggion. 2016. Supervised
distributional hypernym discovery via domain adap-
tation. In Proceedings of EMNLP. pages 424–435.

Allyson Ettinger, Philip Resnik, and Marine Carpuat.
2016. Retrofitting sense-specific word vectors using
parallel text. In Proceedings of NAACL-HLT . San
Diego, California, pages 1378–1383.

Christiane Fellbaum, editor. 1998. WordNet: An Elec-
tronic Database. MIT Press, Cambridge, MA.

Lucie Flekova and Iryna Gurevych. 2016. Supersense
embeddings: A unified model for supersense inter-
pretation, prediction, and utilization. In Proceedings
of ACL.

Derek Greene and Pádraig Cunningham. 2006. Practi-
cal solutions to the problem of diagonal dominance
in kernel document clustering. In Proceedings of the
23rd International conference on Machine learning.
ACM, pages 377–384.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Learning sense-specific word embed-
dings by exploiting bilingual resources. In COL-
ING. pages 497–507.

Taher H. Haveliwala. 2002. Topic-sensitive PageRank.
In Proceedings of the 11th International Conference
on World Wide Web. Hawaii, USA, pages 517–526.

Geoffrey E. Hinton, Nitish Srivastava, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors. CoRR
abs/1207.0580.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Compasutation
9(8):1735–1780.

Johannes Hoffart, Stephan Seufert, Dat Ba Nguyen,
Martin Theobald, and Gerhard Weikum. 2012.
Kore: keyphrase overlap relatedness for entity dis-
ambiguation. In Proceedings of CIKM. pages 545–
554.

1866

Eduard H. Hovy, Roberto Navigli, and Simone Paolo
Ponzetto. 2013. Collaboratively built semi-
structured content and Artificial Intelligence: The
story so far. Artificial Intelligence 194:2–27.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of ACL. Jeju Island, Ko-
rea, pages 873–882.

Ignacio Iacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. Sensembed: Learning sense
embeddings for word and relational similarity. In
Proceedings of ACL. Beijing, China, pages 95–105.

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy.
2015. Ontologically grounded multi-sense repre-
sentation learning for semantic vector space models.
In Proceedings of NAACL. Denver, Colorado, pages
683–693.

Richard Johansson and Luis Nieto Pina. 2015. Embed-
ding a semantic network in a word space. In Pro-
ceedings of NAACL. Denver, Colorado, pages 1428–
1433.

Rie Johnson and Tong Zhang. 2015. Effective use
of word order for text categorization with convolu-
tional neural networks. In Proceedings of NAACL.
Denver, Colorado, pages 103–112.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of ACL. Bal-
timore, USA, pages 655–665.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of EMNLP.
Doha, Qatar, pages 1746–1751.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M Rush. 2016. Character-aware neural language
models. In Proceedings of AAAI. Phoenix, Arizona,
pages 2741–2749.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In Proceedings of the 12th International Con-
ference on Machine Learning. Tahoe City, Califor-
nia, pages 331–339.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Proceedings of EMNLP. Lisbon, Portugal, pages
683–693.

Antonio Lieto, Enrico Mensa, and Daniele P Radicioni.
2016. A resource-driven approach for anchoring lin-
guistic resources to conceptual spaces. In AI* IA
2016 Advances in Artificial Intelligence, Springer,
pages 435–449.

Nut Limsopatham and Nigel Collier. 2016. Normalis-
ing medical concepts in social media texts by learn-
ing semantic representation. In Proceedings of ACL.
Berlin, Germany, pages 1014–1023.

Xiao Ling, Sameer Singh, and Daniel S Weld. 2015.
Design challenges for entity linking. Transactions
of the Association for Computational Linguistics
3:315–328.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analy-
sis. In Proceedings of ACL-HLT . Portland, Oregon,
USA, pages 142–150.

Massimiliano Mancini, José Camacho-Collados,
Ignacio Iacobacci, and Roberto Navigli. 2016.
Embedding words and senses together via
joint knowledge-enhanced training. CoRR
abs/1612.02703. http://arxiv.org/abs/1612.02703.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations.
pages 55–60.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context
embedding with bidirectional lstm. In Proceed-
ings of The 20th SIGNLL Conference on Compu-
tational Natural Language Learning. Berlin, Ger-
many, pages 51–61.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781.

George A Miller. 1995. WordNet: a lexical
database for english. Communications of the ACM
38(11):39–41.

Andrea Moro, Alessandro Raganato, and Roberto Nav-
igli. 2014. Entity Linking meets Word Sense Disam-
biguation: a Unified Approach. Transactions of the
Association for Computational Linguistics (TACL)
2:231–244.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified
linear units improve restricted boltzmann machines.
In Proceedings of the 27th International Conference
on Machine Learning. pages 807–814.

Roberto Navigli. 2006. Meaningful clustering of
senses helps boost Word Sense Disambiguation per-
formance. In Proceedings of the 21st International
Conference on Computational Linguistics and the
44th Annual Meeting of the Association for Compu-
tational Linguistics (COLING-ACL). Sydney, Aus-
tralia, pages 105–112.

Roberto Navigli and Simone Paolo Ponzetto. 2012.
BabelNet: The automatic construction, evaluation
and application of a wide-coverage multilingual se-
mantic network. Artificial Intelligence 193:217–
250.

1867

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of EMNLP.
Doha, Qatar, pages 1059–1069.

Bo Pang and Lillian Lee. 2004. A sentimental educa-
tion: Sentiment analysis using subjectivity summa-
rization based on minimum cuts. In Proceedings of
ACL. Barcelona, Spain, pages 51–61.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploit-
ing class relationships for sentiment categorization
with respect to rating scales. In Proceedings of ACL.
Ann Arbor, Michigan, pages 115–124.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of EMNLP. pages
1532–1543.

Mohammad Taher Pilehvar and Nigel Collier. 2016.
De-conflated semantic representations. In Proceed-
ings of EMNLP. Austin, TX, pages 1680–1690.

Mohammad Taher Pilehvar and Roberto Navigli. 2014.
A large-scale pseudoword-based evaluation frame-
work for state-of-the-art Word Sense Disambigua-
tion. Computational Linguistics 40(4).

Lin Qiu, Kewei Tu, and Yong Yu. 2016. Context-
dependent sense embedding. In Proceedings of
EMNLP. Austin, Texas, pages 183–191.

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017. Word sense disambiguation:
A unified evaluation framework and empirical com-
parison. In Proceedings of EACL. Valencia, Spain,
pages 99–110.

Joseph Reisinger and Raymond J. Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Proceedings of ACL. pages 109–117.

Sascha Rothe and Hinrich Schütze. 2015. Autoex-
tend: Extending word embeddings to embeddings
for synsets and lexemes. In Proceedings of ACL.
Beijing, China, pages 1793–1803.

Stefan Rüd, Massimiliano Ciaramita, Jens Müller, and
Hinrich Schütze. 2011. Piggyback: Using search
engines for robust cross-domain named entity recog-
nition. In Proceedings of ACL-HLT . Portland, Ore-
gon, USA, pages 965–975.

Ivan A Sag, Timothy Baldwin, Francis Bond, Ann
Copestake, and Dan Flickinger. 2002. Multiword
expressions: A pain in the neck for nlp. In Inter-
national Conference on Intelligent Text Processing
and Computational Linguistics. Mexico City, Mex-
ico, pages 1–15.

Bahar Salehi, Paul Cook, and Timothy Baldwin. 2015.
A word embedding approach to predicting the com-
positionality of multiword expressions. In NAACL-
HTL. Denver, Colorado, pages 977–983.

Hinrich Schütze. 1998. Automatic word sense discrim-
ination. Computational linguistics 24(1):97–123.

Aliaksei Severyn, Massimo Nicosia, and Alessandro
Moschitti. 2013. Learning semantic textual similar-
ity with structural representations. In Proceedings
of ACL (2). Sofia, Bulgaria, pages 714–718.

Rion Snow, Sushant Prakash, Daniel Jurafsky, and An-
drew Y. Ng. 2007. Learning to merge word senses.
In Proceedings of EMNLP. Prague, Czech Republic,
pages 1005–1014.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher Manning, Andrew Ng, and
Christopher Potts. 2013. Parsing with compositional
vector grammars. In Proceedings of EMNLP. Sofia,
Bulgaria, pages 455–465.

Simon Šuster, Ivan Titov, and Gertjan van Noord. 2016.
Bilingual learning of multi-sense embeddings with
discrete autoencoders. In Proceedings of NAACL-
HLT . San Diego, California, pages 1346–1356.

Duyu Tang, Bing Qin, and Ting Liu. 2015. Document
modeling with gated recurrent neural network for
sentiment classification. In Porceedings of EMNLP.
Lisbon, Portugal, pages 1422–1432.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints abs/1605.02688.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In COLING. pages 151–160.

Rocco Tripodi and Marcello Pelillo. 2017. A game-
theoretic approach to word sense disambiguation.
Computational Linguistics 43(1):31–70.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guil-
laume Lample, and Chris Dyer. 2015. Evaluation
of word vector representations by subspace align-
ment. In Proceedings of EMNLP (2). Lisbon, Por-
tugal, pages 2049–2054.

Yulia Tsvetkov and Shuly Wintner. 2014. Identifica-
tion of multiword expressions by combining multi-
ple linguistic information sources. Computational
Linguistics 40(2):449–468.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural network
transition-based parsing. In Proceedings of ACL.
Beijing, China, pages 323–333.

Yijun Xiao and Kyunghyun Cho. 2016. Efficient
character-level document classification by com-
bining convolution and recurrent layers. CoRR
abs/1602.00367.

Shweta Yadav, Asif Ekbal, Sriparna Saha, and Pushpak
Bhattacharyya. 2017. Entity extraction in biomedi-
cal corpora: An approach to evaluate word embed-
ding features with pso based feature selection. In

1868

Proceedings of EACL. Valencia, Spain, pages 1159–
1170.

Yiming Yang. 1999. An evaluation of statistical ap-
proaches to text categorization. Information re-
trieval 1(1-2):69–90.

Jay Young, Valerio Basile, Lars Kunze, Elena Cabrio,
and Nick Hawes. 2016. Towards lifelong object
learning by integrating situated robot perception and
semantic web mining. In Proceedings of the Eu-
ropean Conference on Artificial Intelligence confer-
ence. The Hague, Netherland, pages 1458–1466.

Zhi Zhong and Hwee Tou Ng. 2010. It Makes Sense:
A wide-coverage Word Sense Disambiguation sys-
tem for free text. In Proceedings of the ACL System
Demonstrations. Uppsala, Sweden, pages 78–83.

Will Y. Zou, Richard Socher, Daniel M. Cer, and
Christopher D. Manning. 2013. Bilingual word em-
beddings for phrase-based machine translation. In
Proceedings of EMNLP. Seattle, USA, pages 1393–
1398.

1869

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1870–1879
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1171

Reading Wikipedia to Answer Open-Domain Questions

Danqi Chen∗
Computer Science

Stanford University
Stanford, CA 94305, USA

danqi@cs.stanford.edu

Adam Fisch, Jason Weston & Antoine Bordes
Facebook AI Research

770 Broadway
New York, NY 10003, USA

{afisch,jase,abordes}@fb.com

Abstract

This paper proposes to tackle open-
domain question answering using
Wikipedia as the unique knowledge
source: the answer to any factoid question
is a text span in a Wikipedia article.
This task of machine reading at scale
combines the challenges of document re-
trieval (finding the relevant articles) with
that of machine comprehension of text
(identifying the answer spans from those
articles). Our approach combines a search
component based on bigram hashing
and TF-IDF matching with a multi-layer
recurrent neural network model trained to
detect answers in Wikipedia paragraphs.
Our experiments on multiple existing QA
datasets indicate that (1) both modules
are highly competitive with respect to
existing counterparts and (2) multitask
learning using distant supervision on
their combination is an effective complete
system on this challenging task.

1 Introduction

This paper considers the problem of answering
factoid questions in an open-domain setting us-
ing Wikipedia as the unique knowledge source,
such as one does when looking for answers in an
encyclopedia. Wikipedia is a constantly evolv-
ing source of detailed information that could fa-
cilitate intelligent machines — if they are able to
leverage its power. Unlike knowledge bases (KBs)
such as Freebase (Bollacker et al., 2008) or DB-
Pedia (Auer et al., 2007), which are easier for
computers to process but too sparsely populated
for open-domain question answering (Miller et al.,

∗Most of this work was done while DC was with Face-
book AI Research.

2016), Wikipedia contains up-to-date knowledge
that humans are interested in. It is designed, how-
ever, for humans – not machines – to read.

Using Wikipedia articles as the knowledge
source causes the task of question answering (QA)
to combine the challenges of both large-scale
open-domain QA and of machine comprehension
of text. In order to answer any question, one must
first retrieve the few relevant articles among more
than 5 million items, and then scan them care-
fully to identify the answer. We term this setting,
machine reading at scale (MRS). Our work treats
Wikipedia as a collection of articles and does not
rely on its internal graph structure. As a result, our
approach is generic and could be switched to other
collections of documents, books, or even daily up-
dated newspapers.

Large-scale QA systems like IBM’s DeepQA
(Ferrucci et al., 2010) rely on multiple sources
to answer: besides Wikipedia, it is also paired
with KBs, dictionaries, and even news articles,
books, etc. As a result, such systems heavily rely
on information redundancy among the sources to
answer correctly. Having a single knowledge
source forces the model to be very precise while
searching for an answer as the evidence might
appear only once. This challenge thus encour-
ages research in the ability of a machine to read,
a key motivation for the machine comprehen-
sion subfield and the creation of datasets such
as SQuAD (Rajpurkar et al., 2016), CNN/Daily
Mail (Hermann et al., 2015) and CBT (Hill et al.,
2016).

However, those machine comprehension re-
sources typically assume that a short piece of rel-
evant text is already identified and given to the
model, which is not realistic for building an open-
domain QA system. In sharp contrast, methods
that use KBs or information retrieval over docu-
ments have to employ search as an integral part of

1870

https://doi.org/10.18653/v1/P17-1171

the solution. Instead MRS is focused on simul-
taneously maintaining the challenge of machine
comprehension, which requires the deep under-
standing of text, while keeping the realistic con-
straint of searching over a large open resource.

In this paper, we show how multiple existing
QA datasets can be used to evaluate MRS by re-
quiring an open-domain system to perform well on
all of them at once. We develop DrQA, a strong
system for question answering from Wikipedia
composed of: (1) Document Retriever, a mod-
ule using bigram hashing and TF-IDF matching
designed to, given a question, efficiently return
a subset of relevant articles and (2) Document
Reader, a multi-layer recurrent neural network
machine comprehension model trained to detect
answer spans in those few returned documents.
Figure 1 gives an illustration of DrQA.

Our experiments show that Document Retriever
outperforms the built-in Wikipedia search engine
and that Document Reader reaches state-of-the-
art results on the very competitive SQuAD bench-
mark (Rajpurkar et al., 2016). Finally, our full sys-
tem is evaluated using multiple benchmarks. In
particular, we show that performance is improved
across all datasets through the use of multitask
learning and distant supervision compared to sin-
gle task training.

2 Related Work

Open-domain QA was originally defined as find-
ing answers in collections of unstructured docu-
ments, following the setting of the annual TREC
competitions1. With the development of KBs,
many recent innovations have occurred in the con-
text of QA from KBs with the creation of re-
sources like WebQuestions (Berant et al., 2013)
and SimpleQuestions (Bordes et al., 2015) based
on the Freebase KB (Bollacker et al., 2008), or on
automatically extracted KBs, e.g., OpenIE triples
and NELL (Fader et al., 2014). However, KBs
have inherent limitations (incompleteness, fixed
schemas) that motivated researchers to return to
the original setting of answering from raw text.

A second motivation to cast a fresh look at
this problem is that of machine comprehension of
text, i.e., answering questions after reading a short
text or story. That subfield has made consider-
able progress recently thanks to new deep learning
architectures like attention-based and memory-

1http://trec.nist.gov/data/qamain.html

augmented neural networks (Bahdanau et al.,
2015; Weston et al., 2015; Graves et al., 2014) and
release of new training and evaluation datasets like
QuizBowl (Iyyer et al., 2014), CNN/Daily Mail
based on news articles (Hermann et al., 2015),
CBT based on children books (Hill et al., 2016), or
SQuAD (Rajpurkar et al., 2016) and WikiReading
(Hewlett et al., 2016), both based on Wikipedia.
An objective of this paper is to test how such
new methods can perform in an open-domain QA
framework.

QA using Wikipedia as a resource has been ex-
plored previously. Ryu et al. (2014) perform open-
domain QA using a Wikipedia-based knowledge
model. They combine article content with multi-
ple other answer matching modules based on dif-
ferent types of semi-structured knowledge such
as infoboxes, article structure, category structure,
and definitions. Similarly, Ahn et al. (2004) also
combine Wikipedia as a text resource with other
resources, in this case with information retrieval
over other documents. Buscaldi and Rosso (2006)
also mine knowledge from Wikipedia for QA. In-
stead of using it as a resource for seeking answers
to questions, they focus on validating answers re-
turned by their QA system, and use Wikipedia
categories for determining a set of patterns that
should fit with the expected answer. In our work,
we consider the comprehension of text only, and
use Wikipedia text documents as the sole resource
in order to emphasize the task of machine reading
at scale, as described in the introduction.

There are a number of highly developed full
pipeline QA approaches using either the Web, as
does QuASE (Sun et al., 2015), or Wikipedia as a
resource, as do Microsoft’s AskMSR (Brill et al.,
2002), IBM’s DeepQA (Ferrucci et al., 2010) and
YodaQA (Baudiš, 2015; Baudiš and Šedivỳ, 2015)
— the latter of which is open source and hence
reproducible for comparison purposes. AskMSR
is a search-engine based QA system that relies
on “data redundancy rather than sophisticated lin-
guistic analyses of either questions or candidate
answers”, i.e., it does not focus on machine com-
prehension, as we do. DeepQA is a very sophisti-
cated system that relies on both unstructured infor-
mation including text documents as well as struc-
tured data such as KBs, databases and ontologies
to generate candidate answers or vote over evi-
dence. YodaQA is an open source system mod-
eled after DeepQA, similarly combining websites,

1871

Q: How many of Warsaw's inhabitants  
spoke Polish in 1933?

Document
Reader

833,500
Document
Retriever

Open-domain QA  
SQuAD, TREC, WebQuestions, WikiMovies

Figure 1: An overview of our question answering system DrQA.

information extraction, databases and Wikipedia
in particular. Our comprehension task is made
more challenging by only using a single resource.
Comparing against these methods provides a use-
ful datapoint for an “upper bound” benchmark on
performance.

Multitask learning (Caruana, 1998) and task
transfer have a rich history in machine learning
(e.g., using ImageNet in the computer vision com-
munity (Huh et al., 2016)), as well as in NLP
in particular (Collobert and Weston, 2008). Sev-
eral works have attempted to combine multiple
QA training datasets via multitask learning to (i)
achieve improvement across the datasets via task
transfer; and (ii) provide a single general system
capable of asking different kinds of questions due
to the inevitably different data distributions across
the source datasets. Fader et al. (2014) used We-
bQuestions, TREC and WikiAnswers with four
KBs as knowledge sources and reported improve-
ment on the latter two datasets through multi-
task learning. Bordes et al. (2015) combined We-
bQuestions and SimpleQuestions using distant su-
pervision with Freebase as the KB to give slight
improvements on both datasets, although poor per-
formance was reported when training on only one
dataset and testing on the other, showing that task
transfer is indeed a challenging subject; see also
(Kadlec et al., 2016) for a similar conclusion. Our
work follows similar themes, but in the setting of
having to retrieve and then read text documents,

rather than using a KB, with positive results.

3 Our System: DrQA

In the following we describe our system DrQA for
MRS which consists of two components: (1) the
Document Retriever module for finding relevant
articles and (2) a machine comprehension model,
Document Reader, for extracting answers from a
single document or a small collection of docu-
ments.

3.1 Document Retriever

Following classical QA systems, we use an effi-
cient (non-machine learning) document retrieval
system to first narrow our search space and focus
on reading only articles that are likely to be rel-
evant. A simple inverted index lookup followed
by term vector model scoring performs quite well
on this task for many question types, compared to
the built-in ElasticSearch based Wikipedia Search
API (Gormley and Tong, 2015). Articles and ques-
tions are compared as TF-IDF weighted bag-of-
word vectors. We further improve our system by
taking local word order into account with n-gram
features. Our best performing system uses bigram
counts while preserving speed and memory effi-
ciency by using the hashing of (Weinberger et al.,
2009) to map the bigrams to 224 bins with an un-
signed murmur3 hash.

We use Document Retriever as the first part of
our full model, by setting it to return 5 Wikipedia

1872

articles given any question. Those articles are then
processed by Document Reader.

3.2 Document Reader

Our Document Reader model is inspired by the re-
cent success of neural network models on machine
comprehension tasks, in a similar spirit to the At-
tentiveReader described in (Hermann et al., 2015;
Chen et al., 2016).

Given a question q consisting of l tokens
{q1, . . . , ql} and a document or a small set of doc-
uments of n paragraphs where a single paragraph
p consists of m tokens {p1, . . . , pm}, we develop
an RNN model that we apply to each paragraph in
turn and then finally aggregate the predicted an-
swers. Our method works as follows:

Paragraph encoding We first represent all to-
kens pi in a paragraph p as a sequence of feature
vectors p̃i ∈ Rd and pass them as the input to a
recurrent neural network and thus obtain:

{p1, . . . ,pm} = RNN({p̃1, . . . , p̃m}),

where pi is expected to encode useful context
information around token pi. Specifically, we
choose to use a multi-layer bidirectional long
short-term memory network (LSTM), and take pi
as the concatenation of each layer’s hidden units
in the end.

The feature vector p̃i is comprised of the fol-
lowing parts:

• Word embeddings: femb(pi) = E(pi). We
use the 300-dimensional Glove word em-
beddings trained from 840B Web crawl data
(Pennington et al., 2014). We keep most of
the pre-trained word embeddings fixed and
only fine-tune the 1000 most frequent ques-
tion words because the representations of
some key words such as what, how, which,
many could be crucial for QA systems.

• Exact match: fexact match(pi) = I(pi ∈ q).
We use three simple binary features, indicat-
ing whether pi can be exactly matched to one
question word in q, either in its original, low-
ercase or lemma form. These simple features
turn out to be extremely helpful, as we will
show in Section 5.

• Token features:
ftoken(pi) = (POS(pi),NER(pi),TF(pi)).

We also add a few manual features which re-
flect some properties of token pi in its con-
text, which include its part-of-speech (POS)
and named entity recognition (NER) tags and
its (normalized) term frequency (TF).

• Aligned question embedding:
Following (Lee et al., 2016) and other re-
cent works, the last part we incorporate is
an aligned question embedding falign(pi) =∑

j ai,jE(qj), where the attention score ai,j
captures the similarity between pi and each
question words qj . Specifically, ai,j is com-
puted by the dot products between nonlinear
mappings of word embeddings:

ai,j =
exp (α(E(pi)) · α(E(qj)))∑
j′ exp

(
α(E(pi)) · α(E(qj′))

) ,

and α(·) is a single dense layer with ReLU
nonlinearity. Compared to the exact match
features, these features add soft alignments
between similar but non-identical words
(e.g., car and vehicle).

Question encoding The question encoding is
simpler, as we only apply another recurrent neu-
ral network on top of the word embeddings of qi
and combine the resulting hidden units into one
single vector: {q1, . . . ,ql} → q. We compute
q =

∑
j bjqj where bj encodes the importance of

each question word:

bj =
exp(w · qj)∑
j′ exp(w · qj′)

,

and w is a weight vector to learn.

Prediction At the paragraph level, the goal is to
predict the span of tokens that is most likely the
correct answer. We take the the paragraph vectors
{p1, . . . ,pm} and the question vector q as input,
and simply train two classifiers independently for
predicting the two ends of the span. Concretely,
we use a bilinear term to capture the similarity be-
tween pi and q and compute the probabilities of
each token being start and end as:

Pstart(i) ∝ exp (piWsq)

Pend(i) ∝ exp (piWeq)

During prediction, we choose the best span from
token i to token i′ such that i ≤ i′ ≤ i + 15 and
Pstart(i)×Pend(i′) is maximized. To make scores

1873

compatible across paragraphs in one or several re-
trieved documents, we use the unnormalized expo-
nential and take argmax over all considered para-
graph spans for our final prediction.

4 Data

Our work relies on three types of data: (1)
Wikipedia that serves as our knowledge source for
finding answers, (2) the SQuAD dataset which is
our main resource to train Document Reader and
(3) three more QA datasets (CuratedTREC, We-
bQuestions and WikiMovies) that in addition to
SQuAD, are used to test the open-domain QA abil-
ities of our full system, and to evaluate the ability
of our model to learn from multitask learning and
distant supervision. Statistics of the datasets are
given in Table 2.

4.1 Wikipedia (Knowledge Source)
We use the 2016-12-21 dump2 of English
Wikipedia for all of our full-scale experiments as
the knowledge source used to answer questions.
For each page, only the plain text is extracted and
all structured data sections such as lists and fig-
ures are stripped.3 After discarding internal dis-
ambiguation, list, index, and outline pages, we
retain 5,075,182 articles consisting of 9,008,962
unique uncased token types.

4.2 SQuAD
The Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) is a dataset
for machine comprehension based on Wikipedia.
The dataset contains 87k examples for training
and 10k for development, with a large hidden
test set which can only be accessed by the
SQuAD creators. Each example is composed of
a paragraph extracted from a Wikipedia article
and an associated human-generated question. The
answer is always a span from this paragraph and
a model is given credit if its predicted answer
matches it. Two evaluation metrics are used: exact
string match (EM) and F1 score, which measures
the weighted average of precision and recall at the
token level.

In the following, we use SQuAD for training
and evaluating our Document Reader for the stan-
dard machine comprehension task given the rel-

2https://dumps.wikimedia.org/enwiki/
latest

3We use the WikiExtractor script: https://github.
com/attardi/wikiextractor.

evant paragraph as defined in (Rajpurkar et al.,
2016). For the task of evaluating open-domain
question answering over Wikipedia, we use the
SQuAD development set QA pairs only, and we
ask systems to uncover the correct answer spans
without having access to the associated para-
graphs. That is, a model is required to answer
a question given the whole of Wikipedia as a re-
source; it is not given the relevant paragraph as in
the standard SQuAD setting.

4.3 Open-domain QA Evaluation Resources

SQuAD is one of the largest general purpose QA
datasets currently available. SQuAD questions
have been collected via a process involving show-
ing a paragraph to each human annotator and ask-
ing them to write a question. As a result, their
distribution is quite specific. We hence propose to
train and evaluate our system on other datasets de-
veloped for open-domain QA that have been con-
structed in different ways (not necessarily in the
context of answering from Wikipedia).

CuratedTREC This dataset is based on the
benchmarks from the TREC QA tasks that have
been curated by Baudiš and Šedivỳ (2015). We use
the large version, which contains a total of 2,180
questions extracted from the datasets from TREC
1999, 2000, 2001 and 2002.4

WebQuestions Introduced in (Berant et al.,
2013), this dataset is built to answer questions
from the Freebase KB. It was created by crawling
questions through the Google Suggest API, and
then obtaining answers using Amazon Mechani-
cal Turk. We convert each answer to text by us-
ing entity names so that the dataset does not refer-
ence Freebase IDs and is purely made of plain text
question-answer pairs.

WikiMovies This dataset, introduced in (Miller
et al., 2016), contains 96k question-answer pairs in
the domain of movies. Originally created from the
OMDb and MovieLens databases, the examples
are built such that they can also be answered by us-
ing a subset of Wikipedia as the knowledge source
(the title and the first section of articles from the
movie domain).

4This dataset is available at https://github.com/
brmson/dataset-factoid-curated.

1874

Dataset Example Article / Paragraph
SQuAD Q: How many provinces did the Ottoman

empire contain in the 17th century?
A: 32

Article: Ottoman Empire
Paragraph: ... At the beginning of the 17th century the em-
pire contained 32 provinces and numerous vassal states. Some
of these were later absorbed into the Ottoman Empire, while
others were granted various types of autonomy during the
course of centuries.

CuratedTREC Q: What U.S. state’s motto is “Live free
or Die”?
A: New Hampshire

Article: Live Free or Die
Paragraph: ”Live Free or Die” is the official motto of the
U.S. state of New Hampshire, adopted by the state in 1945. It
is possibly the best-known of all state mottos, partly because it
conveys an assertive independence historically found in Amer-
ican political philosophy and partly because of its contrast to
the milder sentiments found in other state mottos.

WebQuestions Q: What part of the atom did Chadwick
discover?†

A: neutron

Article: Atom
Paragraph: ... The atomic mass of these isotopes varied by
integer amounts, called the whole number rule. The explana-
tion for these different isotopes awaited the discovery of the
neutron, an uncharged particle with a mass similar to the pro-
ton, by the physicist James Chadwick in 1932. ...

WikiMovies Q: Who wrote the film Gigli?
A: Martin Brest

Article: Gigli
Paragraph: Gigli is a 2003 American romantic comedy film
written and directed by Martin Brest and starring Ben Affleck,
Jennifer Lopez, Justin Bartha, Al Pacino, Christopher Walken,
and Lainie Kazan.

Table 1: Example training data from each QA dataset. In each case we show an associated paragraph
where distant supervision (DS) correctly identified the answer within it, which is highlighted.

Dataset Train Test
Plain DS

SQuAD 87,599 71,231 10,570†

CuratedTREC 1,486∗ 3,464 694
WebQuestions 3,778∗ 4,602 2,032
WikiMovies 96,185∗ 36,301 9,952

Table 2: Number of questions for each dataset
used in this paper. DS: distantly supervised train-
ing data. ∗: These training sets are not used as
is because no paragraph is associated with each
question. †: Corresponds to SQuAD development
set.

4.4 Distantly Supervised Data

All the QA datasets presented above contain train-
ing portions, but CuratedTREC, WebQuestions
and WikiMovies only contain question-answer
pairs, and not an associated document or para-
graph as in SQuAD, and hence cannot be used
for training Document Reader directly. Follow-
ing previous work on distant supervision (DS) for
relation extraction (Mintz et al., 2009), we use a
procedure to automatically associate paragraphs to
such training examples, and then add these exam-
ples to our training set.

We use the following process for each question-
answer pair to build our training set. First, we

Dataset Wiki Doc. Retriever
Search plain +bigrams

SQuAD 62.7 76.1 77.8
CuratedTREC 81.0 85.2 86.0
WebQuestions 73.7 75.5 74.4
WikiMovies 61.7 54.4 70.3

Table 3: Document retrieval results. % of ques-
tions for which the answer segment appears in one
of the top 5 pages returned by the method.

run Document Retriever on the question to re-
trieve the top 5 Wikipedia articles. All paragraphs
from those articles without an exact match of the
known answer are directly discarded. All para-
graphs shorter than 25 or longer than 1500 charac-
ters are also filtered out. If any named entities are
detected in the question, we remove any paragraph
that does not contain them at all. For every remain-
ing paragraph in each retrieved page, we score all
positions that match an answer using unigram and
bigram overlap between the question and a 20 to-
ken window, keeping up to the top 5 paragraphs
with the highest overlaps. If there is no paragraph
with non-zero overlap, the example is discarded;
otherwise we add each found pair to our DS train-
ing dataset. Some examples are shown in Table 1
and data statistics are given in Table 2.

1875

Note that we can also generate additional DS
data for SQuAD by trying to find mentions of the
answers not just in the paragraph provided, but
also from other pages or the same page that the
given paragraph was in. We observe that around
half of the DS examples come from pages outside
of the articles used in SQuAD.

5 Experiments

This section first presents evaluations of our Doc-
ument Retriever and Document Reader modules
separately, and then describes tests of their com-
bination, DrQA, for open-domain QA on the full
Wikipedia.

5.1 Finding Relevant Articles

We first examine the performance of our Docu-
ment Retriever module on all the QA datasets. Ta-
ble 3 compares the performance of the two ap-
proaches described in Section 3.1 with that of the
Wikipedia Search Engine5 for the task of find-
ing articles that contain the answer given a ques-
tion. Specifically, we compute the ratio of ques-
tions for which the text span of any of their as-
sociated answers appear in at least one the top 5
relevant pages returned by each system. Results
on all datasets indicate that our simple approach
outperforms Wikipedia Search, especially with bi-
gram hashing. We also compare doing retrieval
with Okapi BM25 or by using cosine distance in
the word embeddings space (by encoding ques-
tions and articles as bag-of-embeddings), both of
which we find performed worse.

5.2 Reader Evaluation on SQuAD

Next we evaluate our Document Reader com-
ponent on the standard SQuAD evaluation (Ra-
jpurkar et al., 2016).

Implementation details We use 3-layer bidirec-
tional LSTMs with h = 128 hidden units for both
paragraph and question encoding. We apply the
Stanford CoreNLP toolkit (Manning et al., 2014)
for tokenization and also generating lemma, part-
of-speech, and named entity tags.

Lastly, all the training examples are sorted by
the length of paragraph and divided into mini-
batches of 32 examples each. We use Adamax
for optimization as described in (Kingma and Ba,

5We use the Wikipedia Search API https://www.
mediawiki.org/wiki/API:Search.

2014). Dropout with p = 0.3 is applied to word
embeddings and all the hidden units of LSTMs.

Result and analysis Table 4 presents our eval-
uation results on both development and test sets.
SQuAD has been a very competitive machine
comprehension benchmark since its creation and
we only list the best-performing systems in the ta-
ble. Our system (single model) can achieve 70.0%
exact match and 79.0% F1 scores on the test set,
which surpasses all the published results and can
match the top performance on the SQuAD leader-
board at the time of writing. Additionally, we
think that our model is conceptually simpler than
most of the existing systems. We conducted an
ablation analysis on the feature vector of para-
graph tokens. As shown in Table 5 all the features
contribute to the performance of our final system.
Without the aligned question embedding feature
(only word embedding and a few manual features),
our system is still able to achieve F1 over 77%.
More interestingly, if we remove both faligned and
fexact match, the performance drops dramatically,
so we conclude that both features play a similar
but complementary role in the feature representa-
tion related to the paraphrased nature of a question
vs. the context around an answer.

5.3 Full Wikipedia Question Answering
Finally, we assess the performance of our full sys-
tem DrQA for answering open-domain questions
using the four datasets introduced in Section 4.
We compare three versions of DrQA which eval-
uate the impact of using distant supervision and
multitask learning across the training sources pro-
vided to Document Reader (Document Retriever
remains the same for each case):

• SQuAD: A single Document Reader model is
trained on the SQuAD training set only and
used on all evaluation sets.

• Fine-tune (DS): A Document Reader model
is pre-trained on SQuAD and then fine-tuned
for each dataset independently using its dis-
tant supervision (DS) training set.

• Multitask (DS): A single Document Reader
model is jointly trained on the SQuAD train-
ing set and all the DS sources.

For the full Wikipedia setting we use a stream-
lined model that does not use the CoreNLP parsed
ftoken features or lemmas for fexact match. We

1876

Method Dev Test
EM F1 EM F1

Dynamic Coattention Networks (Xiong et al., 2016) 65.4 75.6 66.2 75.9
Multi-Perspective Matching (Wang et al., 2016)† 66.1 75.8 65.5 75.1
BiDAF (Seo et al., 2016) 67.7 77.3 68.0 77.3
R-net† n/a n/a 71.3 79.7
DrQA (Our model, Document Reader Only) 69.5 78.8 70.0 79.0

Table 4: Evaluation results on the SQuAD dataset (single model only). †: Test results reflect the SQuAD
leaderboard (https://stanford-qa.com) as of Feb 6, 2017.

Features F1
Full 78.8
No ftoken 78.0 (-0.8)
No fexact match 77.3 (-1.5)
No faligned 77.3 (-1.5)
No faligned and fexact match 59.4 (-19.4)

Table 5: Feature ablation analysis of the paragraph
representations of our Document Reader. Results
are reported on the SQuAD development set.

find that while these help for more exact paragraph
reading in SQuAD, they don’t improve results in
the full setting. Additionally, WebQuestions and
WikiMovies provide a list of candidate answers
(e.g., 1.6 million Freebase entity strings for We-
bQuestions) and we restrict the answer span must
be in this list during prediction.

Results Table 6 presents the results. Despite the
difficulty of the task compared to machine com-
prehension (where you are given the right para-
graph) and unconstrained QA (using redundant re-
sources), DrQA still provides reasonable perfor-
mance across all four datasets.

We are interested in a single, full system that
can answer any question using Wikipedia. The
single model trained only on SQuAD is outper-
formed on all four of the datasets by the multitask
model that uses distant supervision. However per-
formance when training on SQuAD alone is not far
behind, indicating that task transfer is occurring.
The majority of the improvement from SQuAD
to Multitask (DS) however is likely not from task
transfer as fine-tuning on each dataset alone using
DS also gives improvements, showing that is is the
introduction of extra data in the same domain that
helps. Nevertheless, the best single model that we
can find is our overall goal, and that is the Multi-
task (DS) system.

We compare to an unconstrained QA system us-
ing redundant resources (not just Wikipedia), Yo-
daQA (Baudiš, 2015), giving results which were
previously reported on CuratedTREC and We-
bQuestions. Despite the increased difficulty of our
task, it is reassuring that our performance is not
too far behind on CuratedTREC (31.3 vs. 25.4).
The gap is slightly bigger on WebQuestions, likely
because this dataset was created from the specific
structure of Freebase which YodaQA uses directly.

DrQA’s performance on SQuAD compared to
its Document Reader component on machine com-
prehension in Table 4 shows a large drop (from
69.5 to 27.1) as we now are given Wikipedia to
read, not a single paragraph. Given the correct
document (but not the paragraph) we can achieve
49.4, indicating many false positives come from
highly topical sentences. This is despite the fact
that the Document Retriever works relatively well
(77.8% of the time retrieving the answer, see Ta-
ble 3). It is worth noting that a large part of the
drop comes from the nature of the SQuAD ques-
tions. They were written with a specific para-
graph in mind, thus their language can be ambigu-
ous when the context is removed. Additional re-
sources other than SQuAD, specifically designed
for MRS, might be needed to go further.

6 Conclusion

We studied the task of machine reading at scale, by
using Wikipedia as the unique knowledge source
for open-domain QA. Our results indicate that
MRS is a key challenging task for researchers
to focus on. Machine comprehension systems
alone cannot solve the overall task. Our method
integrates search, distant supervision, and mul-
titask learning to provide an effective complete
system. Evaluating the individual components as
well as the full system across multiple benchmarks
showed the efficacy of our approach.

1877

Dataset YodaQA DrQA
SQuAD +Fine-tune (DS) +Multitask (DS)

SQuAD (All Wikipedia) n/a 27.1 28.4 29.8
CuratedTREC 31.3 19.7 25.7 25.4
WebQuestions 39.8 11.8 19.5 20.7
WikiMovies n/a 24.5 34.3 36.5

Table 6: Full Wikipedia results. Top-1 exact-match accuracy (in %, using SQuAD eval script). +Fine-
tune (DS): Document Reader models trained on SQuAD and fine-tuned on each DS training set inde-
pendently. +Multitask (DS): Document Reader single model trained on SQuAD and all the distant su-
pervision (DS) training sets jointly. YodaQA results are extracted from https://github.com/brmson/

yodaqa/wiki/Benchmarks and use additional resources such as Freebase and DBpedia, see Section 2.

Future work should aim to improve over our
DrQA system. Two obvious angles of attack are:
(i) incorporate the fact that Document Reader ag-
gregates over multiple paragraphs and documents
directly in the training, as it currently trains on
paragraphs independently; and (ii) perform end-
to-end training across the Document Retriever and
Document Reader pipeline, rather than indepen-
dent systems.

Acknowledgments
The authors thank Pranav Rajpurkar for testing
Document Reader on the test set of SQuAD.

References
David Ahn, Valentin Jijkoun, Gilad Mishne, Karin

Mller, Maarten de Rijke, and Stefan Schlobach.
2004. Using wikipedia at the trec qa track. In Pro-
ceedings of TREC 2004.

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens
Lehmann, Richard Cyganiak, and Zachary Ives.
2007. Dbpedia: A nucleus for a web of open data.
In The semantic web, Springer, pages 722–735.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In International Con-
ference on Learning Representations (ICLR).

Petr Baudiš. 2015. YodaQA: a modular question an-
swering system pipeline. In POSTER 2015-19th In-
ternational Student Conference on Electrical Engi-
neering. pages 1156–1165.

Petr Baudiš and Jan Šedivỳ. 2015. Modeling of
the question answering task in the YodaQA sys-
tem. In International Conference of the Cross-
Language Evaluation Forum for European Lan-
guages. Springer, pages 222–228.

Jonathan Berant, Andrew Chou, Roy Frostig, and
Percy Liang. 2013. Semantic parsing on freebase

from question-answer pairs. In Empirical Methods
in Natural Language Processing (EMNLP). pages
1533–1544.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collab-
oratively created graph database for structuring hu-
man knowledge. In Proceedings of the 2008 ACM
SIGMOD international conference on Management
of data. AcM, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and
Jason Weston. 2015. Large-scale simple question
answering with memory networks. arXiv preprint
arXiv:1506.02075 .

Eric Brill, Susan Dumais, and Michele Banko. 2002.
An analysis of the AskMSR question-answering sys-
tem. In Empirical Methods in Natural Language
Processing (EMNLP). pages 257–264.

Davide Buscaldi and Paolo Rosso. 2006. Mining
knowledge from Wikipedia for the question answer-
ing task. In International Conference on Language
Resources and Evaluation (LREC). pages 727–730.

Rich Caruana. 1998. Multitask learning. In Learning
to learn, Springer, pages 95–133.

Danqi Chen, Jason Bolton, and Christopher D Man-
ning. 2016. A thorough examination of the
CNN/Daily Mail reading comprehension task. In
Association for Computational Linguistics (ACL).

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep
neural networks with multitask learning. In Interna-
tional Conference on Machine Learning (ICML).

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2014. Open question answering over curated and
extracted knowledge bases. In ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining. pages 1156–1165.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya A Kalyanpur,
Adam Lally, J William Murdock, Eric Nyberg, John
Prager, et al. 2010. Building Watson: An overview
of the DeepQA project. AI magazine 31(3):59–79.

1878

Clinton Gormley and Zachary Tong. 2015. Elastic-
search: The Definitive Guide. ” O’Reilly Media,
Inc.”.

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401 .

Karl Moritz Hermann, Tomáš Kočiský, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems (NIPS).

Daniel Hewlett, Alexandre Lacoste, Llion Jones, Illia
Polosukhin, Andrew Fandrianto, Jay Han, Matthew
Kelcey, and David Berthelot. 2016. Wikireading: A
novel large-scale language understanding task over
wikipedia. In Association for Computational Lin-
guistics (ACL). pages 1535–1545.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2016. The Goldilocks Principle: Reading
children’s books with explicit memory representa-
tions. In International Conference on Learning Rep-
resentations (ICLR).

Minyoung Huh, Pulkit Agrawal, and Alexei A Efros.
2016. What makes ImageNet good for transfer
learning? arXiv preprint arXiv:1608.08614 .

Mohit Iyyer, Jordan L Boyd-Graber, Leonardo
Max Batista Claudino, Richard Socher, and Hal
Daumé III. 2014. A neural network for factoid ques-
tion answering over paragraphs. In Empirical Meth-
ods in Natural Language Processing (EMNLP).
pages 633–644.

Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst.
2016. From particular to general: A preliminary
case study of transfer learning in reading compre-
hension. Machine Intelligence Workshop, NIPS .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Kenton Lee, Tom Kwiatkowski, Ankur Parikh, and Di-
panjan Das. 2016. Learning recurrent span repre-
sentations for extractive question answering. arXiv
preprint arXiv:1611.01436 .

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In Association for Com-
putational Linguistics (ACL). pages 55–60.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for directly
reading documents. In Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1400–
1409.

Mike Mintz, Steven Bills, Rion Snow, and Daniel
Jurafsky. 2009. Distant supervision for relation
extraction without labeled data. In Association
for Computational Linguistics and International
Joint Conference on Natural Language Processing
(ACL/IJCNLP). pages 1003–1011.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP). pages 1532–1543.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Empirical Meth-
ods in Natural Language Processing (EMNLP).

Pum-Mo Ryu, Myung-Gil Jang, and Hyun-Ki Kim.
2014. Open domain question answering using
Wikipedia-based knowledge model. Information
Processing & Management 50(5):683–692.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

Huan Sun, Hao Ma, Wen-tau Yih, Chen-Tse Tsai,
Jingjing Liu, and Ming-Wei Chang. 2015. Open do-
main question answering via semantic enrichment.
In Proceedings of the 24th International Conference
on World Wide Web. ACM, pages 1045–1055.

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu
Florian. 2016. Multi-perspective context match-
ing for machine comprehension. arXiv preprint
arXiv:1612.04211 .

Kilian Weinberger, Anirban Dasgupta, John Langford,
Alex Smola, and Josh Attenberg. 2009. Feature
hashing for large scale multitask learning. In Inter-
national Conference on Machine Learning (ICML).
pages 1113–1120.

Jason Weston, Sumit Chopra, and Antoine Bordes.
2015. Memory networks. In International Confer-
ence on Learning Representations (ICLR).

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .

1879

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1880–1890
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1172

Learning to Skim Text

Adams Wei Yu∗
Carnegie Mellon University
weiyu@cs.cmu.edu

Hongrae Lee
Google

hrlee@google.com

Quoc V. Le
Google

qvl@google.com

Abstract

Recurrent Neural Networks are showing
much promise in many sub-areas of nat-
ural language processing, ranging from
document classification to machine trans-
lation to automatic question answering.
Despite their promise, many recurrent
models have to read the whole text word
by word, making it slow to handle long
documents. For example, it is difficult to
use a recurrent network to read a book
and answer questions about it. In this
paper, we present an approach of read-
ing text while skipping irrelevant informa-
tion if needed. The underlying model is
a recurrent network that learns how far to
jump after reading a few words of the input
text. We employ a standard policy gradient
method to train the model to make discrete
jumping decisions. In our benchmarks
on four different tasks, including number
prediction, sentiment analysis, news arti-
cle classification and automatic Q&A, our
proposed model, a modified LSTM with
jumping, is up to 6 times faster than the
standard sequential LSTM, while main-
taining the same or even better accuracy.

1 Introduction

The last few years have seen much success of ap-
plying neural networks to many important appli-
cations in natural language processing, e.g., part-
of-speech tagging, chunking, named entity recog-
nition (Collobert et al., 2011), sentiment analy-
sis (Socher et al., 2011, 2013), document classifi-
cation (Kim, 2014; Le and Mikolov, 2014; Zhang
et al., 2015; Dai and Le, 2015), machine transla-
tion (Kalchbrenner and Blunsom, 2013; Sutskever

∗Most of work was done when AWY was with Google.

et al., 2014; Bahdanau et al., 2014; Sennrich et al.,
2015; Wu et al., 2016), conversational/dialogue
modeling (Sordoni et al., 2015; Vinyals and Le,
2015; Shang et al., 2015), document summariza-
tion (Rush et al., 2015; Nallapati et al., 2016),
parsing (Andor et al., 2016) and automatic ques-
tion answering (Q&A) (Weston et al., 2015; Her-
mann et al., 2015; Wang and Jiang, 2016; Wang
et al., 2016; Trischler et al., 2016; Lee et al., 2016;
Seo et al., 2016; Xiong et al., 2016). An important
characteristic of all these models is that they read
all the text available to them. While it is essential
for certain applications, such as machine transla-
tion, this characteristic also makes it slow to ap-
ply these models to scenarios that have long input
text, such as document classification or automatic
Q&A. However, the fact that texts are usually writ-
ten with redundancy inspires us to think about the
possibility of reading selectively.

In this paper, we consider the problem of under-
standing documents with partial reading, and pro-
pose a modification to the basic neural architec-
tures that allows them to read input text with skip-
ping. The main benefit of this approach is faster
inference because it skips irrelevant information.
An unexpected benefit of this approach is that it
also helps the models generalize better.

In our approach, the model is a recurrent net-
work, which learns to predict the number of jump-
ing steps after it reads one or several input tokens.
Such a discrete model is therefore not fully differ-
entiable, but it can be trained by a standard policy
gradient algorithm, where the reward can be the
accuracy or its proxy during training.

In our experiments, we use the basic LSTM
recurrent networks (Hochreiter and Schmidhuber,
1997) as the base model and benchmark the pro-
posed algorithm on a range of document clas-
sification or reading comprehension tasks, using
various datasets such as Rotten Tomatoes (Pang

1880

https://doi.org/10.18653/v1/P17-1172

Figure 1: A synthetic example of the proposed model to process a text document. In this example, the
maximum size of jump K is 5, the number of tokens read before a jump R is 2 and the number of jumps
allowed N is 10. The green softmax are for jumping predictions. The processing stops if a) the jumping
softmax predicts a 0 or b) the jump times exceeds N or c) the network processed the last token. We only
show the case a) in this figure.

and Lee, 2005), IMDB (Maas et al., 2011), AG
News (Zhang et al., 2015) and Children’s Book
Test (Hill et al., 2015). We find that the proposed
approach of selective reading speeds up the base
model by two to six times. Surprisingly, we also
observe our model beats the standard LSTM in
terms of accuracy.

In summary, the main contribution of our work
is to design an architecture that learns to skim text
and show that it is both faster and more accurate
in practical applications of text processing. Our
model is simple and flexible enough that we antic-
ipate it would be able to incorporate to recurrent
nets with more sophisticated structures to achieve
even better performance in the future.

2 Methodology

In this section, we introduce the proposed model
named LSTM-Jump. We first describe its main
structure, followed by the difficulty of estimat-
ing part of the model parameters because of non-
differentiability. To address this issue, we appeal
to a reinforcement learning formulation and adopt
a policy gradient method.

2.1 Model Overview

The main architecture of the proposed model is
shown in Figure 1, which is based on an LSTM re-
current neural network. Before training, the num-
ber of jumps allowed N , the number of tokens
read between every two jumps R and the max-
imum size of jumping K are chosen ahead of
time. While K is a fixed parameter of the model,
N and R are hyperparameters that can vary be-
tween training and testing. Also, throughout the
paper, we would use d1:p to denote a sequence
d1, d2, ..., dp.

In the following, we describe in detail how the
model operates when processing text. Given a
training example x1:T , the recurrent network will
read the embedding of the first R tokens x1:R and
output the hidden state. Then this state is used
to compute the jumping softmax that determines a
distribution over the jumping steps between 1 and
K. The model then samples from this distribution
a jumping step, which is used to decide the next
token to be read into the model. Let κ be the sam-
pled value, then the next starting token is xR+κ.
Such process continues until either

a) the jump softmax samples a 0; or
b) the number of jumps exceeds N ; or
c) the model reaches the last token xT .

After stopping, as the output, the latest hidden
state is further used for predicting desired targets.
How to leverage the hidden state depends on the
specifics of the task at hand. For example, for clas-
sification problems in Section 3.1, 3.2 and 3.3, it
is directly applied to produce a softmax for classi-
fication, while in automatic Q&A problem of Sec-
tion 3.4, it is used to compute the correlation with
the candidate answers in order to select the best
one. Figure 1 gives an example with K = 5,
R = 2 and N = 10 terminating on condition a).

2.2 Training with REINFORCE

Our goal for training is to estimate the parameters
of LSTM and possibly word embedding, which
are denoted as θm, together with the jumping ac-
tion parameters θa. Once obtained, they can be
used for inference.

The estimation of θm is straightforward in the
tasks that can be reduced as classification prob-
lems (which is essentially what our experiments
cover), as the cross entropy objective J1(θm) is

1881

differentiable over θm that we can directly apply
backpropagation to minimize.

However, the nature of discrete jumping deci-
sions made at every step makes it difficult to es-
timate θa, as cross entropy is no longer differen-
tiable over θa. Therefore, we formulate it as a
reinforcement learning problem and apply policy
gradient method to train the model. Specifically,
we need to maximize a reward function over θa
which can be constructed as follows.

Let j1:N be the jumping action sequence dur-
ing the training with an example x1:T . Suppose
hi is a hidden state of the LSTM right before the
i-th jump ji,1 then it is a function of j1:i−1 and
thus can be denoted as hi(j1:i−1). Now the jump
is attained by sampling from the multinomial dis-
tribution p(ji|hi(j1:i−1); θa), which is determined
by the jump softmax. We can receive a reward
R after processing x1:T under the current jumping
strategy.2 The reward should be positive if the out-
put is favorable or non-positive otherwise. In our
experiments, we choose

R =

{
1 if prediction correct;
−1 otherwise.

Then the objective function of θa we want to max-
imize is the expected reward under the distribution
defined by the current jumping policy, i.e.,

J2(θa) = Ep(j1:N ;θa)[R]. (1)

where p(j1:N ; θa) =
∏
i p(j1:i|hi(j1:i−1); θa).

Optimizing this objective numerically requires
computing its gradient, whose exact value is in-
tractable to obtain as the expectation is over high
dimensional interaction sequences. By running
S examples, an approximated gradient can be
computed by the following REINFORCE algo-
rithm (Williams, 1992):

∇θaJ2(θa) =
N∑

i=1

Ep(j1:N ;θa)[∇θa log p(j1:i|hi; θa)R]

≈ 1

S

S∑

s=1

N∑

i=1

[∇θa log p(js1:i|hsi ; θa)Rs]

where the superscript s denotes a quantity be-
longing to the s-th example. Now the term

1The i-th jumping step is usually not xi.
2In the general case, one may receive (discounted) inter-

mediate rewards after each jump. But in our case, we only
consider final reward. It is equivalent to a special case that all
intermediate rewards are identical and without discount.

∇θa log p(j1:i|hi; θa) can be computed by stan-
dard backpropagation.

Although the above estimation of ∇θaJ2(θa) is
unbiased, it may have very high variance. One
widely used remedy to reduce the variance is to
subtract a baseline value bsi from the reward Rs,
such that the approximated gradient becomes

∇θaJ2(θa) ≈
1

S

S∑

s=1

N∑

i=1

[∇θa log p(js1:i|hsi ; θ)(Rs−bsi)]

It is shown (Williams, 1992; Zaremba and
Sutskever, 2015) that any number bsi will yield an
unbiased estimation. Here, we adopt the strategy
of Mnih et al. (2014) that bsi = wbh

s
i + cb and the

parameter θb = {wb, cb} is learned by minimizing
(Rs− bsi)2. Now the final objective to minimize is

J(θm, θa, θb) = J1(θm)−J2(θa)+
S∑

s=1

N∑

i=1

(Rs−bsi)2,

which is fully differentiable and can be solved by
standard backpropagation.

2.3 Inference

During inference, we can either use sampling or
greedy evaluation by selecting the most probable
jumping step suggested by the jump softmax and
follow that path. In the our experiments, we will
adopt the sampling scheme.

3 Experimental Results

In this section, we present our empirical studies to
understand the efficiency of the proposed model in
reading text. The tasks under experimentation are:
synthetic number prediction, sentiment analysis,
news topic classification and automatic question
answering. Those, except the first one, are repre-
sentative tasks in text reading involving different
sizes of datasets and various levels of text process-
ing, from character to word and to sentence. Ta-
ble 1 summarizes the statistics of the dataset in our
experiments.

To exclude the potential impact of advanced
models, we restrict our comparison between
the vanilla LSTM (Hochreiter and Schmidhuber,
1997) and our model, which is referred to as
LSTM-Jump. In a nutshell, we show that, while
achieving the same or even better testing accuracy,
our model is up to 6 times and 66 times faster than
the baseline LSTM model in real and synthetic

1882

Task Dataset Level Vocab AvgLen #train #valid #test #class
Number Prediction synthetic word 100 100 words 1M 10K 10K 100
Sentiment Analysis Rotten Tomatoes word 18,764 22 words 8,835 1,079 1,030 2
Sentiment Analysis IMDB word 112,540 241 words 21,143 3,857 25,000 2
News Classification AG character 70 200 characters 101,851 18,149 7,600 4

Q/A Children Book Test-NE sentence 53,063 20 sentences 108,719 2,000 2,500 10
Q/A Children Book Test-CN sentence 53,185 20 sentences 120,769 2,000 2,500 10

Table 1: Task and dataset statistics.

datasets, respectively, as we are able to selectively
skip a large fraction of text.

In fact, the proposed model can be readily ex-
tended to other recurrent neural networks with so-
phisticated mechanisms such as attention and/or
hierarchical structure to achieve higher accuracy
than those presented below. However, this is or-
thogonal to the main focus of this work and would
be left as an interesting future work.

General Experiment Settings We use the
Adam optimizer (Kingma and Ba, 2014) with a
learning rate of 0.001 in all experiments. We also
apply gradient clipping to all the trainable vari-
ables with the threshold of 1.0. The dropout rate
between the LSTM layers is 0.2 and the embed-
ding dropout rate is 0.1. We repeat the notations
N,K,R defined previously in Table 2, so readers
can easily refer to when looking at Tables 4,5,6
and 7. While K is fixed during both training and
testing, we would fix R and N at training but vary
their values during test to see the impact of pa-
rameter changes. Note that N is essentially a con-
straint which can be relaxed. Yet we prefer to en-
force this constraint here to let the model learn to
read fewer tokens. Finally, the reported test time
is measured by running one pass of the whole test
set instance by instance, and the speedup is over
the base LSTM model. The code is written with
TensorFlow.3

Notation Meaning
N number of jumps allowed
K maximum size of jumping
R number of tokens read before a jump

Table 2: Notations referred to in experiments.

3.1 Number Prediction with a Synthetic
Dataset

We first test whether LSTM-Jump is indeed able
to learn how to jump if a very clear jumping sig-

3https://www.tensorflow.org/

nal is given in the text. The input of the task is
a sequence of L positive integers x0:T−1 and the
output is simply xx0 . That is, the output is chosen
from the input sequence, with index determined by
x0 . Here are two examples to illustrate the idea:

input1 : 4, 5, 1, 7, 6, 2. output1 : 6

input2 : 2, 4, 9, 4, 5, 6. output2 : 9

One can see that x0 is essentially the oracle jump-
ing signal, i.e. the indicator of how many steps the
reading should jump to get the exact output and
obviously, the remaining number of the sequence
are useless. After reading the first token, a “smart”
network should be able to learn from the training
examples to jump to the output position, skipping
the rest.

We generate 1 million training and 10,000 val-
idation examples with the rule above, each with
sequence length T = 100. We also impose
1 ≤ x0 < T to ensure the index is valid. We
find that directly training the LSTM-Jump with
full sequence is unlikely to converge, therefore,
we adopt a curriculum training scheme. More
specifically, we generate sequences with lengths
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and train
the model starting from the shortest. Whenever
the training accuracy reaches a threshold, we shift
to longer sequences. We also train an LSTM with
the same curriculum training scheme. The train-
ing stops when the validation accuracy is larger
than 98%. We choose such stopping criterion sim-
ply because it is the highest that both models can
achieve.4 All the networks are single layered, with
hidden size 512, embedding size 32 and batch size
100. During testing, we generate sequences of
lengths 10, 100 and 1000 with the same rule, each
having 10,000 examples. As the training size is
large enough, we do not have to worry about over-
fitting so dropout is not applied. In fact, we find
that the training, validation and testing accuracies
are almost the same.

4In fact, our model can get higher but we stick to 98% for
ease of comparison.

1883

Seq length LSTM-Jump LSTM Speedup
Test accuracy

10 98% 96% n/a
100 98% 96% n/a

1000 90% 80% n/a
Test time (Avg tokens read)

10 13.5s (2.1) 18.9s (10) 1.40x
100 13.9s (2.2) 120.4s (100) 8.66x

1000 18.9s (3.0) 1250s (1000) 66.14x

Table 3: Testing accuracy and time of synthetic
number prediction problem. The jumping level is
number.

The results of LSTM and our method, LSTM-
Jump, are shown in Table 3. The first observa-
tion is that LSTM-Jump is faster than LSTM; the
longer the sequence is, the more significant speed-
up LSTM-Jump can gain. This is because the
well-trained LSTM-Jump is aware of the jump-
ing signal at the first token and hence can directly
jump to the output position to make prediction,
while LSTM is agnostic to the signal and has to
read the whole sequence. As a result, the read-
ing speed of LSTM-Jump is hardly affected by the
length of sequence, but that of LSTM is linear with
respect to length. Besides, LSTM-Jump also out-
performs LSTM in terms of test accuracy under all
cases. This is not surprising either, as LSTM has to
read a large amount of tokens that are potentially
not helpful and could interfere with the prediction.
In summary, the results indicate LSTM-Jump is
able to learn to jump if the signal is clear.

3.2 Word Level Sentiment Analysis with
Rotten Tomatoes and IMDB datasets

As LSTM-Jump has shown great speedups in the
synthetic dataset, we would like to understand
whether it could carry this benefit to real-world
data, where “jumping” signal is not explicit. So
in this section, we conduct sentiment analysis on
two movie review datasets, both containing equal
numbers of positive and negative reviews.

The first dataset is Rotten Tomatoes, which con-
tains 10,662 documents. Since there is not a stan-
dard split, we randomly select around 80% for
training, 10% for validation, and 10% for test-
ing. The average and maximum lengths of the re-
views are 22 and 56 words respectively, and we
pad each of them to 60. We choose the pre-trained
word2vec embeddings5 (Mikolov et al., 2013) as

5https://code.google.com/archive/p/
word2vec/

our fixed word embedding that we do not update
this matrix during training. Both LSTM-Jump and
LSTM contain 2 layers, 256 hidden units and the
batch size is 100. As the amount of training data is
small, we slightly augment the data by sampling a
continuous 50-word sequence in each padded re-
views as one training sample. During training,
we enforce LSTM-Jump to read 8 tokens before
a jump (R = 8), and the maximum skipping to-
kens per jump is 10 (K = 10), while the number
of jumps allowed is 3 (N = 3).

The testing result is reported in Table 4. In a
nutshell, LSTM-Jump is always faster than LSTM
under different combinations of R and N . At the
same time, the accuracy is on par with that of
LSTM. In particular, the combination of (R,N) =
(7, 4) even achieves slightly better accuracy than
LSTM while having a 1.5x speedup.

Model (R,N) Accuracy Time Speedup

LSTM-Jump
(9, 2) 0.783 6.3s 1.98x
(8, 3) 0.789 7.3s 1.71x
(7, 4) 0.793 8.1s 1.54x

LSTM n/a 0.791 12.5s 1x

Table 4: Testing time and accuracy on the Rotten
Tomatoes review classification dataset. The max-
imum size of jumping K is set to 10 for all the
settings. The jumping level is word.

The second dataset is IMDB (Maas et al.,
2011),6 which contains 25,000 training and 25,000
testing movie reviews, where the average length of
text is 240 words, much longer than that of Rotten
Tomatoes. We randomly set aside about 15% of
training data as validation set. Both LSTM-Jump
and LSTM has one layer and 128 hidden units,
and the batch size is 50. Again, we use pretrained
word2vec embeddings as initialization but they are
updated during training. We either pad a short se-
quence to 400 words or randomly select a 400-
word segment from a long sequence as a training
example. During training, we setR = 20,K = 40
and N = 5.

As Table 5 shows, the result exhibits a similar
trend as found in Rotten Tomatoes that LSTM-
Jump is uniformly faster than LSTM under many
settings. The various (R,N) combinations again
demonstrate the trade-off between efficiency and
accuracy. If one cares more about accuracy, then
allowing LSTM-Jump to read and jump more

6http://ai.Stanford.edu/amaas/data/
sentiment/index.html

1884

Model (R,N) Accuracy Time Speedup

LSTM-Jump

(80, 8) 0.894 769s 1.62x
(80, 3) 0.892 764s 1.63x
(70, 3) 0.889 673s 1.85x
(50, 2) 0.887 585s 2.12x
(100, 1) 0.880 489s 2.54x

LSTM n/a 0.891 1243s 1x

Table 5: Testing time and accuracy on the IMDB
sentiment analysis dataset. The maximum size of
jumping K is set to 40 for all the settings. The
jumping level is word.

times is a good choice. Otherwise, shrinking ei-
ther one would bring a significant speedup though
at the price of losing some accuracy. Neverthe-
less, the configuration with the highest accuracy
still enjoys a 1.6x speedup compared to LSTM.
With a slight loss of accuracy, LSTM-Jump can be
2.5x faster .

3.3 Character Level News Article
Classification with AG dataset

We now present results on testing the character
level jumping with a news article classification
problem. The dataset contains four classes of top-
ics (World, Sports, Business, Sci/Tech) from the
AG’s news corpus,7 a collection of more than 1
million news articles. The data we use is the subset
constructed by Zhang et al. (2015) for classifica-
tion with character-level convolutional networks.
There are 30,000 training and 1,900 testing ex-
amples for each class respectively, where 15% of
training data is set aside as validation. The non-
space alphabet under use are:

abcdefghijklmnopqrstuvwxyz0123456
789-,;.!?:/\|_@#$%&*˜‘+-=<>()[]{}

Since the vocabulary size is small, we choose 16 as
the embedding size. The initialized entries of the
embedding matrix are drawn from a uniform dis-
tribution in [−0.25, 0.25], which are progressively
updated during training. Both LSTM-Jump and
LSTM have 1 layer and 64 hidden units and the
batch sizes are 20 and 100 respectively. The train-
ing sequence is again of length 400 that it is either
padded from a short sequence or sampled from a
long one. During training, we setR = 30,K = 40
and N = 5.

The result is summarized in Table 6. It is inter-
esting to see that even with skipping, LSTM-Jump

7http://www.di.unipi.it/˜gulli/AG_
corpus_of_news_articles.html

is not always faster than LSTM. This is mainly
due to the fact that the embedding size and hidden
layer are both much smaller than those used previ-
ously, and accordingly the processing of a token is
much faster. In that case, other computation over-
head such as calculating and sampling from the
jump softmax might become a dominating factor
of efficiency. By this cross-task comparison, we
can see that the larger the hidden unit size of re-
current neural network and the embedding are, the
more speedup LSTM-Jump can gain, which is also
confirmed by the task below.

Model (R,N) Accuracy Time Speedup

LSTM-Jump

(50, 5) 0.854 102s 0.80x
(40, 6) 0.874 98.1s 0.83x
(40, 5) 0.889 83.0s 0.98x
(30, 5) 0.885 63.6s 1.28x
(30, 6) 0.893 74.2s 1.10x

LSTM n/a 0.881 81.7s 1x

Table 6: Testing time and accuracy on the AG
news classification dataset. The maximum size of
jumping K is set to 40 for all the settings. The
jumping level is character.

3.4 Sentence Level Automatic Question
Answering with Children’s Book Test
dataset

The last task is automatic question answering, in
which we aim to test the sentence level skimming
of LSTM-Jump. We benchmark on the data set
Children’s Book Test (CBT) (Hill et al., 2015).8

In each document, there are 20 contiguous sen-
tences (context) extracted from a children’s book
followed by a query sentence. A word of the
query is deleted and the task is to select the best
fit for this position from 10 candidates. Originally,
there are four types of tasks according to the part
of speech of the missing word, from which, we
choose the most difficult two, i.e., the name en-
tity (NE) and common noun (CN) as our focus,
since simple language models can already achieve
human-level performance for the other two types .

The models, LSTM or LSTM-Jump, firstly read
the whole query, then the context sentences and
finally output the predicted word. While LSTM
reads everything, our jumping model would de-
cide how many context sentences should skip after
reading one sentence. Whenever a model finishes
reading, the context and query are encoded in its

8http://www.thespermwhale.com/
jaseweston/babi/CBTest.tgz

1885

hidden state ho, and the best answer from the can-
didate words has the same index that maximizes
the following:

softmax(CWho) ∈ R10,

where C ∈ R10×d is the word embedding matrix
of the 10 candidates and W ∈ Rd×hidden size is
a trainable weight variable. Using such bilinear
form to select answer basically follows the idea
of Chen et al. (2016), as it is shown to have good
performance. The task is now distilled to a classi-
fication problem of 10 classes.

We either truncate or pad each context sentence,
such that they all have length 20. The same pre-
processing is applied to the query sentences ex-
cept that the length is set as 30. For both models,
the number of layers is 2, the number of hidden
units is 256 and the batch size is 32. Pretrained
word2vec embeddings are again used and they are
not adjusted during training. The maximum num-
ber of context sentences LSTM-Jump can skip per
time is K = 5 while the number of total jumping
is limited to N = 5. We let the model jump after
reading every sentence, so R = 1 (20 words).

The result is reported in Table 7. The perfor-
mance of LSTM-Jump is superior to LSTM in
terms of both accuracy and efficiency under all set-
tings in our experiments. In particular, the fastest
LSTM-Jump configuration achieves a remarkable
6x speedup over LSTM, while also having respec-
tively 1.4% and 4.4% higher accuracy in Chil-
dren’s Book Test - Named Entity and Children’s
Book Test - Common Noun.

Model (R,N) Accuracy Time Speedup
Children’s Book Test - Named Entity

LSTM-Jump
(1, 5) 0.468 40.9s 3.04x
(1, 3) 0.464 30.3s 4.11x
(1, 1) 0.452 19.9s 6.26x

LSTM n/a 0.438 124.5s 1x
Children’s Book Test - Common Noun

LSTM-Jump
(1, 5) 0.493 39.3s 3.09x
(1, 3) 0.487 29.7s 4.09x
(1, 1) 0.497 19.8s 6.14x

LSTM n/a 0.453 121.5s 1x

Table 7: Testing time and accuracy on the Chil-
dren’s Book Test dataset. The maximum size of
jumping K is set to 5 for all the settings. The
jumping level is sentence.

The dominant performance of LSTM-Jump
over LSTM might be interpreted as follows. After
reading the query, both LSTM and LSTM-Jump

know what the question is. However, LSTM still
has to process the remaining 20 sentences and thus
at the very end of the last sentence, the long de-
pendency between the question and output might
become weak that the prediction is hampered. On
the contrary, the question can guide LSTM-Jump
on how to read selectively and stop early when the
answer is clear. Therefore, when it comes to the
output stage, the “memory” is both fresh and un-
cluttered that a more accurate answer is likely to
be picked.

In the following, we show two examples of how
the model reads the context given a query (bold
face sentences are those read by our model in the
increasing order). XXXXX is the missing word
we want to fill. Note that due to truncation, a few
sentences might look uncompleted.

Example 1 In the first example, the exact an-
swer appears in the context multiple times, which
makes the task relatively easy, as long as the reader
has captured their occurrences.
(a) Query: ‘XXXXX!
(b) Context:
1. said Big Klaus, and he ran off at once to

Little Klaus.
2. ‘Where did you get so much money from?’
3. ‘Oh, that was from my horse-skin.
4. I sold it yesterday evening.’
5. ‘That ’s certainly a good price!’
6. said Big Klaus; and running home in great

haste, he took an axe, knocked all his four
7. ‘Skins!
8. skins!
9. Who will buy skins?’

10. he cried through the streets.
11. All the shoemakers and tanners came running

to ask him what he wanted for them.’
12. A bushel of money for each,’ said Big

Klaus.
13. ‘Are you mad?’
14. they all exclaimed.
15. ‘Do you think we have money by the bushel?’
16. ‘Skins!
17. skins!
18. Who will buy skins?’
19. he cried again, and to all who asked him what

they cost, he answered,’ A bushel
20. ‘He is making game of us,’ they said; and the

shoemakers seized their yard measures and
(c) Candidates: Klaus | Skins | game | haste |

head | home | horses | money | price| streets

1886

(d) Answer: Skins
The reading behavior might be interpreted as

follows. The model tries to search for clues, and
after reading sentence 8, it realizes that the most
plausible answer is “Klaus” or “Skins”, as they
both appear twice. “Skins” is more likely to be
the answer as it is followed by a “!”. The model
searches further to see if ”Klaus!” is mentioned
somewhere, but it only finds “Klaus” without “!”
for the third time. After the last attempt at sen-
tence 14, it is confident about the answer and stops
to output with “Skins”.

Example 2 In this example, the answer is illus-
trated by a word “nuisance” that does not show up
in the context at all. Hence, to answer the query,
the model has to understand the meaning of both
the query and context and locate the synonym of
“nuisance”, which is not merely verbatim and thus
much harder than the previous example. Neverthe-
less, our model is still able to make a right choice
while reading much fewer sentences.
(a) Query: Yes, I call XXXXX a nuisance.
(b) Context:
1. But to you and me it would have looked

just as it did to Cousin Myra – a very dis-
contented

2. “I’m awfully glad to see you, Cousin Myra,
”explained Frank carefully, “and your

3. But Christmas is just a bore – a regular
bore.”

4. That was what Uncle Edgar called things
that didn’t interest him, so that Frank felt
pretty sure of

5. Nevertheless, he wondered uncomfortably
what made Cousin Myra smile so queerly.

6. “Why, how dreadful!”
7. she said brightly.
8. “I thought all boys and girls looked upon

Christmas as the very best time in the year.”
9. “We don’t, ”said Frank gloomily.

10. “It’s just the same old thing year in and
year out.

11. We know just exactly what is going to hap-
pen.

12. We even know pretty well what presents we
are going to get.

13. And Christmas Day itself is always the same.
14. We’ll get up in the morning , and our stock-

ings will be full of things, and half of
15. Then there ’s dinner.
16. It ’s always so poky.

17. And all the uncles and aunts come to dinner
– just the same old crowd, every year, and

18. Aunt Desda always says, ‘Why, Frankie, how
you have grown!’

19. She knows I hate to be called Frankie.
20. And after dinner they’ll sit round and talk the

rest of the day, and that’s all.
(c) Candidates: Christmas | boys | day | dinner |

half | interest | rest | stockings | things | un-
cles

(d) Answer: Christmas
The reading behavior can be interpreted as fol-

lows. After reading the query, our model realizes
that the answer should be something like a nui-
sance. Then it starts to process the text. Once it
hits sentence 3, it may begin to consider “Christ-
mas” as the answer, since “bore” is a synonym
of “nuisance”. Yet the model is not 100% sure,
so it continues to read, very conservatively – it
does not jump for the next three sentences. Af-
ter that, the model gains more confidence on the
answer “Christmas” and it makes a large jump to
see if there is something that can turn over the cur-
rent hypothesis. It turns out that the last-read sen-
tence is still talking about Christmas with a neg-
ative voice. Therefore, the model stops to take
“Christmas” as the output.

4 Related Work

Closely related to our work is the idea of learn-
ing visual attention with neural networks (Mnih
et al., 2014; Ba et al., 2014; Sermanet et al., 2014),
where a recurrent model is used to combine vi-
sual evidence at multiple fixations processed by a
convolutional neural network. Similar to our ap-
proach, the model is trained end-to-end using the
REINFORCE algorithm (Williams, 1992). How-
ever, a major difference between those work and
ours is that we have to sample from discrete jump-
ing distribution, while they can sample from con-
tinuous distribution such as Gaussian. The differ-
ence is mainly due to the inborn characteristics of
text and image. In fact, as pointed out by Mnih
et al. (2014), it was difficult to learn policies over
more than 25 possible discrete locations.

This idea has recently been explored in the con-
text of natural language processing applications,
where the main goal is to filter irrelevant content
using a small network (Choi et al., 2016). Perhaps
the most closely related to our work is the concur-
rent work on learning to reason with reinforcement

1887

learning (Shen et al., 2016). The key difference
between our work and Shen et al. (2016) is that
they focus on early stopping after multiple pass of
data to ensure accuracy whereas our method fo-
cuses on selective reading with single pass to en-
able fast processing.

The concept of “hard” attention has also been
used successfully in the context of making neu-
ral network predictions more interpretable (Lei
et al., 2016). The key difference between our work
and Lei et al. (2016)’s method is that our method
optimizes for faster inference, and is more dy-
namic in its jumping. Likewise is the difference
between our approach and the “soft” attention ap-
proach by (Bahdanau et al., 2014).

Our method belongs to adaptive computation of
neural networks, whose idea is recently explored
by (Graves, 2016; Jernite et al., 2016), where dif-
ferent amount of computations are allocated dy-
namically per time step. The main difference
between our method and Graves; Jernite et al.’s
methods is that our method can set the amount
of computation to be exactly zero for many steps,
thereby achieving faster scanning over texts. Even
though our method requires policy gradient meth-
ods to train, which is a disadvantage compared
to (Graves, 2016; Jernite et al., 2016), we do not
find training with policy gradient methods prob-
lematic in our experiments.

At the high-level, our model can be viewed as
a simplified trainable Turing machine, where the
controller can move on the input tape. It is there-
fore related to the prior work on Neural Turing
Machines (Graves et al., 2014) and especially its
RL version (Zaremba and Sutskever, 2015). Com-
pared to (Zaremba and Sutskever, 2015), the out-
put tape in our method is more simple and reward
signals in our problems are less sparse, which ex-
plains why our model is easy to train. It is worth
noting that Zaremba and Sutskever report diffi-
culty in using policy gradients to train their model.

Our method, by skipping irrelevant content,
shortens the length of recurrent networks, thereby
addressing the vanishing or exploding gradients
in them (Hochreiter et al., 2001). The baseline
method itself, Long Short Term Memory (Hochre-
iter and Schmidhuber, 1997), belongs to the same
category of methods. In this category, there are
several recent methods that try to achieve the same
goal, such as having recurrent networks that oper-
ate in different frequency (Koutnik et al., 2014) or

is organized in a hierarchical fashion (Chan et al.,
2015; Chung et al., 2016).

Lastly, we should point out that we are among
the recent efforts that deploy reinforcement learn-
ing to the field of natural language processing,
some of which have achieved encouraging re-
sults in the realm of such as neural symbolic
machine (Liang et al., 2017), machine reason-
ing (Shen et al., 2016) and sequence genera-
tion (Ranzato et al., 2015).

5 Conclusions

In this paper, we focus on learning how to skim
text for fast reading. In particular, we pro-
pose a “jumping” model that after reading every
few tokens, it decides how many tokens should
be skipped by sampling from a softmax. Such
jumping behavior is modeled as a discrete de-
cision making process, which can be trained by
reinforcement learning algorithm such as REIN-
FORCE. In four different tasks with six datasets
(one synthetic and five real), we test the efficiency
of the proposed method on various levels of text
jumping, from character to word and then to sen-
tence. The results indicate our model is several
times faster than, while the accuracy is on par with
the baseline LSTM model.

Acknowledgments

The authors would like to thank the Google Brain
Team, especially Zhifeng Chen and Yuan Yu for
helpful discussion about the implementation of
this model on Tensorflow. The first author also
wants to thank Chen Liang, Hanxiao Liu, Yingtao
Tian, Fish Tung, Chiyuan Zhang and Yu Zhang for
their help during the project. Finally, the authors
appreciate the invaluable feedback from anony-
mous reviewers.

References
Daniel Andor, Chris Alberti, David Weiss, Aliaksei

Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally nor-
malized transition-based neural networks. arXiv
preprint arXiv:1603.06042 .

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu.
2014. Multiple object recognition with visual atten-
tion. arXiv preprint arXiv:1412.7755 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly

1888

learning to align and translate. arXiv preprint
arXiv:1409.0473 .

William Chan, Navdeep Jaitly, Quoc V Le, and Oriol
Vinyals. 2015. Listen, attend and spell. arXiv
preprint arXiv:1508.01211 .

Danqi Chen, Jason Bolton, and Christopher D. Man-
ning. 2016. A thorough examination of the
cnn/daily mail reading comprehension task. In Pro-
ceedings of the 54th Annual Meeting of the Associ-
ation for Computational Linguistics, ACL 2016, Au-
gust 7-12, 2016, Berlin, Germany, Volume 1: Long
Papers.

Eunsol Choi, Daniel Hewlett, Alexandre Lacoste, Illia
Polosukhin, Jakob Uszkoreit, and Jonathan Berant.
2016. Hierarchical question answering for long doc-
uments. arXiv preprint arXiv:1611.01839 .

Junyoung Chung, Sungjin Ahn, and Yoshua Bengio.
2016. Hierarchical multiscale recurrent neural net-
works. arXiv preprint arXiv:1609.01704 .

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research
12(Aug):2493–2537.

Andrew M. Dai and Quoc V. Le. 2015. Semi-
supervised sequence learning. In Advances in Neu-
ral Information Processing Systems. pages 3079–
3087.

Alex Graves. 2016. Adaptive computation time
for recurrent neural networks. arXiv preprint
arXiv:1603.08983 .

Alex Graves, Greg Wayne, and Ivo Danihelka.
2014. Neural turing machines. arXiv preprint
arXiv:1410.5401 .

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems. pages 1693–
1701.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. arXiv:1511.02301 .

Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and
Jürgen Schmidhuber. 2001. Gradient flow in recur-
rent nets: the difficulty of learning long-term depen-
dencies. In S. C. Kremer and J. F. Kolen, editors,
A Field Guide to Dynamical Recurrent Neural Net-
works, IEEE press.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Yacine Jernite, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Variable computation
in recurrent neural networks. arXiv preprint
arXiv:1611.06188 .

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In EMNLP.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882 .

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Jan Koutnik, Klaus Greff, Faustino Gomez, and Juer-
gen Schmidhuber. 2014. A clockwork rnn. In Inter-
national Conference on Machine Learning.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Inter-
national Conference on Machine Learning (ICML).

Kenton Lee, Tom Kwiatkowski, Ankur Parikh, and Di-
panjan Das. 2016. Learning recurrent span repre-
sentations for extractive question answering. arXiv
preprint arXiv:1611.01436 .

Tao Lei, Regina Barzilay, and Tommi Jaakkola. 2016.
Rationalizing neural predictions. arXiv preprint
arXiv:1606.04155 .

Chen Liang, Jonathan Berant, Quoc Le, Kenneth D.
Forbus, and Ni Lao. 2017. Neural symbolic ma-
chines: Learning semantic parsers on freebase with
weak supervision. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017: Long Papers.

Andrew L Maas, Raymond E Daly, Peter T. Pham, Dan
Huang, Andrew Y. Ng, and Christopher Potts. 2011.
Learning word vectors for sentiment analysis. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1. Association for Com-
putational Linguistics, pages 142–150.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems. pages 3111–3119.

Volodymyr Mnih, Nicolas Heess, Alex Graves, et al.
2014. Recurrent models of visual attention. In
Advances in neural information processing systems.
pages 2204–2212.

Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre,
Bing Xiang, et al. 2016. Abstractive text summa-
rization using sequence-to-sequence RNNs and be-
yond. In Conference on Computational Natural
Language Learning (CoNLL).

1889

Bo Pang and Lillian Lee. 2005. Seeing stars: Ex-
ploiting class relationships for sentiment categoriza-
tion with respect to rating scales. In Proceedings of
the 43rd annual meeting on association for compu-
tational linguistics. Association for Computational
Linguistics, pages 115–124.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level
training with recurrent neural networks. CoRR
abs/1511.06732. http://arxiv.org/abs/1511.06732.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Empirical Methods in Nat-
ural Language Processing (EMNLP).

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. In Annual Meeting of the Association
for Computational Linguistics (ACL).

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603 .

Pierre Sermanet, Andrea Frome, and Esteban Real.
2014. Attention for fine-grained categorization.
arXiv preprint arXiv:1412.7054 .

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015.
Neural responding machine for short-text conversa-
tion. In Annual Meeting of the Association for Com-
putational Linguistics (ACL).

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and
Weizhu Chen. 2016. Reasonet: Learning to stop
reading in machine comprehension. arXiv preprint
arXiv:1609.05284 .

Richard Socher, Jeffrey Pennington, Eric H. Huang,
Andrew Y. Ng, and Christopher D. Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
conference on empirical methods in natural lan-
guage processing.

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason
Chuang, Christopher D. Manning, Andrew Y. Ng,
Christopher Potts, et al. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP.

Alessandro Sordoni, Michel Galley, Michael Auli,
Chris Brockett, Yangfeng Ji, Margaret Mitchell,
Jian-Yun Nie, Jianfeng Gao, and Bill Dolan. 2015.
A neural network approach to context-sensitive gen-
eration of conversational responses. arXiv preprint
arXiv:1506.06714 .

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

Adam Trischler, Zheng Ye, Xingdi Yuan, Jing He,
Phillip Bachman, and Kaheer Suleman. 2016.
A parallel-hierarchical model for machine com-
prehension on sparse data. arXiv preprint
arXiv:1603.08884 .

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. arXiv preprint arXiv:1506.05869 .

Shuohang Wang and Jing Jiang. 2016. Machine com-
prehension using match-lstm and answer pointer.
arXiv preprint arXiv:1608.07905 .

Zhiguo Wang, Haitao Mi, Wael Hamza, and Radu
Florian. 2016. Multi-perspective context match-
ing for machine comprehension. arXiv preprint
arXiv:1612.04211 .

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698 .

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine Learning 8:229–256.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, et al. 2016. Google’s neural ma-
chine translation system: Bridging the gap between
human and machine translation. arXiv preprint
arXiv:1609.08144 .

Caiming Xiong, Victor Zhong, and Richard Socher.
2016. Dynamic coattention networks for question
answering. arXiv preprint arXiv:1611.01604 .

Wojciech Zaremba and Ilya Sutskever. 2015. Rein-
forcement learning neural turing machines-revised.
arXiv preprint arXiv:1505.00521 .

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems. pages 649–657.

1890

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1891–1900
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1173

An Algebra for Feature Extraction

Vivek Srikumar
School of Computing

University of Utah
svivek@cs.utah.edu

Abstract

Though feature extraction is a necessary
first step in statistical NLP, it is often seen
as a mere preprocessing step. Yet, it can
dominate computation time, both during
training, and especially at deployment. In
this paper, we formalize feature extraction
from an algebraic perspective. Our for-
malization allows us to define a message
passing algorithm that can restructure fea-
ture templates to be more computationally
efficient. We show via experiments on text
chunking and relation extraction that this
restructuring does indeed speed up feature
extraction in practice by reducing redun-
dant computation.

1 Introduction

Often, the first step in building statistical NLP
models involves feature extraction. It is well un-
derstood that the right choice of features can sub-
stantially improve classifier performance. How-
ever, from the computational point of view, the
process of feature extraction is typically treated,
at best as the preprocessing step of caching fea-
turized inputs over entire datasets, and at worst,
as ‘somebody else’s problem’. While such ap-
proaches work for training, when trained models
are deployed, the computational cost of feature ex-
traction cannot be ignored.

In this paper, we present the first (to our knowl-
edge) algebraic characterization of the process of
feature extraction. We formalize feature extrac-
tors as arbitrary functions that map objects (words,
sentences, etc) to a vector space and show that this
set forms a commutative semiring with respect to
feature addition and feature conjunction.

An immediate consequence of the semiring
characterization is a computational one. Every

semiring admits the Generalized Distributive Law
(GDL) Algorithm (Aji and McEliece, 2000) that
exploits the distributive property to provide com-
putational speedups. Perhaps the most common
manifestation of this algorithm in NLP is in the
form of inference algorithms for factor graphs and
Bayesian networks like the max-product, max-
sum and sum-product algorithms (e.g. Goodman,
1999; Kschischang et al., 2001). When applied to
feature extractors, the GDL algorithm can refactor
a feature extractor into a faster one by reducing re-
dundant computation. In this paper, we propose a
junction tree construction to allow such refactor-
ing. Since the refactoring is done at the feature
template level, the actual computational savings
grow as classifiers encounter more examples.

We demonstrate the practical utility of our ap-
proach by factorizing existing feature sets for text
chunking and relation extraction. We show that,
by reducing the number of operations performed,
we can obtain significant savings in the time taken
to extract features.

To summarize, the main contribution of this pa-
per is the recognition that feature extractors form a
commutative semiring over addition and conjunc-
tion. We demonstrate a practical consequence of
this characterization in the form of a mechanism
for automatically refactoring any feature extractor
into a faster one. Finally, we show the empirical
usefulness of our approach on relation extraction
and text chunking tasks.

2 Problem Definition

Before formal definitions, let us first see a running
example.

2.1 Motivating Example
Consider the frequently used unigram, bigram and
trigram features. Each of these is a template that
specifies a feature representation for a word. In

1891

https://doi.org/10.18653/v1/P17-1173

fact, the bigram and trigram templates them-
selves are compositional by definition. A bigram

is simply the conjunction of a word w and pre-
vious word, which we will denote as w-1; i.e.,
bigram = w-1&w. Similarity, a trigram is the
conjunction of w-2 and bigram.

These templates are a function that operate on
inputs. Given a sentence, say John ate alone, and
a target word, say alone, they will produce indi-
cators for the strings w=alone, w-1=ate&w=alone

and w-2=John&w-1=ate&w=alone respectively.
Equivalently, each template maps an input to a
vector. Here, the three vectors will be basis vec-
tors associated with the feature strings.

Observe that the function that extracts the target
word (i.e., w) has to be executed in all three feature
templates. Similarly, w-1 has to be extracted to
compute both the bigrams and the trigrams. Can
we optimize feature computation by automatically
detecting such repetitions?

2.2 Definitions and Preliminaries

Let X be a set of inputs to a classification prob-
lem at hand; e.g., X could be words, sentences,
etc. Let V be a possibly infinite dimensional vec-
tor space that represents the feature space. Feature
extractors are functions that map the input space
X to the feature space V to produce feature vec-
tors for inputs. Let F represent the set of feature
functions, defined as the set {f : X → V}. We
will use the typewriter font to denote feature func-
tions like w and bigram.

To round up the definitions, we will name two
special feature extractors inF . The feature extrac-
tor 0 maps all inputs to the zero vector. The feature
extractor 1 maps all inputs to a bias feature vector.
Without loss of generality, we will designate the
basis vector i0 ∈ V as the bias feature vector.

In this paper, we are concerned about two gen-
erally well understood operators on feature func-
tions – addition and conjunction. However, let us
see formal definitions for completeness.
Feature Addition. Given two feature extractors
f1, f2 ∈ F , feature addition (denoted by +) pro-
duces a feature extractor f1 + f2 that adds up the
images of f1 and f2. That is, for any example
x ∈ X , we have

(f1 + f2) (x) = f1 (x) + f2 (x) (1)

For example, the feature extractor w + w-1 will
map the word alone to a vector that is one for the

basis elements w=alone and w-1=went. This vec-
tor is the sum of the indicator vectors produced by
the two operands w and w-1.
Feature Conjunction. Given two feature extrac-
tors f1, f2 ∈ F , their conjunction (denoted by
&) can be interpreted as an extension of Boolean
conjunction. Indicator features like bigram are
predicates for certain observations. Conjoining in-
dicator features for two predicates is equivalent
to an indicator feature for the Boolean conjunc-
tion of the predicates. More generally, with fea-
ture extractors that produce real valued vectors,
the conjunction will produce their tensor prod-
uct. The equivalence of feature conjunctions to
tensor products has been explored and exploited
in recent literature for various NLP tasks (Lei
et al., 2014; Srikumar and Manning, 2014; Gorm-
ley et al., 2015; Lei et al., 2015).

We can further generalize this with an addi-
tional observation that is crucial for the rest of
this paper. We argue that the conjunction opera-
tor produces symmetric tensor products rather than
general tensor products. To see why, consider the
bigram example. Though we defined the bigram
feature as the conjunction of w-1 and w, their or-
dering is irrelevant from classification perspective
– the eventual goal is to associate weights with this
combination of features. This observation allows
us to formally define the conjunction operator as:

(f1&f2) (x) = vec (f1 (x)� f2 (x)) (2)

Here, vec (·) stands for vectorize, which simply
converts the resulting tensor into a vector and �
denotes the symmetric tensor product, introduced
by Ryan (1980, Proposition 1.1). A symmetric
tensor product is defined to be the average of the
tensor products of all possible permutations of the
operands, and thus, unlike a simple tensor product,
is invariant to permutation of is operands. Infor-
mally, if we think of a tensor as a mapping from
an ordered sequence of keys to real numbers, then,
symmetric tensor product can be thought of as a
mapping from a set of keys to numbers.

3 An Algebra for Feature Extraction

In this section, we will see that the set of feature
extractors F form a commutative semiring with
respect to addition and conjunction. First, let us
revisit the definition of a commutative semiring.

Definition 1. A commutative semiring is an alge-
braic structure consisting of a set K and two bi-

1892

nary operations ⊕ and ⊗ (addition and multipli-
cation respectively) such that:
S1. (K,⊕) is a commutative monoid: ⊕ is asso-

ciative and commutative, and the set K con-
tains a unique additive identity 0 such that
∀x ∈ K, we have 0⊕ x = x⊕ 0 = x.

S2. (K,⊗) is a commutative monoid: ⊗ is asso-
ciative and commutative, and the set K con-
tains a unique multiplicative identity 1 such
that ∀x ∈ K, we have 1⊗ x = x⊗ 1 = x.

S3. Multiplication distributes over addition on
both sides. That is, for any x, y, z ∈ K, we
have x ⊗ (y ⊕ z) = (x ⊗ y) ⊕ (x ⊗ z) and
(x⊕ y)⊗ z = (x⊗ z)⊕ (y ⊗ z).

S4. The additive identity is an annihilating ele-
ment with respect to multiplication. That is,
for any x ∈ K, we have x⊗ 0 = 0 = 0⊗ x.

We refer the reader to Golan (2013) for a broad-
ranging survey of semiring theory. We can now
state and prove the main result of this paper.
Theorem 1. LetX be any set and letF denote the
set of feature extractors defined on the set. Then,
(F ,+,&) is a commutative semiring.

Proof. We will show that the properties of a
commutative semiring hold for (F ,+,&) using
the definitions of the operators from §2.2. Let
f1, f2 and f ∈ F be feature extractors.
S1. For any example x ∈ X , we have

(f1 + f2) (x) = f1 (x) + f2 (y). The right
hand side denotes vector addition, which is
associative and commutative. The 0 feature
extractor is the additive identify because it
produces the zero vector for any input. Thus,
(F ,+) is a commutative monoid.

S2. To show that the conjunction operator is as-
sociative over feature extractors, it suffices
to observe that the tensor product (and hence
the symmetric tensor product) is associative.
Furthermore, the symmetric tensor product is
commutative by definition, because it is in-
variant to permutation of its operands.
Finally, the bias feature extractor, 1, that
maps all inputs to the bias vector i0, is the
multiplicative identity. To see this, consider
the conjunction f&1, applied to an input x:

(f&1) (x) = vec (f (x)� 1 (x))

= vec (f (x)� i0)
The product term within the vec (·) in the
final expression is a symmetric tensor, de-
fined by basis vectors that are sets of the form

{i0, i0}, {i1, i0}, · · · . Each basis {ij , i0} is
associated with a feature value f (x)j . Thus,
the vectorized form of this tensor will contain
the same elements as f (x), perhaps mapped
to different bases. The mapping from f (x)
to the final vector is independent of the input
x because the bias feature extractor is inde-
pendent of x. Without loss of generality, we
can fix this mapping to be the identity map-
ping, thereby rendering the final vectorized
form equal to f (x). That is, f&1 = f.
Thus, (F ,&) is a commutative monoid.

S3. Since tensor products distribute over addi-
tion, we get the distributive property.

S4. By definition, conjoining with the 0 feature
extractor annihilates all feature functions be-
cause 0 maps all inputs to the zero vector.

�

4 From Algebra to an Algorithm

The fact that feature extractors form a commuta-
tive semiring has a computational consequence.
The generalized distributive law (GDL) algo-
rithm (Aji and McEliece, 2000) exploits the prop-
erties of a commutative semiring to potentially re-
duce the computational effort for marginalizing
sums of products. The GDL algorithm manifests
itself as the Viterbi, Baum-Welch, Floyd-Warshall
and belief propagation algorithms, and the Fast
Fourier and Hadamard transforms. Each corre-
sponds to a different commutative semiring and a
specific associated marginalization problem.

Here, we briefly describe the general marginal-
ization problem from Aji and McEliece (2000) to
introduce notation and also highlight the analogies
to inference in factor graphs. Let x1, x2, · · · , xn
denote a collection of variables that can take val-
ues from finite sets A1, A2, · · · , An respectively.
Let boldface x denote the entire set of variables.
These variables are akin to inference variables
in factor graphs that may be assigned values or
marginalized away.

Let (K,⊕,⊗) denote a commutative semiring.
Suppose αi is a function that maps a subset of the
variables {xi1 , xi2 , · · · } to the set K. The sub-
set of variables that constitute the domain of αi is
called the local domain of the corresponding local
function. Local domains and local functions are
analogous to factors and factor potentials in a fac-
tor graph. With a collection of local domains, each
associated with a function αi, the “marginalize the

1893

product” problem is that of computing:
∑

x

∏

i

αi (xi1 , xi2 , · · ·) (3)

Here, the sum and product use the semiring op-
erators. The summation is over all possible valid
assignments of the variables x over the cross prod-
uct of the setsA1, A2, · · · , An. This problem gen-
eralizes the familiar max-product or sum-product
settings. Indeed, the GDL algorithm is a gener-
alization of the message passing (Pearl, 2014) for
efficiently computing marginals.

To make feature extraction efficient using the
GDL algorithm, in the next section, we will define
a marginalization problem in terms of the semir-
ing operators by specifying the variables involved,
the local domains and local functions. Instead of
describing the algorithm in the general setting, we
will instantiate it on the semiring at hand.

5 Marginalizing Feature Extractors

First, let us see why we can expect any benefit
from the GDL algorithm by revisiting our running
example (unigrams, bigrams and trigrams), writ-
ten below using the semiring operations:

f = w+ (w-1&w) + (w-2&w-1&w) (4)

When applied to a token, f performs two additions
and three conjunctions. However, by applying the
distributive property, we can refactor it as follows
to reduce the number of operations:

f′ = (1 + (1 + w-2)&w-1)&w (5)

The refactored version f′ – equivalent to the orig-
inal one – only performs two additions and two
conjunctions, offering a computational saving of
one operation. This refactoring is done at the level
of feature templates (i.e., feature extractors); the
actual savings are realized when the feature vec-
tors are computed by applying this feature func-
tion to an input. Thus, the simplification, though
seemingly modest at the template level, can lead
to a substantial speed improvements when the fea-
tures vectors are actually manifested from data.

The GDL algorithm instantiated with the fea-
ture extractor semiring, automates such factoriza-
tion at a symbolic level. In the rest of this sec-
tion, first (§5.1), we will write our problem as a
marginalization problem, as in Equation (3). Then
(§5.2), we will construct a junction tree to apply
the message passing algorithm.

5.1 Canonicalizing Feature Extractors

To frame feature simplification as marginalization,
we need to first write any feature extractor as a
canonical sum of products that is amenable for
factorization (i.e., as in (3)). To do so, in this sec-
tion, we will define: (a) the variables involved,
(b) the local domains (i.e., subsets of variables
contributing to each product term), and, (c) a lo-
cal function for each local domain (i.e., the αi’s).
Variables. First, we write a feature extrac-
tor as a sum of products. Our running exam-
ple (4) is already one. If we had an expres-
sion like f1&(f2 + f3), we can expand it into
f1&f2 + f1&f3. From the sum of products, we
identify the base feature extractors (i.e., ones not
composed of other feature extractors) and define a
variable xi for each. In our example, we have w,
w-1 and w-2.

Next, recall from §4 that each variable xi can
take values from a finite set Ai. If a base feature
extractor fi corresponds to the variable xi, then,
we define xi’s domain to be the set Ai = {1, fi}.
That is, each variable can either be the bias feature
extractor or the feature extractor associated with
it. Our example gives three variables x1, x2, x3
with domains A1 = {1, w}, A2 = {1, w-1}, A3 =
{1, w-2} respectively.
Local domains. Local domains are subsets of the
variables defined above. They are the domains of
functions that constitute products in the canonical
form of a feature extractor. We define the follow-
ing local domains, each illustrated with the corre-
sponding instantiation in our running example:

1. A singleton set for each variable: {x1}, {x2},
and {x3}.

2. One local domain consisting of all the vari-
ables: The set {x1, x2, x3}.

3. One local domain consisting of no variables:
The empty set {}.

4. One local domain for each subset of base
feature extractors that participate in at least
two conjunctions in the sum-of-products (i.
e., the ones that can be factored away): Only
{x1, x2} in our example, because only w and
w-1 participate in two conjunctions in (4).

Local functions. Each local domain is associated
with a function that maps variable assignments to
feature extractors. These functions (called local
kernels by Aji and McEliece (2000)) are like po-
tential functions in a factor graph. We define two
kinds of local functions, driven by the goal of de-

1894

signing a marginalization problem that pushes to-
wards simpler feature functions.

1. We associate the identity function with all
singleton local domains, and the constant
function that returns the bias 1 with the
empty domain {}.

2. With all other local domains, we asso-
ciate an indicator function, denoted by z.
For a local domain, z is an indicator for
those assignments of the variables involved,
whose conjunctions are present in any prod-
uct term in sum-of-products. In our run-
ning example, the function z(x1, x2) is the
indicator for (x1, x2) belonging to the set
{(w, 1) , (w, w-1)}, represented by the table:

x1 x2 z(x1, x2)
1 1 0
1 w-1 0
w 1 1
w w-1 1

The indicator returns the semiring’s multi-
plicative and additive identities. The value
of z above for inputs (w,1) is 1 because the
first term in (4) that defines the feature ex-
tractor contains w, but not w-1. On the other
hand, the input (1,1) is mapped to 0 be-
cause every product term contains either w

or w-1. For the local domain {x1, x2, x3},
the local function is the indicator for the set
{(w, 1, 1), (w, w-1,1), (w, w-1, w-2)}, corre-
sponding to each product term.

In summary, for the running example we have:
Local domain Local function
{x1} x1
{x2} x2
{x3} x3
{x1, x2, x3} z(x1, x2, x3)
{} 1
{x1, x2} z(x1, x2)

The procedure described here aims to convert
any feature function into a canonical form that can
be factorized using the GDL algorithm. Indeed,
using local domains and functions specified above,
any feature extractor can we written as a canonical
sum of products as in (3). For example, using the
table above, our running example is identical to

∑

x1,x2,x3

z(x1, x2, x3)&z(x1, x2)&x1&x2&x3 (6)

Here, the summation is over the cross product of
theAi’s. The choice of the z functions ensures that
only those conjunctions that were in the original
feature extractor remain.

This section shows one approach for canonical-
ization; the local domains and functions are a de-

sign choice that may be optimized in future work.
We should also point out that, while this process is
notationally tedious, its actual computational cost
is negligible, especially given that it is to be per-
formed only once at the template level.

5.2 Simplifying feature extractors

As mentioned in §4, a commutative semiring can
allow us to employ the GDL algorithm to effi-
ciently compute a sum of products. Starting from a
canonical sum-of-products expression such as the
one in (6), this process is similar to variable elim-
ination for Bayesian networks. The junction tree
algorithm is a general scheme to avoid redundant
computation in such networks (Cowell, 2006). To
formalize this, we will first build a junction tree
and then define the messages sent from the leaves
to the root. The final message at the root will give
us the simplified feature function.
Constructing a Junction Tree. First, we will con-
struct a junction tree using the local domains from
§ 5.1. In any junction tree, the edges should satisfy
the running intersection property: i.e., if a vari-
able xi is in two nodes in the tree, then it should
be in every node in the path connecting them. To
build a junction tree, we will first create a graph
whose nodes are the local domains. The edges of
this graph connect pairs of nodes if the variables
in one are a subset of the other. For simplicity, we
will assume that our nodes are arranged in a lat-
tice as shown in Figure 1, with edges connecting
nodes in subsequent levels. For example, there is
no edge connecting nodes B and C.

Every spanning tree of this lattice is a junction
tree. Which one should we consider? Let us ex-
amine the properties that we need. First, the root
of the tree should correspond to the empty local
domain {} because messages arriving at this node
will accumulate all products. Second, as we will
see, feature extractors farther from the root will
appear in inner terms in the factorized form. That
is, frequent or more expensive feature extractors
should be incentivized to appear higher in the tree.

To capture these preferences, we frame the task
of constructing the junction tree as a maximum
spanning tree problem over the graph, with edge
weights incorporating the preferences. One nat-
ural weighting function is the computational ex-
pense of the base feature extractors associated
with that edge. For example, the weight associated
with the edge connecting nodes E and D in the fig-

1895

{}

{x1} {x2} {x3}

{x1, x2}

{x1, x2, x3}

A

B

C

D

E

F

Figure 1: The junction tree for our running example. The
process of constructing the junction tree is described in the
text. Here, we show both the tree and the graph from which
it is constructed; dashed lines show edges are not in the tree.
Filled circles denote the names of the nodes. The local do-
main {x1} is connected to the empty local domain because
the feature w corresponding to it is most frequent.

ure can be the average cost of the w and w-1 feature
extractors. If computational costs are unavailable,
we can use the number times a feature extractor
appears in the expression to be simplified. Under
this criterion, in our example, edges connecting E

to its neighbors will be weighted highest.
Once we have a spanning tree, we make the

edges directed so that the empty set is the root.
Figure 1 shows the junction tree obtained for our
running example.
Message Passing for Feature Simplification.
Given the junction tree, we can use a standard
message passing scheme for factorization. The
goal is to collect information at each node in the
tree from its children all the way to the root.

Suppose vi, vj denote two nodes in the tree.
Since nodes are associated with sets of variables,
their intersections vi ∩ vj and differences vi \ vj
are defined. For example, in the example, A ∩ B =
{x3} and B \ D = {x3}. We will denote children
of a node vi in the junction tree by C(vi).

The message from any node vi to its parent vj
is a function that maps the variables vi ∩ vj to a
feature extractor by marginalizing out all variables
that are in vi but not in vj . Formally, we define the
message µij from a node vi to a node vj as:

µij (vi ∩ vj) =
∑

vj\vi

αi (vi)
∏

vk∈C(vi)

µki (vk ∩ vi) . (7)

Here, αi is the local function at node vi. To com-
plete the formal definition of the algorithm, we
note that by performing post-order traversal of the
junction tree, we will accumulate all messages at
the root of the tree, that corresponds to the empty
set of variables. The incoming message at this
node represents the factorized feature extractor.

Algorithm 1 briefly summarizes the entire simpli-
fication process. The proof of correctness of the
algorithm follows from the fact that the range of
all the local functions is a commutative semiring,
namely the feature extractor semiring. We refer
the reader to (Aji and McEliece, 2000, Appendix
A) for details.

Algorithm 1 The Generalized Distributive Law Algorithm
for simplifying a feature extractor f. See the text for details.
1: Convert f into a canonical sum of products representa-

tion (§ 5.1).
2: Construct a junction tree whose nodes are local domains.
3: for edge (vj , vi) in the post-order traversal of the tree do
4: Receive a message µij at vj using (7).
5: end for
6: return the incoming message at the root

Example run of message propagation. As an il-
lustration, let us apply it to our running example.

1. The first message is from A to B. Since A has
no children and its local function is the iden-
tity function, we have µAB(x) = x. Simi-
larly, we have µCD(x) = x.

2. The message from B to D has to marginal-
ize out the variable x3. That is, we have
µBD(x1, x2) =

∑
x3

z(x1, x2, x3)µAB(x3).

The summation is over the domain of x3,
namely {1, w-2}. By substituting for z and
µAB , and simplifying, we get the message:

x1 x2 µBD(x1, x2)
1 1 0
1 w-1 0
w 1 1
w w-1 1 + w-2

3. The message from D to E marginalizes out
the variable x2 to give us µDE(x1) =∑
x2

z(x1, x2)µCD(x2)µBD(x1, x2). Here, the

summation is over the domain of x2, namely
{1, w-1}. We can simplify the message as:

x1 µDE(x1)
1 0
w 1 + (1 + w-2)&w-1

4. Finally, the message from E to the root F

marginalizes out the variable x1 by summing
over its domain {1, w} to give us the message
(1 + (1 + w-2)&w-1)&w.

The message received at the root is the factorized
feature extractor. Note that the final form is iden-
tical to (5) at the beginning of §5.
Discussion. An optimal refactoring algorithm
would produce a feature extractor that is both cor-
rect and fastest. The algorithm above has the for-
mer guarantee. While it does reduce the number of
operations performed, the closeness of the refac-

1896

tored feature function to the fastest one depends
on the heuristic used to weight edges for iden-
tifying the junction tree. Changing the heuristic
can change the junction tree, thus changing the fi-
nal factorized function. We found via experiments
that using the number of times a feature extractor
occurs in the sum-of-products to weight edges is
promising. A formal study of optimality of factor-
ization is an avenue of future research.

6 Experiments

We show the practical usefulness of feature func-
tion refactoring using text chunking and relation
extraction. In both cases, the question we seek to
evaluate empirically is: Does the feature function
refactoring algorithm improve feature extraction
time? We should point out that our goal is not to
measure accuracy of prediction, but the efficiency
of feature extraction. Indeed, we are guaranteed
that refactoring will not change accuracy; factor-
ized feature extractors produce the same feature
vectors as the original ones.

In all experiments, we compare a feature extrac-
tor and its refactored variant. For the factorization,
we incentivized the junction tree to factor out base
feature extractors that occurred most frequently in
the feature extractor. For both tasks, we use ex-
isting feature representations that we briefly de-
scribe. We refer the reader to the original work
that developed the feature representations for fur-
ther details. For both the original and the factor-
ized feature extractors, we report (a) the number
of additions and conjunctions at the template level,
and, (b) the time for feature extraction on the en-
tire dataset. For the time measurements, we report
average times for the original and factorized fea-
ture extractors over five paired runs to average out
variations in system load.1

6.1 Text Chunking

We use data from the CoNLL 2000 shared
task (Tjong Kim Sang and Buchholz, 2000) of text
chunking and the feature set described by Martins
et al. (2011), consisting of the following templates
extracted at each word: (1) Up to 3-grams of POS
tags within a window of size ten centered at the
word, (2) up to 3-grams of words, within a win-
dow of size six centered at the word, and (3) up to
2-grams of word shapes, within a window of size

1We performed all our experiments on a server with
128GB RAM and 24 CPU cores, each clocking at 2600 MHz.

Size Average feature
Setting + & extraction time (ms)
Original 47 75 17776.6

Factorized 47 54 4294.2

Table 1: Comparison of the original and factorized feature
extractors for the text chunking task. The time improvement
is statistically significant using the paired t-test at p < 0.01.

Size Average feature
Setting + & extraction time (ms)
Original 43 19 8173.0

Factorized 43 11 6276.4

Table 2: Comparison of the original and factorized feature
extractors for the relation extraction task. We measured time
using 3191 training mention pairs. The time improvement is
statistically significant using the paired t-test at p < 0.01.

four centered at the word. In all, there are 96 fea-
ture templates.

We factorized the feature representation using
Algorithm 1. Table 1 reports the number of opera-
tions (addition and conjunction) in the templates in
the original and factorized versions of the feature
extractor. The table also reports feature extraction
time taken from the entire training set of 8,936
sentences, corresponding to 211,727 tokens. First,
we see that the factorization reduces the number of
feature conjunction operations. Thus, to produce
exactly the same feature vector, the factorized fea-
ture extractor does less work. The time results
show that this computational gain is not merely a
theoretical one; it also manifests itself practically.

6.2 Relation Extraction

Our second experiment is based on the task of re-
lation extraction using the English section of the
ACE 2005 corpus (Walker et al., 2006). The goal
is to identify semantic relations between two en-
tity mentions in text. We use the feature represen-
tation developed by Zhou et al. (2005) as part of
an investigation of how various lexical, syntactic
and semantic sources of information affect the re-
lation extraction task. To this end, the feature set
consists of word level information about mentions,
their entity types, their relationships with chunks,
path features from parse trees, and semantic fea-
tures based on WordNet and various word lists.
Given the complexity of the features, we do not
describe them here and refer the reader to the orig-
inal work for details. Note that compared to the
chunking features, these features are more diverse
in their computational costs.

We report the results of our experiments in Ta-

1897

ble 2. As before, we see that the number of
conjunction operations decreases after factoriza-
tion. Curiously, however, despite the complexity
of the feature set, the actual number of operations
is smaller than text chunking. Due to this, we see
a more modest, yet significant decrease in the time
for feature extraction after factorization.

7 Related Work and Discussion

Simplifying Expressions. The problem of sim-
plifying expressions with an eye on computa-
tional efficiency is the focus of logic synthesis (cf.
Hachtel and Somenzi, 2006), albeit largely geared
towards analyzing and verifying digital circuits.
Logic synthesis is NP-hard in general. In our case,
the hardness is hidden in the fact that our approach
does not guarantee that we will find the smallest
(or most efficient) factorization. The junction tree
construction determines the factorization quality.
Semirings in NLP. Semirings abound in NLP,
though primarily as devices to design efficient
inference algorithms for various graphical mod-
els (e.g. Wainwright and Jordan, 2008; Sutton
et al., 2012). Goodman (1999) synthesized var-
ious parsing algorithms in terms of semiring op-
erations. Since then, we have seen several ex-
plorations of the interplay between weighted dy-
namic programs and semirings for inference in
tasks such as parsing and machine translation (e.
g. Eisner et al., 2005; Li and Eisner, 2009; Lopez,
2009; Gimpel and Smith, 2009). Allauzen et al.
(2003) developed efficient algorithms for con-
structing statistical language models by exploiting
the algebraic structure of the probability semiring.
Feature Extraction and Modeling Languages.
Much work around features in NLP is aimed at
improving classifier accuracy. There is some work
on developing languages to better construct fea-
ture spaces (Cumby and Roth, 2002; Broda et al.,
2013; Sammons et al., 2016), but they do not for-
malize feature extraction from an algebraic per-
spective. We expect that the algorithm proposed in
this paper can be integrated into such feature con-
struction languages, and also into libraries geared
towards designing feature rich models (e.g. Mc-
Callum et al., 2009; Chang et al., 2015).
Representation vs. Speed. As the recent suc-
cesses (Goodfellow et al., 2016) of distributed rep-
resentations show, the representational capacity of
a feature space is of primary importance. Indeed,
several recent lines of work that use distributed

representations have independently identified the
connection between conjunctions (of features or
factors in a factor graph) and tensor products (Lei
et al., 2014; Srikumar and Manning, 2014; Gorm-
ley et al., 2015; Yu et al., 2015; Lei et al., 2015;
Primadhanty et al., 2015). They typically impose
sparsity or low-rank requirements to induce better
representations for learning. In this paper, we use
the connection between tensor products and con-
junctions to prove algebraic properties of feature
extractors, leading to speed improvements via fac-
torization.

In this context, we note that in both our experi-
ments, the number of conjunctions are reduced by
factorization. We argue that this is an important
saving because conjunctions can be a more expen-
sive operation. This is especially true when deal-
ing with dense feature representations, as is in-
creasingly common with word vectors and neural
networks, because conjunctions of dense feature
vectors are tensor products, which can be slow.

Finally, while training classifiers can be time
consuming, when trained classifiers are deployed,
feature extraction will dominate computation time
over the classifier’s lifetime. However, the pre-
diction step includes both feature extraction and
computing inner products between features and
weights. Many features may be associated with
zero weights because of sparsity-inducing learn-
ing (e.g. Andrew and Gao, 2007; Martins et al.,
2011; Strubell et al., 2015). Since these two as-
pects are orthogonal to each other, the factoriza-
tion algorithm presented in this paper can be used
to speed up extraction of those features that have
non-zero weights.

8 Conclusion

In this paper, we studied the process of feature ex-
traction using an algebraic lens. We showed that
the set of feature extractors form a commutative
semiring over addition and conjunction. We ex-
ploited this characterization to develop a factor-
ization algorithm that simplifies feature extractors
to be more computationally efficient. We demon-
strated the practical value of the refactoring algo-
rithm by speeding up feature extraction for text
chunking and relation extraction tasks.

Acknowledgments

The author thanks the anonymous reviewers for
their insightful comments and feedback.

1898

References
Srinivas M Aji and Robert J McEliece. 2000. The gen-

eralized distributive law. IEEE Transactions on In-
formation Theory 46(2).

Cyril Allauzen, Mehryar Mohri, and Brian Roark.
2003. Generalized algorithms for constructing sta-
tistical language models. In ACL.

Galen Andrew and Jianfeng Gao. 2007. Scalable train-
ing of L1-regularized log-linear models. In ICML.

Bartosz Broda, Paweł Kędzia, Michał Marcińczuk,
Adam Radziszewski, Radosław Ramocki, and
Adam Wardyński. 2013. Fextor: A feature extrac-
tion framework for natural language processing: A
case study in word sense disambiguation, relation
recognition and anaphora resolution. In Computa-
tional Linguistics, Springer, pages 41–62.

Kai-Wei Chang, Shyam Upadhyay, Ming-Wei Chang,
Vivek Srikumar, and Dan Roth. 2015. IllinoisSL:
A JAVA library for Structured Prediction. arXiv
preprint arXiv:1509.07179 .

Robert G Cowell. 2006. Probabilistic networks and
expert systems: Exact computational methods for
Bayesian networks. Springer Science & Business
Media.

Chad M Cumby and Dan Roth. 2002. Learning with
feature description logics. In Inductive logic pro-
gramming, Springer.

Jason Eisner, Eric Goldlust, and Noah A Smith. 2005.
Compiling Comp Ling: Practical weighted dynamic
programming and the Dyna language. In HLT-
EMNLP.

Kevin Gimpel and Noah A Smith. 2009. Cube sum-
ming, approximate inference with non-local fea-
tures, and dynamic programming without semirings.
In EACL.

Jonathan S Golan. 2013. Semirings and their Applica-
tions. Springer Science & Business Media.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press.

Joshua Goodman. 1999. Semiring parsing. Computa-
tional Linguistics 25(4):573–605.

Matthew R. Gormley, Mo Yu, and Mark Dredze. 2015.
Improved relation extraction with feature-rich com-
positional embedding models. In EMNLP.

Gary D Hachtel and Fabio Somenzi. 2006. Logic syn-
thesis and verification algorithms. Springer Science
& Business Media.

Frank R Kschischang, Brendan J Frey, and H-A
Loeliger. 2001. Factor graphs and the sum-product
algorithm. IEEE Transactions on information the-
ory 47(2):498–519.

Tao Lei, Yuan Zhang, Regina Barzilay, and Tommi
Jaakkola. 2014. Low-rank tensors for scoring de-
pendency structures. In ACL.

Tao Lei, Yuan Zhang, Lluís Màrquez, Alessandro
Moschitti, and Regina Barzilay. 2015. High-order
lowrank tensors for semantic role labeling. In
NAACL.

Zhifei Li and Jason Eisner. 2009. First- and second-
order expectation semirings with applications to
minimum-risk training on translation forests. In
EMNLP.

Adam Lopez. 2009. Translation as weighted deduc-
tion. In EACL.

André FT Martins, Noah A Smith, Pedro MQ Aguiar,
and Mário AT Figueiredo. 2011. Structured sparsity
in structured prediction. In CoNLL.

Andrew McCallum, Karl Schultz, and Sameer Singh.
2009. Factorie: Probabilistic programming via im-
peratively defined factor graphs. In NIPS.

Judea Pearl. 2014. Probabilistic reasoning in intelli-
gent systems: networks of plausible inference. Mor-
gan Kaufmann.

Audi Primadhanty, Xavier Carreras, and Ariadna Quat-
toni. 2015. Low-rank regularization for sparse con-
junctive feature spaces: An application to named en-
tity classification. In ACL.

Raymond A Ryan. 1980. Applications of topological
tensor products to infinite dimensional holomorphy.
Ph.D. thesis, Trinity College.

Mark Sammons, Christos Christodoulopoulos, Parisa
Kordjamshidi, Daniel Khashabi, Vivek Srikumar,
and Dan Roth. 2016. EDISON: Feature Extraction
for NLP. In LREC.

Vivek Srikumar and Christopher D. Manning. 2014.
Learning distributed representations for structured
output prediction. In NIPS.

Emma Strubell, Luke Vilnis, Kate Silverstein, and An-
drew McCallum. 2015. Learning Dynamic Feature
Selection for Fast Sequential Prediction. In ACL.

Charles Sutton, Andrew McCallum, et al. 2012. An
introduction to conditional random fields. Founda-
tions and Trends R© in Machine Learning 4(4):267–
373.

Erik F Tjong Kim Sang and Sabine Buchholz.
2000. Introduction to the CoNLL-2000 shared task:
Chunking. In CoNLL.

Martin J Wainwright and Michael I Jordan. 2008.
Graphical models, exponential families, and varia-
tional inference. Foundations and Trends R© in Ma-
chine Learning 1(1–2):1–305.

1899

Christopher Walker, Stephanie Strassel, Julie Medero,
and Kazuaki Maeda. 2006. ACE 2005 multilin-
gual training corpus. Linguistic Data Consortium,
Philadelphia 57.

Mo Yu, Matthew R. Gormley, and Mark Dredze. 2015.
Combining Word Embeddings and Feature Embed-
dings for Fine-grained Relation Extraction. In
NAACL.

GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang.
2005. Exploring various knowledge in relation ex-
traction. In ACL.

1900

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1901–1912
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1174

Chunk-based Decoder for Neural Machine Translation

Shonosuke Ishiwatar†∗ Jingtao Yao‡∗ Shujie Liu§ Mu Li§ Ming Zhou§
Naoki Yoshinaga¶ Masaru Kitsuregawa‖¶ Weijia Jia‡

† The University of Tokyo ‡ Shanghai Jiao Tong University §Microsoft Research Asia
¶ Institute of Industrial Science, the University of Tokyo ‖ National Institute of Informatics

†¶‖{ishiwatari, ynaga, kitsure}@tkl.iis.u-tokyo.ac.jp
‡{yjt1995@, jia-wj@cs.}sjtu.edu.cn

§{shujliu, muli, mingzhou}@microsoft.com

Abstract

Chunks (or phrases) once played a piv-
otal role in machine translation. By us-
ing a chunk rather than a word as
the basic translation unit, local (intra-
chunk) and global (inter-chunk) word or-
ders and dependencies can be easily mod-
eled. The chunk structure, despite its im-
portance, has not been considered in the
decoders used for neural machine trans-
lation (NMT). In this paper, we propose
chunk-based decoders for NMT, each of
which consists of a chunk-level decoder
and a word-level decoder. The chunk-
level decoder models global dependencies
while the word-level decoder decides the
local word order in a chunk. To output
a target sentence, the chunk-level decoder
generates a chunk representation contain-
ing global information, which the word-
level decoder then uses as a basis to pre-
dict the words inside the chunk. Experi-
mental results show that our proposed de-
coders can significantly improve transla-
tion performance in a WAT ’16 English-
to-Japanese translation task.

1 Introduction

Neural machine translation (NMT) performs end-
to-end translation based on a simple encoder-
decoder model (Kalchbrenner and Blunsom, 2013;
Sutskever et al., 2014; Cho et al., 2014b) and
has now overtaken the classical, complex statis-
tical machine translation (SMT) in terms of perfor-
mance and simplicity (Sennrich et al., 2016; Lu-
ong and Manning, 2016; Cromieres et al., 2016;
Neubig, 2016). In NMT, an encoder first maps
a source sequence into vector representations and
∗Contribution during internship at Microsoft Research.

!"# $ %&"'()**'+ ,+**-+.(*(&/01(/2

3&# !" # $ %& ' ()* +* , -& + .
4((0-+.((&/05 ,+*6&78

Figure 1: Translation from English to Japanese.
The function words are underlined.

a decoder then maps the vectors into a target se-
quence (§ 2). This simple framework allows re-
searchers to incorporate the structure of the source
sentence as in SMT by leveraging various architec-
tures as the encoder (Kalchbrenner and Blunsom,
2013; Sutskever et al., 2014; Cho et al., 2014b;
Eriguchi et al., 2016b). Most of the NMT models,
however, still rely on a sequential decoder based
on a recurrent neural network (RNN) due to the
difficulty in capturing the structure of a target sen-
tence that is unseen during translation.

With the sequential decoder, however, there are
two problems to be solved. First, it is difficult
to model long-distance dependencies (Bahdanau
et al., 2015). A hidden state ht in an RNN is
only conditioned by its previous output yt−1, pre-
vious hidden state ht−1, and current input xt. This
makes it difficult to capture the dependencies be-
tween an older output yt−N if they are too far
from the current output. This problem can become
more serious when the target sequence becomes
longer. For example, in Figure 1, when we trans-
late the English sentence into the Japanese one, af-
ter the decoder predicts the content word “帰っ
(go back)”, it has to predict four function words
“て (suffix)”, “しまい (perfect tense)”, “たい (de-
sire)”, and “と (to)” before predicting the next
content word “思っ (feel)”. In such a case, the
decoder is required to capture the longer depen-
dencies in a target sentence.

Another problem with the sequential decoder is
that it is expected to cover multiple possible word
orders simply by memorizing the local word se-

1901

https://doi.org/10.18653/v1/P17-1174

quences in the limited training data. This problem
can be more serious in free word-order languages
such as Czech, German, Japanese, and Turkish. In
the case of the example in Figure 1, the order of
the phrase “早く (early)” and the phrase “家へ (to
home)” is flexible. This means that simply memo-
rizing the word order in training data is not enough
to train a model that can assign a high probability
to a correct sentence regardless of its word order.

In the past, chunks (or phrases) were utilized to
handle the above problems in statistical machine
translation (SMT) (Watanabe et al., 2003; Koehn
et al., 2003) and in example-based machine trans-
lation (EBMT) (Kim et al., 2010). By using a
chunk rather than a word as the basic translation
unit, one can treat a sentence as a shorter sequence.
This makes it easy to capture the longer dependen-
cies in a target sentence. The order of words in a
chunk is relatively fixed while that in a sentence is
much more flexible. Thus, modeling intra-chunk
(local) word orders and inter-chunk (global) de-
pendencies independently can help capture the dif-
ference of the flexibility between the word order
and the chunk order in free word-order languages.

In this paper, we refine the original RNN de-
coder to consider chunk information in NMT. We
propose three novel NMT models that capture and
utilize the chunk structure in the target language
(§ 3). Our focus is the hierarchical structure of a
sentence: each sentence consists of chunks, and
each chunk consists of words. To encourage an
NMT model to capture the hierarchical structure,
we start from a hierarchical RNN that consists of
a chunk-level decoder and a word-level decoder
(Model 1). Then, we improve the word-level de-
coder by introducing inter-chunk connections to
capture the interaction between chunks (Model 2).
Finally, we introduce a feedback mechanism to the
chunk-level decoder to enhance the memory ca-
pacity of previous outputs (Model 3).

We evaluate the three models on the WAT ’16
English-to-Japanese translation task (§ 4). The ex-
perimental results show that our best model out-
performs the best single NMT model reported in
WAT ’16 (Eriguchi et al., 2016b).

Our contributions are twofold: (1) chunk infor-
mation is introduced into NMT to improve transla-
tion performance, and (2) a novel hierarchical de-
coder is devised to model the properties of chunk
structure in the encoder-decoder framework.

2 Preliminaries: Attention-based Neural
Machine Translation

In this section, we briefly introduce the architec-
ture of the attention-based NMT model (Bahdanau
et al., 2015), which is the basis of our proposed
models.

2.1 Neural Machine Translation
An NMT model usually consists of two connected
neural networks: an encoder and a decoder. Af-
ter the encoder maps a source sentence into a
fixed-length vector, the decoder maps the vector
into a target sentence. The implementation of
the encoder can be a convolutional neural net-
work (CNN) (Kalchbrenner and Blunsom, 2013), a
long short-term memory (LSTM) (Sutskever et al.,
2014; Luong and Manning, 2016), a gated recur-
rent unit (GRU) (Cho et al., 2014b; Bahdanau et al.,
2015), or a Tree-LSTM (Eriguchi et al., 2016b).
While various architectures are leveraged as an en-
coder to capture the structural information in the
source language, most of the NMT models rely on a
standard sequential network such as LSTM or GRU

as the decoder.
Following (Bahdanau et al., 2015), we use GRU

as the recurrent unit in this paper. A GRU unit com-
putes its hidden state vector hi given an input vec-
tor xi and the previous hidden state hi−1:

hi = GRU(hi−1,xi). (1)

The function GRU(·) is calculated as

ri = σ(Wrxi +Urhi−1 + br), (2)

zi = σ(Wzxi +Uzhi−1 + bz), (3)

h̃i = tanh(Wxi +U(ri � hi−1 + b)), (4)

hi = (1− zi)� h̃i + zi � hi−1, (5)

where vectors ri and zi are reset gate and update
gate, respectively. While the former gate allows
the model to forget the previous states, the latter
gate decides how much the model updates its con-
tent. All theW s andUs, or the bs above are train-
able matrices or vectors. σ(·) and � denote the
sigmoid function and element-wise multiplication
operator, respectively.

In this simple model, we train a GRU function
that encodes a source sentence {x1, · · · , xI} into a
single vectorhI . At the same time, we jointly train
another GRU function that decodes hI to the target
sentence {y1, · · · , yJ}. Here, the j-th word in the

1902

!"

だれ か が #"

!"#$%&'()*%%&"(+,-,&+

$%
.

/)&-'% &'

.

.

$($'.

.)%)()"

)* %)* ()*"

Figure 2: Standard word-based decoder.

target sentence yj can be predicted with this de-
coder GRU and a nonlinear function g(·) followed
by a softmax layer, as

c = hI , (6)

sj = GRU(sj−1, [yj−1; c]), (7)

s̃j = g(yj−1, sj , c), (8)

P (yj |y<j ,x) = softmax(s̃j), (9)

where c is a context vector of the encoded sen-
tence and sj is a hidden state of the decoder GRU.

Following Bahdanau et al. (2015), we use a
mini-batch stochastic gradient descent (SGD) algo-
rithm with ADADELTA (Zeiler, 2012) to train the
above two GRU functions (i.e., the encoder and the
decoder) jointly. The objective is to minimize the
cross-entropy loss of the training dataD, as

J =
∑

(x,y)∈D
− logP (y|x). (10)

2.2 Attention Mechanism for Neural
Machine Translation

To use all the hidden states of the encoder and
improve the translation performance of long sen-
tences, Bahdanau et al. (2015) proposed using an
attention mechanism. In the attention model, the
context vector is not simply the last encoder state
hI but rather the weighted sum of all hidden states
of the bidirectional GRU, as follows:

cj =
I∑

i=1

αjihi. (11)

Here, the weight αji decides how much a source
word xi contributes to the target word yj . αji is
computed by a feedforward layer and a softmax
layer as

eji = v · tanh(Wehi +Uesj + be), (12)

αji =
exp(eji)∑J
j′=1 exp(ej′i)

, (13)

!"#$%

!"&$'($% !"&)'*+), ($%

!"#-'.+-%

&$ &/

!

!

!"&/'*+/, (-%

!

!

!"&0'*+0, ($%

!

!

!"&$'(- %

だれ か が

Figure 3: Chunk-based decoder. The top layer
(word-level decoder) illustrates the first term in
Eq. (15) and the bottom layer (chunk-level de-
coder) denotes the second term.

where We, Ue are trainable matrices and the v,
be are trainable vectors.1 In a decoder using the
attention mechanism, the obtained context vector
cj in each time step replaces cs in Eqs. (7) and
(8). An illustration of the NMT model with the
attention mechanism is shown in Figure 2.

The attention mechanism is expected to learn
alignments between source and target words, and
plays a similar role to the translation model in
phrase-based SMT (Koehn et al., 2003).

3 Neural Machine Translation with
Chunk-based Decoder

Taking non-sequential information such as chunks
(or phrases) structure into consideration has
proved helpful for SMT (Watanabe et al., 2003;
Koehn et al., 2003) and EBMT (Kim et al., 2010).
Here, we focus on two important properties of
chunks (Abney, 1991): (1) The word order in a
chunk is almost always fixed, and (2) A chunk
consists of a few (typically one) content words sur-
rounded by zero or more function words.

To fully utilize the above properties of a chunk,
we propose modeling the intra-chunk and the
inter-chunk dependencies independently with a
“chunk-by-chunk” decoder (See Figure 3). In the
standard word-by-word decoder described in § 2, a
target word yj in the target sentence y is predicted
by taking the previous outputs y<j and the source
sentence x as input:

P (y|x) =
J∏

j=1

P (yj |y<j ,x), (14)

where J is the length of the target sentence. Not
1We choose this implementation following (Luong et al.,

2015b), while (Bahdanau et al., 2015) use sj−1 instead of sj
in Eq. (12).

1903

!"#$

!"#$%&'('&

)'*"$'#+

,!-./.0+ 1

%"#&
'() %"#*

'()

23456++ 23456+, -+ 23456+,

%"#$
'()

%. "#$
'()

だれ か が 犬 噛ま れ

%. "#&
'()

%. "#*
'()

/"#$

%"0&#
1

'()

/"0Ӓ 5

23456%&'('&

)'*"$'#+

,!-././+ 1

7

7

7

!"#$%& '(&)*+$,-./0*1& ."**$2+3"*& 4§56'7

!"#$%& 5(&8",#-+"-./0*1& 9$$#:;21& 4§5657

%&
'6) %"

'6)
%"0&
'6)

%"#$
'6)

7&
7

8 3'9#$ 89

7* 797

7

:5*"$'#+ 3;$$'5+ <=9='<

%"#*
'6)

23451

Figure 4: Proposed model: NMT with chunk-based decoder. A chunk-level decoder generates a chunk
representation for each chunk while a word-level decoder uses the representation to predict each word.
The solid lines in the figure illustrate Model 1. The dashed blue arrows in the word-level decoder denote
the connections added in Model 2. The dotted red arrows in the chunk-level decoder denote the feedback
states added in Model 3; the connections in the thick black arrows are replaced with the dotted red arrows.

assuming any structural information of the target
language, the sequential decoder has to memorize
long dependencies in a sequence. To release the
model from the pressure of memorizing the long
dependencies over a sentence, we redefine this
problem as the combination of a word prediction
problem and a chunk generation problem:

P (y|x) =
K∏

k=1



P (ck|c<k,x)

Jk∏

j=1

P (yj |y<j , ck,x)



 ,

(15)
whereK is the number of chunks in the target sen-
tence and Jk is the length of the k-th chunk (see
Figure 3). The first term represents the generation
probability of a chunk ck and the second term in-
dicates the probability of a word yj in the chunk.
We model the former term as a chunk-level de-
coder and the latter term as a word-level decoder.
As demonstrated later in § 4, both K and Jk are
much shorter than the sentence length J , which is
why our decoders do not have to capture the long
dependencies like the standard decoder does.

In the above formulation, we model the in-
formation of words and their orders in a chunk.
No matter which language we target, we can as-
sume that a chunk usually consists of some con-
tent words and function words, and the word or-
der in the chunk is almost always fixed (Abney,
1991). Although our idea can be used in sev-
eral languages, the optimal network architecture
could depend on the word order of the target lan-
guage. In this work, we design models for lan-

guages in which content words are followed by
function words, such as Japanese and Korean. The
details of our models are described in the follow-
ing sections.

3.1 Model 1: Basic Chunk-based Decoder
The model described in this section is the basis of
our proposed decoders. It consists of two parts: a
chunk-level decoder (§ 3.1.1) and a word-level de-
coder (§ 3.1.2). The part drawn in black solid lines
in Figure 4 illustrates the architecture of Model 1.

3.1.1 Chunk-level Decoder
Our chunk-level decoder (see Figure 3) outputs a
chunk representation. The chunk representation
contains the information about words that should
be predicted by the word-level decoder.

To generate the representation of the k-th chunk
s̃
(c)
k , the chunk-level decoder (see the bottom layer

in Figure 4) takes the last states of the word-level
decoder s(w)k−1,Jk−1

and updates its hidden state s(c)k
as:

s
(c)
k = GRU(s

(c)
k−1, s

(w)
k−1,Jk−1

), (16)

s̃
(c)
k =Wcs

(c)
k + bc. (17)

The obtained chunk representation s̃(c)k continues
to be fed into the word-level decoder until it out-
puts all the words in the current chunk.

3.1.2 Word-level Decoder
Our word-level decoder (see Figure 4) differs from
the standard sequential decoder described in § 2 in

1904

that it takes the chunk representation s̃(c)k as input:

s
(w)
k,j = GRU(s

(w)
k,j−1, [s̃

(c)
k ;yk,j−1; ck,j−1]), (18)

s̃
(w)
k,j = g(yk,j−1, s

(w)
k,j , ck,j), (19)

P (yk,j |y<j ,x) = softmax(s̃(w)k,j). (20)

In a standard sequential decoder, the hidden
state iterates over the length of a target sentence
and then generates an end-of-sentence token. In
other words, its hidden layers are required to mem-
orize the long-term dependencies and orders in the
target language. In contrast, in our word-level de-
coder, the hidden state iterates only over the length
of a chunk and then generates an end-of-chunk
token. Thus, our word-level decoder is released
from the pressure of memorizing the long (inter-
chunk) dependencies and can focus on learning the
short (intra-chunk) dependencies.

3.2 Model 2: Inter-Chunk Connection
The second term in Eq. (15) only iterates over one
chunk (j = 1 to Jk). This means that the last state
and the last output of a chunk are not being fed
into the word-level decoder at the next time step
(see the black part in Figure 4). In other words,
s
(w)
k,1 in Eq. (18) is always initialized before gen-

erating the first word in a chunk. This may have a
bad influence on the word-level decoder because it
cannot access any previous information at the first
word of each chunk.

To address this problem, we add new connec-
tions to Model 1 between the first state in a chunk
and the last state in the previous chunk, as

s
(w)
k,1 = GRU(s

(w)
k−1,Jk−1

, [s̃
(c)
k ;yk−1,Jk−1

; ck−1,Jk−1
]).

(21)
The dashed blue arrows in Figure 4 illustrate the

added inter-chunk connections.

3.3 Model 3: Word-to-Chunk Feedback
The chunk-level decoder in Eq. (16) is only con-
ditioned by s(w)k−1,Jk−1

, the last word state in each
chunk (see the black part in Figure 4). This may
affect the chunk-level decoder because it cannot
memorize what kind of information has already
been generated by the word-level decoder. The
information about the words in a chunk should
not be included in the representation of the next
chunk; otherwise, it may generate the same chunks
multiple times, or forget to translate some words in
the source sentence.

To encourage the chunk-level decoder to mem-
orize the information about the previous outputs
more carefully, we add feedback states to our
chunk-level decoder in Model 2. The feedback
state in the chunk-level decoder is updated at every
time step j(> 1) in k-th chunk, as

s
(c)
k,j = GRU(s

(c)
k,j−1, s

(w)
k,j). (22)

The red part in Figure 4 illustrate the added
feedback states and their connections. The con-
nections in the thick black arrows are replaced
with the dotted red arrows in Model 3.

4 Experiments

4.1 Setup

Data To examine the effectiveness of our de-
coders, we chose Japanese, a free word-order
language, as the target language. Japanese sen-
tences are easy to break into well-defined chunks
(called bunsetsus (Hashimoto, 1934) in Japanese).
For example, the accuracy of bunsetsu-chunking
on newspaper articles is reported to be over
99% (Murata et al., 2000; Yoshinaga and Kit-
suregawa, 2014). The effect of chunking errors
in training the decoder can be suppressed, which
means we can accurately evaluate the potential of
our method. We used the English-Japanese train-
ing corpus in the Asian Scientific Paper Excerpt
Corpus (ASPEC) (Nakazawa et al., 2016), which
was provided in WAT ’16. To remove inaccurate
translation pairs, we extracted the first two million
out of the 3 million pairs following the setting that
gave the best performances in WAT ’15 (Neubig
et al., 2015).

Preprocessings For Japanese sentences, we per-
formed tokenization using KyTea 0.4.72 (Neu-
big et al., 2011). Then we performed bunsetsu-
chunking with J.DepP 2015.10.053 (Yoshinaga
and Kitsuregawa, 2009, 2010, 2014). Special end-
of-chunk tokens were inserted at the end of the
chunks. Our word-level decoders described in
§ 3 will stop generating words after each end-
of-chunk token. For English sentences, we per-
formed the same preprocessings described on the
WAT ’16 Website.4 To suppress having possible

2http://www.phontron.com/kytea/
3http://www.tkl.iis.u-tokyo.ac.jp/

˜ynaga/jdepp/
4http://lotus.kuee.kyoto-u.ac.jp/WAT/

baseline/dataPreparationJE.html

1905

Corpus # words # chunks # sentences
Train 49,671,230 15,934,129 1,663,780
Dev. 54,287 - 1,790
Test 54,088 - 1,812

Table 1: Statistics of the target language
(Japanese) in extracted corpus after preprocessing.

chunking errors affect the translation quality, we
removed extremely long chunks from the train-
ing data. Specifically, among the 2 million pre-
processed translation pairs, we excluded sentence
pairs that matched any of following conditions: (1)
The length of the source sentence or target sen-
tence is larger than 64 (3% of whole data); (2)
The maximum length of a chunk in the target sen-
tence is larger than 8 (14% of whole data); and (3)
The maximum number of chunks in the target sen-
tence is larger than 20 (3% of whole data). Table 1
shows the details of the extracted data.

Postprocessing To perform unknown word re-
placement (Luong et al., 2015a), we built a bilin-
gual English-Japanese dictionary from all of the
three million translation pairs. The dictionary
was extracted with the MGIZA++ 0.7.05 (Och and
Ney, 2003; Gao and Vogel, 2008) word alignment
tool by automatically extracting the alignments
between English words and Japanese words.

Model Architecture Any encoder can be com-
bined with our decoders. In this work, we
adopted a single-layer bidirectional GRU (Cho
et al., 2014b; Bahdanau et al., 2015) as the encoder
to focus on confirming the impact of the proposed
decoders. We used single layer GRUs for the word-
level decoder and the chunk-level decoder. The
vocabulary sizes were set to 40k for source side
and 30k for target side, respectively. The condi-
tional probability of each target word was com-
puted with a deep-output (Pascanu et al., 2014)
layer with maxout (Goodfellow et al., 2013) units
following (Bahdanau et al., 2015). The maximum
number of output chunks was set to 20 and the
maximum length of a chunk was set to 8.

Training Details The models were optimized
using ADADELTA following (Bahdanau et al.,
2015). The hyperparameters of the training pro-
cedure were fixed to the values given in Table 2.
Note that the learning rate was halved when the
BLEU score on the development set did not in-

5https://github.com/moses-smt/mgiza

ρ of ADADELTA 0.95
ε of ADADELTA 1e−6

Initial learning rate 1.0
Gradient clipping 1.0
Mini-batch size 64
dhid (dimension of hidden states) 1024
demb (dimension of word embeddings) 1024

Table 2: Hyperparameters for training.

crease for 30,000 batches. All the parameters were
initialized randomly with Gaussian distribution. It
took about a week to train each model with an
NVIDIA TITAN X (Pascal) GPU.

Evaluation Following the WAT ’16 evaluation
procedure, we used BLEU (Papineni et al., 2002)
and RIBES (Isozaki et al., 2010) to evaluate
our models. The BLEU scores were calculated
with multi-bleu.pl in Moses 2.1.16 (Koehn
et al., 2007); RIBES scores were calculated with
RIBES.py 1.03.17 (Isozaki et al., 2010). Follow-
ing Cho et al. (2014a), we performed beam search8

with length-normalized log-probability to decode
target sentences. We saved the trained models
that performed best on the development set dur-
ing training and used them to evaluate the systems
with the test set.

Baseline Systems The baseline systems and the
important hyperparamters are listed in Table 3.
Eriguchi et al. (2016a)’s baseline system (the first
line in Table 3) was the best single (w/o en-
sembling) word-based NMT system that were re-
ported in WAT ’16. For a more fair evaluation,
we also reimplemented a standard attention-based
NMT system that uses exactly the same encoder,
training procedure, and the hyperparameters as
our proposed models, but has a word-based de-
coder. We trained this system on the training data
without chunk segmentations (the second line in
Table 3) and with chunk segmentations given by
J.DepP (the third line in Table 3). The chun-
ked corpus fed to the third system is exactly the
same as the training data of our proposed sys-
tems (sixth to eighth lines in Table 3). In addi-
tion, we also include the Tree-to-Sequence mod-
els (Eriguchi et al., 2016a,b) (the fourth and fifth
lines in Table 3) to compare the impact of captur-
ing the structure in the source language and that in

6http://www.statmt.org/moses/
7http://www.kecl.ntt.co.jp/icl/lirg/

ribes/index.html
8Beam size is set to 20.

1906

System Hyperparameter Dec. time
Encoder Type / Decoder Type |Vsrc| |Vtrg| demb dhid BLEU RIBES [ms/sent.]

Word-based / Word-based (Eriguchi et al., 2016a) 88k 66k 512 512 34.64 81.60 -
/ Word-based (our implementation) 40k 30k 1024 1024 36.33 81.22 84.1

+ chunked training data via J.DepP 40k 30k 1024 1024 35.71 80.89 101.5
Tree-based / Word-based (Eriguchi et al., 2016b) 88k 66k 512 512 34.91 81.66 (363.7)9

/ Char-based (Eriguchi et al., 2016a) 88k 3k 256 512 31.52 79.39 (8.8)9

Word-based / Proposed Chunk-based (Model 1) 40k 30k 1024 1024 34.70 81.01 165.2
+ Inter-chunk connection (Model 2) 40k 30k 1024 1024 35.81 81.29 165.2
+ Word-to-chunk feedback (Model 3) 40k 30k 1024 1024 37.26 82.23 163.7

Table 3: The settings and results of the baseline systems and our systems. |Vsrc| and |Vtrg| denote the
vocabulary size of the source language and the target language, respectively. demb and dhid are the
dimension size of the word embeddings and hidden states, respectively. Only single NMT models (w/o
ensembling) reported in WAT ’16 are listed here. Full results are available on the WAT ’16 Website.10

the target language. Note that all systems listed in
Table 3, including our models, are single models
without ensemble techniques.

4.2 Results

Proposed Models vs. Baselines Table 3 shows
the experimental results on the ASPEC test set.
We can observe that our best model (Model 3) out-
performed all the single NMT models reported in
WAT ’16. The gain obtained by switching Word-
based decoder to Chunk-based decoder (+0.93
BLEU and +1.01 RIBES) is larger than the gain ob-
tained by switching word-based encoder to Tree-
based encoder (+0.27 BLEU and +0.06 RIBES).
This result shows that capturing the chunk struc-
ture in the target language is more effective than
capturing the syntax structure in the source lan-
guage. Compared with the character-based NMT

model (Eriguchi et al., 2016a), our Model 3 per-
formed better by +5.74 BLEU score and +2.84
RIBES score. One possible reason for this is that
using a character-based model rather than a word-
based model makes it more difficult to capture
long-distance dependencies because the length of
a target sequence becomes much longer in the
character-based model.

Comparison between Baselines Among the
five baselines, our reimplementation without
chunk segmentations (the second line in Table 3)
achieved the best BLEU score while the Eriguchi
et al. (2016b)’s system (the fourth line in Table 3)
achieved the best RIBES score. The most probable
reasons for the superiority of our reimplementa-
tion over the Eriguchi et al. (2016a)’s word-based
baseline (the first line in Table 3) is that the dimen-
sions of word embeddings and hidden states in our
systems are higher than theirs.

Feeding chunked training data to our baseline
system (the third line in Table 3) instead of a
normal data caused bad effects by −0.62 BLEU

score and by −0.33 RIBES score. We evaluated
the chunking ability of this system by comparing
the positions of end-of-chunk tokens generated by
this system with the chunk boundaries obtained
by J.DepP. To our surprise, this word-based de-
coder could output chunk separations as accurate
as our proposed Model 3 (both systems achieved
F1-score> 97). The results show that even a stan-
dard word-based decoder has the ability to predict
chunk boundaries if they are given in training data.
However, it is difficult for the word-based decoder
to utilize the chunk information to improve the
translation quality.

Decoding Speed Although the chunk-based de-
coder runs 2x slower than our word-based decoder,
it is still practically acceptable (6 sentences per
second). The character-based decoder (the fifth
line in Table 3) is less time-consuming mainly be-
cause of its small vocabulary size (|Vtrg| = 3k).

Chunk-level Evaluation To confirm that our
models can capture local (intra-chunk) and global
(inter-chunk) word orders well, we evaluated the
translation quality at the chunk level. First, we
performed bunsetsu-chunking on the reference
translations in the test set. Then, for both refer-
ence translations and the outputs of our systems,
we combined all the words in each chunk into a
single token to regard a chunk as the basic trans-
lation unit instead of a word. Finally, we com-
puted the chunk-based BLEU (C-BLEU) and RIBES

9Tree-to-Seq models are tested on CPUs instead of GPUs.
10http://lotus.kuee.kyoto-u.ac.jp/WAT/

evaluation

1907

!"#$%&!'(#)*#"+'&',-

!"#$%&!'(# !.'# # !'/.+012'

&3'/0%,# %452&!$'+! !"#$%&!'(#"6+# !'/.+012'

&3'/0%,,*# 40--0/2,!

&3'/0%,,*# 40--0/2,!

!"#$%&!'(#"6+# !'/.+012'

&3'/0%,,*# 40--0/2,!

&3'/0%,# 7%458#40--0/2,!

!"#$%&!'(# !.'# !'/.+012'#)*#"+'&',-

90+/'#&3'/0%,,*#40--0/2,!#3"0+!&#%('#-'6#-"(#!.'#%452&!$'+!#:#0!#0�$3"(!%+!#!"#$%&!'(#!.'#!'/.+012'#)*#"+'&',-#;!"#$%&<

'&(&$&)%&< !"#特別に困難な$#%&'()自分で体得すること*+,)-./

"$+,-./&+0 !"01'2#3特別に難しい$%&'453技術のマスター化*67)-./

12#)3,-./&+< 特別な 45調整0 =#892 =#:;& =#$* =#%&' =#453 =#自分の 45技術を 45習得する 45こと* =#67)-./

6"+&78< !<0# =#特別な 45困難な =#$* =#%&'()3 =#自分に 45よる 45手技を 45習得する 45こと* =#67)-./

6"+&79< !"0# =#特別に =#困難な =#$* =#%&' =#453 =#自分に 45よる 45技術の 45習得* =#67)-./

Figure 5: Translation examples. “/” denote chunk boundaries that are automatically determined by our
decoders. Words colored blue and red respectively denote correct translations and wrong translations.

Decoder C-BLEU C-RIBES

Word-based (our implementation) 7.56 50.73
+ chunked training data via J.DepP 7.40 51.18
Proposed Chunk-based (Model 1) 7.59 50.47
+ Inter-chunk connection (Model 2) 7.78 51.48
+ Word-to-chunk feedback (Model 3) 8.69 52.82

Table 4: Chunk-based BLEU and RIBES with the
systems using the word-based encoder.

(C-RIBES). The results are listed in Table 4. For
the word-based decoder (the first line in Table 4),
we performed bunsetsu-chunking by J.DepP on its
outputs to obtain chunk boundaries. As another
baseline (the second line in Table 4), we used
the chunked sentences as training data instead of
performing chunking after decoding. The results
show that our models (Model 2 and Model 3) out-
perform the word-based decoders in both C-BLEU

and C-RIBES. This indicates that our chunk-based
decoders can produce more correct chunks in a
more correct order than the word-based models.

Qualitative Analysis To clarify the qualitative
difference between the word-based decoder and
our chunk-based decoders, we show translation
examples in Figure 5. Words in blue and red re-
spectively denote correct translations and wrong
translations. The word-based decoder (our im-
plementation) has completely dropped the trans-
lation of “by oneself.” On the other hand,
Model 1 generated a slightly wrong translation
“自分の技術を習得すること (to master own
technique).” In addition, Model 1 has made an-
other serious word-order error “特別な調整 (spe-
cial adjustment).” These results suggest that
Model 1 can capture longer dependencies in a long
sequence than the word-based decoder. However,
Model 1 is not good at modeling global word or-
der because it cannot access enough information

about previous outputs. The weakness of model-
ing word order was overcome in Model 2 thanks
to the inter-chunk connections. However, Model 2
still suffered from the errors of function words: it
still generates a wrong chunk “特別な (special)”
instead of the correct one “特別に (specially)”
and a wrong chunk “よる” instead of “より.”
Although these errors seem trivial, such mistakes
with function words bring serious changes of sen-
tence meaning. However, all of these problems
have disappeared in Model 3. This phenomenon
supports the importance of the feedback states to
provide the decoder with a better ability to choose
more accurate words in chunks.

5 Related Work

Much work has been done on using chunk (or
phrase) structure to improve machine translation
quality. The most notable work involved phrase-
based SMT (Koehn et al., 2003), which has been
the basis for a huge amount of work on SMT for
more than ten years. Apart from this, Watanabe
et al. (2003) proposed a chunk-based translation
model that generates output sentences in a chunk-
by-chunk manner. The chunk structure is effective
not only for SMT but also for example-based ma-
chine translation (EBMT). Kim et al. (2010) pro-
posed a chunk-based EBMT and showed that using
chunk structures can help with finding better word
alignments. Our work is different from theirs in
that our models are based on NMT, but not SMT

or EBMT. The decoders in the above studies can
model the chunk structure by storing chunk pairs
in a large table. In contrast, we do that by indi-
vidually training a chunk generation model and a
word prediction model with two RNNs.

While most of the NMT models focus on the
conversion between sequential data, some works
have tried to incorporate non-sequential informa-

1908

tion into NMT (Eriguchi et al., 2016b; Su et al.,
2017). Eriguchi et al. (2016b) use a Tree-based
LSTM (Tai et al., 2015) to encode input sentence
into context vectors. Given a syntactic tree of a
source sentence, their tree-based encoder encodes
words from the leaf nodes to the root nodes recur-
sively. Su et al. (2017) proposed a lattice-based
encoder that considers multiple tokenization re-
sults while encoding the input sentence. To pre-
vent the tokenization errors from propagating to
the whole NMT system, their attice-based encoder
can utilize multiple tokenization results. These
works focus on the encoding process and propose
better encoders that can exploit the structures of
the source language. In contrast, our work focuses
on the decoding process to capture the structure of
the target language. The encoders described above
and our proposed decoders are complementary so
they can be combined into a single network.

Considering that our Model 1 described in § 3.1
can be seen as a hierarchical RNN, our work is also
related to previous studies that utilize multi-layer
RNNs to capture hierarchical structures in data.
Hierarchical RNNs are used for various NLP tasks
such as machine translation (Luong and Manning,
2016), document modeling (Li et al., 2015; Lin
et al., 2015), dialog generation (Serban et al.,
2017), image captioning (Krause et al., 2016), and
video captioning (Yu et al., 2016). In particular,
Li et al. (2015) and Luong and Manning (2016)
use hierarchical encoder-decoder models, but not
for the purpose of learning syntactic structures of
target sentences. Li et al. (2015) build hierarchi-
cal models at the sentence-word level to obtain
better document representations. Luong and Man-
ning (2016) build the word-character level to cope
with the out-of-vocabulary problem. In contrast,
we build a hierarchical models at the chunk-word
level to explicitly capture the syntactic structure
based on chunk segmentation.

In addition, the architecture of Model 3 is also
related to stacked RNN, which has shown to be ef-
fective in improving the translation quality (Luong
et al., 2015a; Sutskever et al., 2014). Although
these architectures look similar to each other, there
is a fundamental difference between the directions
of the connection between two layers. A stacked
RNN consists of multiple RNN layers that are con-
nected from the input side to the output side at ev-
ery time step. In contrast, our Model 3 has a dif-
ferent connection at each time step. Before it gen-

erates a chunk, there is a feed-forward connection
from the chunk-level decoder to the word-level de-
coder. However, after generating a chunk repre-
sentation, the connection is to be reversed to feed
back the information from the word-level decoder
to the chunk-level decoder. By switching the con-
nections between two layers, our model can cap-
ture the chunk structure explicitly. This is the first
work that proposes decoders for NMT that can cap-
ture plausible linguistic structures such as chunk.

Finally, we noticed that (Zhou et al., 2017)
(which is accepted at the same time as this pa-
per) have also proposed a chunk-based decoder for
NMT. Their good experimental result on Chinese
to English translation task also indicates the effec-
tiveness of “chunk-by-chunk” decoders. Although
their architecture is similar to our Model 2, there
are several differences: (1) they adopt chunk-level
attention instead of word-level attention; (2) their
model predicts chunk tags (such as noun phrase),
while ours only predicts chunk boundaries; and (3)
they employ a boundary gate to decide the chunk
boundaries, while we do that by simply having the
model generate end-of-chunk tokens.

6 Conclusion

In this paper, we propose chunk-based decoders
for NMT. As the attention mechanism in NMT

plays a similar role to the translation model in
phrase-based SMT, our chunk-based decoders are
intended to capture the notion of chunks in chunk-
based (or phrase-based) SMT. We utilize the chunk
structure to efficiently capture long-distance de-
pendencies and cope with the problem of free
word-order languages such as Japanese. We de-
signed three models that have hierarchical RNN-
like architectures, each of which consists of a
word-level decoder and a chunk-level decoder. We
performed experiments on the WAT ’16 English-
to-Japanese translation task and found that our
best model outperforms the strongest baselines by
+0.93 BLEU score and by +0.57 RIBES score.

In future work, we will explore the optimal
structures of chunk-based decoder for other free
word-order languages such as Czech, German,
and Turkish. In addition, we plan to combine
our decoder with other encoders that capture lan-
guage structure, such as a hierarchical RNN (Lu-
ong and Manning, 2016), a Tree-LSTM (Eriguchi
et al., 2016b), or an order-free encoder, such as a
CNN (Kalchbrenner and Blunsom, 2013).

1909

Acknowledgements

This research was partially supported by the Re-
search and Development on Real World Big Data
Integration and Analysis program of the Min-
istry of Education, Culture, Sports, Science and
Technology (MEXT) and RIKEN, Japan, and by
the Chinese National Research Fund (NSFC) Key
Project No. 61532013 and National China 973
Project No. 2015CB352401.

The authors appreciate Dongdong Zhang,
Shuangzhi Wu, and Zhirui Zhang for the fruit-
ful discussions during the first and second authors
were interns at Microsoft Research Asia. We also
thank Masashi Toyoda and his group for letting us
use their computing resources. Finally, we thank
the anonymous reviewers for their careful reading
of our paper and insightful comments.

References
Steven P. Abney. 1991. Parsing by chunks. In

Principle-based parsing, Springer, pages 257–278.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of the
Third International Conference on Learning Repre-
sentations (ICLR).

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder–decoder
approaches. In Proceedings of the Eighth Work-
shop on Syntax, Semantics and Structure in Statis-
tical Translation (SSST). pages 103–111.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014b. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1724–
1734.

Fabien Cromieres, Chenhui Chu, Toshiaki Nakazawa,
and Sadao Kurohashi. 2016. Kyoto university par-
ticipation to WAT 2016. In Proceedings of the Third
Workshop on Asian Translation (WAT). pages 166–
174.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016a. Character-based decoding in tree-
to-sequence attention-based neural machine transla-
tion. In Proceedings of the Third Workshop on Asian
Translation (WAT). pages 175–183.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016b. Tree-to-sequence attentional neu-
ral machine translation. In Proceedings of the 54th

Annual Meeting of the Association for Computa-
tional Linguistics (ACL). pages 823–833.

Qin Gao and Stephan Vogel. 2008. Parallel implemen-
tations of word alignment tool. In Software Engi-
neering, Testing, and Quality Assurance for Natural
Language Processing. pages 49–57.

Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza,
Aaron Courville, and Yoshua Bengio. 2013. Max-
out networks. In Proceedings of the 30th Inter-
national Conference on Machine Learning (ICML).
pages 1319–1327.

Shinkichi Hashimoto. 1934. Kokugoho Yosetsu. Meiji
Shoin.

Hideki Isozaki, Tsutomu Hirao, Kevin Duh, Katsuhito
Sudoh, and Hajime Tsukada. 2010. Automatic eval-
uation of translation quality for distant language
pairs. In Proceedings of the 2010 Conference on
Empirical Methods in Natural Language Processing
(EMNLP). pages 944–952.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1700–
1709.

Jae Dong Kim, Ralf D. Brown, and Jaime G. Carbonell.
2010. Chunk-based EBMT. In Proceedings of the
14th workshop of the European Association for Ma-
chine Translation (EAMT).

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL). pages
177–180.

Philipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Statistical phrase-based translation. In Proceedings
of the 2003 Human Language Technology Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics (HLT-NAACL).
pages 48–54.

Jonathan Krause, Justin Johnson, Ranjay Krishna,
and Li Fei-Fei. 2016. A hierarchical approach
for generating descriptive image paragraphs. In
arXiv:1611.06607 [cs.CV].

Jiwei Li, Minh-Thang Luong, and Dan Jurafsky. 2015.
A hierarchical neural autoencoder for paragraphs
and documents. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (ACL-IJCNLP).
pages 1106–1115.

1910

Rui Lin, Shujie Liu, Muyun Yang, Mu Li, Ming Zhou,
and Sheng Li. 2015. Hierarchical recurrent neural
network for document modeling. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP). pages 899–907.

Minh-Thang Luong and Christopher D. Manning.
2016. Achieving open vocabulary neural machine
translation with hybrid word-character models. In
Proceedings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL). pages
1054–1063.

Minh-Thang Luong, Ilya Sutskever, Quoc Le, Oriol
Vinyals, and Wojciech Zaremba. 2015a. Addressing
the rare word problem in neural machine translation.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
Seventh International Joint Conference on Natural
Language Processing (ACL-IJCNLP). pages 11–19.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015b. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). pages 1412–
1421.

Masaki Murata, Kiyotaka Uchimoto, Qing Ma, and
Hitoshi Isahara. 2000. Bunsetsu identification us-
ing category-exclusive rules. In Proceedings of
the 18th International Conference on Computational
Linguistics (COLING). pages 565–571.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao
Kurohashi, and Hitoshi Isahara. 2016. ASPEC:
Asian scientific paper excerpt corpus. In Proceed-
ings of the Ninth International Conference on Lan-
guage Resources and Evaluation (LREC). pages
2204–2208.

Graham Neubig. 2016. Lexicons and minimum risk
training for neural machine translation: NAIST-
CMU at WAT2016. In Proceedings of the Third
Workshop on Asian Translation (WAT). pages 119–
125.

Graham Neubig, Makoto Morishita, and Satoshi Naka-
mura. 2015. Neural reranking improves subjective
quality of machine translation: NAIST at WAT2015.
In Proceedings of the Second Workshop on Asian
Translation (WAT). pages 35–41.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise prediction for robust, adaptable
Japanese morphological analysis. In Proceedings of
the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies (ACL-HLT). pages 529–533.

Franz J. Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics 29(1):19–51.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
40th Annual Meeting of the Association for Compu-
tational Linguistics (ACL). pages 311–318.

Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. How to construct deep
recurrent neural networks. In Proceedings of the
Second International Conference on Learning Rep-
resentations (ICLR).

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh neural machine translation sys-
tems for WMT 16. In Proceedings of the First Con-
ference on Machine Translation (WMT). pages 371–
376.

Iulian V. Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio. 2017. A hierarchical latent variable
encoder-decoder model for generating dialogues. In
Proceedings of the 31st AAAI Conference on Artifi-
cial Intelligence (AAAI).

Jinsong Su, Zhixing Tan, Deyi Xiong, Rongrong Ji, Xi-
aodong Shi, and Yang Liu. 2017. Lattice-based re-
current neural network encoders for neural machine
translation. In Proceedings of the 31st AAAI Con-
ference on Artificial Intelligence (AAAI).

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems (NIPS). pages 3104–3112.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Nat-
ural Language Processing (ACL-IJCNLP). pages
1556–1566.

Taro Watanabe, Eiichiro Sumita, and Hiroshi G.
Okuno. 2003. Chunk-based statistical translation.
In Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics (ACL).
pages 303–310.

Naoki Yoshinaga and Masaru Kitsuregawa. 2009.
Polynomial to linear: Efficient classification with
conjunctive features. In Proceedings of the 2009
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP). pages 1542–1551.

Naoki Yoshinaga and Masaru Kitsuregawa. 2010. Ker-
nel slicing: Scalable online training with conjunc-
tive features. In Proceedings of the 23rd Inter-
national Conference on Computational Linguistics
(COLING). pages 1245–1253.

Naoki Yoshinaga and Masaru Kitsuregawa. 2014. A
self-adaptive classifier for efficient text-stream pro-
cessing. In Proceedings of the 25th International

1911

Conference on Computational Linguistics (COL-
ING). pages 1091–1102.

Haonan Yu, Jiang Wang, Zhiheng Huang, Yi Yang, and
Wei Xu. 2016. Video paragraph captioning using
hierarchical recurrent neural networks. In Proceed-
ings of the 2016 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR). pages 4584–
4593.

Matthew D. Zeiler. 2012. ADADELTA: An adaptive
learning rate method. In arXiv:1212.5701 [cs.LG].

Hao Zhou, Zhaopeng Tu, Shujian Huang, Xiaohua Liu,
Hang Li, and Jiajun Chen. 2017. Chunk-based bi-
scale decoder for neural machine translation. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (ACL).

1912

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1913–1924
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1175

Doubly-Attentive Decoder for Multi-modal Neural Machine Translation

Iacer Calixto
ADAPT Centre

School of Computing
Dublin City University

Dublin, Ireland

Qun Liu
ADAPT Centre

School of Computing
Dublin City University

Dublin, Ireland

{iacer.calixto,qun.liu,nick.campbell}@adaptcentre.ie

Nick Campbell
ADAPT Centre

Speech Communication Lab
Trinity College Dublin

Dublin 2, Ireland

Abstract

We introduce a Multi-modal Neural Ma-
chine Translation model in which a
doubly-attentive decoder naturally incor-
porates spatial visual features obtained us-
ing pre-trained convolutional neural net-
works, bridging the gap between image
description and translation. Our decoder
learns to attend to source-language words
and parts of an image independently by
means of two separate attention mecha-
nisms as it generates words in the target
language. We find that our model can
efficiently exploit not just back-translated
in-domain multi-modal data but also large
general-domain text-only MT corpora. We
also report state-of-the-art results on the
Multi30k data set.

1 Introduction

Neural Machine Translation (NMT) has been suc-
cessfully tackled as a sequence to sequence learn-
ing problem (Kalchbrenner and Blunsom, 2013;
Cho et al., 2014b; Sutskever et al., 2014) where
each training example consists of one source and
one target variable-length sequences, with no prior
information on the alignment between the two.

In the context of NMT, Bahdanau et al. (2015)
first proposed to use an attention mechanism in
the decoder, which is trained to attend to the rel-
evant source-language words as it generates each
word of the target sentence. Similarly, Xu et al.
(2015) proposed an attention-based model for the
task of image description generation (IDG) where
a model learns to attend to specific parts of an im-
age representation (the source) as it generates its
description (the target) in natural language.

We are inspired by recent successes in applying
attention-based models to NMT and IDG. In this

work, we propose an end-to-end attention-based
multi-modal neural machine translation (MNMT)
model which effectively incorporates two inde-
pendent attention mechanisms, one over source-
language words and the other over different areas
of an image.

Our main contributions are:

• We propose a novel attention-based MNMT
model which incorporates spatial visual fea-
tures in a separate visual attention mecha-
nism;

• We use a medium-sized, back-translated
multi-modal in-domain data set and large
general-domain text-only MT corpora to pre-
train our models and show that our MNMT
model can efficiently exploit both;

• We show that images bring useful informa-
tion into an NMT model, e.g. in situations in
which sentences describe objects illustrated
in the image.

To the best of our knowledge, previous MNMT
models in the literature that utilised spatial vi-
sual features did not significantly improve over
a comparable model that used global visual fea-
tures or even only textual features (Caglayan et al.,
2016a; Calixto et al., 2016; Huang et al., 2016; Li-
bovický et al., 2016; Specia et al., 2016). In this
work, we wish to address this issue and propose an
MNMT model that uses, in addition to an atten-
tion mechanism over the source-language words,
an additional visual attention mechanism to incor-
porate spatial visual features, and still improves on
simpler text-only and multi-modal attention-based
NMT models.

The remainder of this paper is structured as
follows. We first briefly revisit the attention-
based NMT framework (§2) and expand it into an
MNMT framework (§3). In §4, we introduce the

1913

https://doi.org/10.18653/v1/P17-1175

datasets we use to train and evaluate our models,
in §5 we discuss our experimental setup and anal-
yse and discuss our results. Finally, in §6 we dis-
cuss relevant related work and in §7 we draw con-
clusions and provide avenues for future work.

2 Background and Notation

2.1 Attention-based NMT
In this section, we describe the attention-based
NMT model introduced by Bahdanau et al. (2015).
Given a source sequence X = (x1, x2, · · · , xN)
and its translation Y = (y1, y2, · · · , yM), an NMT
model aims to build a single neural network that
translates X into Y by directly learning to model
p(Y | X). The entire network consists of one en-
coder and one decoder with one attention mech-
anism, typically implemented as two Recurrent
Neural Networks (RNN) and one multilayer per-
ceptron, respectively. Each xi is a row index
in a source lookup or word embedding matrix
Ex ∈ R|Vx|×dx , as well as each yj being an in-
dex in a target lookup or word embedding matrix
Ey ∈ R|Vy |×dy , Vx and Vy are source and target
vocabularies, and dx and dy are source and target
word embeddings dimensionalities, respectively.

The encoder is a bi-directional RNN with
GRU (Cho et al., 2014a), where a forward RNN−→
Φ enc reads X word by word, from left to right,
and generates a sequence of forward annota-
tion vectors (

−→
h 1,
−→
h 2, · · · ,

−→
hN) at each encoder

time step i ∈ [1, N]. Similarly, a backward RNN←−
Φ enc reads X from right to left, word by word,
and generates a sequence of backward annota-
tion vectors (

←−
hN ,

←−
hN−1, · · · ,

←−
h 1). The final

annotation vector is the concatenation of for-
ward and backward vectors hi =

[−→
hi;
←−
hi
]
, and

C = (h1,h2, · · · ,hN) is the set of source anno-
tation vectors.

These annotation vectors are in turn used by
the decoder, which is essentially a neural language
model (LM) (Bengio et al., 2003) conditioned on
the previously emitted words and the source sen-
tence via an attention mechanism. A multilayer
perceptron is used to initialise the decoder’s hid-
den state s0 at time step t = 0, where the input
to this network is the concatenation of the last for-
ward and backward vectors

[−→
hN ;
←−
h1

]
.

At each time step t of the decoder, a time-
dependent source context vector ct is computed
based on the annotation vectors C and the decoder
previous hidden state st−1. This is part of the for-

mulation of the conditional GRU and is described
further in §2.2. In other words, the encoder is a
bi-directional RNN with GRU and the decoder is
an RNN with a conditional GRU.

Given a hidden state st, the probabilities for
the next target word are computed using one pro-
jection layer followed by a softmax layer as il-
lustrated in eq. (1), where the matrices Lo, Ls,
Lw and Lc are transformation matrices and ct is
a time-dependent source context vector generated
by the conditional GRU.

2.2 Conditional GRU
The conditional GRU1, illustrated in Figure 1, has
three main components computed at each time
step t of the decoder:

• REC1 computes a hidden state proposal s′t
based on the previous hidden state st−1 and
the previously emitted word ŷt−1;

• ATTsrc
2 is an attention mechanism over the

hidden states of the source-language RNN
and computes ct using all source annotation
vectors C and the hidden state proposal s′t;

• REC2 computes the final hidden state st us-
ing the hidden state proposal s′t and the time-
dependent source context vector ct.

First, a single-layer feed-forward network is
used to compute an expected alignment esrc

t,i be-
tween each source annotation vector hi and the
target word ŷt to be emitted at the current time step
t, as shown in Equations (2) and (3):

esrc
t,i = (vsrc

a)T tanh(U src
a s
′
t +W src

a hi), (2)

αsrc
t,i =

exp (esrc
t,i)∑N

j=1 exp (esrc
t,j)

, (3)

where αsrc
t,i is the normalised alignment matrix be-

tween each source annotation vector hi and the
word ŷt to be emitted at time step t, and vsrc

a , U src
a

andW src
a are model parameters.

Finally, a time-dependent source context vector
ct is computed as a weighted sum over the source
annotation vectors, where each vector is weighted
by the attention weight αsrc

t,i , as in eq. (4):

ct =

N∑

i=1

αsrc
t,ihi. (4)

1https://github.com/nyu-dl/
dl4mt-tutorial/blob/master/docs/cgru.pdf.

2ATTsrc is named ATT in the original technical report.

1914

p(yt = k | y<t, ct) ∝ exp(Lo tanh(Lsst +LwEy[ŷt−1] +Lcct)). (1)

Figure 1: An illustration of the conditional GRU:
the steps taken to compute the current hidden state
st from the previous state st−1, the previously
emitted word ŷt−1, and the source annotation vec-
tors C, including the candidate hidden state s′t and
the source-language attention vector ct.

3 Multi-modal NMT

Our MNMT model can be seen as an expansion
of the attention-based NMT framework described
in §2.1 with the addition of a visual component to
incorporate spatial visual features.

We use publicly available pre-trained CNNs for
image feature extraction. Specifically, we extract
spatial image features for all images in our dataset
using the 50-layer Residual network (ResNet-50)
of He et al. (2015). These spatial features are
the activations of the res4f layer, which can be
seen as encoding an image in a 14×14 grid, where
each of the entries in the grid is represented by
a 1024D feature vector that only encodes infor-
mation about that specific region of the image.
We vectorise this 3-tensor into a 196×1024 matrix
A = (a1,a2, · · · ,aL),al ∈ R1024 where each of
the L = 196 rows consists of a 1024D feature vec-
tor and each column, i.e. feature vector, represents
one grid in the image.

3.1 NMTSRC+IMG: decoder with two
independent attention mechanisms

Model NMTSRC+IMG integrates two separate atten-
tion mechanisms over the source-language words
and visual features in a single decoder RNN. Our
doubly-attentive decoder RNN is conditioned on

the previous hidden state of the decoder and the
previously emitted word, as well as the source sen-
tence and the image via two independent attention
mechanisms, as illustrated in Figure 2.

We implement this idea expanding the con-
ditional GRU described in §2.2 onto a doubly-
conditional GRU. To that end, in addition to the
source-language attention, we introduce a new at-
tention mechanism ATTimg to the original condi-
tional GRU proposal. This visual attention com-
putes a time-dependent image context vector it
given a hidden state proposal s′t and the image an-
notation vectors A = (a1,a2, · · · ,aL) using the
“soft” attention (Xu et al., 2015).

This attention mechanism is very similar to the
source-language attention with the addition of a
gating scalar, explained further below. First, a
single-layer feed-forward network is used to com-
pute an expected alignment eimg

t,l between each im-
age annotation vector al and the target word to be
emitted at the current time step t, as in eqs. (5)
and (6):

e
img
t,l = (vimg

a)T tanh(U img
a s′t +W img

a al), (5)

α
img
t,l =

exp (e
img
t,l)

∑L
j=1 exp (e

img
t,j)

, (6)

where α
img
t,l is the normalised alignment matrix

between all the image patches al and the target
word to be emitted at time step t, and vimg

a , U img
a

and W img
a are model parameters. Note that Equa-

tions (2) and (3), that compute the expected source
alignment esrc

t,i and the weight matrices αsrc
t,i , and

eqs. (5) and (6) that compute the expected image
alignment eimg

t,l and the weight matrices αimg
t,l , both

compute similar statistics over the source and im-
age annotations, respectively.

In eq. (7) we compute βt ∈ [0, 1], a gating scalar
used to weight the expected importance of the im-
age context vector in relation to the next target
word at time step t:

βt = σ(Wβst−1 + bβ), (7)

where Wβ , bβ are model parameters. It is in turn
used to compute the time-dependent image con-
text vector it for the current decoder time step t,
as in eq. (8):

it = βt

L∑

l=1

α
img
t,l al. (8)

1915

Figure 2: A doubly-attentive decoder learns to at-
tend to image patches and source-language words
independently when generating translations.

The only difference between Equations (4)
(source context vector) and (8) (image context
vector) is that the latter uses a gating scalar,
whereas the former does not. We use β follow-
ing Xu et al. (2015) who empirically found it to
improve the variability of the image descriptions
generated with their model.

Finally, we use the time-dependent image con-
text vector it as an additional input to a modified
version of REC2 (§2.2), which now computes the
final hidden state st using the hidden state pro-
posal s′t, and the time-dependent source and image
context vectors ct and it, as in eq. (9):

zt = σ(W src
z ct +W img

z it +Uzs
′
j),

rt = σ(W src
r ct +W img

r it +Urs
′
j),

st = tanh(W srcct +W imgit + rt � (Us′t)),

st = (1− zt)� st + zt � s′t. (9)

In Equation (10), the probabilities for the next
target word are computed using the new multi-
modal hidden state st, the previously emitted word
ŷt−1, and the two context vectors ct and it, where
Lo, Ls, Lw, Lcs and Lci are projection matrices
and trained with the model.

4 Data

The Flickr30k data set contains 30k images and
5 descriptions in English for each image (Young
et al., 2014). In this work, we use the Multi30k
dataset (Elliott et al., 2016), which consists of two
multilingual expansions of the original Flickr30k:
one with translated data and another one with
comparable data, henceforth referred to as M30kT
and M30kC, respectively.

For each of the 30k images in the Flickr30k,
the M30kT has one of the English descriptions
manually translated into German by a professional
translator. Training, validation and test sets con-
tain 29k, 1,014 and 1k images respectively, each
accompanied by a sentence pair (the original En-
glish sentence and its translation into German).
For each of the 30k images in the Flickr30k,
the M30kC has five descriptions in German col-
lected independently from the English descrip-
tions. Training, validation and test sets contain
29k, 1,014 and 1k images respectively, each ac-
companied by five sentences in English and five
sentences in German.

We use the entire M30kT training set for train-
ing our MNMT models, its validation set for
model selection with BLEU (Papineni et al.,
2002), and its test set for evaluation. In addi-
tion, since the amount of training data available
is small, we build a back-translation model using
the text-only NMT model described in §2.1 trained
on the Multi30kT data set (German→English and
English→German), without images. We use this
model to back-translate the 145k German (En-
glish) descriptions in the Multi30kC into En-
glish (German) and include the triples (synthetic
English description, German description, image)
when translating into German, and the triples (syn-
thetic German description, English description,
image) when translating into English, as addi-
tional training data (Sennrich et al., 2016a).

We also use the WMT 2015 text-only paral-
lel corpora available for the English–German lan-
guage pair, consisting of about 4.3M sentence
pairs (Bojar et al., 2015). These include the Eu-

1916

p(yt = k | y<t, C,A) ∝ exp(Lo tanh(Lsst +LwEy[ŷt−1] +Lcsct +Lciit)). (10)

roparl v7 (Koehn, 2005), News Commentary and
Common Crawl corpora, which are concatenated
and used for pre-training.

We use the scripts in the Moses SMT
Toolkit (Koehn et al., 2007) to normalise and
tokenize English and German descriptions, and
we also convert space-separated tokens into sub-
words (Sennrich et al., 2016b). All models use
a common vocabulary of 83, 093 English and
91, 141 German subword tokens. If sentences in
English or German are longer than 80 tokens, they
are discarded. We train models to translate from
English into German, as well as for German into
English, and report evaluation of cased, tokenized
sentences with punctuation.

5 Experimental setup

Our encoder is a bidirectional RNN with GRU,
one 1024D single-layer forward and one 1024D
single-layer backward RNN. Source and target
word embeddings are 620D each and trained
jointly with the model. Word embeddings and
other non-recurrent matrices are initialised by
sampling from a Gaussian N (0, 0.012), recurrent
matrices are random orthogonal and bias vectors
are all initialised to zero.

Visual features are obtained by feeding images
to the pre-trained ResNet-50 and using the activa-
tions of the res4f layer (He et al., 2015). We
apply dropout with a probability of 0.5 in the en-
coder bidirectional RNN, the image features, the
decoder RNN and before emitting a target word.
We follow Gal and Ghahramani (2016) and apply
dropout to the encoder bidirectional and the de-
coder RNN using one same mask in all time steps.

All models are trained using stochastic gradi-
ent descent with ADADELTA (Zeiler, 2012) with
minibatches of size 80 (text-only NMT) or 40
(MNMT), where each training instance consists
of one English sentence, one German sentence
and one image (MNMT). We apply early stopping
for model selection based on BLEU4, so that if a
model does not improve on BLEU4 in the valida-
tion set for more than 20 epochs, training is halted.

The translation quality of our models is eval-
uated quantitatively in terms of BLEU4 (Pap-
ineni et al., 2002), METEOR (Denkowski and
Lavie, 2014), TER (Snover et al., 2006), and

chrF3 (Popović, 2015).3 We report statistical sig-
nificance with approximate randomisation for the
first three metrics with MultEval (Clark et al.,
2011).

5.1 Baselines
We train a text-only phrase-based SMT (PBSMT)
system and a text-only NMT model for compar-
ison (English→German and German→English).
Our PBSMT baseline is built with Moses and
uses a 5–gram LM with modified Kneser-Ney
smoothing (Kneser and Ney, 1995). It is trained
on the English→German (German→English) de-
scriptions of the M30kT, whereas its LM is trained
on the German (English) descriptions only. We
use minimum error rate training to tune the model
with BLEU (Och, 2003). The text-only NMT
baseline is the one described in §2.1 and is trained
on the M30kT’s English–German descriptions,
again in both language directions.

When translating into German, we also com-
pare our model against two publicly available re-
sults obtained with multi-modal attention-based
NMT models. The first model is Huang et al.
(2016)’s best model trained on the same data, and
the second is their best model using additional ob-
ject detections, respectively models m1 (image at
head) and m3 in the authors’ paper.

5.2 Results
In Table 1, we show results for the two text-
only baselines NMT and PBSMT, the multi-
modal models of Huang et al. (2016), and our
MNMT models trained on the M30kT and pre-
trained on the in-domain back-translated M30kC
and the general-domain text-only English-German
MT corpora from WMT 2015. All models are
trained to translate from English into German.

Training on M30kT One main finding is that
our model consistently outperforms the compa-
rable model of Huang et al. (2016) when trans-
lating into German, with improvements of +1.4
BLEU and +2.7 METEOR. In fact, even when
their model has access to more data our model still
improves by +0.9 METEOR.

Moreover, we can also conclude from Table 1
that PBSMT performs better at recall-oriented

3We specifically compute character 6-gram F3, and addi-
tionally character precision and recall for comparison.

1917

English→German

Model Training BLEU4↑ METEOR↑ TER↓ chrF3↑ (prec. / recall)
data

NMT M30kT 33.7 52.3 46.7 65.2 (67.7 / 65.0)
PBSMT M30kT 32.9 54.3† 45.1† 67.4 (66.5 / 67.5)
Huang et al. (2016) M30kT 35.1 (↑ 1.4) 52.2 (↓ 2.1) — — —

+ RCNN 36.5 (↑ 2.8) 54.1 (↓ 0.2) — — —

NMTSRC+IMG M30kT 36.5†‡ 55.0† 43.7†‡ 67.3 (66.8 / 67.4)

Improvements

NMTSRC+IMG vs. NMT ↑ 2.8 ↑ 2.7 ↓ 3.0 ↑ 2.1 ↓ 0.9 / ↑ 2.4
NMTSRC+IMG vs. PBSMT ↑ 3.6 ↑ 0.7 ↓ 1.4 ↓ 0.1 ↑ 0.3 / ↓ 0.1
NMTSRC+IMG vs. Huang ↑ 1.4 ↑ 2.8 — — —
NMTSRC+IMG vs. Huang (+RCNN) ↑ 0.0 ↑ 0.9 — — —

Pre-training data set: back-translated M30kC (in-domain)

PBSMT (LM) M30kT 34.0 ↑ 0.0 55.0† ↑ 0.0 44.7 ↑ 0.0 68.0 (66.8 / 68.1)
NMT M30kT 35.5‡ ↑ 0.0 53.4 ↑ 0.0 43.3‡ ↑ 0.0 65.2 (67.7 / 65.0)
NMTSRC+IMG M30kT 37.1†‡ 54.5†‡ 42.8†‡ 66.6 (67.2 / 66.5)

NMTSRC+IMG vs. best PBSMT ↑ 3.1 ↓ 0.5 ↓ 1.9 ↓ 1.4 ↑ 0.4 / ↓ 1.6
NMTSRC+IMG vs. NMT ↑ 1.6 ↑ 1.1 ↓ 0.5 ↑ 1.4 ↓ 0.5 / ↑ 1.5

Pre-training data set: WMT’15 English-German corpora (general domain)

PBSMT (concat) M30kT 32.6 53.9 46.1 67.3 (66.3 / 67.4)
PBSMT (LM) M30kT 32.5 54.1 46.0 67.3 (66.0 / 67.4)
NMT M30kT 37.8† ↑ 0.0 56.7† ↑ 0.0 41.0† ↑ 0.0 69.2 (69.7 / 69.1)
NMTSRC+IMG M30kT 39.0†‡ 56.8†‡ 40.6†‡ 69.6 (69.6 / 69.6)

NMTSRC+IMG vs. best PBSMT ↑ 6.4 ↑ 2.7 ↓ 5.4 ↑ 2.3 ↑ 3.3 / ↑ 2.2
NMTSRC+IMG vs. NMT ↑ 1.2 ↑ 0.1 ↓ 0.4 ↑ 0.4 ↓ 0.1 / ↑ 0.5

Table 1: BLEU4, METEOR, chrF3, character-level precision and recall (higher is better) and TER scores
(lower is better) on the translated Multi30k (M30kT) test set. Best text-only baselines results are under-
lined and best overall results appear in bold. We show Huang et al. (2016)’s improvements over the best
text-only baseline in parentheses. Results are significantly better than the NMT baseline (†) and the SMT
baseline (‡) with p < 0.01 (no pre-training) or p < 0.05 (when pre-training either on the back-translated
M30kC or WMT’15 corpora).

metrics, i.e. METEOR and chrF3, whereas NMT
is better at precision-oriented ones, i.e. BLEU4.
This is somehow expected, since the attention
mechanism in NMT (Bahdanau et al., 2015) does
not explicitly take attention weights from previous
time steps into account, an thus lacks the notion
of source coverage as in SMT (Koehn et al., 2003;
Tu et al., 2016). We note that these ideas are com-
plementary and incorporating coverage into model
NMTSRC+IMG could lead to more improvements,
especially in recall-oriented metrics. Nonetheless,
our doubly-attentive model shows consistent gains
in both precision- and recall-oriented metrics in
comparison to the text-only NMT baseline, i.e. it
is significantly better according to BLEU4, ME-
TEOR and TER (p < 0.01), and it also improves
chrF3 by +2.1. In comparison to the PBSMT
baseline, our proposed model still significantly
improves according to both BLEU4 and TER (p <

0.01), also increasing METEOR by +0.7 but with
an associated p-value of p = 0.071, therefore not
significant for p < 0.05. Although chrF3 is the
only metric in which the PBSMT model scores
best, the difference between our model and the lat-
ter is only 0.1, meaning that they are practically
equivalent. We note that model NMTSRC+IMG con-
sistently increases character recall in comparison
to the text-only NMT baseline. Although it can
happen at the expense of character precision, gains
in recall are always much higher than any eventual
loss in precision, leading to consistent improve-
ments in chrF3.

In Table 2, we observe that when translating
into English and training on the original M30kT,
model NMTSRC+IMG outperforms both baselines
by a large margin, according to all four met-
rics evaluated. We also note that both model
NMTSRC+IMG’s character-level precision and re-

1918

German→English

Model BLEU4↑ METEOR↑ TER↓ chrF3↑
PBSMT 32.8 34.8 43.9 61.8
NMT 38.2 35.8 40.2 62.8
NMTSRC+IMG 40.6†‡ 37.5†‡ 37.7†‡ 65.2

Improvements

Ours vs. NMT ↑ 2.4 ↑ 1.7 ↓ 2.5 ↑ 2.4
Ours vs. PBSMT ↑ 7.8 ↑ 2.7 ↓ 6.2 ↑ 3.4

Pre-training data set: back-translated M30kC (in-domain)

PBSMT 36.8 36.4 40.8 64.5
NMT 42.6 38.9 36.1 67.6
NMTSRC+IMG 43.2‡† 39.0‡† 35.5‡† 67.7

Improvements

Ours vs. PBSMT ↑ 6.4 ↑ 2.6 ↓ 5.3 ↑ 3.2
Ours vs. NMT ↑ 0.6 ↑ 0.1 ↓ 0.6 ↑ 0.1

Table 2: BLEU4, METEOR, chrF3 (higher is bet-
ter), and TER scores (lower is better) on the trans-
lated Multi30k (M30kT) test set. Best text-only
baselines results are underlined and best overall
results appear in bold. Results are significantly
better than the NMT baseline (†) and the SMT
baseline (‡) with p < 0.01.

call are higher than those of the two baselines, in
contrast to results obtained when translating from
English into German. This suggests that model
NMTSRC+IMG might better integrate the image fea-
tures when translating into an “easier” language,
i.e. a language with less morphology, although ex-
periments involving more language pairs are nec-
essary to confirm whether this is indeed the case.

Pre-training We now discuss results for mod-
els pre-trained using different data sets. We first
pre-trained the two text-only baselines PBSMT
and NMT, and our MNMT model on the back-
translated M30kC, a medium-sized in-domain im-
age description data set (145k training instances),
in both directions. We also pre-trained the same
models on the English–German parallel sentences
of much larger MT data sets, i.e. the concatenation
of the Europarl (Koehn, 2005), Common Crawl
and News Commentary corpora, used in WMT
2015 (∼4.3M parallel sentences). Model PB-
SMT (concat.) used the concatenation of the pre-
training and training data for training, and model
PBSMT (LM) used the general-domain German
sentences as additional data to train the LM. From
Tables 1 and 2, it is clear that model NMTSRC+IMG
can learn from both in-domain, multi-modal pre-
training data sets as well as text-only, general do-
main ones.

Pre-training on M30kC When pre-training on
the back-translated M30kC and translating into
German, the recall-oriented chrF3 shows a dif-
ference of 1.4 points between PBSMT and our
model, mostly due to character recall; nonethe-
less, our model still improved by the same mar-
gin on the text-only NMT baseline. Our model
still outperforms the PBSMT baseline according
to BLEU4 and TER, and the text-only NMT base-
line according to all metrics (p < .05).

When translating into English, model
NMTSRC+IMG still consistently scores higher
according to all metrics evaluated, although the
differences between its translations and those
obtained with the NMT baseline are no longer
statistically significant (p < 0.01).

Pre-training on WMT 2015 corpora We also
pre-trained our English–German models on the
WMT 2015 corpora, which took 10 days,
i.e. ∼6–7 epochs. Results show that model
NMTSRC+IMG improves significantly over the
NMT baseline according to BLEU4, and is con-
sistently better than the PBSMT baseline accord-
ing to all four metrics.4 This is a strong indica-
tion that model NMTSRC+IMG can exploit the ad-
ditional pre-training data efficiently, both general-
and in-domain. While the PBSMT model is
still competitive when using additional in-domain
data—according to METEOR and chrF3— the
same cannot be said when using general-domain
pre-training corpora. From our experiments,
NMT models in general, and especially model
NMTSRC+IMG, thrive when training and test do-
mains are mixed, which is a very common real-
world scenario.

Textual and visual attention In Figure 3, we
visualise the visual and textual attention weights
for an entry of the M30kT test set. In the visual
attention, the β gate (written in parentheses after
each word) caused the image features to be used
mostly to generate the words Mann (man) and Hut
(hat), two highly visual terms in the sentence. We
observe that in general visually grounded terms,
e.g. Mann and Hut, usually have a high associated
β value, whereas other less visual terms like mit
(with) or auf (at) do not. That causes the model to
use the image features when it is describing a vi-
sual concept in the sentence, which is an interest-

4In order for PBSMT models to remain competitive, we
believe more advanced data selection techniques are needed,
which are out of the scope of this work.

1919

(a) Image–target word alignments. (b) Source–target word alignments.

Figure 3: Visualisation of image– and source–target word alignments for the M30kT test set.

ing feature of our model. Interestingly, our model
is very selective when choosing to use image fea-
tures: it only assigned β > 0.5 for 20% of the out-
putted target words, and β > 0.8 to only 8%. A
manual inspection of translations shows that these
words are mostly concrete nouns with a strong vi-
sual appeal.

Lastly, using two independent attention mech-
anisms is a good compromise between model
compactness and flexibility. While the attention-
based NMT model baseline has ∼200M parame-
ters, model NMTSRC+IMG has ∼213M, thus using
just ∼6.6% more parameters than the latter.

6 Related work

Multi-modal MT was just recently addressed
by the MT community by means of a shared
task (Specia et al., 2016). However, there has
been a considerable amount of work on natu-
ral language generation from non-textual inputs.
Mao et al. (2014) introduced a multi-modal RNN
that integrates text and visual features and ap-
plied it to the tasks of image description genera-
tion and image–sentence ranking. In their work,
the authors incorporate global image features in a
separate multi-modal layer that merges the RNN
textual representations and the global image fea-
tures. Vinyals et al. (2015) proposed an influ-
ential neural IDG model based on the sequence-
to-sequence framework, which is trained end-to-
end. Elliott et al. (2015) put forward a model to
generate multilingual descriptions of images by
learning and transferring features between two in-

dependent, non-attentive neural image description
models.5 Venugopalan et al. (2015) introduced a
model trained end-to-end to generate textual de-
scriptions of open-domain videos from the video
frames based on the sequence-to-sequence frame-
work. Finally, Xu et al. (2015) introduced the first
attention-based IDG model where an attentive de-
coder learns to attend to different parts of an image
as it generates its description in natural language.

In the context of NMT, Zoph and Knight (2016)
introduced a multi-source attention-based NMT
model trained to translate a pair of sentences in
two different source languages into a target lan-
guage, and reported considerable improvements
over a single-source baseline. Dong et al. (2015)
proposed a multi-task learning approach where a
model is trained to translate from one source lan-
guage into multiple target languages. Firat et al.
(2016) put forward a multi-way model trained to
translate between many different source and tar-
get languages. Instead of one attention mecha-
nism per language pair as in Dong et al. (2015),
which would lead to a quadratic number of atten-
tion mechanisms in relation to language pairs, they
use a shared attention mechanism where each tar-
get language has one attention shared by all source
languages. Luong et al. (2016) proposed a multi-
task approach where they train a model using two
tasks and a shared decoder: the main task is to
translate from German into English and the sec-

5Although their model has not been devised with transla-
tion as its primary goal, theirs is one of the baselines of the
first shared task in multi-modal MT in WMT 2016 (Specia
et al., 2016).

1920

ondary task is to generate English image descrip-
tions. They show improvements in the main trans-
lation task when also training for the secondary
image description task. Although not an NMT
model, Hitschler et al. (2016) recently used image
features to re-rank translations of image descrip-
tions generated by an SMT model and reported
significant improvements.

Although no purely neural multi-modal model
to date significantly improves on both text-only
NMT and SMT models (Specia et al., 2016), dif-
ferent research groups have proposed to include
global and spatial visual features in re-ranking
n-best lists generated by an SMT system or di-
rectly in an NMT framework with some suc-
cess (Caglayan et al., 2016a; Calixto et al., 2016;
Huang et al., 2016; Libovický et al., 2016; Shah
et al., 2016). To the best of our knowledge, the
best published results of a purely MNMT model
are those of Huang et al. (2016), who proposed
to use global visual features extracted with the
VGG19 network (Simonyan and Zisserman, 2015)
for an entire image, and also for regions of the im-
age obtained using the RCNN of Girshick et al.
(2014). Their best model improves over a strong
text-only NMT baseline and is comparable to re-
sults obtained with an SMT model trained on the
same data. For that reason, their models are used
as baselines in our experiments whenever possible.

Our work differs from previous work in that,
first, we propose attention-based MNMT mod-
els. This is an important difference since the use
of attention in NMT has become standard and
is the current state-of-the-art (Jean et al., 2015;
Luong et al., 2015; Firat et al., 2016; Sennrich
et al., 2016b). Second, we propose a doubly-
attentive model where we effectively fuse two
mono-modal attention mechanisms into one multi-
modal decoder, training the entire model jointly
and end-to-end. Additionally, we are interested
in how to merge textual and visual representa-
tions into multi-modal representations when gen-
erating words in the target language, which differs
substantially from text-only translation tasks even
when these translate from many source languages
and/or into many target languages (Dong et al.,
2015; Firat et al., 2016; Zoph and Knight, 2016).
To the best of our knowledge, we are among the
first6 to integrate multi-modal inputs in NMT via

6As pointed out by an anonymous reviewer, Caglayan
et al. (2016b) have also experimented with attention-based

independent attention mechanisms.

Applications Initial experiments with model
NMTSRC+IMG have been reported in Calixto et al.
(2016). Additionally, NMTSRC+IMG has been ap-
plied to the machine translation of user-generated
product listings from an e-commerce website,
while also making use of the product images to
improve translations (Calixto et al., 2017b,a).

7 Conclusions and Future Work

We have introduced a novel attention-based,
multi-modal NMT model to incorporate spatial
visual information into NMT. We have reported
state-of-the-art results on the M30kT test set, im-
proving on previous multi-modal attention-based
models. We have also showed that our model
can be efficiently pre-trained on both medium-
sized back-translated in-domain multi-modal data
as well as also large general-domain text-only MT
corpora, finding that it is able to exploit the addi-
tional data regardless of the domain. Our model
also compares favourably to both NMT and PB-
SMT baselines evaluated on the same training
data. In the future, we will incorporate coverage
into our model and study how to apply it to other
Natural Language Processing tasks.

Acknowledgements

This project has received funding from Science
Foundation Ireland in the ADAPT Centre for Dig-
ital Content Technology (www.adaptcentre.ie) at
Dublin City University funded under the SFI Re-
search Centres Programme (Grant 13/RC/2106)
co-funded under the European Regional Develop-
ment Fund and the European Union Horizon 2020
research and innovation programme under grant
agreement 645452 (QT21). The authors would
like to thank Chris Hokamp, Peyman Passban,
and Dasha Bogdanova for insightful discussions
at early stages of this work, Andy Way for proof-
reading and providing many good suggestions of
improvements, as well as our anonymous review-
ers for their valuable comments and feedback.

Reproducibility

Code and pre-trained models for this pa-
per are available at https://github.
com/iacercalixto/nmt_doubly_
attentive.
multi-modal NMT.

1921

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua

Bengio. 2015. Neural Machine Translation by
Jointly Learning to Align and Translate. In Inter-
national Conference on Learning Representations,
ICLR 2015. San Diego, California.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A Neural Probabilistic Lan-
guage Model. J. Mach. Learn. Res. 3:1137–1155.
http://dl.acm.org/citation.cfm?id=944919.944966.

Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Barry Haddow, Matthias Huck, Chris Hokamp,
Philipp Koehn, Varvara Logacheva, Christof Monz,
Matteo Negri, Matt Post, Carolina Scarton, Lucia
Specia, and Marco Turchi. 2015. Findings of the
2015 workshop on statistical machine translation.
In Proceedings of the Tenth Workshop on Statistical
Machine Translation. Lisbon, Portugal, pages 1–46.
http://aclweb.org/anthology/W15-3001.

Ozan Caglayan, Walid Aransa, Yaxing Wang,
Marc Masana, Mercedes Garcı́a-Martı́nez, Fethi
Bougares, Loı̈c Barrault, and Joost van de Weijer.
2016a. Does multimodality help human and ma-
chine for translation and image captioning? In
Proceedings of the First Conference on Machine
Translation. Berlin, Germany, pages 627–633.
http://www.aclweb.org/anthology/W/W16/W16-
2358.

Ozan Caglayan, Loı̈c Barrault, and Fethi Bougares.
2016b. Multimodal Attention for Neural Ma-
chine Translation. CoRR abs/1609.03976.
http://arxiv.org/abs/1609.03976.

Iacer Calixto, Desmond Elliott, and Stella Frank. 2016.
DCU-UvA Multimodal MT System Report. In
Proceedings of the First Conference on Machine
Translation. Berlin, Germany, pages 634–638.
http://www.aclweb.org/anthology/W/W16/W16-
2359.

Iacer Calixto, Daniel Stein, Evgeny Matusov, Sheila
Castilho, and Andy Way. 2017a. Human Eval-
uation of Multi-modal Neural Machine Transla-
tion: A Case-Study on E-Commerce Listing Ti-
tles. In Proceedings of the Sixth Workshop on Vi-
sion and Language. Valencia, Spain, pages 31–37.
http://www.aclweb.org/anthology/W17-2004.

Iacer Calixto, Daniel Stein, Evgeny Matusov, Pintu
Lohar, Sheila Castilho, and Andy Way. 2017b.
Using Images to Improve Machine-Translating E-
Commerce Product Listings. In Proceedings of the
15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers. Valencia, Spain, pages 637–643.
http://www.aclweb.org/anthology/E17-2101.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014a. On the proper-
ties of neural machine translation: Encoder–decoder

approaches. Syntax, Semantics and Structure in Sta-
tistical Translation. page 103.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014b. Learn-
ing phrase representations using rnn encoder–
decoder for statistical machine translation. In
Proceedings of the 2014 Conference on Em-
pirical Methods in Natural Language Process-
ing (EMNLP). Doha, Qatar, pages 1724–1734.
http://www.aclweb.org/anthology/D14-1179.

Jonathan H. Clark, Chris Dyer, Alon Lavie, and
Noah A. Smith. 2011. Better Hypothesis Testing
for Statistical Machine Translation: Control-
ling for Optimizer Instability. In Proceedings
of the 49th Annual Meeting of the Associa-
tion for Computational Linguistics: Human
Language Technologies: Short Papers - Vol-
ume 2. Portland, Oregon, HLT ’11, pages 176–181.
http://dl.acm.org/citation.cfm?id=2002736.2002774.

Michael Denkowski and Alon Lavie. 2014. Meteor
Universal: Language Specific Translation Evalua-
tion for Any Target Language. In Proceedings of the
EACL 2014 Workshop on Statistical Machine Trans-
lation.

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-Task Learning for Mul-
tiple Language Translation. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Beijing, China, pages 1723–
1732. http://www.aclweb.org/anthology/P15-1166.

Desmond Elliott, Stella Frank, and Eva Hasler.
2015. Multi-Language Image Description with
Neural Sequence Models. CoRR abs/1510.04709.
http://arxiv.org/abs/1510.04709.

Desmond Elliott, Stella Frank, Khalil Sima’an,
and Lucia Specia. 2016. Multi30K: Multilin-
gual English-German Image Descriptions. In
Proceedings of the 5th Workshop on Vision
and Language, VL@ACL 2016. Berlin, Ger-
many. http://aclweb.org/anthology/W/W16/W16-
3210.pdf.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-Way, Multilingual Neural Machine
Translation with a Shared Attention Mechanism. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies. San Diego, California, pages 866–875.
http://www.aclweb.org/anthology/N16-1101.

Yarin Gal and Zoubin Ghahramani. 2016. A Theoreti-
cally Grounded Application of Dropout in Recurrent
Neural Networks. In Advances in Neural Informa-
tion Processing Systems, NIPS, Barcelona, Spain,

1922

pages 1019–1027. http://papers.nips.cc/paper/6241-
a-theoretically-grounded-application-of-dropout-in-
recurrent-neural-networks.pdf.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Ji-
tendra Malik. 2014. Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmen-
tation. In Proceedings of the 2014 IEEE Confer-
ence on Computer Vision and Pattern Recognition.
Washington, DC, USA, CVPR ’14, pages 580–587.
https://doi.org/10.1109/CVPR.2014.81.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385 .

Julian Hitschler, Shigehiko Schamoni, and Ste-
fan Riezler. 2016. Multimodal Pivots for Im-
age Caption Translation. In Proceedings of
the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long
Papers). Berlin, Germany, pages 2399–2409.
http://www.aclweb.org/anthology/P16-1227.

Po-Yao Huang, Frederick Liu, Sz-Rung Shiang,
Jean Oh, and Chris Dyer. 2016. Attention-based
Multimodal Neural Machine Translation. In
Proceedings of the First Conference on Machine
Translation. Berlin, Germany, pages 639–645.
http://www.aclweb.org/anthology/W/W16/W16-
2360.

Sébastien Jean, Kyunghyun Cho, Roland Memise-
vic, and Yoshua Bengio. 2015. On Using Very
Large Target Vocabulary for Neural Machine Trans-
lation. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume
1: Long Papers). Beijing, China, pages 1–10.
http://www.aclweb.org/anthology/P15-1001.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
Continuous Translation Models. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2013. Seattle,
US., pages 1700–1709.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In In
Proceedings of the IEEE International Conference
on Acoustics, Speech and Signal Processing. De-
troit, Michigan, volume I, pages 181–184.

Philipp Koehn. 2005. Europarl: A Parallel Corpus
for Statistical Machine Translation. In Conference
Proceedings: the tenth Machine Translation Sum-
mit. AAMT, AAMT, Phuket, Thailand, pages 79–86.
http://mt-archive.info/MTS-2005-Koehn.pdf.

Philipp Koehn, Hieu Hoang, Alexandra Birch,
Chris Callison-Burch, Marcello Federico, Nicola
Bertoldi, Brooke Cowan, Wade Shen, Chris-
tine Moran, Richard Zens, Chris Dyer, Ondřej
Bojar, Alexandra Constantin, and Evan Herbst.

2007. Moses: Open Source Toolkit for Sta-
tistical Machine Translation. In Proceedings
of the 45th Annual Meeting of the ACL on In-
teractive Poster and Demonstration Sessions.
Prague, Czech Republic, ACL ’07, pages 177–180.
http://dl.acm.org/citation.cfm?id=1557769.1557821.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical Phrase-based Translation. In Pro-
ceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology - Vol-
ume 1. Edmonton, Canada, NAACL ’03, pages 48–
54. https://doi.org/10.3115/1073445.1073462.

Jindřich Libovický, Jindřich Helcl, Marek Tlustý,
Ondřej Bojar, and Pavel Pecina. 2016. CUNI
System for WMT16 Automatic Post-Editing
and Multimodal Translation Tasks. In Pro-
ceedings of the First Conference on Machine
Translation. Berlin, Germany, pages 646–654.
http://www.aclweb.org/anthology/W/W16/W16-
2361.

Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-Task Se-
quence to Sequence Learning. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR), 2016. San Juan, Puerto Rico.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Lisbon,
Portugal, pages 1412–1421.

Junhua Mao, Wei Xu, Yi Yang, Jiang Wang,
and Alan L. Yuille. 2014. Explain Images
with Multimodal Recurrent Neural Networks.
http://arxiv.org/abs/1410.1090.

Franz Josef Och. 2003. Minimum Error Rate Train-
ing in Statistical Machine Translation. In Pro-
ceedings of the 41st Annual Meeting on Asso-
ciation for Computational Linguistics - Volume
1. Sapporo, Japan, ACL ’03, pages 160–167.
https://doi.org/10.3115/1075096.1075117.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: A Method for Au-
tomatic Evaluation of Machine Translation. In
Proceedings of the 40th Annual Meeting on As-
sociation for Computational Linguistics. Philadel-
phia, Pennsylvania, ACL ’02, pages 311–318.
https://doi.org/10.3115/1073083.1073135.

Maja Popović. 2015. chrf: character n-gram f-
score for automatic mt evaluation. In Proceed-
ings of the Tenth Workshop on Statistical Ma-
chine Translation. Lisbon, Portugal, pages 392–395.
http://aclweb.org/anthology/W15-3049.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving Neural Machine Translation

1923

Models with Monolingual Data. In Proceed-
ings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1:
Long Papers). Berlin, Germany, pages 86–96.
http://www.aclweb.org/anthology/P16-1009.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural Machine Translation of Rare
Words with Subword Units. In Proceedings
of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1:
Long Papers). Berlin, Germany, pages 1715–1725.
http://www.aclweb.org/anthology/P16-1162.

Kashif Shah, Josiah Wang, and Lucia Specia.
2016. SHEF-Multimodal: Grounding Ma-
chine Translation on Images. In Proceed-
ings of the First Conference on Machine
Translation. Berlin, Germany, pages 660–665.
http://www.aclweb.org/anthology/W/W16/W16-
2363.

K. Simonyan and A. Zisserman. 2015. Very deep con-
volutional networks for large-scale image recogni-
tion. In Proceedings of the International Conference
on Learning Representations (ICLR). San Diego,
CA.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In In Proceedings of Association for Machine
Translation in the Americas. Cambridge, MA, pages
223–231.

Lucia Specia, Stella Frank, Khalil Sima’an, and
Desmond Elliott. 2016. A Shared Task on Mul-
timodal Machine Translation and Crosslingual Im-
age Description. In Proceedings of the First Con-
ference on Machine Translation, WMT 2016, colo-
cated with ACL 2016. Berlin, Germany, pages 543–
553. http://aclweb.org/anthology/W/W16/W16-
2346.pdf.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems. Montréal, Canada, pages 3104–3112.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiao-
hua Liu, and Hang Li. 2016. Modeling Cov-
erage for Neural Machine Translation. In Pro-
ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume
1: Long Papers). Berlin, Germany, pages 76–85.
http://www.aclweb.org/anthology/P16-1008.

Subhashini Venugopalan, Marcus Rohrbach, Jef-
frey Donahue, Raymond J. Mooney, Trevor Dar-
rell, and Kate Saenko. 2015. Sequence to
sequence - video to text. In 2015 IEEE
International Conference on Computer Vision,
ICCV 2015. Santiago, Chile, pages 4534–4542.
https://doi.org/10.1109/ICCV.2015.515.

Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2015. Show and tell: A neural im-
age caption generator. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015.
Boston, Massachusetts, pages 3156–3164.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun
Cho, Aaron Courville, Ruslan Salakhudinov, Rich
Zemel, and Yoshua Bengio. 2015. Show, at-
tend and tell: Neural image caption genera-
tion with visual attention. In Proceedings of
the 32nd International Conference on Machine
Learning (ICML-15). JMLR Workshop and Confer-
ence Proceedings, Lille, France, pages 2048–2057.
http://jmlr.org/proceedings/papers/v37/xuc15.pdf.

Peter Young, Alice Lai, Micah Hodosh, and Julia
Hockenmaier. 2014. From image descriptions to
visual denotations: New similarity metrics for se-
mantic inference over event descriptions. Transac-
tions of the Association for Computational Linguis-
tics 2:67–78.

Matthew D. Zeiler. 2012. ADADELTA: An Adap-
tive Learning Rate Method. CoRR abs/1212.5701.
http://arxiv.org/abs/1212.5701.

Barret Zoph and Kevin Knight. 2016. Multi-Source
Neural Translation. In Proceedings of the 2016 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies. San Diego, California, pages
30–34. http://www.aclweb.org/anthology/N16-
1004.

1924

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1925–1935
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1176

A Teacher-Student Framework for
Zero-Resource Neural Machine Translation
Yun Chen†, Yang Liu‡∗, Yong Cheng+, Victor O.K. Li†

†Department of Electrical and Electronic Engineering, The University of Hong Kong
‡State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing, China

Jiangsu Collaborative Innovation Center for Language Competence, Jiangsu, China
+Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China

yun.chencreek@gmail.com; liuyang2011@tsinghua.edu.cn;
chengyong3001@gmail.com; vli@eee.hku.hk

Abstract

While end-to-end neural machine transla-
tion (NMT) has made remarkable progress
recently, it still suffers from the data
scarcity problem for low-resource lan-
guage pairs and domains. In this paper,
we propose a method for zero-resource
NMT by assuming that parallel sentences
have close probabilities of generating a
sentence in a third language. Based on
the assumption, our method is able to
train a source-to-target NMT model (“stu-
dent”) without parallel corpora available
guided by an existing pivot-to-target NMT
model (“teacher”) on a source-pivot par-
allel corpus. Experimental results show
that the proposed method significantly im-
proves over a baseline pivot-based model
by +3.0 BLEU points across various lan-
guage pairs.

1 Introduction

Neural machine translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015), which directly models
the translation process in an end-to-end way, has
attracted intensive attention from the commu-
nity. Although NMT has achieved state-of-the-art
translation performance on resource-rich language
pairs such as English-French and German-English
(Luong et al., 2015; Jean et al., 2015; Wu et al.,
2016; Johnson et al., 2016), it still suffers from
the unavailability of large-scale parallel corpora
for translating low-resource languages. Due to the
large parameter space, neural models usually learn
poorly from low-count events, resulting in a poor
choice for low-resource language pairs. Zoph et

∗Corresponding author: Yang Liu.

al. (2016) indicate that NMT obtains much worse
translation quality than a statistical machine trans-
lation (SMT) system on low-resource languages.

As a result, a number of authors have endeav-
ored to explore methods for translating language
pairs without parallel corpora available. These
methods can be roughly divided into two broad
categories: multilingual and pivot-based. Firat
et al. (2016b) present a multi-way, multilin-
gual model with shared attention to achieve zero-
resource translation. They fine-tune the attention
part using pseudo bilingual sentences for the zero-
resource language pair. Another direction is to
develop a universal NMT model in multilingual
scenarios (Johnson et al., 2016; Ha et al., 2016).
They use parallel corpora of multiple languages
to train one single model, which is then able to
translate a language pair without parallel corpora
available. Although these approaches prove to be
effective, the combination of multiple languages
in modeling and training leads to increased com-
plexity compared with standard NMT.

Another direction is to achieve source-to-target
NMT without parallel data via a pivot, which
is either text (Cheng et al., 2016a) or image
(Nakayama and Nishida, 2016). Cheng et al.
(2016a) propose a pivot-based method for zero-
resource NMT: it first translates the source lan-
guage to a pivot language, which is then translated
to the target language. Nakayama and Nishida
(2016) show that using multimedia information as
pivot also benefits zero-resource translation. How-
ever, pivot-based approaches usually need to di-
vide the decoding process into two steps, which
is not only more computationally expensive, but
also potentially suffers from the error propagation
problem (Zhu et al., 2013).

In this paper, we propose a new method for
zero-resource neural machine translation. Our

1925

https://doi.org/10.18653/v1/P17-1176

(a) (b)

X YZ Z

X

Y

P (z|x;✓x!z) P (y|z;✓z!y)

P (y|z;✓z!y)

P (y|x;✓x!y)

Figure 1: (a) The pivot-based approach and (b) the teacher-student approach to zero-resource neural
machine translation. X, Y, and Z denote source, target, and pivot languages, respectively. We use a
dashed line to denote that there is a parallel corpus available for the connected language pair. Solid
lines with arrows represent translation directions. The pivot-based approach leverages a pivot to achieve
indirect source-to-target translation: it first translates x into z, which is then translated into y. Our
training algorithm is based on the translation equivalence assumption: if x is a translation of z, then
P (y|x;θx→y) should be close to P (y|z;θz→y). Our approach directly trains the intended source-to-
target model P (y|x;θx→y) (“student”) on a source-pivot parallel corpus, with the guidance of an existing
pivot-to-target model P (y|z; θ̂z→y) (“teacher”).

method assumes that parallel sentences should
have close probabilities of generating a sentence in
a third language. To train a source-to-target NMT
model without parallel corpora (“student”), we
leverage an existing pivot-to-target NMT model
(“teacher”) to guide the learning process of the
student model on a source-pivot parallel corpus.
Compared with pivot-based approaches (Cheng
et al., 2016a), our method allows direct parame-
ter estimation of the intended NMT model, with-
out the need to divide decoding into two steps.
This strategy not only improves efficiency but also
avoids error propagation in decoding. Experi-
ments on the Europarl and WMT datasets show
that our approach achieves significant improve-
ments in terms of both translation quality and de-
coding efficiency over a baseline pivot-based ap-
proach to zero-resource NMT on Spanish-French
and German-French translation tasks.

2 Background

Neural machine translation (Sutskever et al., 2014;
Bahdanau et al., 2015) advocates the use of neu-
ral networks to model the translation process in
an end-to-end manner. As a data-driven approach,
NMT treats parallel corpora as the major source
for acquiring translation knowledge.

Let x be a source-language sentence and y be a
target-language sentence. We use P (y|x;θx→y)

to denote a source-to-target neural translation
model, where θx→y is a set of model parame-
ters. Given a source-target parallel corpus Dx,y,
which is a set of parallel source-target sentences,
the model parameters can be learned by maximiz-
ing the log-likelihood of the parallel corpus:

θ̂x→y = argmax
θx→y

{ ∑

〈x,y〉∈Dx,y
logP (y|x;θx→y)

}
.

Given learned model parameters θ̂x→y, the de-
cision rule for finding the translation with the
highest probability for a source sentence x is given
by

ŷ = argmax
y

{
P (y|x; θ̂x→y)

}
. (1)

As a data-driven approach, NMT heavily relies
on the availability of large-scale parallel corpora
to deliver state-of-the-art translation performance
(Wu et al., 2016; Johnson et al., 2016). Zoph et
al. (2016) report that NMT obtains much lower
BLEU scores than SMT if only small-scale par-
allel corpora are available. Therefore, the heavy
dependence on the quantity of training data poses
a severe challenge for NMT to translate zero-
resource language pairs.

Simple and easy-to-implement, pivot-based
methods have been widely used in SMT for

1926

translating zero-resource language pairs (de Gis-
pert and Mariño, 2006; Cohn and Lapata, 2007;
Utiyama and Isahara, 2007; Wu and Wang, 2007;
Bertoldi et al., 2008; Wu and Wang, 2009; Za-
habi et al., 2013; Kholy et al., 2013). As pivot-
based methods are agnostic to model structures,
they have been adapted to NMT recently (Cheng
et al., 2016a; Johnson et al., 2016).

Figure 1(a) illustrates the basic idea of pivot-
based approaches to zero-resource NMT (Cheng
et al., 2016a). Let X, Y, and Z denote source, tar-
get, and pivot languages. We use dashed lines to
denote language pairs with parallel corpora avail-
able and solid lines with arrows to denote transla-
tion directions.

Intuitively, the source-to-target translation can
be indirectly modeled by bridging two NMT mod-
els via a pivot:

P (y|x;θx→z,θz→y)
=

∑

z

P (z|x;θx→z)P (y|z;θz→y). (2)

As shown in Figure 1(a), pivot-based ap-
proaches assume that the source-pivot parallel cor-
pus Dx,z and the pivot-target parallel corpus Dz,y

are available. As it is impractical to enumerate all
possible pivot sentences, the two NMT models are
trained separately in practice:

θ̂x→z = argmax
θx→z

{ ∑

〈x,z〉∈Dx,z
logP (z|x;θx→z)

}
,

θ̂z→y = argmax
θz→y

{ ∑

〈z,y〉∈Dz,y
logP (y|z;θz→y)

}
.

Due to the exponential search space of pivot
sentences, the decoding process of translating an
unseen source sentence x has to be divided into
two steps:

ẑ = argmax
z

{
P (z|x; θ̂x→z)

}
, (3)

ŷ = argmax
y

{
P (y|ẑ; θ̂z→y)

}
. (4)

The above two-step decoding process potentially
suffers from the error propagation problem (Zhu
et al., 2013): the translation errors made in the
first step (i.e., source-to-pivot translation) will af-
fect the second step (i.e., pivot-to-target transla-
tion).

Therefore, it is necessary to explore methods to
directly model source-to-target translation without
parallel corpora available.

3 Approach

3.1 Assumptions

In this work, we propose to directly model the in-
tended source-to-target neural translation based on
a teacher-student framework. The basic idea is to
use a pre-trained pivot-to-target model (“teacher”)
to guide the learning process of a source-to-target
model (“student”) without training data available
on a source-pivot parallel corpus. One advantage
of our approach is that Equation (1) can be used as
the decision rule for decoding, which avoids the
error propagation problem faced by two-step de-
coding in pivot-based approaches.

As shown in Figure 1(b), we still assume
that a source-pivot parallel corpus Dx,z and
a pivot-target parallel corpus Dz,y are avail-
able. Unlike pivot-based approaches, we first
use the pivot-target parallel corpus Dz,y to ob-
tain a teacher model P (y|z; θ̂z→y), where θ̂z→y
is a set of learned model parameters. Then,
the teacher model “teaches” the student model
P (y|x;θx→y) on the source-pivot parallel corpus
Dx,z based on the following assumptions.

Assumption 1 If a source sentence x is a transla-
tion of a pivot sentence z, then the probability of
generating a target sentence y from x should be
close to that from its counterpart z.

We can further introduce a word-level assump-
tion:

Assumption 2 If a source sentence x is a transla-
tion of a pivot sentence z, then the probability of
generating a target word y from x should be close
to that from its counterpart z, given the already
obtained partial translation y<j .

The two assumptions are empirically verified in
our experiments (see Table 2). In the following
subsections, we will introduce two approaches to
zero-resource neural machine translation based on
the two assumptions.

3.2 Sentence-Level Teaching

Given a source-pivot parallel corpus Dx,z , our
training objective based on Assumption 1 is de-
fined as follows:

JSENT(θx→y)

=
∑

〈x,z〉∈Dx,z
KL
(
P (y|z; θ̂z→y)

∣∣∣
∣∣∣P (y|x;θx→y)

)
, (5)

1927

where the KL divergence sums over all possible
target sentences:

KL
(
P (y|z; θ̂z→y)

∣∣∣
∣∣∣P (y|x;θx→y)

)

=
∑

y

P (y|z; θ̂z→y) log
P (y|z; θ̂z→y)
P (y|x;θx→y)

.(6)

As the teacher model parameters are fixed, the
training objective can be equivalently written as

JSENT(θx→y)

= −
∑

〈x,z〉∈Dx,z
Ey|z;θ̂z→y

[
logP (y|x;θx→y)

]
. (7)

In training, our goal is to find a set of source-to-
target model parameters that minimizes the train-
ing objective:

θ̂x→y = argmin
θx→y

{
JSENT(θx→y)

}
. (8)

With learned source-to-target model parameters
θ̂x→y, we use the standard decision rule as shown
in Equation (1) to find the translation ŷ for a
source sentence x.

However, a major difficulty faced by our ap-
proach is the intractability in calculating the gra-
dients because of the exponential search space of
target sentences. To address this problem, it is pos-
sible to construct a sub-space by either sampling
(Shen et al., 2016), generating a k-best list (Cheng
et al., 2016b) or mode approximation (Kim and
Rush, 2016). Then, standard stochastic gradient
descent algorithms can be used to optimize model
parameters.

3.3 Word-Level Teaching
Instead of minimizing the KL divergence between
the teacher and student models at the sentence
level, we further define a training objective at the
word level based on Assumption 2:

JWORD(θx→y)

=
∑

〈x,z〉∈Dx,z
Ey|z;θ̂z→y

[
J(x,y, z, θ̂z→y,θx→y)

]
, (9)

where

J(x,y, z, θ̂z→y,θx→y)

=

|y|∑

j=1

KL
(
P (y|z,y<j ; θ̂z→y)

∣∣∣
∣∣∣

P (y|x,y<j ;θx→y)
)
. (10)

Equation (9) suggests that the teacher model
P (y|z,y<j ; θ̂z→y) “teaches” the student model
P (y|x,y<j ;θx→y) in a word-by-word way. Note
that the KL-divergence between two models is de-
fined at the word level:

KL
(
P (y|z,y<j ; θ̂z→y)

∣∣∣
∣∣∣P (y|x,y<j ;θx→y)

)

=
∑

y∈Vy
P (y|z,y<j ; θ̂z→y) log

P (y|z,y<j ; θ̂z→y)
P (y|x,y<j ;θx→y)

,

where Vy is the target vocabulary. As the param-
eters of the teacher model are fixed, the training
objective can be equivalently written as:

JWORD(θx→y)

= −
∑

〈x,z〉∈Dx,z
Ey|z;θ̂z→y

[
S(x,y, z, θ̂z→y,θx→y)

]
, (11)

where

S(x,y, z, θ̂z→y,θx→y)

=

|y|∑

j=1

∑

y∈Vy
P (y|z,y<j ; θ̂z→y)×

logP (y|x,y<j ;θx→y). (12)

Therefore, our goal is to find a set of source-to-
target model parameters that minimizes the train-
ing objective:

θ̂x→y = argmin
θx→y

{
JWORD(θx→y)

}
. (13)

We use similar approaches as described in Sec-
tion 3.2 for approximating the full search space
with sentence-level teaching. After obtaining
θ̂x→y, the same decision rule as shown in Equa-
tion (1) can be utilized to find the most probable
target sentence ŷ for a source sentence x.

4 Experiments

4.1 Setup
We evaluate our approach on the Europarl (Koehn,
2005) and WMT corpora. To compare with pivot-
based methods, we use the same dataset as (Cheng
et al., 2016a). All the sentences are tokenized by
the tokenize.perl script. All the experiments
treat English as the pivot language and French as
the target language.

For the Europarl corpus, we evaluate our pro-
posed methods on Spanish-French (Es-Fr) and
German-French (De-Fr) translation tasks in a

1928

Corpus Direction Train Dev. Test

Europarl
Es→ En 850K 2,000 2,000
De→ En 840K 2,000 2,000
En→ Fr 900K 2,000 2,000

WMT
Es→ En 6.78M 3,003 3,003
En→ Fr 9.29M 3,003 3,003

Table 1: Data statistics. For the Europarl corpus,
we evaluate our approach on Spanish-French (Es-
Fr) and German-French (De-Fr) translation tasks.
For the WMT corpus, we evaluate approach on the
Spanish-French (Es-Fr) translation task. English
is used as a pivot language in all experiments.

zero-resource scenario. To avoid the trilingual
corpus constituted by the source-pivot and pivot-
target corpora, we split the overlapping pivot sen-
tences of the original source-pivot and pivot-target
corpora into two equal parts and merge them sepa-
rately with the non-overlapping parts for each lan-
guage pair. The development and test sets are from
WMT 2006 shared task.1 The evaluation metric is
case-insensitive BLEU (Papineni et al., 2002) as
calculated by the multi-bleu.perl script. To
deal with out-of-vocabulary words, we adopt byte
pair encoding (BPE) (Sennrich et al., 2016) to split
words into sub-words. The size of sub-words is set
to 30K for each language.

For the WMT corpus, we evaluate our approach
on a Spanish-French (Es-Fr) translation task with
a zero-resource setting. We combine the follow-
ing corpora to form the Es-En and En-Fr paral-
lel corpora: Common Crawl, News Commentary,
Europarl v7 and UN. All the sentences are tok-
enized by the tokenize.perl script. New-
stest2011 serves as the development set and New-
stest2012 and Newstest2013 serve as test sets. We
use case-sensitive BLEU to evaluate translation re-
sults. BPE is also used to reduce the vocabulary
size. The size of sub-words is set to 43K, 33K,
43K for Spanish, English and French, respectively.
See Table 1 for detailed statistics for the Europarl
and WMT corpora.

We leverage an open-source NMT toolkit dl4mt
implemented by Theano 2 for all the experiments
and compare our approach with state-of-the-art
multilingual methods (Firat et al., 2016b) and
pivot-based methods (Cheng et al., 2016a). Two
variations of our framework are used in the exper-

1http://www.statmt.org/wmt07/shared-task.html
2dl4mt-tutorial: https://github.com/nyu-dl

iments:

1. Sentence-Level Teaching: for simplicity, we
use the mode as suggested in (Kim and Rush,
2016) to approximate the target sentence
space in calculating the expected gradients
with respect to the expectation in Equation
(7). We run beam search on the pivot sen-
tence with the teacher model and choose the
highest-scoring target sentence as the mode.
Beam size with k = 1 (greedy decoding) and
k = 5 are investigated in our experiments,
denoted as sent-greedy and sent-beam, re-
spectively.3

2. Word-Level Teaching: we use the same mode
approximation approach as in sentence-level
teaching to approximate the expectation in
Equation 12, denoted as word-greedy (beam
search with k = 1) and word-beam (beam
search with k = 5) respectively. Besides,
Monte Carlo estimation by sampling from the
teacher model is also investigated since it in-
troduces more diverse data, denoted as word-
sampling.

4.2 Assumptions Verification

To verify the assumptions in Section 3.1,
we train a source-to-target translation model
P (y|x;θx→y) and a pivot-to-target translation
model P (y|z;θz→y) using the trilingual Europarl
corpus. Then, we measure the sentence-level
and word-level KL divergence from the source-to-
target model P (y|x;θx→y) at different iterations
to the trained pivot-to-target model P (y|z; θ̂z→y)
by caculating JSENT (Equation (5)) and JWORD

3We can also adopt sampling and k-best list for approxi-
mation. Random sampling brings a large variance (Sutskever
et al., 2014; Ranzato et al., 2015; He et al., 2016) for
sentence-level teaching. For k-best list, we renormalize the
probabilities

P (y|z; θ̂z→y) ∼ P (y|z; θ̂z→y)α∑
y∈Yk P (y|z; θ̂z→y)α

,

where Yk is the k-best list from beam search of the teacher
model and α is a hyperparameter controling the sharpness
of the distribution (Och, 2003). We set k = 5 and α =
5×10−3. The results on test set for Eureparl Corpus are 32.24
BLEU over Spanish-French translation and 24.91 BLEU over
German-French translation, which are slightly better than the
sent-beam method. However, considering the traing time and
the memory consumption, we think mode approximation is
already a good way to approximate the target sentence space
for sentence-level teaching.

1929

Approx.
Iterations

0 2w 4w 6w 8w

JSENT
greedy 313.0 73.1 61.5 56.8 55.1
beam 323.5 73.1 60.7 55.4 54.0

JWORD

greedy 274.0 51.5 43.1 39.4 38.8
beam 288.7 52.7 43.3 39.2 38.4
sampling 268.6 53.8 46.6 42.8 42.4

Table 2: Verification of sentence-level and word-level assumptions by evaluating approximated KL di-
vergence from the source-to-target model to the pivot-to-target model over training iterations of the
source-to-target model. The pivot-to-target model is trained and kept fixed.

Method Es→ Fr De→ Fr

Cheng et al. (2016a)

pivot 29.79 23.70
hard 29.93 23.88
soft 30.57 23.79
likelihood 32.59 25.93

Ours
sent-beam 31.64 24.39
word-sampling 33.86 27.03

Table 3: Comparison with previous work on Spanish-French and German-French translation tasks from
the Europarl corpus. English is treated as the pivot language. The likelihood method uses 100K parallel
source-target sentences, which are not available for other methods.

(Equation (9)) on 2,000 parallel source-pivot sen-
tences from the development set of WMT 2006
shared task.

Table 2 shows the results. The source-to-target
model is randomly initialized at iteration 0. We
find that JSENT and JWORD decrease over time,
suggesting that the source-to-target and pivot-to-
target models do have small KL divergence at both
sentence and word levels.

4.3 Results on the Europarl Corpus

Table 3 gives BLEU scores on the Europarl
corpus of our best performing sentence-level
method (sent-beam) and word-level method
(word-sampling) compared with pivot-based
methods (Cheng et al., 2016a). We use the same
data preprocessing as (Cheng et al., 2016a). We
find that both the sent-beam and word-sampling
methods outperform the pivot-based approaches
in a zero-resource scenario across language
pairs. Our word-sampling method improves over
the best performing zero-resource pivot-based
method (soft) on Spanish-French translation
by +3.29 BLEU points and German-French
translation by +3.24 BLEU points. In addition,
the word-sampling mothod surprisingly obtains
improvement over the likelihood method, which
leverages a source-target parallel corpus. The

Method
Es→ Fr De→ Fr

dev test dev test
sent-greedy 31.00 31.05 22.34 21.88
sent-beam 31.57 31.64 24.95 24.39
word-greedy 31.37 31.92 24.72 25.15
word-beam 30.81 31.21 24.64 24.19
word-sampling 33.65 33.86 26.99 27.03

Table 4: Comparison of our proposed methods
on Spanish-French and German-French transla-
tion tasks from the Europarl corpus. English is
treated as the pivot language.

significant improvements can be explained by the
error propagation problem of pivot-based methods
that translation error of the source-to-pivot trans-
lation process is propagated to the pivot-to-target
translation process.

Table 4 shows BLEU scores on the Europarl
corpus of our proposed methods. For sentence-
level approaches, the sent-beam method outper-
forms the sent-greedy method by +0.59 BLEU
points over Spanish-French translation and +2.51
BLEU points over German-French translation on
the test set. The results are in line with our ob-
servation in Table 2 that sentence-level KL di-
vergence by beam approximation is smaller than
that by greedy approximation. However, as the

1930

0 3 6 9 1 2 1 53 0

6 0

9 0

1 2 0

1 5 0

1 8 0

2 1 0

0 3 6 9 1 2 1 50

5

1 0

1 5

2 0

2 5

3 0
Va

lid
Lo

ss

I t e r a t i o n s

s e n t - g r e e d y
s e n t - b e a m
w o r d - g r e e d y
w o r d - b e a m
w o r d - s a m p l i n g

×1 0 4 ×1 0 4

BL
EU

I t e r a t i o n s

s e n t - g r e e d y
s e n t - b e a m
w o r d - g r e e d y
w o r d - b e a m
w o r d - s a m p l i n g

Figure 2: Validation loss and BLEU across iterations of our proposed methods.

Method
Training BLEU

Es→ En En→ Fr Es→ Fr Newstest2012 Newstest2013

Existing zero-resource NMT systems
Cheng et al. (2016a)† pivot 6.78M 9.29M - 24.60 -
Cheng et al. (2016a)† likelihood 6.78M 9.29M 100K 25.78 -
Firat et al. (2016b) one-to-one 34.71M 65.77M - 17.59 17.61
Firat et al. (2016b)† many-to-one 34.71M 65.77M - 21.33 21.19

Our zero-resource NMT system
word-sampling 6.78M 9.29M - 28.06 27.03

Table 5: Comparison with previous work on Spanish-French translation in a zero-resource scenario over
the WMT corpus. The BLEU scores are case sensitive. †: the method depends on two-step decoding.

time complexity grows linearly with the number
of beams k, the better performance is achieved at
the expense of search time.

For word-level experiments, we observe that
the word-sampling method performs much bet-
ter than the other two methods: +1.94 BLEU
points on Spanish-French translation and +1.88
BLEU points on German-French translation over
the word-greedy method; +2.65 BLEU points
on Spanish-French translation and +2.84 BLEU
points on German-French translation over the
word-beam method. Although Table 2 shows that
word-level KL divergence approximated by sam-
pling is larger than that by greedy or beam, sam-
pling approximation introduces more data diver-
sity for training, which dominates the effect of KL
divergence difference.

We plot validation loss4 and BLEU scores over
iterations on the German-French translation task
in Figure 2. We observe that word-level models

4Validation loss: the average negative log-likelihood of
sentence pairs on the validation set.

tend to have lower validation loss compared with
sentence-level methods. Generally, models with
lower validation loss tend to have higher BLEU.
Our results indicate that this is not necessarily the
case: the sent-beam method converges to +0.31
BLEU points on the validation set with +13 vali-
dation loss compared with the word-beam method.
Kim and Rush (2016) claim a similar observation
in data distillation for NMT and provide an expla-
nation that student distributions are more peaked
for sentence-level methods. This is indeed the
case in our result: on German-French translation
task the argmax for the sent-beam student model
(on average) approximately accounts for 3.49% of
the total probability mass, while the correspond-
ing number is 1.25% for the word-beam student
model and 2.60% for the teacher model.

4.4 Results on the WMT Corpus

The word-sampling method obtains the best per-
formance in our five proposed approaches ac-
cording to experiments on the Europarl corpus.
To further verify this approach, we conduct ex-

1931

groundtruth

source Os sentáis al volante en la costa oeste , en San Francisco , y vuestra misión es llegar los
primeros a Nueva York .

pivot You get in the car on the west coast , in San Francisco , and your task is to be the first one
to reach New York .

target Vous vous asseyez derrière le volant sur la côte ouest à San Francisco et votre mission est
d' arriver le premier à New York .

pivot
pivot You 'll feel at the west coast in San Francisco , and your mission is to get the first to

New York . [BLEU: 33.93]

target Vous vous sentirez comme chez vous à San Francisco , et votre mission est d' obtenir
le premier à New York . [BLEU: 44.52]

likelihood
pivot You feel at the west coast , in San Francisco , and your mission is to reach the first to New

York . [BLEU: 47.22]

target Vous vous sentez à la côte ouest , à San Francisco , et votre mission est d' atteindre
le premier à New York . [BLEU: 49.44]

word-sampling target Vous vous sentez au volant sur la côte ouest , à San Francisco et votre mission est d'
arriver le premier à New York . [BLEU: 78.78]

Table 6: Examples and corresponding sentence BLEU scores of translations using the pivot and likeli-
hood methods in (Cheng et al., 2016a) and the proposed word-sampling method. We observe that our
approach generates better translations than the methods in (Cheng et al., 2016a). We italicize correct
translation segments which are no short than 2-grams.

periments on the large scale WMT corpus for
Spanish-French translation. Table 5 shows the re-
sults of our word-sampling method in compari-
son with other state-of-the-art baselines. Cheng
et al. (2016a) use the same datasets and the same
preprocessing as ours. Firat et al. (2016b) uti-
lize a much larger training set.5 Our method ob-
tains significant improvement over the pivot base-
line by +3.46 BLEU points on Newstest2012 and
over many-to-one by +5.84 BLEU points on New-
stest2013. Note that both methods depend on a
source-pivot-target decoding path. Table 6 shows
translation examples of the pivot and likelihood
methods proposed in (Cheng et al., 2016a) and our
proposed word-sampling method. For the pivot
and likelihood methods, the Spainish sentence
segment ’sentáis al volante’ is lost when translated
to English. Therefore, both methods miss this in-
formation in the translated French sentence. How-
ever, the word-sampling method generates ’volant
sur’, which partially translates ’sentáis al volante’,
resulting in improved translation quality of target-
language sentence.

4.5 Results with Small Source-Pivot Data
The word-sampling method can also be applied
to zero-resource NMT with a small source-pivot
corpus. Specifically, the size of the source-pivot
corpus is orders of magnitude smaller than that of
the pivot-target corpus. This setting makes sense
in applications. For example, there are signifi-
cantly fewer Urdu-English corpora available than

5Their training set does not include the Common Crawl
corpus.

Method
Corpus

BLEU
De-En De-Fr En-Fr

MLE × √ × 19.30
transfer × √ √

22.39
pivot

√ × √
17.32

Ours
√ × √

22.95

Table 7: Comparison on German-French trans-
lation task from the Europarl corpus with 100K
German-English sentences. English is regarded as
the pivot language. Transfer represents the trans-
fer learning method in (Zoph et al., 2016). 100K
parallel German-French sentences are used for the
MLE and transfer methods.

English-French corpora.
To fulfill this task, we combine our best per-

forming word-sampling method with the initial-
ization and parameter freezing strategy proposed
in (Zoph et al., 2016). The Europarl corpus is used
in the experiments. We set the size of German-
English training data to 100K and use the same
teacher model trained with 900K English-French
sentences.

Table 7 gives the BLEU score of our method on
German-French translation compared with three
other methods. Note that our task is much harder
than transfer learning (Zoph et al., 2016) since it
depends on a parallel German-French corpus. Sur-
prisingly, our method outperforms all other meth-
ods. We significantly improve the baseline pivot
method by +5.63 BLEU points and the state-of-
the-art transfer learning method by +0.56 BLEU
points.

1932

5 Related Work

Training NMT models in a zero-resource scenario
by leveraging other languages has attracted inten-
sive attention in recent years. Firat et al. (2016b)
propose an approach which delivers the multi-way,
multilingual NMT model proposed by (Firat et al.,
2016a) to zero-resource translation. They use the
multi-way NMT model trained by other language
pairs to generate a pseudo parallel corpus and
fine-tune the attention mechanism of the multi-
way NMT model to enable zero-resource transla-
tion. Several authors propose a universal encoder-
decoder network in multilingual scenarios to per-
form zero-shot learning (Johnson et al., 2016; Ha
et al., 2016). This universal model extracts transla-
tion knowledge from multiple different languages,
making zero-resource translation feasible without
direct training.

Besides multilingual NMT, another important
line of research is bridging source and target lan-
guages via a pivot language. This idea is widely
used in SMT (de Gispert and Mariño, 2006; Cohn
and Lapata, 2007; Utiyama and Isahara, 2007; Wu
and Wang, 2007; Bertoldi et al., 2008; Wu and
Wang, 2009; Zahabi et al., 2013; Kholy et al.,
2013). Cheng et al. (2016a) propose pivot-
based NMT by simultaneously improving source-
to-pivot and pivot-to-target translation quality in
order to improve source-to-target translation qual-
ity. Nakayama and Nishida (2016) achieve zero-
resource machine translation by utilizing image as
a pivot and training multimodal encoders to share
common semantic representation.

Our work is also related to knowledge distilla-
tion, which trains a compact model to approximate
the function learned by a larger, more complex
model or an ensemble of models (Bucila et al.,
2006; Ba and Caurana, 2014; Li et al., 2014; Hin-
ton et al., 2015). Kim and Rush (2016) first in-
troduce knowledge distillation in neural machine
translation. They suggest to generate a pseudo cor-
pus to train the student network. Compared with
their work, we focus on zero-resource learning in-
stead of model compression.

6 Conclusion

In this paper, we propose a novel framework
to train the student model without parallel cor-
pora under the guidance of the pre-trained teacher
model on a source-pivot parallel corpus. We in-
troduce sentence-level and word-level teaching to

guide the learning process of the student model.
Experiments on the Europarl and WMT corpora
across languages show that our proposed word-
level sampling method can significantly outper-
forms the state-of-the-art pivot-based methods and
multilingual methods in terms of translation qual-
ity and decoding efficiency.

We also analyze zero-resource translation with
small source-pivot data, and combine our word-
level sampling method with initialization and pa-
rameter freezing suggested by (Zoph et al., 2016).
The experiments on the Europarl corpus show that
our approach obtains an significant improvement
over the pivot-based baseline.

In the future, we plan to test our approach on
more diverse language pairs, e.g., zero-resource
Uyghur-English translation using Chinese as a
pivot. It is also interesting to extend the teacher-
student framework to other cross-lingual NLP ap-
plications as our method is transparent to architec-
tures.

Acknowledgments

This work was done while Yun Chen is visiting
Tsinghua University. This work is partially sup-
ported by the National Natural Science Founda-
tion of China (No.61522204, No. 61331013) and
the 863 Program (2015AA015407).

References
Jimmy Ba and Rich Caurana. 2014. Do deep nets really

need to be deep? In NIPS.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR .

Nicola Bertoldi, Madalina Barbaiani, Marcello Fed-
erico, and Roldano Cattoni. 2008. Phrase-based sta-
tistical machine translation with pivot languages. In
IWSLT .

Cristian Bucila, Rich Caruana, and Alexandru
Niculescu-Mizil. 2006. Model compression. In
KDD.

Yong Cheng, Yang Liu, Qian Yang, Maosong Sun, and
Wei Xu. 2016a. Neural machine translation with
pivot languages. CoRR abs/1611.04928.

Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016b. Semi-
supervised learning for neural machine translation
.

1933

Trevor Cohn and Mirella Lapata. 2007. Machine trans-
lation by triangulation: Making effective use of
multi-parallel corpora. In ACL.

Adrià de Gispert and José B. Mariño. 2006. Catalan-
english statistical machine translation without paral-
lel corpus: bridging through spanish. In Proceed-
ings of 5th International Conference on Language
Resources and Evaluation (LREC). Citeseer, pages
65–68.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016a. Multi-way, multilingual neural machine
translation with a shared attention mechanism. In
HLT-NAACL.

Orhan Firat, Baskaran Sankaran, Yaser Al-Onaizan,
Fatos T. Yarman-Vural, and Kyunghyun Cho. 2016b.
Zero-resource translation with multi-lingual neural
machine translation. In EMNLP.

Thanh-Le Ha, Jan Niehues, and Alexander H. Waibel.
2016. Toward multilingual neural machine trans-
lation with universal encoder and decoder. CoRR
abs/1611.04798.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai Yu,
Tie-Yan Liu, and Wei-Ying Ma. 2016. Dual learning
for machine translation. In NIPS.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean.
2015. Distilling the knowledge in a neural network.
CoRR abs/1503.02531.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2015. On using very large tar-
get vocabulary for neural machine translation. In
ACL.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B. Viégas, Martin Wattenberg, Gre-
gory S. Corrado, Macduff Hughes, and Jeffrey Dean.
2016. Google’s multilingual neural machine trans-
lation system: Enabling zero-shot translation. CoRR
abs/1611.04558.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In EMNLP.

Ahmed El Kholy, Nizar Habash, Gregor Leusch,
Evgeny Matusov, and Hassan Sawaf. 2013. Lan-
guage independent connectivity strength features for
phrase pivot statistical machine translation.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In EMNLP.

Philipp Koehn. 2005. Europarl: a parallel corpus for
statistical machine translation.

Jinyu Li, Rui Zhao, Jui-Ting Huang, and Yifan
Gong. 2014. Learning small-size dnn with output-
distribution-based criteria. In INTERSPEECH.

Thang Luong, Ilya Sutskever, Quoc V. Le, Oriol
Vinyals, and Wojciech Zaremba. 2015. Addressing
the rare word problem in neural machine translation.
In ACL.

Hideki Nakayama and Noriki Nishida. 2016. Zero-
resource machine translation by multimodal
encoder-decoder network with multimedia pivot.
CoRR abs/1611.04503.

Franz Josef Och. 2003. Minimum error rate training in
statistical machine translation. In ACL.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In ACL.

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level
training with recurrent neural networks. CoRR
abs/1511.06732.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units .

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
risk training for neural machine translation .

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks
.

Masao Utiyama and Hitoshi Isahara. 2007. A compari-
son of pivot methods for phrase-based statistical ma-
chine translation. In HLT-NAACL.

Hua Wu and Haifeng Wang. 2007. Pivot language ap-
proach for phrase-based statistical machine transla-
tion. Machine Translation 21:165–181.

Hua Wu and Haifeng Wang. 2009. Revisiting pivot
language approach for machine translation. In
ACL/IJCNLP.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V.
Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin
Johnson, Xiaobing Liu, Lukasz Kaiser, Stephan
Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant
Patil, Wei Wang, Cliff Young, Jason Smith, Jason
Riesa, Alex Rudnick, Oriol Vinyals, Gregory S.
Corrado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.
CoRR abs/1609.08144.

Samira Tofighi Zahabi, Somayeh Bakhshaei, and
Shahram Khadivi. 2013. Using context vectors in
improving a machine translation system with bridge
language. In ACL.

1934

Xiaoning Zhu, Zhongjun He, Hua Wu, Haifeng Wang,
Conghui Zhu, and Tiejun Zhao. 2013. Improving
pivot-based statistical machine translation using ran-
dom walk. In EMNLP.

Barret Zoph, Deniz Yuret, Jonathan May, and Kevin
Knight. 2016. Transfer learning for low-resource
neural machine translation. In EMNLP.

1935

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1936–1945
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1177

Improved Neural Machine Translation with a
Syntax-Aware Encoder and Decoder

Huadong Chen†, Shujian Huang†∗, David Chiang‡, Jiajun Chen†
†State Key Laboratory for Novel Software Technology, Nanjing University

{chenhd,huangsj,chenjj}@nlp.nju.edu.cn
‡Department of Computer Science and Engineering, University of Notre Dame

dchiang@nd.edu

Abstract
Most neural machine translation (NMT)
models are based on the sequential
encoder-decoder framework, which makes
no use of syntactic information. In this pa-
per, we improve this model by explicitly
incorporating source-side syntactic trees.
More specifically, we propose (1) a bidi-
rectional tree encoder which learns both
sequential and tree structured representa-
tions; (2) a tree-coverage model that lets
the attention depend on the source-side
syntax. Experiments on Chinese-English
translation demonstrate that our proposed
models outperform the sequential atten-
tional model as well as a stronger baseline
with a bottom-up tree encoder and word
coverage.1

1 Introduction

Recently, neural machine translation (NMT) mod-
els (Sutskever et al., 2014; Bahdanau et al.,
2015) have obtained state-of-the-art performance
on many language pairs. Their success depends
on the representation they use to bridge the source
and target language sentences. However, this rep-
resentation, a sequence of fixed-dimensional vec-
tors, differs considerably from most theories about
mental representations of sentences, and from tra-
ditional natural language processing pipelines, in
which semantics is built up compositionally using
a recursive syntactic structure.

Perhaps as evidence of this, current NMT mod-
els still suffer from syntactic errors such as at-
tachment (Shi et al., 2016). We argue that instead
of letting the NMT model rely solely on the im-
plicit structure it learns during training (Cho et al.,

∗ Corresponding author.
1Our code is publicly available at https://github.

com/howardchenhd/Syntax-awared-NMT/

(a) example sentence pair with alignments

aozhou

x1

chongxin

x2

kaifang

x3

zhu

x4

manila

x5

dashiguan

x6

(b) binarized source side tree

Figure 1: An example sentence pair (a), with its
binarized source side tree (b). We use xi to rep-
resent the i-th word in the source sentence. We
will use this sentence pairs as the running exam-
ple throughout this paper.

2014a), we can improve its performance by aug-
menting it with explicit structural information and
using this information throughout the model. This
has two benefits.

First, the explicit syntactic information will help
the encoder generate better source side represen-
tations. Li et al. (2015) show that for tasks in
which long-distance semantic dependencies mat-
ter, representations learned from recursive mod-
els using syntactic structures may be more pow-
erful than those from sequential recurrent models.
In the NMT case, given syntactic information, it
will be easier for the encoder to incorporate long
distance dependencies into better representations,
which is especially important for the translation of
long sentences.

Second, it becomes possible for the decoder to

1936

https://doi.org/10.18653/v1/P17-1177

use syntactic information to guide its reordering
decisions better (especially for language pairs with
significant reordering, like Chinese-English). Al-
though the attention model (Bahdanau et al., 2015)
and the coverage model (Tu et al., 2016; Mi et al.,
2016) provide effective mechanisms to control the
generation of translation, these mechanisms work
at the word level and cannot capture phrasal cohe-
sion between the two languages (Fox, 2002; Kim
et al., 2017). With explicit syntactic structure, the
decoder can generate the translation more in line
with the source syntactic structure. For example,
when translating the phrase zhu manila dashiguan
in Figure 1, the tree structure indicates that zhu ‘in’
and manila form a syntactic unit, so that the model
can avoid breaking this unit up to make an incor-
rect translation like “in embassy of manila” 2.

In this paper, we propose a novel encoder-
decoder model that makes use of a precomputed
source-side syntactic tree in both the encoder and
decoder. In the encoder (§3.3), we improve the tree
encoder of Eriguchi et al. (2016) by introducing
a bidirectional tree encoder. For each source tree
node (including the source words), we generate a
representation containing information both from
below (as with the original bottom-up encoder)
and from above (using a top-down encoder). Thus,
the annotation of each node summarizes the sur-
rounding sequential context, as well as the entire
syntactic context.

In the decoder (§3.4), we incorporate source
syntactic tree structure into the attention model via
an extension of the coverage model of Tu et al.
(2016). With this tree-coverage model, we can bet-
ter guide the generation phase of translation, for
example, to learn a preference for phrasal cohe-
sion (Fox, 2002). Moreover, with a tree encoder,
the decoder may try to translate both a parent and
a child node, even though they overlap; the tree-
coverage model enables the decoder to learn to
avoid this problem.

To demonstrate the effectiveness of the pro-
posed model, we carry out experiments on
Chinese-English translation. Our experiments
show that: (1) our bidirectional tree encoder based
NMT system achieves significant improvements
over the standard attention-based NMT system,
and (2) incorporating source tree structure into
the attention model yields a further improvement.

2According to the source sentence, “embassy” belongs to
“australia”, not “manila”.

x1 x2 x3 x4 x5 x6

−→
h 1

−→
h 2

−→
h 3

−→
h 4

−→
h 5

−→
h 6

←−
h 1

←−
h 2

←−
h 3

←−
h 4

←−
h 5

←−
h 6

Figure 2: Illustration of the bidirectional sequen-
tial encoder. The dashed rectangle represents the
annotation of word xi.

In all, we demonstrate an improvement of +3.54
BLEU over a standard attentional NMT system,
and +1.90 BLEU over a stronger NMT system
with a Tree-LSTM encoder (Eriguchi et al., 2016)
and a coverage model (Tu et al., 2016). To the
best of our knowledge, this is the first work that
uses source-side syntax in both the encoder and
decoder of an NMT system.

2 Neural Machine Translation

Most NMT systems follow the encoder-decoder
framework with attention, first proposed by Bah-
danau et al. (2015). Given a source sentence
x = x1 · · · xi · · · xI and a target sentence y =

y1 · · · y j · · · yJ , NMT aims to directly model the
translation probability:

P(y | x; θ) =

J∏

1

P(y j | y<j, x; θ), (1)

where θ is a set of parameters and y< j is the
sequence of previously generated target words.
Here, we briefly describe the underlying frame-
work of the encoder-decoder NMT system.

2.1 Encoder Model
Following Bahdanau et al. (2015), we use a bidi-
rectional gated recurrent unit (GRU) (Cho et al.,
2014b) to encode the source sentence, so that the
annotation of each word contains a summary of
both the preceding and following words. The bidi-
rectional GRU consists of a forward and a back-
ward GRU, as shown in Figure 2. The forward
GRU reads the source sentence from left to right
and calculates a sequence of forward hidden states
(
−→
h1, . . . ,

−→
hI). The backward GRU scans the source

sentence from right to left, resulting in a sequence
of backward hidden states (

←−
h1, . . . ,

←−
hI). Thus

−→
hi = GRU(

−−→
hi−1, si)

←−
hi = GRU(

←−−
hi−1, si)

(2)

1937

where si is the i-th source word’s word embedding,
and GRU is a gated recurrent unit; see the paper by
Cho et al. (2014b) for a definition.

The annotation of each source word xi is ob-
tained by concatenating the forward and backward
hidden states:

←→
hi =


−→
hi←−
hi

 .

The whole sequence of these annotations is used
by the decoder.

2.2 Decoder Model

The decoder is a forward GRU predicting the
translation y word by word. The probability of
generating the j-th word y j is:

P(y j | y<j, x; θ) = softmax(t j−1, d j, c j) (3)

where t j−1 is the word embedding of the (j − 1)-
th target word, d j is the decoder’s hidden state of
time j, and c j is the context vector at time j. The
state d j is computed as

d j = GRU(d j−1, t j−1, c j), (4)

where GRU(·) is extended to more than two argu-
ments by first concatenating all arguments except
the first.

The attention mechanism computes the context
vector ci as a weighted sum of the source annota-
tions,

c j =

I∑

i=1

α j,i
←→
hi (5)

where the attention weight α j,i is

α j,i =
exp (e j,i)∑I

i′=1 exp (e j,i′)
(6)

and

e j,i = vT
a tanh (Wad j−1 + Ua

←→
hi) (7)

where va, Wa and Ua are the weight matrices of
the attention model, and e j,i is an attention model

that scores how well d j−1 and
←→
hi match.

With this strategy, the decoder can attend to the
source annotations that are most relevant at a given
time.

3 Tree Structure Enhanced Neural
Machine Translation

Although syntax has shown its effectiveness in
non-neural statistical machine translation (SMT)
systems (Yamada and Knight, 2001; Koehn et al.,
2003; Liu et al., 2006; Chiang, 2007), most pro-
posed NMT models (a notable exception being
that of Eriguchi et al. (2016)) process a sentence
only as a sequence of words, and do not explic-
itly exploit the inherent structure of natural lan-
guage sentences. In this section, we present mod-
els which directly incorporate source syntactic
trees into the encoder-decoder framework.

3.1 Preliminaries

Like Eriguchi et al. (2016), we currently focus on
source side syntactic trees, which can be computed
prior to translation. Whereas Eriguchi et al. (2016)
use HPSG trees, we use phrase-structure trees as
in the Penn Chinese Treebank (Xue et al., 2005).
Currently, we are only using the structure infor-
mation from the tree without the syntactic labels.
Thus our approach should be applicable to any
syntactic grammar that provides such a tree struc-
ture (Figure 1(b)).

More formally, the encoder is given a source
sentence x = x1 · · · xI as well as a source tree
whose leaves are labeled x1, . . . , xI . We assume
that this tree is strictly binary branching. For con-
venience, each node is assigned an index. The leaf
nodes get indices 1, . . . , I, which is the same as
their word indices. For any node with index k, let
p(k) denote the index of the node’s parent (if it ex-
ists), and L(k) and R(k) denote the indices of the
node’s left and right children (if they exist).

3.2 Tree-GRU Encoder

We first describe tree encoders (Tai et al., 2015;
Eriguchi et al., 2016), and then discuss our im-
provements.

Following Eriguchi et al. (2016), we build a tree
encoder on top of the sequential encoder (as shown
in Figure 3(a)). If node k is a leaf node, its hidden
state is the annotation produced by the sequential
encoder:

h↑k =
←→
hk .

Thus, the encoder is able to capture both sequen-
tial context and syntactic context.

If node k is an interior node, its hidden state is
the combination of its previously calculated left

1938

child hidden state hL(k) and right child hidden state
hR(k):

h↑k = f (h↑L(k), h
↑
R(k)) (8)

where f (·) is a nonlinear function, originally a
Tree-LSTM (Tai et al., 2015; Eriguchi et al.,
2016).

The first improvement we make to the above
tree encoder is that, to be consistent with the se-
quential encoder model, we use Tree-GRU units
instead of Tree-LSTM units. Similar to Tree-
LSTMs, the Tree-GRU has gating mechanisms to
control the information flow inside the unit for
every node without separate memory cells. Then,
Eq. 8 is calculated by a Tree-GRU as follows:

rL = σ(U(rL)
L h↑L(k) + U(rL)

R h↑R(k) + b(rL))

rR = σ(U(rR)
L h↑L(k) + U(rR)

R h↑R(k) + b(rR))

zL = σ(U(zL)
L h↑L(k) + U(zL)

R h↑R(k) + b(zL))

zR = σ(U(zR)
L h↑L(k) + U(zR)

R h↑R(k) + b(zR))

z = σ(U(z)
L h↑L(k) + U(z)

R h↑R(k) + b(z))

h̃↑k = tanh
(
UL(rL � h↑L(k)) + UR(rR � h↑R(k))

)

h↑k = zL � h↑L(k) + zR � h↑R(k) + z � h̃↑k

where rL, rR are the reset gates and zL, zR are the
update gates for the left and right children, and z
is the update gate for the internal hidden state h̃↑k .
The U(·) and b(·) are the weight matrices and bias
vectors.

3.3 Bidirectional Tree Encoder

Although the bottom-up tree encoder can take ad-
vantage of syntactic structure, the learned repre-
sentation of a node is based on its subtree only;
it contains no information from higher up in the
tree. In particular, the representation of leaf nodes
is still the sequential one. Thus no syntactic infor-
mation is fed into words. By analogy with the bidi-
rectional sequential encoder, we propose a natural
extension of the bottom-up tree encoder: the bidi-
rectional tree encoder (Figure 3(b)).

Unlike the bottom-up tree encoder or the right-
to-left sequential encoder, the top-down encoder
by itself would have no lexical information as in-
put. To address this issue, we feed the hidden
states of the bottom-up encoder to the top-down
encoder. In this way, the information of the whole
syntactic tree is handed to the root node and prop-
agated to its offspring by the top-down encoder.

x1 x2 x3 x4 x5 x6

−→
h 1

−→
h 2

−→
h 3

−→
h 4

−→
h 5

−→
h 6

−→
h 1

←−
h 2

←−
h 3

←−
h 4

←−
h 5

←−
h 6

h↑7

h↑8

h↑9

h↑10

h↑11

(a) Tree-GRU Encoder

x1 x2 x3 x4 x5 x6

h↑1 h↑2 h↑3 h↑4 h↑5 h↑6h↓1 h↓2 h↓3 h↓4 h↓5 h↓6

h↑7 h↓7

h↑8 h↓8

h↑9 h↓9

h↑10 h↓10

h↑11 h↓11

(b) Bidirectional Tree Encoder

Figure 3: Illustration of the proposed encoder
models for the running example. The non-leaf
nodes are assigned with index 7-11. The annota-
tions h↑i of leaf nodes in (b) are identical to the an-
notations (dashed rectangles) of leaf nodes in (a).
The dotted rectangles in (b) indicate the annotation
produced by the bidirectional tree encoder.

In the top-down encoder, each hidden state has
only one predecessor. In fact, the top-down path
from root of a tree to any node can be viewed as a
sequential recurrent neural network. We can calcu-
late the hidden states of each node top-down using
a standard sequential GRU.

First, the hidden state of the root node ρ is sim-
ply computed as follows:

h↓ρ = tanh (Wh↑ρ + b) (9)

where W and b are a weight matrix and bias vector.
Then, other nodes are calculated by a GRU. For

hidden state h↓k :

h↓k = GRU(h↓p(k), h
↑
k) (10)

1939

where p(k) is the parent index of k. We replace
the weight matrices Wr, Ur, Wz, Uz, W and U in
the standard GRU with Pr

D, Qr
D, Pz

D, Qz
D, PD, and

QD, respectively. The subscript D is either L or
R depending on whether node k is a left or right
child, respectively.

Finally, the annotation of each node is obtained
by concatenating its bottom-up hidden state and
top-down hidden state:

hlk =


h↑k
h↓k

 .

This allows the tree structure information flow
from the root to the leaves (words). Thus, all the
annotations are based on the full context of word
sequence and syntactic tree structure.

Kokkinos and Potamianos (2017) propose a
similar bidirectional Tree-GRU for sentiment
analysis, which differs from ours in several re-
spects: in the bottom-up encoder, we use separate
reset/update gates for left and right children, anal-
ogous to Tree-LSTMs (Tai et al., 2015); in the top-
down encoder, we use separate weights for left and
right children.

Teng and Zhang (2016) also propose a bidirec-
tional Tree-LSTM encoder for classification tasks.
They use a more complex head-lexicalization
scheme to feed the top-down encoder. We will
compare their model with ours in the experiments.

3.4 Tree-Coverage Model

We also extend the decoder to incorporate infor-
mation about the source syntax into the attention
model. We have observed two issues in transla-
tions produced using the tree encoder. First, a syn-
tactic phrase in the source sentence is often incor-
rectly translated into discontinuous words in the
output. Second, since the non-leaf node annota-
tions contain more information than the leaf node
annotations, the attention model prefers to attend
to the non-leaf nodes, which may aggravate the
over-translation problem (translating the same part
of the sentence more than once).

As shown in Figure 4(a), almost all the non-leaf
nodes are attended too many times during decod-
ing. As a result, the Chinese phrase zhu manila is
translated twice because the model attends to the
node spanning zhu manila even though both words
have already been translated; there is no mecha-
nism to prevent this.

(a) Tree-GRU Encoder

(b) + Tree-Coverage Model

Figure 4: The attention heapmap plotting the atten-
tion weights during different translation steps, for
translating the sentence in Figure 1(a). The nodes
[7]-[11] correspond to non-leaf nodes indexed in
Figure 3. Incorporating Tree-Coverage Model pro-
duces more concentrated alignments and alleviates
the over-translation problem.

Inspired by the approaches of Cohn et al.
(2016), Feng et al. (2016), Tu et al. (2016) and
Mi et al. (2016), we propose to use prior knowl-
edge to control the attention mechanism. In our
case, the prior knowledge is the source syntactic
information.

In particular, we build our model on top of the
word coverage model proposed by Tu et al. (2016),
which alleviate the problems of over-translation
and under-translation (failing to translate part of
a sentence). The word coverage model makes the
attention at a given time step j dependent on the
attention at previous time steps via coverage vec-
tors:

C j,i = GRU(C j−1,i, α j,i, d j−1, hi). (11)

1940

The coverage vectors are, in turn, used to update
the attention at the next time step, by a small mod-
ification to the calculation of e j,i in Eq. (7):

e j,i = vT
a tanh (Wad j−1 + Uahi + VaC j−1,i). (12)

The word coverage model could be interpreted
as a control mechanism for the attention model.
Like the standard attention model, this coverage
model sees the source-sentence annotations as a
bag of vectors; it knows nothing about word order,
still less about syntactic structure.

For our model, we extend the word coverage
model to coverage on the tree structure by adding
a coverage vector for each node in the tree. We
further incorporate source tree structure informa-
tion into the calculation of the coverage vector by
requiring each node’s coverage vector to depend
on its children’s coverage vectors and attentions at
the previous time step:

C j,i = GRU(C j−1,i, α j,i, d j−1, hi,

C j−1,L(i), α j,L(i),

C j−1,R(i), α j,R(i)).

(13)

Although both child and parent nodes of a sub-
tree are helpful for translation, they may supply re-
dundant information. With our mechanism, when
the child node is used to produce a translation,
the coverage vector of its parent node will re-
flect this fact, so that the decoder may avoid using
the redundant information in the parent node. Fig-
ure 4(b) shows a heatmap of the attention of our
tree structure enhanced attention model. The atten-
tion of non-leaf nodes becomes more concentrated
and the over-translation of zhu manila is corrected.

4 Experiments

4.1 Data
We conduct experiments on the NIST Chinese-
English translation task. The parallel training data
consists of 1.6M sentence pairs extracted from
LDC corpora,3 with 46.6M Chinese words and
52.5M English words, respectively. We use NIST
MT02 as development data, and NIST MT03–06
as test data. These data are mostly in the same
genre (newswire), avoiding the extra consideration
of domain adaptation. Table 1 shows the statis-
tics of the data sets. The Chinese side of the cor-
pora is word segmented using ICTCLAS.4 We

3LDC2002E18, LDC2003E14, the Hansards portion of
LDC2004T08, and LDC2005T06.

4http://ictclas.nlpir.org

Data Usage Sents.
LDC train 1.6M
MT02 dev 878
MT03 test 919
MT04 test 1,597
MT05 test 1,082
MT06 test 1,664

Table 1: Experiment data and statistics.

parse the Chinese sentences with the Berkeley
Parser5 (Petrov and Klein, 2007) and binarize the
resulting trees following Zhang and Clark (2009).
The English side of the corpora is lowercased and
tokenized.

We filter out any translation pairs whose source
sentences fail to be parsed. For efficient training,
we also filter out the sentence pairs whose source
or target lengths are longer than 50. We use a
shortlist of the 30,000 most frequent words in each
language to train our models, covering approxi-
mately 98.2% and 99.5% of the Chinese and En-
glish tokens, respectively. All out-of-vocabulary
words are mapped to a special symbol UNK.

4.2 Model and Training Details

We compare our proposed models with several
state-of-the-art NMT systems and techniques:

• NMT: the standard attentional NMT
model (Bahdanau et al., 2015).

• Tree-LSTM: the attentional NMT
model extended with the Tree-LSTM
encoder (Eriguchi et al., 2016).

• Coverage: the attentional NMT model ex-
tended with word coverage (Tu et al., 2016).

We used the dl4mt implementation of the atten-
tional model,6 reimplementing the tree encoder
and word coverage models. The word embed-
ding dimension is 512. The hidden layer sizes of
both forward and backward sequential encoder are
1024 (except where indicated). Since our Tree-
GRU encoders are built on top of the bidirectional
sequential encoder, the size of the hidden layer (in
each direction) is 2048. For the coverage model,
we set the size of coverage vectors to 50.

5https://github.com/slavpetrov/
berkeleyparser

6https://github.com/nyu-dl/dl4mt-tutorial

1941

Encoder Coverage MT02 MT03 MT04 MT05 MT06 Average
1 Sequential no 33.76 31.88 33.15 30.55 27.47 30.76
2 Tree-LSTM no 33.83 33.15 33.81 31.22 27.86 31.51(+0.75)
3 Tree-GRU no 35.39 33.62 35.1 32.55 28.26 32.38(+1.62)
4 Bidirectional no 35.52 33.91 35.51 33.34 29.91 33.17(+2.41)
5 Sequential word 34.21 32.73 34.17 31.64 28.29 31.71(+0.95)
6 Tree-LSTM word 35.81 33.62 34.84 32.6 28.52 32.40(+1.64)
7 Tree-GRU word 35.91 33.71 35.46 33.02 29.14 32.84(+2.08)
8 Bidirectional word 36.14 35.00 36.07 33.74 30.40 33.80(+3.04)
9 Tree-LSTM tree 34.97 33.91 35.21 33.08 29.38 32.90(+2.14)
10 Tree-GRU tree 35.67 34.25 35.72 33.47 29.95 33.35(+2.59)
11 Bidirectional tree 36.57 35.64 36.63 34.35 30.57 34.30(+3.54)

Table 2: BLEU scores of different systems. “Sequential”, “Tree-LSTM”, “Tree-GRU” and “Bidirec-
tional” denote the encoder part for the standard sequential encoder, Tree-LSTM encoder, Tree-GRU
encoder and the bidirectional tree encoder, respectively. “no”, “word” and “tree” in column “Coverage”
represents the decoder part for using no coverage (standard attention), word coverage (Tu et al., 2016)
and our proposed tree-coverage model, respectively.

System Coverage MT02 MT03 MT04 MT05 MT06 Average
12′ Seq-LSTM no 34.98 32.81 34.08 31.39 28.03 31.58(+0.82)
13′ SeqTree-LSTM no 35.28 33.56 34.94 32.64 29.26 32.60(+1.84)

Table 3: BLEU scores of different systems based on LSTM. “Seq-LSTM” denotes both the encoder and
decoder parts for the sequential model are based on LSTM; “SeqTree-LSTM” means using Tree-LSTM
encoder on top of “Seq-LSTM”.

We use Adadelta (Zeiler, 2012) for optimization
using a mini-batch size of 32. All other settings are
the same as in Bahdanau et al. (2015).

We use case insensitive 4-gram BLEU (Pap-
ineni et al., 2002) for evaluation, as calculated by
multi-bleu.perl in the Moses toolkit.7

4.3 Tree Encoders
This set of experiments evaluates the effectiveness
of our proposed tree encoders. Table 2, row 2 con-
firms the finding of Eriguchi et al. (2016) that a
Tree-LSTM encoder helps, and row 3 shows that
our Tree-GRU encoder gets a better result (+0.87
BLEU, v.s. row 2). To verify our assumption that
model consistency is important for performance,
we also conduct experiments to compare Tree-
LSTM and Tree-GRU on top of LSTM-based
encoder-decoder settings. Tree-Lstm with LSTM
based sequential model can obtain 1.02 BLEU im-
provement(Table 3, row 13′), while Tree-LSTM
with GRU based sequential model only gets 0.75
BLEU improvement. Although Tree-Lstm with
LSTM based sequential model obtain a slightly
better result(+0.22 BLEU, v.s. Table 2, row 3), it

7http://www.statmt.org/moses

has more parameters(+1.6M) and takes 1.3 times
longer for training.

Since the annotation size of our bidirectional
tree encoder is twice of the Tree-LSTM encoder,
we halved the size of the hidden layers in the se-
quential encoder to 512 in each direction, to make
fair comparison. These results are shown in Ta-
ble 4. Row 4′ shows that, even with the same an-
notation size, our bidirectional tree encoder works
better than the original Tree-LSTM encoder (row
2). In fact, our halved-sized unidirectional Tree-
GRU encoder (row 3′) also works better than the
Tree-LSTM encoder (row 2) with half of its anno-
tation size.

We also compared our bidirectional tree en-
coder with the head-lexicalization based bidirec-
tional tree encoder proposed by Teng and Zhang
(2016), which forms the input vector for each non-
leaf node by a bottom-up head propagation mech-
anism (Table 4, row 14′). Our bidirectional tree
encoder gives a better result, suggesting that head
word information may not be as helpful for ma-
chine translation as it is for syntactic parsing.

When we set the hidden size back to 1024, we
found that training the bidirectional tree encoder

1942

Encoder Coverage MT02 MT03 MT04 MT05 MT06 Average
3′ Tree-GRU no 34.92 32.79 34.16 32.03 28.75 31.93(+1.17)
4′ Bidirectional no 35.02 32.64 35.04 32.50 29.72 32.48(+1.72)
14′ Bidirectional-head no 34.66 33.17 34.78 31.70 28.47 32.03(+1.27)

Table 4: Experiments with 512 hidden units in each direction of the sequential encoder. The bidirectional
tree encoder using head-lexicalization (Bidirectional-head), proposed by (Teng and Zhang, 2016), does
not work as well as our simpler bidirectional tree encoder (Bidirectional).

was more difficult. Therefore, we adopted a two-
phase training strategy: first, we train the param-
eters of the bottom-up encoder based NMT sys-
tem; then, with the initialization of bottom-up en-
coder and random initialization of the top-down
part and decoder, we train the bidirectional tree
encoder based NMT system. Table 2, row 4 shows
the results of this two-phase training: the bidirec-
tional model (row 4) is 0.79 BLEU better than our
unidirectional Tree-GRU (row 3).

4.4 Tree-Coverage Model
Rows 5–8 in Table 2 show that the word cover-
age model of Tu et al. (2016) consistently helps
when used with our proposed tree encoders, with
the bidirectional tree encoder remaining the best.
However, the improvements of the tree encoder
models are smaller than that of the baseline sys-
tem. This may be caused by the fact that the word
coverage model neglects the relationship among
the trees, e.g. the relationship between children
and parent nodes. Our tree-coverage model consis-
tently improves performance further (rows 9–11).

Our best model combines our bidirectional tree
encoder with our tree-coverage model (row 11),
yielding a net improvement of +3.54 BLEU over
the standard attentional model (row 1), and +1.90
BLEU over the stronger baseline that implements
both the bottom-up tree encoder and coverage
model from previous work (row 6).

As noted before, the original coverage model
does not take word order into account. For com-
parison, we also implement an extension of the
coverage model that lets each coverage vector also
depend on those of its left and right neighbors at
the previous time step. This model does not help;
in fact, it reduces BLEU by about 0.2.

4.5 Analysis By Sentence Length
Following Bahdanau et al. (2015), we bin the de-
velopment and test sentences by length and show
BLEU scores for each bin in Figure 5. The pro-
posed bidirectional tree encoder outperforms the

Figure 5: Performance of translations with respect
to the lengths of the source sentences. “+” indi-
cates the improvement over the baseline sequential
model.

sequential NMT system and the Tree-GRU en-
coder across all lengths. The improvements be-
come larger for sentences longer than 20 words,
and the biggest improvement is for sentences
longer than 50 words. This provides some evi-
dence for the importance of syntactic information
for long sentences.

5 Related Work

Recently, many studies have focused on using ex-
plicit syntactic tree structure to help learn sen-
tence representations for various sentence classifi-
cation tasks. For example, Teng and Zhang (2016)
and Kokkinos and Potamianos (2017) extend the
bottom-up model to a bidirectional model for clas-
sification tasks, using Tree-LSTMs with head lex-
icalization and Tree-GRUs, respectively. We draw
on some of these ideas and apply them to machine
translation. We use the representation learnt from
tree structures to enhance the original sequential
model, and make use of these syntactic informa-
tion during the generation phase.

In NMT systems, the attention model (Bah-
danau et al., 2015) becomes a crucial part of the

1943

decoder model. Cohn et al. (2016) and Feng et al.
(2016) extend the attentional model to include
structural biases from word based alignment mod-
els. Kim et al. (2017) incorporate richer structural
distributions within deep networks to extend the
attention model. Our contribution to the decoder
model is to directly exploit structural information
in the attention model combined with a coverage
mechanism.

6 Conclusion

We have investigated the potential of using explicit
source-side syntactic trees in NMT by proposing a
novel syntax-aware encoder-decoder model. Our
experiments have demonstrated that a top-down
encoder is a useful enhancement for the original
bottom-up tree encoder (Eriguchi et al., 2016); and
incorporating syntactic structure information into
the decoder can better control the translation. Our
analysis suggests that the benefit of source-side
syntax is especially strong for long sentences.

Our current work only uses the structure part
of the syntactic tree, without the labels. For future
work, it will be interesting to make use of node
labels from the tree, or to use syntactic information
on the target side, as well.

Acknowledgments

The authors would like to thank the anonymous
reviewers for their valuable comments. This work
is supported by the National Science Foundation
of China (No. 61672277, 61300158, 61472183).
Part of Huadong Chen’s contribution was made
when visiting University of Notre Dame. His visit
was supported by the joint PhD program of China
Scholarship Council.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR 2015.
http://arxiv.org/abs/1409.0473.

David Chiang. 2007. Hierarchical phrase-based trans-
lation. Compututational Linguistics 33(2):201–228.
https://doi.org/10.1162/coli.2007.33.2.201.

Kyunghyun Cho, Bart van Merrienboer, Dzmitry
Bahdanau, and Yoshua Bengio. 2014a. On
the properties of neural machine translation:
Encoder–decoder approaches. In Proc. Eighth
Workshop on Syntax, Semantics and Struc-
ture in Statistical Translation. pages 103–111.
http://www.aclweb.org/anthology/W14-4012.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Gulcehre, Dzmitry Bahdanau, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2014b.
Learning phrase representations using RNN
encoder-decoder for statistical machine trans-
lation. In Proc. EMNLP. pages 1724–1734.
http://www.aclweb.org/anthology/D14-1179.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholam-
reza Haffari. 2016. Incorporating structural align-
ment biases into an attentional neural translation
model. In Proc. NAACL HLT . pages 876–885.
http://www.aclweb.org/anthology/N16-1102.

Akiko Eriguchi, Kazuma Hashimoto, and Yoshimasa
Tsuruoka. 2016. Tree-to-sequence attentional neu-
ral machine translation. In Proc. ACL. pages 823–
833. http://www.aclweb.org/anthology/P16-1078.

Shi Feng, Shujie Liu, Nan Yang, Mu Li, Ming Zhou,
and Kenny Q. Zhu. 2016. Improving attention mod-
eling with implicit distortion and fertility for ma-
chine translation. In Proc. COLING. pages 3082–
3092. http://aclweb.org/anthology/C16-1290.

Heidi J. Fox. 2002. Phrasal cohesion and statistical
machine translation. In Proc. EMNLP. pages 304–
3111. https://doi.org/10.3115/1118693.1118732.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M. Rush. 2017. Structured attention networks.
In Proc. ICLR. http://arxiv.org/abs/1702.00887.

Philipp Koehn, Franz Josef Och, and Daniel
Marcu. 2003. Statistical phrase-based trans-
lation. In Proc. NAACL HLT . pages 48–54.
https://doi.org/10.3115/1073445.1073462.

Filippos Kokkinos and Alexandros Potamianos. 2017.
Structural attention neural networks for improved
sentiment analysis. In Proc. EACL. pages 586–591.
http://www.aclweb.org/anthology/E17-2093.

Jiwei Li, Thang Luong, Dan Jurafsky, and Ed-
uard Hovy. 2015. When are tree structures
necessary for deep learning of representa-
tions? In Proc. EMNLP. pages 2304–2314.
http://aclweb.org/anthology/D15-1278.

Yang Liu, Qun Liu, and Shouxun Lin. 2006. Tree-
to-string alignment template for statistical ma-
chine translation. In Proc. ACL. pages 609–616.
https://doi.org/10.3115/1220175.1220252.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe
Ittycheriah. 2016. Coverage embedding models for
neural machine translation. In Proc. EMNLP. pages
955–960. https://aclweb.org/anthology/D16-1096.

Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. 2002. Bleu: a method
for automatic evaluation of machine trans-
lation. In Proc. ACL. pages 311–318.
https://doi.org/10.3115/1073083.1073135.

1944

Slav Petrov and Dan Klein. 2007. Im-
proved inference for unlexicalized pars-
ing. In Proc. NAACL HLT . pages 404–411.
http://www.aclweb.org/anthology/N/N07/N07-
1051.

Xing Shi, Inkit Padhi, and Kevin Knight. 2016.
Does string-based neural MT learn source syn-
tax? In Proc. EMNLP. pages 1526–1534.
https://aclweb.org/anthology/D16-1159.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.
2014. Sequence to sequence learning with
neural networks. In Advances in Neural In-
formation Processing Systems 27, pages 3104–
3112. http://papers.nips.cc/paper/5346-sequence-
to-sequence-learning-with-neural-networks.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proc. ACL-IJCNLP. pages 1556–1566.
http://www.aclweb.org/anthology/P15-1150.

Zhiyang Teng and Yue Zhang. 2016. Bidirectional
tree-structured LSTM with head lexicalization.
arXiv:1611.06788. http://arxiv.org/abs/1611.06788.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu,
and Hang Li. 2016. Modeling coverage for neural
machine translation. In Proc. ACL. pages 76–85.
http://www.aclweb.org/anthology/P16-1008.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and
Marta Palmer. 2005. The penn chinese tree-
bank: Phrase structure annotation of a large
corpus. Nat. Lang. Eng. 11(2):207–238.
https://doi.org/10.1017/S135132490400364X.

Kenji Yamada and Kevin Knight. 2001.
A syntax-based statistical translation
model. In Proc. ACL. pages 523–530.
https://doi.org/10.3115/1073012.1073079.

Matthew D. Zeiler. 2012. ADADELTA: an adap-
tive learning rate method. CoRR abs/1212.5701.
http://arxiv.org/abs/1212.5701.

Yue Zhang and Stephen Clark. 2009. Transition-based
parsing of the Chinese Treebank using a global dis-
criminative model. In Proc. IWPT . pages 162–171.
http://www.aclweb.org/anthology/W09-3825.

1945

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1946–1958
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1178

Cross-lingual Name Tagging and Linking for 282 Languages

Xiaoman Pan1, Boliang Zhang1, Jonathan May2,
Joel Nothman3, Kevin Knight2, Heng Ji1

1 Computer Science Department, Rensselaer Polytechnic Institute
{panx2,zhangb8,jih}@rpi.edu

2 Information Sciences Institute, University of Southern California
{jonmay,knight}@isi.edu

3 Sydney Informatics Hub, University of Sydney
joel.nothman@gmail.com

Abstract

The ambitious goal of this work is to de-
velop a cross-lingual name tagging and
linking framework for 282 languages that
exist in Wikipedia. Given a document
in any of these languages, our framework
is able to identify name mentions, as-
sign a coarse-grained or fine-grained type
to each mention, and link it to an En-
glish Knowledge Base (KB) if it is link-
able. We achieve this goal by perform-
ing a series of new KB mining meth-
ods: generating “silver-standard” annota-
tions by transferring annotations from En-
glish to other languages through cross-
lingual links and KB properties, refining
annotations through self-training and topic
selection, deriving language-specific mor-
phology features from anchor links, and
mining word translation pairs from cross-
lingual links. Both name tagging and link-
ing results for 282 languages are promis-
ing on Wikipedia data and on-Wikipedia
data. All the data sets, resources and sys-
tems for 282 languages are made publicly
available as a new benchmark 1.

1 Introduction

Information provided in languages which people
can understand saves lives in crises. For exam-
ple, language barrier was one of the main diffi-
culties faced by humanitarian workers responding
to the Ebola crisis in 2014. We propose to break
language barriers by extracting information (e.g.,
entities) from a massive variety of languages and
ground the information into an existing knowledge
base which is accessible to a user in his/her own

1http://nlp.cs.rpi.edu/wikiann

language (e.g., a reporter from the World Health
Organization who speaks English only).

Wikipedia is a massively multi-lingual resource
that currently hosts 295 languages and contains
naturally annotated markups 2 and rich informa-
tional structures through crowd-sourcing for 35
million articles in 3 billion words. Name mentions
in Wikipedia are often labeled as anchor links to
their corresponding referent pages. Each entry
in Wikipedia is also mapped to external knowl-
edge bases such as DBpedia3, YAGO (Mahdis-
oltani et al., 2015) and Freebase (Bollacker et al.,
2008) that contain rich properties. Figure 1 shows
an example of Wikipedia markups and KB prop-
erties. We leverage these markups for develop-

✤ Wikipedia Article:
Mao Zedong (d. 26 Aralık 1893 - ö. 9 Eylül 1976), Çinli
devrimci ve siyasetçi. Çin Komünist Partisinin (ÇKP) ve Çin
Halk Cumhuriyetinin kurucusu.

✤ Wikipedia Markup:
[[Mao Zedong]] (d. [[26 Aralık]] [[1893]] -
ö. [[9 Eylül]] [[1976]]), Çinli devrimci ve
siyasetçi. [[Çin Komünist Partisi]]nin (ÇKP)
ve [[Çin Halk Cumhuriyeti]]nin kurucusu.

tr/Çin_Komünist_Partisi
Anchor Link

Affix

en/Communist_Party_of_China
Cross-lingual Link

e.g.,
[[Çin Komünist Partisi]]nin nin

KB Properties
(e.g., DBpedia, YAGO)

formationDate
headquarter

ideology
…

(Mao Zedong (December 26, 1893 - September 9, 1976) is a
Chinese revolutionary and politician. The founder of the Chinese
Communist Party (CCP) and the People's Republic of China.)

Ruling Communist parties
Chinese Civil War
Parties of one-party systems
…

tr/Çin_Komünist_Partisi
Anchor Link

en/Communist_Party_of_China
Cross-lingual

Link

e.g.,
[[Çin Komünist Partisi]]nin

nin

Wikipedia
Topic Categories

Ruling Communist parties
Chinese Civil War

Parties of one-party systems
…

Affix

Figure 1: Examples of Wikipedia Markups and
KB Properties

ing a language universal framework to automat-
ically extract name mentions from documents in

2https://en.wikipedia.org/wiki/Help:Wiki markup
3http://wiki.dbpedia.org

1946

https://doi.org/10.18653/v1/P17-1178

282 languages, and link them to an English KB
(Wikipedia in this work). The major challenges
and our new solutions are summarized as follows.

Creating “Silver-standard” through cross-
lingual entity transfer. The first step is to classify
English Wikipedia entries into certain entity types
and then propagate these labels to other languages.
We exploit the English Abstract Meaning Repre-
sentation (AMR) corpus (Banarescu et al., 2013)
which includes both name tagging and linking an-
notations for fine-grained entity types to train an
automatic classifier. Furthermore, we exploit each
entry’s properties in DBpedia as features and thus
eliminate the need of language-specific features
and resources such as part-of-speech tagging as in
previous work (Section 2.2).

Refine annotations through self-training.
The initial annotations obtained from above are
too incomplete and inconsistent. Previous work
used name string match to propagate labels. In
contrast, we apply self-training to label other men-
tions without links in Wikipedia articles even if
they have different surface forms from the linked
mentions (Section 2.4).

Customize annotations through cross-lingual
topic transfer. For the first time, we propose
to customize name annotations for specific down-
stream applications. Again, we use a cross-lingual
knowledge transfer strategy to leverage the widely
available English corpora to choose entities with
specific Wikipedia topic categories (Section 2.5).

Derive morphology analysis from Wikipedia
markups. Another unique challenge for morpho-
logically rich languages is to segment each to-
ken into its stemming form and affixes. Previ-
ous methods relied on either high-cost supervised
learning (Roth et al., 2008; Mahmoudi et al., 2013;
Ahlberg et al., 2015), or low-quality unsupervised
learning (Grönroos et al., 2014; Ruokolainen et al.,
2016). We exploit Wikipedia markups to automat-
ically learn affixes as language-specific features
(Section 2.3).

Mine word translations from cross-lingual
links. Name translation is a crucial step to gener-
ate candidate entities in cross-lingual entity link-
ing. Only a small percentage of names can be di-
rectly translated by matching against cross-lingual
Wikipedia title pairs. Based on the observation
that Wikipedia titles within any language tend to
follow a consistent style and format, we propose
an effective method to derive word translation

pairs from these titles based on automatic align-
ment (Section 3.2).

2 Name Tagging

2.1 Overview
Our first step is to generate “silver-standard” name
annotations from Wikipedia markups and train a
universal name tagger. Figure 2 shows our overall
procedure and the following subsections will elab-
orate each component.

[[Мітт Ромні]]Politician|PER народився в
[[Детройт]]City|GPE, [[Мічиган]]State|GPE. Закінчив
[[Гарвардський університет]]University|ORG.

❖Classify English KB pages using KB properties as features,  
trained from AMR annotations

en/Mitt_Romney Politician|
PER

birthPlace, governor,  
party, successor, ……

en/Detroit City|GPEareaCode, areaTotal,
postalCode, elevation, ……

en/Michigan State|GPE
demonym, largestCity,
language, country, ……

en/Harvard_
University

University|
ORG

numberOfStudents, motto
location, campus, ……

❖Propagate classification results using cross-lingual links and
project classification results to anchor links

en/Michigan
State|GPE

 Ukrainian: uk/Мічиган
 Amharic: am/ሚሺጋን
 Tibetan: bo/མི་ཅི་གྷན།
 Tamil: ta/!c#க%
 Thai: th/รัฐมิชิแกน

……

Cross-lingual
Links

❖Apply self-training for unlabeled data

Training
Data

Name
Tagger

Unlabeled
Data

Train Tag

Add High Confident Instances

❖Select seeds to train an initial name tagger

Training
Data Seeds

SelectGenerate
(Sec. 2.2)

✤Annotation Generation (Section 2.2)

✤Self Training (Section 2.3)

Train

✤Training Data Selection (Section 2.4)

Wikipedia
Articles

Training
Data

Entity Commonness
Topic Relatedness

Based Ranking
Selected

Data

(Mitt Romney was born in Detroit, Michigan. He graduated from
Harvard University.)

Propagate

Project

Figure 2: Name Tagging Annotation Generation
and Training

2.2 Initial Annotation Generation
We start by assigning an entity type or “other”
to each English Wikipedia entry. We utilize
the AMR corpus where each entity name men-
tion is manually labeled as one of 139 types

1947

and linked to Wikipedia if it’s linkable. In to-
tal we obtain 2,756 entity mentions, along with
their AMR entity types, Wikipedia titles, YAGO
entity types and DBpedia properties. For each
pair of AMR entity type ta and YAGO entity
type ty, we compute the Pointwise Mutual Infor-
mation (PMI) (Ward Church and Hanks, 1990)
of mapping ta to ty across all mentions in the
AMR corpus. Therefore, each name mention is
also assigned a list of YAGO entity types, ranked
by their PMI scores with AMR types. In this
way, our framework produces three levels of en-
tity typing schemas with different granularity: 4
main types (Person (PER), Organization (ORG),
Geo-political Entity (GPE), Location (LOC)), 139
types in AMR, and 9,154 types in YAGO.

Then we leverage an entity’s properties in DB-
pedia as features for assigning types. For example,
an entity with a birth date is likely to be a per-
son, while an entity with a population property is
likely to be a geo-political entity. Using all DB-
pedia entity properties as features (60,231 in to-
tal), we train Maximum Entropy models to assign
types with three levels of granularity to all English
Wikipedia pages. In total we obtained 10 million
English pages labeled as entities of interest.

Nothman et al. (2013) manually annotated
4,853 English Wikipedia pages with 6 coarse-
grained types (Person, Organization, Location,
Other, Non-Entity, Disambiguation Page). Using
this data set for training and testing, we achieved
96.0% F-score on this initial step, slightly better
than their results (94.6% F-score).

Next, we propagate the label of each English
Wikipedia page to all entity mentions in all lan-
guages in the entire Wikipedia through mono-
lingual redirect links and cross-lingual links.

2.3 Learning Model and KB Derived
Features

We use a typical neural network architecture that
consists of Bi-directional Long Short-Term Mem-
ory and Conditional Random Fields (CRFs) net-
work (Lample et al., 2016) as our underlying
learning model for the name tagger for each lan-
guage. In the following we will describe how we
acquire linguistic features.

When a Wikipedia user tries to link an en-
tity mention in a sentence to an existing page,
she/he will mark the title (the entity’s canon-
ical form, without affixes) within the mention

using brackets “[[]]”, from which we can
naturally derive a word’s stem and affixes for
free. For example, from the Wikipedia markups
of the following Turkish sentence: “Kıta
Fransası, güneyde [[Akdeniz]]den kuzeyde

[[Manş Denizi]] ve [[Kuzey Denizi]]ne,

doğuda [[Ren Nehri]]nden batıda [[Atlas

Okyanusu]]na kadar yayılan topraklarda

yer alır. (Metropolitan France extends from the
Mediterranean Sea to the English Channel and
the North Sea, and from the Rhine to the Atlantic
Ocean.)”, we can learn the following suffixes:
“den”, “ne”, “nden” and “na”. We use such affix
lists to perform basic word stemming, and use
them as additional features to determine name
boundary and type. For example, “den” is a noun
suffix which indicates ablative case in Turkish.
[[Akdeniz]]den means “from Mediterranean
Sea”. Note that this approach can only perform
morphology analysis for words whose stem forms
and affixes are directly concatenated.

Table 1 summarizes name tagging features.

Features Descriptions
Form Lowercase forms of (w−1, w0, w+1)
Case Case of w0

Syllable The first and the last character of w0

Stem Stems of (w−1, w0, w+1)
Affix Affixes of (w−1, w0, w+1)
Gazetteer Cross-lingual gazetteers learned from

training data
Embeddings Character embeddings and word embed-

dings 4learned from training data

Table 1: Name Tagging Features

2.4 Self-Training to Enrich and Refine Labels

The name annotations acquired from the above
procedure are far from complete to compete with
manually labeled gold-standard data. For exam-
ple, if a name mention appears multiple times in
a Wikipedia article, only the first mention is la-
beled with an anchor link. We apply self-training
to propagate and refine the labels.

We first train an initial name tagger using
seeds selected from the labeled data. We adopt
an idea from (Guo et al., 2014) which com-
putes Normalized Pointwise Mutual Information
(NPMI) (Bouma, 2009) between a tag and a token:

4For languages that don’t have word segmentation, we
consider each character as a token, and use character embed-
dings only.

1948

NPMI(tag, token) =
ln p(tag,token)

p(tag)p(token)

− ln p(tag, token)
(1)

Then we select the sentences in which all annota-
tions satisfy NPMI(tag, token) > τ as seeds 5.

For all Wikipedia articles in a language, we
cluster the unlabeled sentences into n clusters 6 by
collecting sentences with low cross-entropy into
the same cluster. Then we apply the initial tagger
to the first unlabeled cluster, select the automati-
cally labeled sentences with high confidence, add
them back into the training data, and then re-train
the tagger. This procedure is repeated n times until
we scan through all unlabeled data.

2.5 Final Training Data Selection for
Populous Languages

For some populous languages that have many mil-
lions of pages in Wikipedia, we obtain many sen-
tences from self-training. In some emergent set-
tings such as natural disasters it’s important to
train a system rapidly. Therefore we develop the
following effective methods to rank and select
high-quality annotated sentences.

Commonness: we prefer sentences that in-
clude common entities appearing frequently in
Wikipedia. We rank names by their frequency and
dynamically set the frequency threshold to select a
list of common names. We first initialize the name
frequency threshold S to 40. If the number of the
sentences is more than a desired size D for train-
ing 7, we set the threshold S = S + 5, otherwise
S = S − 5. We iteratively run the selection algo-
rithm until the size of the training set reaches D
for a certain S.

Topical Relatedness: Various criteria should
be adopted for different scenarios. Our previous
work on event extraction (Li et al., 2011) found
that by carefully select 1/3 topically related train-
ing documents for a test set, we can achieve the
same performance as a model trained from the
entire training set. Using an emergent disaster
setting as a use case, we prefer sentences that
include entities related to disaster related topics.
We run an English name tagger (Manning et al.,
2014) and entity linker (Pan et al., 2015) on the
Leidos corpus released by the DARPA LORELEI

5τ = 0 in our experiment.
6n = 20 in our experiment.
7D = 30,000 in our experiment.

program 8. The Leidos corpus consists of doc-
uments related to various disaster topics. Based
on the linked Wikipedia pages, we rank the fre-
quency of Wikipedia categories and select the top
1% categories (4,035 in total) for our experiments.
Some top-ranked topic labels include “Interna-
tional medical and health organizations”, “Human
rights organizations”, “International development
agencies”, “Western Asian countries”, “Southeast
African countries”and “People in public health”.
Then we select the annotated sentences including
names (e.g., “World Health Organization”) in all
languages labeled with these topic labels to train
the final model.

3 Cross-lingual Entity Linking

3.1 Overview

After we extract names from test documents in a
source language, we translate them into English by
automatically mined word translation pairs (Sec-
tion 3.2), and then link translated English men-
tions to an external English KB (Section 3.3). The
overall linking process is illustrated in Figure 3.

m1 m2 m3

m4 m5 m6

t5

t1 t4
t3

t6
t2

Translate to
English

(e.g., m1 to t1)
Construct

Knowledge
Networks (KNs)

KNs in English KB
Salience, Similarity and
Coherence Comparison

Tagged Mentions

Linking

KNs in Source

Translated and Linked Mentions
e1t1m1 e1t2m2 e2t3m3

e3t4m4 t5m5 NIL t6m6 NIL

Figure 3: Cross-lingual Entity Linking Overview

3.2 Name Translation

The cross-lingual Wikipedia title pairs, generated
through crowd-sourcing, generally follow a con-
sistent style and format in each language. From
Table 2 we can see that the order of modifier and
head word keeps consistent in Turkish and English
titles.

8http://www.darpa.mil/program/low-resource-languages-
for-emergent-incidents

1949

Extracted Cross-lingual Wikipedia Title Pairs
“Pekin”

Pekin Beijing
Pekin metrosu Beijing Subway
Pekin Ulusal Stadyumu Beijing National Stadium

“Teknoloji”
Nükleer teknoloji Nuclear technology
Teknoloji transferi Technology transfer
Teknoloji eğitimi Technology education

“Enstitüsü”
Torchwood Enstitüsü Torchwood Institute
Hudson Enstitüsü Hudson Institute
Smolny Enstitüsü Smolny Institute

“Pekin Teknoloji” [NONE]
“Teknoloji Enstitüsü”

Kraliyet Teknoloji En-
stitüsü

Royal Institute of Technol-
ogy

Karlsruhe Teknoloji En-
stitüsü

Karlsruhe Institute of
Technology

Georgia Teknoloji En-
stitüsü

Georgia Institute of Tech-
nology

“Pekin Teknoloji Enstitüsü” [NONE]

Mined Word Translation Pairs
Word Translation Alignment

Confidence

pekin
Beijing Exact Match
beijing 0.5263
peking 0.3158

teknoloji
technology 0.8833

technological 0.0167
singularity 0.0167

enstitüsü
institute 0.2765

of 0.2028
for 0.0221

Table 2: Word Translation Mining from Cross-
lingual Wikipedia Title Pairs

For each name mention, we generate all pos-
sible combinations of continuous tokens. For
example, no Wikipedia titles contain the Turk-
ish name “Pekin Teknoloji Enstitüsü (Beijing In-
stitute of Technology)”. We generate the fol-
lowing 6 combinations: “Pekin”, “Teknoloji”,
“Enstitüsü”, “Pekin Teknoloji”, “Teknoloji En-
stitüsü” and “Pekin Teknoloji Enstitüsü”, and
then extract all cross-lingual Wikipedia title pairs
containing each combination. Finally we run
GIZA++ (Josef Och and Ney, 2003) to extract
word for word translations from these title pairs,
as shown in Table 2.

3.3 Entity Linking

Given a set of tagged name mentions M =
{m1,m2, ...,mn}, we first obtain their English
translations T = {t1, t2, ..., tn} using the ap-
proach described above. Then we apply an un-
supervised collective inference approach to link T

to the KB, similar to our previous work (Pan et al.,
2015). The only difference is that we construct
knowledge networks (KNs) g(ti) for T based on
their co-occurrence within a context window 9 in-
stead of their AMR relations, because AMR pars-
ing is not available for foreign languages. For each
translated name mention ti, an initial list of candi-
date entities E(ti) = {e1, e2, ..., ek} is generated
based on a surface form dictionary mined from KB
properties (e.g., redirects, names, aliases). If no
surface form can be matched then we determine
the mention as unlinkable. Then we construct KNs
g(ej) for each entity candidate ej in ti’s entity can-
didate list E(ti). We compute the similarity be-
tween g(ti) and g(ej) based on three measures:
salience, similarity and coherence, and select the
candidate entity with the highest score.

4 Experiments

4.1 Performance on Wikipedia Data
We first conduct an evaluation using Wikipedia
data as “silver-standard”. For each language, we
use 70% of the selected sentences for training and
30% for testing. For entity linking, we don’t have
ground truth for unlinkable mentions, so we only
compute linking accuracy for linkable name men-
tions. Table 3 presents the overall performance for
three coarse-grained entity types: PER, ORG and
GPE/LOC, sorted by the number of name men-
tions. Figure 4 and Figure 5 summarize the per-
formance, with some example languages marked
for various ranges of data size.

Japanese
79.2

Thai
56.2

Tamil
77.9 Kannada

60.1

Kabyle
75.7

Burmese
51.5

Rundi
40.0

Nyanja
56.0

Xhosa
35.3

20

40

60

80

100

N
am

e
Ta

gg
in

g
F-

sc
or

e (
%

)

[10k, 12m] [500, 10k) (0, 500)
Number of Name Mentions

Figure 4: Summary of Name Tagging F-score (%)
on Wikipedia Data

Not surprisingly, name tagging performs better
for languages with more training mentions. The

9In our experiments, we use the previous four and next
four name mentions as a context window.

1950

F-score is generally higher than 80% when there
are more than 10K mentions, and it significantly
drops when there are less than 250 mentions. The
languages with low name tagging performance can
be categorized into three types: (1) the number
of mentions is less than 2K, such as Atlantic-
Congo (Wolof), Berber (Kabyle), Chadic (Hausa),
Oceanic (Fijian), Hellenic (Greek), Igboid (Igbo),
Mande (Bambara), Kartvelian (Georgian, Mingre-
lian), Timor-Babar (Tetum), Tupian (Guarani) and
Iroquoian (Cherokee) language groups; Precision
is generally higher than recall for most of these
languages, because the small number of linked
mentions is not enough to cover a wide variety of
entities. (2) there is no space between words, in-
cluding Chinese, Thai and Japanese; (3) they are
not written in latin script, such as the Dravidian
group (Tamil, Telugu, Kannada, Malayalam).

The training instances for various entity types
are quite imbalanced for some languages. For ex-
ample, Latin data includes 11% PER names, 84%
GPE/LOC names and 5% ORG names. As a re-
sult, the performance of ORG is the lowest, while
GPE and LOC achieve higher than 75% F-scores
for most languages.

Esperanto
81.4

Chechen
93.5

Croatian
88.6

Maori
93.4

Yiddish
87.2

Odia
77.9

Akan
92.2

Sango
86.8

Rundi
78.6

60

70

80

90

100

En
tit

y
Li

nk
in

g
A

cc
ur

ac
y

(%
)

[10k, 12m] [500, 10k) (0, 500)
Number of Name Mentions

Figure 5: Summary of Entity Linking Accuracy
(%) on Wikipedia Data

The linking accuracy is higher than 80% for
most languages. Also note that since we don’t
have perfect annotations on Wikipedia data for
any language, these results can be used to esti-
mate how predictable our “silver-standard” data
is, but they are not directly comparable to tradi-
tional name tagging results measured against gold-
standard data annotated by human.

10The mapping to language names can be found at
http://nlp.cs.rpi.edu/wikiann/mapping

4.2 Performance on Non-Wikipedia Data

In order to have more direct comparison with
state-of-the-art name taggers trained from human
annotated gold-standard data, we conduct experi-
ments on non-Wikipedia data in 9 languages for
which we have human annotated ground truths
from the DARPA LORELEI program. Table 4
shows the data statistics. The documents are from
news sources and discussion fora.

For fair comparison, we use the same learn-
ing method and feature set as described in Sec-
tion 2.3 to train the models using gold-standard
data. Therefore the results of our models trained
from gold-standard data are slightly different from
some previous work such as (Tsai et al., 2016),
mainly due to different learning algorithms and
different features sets. For example, the gazetteers
we used are different from those in (Tsai et al.,
2016), and we did not use brown clusters as addi-
tional features.

The name tagging results on LORELEI data
set are presented in Table 5. We can see that
our approach advances state-of-the-art language-
independent methods (Zhang et al., 2016a; Tsai
et al., 2016) on the same data sets for most lan-
guages, and achieves 6.5% - 17.6% lower F-scores
than the models trained from manually annotated
gold-standard documents that include thousands
of name mentions. To fill in this gap, we would
need to exploit more linguistic resources.

Mayfield et al. (2011) constructed a cross-
lingual entity linking collection for 21 languages,
which covers ground truth for the largest number
of languages to date. Therefore we compare our
approach with theirs that uses a supervised name
transliteration model (McNamee et al., 2011). The
entity linking results on non-NIL mentions are
presented in Table 6. We can see that except
Romanian, our approach outperforms or achieves
comparable accuracy as their method on all lan-
guages, without using any additional resources or
tools such as name transliteration.

4.3 Analysis

Impact of KB-derived Morphological Features
We measured the impact of our affix lists derived
from Wikipedia markups on two morphologically-
rich languages: Turkish and Uzbek. The morphol-

11McNamee et al. (2011) did not develop a model for Chi-
nese even though Chinese data set was included in the collec-
tion.

1951

L M F A L M F A L M F A L M F A
en 12M 91.8 84.3 mr 18K 82.4 89.8 szl 3.0K 82.7 92.2 tet 1.2K 73.5 92.2
ja 1.9M 79.2 86.7 bar 17K 97.1 93.1 tk 2.9K 86.3 90.1 sc 1.2K 78.1 91.6
sv 1.8M 93.6 89.7 cv 15K 95.7 93.2 z-c 2.9K 88.2 87.0 wuu 1.2K 79.7 90.8
de 1.7M 89.0 89.8 ba 15K 93.8 92.6 mn 2.9K 76.4 84.4 ksh 1.2K 56.0 83.6
fr 1.4M 93.3 91.2 mg 14K 98.7 90.1 kv 2.9K 89.7 93.2 pfl 1.1K 42.9 80.4
ru 1.4M 90.1 90.0 hi 14K 86.9 88.0 f-v 2.9K 65.4 88.8 haw 1.1K 88.0 84.6
it 1.2M 96.6 90.2 an 14K 93.0 91.1 gan 2.9K 84.9 90.9 am 1.1K 84.7 83.0
sh 1.1M 97.8 90.9 als 14K 85.0 90.9 fur 2.8K 84.5 89.2 bcl 1.1K 82.3 91.7
es 992K 93.9 90.2 sco 14K 86.8 89.6 kw 2.8K 94.0 93.3 nah 1.1K 89.9 89.6
pl 931K 90.0 91.3 bug 13K 99.9 90.0 ilo 2.8K 90.3 91.1 udm 1.1K 88.9 85.0
nl 801K 93.2 91.5 lb 13K 81.5 88.4 mwl 2.7K 76.1 89.4 su 1.1K 72.7 89.2
zh 718K 82.0 90.0 fy 13K 86.6 91.2 mai 2.7K 99.7 90.0 dsb 1.1K 84.7 82.1
pt 576K 90.7 90.3 new 12K 98.2 91.5 nv 2.7K 90.9 91.6 tpi 1.1K 83.3 90.1
uk 472K 91.5 89.4 ga 12K 85.3 91.3 sd 2.7K 65.8 90.9 lo 1.0K 52.8 88.6
cs 380K 94.6 90.5 ht 12K 98.9 93.4 os 2.7K 87.4 89.4 bpy 1.0K 98.3 89.3
sr 365K 95.3 91.2 war 12K 94.9 89.8 mzn 2.6K 86.4 86.9 ki 1.0K 97.5 90.0
hu 357K 95.9 90.4 te 11K 80.5 86.1 azb 2.6K 88.4 90.6 ty 1.0K 86.7 89.8
fi 341K 93.4 90.6 is 11K 80.2 83.2 bxr 2.6K 75.0 90.3 hif 1.0K 81.1 93.1
no 338K 94.1 90.6 pms 10K 98.0 89.5 vec 2.6K 87.9 91.3 ady 979 92.7 91.2
fa 294K 96.4 86.4 zea 10K 86.8 90.3 bo 2.6K 70.4 88.9 ig 968 74.4 91.8
ko 273K 90.6 89.8 sw 9.3K 93.4 90.8 yi 2.6K 76.9 87.2 tyv 903 91.1 91.0
ca 265K 90.3 90.3 ia 8.9K 75.4 90.5 frp 2.5K 86.2 92.3 tn 902 76.9 90.1
tr 223K 96.9 87.3 qu 8.7K 92.5 88.2 myv 2.5K 88.6 92.2 cu 898 75.5 91.3
ro 197K 90.6 89.2 ast 8.3K 89.2 92.0 se 2.5K 90.3 83.5 sm 888 80.0 85.3
bg 186K 65.8 88.4 rm 8.0K 82.0 91.3 cdo 2.5K 91.0 91.9 to 866 92.3 90.7
ar 185K 88.3 89.7 ay 7.9K 88.5 91.0 nso 2.5K 98.9 90.0 tum 831 93.8 92.9
id 150K 87.8 90.0 ps 7.7K 66.9 89.9 gom 2.4K 88.8 90.0 r-r 750 93.0 85.9
he 145K 79.0 91.0 mi 7.5K 95.9 93.4 ky 2.4K 71.8 88.4 om 709 74.2 81.1
eu 137K 82.5 89.2 gag 7.3K 89.3 84.0 n-n 2.3K 92.6 91.6 glk 688 59.5 80.7
da 133K 87.1 85.8 nds 7.0K 84.5 89.8 ne 2.3K 81.5 91.1 lbe 651 88.9 90.8
vi 125K 89.6 82.0 gd 6.7K 92.8 91.3 sa 2.2K 73.9 91.3 bjn 640 64.7 89.5
th 96K 56.2 87.7 mrj 6.7K 97.0 91.6 mt 2.2K 82.3 90.3 srn 619 76.5 89.3
sk 93K 87.3 90.3 so 6.5K 85.8 91.7 my 2.2K 51.5 91.2 mdf 617 82.2 92.4
uz 92K 98.3 90.3 co 6.0K 85.4 89.9 bh 2.2K 92.6 92.5 tw 572 94.6 90.4
eo 85K 88.7 81.4 pnb 6.0K 90.8 86.2 vls 2.2K 78.2 89.1 pih 555 87.2 89.0
la 81K 90.8 89.4 pcd 5.8K 86.1 90.8 ug 2.1K 79.7 92.4 rmy 551 68.5 86.4
z-m 79K 99.3 89.2 wa 5.8K 81.6 82.0 si 2.1K 87.7 90.5 lg 530 98.8 89.3
lt 79K 86.3 87.2 frr 5.7K 70.1 86.3 kaa 2.1K 55.2 89.5 chr 530 70.6 86.2
el 78K 84.6 88.3 scn 5.6K 93.2 89.2 b-s 2.1K 84.5 88.0 ha 517 75.0 87.9
ce 77K 99.4 93.5 fo 5.4K 83.6 92.2 krc 2.1K 84.9 88.9 ab 506 60.0 92.4
ur 77K 96.4 89.3 ckb 5.3K 88.1 89.3 ie 2.1K 88.8 92.8 got 506 91.7 90.1
hr 76K 82.8 88.5 li 5.2K 89.4 91.3 dv 2.0K 76.2 90.5 bi 490 88.5 88.3
ms 75K 86.8 84.1 nap 4.9K 86.9 89.9 xmf 2.0K 73.4 92.2 st 455 84.4 89.8
et 69K 86.8 89.9 crh 4.9K 90.1 89.9 rue 1.9K 82.7 92.2 chy 450 85.1 89.9
kk 68K 88.3 81.8 gu 4.6K 76.0 90.8 pa 1.8K 74.8 84.3 iu 450 66.7 88.9
ceb 68K 96.3 86.6 km 4.6K 52.2 89.9 eml 1.8K 83.5 88.5 zu 449 82.3 89.9
sl 67K 89.5 90.1 tg 4.5K 88.3 90.6 arc 1.8K 68.5 89.2 pnt 445 61.5 89.6
nn 65K 88.1 89.9 hsb 4.5K 91.5 92.0 pdc 1.8K 78.1 91.1 ik 436 94.1 88.2
sim 59K 85.7 90.7 c-z 4.5K 75.0 86.6 kbd 1.7K 74.9 80.6 lrc 416 65.2 86.9
lv 57K 92.1 89.8 jv 4.4K 82.6 87.8 pap 1.7K 88.8 58.4 bm 386 77.3 89.1
tt 53K 87.7 91.4 lez 4.4K 84.2 82.3 jbo 1.7K 92.4 91.6 za 382 57.1 88.2
gl 52K 87.4 88.2 hak 4.3K 85.5 88.1 diq 1.7K 79.3 80.9 mo 373 69.6 88.2
ka 49K 79.8 89.5 ang 4.2K 84.0 92.0 pag 1.7K 91.2 89.5 ss 362 69.2 91.8
vo 47K 98.5 90.8 r-t 4.2K 88.1 89.0 kg 1.6K 82.1 90.1 ee 297 63.2 90.0
lmo 39K 98.3 89.0 kn 4.1K 60.1 91.7 m-b 1.6K 78.3 80.0 dz 262 50.0 90.0
be 38K 84.1 88.3 csb 4.1K 87.0 92.3 rw 1.6K 95.4 91.5 ak 258 86.8 92.2
mk 35K 93.4 83.3 lij 4.1K 72.3 91.9 or 1.6K 86.4 77.9 sg 245 99.9 86.8
cy 32K 90.7 89.3 nov 4.0K 77.0 92.1 ln 1.6K 82.8 91.4 ts 236 93.3 88.9
bs 31K 84.8 89.8 ace 4.0K 81.6 90.3 kl 1.5K 75.0 90.9 rn 185 40.0 78.6
ta 31K 77.9 88.2 gn 4.0K 71.2 89.3 sn 1.5K 95.0 93.3 ve 183 99.9 88.0
hy 28K 90.4 81.3 koi 4.0K 89.6 92.9 av 1.4K 82.0 83.7 ny 169 56.0 90.2
bn 27K 93.8 87.2 mhr 3.9K 86.7 92.4 as 1.4K 89.6 89.3 ff 168 76.9 88.9
az 26K 85.1 86.0 io 3.8K 87.2 92.3 stq 1.4K 70.0 90.6 ch 159 70.6 90.0
sq 26K 94.1 92.1 min 3.8K 85.8 89.9 gv 1.3K 84.8 89.1 xh 141 35.3 89.5
ml 24K 82.4 88.8 arz 3.8K 77.8 89.3 wo 1.3K 87.7 90.0 fj 126 75.0 91.3
br 22K 87.0 85.5 ext 3.7K 77.8 91.6 xal 1.3K 98.7 90.9 ks 124 75.0 83.3
z-y 22K 87.3 88.4 yo 3.7K 94.0 90.8 nrm 1.3K 96.4 92.7 ti 52 94.2 90.0
af 21K 85.7 91.1 sah 3.6K 91.2 93.0 na 1.2K 87.6 88.7 cr 49 91.8 89.8
b-x 20K 85.1 87.7 vep 3.5K 85.8 89.8 ltg 1.2K 74.3 92.1 pi 41 83.3 86.4
tl 19K 92.7 90.3 ku 3.3K 83.2 85.1 pam 1.2K 87.2 91.0
oc 18K 92.5 90.0 kab 3.3K 75.7 84.3 lad 1.2K 92.3 92.4

Table 3: Performance on Wikipedia Data (L: language ID 10; M: the number of name mentions; F: name
tagging F-score (%); A: entity linking accuracy (%))

1952

Language Gold Training Silver Training Test
Bengali 8,760 22,093 3,495
Hungarian 3,414 34,022 1,320
Russian 2,751 35,764 1,213
Tamil 7,033 25,521 4,632
Tagalog 4,648 15,839 3,351
Turkish 3,067 37,058 2,172
Uzbek 3,137 64,242 2,056
Vietnamese 2,261 63,971 987
Yoruba 4,061 9,274 3,395

Table 4: # of Names in Non-Wikipedia Data

Language Training
from
Gold

Training
from
Silver

(Zhang
et al.,

2016a)

(Tsai
et al.,
2016)

Bengali 61.6 44.0 34.8 43.3
Hungarian 63.9 47.9 - -
Russian 61.8 49.4 - -
Tamil 42.2 35.7 26.0 29.6
Tagalog 70.7 58.3 51.3 65.4
Turkish 66.0 51.5 43.6 47.1
Uzbek 56.0 44.2 - -
Vietnamese 54.3 44.5 - -
Yoruba 55.1 37.6 36.0 36.7

Table 5: Name Tagging F-score (%) on Non-
Wikipedia Data

Language # of
Non-NIL
Mentions

(Mayfield
et al., 2011)

Our
Approach

Arabic 661 70.6 80.2
Bulgarian 2,068 82.1 84.1
Chinese 956 - 11 91.0
Croatian 2,257 88.9 90.8
Czech 722 77.2 85.9
Danish 1,096 93.8 91.2
Dutch 1,087 92.4 89.2
Finnish 1,049 86.8 85.8
French 657 90.4 92.1
German 769 85.7 89.7
Greek 2,129 71.4 79.8
Italian 1,087 83.3 85.6
Macedonian 1,956 70.6 71.6
Portuguese 1,096 97.4 95.8
Romanian 2,368 93.5 88.7
Serbian 2,156 65.3 81.2
Spanish 743 87.3 91.5
Swedish 1,107 93.5 90.3
Turkish 2,169 92.5 92.2
Urdu 1,093 70.7 73.2

Table 6: Entity Linking Accuracy (%) on Non-
Wikipedia Data

ogy features contributed 11.1% and 7.1% absolute
name tagging F-score gains to Turkish and Uzbek
LORELEI data sets respectively.

Impact of Self-Training
Using Turkish as a case study, the learning curves
of self-training on Wikipedia and non-Wikipedia

test sets are shown in Figure 6. We can see
that self-training provides significant improve-
ment for both Wikipedia (6% absolute gain) and
non-Wikipedia test data (12% absolute gain). As
expected the learning curve on Wikipedia data
is more smooth and converges more slowly than
that of non-Wikipedia data. This indicates that
when the training data is incomplete and noisy, the
model can benefit from self-training through iter-
ative label correction and propagation.

Figure 6: Learning Curve of Self-training

Impact of Topical Relatedness
We also found that the topical relatedness measure
proposed in Section 2.5 not only significantly re-
duces the size of training data and thus speeds up
the training process for many languages, but also
consistently improves the quality. For example,
the Turkish name tagger trained from the entire
data set without topic selection yields 49.7% F-
score on LORELEI data set, and the performance
is improved to 51.5% after topic selection.

5 Related Work

Wikipedia markup based silver standard gen-
eration: Our work was mainly inspired from pre-
vious work that leveraged Wikipedia markups to
train name taggers (Nothman et al., 2008; Dakka
and Cucerzan, 2008; Mika et al., 2008; Ringland
et al., 2009; Alotaibi and Lee, 2012; Nothman
et al., 2013; Althobaiti et al., 2014). Most of
these previous methods manually classified many
English Wikipedia entries into pre-defined entity
types. In contrast, our approach doesn’t need
any manual annotations or language-specific fea-
tures, while generates both coarse-grained and
fine-grained types.

Many fine-grained entity typing ap-
proaches (Fleischman and Hovy, 2002; Giuliano,

1953

2009; Ekbal et al., 2010; Ling and Weld, 2012;
Yosef et al., 2012; Nakashole et al., 2013; Gillick
et al., 2014; Yogatama et al., 2015; Del Corro
et al., 2015) also created annotations based on
Wikipedia anchor links. Our framework performs
both name identification and typing and takes
advantage of richer structures in the KBs. Pre-
vious work on Arabic name tagging (Althobaiti
et al., 2014) extracted entity titles as a gazetteer
for stemming, and thus it cannot handle unknown
names. We developed a new method to derive
generalizable affixes for morphologically rich
language based on Wikipedia markups.

Wikipedia as background features for IE:
Wikipedia pages have been used as addi-
tional features to improve various Informa-
tion Extraction (IE) tasks, including name tag-
ging (Kazama and Torisawa, 2007), coreference
resolution (Paolo Ponzetto and Strube, 2006), re-
lation extraction (Chan and Roth, 2010) and event
extraction (Hogue et al., 2014). Other automatic
name annotation generation methods have been
proposed, including KB driven distant supervi-
sion (An et al., 2003; Mintz et al., 2009; Ren et al.,
2015) and cross-lingual projection (Li et al., 2012;
Kim et al., 2012; Che et al., 2013; Wang et al.,
2013; Wang and Manning, 2014; Zhang et al.,
2016b).

Multi-lingual name tagging: Some recent re-
search (Zhang et al., 2016a; Littell et al., 2016;
Tsai et al., 2016) under the DARPA LORELEI
program focused on developing name tagging
techniques for low-resource languages. These ap-
proaches require English annotations for projec-
tion (Tsai et al., 2016), some input from a native
speaker, either through manual annotations (Littell
et al., 2016), or a linguistic survey (Zhang et al.,
2016a). Without using any manual annotations,
our name taggers outperform previous methods on
the same data sets for many languages.

Multi-lingual entity linking: NIST TAC-KBP
Tri-lingual entity linking (Ji et al., 2016) focused
on three languages: English, Chinese and Span-
ish. (McNamee et al., 2011) extended it to 21 lan-
guages. But their methods required labeled data
and name transliteration. We share the same goal
as (Sil and Florian, 2016) to extend cross-lingual
entity linking to all languages in Wikipedia. They
exploited Wikipedia links to train a supervised
linker. We mine reliable word translations from
cross-lingual Wikipedia titles, which enables us

to adopt unsupervised English entity linking tech-
niques such as (Pan et al., 2015) to directly link
translated English name mentions to English KB.

Efforts to save annotation cost for name tag-
ging: Some previous work including (Ji and Gr-
ishman, 2006; Richman and Schone, 2008; Al-
thobaiti et al., 2013) exploited semi-supervised
methods to save annotation cost. We observed that
self-training can provide further gains when the
training data contains certain amount of noise.

6 Conclusions and Future Work

We developed a simple yet effective framework
that can extract names from 282 languages and
link them to an English KB. This framework
follows a fully automatic training and testing
pipeline, without the needs of any manual anno-
tations or knowledge from native speakers. We
evaluated our framework on both Wikipedia arti-
cles and external formal and informal texts and ob-
tained promising results. To the best of our knowl-
edge, our multilingual name tagging and linking
framework is applied to the largest number of lan-
guages. We release the following resources for
each of these 282 languages: “silver-standard”
name tagging and linking annotations with mul-
tiple levels of granularity, morphology analyzer if
it’s a morphologically-rich language, and an end-
to-end name tagging and linking system. In this
work, we treat all languages independently when
training their corresponding name taggers. In the
future, we will explore the topological structure of
related languages and exploit cross-lingual knowl-
edge transfer to enhance the quality of extraction
and linking. The general idea of deriving noisy an-
notations from KB properties can also be extended
to other IE tasks such as relation extraction.

Acknowledgments

This work was supported by the U.S. DARPA
LORELEI Program No. HR0011-15-C-0115,
ARL/ARO MURI W911NF-10-1-0533, DARPA
DEFT No. FA8750-13-2-0041 and FA8750-13-2-
0045, and NSF CAREER No. IIS-1523198. The
views and conclusions contained in this document
are those of the authors and should not be inter-
preted as representing the official policies, either
expressed or implied, of the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

1954

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2015. Paradigm classification in supervised learn-
ing of morphology. In Proceedings of the
2015 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, pages 1024–1029.
https://doi.org/10.3115/v1/N15-1107.

Fahd Alotaibi and Mark Lee. 2012. Mapping ara-
bic wikipedia into the named entities taxonomy. In
Proceedings of COLING 2012: Posters. The COL-
ING 2012 Organizing Committee, pages 43–52.
http://aclweb.org/anthology/C12-2005.

Maha Althobaiti, Udo Kruschwitz, and Massimo Poe-
sio. 2013. A semi-supervised learning approach to
arabic named entity recognition. In Proceedings
of the International Conference Recent Advances
in Natural Language Processing RANLP 2013. IN-
COMA Ltd. Shoumen, BULGARIA, pages 32–40.
http://aclweb.org/anthology/R13-1005.

Maha Althobaiti, Udo Kruschwitz, and Massimo Poe-
sio. 2014. Automatic creation of arabic named
entity annotated corpus using wikipedia. In Pro-
ceedings of the Student Research Workshop at the
14th Conference of the European Chapter of the As-
sociation for Computational Linguistics. Associa-
tion for Computational Linguistics, pages 106–115.
https://doi.org/10.3115/v1/E14-3012.

Joohui An, Seungwoo Lee, and Gary Geunbae Lee.
2003. Automatic acquisition of named entity tagged
corpus from world wide web. In The Companion
Volume to the Proceedings of 41st Annual Meeting
of the Association for Computational Linguistics.
http://aclweb.org/anthology/P03-2031.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and
Nathan Schneider. 2013. Abstract meaning
representation for sembanking. In Proceed-
ings of the 7th Linguistic Annotation Workshop
and Interoperability with Discourse. Association
for Computational Linguistics, pages 178–186.
http://aclweb.org/anthology/W13-2322.

Kurt Bollacker, Colin Evans, Praveen Paritosh,
Tim Sturge, and Jamie Taylor. 2008. Free-
base: A collaboratively created graph database
for structuring human knowledge. In Proceed-
ings of the 2008 ACM SIGMOD International
Conference on Management of Data. ACM, New
York, NY, USA, SIGMOD ’08, pages 1247–1250.
https://doi.org/10.1145/1376616.1376746.

Gerlof Bouma. 2009. Normalized (pointwise) mutual
information in collocation extraction. In Proceed-
ings of the Biennial GSCL Conference 2009.

Seng Yee Chan and Dan Roth. 2010. Exploiting
background knowledge for relation extraction. In

Proceedings of the 23rd International Conference
on Computational Linguistics (Coling 2010). Col-
ing 2010 Organizing Committee, pages 152–160.
http://aclweb.org/anthology/C10-1018.

Wanxiang Che, Mengqiu Wang, D. Christopher Man-
ning, and Ting Liu. 2013. Named entity recog-
nition with bilingual constraints. In Proceedings
of the 2013 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies. Associ-
ation for Computational Linguistics, pages 52–62.
http://aclweb.org/anthology/N13-1006.

Wisam Dakka and Silviu Cucerzan. 2008. Augment-
ing wikipedia with named entity tags. In Pro-
ceedings of the Third International Joint Confer-
ence on Natural Language Processing: Volume-I.
http://aclweb.org/anthology/I08-1071.

Luciano Del Corro, Abdalghani Abujabal, Rainer
Gemulla, and Gerhard Weikum. 2015. Finet:
Context-aware fine-grained named entity typing. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics, pages 868–878.
https://doi.org/10.18653/v1/D15-1103.

Asif Ekbal, Eva Sourjikova, Anette Frank, and
Simone Paolo Ponzetto. 2010. Assessing the
challenge of fine-grained named entity recog-
nition and classification. In Proceedings of
the 2010 Named Entities Workshop. Associa-
tion for Computational Linguistics, pages 93–101.
http://aclweb.org/anthology/W10-2415.

Michael Fleischman and Eduard Hovy. 2002.
Fine grained classification of named enti-
ties. In COLING 2002: The 19th Interna-
tional Conference on Computational Linguistics.
http://aclweb.org/anthology/C02-1130.

Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse
Kirchner, and David Huynh. 2014. Context-
dependent fine-grained entity type tagging. CoRR
abs/1412.1820. http://arxiv.org/abs/1412.1820.

Claudio Giuliano. 2009. Fine-grained classification of
named entities exploiting latent semantic kernels. In
Proceedings of the Thirteenth Conference on Com-
putational Natural Language Learning (CoNLL-
2009). Association for Computational Linguistics,
pages 201–209. http://aclweb.org/anthology/W09-
1125.

Stig-Arne Grönroos, Sami Virpioja, Peter Smit, and
Mikko Kurimo. 2014. Morfessor flatcat: An
hmm-based method for unsupervised and semi-
supervised learning of morphology. In Proceed-
ings of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Technical
Papers. Dublin City University and Association
for Computational Linguistics, pages 1177–1185.
http://aclweb.org/anthology/C14-1111.

1955

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2014. Revisiting embedding features for
simple semi-supervised learning. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Associa-
tion for Computational Linguistics, pages 110–120.
https://doi.org/10.3115/v1/D14-1012.

Alexander Hogue, Joel Nothman, and James R. Cur-
ran. 2014. Unsupervised biographical event
extraction using wikipedia traffic. In Pro-
ceedings of the Australasian Language Technol-
ogy Association Workshop 2014. pages 41–49.
http://aclweb.org/anthology/U14-1006.

Heng Ji and Ralph Grishman. 2006. Analysis and re-
pair of name tagger errors. In Proceedings of the
COLING/ACL 2006 Main Conference Poster Ses-
sions. Association for Computational Linguistics,
pages 420–427. http://aclweb.org/anthology/P06-
2055.

Heng Ji, Joel Nothman, and Hoa Trang Dang. 2016.
Overview of tac-kbp2016 tri-lingual edl and its im-
pact on end-to-end kbp. In Proceedings of the Text
Analysis Conference.

Franz Josef Och and Hermann Ney. 2003. A systematic
comparison of various statistical alignment models.
Computational Linguistics, Volume 29, Number 1,
March 2003 http://aclweb.org/anthology/J03-1002.

Jun’ichi Kazama and Kentaro Torisawa. 2007. Ex-
ploiting wikipedia as external knowledge for
named entity recognition. In Proceedings of
the 2007 Joint Conference on Empirical Meth-
ods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL). http://aclweb.org/anthology/D07-1073.

Sungchul Kim, Kristina Toutanova, and Hwanjo Yu.
2012. Multilingual named entity recognition using
parallel data and metadata from wikipedia. In Pro-
ceedings of the 50th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers). Association for Computational Linguistics,
pages 694–702. http://aclweb.org/anthology/P12-
1073.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, pages
260–270. https://doi.org/10.18653/v1/N16-1030.

Hao Li, Heng Ji, Hongbo Deng, and Jiawei Han. 2011.
Exploiting background information networks to en-
hance bilingual event extraction through topic mod-
eling. In Proceedings of International Conference
on Advances in Information Mining and Manage-
ment (IMMM2011).

Qi Li, Haibo Li, Heng Ji, Wen Wang, Jing Zheng,
and Fei Huang. 2012. Joint bilingual name tag-
ging for parallel corpora. In Proceedings of
the 21st ACM International Conference on Infor-
mation and Knowledge Management. ACM, New
York, NY, USA, CIKM ’12, pages 1727–1731.
https://doi.org/10.1145/2396761.2398506.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence. AAAI
Press, AAAI’12, pages 94–100.

Patrick Littell, Kartik Goyal, R. David Mortensen,
Alexa Little, Chris Dyer, and Lori Levin. 2016.
Named entity recognition for linguistic rapid re-
sponse in low-resource languages: Sorani kur-
dish and tajik. In Proceedings of COLING 2016,
the 26th International Conference on Computa-
tional Linguistics: Technical Papers. The COL-
ING 2016 Organizing Committee, pages 998–1006.
http://aclweb.org/anthology/C16-1095.

Farzaneh Mahdisoltani, Joanna Biega, and Fabian M.
Suchanek. 2015. Yago3: A knowledge base from
multilingual wikipedias. In Proceedings of the Con-
ference on Innovative Data Systems Research.

Alireza Mahmoudi, Mohsen Arabsorkhi, and Hes-
haam Faili. 2013. Supervised morphology gen-
eration using parallel corpus. In Proceedings of
the International Conference Recent Advances in
Natural Language Processing RANLP 2013. IN-
COMA Ltd. Shoumen, BULGARIA, pages 408–
414. http://aclweb.org/anthology/R13-1053.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations. Associ-
ation for Computational Linguistics, pages 55–60.
https://doi.org/10.3115/v1/P14-5010.

James Mayfield, Dawn Lawrie, Paul McNamee, and
Douglas W. Oard. 2011. Building a cross-language
entity linking collection in twenty-one languages.
In Multilingual and Multimodal Information Access
Evaluation: Second International Conference of the
Cross-Language Evaluation Forum.

Paul McNamee, James Mayfield, Dawn Lawrie,
Douglas Oard, and David Doermann. 2011.
Cross-language entity linking. In Proceedings
of 5th International Joint Conference on Nat-
ural Language Processing. Asian Federation of
Natural Language Processing, pages 255–263.
http://aclweb.org/anthology/I11-1029.

Peter Mika, Massimiliano Ciaramita, Hugo Zaragoza,
and Jordi Atserias. 2008. Learning to tag and tag-
ging to learn: A case study on wikipedia. IEEE In-
telligent Systems .

1956

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP. Asso-
ciation for Computational Linguistics, pages 1003–
1011. http://aclweb.org/anthology/P09-1113.

Ndapandula Nakashole, Tomasz Tylenda, and Gerhard
Weikum. 2013. Fine-grained semantic typing of
emerging entities. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1488–1497.
http://aclweb.org/anthology/P13-1146.

Joel Nothman, R. James Curran, and Tara Murphy.
2008. Transforming wikipedia into named entity
training data. In Proceedings of the Australasian
Language Technology Association Workshop 2008.
pages 124–132. http://aclweb.org/anthology/U08-
1016.

Joel Nothman, Nicky Ringland, Will Radford, Tara
Murphy, and James R. Curran. 2013. Learn-
ing multilingual named entity recognition from
wikipedia. Artificial Intelligence 194:151–175.
https://doi.org/10.1016/j.artint.2012.03.006.

Xiaoman Pan, Taylor Cassidy, Ulf Hermjakob, Heng Ji,
and Kevin Knight. 2015. Unsupervised entity link-
ing with abstract meaning representation. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies. Asso-
ciation for Computational Linguistics, pages 1130–
1139. https://doi.org/10.3115/v1/N15-1119.

Simone Paolo Ponzetto and Michael Strube. 2006.
Exploiting semantic role labeling, wordnet and
wikipedia for coreference resolution. In Pro-
ceedings of the Human Language Technology
Conference of the NAACL, Main Conference.
http://aclweb.org/anthology/N06-1025.

Xiang Ren, Ahmed El-Kishky, Chi Wang, Fangbo Tao,
Clare R. Voss, and Jiawei Han. 2015. Clustype:
Effective entity recognition and typing by rela-
tion phrase-based clustering. In Proceedings of
the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. ACM,
New York, NY, USA, KDD ’15, pages 995–1004.
https://doi.org/10.1145/2783258.2783362.

E. Alexander Richman and Patrick Schone. 2008. Min-
ing wiki resources for multilingual named entity
recognition. In Proceedings of ACL-08: HLT . As-
sociation for Computational Linguistics, pages 1–9.
http://aclweb.org/anthology/P08-1001.

Nicky Ringland, Joel Nothman, Tara Murphy, and
R. James Curran. 2009. Classifying articles

in english and german wikipedia. In Pro-
ceedings of the Australasian Language Technol-
ogy Association Workshop 2009. pages 20–28.
http://aclweb.org/anthology/U09-1004.

Ryan Roth, Owen Rambow, Nizar Habash, Mona Diab,
and Cynthia Rudin. 2008. Arabic morphologi-
cal tagging, diacritization, and lemmatization us-
ing lexeme models and feature ranking. In Pro-
ceedings of ACL-08: HLT, Short Papers. Associa-
tion for Computational Linguistics, pages 117–120.
http://aclweb.org/anthology/P08-2030.

Teemu Ruokolainen, Oskar Kohonen, Kairit Sirts, Stig-
Arne Grönroos, Mikko Kurimo, and Sami Virpioja.
2016. A comparative study of minimally supervised
morphological segmentation. Computational Lin-
guistics .

Avirup Sil and Radu Florian. 2016. One for all:
Towards language independent named entity link-
ing. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 2255–2264.
https://doi.org/10.18653/v1/P16-1213.

Chen-Tse Tsai, Stephen Mayhew, and Dan Roth. 2016.
Cross-lingual named entity recognition via wikifica-
tion. In Proceedings of The 20th SIGNLL Confer-
ence on Computational Natural Language Learning.
Association for Computational Linguistics, pages
219–228. https://doi.org/10.18653/v1/K16-1022.

Mengqiu Wang, Wanxiang Che, and D. Christo-
pher Manning. 2013. Joint word alignment and
bilingual named entity recognition using dual de-
composition. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association
for Computational Linguistics, pages 1073–1082.
http://aclweb.org/anthology/P13-1106.

Mengqiu Wang and D. Christopher Manning. 2014.
Cross-lingual projected expectation regularization
for weakly supervised learning. Transactions of the
Association of Computational Linguistics 2:55–66.
http://aclweb.org/anthology/Q14-1005.

Kenneth Ward Church and Patrick Hanks. 1990. Word
association norms mutual information, and lexicog-
raphy. Computational Linguistics, Volume 16, Num-
ber 1, March 1990 http://aclweb.org/anthology/J90-
1003.

Dani Yogatama, Daniel Gillick, and Nevena Lazic.
2015. Embedding methods for fine grained
entity type classification. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 2: Short Papers). Association
for Computational Linguistics, pages 291–296.
https://doi.org/10.3115/v1/P15-2048.

1957

Amir Mohamed Yosef, Sandro Bauer, Johannes Hof-
fart, Marc Spaniol, and Gerhard Weikum. 2012.
Hyena: Hierarchical type classification for entity
names. In Proceedings of COLING 2012: Posters.
The COLING 2012 Organizing Committee, pages
1361–1370. http://aclweb.org/anthology/C12-2133.

Boliang Zhang, Xiaoman Pan, Tianlu Wang, Ashish
Vaswani, Heng Ji, Kevin Knight, and Daniel Marcu.
2016a. Name tagging for low-resource incident lan-
guages based on expectation-driven learning. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, pages
249–259. https://doi.org/10.18653/v1/N16-1029.

Dongxu Zhang, Boliang Zhang, Xiaoman Pan, Xi-
aocheng Feng, Heng Ji, and Weiran XU. 2016b.
Bitext name tagging for cross-lingual entity an-
notation projection. In Proceedings of COLING
2016, the 26th International Conference on Com-
putational Linguistics: Technical Papers. The COL-
ING 2016 Organizing Committee, pages 461–470.
http://aclweb.org/anthology/C16-1045.

1958

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1959–1970
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1179

Adversarial Training for Unsupervised Bilingual Lexicon Induction

Meng Zhang†‡ Yang Liu†‡∗Huanbo Luan† Maosong Sun†‡
†State Key Laboratory of Intelligent Technology and Systems

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing, China
‡Jiangsu Collaborative Innovation Center for Language Competence, Jiangsu, China

zmlarry@foxmail.com, liuyang2011@tsinghua.edu.cn
luanhuanbo@gmail.com, sms@tsinghua.edu.cn

Abstract

Word embeddings are well known to cap-
ture linguistic regularities of the language
on which they are trained. Researchers
also observe that these regularities can
transfer across languages. However, previ-
ous endeavors to connect separate mono-
lingual word embeddings typically require
cross-lingual signals as supervision, either
in the form of parallel corpus or seed lex-
icon. In this work, we show that such
cross-lingual connection can actually be
established without any form of supervi-
sion. We achieve this end by formulating
the problem as a natural adversarial game,
and investigating techniques that are cru-
cial to successful training. We carry out
evaluation on the unsupervised bilingual
lexicon induction task. Even though this
task appears intrinsically cross-lingual, we
are able to demonstrate encouraging per-
formance without any cross-lingual clues.

1 Introduction

As word is the basic unit of a language, the better-
ment of its representation has significant impact on
various natural language processing tasks. Con-
tinuous word representations, commonly known
as word embeddings, have formed the basis for
numerous neural network models since their ad-
vent. Their popularity results from the perfor-
mance boost they bring, which should in turn be
attributed to the linguistic regularities they capture
(Mikolov et al., 2013b).

Soon following the success on monolingual
tasks, the potential of word embeddings for cross-
lingual natural language processing has attracted
much attention. In their pioneering work, Mikolov

∗Corresponding author.

caballo (horse)

cerdo (pig)

gato (cat)

horse

pig

cat

Spanish English

Figure 1: Illustrative monolingual word em-
beddings of Spanish and English, adapted from
(Mikolov et al., 2013a). Although trained inde-
pendently, the two sets of embeddings exhibit ap-
proximate isomorphism.

et al. (2013a) observe that word embeddings
trained separately on monolingual corpora exhibit
isomorphic structure across languages, as illus-
trated in Figure 1. This interesting finding is
in line with research on human cognition (Youn
et al., 2016). It also means a linear transforma-
tion may be established to connect word embed-
ding spaces, allowing word feature transfer. This
has far-reaching implication on low-resource sce-
narios (Daumé III and Jagarlamudi, 2011; Irvine
and Callison-Burch, 2013), because word embed-
dings only require plain text to train, which is the
most abundant form of linguistic resource.

However, connecting separate word embedding
spaces typically requires supervision from cross-
lingual signals. For example, Mikolov et al.
(2013a) use five thousand seed word translation
pairs to train the linear transformation. In a re-
cent study, Vulić and Korhonen (2016) show that
at least hundreds of seed word translation pairs are
needed for the model to generalize. This is un-
fortunate for low-resource languages and domains,

1959

https://doi.org/10.18653/v1/P17-1179

(b)

D1

0/1

G GT

D2

1/0

(a)

D

0/1

G

(c)

D

0/1

G GT

LR

~

Figure 2: (a) The unidirectional transformation model directly inspired by the adversarial game: The
generator G tries to transform source word embeddings (squares) to make them seem like target ones
(dots), while the discriminator D tries to classify whether the input embeddings are generated by G or
real samples from the target embedding distribution. (b) The bidirectional transformation model. Two
generators with tied weights perform transformation between languages. Two separate discriminators
are responsible for each language. (c) The adversarial autoencoder model. The generator aims to make
the transformed embeddings not only indistinguishable by the discriminator, but also recoverable as
measured by the reconstruction loss LR.

because data encoding cross-lingual equivalence is
often expensive to obtain.

In this work, we aim to entirely eliminate the
need for cross-lingual supervision. Our approach
draws inspiration from recent advances in gen-
erative adversarial networks (Goodfellow et al.,
2014). We first formulate our task in a fashion
that naturally admits an adversarial game. Then
we propose three models that implement the game,
and explore techniques to ensure the success of
training. Finally, our evaluation on the bilingual
lexicon induction task reveals encouraging perfor-
mance, even though this task appears formidable
without any cross-lingual supervision.

2 Models

In order to induce a bilingual lexicon, we start
from two sets of monolingual word embeddings
with dimensionality d. They are trained separately
on two languages. Our goal is to learn a mapping
function f : Rd → Rd so that for a source word
embedding x, f (x) lies close to the embedding of
its target language translation y. The learned map-
ping function can then be used to translate each

source word x by finding the nearest target em-
bedding to f (x).

We consider x to be drawn from a distribution
px, and similarly y ∼ py. The key intuition here is
to find the mapping function to make f (x) seem
to follow the distribution py, for all x ∼ px. From
this point of view, we design an adversarial game
as illustrated in Figure 2(a): The generator G im-
plements the mapping function f , trying to make
f (x) passable as target word embeddings, while
the discriminator D is a binary classifier striving
to distinguish between fake target word embed-
dings f (x) ∼ pf(x) and real ones y ∼ py. This
intuition can be formalized as the minimax game
minGmaxD V (D,G) with value function

V (D,G)

=Ey∼py [logD (y)] +

Ex∼px [log (1−D (G (x)))] .

(1)

Theoretical analysis reveals that adversarial
training tries to minimize the Jensen-Shannon
divergence JSD

(
py||pf(x)

)
(Goodfellow et al.,

2014). Importantly, the minimization happens
at the distribution level, without requiring word

1960

translation pairs to supervise training.

2.1 Model 1: Unidirectional Transformation

The first model directly implements the adversar-
ial game, as shown in Figure 2(a). As hinted
by the isomorphism shown in Figure 1, previous
works typically choose the mapping function f
to be a linear map (Mikolov et al., 2013a; Dinu
et al., 2015; Lazaridou et al., 2015). We therefore
parametrize the generator as a transformation ma-
trix G ∈ Rd×d. We also tried non-linear maps
parametrized by neural networks, without success.
In fact, if the generator is given sufficient capacity,
it can in principle learn a constant mapping func-
tion to a target word embedding, which makes the
discriminator impossible to distinguish, much like
the “mode collapse” problem widely observed in
the image domain (Radford et al., 2015; Salimans
et al., 2016). We therefore believe it is crucial to
grant the generator with suitable capacity.

As a generic binary classifier, a standard feed-
forward neural network with one hidden layer is
used to parametrize the discriminator D, and its
loss function is the usual cross-entropy loss, as in
the value function (1):

LD = − logD (y)− log (1−D (Gx)) . (2)

For simplicity, here we write the loss with a mini-
batch size of 1; in our experiments we use 128.

The generator loss is given by

LG = − logD (Gx) . (3)

In line with previous work (Goodfellow et al.,
2014), we find this loss easier to minimize than
the original form log (1−D (Gx)).

Orthogonal Constraint
The above model is very difficult to train. One
possible reason is that the parameter search space
Rd×d for the generator may still be too large. Pre-
vious works have attempted to constrain the trans-
formation matrix to be orthogonal (Xing et al.,
2015; Zhang et al., 2016b; Artetxe et al., 2016).
An orthogonal transformation is also theoretically
appealing for its self-consistency (Smith et al.,
2017) and numerical stability. However, using
constrained optimization for our purpose is cum-
bersome, so we opt for an orthogonal parametriza-
tion (Mhammedi et al., 2016) of the generator in-
stead.

2.2 Model 2: Bidirectional Transformation
The orthogonal parametrization is still quite slow.
We can relax the orthogonal constraint and only
require the transformation to be self-consistent
(Smith et al., 2017): If G transforms the source
word embedding space into the target language
space, its transpose G> should transform the tar-
get language space back to the source. This can be
implemented by two unidirectional models with a
tied generator, as illustrated in Figure 2(b). Two
separate discriminators are used, with the same
cross-entropy loss as Equation (2) used by Model
1. The generator loss is given by

LG = − logD1 (Gx)− logD2

(
G>x

)
. (4)

2.3 Model 3: Adversarial Autoencoder
As another way to relax the orthogonal con-
straint, we introduce the adversarial autoencoder
(Makhzani et al., 2015), depicted in Figure 2(c).
After the generator G transforms a source word
embedding x into a target language representation
Gx, we should be able to reconstruct the source
word embedding x by mapping back withG>. We
therefore introduce the reconstruction loss mea-
sured by cosine similarity:

LR = − cos
(
x,G>Gx

)
. (5)

Note that this loss will be minimized if G is or-
thogonal. With this term included, the loss func-
tion for the generator becomes

LG = − logD (Gx)− λ cos
(
x,G>Gx

)
, (6)

where λ is a hyperparameter that balances the two
terms. λ = 0 recovers the unidirectional trans-
formation model, while larger λ should enforce a
stricter orthogonal constraint.

3 Training Techniques

Generative adversarial networks are notoriously
difficult to train, and investigation into stabler
training remains a research frontier (Radford et al.,
2015; Salimans et al., 2016; Arjovsky and Bottou,
2017). We contribute in this aspect by reporting
techniques that are crucial to successful training
for our task.

3.1 Regularizing the Discriminator
Recently, it has been suggested to inject noise into
the input to the discriminator (Sønderby et al.,

1961

2016; Arjovsky and Bottou, 2017). The noise is
typically additive Gaussian. Here we explore more
possibilities, with the following types of noise, in-
jected into the input and hidden layer:

• Multiplicative Bernoulli noise (dropout) (Sri-
vastava et al., 2014): ε ∼ Bernoulli (p).

• Additive Gaussian noise: ε ∼ N
(
0, σ2

)
.

• Multiplicative Gaussian noise: ε ∼
N
(
1, σ2

)
.

As noise injection is a form of regularization
(Bishop, 1995; Van der Maaten et al., 2013; Wa-
ger et al., 2013), we also try l2 regularization, and
directly restricting the hidden layer size to combat
overfitting. Our findings include:

• Without regularization, it is not impossible
for the optimizer to find a satisfactory param-
eter configuration, but the hidden layer size
has to be tuned carefully. This indicates that
a balance of capacity between the generator
and discriminator is needed.

• All forms of regularization help training by
allowing us to liberally set the hidden layer
size to a relatively large value.

• Among the types of regularization, multi-
plicative Gaussian injected into the input is
the most effective, and additive Gaussian is
similar. On top of input noise, hidden layer
noise helps slightly.

In the following experiments, we inject multiplica-
tive Gaussian into the input and hidden layer of the
discriminator with σ = 0.5.

3.2 Model Selection
From a typical training trajectory shown in Fig-
ure 3, we observe that training is not convergent.
In fact, simply using the model saved at the end
of training gives poor performance. Therefore we
need a mechanism to select a good model. We ob-
serve there are sharp drops of the generator loss
LG, and find they correspond to good models,
as the discriminator gets confused at these points
with its classification accuracy (D accuracy) drop-
ping simultaneously. Interestingly, the reconstruc-
tion loss LR and the value of

∥∥G>G− I
∥∥
F

ex-
hibit synchronous drops, even if we use the uni-
directional transformation model (λ = 0). This
means a good transformation matrix is indeed

0 200000 400000
minibatches

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L G
,D

ac
cu

ra
cy

,L
R

0

2

4

6

8

10

||G
>

G
−

I||
F

||G>G− I||F
LG

D accuracy
LR

Figure 3: A typical training trajectory of the adver-
sarial autoencoder model with λ = 1. The values
are averages within each minibatch.

nearly orthogonal, and justifies our encourage-
ment of G towards orthogonality. With this find-
ing, we can train for sufficient steps and save the
model with the lowest generator loss.

As we aim to find the cross-lingual transforma-
tion without supervision, it would be ideal to de-
termine hyperparameters without a validation set.
The sharp drops can also be indicative in this case.
If a hyperparameter configuration is poor, those
values will oscillate without a clear drop. Al-
though this criterion is somewhat subjective, we
find it to be quite feasible in practice.

3.3 Other Training Details

Our approach takes monolingual word embed-
dings as input. We train the CBOW model
(Mikolov et al., 2013b) with default hyperparam-
eters in word2vec.1 The embedding dimension
d is 50 unless stated otherwise. Before feeding
them into our system, we normalize the word em-
beddings to unit length. When sampling words for
adversarial training, we penalize frequent words
in a way similar to (Mikolov et al., 2013b). G is

1https://code.google.com/archive/p/word2vec

1962

initialized with a random orthogonal matrix. The
hidden layer size ofD is 500. Adversarial training
involves alternate gradient update of the genera-
tor and discriminator, which we implement with a
simpler variant algorithm described in (Nowozin
et al., 2016). Adam (Kingma and Ba, 2014) is
used as the optimizer, with default hyperparame-
ters. For the adversarial autoencoder model, λ = 1
generally works well, but λ = 10 appears stabler
for the low-resource Turkish-English setting.

4 Experiments

We evaluate the quality of the cross-lingual em-
bedding transformation on the bilingual lexicon
induction task. After a source word embedding
is transformed into the target space, its M nearest
target embeddings (in terms of cosine similarity)
are retrieved, and compared against the entry in
a ground truth bilingual lexicon. Performance is
measured by top-M accuracy (Vulić and Moens,
2013): If any of the M translations is found in the
ground truth bilingual lexicon, the source word is
considered to be handled correctly, and the accu-
racy is calculated as the percentage of correctly
translated source words. We generally report the
harshest top-1 accuracy, unless when comparing
with published figures in Section 4.4.

Baselines
Almost all approaches to bilingual lexicon induc-
tion from non-parallel data depend on seed lexica.
An exception is decipherment (Dou and Knight,
2012; Dou et al., 2015), and we use it as our
baseline. The decipherment approach is not based
on distributional semantics, but rather views the
source language as a cipher for the target lan-
guage, and attempts to learn a statistical model to
decipher the source language. We run the Mono-
Giza system as recommended by the toolkit.2 It
can also utilize monolingual embeddings (Dou
et al., 2015); in this case, we use the same em-
beddings as the input to our approach.

Sharing the underlying spirit with our approach,
related methods also build upon monolingual word
embeddings and find transformation to link dif-
ferent languages. Although they need seed word
translation pairs to train and thus not directly com-
parable, we report their performance with 50 and
100 seeds for reference. These methods are:

2http://www.isi.edu/natural-
language/software/monogiza release v1.0.tar.gz

tokens vocab. size
Wikipedia comparable corpora

zh-en
zh 21m 3,349
en 53m 5,154

es-en
es 61m 4,774
en 95m 6,637

it-en
it 73m 8,490
en 93m 6,597

ja-zh
ja 38m 6,043
zh 16m 2,814

tr-en
tr 6m 7,482
en 28m 13,220

Large-scale settings
zh-en zh 143m 14,686

Wikipedia en 1,907m 61,899
zh-en zh 2,148m 45,958

Gigaword en 5,017m 73,504

Table 1: Statistics of the non-parallel corpora.
Language codes: zh = Chinese, en = English, es
= Spanish, it = Italian, ja = Japanese, tr = Turkish.

• Translation matrix (TM) (Mikolov et al.,
2013a): the pioneer of this type of methods
mentioned in the introduction, using linear
transformation. We use a publicly available
implementation.3

• Isometric alignment (IA) (Zhang et al.,
2016b): an extension of TM by augmenting
its learning objective with the isometric (or-
thogonal) constraint. Although Zhang et al.
(2016b) had subsequent steps for their POS
tagging task, it could be used for bilingual
lexicon induction as well.

We ensure the same input embeddings for these
methods and ours.

The seed word translation pairs are obtained as
follows. First, we ask Google Translate4 to trans-
late the source language vocabulary. Then the tar-
get translations are queried again and translated
back to the source language, and those that do
not match the original source words are discarded.
This helps to ensure the translation quality. Fi-
nally, the translations are discarded if they fall out
of our target language vocabulary.

3http://clic.cimec.unitn.it/˜georgiana.dinu/down
4https://translate.google.com

1963

method # seeds accuracy (%)
MonoGiza w/o emb. 0 0.05
MonoGiza w/ emb. 0 0.09

TM
50 0.29
100 21.79

IA
50 18.71
100 32.29

Model 1 0 39.25
Model 1 + ortho. 0 28.62

Model 2 0 40.28
Model 3 0 43.31

Table 2: Chinese-English top-1 accuracies of the
MonoGiza baseline and our models, along with
the translation matrix (TM) and isometric align-
ment (IA) methods that utilize 50 and 100 seeds.

4.1 Experiments on Chinese-English

Data
For this set of experiments, the data for training
word embeddings comes from Wikipedia com-
parable corpora.5 Following (Vulić and Moens,
2013), we retain only nouns with at least 1,000
occurrences. For the Chinese side, we first use
OpenCC6 to normalize characters to be simplified,
and then perform Chinese word segmentation and
POS tagging with THULAC.7 The preprocessing
of the English side involves tokenization, POS tag-
ging, lemmatization, and lowercasing, which we
carry out with the NLTK toolkit.8 The statistics
of the final training data is given in Table 1, along
with the other experimental settings.

As the ground truth bilingual lexicon for evalua-
tion, we use Chinese-English Translation Lexicon
Version 3.0 (LDC2002L27).

Overall Performance
Table 2 lists the performance of the MonoGiza
baseline and our four variants of adversarial train-
ing. MonoGiza obtains low performance, likely
due to the harsh evaluation protocol (cf. Sec-
tion 4.4). Providing it with syntactic information
can help (Dou and Knight, 2013), but in a low-
resource scenario with zero cross-lingual informa-
tion, parsers are likely to be inaccurate or even un-
available.

5http://linguatools.org/tools/corpora/wikipedia-
comparable-corpora

6https://github.com/BYVoid/OpenCC
7http://thulac.thunlp.org
8http://www.nltk.org

城市 小行星 文学
chengshi xiaoxingxing wenxue

city asteroid poetry
town astronomer literature

suburb comet prose
area constellation poet

proximity orbit writing

Table 3: Top-5 English translation candidates pro-
posed by our approach for some Chinese words.
The ground truth is marked in bold.

0 500 1000
seeds

0

10

20

30

A
cc

ur
ac

y
(%

)

Ours
IA

TM

Figure 4: Top-1 accuracies of our approach,
isometric alignment (IA), and translation matrix
(TM), with the number of seeds varying in {50,
100, 200, 500, 1000, 1280}.

The unidirectional transformation model attains
reasonable accuracy if trained successfully, but it
is rather sensitive to hyperparameters and initial-
ization. This training difficulty motivates our or-
thogonal constraint. But imposing a strict orthog-
onal constraint hurts performance. It is also about
20 times slower even though we utilize orthogonal
parametrization instead of constrained optimiza-
tion. The last two models represent different relax-
ations of the orthogonal constraint, and the adver-
sarial autoencoder model achieves the best perfor-
mance. We therefore use it in our following exper-
iments. Table 3 lists some word translation exam-
ples given by the adversarial autoencoder model.

Comparison With Seed-Based Methods
In this section, we investigate how many seeds
TM and IA require to attain the performance level
of our approach. There are a total of 1,280 seed
translation pairs for Chinese-English, which are
removed from the test set during the evaluation for
this experiment. We use the most frequent S pairs
for TM and IA.

Figure 4 shows the accuracies with respect to

1964

method # seeds es-en it-en ja-zh tr-en
MonoGiza w/o embeddings 0 0.35 0.30 0.04 0.00
MonoGiza w/ embeddings 0 1.19 0.27 0.23 0.09

TM
50 1.24 0.76 0.35 0.09

100 48.61 37.95 26.67 11.15

IA
50 39.89 27.03 19.04 7.58

100 60.44 46.52 36.35 17.11
Ours 0 71.97 58.60 43.02 17.18

Table 4: Top-1 accuracies (%) of the MonoGiza baseline and our approach on Spanish-English, Italian-
English, Japanese-Chinese, and Turkish-English. The results for translation matrix (TM) and isometric
alignment (IA) using 50 and 100 seeds are also listed.

50 100 150 200
Embedding dimension

30

40

50

A
cc

ur
ac

y
(%

)

Figure 5: Top-1 accuracies of our approach with
respect to the input embedding dimensions in {20,
50, 100, 200}.

S. When the seeds are few, the seed-based meth-
ods exhibit clear performance degradation. In this
case, we also observe the importance of the or-
thogonal constraint from the superiority of IA to
TM, which supports our introduction of this con-
straint as we attempt zero supervision. Finally,
in line with the finding in (Vulić and Korhonen,
2016), hundreds of seeds are needed for TM to gen-
eralize. Only then do seed-based methods catch up
with our approach, and the performance difference
is marginal even when more seeds are provided.

Effect of Embedding Dimension

As our approach takes monolingual word embed-
dings as input, it is conceivable that their quality
significantly affects how well the two spaces can
be connected by a linear map. We look into this
aspect by varying the embedding dimension d in
Figure 5. As the dimension increases, the accuracy
improves and gradually levels off. This indicates
that too low a dimension hampers the encoding of
linguistic information drawn from the corpus, and
it is advisable to use a sufficiently large dimension.

4.2 Experiments on Other Language Pairs

Data
We also induce bilingual lexica from Wikipedia
comparable corpora for the following language
pairs: Spanish-English, Italian-English, Japanese-
Chinese, and Turkish-English. For Spanish-
English and Italian-English, we choose to use
TreeTagger9 for preprocessing, as in (Vulić and
Moens, 2013). For the Japanese corpus, we use
MeCab10 for word segmentation and POS tag-
ging. For Turkish, we utilize the preprocessing
tools (tokenization and POS tagging) provided in
LORELEI Language Packs (Strassel and Tracey,
2016), and its English side is preprocessed by
NLTK. Unlike the other language pairs, the fre-
quency cutoff threshold for Turkish-English is
100, as the amount of data is relatively small.

The ground truth bilingual lexica for Spanish-
English and Italian-English are obtained from
Open Multilingual WordNet11 through NLTK. For
Japanese-Chinese, we use an in-house lexicon.
For Turkish-English, we build a set of ground truth
translation pairs in the same way as how we obtain
seed word translation pairs from Google Translate,
described above.

Results
As shown in Table 4, the MonoGiza baseline still
does not work well on these language pairs, while
our approach achieves much better performance.
The accuracies are particularly high for Spanish-
English and Italian-English, likely because they
are closely related languages, and their embedding
spaces may exhibit stronger isomorphism. The

9http://www.cis.uni-muenchen.de/˜schmid/tools/
TreeTagger

10http://taku910.github.io/mecab
11http://compling.hss.ntu.edu.sg/omw

1965

method # seeds Wikipedia Gigaword

TM
50 0.00 0.01
100 4.79 2.07

IA
50 3.25 1.68
100 7.08 4.18

Ours 0 7.92 2.53

Table 5: Top-1 accuracies (%) of our approach
to inducing bilingual lexica for Chinese-English
from Wikipedia and Gigaword. Also listed are
results for translation matrix (TM) and isometric
alignment (IA) using 50 and 100 seeds.

performance on Japanese-Chinese is lower, on a
comparable level with Chinese-English (cf. Table
2), and these languages are relatively distantly re-
lated. Turkish-English represents a low-resource
scenario, and therefore the lexical semantic struc-
ture may be insufficiently captured by the embed-
dings. The agglutinative nature of Turkish can also
add to the challenge.

4.3 Large-Scale Settings

We experiment with large-scale Chinese-English
data from two sources: the whole Wikipedia dump
and Gigaword (LDC2011T13 and LDC2011T07).
We also simplify preprocessing by removing the
noun restriction and the lemmatization step (cf.
preprocessing decisions for the above experi-
ments).

Although large-scale data may benefit the train-
ing of embeddings, it poses a greater challenge to
bilingual lexicon induction. First, the degree of
non-parallelism tends to increase. Second, with
cruder preprocessing, the noise in the corpora may
take its toll. Finally, but probably most impor-
tantly, the vocabularies expand dramatically com-
pared to previous settings (see Table 1). This
means a word translation has to be retrieved from
a much larger pool of candidates.

For these reasons, we consider the performance
of our approach presented in Table 5 to be encour-
aging. The imbalanced sizes of the Chinese and
English Wikipedia do not seem to cause a prob-
lem for the structural isomorphism needed by our
method. MonoGiza does not scale to such large
vocabularies, as it already takes days to train in our
Italian-English setting. In contrast, our approach
is immune from scalability issues by working with
embeddings provided by word2vec, which is
well known for its fast speed. With the network

method 5k 10k
MonoGiza w/o embeddings 13.74 7.80
MonoGiza w/ embeddings 17.98 10.56

(Cao et al., 2016) 23.54 17.82
Ours 68.59 51.86

Table 6: Top-5 accuracies (%) of 5k and 10k most
frequent words in the French-English setting. The
figures for the baselines are taken from (Cao et al.,
2016).

configuration used in our experiments, the adver-
sarial autoencoder model takes about two hours to
train for 500k minibatches on a single CPU.

4.4 Comparison With (Cao et al., 2016)

In order to compare with the recent method by Cao
et al. (2016), which also uses zero cross-lingual
signal to connect monolingual embeddings, we
replicate their French-English experiment to test
our approach.12 This experimental setting has im-
portant differences from the above ones, mostly in
the evaluation protocol. Apart from using top-5
accuracy as the evaluation metric, the ground truth
bilingual lexicon is obtained by performing word
alignment on a parallel corpus. We find this auto-
matically constructed bilingual lexicon to be nois-
ier than the ones we use for the other language
pairs; it often lists tens of translations for a source
word. This lenient evaluation protocol should ex-
plain MonoGiza’s higher numbers in Table 6 than
what we report in the other experiments. In this
setting, our approach is able to considerably out-
perform both MonoGiza and the method by Cao
et al. (2016).

5 Related Work

5.1 Cross-Lingual Word Embeddings for
Bilingual Lexicon Induction

Inducing bilingual lexica from non-parallel data
is a long-standing cross-lingual task. Except for
the decipherment approach, traditional statistical
methods all require cross-lingual signals (Rapp,
1999; Koehn and Knight, 2002; Fung and Cheung,
2004; Gaussier et al., 2004; Haghighi et al., 2008;
Vulić et al., 2011; Vulić and Moens, 2013).

Recent advances in cross-lingual word embed-
dings (Vulić and Korhonen, 2016; Upadhyay et al.,

12As a confirmation, we ran MonoGiza in this setting and
obtained comparable performance as reported.

1966

2016) have rekindled interest in bilingual lexi-
con induction. Like their traditional counterparts,
these embedding-based methods require cross-
lingual signals encoded in parallel data, aligned at
document level (Vulić and Moens, 2015), sentence
level (Zou et al., 2013; Chandar A P et al., 2014;
Hermann and Blunsom, 2014; Kočiský et al.,
2014; Gouws et al., 2015; Luong et al., 2015;
Coulmance et al., 2015; Oshikiri et al., 2016),
or word level (i.e. seed lexicon) (Gouws and
Søgaard, 2015; Wick et al., 2016; Duong et al.,
2016; Shi et al., 2015; Mikolov et al., 2013a; Dinu
et al., 2015; Lazaridou et al., 2015; Faruqui and
Dyer, 2014; Lu et al., 2015; Ammar et al., 2016;
Zhang et al., 2016a, 2017; Smith et al., 2017). In
contrast, our work completely removes the need
for cross-lingual signals to connect monolingual
word embeddings, trained on non-parallel text cor-
pora.

As one of our baselines, the method by Cao
et al. (2016) also does not require cross-lingual
signals to train bilingual word embeddings. It
modifies the objective for training embeddings,
whereas our approach uses monolingual embed-
dings trained beforehand and held fixed. More im-
portantly, its learning mechanism is substantially
different from ours. It encourages word embed-
dings from different languages to lie in the shared
semantic space by matching the mean and vari-
ance of the hidden states, assumed to follow a
Gaussian distribution, which is hard to justify. Our
approach does not make any assumptions and di-
rectly matches the mapped source embedding dis-
tribution with the target distribution by adversarial
training.

A recent work also attempts adversarial train-
ing for cross-lingual embedding transformation
(Barone, 2016). The model architectures are simi-
lar to ours, but the reported results are not positive.
We tried the publicly available code on our data,
but the results were not positive, either. Therefore,
we attribute the outcome to the difference in the
loss and training techniques, but not the model ar-
chitectures or data.

5.2 Adversarial Training

Generative adversarial networks are originally
proposed for generating realistic images as an im-
plicit generative model, but the adversarial train-
ing technique for matching distributions is gen-
eralizable to much more tasks, including natural

language processing. For example, Ganin et al.
(2016) address domain adaptation by adversari-
ally training features to be domain invariant, and
test on sentiment classification. Chen et al. (2016)
extend this idea to cross-lingual sentiment clas-
sification. Our research deals with unsupervised
bilingual lexicon induction based on word embed-
dings, and therefore works with word embedding
distributions, which are more interpretable than
the neural feature space of classifiers in the above
works.

In the field of neural machine translation, a re-
cent work (He et al., 2016) proposes dual learn-
ing, which also involves a two-agent game and
therefore bears conceptual resemblance to the ad-
versarial training idea. The framework is carried
out with reinforcement learning, and thus differs
greatly in implementation from adversarial train-
ing.

6 Conclusion

In this work, we demonstrate the feasibility of con-
necting word embeddings of different languages
without any cross-lingual signal. This is achieved
by matching the distributions of the transformed
source language embeddings and target ones via
adversarial training. The success of our approach
signifies the existence of universal lexical seman-
tic structure across languages. Our work also
opens up opportunities for the processing of ex-
tremely low-resource languages and domains that
lack parallel data completely.

Our work is likely to benefit from advances in
techniques that further stabilize adversarial train-
ing. Future work also includes investigating other
divergences that adversarial training can minimize
(Nowozin et al., 2016), and broader mathematical
tools that match distributions (Mohamed and Lak-
shminarayanan, 2016).

Acknowledgments

We thank the anonymous reviewers for their help-
ful comments. This work is supported by the Na-
tional Natural Science Foundation of China (No.
61522204), the 973 Program (2014CB340501),
and the National Natural Science Foundation of
China (No. 61331013). This research is also
supported by the Singapore National Research
Foundation under its International Research Cen-
tre@Singapore Funding Initiative and adminis-
tered by the IDM Programme.

1967

References
Waleed Ammar, George Mulcaire, Yulia Tsvetkov,

Guillaume Lample, Chris Dyer, and Noah A.
Smith. 2016. Massively Multilingual Word Embed-
dings. arXiv:1602.01925 [cs] http://arxiv.org/abs/
1602.01925.

Martin Arjovsky and Léon Bottou. 2017. Towards
Principled Methods For Training Generative Ad-
versarial Networks. In ICLR. http://arxiv.org/abs/
1701.04862.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2016. Learning principled bilingual mappings of
word embeddings while preserving monolingual
invariance. In EMNLP. http://aclanthology.info/
papers/learning-principled-bilingual-mappings-of-
word-embeddings-while-preserving-monolingual-
invariance.

Antonio Valerio Miceli Barone. 2016. Towards cross-
lingual distributed representations without paral-
lel text trained with adversarial autoencoders. In
Proceedings of the 1st Workshop on Representa-
tion Learning for NLP. https://doi.org/10.18653/v1/
W16-1614.

Chris M. Bishop. 1995. Training with Noise is Equiv-
alent to Tikhonov Regularization. Neural Comput.
https://doi.org/10.1162/neco.1995.7.1.108.

Hailong Cao, Tiejun Zhao, Shu Zhang, and Yao
Meng. 2016. A Distribution-based Model to
Learn Bilingual Word Embeddings. In COL-
ING. http://aclanthology.info/papers/a-distribution-
based-model-to-learn-bilingual-word-embeddings.

Sarath Chandar A P, Stanislas Lauly, Hugo Larochelle,
Mitesh Khapra, Balaraman Ravindran, Vikas C
Raykar, and Amrita Saha. 2014. An Autoen-
coder Approach to Learning Bilingual Word
Representations. In NIPS. http://papers.nips.cc/
paper/5270-an-autoencoder-approach-to-learning-
bilingual-word-representations.pdf.

Xilun Chen, Yu Sun, Ben Athiwaratkun, Claire
Cardie, and Kilian Weinberger. 2016. Adversarial
Deep Averaging Networks for Cross-Lingual Senti-
ment Classification. arXiv:1606.01614 [cs] http://
arxiv.org/abs/1606.01614.

Jocelyn Coulmance, Jean-Marc Marty, Guillaume
Wenzek, and Amine Benhalloum. 2015. Trans-
gram, Fast Cross-lingual Word-embeddings. In
EMNLP. http://aclanthology.info/papers/trans-
gram-fast-cross-lingual-word-embeddings.

Hal Daumé III and Jagadeesh Jagarlamudi. 2011. Do-
main adaptation for machine translation by mining
unseen words. In ACL-HLT . http://aclweb.org/
anthology/P11-2071.

Georgiana Dinu, Angeliki Lazaridou, and Marco Ba-
roni. 2015. Improving Zero-Shot Learning by Mit-
igating the Hubness Problem. In ICLR Workshop.
http://arxiv.org/abs/1412.6568.

Qing Dou and Kevin Knight. 2012. Large scale deci-
pherment for out-of-domain machine translation. In
EMNLP-CoNLL. http://aclweb.org/anthology/D12-
1025.

Qing Dou and Kevin Knight. 2013. Dependency-
Based Decipherment for Resource-Limited Machine
Translation. In EMNLP. http://aclanthology.info/
papers/dependency-based-decipherment-for-
resource-limited-machine-translation.

Qing Dou, Ashish Vaswani, Kevin Knight, and Chris
Dyer. 2015. Unifying Bayesian Inference and
Vector Space Models for Improved Decipherment.
In ACL-IJCNLP. http://www.aclweb.org/anthology/
P15-1081.

Long Duong, Hiroshi Kanayama, Tengfei Ma,
Steven Bird, and Trevor Cohn. 2016. Learning
Crosslingual Word Embeddings without Bilingual
Corpora. In EMNLP. http://aclanthology.info/
papers/learning-crosslingual-word-embeddings-
without-bilingual-corpora.

Manaal Faruqui and Chris Dyer. 2014. Improv-
ing Vector Space Word Representations Using
Multilingual Correlation. In EACL. http:/
/aclanthology.info/papers/improving-vector-
space-word-representations-using-multilingual-
correlation.

Pascale Fung and Percy Cheung. 2004. Mining Very-
Non-Parallel Corpora: Parallel Sentence and Lex-
icon Extraction via Bootstrapping and EM. In
EMNLP. http://aclweb.org/anthology/W04-3208.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan,
Pascal Germain, Hugo Larochelle, François Lavi-
olette, Mario Marchand, and Victor Lempitsky.
2016. Domain-Adversarial Training of Neural Net-
works. Journal of Machine Learning Research http:/
/jmlr.org/papers/v17/15-239.html.

Eric Gaussier, J.M. Renders, I. Matveeva, C. Goutte,
and H. Dejean. 2004. A Geometric View on Bilin-
gual Lexicon Extraction from Comparable Corpora.
In ACL. https://doi.org/10.3115/1218955.1219022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In NIPS. http://papers.nips.cc/
paper/5423-generative-adversarial-nets.pdf.

Stephan Gouws, Yoshua Bengio, and Greg Cor-
rado. 2015. BilBOWA: Fast Bilingual Dis-
tributed Representations without Word Alignments.
In ICML. http://jmlr.org/proceedings/papers/v37/
gouws15.html.

Stephan Gouws and Anders Søgaard. 2015. Sim-
ple task-specific bilingual word embeddings. In
NAACL-HLT . http://www.aclweb.org/anthology/
N15-1157.

1968

Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick,
and Dan Klein. 2008. Learning Bilingual Lexi-
cons from Monolingual Corpora. In ACL-HLT .
http://aclanthology.info/papers/learning-bilingual-
lexicons-from-monolingual-corpora.

Di He, Yingce Xia, Tao Qin, Liwei Wang, Nenghai
Yu, Tieyan Liu, and Wei-Ying Ma. 2016. Dual
Learning for Machine Translation. In NIPS.
http://papers.nips.cc/paper/6469-dual-learning-for-
machine-translation.pdf.

Karl Moritz Hermann and Phil Blunsom. 2014.
Multilingual Distributed Representations without
Word Alignment. In ICLR. http://arxiv.org/abs/
1312.6173.

Ann Irvine and Chris Callison-Burch. 2013. Combin-
ing bilingual and comparable corpora for low re-
source machine translation. In Proceedings of the
Eighth Workshop on Statistical Machine Transla-
tion. http://aclweb.org/anthology/W13-2233.

Diederik Kingma and Jimmy Ba. 2014. Adam:
A Method for Stochastic Optimization.
arXiv:1412.6980 [cs] http://arxiv.org/abs/
1412.6980.

Philipp Koehn and Kevin Knight. 2002. Learning a
Translation Lexicon from Monolingual Corpora. In
ACL Workshop on Unsupervised Lexical Acquisi-
tion. https://doi.org/10.3115/1118627.1118629.

Tomáš Kočiský, Karl Moritz Hermann, and Phil
Blunsom. 2014. Learning Bilingual Word Repre-
sentations by Marginalizing Alignments. In ACL.
http://aclanthology.info/papers/learning-bilingual-
word-representations-by-marginalizing-alignments.

Angeliki Lazaridou, Georgiana Dinu, and Marco Ba-
roni. 2015. Hubness and Pollution: Delving
into Cross-Space Mapping for Zero-Shot Learning.
In ACL-IJCNLP. https://doi.org/10.3115/v1/P15-
1027.

Ang Lu, Weiran Wang, Mohit Bansal, Kevin Gimpel,
and Karen Livescu. 2015. Deep Multilingual
Correlation for Improved Word Embeddings. In
NAACL-HLT . http://aclanthology.info/papers/
deep-multilingual-correlation-for-improved-word-
embeddings.

Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Bilingual Word Representa-
tions with Monolingual Quality in Mind. In
Proceedings of the 1st Workshop on Vector
Space Modeling for Natural Language Process-
ing. http://aclanthology.info/papers/bilingual-word-
representations-with-monolingual-quality-in-mind.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly,
Ian Goodfellow, and Brendan Frey. 2015. Adver-
sarial Autoencoders. arXiv:1511.05644 [cs] http://
arxiv.org/abs/1511.05644.

Zakaria Mhammedi, Andrew Hellicar, Ashfaqur Rah-
man, and James Bailey. 2016. Efficient Orthogo-
nal Parametrisation of Recurrent Neural Networks
Using Householder Reflections. arXiv:1612.00188
[cs] http://arxiv.org/abs/1612.00188.

Tomas Mikolov, Quoc V Le, and Ilya Sutskever. 2013a.
Exploiting Similarities among Languages for Ma-
chine Translation. arXiv:1309.4168 [cs] http://
arxiv.org/abs/1309.4168.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013b. Distributed
Representations of Words and Phrases and their
Compositionality. In NIPS. http://papers.nips.cc/
paper/5021-distributed-representations-of-words-
and-phrases-and-their-compositionality.pdf.

Shakir Mohamed and Balaji Lakshminarayanan.
2016. Learning in Implicit Generative Mod-
els. arXiv:1610.03483 [cs, stat] http://arxiv.org/abs/
1610.03483.

Sebastian Nowozin, Botond Cseke, and Ryota
Tomioka. 2016. f-GAN: Training Generative Neural
Samplers using Variational Divergence Minimiza-
tion. arXiv:1606.00709 [cs, stat] http://arxiv.org/
abs/1606.00709.

Takamasa Oshikiri, Kazuki Fukui, and Hidetoshi Shi-
modaira. 2016. Cross-Lingual Word Representa-
tions via Spectral Graph Embeddings. In ACL.
https://doi.org/10.18653/v1/P16-2080.

Alec Radford, Luke Metz, and Soumith Chintala.
2015. Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Net-
works. arXiv:1511.06434 [cs] http://arxiv.org/abs/
1511.06434.

Reinhard Rapp. 1999. Automatic Identification of
Word Translations from Unrelated English and Ger-
man Corpora. In ACL. https://doi.org/10.3115/
1034678.1034756.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved Techniques for Training GANs. In
NIPS. http://papers.nips.cc/paper/6125-improved-
techniques-for-training-gans.pdf.

Tianze Shi, Zhiyuan Liu, Yang Liu, and Maosong Sun.
2015. Learning Cross-lingual Word Embeddings
via Matrix Co-factorization. In ACL-IJCNLP. http:/
/aclanthology.info/papers/learning-cross-lingual-
word-embeddings-via-matrix-co-factorization.

Samuel Smith, David Turban, Steven Hamblin, and
Nils Hammerla. 2017. Offline bilingual word vec-
tors, orthogonal transformations and the inverted
softmax. In ICLR. http://arxiv.org/abs/1702.03859.

Casper Kaae Sønderby, Jose Caballero, Lucas Theis,
Wenzhe Shi, and Ferenc Huszár. 2016. Amor-
tised MAP Inference for Image Super-resolution.
arXiv:1610.04490 [cs, stat] http://arxiv.org/abs/
1610.04490.

1969

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Net-
works from Overfitting. Journal of Machine
Learning Research http://www.jmlr.org/papers/v15/
srivastava14a.html.

Stephanie Strassel and Jennifer Tracey. 2016.
LORELEI Language Packs: Data, Tools, and
Resources for Technology Development in Low
Resource Languages. In LREC. http://www.lrec-
conf.org/proceedings/lrec2016/pdf/1138 Paper.pdf.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and
Dan Roth. 2016. Cross-lingual Models of Word Em-
beddings: An Empirical Comparison. In ACL. http:/
/aclanthology.info/papers/cross-lingual-models-of-
word-embeddings-an-empirical-comparison.

Laurens Van der Maaten, Minmin Chen, Stephen
Tyree, and Kilian Weinberger. 2013. Learn-
ing with Marginalized Corrupted Features. In
ICML. http://www.jmlr.org/proceedings/papers/
v28/vandermaaten13.html.

Ivan Vulić and Anna Korhonen. 2016. On the Role
of Seed Lexicons in Learning Bilingual Word
Embeddings. In ACL. http://aclanthology.info/
papers/on-the-role-of-seed-lexicons-in-learning-
bilingual-word-embeddings.

Ivan Vulić and Marie-Francine Moens. 2013. Cross-
Lingual Semantic Similarity of Words as the
Similarity of Their Semantic Word Responses.
In NAACL-HLT . http://aclanthology.info/papers/
cross-lingual-semantic-similarity-of-words-as-the-
similarity-of-their-semantic-word-responses.

Ivan Vulić and Marie-Francine Moens. 2015.
Bilingual Word Embeddings from Non-Parallel
Document-Aligned Data Applied to Bilin-
gual Lexicon Induction. In ACL-IJCNLP.
http://aclanthology.info/papers/bilingual-word-
embeddings-from-non-parallel-document-aligned-
data-applied-to-bilingual-lexicon-induction.

Ivan Vulić, Wim De Smet, and Marie-Francine
Moens. 2011. Identifying Word Translations from
Comparable Corpora Using Latent Topic Models.
In ACL-HLT . http://aclanthology.info/papers/
identifying-word-translations-from-comparable-
corpora-using-latent-topic-models.

Stefan Wager, Sida Wang, and Percy S Liang. 2013.
Dropout Training as Adaptive Regularization. In
NIPS. http://papers.nips.cc/paper/4882-dropout-
training-as-adaptive-regularization.pdf.

Michael Wick, Pallika Kanani, and Adam Pocock.
2016. Minimally-Constrained Multilingual Em-
beddings via Artificial Code-Switching. In
AAAI. http://www.aaai.org/Conferences/AAAI/
2016/Papers/15Wick12464.pdf.

Chao Xing, Dong Wang, Chao Liu, and Yiye Lin.
2015. Normalized Word Embedding and Orthog-
onal Transform for Bilingual Word Translation.
In NAACL-HLT . http://aclanthology.info/papers/
normalized-word-embedding-and-orthogonal-
transform-for-bilingual-word-translation.

Hyejin Youn, Logan Sutton, Eric Smith, Cristopher
Moore, Jon F. Wilkins, Ian Maddieson, William
Croft, and Tanmoy Bhattacharya. 2016. On the uni-
versal structure of human lexical semantics. Pro-
ceedings of the National Academy of Sciences
https://doi.org/10.1073/pnas.1520752113.

Meng Zhang, Yang Liu, Huanbo Luan, Yiqun
Liu, and Maosong Sun. 2016a. Inducing Bilin-
gual Lexica From Non-Parallel Data With Earth
Mover’s Distance Regularization. In COLING.
http://aclanthology.info/papers/inducing-bilingual-
lexica-from-non-parallel-data-with-earth-mover-s-
distance-regularization.

Meng Zhang, Haoruo Peng, Yang Liu, Huanbo Luan,
and Maosong Sun. 2017. Bilingual Lexicon Induc-
tion From Non-Parallel Data With Minimal Super-
vision. In AAAI. http://thunlp.org/˜zm/publications/
aaai2017.pdf.

Yuan Zhang, David Gaddy, Regina Barzilay, and
Tommi Jaakkola. 2016b. Ten Pairs to Tag –
Multilingual POS Tagging via Coarse Map-
ping between Embeddings. In NAACL-HLT .
http://aclanthology.info/papers/ten-pairs-to-tag-
multilingual-pos-tagging-via-coarse-mapping-
between-embeddings.

Will Y. Zou, Richard Socher, Daniel Cer, and
Christopher D. Manning. 2013. Bilingual Word
Embeddings for Phrase-Based Machine Transla-
tion. In EMNLP. http://aclanthology.info/papers/
bilingual-word-embeddings-for-phrase-based-
machine-translation.

1970

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1971–1982
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1180

Estimating Code-Switching on Twitter with a Novel Generalized
Word-Level Language Detection Technique

Shruti Rijhwani∗
Language Technologies Institute

Carnegie Mellon University
srijhwan@cs.cmu.edu

Royal Sequiera∗
University of Waterloo

Waterloo, Canada
rdsequie@uwaterloo.ca

Monojit Choudhury Kalika Bali Chandra Sekhar Maddila
Microsoft Research

Bangalore, India
{monojitc,kalikab,chmaddil}@microsoft.com

Abstract

Word-level language detection is neces-
sary for analyzing code-switched text,
where multiple languages could be mixed
within a sentence. Existing models are
restricted to code-switching between two
specific languages and fail in real-world
scenarios as text input rarely has a priori
information on the languages used. We
present a novel unsupervised word-level
language detection technique for code-
switched text for an arbitrarily large num-
ber of languages, which does not require
any manually annotated training data. Our
experiments with tweets in seven lan-
guages show a 74% relative error reduc-
tion in word-level labeling with respect to
competitive baselines. We then use this
system to conduct a large-scale quanti-
tative analysis of code-switching patterns
on Twitter, both global as well as region-
specific, with 58M tweets.

1 Introduction

In stable multilingual societies, communication
often features fluid alteration between two or
more languages – a phenomenon known as
code-switching1 (Gumperz, 1982; Myers-Scotton,
1993). It has been studied extensively in linguis-
tics, primarily as a speech phenomenon (Poplack,
1980; Gumperz, 1982; Myers-Scotton, 1993; Mil-
roy and Muysken, 1995; Auer, 2013). How-
ever, the growing popularity of computer mediated

∗* This work was done when the authors were affiliated
with Microsoft Research.

1This paper uses the terms ‘code-switching’ and ‘code-
mixing’ interchangeably.

communication, particularly social media, has re-
sulted in language data in the text form which
exhibits code-switching, among other speech-
like characteristics (Crystal, 2001; Herring, 2003;
Danet and Herring, 2007; Cardenas-Claros and
Isharyanti, 2009). With the large amount of online
content generated by multilingual users around the
globe, it becomes necessary to design techniques
to analyze mixed language, which can help not
only in developing end-user applications, but also
in conducting fundamental sociolinguistic studies.

Language detection (LD) is a prerequisite to
several NLP techniques. Most state-of-the-art LD
systems detect a single language for an entire doc-
ument or sentence. Such methods often fail to
detect code-switching, which can occur within a
sentence. In recent times, there has been some
effort to build word-level LD for code-switching
between a specific pair of languages (Nguyen and
Dogruöz, 2013; Elfardy et al., 2013; Solorio et al.,
2014; Barman et al., 2014). However, usually
user-generated text (e.g., on social media) has no
prior information of the languages being used.
Further, as several previous social-media based
studies on multilingualism have pointed out (Kim
et al., 2014; Manley, 2012), lack of general word-
level LD has been a bottleneck in studying code-
switching patterns in multilingual societies.

This paper proposes a novel technique for word-
level LD that generalizes to an arbitrarily large set
of languages. The method does not require a pri-
ori information on the specific languages (poten-
tially more than two) being mixed in an input text
as long as the languages are from a fixed (arbitrar-
ily large) set. Training is done without any man-
ually annotated data, while achieving accuracies
comparable to language-restricted systems trained

1971

https://doi.org/10.18653/v1/P17-1180

with large amounts of labeled data. With a word-
level LD accuracy of 96.3% on seven languages,
this technique enabled us to analyze patterns of
code-switching on Twitter, which is the second
key contribution of this paper. To the best of our
knowledge, this is the first quantitative study of its
kind, particularly at such a large-scale.

2 Related Work

In this section, we will briefly survey the language
detection techniques (see Hughes et al. (2006) and
Garg et al. (2014) for comprehensive surveys),
and sociolinguistic studies on multilingualism (see
Nguyen et al. (2016) for a detailed survey) that
were enabled by these techniques.

Early work on LD (Cavnar and Trenkle, 1994;
Dunning, 1994) focused on detecting a single
language for an entire document. These ob-
tained high accuracies on well-formed text (e.g.,
news articles), which led to LD being consid-
ered solved (McNamee, 2005). However, there
has been renewed interest with the amount of
user-generated content on the web. Such text
poses unique challenges such as short length,
misspelling, idiomatic expressions and acronyms
(Carter et al., 2013; Goldszmidt et al., 2013). Xia
et al. (2009), Tromp and Pechenizkiy (2011) and
Lui and Baldwin (2012) created LD systems for
monolingual sentences, web pages and tweets.
Zhang et al. (2016) built an unsupervised model to
detect the majority language in a document. There
has also been document-level LD that assigns mul-
tiple language to each document (Prager, 1999;
Lui et al., 2014). However, documents were syn-
thetically generated, restricted to inter-sentential
language mixing. Also, these models do not frag-
ment the document based on language, making
language-specific analysis impossible.

Document-level or sentence-level LD does not
identify code-switching accurately, which can oc-
cur within a sentence. Word-level LD systems
attempt to remedy this problem. Most work has
been restricted to cases where two languages,
known a priori, is to be detected in the input i.e,
binary LD at the word-level. There has been
work on Dutch-Turkish (Nguyen and Dogruöz,
2013), English-Bengali (Das and Gambäck, 2014)
and Standard and dialectal Arabic (Elfardy et al.,
2013). King and Abney (2013) address word-
level LD for bilingual documents in 30 language
pairs, where the language pair is known a pri-

ori. The features for word-level LD proposed
by Al-Badrashiny and Diab (2016) are language-
independent, however, at any given time, the
model is only trained to tag a specific language
pair. There have also been two shared task se-
ries on word-level LD: FIRE (Roy et al., 2013;
Choudhury et al., 2014; Sequiera et al., 2015) fo-
cused on Indian languages and the EMNLP Code-
Switching Workshop (Solorio et al., 2014; Molina
et al., 2016). These pairwise LD methods vary
from dictionary-based to completely supervised
and semi-supervised. None tackle the imminent
lack of annotated data required for scaling to more
than one language pair.

There has been little research on word-level LD
that is not restricted to two languages. Ham-
marström (2007) proposed a model for multi-
lingual LD for short texts like queries. Gella
et al. (2014) designed an algorithm for word-
level LD across 28 languages. Jurgens et al.
(2017) use an encoder-decoder architecture for
word-level LD that supports dialectal variation
and code-switching. However, these studies ex-
periment with synthetically created multilingual
data, constrained either by the number of lan-
guage switches permitted or to phrase-level code-
switching, and are not equipped to handle the chal-
lenges posed by real-world code-switching.

Using tweet-level LD systems like the Com-
pactLanguageDetector2, there have been studies
on multilingualism in specific cities like Lon-
don (Manley, 2012) and Manchester (Bailey et al.,
2013). These studies, as well as Bergsma
et al. (2012), observe that existing LD systems fail
on code-switched text. Kim et al. (2014) studied
the linguistic behavior of bilingual Twitter users
from Qatar, Switzerland and Québec, and also ac-
knowledge that code-switching could not be stud-
ied due to the absence of appropriate LD tools.

Using word-level LD for English-Hindi (Gella
et al., 2013), Bali et al. 2014 observed that as
much as 17% of Indian Facebook posts had code-
switching, and Rudra et al. (2016) showed that the
native language is strongly preferred for express-
ing negative sentiment by English-Hindi bilin-
guals on Twitter. However, without accurate mul-
tilingual word-level LD, there have been no large-
scale studies on the extent and distribution of
code-switching across various communities.

2https://www.npmjs.com/package/cld

1972

3 Generalized Word-level LD

We present Generalized Word-Level Language
Detection, or GWLD, where:

• The number of supported languages can be
arbitrarily large

• Any number of the supported languages can
be mixed within a single input

• The languages in the input do not need to be
known a priori

• Any number of language switches are al-
lowed in the input.

• No manual annotation is required for training

Formalizing our model, let w = wi=1...n be a
natural language text consisting of a sequence of
words, w1 to wn. For our current work, we define
words to be whitespace-separated tokens (details
in Sec 5). Let L = {l1, l2, . . . , lk} be a set of k
natural languages. We assume that each wi can be
assigned to a unique language lj ∈ L.

We also define universal tokens like numbers,
emoticons, URLs, emails and punctuation, which
do not belong to any specific natural language.
Certain strings of alphabetic characters represent-
ing generic interjections or sounds, such as oh,
awww, zzz also fall in this category. For label-
ing these tokens, we use an auxiliary set of labels,
XL = {xl1, xl2, . . . , xlk}. Labeling each univer-
sal token with a specific language li (using xli) in-
stead of generically labeling all such tokens xl al-
lows preserving linguistic context when a memo-
ryless model like Hidden Markov Models (HMM)
are used for tagging. Further, various NLP tasks
on might require the input text, including these
universal tokens, to be split by language.

For input w, let the output from the LD system
be y = yi=1...n, a sequence of labels, where yi ∈
L ∪ XL. yi = lj if and only if, in the context of
w, wi is a word from lj . If wi is a universal token,
yi = xlj , when yi−1 = lj or yi−1 = xlj . If w1 is a
universal token, y1 = xlj , where lj is the label of
the first token ∈ L in the input.

Fig. 1 shows a few examples of labeled code-
switched tweets. Named entities (NE) are as-
signed labels according to the convention used by
King and Abney (2013).

4 Method

Word-level LD is essentially a sequence labeling
task. We use a Hidden Markov Model (HMM),

though any other sequence labeling technique,
e.g., CRFs, can be used as well.

The intuition behind the model architecture is
simple – a person who is familiar with k lan-
guages can easily recognize (and also understand)
the words when any of those languages are code-
switched, even if s/he has never seen any mixed
language text before. Analogously, is it possi-
ble that monolingual language models, when com-
bined, can identify code-switched text accurately?

Imagine we have k HMMs, where the ith HMM
has two states li and xli. Each state can label a
word. The HMMs are independent, but they are
tied to a common start state s and end state e,
forming a word-level LD model for monolingual
text in one of the k languages. Now, we make
transitions from li → lj possible, where i 6= j.
This HMM, shown in Fig. 2, is capable of gen-
erating and consequently, labeling code-switched
text between any of the k languages. The solid
and dotted lines show monolingual transitions and
the added code-switching transitions respectively.
Fig. 2 depicts three languages, however, the num-
ber of languages can be arbitrarily large.

Obtaining word-level annotated monolingual
and code-switched data is expensive and nearly in-
feasible for a large number of languages. Instead,
we automatically create weakly-labeled monolin-
gual text (setW) and use it to initialize the HMM
parameters. We then use Baum-Welch reestima-
tion on unlabeled data (set U) that has monolin-
gual and code-switched text in their natural distri-
bution. Sec. 5 discusses creation ofW and U .

4.1 Structure, Initialization and Learning

The structure of the HMM shown in Fig. 2 can be
formally described using:

• Set of states, S = s ∪ L ∪ XL ∪ e
• Set of observations, O
• Emission matrix (|S| × |O|)
• Transition matrix (|S| × |S|)

O consists of all seen events in the data, and
a special symbol unk for all unseen events. We
define an event as a token n-gram and we experi-
mented with n = 1 to 3. It is important to men-
tion that the n-grams do not spread over language
states. We also use special start and end symbols,
which are observed at states s and e respectively.
Elements of O are effectively what the states of
the HMM ‘emit’ or generate during decoding.

1973

Ex(1): no\l2 me\l2 lebante\l2 ahorita\l2 cuz\l1 I\l1 felt\l1 como\l2 si\l2 me\l2
kemara\l2 por\l2 dentro\l2 !\xl2 :o\xl2 Then\l1 I\l1 started\l1 getting\l1
all\l1 red\l1 ,\xl1 I\l1 think\l1 im\l1 allergic\l1 a\l2 algo\l2

Ex(2): @XXXXX\xl3 @XXXXX\xl3 :)\xl3 :)\xl3 :)\xl3 :)\xl3 hahahahah\xl3 alles\l3
is\l3 3D\xl3 voor\l3 mama\l4 hatta\l4 4D\xl4 :P\xl4 :P\xl4 :P\xl4 :P\xl4
Havva\l4 &\xl4 Yusuf\l4 olunca\l4 misafir\l4 fln\l4 dinlemez\l4 !!\xl4

Figure 1: Examples of code-switched tweets and the corresponding language labels. l1 = English, l2 =
Spanish, l3 = Dutch, l4 = Turkish. Usernames have been anonymized.

Figure 2: GWLD Hidden Markov Model. s→ xli
and li → e transitions omitted for clarity.

For any input, the HMM always starts in the
state s. The parameters to be learned are the tran-
sition and emission matrices.

We initialize these matrices using W . The tri-
gram, bigram and unigram word counts from the
data for each language in W are used to create
language models (LM) with modified Kneser-Ney
smoothing (Chen and Goodman, 1999). The emis-
sion values for state li are initialized with the re-
spective LM probabilities for all seen n-grams.
We also assign a small probability to unk. The
emissions for the xli state are initialized using the
counts of universal tokens for the language li in
W . These are identified using the preprocessing
techniques discussed in Sec. 5.1.

Possible transitions for each monolingual HMM
are li → li, li → xli and xli → li. We do not
have the xli → xli transition, because preprocess-
ing (Sec. 5.1) concatenates successive universal
tokens into a single token. This does not change
the output as the tokens can easily be separated af-
ter LD, but is a useful simplification for the model.
The transition values for li are initialized by the
probability of transitions between words and uni-
versal tokens in the text fromW .

As stated earlier, the model supports code-
switching by the addition of transitions li → lj ,
and xli → lj , for all i 6= j. For each state li, there
are 2k − 2 new transitions (Fig. 2). We initial-
ize these news edges with a small probability π,
before normalizing transitions for each state. π,
which we call the code-switch probability, is a hy-
perparameter tuned on a validation set.

Starting with the initialized matrices, we rees-
timate the transition and emission matrices using
the EM-like Baum-Welch algorithm (Welch, 2003)
over the large set of unlabeled text U .

4.2 Decoding

The input to the trained model is first preprocessed
as described in Sec. 5.1 (tokenization and identifi-
cation of universal tokens). The Viterbi algorithm
is then used with the HMM parameters to perform
word-level LD. When an unknown n-gram, is en-
countered, its emission probability is estimated by
recursively backing off to (n − 1)-gram, until we
find a known n-gram. If the unigram, i.e., the to-
ken, is also unknown, then the observation of the
symbol unk is used instead.

5 Dataset Creation

The data for both training and testing comes pri-
marily from Twitter because of its public API,
and studies have shown the presence of code-
switching in social media (Crystal, 2001; Herring,
2003; Danet and Herring, 2007; Cardenas-Claros
and Isharyanti, 2009; Bali et al., 2014).

Our experiments use monolingual and code-
switched tweets in seven languages – Dutch (nl),
English (en), French (fr), German (de), Portuguese
(pt), Spanish (es) and Turkish (tr). These form the
set L. The choice of languages is motivated by
several factors. First, LD is non-trivial as all these
languages use the Latin script. Second, a large
volume of tweets are generated in these languages.

1974

Third, there is annotated code-switched data avail-
able in nl-tr and en-es, which can be used for val-
idation and testing. Lastly, we know that certain
pairs of these languages are code-switched often.

5.1 Collection and Preprocessing
Using the Twitter API (Twitter, 2013), we col-
lected tweets over May-July 2015. We selected
tweets identified by Twitter LD API (Twitter,
2015) as one of the languages in L. We also re-
moved non-Latin script tweets.

As preprocessing, each tweet is first tokenized
using ark-twitter (Gimpel et al., 2011) and URLs,
hashtags and user mentions are identified using
regular expressions. We also identify emoticons,
punctuation, digits, special characters, and some
universal interjections and abbreviations (such as
RT, aww) as universal tokens. We use an existing
dictionary (Chittaranjan et al., 2014) for the latter.
Let the set of tweets after preprocessing be T .

5.2 SetsW and U
We use the COVERSET algorithm (Gella et al.,
2014) on each tweet in T . It obtains a confidence
score for a word wi belonging to a language lj us-
ing a Naive Bayes classifier trained on Wikipedia.
These scores are used to find the minimal set of
languages are required to label all the input words.
If COVERSET detects the tweet as monolingual
(i.e., one language can label all words) and the
identified language is the same as the Twitter LD
label, the tweet is added to the weakly-labeled set
W . These tweets are almost certainly monolin-
gual, as COVERSET has very high recall (and low
precision) for detecting code-switching. As these
are not manually labeled, we call them weakly-
labeled. W contains 100K tweets in each lan-
guage (700K in total).

From T , we randomly select 100K tweets in
each of the seven languages based on the Twitter
LD API labels. These tweets do not have word-
level language labels and may be code-switched
or have an incorrect Twitter language label. We
use these as unlabeled data, the set U .

5.3 Validation and Test Sets
We curate two word-level gold-standard datasets
for validation and testing. These sets contain
monolingual tweets in each of the seven languages
as well as code-switched tweets from certain lan-
guage pairs, based on the availability of real-world
data. However, it must be noted that GWLD can

L1-L2 Tweets L1 Tokens L2 Tokens
nl 100 (100) 965 (1099) –
fr 100 (102) 1085 (1045) –
pt 100 (100) 1080 (967) –
de 101 (100) 1078 (890) –
tr 100 (100) 939 (879) –
es 100 (100) 1067 (1119) –
en 100 (100) 1161 (1006) –
nl-en 65 (50) 498 (436) 243 (174)
fr-en 50 (48) 428 (370) 224 (227)
pt-en 53 (53) 463 (513) 278 (242)
de-en 49 (50) 417 (459) 293 (292)
tr-en 50 (50) 347 (336) 238 (209)
es-en 3013 (52) 8510 (355) 16356 (395)
nl-tr 735 (728) 5895 (8590) 5293 (8140)

Table 1: Test Set Statistics (Validation Set in
parentheses). Rows in gray show existing datasets.

detect code-switching between more than two lan-
guages. The language-wise distribution is shown
in Table 1. Including universal tokens, the valida-
tion and test set contain 33981 and 58221 tokens
respectively. The annotated tweets will be made
available for public use.

For es-en, we use the word-level annotated test
set from the code-switching shared task on lan-
guage detection (Solorio et al., 2014). We ignore
the tokens labeled NE, Ambiguous and Mixed dur-
ing our system evaluation (Sec. 6), as they do not
fall in the scope of this work. The words labeled
‘Other’ were marked as xli where li is en or es,
based on the context. We also use existing nl-
tr validation and test sets (Nguyen and Dogruöz,
2013), which contain posts from a web forum.

For the other language pairs, we created our
own validation and test sets, as none already ex-
ist. We randomly selected tweets for which CO-
VERSET identified code-switching with high con-
fidence. We gave 215 of these to six annotators
for word-level annotation. It is difficult to find
annotators who know all seven languages; elabo-
rate guidelines were provided on using online ma-
chine translation, dictionaries and search engines
for the task. Four out of the six annotators had
high inter-annotator agreement – the agreement on
L1 (language that the majority of the words in the
tweet belong to) was 0.93, L2 (the other language,
whenever present) was 0.8 and whether the tweet
is code-switched was 0.84. We did not find any in-
stances of code-switching between more than two

1975

Systems Acc L1L2Acc IsMix
Dictionary-based Baselines
MAXFREQ 0.824 0.752 0.600
MINCOVER 0.853 0.818 0.733
Existing Systems
LINGUINI NA 0.529 0.783
LANGID NA 0.830 0.783
POLYGLOT NA 0.521 0.692
GWLD: The Proposed Method
Initial 0.838 0.825 0.837
Reestimated 0.963 0.914 0.88

Table 2: Performance of LD Systems on Test Set

languages, which is rare in general. We distributed
3000 tweets between the four annotators (mono-
lingual and code-switched tweets from COVER-
SET). Disagreements were settled between the an-
notators and a linguist. A subset of the annotated
tweets form the validation and test sets (Table 1),
and were removed fromW and U .

6 Experiments and Results

We compare GWLD with three existing systems:
LINGUINI (Prager, 1999), LANGID (Lui and Bald-
win, 2012), and POLYGLOT (Lui et al., 2014).
None of these perform word-level LD, however,
LANGID and POLYGLOT return a list of languages
with confidence scores for the input. Since code-
switching with more than two languages is absent
in our dataset, we consider up to two language la-
bels. We define the tweet to be monolingual if the
difference between the confidence values for the
top two languages is greater than a parameter δ.
Otherwise, it is assumed to be code-switched with
the top two languages. δ is tuned independently
for the two LD systems on the validation set by
maximizing the metric L1L2 Accuracy (Sec. 6.2).
Inspired by Gella et al. (2013), we also compare
with dictionary-based word-level LD baselines.

6.1 Dictionary-based Baselines

For each language, we build a lexicon of all the
words and their frequencies found in W for that
language. Let the lexicon for language li ∈ L be
lexi. Let f(lexi, wj) be the frequency of wj in
lexi. We define the following baselines:

MAXFREQ: For each wj in w, MAXFREQ re-
turns lexi that has the maximum frequency for
that token. Therefore, the language label for wj is
yj = l[argmaxi f(lexi,wj)]. If the token is not found

in any lexicon, yj is assigned the value of yj−1.
MINCOVER: We find the smallest subset

mincov(w) ⊂ L, such that for all wj in input w,
we have at least one language li ∈ mincov(w)
with f(lexi, wj) > 0. If there is no such lan-
guage, then wj is not considered while comput-
ing mincov(w). Once mincov(w) is obtained,
labels yi are computed using the MAXFREQ strat-
egy, where the set of languages is restricted to
mincov(w) instead of L. Note that mincov(w)
need not be unique for w; in such cases, we choose
the mincov(w) which maximizes the sum of lex-
ical frequencies based on MAXFREQ labels.

6.2 Metrics
We define the Accuracy (Acc) of an LD system as
the fraction of words in the test set that are labeled
correctly. Since the existing LD systems do not
label languages at word-level, we also define:

IsMix is the fraction of tweets that are correctly
identified as either monolingual or code-mixed.
L1L2 Accuracy (L1L2Acc) is the mean accu-

racy of detecting language(s) at tweet-level. For
monolingual tweets, this accuracy is 1 if the gold
standard label is detected by the LD system, else
0. For code-switched tweets, the accuracy is 1 if
both languages are detected, 0.5 if one language is
detected, and 0 otherwise. L1L2Acc is the average
over all test set tweets.

6.3 Results
We use these metrics to assess performance on the
test set for the baselines, existing LD systems and
GWLD (Table 2). Initial refers to the HMM model
estimated from W and Reestimated refers to the
final model after Baum-Welch reestimation. The
parameter π is tuned on the validation set using
grid search. Reestimated GWLD has the best ac-
curacy of 0.963 and performs significantly better
than all the other systems for all metrics. Reesi-
matation improves the word-levelAcc for L1 from
0.89 to 0.97 and for L2 from 0.43 to 0.82. LIN-
GUINI and POLYGLOT likely have low L1L2Acc
because they are trained on synthetically-created
documents with no word-level code-switching.

Since our test set contains pre-existing anno-
tations for en-es (Solorio et al., 2014) and nl-tr
(Nguyen and Dogruöz, 2013), we compare with
state-of-the-art results on those datasets. On en-es
tokens, Al-Badrashiny and Diab (2016) reports an
F1-score of 0.964; GWLD obtains 0.978. Nguyen
and Dogruöz (2013) report 0.976 Acc on the nl-tr

1976

(a) (b)

Figure 3: Acc versus Dataset Parameters

Figure 4: Acc versus Number of Languages

test set. We obtain a less competitive 0.936. How-
ever, when errors between nl-en are ignored as
most of these are en words with nl gold-standard
labels (convention followed by the dataset cre-
ators), the revised Acc is 0.963. Notably, unlike
GWLD, both these models use large amounts of
annotated data for training and are restricted to de-
tecting only two languages.

Error Analysis: GWLD sometimes detects lan-
guages that are not present in the tweet, which ac-
count for a sizable fraction (39%) of all word-level
errors. Not detecting a language switch causes
8% of the errors. Most other errors are caused by
named entities, single-letter tokens, unseen words
and the nl-en annotation convention in the test set
from Nguyen and Dogruöz (2013).

6.4 Robustness of GWLD

We test the robustness of GWLD by varying
the size of the weakly-labeled set, the unlabeled
dataset and the number of languages the model is
trained to support.

6.4.1 Size ofW and U
The variation of Acc with the size ofW is shown
in Figure 3a. Even with 0.25% of the set (250

L1-L2 Acc IsCM GWLD-Acc
nl-en 0.979 0.943 0.967
fr-en 0.982 0.948 0.969
pt-en 0.977 0.952 0.964
de-en 0.984 0.956 0.975
tr-en 0.985 0.984 0.983
es-en 0.954 0.929 0.978
nl-tr 0.975 0.907 0.936

Table 3: Statistics for Pairwise (col. 2 and 3) and
GWLD Systems

tweets for each li ∈ L), the model has accuracy of
nearly 0.96. A slow rise in accuracy is observed
as the number of tweets in W is increased. We
also experiment with varying the size of U . In
Figure 3a, we see that with 0.25% of U (around
1,400 randomly sampled tweets), the accuracy on
the test set is lower than 0.91. This quickly in-
creases with 10% of U . Thus, GWLD achieves
Acc comparable to existing systems with very lit-
tle weakly-labeled data (just 250 tweets per lan-
guage, which are easily procurable for most lan-
guages) and around 50,000 unlabeled tweets.

6.4.2 Noise inW
Since a small, but pure, W gives high accuracy
(Sec. 6.4.1), we evaluate how artificially intro-
duced noise affectsAcc. The noise introduced into
the W of each language comes uniformly from
the other six languages. Figure 3b shows how in-
creasing fractions of noise slowly degrades accu-
racy, with a steep drop to 0.11 accuracy at 90%
noise, where the tweets from each incorrect lan-
guage outnumber the correct language tweets. We
test this with a pairwise model as well, as noise
from a single language might have greater effect.
The accuracy falls to 0.36 at 50% noise (Fig. 3b).
At this point, W has an equal number of tweets
from each language and is essentially useless.

6.4.3 Number of languages
Pairwise Models: Table 3 details two perfor-
mance metrics (defined in Sec. 5.2) for our model
trained on only two languages and the correspond-
ing 7-language GWLD Acc for that language pair.
Incremental Addition of Languages: We test
Acc while incrementally adding languages to the
model in a random order (nl-en-pt-fr-de-es-tr).
Figure 4 shows the variation in Acc for nl-en, pt-
en and fr-en as more languages are added to the

1977

Figure 5: Worldwide distribution of monolingual
and CS tweets (left and right charts respectively)

Figure 6: Worldwide CS point distribution

model. Although there is a slight degradation, in
absolute terms, the accuracy remains very high.

7 Code-Switching on Twitter

The high accuracy and fast processing speed (the
current multithreaded implementation labels 2.5M
tweets per hour) of GWLD enables us to conduct
large-scale and reliable studies of CS patterns on
Twitter for the 7 languages. In this paper, we con-
duct two such studies. The first study analyzes
50M tweets from across the world to understand
the extent and broad patterns of switching among
these languages. In the second study, we ana-
lyze 8M tweets from 24 cities to gain insights into
geography-specific CS patterns.

7.1 Worldwide Code-Switching Trends

We collected 50 million unique tweets that were
identified by the Twitter LD API as one of the
7 languages. We place this constraint to avoid
tweets from unsupported languages during anal-
ysis. Figure 5 shows the overall language distribu-
tion, including the CS language-pair distribution.
Approximately 96.5% of the tweets are monolin-
gual, a majority of which are en (74%).

Around 3.5% of all tweets are code-switched.
Globally, en-es, en-fr and en-pt are the three most

commonly mixed pairs accounting for 21.5%,
20.8% and 18.4% of all CS tweets in our data re-
spectively. Interestingly, 85.4% of the CS tweets
have en as one of the languages; fr is the next
most popularly mixed language, with fr-es (3.2%),
fr-pt (1.2%) and fr-nl (0.6%) as the top three ob-
served pairs. Although around 1% of CS tweets
were detected as containing more than two lan-
guages, these likely have low precision because of
language overdetection as discussed in Sec. 6.3.

Figure 6 shows the fraction of code-switch
points, i.e., how many times the language changes
in a CS tweet, for all the languages, as well as
for three language pairs with to highlight differ-
ent trends. Most CS tweets have one CS-point,
which implies that the tweet begins with one lan-
guage, and then ends with another. Such tweets
are very frequent for en-de where we observe that
usually the tweets state the same fact in both en
and de. This so-called translation function (Be-
gum et al., 2016) of CS is probably adopted for
reaching out to a wider and global audience. In
contrast, es-fr tweets have fewer tweets with sin-
gle and far more with two CS-point than average.
Tweets with two CS-points typically imply the in-
clusion of a short phrase or chunk from another
language. en-tr tweets have the highest number of
CS-points, implying rampant and fluid switching
between the two languages at all structural levels.

7.2 City-Specific Code-Switching Trends

Cosmopolitan cities are melting pots of cultures,
which make them excellent locations for studying
multilingualism and language interaction, includ-
ing CS (Bailey et al., 2013). We collected tweets
from 24 populous and highly cosmopolitan cities
from Europe, North America and South America,
where the primarily spoken language is one of the
7 languages detectable by GWLD. Around 8M
tweets were collected from these cities.

Table 4 shows the top and bottom 6 cities,
ranked by the fraction of CS tweets from that city.
The total number of tweets analyzed and the top
two CS pairs, along with their fractions (of CS
tweets from that city) are also reported. More de-
tails can be found in the supplementary material.
It is interesting to note that the 6 cities with lowest
CS tweet fractions have en as the major language,
whereas the 6 cities with highest CS fractions are
from non-English (Turkish, Spanish and French)
speaking geographies. In fact, the Pearson’s cor-

1978

Cities with highest fraction of CS tweet Cities with lowest fraction of CS tweets
City Tweets CS-fraction (CS pairs) City Tweets CS-fraction (CS pairs)
Istanbul 351K .12 (en-tr .53, nl-tr .13) Houston 588K .01 (en-es .22, en-fr .21)
Québec City 108K .08 (en-fr .45, es-fr .23) San Francisco 532K .02 (en-es .26, en-fr .19)
Paris 158K .07 (en-fr .43, fr-pt .21) NYC 690K .02 (en-es .21, en-fr .19)
Mexico City 332K .07 (en-es .54, es-fr .14) Miami 290K .02 (en-es .33, en-pt .20)
Brussels 100K .06 (en-fr .37, es-fr .15) London 492K .02 (en-fr .26, en-pt .17)
Madrid 147K .06 (en-es .43, es-fr .32) San Diego 432K .02 (en-es .29, en-fr .14)

Table 4: Top (left) and bottom (right) six cities according to the fraction of CS tweets.

Figure 7: en-es Run Length

relation between the fraction of monolingual En-
glish tweets and CS tweets for these 24 cities is
−0.85. Further, from Table 4 one can also ob-
serve that for non-English speaking geographies,
the majority language is most commonly mixed
with English, followed by French (Spanish, if
French is the majority language). Istanbul is an
exception, where Dutch is the second most com-
monly mixed language with Turkish, presumably
because of the large Turkish immigrant popula-
tion in Netherlands resulting in a sizeable Turkish-
Dutch bilingual diaspora (Doğruöz and Backus,
2009; Nguyen and Dogruöz, 2013).

Is there a difference in the way speakers mix a
pair of languages, say en and es, in en-speaking
goegraphies like San Diego, Miami, Houston and
New York City, and es-speaking geographies like
Madrid, Barcelona, Buenos Aires and Mexico
City? Indeed, as shown in Fig. 7, the distribu-
tion of the lengths of en and es runs (contigu-
ous sequence of words in a single language be-
ginning and ending with either a CS-point or be-
ginning/end of a tweet) in en-es CS tweets is sig-
nificantly different in en-speaking and es-speaking
geographies. en runs are longer in en-speaking
cities and vice versa, showing that the second lan-
guage is likely used in short phrases.

8 Conclusion and Future Work

We present GWLD, a system for word-level lan-
guage detection for an arbitrarily large set of lan-
guages that is completely unsupervised. Our re-

sults on monolingual and code-switched tweets in
seven Latin script languages show a high 0.963 ac-
curacy, significantly out-performing existing sys-
tems. Using GWLD, we conducted a large-scale
study of CS trends among these languages, both
globally and in specific cities.

One of the primary observations of this study
is that while code-switching on Twitter is com-
mon worldwide (3.5%), it is much more common
in non-English speaking cities like Istanbul (12%)
where 90% of the population speak Turkish. On
the other hand, while a third of the population
of Houston speaks Spanish and almost everybody
English, only 1% of the tweets from the city are
code-switched. All the trends indicate a global
dominance of English, which might be because
Twitter is primarily a medium for broadcast, and
English tweets have a wider audience. Bergsma
et al. (2012) show that “[On Twitter] bilinguals
bridge between monolinguals with English as a
hub, while monolinguals tend not to directly fol-
low each other.” Androutsopoulos (2006) argues
that due to linguistic non-homogenity of online
public spaces, languages like en, fr and de are typ-
ically preferred for communication, even though
in private spaces, ”bilingual talk” differs consider-
ably in terms of distribution and CS patterns.

As future directions, we plan to extend GWLD

to several other languages and conduct similar so-
ciolinguistic studies on CS patterns including not
only more languages and geographies, but also
other aspects like topic and sentiment.

Acknowledgments

We would like to thank Prof. Shambavi Pradeep
and her students from BMS College of Engineer-
ing for assisting with data annotation. We are also
grateful to Ashutosh Baheti and Silvana Hartmann
from Microsoft Research (Bangalore, India) for
help with data organization and error analysis.

1979

References
Mohamed Al-Badrashiny and Mona Diab. 2016. Lili:

A simple language independent approach for lan-
guage identification. In Proceedings of the 26th In-
ternational Conference on Computational Linguis-
tics (COLING). Osaka, Japan.

Jannis Androutsopoulos. 2006. Multilingualism, di-
aspora, and the internet: Codes and identities on
german-based diaspora websites. Journal of Soci-
olinguistics 10(4):520–547.

Peter Auer. 2013. Code-switching in conversation:
Language, interaction and identity. Routledge.

George Bailey, Joseph Goggins, and Thomas Ingham.
2013. What can Twitter tell us about the language
diversity of Greater Manchester? In Report by Mul-
tilingual Manchester. School of Languages, Lin-
guistics and Cultures at the University of Manch-
ester. http://bit.ly/2kG42Qf.

Kalika Bali, Yogarshi Vyas, Jatin Sharma, and Monojit
Choudhury. 2014. “I am borrowing ya mixing?” an
analysis of English-Hindi code mixing in Facebook.
In Proceedings of the First Workshop on Computa-
tional Approaches to Code Switching.

Utsab Barman, Amitava Das, Joachim Wagner, and
Jennifer Foster. 2014. Code mixing: A challenge for
language identification in the language of social me-
dia. In Proceedings of the First Workshop on Com-
putational Approaches to Code Switching.

Rafiya Begum, Kalika Bali, Monojit Choudhury, Kous-
tav Rudra, and Niloy Ganguly. 2016. Functions of
code-switching in tweets: An annotation framework
and some initial experiments. In Proceedings of
the Tenth International Conference on Language Re-
sources and Evaluation (LREC).

Shane Bergsma, Paul McNamee, Mossaab Bagdouri,
Clayton Fink, and Theresa Wilson. 2012. Language
identification for creating language-specific twitter
collections. In Proceedings of the second workshop
on language in social media. Association for Com-
putational Linguistics.

Mónica Stella Cardenas-Claros and Neny Isharyanti.
2009. Code-switching and code-mixing in internet
chatting: Between yes, ya, and si a case study. In
The JALT CALL Journal, 5.

Simon Carter, Wouter Weerkamp, and Manos
Tsagkias. 2013. Microblog language identification:
Overcoming the limitations of short, unedited and
idiomatic text. Language Resources and Evaluation
Journal 47:195–215.

William B Cavnar and John M Trenkle. 1994. N-gram-
based text categorization .

Stanley F Chen and Joshua Goodman. 1999. An
empirical study of smoothing techniques for lan-
guage modeling. Computer Speech & Language
13(4):359–393.

Gokul Chittaranjan, Yogrshi Vyas, Kalika Bali, and
Monojit Choudhury. 2014. Word-level language
identication using crf : Code-switching shared task
report of msr india system. In Proceedings of the
First Workshop on Computational Approaches to
Code Switching.

Monojit Choudhury, Gokul Chittaranjan, Parth Gupta,
and Amitava Das. 2014. Overview of FIRE 2014
track on transliterated search .

David Crystal. 2001. Language and the Internet. Cam-
bridge University Press.

Brenda Danet and Susan Herring. 2007. The Multilin-
gual Internet: Language, Culture, and Communica-
tion Online. Oxford University Press., New York.

Amitava Das and Bjorn Gambäck. 2014. Identifying
languages at the word level in code-mixed indian so-
cial media text. In Proceedings of the 11th Interna-
tional Conference on Natural Language Processing.
Goa, India, pages 169–178.

A Seza Doğruöz and Ad Backus. 2009. Innovative con-
structions in dutch turkish: An assessment of on-
going contact-induced change. Bilingualism: lan-
guage and cognition 12(01):41–63.

Ted Dunning. 1994. Statistical identification of lan-
guage. Computing Research Laboratory, New Mex-
ico State University.

Heba Elfardy, Mohamed Al-Badrashiny, and Mona
Diab. 2013. Code switch point detection in ara-
bic. In Natural Language Processing and Informa-
tion Systems, Springer, pages 412–416.

Archana Garg, Vishal Gupta, and Manish Jindal. 2014.
A survey of language identification techniques and
applications. Journal of Emerging Technologies in
Web Intelligence 6(4):388–400.

Spandana Gella, Kalika Bali, and Monojit Choudhury.
2014. “ye word kis lang ka hai bhai?” testing the
limits of word level language identification. In NL-
PAI.

Spandana Gella, Jatin Sharma, and Kalika Bali. 2013.
Query word labeling and back transliteration for in-
dian languages: Shared task system description .

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and A. Noah Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In Proceedings of Annual Meeting of the Associa-
tion for Computational Linguistics (ACL).

Moises Goldszmidt, Marc Najork, and Stelios Papari-
zos. 2013. Boot-strapping language identifiers for
short colloquial postings. In Machine Learning and
Knowledge Discovery in Databases, volume 8189 of
Lecture Notes in Computer Science, pages 95–111.

1980

John. J. Gumperz. 1982. Discourse strategies. Cam-
bridge University Press, Cambridge.

Harald Hammarström. 2007. A fine-grained model for
language identification. In In Workshop of Improv-
ing Non English Web Searching. Proceedings of iN-
EWS 2007 Workshop at SIGIR.

Susan Herring, editor. 2003. Media and Language
Change. Special issue of Journal of Historical Prag-
matics 4:1.

Baden Hughes, Timothy Baldwin, SG Bird, Jeremy
Nicholson, and Andrew MacKinlay. 2006. Recon-
sidering language identification for written language
resources .

David Jurgens, Yulia Tsvetkov, and Dan Jurafsky.
2017. Incorporating dialectal variability for socially
equitable language identification. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (ACL). Vancouver, Canada.

Suin Kim, Ingmar Weber, Li Wei, and Alice Oh. 2014.
Sociolinguistic analysis of twitter in multilingual so-
cieties. In Proceedings of the 25th ACM conference
on Hypertext and social media.

Ben King and Steven Abney. 2013. Labeling the lan-
guages of words in mixed-language documents us-
ing weakly supervised methods. In Proceedings of
NAACL-HLT . pages 1110–1119.

Marco Lui and Timothy Baldwin. 2012. langid.py: An
off-the-shelf language identification tool. In In Pro-
ceedings of the ACL 2012 System Demonstrations.
pages 25–30.

Marco Lui, Jey Han Lau, and Timothy Baldwin. 2014.
Automatic detection and language identification of
multilingual documents. In Transactions of the As-
sociation for Computational Linguistics.

Ed Manley. 2012. Detecting languages in Londons
Twittersphere. In Blog post: Urban Movements.
http://bit.ly/2kBytHm.

P. McNamee. 2005. Language identification: A
solved problem suitable for undergraduate instruc-
tion. Journal of Computing Sciences in Colleges 20.

Lesley Milroy and Pieter Muysken. 1995. One speaker,
two languages: Cross-disciplinary perspectives on
code-switching. Cambridge University Press.

Giovanni Molina, Nicolas Rey-Villamizar, Thamar
Solorio, Fahad AlGhamdi, Mahmoud Ghoneim, Ab-
delati Hawwari, and Mona Diab. 2016. Overview
for the second shared task on language identification
in code-switched data. EMNLP 2016 page 40.

Carol Myers-Scotton. 1993. Dueling Languages:
Grammatical Structure in Code-Switching. Clare-
don, Oxford.

Dong Nguyen and A. Seza Dogruöz. 2013. Word level
language identification in online multilingual com-
munication. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing.

Dong Nguyen, A Seza Doğruöz, Carolyn P Rosé, and
Franciska de Jong. 2016. Computational sociolin-
guistics: A survey. Computational Linguistics .

Shana Poplack. 1980. Sometimes Ill start a sentence
in Spanish y termino en espaol. Linguistics 18:581–
618.

John M Prager. 1999. Language identification for mul-
tilingual documents. In Systems Sciences, 1999.
HICSS-32. Proceedings of the 32nd Annual Hawaii
International Conference.

Rishiraj Saha Roy, Monojit Choudhury, Prasenjit Ma-
jumder, and Komal Agarwal. 2013. Overview and
datasets of FIRE 2013 track on transliterated search.
In Working Notes of FIRE.

Koustav Rudra, Shruti Rijhwani, Rafiya Begum, Kalika
Bali, Monojit Choudhury, and Niloy Ganguly. 2016.
Understanding language preference for expression
of opinion and sentiment: What do Hindi-English
speakers do on Twitter? In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Royal Sequiera, Monojit Choudhury, Parth Gupta,
Paolo Rosso, Shubham Kumar, Somnath Banerjee,
Sudip Kumar Naskar, Sivaji Bandyopadhyay, Gokul
Chittaranjan, Amitava Das, and Kunal Chakma.
2015. Overview of fire-2015 shared task on mixed
script information retrieval. In Working Notes of
FIRE.

Thamar Solorio, Elizabeth Blair, Suraj Mahar-
jan, Steven Bethard, Mona Diab, Mahmoud
Gohneim, Abdelati Hawwari, Fahad AlGhamdi, Ju-
lia Hirschberg, Alison Chang, et al. 2014. Overview
for the first shared task on language identification in
code-switched data. Proceedings of The First Work-
shop on Computational Approaches to Code Switch-
ing .

Erik Tromp and Mykola Pechenizkiy. 2011. Graph-
based n-gram language identification on short texts.
In In Proc. 20th Machine Learning conference of
Belgium and The Netherlands. pages 27–34.

Twitter. 2013. GET sta-
tuses/sample — Twitter Developers.
https://dev.twitter.com/docs/api/1/get/statuses/sample.

Twitter. 2015. GET help/languages
— Twitter Developers.
https://dev.twitter.com/rest/reference/get/help/languages.

Lloyd R Welch. 2003. Hidden markov models and the
baum-welch algorithm. IEEE Information Theory
Society Newsletter 53(4):10–13.

1981

Fei Xia, William D Lewis, and Hoifung Poon. 2009.
Language id in the context of harvesting language
data off the web. In In Proceedings of the 12th
EACL. pages 870–878.

Wei Zhang, Robert AJ Clark, Yongyuan Wang, and
Wen Li. 2016. Unsupervised language identifica-
tion based on latent dirichlet allocation. Computer
Speech & Language 39:47–66.

1982

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1983–1992
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1181

Using Global Constraints and Reranking to Improve Cognates Detection

Michael Bloodgood
Department of Computer Science

The College of New Jersey
Ewing, NJ 08628

mbloodgood@tcnj.edu

Benjamin Strauss
Computer Science and Engineering Dept.

The Ohio State University
Columbus, OH 43210

strauss.105@osu.edu

Abstract

Global constraints and reranking have not
been used in cognates detection research
to date. We propose methods for using
global constraints by performing rescoring
of the score matrices produced by state of
the art cognates detection systems. Using
global constraints to perform rescoring is
complementary to state of the art methods
for performing cognates detection and re-
sults in significant performance improve-
ments beyond current state of the art per-
formance on publicly available datasets
with different language pairs and various
conditions such as different levels of base-
line state of the art performance and dif-
ferent data size conditions, including with
more realistic large data size conditions
than have been evaluated with in the past.

1 Introduction

This paper presents an effective method for us-
ing global constraints to improve performance for
cognates detection. Cognates detection is the task
of identifying words across languages that have a
common origin. Automatic cognates detection is
important to linguists because cognates are needed
to determine how languages evolved. Cognates
are used for protolanguage reconstruction (Hall
and Klein, 2011; Bouchard-Côté et al., 2013).
Cognates are important for cross-language dictio-
nary look-up and can also improve the quality of
machine translation, word alignment, and bilin-
gual lexicon induction (Simard et al., 1993; Kon-
drak et al., 2003).

A word is traditionally only considered cognate
with another if both words proceed from the same
ancestor. Nonetheless, in line with the conven-
tions of previous research in computational lin-

guistics, we set a broader definition. We use the
word ‘cognate’ to denote, as in (Kondrak, 2001):
“...words in different languages that are similar in
form and meaning, without making a distinction
between borrowed and genetically related words;
for example, English ‘sprint’ and the Japanese bor-
rowing ‘supurinto’ are considered cognate, even
though these two languages are unrelated.” These
broader criteria are motivated by the ways scien-
tists develop and use cognate identification algo-
rithms in natural language processing (NLP) sys-
tems. For cross-lingual applications, the advan-
tage of such technology is the ability to identify
words for which similarity in meaning can be ac-
curately inferred from similarity in form; it does
not matter if the similarity in form is from strict
genetic relationship or later borrowing (Mericli
and Bloodgood, 2012).

Cognates detection has received a lot of atten-
tion in the literature. The research of the use of
statistical learning methods to build systems that
can automatically perform cognates detection has
yielded many interesting and creative approaches
for gaining traction on this challenging task. Cur-
rently, the highest-performing state of the art sys-
tems detect cognates based on the combination
of multiple sources of information. Some of the
most indicative sources of information discovered
to date are word context information, phonetic in-
formation, word frequency information, temporal
information in the form of word frequency dis-
tributions across parallel time periods, and word
burstiness information. See section 3 for fuller ex-
planations of each of these sources of information
that state of the art systems currently use. Scores
for all pairs of words from language L1 x language
L2 are generated by generating component scores
based on these sources of information and then
combining them in an appropriate manner. Simple
methods of combination are giving equal weight-

1983

https://doi.org/10.18653/v1/P17-1181

ing for each score, while state of the art perfor-
mance is obtained by learning an optimal set of
weights from a small seed set of known cognates.
Once the full matrix of scores is generated, the
word pairs with the highest scores are predicted
as being cognates.

The methods we propose in the current paper
consume as input the final score matrix that state
of the art methods create. We test if our meth-
ods can improve performance by generating new
rescored matrices by rescoring all of the pairs of
words by taking into account global constraints
that apply to cognates detection. Thus, our meth-
ods are complementary to previous methods for
creating cognates detection systems. Using global
constraints and performing rescoring to improve
cognates detection has not been explored yet. We
find that rescoring based on global constraints im-
proves performance significantly beyond current
state of the art levels.

The cognates detection task is an interesting
task to apply our methods to for a few reasons:

• It’s a challenging unsolved task where ongo-
ing research is frequently reported in the lit-
erature trying to improve performance;

• There is significant room for improvement in
performance;

• It has a global structure in its output clas-
sifications since if a word lemma1 wi from
language L1 is cognate with a word lemma
wj from language L2, then wi is not cognate
with any other word lemma from L2 different
from wj and wj is not cognate with any other
word lemma wk from L1.

• There are multiple standard datasets freely
and publicly available that have been worked
on with which to compare results.

• Different datasets and language pairs yield
initial score matrices with very different qual-
ities. Some of the score matrices built using
the existing state of the art best approaches
yield performance that is quite low (11-point
interpolated average precision of only ap-
proximately 16%) while some of these score

1A lemma is a base form of a word. For example, in En-
glish the words ‘baked’ and ‘baking’ would both map to the
lemma ‘bake’. Lemmatizing software exists for many lan-
guages and lemmatization is a standard preprocessing task
conducted before cognates detection.

matrices for other language pairs and data
sets have state of the art score matrices that
are already able to achieve 11-point interpo-
lated average precision of 57%.

Although we are not aware of work using global
constraints to perform rescoring to improve cog-
nates detection, there are related methodologies
for reranking in different settings. Methodologi-
cally related work includes past work in structured
prediction and reranking (Collins, 2002; Collins
and Roark, 2004; Collins and Koo, 2005; Taskar
et al., 2005a,b). Note that in these past works,
there are many instances with structured outputs
that can be used as training data to learn a struc-
tured prediction model. For example, a semi-
nal application in the past was using online train-
ing with structured perceptrons to learn improved
systems for performing various syntactic analyses
and tagging of sentences such as POS tagging and
base noun phrase chunking (Collins, 2002). Note
that in those settings the unit at which there are
structural constraints is a sentence. Also note that
there are many sentences available so that online
training methods such as discriminative training of
structured perceptrons can be used to learn struc-
tured predictors effectively in those settings. In
contrast, for the cognates setting the unit at which
there are structural constraints is the entire set of
cognates for a language pair and there is only one
such unit in existence (for a given language pair).
We call this a single overarching global structure
to make the distinction clear. The method we
present in this paper deals with a single overar-
ching global structure on the predictions of all in-
stances in the entire problem space for a task. For
this type of setting, there is only a single global
structure in existence, contrasted with the situa-
tion of there being many sentences each impos-
ing a global structure on the tagging decisions for
that individual sentence. Hence, previous struc-
tured prediction methods that require numerous
instances each having a structured output on which
to train parameters via methods such as perceptron
training are inapplicable to the cognates setting. In
this paper we present methods for rescoring effec-
tively in settings with a single overarching global
structure and show their applicability to improv-
ing the performance of cognates detection. Still,
we note that philosophically our method builds
on previous structured prediction methods since in
both cases there is a similar intuition in that we’re

1984

using higher-level structural properties to inform
and accordingly alter our system’s predictions of
values for subitems within a structure.

In section 2 we present our methods for per-
forming rescoring of matrices based on global
constraints such as those that apply for cognates
detection. The key intuition behind our approach
is that the scoring of word pairs for cognateness
ought not be made independently as is currently
done, but rather that global constraints ought to be
taken into account to inform and potentially alter
system scores for word pairs based on the scores of
other word pairs. In section 3 we provide results of
experiments testing the proposed methods on the
cognates detection task on multiple datasets with
multiple language pairs under multiple conditions.
We show that the new methods complement and
effectively improve performance over state of the
art performance achieved by combining the ma-
jor research breakthroughs that have taken place
in cognates detection research to date. Complete
precision-recall curves are provided that show the
full range of performance improvements over the
current state of the art that are achieved. Summary
measurements of performance improvements, de-
pending on the language pair and dataset, range
from 6.73 absolute MaxF1 percentage points to
16.75 absolute MaxF1 percentage points and from
5.58 absolute 11-point interpolated average preci-
sion percentage points to 17.19 absolute 11-point
interpolated average precision percentage points.
Section 4 discusses the results and possible exten-
sions of the method. Section 5 wraps up with the
main conclusions.

2 Algorithm

While our focus in this paper is on using global
constraints to improve cognates detection, we be-
lieve that our method is useful more generally. We
therefore abstract out some of the specifics of cog-
nates detection and present our algorithm more
generally in this section, with the hope that it will
be able to be used in the future for other appli-
cations in addition to cognates detection. None
of our abstraction harms understanding of our
method’s applicability to cognates detection and
the fact that the method may be more widely ben-
eficial does not in any way detract from the utility
we show it has for improving cognates detection.

A common setting is where one has a set X =
{x1, x2, ..., xn} and a set Y = {y1, y2, ..., yn}

where the task is to extract (x, y) pairs such that
(x, y) are in some relation R. Here are examples:

• X might be a set of states and Y might be a
set of cities and the relation R might be “is
the capital of”;

• X might be a set of images and Y might be
a set of people’s names and the relation R
might be “is a picture of”;

• X might be a set of English words and Y
might be a set of French words and the re-
lation R might be “is cognate with”.

A common way these problems are approached
is that a model is trained that can score each pair
(x, y) and those pairs with scores above a thresh-
old are extracted. We propose that often the rela-
tion will have a tendency, or a hard constraint, to
satisfy particular properties and that this ought to
be utilized to improve the quality of the extracted
pairs.

The approach we put forward is to re-score each
(x, y) pair by utilizing scores generated for other
pairs and our knowledge of properties of the rela-
tion being extracted. In this paper, we present and
evaluate methods for improving the scores of each
(x, y) pair for the case when the relation is known
to be one-to-one and discuss extensions to other
situations.

The current approach is to generate a matrix of
scores for each candidate pair as follows:

ScoreX,Y =



sx1,y1 · · · sx1,yn

...
. . .

...
sxn,y1 · · · sxn,yn


 . (1)

Then those pairs with scores above a threshold are
predicted as being in the relation. We now de-
scribe methods for sharpening the scores in the
matrix by utilizing the fact that there is an over-
arching global structure on the predictions.

2.1 Reverse Rank
We know that if (xi, yj) ∈ R, then (xk, yj) /∈
R for k 6= i when R is 1-to-1. We define
reverse rank(xi, yj) = |{xk ∈ X|sxk,yj ≥
sxi,yj}|. Intuitively, a high reverse rank means that
there are lots of other elements ofX that score bet-
ter to yj than xi does; this could be evidence that
(xi, yj) is not inR and ought to have a lower score.
Alternatively, if there are very few or no other ele-
ments ofX that score better to yj than xi does this

1985

could be evidence that (xi, yj) is inR and ought to
have a higher score. In accord with this intuition,
we use reverse rank as the basis for rescaling our
scores as follows:

scoreRR(xi, yj) =
sxi,yj

reverse rank(xi, yj)
. (2)

2.2 Forward Rank
Analogous to reverse rank, another basis we can
use for adjusting scores is the forward rank.
We define forward rank(xi, yj) = |{yk ∈
Y |sxi,yk ≥ sxi,yj}|. We then scale the scores anal-
ogously to how we did with reverse ranks via an
inverse linear function.2

2.3 Combining Reverse Rank and Forward
Rank

For combining reverse rank and forward rank, we
present results of experiments doing it two ways.
The first is a 1-step approach:

scoreRR FR 1step(xi, yj) =
sxi,yj
product

, (3)

where

product =reverse rank(xi, yj)×
forward rank(xi, yj).

(4)

The second combination method involves first
computing the reverse rank and re-adjusting every
score based on the reverse ranks. Then in a second
step the new scores are used to compute forward
ranks and then those scores are adjusted based on
the forward ranks. We refer to this method as
RR FR 2step.

2.4 Maximum Assignment
If one makes the assumption that all elements inX
and Y are present and have their partner element
in the other set present with no extra elements and
the sets are not too large, then it is interesting to
compute what the ‘maximal assignment’ would be
using the Hungarian Algorithm to optimize:

max
Z∈X×Y

∑

(x,y)∈Z
score(x, y)

s.t. (xi, yj) ∈ Z ⇒ (xk, yj) /∈ Z, ∀k 6= i

(xi, yj) ∈ Z ⇒ (xi, yk) /∈ Z, ∀k 6= j.
(5)

2For both reverse rank and forward rank we also experi-
mented with exponential decay and step functions, but found
that simple division by the ranks worked as well or better than
any of those more complicated methods.

We do this on datasets where the assumptions
hold and see how close our methods get to the
Hungarian maximal assignment at similar points
of the precision-recall curves. For our larger
datasets where the assumptions don’t hold, the
Hungarian either can’t complete due to limited
computational resources or it functioned poorly in
comparison with the performance of our reverse
rank and forward rank combination methods.

3 Experiments

Our goal is to test whether using the global struc-
ture algorithms we described in section 2 can sig-
nificantly boost performance for cognates detec-
tion. To test this hypothesis, our first step is to
implement a system that uses state of the art re-
search results to generate the initial score matri-
ces as a current state of the art system would cur-
rently do for this task. To that end, we imple-
mented a baseline state of the art system that uses
the information sources that previous research has
found to be helpful for this task such as pho-
netic information, word context information, tem-
poral context information, word frequency infor-
mation, and word burstiness information (Kon-
drak, 2001; Mann and Yarowsky, 2001; Schafer
and Yarowsky, 2002; Klementiev and Roth, 2006;
Irvine and Callison-Burch, 2013). Consistent with
past work (Irvine and Callison-Burch, 2013), we
use supervised training to learn the weights for
combining the various information sources. The
system combines the sources of information by us-
ing weights learned by an SVM (Support Vector
Machine) on a small seed training set of cognates3

to optimize performance. This baseline system
obtains state of the art performance on cognates
detection. Using this state of the art system as
our baseline, we investigated how much we could
improve performance beyond current state of the
art levels by applying the rescoring algorithm we
described in section 2. We performed experi-
ments on three language pairs: French-English,
German-English, and Spanish-English, with dif-
ferent text corpora used as training and test data.
The different language pairs and datasets have dif-
ferent levels of performance in terms of their base-
line current state of the art score matrices. In the

3The small seed set was randomly selected and less than
20% in all cases. It was not used for testing. Note that us-
ing this data to optimize performance of the baseline system
makes our baseline even stronger and makes it even harder for
our new rescoring method to achieve larger improvements.

1986

next few subsections, we describe our experimen-
tal details.

3.1 Lemmatization
We used morphological analyzers to convert the
words in text corpora to lemma form. For En-
glish, we used the NLTK WordNetLemmatizer
(Bird et al., 2009). For French, German, and Span-
ish we used the TreeTagger (Schmid, 1994).

3.2 Word Context Information
We used the Google N-Gram corpus (Michel et al.,
2010). For English we used the English 2012
Google 5-gram corpus, for French we used the
French 2012 Google 5-gram corpus, for German
we used the German 2012 Google 5-gram corpus,
and for Spanish we used the Spanish 2012 Google
5-gram corpus. From these corpora we compute
word context similarity scores across languages
using Rapp’s method (Rapp, 1995, 1999). The
intuition behind this method is that cognates are
more likely to occur in correlating context win-
dows and this statistic inferred from large amounts
of data captures this correlation.

3.3 Frequency Information
The intuition is that over large amounts of data
cognates should have similar relative frequencies.
We compute our relative frequencies by using the
same corpora mentioned in the previous subsec-
tion.

3.4 Temporal Information
The intuition is that cognates will have simi-
lar temporal distributions (Klementiev and Roth,
2006). To compute the temporal similarity we
use newspaper data and convert it to simple
daily word counts. For each word in the cor-
pora the word counts create a time series vec-
tor. The Fourier transform is computed on the
time series vectors. Spearman rank correlation
is computed on the transform vectors. For En-
glish we used the English Gigaword Fifth Edi-
tion4. For French we used French Gigaword
Third Edition5. For Spanish we used Span-
ish Gigaword First Edition6. The German news
corpora were obtained by web crawling http:
//www.tagesspiegel.de/ and extracting the
news articles.

4Linguistic Data Consortium Catalog No. LDC2011T07
5Linguistic Data Consortium Catalog No. LDC2011T10
6Linguistic Data Consortium Catalog No. LDC2006T12

3.5 Word Burstiness
The intuition is that cognates will have similar
burstiness measures (Church and Gale, 1995). For
word burstiness we used the same corpora as for
the temporal corpora.

3.6 Phonetic Information
The intuition is that cognates will have correspon-
dences in how they are pronounced. For this,
we compute a measurement based on Normalized
Edit Distance (NED).

3.7 Combining Information Sources
We combine the information sources by using a
linear Support Vector Machine to learn weights
for each of the information sources from a small
seed training set of cognates. So our final score
assigned to a candidate cognate pair (x, y) is:

score(x, y) =
∑

m∈metrics
wmscorem(x, y), (6)

where metrics is the set of measurements such
as phonetic similarity measurements, word bursti-
ness similarity, relative frequency similarity, etc.
that were explained in subsections 3.2 through
3.6; wm is the learned weight for metric m; and
scorem(x, y) is the score assigned to the pair
(x, y) by metric m.

The scores such assigned represent a state of
the art approach for filling in the matrix identified
in equation 1. At this point the matrix of scores
would be used to predict cognates. We now turn
to evaluation of the use of the global constraint
rescoring methods from section 2 for improving
performance beyond the state of the art levels.

3.8 Using Global Constraints to Rescore
For our cognates data we used the French-English
pairs from (Bergsma and Kondrak, 2007) and
the German-English and Spanish-English
pairs from (Beinborn et al., 2013). Fig-
ure 1 shows the precision-recall7 curves for

7Precision and recall are the standard measures used for
systems that perform search. Precision is the percentage of
predicted cognates that are indeed cognate. Recall is the per-
centage of cognates that are predicted as cognate. We vary the
threshold that determines cognateness to generate all points
along the Precision-Recall curve. We start with a very high
threshold enabling precision of 100% and lower the threshold
until recall of 100% is reached. In particular, we sort the test
examples by score in descending order and then go down the
list of scores in order to complete the entire precision-recall
curve.

1987

0 20 40 60 80 100
Recall

0

20

40

60

80

100

Pr
ec

is
io

n

Precision-Recall Curves

Baseline
RR

RR_FR_1step
RR_FR_2step

Max Assignment Max Assignment Score

Figure 1: Precision-Recall Curves for
French-English. Baseline denotes state of
the art performance.

French-English, Figure 2 shows the performance
for German-English, and Figure 3 shows the
performance for Spanish-English. Note that state
of the art performance (denoted in the figures as
Baseline) has very different performance across
the three datasets, but in all cases the systems
from section 2 that incorporate global constraints
and perform rescoring greatly exceed current
state of the art performance levels. The Max
Assignment is really just the single point that the
Hungarian finds. We drew lines connecting it, but
keep in mind those lines are just connecting the
single point to the endpoints. Max Assignment
Score traces the precision-recall curve back from
the Max Assignment by steadily increasing the
threshold so that only points in the maximum
assignment set with scores above the increasing
threshold are predicted as cognate.

For the non-max assignment curves, it is some-
times helpful to compute a single metric summa-
rizing important aspects of the full curve. For this
purpose, maxF1 and 11-point interpolated average
precision are often used. MaxF1 is the F1 mea-
sure (i.e., harmonic mean of precision and recall)
at the point on the precision-recall curve where F1
is highest. The interpolated precision pinterp at a
given recall level r is defined as the highest preci-
sion level found for any recall level r′ ≥ r:

pinterp(r) = maxr′≥rp(r
′). (7)

The 11-point interpolated average precision
(11-point IAP) is then the average of the pinterp
at r = 0.0, 0.1, ..., 1.0. Table 1 shows these per-
formance measures for French-English, Table 2

0 20 40 60 80 100
Recall

0

20

40

60

80

100

Pr
ec

is
io

n

Precision-Recall Curves

Baseline
RR

RR_FR_1step
RR_FR_2step

Max Assignment Max Assignment Score

Figure 2: Precision-Recall Curves for
German-English. Baseline denotes state of
the art performance.

0 20 40 60 80 100
Recall

0

20

40

60

80

100

Pr
ec

is
io

n

Precision-Recall Curves

Baseline
RR

RR_FR_1step
RR_FR_2step

Max Assignment Max Assignment Score

Figure 3: Precision-Recall Curves for
Spanish-English. Baseline denotes state of
the art performance.

shows the results for German-English, and Table 3
show the results for Spanish-English. In all cases,
using global structure greatly improves upon the
state of the art baseline performance. In (Bergsma
and Kondrak, 2007), for French-English data a re-
sult of 66.5 11-point IAP is reported for a situation
where word alignments from a bitext are available
and a result of 77.7 11-point IAP is reported for
a situation where translation pairs are available in
large quantities. The setting considered in the cur-
rent paper is much more challenging since it does
not use bilingual dictionaries or word alignments
from bitexts. The setting in the current paper is
the one mentioned as future work on page 663
of (Bergsma and Kondrak, 2007): ”In particular,
we plan to investigate approaches that do not re-

1988

METHOD MAX F1 11-POINT IAP
BASELINE 54.92 50.99

RR 62.94 59.62
RR FR 1STEP 68.35 64.42
RR FR 2STEP 69.72 67.29

Table 1: French-English Performance. BASELINE

indicates current state of the art performance.

METHOD MAX F1 11-POINT IAP
BASELINE 21.38 16.25

RR 22.71 17.80
RR FR 1STEP 28.68 22.37
RR FR 2STEP 28.11 21.83

Table 2: German-English Performance. BASE-
LINE indicates current state of the art performance.

quire the bilingual dictionaries or bitexts to gener-
ate training data.”

Note that the evaluation thus far is a bit artifi-
cial for real cognates detection because in a real
setting you wouldn’t only be selecting matches
for relatively small subsets of words that are
guaranteed to have a cognate on the other side.
Such was the case for our evaluation where the
French-English set had approx. 600 cognate pairs,
the German-English set had approx. 1000 pairs,
and the Spanish-English set had approx. 3000
pairs. In a real setting, the system would have to
consider words that don’t have a cognate match in
the other language and not only words that were
hand-selected and guaranteed to have cognates.
We are not aware of others evaluating according
to this much more difficult condition, but we think
it is important to consider especially given the po-
tential impacts it could have on the global struc-
ture methods we’ve put forward. Therefore, we
run a second set of evaluations where we take the
ten thousand most common words in our corpora
for each of our languages, which contain many
of the cognates from the standard test sets and
we add in any remaining words from the stan-
dard test sets that didn’t make it into the top ten
thousand. We then repeat each of the experi-

METHOD MAX F1 11-POINT IAP
BASELINE 56.26 57.03

RR 68.52 69.33
RR FR 1STEP 70.66 71.47
RR FR 2STEP 73.01 74.22

Table 3: Spanish-English Performance. BASE-
LINE indicates current state of the art performance.

0 20 40 60 80 100
Recall

0

20

40

60

80

100

Pr
ec

is
io

n

Precision-Recall Curves

Baseline RR RR_FR_1step RR_FR_2step

Figure 4: Precision-Recall Curves for
French-English (large data). Note that Base-
line denotes state of the art performance.

ments under this much more challenging condi-
tion. With approx. ten thousand squared candi-
dates, i.e., approx. 100 million candidates, to con-
sider for cognateness, this is a large data condi-
tion. The Hungarian didn’t run to completion on
two of the datasets due to limited computational
resources. On French-English it completed, but
achieved poorer performance than any of the other
methods. This makes sense as it is designed when
there really is a bipartite matching to be found like
in the artificial yet standard cognates evaluation
that was just presented. When confronted with
large amounts of words that create a much denser
space and have no match at all on the other side
the all or nothing assignments of the Hungarian
are not ideal. The reverse rank and forward rank
rescoring methods are still quite effective in im-
proving performance although not by as much as
they did in the small data results from above.

Figure 4 shows the full precision-recall curves
for French-English for the large data condition,
Figure 5 shows the curves for German-English for
the large data condition, and Figure 6 shows the
results for Spanish-English for the large data con-
dition.

Tables 4 through 6 show the summary metrics
for the three language pairs for the large data ex-
periments. We can see that the reverse rank and
forward rank methods of taking into account the
global structure of interactions among predictions
is still helpful, providing large improvements in
performance even in this challenging large data
condition over strong state of the art baselines that

1989

0 20 40 60 80 100
Recall

0

20

40

60

80

100

Pr
ec

is
io

n

Precision-Recall Curves

Baseline RR RR_FR_1step RR_FR_2step

Figure 5: Precision-Recall Curves for
German-English (large data). Note that Baseline
denotes state of the art performance.

0 20 40 60 80 100
Recall

0

20

40

60

80

100

Pr
ec

is
io

n

Precision-Recall Curves

Baseline RR RR_FR_1step RR_FR_2step

Figure 6: Precision-Recall Curves for
Spanish-English (large data). Note that Baseline
denotes state of the art performance.

make cognate predictions independently of each
other and don’t do any rescoring based on global
constraints.

4 Discussion

We believe that this work opens up new avenues
for further exploration. A few of these include the
following:

• investigating the utility of applying and ex-
tending the method to other applications such
as Information Extraction applications, many
of which have similar global constraints as
cognates detection;

• investigating how to handle other forms of
global structure including tendencies that are

METHOD MAX F1 11-POINT IAP
BASELINE 55.08 51.35

RR 60.88 58.79
RR FR 1STEP 65.87 63.55
RR FR 2STEP 65.76 65.26

Table 4: French-English Performance (large data).
BASELINE indicates state of the art performance.

METHOD MAX F1 11-POINT IAP
BASELINE 21.25 16.17

RR 24.78 19.13
RR FR 1STEP 30.72 24.97
RR FR 2STEP 30.34 24.86

Table 5: German-English Performance (large
data). BASELINE indicates state of the art perfor-
mance.

METHOD MAX F1 11-POINT IAP
BASELINE 54.75 54.55

RR 62.52 61.42
RR FR 1STEP 66.45 65.89
RR FR 2STEP 66.38 65.5

Table 6: Spanish-English Performance (large
data). BASELINE indicates state of the art perfor-
mance.

not necessarily hard constraints;

• developing more theory to more precisely
understand some of the nuances of using
global structure when it’s applicable and
making connections with other areas of ma-
chine learning such as semi-supervised learn-
ing, active learning, etc.; and

• investigating how to have a machine learn
that global structure exists and learn what
form of global structure exists.

5 Conclusions

Cognates detection is an interesting and challeng-
ing task. Previous work has yielded state of the
art approaches that create a matrix of scores for all
word pairs based on optimized weighted combina-
tions of component scores computed on the basis
of various helpful sources of information such as
phonetic information, word context information,
temporal context information, word frequency in-
formation, and word burstiness information. How-
ever, when assigning a score to a word pair, the
current state of the art methods do not take into ac-
count scores assigned to other word pairs. We pro-
posed a method for rescoring the matrix that cur-

1990

rent state of the art methods produce by taking into
account the scores assigned to other word pairs.
The methods presented in this paper are com-
plementary to existing state of the art methods,
easy to implement, computationally efficient, and
practically effective in improving performance by
large amounts. Experimental results reveal that
the new methods significantly improve state of
the art performance in multiple cognates detec-
tion experiments conducted on standard freely and
publicly available datasets with different language
pairs and various conditions such as different lev-
els of baseline performance and different data size
conditions, including with more realistic large data
size conditions than have been evaluated with in
the past.

References
Lisa Beinborn, Torsten Zesch, and Iryna Gurevych.

2013. Cognate production using character-based
machine translation. In Proceedings of the Sixth In-
ternational Joint Conference on Natural Language
Processing. Asian Federation of Natural Language
Processing, Nagoya, Japan, pages 883–891. http:
//www.aclweb.org/anthology/I13-1112.

Shane Bergsma and Grzegorz Kondrak. 2007.
Alignment-based discriminative string similar-
ity. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguis-
tics. Association for Computational Linguistics,
Prague, Czech Republic, pages 656–663. http:
//www.aclweb.org/anthology/P07-1083.

Steven Bird, Ewan Klein, and Edward Loper.
2009. Natural Language Processing with Python.
O’Reilly Media, Inc., 1st edition.

Alexandre Bouchard-Côté, David Hall, Thomas L.
Griffiths, and Dan Klein. 2013. Automated Re-
construction of Ancient Languages using Proba-
bilistic Models of Sound Change. Proceedings of
the National Academy of Sciences 110:4224–4229.
https://doi.org/10.1073/pnas.1204678110.

Kenneth W. Church and William A. Gale. 1995.
Poisson mixtures. Natural Language Engineering
1:163–190.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and ex-
periments with perceptron algorithms. In Pro-
ceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1–8.
https://doi.org/10.3115/1118693.1118694.

Michael Collins and Terry Koo. 2005. Dis-
criminative reranking for natural language pars-

ing. Computational Linguistics 31(1):25–70.
https://doi.org/10.1162/0891201053630273.

Michael Collins and Brian Roark. 2004. Incremen-
tal parsing with the perceptron algorithm. In
Proceedings of the 42nd Meeting of the Asso-
ciation for Computational Linguistics (ACL’04),
Main Volume. Barcelona, Spain, pages 111–118.
https://doi.org/10.3115/1218955.1218970.

David Hall and Dan Klein. 2011. Large-scale cognate
recovery. In Proceedings of the 2011 Conference
on Empirical Methods in Natural Language Pro-
cessing. Association for Computational Linguistics,
Edinburgh, Scotland, UK., pages 344–354. http:
//www.aclweb.org/anthology/D11-1032.

Ann Irvine and Chris Callison-Burch. 2013. Su-
pervised bilingual lexicon induction with multi-
ple monolingual signals. In Proceedings of the
2013 Conference of the North American Chap-
ter of the Association for Computational Linguis-
tics: Human Language Technologies. Association
for Computational Linguistics, Atlanta, Georgia,
pages 518–523. http://www.aclweb.org/
anthology/N13-1056.

Alexandre Klementiev and Dan Roth. 2006. Weakly
supervised named entity transliteration and discov-
ery from multilingual comparable corpora. In
Proceedings of the 21st International Confer-
ence on Computational Linguistics and 44th An-
nual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics, Sydney, Australia, pages 817–824.
https://doi.org/10.3115/1220175.1220278.

Grzegorz Kondrak. 2001. Identifying cognates by pho-
netic and semantic similarity. In Proceedings of
the second meeting of the North American Chapter
of the Association for Computational Linguistics on
Language technologies. Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, NAACL
’01, pages 1–8. http://www.aclweb.org/
anthology/N/N01/N01-1014.pdf.

Grzegorz Kondrak, Daniel Marcu, and Kevin Knight.
2003. Cognates can improve statistical transla-
tion models. In Proceedings of the 2003 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics on Hu-
man Language Technology: Companion Volume
of the Proceedings of HLT-NAACL 2003–short Pa-
pers - Volume 2. Association for Computational
Linguistics, Stroudsburg, PA, USA, NAACL-Short
’03, pages 46–48. http://www.aclweb.org/
anthology/N/N03/N03-2016.pdf.

Gideon S. Mann and David Yarowsky. 2001. Mul-
tipath translation lexicon induction via bridge lan-
guages. In Proceedings of the second meeting
of the North American Chapter of the Association
for Computational Linguistics on Language tech-
nologies. Association for Computational Linguis-
tics, Stroudsburg, PA, USA, NAACL ’01, pages

1991

1–8. http://www.aclweb.org/anthology/
N/N01/N01-1020.pdf.

Benjamin S. Mericli and Michael Bloodgood. 2012.
Annotating cognates and etymological origin in Tur-
kic languages. In Proceedings of the First Work-
shop on Language Resources and Technologies for
Turkic Languages at the Eighth International Con-
ference on Languange Resources and Evaluation
(LREC’12). European Language Resources Associ-
ation, Istanbul, Turkey, pages 47–51. http://
arxiv.org/abs/1501.03191.

Jean-Baptiste Michel, Yuan Kui Shen, Aviva Presser
Aiden, Adrian Veres, Matthew K. Gray, The
Google Books Team, Joseph P. Pickett, Dale
Hoiberg, Dan Clancy, Peter Norvig, Jon Or-
want, Steven Pinker, Martin A. Nowak, and
Erez Lieberman Aiden. 2010. Quantitative
analysis of culture using millions of digi-
tized books. Science 331(6014):176–182.
https://doi.org/10.1126/science.1199644.

Reinhard Rapp. 1995. Identifying word translations
in non-parallel texts. In Proceedings of the 33rd
Annual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics, Cambridge, Massachusetts, USA, pages
320–322. https://doi.org/10.3115/981658.981709.

Reinhard Rapp. 1999. Automatic identification of
word translations from unrelated english and ger-
man corpora. In Proceedings of the 37th An-
nual Meeting of the Association for Computational
Linguistics. Association for Computational Linguis-
tics, College Park, Maryland, USA, pages 519–526.
https://doi.org/10.3115/1034678.1034756.

Charles Schafer and David Yarowsky. 2002. In-
ducing translation lexicons via diverse similarity
measures and bridge languages. In Proceed-
ings of the 6th Conference on Natural language
Learning - Volume 20. Association for Computa-
tional Linguistics, Stroudsburg, PA, USA, pages
1–7. http://www.aclweb.org/anthology/
W/W02/W02-2026.pdf.

Helmut Schmid. 1994. Part-of-speech tagging with
neural networks. In COLING. pages 172–176.
http://www.aclweb.org/anthology/C/
C94/C94-1027.pdf.

Michel Simard, George F. Foster, and Pierre Isabelle.
1993. Using cognates to align sentences in bilingual
corpora. In Proceedings of the 1993 Conference of
the Centre for Advanced Studies on Collaborative
Research: Distributed Computing - Volume 2. IBM
Press, CASCON ’93, pages 1071–1082.

Ben Taskar, Vassil Chatalbashev, Daphne Koller, and
Carlos Guestrin. 2005a. Learning structured predic-
tion models: A large margin approach. In Proceed-
ings of the 22nd International Conference on Ma-
chine learning. ACM, pages 896–903.

Ben Taskar, Lacoste-Julien Simon, and Klein Dan.
2005b. A discriminative matching approach
to word alignment. In Proceedings of Hu-
man Language Technology Conference and Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Vancouver, British Columbia, Canada,
pages 73–80. http://www.aclweb.org/
anthology/H/H05/H05-1010.pdf.

1992

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 1993–2003
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1182

One-Shot Neural Cross-Lingual Transfer for Paradigm Completion

Katharina Kann
CIS

LMU Munich, Germany
kann@cis.lmu.de

Ryan Cotterell
Department of Computer Science
Johns Hopkins University, USA

ryan.cotterell@jhu.edu

Hinrich Schütze
CIS

LMU Munich, Germany
inquiries@cislmu.org

Abstract

We present a novel cross-lingual transfer
method for paradigm completion, the task
of mapping a lemma to its inflected forms,
using a neural encoder-decoder model, the
state of the art for the monolingual task.
We use labeled data from a high-resource
language to increase performance on a low-
resource language. In experiments on 21
language pairs from four different language
families, we obtain up to 58% higher ac-
curacy than without transfer and show that
even zero-shot and one-shot learning are
possible. We further find that the degree
of language relatedness strongly influences
the ability to transfer morphological knowl-
edge.

1 Introduction

Low-resource natural language processing (NLP)
remains an open problem for many tasks of interest.
Furthermore, for most languages in the world, high-
cost linguistic annotation and resource creation are
unlikely to be undertaken in the near future. In the
case of morphology, out of the 7000 currently spo-
ken (Lewis, 2009) languages, only about 200 have
computer-readable annotations (Sylak-Glassman
et al., 2015) – although morphology is easy to an-
notate compared to syntax and semantics. Transfer
learning is one solution to this problem: it exploits
annotations in a high-resource language to train a
system for a low-resource language. In this work,
we present a method for cross-lingual transfer of
inflectional morphology using an encoder-decoder
recurrent neural network (RNN). This allows for
the development of tools for computational mor-
phology with limited annotated data.

In many languages, individual lexical entries
may be realized as distinct inflections of a single

Present Past
Indicative Indicative

Sg Pl Sg Pl

1 sueño soñamos soñé soñamos
2 sueñas soñáis soñaste soñasteis
3 sueña sueñan soñó soñaron

Table 1: Partial inflection table for the Spanish verb
soñar.

lemma depending on the syntactic context. For ex-
ample, the 3SgPresInd of the English verbal lemma
to bring is brings. In morphologically rich lan-
guages, a lemma can have hundreds of individ-
ual forms. Thus, both generation and analysis
of such morphological inflections are active areas
of research in NLP and morphological process-
ing has been shown to be a boon to several other
down-stream applications, e.g., machine transla-
tion (Dyer et al., 2008), speech recognition (Creutz
et al., 2007), parsing (Seeker and Çetinoğlu, 2015),
keyword spotting (Narasimhan et al., 2014) and
word embeddings (Cotterell et al., 2016b), inter
alia. In this work, we focus on paradigm comple-
tion, a form of morphological generation that maps
a given lemma to a target inflection, e.g., (bring,
Past) 7→ brought (with Past being the target tag).

RNN sequence-to-sequence models (Sutskever
et al., 2014; Bahdanau et al., 2015) are the state
of the art for paradigm completion (Faruqui et al.,
2016; Kann and Schütze, 2016a; Cotterell et al.,
2016a). However, these models require a large
amount of data to achieve competitive perfor-
mance; this makes them unsuitable for out-of-the-
box application to paradigm completion in the
low-resource scenario. To mitigate this, we con-
sider transfer learning: we train an end-to-end neu-
ral system jointly with limited data from a low-
resource language and a larger amount of data from
a high-resource language. This technique allows

1993

https://doi.org/10.18653/v1/P17-1182

the model to apply knowledge distilled from the
high-resource training data to the low-resource lan-
guage as needed.

We conduct experiments on 21 language pairs
from four language families, emulating a low-
resource setting. Our results demonstrate success-
ful transfer of morphological knowledge. We show
improvements in accuracy and edit distance of up
to 58% (accuracy) and 4.62 (edit distance) over the
same model with only in-domain language data on
the paradigm completion task. We further obtain
up to 44% (resp. 14%) improvement in accuracy
for the one-shot (resp. zero-shot) setting, i.e., one
(resp. zero) in-domain language sample per target
tag. We also show that the effectiveness of morpho-
logical transfer depends on language relatedness,
measured by lexical similarity.

2 Inflectional Morphology and Paradigm
Completion

Many languages exhibit inflectional morphology,
i.e., the form of an individual lexical entry mutates
to show properties such as person, number or case.
The citation form of a lexical entry is referred to as
the lemma and the collection of its possible inflec-
tions as its paradigm. Tab. 1 shows an example of
a partial paradigm; we display several forms for the
Spanish verbal lemma soñar. We may index the
entries of a paradigm by a morphological tag, e.g.,
the 2SgPresInd form sueñas in Tab. 1. In generation,
the speaker must select an entry of the paradigm
given the form’s context. In general, the presence
of rich inflectional morphology is problematic for
NLP systems as it greatly increases the token-type
ratio and, thus, word form sparsity.

An important task in inflectional morphology is
paradigm completion (Durrett and DeNero, 2013;
Ahlberg et al., 2014; Nicolai et al., 2015; Cotterell
et al., 2015; Faruqui et al., 2016). Its goal is to
map a lemma to all individual inflections, e.g.,
(soñar, 1SgPresInd) 7→ sueño. There are good solu-
tions for paradigm completion when a large amount
of annotated training data is available (Cotterell
et al., 2016a).1 In this work, we address the low-
resource setting, a yet unsolved challenge.

1The SIGMORPHON 2016 shared task (Cotterell et al.,
2016a) on morphological reinflection, a harder generalization
of paradigm completion, found that ≥ 98% accuracy can be
achieved in many languages with neural sequence-to-sequence
models, improving the state of the art by 10%.

2.1 Transferring Inflectional Morphology

In comparison to other NLP annotations, e.g., part-
of-speech (POS) and named entities, morphologi-
cal inflection is especially challenging for transfer
learning: we can define a universal set of POS tags
(Petrov et al., 2012) or of entity types (e.g., coarse-
grained types like person and location or fine-
grained types (Yaghoobzadeh and Schütze, 2015)),
but inflection is much more language-specific. It
is infeasible to transfer morphological knowledge
from Chinese to Portuguese as Chinese does not
use inflected word forms. Transferring named
entity recognition, however, among Chinese and
European languages works well (Wang and Man-
ning, 2014a). But even transferring inflectional
paradigms from morphologically rich Arabic to
Portuguese seems difficult as the inflections often
mark dissimilar subcategories. In contrast, trans-
ferring morphological knowledge from Spanish to
Portuguese, two languages with similar conjuga-
tions and 89% lexical similarity, appears promis-
ing. Thus, we conjecture that transfer of inflec-
tional morphology is only viable among related
languages.

2.2 Formalization of the Task

We now offer a formal treatment of the cross-
lingual paradigm completion task and develop our
notation. Let Σ` be a discrete alphabet for lan-
guage ` and let T` be a set of morphological tags
for `. Given a lemma w` in `, the morphological
paradigm (inflectional table) π can be formalized
as a set of pairs

π(w`) =
{(
fk[w`], tk

)}
k∈T (w`)

(1)

where fk[w`] ∈ Σ+
` is an inflected form, tk ∈ T` is

its morphological tag and T (w`) is the set of slots
in the paradigm; e.g., a Spanish paradigm is:

π(soñar)=
{(

sueño, 1SgPresInd
)
, . . . ,

(
soñaran, 3PlPastSbj

)}

Paradigm completion consists of predicting miss-
ing slots in the paradigm π(w`) of a given lemma
w`.

In cross-lingual paradigm completion, we con-
sider a high-resource source language `s (lots of
training data available) and a low-resource target
language `t (little training data available). We
denote the source training examples as Ds (with
|Ds| = ns) and the target training examples as

1994

Dt (with |Dt| = nt). The goal of cross-lingual
paradigm completion is to populate paradigms in
the low-resource target language with the help of
data from the high-resource source language, using
only few in-domain examples.

3 Cross-Lingual Transfer as Multi-Task
Learning

We describe our probability model for morpho-
logical transfer using terminology from multi-task
learning (Caruana, 1997; Collobert et al., 2011).
We consider two tasks, training a paradigm com-
pletor (i) for a high-resource language and (ii) for
a low-resource language. We want to train jointly,
so we reap the benefits of having related languages.
Thus, we define the log-likelihood as

L(θ)=
∑

(k,w`t
)∈Dt

log pθ (fk[w`t] | w`t , tk, λ`t) (2)

+
∑

(k,w`s)∈Ds

log pθ(fk[w`s] | w`s , tk, λ`s)

where we tie parameters θ for the two languages
together to allow the transfer of morphological
knowledge between languages. The λs are special
language tags, cf. Sec. 3.2. Each probability dis-
tribution pθ defines a distribution over all possible
realizations of an inflected form, i.e., a distribution
over Σ∗. For example, consider the related Ro-
mance languages Spanish and French; focusing on
one term from each of the summands in Eq. (2)
(the past participle of the translation of to visit in
each language), we arrive at

Lvisit(θ) = log pθ(visitado | visitar, PastPart, ES)

+ log pθ(visité | visiter, PastPart, FR) (3)

Our cross-lingual setting forces both transductions
to share part of the parameter vector θ, to represent
morphological regularities between the two lan-
guages in a common embedding space and, thus, to
enable morphological transfer. This is no different
from monolingual multi-task settings, e.g., jointly
training a parser and tagger for transfer of syntax.

Based on recent advances in neural transducers,
we parameterize each distribution as an encoder-
decoder RNN, as in (Kann and Schütze, 2016b). In
their setup, the RNN encodes the input and predicts
the forms in a single language. In contrast, we force
the network to predict two or more languages.

3.1 Encoder-Decoder RNN

We parameterize the distribution pθ as an encoder-
decoder gated RNN (GRU) with attention (Bah-
danau et al., 2015), the state-of-the-art solution for
the monolingual case (Kann and Schütze, 2016b).
A bidirectional gated RNN encodes the input se-
quence (Cho et al., 2014) – the concatenation of
(i) the language tag, (ii) the morphological tag of
the form to be generated and (iii) the characters of
the input word – represented by embeddings. The
input to the decoder consists of concatenations of−→
hi and

←−
hi , the forward and backward hidden states

of the encoder. The decoder, a unidirectional RNN,
uses attention: it computes a weight αi for each
hi. Each weight reflects the importance given to
that input position. Using the attention weights, the
probability of the output sequence given the input
sequence is:

p(y | x1, . . . , x|X|) =

|Y |∏

t=1

g(yt−1, st, ct) (4)

where y = (y1, . . . , y|Y |) is the output sequence (a
sequence of |Y | characters), x = (x1, . . . x|X|) is
the input sequence (a sequence of |X| characters),
g is a non-linear function, st is the hidden state of
the decoder and ct is the sum of the encoder states
hi, weighted by attention weights αi(st−1) which
depend on the decoder state:

ct =

|X|∑

i=1

αi(st−1)hi (5)

Fig. 1 shows the encoder-decoder. See Bahdanau
et al. (2015) for further details.

3.2 Input Format

Each source form is represented as a sequence of
characters; each character is represented as an em-
bedding. In the same way, each source tag is repre-
sented as a sequence of subtags, and each subtag
is represented as an embedding. More formally,
we define the alphabet Σ = ∪`∈LΣ` as the set of
characters in the languages in L, with L being the
set of languages in the given experiment. Next, we
define S as the set of subtags that occur as part of
the set of morphological tags T = ∪`∈LT`; e.g., if
1SgPresInd ∈ T , then 1, Sg, Pres, Ind ∈ S . Note that
the set of subtags S is defined as attributes from the
UNIMORPH schema (Sylak-Glassman, 2016) and,
thus, is universal across languages; the schema is

1995

!
h1

!
h2

!
h3

!
hN

h1

h2

h3

hN

s o ñ r

s u e
s1 s2 s3 sN

y1= y2= y3=M

…
Figure 1: Encoder-decoder RNN for paradigm com-
pletion. The lemma soñar is mapped to a target
form (e.g., sueña). For brevity, language and target
tags are omitted from the input. Thickness of red
arrows symbolizes the degree to which the model
attends to the corresponding hidden state of the
encoder.

derived from research in linguistic typology.2 The
format of the input to our system is S+Σ+. The
output format is Σ+. Both input and output are
padded with distinguished BOW and EOW symbols.

What we have described is the representation
of Kann and Schütze (2016b). In addition, we
preprend a symbol λ ∈ L to the input string (e.g.,
λ = Es, also represented by an embedding), so
the RNN can handle multiple languages simulta-
neously and generalize over them. Thus, our final
input is of the form λS+Σ+.

4 Languages and Language Families

To verify the applicability of our method to a wide
range of languages, we perform experiments on
example languages from several different families.

Romance languages, a subfamily of Indo-
European, are widely spoken, e.g., in Europe and
Latin America. Derived from the common ances-
tor Vulgar Latin (Harris and Vincent, 2003), they
share large parts of their lexicon and inflectional
morphology; we expect knowledge among them to
be easily transferable.

2Note that while the subtag set is universal, which subtags
a language actually uses is language-specific; e.g., Spanish
does not mark animacy as Russian does. We contrast this with
the universal POS set (Petrov et al., 2012), where it is more
likely that we see all 17 tags in most languages.

PT CA IT FR

similarity to ES 89% 85% 82% 75%

Table 2: Lexical similarities for Romance (Lewis,
2009).

We experiment on Catalan, French, Italian, Por-
tuguese and Spanish. Tab. 2 shows that Spanish –
which takes the role of the low-resource language
in our experiments – is closely related with the
other four, with Portuguese being most similar. We
hypothesize that the transferability of morpholog-
ical knowledge between source and target corre-
sponds to the degree of lexical similarity; thus, we
expect Portuguese and Catalan to be more benefi-
cial for Spanish than Italian and French.

The Indo-European Slavic language family
has its origin in eastern-central Europe (Corbett
and Comrie, 2003). We experiment on Bulgar-
ian, Macedonian, Russian and Ukrainian (Cyrillic
script) and on Czech, Polish and Slovene (Latin
script). Macedonian and Ukranian are low-resource
languages, so we assign them the low-resource role.
For Romance and for Uralic, we experiment with
groups containing three or four source languages.
To arrive at a comparable experimental setup for
Slavic, we run two experiments, each with three
source and one target language: (i) from Russian,
Bulgarian and Czech to Macedonian; and (ii) from
Russian, Polish and Slovene to Ukrainian.

We hope that the paradigm completor learns sim-
ilar embeddings for, say, the characters “e” in Pol-
ish and “ε” in Ukrainian. Thus, the use of two
scripts in Slavic allows us to explore transfer across
different alphabets.

We further consider a non-Indo-European lan-
guage family, the Uralic languages. We exper-
iment on the three most commonly spoken lan-
guages – Finnish, Estonian and Hungarian (Abon-
dolo, 2015) – as well as Northern Sami, a language
used in Northern Scandinavia. While Finnish and
Estonian are closely related (both are members of
the Finnic subfamily), Hungarian is a more dis-
tant cousin. Estonian and Northern Sami are low-
resource languages, so we assign them the low-
resource role, resulting in two groups of exper-
iments: (i) Finnish, Hungarian and Estonian to
Northern Sami; (ii) Finnish, Hungarian and North-
ern Sami to Estonian.

Arabic (baseline) is a Semitic language (part
of the Afro-Asiatic family (Hetzron, 2013)) that is

1996

spoken in North Africa, the Arabian Peninsula and
other parts of the Middle East. It is unrelated to all
other languages used in this work. Both in terms
of form (new words are mainly built using a tem-
platic system) and categories (it has tags such as
construct state), Arabic is very different. Thus, we
do not expect it to support morphological knowl-
edge transfer and use it as a baseline for all target
languages.

5 Experiments

We run four experiments on 21 distinct pairings of
languages to show the feasibility of morphological
transfer and analyze our method. We first discuss
details common to all experiments.

We keep hyperparameters during all experi-
ments (and for all languages) fixed to the following
values. Encoder and decoder RNNs each have 100
hidden units and the size of all subtag, character
and language embeddings is 300. For training we
use ADADELTA (Zeiler, 2012) with minibatch size
20. All models are trained for 300 epochs. Fol-
lowing Le et al. (2015), we initialize all weights in
the encoder, decoder and the embeddings except
for the GRU weights in the decoder to the identity
matrix. Biases are initialized to zero.

Evaluation metrics: (i) 1-best accuracy: the
percentage of predictions that match the true an-
swer exactly; (ii) average edit distance between
prediction and true answer. The two metrics differ
in that accuracy gives no partial credit and incorrect
answers may be drastically different from the anno-
tated form without incurring additional penalty. In
contrast, edit distance gives partial credit for forms
that are closer to the true answer.

5.1 Exp. 1: Transfer Learning for Paradigm
Completion

In this experiment, we investigate to what extent
our model transfers morphological knowledge from
a high-resource source language to a low-resource
target language. We experimentally answer three
questions. (i) Is transfer learning possible for mor-
phology? (ii) How much annotated data do we
need in the low-resource target language? (iii)
How closely related must the two languages be
to achieve good results?

Data. Based on complete inflection tables
from unimorph.org (Kirov et al., 2016), we cre-
ate datasets as follows. Each training set con-
sists of 12,000 samples in the high-resource source

50·20 50·21 50·22 50·23 50·24 50·25 50·26 50·27

Number of Samples

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

Languages
Pt
Ca
It
Fr
Ar
Es

Figure 2: Learning curves showing the accuracy
on Spanish test when training on language λ ∈
{PT, CA, IT, FR, AR, ES}. Except for λ=ES, each
model is trained on 12,000 samples from λ and
“Number of Samples” (x-axis) of Spanish.

language and nt∈{50, 200} samples in the low-
resource target language. We create target lan-
guage dev and test sets of sizes 1600 and 10,000,
respectively.3 For Romance and Arabic, we cre-
ate learning curves for nt∈{100, 400, 800, 1600,
3200, 6400, 12000}. Due to the data available to
us, we use only verbs for the Romance and Uralic
language families, but nouns, verbs and adjectives
for the Slavic language family and Arabic. Lem-
mata and inflections are randomly selected from all
available paradigms.

Results and Discussion. Tab. 3 shows the ef-
fectiveness of transfer learning. There are two
baselines. (i) “0”: no transfer, i.e., we consider
only in-domain data; (ii) “AR”: Arabic, which is
unrelated to all target languages.

With the exception of the 200 sample case of
ET→SME, cross-lingual transfer is always better
than the two baselines; the maximum improvement
is 0.58 (0.58 vs. 0.00) in accuracy for the 50 sam-
ple case of CA→ES. More closely related source
languages improve performance more than distant
ones. French, the Romance language least simi-
lar to Spanish, performs worst for →ES. For the
target language Macedonian, Bulgarian provides
most benefit. This can again be explained by simi-
larity: Bulgarian is closer to Macedonian than the
other languages in this group. The best result for
Ukrainian is RU→UK. Unlike Polish and Slowe-
nian, Russian is the only language in this group
that uses the same script as Ukrainian, showing

3For Estonian, we use 7094 (not 12,000) train and 5000
(not 10,000) test samples as more data is unavailable.

1997

Romance Slavic I Slavic II Uralic I Uralic II
source 0 AR PT CA IT FR 0 AR RU BG CS 0 AR RU PL SL 0 AR FI HU ET 0 AR FI HU SME
target →ES →MK →UK →SME →ET

5
0 acc ↑ 0.00 0.04 0.48 0.58 0.46 0.29 0.00 0.00 0.23 0.47 0.13 0.01 0.01 0.47 0.16 0.07 0.00 0.01 0.07 0.05 0.03 0.02 0.01 0.35 0.21 0.17

ED ↓ 5.42 4.06 0.85 0.80 1.15 1.82 5.71 5.59 1.61 0.87 2.32 5.23 4.80 0.77 2.14 3.12 6.21 5.47 2.88 3.46 3.71 4.50 4.51 1.55 2.19 2.60

2
0
0 acc ↑ 0.38 0.54 0.62 0.78 0.74 0.60 0.21 0.40 0.62 0.77 0.57 0.16 0.21 0.64 0.55 0.50 0.13 0.24 0.26 0.28 0.13 0.34 0.53 0.74 0.71 0.66

ED ↓ 1.37 0.87 0.57 0.39 0.44 0.82 1.93 1.12 0.68 0.36 0.72 2.09 1.60 0.49 0.73 0.82 2.94 1.89 1.78 1.61 2.46 1.47 0.98 0.41 0.48 0.62

Table 3: Accuracy (acc; the higher the better; indicated by ↑) and edit distance (ED; the lower the better;
indicated by ↓) of cross-lingual transfer learning for paradigm completion. The target language is indicated
by “→”, e.g., it is Spanish for “→ES”. Sources are indicated in the row “source”; “0” is the monolingual
case. Except for Estonian, we train on ns = 12,000 source samples and nt ∈ {50, 200} target samples
(as indicated by the row). There are two baselines in the table. (i) “0”: no transfer, i.e., we consider only
in-domain data; (ii) “AR”: the Semitic language Arabic is unrelated to all target languages and functions
as a dummy language that is unlikely to provide relevant information. All languages are denoted using the
official codes (SME=Northern Sami).

the importance of the alphabet for transfer. Still,
the results also demonstrate that transfer works
across alphabets (although not as well); this sug-
gests that similar embeddings for similar characters
have been learned. Finnish is the language that is
closest to Estonian and it again performs best as a
source language for Estonian. For Northern Sami,
transfer works least well, probably because the dis-
tance between sources and target is largest in this
case. The distance of the Sami languages from
the Finnic (Estonian, Finnish) and Ugric (Hungar-
ian) languages is much larger than the distances
within Romance and within Slavic. However, even
for Northern Sami, the worst performing language,
adding an additional language is still always bene-
ficial compared to the monolingual baseline.

Learning curves for Romance and Arabic fur-
ther support our finding that language similarity is
important. In Fig. 2, knowledge is transferred to
Spanish, and a baseline – a model trained only on
Spanish data – shows the accuracy obtained with-
out any transfer learning. Here, Catalan and Italian
help the most, followed by Portuguese, French and,
finally, Arabic. This corresponds to the order of
lexical similarity with Spanish, except for the per-
formance of Portuguese (cf. Tab. 2). A possible
explanation is the potentially confusing overlap
of lemmata between the two languages – cf. dis-
cussion in the next subsection. That the transfer
learning setup improves performance for the unre-
lated language Arabic as source is at first surprising.
However, adding new samples to a small training
set helps prevent overfitting (e.g., rote memoriza-
tion) even if the source is a morphologically unre-
lated language; effectively acting as a regularizer.

Following (Kann and Schütze, 2016b) we did
not use standard regularizers. To verify that the

effect of Arabic is mainly a regularization effect,
we ran a small monolingual experiment on ES (200
setting) with dropout 0.5 (Srivastava et al., 2014).
The resulting accuracy is 0.57, very similar to the
comparable Arabic number of 0.54 in the table.
The accuracy for dropout and 50 ES samples stays
at 0.00, showing that in extreme low-resource set-
tings an unrelated language might be preferable to
a standard regularizer.

Error Analysis for Romance. Even for only 50
Spanish instances, many inflections are correctly
produced in transfer. For, e.g., (criar, 3PlFutSbj)
7→ criaren, model outputs are: fr: criaren, ca:
criaren, es: crntaron, it: criaren, ar: ecriren, pt:
criaren (all correct except for the two baselines).
Many errors involve accents, e.g., (contrastar, 2Pl-
FutInd) 7→ contrastaréis; model outputs are: fr: con-
trastareis, ca: contrastareis, es: conterarı́an, it:
contrastareis, ar: contastarı́as, pt: contrastareis.
Some inflected forms are produced incorrectly by
all systems, mainly because they apply the inflec-
tional rules of the source language directly to the
target. Finally, the output of the model trained on
Portuguese contains a class of errors that are unlike
those of other systems. Example: (contraatacar,
1SgCond) 7→ contraatacarı́a with the following so-
lutions: fr: contratacarı́am, ca: contraatacarı́a, es:
concarnar, it: contratacé, ar: cuntatarı́a and pt:
contra-atacarı́a. The Portuguese model inserts “-”
because Portuguese train data contains contraat-
acar and “-” appears in its inflected form. Thus,
it seems that shared lemmata between the high-
resource source language and the low-resource tar-
get language hurt our model’s performance.4 An

4To investigate this in more detail we retrain the Portuguese
model with 50 Spanish samples, but exclude all lemmata
that appear in Spanish train/dev/test, resulting in only 3695

1998

PT CA IT CA&PT CA&IT

→ES
50

acc ↑ 0.48 0.58 0.46 0.56 0.58
ED ↓ 0.85 0.80 1.15 0.67 0.82

20
0 acc ↑ 0.62 0.78 0.74 0.77 0.79

ED ↓ 0.47 0.39 0.44 0.34 0.31

Table 4: Results for transfer from pairs of source
languages to ES. Results from single languages are
repeated for comparison.

example for the generally improved performance
across languages for 200 Spanish training samples
is (contrastar, 2PlIndFut) 7→ contrastaréis: all mod-
els now produce the correct form.

5.2 Exp. 2: Multiple Source Languages

We now want to investigate the effect of multiple
source languages.

Data. Our experimental setup is similar to §5.1:
we use the same dev, test and low-resource train
sets as before. However, we limit this experiment
to the Romance language family and the high-
resource train data consists of samples from two
different source languages at once. Choosing those
which have the highest accuracies on their own, we
experiment with the following pairs: CA&PT, as
well as CA&IT. In order to keep all experiments
easily comparable, we use half of each source lan-
guage’s data, again ending up with a total of 12,000
high-resource samples.

Results and Discussion. Results are shown in
Tab. 4. Training on two source languages improves
over training on a single one. Increases in accuracy
are minor, but edit distance is reduced by up to
0.13 (50 low-resource samples) and 0.08 (200 low-
resource samples). That using data from multiple
languages is beneficial might be due to a weaker
tendency of the final model to adapt wrong rules
from the source language, since different alterna-
tives are presented during training.

5.3 Exp. 3: Zero-Shot/One-Shot Transfer

In §5.1, we investigated the relationship between in-
domain (target) training set size and performance.
Here, we look at the extreme case of training set
sizes 1 (one-shot) and 0 (zero-shot) for a tag. We
train our model on a single sample for half of the
tags appearing in the low-resource language, i.e.,

training samples. Accuracy on test increases by 0.09 despite
the reduced size of the training set.

0 PT CA IT FR AR

→ES

on
e

sh
ot acc ↑ 0.00 0.44 0.39 0.23 0.13 0.00

ED ↓ 6.26 1.01 1.27 1.83 2.87 7.00

ze
ro

sh
ot acc ↑ 0.00 0.14 0.08 0.01 0.02 0.00

ED ↓ 7.18 1.95 1.99 3.12 4.27 7.50

Table 5: Results for one-shot and zero-shot transfer
learning. Formatting is the same as for Tab. 3. We
still use ns = 12000 source samples. In the one-
shot (resp. zero-shot) case, we observe exactly one
form (resp. zero forms) for each tag in the target
language at training time.

if T` is the set of morphological tags for the target
language, train set size is |T`|/2. As before, we add
12,000 source samples.

We report one-shot accuracy (resp. zero-shot ac-
curacy), i.e., the accuracy for samples with a tag
that has been seen once (resp. never) during train-
ing. Note that the model has seen the individual
subtags each tag is composed of.5

Data. Now, we use the same dev, test and high-
resource train sets as in §5.1. However, the low-
resource data is created in the way specified above.
To remove a potentially confounding variable, we
impose the condition that no two training samples
belong to the same lemma.

Results and Discussion. Tab. 5 shows that the
Spanish and Arabic systems do not learn anything
useful for either half of the tags. This is not sur-
prising as there is not enough Spanish data for
the system to generalize well and Arabic does not
contribute exploitable information. The systems
trained on French and Italian, in contrast, get a non-
zero accuracy for the zero-shot case as well as 0.13
and 0.23, respectively, in the one-shot case. This
shows that a single training example is sometimes
sufficient for successful generation although gener-
alization to tags never observed is rarely possible.
Catalan and Portuguese show the best performance
in both settings; this is intuitive since they are the
languages closest to the target (cf. Tab. 2). In fact,
adding Portuguese to the training data yields an ab-
solute increase in accuracy of 0.44 (0.44 vs. 0.00)
for one-shot and 0.14 (0.14 vs. 0.00) for zero-shot
with corresponding improvements in edit distance.

Overall, this experiment shows that with transfer
learning from a closely related language the per-

5It is very unlikely that due to random selection a subtag
will not be in train; this case did not occur in our experiments.

1999

formance of zero-shot morphological generation
improves over the monolingual approach, and, in
the one-shot setting, it is possible to generate the
right form nearly half the time.

5.4 Exp. 4: True Transfer vs. Other Effects

We would like to separate the effects of regulariza-
tion that we saw for Arabic from true transfer.

To this end, we generate a random cipher (i.e.,
a function γ : Σ ∪ S 7→ Σ ∪ S) and apply it
to all word forms and morphological tags of the
high-resource train set; target language data are not
changed. Ciphering makes it harder to learn true
“linguistic” transfer of morphology. Consider the
simplest case of transfer: an identical mapping in
two languages, e.g., (visitar, 1SgPresInd) 7→ visito
in both Portuguese and Spanish. If we transform
Portuguese using the cipher γ(iostv...) = kltqa...,
then visito becomes aktkql in Portuguese and its tag
becomes similarly unrecognizable as being iden-
tical to the Spanish tag 1SgPresInd. Our intuition
is that ciphering will disrupt transfer of morphol-
ogy.6 On the other hand, the regularization effect
we observed with Arabic should still be effective.

Data. We use the Portuguese-Spanish and
Arabic-Spanish data from §5.1. We generate a ran-
dom cipher and apply it to morphological tags and
word forms for Portuguese and Arabic. The lan-
guage tags are kept unchanged. Spanish is also not
changed. For comparability with Tab. 3, we use the
same dev and test sets as before.

Results and Discussion. Tab. 6 shows that per-
formance of PT→ES drops a lot: from 0.48 to 0.09
for 50 samples and from 0.62 to 0.54 for 200 sam-
ples. This is because there are no overt similarities
between the two languages left after applying the
cipher, e.g., the two previously identical forms vis-
ito are now different.

The impact of ciphering on AR→ES varies:
slightly improved in one case (0.54 vs. 0.56),
slightly worse in three cases. We also apply the
cipher to the tags and Arabic and Spanish share sub-
tags, e.g., Sg. Just the knowledge that something
is a subtag is helpful because subtags must not be
generated as part of the output. We can explain the
tendency of ciphering to decrease performance on
AR→ES by the “masking” of common subtags.

6Note that ciphered input is much harder than transfer
between two alphabets (Latin/Cyrillic) because it creates am-
biguous input. In the example, Spanish “i” is totally different
from Portuguese “i” (which is really “k”), but the model must
use the same representation.

0→ES PT→ES AR→ES

orig ciph orig ciph

50

acc ↑ 0.00 0.48 0.09 0.04 0.02
ED ↓ 5.42 0.85 3.25 4.06 4.62

20
0 acc ↑ 0.38 0.62 0.54 0.54 0.56

ED ↓ 1.37 0.57 0.95 0.87 0.93

Table 6: Results for ciphering. “0→ES” and “orig”
are original results, copied from Tab. 3; “ciph” is
the result after the cipher has been applied.

For 200 samples and ciphering, there is no clear
difference in performance between Portuguese and
Arabic. However, for 50 samples and ciphering,
Portuguese (0.09) seems to perform better than Ara-
bic (0.02) in accuracy. Portuguese uses suffixation
for inflection whereas Arabic is templatic and in-
flectional changes are not limited to the end of the
word. This difference is not affected by ciphering.
Perhaps even ciphered Portugese lets the model
learn better that the beginnings of words just need
to be copied. For 200 samples, the Spanish dataset
may be large enough, so that ciphered Portuguese
no longer helps in this regard.

Comparing no transfer with transfer from a ci-
phered language to Spanish, we see large perfor-
mance gains, at least for the 200 sample case:
0.38 (0→ES) vs. 0.54 (PT→ES) and 0.56 (AR→ES).
This is evidence that our conjecture is correct that
the baseline Arabic mainly acts as a regularizer that
prevents the model from memorizing the training
set and therefore improves performance. So per-
formance improves even though no true transfer of
morphological knowledge takes place.

6 Related Work

Cross-lingual transfer learning has been used
for many tasks, e.g., automatic speech recognition
(Huang et al., 2013), parsing (Cohen et al., 2011;
Søgaard, 2011; Naseem et al., 2012; Ammar et al.,
2016), language modeling (Tsvetkov et al., 2016),
entity recognition (Wang and Manning, 2014b) and
machine translation (Johnson et al., 2016; Ha et al.,
2016).

One straightforward method is to translate
datasets and then train a monolingual model (For-
tuna and Shawe-Taylor, 2005; Olsson et al., 2005).
Also, aligned corpora have been used to project
information from annotations in one language to
another (Yarowsky et al., 2001; Padó and Lapata,
2005). The drawback is that machine translation

2000

errors cause errors in the target. Therefore, alter-
native methods have been proposed, e.g., to port a
model trained on the source language to the target
language (Shi et al., 2010).

In the realm of morphology, Buys and Botha
(2016) recently adapted methods for the training
of POS taggers to learn weakly supervised mor-
phological taggers with the help of parallel text.
Snyder and Barzilay (2008a, 2008b) developed
a non-parametric Bayesian model for morpholog-
ical segmentation. They performed identification
of cross-lingual abstract morphemes and segmen-
tation simultaneously and reported, similar to us,
best results for related languages.

Work on paradigm completion has recently
been encouraged by the SIGMORPHON 2016
shared task on morphological reinflection (Cot-
terell et al., 2016a). Some work first applies an
unsupervised alignment model to source and tar-
get string pairs and then learns a string-to-string
mapping (Durrett and DeNero, 2013; Nicolai et al.,
2015), using, e.g., a semi-Markov conditional ran-
dom field (Sarawagi and Cohen, 2004). Encoder-
decoder RNNs (Aharoni et al., 2016; Faruqui et al.,
2016; Kann and Schütze, 2016b), a method which
our work further develops for the cross-lingual sce-
nario, define the current state of the art.

Encoder-decoder RNNs were developed in par-
allel by Cho et al. (2014) and Sutskever et al. (2014)
for machine translation and extended by Bahdanau
et al. (2015) with an attention mechanism, support-
ing better generalization. They have been applied
to NLP tasks like speech recognition (Graves and
Schmidhuber, 2005; Graves et al., 2013), parsing
(Vinyals et al., 2015) and segmentation (Kann et al.,
2016).

More recently, a number of papers have used
encoder-decoder RNNs in multitask and transfer
learning settings; this is mainly work in machine
translation: (Dong et al., 2015; Zoph and Knight,
2016; Chu et al., 2017; Johnson et al., 2016; Lu-
ong et al., 2016; Firat et al., 2016; Ha et al., 2016),
inter alia. Each of these papers has both similar-
ities and differences with our approach. (i) Most
train several distinct models whereas we train a
single model on input augmented with an explicit
encoding of the language (similar to (Johnson et al.,
2016)). (ii) Let k and m be the number of dif-
ferent input and output languages. We address
the case k ∈ {1, 2, 3} and m = k. Other work
has addressed cases with k > 3 or m > 3; this

would be an interesting avenue of future research
for paradigm completion. (iii) Whereas training
RNNs in machine translation is hard, we only expe-
rienced one difficult issue in our experiments (due
to the low-resource setting): regularization. (iv)
Some work is word- or subword-based, our work is
character-based. The same way that similar word
embeddings are learned for the inputs cow and
vache (French for “cow”) in machine translation,
we expect similar embeddings to be learned for sim-
ilar Cyrillic/Latin characters. (v) Similar to work in
machine translation, we show that zero-shot (and,
by extension, one-shot) learning is possible.

(Ha et al., 2016) (which was developed in par-
allel to our transfer model although we did not
prepublish our paper on arxiv) is most similar to
our work. Whereas Ha et al. (2016) address ma-
chine translation, we focus on the task of paradigm
completion in low-resource settings and establish
the state of the art for this problem.

7 Conclusion

We presented a cross-lingual transfer learning
method for paradigm completion, based on an RNN
encoder-decoder model. Our experiments showed
that information from a high-resource language can
be leveraged for paradigm completion in a related
low-resource language. Our analysis indicated that
the degree to which the source language data helps
for a certain target language depends on their re-
latedness. Our method led to significant improve-
ments in settings with limited training data – up
to 58% absolute improvement in accuracy – and,
thus, enables the use of state-of-the-art models for
paradigm completion in low-resource languages.

8 Future Work

In the future, we want to develop methods to make
better use of languages with different alphabets or
morphosyntactic features, in order to increase the
applicability of our knowledge transfer method.

Acknowledgments

We would like to thank the anonymous reviewers
for their insightful comments. We are grateful to
Siemens and Volkswagenstiftung for their generous
support. This research would not have been possi-
ble without the organizers of the SIGMORPHON
shared task, especially John Sylak-Glassman and
Christo Kirov, who created the resources we use.

2001

References
Daniel Abondolo. 2015. The Uralic Languages. Rout-

ledge.

Roee Aharoni, Yoav Goldberg, and Yonatan Belinkov.
2016. Improving sequence to sequence learning for
morphological inflection generation: The BIU-MIT
systems for the SIGMORPHON 2016 shared task
for morphological reinflection. In SIGMORPHON.

Malin Ahlberg, Markus Forsberg, and Mans Hulden.
2014. Semi-supervised learning of morphological
paradigms and lexicons. In EACL.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. TACL 4:431–444.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In ICLR.

Jan Buys and Jan A Botha. 2016. Cross-lingual mor-
phological tagging for low-resource languages. In
ACL.

Rich Caruana. 1997. Multitask learning. Machine
Learning 28(1):41–75.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bah-
danau, and Yoshua Bengio. 2014. On the properties
of neural machine translation: Encoder-decoder ap-
proaches. arXiv preprint 1409.1259 .

Chenhui Chu, Raj Dabre, and Sadao Kurohashi. 2017.
An empirical comparison of simple domain adapta-
tion methods for neural machine translation. arXiv
preprint 1701.03214 .

Shay B Cohen, Dipanjan Das, and Noah A Smith. 2011.
Unsupervised structure prediction with non-parallel
multilingual guidance. In EMNLP.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa. 2011.
Natural language processing (almost) from scratch.
JMLR 12(Aug):2493–2537.

Greville Corbett and Bernard Comrie. 2003. The
Slavonic Languages. Routledge.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016a. The SIGMORPHON 2016 shared task—
morphological reinflection. In SIGMORPHON.

Ryan Cotterell, Nanyun Peng, and Jason Eisner.
2015. Modeling word forms using latent underlying
morphs and phonology. TACL 3:433–447.

Ryan Cotterell, Hinrich Schütze, and Jason Eisner.
2016b. Morphological smoothing and extrapolation
of word embeddings. In ACL.

Mathias Creutz, Teemu Hirsimäki, Mikko Kurimo,
Antti Puurula, Janne Pylkkönen, Vesa Siivola, Matti
Varjokallio, Ebru Arisoy, Murat Saraçlar, and An-
dreas Stolcke. 2007. Analysis of morph-based
speech recognition and the modeling of out-of-
vocabulary words across languages. In NAACL-
HLT .

Daxiang Dong, Hua Wu, Wei He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In ACL-IJCNLP.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
NAACL.

Christopher Dyer, Smaranda Muresan, and Philip
Resnik. 2008. Generalizing word lattice translation.
In ACL.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In NAACL.

Orhan Firat, KyungHyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine trans-
lation with a shared attention mechanism. CoRR
abs/1601.01073.

Blaz Fortuna and John Shawe-Taylor. 2005. The use of
machine translation tools for cross-lingual text min-
ing. In ICML Workshop on Learning with Multiple
Views.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In IEEE.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural Net-
works 18(5):602–610.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel.
2016. Toward multilingual neural machine trans-
lation with universal encoder and decoder. arXiv
preprint 1611.04798 .

Martin Harris and Nigel Vincent. 2003. The Romance
languages. Routledge.

Robert Hetzron. 2013. The Semitic Languages. Rout-
ledge.

Jui-Ting Huang, Jinyu Li, Dong Yu, Li Deng, and
n Gong. 2013. Cross-language knowledge transfer
using multilingual deep neural network with shared
hidden layers. In IEEE.

Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Tho-
rat, Fernanda B Viégas, Martin Wattenberg, Greg
Corrado, Macduff Hughes, and Jeffrey Dean. 2016.
Google’s multilingual neural machine translation
system: Enabling zero-shot translation. CoRR
abs/1611.04558.

2002

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2016. Neural morphological analysis: Encoding-
decoding canonical segments. In EMNLP.

Katharina Kann and Hinrich Schütze. 2016a. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL.

Katharina Kann and Hinrich Schütze. 2016b. MED:
The LMU system for the SIGMORPHON 2016
shared task on morphological reinflection. In ACL.

Christo Kirov, John Sylak-Glassman, Roger Que, and
David Yarowsky. 2016. Very-large scale pars-
ing and normalization of wiktionary morphological
paradigms. In LREC.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton.
2015. A simple way to initialize recurrent networks
of rectified linear units. CoRR abs/1504.00941.

M Paul Lewis, editor. 2009. Ethnologue: Languages
of the World. SIL International, Dallas, Texas, 16
edition.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In ICLR.

Karthik Narasimhan, Damianos Karakos, Richard
Schwartz, Stavros Tsakalidis, and Regina Barzilay.
2014. Morphological segmentation for keyword
spotting. In EMNLP.

Tahira Naseem, Regina Barzilay, and Amir Globerson.
2012. Selective sharing for multilingual dependency
parsing. In ACL.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In NAACL.

J Scott Olsson, Douglas W Oard, and Jan Hajič. 2005.
Cross-language text classification. In ACM SIGIR.

Sebastian Padó and Mirella Lapata. 2005. Cross-
linguistic projection of role-semantic information.
In HLT/EMNLP.

Slav Petrov, Dipanjan Das, and Ryan McDonald. 2012.
A universal part-of-speech tagset. In LREC.

Sunita Sarawagi and William W Cohen. 2004. Semi-
markov conditional random fields for information
extraction. In NIPS.

Wolfgang Seeker and Özlem Çetinoğlu. 2015. A graph-
based lattice dependency parser for joint morpho-
logical segmentation and syntactic analysis. TACL
3:359–373.

Lei Shi, Rada Mihalcea, and Mingjun Tian. 2010.
Cross language text classification by model transla-
tion and semi-supervised learning. In EMNLP.

Benjamin Snyder and Regina Barzilay. 2008a. Cross-
lingual propagation for morphological analysis. In
AAAI.

Benjamin Snyder and Regina Barzilay. 2008b. Un-
supervised multilingual learning for morphological
segmentation. In ACL-HLT .

Anders Søgaard. 2011. Data point selection for cross-
language adaptation of dependency parsers. In ACL-
HLT .

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search 15(1):1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In NIPS.

John Sylak-Glassman. 2016. The composition and use
of the universal morphological feature schema (uni-
morph schema). Technical report, Department of
Computer Science, Johns Hopkins University.

John Sylak-Glassman, Christo Kirov, David Yarowsky,
and Roger Que. 2015. A language-independent fea-
ture schema for inflectional morphology. In ACL-
IJCNLP.

Yulia Tsvetkov, Sunayana Sitaram, Manaal Faruqui,
Guillaume Lample, Patrick Littell, David
Mortensen, Alan W Black, Lori Levin, and Chris
Dyer. 2016. Polyglot neural language models: A
case study in cross-lingual phonetic representation
learning. In NAACL-HLT .

Oriol Vinyals, Łukasz Kaiser, Terry Koo, Slav Petrov,
Ilya Sutskever, and Geoffrey Hinton. 2015. Gram-
mar as a foreign language. In NIPS.

Mengqiu Wang and Christopher D Manning. 2014a.
Cross-lingual projected expectation regularization
for weakly supervised learning. TACL 2:55–66.

Mengqiu Wang and Christopher D Manning. 2014b.
Cross-lingual pseudo-projected expectation regular-
ization for weakly supervised learning. TACL 2:55–
66.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2015.
Corpus-level fine-grained entity typing using contex-
tual information. In EMNLP.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection across aligned corpora. In
HLT .

Matthew D Zeiler. 2012. ADADELTA: an adaptive
learning rate method. CoRR abs/1212.5701.

Barret Zoph and Kevin Knight. 2016. Multi-source
neural translation. In NAACL-HLT .

2003

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2004–2015
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1183

Morphological Inflection Generation
with Hard Monotonic Attention

Roee Aharoni & Yoav Goldberg
Computer Science Department

Bar-Ilan University
Ramat-Gan, Israel

{roee.aharoni,yoav.goldberg}@gmail.com

Abstract

We present a neural model for morpho-
logical inflection generation which em-
ploys a hard attention mechanism, inspired
by the nearly-monotonic alignment com-
monly found between the characters in
a word and the characters in its inflec-
tion. We evaluate the model on three pre-
viously studied morphological inflection
generation datasets and show that it pro-
vides state of the art results in various se-
tups compared to previous neural and non-
neural approaches. Finally we present an
analysis of the continuous representations
learned by both the hard and soft atten-
tion (Bahdanau et al., 2015) models for the
task, shedding some light on the features
such models extract.

1 Introduction

Morphological inflection generation involves gen-
erating a target word (e.g. “härtestem”, the
German word for “hardest”), given a source
word (e.g. “hart”, the German word for
“hard”) and the morpho-syntactic attributes of
the target (POS=adjective, gender=masculine,
type=superlative, etc.).

The task is important for many down-stream
NLP tasks such as machine translation, especially
for dealing with data sparsity in morphologically
rich languages where a lemma can be inflected
into many different word forms. Several studies
have shown that translating into lemmas in the tar-
get language and then applying inflection gener-
ation as a post-processing step is beneficial for
phrase-based machine translation (Minkov et al.,
2007; Toutanova et al., 2008; Clifton and Sarkar,
2011; Fraser et al., 2012; Chahuneau et al., 2013)

and more recently for neural machine translation
(Garcı́a-Martı́nez et al., 2016).

The task was traditionally tackled with hand en-
gineered finite state transducers (FST) (Kosken-
niemi, 1983; Kaplan and Kay, 1994) which rely
on expert knowledge, or using trainable weighted
finite state transducers (Mohri et al., 1997; Eisner,
2002) which combine expert knowledge with data-
driven parameter tuning. Many other machine-
learning based methods (Yarowsky and Wicen-
towski, 2000; Dreyer and Eisner, 2011; Durrett
and DeNero, 2013; Hulden et al., 2014; Ahlberg
et al., 2015; Nicolai et al., 2015) were proposed for
the task, although with specific assumptions about
the set of possible processes that are needed to cre-
ate the output sequence.

More recently, the task was modeled as neu-
ral sequence-to-sequence learning over character
sequences with impressive results (Faruqui et al.,
2016). The vanilla encoder-decoder models as
used by Faruqui et al. compress the input sequence
to a single, fixed-sized continuous representation.
Instead, the soft-attention based sequence to se-
quence learning paradigm (Bahdanau et al., 2015)
allows directly conditioning on the entire input se-
quence representation, and was utilized for mor-
phological inflection generation with great success
(Kann and Schütze, 2016b,a).

However, the neural sequence-to-sequence
models require large training sets in order to per-
form well: their performance on the relatively
small CELEX dataset is inferior to the latent vari-
able WFST model of Dreyer et al. (2008). Inter-
estingly, the neural WFST model by Rastogi et al.
(2016) also suffered from the same issue on the
CELEX dataset, and surpassed the latent variable
model only when given twice as much data to train
on.

We propose a model which handles the above
issues by directly modeling an almost monotonic

2004

https://doi.org/10.18653/v1/P17-1183

alignment between the input and output charac-
ter sequences, which is commonly found in the
morphological inflection generation task (e.g. in
languages with concatenative morphology). The
model consists of an encoder-decoder neural net-
work with a dedicated control mechanism: in each
step, the model attends to a single input state and
either writes a symbol to the output sequence or
advances the attention pointer to the next state
from the bi-directionally encoded sequence, as de-
scribed visually in Figure 1.

This modeling suits the natural monotonic
alignment between the input and output, as the
network learns to attend to the relevant inputs be-
fore writing the output which they are aligned
to. The encoder is a bi-directional RNN, where
each character in the input word is represented
using a concatenation of a forward RNN and a
backward RNN states over the word’s characters.
The combination of the bi-directional encoder and
the controllable hard attention mechanism enables
to condition the output on the entire input se-
quence. Moreover, since each character represen-
tation is aware of the neighboring characters, non-
monotone relations are also captured, which is im-
portant in cases where segments in the output word
are a result of long range dependencies in the in-
put word. The recurrent nature of the decoder, to-
gether with a dedicated feedback connection that
passes the last prediction to the next decoder step
explicitly, enables the model to also condition the
current output on all the previous outputs at each
prediction step.

The hard attention mechanism allows the net-
work to jointly align and transduce while us-
ing a focused representation at each step, rather
then the weighted sum of representations used in
the soft attention model. This makes our model
Resolution Preserving (Kalchbrenner et al., 2016)
while also keeping decoding time linear in the
output sequence length rather than multiplicative
in the input and output lengths as in the soft-
attention model. In contrast to previous sequence-
to-sequence work, we do not require the training
procedure to also learn the alignment. Instead, we
use a simple training procedure which relies on
independently learned character-level alignments,
from which we derive gold transduction+control
sequences. The network can then be trained using
straightforward cross-entropy loss.

To evaluate our model, we perform extensive

experiments on three previously studied morpho-
logical inflection generation datasets: the CELEX
dataset (Baayen et al., 1993), the Wiktionary
dataset (Durrett and DeNero, 2013) and the SIG-
MORPHON2016 dataset (Cotterell et al., 2016).
We show that while our model is on par with
or better than the previous neural and non-neural
state-of-the-art approaches, it also performs sig-
nificantly better with very small training sets, be-
ing the first neural model to surpass the perfor-
mance of the weighted FST model with latent vari-
ables which was specifically tailored for the task
by Dreyer et al. (2008). Finally, we analyze and
compare our model and the soft attention model,
showing how they function very similarly with re-
spect to the alignments and representations they
learn, in spite of our model being much simpler.
This analysis also sheds light on the representa-
tions such models learn for the morphological in-
flection generation task, showing how they encode
specific features like a symbol’s type and the sym-
bol’s location in a sequence.

To summarize, our contributions in this paper
are three-fold:

1. We present a hard attention model for nearly-
monotonic sequence to sequence learning, as
common in the morphological inflection set-
ting.

2. We evaluate the model on the task of mor-
phological inflection generation, establishing
a new state of the art on three previously-
studied datasets for the task.

3. We perform an analysis and comparison of
our model and the soft-attention model, shed-
ding light on the features such models extract
for the inflection generation task.

2 The Hard Attention Model

2.1 Motivation

We would like to transduce an input sequence,
x1:n ∈ Σ∗x into an output sequence, y1:m ∈ Σ∗y,
where Σx and Σy are the input and output vo-
cabularies, respectively. Imagine a machine with
read-only random access to the encoding of the in-
put sequence, and a single pointer that determines
the current read location. We can then model se-
quence transduction as a series of pointer move-
ment and write operations. If we assume the align-
ment is monotone, the machine can be simpli-

2005

fied: the memory can be read in sequential or-
der, where the pointer movement is controlled by
a single “move forward” operation (step) which
we add to the output vocabulary. We implement
this behavior using an encoder-decoder neural net-
work, with a control mechanism which determines
in each step of the decoder whether to write an
output symbol or promote the attention pointer the
next element of the encoded input.

2.2 Model Definition

In prediction time, we seek the output sequence
y1:m ∈ Σ∗y, for which:

y1:m = arg max
y′∈Σ∗y

p(y′|x1:n, f) (1)

Where x ∈ Σ∗x is the input sequence and f =
{f1, . . . , fl} is a set of attributes influencing the
transduction task (in the inflection generation task
these would be the desired morpho-syntactic at-
tributes of the output sequence). Given a nearly-
monotonic alignment between the input and the
output, we replace the search for a sequence of let-
ters with a sequence of actions s1:q ∈ Σ∗s, where
Σs = Σy ∪ {step}. This sequence is a series of
step and write actions required to go from x1:n

to y1:m according to the monotonic alignment be-
tween them (we will elaborate on the determinis-
tic process of getting s1:q from a monotonic align-
ment between x1:n to y1:m in section 2.4). In this
case we define: 1

s1:q = arg max
s′∈Σ∗s

p(s′|x1:n, f)

= arg max
s′∈Σ∗s

∏

s′i∈s′
p(s′i|s′1 . . . s′i−1, x1:n, f)

(2)

which we can estimate using a neural network:

s1:q = arg max
s′∈Σ∗s

NN(x1:n, f,Θ) (3)

where the network’s parameters Θ are learned us-
ing a set of training examples. We will now de-
scribe the network architecture.

1We note that our model (Eq. 2) solves a different ob-
jective than (Eq 1), as it searches for the best derivation and
not the best sequence. In order to accurately solve (1) we
would need to marginalize over the different derivations lead-
ing to the same sequence, which is computationally challeng-
ing. However, as we see in the experiments section, the best-
derivation approximation is effective in practice.

Figure 1: The hard attention network architecture.
A round tip expresses concatenation of the inputs
it receives. The attention is promoted to the next
input element once a step action is predicted.

2.3 Network Architecture
Notation We use bold letters for vectors and ma-
trices. We treat LSTM as a parameterized func-
tion LSTMθ(x1 . . .xn) mapping a sequence of
input vectors x1 . . .xn to a an output vector hn.
The equations for the LSTM variant we use are
detailed in the supplementary material of this pa-
per.
Encoder For every element in the input sequence:
x1:n = x1 . . . xn, we take the corresponding em-
bedding: ex1 . . . exn , where: exi ∈ RE . These
embeddings are parameters of the model which
will be learned during training. We then feed
the embeddings into a bi-directional LSTM en-
coder (Graves and Schmidhuber, 2005) which re-
sults in a sequence of vectors: x1:n = x1 . . .xn,
where each vector xi ∈ R2H is a concate-
nation of: LSTMforward(ex1 , ex2 , . . . exi) and
LSTMbackward(exn , exn−1 . . . exi), the forward
LSTM and the backward LSTM outputs when fed
with exi .
Decoder Once the input sequence is encoded, we
feed the decoder RNN, LSTMdec, with three in-
puts at each step:

1. The current attended input, xa ∈ R2H , ini-
tialized with the first element of the encoded
sequence, x1.

2. A set of embeddings for the attributes that in-
fluence the generation process, concatenated
to a single vector: f = [f1 . . . fl] ∈ RF ·l.

3. si−1 ∈ RE , which is an embedding for the

2006

predicted output symbol in the previous de-
coder step.

Those three inputs are concatenated into a single
vector zi = [xa, f , si−1] ∈ R2H+F ·l+E , which is
fed into the decoder, providing the decoder output
vector: LSTMdec(z1 . . . zi) ∈ RH . Finally, to
model the distribution over the possible actions,
we project the decoder output to a vector of |Σs|
elements, followed by a softmax layer:

p(si = c)

= softmax c(W · LSTMdec(z1 . . . zi) + b)

(4)

Control Mechanism When the most probable ac-
tion is step, the attention is promoted so xa con-
tains the next encoded input representation to be
used in the next step of the decoder. The process
is demonstrated visually in Figure 1.

2.4 Training the Model
For every example: (x1:n, y1:m, f) in the train-
ing data, we should produce a sequence of step
and write actions s1:q to be predicted by the de-
coder. The sequence is dependent on the align-
ment between the input and the output: ideally,
the network will attend to all the input characters
aligned to an output character before writing it.
While recent work in sequence transduction ad-
vocate jointly training the alignment and the de-
coding mechanisms (Bahdanau et al., 2015; Yu
et al., 2016), we instead show that in our case it
is worthwhile to decouple these stages and learn
a hard alignment beforehand, using it to guide the
training of the encoder-decoder network and en-
abling the use of correct alignments for the at-
tention mechanism from the beginning of the net-
work training phase. Thus, our training procedure
consists of three stages: learning hard alignments,
deriving oracle actions from the alignments, and
learning a neural transduction model given the or-
acle actions.
Learning Hard Alignments We use the character
alignment model of Sudoh et al. (2013), based on a
Chinese Restaurant Process which weights single
alignments (character-to-character) in proportion
to how many times such an alignment has been
seen elsewhere out of all possible alignments. The
aligner implementation we used produces either 0-
to-1, 1-to-0 or 1-to-1 alignments.
Deriving Oracle Actions We infer the sequence
of actions s1:q from the alignments by the deter-
ministic procedure described in Algorithm 1. An

example of an alignment with the resulting oracle
action sequence is shown in Figure 2, where a4 is
a 0-to-1 alignment and the rest are 1-to-1 align-
ments.

Figure 2: Top: an alignment between a lemma
x1:n and an inflection y1:m as predicted by the
aligner. Bottom: s1:q, the sequence of actions to
be predicted by the network, as produced by Al-
gorithm 1 for the given alignment.

Algorithm 1 Generates the oracle action sequence
s1:q from the alignment between x1:n and y1:m

Require: a, the list of either 1-to-1, 1-to-0 or 0-
to-1 alignments between x1:n and y1:m

1: Initialize s as an empty sequence
2: for each ai = (xai , yai) ∈ a do
3: if ai is a 1-to-0 alignment then
4: s.append(step)
5: else
6: s.append(yai)
7: if ai+1 is not a 0-to-1 alignment then
8: s.append(step)

return s

This procedure makes sure that all the source
input elements aligned to an output element are
read (using the step action) before writing it.
Learning a Neural Transduction Model The
network is trained to mimic the actions of the ora-
cle, and at inference time, it will predict the actions
according to the input. We train it using a conven-
tional cross-entropy loss function per example:

L(x1:n, y1:m, f,Θ) = −
∑

sj∈s1:q
log softmax sj (d),

d = W · LSTMdec(z1 . . . zi) + b (5)

Transition System An alternative view of our
model is that of a transition system with AD-
VANCE and WRITE(CH) actions, where the oracle
is derived from a given hard alignment, the input
is encoded using a biRNN, and the next action is
determined by an RNN over the previous inputs
and actions.

2007

3 Experiments

We perform extensive experiments with three pre-
viously studied morphological inflection genera-
tion datasets to evaluate our hard attention model
in various settings. In all experiments we com-
pare our hard attention model to the best per-
forming neural and non-neural models which were
previously published on those datasets, and to
our implementation of the global (soft) attention
model presented by Luong et al. (2015) which we
train with identical hyper-parameters as our hard-
attention model. The implementation details for
our models are described in the supplementary
material section of this paper. The source code
and data for our models is available on github.2

CELEX Our first evaluation is on a very small
dataset, to see if our model indeed avoids the ten-
dency to overfit with small training sets. We re-
port exact match accuracy on the German inflec-
tion generation dataset compiled by Dreyer et al.
(2008) from the CELEX database (Baayen et al.,
1993). The dataset includes only 500 training
examples for each of the four inflection types:
13SIA→13SKE, 2PIE→13PKE, 2PKE→z, and
rP→pA which we refer to as 13SIA, 2PIE, 2PKE
and rP, respectively.3 We first compare our model
to three competitive models from the literature that
reported results on this dataset: the Morphologi-
cal Encoder-Decoder (MED) of Kann and Schütze
(2016a) which is based on the soft-attention model
of Bahdanau et al. (2015), the neural-weighted
FST of Rastogi et al. (2016) which uses stacked
bi-directional LSTM’s to weigh its arcs (NWFST),
and the model of Dreyer et al. (2008) which uses
a weighted FST with latent-variables structured
particularly for morphological string transduction
tasks (LAT). Following previous reports on this
dataset, we use the same data splits as Dreyer et al.
(2008), dividing the data for each inflection type
into five folds, each consisting of 500 training,
1000 development and 1000 test examples. We
train a separate model for each fold and report ex-
act match accuracy, averaged over the five folds.

2https://github.com/roeeaharoni/
morphological-reinflection

3The acronyms stand for: 13SIA=1st/3rd person, singular,
indefinite, past;13SKE=1st/3rd person, subjunctive, present;
2PIE=2nd person, plural, indefinite, present;13PKE=1st/3rd
person, plural, subjunctive, present; 2PKE=2nd person, plu-
ral, subjunctive, present; z=infinitive; rP=imperative, plural;
pA=past participle.

Wiktionary To neutralize the negative effect of
very small training sets on the performance of
the different learning approaches, we also evalu-
ate our model on the dataset created by Durrett
and DeNero (2013), which contains up to 360k
training examples per language. It was built by
extracting Finnish, German and Spanish inflection
tables from Wiktionary, used in order to evalu-
ate their system based on string alignments and
a semi-CRF sequence classifier with linguistically
inspired features, which we use a baseline. We
also used the dataset expansion made by Nicolai
et al. (2015) to include French and Dutch inflec-
tions as well. Their system also performs an align-
and-transduce approach, extracting rules from the
aligned training set and applying them in inference
time with a proprietary character sequence classi-
fier. In addition to those systems we also com-
pare to the results of the recent neural approach
of Faruqui et al. (2016), which did not use an at-
tention mechanism, and Yu et al. (2016), which
coupled the alignment and transduction tasks.

SIGMORPHON As different languages show
different morphological phenomena, we also ex-
periment with how our model copes with these
various phenomena using the morphological in-
flection dataset from the SIGMORPHON2016
shared task (Cotterell et al., 2016). Here the
training data consists of ten languages, with five
morphological system types (detailed in Table 3):
Russian (RU), German (DE), Spanish (ES), Geor-
gian (GE), Finnish (FI), Turkish (TU), Arabic
(AR), Navajo (NA), Hungarian (HU) and Maltese
(MA) with roughly 12,800 training and 1600 de-
velopment examples per language. We compare
our model to two soft attention baselines on this
dataset: MED (Kann and Schütze, 2016b), which
was the best participating system in the shared
task, and our implementation of the global (soft)
attention model presented by Luong et al. (2015).

4 Results

In all experiments, for both the hard and soft at-
tention models we implemented, we report results
using an ensemble of 5 models with different ran-
dom initializations by using majority voting on the
final sequences the models predicted, as proposed
by Kann and Schütze (2016a). This was done to
perform fair comparison to the models of Kann
and Schütze (2016a,b); Faruqui et al. (2016) which
we compare to, that also perform a similar ensem-

2008

13SIA 2PIE 2PKE rP Avg.
MED (Kann and Schütze, 2016a) 83.9 95 87.6 84 87.62
NWFST (Rastogi et al., 2016) 86.8 94.8 87.9 81.1 87.65
LAT (Dreyer et al., 2008) 87.5 93.4 87.4 84.9 88.3
Soft 83.1 93.8 88 83.2 87
Hard 85.8 95.1 89.5 87.2 89.44

Table 1: Results on the CELEX dataset

DE-N DE-V ES-V FI-NA FI-V FR-V NL-V Avg.
Durrett and DeNero (2013) 88.31 94.76 99.61 92.14 97.23 98.80 90.50 94.47
Nicolai et al. (2015) 88.6 97.50 99.80 93.00 98.10 99.20 96.10 96.04
Faruqui et al. (2016) 88.12 97.72 99.81 95.44 97.81 98.82 96.71 96.34
Yu et al. (2016) 87.5 92.11 99.52 95.48 98.10 98.65 95.90 95.32
Soft 88.18 95.62 99.73 93.16 97.74 98.79 96.73 95.7
Hard 88.87 97.35 99.79 95.75 98.07 99.04 97.03 96.55

Table 2: Results on the Wiktionary datasets

suffixing+stem changes circ. suffixing+agg.+v.h. c.h. templatic
RU DE ES GE FI TU HU NA AR MA Avg.

MED 91.46 95.8 98.84 98.5 95.47 98.93 96.8 91.48 99.3 88.99 95.56
Soft 92.18 96.51 98.88 98.88 96.99 99.37 97.01 95.41 99.3 88.86 96.34
Hard 92.21 96.58 98.92 98.12 95.91 97.99 96.25 93.01 98.77 88.32 95.61

Table 3: Results on the SIGMORPHON 2016 morphological inflection dataset. The text above each lan-
guage lists the morphological phenomena it includes: circ.=circumfixing, agg.=agglutinative, v.h.=vowel
harmony, c.h.=consonant harmony

bling technique.

On the low resource setting (CELEX), our hard
attention model significantly outperforms both the
recent neural models of Kann and Schütze (2016a)
(MED) and Rastogi et al. (2016) (NWFST) and the
morphologically aware latent variable model of
Dreyer et al. (2008) (LAT), as detailed in Table
1. In addition, it significantly outperforms our
implementation of the soft attention model (Soft).
It is also, to our knowledge, the first model that
surpassed in overall accuracy the latent variable
model on this dataset. We attribute our advantage
over the soft attention models to the ability of the
hard attention control mechanism to harness the
monotonic alignments found in the data. The ad-
vantage over the FST models may be explained by
our conditioning on the entire output history which
is not available in those models. Figure 3 plots
the train-set and dev-set accuracies of the soft and
hard attention models as a function of the training
epoch. While both models perform similarly on
the train-set (with the soft attention model fitting it
slightly faster), the hard attention model performs
significantly better on the dev-set. This shows the
soft attention model’s tendency to overfit on the

small dataset, as it is not enforcing the monotonic
assumption of the hard attention model.

On the large training set experiments (Wik-
tionary), our model is the best performing model
on German verbs, Finnish nouns/adjectives and
Dutch verbs, resulting in the highest reported av-
erage accuracy across all inflection types when
compared to the four previous neural and non-
neural state of the art baselines, as detailed in Ta-
ble 2. This shows the robustness of our model
also with large amounts of training examples,
and the advantage the hard attention mechanism
provides over the encoder-decoder approach of
Faruqui et al. (2016) which does not employ an
attention mechanism. Our model is also signifi-
cantly more accurate than the model of Yu et al.
(2016), which shows the advantage of using in-
dependently learned alignments to guide the net-
work’s attention from the beginning of the training
process. While our soft-attention implementation
outperformed the models of Yu et al. (2016) and
Durrett and DeNero (2013), it still performed in-
feriorly to the hard attention model.

As can be seen in Table 3, on the SIG-
MORPHON 2016 dataset our model performs

2009

0 10 20 30 40

0

0.5

1

epoch

ac
cu

ra
cy

soft-train
hard-train
soft-dev
hard-dev

Figure 3: Learning curves for the soft and hard
attention models on the first fold of the CELEX
dataset

Figure 4: A comparison of the alignments as pre-
dicted by the soft attention (left) and the hard at-
tention (right) models on examples from CELEX.

better than both soft-attention baselines for the
suffixing+stem-change languages (Russian, Ger-
man and Spanish) and is slightly less accurate than
our implementation of the soft attention model on
the rest of the languages, which is now the best
performing model on this dataset to our knowl-
edge. We explain this by looking at the languages
from a linguistic typology point of view, as de-
tailed in Cotterell et al. (2016). Since Russian,
German and Spanish employ a suffixing morphol-
ogy with internal stem changes, they are more suit-
able for monotonic alignment as the transforma-
tions they need to model are the addition of suf-
fixes and changing characters in the stem. The
rest of the languages in the dataset employ more
context sensitive morphological phenomena like
vowel harmony and consonant harmony, which re-
quire to model long range dependencies in the in-
put sequence which better suits the soft attention
mechanism. While our implementation of the soft
attention model and MED are very similar model-
wise, we hypothesize that our soft attention model
results are better due to the fact that we trained
the model for 100 epochs and picked the best per-
forming model on the development set, while the
MED system was trained for a fixed amount of 20
epochs (although trained on more data – both train
and development sets).

5 Analysis

The Learned Alignments In order to see if the
alignments predicted by our model fit the mono-

tonic alignment structure found in the data, and
whether are they more suitable for the task when
compared to the alignments found by the soft at-
tention model, we examined alignment predictions
of the two models on examples from the develop-
ment portion of the CELEX dataset, as depicted in
Figure 4. First, we notice the alignments found
by the soft attention model are also monotonic,
supporting our modeling approach for the task.
Figure 4 (bottom-right) also shows how the hard-
attention model performs deletion (legte→lege)
by predicting a sequence of two step operations.
Another notable morphological transformation is
the one-to-many alignment, found in the top exam-
ple: flog→fliege, where the model needs to trans-
form a character in the input, o, to two characters
in the output, ie. This is performed by two consec-
utive write operations after the step operation of
the relevant character to be replaced. Notice that
in this case, the soft attention model performs a
different alignment by aligning the character i to
o and the character g to the sequence eg, which
is not the expected alignment in this case from a
linguistic point of view.

The Learned Representations How does the
soft-attention model manage to learn nearly-
perfect monotonic alignments? Perhaps the the
network learns to encode the sequential position
as part of its encoding of an input element? More
generally, what information is encoded by the soft
and hard alignment encoders? We selected 500
random encoded characters-in-context from input

2010

(a) Colors indicate which character is encoded.

(b) Colors indicate which character is encoded.

(c) Colors indicate the character’s position.

(d) Colors indicate the character’s position.

Figure 5: SVD dimension reduction to 2D of 500 character representations in context from the encoder,
for both the soft attention (top) and hard attention (bottom) models.

words in the CELEX development set, where ev-
ery encoded representation is a vector in R200.
Since those vectors are outputs from the bi-LSTM
encoders of the models, every vector of this form
carries information of the specific character with
its entire context. We project these encodings into
2-D using SVD and plot them twice, each time
using a different coloring scheme. We first color
each point according to the character it represents
(Figures 5a, 5b). In the second coloring scheme
(Figures 5c, 5d), each point is colored according
to the character’s sequential position in the word it
came from, blue indicating positions near the be-
ginning of the word, and red positions near its end.

While both models tend to cluster representa-
tions for similar characters together (Figures 5a,
5b), the hard attention model tends to have much
more isolated character clusters. Figures 5c, 5d
show that both models also tend to learn represen-
tations which are sensitive to the position of the
character, although it seems that here the soft at-
tention model is more sensitive to this information
as its coloring forms a nearly-perfect red-to-blue
transition on the X axis. This may be explained
by the soft-attention mechanism encouraging the

encoder to encode positional information in the
input representations, which may help it to pre-
dict better attention scores, and to avoid collisions
when computing the weighted sum of representa-
tions for the context vector. In contrast, our hard-
attention model has other means of obtaining the
position information in the decoder using the step
actions, and for that reason it does not encode it
as strongly in the representations of the inputs.
This behavior may allow it to perform well even
with fewer examples, as the location information
is represented more explicitly in the model using
the step actions.

6 Related Work

Many previous works on inflection generation
used machine learning methods (Yarowsky and
Wicentowski, 2000; Dreyer and Eisner, 2011;
Durrett and DeNero, 2013; Hulden et al., 2014;
Ahlberg et al., 2015; Nicolai et al., 2015) with
assumptions about the set of possible processes
needed to create the output word. Our work was
mainly inspired by Faruqui et al. (2016) which
trained an independent encoder-decoder neural

2011

network for every inflection type in the training
data, alleviating the need for feature engineering.
Kann and Schütze (2016b,a) tackled the task with
a single soft attention model (Bahdanau et al.,
2015) for all inflection types, which resulted in
the best submission at the SIGMORPHON 2016
shared task (Cotterell et al., 2016). In another
closely related work, Rastogi et al. (2016) model
the task with a WFST in which the arc weights
are learned by optimizing a global loss function
over all the possible paths in the state graph, while
modeling contextual features with bi-directional
LSTMS. This is similar to our approach, where
instead of learning to mimic a single greedy align-
ment as we do, they sum over all possible align-
ments. While not committing to a single greedy
alignment could in theory be beneficial, we see
in Table 1 that—at least for the low resource
scenario—our greedy approach is more effective
in practice. Another recent work (Kann et al.,
2016) proposed performing neural multi-source
morphological reinflection, generating an inflec-
tion from several source forms of a word.

Previous works on neural sequence transduc-
tion include the RNN Transducer (Graves, 2012)
which uses two independent RNN’s over mono-
tonically aligned sequences to predict a distribu-
tion over the possible output symbols in each step,
including a null symbol to model the alignment.
Yu et al. (2016) improved this by replacing the null
symbol with a dedicated learned transition proba-
bility. Both models are trained using a forward-
backward approach, marginalizing over all possi-
ble alignments. Our model differs from the above
by learning the alignments independently, thus en-
abling a dependency between the encoder and de-
coder. While providing better results than Yu et al.
(2016), this also simplifies the model training us-
ing a simple cross-entropy loss. A recent work by
Raffel et al. (2017) jointly learns the hard mono-
tonic alignments and transduction while maintain-
ing the dependency between the encoder and the
decoder. Jaitly et al. (2015) proposed the Neural
Transducer model, which is also trained on exter-
nal alignments. They divide the input into blocks
of a constant size and perform soft attention sepa-
rately on each block. Lu et al. (2016) used a com-
bination of an RNN encoder with a CRF layer to
model the dependencies in the output sequence.
An interesting comparison between ”traditional”
sequence transduction models (Bisani and Ney,

2008; Jiampojamarn et al., 2010; Novak et al.,
2012) and encoder-decoder neural networks for
monotone string transduction tasks was done by
Schnober et al. (2016), showing that in many cases
there is no clear advantage to one approach over
the other.

Regarding task-specific improvements to the at-
tention mechanism, a line of work on attention-
based speech recognition (Chorowski et al., 2015;
Bahdanau et al., 2016) proposed adding location
awareness by using the previous attention weights
when computing the next ones, and preventing
the model from attending on too many or too
few inputs using “sharpening” and “smoothing”
techniques on the attention weight distributions.
Cohn et al. (2016) offered several changes to the
attention score computation to encourage well-
known modeling biases found in traditional ma-
chine translation models like word fertility, po-
sition and alignment symmetry. Regarding the
utilization of independent alignment models for
training attention-based networks, Mi et al. (2016)
showed that the distance between the attention-
infused alignments and the ones learned by an in-
dependent alignment model can be added to the
networks’ training objective, resulting in an im-
proved translation and alignment quality.

7 Conclusion

We presented a hard attention model for mor-
phological inflection generation. The model em-
ploys an explicit alignment which is used to train
a neural network to perform transduction by de-
coding with a hard attention mechanism. Our
model performs better than previous neural and
non-neural approaches on various morphological
inflection generation datasets, while staying com-
petitive with dedicated models even with very few
training examples. It is also computationally ap-
pealing as it enables linear time decoding while
staying resolution preserving, i.e. not requiring
to compress the input sequence to a single fixed-
sized vector. Future work may include apply-
ing our model to other nearly-monotonic align-
and-transduce tasks like abstractive summariza-
tion, transliteration or machine translation.

Acknowledgments
This work was supported by the Intel Collabora-
tive Research Institute for Computational Intelli-
gence (ICRI-CI), and The Israeli Science Founda-
tion (grant number 1555/15).

2012

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2015. Paradigm classification in supervised learning
of morphology. In NAACL HLT 2015. pages 1024–
1029.

R Harald Baayen, Richard Piepenbrock, and Rijn van
H. 1993. The {CELEX} lexical data base on {CD-
ROM} .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. Proceedings of the
International Conference on Learning Representa-
tions (ICLR) .

Dzmitry Bahdanau, Jan Chorowski, Dmitriy Serdyuk,
Yoshua Bengio, et al. 2016. End-to-end attention-
based large vocabulary speech recognition. In
2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP). pages
4945–4949.

Maximilian Bisani and Hermann Ney. 2008. Joint-
sequence models for grapheme-to-phoneme
conversion. Speech Commun. 50(5):434–451.
https://doi.org/10.1016/j.specom.2008.01.002.

Victor Chahuneau, Eva Schlinger, Noah A. Smith, and
Chris Dyer. 2013. Translating into morphologically
rich languages with synthetic phrases. In EMNLP.
pages 1677–1687.

Jan K Chorowski, Dzmitry Bahdanau, Dmitriy
Serdyuk, Kyunghyun Cho, and Yoshua Bengio.
2015. Attention-based models for speech recogni-
tion. In Advances in Neural Information Processing
Systems 28, pages 577–585.

Ann Clifton and Anoop Sarkar. 2011. Combin-
ing morpheme-based machine translation with post-
processing morpheme prediction. In ACL. pages
32–42.

Trevor Cohn, Cong Duy Vu Hoang, Ekaterina Vy-
molova, Kaisheng Yao, Chris Dyer, and Gholam-
reza Haffari. 2016. Incorporating structural align-
ment biases into an attentional neural translation
model. In Proceedings of the 2016 Conference
of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, San Diego, California, pages 876–885.
http://www.aclweb.org/anthology/N16-1102.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 shared task—
morphological reinflection. In Proceedings of the
2016 Meeting of SIGMORPHON.

Markus Dreyer and Jason Eisner. 2011. Discovering
morphological paradigms from plain text using a
dirichlet process mixture model. In EMNLP. pages
616–627.

Markus Dreyer, Jason R Smith, and Jason Eisner.
2008. Latent-variable modeling of string transduc-
tions with finite-state methods. In Proceedings of
the conference on empirical methods in natural lan-
guage processing. pages 1080–1089.

Greg Durrett and John DeNero. 2013. Supervised
learning of complete morphological paradigms. In
NAACL HLT 2013. pages 1185–1195.

Jason Eisner. 2002. Parameter estimation for proba-
bilistic finite-state transducers. In Proceedings of
the 40th annual meeting on Association for Compu-
tational Linguistics. pages 1–8.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological inflection genera-
tion using character sequence to sequence learning.
In NAACL HLT 2016.

Alexander M. Fraser, Marion Weller, Aoife Cahill, and
Fabienne Cap. 2012. Modeling inflection and word-
formation in smt. In EACL. pages 664–674.

Mercedes Garcı́a-Martı́nez, Loı̈c Barrault, and Fethi
Bougares. 2016. Factored neural machine transla-
tion. arXiv preprint arXiv:1609.04621 .

A. Graves and J. Schmidhuber. 2005. Framewise
phoneme classification with bidirectional LSTM and
other neural network architectures. Neural Net-
works 18(5-6):602–610.

Alex Graves. 2012. Sequence transduction with
recurrent neural networks. arXiv preprint
arXiv:1211.3711 .

Mans Hulden, Markus Forsberg, and Malin Ahlberg.
2014. Semi-supervised learning of morphological
paradigms and lexicons. In EACL. pages 569–578.

Navdeep Jaitly, David Sussillo, Quoc V Le, Oriol
Vinyals, Ilya Sutskever, and Samy Bengio. 2015. A
neural transducer. arXiv preprint arXiv:1511.04868
.

Sittichai Jiampojamarn, Colin Cherry, and Grzegorz
Kondrak. 2010. Integrating joint n-gram fea-
tures into a discriminative training framework. In
Human Language Technologies: The 2010 An-
nual Conference of the North American Chap-
ter of the Association for Computational Lin-
guistics. Association for Computational Linguis-
tics, Los Angeles, California, pages 697–700.
http://www.aclweb.org/anthology/N10-1103.

Nal Kalchbrenner, Lasse Espeholt, Karen Simonyan,
Aaron van den Oord, Alex Graves, and Koray
Kavukcuoglu. 2016. Neural machine translation in
linear time. arXiv preprint arXiv:1610.10099 .

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2016. Neural multi-source morphological reinflec-
tion. EACL 2017 .

2013

Katharina Kann and Hinrich Schütze. 2016a. Med:
The lmu system for the sigmorphon 2016 shared task
on morphological reinflection.

Katharina Kann and Hinrich Schütze. 2016b. Single-
model encoder-decoder with explicit morphological
representation for reinflection. In ACL.

Ronald M. Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Computa-
tional Linguistics 20(3):331–378.

Kimmo Koskenniemi. 1983. Two-level morphology:
A general computational model of word-form recog-
nition and production. Technical report.

Liang Lu, Lingpeng Kong, Chris Dyer, Noah A Smith,
and Steve Renals. 2016. Segmental recurrent neural
networks for end-to-end speech recognition. arXiv
preprint arXiv:1603.00223 .

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1412–
1421. http://aclweb.org/anthology/D15-1166.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah.
2016. Supervised attentions for neural machine
translation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Austin, Texas, pages 2283–2288.
https://aclweb.org/anthology/D16-1249.

Einat Minkov, Kristina Toutanova, and Hisami Suzuki.
2007. Generating complex morphology for ma-
chine translation. In Proceedings of the 45th
Annual Meeting of the Association of Computa-
tional Linguistics. Association for Computational
Linguistics, Prague, Czech Republic, pages 128–
135. http://www.aclweb.org/anthology/P07-1017.

Mehryar Mohri, Fernando Pereira, and Michael Riley.
1997. A rational design for a weighted finite-state
transducer library. In International Workshop on Im-
plementing Automata. pages 144–158.

Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak.
2015. Inflection generation as discriminative string
transduction. In NAACL HLT 2015. pages 922–931.

Josef R. Novak, Nobuaki Minematsu, and Kei-
kichi Hirose. 2012. WFST-based grapheme-
to-phoneme conversion: Open source tools for
alignment, model-building and decoding. In
Proceedings of the 10th International Workshop
on Finite State Methods and Natural Language
Processing. Association for Computational Lin-
guistics, Donostia–San Sebastin, pages 45–49.
http://www.aclweb.org/anthology/W12-6208.

C. Raffel, T. Luong, P. J. Liu, R. J. Weiss, and
D. Eck. 2017. Online and Linear-Time Attention by
Enforcing Monotonic Alignments. arXiv preprint
arXiv:1704.00784 .

Pushpendre Rastogi, Ryan Cotterell, and Jason Eisner.
2016. Weighting finite-state transductions with neu-
ral context. In Proc. of NAACL.

Carsten Schnober, Steffen Eger, Erik-Lân Do Dinh, and
Iryna Gurevych. 2016. Still not there? comparing
traditional sequence-to-sequence models to encoder-
decoder neural networks on monotone string trans-
lation tasks. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers. The COLING 2016
Organizing Committee, Osaka, Japan, pages 1703–
1714. http://aclweb.org/anthology/C16-1160.

Katsuhito Sudoh, Shinsuke Mori, and Masaaki Nagata.
2013. Noise-aware character alignment for boot-
strapping statistical machine transliteration from
bilingual corpora. In EMNLP 2013. pages 204–209.

Kristina Toutanova, Hisami Suzuki, and Achim Ruopp.
2008. Applying morphology generation models to
machine translation. In ACL. pages 514–522.

David Yarowsky and Richard Wicentowski. 2000.
Minimally supervised morphological analysis by
multimodal alignment. In ACL.

Lei Yu, Jan Buys, and Phil Blunsom. 2016. Online
segment to segment neural transduction. In Pro-
ceedings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing. Association
for Computational Linguistics, Austin, Texas, pages
1307–1316. https://aclweb.org/anthology/D16-
1138.

Matthew D Zeiler. 2012. Adadelta: an adaptive learn-
ing rate method. arXiv preprint arXiv:1212.5701 .

2014

Supplementary Material

Training Details, Implementation and Hyper
Parameters

To train our models, we used the train portion of
the datasets as-is and evaluated on the test portion
the model which performed best on the develop-
ment portion of the dataset, without conducting
any specific pre-processing steps on the data. We
train the models for a maximum of 100 epochs
over the training set. To avoid long training time,
we trained the model for 20 epochs for datasets
larger than 50k examples, and for 5 epochs for
datasets larger than 200k examples. The models
were implemented using the python bindings of
the dynet toolkit.4

We trained the network by optimizing the ex-
pected output sequence likelihood using cross-
entropy loss as mentioned in equation 5. For op-
timization we used ADADELTA (Zeiler, 2012)
without regularization. We updated the weights
after every example (i.e. mini-batches of size 1).
We used the dynet toolkit implementation of an
LSTM network with two layers for all models,
each having 100 entries in both the encoder and
decoder. The character embeddings were also vec-
tors with 100 entries for the CELEX experiments,
and with 300 entries for the SIGMORPHON and
Wiktionary experiments.

The morpho-syntactic attribute embeddings
were vectors of 20 entries in all experiments. We
did not use beam search while decoding for both
the hard and soft attention models as it is signif-
icantly slower and did not show clear improve-
ment in previous experiments we conducted. For
the character level alignment process we use the
implementation provided by the organizers of the
SIGMORPHON2016 shared task.5

LSTM Equations

We used the LSTM variant implemented in the
dynet toolkit, which corresponds to the following

4https://github.com/clab/dynet
5https://github.com/ryancotterell/

sigmorphon2016

equations:

it = σ(Wixxt + Wihht−1 + Wicct−1 + bi)

ft = σ(Wfxxt + Wfhft−1 + Wfcct−1 + bf)

c̃ = tanh(Wcxxt + Wchht−1 + bc)

ct = ct−1 ◦ ft + c̃ ◦ it
ot = σ(Woxxt + Wohht−1 + Woxct + bo)

ht = tanh(ct) ◦ ot
(6)

2015

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2016–2027
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1184

From Characters to Words to in Between: Do We Capture Morphology?

Clara Vania and Adam Lopez
Institute for Language, Cognition and Computation

School of Informatics
University of Edinburgh

c.vania@ed.ac.uk, alopez@inf.ed.ac.uk

Abstract

Words can be represented by composing
the representations of subword units such
as word segments, characters, and/or char-
acter n-grams. While such representations
are effective and may capture the mor-
phological regularities of words, they have
not been systematically compared, and it
is not understood how they interact with
different morphological typologies. On a
language modeling task, we present ex-
periments that systematically vary (1) the
basic unit of representation, (2) the com-
position of these representations, and (3)
the morphological typology of the lan-
guage modeled. Our results extend previ-
ous findings that character representations
are effective across typologies, and we find
that a previously unstudied combination
of character trigram representations com-
posed with bi-LSTMs outperforms most
others. But we also find room for improve-
ment: none of the character-level models
match the predictive accuracy of a model
with access to true morphological analy-
ses, even when learned from an order of
magnitude more data.

1 Introduction

Continuous representations of words learned by
neural networks are central to many NLP tasks
(Cho et al., 2014; Chen and Manning, 2014; Dyer
et al., 2015). However, directly mapping a fi-
nite set of word types to a continuous representa-
tion has well-known limitations. First, it makes
a closed vocabulary assumption, enabling only
generic out-of-vocabulary handling. Second, it
cannot exploit systematic functional relationships
in learning. For example, cat and cats stand in the

same relationship as dog and dogs. While this re-
lationship might be discovered for these specific
frequent words, it does not help us learn that the
same relationship also holds for the much rarer
words sloth and sloths.

These functional relationships reflect the fact
that words are composed from smaller units of
meaning, or morphemes. For instance, cats con-
sists of two morphemes, cat and -s, with the latter
shared by the words dogs and tarsiers. Modeling
this effect is crucial for languages with rich mor-
phology, where vocabulary sizes are larger, many
more words are rare, and many more such func-
tional relationships exist. Hence, some models
produce word representations as a function of sub-
word units obtained from morphological segmen-
tation or analysis (Luong et al., 2013; Botha and
Blunsom, 2014; Cotterell and Schütze, 2015). A
downside of these models is that they depend on
morphological segmenters or analyzers.

Morphemes typically have similar orthographic
representations across words. For example, the
morpheme -s is realized as -es in finches. Since
this variation is limited, the general relationship
between morphology and orthography can be ex-
ploited by composing the representations of char-
acters (Ling et al., 2015; Kim et al., 2016), char-
acter n-grams (Sperr et al., 2013; Wieting et al.,
2016; Bojanowski et al., 2016; Botha and Blun-
som, 2014), bytes (Plank et al., 2016; Gillick
et al., 2016), or combinations thereof (Santos and
Zadrozny, 2014; Qiu et al., 2014). These mod-
els are compact, can represent rare and unknown
words, and do not require morphological analyz-
ers. They raise a provocative question: Does NLP
benefit from models of morphology, or can they be
replaced entirely by models of characters?

The relative merits of word, subword. and
character-level models are not fully understood
because each new model has been compared on

2016

https://doi.org/10.18653/v1/P17-1184

different tasks and datasets, and often compared
against word-level models. A number of questions
remain open:

1. How do representations based on morphemes
compare with those based on characters?

2. What is the best way to compose subword
representations?

3. Do character-level models capture morphol-
ogy in terms of predictive utility?

4. How do different representations interact
with languages of different morphological ty-
pologies?

The last question is raised by Bender (2013):
languages are typologically diverse, and the
behavior of a model on one language may
not generalize to others. Character-level mod-
els implicitly assume concatenative morphology,
but many widely-spoken languages feature non-
concatenative morphology, and it is unclear how
such models will behave on these languages.

To answer these questions, we performed a sys-
tematic comparison across different models for the
simple and ubiquitous task of language model-
ing. We present experiments that vary (1) the type
of subword unit; (2) the composition function;
and (3) morphological typology. To understand
the extent to which character-level models capture
true morphological regularities, we present ora-
cle experiments using human morphological an-
notations instead of automatic morphological seg-
ments. Our results show that:

1. For most languages, character-level represen-
tations outperform the standard word repre-
sentations. Most interestingly, a previously
unstudied combination of character trigrams
composed with bi-LSTMs performs best on
the majority of languages.

2. Bi-LSTMs and CNNs are more effective
composition functions than addition.

3. Character-level models learn functional re-
lationships between orthographically similar
words, but don’t (yet) match the predictive
accuracy of models with access to true mor-
phological analyses.

4. Character-level models are effective across a
range of morphological typologies, but or-
thography influences their effectiveness.

word tries
morphemes try+s
morphs tri+es
morph. analysis try+VB+3rd+SG+Pres

Table 1: The morphemes, morphs, and morpho-
logical analysis of tries.

2 Morphological Typology

A morpheme is the smallest unit of meaning in
a word. Some morphemes express core meaning
(roots), while others express one or more depen-
dent features of the core meaning, such as per-
son, gender, or aspect. A morphological analysis
identifies the lemma and features of a word. A
morph is the surface realization of a morpheme
(Morley, 2000), which may vary from word to
word. These distinctions are shown in Table 1.

Morphological typology classifies languages
based on the processes by which morphemes are
composed to form words. While most languages
will exhibit a variety of such processes, for any
given language, some processes are much more
frequent than others, and we will broadly identify
our experimental languages with these processes.

When morphemes are combined sequentially,
the morphology is concatenative. However,
morphemes can also be composed by non-
concatenative processes. We consider four
broad categories of both concatenative and non-
concatenative processes in our experiments.

Fusional languages realize multiple features
in a single concatenated morpheme. For exam-
ple, English verbs can express number, person,
and tense in a single morpheme:

wanted (English)
want + ed

want + VB+1st+SG+Past
Agglutinative languages assign one feature

per morpheme. Morphemes are concatenated to
form a word and the morpheme boundaries are
clear. For example (Haspelmath, 2010):

okursam (Turkish)
oku+r+sa+m

“read”+AOR+COND+1SG
Root and Pattern Morphology forms words

by inserting consonants and vowels of dependent
morphemes into a consonantal root based on a
given pattern. For example, the Arabic root ktb
(“write”) produces (Roark and Sproat, 2007):

katab “wrote” (Arabic)

2017

takaatab “wrote to each other” (Arabic)
Reduplication is a process where a word form

is produced by repeating part or all of the root to
express new features. For example:

anak “child” (Indonesian)
anak-anak “children” (Indonesian)

buah “fruit” (Indonesian)
buah-buahan “various fruits” (Indonesian)

3 Representation Models

We compare ten different models, varying sub-
word units and composition functions that have
commonly been used in recent work, but evalu-
ated on various different tasks (Table 2). Given
word w, we compute its representation w as:

w = f(Ws, σ(w)) (1)

where σ is a deterministic function that returns a
sequence of subword units; Ws is a parameter ma-
trix of representations for the vocabulary of sub-
word units; and f is a composition function which
takes σ(w) and Ws as input and returns w. All of
the representations that we consider take this form,
varying only in f and σ.

3.1 Subword Units
We consider four variants of σ in Equation 1,
each returning a different type of subword unit:
character, character trigram, or one of two types
of morph. Morphs are obtained from Morfes-
sor (Smit et al., 2014) or a word segmentation
based on Byte Pair Encoding (BPE; Gage (1994)),
which has been shown to be effective for handling
rare words in neural machine translation (Sennrich
et al., 2016). BPE works by iteratively replac-
ing frequent pairs of characters with a single un-
used character. For Morfessor, we use default
parameters while for BPE we set the number of
merge operations to 10,000.1 When we segment
into character trigrams, we consider all trigrams in
the word, including those covering notional begin-
ning and end of word characters, as in Sperr et al.
(2013). Example output of σ is shown in Table 3.

3.2 Composition Functions
We use three variants of f in Eq. 1. The first con-
structs the representation w of word w by adding

1BPE takes a single parameter: the number of merge op-
erations. We tried different parameter values (1k, 10k, 100k)
and manually examined the resulting segmentation on the En-
glish dataset. Qualitatively, 10k gave the most plausible seg-
mentation and we used this setting across all languages.

the representations of its subwords s1, . . . , sn =
σ(w), where the representation of si is vector si.

w =

n∑

i=1

si (2)

The only subword unit that we don’t compose by
addition is characters, since this will produce the
same representation for many different words.

Our second composition function is a bidi-
rectional long-short-term memory (bi-LSTM),
which we adapt based on its use in the character-
level model of Ling et al. (2015) and its
widespread use in NLP generally. Given si and
the previous LSTM hidden state hi−1, an LSTM
(Hochreiter and Schmidhuber, 1997) computes the
following outputs for the subword at position i:

hi = LSTM(si,hi−1) (3)

ŝi+1 = g(VT · hi) (4)

where ŝi+1 is the predicted target subword, g is the
softmax function and V is a weight matrix.

A bi-LSTM (Graves et al., 2005) combines the
final state of an LSTM over the input sequence
with one over the reversed input sequence. Given
the hidden state produced from the final input of
the forward LSTM, hfwn and the hidden state pro-
duced from the final input of the backward LSTM
hbw0 , we compute the word representation as:

wt = Wf · hfwn + Wb · hbw0 + b (5)

where Wf , Wb, and b are parameter matrices and
hfwn and hbw0 are forward and backward LSTM
states, respectively.

The third composition function is a convolu-
tional neural network (CNN) with highway lay-
ers, as in Kim et al. (2016). Let c1, . . . , ck be the
sequence of characters of word w. The character
embedding matrix is C ∈ Rd×k, where the i-th
column corresponds to the embeddings of ci. We
first apply a narrow convolution between C and a
filter F ∈ Rd×n of width n to obtain a feature map
f ∈ Rk−n+1. In particular, the computation of the
j-th element of f is defined as

f [j] = tanh(〈C[∗, j : j + n− 1],F〉+ b) (6)

where 〈A,B〉 = Tr(ABT) is the Frobenius in-
ner product and b is a bias. The CNN model ap-
plies filters of varying width, representing features

2018

Models Subword Unit(s) Composition Function
Sperr et al. (2013) words, character n-grams addition
Luong et al. (2013) morphs (Morfessor) recursive NN
Botha and Blunsom (2014) words, morphs (Morfessor) addition
Qiu et al. (2014) words, morphs (Morfessor) addition
Santos and Zadrozny (2014) words, characters CNN
Cotterell and Schütze (2015) words, morphological analyses addition
Sennrich et al. (2016) morphs (BPE) none
Kim et al. (2016) characters CNN
Ling et al. (2015) characters bi-LSTM
Wieting et al. (2016) character n-grams addition
Bojanowski et al. (2016) character n-grams addition
Vylomova et al. (2016) characters, morphs (Morfessor) bi-LSTM, CNN
Miyamoto and Cho (2016) words, characters bi-LSTM
Rei et al. (2016) words, characters bi-LSTM
Lee et al. (2016) characters CNN
Kann and Schütze (2016) characters, morphological analyses none
Heigold et al. (2017) words, characters bi-LSTM, CNN

Table 2: Summary of previous work on representing words through compositions of subword units.

Unit Output of σ(wants)
Morfessor ˆwant, s$
BPE ˆw, ants$
char-trigram ˆwa, wan, ant, nts ts$
character ˆ, w, a, n, t, s, $
analysis want+VB, +3rd, +SG, +Pres

Table 3: Input representations for wants.

of character n-grams. We then calculate the max-
over-time of each feature map.

yj = max
j

f [j] (7)

and concatenate them to derive the word represen-
tation wt = [y1, . . . , ym], where m is the number
of filters applied. Highway layers allow some di-
mensions of wt to be carried or transformed. Since
it can learn character n-grams directly, we only use
the CNN with character input.

3.3 Language Model

We use language models (LM) because they are
simple and fundamental to many NLP applica-
tions. Given a sequence of text s = w1, . . . , wT ,
our LM computes the probability of s as:

P (w1, . . . , wT) =
T∏

t=1

P (yt|w1, . . . , wt−1) (8)

Figure 1: Our LSTM-LM architecture.

where yt = wt if wt is in the output vocabulary
and yt = UNK otherwise.

Our language model is an LSTM variant of
recurrent neural network language (RNN) LM
(Mikolov et al., 2010). At time step t, it receives
input wt and predicts yt+1. Using Eq. 1, it first
computes representation wt of wt. Given this rep-
resentation and previous state ht−1, it produces a
new state ht and predicts yt+1:

ht = LSTM(wt,ht−1) (9)

ŷt+1 = g(VT · ht) (10)

where g is a softmax function over the vocabulary
yielding the probability in Equation 8. Note that
this design means that we can predict only words

2019

Typology Languages #tokens #types

Fusional
Czech 1.2M 125.4K
English 1.2M 81.1K
Russian 0.8M 103.5K

Agglutinative
Finnish 1.2M 188.4K
Japanese 1.2M 59.2K
Turkish 0.6M 126.2K

Root&Pattern
Arabic 1.4M 137.5K
Hebrew 1.1M 104.9K

Reduplication
Indonesian 1.2M 76.5K
Malaysian 1.2M 77.7K

Table 4: Statistics of our datasets.

from a finite output vocabulary, so our models dif-
fer only in their representation of context words.
This design makes it possible to compare language
models using perplexity, since they have the same
event space, though open vocabulary word predic-
tion is an interesting direction for future work.

The complete architecture of our system is
shown in Figure 1, showing segmentation function
σ and composition function f from Equation 1.

4 Experiments

We perform experiments on ten languages (Ta-
ble 4). We use datasets from Ling et al. (2015)
for English and Turkish. For Czech and Russian
we use Universal Dependencies (UD) v1.3 (Nivre
et al., 2015). For other languages, we use prepro-
cessed Wikipedia data (Al-Rfou et al., 2013).2 For
each dataset, we use approximately 1.2M tokens
to train, and approximately 150K tokens each for
development and testing. Preprocessing involves
lowercasing (except for character models) and re-
moving hyperlinks.

To ensure that we compared models and not im-
plementations, we reimplemented all models in a
single framework using Tensorflow (Abadi et al.,
2015).3 We use a common setup for all experi-
ments based on that of Ling et al. (2015), Kim
et al. (2016), and Miyamoto and Cho (2016). In
preliminary experiments, we confirmed that our
models produced similar patterns of perplexities
for the reimplemented word and character LSTM

2The Arabic and Hebrew dataset are unvocalized.
Japanese mixes Kanji, Katakana, Hiragana, and Latin charac-
ters (for foreign words). Hence, a Japanese character can cor-
respond to a character, syllable, or word. The preprocessed
dataset is already word-segmented.

3Our implementation of these models can be found at
https://github.com/claravania/subword-lstm-lm

models of Ling et al. (2015). Even following de-
tailed discussion with Ling (p.c.), we were unable
to reproduce their perplexities exactly—our En-
glish reimplementation gives lower perplexities;
our Turkish higher—but we do reproduce their
general result that character bi-LSTMs outperform
word models. We suspect that different prepro-
cessing and the stochastic learning explains dif-
ferences in perplexities. Our final model with bi-
LSTMs composition follows Miyamoto and Cho
(2016) as it gives us the same perplexity results
for our preliminary experiments on the Penn Tree-
bank dataset (Marcus et al., 1993), preprocessed
by Mikolov et al. (2010).

4.1 Training and Evaluation

Our LSTM-LM uses two hidden layers with 200
hidden units and representation vectors for words,
characters, and morphs all have dimension 200.
All parameters are initialized uniformly at random
from -0.1 to 0.1, trained by stochastic gradient de-
scent with mini-batch size of 32, time steps of
20, for 50 epochs. To avoid overfitting, we ap-
ply dropout with probability 0.5 on the input-to-
hidden layer and all of the LSTM cells (includ-
ing those in the bi-LSTM, if used). For all models
which do not use bi-LSTM composition, we start
with a learning rate of 1.0 and decrease it by half if
the validation perplexity does not decrease by 0.1
after 3 epochs. For models with bi-LSTMs com-
position, we use a constant learning rate of 0.2 and
stop training when validation perplexity does not
improve after 3 epochs. For the character CNN
model, we use the same settings as the small model
of Kim et al. (2016).

To make our results comparable to Ling et al.
(2015), for each language we limit the output vo-
cabulary to the most frequent 5,000 training words
plus an unknown word token. To learn to predict
unknown words, we follow Ling et al. (2015): in
training, words that occur only once are stochasti-
cally replaced with the unknown token with prob-
ability 0.5. To evaluate the models, we compute
perplexity on the test data.

5 Results and Analysis

Table 5 presents our main results. In six of ten
languages, character-trigram representations com-
posed with bi-LSTMs achieve the lowest perplex-
ities. As far as we know, this particular model
has not been tested before, though it is similar

2020

Language word
character char trigrams BPE Morfessor

%imp
bi-lstm CNN add bi-lstm add bi-lstm add bi-lstm

Czech 41.46 34.25 36.60 42.73 33.59 49.96 33.74 47.74 36.87 18.98
English 46.40 43.53 44.67 45.41 42.97 47.51 43.30 49.72 49.72 7.39
Russian 34.93 28.44 29.47 35.15 27.72 40.10 28.52 39.60 31.31 20.64
Finnish 24.21 20.05 20.29 24.89 18.62 26.77 19.08 27.79 22.45 23.09
Japanese 98.14 98.14 91.63 101.99 101.09 126.53 96.80 111.97 99.23 6.63
Turkish 66.97 54.46 55.07 50.07 54.23 59.49 57.32 62.20 62.70 25.24
Arabic 48.20 42.02 43.17 50.85 39.87 50.85 42.79 52.88 45.46 17.28
Hebrew 38.23 31.63 33.19 39.67 30.40 44.15 32.91 44.94 34.28 20.48
Indonesian 46.07 45.47 46.60 58.51 45.96 59.17 43.37 59.33 44.86 5.86
Malay 54.67 53.01 50.56 68.51 50.74 68.99 51.21 68.20 52.50 7.52

Table 5: Language model perplexities on test. The best model for each language is highlighted in bold
and the improvement of this model over the word-level model is shown in the final column.

to (but more general than) the model of Sperr
et al. (2013). We can see that the performance
of character, character trigrams, and BPE are very
competitive. Composition by bi-LSTMs or CNN
is more effective than addition, except for Turk-
ish. We also observe that BPE always outperforms
Morfessor, even for the agglutinative languages.
We now turn to a more detailed analysis by mor-
phological typology.

Fusional languages. For these languages,
character trigrams composed with bi-LSTMs
outperformed all other models, particularly for
Czech and Russian (up to 20%), which is unsur-
prising since both are morphologically richer than
English.

Agglutinative languages. We observe differ-
ent results for each language. For Finnish, char-
acter trigrams composed with bi-LSTMs achieves
the best perplexity. Surprisingly, for Turkish char-
acter trigrams composed via addition is best and
addition also performs quite well for other rep-
resentations, potentially useful since the addition
function is simpler and faster than bi-LSTMs. We
suspect that this is due to the fact that Turk-
ish morphemes are reasonably short, hence well-
approximated by character trigrams. For Japanese,
we improvements from character models are more
modest than in other languages.

Root and Pattern. For these languages, char-
acter trigrams composed with bi-LSTMs also
achieve the best perplexity. We had won-
dered whether CNNs would be more effective
for root-and-pattern morphology, but since these
data are unvocalized, it is more likely that non-
concatenative effects are minimized, though we do

still find morphological variants with consonan-
tal inflections that behave more like concatenation.
For example, maktab (root:ktb) is written as mktb.
We suspect this makes character trigrams quite ef-
fective since they match the tri-consonantal root
patterns among words which share the same root.

Reduplication. For Indonesian, BPE morphs
composed with bi-LSTMs model obtain the best
perplexity. For Malay, the character CNN out-
performs other models. However, these improve-
ments are small compared to other languages.
This likely reflects that Indonesian and Malay are
only moderately inflected, where inflection in-
volves both concatenative and non-concatenative
processes.

5.1 Effects of Morphological Analysis

In the experiments above, we used unsupervised
morphological segmentation as a proxy for mor-
phological analysis (Table 3). However, as dis-
cussed in Section 2, this is quite approximate, so
it is natural to wonder what would happen if we
had the true morphological analysis. If character-
level models are powerful enough to capture the
effects of morphology, then they should have the
predictive accuracy of a model with access to this
analysis. To find out, we conducted an oracle
experiment using the human-annotated morpho-
logical analyses provided in the UD datasets for
Czech and Russian, the only languages in our set
for which these analyses were available. In these
experiments we treat the lemma and each morpho-
logical feature as a subword unit.

The results (Table 6) show that bi-LSTM com-
position of these representations outperforms all

2021

Languages Addition bi-LSTM
Czech 51.8 30.07

Russian 41.82 26.44

Table 6: Perplexity results using hand-annotated
morphological analyses (cf. Table 5).

other models for both languages. These results
demonstrate that neither character representations
nor unsupervised segmentation is a perfect re-
placement for manual morphological analysis, at
least in terms of predictive accuracy. In light of
character-level results, they imply that current un-
supervised morphological analyzers are poor sub-
stitutes for real morphological analysis.

However, we can obtain much more unanno-
tated than annotated data, and we might guess
that the character-level models would outperform
those based on morphological analyses if trained
on larger data. To test this, we ran experiments
that varied the training data size on three represen-
tation models: word, character-trigram bi-LSTM,
and character CNN. Since we want to see how
much training data is needed to reach perplexity
obtained using annotated data, we use the same
output vocabulary derived from the original train-
ing. While this makes it possible to compare per-
plexities across models, it is unfavorable to the
models trained on larger data, which may focus on
other words. This is a limitation of our experimen-
tal setup, but does allow us to draw some tentative
conclusions. As shown in Table 7, a character-
level model trained on an order of magnitude more
data still does not match the predictive accuracy of
a model with access to morphological analysis.

5.2 Automatic Morphological Analysis

The oracle experiments show promising results if
we have annotated data. But these annotations are
expensive, so we also investigated the use of auto-
matic morphological analysis. We obtained analy-
ses for Arabic with the MADAMIRA (Pasha et al.,
2014).4 As in the experiment using annotations,
we treated each morphological feature as a sub-
word unit. The resulting perplexities of 71.94 and
42.85 for addition and bi-LSTMs, respectively, are
worse than those obtained with character trigrams
(39.87), though it approaches the best perplexities.

4We only experimented with Arabic since MADAMIRA
disambiguates words in contexts; most other analyzers we
found did not do this, and would require additional work to
add disambiguation.

#tokens word
char trigram char

bi-LSTM CNN
1M 39.69 32.34 35.15
2M 37.59 36.44 35.58
3M 36.71 35.60 35.75
4M 35.89 32.68 35.93
5M 35.20 34.80 37.02
10M 35.60 35.82 39.09

Table 7: Perplexity results on the Czech develop-
ment data, varying training data size. Perplexity
using ~1M tokens annotated data is 28.83.

5.3 Targeted Perplexity Results

A difficulty in interpreting the results of Table 5
with respect to specific morphological processes
is that perplexity is measured for all words. But
these processes do not apply to all words, so it
may be that the effects of specific morphological
processes are washed out. To get a clearer picture,
we measured perplexity for only specific subsets
of words in our test data: specifically, given tar-
get word wi, we measure perplexity of word wi+1.
In other words, we analyze the perplexities when
the inflected words of interest are in the most re-
cent history, exploiting the recency bias of our
LSTM-LM. This is the perplexity most likely to
be strongly affected by different representations,
since we do not vary representations of the pre-
dicted word itself.

We look at several cases: nouns and verbs in
Czech and Russian, where word classes can be
identified from annotations, and reduplication in
Indonesian, which we can identify mostly auto-
matically. For each analysis, we also distinguish
between frequent cases, where the inflected word
occurs more than ten times in the training data, and
rare cases, where it occurs fewer than ten times.
We compare only bi-LSTM models.

For Czech and Russian, we again use the UD
annotation to identify words of interest. The re-
sults (Table 8), show that manual morphologi-
cal analysis uniformly outperforms other subword
models, with an especially strong effect for Czech
nouns, suggesting that other models do not cap-
ture useful predictive properties of a morpholog-
ical analysis. We do however note that character
trigrams achieve low perplexities in most cases,
similar to overall results (Table 5). We also ob-
serve that the subword models are more effective
for rare words.

2022

Inflection Model all frequent rare
Czech word 61.21 56.84 72.96
nouns characters 51.01 47.94 59.01

char-trigrams 50.34 48.05 56.13
BPE 53.38 49.96 62.81
morph. analysis 40.86 40.08 42.64

Czech word 81.37 74.29 99.40
verbs characters 70.75 68.07 77.11

char-trigrams 65.77 63.71 70.58
BPE 74.18 72.45 78.25
morph. analysis 59.48 58.56 61.78

Russian word 45.11 41.88 48.26
nouns characters 37.90 37.52 38.25

char-trigrams 36.32 34.19 38.40
BPE 43.57 43.67 43.47
morph. analysis 31.38 31.30 31.50

Russian word 56.45 47.65 69.46
verbs characters 45.00 40.86 50.60

char-trigrams 42.55 39.05 47.17
BPE 54.58 47.81 64.12
morph. analysis 41.31 39.8 43.18

Table 8: Average perplexities of words that occur
after nouns and verbs. Frequent words occur more
than ten times in the training data; rare words oc-
cur fewer times than this. The best perplexity is in
bold while the second best is underlined.

For Indonesian, we exploit the fact that the hy-
phen symbol ‘-’ typically separates the first and
second occurrence of a reduplicated morpheme, as
in the examples of Section 2. We use the presence
of word tokens containing hyphens to estimate the
percentage of those exhibiting reduplication. As
shown in Table 9, the numbers are quite low.

Table 10 shows results for reduplication. In
contrast with the overall results, the BPE bi-LSTM
model has the worst perplexities, while character
bi-LSTM has the best, suggesting that these mod-
els are more effective for reduplication.

Looking more closely at BPE segmentation of
reduplicated words, we found that only 6 of 252
reduplicated words have a correct word segmenta-
tion, with the reduplicated morpheme often com-
bining differently with the notional start-of-word
or hyphen character. One the other hand BPE cor-
rectly learns 8 out of 9 Indonesian prefixes and 4
out of 7 Indonesian suffixes.5 This analysis sup-
ports our intuition that the improvement from BPE
might come from its modeling of concatenative
morphology.

5.4 Qualitative Analysis

Table 11 presents nearest neighbors under co-
sine similarity for in-vocabulary, rare, and out-of-

5We use Indonesian affixes listed in Larasati et al. (2011)

Language type-level (%) token-level (%)
Indonesian 1.10 2.60

Malay 1.29 2.89

Table 9: Percentage of full reduplication on the
type and token level.

Model all frequent rare
word 101.71 91.71 156.98
characters 99.21 91.35 137.42
BPE 117.2 108.86 156.81

Table 10: Average perplexities of words that occur
after reduplicated words in the test set.

vocabulary (OOV) words.6 For frequent words,
standard word embeddings are clearly superior for
lexical meaning. Character and morph representa-
tions tend to find words that are orthographically
similar, suggesting that they are better at model-
ing dependent than root morphemes. The same
pattern holds for rare and OOV words. We sus-
pect that the subword models outperform words
on language modeling because they exploit affixes
to signal word class. We also noticed similar pat-
terns in Japanese.

We analyze reduplication by querying redupli-
cated words to find their nearest neighbors using
the BPE bi-LSTM model. If the model were sensi-
tive to reduplication, we would expect to see mor-
phological variants of the query word among its
nearest neighbors. However, from Table 12, this
is not so. With the partially reduplicated query
berlembah-lembah, we do not find the lemma lem-
bah.

6 Conclusion

We presented a systematic comparison of word
representation models with different levels of mor-
phological awareness, across languages with dif-
ferent morphological typologies. Our results con-
firm previous findings that character-level models
are effective for many languages, but these mod-
els do not match the predictive accuracy of model
with explicit knowledge of morphology, even af-
ter we increase the training data size by ten times.
Moreover, our qualitative analysis suggests that
they learn orthographic similarity of affixes, and
lose the meaning of root morphemes.

Although morphological analyses are available

6https://radimrehurek.com/gensim/

2023

Model Frequent Words Rare Words OOV words
man including relatively unconditional hydroplane uploading foodism

word

person like extremely nazi molybdenum - -
anyone featuring making fairly your - -
children include very joints imperial - -

men includes quite supreme intervene - -

BPE ii called newly unintentional emphasize upbeat vigilantism

LSTM hill involve never ungenerous heartbeat uprising pyrethrum
text like essentially unanimous hybridized handling pausanias

netherlands creating least unpalatable unplatable hand-colored footway
char- mak include resolutely unconstitutional selenocysteine drifted tuaregs
trigrams vill includes regeneratively constitutional guerrillas affected quft
LSTM cow undermining reproductively unimolecular scrofula conflicted subjectivism

maga under commonly medicinal seleucia convicted tune-up

char- mayr inclusion relates undamaged hydrolyzed musagte formulas

LSTM many insularity replicate unmyelinated hydraulics mutualism formally
mary includes relativity unconditionally hysterotomy mutualists fecal
may include gravestones uncoordinated hydraulic meursault foreland

char- mtn include legislatively unconventional hydroxyproline unloading fordism

CNN mann includes lovely unintentional hydrate loading dadaism
jan excluding creatively unconstitutional hydrangea upgrading popism
nun included negatively untraditional hyena upholding endemism

Table 11: Nearest neighbours of semantically and syntactically similar words.

Query Top nearest neighbours
kota-kota wilayah-wilayah (areas), pulau-pulau (islands), negara-negara (countries),
(cities) bahasa-bahasa (languages), koloni-koloni (colonies)

berlembah-lembah berargumentasi (argue), bercakap-cakap (converse), berkemauan (will),
(have many valleys) berimplikasi (imply), berketebalan (have a thickness)

Table 12: Nearest neighbours of Indonesian reduplicated words in the BPE bi-LSTM model.

in limited quantities, our results suggest that there
might be utility in semi-supervised learning from
partially annotated data. Across languages with
different typologies, our experiments show that the
subword unit models are most effective on agglu-
tinative languages. However, these results do not
generalize to all languages, since factors such as
morphology and orthography affect the utility of
these representations. We plan to explore these ef-
fects in future work.

Acknowledgments

Clara Vania is supported by the Indonesian En-
dowment Fund for Education (LPDP), the Cen-
tre for Doctoral Training in Data Science, funded
by the UK EPSRC (grant EP/L016427/1), and
the University of Edinburgh. We thank Sameer
Bansal, Toms Bergmanis, Marco Damonte, Fed-
erico Fancellu, Sorcha Gilroy, Sharon Gold-
water, Frank Keller, Mirella Lapata, Felicia
Liu, Jonathan Mallinson, Joana Ribeiro, Naomi
Saphra, Ida Szubert, and the anonymous reviewers
for helpful discussion of this work and comments
on previous drafts of the paper.

References
Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene

Brevdo, Zhifeng Chen, Craig Citro, Greg S. Cor-
rado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp,
Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dan Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-
war, Paul Tucker, Vincent Vanhoucke, Vijay Va-
sudevan, Fernanda Viégas, Oriol Vinyals, Pete
Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2015. TensorFlow:
Large-scale machine learning on heterogeneous sys-
tems. Software available from tensorflow.org.
http://tensorflow.org/.

Rami Al-Rfou, Bryan Perozzi, and Steven Skiena.
2013. Polyglot: Distributed word representa-
tions for multilingual nlp. In Proceedings of the
Seventeenth Conference on Computational Natu-
ral Language Learning. Association for Computa-
tional Linguistics, Sofia, Bulgaria, pages 183–192.
http://www.aclweb.org/anthology/W13-3520.

Emily M. Bender. 2013. Linguistic Fundamentals for
Natural Language Processing: 100 Essentials from
Morphology and Syntax. Morgan & Claypool Pub-
lishers.

2024

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors
with subword information. CoRR abs/1607.04606.
http://arxiv.org/abs/1607.04606.

Jan A. Botha and Phil Blunsom. 2014. Com-
positional Morphology for Word Representa-
tions and Language Modeling. In Proceed-
ings of the 31st International Conference on
Machine Learning (ICML). Beijing, China.
http://jmlr.org/proceedings/papers/v32/botha14.pdf.

Danqi Chen and Christopher Manning. 2014. A
fast and accurate dependency parser using neural
networks. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computa-
tional Linguistics, Doha, Qatar, pages 740–750.
http://www.aclweb.org/anthology/D14-1082.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP). Association
for Computational Linguistics, Doha, Qatar, pages
1724–1734. http://www.aclweb.org/anthology/D14-
1179.

Ryan Cotterell and Hinrich Schütze. 2015. Morpho-
logical word-embeddings. In Proceedings of the
2015 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies. Association for Com-
putational Linguistics, Denver, Colorado, pages
1287–1292. http://www.aclweb.org/anthology/N15-
1140.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd An-
nual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Beijing, China, pages 334–343.
http://www.aclweb.org/anthology/P15-1033.

Philip Gage. 1994. A new algorithm for
data compression. C Users J. 12(2):23–38.
http://dl.acm.org/citation.cfm?id=177910.177914.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2016. Multilingual language process-
ing from bytes. In Proceedings of the 2016 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, San Diego, California, pages 1296–
1306. http://www.aclweb.org/anthology/N16-1155.

Alex Graves, Santiago Fernández, and Jürgen
Schmidhuber. 2005. Bidirectional lstm net-
works for improved phoneme classification
and recognition. In Proceedings of the 15th
International Conference on Artificial Neu-
ral Networks: Formal Models and Their Ap-
plications - Volume Part II. Springer-Verlag,
Berlin, Heidelberg, ICANN’05, pages 799–804.
http://dl.acm.org/citation.cfm?id=1986079.1986220.

Martin Haspelmath. 2010. Understanding Morphol-
ogy. Understanding Language Series. Arnold, Lon-
don, second edition.

Georg Heigold, Guenter Neumann, and Josef van Gen-
abith. 2017. An extensive empirical evaluation of
character-based morphological tagging for 14 lan-
guages. In Proceedings of the 15th Conference of
the European Chapter of the Association for Com-
putational Linguistics: Volume 1, Long Papers. As-
sociation for Computational Linguistics, pages 505–
513. http://aclweb.org/anthology/E17-1048.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput. 9(8):1735–
1780. https://doi.org/10.1162/neco.1997.9.8.1735.

Katharina Kann and Hinrich Schütze. 2016. Pro-
ceedings of the 14th SIGMORPHON Workshop
on Computational Research in Phonetics, Phonol-
ogy, and Morphology, Association for Compu-
tational Linguistics, chapter MED: The LMU
System for the SIGMORPHON 2016 Shared
Task on Morphological Reinflection, pages 62–70.
https://doi.org/10.18653/v1/W16-2010.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der Rush. 2016. Character-aware neural language
models. In Proceedings of the 2016 Conference on
Artificial Intelligence (AAAI).

Septina Dian Larasati, Vladislav Kuboň, and Daniel
Zeman. 2011. Indonesian Morphology Tool (Mor-
phInd): Towards an Indonesian Corpus, Springer
Berlin Heidelberg, Berlin, Heidelberg, pages 119–
129. https://doi.org/10.1007/978-3-642-23138-4 8.

Jason Lee, Kyunghyun Cho, and Thomas Hof-
mann. 2016. Fully character-level neural machine
translation without explicit segmentation. CoRR
abs/1610.03017. http://arxiv.org/abs/1610.03017.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Compu-
tational Linguistics, Lisbon, Portugal, pages 1520–
1530. http://aclweb.org/anthology/D15-1176.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In Proceed-
ings of the Seventeenth Conference on Computa-
tional Natural Language Learning. Association for

2025

Computational Linguistics, Sofia, Bulgaria, pages
104–113. http://www.aclweb.org/anthology/W13-
3512.

Mitchell P. Marcus, Mary Ann Marcinkiewicz,
and Beatrice Santorini. 1993. Building a
large annotated corpus of english: The penn
treebank. Comput. Linguist. 19(2):313–330.
http://dl.acm.org/citation.cfm?id=972470.972475.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget,
Jan Černocký, and Sanjeev Khudanpur. 2010.
Recurrent neural network based language model.
In Proceedings of the 11th Annual Conference
of the International Speech Communication
Association (INTERSPEECH 2010). Inter-
national Speech Communication Association,
volume 2010, pages 1045–1048. http://www.isca-
speech.org/archive/interspeech 2010/i10 1045.html.

Yasumasa Miyamoto and Kyunghyun Cho. 2016.
Gated word-character recurrent language model.
In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Pro-
cessing. Association for Computational Lin-
guistics, Austin, Texas, pages 1992–1997.
https://aclweb.org/anthology/D16-1209.

G. David Morley. 2000. Syntax in Functional Gram-
mar: An Introduction to Lexicogrammar in Systemic
Linguistics. Continuum.

Joakim Nivre, Željko Agić, Maria Jesus Aranzabe,
Masayuki Asahara, Aitziber Atutxa, Miguel Balles-
teros, John Bauer, Kepa Bengoetxea, Riyaz Ah-
mad Bhat, Cristina Bosco, Sam Bowman, Giuseppe
G. A. Celano, Miriam Connor, Marie-Catherine
de Marneffe, Arantza Diaz de Ilarraza, Kaja Do-
brovoljc, Timothy Dozat, Tomaž Erjavec, Richárd
Farkas, Jennifer Foster, Daniel Galbraith, Filip Gin-
ter, Iakes Goenaga, Koldo Gojenola, Yoav Gold-
berg, Berta Gonzales, Bruno Guillaume, Jan Hajič,
Dag Haug, Radu Ion, Elena Irimia, Anders Jo-
hannsen, Hiroshi Kanayama, Jenna Kanerva, Simon
Krek, Veronika Laippala, Alessandro Lenci, Nikola
Ljubešić, Teresa Lynn, Christopher Manning, Ctlina
Mrnduc, David Mareček, Héctor Martı́nez Alonso,
Jan Mašek, Yuji Matsumoto, Ryan McDonald,
Anna Missilä, Verginica Mititelu, Yusuke Miyao,
Simonetta Montemagni, Shunsuke Mori, Hanna
Nurmi, Petya Osenova, Lilja Øvrelid, Elena Pascual,
Marco Passarotti, Cenel-Augusto Perez, Slav Petrov,
Jussi Piitulainen, Barbara Plank, Martin Popel,
Prokopis Prokopidis, Sampo Pyysalo, Loganathan
Ramasamy, Rudolf Rosa, Shadi Saleh, Sebastian
Schuster, Wolfgang Seeker, Mojgan Seraji, Natalia
Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Kiril Simov, Aaron Smith, Jan Štěpánek,
Alane Suhr, Zsolt Szántó, Takaaki Tanaka, Reut
Tsarfaty, Sumire Uematsu, Larraitz Uria, Viktor
Varga, Veronika Vincze, Zdeněk Žabokrtský, Daniel
Zeman, and Hanzhi Zhu. 2015. Universal depen-
dencies 1.2 LINDAT/CLARIN digital library at In-
stitute of Formal and Applied Linguistics, Charles

University in Prague. http://hdl.handle.net/11234/1-
1548.

Arfath Pasha, Mohamed Al-Badrashiny, Mona Diab,
Ahmed El Kholy, Ramy Eskander, Nizar Habash,
Manoj Pooleery, Owen Rambow, and Ryan Roth.
2014. Madamira: A fast, comprehensive tool for
morphological analysis and disambiguation of ara-
bic. In Nicoletta Calzolari, Khalid Choukri, Thierry
Declerck, Hrafn Loftsson, Bente Maegaard, Joseph
Mariani, Asuncion Moreno, Jan Odijk, and Ste-
lios Piperidis, editors, Proceedings of the Ninth
International Conference on Language Resources
and Evaluation (LREC’14). European Language Re-
sources Association (ELRA), Reykjavik, Iceland,
pages 1094–1101. ACL Anthology Identifier: L14-
1479.

Barbara Plank, Anders Søgaard, and Yoav Goldberg.
2016. Multilingual part-of-speech tagging with
bidirectional long short-term memory models and
auxiliary loss. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers). Association for
Computational Linguistics, Berlin, Germany, pages
412–418. http://anthology.aclweb.org/P16-2067.

Siyu Qiu, Qing Cui, Jiang Bian, Bin Gao, and Tie-
Yan Liu. 2014. Co-learning of word representations
and morpheme representations. In Proceedings of
COLING 2014, the 25th International Conference
on Computational Linguistics: Technical Papers.
Dublin City University and Association for Com-
putational Linguistics, Dublin, Ireland, pages 141–
150. http://www.aclweb.org/anthology/C14-1015.

Marek Rei, Gamal Crichton, and Sampo Pyysalo. 2016.
Attending to characters in neural sequence label-
ing models. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics: Technical Papers. The COLING 2016
Organizing Committee, Osaka, Japan, pages 309–
318. http://aclweb.org/anthology/C16-1030.

Brian Roark and Richard Sproat. 2007. Computational
Approach to Morphology and Syntax. Oxford Uni-
versity Press.

Cicero Dos Santos and Bianca Zadrozny. 2014.
Learning character-level representations for part-
of-speech tagging. In Eric P. Xing and Tony
Jebara, editors, Proceedings of the 31st Interna-
tional Conference on Machine Learning. PMLR,
Bejing, China, volume 32 of Proceedings of
Machine Learning Research, pages 1818–1826.
http://proceedings.mlr.press/v32/santos14.html.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers). Association for
Computational Linguistics, Berlin, Germany, pages
1715–1725. http://www.aclweb.org/anthology/P16-
1162.

2026

Peter Smit, Sami Virpioja, Stig-Arne Grönroos, and
Mikko Kurimo. 2014. Morfessor 2.0: Toolkit for
statistical morphological segmentation. In Proceed-
ings of the Demonstrations at the 14th Conference of
the European Chapter of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Gothenburg, Sweden, pages 21–
24. http://www.aclweb.org/anthology/E14-2006.

Henning Sperr, Jan Niehues, and Alex Waibel. 2013.
Letter n-gram-based input encoding for continu-
ous space language models. In Proceedings of
the Workshop on Continuous Vector Space Models
and their Compositionality. Association for Compu-
tational Linguistics, Sofia, Bulgaria, pages 30–39.
http://www.aclweb.org/anthology/W13-3204.

Ekaterina Vylomova, Trevor Cohn, Xuanli He, and
Gholamreza Haffari. 2016. Word representation
models for morphologically rich languages in neu-
ral machine translation. CoRR abs/1606.04217.
http://arxiv.org/abs/1606.04217.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. Charagram: Embedding words and
sentences via character n-grams. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computa-
tional Linguistics, Austin, Texas, pages 1504–1515.
https://aclweb.org/anthology/D16-1157.

2027

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2028–2036
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1185

Riemannian Optimization for Skip-Gram Negative Sampling

Alexander Fonarev1,2,4,*, Oleksii Hrinchuk1,2,3,*,
Gleb Gusev2,3, Pavel Serdyukov2, and Ivan Oseledets1,5

1Skolkovo Institute of Science and Technology, Moscow, Russia
2Yandex LLC, Moscow, Russia

3Moscow Institute of Physics and Technology, Moscow, Russia
4SBDA Group, Dublin, Ireland

5Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia

Abstract

Skip-Gram Negative Sampling (SGNS)
word embedding model, well known by its
implementation in “word2vec” software,
is usually optimized by stochastic gradi-
ent descent. However, the optimization of
SGNS objective can be viewed as a prob-
lem of searching for a good matrix with
the low-rank constraint. The most stan-
dard way to solve this type of problems is
to apply Riemannian optimization frame-
work to optimize the SGNS objective over
the manifold of required low-rank matri-
ces. In this paper, we propose an algo-
rithm that optimizes SGNS objective us-
ing Riemannian optimization and demon-
strates its superiority over popular com-
petitors, such as the original method to
train SGNS and SVD over SPPMI matrix.

1 Introduction

In this paper, we consider the problem of embed-
ding words into a low-dimensional space in order
to measure the semantic similarity between them.
As an example, how to find whether the word
“table” is semantically more similar to the word
“stool” than to the word “sky”? That is achieved
by constructing a low-dimensional vector repre-
sentation for each word and measuring similarity
between the words as the similarity between the
corresponding vectors.

One of the most popular word embedding mod-
els (Mikolov et al., 2013) is a discriminative neu-
ral network that optimizes Skip-Gram Negative
Sampling (SGNS) objective (see Equation 3). It
aims at predicting whether two words can be found
close to each other within a text. As shown in Sec-
tion 2, the process of word embeddings training
∗The first two authors contributed equally to this work

using SGNS can be divided into two general steps
with clear objectives:

Step 1. Search for a low-rank matrix X that pro-
vides a good SGNS objective value;

Step 2. Search for a good low-rank representation
X = WC> in terms of linguistic metrics,
where W is a matrix of word embeddings
and C is a matrix of so-called context em-
beddings.

Unfortunately, most previous approaches mixed
these two steps into a single one, what entails a not
completely correct formulation of the optimization
problem. For example, popular approaches to train
embeddings (including the original “word2vec”
implementation) do not take into account that the
objective from Step 1 depends only on the prod-
uct X = WC>: instead of straightforward com-
puting of the derivative w.r.t. X , these methods
are explicitly based on the derivatives w.r.t. W
and C, what complicates the optimization proce-
dure. Moreover, such approaches do not take into
account that parametrization WC> of matrix X is
non-unique and Step 2 is required. Indeed, for any
invertible matrix S, we have

X = W1C
>
1 = W1SS

−1C>1 = W2C
>
2 ,

therefore, solutionsW1C
>
1 andW2C

>
2 are equally

good in terms of the SGNS objective but entail
different cosine similarities between embeddings
and, as a result, different performance in terms of
linguistic metrics (see Section 4.2 for details).

A successful attempt to follow the above de-
scribed steps, which outperforms the original
SGNS optimization approach in terms of various
linguistic tasks, was proposed in (Levy and Gold-
berg, 2014). In order to obtain a low-rank matrix
X on Step 1, the method reduces the dimensional-
ity of Shifted Positive Pointwise Mutual Informa-

2028

https://doi.org/10.18653/v1/P17-1185

tion (SPPMI) matrix via Singular Value Decom-
position (SVD). On Step 2, it computes embed-
dings W and C via a simple formula that depends
on the factors obtained by SVD. However, this
method has one important limitation: SVD pro-
vides a solution to a surrogate optimization prob-
lem, which has no direct relation to the SGNS ob-
jective. In fact, SVD minimizes the Mean Squared
Error (MSE) between X and SPPMI matrix, what
does not lead to minimization of SGNS objec-
tive in general (see Section 6.1 and Section 4.2
in (Levy and Goldberg, 2014) for details).

These issues bring us to the main idea of
our paper: while keeping the low-rank matrix
search setup on Step 1, optimize the original
SGNS objective directly. This leads to an opti-
mization problem over matrix X with the low-
rank constraint, which is often (Mishra et al.,
2014) solved by applying Riemannian optimiza-
tion framework (Udriste, 1994). In our paper, we
use the projector-splitting algorithm (Lubich and
Oseledets, 2014), which is easy to implement and
has low computational complexity. Of course,
Step 2 may be improved as well, but we regard
this as a direction of future work.

As a result, our approach achieves the signif-
icant improvement in terms of SGNS optimiza-
tion on Step 1 and, moreover, the improvement
on Step 1 entails the improvement on Step 2 in
terms of linguistic metrics. That is why, the
proposed two-step decomposition of the problem
makes sense, what, most importantly, opens the
way to applying even more advanced approaches
based on it (e.g., more advanced Riemannian opti-
mization techniques for Step 1 or a more sophisti-
cated treatment of Step 2).

To summarize, the main contributions of our pa-
per are:

• We reformulated the problem of SGNS word
embedding learning as a two-step procedure
with clear objectives;

• For Step 1, we developed an algorithm based
on Riemannian optimization framework that
optimizes SGNS objective over low-rank ma-
trix X directly;

• Our algorithm outperforms state-of-the-art
competitors in terms of SGNS objective
and the semantic similarity linguistic met-
ric (Levy and Goldberg, 2014; Mikolov et al.,
2013; Schnabel et al., 2015).

2 Problem Setting

2.1 Skip-Gram Negative Sampling
In this paper, we consider the Skip-Gram
Negative Sampling (SGNS) word embedding
model (Mikolov et al., 2013), which is a prob-
abilistic discriminative model. Assume we have
a text corpus given as a sequence of words
w1, . . . , wn, where n may be larger than 1012 and
wi ∈ VW belongs to a vocabulary of words VW . A
context c ∈ VC of the word wi is a word from set
{wi−L, ..., wi−1, wi+1, ..., wi+L} for some fixed
window size L. Let w, c ∈ Rd be the word em-
beddings of word w and context c, respectively.
Assume they are specified by the following map-
pings:

W : VW → Rd, C : VC → Rd.

The ultimate goal of SGNS word embedding train-
ing is to fit good mappingsW and C.

Let D be a multiset of all word-context pairs
observed in the corpus. In the SGNS model, the
probability that word-context pair (w, c) is ob-
served in the corpus is modeled as a following
dsitribution:

P (#(w, c) 6= 0|w, c) =

= σ(〈w, c〉) =
1

1 + exp(−〈w, c〉) ,
(1)

where #(w, c) is the number of times the
pair (w, c) appears in D and 〈x,y〉 is the scalar
product of vectors x and y. Number d is a hyper-
parameter that adjusts the flexibility of the model.
It usually takes values from tens to hundreds.

In order to collect a training set, we take all
pairs (w, c) from D as positive examples and k
randomly generated pairs (w, c) as negative ones.
The number of times the word w and the context c
appear in D can be computed as

#(w) =
∑

c∈Vc
#(w, c),

#(c) =
∑

w∈Vw
#(w, c)

accordingly. Then negative examples are gener-
ated from the distribution defined by #(c) coun-
ters:

PD(c) =
#(c)

|D| .

2029

In this way, we have a model maximizing the
following logarithmic likelihood objective for all
word-context pairs (w, c):

lwc = #(w, c)(log σ(〈w, c〉)+
+k · Ec′∼PD

log σ(−〈w, c′〉)). (2)

In order to maximize the objective over all obser-
vations for each pair (w, c), we arrive at the fol-
lowing SGNS optimization problem over all pos-
sible mappingsW and C:

l =
∑

w∈VW

∑

c∈VC
(#(w, c)(log σ(〈w, c〉)+

+k · Ec′∼PD
log σ(−〈w, c′〉)))→ max

W,C
.

(3)

Usually, this optimization is done via the stochas-
tic gradient descent procedure that is performed
during passing through the corpus (Mikolov et al.,
2013; Rong, 2014).

2.2 Optimization over Low-Rank Matrices
Relying on the prospect proposed in (Levy and
Goldberg, 2014), let us show that the optimization
problem given by (3) can be considered as a prob-
lem of searching for a matrix that maximizes a
certain objective function and has the rank-d con-
straint (Step 1 in the scheme described in Sec-
tion 1).

2.2.1 SGNS Loss Function
As shown in (Levy and Goldberg, 2014), the
logarithmic likelihood (3) can be represented
as the sum of lw,c(w, c) over all pairs (w, c),
where lw,c(w, c) has the following form:

lw,c(w, c) = #(w, c) log σ(〈w, c〉)+

+k
#(w)#(c)

|D| log σ(−〈w, c〉).
(4)

A crucial observation is that this loss function de-
pends only on the scalar product 〈w, c〉 but not on
embeddings w and c separately:

lw,c(w, c) = fw,c(xw,c),

where

fw,c(xw,c) = aw,c log σ(xw,c)+bw,c log σ(−xw,c),

and xw,c is the scalar product 〈w, c〉, and

aw,c = #(w, c), bw,c = k
#(w)#(c)

|D|
are constants.

2.2.2 Matrix Notation
Denote |VW | as n and |VC | as m. Let W ∈ Rn×d
and C ∈ Rm×d be matrices, where each row w ∈
Rd of matrix W is the word embedding of the cor-
responding word w and each row c ∈ Rd of ma-
trix C is the context embedding of the correspond-
ing context c. Then the elements of the product of
these matrices

X = WC>

are the scalar products xw,c of all pairs (w, c):

X = (xw,c), w ∈ VW , c ∈ VC .

Note that this matrix has rank d, becauseX equals
to the product of two matrices with sizes (n × d)
and (d ×m). Now we can write SGNS objective
given by (3) as a function of X:

F (X) =
∑

w∈VW

∑

c∈VC
fw,c(xw,c), F : Rn×m → R.

(5)
This arrives us at the following proposition:

Proposition 1 SGNS optimization problem given
by (3) can be rewritten in the following con-
strained form:

maximize
X∈Rn×m

F (X),

subject to X ∈Md,
(6)

where Md is the manifold (Udriste, 1994) of all
matrices in Rn×m with rank d:

Md = {X ∈ Rn×m : rank(X) = d}.

The key idea of this paper is to solve the opti-
mization problem given by (6) via the framework
of Riemannian optimization, which we introduce
in Section 3.

Important to note that this prospect does not
suppose the optimization over parameters W
and C directly. This entails the optimization in
the space with ((n + m − d) · d) degrees of free-
dom (Mukherjee et al., 2015) instead of ((n+m) ·
d), what simplifies the optimization process (see
Section 5 for the experimental results).

2.3 Computing Embeddings from a
Low-Rank Solution

Once X is found, we need to recover W and C
such that X = WC> (Step 2 in the scheme
described in Section 1). This problem does not

2030

have a unique solution, since if (W,C) satisfy this
equation, then WS−1 and CS> satisfy it as well
for any non-singular matrix S. Moreover, different
solutions may achieve different values of the lin-
guistic metrics (see Section 4.2 for details). While
our paper focuses on Step 1, we use, for Step 2,
a heuristic approach that was proposed in (Levy
et al., 2015) and it shows good results in practice.
We compute SVD of X in the form

X = UΣV >,

where U and V have orthonormal columns, and Σ
is the diagonal matrix, and use

W = U
√

Σ, C = V
√

Σ

as matrices of embeddings.
A simple justification of this solution is the fol-

lowing: we need to map words into vectors in a
way that similar words would have similar embed-
dings in terms of cosine similarities:

cos(w1,w2) =
〈w1,w2〉
‖w1‖ · ‖w2‖

.

It is reasonable to assume that two words are sim-
ilar, if they share contexts. Therefore, we can esti-
mate the similarity of two words w1, w2 as

s(w1, w2) =
∑

c∈VC
xw1,c · xw2,c,

what is the element of the matrix XX> with in-
dices (w1, w2). Note that

XX> = UΣV >V ΣU> = UΣ2U>.

If we choose W = UΣ, we exactly ob-
tain 〈w1,w2〉 = s(w1, w2), since WW> =
XX> in this case. That is, the cosine similar-
ity of the embeddings w1,w2 coincides with the
intuitive similarity s(w1, w2). However, scaling
by
√

Σ instead of Σ was shown in (Levy et al.,
2015) to be a better solution in experiments.

3 Proposed Method

3.1 Riemannian Optimization
3.1.1 General Scheme
The main idea of Riemannian optimiza-
tion (Udriste, 1994) is to consider (6) as a
constrained optimization problem. Assume we
have an approximated solution Xi on a current

step of the optimization process, where i is the
step number. In order to improve Xi, the next step
of the standard gradient ascent outputs the point

Xi +∇F (Xi),

where ∇F (Xi) is the gradient of objective F at
the point Xi. Note that the gradient ∇F (Xi)
can be naturally considered as a matrix in Rn×m.
Point Xi + ∇F (Xi) leaves the manifold Md,
because its rank is generally greater than d.
That is why Riemannian optimization methods
map point Xi + ∇F (Xi) back to manifold Md.
The standard Riemannian gradient method first
projects the gradient step onto the tangent space
at the current point Xi and then retracts it back to
the manifold:

Xi+1 = R (PTM (Xi +∇F (Xi))),

where R is the retraction operator, and PTM is the
projection onto the tangent space.

Although the optimization problem is non-
convex, Riemannian optimization methods show
good performance on it. Theoretical properties
and convergence guarantees of such methods are
discussed in (Wei et al., 2016) more thoroughly.

3.1.2 Projector-Splitting Algorithm
In our paper, we use a simplified version of such
approach that retracts pointXi+∇F (Xi) directly
to the manifold and does not require projection
onto the tangent space PTM as illustrated in Fig-
ure 1:

Xi+1 = R(Xi +∇F (Xi)).

Intuitively, retractor R finds a rank-d matrix on
the manifoldMd that is similar to high-rank ma-
trix Xi + ∇F (Xi) in terms of Frobenius norm.
How can we do it? The most straightforward way
to reduce the rank of Xi +∇F (Xi) is to perform
the SVD, which keeps d largest singular values of
it:

1: Ui+1, Si+1, V
>
i+1 ← SVD(Xi +∇F (Xi)),

2: Xi+1 ← Ui+1Si+1V
>
i+1.

(7)

However, it is computationally expensive. In-
stead of this approach, we use the projector-
splitting method (Lubich and Oseledets, 2014),
which is a second-order retraction onto the man-
ifold (for details, see the review (Absil and Os-
eledets, 2015)). Its practical implementation is

2031

Fine-tuning word embeddings

xxxxx xxxxx
xxxxx

xxxx xxxx
xxxx xxx

xxxxx xxxx
xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rFi

Xi = UiSiV
T

i

Xi+1 = Ui+1Si+1V
T

i+1

retraction

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Fine-tuning word embeddings

xxxxx xxxxx
xxxxx

xxxx xxxx
xxxx xxx

xxxxx xxxx
xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rFi

Xi = UiSiV
T

i

Xi+1 = Ui+1Si+1V
T

i+1

retraction

Md

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Fine-tuning word embeddings

xxxxx xxxxx
xxxxx

xxxx xxxx
xxxx xxx

xxxxx xxxx
xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rF (Xi)

Xi + rF (Xi)

Xi = UiSiV
T

i

Xi

Xi+1

Xi+1 = Ui+1Si+1V
T

i+1

retraction

Md

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Fine-tuning word embeddings

xxxxx xxxxx
xxxxx

xxxx xxxx
xxxx xxx

xxxxx xxxx
xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rF (Xi)

Xi + rF (Xi)

Xi = UiSiV
T

i

Xi

Xi+1

Xi+1 = Ui+1Si+1V
T

i+1

retraction

Md

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Fine-tuning word embeddings

xxxxx xxxxx
xxxxx

xxxx xxxx
xxxx xxx

xxxxx xxxx
xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rF (Xi)

Xi + rF (Xi)

Xi = UiSiV
T

i

Xi

Xi+1

Xi+1 = Ui+1Si+1V
T

i+1

retraction

Md

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Fine-tuning word embeddings

xxxxx xxxxx
xxxxx

xxxx xxxx
xxxx xxx

xxxxx xxxx
xxxxx

ABSTRACT
Blah-blah

Keywords
word embeddings, SGNS, word2vec, GLOVE

1. INTRODUCTION
sdfdsf

2. CONCLUSIONS

3. RELATED WORK
Mikolov main [?]
Levi main [?]

rF (Xi)

Xi + rF (Xi)

Xi = UiSiV
T

i

Xi

Xi+1

Xi+1 = Ui+1Si+1V
T

i+1

retraction

Md

4. CONCLUSIONS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOODSTOCK ’97 El Paso, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Figure 1: Geometric interpretation of one step
of projector-splitting optimization procedure: the
gradient step an the retraction of the high-rank ma-
trixXi+∇F (Xi) to the manifold of low-rank ma-
trices Md.

also quite intuitive: instead of computing the full
SVD of Xi + ∇F (Xi) according to the gradi-
ent projection method, we use just one step of the
block power numerical method (Bentbib and Kan-
ber, 2015) which computes the SVD, what reduces
the computational complexity.

Let us keep the current point in the following
factorized form:

Xi = UiSiV
>
i , (8)

where matrices Ui ∈ Rn×d and Vi ∈ Rm×d have d
orthonormal columns and Si ∈ Rd×d. Then we
need to perform two QR-decompositions to retract
point Xi +∇F (Xi) back to the manifold:

1: Ui+1, Si+1 ← QR ((Xi +∇F (Xi))Vi) ,

2: Vi+1, S
>
i+1 ← QR

(
(Xi +∇F (Xi))

>Ui+1

)
,

3: Xi+1 ← Ui+1Si+1V
>
i+1.

In this way, we always keep the solution Xi+1 =
Ui+1Si+1V

>
i+1 on the manifold Md and in the

form (8).
What is important, we only need to com-

pute ∇F (Xi), so the gradients with respect to
U , S and V are never computed explicitly, thus
avoiding the subtle case where S is close to singu-
lar (so-called singular (critical) point on the man-
ifold). Indeed, the gradient with respect to U
(while keeping the orthogonality constraints) can
be written (Koch and Lubich, 2007) as:

∂F

∂U
=
∂F

∂X
V S−1,

which means that the gradient will be large if S is
close to singular. The projector-splitting scheme
is free from this problem.

3.2 Algorithm

In case of SGNS objective given by (5), an element
of gradient∇F has the form:

(∇F (X))w,c =
∂fw,c(xw,c)

∂xw,c
=

= #(w, c) · σ (−xw,c)− k
#(w)#(c)

|D| · σ (xw,c) .

To make the method more flexible in terms of con-
vergence properties, we additionally use λ ∈ R,
which is a step size parameter. In this case, re-
tractor R returns Xi + λ∇F (Xi) instead of Xi +
∇F (Xi) onto the manifold.

The whole optimization procedure is summa-
rized in Algorithm 1.

4 Experimental Setup

4.1 Training Models

We compare our method (“RO-SGNS” in the ta-
bles) performance to two baselines: SGNS embed-
dings optimized via Stochastic Gradient Descent,
implemented in the original “word2vec”, (“SGD-
SGNS” in the tables) (Mikolov et al., 2013) and
embeddings obtained by SVD over SPPMI ma-
trix (“SVD-SPPMI” in the tables) (Levy and Gold-
berg, 2014). We have also experimented with the
blockwise alternating optimization over factors W
and C, but the results are almost the same to SGD
results, that is why we do not to include them into
the paper. The source code of our experiments is
available online1.

The models were trained on English Wikipedia
“enwik9” corpus2, which was previously used in
most papers on this topic. Like in previous stud-
ies, we counted only the words which occur more
than 200 times in the training corpus (Levy and
Goldberg, 2014; Mikolov et al., 2013). As a re-
sult, we obtained a vocabulary of 24292 unique
tokens (set of words VW and set of contexts VC
are equal). The size of the context window was set
to 5 for all experiments, as it was done in (Levy
and Goldberg, 2014; Mikolov et al., 2013). We
conduct three series of experiments: for dimen-
sionality d = 100, d = 200, and d = 500.

1https://github.com/AlexGrinch/ro_sgns
2http://mattmahoney.net/dc/textdata

2032

Algorithm 1 Riemannian Optimization for SGNS
Require: Dimentionality d, initialization W0 and C0, step size λ, gradient function ∇F : Rn×m →

Rn×m, number of iterations K
Ensure: Factor W ∈ Rn×d

1: X0 ←W0C
>
0 # get an initial point at the manifold

2: U0, S0, V
>
0 ← SVD(X0) # compute the first point satisfying the low-rank constraint

3: for i← 1, . . . ,K do
4: Ui, Si ← QR ((Xi−1 + λ∇F (Xi−1))Vi−1) # perform one step of the block power method
5: Vi, S

>
i ← QR

(
(Xi−1 + λ∇F (Xi−1))>Ui

)

6: Xi ← UiSiV
>
i # update the point at the manifold

7: end for
8: U,Σ, V > ← SVD(XK)
9: W ← U

√
Σ # compute word embeddings

10: return W

Optimization step size is chosen to be small
enough to avoid huge gradient values. However,
thorough choice of λ does not result in a signifi-
cant difference in performance (this parameter was
tuned on the training data only, the exact values
used in experiments are reported below).

4.2 Evaluation

We evaluate word embeddings via the word simi-
larity task. We use the following popular datasets
for this purpose: “wordsim-353” ((Finkelstein
et al., 2001); 3 datasets), “simlex-999” (Hill et al.,
2016) and “men” (Bruni et al., 2014). Original
“wordsim-353” dataset is a mixture of the word
pairs for both word similarity and word related-
ness tasks. This dataset was split (Agirre et al.,
2009) into two intersecting parts: “wordsim-sim”
(“ws-sim” in the tables) and “wordsim-rel” (“ws-
rel” in the tables) to separate the words from dif-
ferent tasks. In our experiments, we use both of
them on a par with the full version of “wordsim-
353” (“ws-full” in the tables). Each dataset con-
tains word pairs together with assessor-assigned
similarity scores for each pair. As a quality mea-
sure, we use Spearman’s correlation between these
human ratings and cosine similarities for each pair.
We call this quality metric linguistic in our paper.

5 Results of Experiments

First of all, we compare the value of SGNS objec-
tive obtained by the methods. The comparison is
demonstrated in Table 1.

We see that SGD-SGNS and SVD-SPPMI
methods provide quite similar results, however,
the proposed method obtains significantly better

d = 100 d = 200 d = 500

SGD-SGNS −1.68 −1.67 −1.63
SVD-SPPMI −1.65 −1.65 −1.62
RO-SGNS −1.44 −1.43 −1.41

Table 1: Comparison of SGNS values (multiplied
by 10−9) obtained by the models. Larger is better.

SGNS values, what proves the feasibility of us-
ing Riemannian optimization framework in SGNS
optimization problem. It is interesting to note
that SVD-SPPMI method, which does not opti-
mize SGNS objective directly, obtains better re-
sults than SGD-SGNS method, which aims at opti-
mizing SGNS. This fact additionally confirms the
idea described in Section 2.2.2 that the indepen-
dent optimization over parameters W and C may
decrease the performance.

However, the target performance measure of
embedding models is the correlation between se-
mantic similarity and human assessment (Sec-
tion 4.2). Table 2 presents the comparison of the
methods in terms of it. We see that our method
outperforms the competitors on all datasets except
for “men” dataset where it obtains slightly worse
results. Moreover, it is important that the higher
dimension entails higher performance gain of our
method in comparison to the competitors.

To understand how our model improves or de-
grades the performance in comparison to the base-
line, we found several words, whose neighbors in
terms of cosine distance change significantly. Ta-
ble 3 demonstrates neighbors of the words “five”,
“he” and “main” for both SVD-SPPMI and RO-
SGNS models. A neighbor is marked bold if we
suppose that it has similar semantic meaning to the

2033

Dim. d Algorithm ws-sim ws-rel ws-full simlex men

d = 100
SGD-SGNS 0.719 0.570 0.662 0.288 0.645
SVD-SPPMI 0.722 0.585 0.669 0.317 0.686
RO-SGNS 0.729 0.597 0.677 0.322 0.683

d = 200
SGD-SGNS 0.733 0.584 0.677 0.317 0.664
SVD-SPPMI 0.747 0.625 0.694 0.347 0.710
RO-SGNS 0.757 0.647 0.708 0.353 0.701

d = 500
SGD-SGNS 0.738 0.600 0.688 0.350 0.712
SVD-SPPMI 0.765 0.639 0.707 0.380 0.737
RO-SGNS 0.767 0.654 0.715 0.383 0.732

Table 2: Comparison of the methods in terms of the semantic similarity task. Each entry represents the
Spearman’s correlation between predicted similarities and the manually assessed ones.

five he main
SVD-SPPMI RO-SGNS SVD-SPPMI RO-SGNS SVD-SPPMI RO-SGNS

Neighbors Dist. Neighbors Dist. Neighbors Dist. Neighbors Dist. Neighbors Dist. Neighbors Dist.
lb 0.748 four 0.999 she 0.918 when 0.904 major 0.631 major 0.689
kg 0.731 three 0.999 was 0.797 had 0.903 busiest 0.621 important 0.661

mm 0.670 six 0.997 promptly 0.742 was 0.901 principal 0.607 line 0.631
mk 0.651 seven 0.997 having 0.731 who 0.892 nearest 0.607 external 0.624
lbf 0.650 eight 0.996 dumbledore 0.731 she 0.884 connecting 0.591 principal 0.618
per 0.644 and 0.985 him 0.730 by 0.880 linking 0.588 primary 0.612

Table 3: Examples of the semantic neighbors obtained for words “five”, “he” and “main”.

usa
SGD-SGNS SVD-SPPMI RO-SGNS

Neighbors Dist. Neighbors Dist. Neighbors Dist.
akron 0.536 wisconsin 0.700 georgia 0.707

midwest 0.535 delaware 0.693 delaware 0.706
burbank 0.534 ohio 0.691 maryland 0.705
nevada 0.534 northeast 0.690 illinois 0.704
arizona 0.533 cities 0.688 madison 0.703

uk 0.532 southwest 0.684 arkansas 0.699
youngstown 0.532 places 0.684 dakota 0.690

utah 0.530 counties 0.681 tennessee 0.689
milwaukee 0.530 maryland 0.680 northeast 0.687

headquartered 0.527 dakota 0.674 nebraska 0.686

Table 4: Examples of the semantic neighbors
from 11th to 20th obtained for the word “usa” by
all three methods. Top-10 neighbors for all three
methods are exact names of states.

source word. First of all, we notice that our model
produces much better neighbors of the words de-
scribing digits or numbers (see word “five” as
an example). Similar situation happens for many
other words, e.g. in case of “main” — the nearest
neighbors contain 4 similar words for our model
instead of 2 in case of SVD-SPPMI. The neigh-
bourhood of “he” contains less semantically sim-
ilar words in case of our model. However, it fil-
ters out irrelevant words, such as “promptly” and
“dumbledore”.

Table 4 contains the nearest words to the word
“usa” from 11th to 20th. We marked names of
USA states bold and did not represent top-10 near-
est words as they are exactly names of states for
all three models. Some non-bold words are ar-
guably relevant as they present large USA cities

(“akron”, “burbank”, “madison”) or geographi-
cal regions of several states (“midwest”, “north-
east”, “southwest”), but there are also some com-
pletely irrelevant words (“uk”, “cities”, “places”)
presented by first two models.

Our experiments show that the optimal number
of iterations K in the optimization procedure and
step size λ depend on the particular value of d.
For d = 100, we have K = 7, λ = 5 · 10−5, for
d = 200, we have K = 8, λ = 5 · 10−5, and for
d = 500, we have K = 2, λ = 10−4. Moreover,
the best results were obtained when SVD-SPPMI
embeddings were used as an initialization of Rie-
mannian optimization process.

Figure 2 illustrates how the correlation between
semantic similarity and human assessment scores
changes through iterations of our method. Optimal
value of K is the same for both whole testing set
and its 10-fold subsets chosen for cross-validation.
The idea to stop optimization procedure on some
iteration is also discussed in (Lai et al., 2015).

Training of the same dimensional models
(d = 500) on English Wikipedia corpus using
SGD-SGNS, SVD-SPPMI, RO-SGNS took 20
minutes, 10 minutes and 70 minutes respectively.
Our method works slower, but not significantly.
Moreover, since we were not focused on the code
efficiency optimization, this time can be reduced.

2034

0 5 10 15 20 25

iterations

0.692

0.694

0.696

0.698

0.700

0.702

0.704

0.706

0.708
wordsim-353

0 5 10 15 20 25

iterations

0.346

0.347

0.348

0.349

0.350

0.351

0.352

0.353

0.354
simlex-999

0 5 10 15 20 25

iterations

0.696

0.698

0.700

0.702

0.704

0.706

0.708

0.710
men

Figure 2: Illustration of why it is important to choose the optimal iteration and stop optimization proce-
dure after it. The graphs show semantic similarity metric in dependence on the iteration of optimization
procedure. The embeddings obtained by SVD-SPPMI method were used as initialization. Parameters:
d = 200, λ = 5 · 10−5.

6 Related Work

6.1 Word Embeddings
Skip-Gram Negative Sampling was introduced
in (Mikolov et al., 2013). The “negative sampling”
approach is thoroughly described in (Goldberg and
Levy, 2014), and the learning method is explained
in (Rong, 2014). There are several open-source
implementations of SGNS neural network, which
is widely known as “word2vec”. 12

As shown in Section 2.2, Skip-Gram Negative
Sampling optimization can be reformulated as a
problem of searching for a low-rank matrix. In or-
der to be able to use out-of-the-box SVD for this
task, the authors of (Levy and Goldberg, 2014)
used the surrogate version of SGNS as the objec-
tive function. There are two general assumptions
made in their algorithm that distinguish it from the
SGNS optimization:

1. SVD optimizes Mean Squared Error (MSE)
objective instead of SGNS loss function.

2. In order to avoid infinite elements in SPMI
matrix, it is transformed in ad-hoc manner
(SPPMI matrix) before applying SVD.

This makes the objective not interpretable in terms
of the original task (3). As mentioned in (Levy
and Goldberg, 2014), SGNS objective weighs dif-
ferent (w, c) pairs differently, unlike the SVD,
which works with the same weight for all pairs
and may entail the performance fall. The compre-
hensive explanation of the relation between SGNS
and SVD-SPPMI methods is provided in (Keerthi
et al., 2015). (Lai et al., 2015; Levy et al., 2015)

1Original Google word2vec: https://code.
google.com/archive/p/word2vec/

2Gensim word2vec: https://radimrehurek.
com/gensim/models/word2vec.html

give a good overview of highly practical methods
to improve these word embedding models.

6.2 Riemannian Optimization
An introduction to optimization over Riemannian
manifolds can be found in (Udriste, 1994). The
overview of retractions of high rank matrices to
low-rank manifolds is provided in (Absil and Os-
eledets, 2015). The projector-splitting algorithm
was introduced in (Lubich and Oseledets, 2014),
and also was mentioned in (Absil and Oseledets,
2015) as “Lie-Trotter retraction”.

Riemannian optimization is succesfully applied
to various data science problems: for example,
matrix completion (Vandereycken, 2013), large-
scale recommender systems (Tan et al., 2014), and
tensor completion (Kressner et al., 2014).

7 Conclusions

In our paper, we proposed the general two-step
scheme of training SGNS word embedding model
and introduced the algorithm that performs the
search of a solution in the low-rank form via
Riemannian optimization framework. We also
demonstrated the superiority of our method by
providing experimental comparison to existing
state-of-the-art approaches.

Possible direction of future work is to apply
more advanced optimization techniques to the
Step 1 of the scheme proposed in Section 1 and to
explore the Step 2 — obtaining embeddings with
a given low-rank matrix.

Acknowledgments

This research was supported by the Ministry of
Education and Science of the Russian Federation
(grant 14.756.31.0001).

2035

References
P-A Absil and Ivan V Oseledets. 2015. Low-rank re-

tractions: a survey and new results. Computational
Optimization and Applications 62(1):5–29.

Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana
Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and wordnet-based approaches. In NAACL.
pages 19–27.

AH Bentbib and A Kanber. 2015. Block power
method for svd decomposition. Analele Stiintifice
Ale Unversitatii Ovidius Constanta-Seria Matemat-
ica 23(2):45–58.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. J. Artif. Intell.
Res.(JAIR) 49(1-47).

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In WWW. pages 406–414.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722 .

Felix Hill, Roi Reichart, and Anna Korhonen. 2016.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics .

S Sathiya Keerthi, Tobias Schnabel, and Rajiv Khanna.
2015. Towards a better understanding of predict and
count models. arXiv preprint arXiv:1511.02024 .

Othmar Koch and Christian Lubich. 2007. Dynami-
cal low-rank approximation. SIAM J. Matrix Anal.
Appl. 29(2):434–454.

Daniel Kressner, Michael Steinlechner, and Bart Van-
dereycken. 2014. Low-rank tensor completion by
riemannian optimization. BIT Numerical Mathe-
matics 54(2):447–468.

Siwei Lai, Kang Liu, Shi He, and Jun Zhao. 2015. How
to generate a good word embedding? arXiv preprint
arXiv:1507.05523 .

Omer Levy and Yoav Goldberg. 2014. Neural word
embedding as implicit matrix factorization. In
NIPS. pages 2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. ACL 3:211–225.

Christian Lubich and Ivan V Oseledets. 2014. A
projector-splitting integrator for dynamical low-
rank approximation. BIT Numerical Mathematics
54(1):171–188.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS. pages 3111–3119.

Bamdev Mishra, Gilles Meyer, Silvère Bonnabel, and
Rodolphe Sepulchre. 2014. Fixed-rank matrix fac-
torizations and riemannian low-rank optimization.
Computational Statistics 29(3-4):591–621.

A Mukherjee, K Chen, N Wang, and J Zhu. 2015. On
the degrees of freedom of reduced-rank estimators
in multivariate regression. Biometrika 102(2):457–
477.

Xin Rong. 2014. word2vec parameter learning ex-
plained. arXiv preprint arXiv:1411.2738 .

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In EMNLP.

Mingkui Tan, Ivor W Tsang, Li Wang, Bart Vanderey-
cken, and Sinno Jialin Pan. 2014. Riemannian pur-
suit for big matrix recovery. In ICML. volume 32,
pages 1539–1547.

Constantin Udriste. 1994. Convex functions and opti-
mization methods on Riemannian manifolds, volume
297. Springer Science & Business Media.

Bart Vandereycken. 2013. Low-rank matrix comple-
tion by riemannian optimization. SIAM Journal on
Optimization 23(2):1214–1236.

Ke Wei, Jian-Feng Cai, Tony F Chan, and Shingyu Le-
ung. 2016. Guarantees of riemannian optimization
for low rank matrix recovery. SIAM Journal on Ma-
trix Analysis and Applications 37(3):1198–1222.

2036

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2037–2048
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1186

Deep Multitask Learning for Semantic Dependency Parsing

Hao Peng∗ Sam Thomson† Noah A. Smith∗
∗Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA

†School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
{hapeng,nasmith}@cs.washington.edu, sthomson@cs.cmu.edu

Abstract

We present a deep neural architecture that
parses sentences into three semantic de-
pendency graph formalisms. By using ef-
ficient, nearly arc-factored inference and
a bidirectional-LSTM composed with a
multi-layer perceptron, our base system is
able to significantly improve the state of
the art for semantic dependency parsing,
without using hand-engineered features or
syntax. We then explore two multitask
learning approaches—one that shares pa-
rameters across formalisms, and one that
uses higher-order structures to predict the
graphs jointly. We find that both ap-
proaches improve performance across for-
malisms on average, achieving a new state
of the art. Our code is open-source and
available at https://github.com/
Noahs-ARK/NeurboParser.

1 Introduction

Labeled directed graphs are a natural and flexi-
ble representation for semantics (Copestake et al.,
2005; Baker et al., 2007; Surdeanu et al., 2008;
Banarescu et al., 2013, inter alia). Their generality
over trees, for instance, allows them to represent
relational semantics while handling phenomena
like coreference and coordination. Even syntactic
formalisms are moving toward graphs (de Marn-
effe et al., 2014). However, full semantic graphs
can be expensive to annotate, and efforts are frag-
mented across competing semantic theories, lead-
ing to a limited number of annotations in any one
formalism. This makes learning to parse more dif-
ficult, especially for powerful but data-hungry ma-
chine learning techniques like neural networks.

In this work, we hypothesize that the overlap
among theories and their corresponding represen-

Last week , shareholders took their money and ran .

arg1

loc

top

arg1
poss

arg2

_and_c

arg1

(a) DM

arg1

top

arg1
arg1

arg2 coord

arg1arg1

coord

Last week , shareholders took their money ran .and
(b) PAS

Last week , shareholders took their money and ran .

rstr
twhen

top

act app

pat
conj

act

top

twhen
conj

(c) PSD

Figure 1: An example sentence annotated with the
three semantic formalisms of the broad-coverage
semantic dependency parsing shared tasks.

tations can be exploited using multitask learn-
ing (Caruana, 1997), allowing us to learn from
more data. We use the 2015 SemEval shared task
on Broad-Coverage Semantic Dependency Pars-
ing (SDP; Oepen et al., 2015) as our testbed.
The shared task provides an English-language cor-
pus with parallel annotations for three semantic
graph representations, described in §2. Though
the shared task was designed in part to encourage
comparison between the formalisms, we are the
first to treat SDP as a multitask learning problem.

As a strong baseline, we introduce a new sys-
tem that parses each formalism separately (§3).
It uses a bidirectional-LSTM composed with a
multi-layer perceptron to score arcs and predi-
cates, and has efficient, nearly arc-factored infer-
ence. Experiments show it significantly improves
on state-of-the-art methods (§3.4).

We then present two multitask extensions (§4.2

2037

https://doi.org/10.18653/v1/P17-1186

DM PAS PSD

id ood id ood id ood

labels 59 47 42 41 91 74
% trees 2.3 9.7 1.2 2.4 42.2 51.4
% projective 2.9 8.8 1.6 3.5 41.9 54.4

Table 1: Graph statistics for in-domain (WSJ,
“id”) and out-of-domain (Brown corpus, “ood”)
data. Numbers taken from Oepen et al. (2015).

and §4.3), with a parameterization and factoriza-
tion that implicitly models the relationship be-
tween multiple formalisms. Experiments show
that both techniques improve over our basic
model, with an additional (but smaller) improve-
ment when they are combined (§4.5). Our analy-
sis shows that the improvement in unlabeled F1 is
greater for the two formalisms that are more struc-
turally similar, and suggests directions for future
work. Finally, we survey related work (§5), and
summarize our contributions and findings (§6).

2 Broad-Coverage Semantic Dependency
Parsing (SDP)

First defined in a SemEval 2014 shared task
(Oepen et al., 2014), and then extended by Oepen
et al. (2015), the broad-coverage semantic de-
pency parsing (SDP) task is centered around three
semantic formalisms whose annotations have been
converted into bilexical dependencies. See Fig-
ure 1 for an example. The formalisms come
from varied linguistic traditions, but all three aim
to capture predicate-argument relations between
content-bearing words in a sentence.

While at first glance similar to syntactic de-
pendencies, semantic dependencies have distinct
goals and characteristics, more akin to semantic
role labeling (SRL; Gildea and Jurafsky, 2002) or
the abstract meaning representation (AMR; Ba-
narescu et al., 2013). They abstract over different
syntactic realizations of the same or similar mean-
ing (e.g., “She gave me the ball.” vs. “She gave
the ball to me.”). Conversely, they attempt to dis-
tinguish between different senses even when real-
ized in similar syntactic forms (e.g., “I baked in
the kitchen.” vs. “I baked in the sun.”).

Structurally, they are labeled directed graphs
whose vertices are tokens in the sentence. This
is in contrast to AMR whose vertices are ab-
stract concepts, with no explicit alignment to to-
kens, which makes parsing more difficult (Flani-
gan et al., 2014). Their arc labels encode broadly-

applicable semantic relations rather than being tai-
lored to any specific downstream application or
ontology.1 They are not necessarily trees, because
a token may be an argument of more than one
predicate (e.g., in “John wants to eat,” John is
both the wanter and the would-be eater). Their
analyses may optionally leave out non–content-
bearing tokens, such as punctuation or the in-
finitival “to,” or prepositions that simply mark
the type of relation holding between other words.
But when restricted to content-bearing tokens (in-
cluding adjectives, adverbs, etc.), the subgraph
is connected. In this sense, SDP provides a
whole-sentence analysis. This is in contrast to
PropBank-style SRL, which gives an analysis of
only verbal and nominal predicates (Palmer et al.,
2005). Semantic dependency graphs also tend to
have higher levels of nonprojectivity than syntac-
tic trees (Oepen et al., 2014). Sentences with
graphs containing cycles have been removed from
the dataset by the organizers, so all remaining
graphs are directed acyclic graphs. Table 1 sum-
marizes some of the dataset’s high-level statistics.

Formalisms. Following the SemEval shared
tasks, we consider three formalisms. The
DM (DELPH-IN MRS) representation comes
from DeepBank (Flickinger et al., 2012), which
are manually-corrected parses from the LinGO
English Resource Grammar (Copestake and
Flickinger, 2000). LinGO is a head-driven phrase
structure grammar (HPSG; Pollard and Sag, 1994)
with minimal recursion semantics (Copestake
et al., 2005). The PAS (Predicate-Argument Struc-
tures) representation is extracted from the Enju
Treebank, which consists of automatic parses from
the Enju HPSG parser (Miyao, 2006). PAS an-
notations are also available for the Penn Chinese
Treebank (Xue et al., 2005). The PSD (Prague Se-
mantic Dependencies) representation is extracted
from the tectogrammatical layer of the Prague
Czech-English Dependency Treebank (Hajič et al.,
2012). PSD annotations are also available for a
Czech translation of the WSJ Corpus. In this work,
we train and evaluate only on English annotations.

Of the three, PAS follows syntax most closely,
and prior work has found it the easiest to pre-
dict. PSD has the largest set of labels, and parsers

1This may make another disambiguation step necessary
to use these representations in a downstream task, but there
is evidence that modeling semantic composition separately
from grounding in any ontology is an effective way to achieve
broad coverage (Kwiatkowski et al., 2013).

2038

shareholders took

act

shareholders took

arg1

(a) First-order.
shareholders took

arg1
act

shareholders took

arg1
act

(b) Second-order.
shareholders took

arg1

arg1

act

(c) Third-order.

Figure 2: Examples of local structures. We refer
to the number of arcs that a structure contains as
its order.

have significantly lower performance on it (Oepen
et al., 2015).

3 Single-Task SDP

Here we introduce our basic model, in which train-
ing and prediction for each formalism is kept com-
pletely separate. We also lay out basic notation,
which will be reused for our multitask extensions.

3.1 Problem Formulation

The output of semantic dependency parsing is a
labeled directed graph (see Figure 1). Each arc
has a label from a predefined set L, indicating the
semantic relation of the child to the head. Given
input sentence x, let Y(x) be the set of possible
semantic graphs over x. The graph we seek maxi-
mizes a score function S:

ŷ = arg max
y∈Y(x)

S(x, y), (1)

We decompose S into a sum of local scores s for
local structures (or “parts”) p in the graph:

S(x, y) =
∑

p∈y
s(p). (2)

For notational simplicity, we omit the dependence
of s on x. See Figure 2a for examples of local
structures. s is a parameterized function, whose
parameters (denoted Θ and suppressed here for
clarity) will be learned from the training data
(§3.3). Since we search over every possible la-
beled graph (i.e., considering each labeled arc for
each pair of words), our approach can be consid-
ered a graph-based (or all-pairs) method. The
models presented in this work all share this com-
mon graph-based approach, differing only in the
set of structures they score and in the parameter-
ization of the scoring function s. This approach
also underlies state-of-the-art approaches to SDP
(Martins and Almeida, 2014).

3.2 Basic Model

Our basic model is inspired by recent successes in
neural arc-factored graph-based dependency pars-
ing (Kiperwasser and Goldberg, 2016; Dozat and
Manning, 2017; Kuncoro et al., 2016). It borrows
heavily from the neural arc-scoring architectures
in those works, but decodes with a different algo-
rithm under slightly different constraints.

3.2.1 Basic Structures

Our basic model factors over three types of struc-
tures (p in Equation 2):
• predicate, indicating a predicate word, de-

noted i→·;
• unlabeled arc, representing the existence of

an arc from a predicate to an argument, de-
noted i→j;
• labeled arc, an arc labeled with a semantic

role, denoted i `→ j.
Here i and j are word indices in a given sen-
tence, and ` indicates the arc label. This list corre-
sponds to the most basic structures used by Mar-
tins and Almeida (2014). Selecting an output y
corresponds precisely to selecting which instanti-
ations of these structures are included.

To ensure the internal consistency of predic-
tions, the following constraints are enforced dur-
ing decoding:
• i→· if and only if there exists at least one j

such that i→j;
• If i→j, then there must be exactly one label `

such that i `→ j. Conversely, if not i→j, then
there must not exist any i `→ j;

We also enforce a determinism constraint (Flani-
gan et al., 2014): certain labels must not appear on
more than one arc emanating from the same token.
The set of deterministic labels is decided based on
their appearance in the training set. Notably, we do
not enforce that the predicted graph is connected
or spanning. If not for the predicate and determin-
ism constraints, our model would be arc-factored,
and decoding could be done for each i, j pair in-
dependently. Our structures do overlap though,
and we employ AD3 (Martins et al., 2011) to find
the highest-scoring internally consistent semantic
graph. AD3 is an approximate discrete optimiza-
tion algorithm based on dual decomposition. It
can be used to decode factor graphs over discrete
variables when scored structures overlap, as is the
case here.

2039

3.2.2 Basic Scoring

Similarly to Kiperwasser and Goldberg (2016),
our model learns representations of tokens in a
sentence using a bi-directional LSTM (BiLSTM).
Each different type of structure (predicate, unla-
beled arc, labeled arc) then shares these same BiL-
STM representations, feeding them into a multi-
layer perceptron (MLP) which is specific to the
structure type. We present the architecture slightly
differently from prior work, to make the transition
to the multitask scenario (§4) smoother. In our pre-
sentation, we separate the model into a function
φ that represents the input (corresponding to the
BiLSTM and the initial layers of the MLPs), and a
function ψ that represents the output (correspond-
ing to the final layers of the MLPs), with the scores
given by their inner product.2

Distributed input representations. Long short-
term memory networks (LSTMs) are a variant
of recurrent neural networks (RNNs) designed
to alleviate the vanishing gradient problem in
RNNs (Hochreiter and Schmidhuber, 1997). A
bi-directional LSTM (BiLSTM) runs over the se-
quence in both directions (Schuster and Paliwal,
1997; Graves, 2012).

Given an input sentence x and its corresponding
part-of-speech tag sequence, each token is mapped
to a concatenation of its word embedding vector
and POS tag vector. Two LSTMs are then run
in opposite directions over the input vector se-
quence, outputting the concatenation of the two
hidden vectors at each position i: hi =

[−→
h i;
←−
h i

]

(we omit hi’s dependence on x and its own pa-
rameters). hi can be thought of as an encoder that
contextualizes each token conditioning on all of
its context, without any Markov assumption. h’s
parameters are learned jointly with the rest of the
model (§3.3); we refer the readers to Cho (2015)
for technical details.

The input representation φ of a predicate struc-
ture depends on the representation of one word:

φ(i→·) = tanh
(
Cpredhi + bpred

)
. (3a)

2For clarity, we present single-layer BiLSTMs and MLPs,
while in practice we use two layers for both.

�(i!·)

Embeddings

BiLSTM

MLPs

⇥�!
hi;
 �
hi

⇤

⇥
word vector; POS vector

⇤

⇥�!
hj ;
 �
hj

⇤

�(i!j) �
�
i

`! j
�

 (i!·)

s(i!·)

 (i!j)

s(i!j
�First-order scores

s
�
i

`! j
�

�
i

`! j
�

9
>>>=
>>>;

Indexed by labels

Output repr.

Input repr.

Figure 3: Illustration of the architecture of the ba-
sic model. i and j denote the indices of tokens in
the given sentence. The figure depicts single-layer
BiLSTM and MLPs, while in practice we use two
layers for both.

For unlabeled arc and labeled arc structures, it de-
pends on both the head and the modifier (but not
the label, which is captured in the distributed out-
put representation):

φ(i→j) = tanh
(
CUA

[
hi;hj

]
+ bUA

)
, (3b)

φ(i
`→ j) = tanh

(
CLA

[
hi;hj

]
+ bLA

)
. (3c)

Distributed output representations. NLP re-
searchers have found that embedding discrete out-
put labels into a low dimensional real space is
an effective way to capture commonalities among
them (Srikumar and Manning, 2014; Hermann
et al., 2014; FitzGerald et al., 2015, inter alia).
In neural language models (Bengio et al., 2003;
Mnih and Hinton, 2007, inter alia) the weights of
the output layer could also be regarded as an out-
put embedding.

We associate each first-order structure p with a
d-dimensional real vectorψ(p) which does not de-
pend on particular words in p. Predicates and un-
labeled arcs are each mapped to a single vector:

ψ(i→·) = ψpred, (4a)

ψ(i→j) = ψUA, (4b)

and each label gets a vector:

ψ(i
`→ j) = ψLA(`). (4c)

Scoring. Finally, we use an inner product to
score first-order structures:

s(p) = φ(p) ·ψ(p). (5)

Figure 3 illustrates our basic model’s architecture.

2040

3.3 Learning
The parameters of the model are learned using
a max-margin objective. Informally, the goal is
to learn parameters for the score function so that
the gold parse is scored over every incorrect parse
with a margin proportional to the cost of the incor-
rect parse. More formally, let D =

{
(xi, yi)

}N
i=1

be the training set consisting of N pairs of sen-
tence xi and its gold parse yi. Training is then the
following `2-regularized empirical risk minimiza-
tion problem:

min
Θ

λ

2
‖Θ‖2 +

1

N

N∑

i=1

L
(
xi, yi; Θ

)
, (6)

where Θ is all parameters in the model, and L is
the structured hinge loss:

L
(
xi, yi; Θ

)
= max
y∈Y(xi)

{
S
(
xi, y

)
+ c
(
y, yi

)}

− S
(
xi, yi

)
.

(7)

c is a weighted Hamming distance that trades off
between precision and recall (Taskar et al., 2004).
Following Martins and Almeida (2014), we en-
courage recall over precision by using the costs
0.6 for false negative arc predictions and 0.4 for
false positives.

3.4 Experiments
We evaluate our basic model on the English
dataset from SemEval 2015 Task 18 closed track.3

We split as in previous work (Almeida and Mar-
tins, 2015; Du et al., 2015), resulting in 33,964
training sentences from §00–19 of the WSJ cor-
pus, 1,692 development sentences from §20, 1,410
sentences from §21 as in-domain test data, and
1,849 sentences sampled from the Brown Corpus
as out-of-domain test data.

The closed track differs from the open and gold
tracks in that it does not allow access to any
syntactic analyses. In the open track, additional
machine generated syntactic parses are provided,
while the gold-track gives access to various gold-
standard syntactic analyses. Our model is evalu-
ated with closed track data; it does not have access
to any syntactic analyses during training or test.

We refer the readers to §4.4 for implementa-
tion details, including training procedures, hyper-
parameters, pruning techniques, etc..

3http://sdp.delph-in.net
4Paired bootstrap, p < 0.05 after Bonferroni correction.

Model DM PAS PSD Avg.

id
Du et al., 2015 89.1 91.3 75.7 86.3
A&M, 2015 88.2 90.9 76.4 86.0
BASIC 89.4 92.2 77.6 87.4

ood
Du et al., 2015 81.8 87.2 73.3 81.7
A&M, 2015 81.8 86.9 74.8 82.0
BASIC 84.5 88.3 75.3 83.6

Table 2: Labeled parsing performance (F1 score)
on both in-domain (id) and out-of-domain (ood)
test data. The last column shows the micro-
average over the three tasks. Bold font indicates
best performance without syntax. Underlines indi-
cate statistical significance with Bonferroni (1936)
correction compared to the best baseline system.4

Empirical results. As our model uses no ex-
plicit syntactic information, the most comparable
models to ours are two state-of-the-art closed track
systems due to Du et al. (2015) and Almeida and
Martins (2015). Du et al. (2015) rely on graph-
tree transformation techniques proposed by Du
et al. (2014), and apply a voting ensemble to well-
studied tree-oriented parsers. Closely related to
ours is Almeida and Martins (2015), who used
rich, hand-engineered second-order features and
AD3 for inference.

Table 2 compares our basic model to both base-
line systems (labeled F1 score) on SemEval 2015
Task 18 test data. Scores of those systems are re-
peated from the official evaluation results. Our ba-
sic model significantly outperforms the best pub-
lished results with a 1.1% absolute improvement
on the in-domain test set and 1.6% on the out-of-
domain test set.

4 Multitask SDP

We introduce two extensions to our single-task
model, both of which use training data for all
three formalisms to improve performance on each
formalism’s parsing task. We describe a first-
order model, where representation functions are
enhanced by parameter sharing while inference
is kept separate for each task (§4.2). We then
introduce a model with cross-task higher-order
structures that uses joint inference across different
tasks (§4.3). Both multitask models use AD3 for
decoding, and are trained with the same margin-
based objective, as in our single-task model.

2041

4.1 Problem Formulation
We will use an additional superscript t ∈ T to
distinguish the three tasks (e.g., y(t), φ(t)), where
T = {DM,PAS,PSD}. Our task is now to pre-
dict three graphs {y(t)}t∈T for a given input sen-
tence x. Multitask SDP can also be understood
as parsing x into a single unified multigraph y =⋃
t∈T y

(t). Similarly to Equations 1–2, we decom-
pose y’s score S(x, y) into a sum of local scores
for local structures in y, and we seek a multigraph
ŷ that maximizes S(x, y).

4.2 Multitask SDP with Parameter Sharing
A common approach when using BiLSTMs for
multitask learning is to share the BiLSTM part of
the model across tasks, while training specialized
classifiers for each task (Søgaard and Goldberg,
2016). In this spirit, we let each task keep its own
specialized MLPs, and explore two variants of our
model that share parameters at the BiLSTM level.

The first variant consists of a set of task-specific
BiLSTM encoders as well as a common one that
is shared across all tasks. We denote it FREDA.
FREDA uses a neural generalization of “frustrat-
ingly easy” domain adaptation (Daumé III, 2007;
Kim et al., 2016), where one augments domain-
specific features with a shared set of features to
capture global patterns. Formally, let {h(t)}t∈T
denote the three task-specific encoders. We intro-
duce another encoder h̃ that is shared across all
tasks. Then a new set of input functions {φ(t)}t∈T
can be defined as in Equations 3a–3c, for example:

φ(t)(i
`→ j) = tanh

(
C

(t)
LA

[
h

(t)
i ;h

(t)
j ;

h̃i; h̃j
]

+ b
(t)
LA

)
.

(8)

The predicate and unlabeled arc versions are anal-
ogous. The output representations {ψ(t)} remain
task-specific, and the score is still the inner prod-
uct between the input representation and the out-
put representation.

The second variant, which we call SHARED,
uses only the shared encoder h̃, and doesn’t use
task-specific encoders {h(t)}. It can be understood
as a special case of FREDA where the dimensions
of the task-specific encoders are 0.

4.3 Multitask SDP with Cross-Task
Structures

In syntactic parsing, higher-order structures have
commonly been used to model interactions be-

tween multiple adjacent arcs in the same depen-
dency tree (Carreras, 2007; Smith and Eisner,
2008; Martins et al., 2009; Zhang et al., 2014,
inter alia). Lluı́s et al. (2013), in contrast, used
second-order structures to jointly model syntactic
dependencies and semantic roles. Similarly, we
use higher-order structures across tasks instead of
within tasks. In this work, we look at interac-
tions between arcs that share the same head and
modifier.5 See Figures 2b and 2c for examples of
higher-order cross-task structures.

Higher-order structure scoring. Borrowing
from Lei et al. (2014), we introduce a low-rank
tensor scoring strategy that, given a higher-order
structure p, models interactions between the first-
order structures (i.e., arcs) p is made up of. This
approach builds on and extends the parameter
sharing techniques in §4.2. It can either follow
FREDA or SHARED to get the input representations
for first-order structures.

We first introduce basic tensor notation. The or-
der of a tensor is the number of its dimensions.
The outer product of two vectors forms a second-
order tensor (matrix) where [u⊗ v]i,j = uivj . We
denote the inner product of two tensors of the
same dimensions by 〈·, ·〉, which first takes their
element-wise product, then sums all the elements
in the resulting tensor.

For example, let p be a labeled third-order struc-
ture, including one labeled arc from each of the
three different tasks: p = {p(t)}t∈T . Intuitively,
s(p) should capture every pairwise interaction be-
tween the three input and three output representa-
tions of p. Formally, we want the score function
to include a parameter for each term in the outer
product of the representation vectors: s(p) =

〈
W,
⊗

t∈T

(
φ(t)

(
p(t)
)
⊗ψ(t)

(
p(t)
))〉

, (9)

where W is a sixth-order tensor of parameters.6

With typical dimensions of representation vec-
tors, this leads to an unreasonably large number of

5In the future we hope to model structures over larger mo-
tifs, both across and within tasks, to potentially capture when
an arc in one formalism corresponds to a path in another for-
malism, for example.

6This is, of course, not the only way to model interactions
between several representations. For instance, one could con-
catenate them and feed them into another MLP. Our prelim-
inary experiments in this direction suggested that it may be
less effective given a similar number of parameters, but we
did not run full experiments.

2042

parameters. Following Lei et al. (2014), we upper-
bound the rank of W by r to limit the number of
parameters (r is a hyperparameter, decided empir-
ically). Using the fact that a tensor of rank at most
r can be decomposed into a sum of r rank-1 ten-
sors (Hitchcock, 1927), we reparameterize W to
enforce the low-rank constraint by construction:

W =

r∑

j=1

⊗

t∈T

([
U

(t)
LA

]
j,:
⊗
[
V

(t)
LA

]
j,:

)
, (10)

where U
(t)
LA,V

(t)
LA ∈ Rr×d are now our parame-

ters. [·]j,: denotes the jth row of a matrix. Substi-
tuting this back into Equation 9 and rearranging,
the score function s(p) can then be rewritten as:
r∑

j=1

∏

t∈T

[
U

(t)
LAφ

(t)
(
p(t)
)]

j

[
V

(t)
LAψ

(t)
(
p(t)
)]

j
.

(11)
We refer readers to Kolda and Bader (2009) for
mathematical details.

For labeled higher-order structures our parame-
ters consist of the set of six matrices, {U(t)

LA} ∪
{V(t)

LA}. These parameters are shared between
second-order and third-order labeled structures.
Labeled second-order structures are scored as
Equation 11, but with the product extending over
only the two relevant tasks. Concretely, only four
of the representation functions are used rather than
all six, along with the four corresponding ma-
trices from {U(t)

LA} ∪ {V
(t)
LA}. Unlabeled cross-

task structures are scored analogously, reusing the
same representations, but with a separate set of pa-
rameter matrices {U(t)

UA} ∪ {V
(t)
UA}.

Note that we are not doing tensor factorization;
we are learning U

(t)
LA,V

(t)
LA,U

(t)
UA, and V

(t)
UA di-

rectly, and W is never explicitly instantiated.

Inference and learning. Given a sentence, we
use AD3 to jointly decode all three formalisms.7

The training objective used for learning is the sum
of the losses for individual tasks.

4.4 Implementation Details
Each input token is mapped to a concatenation of
three real vectors: a pre-trained word vector; a
randomly-initialized word vector; and a randomly-
initialized POS tag vector.8 All three are updated

7Joint inference comes at a cost; our third-order model is
able to decode roughly 5.2 sentences (i.e., 15.5 task-specific
graphs) per second on a single Xeon E5-2690 2.60GHz CPU.

8There are minor differences in the part-of-speech data
provided with the three formalisms. For the basic models, we

Hyperparameter Value

Pre-trained word embedding dimension 100
Randomly-initialized word embedding dimension 25
POS tag embedding dimension 25
Dimensions of representations φ and ψ 100
MLP layers 2
BiLSTM layers 2
BiLSTM dimensions 200
Rank of tensor r 100
α for word dropout 0.25

Table 3: Hyperparameters used in the experi-
ments.

during training. We use 100-dimensional GloVe
(Pennington et al., 2014) vectors trained over
Wikipedia and Gigaword as pre-trained word em-
beddings. To deal with out-of-vocabulary words,
we apply word dropout (Iyyer et al., 2015) and
randomly replace a word w with a special unk-
symbol with probability α

1+#(w) , where #(w) is
the count of w in the training set.

Models are trained for up to 30 epochs with
Adam (Kingma and Ba, 2015), with β1 = β2 =
0.9, and initial learning rate η0 = 10−3. The
learning rate η is annealed at a rate of 0.5 ev-
ery 10 epochs (Dozat and Manning, 2017). We
apply early-stopping based on the labeled F1

score on the development set.9 We set the
maximum number of iterations of AD3 to 500
and round decisions when it doesn’t converge.
We clip the `2 norm of gradients to 1 (Graves,
2013; Sutskever et al., 2014), and we do not
use mini-batches. Randomly initialized parame-
ters are sampled from a uniform distribution over[
−
√

6/(dr + dc),
√

6/(dr + dc)
]
, where dr and

dc are the number of the rows and columns in the
matrix, respectively. An `2 penalty of λ = 10−6 is
applied to all weights. Other hyperparameters are
summarized in Table 3.

We use the same pruner as Martins and Almeida
(2014), where a first-order feature-rich unlabeled
pruning model is trained for each task, and arcs
with posterior probability below 10−4 are dis-
carded. We further prune labeled structures that
appear less than 30 times in the training set. In
the development set, about 10% of the arcs remain
after pruning, with a recall of around 99%.

use the POS tags provided with the respective dataset; for the
multitask models, we use the (automatic) POS tags provided
with DM.

9Micro-averaged labeled F1 for the multitask models.

2043

4.5 Experiments

Experimental settings. We compare four multi-
task variants to the basic model, as well as the two
baseline systems introduced in §3.4.
• SHARED1 is a first-order model. It uses a sin-

gle shared BiLSTM encoder, and keeps the
inference separate for each task.
• FREDA1 is a first-order model based on “frus-

tratingly easy” parameter sharing. It uses a
shared encoder as well as task-specific ones.
The inference is kept separate for each task.
• SHARED3 is a third-order model. It follows

SHARED1 and uses a single shared BiLSTM
encoder, but additionally employs cross-task
structures and inference.
• FREDA3 is also a third-order model. It com-

bines FREDA1 and SHARED3 by using both
“frustratingly easy” parameter sharing and
cross-task structures and inference.

In addition, we also examine the effects of syn-
tax by comparing our models to the state-of-the-art
open track system (Almeida and Martins, 2015).10

Main results overview. Table 4a compares our
models to the best published results (labeled F1

score) on SemEval 2015 Task 18 in-domain test
set. Our basic model improves over all closed
track entries in all formalisms. It is even with the
best open track system for DM and PSD, but im-
proves on PAS and on average, without making
use of any syntax. Three of our four multitask
variants further improve over our basic model;
SHARED1’s differences are statistically insignifi-
cant. Our best models (SHARED3, FREDA3) out-
perform the previous state-of-the-art closed track
system by 1.7% absolute F1, and the best open
track system by 0.9%, without the use of syntax.

We observe similar trends on the out-of-domain
test set (Table 4b), with the exception that, on
PSD, our best-performing model’s improvement
over the open-track system of Almeida and Mar-
tins (2015) is not statistically significant.

The extent to which we might benefit from syn-
tactic information remains unclear. With auto-
matically generated syntactic parses, Almeida and
Martins (2015) manage to obtain more than 1%
absolute improvements over their closed track en-

10Kanerva et al. (2015) was the winner of the gold track,
which overall saw higher performance than the closed and
open tracks. Since gold-standard syntactic analyses are not
available in most realistic scenarios, we do not include it in
this comparison.

DM PAS PSD Avg.

Du et al., 2015 89.1 91.3 75.7 86.3
A&M, 2015 (closed) 88.2 90.9 76.4 86.0
A&M, 2015 (open)† 89.4 91.7 77.6 87.1
BASIC 89.4 92.2 77.6 87.4

SHARED1 89.7 91.9 77.8 87.4
FREDA1 90.0 92.3 78.1 87.7

SHARED3 90.3 92.5 78.5 88.0
FREDA3 90.4 92.7 78.5 88.0

(a) Labeled F1 score on the in-domain test set.

DM PAS PSD Avg.

Du et al., 2015 81.8 87.2 73.3 81.7
A&M, 2015 (closed) 81.8 86.9 74.8 82.0
A&M, 2015 (open)† 83.8 87.6 76.2 83.3
BASIC 84.5 88.3 75.3 83.6

SHARED1 84.4 88.1 75.4 83.5
FREDA1 84.9 88.3 75.8 83.9

SHARED3 85.3 88.4 76.1 84.1
FREDA3 85.3 89.0 76.4 84.4

(b) Labeled F1 score on the out-of-domain test set.

Table 4: The last columns show the micro-average
over the three tasks. † denotes the use of syntac-
tic parses. Bold font indicates best performance
among all systems, and underlines indicate statis-
tical significance with Bonferroni correction com-
pared to A&M, 2015 (open), the strongest baseline
system.

try, which is consistent with the extensive evalua-
tion by Zhang et al. (2016), but we leave the incor-
poration of syntactic trees to future work. Syntac-
tic parsing could be treated as yet another output
task, as explored in Lluı́s et al. (2013) and in the
transition-based frameworks of Henderson et al.
(2013) and Swayamdipta et al. (2016).

Effects of structural overlap. We hypothesized
that the overlap between formalisms would enable
multitask learning to be effective; in this section
we investigate in more detail how structural over-
lap affected performance. By looking at undi-
rected overlap between unlabeled arcs, we dis-
cover that modeling only arcs in the same direc-
tion may have been a design mistake.

DM and PAS are more structurally similar to
each other than either is to PSD. Table 5 compares
the structural similarities between the three for-

2044

Undirected Directed

DM PAS PSD DM PAS PSD

DM - 67.2 56.8 - 64.2 26.1
PAS 70.0 - 54.9 66.9 - 26.1
PSD 57.4 56.3 - 26.4 29.6 -

Table 5: Pairwise structural similarities between
the three formalisms in unlabeled F1 score. Scores
from Oepen et al. (2015).

DM PAS PSD

UF LF UF LF UF LF

FREDA1 91.7 90.4 93.1 91.6 89.0 79.8
FREDA3 91.9 90.8 93.4 92.0 88.6 80.4

Table 6: Unlabeled (UF) and labeled (LF) pars-
ing performance of FREDA1 and FREDA3 on the
development set of SemEval 2015 Task 18.

malisms in unlabeled F1 score (each formalism’s
gold-standard unlabeled graph is used as a predic-
tion of each other formalism’s gold-standard un-
labeled graph). All three formalisms have more
than 50% overlap when ignoring arcs’ directions,
but considering direction, PSD is clearly different;
PSD reverses the direction about half of the time
it shares an edge with another formalism. A con-
crete example can be found in Figure 1, where DM
and PAS both have an arc from “Last” to “week,”
while PSD has an arc from “week” to “Last.”

We can compare FREDA3 to FREDA1 to isolate
the effect of modeling higher-order structures. Ta-
ble 6 shows performance on the development data
in both unlabeled and labeled F1. We can see
that FREDA3’s unlabeled performance improves
on DM and PAS, but degrades on PSD. This sup-
ports our hypothesis, and suggests that in future
work, a more careful selection of structures to
model might lead to further improvements.

5 Related Work

We note two important strands of related work.

Graph-based parsing. Graph-based parsing
was originally invented to handle non-projective
syntax (McDonald et al., 2005; Koo et al., 2010;
Martins et al., 2013, inter alia), but has been
adapted to semantic parsing (Flanigan et al.,
2014; Martins and Almeida, 2014; Thomson
et al., 2014; Kuhlmann, 2014, inter alia). Local
structure scoring was traditionally done with
linear models over hand-engineered features, but
lately, various forms of representation learning

have been explored to learn feature combinations
(Lei et al., 2014; Taub-Tabib et al., 2015; Pei et al.,
2015, inter alia). Our work is perhaps closest
to those who used BiLSTMs to encode inputs
(Kiperwasser and Goldberg, 2016; Kuncoro
et al., 2016; Wang and Chang, 2016; Dozat and
Manning, 2017; Ma and Hovy, 2016).

Multitask learning in NLP. There have been
many efforts in NLP to use joint learning to re-
place pipelines, motivated by concerns about cas-
cading errors. Collobert and Weston (2008) pro-
posed sharing the same word representation while
solving multiple NLP tasks. Zhang and Weiss
(2016) use a continuous stacking model for POS
tagging and parsing. Ammar et al. (2016) and Guo
et al. (2016) explored parameter sharing for multi-
lingual parsing. Johansson (2013) and Kshirsagar
et al. (2015) applied ideas from domain adapta-
tion to multitask learning. Successes in multitask
learning have been enabled by advances in repre-
sentation learning as well as earlier explorations of
parameter sharing (Ando and Zhang, 2005; Blitzer
et al., 2006; Daumé III, 2007).

6 Conclusion

We showed two orthogonal ways to apply deep
multitask learning to graph-based parsing. The
first shares parameters when encoding tokens in
the input with recurrent neural networks, and
the second introduces interactions between out-
put structures across formalisms. Without using
syntactic parsing, these approaches outperform
even state-of-the-art semantic dependency pars-
ing systems that use syntax. Because our tech-
niques apply to labeled directed graphs in gen-
eral, they can easily be extended to incorporate
more formalisms, semantic or otherwise. In fu-
ture work we hope to explore cross-task scor-
ing and inference for tasks where parallel an-
notations are not available. Our code is open-
source and available at https://github.
com/Noahs-ARK/NeurboParser.

Acknowledgements

We thank the Ark, Maxwell Forbes, Luheng He,
Kenton Lee, Julian Michael, and Jin-ge Yao for
their helpful comments on an earlier version of this
draft, and the anonymous reviewers for their valu-
able feedback. This work was supported by NSF
grant IIS-1562364 and DARPA grant FA8750-12-
2-0342 funded under the DEFT program.

2045

References
Mariana S. C. Almeida and André F. T. Martins. 2015.

Lisbon: Evaluating TurboSemanticParser on multi-
ple languages and out-of-domain data. In Proc. of
SemEval.

Waleed Ammar, George Mulcaire, Miguel Ballesteros,
Chris Dyer, and Noah Smith. 2016. Many lan-
guages, one parser. TACL 4:431–444.

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks
and unlabeled data. JMLR 6:1817–1853.

Collin Baker, Michael Ellsworth, and Katrin Erk. 2007.
SemEval’07 task 19: Frame semantic structure ex-
traction. In Proc. of SemEval.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract meaning representation
for sembanking. In Proc. of LAW VII & ID.

Yoshua Bengio, Rèjean Ducharme, Pascal Vincent, and
Christian Janvin. 2003. A neural probabilistic lan-
guage model. JMLR 3:1137–1155.

John Blitzer, Ryan McDonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proc. of EMNLP.

Carlo E. Bonferroni. 1936. Teoria statistica delle classi
e calcolo delle probabilità. Pubblicazioni del R. Is-
tituto Superiore di Scienze Economiche e Commer-
ciali di Firenze 8:3–62.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In Proc. of
CoNLL.

Rich Caruana. 1997. Multitask learning. Machine
Learning 28(1):41–75.

Kyunghyun Cho. 2015. Natural language un-
derstanding with distributed representation.
ArXiv:1511.07916.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Proc. of
ICML.

Ann Copestake and Dan Flickinger. 2000. An
open source grammar development environment and
broad-coverage English grammar using HPSG. In
Proc. of LREC.

Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl
Pollard. 2005. Minimal recursion semantics: An in-
troduction. Research on Language & Computation
3(4):281–332.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proc. of ACL.

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Univer-
sal Stanford dependencies: A cross-linguistic typol-
ogy. In Proc. of LREC.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proc. of ICLR.

Yantao Du, Fan Zhang, Weiwei Sun, and Xiaojun Wan.
2014. Peking: Profiling syntactic tree parsing tech-
niques for semantic graph parsing. In Proc. of Se-
mEval.

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and
Xiaojun Wan. 2015. Peking: Building semantic de-
pendency graphs with a hybrid parser. In Proc. of
SemEval.

Nicholas FitzGerald, Oscar Täckström, Kuzman
Ganchev, and Dipanjan Das. 2015. Semantic role
labeling with neural network factors. In Proc. of
EMNLP.

Jeffrey Flanigan, Sam Thomson, Jaime Carbonell,
Chris Dyer, and Noah A. Smith. 2014. A discrim-
inative graph-based parser for the abstract meaning
representation. In Proc. of ACL.

Daniel Flickinger, Yi Zhang, and Valia Kordoni. 2012.
DeepBank: A dynamically annotated treebank of the
Wall Street Journal. In Proc. of TLT .

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational Linguis-
tics 28(3):245–288.

Alex Graves. 2012. Supervised Sequence Labelling
with Recurrent Neural Networks, volume 385 of
Studies in Computational Intelligence. Springer.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. ArXiv 1308.0850.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting
Liu. 2016. A universal framework for inductive
transfer parsing across multi-typed treebanks. In
Proc. of COLING.

Jan Hajič, Eva Hajičová, Jarmila Panevová, Petr
Sgall, Ondřej Bojar, Silvie Cinková, Eva Fučı́ková,
Marie Mikulová, Petr Pajas, Jan Popelka, Jiřı́
Semecký, Jana Šindlerová, Jan Štěpánek, Josef
Toman, Zdeňka Urešová, and Zdeněk Žabokrtský.
2012. Announcing Prague Czech-English depen-
dency treebank 2.0. In Proc. LREC.

James Henderson, Paola Merlo, Ivan Titov, and
Gabriele Musillo. 2013. Multi-lingual joint pars-
ing of syntactic and semantic dependencies with a
latent variable model. Computational Linguistics
39(4):949–998.

2046

Karl Moritz Hermann, Dipanjan Das, Jason Weston,
and Kuzman Ganchev. 2014. Semantic frame iden-
tification with distributed word representations. In
Proc. of ACL.

Frank L. Hitchcock. 1927. The expression of a tensor
or a polyadic as a sum of products. Journal of Math-
ematical Physics 6(1):164–189.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Computation
9(8):1735–1780.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proc. of ACL.

Richard Johansson. 2013. Training parsers on incom-
patible treebanks. In Proc. of NAACL.

Jenna Kanerva, Juhani Luotolahti, and Filip Ginter.
2015. Turku: Semantic dependency parsing as a se-
quence classification. In Proc. of SemEval.

Young-Bum Kim, Karl Stratos, and Ruhi Sarikaya.
2016. Frustratingly easy neural domain adaptation.
In Proc. of COLING.

Diederik P. Kingma and Jimmy Ba. 2015. Adam:
A method for stochastic optimization. In Proc. of
ICLR.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. TACL 4:313–
327.

Tamara G. Kolda and Brett W. Bader. 2009. Ten-
sor decompositions and applications. SIAM Review
51(3):455–500.

Terry Koo, Alexander M. Rush, Michael Collins,
Tommi Jaakkola, and David Sontag. 2010. Dual
decomposition for parsing with non-projective head
automata. In Proc. of EMNLP.

Meghana Kshirsagar, Sam Thomson, Nathan Schnei-
der, Jaime Carbonell, Noah A. Smith, and Chris
Dyer. 2015. Frame-semantic role labeling with het-
erogeneous annotations. In Proc. of ACL.

Marco Kuhlmann. 2014. Linköping: Cubic-time graph
parsing with a simple scoring scheme. In Proc. of
SemEval.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Dis-
tilling an ensemble of greedy dependency parsers
into one MST parser. In Proc. of EMNLP.

Tom Kwiatkowski, Eunsol Choi, Yoav Artzi, and
Luke S. Zettlemoyer. 2013. Scaling semantic
parsers with on-the-fly ontology matching. In Proc.
of EMNLP.

Tao Lei, Yu Xin, Yuan Zhang, Regina Barzilay, and
Tommi Jaakkola. 2014. Low-rank tensors for scor-
ing dependency structures. In Proc. of ACL.

Xavier Lluı́s, Xavier Carreras, and Lluı́s Màrquez.
2013. Joint arc-factored parsing of syntactic and se-
mantic dependencies. TACL 1:219–230.

Xuezhe Ma and Eduard Hovy. 2016. Neural prob-
abilistic model for non-projective MST parsing.
ArXiv 1701.00874.

André F. T. Martins and Mariana S. C. Almeida. 2014.
Priberam: A turbo semantic parser with second or-
der features. In Proc. of SemEval.

André F. T. Martins, Miguel B. Almeida, and Noah A.
Smith. 2013. Turning on the turbo: Fast third-order
non-projective turbo parsers. In Proc. of ACL.

André F. T. Martins, Noah Smith, and Eric Xing. 2009.
Concise integer linear programming formulations
for dependency parsing. In Proc. of ACL.

André F. T. Martins, Noah A. Smith, Pedro M. Q.
Aguiar, and Mário A. T. Figueiredo. 2011. Dual de-
composition with many overlapping components. In
Proc. of EMNLP.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proc. of ACL.

Yusuke Miyao. 2006. From linguistic theory to syntac-
tic analysis: Corpus-oriented grammar development
and feature forest model.

Andriy Mnih and Geoffrey Hinton. 2007. Three new
graphical models for statistical language modelling.
In Proc. of ICML.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger, Jan
Hajič, and Zdeňka Urešová. 2015. SemEval 2015
task 18: Broad-coverage semantic dependency pars-
ing. In Proc. of SemEval.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajič, Angelina
Ivanova, and Yi Zhang. 2014. SemEval 2014 task
8: Broad-coverage semantic dependency parsing. In
Proc. of SemEval.

Martha Palmer, Daniel Gildea, and Paul Kingsbury.
2005. The proposition bank: An annotated cor-
pus of semantic roles. Computational Linguistics
31(1):71–106.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2015. An
effective neural network model for graph-based de-
pendency parsing. In Proc. of ACL.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. GloVe: Global vectors for
word representation. In Proc. of EMNLP.

2047

Carl Pollard and Ivan A. Sag. 1994. Head-Driven
Phrase Structure Grammar. The University of
Chicago Press.

Mike Schuster and Kuldip K. Paliwal. 1997. Bidirec-
tional recurrent neural networks. IEEE Transactions
on Signal Processing 45(11):2673–2681.

David Smith and Jason Eisner. 2008. Dependency
parsing by belief propagation. In Proc. of EMNLP.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proc. of ACL.

Vivek Srikumar and Christopher D Manning. 2014.
Learning distributed representations for structured
output prediction. In Proc. of NIPS.

Mihai Surdeanu, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The
CoNLL-2008 shared task on joint parsing of syntac-
tic and semantic dependencies. In Proc. of CoNLL.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proc. of NIPS.

Swabha Swayamdipta, Miguel Ballesteros, Chris Dyer,
and Noah A. Smith. 2016. Greedy, joint syntactic-
semantic parsing with stack LSTMs. In Proc. of
CoNLL.

Ben Taskar, Carlos Guestrin, and Daphne Koller. 2004.
Max-margin Markov networks. In Advances in Neu-
ral Information Processing Systems 16.

Hillel Taub-Tabib, Yoav Goldberg, and Amir Glober-
son. 2015. Template kernels for dependency pars-
ing. In Proc. of NAACL.

Sam Thomson, Brendan O’Connor, Jeffrey Flani-
gan, David Bamman, Jesse Dodge, Swabha
Swayamdipta, Nathan Schneider, Chris Dyer, and
Noah A. Smith. 2014. CMU: Arc-factored, discrim-
inative semantic dependency parsing. In Proc. of Se-
mEval.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional LSTM. In
Proc. of ACL.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Martha
Palmer. 2005. The Penn Chinese TreeBank: Phrase
structure annotation of a large corpus. Natural Lan-
guage Engineering 11(2):207–238.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun
Wan. 2016. Transition-based parsing for deep de-
pendency structures. Computational Linguistics
42(3):353–389.

Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi S.
Jaakkola. 2014. Greed is good if randomized:
New inference for dependency parsing. In Proc. of
EMNLP.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved representation learning for
syntax. In Proc. of ACL.

2048

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2049–2058
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1187

Improved Word Representation Learning with Sememes

Yilin Niu1∗, Ruobing Xie1∗, Zhiyuan Liu1,2 †, Maosong Sun1,2

1 Department of Computer Science and Technology,
State Key Lab on Intelligent Technology and Systems,

National Lab for Information Science and Technology, Tsinghua University, Beijing, China
2 Jiangsu Collaborative Innovation Center for Language Ability,

Jiangsu Normal University, Xuzhou 221009 China

Abstract

Sememes are minimum semantic units of
word meanings, and the meaning of each
word sense is typically composed by sev-
eral sememes. Since sememes are not ex-
plicit for each word, people manually an-
notate word sememes and form linguistic
common-sense knowledge bases. In this
paper, we present that, word sememe in-
formation can improve word representa-
tion learning (WRL), which maps word-
s into a low-dimensional semantic space
and serves as a fundamental step for many
NLP tasks. The key idea is to utilize
word sememes to capture exact meanings
of a word within specific contexts accu-
rately. More specifically, we follow the
framework of Skip-gram and present three
sememe-encoded models to learn repre-
sentations of sememes, senses and word-
s, where we apply the attention scheme
to detect word senses in various contexts.
We conduct experiments on two tasks in-
cluding word similarity and word analogy,
and our models significantly outperform
baselines. The results indicate that WRL
can benefit from sememes via the attention
scheme, and also confirm our models be-
ing capable of correctly modeling sememe
information.

1 Introduction

Sememes are defined as minimum semantic u-
nits of word meanings, and there exists a lim-
ited close set of sememes to compose the se-
mantic meanings of an open set of concepts (i.e.
word sense). However, sememes are not explicit

∗ indicates equal contribution
†Corresponding author: Z. Liu (liuzy@tsinghua.edu.cn)

for each word. Hence, people manually annotate
word sememes and build linguistic common-sense
knowledge bases.

HowNet (Dong and Dong, 2003) is one of such
knowledge bases, which annotates each concep-
t in Chinese with one or more relevant sememes.
Different from WordNet (Miller, 1995), the phi-
losophy of HowNet emphasizes the significance of
part and attribute represented by sememes.
HowNet has been widely utilized in word similar-
ity computation (Liu and Li, 2002) and sentiment
analysis (Xianghua et al., 2013), and in section 3.2
we will give a detailed introduction to sememes,
senses and words in HowNet.

In this paper, we aim to incorporate word se-
memes into word representation learning (WRL)
and learn improved word embeddings in a low-
dimensional semantic space. WRL is a fundamen-
tal and critical step in many NLP tasks such as lan-
guage modeling (Bengio et al., 2003) and neural
machine translation (Sutskever et al., 2014).

There have been a lot of researches for learn-
ing word representations, among which word2vec
(Mikolov et al., 2013) achieves a nice balance be-
tween effectiveness and efficiency. In word2vec,
each word corresponds to one single embedding,
ignoring the polysemy of most words. To address
this issue, (Huang et al., 2012) introduces a multi-
prototype model for WRL, conducting unsuper-
vised word sense induction and embeddings ac-
cording to context clusters. (Chen et al., 2014) fur-
ther utilizes the synset information in WordNet
to instruct word sense representation learning.

From these previous studies, we conclude that
word sense disambiguation are critical for WR-
L, and we believe that the sememe annotation
of word senses in HowNet can provide neces-
sary semantic regularization for the both tasks.
To explore its feasibility, we propose a novel
Sememe-Encoded Word Representation Learning

2049

https://doi.org/10.18653/v1/P17-1187

(SE-WRL) model, which detects word senses
and learns representations simultaneously. More
specifically, this framework regards each word
sense as a combination of its sememes, and iter-
atively performs word sense disambiguation ac-
cording to their contexts and learn representation-
s of sememes, senses and words by extending
Skip-gram in word2vec (Mikolov et al., 2013). In
this framework, an attention-based method is pro-
posed to select appropriate word senses according
to contexts automatically. To take full advantages
of sememes, we propose three different learning
and attention strategies for SE-WRL.

In experiments, we evaluate our framework on
two tasks including word similarity and word anal-
ogy, and further conduct case studies on sememe,
sense and word representations. The evaluation
results show that our models outperform other
baselines significantly, especially on word analo-
gy. This indicates that our models can build bet-
ter knowledge representations with the help of se-
meme information, and also implies the potential
of our models on word sense disambiguation.

The key contributions of this work are conclud-
ed as follows: (1) To the best of our knowledge,
this is the first work to utilize sememes in HowNet
to improve word representation learning. (2) We
successfully apply the attention scheme to detect
word senses and learn representations according to
contexts with the favor of the sememe annotation
in HowNet. (3) We conduct extensive experiments
and verify the effectiveness of incorporating word
sememes for improved WRL.

2 Related Work

2.1 Word Representation

Recent years have witnessed the great thrive in
word representation learning. It is simple and s-
traightforward to represent words using one-hot
representations, but it usually struggles with the
data sparsity issue and the neglect of semantic re-
lations between words.

To address these issues, (Rumelhart et al.,
1988) proposes the idea of distributed represen-
tation which projects all words into a continuous
low-dimensional semantic space, considering each
word as a vector. Distributed word representation-
s are powerful and have been widely utilized in
many NLP tasks, including neural language mod-
els (Bengio et al., 2003; Mikolov et al., 2010), ma-
chine translation (Sutskever et al., 2014; Bahdanau

et al., 2015), parsing (Chen and Manning, 2014)
and text classification (Zhang et al., 2015). Word
distributed representations are capable of encod-
ing semantic meanings in vector space, serving as
the fundamental and essential inputs of many NLP
tasks.

There are large amounts of efforts devoted to
learning better word representations. As the ex-
ponential growth of text corpora, model efficien-
cy becomes an important issue. (Mikolov et al.,
2013) proposes two models, CBOW and Skip-
gram, achieving a good balance between effective-
ness and efficiency. These models assume that the
meanings of words can be well reflected by their
contexts, and learn word representations by maxi-
mizing the predictive probabilities between words
and their contexts. (Pennington et al., 2014) fur-
ther utilizes matrix factorization on word affinity
matrix to learn word representations. However,
these models merely arrange only one vector for
each word, regardless of the fact that many word-
s have multiple senses. (Huang et al., 2012; Tian
et al., 2014) utilize multi-prototype vector model-
s to learn word representations and build distinct
vectors for each word sense. (Neelakantan et al.,
2015) presents an extension to Skip-gram model
for learning non-parametric multiple embeddings
per word. (Rothe and Schütze, 2015) also utilizes
an Autoencoder to jointly learn word, sense and
synset representations in the same semantic space.

This paper, for the first time, jointly learns rep-
resentations of sememes, senses and words. The
sememe annotation in HowNet provides useful se-
mantic regularization for WRL. Moreover, the u-
nified representations incorporated with sememes
also provide us more explicit explanations of both
word and sense embeddings.

2.2 Word Sense Disambiguation and
Representation Learning

Word sense disambiguation (WSD) aims to iden-
tify word senses or meanings in a certain context
computationally. There are mainly two approach-
es for WSD, namely the supervised methods and
the knowledge-based methods. Supervised meth-
ods usually take the surrounding words or senses
as features and use classifiers like SVM for word
sense disambiguation (Lee et al., 2004), which are
intensively limited to the time-consuming human
annotation of training data.

On contrary, knowledge-based methods utilize

2050

large external knowledge resources such as knowl-
edge bases or dictionaries to suggest possible sens-
es for a word. (Banerjee and Pedersen, 2002) ex-
ploits the rich hierarchy of semantic relations in
WordNet (Miller, 1995) for an adapted dictionary-
based WSD algorithm. (Bordes et al., 2011) intro-
duces synset information in WordNet to WR-
L. (Chen et al., 2014) considers synsets in Word-
Net as different word senses, and jointly conducts
word sense disambiguation and word / sense rep-
resentation learning. (Guo et al., 2014) considers
bilingual datasets to learn sense-specific word rep-
resentations. Moreover, (Jauhar et al., 2015) pro-
poses two approaches to learn sense-specific word
representations that are grounded to ontologies.
(Pilehvar and Collier, 2016) utilizes personalized
PageRank to learn de-conflated semantic represen-
tations of words.

In this paper, we follow the knowledge-based
approach and automatically detect word senses ac-
cording to the contexts with the favor of sememe
information in HowNet. To the best of our knowl-
edge, this is the first attempt to apply attention-
based models to encode sememe information for
word representation learning.

3 Methodology

In this section, we present our framework
Sememe-Encoded WRL (SE-WRL) that considers
sememe information for word sense disambigua-
tion and representation learning. Specifically, we
learn our models on a large-scale text corpus with
the semantic regularization of the sememe anno-
tation in HowNet and obtain sememe, sense and
word embeddings for evaluation tasks.

In the following sections, we first introduce
HowNet and the structures of sememes, senses and
words. Then we discuss the conventional WRL
model Skip-gram that we utilize for the sememe-
encoded framework. Finally, we propose three
sememe-encoded models in details.

3.1 Sememes, Senses and Words in HowNet

In this section, we first introduce the arrange-
ment of sememes, senses and words in HowNet.
HowNet annotates precise senses to each word,
and for each sense, HowNet annotates the signif-
icance of parts and attributes represented by se-
memes.

Fig. 1 gives an example of sememes, senses and
words in HowNet. The first layer represents the

word “apple”. The word “apple” actually has two
main senses shown on the second layer: one is a
sort of juicy fruit (apple), and another is a famous
computer brand (Apple brand). The third and fol-
lowing layers are those sememes explaining each
sense. For instance, the first sense Apple brand in-
dicates a computer brand, and thus has sememes
computer, bring and SpeBrand.

From Fig. 1 we can find that, sememes of
many senses in HowNet are annotated with vari-
ous relations, such as define and modifier, and for-
m complicated hierarchical structures. In this pa-
per, for simplicity, we only consider all annotat-
ed sememes of each sense as a sememe set with-
out considering their internal structure. HowNet
assumes the limited annotated sememes can well
represent senses and words in the real-world sce-
nario, and thus sememes are expected to be useful
for both WSD and WRL.

definedefine

modifiermodifier

sense1(Apple brand)sense1(Apple brand) sense2(apple)sense2(apple)

电脑
(computer)

电脑
(computer)

水果
(fruit)

水果
(fruit)

苹果
(Apple brand/apple)

苹果
(Apple brand/apple)

样式值
(PatternValue)

样式值
(PatternValue)

能
(able)

能
(able)

携带
(bring)

携带
(bring)

特定牌子
(SpeBrand)

特定牌子
(SpeBrand)

Figure 1: Examples of sememes, senses and word-
s.

We introduce the notions utilized in the follow-
ing sections as follows. We define the overall se-
meme, sense and word sets used in training as X ,
S and W respectively. For each w ∈ W , there are
possible multiple senses s(w)i ∈ S(w) where S(w)

represents the sense set ofw. Each sense s(w)i con-
sists of several sememes x(si)j ∈ X(w)

i . For each
target word w in a sequential plain text, C(w) rep-
resents its context word set.

3.2 Conventional Skip-gram Model

We directly utilize the widely-used model Skip-
gram to implement our SE-WRL model, because
Skip-gram has well balanced effectiveness as well
as efficiency (Mikolov et al., 2013). The standard
skip-gram model assumes that word embeddings
should relate to their context words. It aims at

2051

maximizing the predictive probability of contex-
t words conditioned on the target word w. For-
mally, we utilize a sliding window to select the
context word set C(w). For a word sequence
H = {w1, · · · , wn}, Skip-gram model intends to
maximize:

L(H) =
n−K∑

i=K

log Pr(wi−K , · · · , wi+K |wi), (1)

where K is the size of sliding window.
Pr(wi−K , · · · , wi+K |wi) represents the predic-
tive probability of context words conditioned on
the target word wi, formalized by the following
softmax function:

Pr(wi−K , · · · , wi+K |wi) =
∏

wc∈C(wi)

Pr(wc|wi)

=
∏

wc∈C(wi)

exp(w>c ·wi)∑
w′i∈W exp(w>c ·w′i)

,

(2)

in which wc and wi stand for embeddings of con-
text word wc ∈ C(wi) and target word wi respec-
tively. We can also follow the strategies of hierar-
chical softmax and negative sampling proposed in
(Mikolov et al., 2013) to accelerate the calculation
of softmax.

3.3 SE-WRL Model
In this section, we introduce the SE-WRL model-
s with three different strategies to utilize sememe
information, including Simple Sememe Aggrega-
tion Model (SSA), Sememe Attention over Con-
text Model (SAC) and Sememe Attention over
Target Model (SAT).

3.3.1 Simple Sememe Aggregation Model
The Simple Sememe Aggregation Model (SSA) is
a straightforward idea based on Skip-gram mod-
el. For each word, SSA considers all sememes in
all senses of the word together, and represents the
target word using the average of all its sememe
embeddings. Formally, we have:

w =
1

m

∑

s
(w)
i ∈S(w)

∑

x
(si)
j ∈X(w)

i

x
(si)
j , (3)

which means the word embedding of w is com-
posed by the average of all its sememe embed-
dings. Here, m stands for the overall number of
sememes belonging to w.

This model simply follows the assumption that,
the semantic meaning of a word is composed of
the semantic units, i.e., sememes. As compared to
the conventional Skip-gram model, since sememes
are shared by multiple words, this model can uti-
lize sememe information to encode latent semantic
correlations between words. In this case, similar
words that share the same sememes may finally
obtain similar representations.

3.3.2 Sememe Attention over Context Model

The SSA Model replaces the target word embed-
ding with the aggregated sememe embeddings to
encode sememe information into word representa-
tion learning. However, each word in SSA model
still has only one single representation in differ-
ent contexts, which cannot deal with polysemy of
most words. It is intuitive that we should construc-
t distinct embeddings for a target word according
to specific contexts, with the favor of word sense
annotation in HowNet.

To address this issue, we come up with the Se-
meme Attention over Context Model (SAC). SAC
utilizes the attention scheme to automatically se-
lect appropriate senses for context words accord-
ing to the target word. That is, SAC conducts word
sense disambiguation for context words to learn
better representations of target words. The struc-
ture of the SAC model is shown in Fig. 2.

Wt

Wt-2 Wt-1 Wt+1 Wt+2

att3att2att1

S3S2S1

context

word

sense

sememe

attention

Figure 2: Sememe Attention over Context Model.

More specifically, we utilize the original word
embedding for target word w, but use sememe
embeddings to represent context word wc instead
of original context word embeddings. Suppose a
word typically demonstrates some specific senses
in one sentence. Here we employ the target word
embedding as an attention to select the most ap-
propriate senses to make up context word embed-
dings. We formalize the context word embedding

2052

wc as follows:

wc =

|S(wc)|∑

j=1

att(s
(wc)
j) · s(wc)

j , (4)

where s
(wc)
j stands for the j-th sense embedding

ofwc, and att(s(wc)
j) represents the attention score

of the j-th sense with respect to the target word w,
defined as follows:

att(s
(wc)
j) =

exp(w · ŝ(wc)
j)

∑|S(wc)|
k=1 exp(w · ŝ(wc)

k)
. (5)

Note that, when calculating attention, we use the
average of sememe embeddings to represent each
sense s(wc)

j :

ŝ
(wc)
j =

1

|X(wc)
j |

|X(wc)
j |∑

k=1

x
(sj)
k . (6)

The attention strategy assumes that the more
relevant a context word sense embedding is to the
target word w, the more this sense should be con-
sidered when building context word embeddings.
With the favor of attention scheme, we can repre-
sent each context word as a particular distribution
over its sense. This can be regarded as soft WSD.
As shown in experiments, it will help learn better
word representations.

3.3.3 Sememe Attention over Target Model
The Sememe Attention over Context Model can
flexibly select appropriate senses and sememes for
context words according to the target word. The
process can also be applied to select appropriate
senses for the target word, by taking context words
as attention. Hence, we propose the Sememe At-
tention over Target Model (SAT) as shown in Fig.
3.

Wt

Wt-2 Wt-1 Wt+1 Wt+2

contextual
embedding

att1 att2 att3

S1 S2 S3

context

word

sense

sememe

Figure 3: Sememe Attention over Target Model.

Different from SAC model, SAT learns the o-
riginal word embeddings for context words, but
sememe embeddings for target words. We apply
context words as attention over multiple senses of
the target word w to build the embedding of w,
formalized as follows:

w =

|S(w)|∑

j=1

att(s
(w)
j) · s(w)j , (7)

where s
(w)
j stands for the j-th sense embedding

of w, and the context-based attention is defined as
follows:

att(s
(w)
j) =

exp(w′c · ŝ(w)j)
∑|S(w)|

k=1 exp(w′c · ŝ(w)k)
, (8)

where, similar to Eq. (6), we also use the average
of sememe embeddings to represent each sense
s
(w)
j . Here, w′c is the context embedding, consist-

ing of a constrained window of word embeddings
in C(wi). We have:

w′c =
1

2K ′

k=i+K′∑

k=i−K′
wk, k 6= i. (9)

Note that, since in experiment we find the sense s-
election of the target word only relies on more lim-
ited context words for calculating attention, hence
we select a smaller K ′ as compared to K.

Recall that, SAC only uses one target word as
attention to select senses of context words, but
SAT uses several context words together as atten-
tion to select appropriate senses of target words.
Hence SAT is expected to conduct more reliable
WSD and result in more accurate word represen-
tations, which will be explored in experiments.

4 Experiments

In this section, we evaluate the effectiveness of
our SE-WRL1 models on two tasks including word
similarity and word analogy, which are two classi-
cal evaluation tasks mainly focusing on evaluating
the quality of learned word representations. We
also explore the potential of our models in word
sense disambiguation with case study, showing the
power of our attention-based models.

1https://github.com/thunlp/SE-WRL

2053

4.1 Dataset
We use the web pages in Sogou-T2 as the text cor-
pus to learn WRL models. Sogou-T is provided by
a Chinese commercial search engine, which con-
tains 2.7 billion words in total.

We also utilize the sememe annotation in
HowNet. The number of distinct sememes used in
this paper is 1, 889. The average senses for each
word are about 2.4, while the average sememes for
each sense are about 1.6. Throughout the Sogou-T
corpus, we find that 42.2% of words have multiple
senses. This indicates the significance of WSD.

For evaluation, we choose wordsim-240 and
wordsim-2973 to evaluate the performance of
word similarity computation. The two datasets
both contain frequently-used Chinese word pairs
with similarity scores annotated manually. We
choose the Chinese Word Analogy dataset pro-
posed by (Chen et al., 2015) to evaluate the
performance of word analogy inference, that
is, w(“king”) − w(“man”) ' w(“queen”) −
w(“woman”).

4.2 Experimental Settings
We evaluate three SE-WRL models including S-
SA, SAC and SAT on all tasks. As for baselines,
we consider three conventional WRL models in-
cluding Skip-gram, CBOW and GloVe. For Skip-
gram and CBOW, we directly use the code re-
leased by Google (Mikolov et al., 2013). GloVe
is proposed by (Pennington et al., 2014), which
seeks the advantages of the WRL models based
on statistics and those based on prediction. More-
over, we propose another model, Maximum Selec-
tion over Target Model (MST), for further compar-
ison inspired by (Chen et al., 2014). It represents
the current word embeddings with only the most
probable sense according to the contexts, instead
of viewing a word as a particular distribution over
all its senses similar to that of SAT.

For a fair comparison, we train these model-
s with the same experimental settings and with
their best parameters. As for the parameter set-
tings, we set the context window size K = 8 as
the upper bound, and during training, the window
size is dynamically selected ranging from 1 to 8
randomly. We set the dimensions of word, sense
and sememe embeddings to be the same 200. For

2https://www.sogou.com/labs/resource/
t.php

3https://github.com/Leonard-Xu/CWE/
tree/master/data

learning rate α, its initial value is 0.025 and will
descend through iterations. We set the number of
negative samples to be 25. We also set a lower
bound of word frequency as 50, and in the training
set, those words less frequent than this bound will
be filtered out. For SAT, we set K ′ = 2.

4.3 Word Similarity
The task of word similarity aims to evaluate the
quality of word representations by comparing the
similarity ranks of word pairs computed by WR-
L models with the ranks given by dataset. WR-
L models typically compute word similarities ac-
cording to their distances in the semantic space.

4.3.1 Evaluation Protocol
In experiments, we choose the cosine similarity
between two word embeddings to rank word pairs.
For evaluation, we compute the Spearman correla-
tion between the ranks of models and the ranks of
human judgments.

Model Wordsim-240 Wordsim-297

CBOW 57.7 61.1
GloVe 59.8 58.7

Skip-gram 58.5 63.3

SSA 58.9 64.0
SAC 59.0 63.1
MST 59.2 62.8
SAT 63.2 65.6

Table 1: Evaluation results of word similarity
computation.

4.3.2 Experiment Results
Table 1 shows the results of these models for word
similarity computation. From the results we can
observe that:

(1) Our SAT model outperforms other model-
s, including all baselines, on both two test sets.
This indicates that, by utilizing sememe annota-
tion properly, our model can better capture the se-
mantic relations of words, and learn more accurate
word embeddings.

(2) The SSA model represents a word with the
average of its sememe embeddings. In general, S-
SA model performs slightly better than baselines,
which tentatively proves that sememe information
is helpful. The reason is that words which share
common sememe embeddings will benefit from
each other. Especially, those words with lower fre-
quency, which cannot be learned sufficiently us-
ing conventional WRL models, in contrast, can

2054

Model Accuracy Mean Rank
Capital City Relationship All Capital City Relationship All

CBOW 49.8 85.7 86.0 64.2 36.98 1.23 62.64 37.62
GloVe 57.3 74.3 81.6 65.8 19.09 1.71 3.58 12.63

Skip-gram 66.8 93.7 76.8 73.4 137.19 1.07 2.95 83.51

SSA 62.3 93.7 81.6 71.9 45.74 1.06 3.33 28.52
SAC 61.6 95.4 77.9 70.8 19.08 1.02 2.18 12.18
MST 65.7 95.4 82.7 74.5 50.29 1.05 2.48 31.05
SAT 83.2 98.9 82.4 85.3 14.42 1.01 2.63 9.48

Table 2: Evaluation results of word analogy inference.

obtain better word embeddings from SSA simply
because their sememe embeddings can be trained
sufficiently through other words.

(3) The SAT model performs much better than
SSA and SAC. This indicates that SAT can obtain
more precise sense distribution of a word. The rea-
son has been mentioned above that, different from
SAC using only one target word as attention for
WSD, SAT adopts richer contextual information
as attention for WSD.

(4) SAT works better than MST, and we can
conclude that a soft disambiguation over senses
prevents inevitable errors when selecting only one
most-probable sense. The result makes sense be-
cause, for many words, their various senses are not
always entirely different from each other, but share
some common elements. In some contexts, a sin-
gle sense may not convey the exact meaning of this
word.

4.4 Word Analogy

Word analogy inference is another widely-used
task to evaluate the quality of WRL models
(Mikolov et al., 2013).

4.4.1 Evaluation Protocol
The dataset proposed by (Chen et al., 2015) con-
sists of 1, 124 analogies, which contains three
analogy types: (1) capitals of countries (Cap-
ital), 677 groups; (2) states/provinces of cities
(City), 175 groups; (3) family words (Relation-
ship), 272 groups. Given an analogy group of
words (w1, w2, w3, w4), WRL models usually get
w2−w1+w3 equal to w4. Hence for word analo-
gy inference, we suppose w4 is missing, and WRL
models will rank all candidate words according to
their scores as follows:

R(w) = cos(w2 −w1 +w3,w), (10)

and select the top-ranked word as the answer.

For word analogy inference, we consider two
evaluation metrics: (1) Accuracy. For each anal-
ogy group, a WRL model selects the top-ranked
word w = argmaxw R(w), which is judged as
positive if w = w4. The percentage of positive
samples is regarded as the accuracy score for this
WRL model. (2) Mean Rank. For each anal-
ogy group, a WRL model will assign a rank for
the gold standard word w4 according to the scores
computed by Eq. (10). We use the mean rank of
all gold standard words as the evaluation metric.

4.4.2 Experiment Results
Table 2 shows the evaluation results of these mod-
els for word analogy inference. From the table, we
can observe that:

(1) The SAT model performs best among al-
l models, and the superiority is more significant
than that on word similarity computation. This in-
dicates that SAT will enhance the modeling of im-
plicit relations between word embeddings in the
semantic space. The reason is that sememes an-
notated to word senses have encoded these word
relations. For example, capital and Cuba are
two sememes of the word “Havana”, which pro-
vide explicit semantic relations between the words
“Cuba” and “Havana”.

(2) The SAT model does well on both classes
of Capital and City, because some words in these
classes have low frequencies, while their sememes
occur so many times that sememe embeddings can
be learned sufficiently. With these sememe em-
beddings, these low-frequent words can be learned
more efficiently by SAT.

(3) It seems that CBOW works better than SAT
on Relationship class. Whereas for the mean
rank, CBOW gets the worst results, which indi-
cates the performance of CBOW is unstable. On
the contrary, although the accuracy of SAT is a
bit lower than that of CBOW, SAT seldom gives
an outrageous prediction. In most wrong cas-

2055

Word: °J(“Apple brand/apple”) sense1: Apple brand (computer, PatternValue, able, bring, SpeBrand) sense2: duct (fruit)

°°°JJJ�kJ¥�{¡£Apple is always famous as the king of fruits¤ Apple brand: 0.28 apple: 0.72
°°°JJJ>MÃ{�~éÄ£The Apple brand computer can not startup

normally¤
Apple brand: 0.87 apple: 0.13

Word: *Ñ(“proliferate/metastasize”) sense1: proliferate (disperse) sense2: metastasize (disperse, disease)

��¼�***ÑÑÑ£Prevent epidemic from metastasizing¤ proliferate: 0.06 metastasize: 0.94
Ø***ÑÑÑØÉì^�£Treaty on the Non-Proliferation of Nuclear

Weapons¤
proliferate: 0.68 metastasize: 0.32

Word: èÎ(“contingent/troops”) sense1: contingent (community) sense2: troops (army)

l|èèèÎÎÎ?\1��ãìNm£Eight contingents enter the second stage
of team competition¤

contingent: 0.90 troops: 0.10

úSÄ�èèèÎÎÎ|�ï�£Construct the organization of public security’s
troops in grass-roots unit¤

contingent: 0.15 troops: 0.85

Table 3: Examples of sememes, senses and words in context with attention.

es, SAT predicts the word “grandfather” instead
of “grandmother”, which is not completely non-
sense, because in HowNet the words “grandmoth-
er”, “grandfather”, “grandma” and some other
similar words share four common sememes while
only one sememe of them are different. These sim-
ilar sememes make the attention process less dis-
criminative with each other. But for the wrong cas-
es of CBOW, we find that many mistakes are about
words with low frequencies, such as “stepdaugh-
ter” which occurs merely for 358 times. Consider-
ing sememes may relieve this problem.

4.5 Case study
The above experiments verify the effectiveness of
our models for WRL. Here we show some exam-
ples of sememes, senses and words for case study.

4.5.1 Word Sense Disambiguation
To demonstrate the validity of Sememe Attention,
we select three attention results in training set, as
shown in Table 3. In this table, the first rows of
three examples are word-sense-sememe structures
of each word. For instance, in the third example,
the word has two senses, contingent and troops;
contingent has one sememe community, while
troops has one sememe army. The three exam-
ples all indicate that our models can estimate ap-
propriate distributions of senses for a word given
a context.

4.5.2 Effect of Context Words for Attention
We demonstrate the effect of context words for at-
tention in Table. 4. The word “Havana” consist-
s of four sememes, among which two sememes
capital and Cuba describe distinct attributes
of the word from different aspects.

Word M�@(“Havana”)
Sememe IÑ(capital) �n(Cuba)

�n(“Cuba”) 0.39 0.42
�Ûd(“Russia”) 0.39 -0.09
È�(“cigar”) 0.00 0.36

Table 4: Sememe weight for computing attention.

Here, we list three different context words “Cu-
ba”, “Russia” and “cigar”. Given the context word
“Cuba”, both sememes get high weights, indicat-
ing their contributions to the meaning of “Havana”
in this context. The context word “Russia” is more
relevant to the sememe capital. When the con-
text word is “cigar”, the sememe Cuba has more
influence, because cigar is a famous specialty of
Cuba. From these examples, we can conclude that
our Sememe Attention can accurately capture the
word meanings in complicated contexts.

5 Conclusion and Future Work

In this paper, we propose a novel method to model
sememe information for learning better word rep-
resentations. Specifically, we utilize sememe in-
formation to represent various senses of each word
and propose Sememe Attention to select appropri-
ate senses in contexts automatically. We evaluate
our models on word similarity and word analogy,
and results show the advantages of our Sememe-
Encoded WRL models. We also analyze sever-
al cases in WSD and WRL, which confirms our
models are capable of selecting appropriate word
senses with the favor of sememe attention.

We will explore the following research direc-
tions in future: (1) The sememe information in
HowNet is annotated with hierarchical structure

2056

and relations, which have not been considered in
our framework. We will explore to utilize these
annotations for better WRL. (2) We believe the
idea of sememes is universal and could be well-
functioned beyond languages. We will explore the
effectiveness of sememe information for WRL in
other languages.

Acknowledgments

This work is supported by the 973 Program (No.
2014CB340501), the National Natural Science
Foundation of China (NSFC No. 61572273,
61661146007), and the Key Technologies Re-
search and Development Program of China (No.
2014BAK04B03). This work is also funded
by the Natural Science Foundation of China
(NSFC) and the German Research Foundation
(DFG) in Project Crossmodal Learning, NSFC
61621136008 / DFC TRR-169.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proceedings of
ICLR.

Satanjeev Banerjee and Ted Pedersen. 2002. An adapt-
ed lesk algorithm for word sense disambiguation
using wordnet. In Proceedings of CICLing. pages
136–145.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. JMLR 3:1137–1155.

Antoine Bordes, Jason Weston, Ronan Collobert, and
Yoshua Bengio. 2011. Learning structured embed-
dings of knowledge bases. In Conference on Artifi-
cial Intelligence.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of EMNLP. pages 740–750.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In Proceedings of EMNLP. pages
1025–1035.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun,
and Huan-Bo Luan. 2015. Joint learning of charac-
ter and word embeddings. In Proceedings of IJCAI.
pages 1236–1242.

Zhendong Dong and Qiang Dong. 2003. Hownet-a hy-
brid language and knowledge resource. In Proceed-
ings of NLP-KE. IEEE, pages 820–824.

Jiang Guo, Wanxiang Che, Haifeng Wang, and Ting Li-
u. 2014. Learning sense-specific word embeddings
by exploiting bilingual resources. In Proceedings of
COLING. pages 497–507.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of ACL. pages 873–882.

Sujay Kumar Jauhar, Chris Dyer, and Eduard Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
Proceedings of NAACL. volume 1.

Yoong Keok Lee, Hwee Tou Ng, and Tee Kiah Chia.
2004. Supervised word sense disambiguation with
support vector machines and multiple knowledge
sources. In Proceedings of SENSEVAL-3. pages
137–140.

Qun Liu and Sujian Li. 2002. Word similarity comput-
ing based on how-net. CLCLP 7(2):59–76.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of ICLR.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In Inter-
speech. volume 2, page 3.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2015. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In Proceedings of EMNLP.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of EMNLP. vol-
ume 14, pages 1532–43.

Mohammad Taher Pilehvar and Nigel Collier. 2016.
De-conflated semantic representations. In Proceed-
ings of EMNLP.

Sascha Rothe and Hinrich Schütze. 2015. Autoex-
tend: Extending word embeddings to embeddings
for synsets and lexemes. Proceedings of ACL .

David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. 1988. Learning representations by back-
propagating errors. Cognitive modeling 5(3):1.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural network-
s. In Proceedings of NIPS. pages 3104–3112.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilis-
tic model for learning multi-prototype word embed-
dings. In Proceedings of COLING. pages 151–160.

2057

Fu Xianghua, Liu Guo, Guo Yanyan, and Wang
Zhiqiang. 2013. Multi-aspect sentiment analysis for
chinese online social reviews based on topic model-
ing and hownet lexicon. Knowledge-Based Systems
37:186–195.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Proceedings of NIPS. pages 649–657.

2058

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2059–2068
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1188

Learning Character-level Compositionality with Visual Features

Frederick Liu1, Han Lu1, Chieh Lo2, Graham Neubig1

1Language Technology Institute
2Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh, PA 15213
{fliu1,hlu2,gneubig}@cs.cmu.edu

chiehl@andrew.cmu.edu

Abstract

Previous work has modeled the composi-
tionality of words by creating character-
level models of meaning, reducing prob-
lems of sparsity for rare words. However,
in many writing systems compositionality
has an effect even on the character-level:
the meaning of a character is derived by
the sum of its parts. In this paper, we
model this effect by creating embeddings
for characters based on their visual charac-
teristics, creating an image for the charac-
ter and running it through a convolutional
neural network to produce a visual char-
acter embedding. Experiments on a text
classification task demonstrate that such
model allows for better processing of in-
stances with rare characters in languages
such as Chinese, Japanese, and Korean.
Additionally, qualitative analyses demon-
strate that our proposed model learns to
focus on the parts of characters that carry
semantic content, resulting in embeddings
that are coherent in visual space.

1 Introduction

Compositionality—the fact that the meaning of a
complex expression is determined by its structure
and the meanings of its constituents—is a hall-
mark of every natural language (Frege and Austin,
1980; Szabó, 2010). Recently, neural models have
provided a powerful tool for learning how to com-
pose words together into a meaning representation
of whole sentences for many downstream tasks.
This is done using models of various levels of
sophistication, from simpler bag-of-words (Iyyer
et al., 2015) and linear recurrent neural network
(RNN) models (Sutskever et al., 2014; Kiros et al.,
2015), to more sophisticated models using tree-

������������ ��

Kalb� Kälber�a�

Do� Do'(polite)�

Calf� Calves�

���� ����

���� ����
Laurel�

Whale�

Salmon�

Salmon�

gui� jing�

gui� gui�

(a)�

(b)�

(c)�

(d)�

han'da� ham''ni'''da�

Figure 1: Examples of character-level composi-
tionality in (a, b) Chinese, (c) Korean, and (d) Ger-
man. The red part of the characters are shared, and
affects the pronunciation (top) or meaning (bot-
tom).

structured (Socher et al., 2013) or convolutional
networks (Kalchbrenner et al., 2014).

In fact, a growing body of evidence shows that it
is essential to look below the word-level and con-
sider compositionality within words themselves.
For example, several works have proposed mod-
els that represent words by composing together
the characters into a representation of the word it-
self (Ling et al., 2015; Zhang et al., 2015; Dhingra
et al., 2016). Additionally, for languages with pro-
ductive word formation (such as agglutination and
compounding), models calculating morphology-
sensitive word representations have been found ef-
fective (Luong et al., 2013; Botha and Blunsom,
2014). These models help to learn more robust
representations for rare words by exploiting mor-
phological patterns, as opposed to models that op-
erate purely on the lexical level as the atomic units.

For many languages, compositionality stops at
the character-level: characters are atomic units of
meaning or pronunciation in the language, and no
further decomposition can be done.1 However, for
other languages, character-level compositionality,
where a character’s meaning or pronunciation can

1In English, for example, this is largely the case.

2059

https://doi.org/10.18653/v1/P17-1188

Lang Geography Sports Arts Military Economics Transportation
Chinese 32.4k 49.8k 50.4k 3.6k 82.5k 40.4k
Japanese 18.6k 82.7k 84.1k 81.6k 80.9k 91.8k
Korean 6k 580 5.74k 840 5.78k 1.68k
Lang Medical Education Food Religion Agriculture Electronics

Chinese 30.3k 66.2k 554 66.9k 89.5k 80.5k
Japanese 66.5k 86.7k 20.2k 98.1k 97.4k 1.08k
Korean 16.1k 4.71k 33 2.60k 1.51k 1.03k

Table 1: By-category statistics for the Wikipedia dataset. Note that Food is the abbreviation for “Food
and Culture” and Religion is the abbreviation for “Religion and Belief”.

be derived from the sum of its parts, is very much
a reality. Perhaps the most compelling example
of compositionality of sub-character units can be
found in logographic writing systems such as the
Han and Kanji characters used in Chinese and
Japanese, respectively.2 As shown on the left side
of Fig. 1, each part of a Chinese character (called
a “radical”) potentially contributes to the meaning
(i.e., Fig. 1(a)) or pronunciation (i.e., Fig. 1(b))
of the overall character. This is similar to how
English characters combine into the meaning or
pronunciation of an English word. Even in lan-
guages with phonemic orthographies, where each
character corresponds to a pronunciation instead
of a meaning, there are cases where composition
occurs. Fig. 1(c) and (d) show the examples of Ko-
rean and German, respectively, where morpholog-
ical inflection can cause single characters to make
changes where some but not all of the component
parts are shared.

In this paper, we investigate the feasibility of
modeling the compositionality of characters in a
way similar to how humans do: by visually ob-
serving the character and using the features of its
shape to learn a representation encoding its mean-
ing. Our method is relatively simple, and gener-
alizable to a wide variety of languages: we first
transform each character from its Unicode repre-
sentation to a rendering of its shape as an image,
then calculate a representation of the image us-
ing Convolutional Neural Networks (CNNs) (Cun
et al., 1990). These features then serve as inputs
to a down-stream processing task and trained in
an end-to-end manner, which first calculates a loss
function, then back-propagates the loss back to the
CNN.

2Other prominent examples are largely for extinct lan-
guages: Egyptian hieroglyphics, Mayan glyphs, and Sume-
rian cuneiform scripts (Daniels and Bright, 1996).

As demonstrated by our motivating examples
in Fig. 1, in logographic languages character-level
semantic or phonetic similarity is often indicated
by visual cues; we conjecture that CNNs can
appropriately model these visual patterns. Con-
sequently, characters with similar visual appear-
ances will be biased to have similar embeddings,
allowing our model to handle rare characters ef-
fectively, just as character-level models have been
effective for rare words.

To evaluate our model’s ability to learn repre-
sentations, particularly for rare characters, we per-
form experiments on a downstream task of classi-
fying Wikipedia titles for three Asian languages:
Chinese, Japanese, and Korean. We show that
our proposed framework outperforms a baseline
model that uses standard character embeddings for
instances containing rare characters. A qualita-
tive analysis of the characteristics of the learned
embeddings of our model demonstrates that visu-
ally similar characters share similar embeddings.
We also show that the learned representations are
particularly effective under low-resource scenar-
ios and complementary with standard character
embeddings; combining the two representations
through three different fusion methods (Snoek
et al., 2005; Karpathy et al., 2014) leads to con-
sistent improvements over the strongest baseline
without visual features.

2 Dataset

Before delving into the details of our model, we
first describe a dataset we constructed to exam-
ine the ability of our model to capture the com-
positional characteristics of characters. Specifi-
cally, the dataset must satisfy two desiderata: (1)
it must be necessary to fully utilize each charac-
ter in the input in order to achieve high accuracy,
and (2) there must be enough regularity and com-

2060

100� 101� 102� 103� 104�

106�

100�

101�
102�

103�

104�
105�

Rank

Fr
eq

ue
nc

y
⎯⎯ Chinese
⎯⎯"Japanese
⎯⎯ Korean

Rank < 20%
Freq. > 80%

Figure 2: The character rank-frequency distribu-
tion of the corpora we considered in this paper. All
three languages have a long-tail distribution.

positionality in the characters of the language. To
satisfy these desiderata, we create a text classifi-
cation dataset where the input is a Wikipedia ar-
ticle title in Chinese, Japanese, or Korean, and
the output is the category to which the article be-
longs.3 This satisfies (1), because Wikipedia titles
are short and thus each character in the title will
be important to our decision about its category. It
also satisfies (2), because Chinese, Japanese, and
Korean have writing systems with large numbers
of characters that decompose regularly as shown
in Fig. 1. While this task in itself is novel, it is
similar to previous work in named entity type in-
ference using Wikipedia (Toral and Munoz, 2006;
Kazama and Torisawa, 2007; Ratinov and Roth,
2009), which has proven useful for downstream
named entity recognition systems.

2.1 Dataset Collection
As the labels we would like to predict, we use
12 different main categories from the Wikipedia
web page: Geography, Sports, Arts, Military, Eco-
nomics, Transportation, Health Science, Educa-
tion, Food Culture, Religion and Belief, Agricul-
ture and Electronics. Wikipedia has a hierarchical
structure, where each of these main categories has
a number of subcategories, and each subcategory
has its own subcategories, etc. We traverse this
hierarchical structure, adding each main category
tag to all of its descendants in this subcategory tree
structure. In the case that a particular article is the
descendant of multiple main categories, we favor
the main category that minimizes the depth of the

3The link to the dataset and the crawling scripts
– https://github.com/frederick0329/
Wikipedia_title_dataset

Geography
Sports
Arts
Military
Economics
Transportation
Health Science
Education
Food Culture
Religion and Belief
Agriculture
Electronics

Visual model
(Image as input)

Lookup model
(Symbol as input)

�
CNN CNN CNN

� � �

Softmax
GRU

36
36 ��

Figure 3: An illustration of two models, our pro-
posed VISUAL model at the top and the base-
line LOOKUP model at the bottom using the same
RNN architecture. A string of characters (e.g. “温
病学”), each converted into a 36x36 image, serves
as input of our VISUAL model. dc is the dimen-
sion of the character embedding for the LOOKUP

model.

article in the tree (e.g., if an article is two steps
away from Sports and three steps away from Arts,
it will receive the “Sports” label). We also per-
form some rudimentary filtering, removing pages
that match the regular expression “.*:.*”, which
catches special pages such as “title:agriculture”.

2.2 Statistics

For Chinese, Japanese, and Korean, respectively,
the number of articles is 593k/810k/46.6k, and the
average length and standard deviation of the ti-
tle is 6.25±3.96/8.60±5.58/6.10±3.71. As shown
in Fig. 2, the character rank-frequency distribu-
tions of all three languages follows the 80/20
rule (Newman, 2005) (i.e., top 20% ranked char-
acters that appear more than 80% of total frequen-
cies), demonstrating that the characters in these
languages belong to a long tail distribution.

We further split the dataset into training, valida-
tion, and testing sets with a 6:2:2 ratio. The cat-
egory distribution for each language can be seen
in Tab. 1. Chinese has two varieties of characters,
traditional and simplified, and the dataset is a mix
of the two. Hence, we transform this dataset into
two separate sets, one completely simplified and
the other completely traditional using the Chinese
text converter provided with Mac OS.

3 Model

Our overall model for the classification task fol-
lows the encoder model by Sutskever et al. (2014).

2061

Layer# 3-layer CNN Configuration
1 Spatial Convolution (3, 3)→ 32
2 ReLu
3 MaxPool (2, 2)
4 Spatial Convolution (3, 3)→ 32
5 ReLu
6 MaxPool (2, 2)
7 Spatial Convolution (3, 3)→ 32
8 ReLu
9 Linear (800, 128)

10 ReLu
11 Linear (128, 128)
12 ReLu

Table 2: Architecture of the CNN used in the ex-
periments. All the convolutional layers have 32
3×3 filters.

We calculate character representations, use a RNN
to combine the character representations into a
sentence representation, and then add a softmax
layer after that to predict the probability for each
class. As shown in Fig. 2.1, the baseline model,
which we call it the LOOKUP model, calculates
the representation for each character by looking it
up in a character embedding matrix. Our proposed
model, the VISUAL model instead learns the rep-
resentation of each character from its visual ap-
pearance via CNN.

LOOKUP model Given a character vocabulary
C, for the LOOKUP model as in the bottom part of
Fig. 2.1, the input to the network is a stream of
characters c1, c2, ...cN , where cn ∈ C. Each char-
acter is represented by a 1-of-|C| (one-hot) en-
coding. This one-hot vector is then multiplied by
the lookup matrix TC ∈ R|C|×dc , where dc is the
dimension of the character embedding. The ran-
domly initialized character embeddings were opti-
mized with classification loss.

VISUAL model The proposed method aims to
learn a representation that includes image in-
formation, allowing for better parameter sharing
among characters, particularly characters that are
less common. Different from the LOOKUP model,
each character is first transformed into a 36-by-36
image based on its Unicode encoding as shown in
the upper part of Fig 2.1. We then pass the im-
age through a CNN to get the embedding for the
image. The parameters for the CNN are learned
through backpropagation from the classification

loss. Because we are training embeddings based
on this classification loss, we expect that the CNN
will focus on parts of the image that contain se-
mantic information useful for category classifica-
tion, a hypothesis that we examine in the experi-
ments (see Section 5.5).

In more detail, the specific structure of the CNN
that we utilize consists of three convolution layers
where each convolution layer is followed by the
max pooling and ReLU nonlinear activation lay-
ers. The configurations of each layer are listed in
Tab. 2. The output vector for the image embed-
dings also has size dc which is the same as the
LOOKUP model.

Encoder and Classifier For both the
LOOKUP and the VISUAL models, we adopt
an RNN encoder using Gated Recurrent Units
(GRUs) (Chung et al., 2014). Each of the GRU
units processes the character embeddings sequen-
tially. At the end of the sequence, the incremental
GRU computation results in a hidden state e
embedding the sentence. The encoded sentence
embedding is passed through a linear layer whose
output is the same size as the number of classes.
We use a softmax layer to compute the posterior
class probabilities:

P (y = j|e) =
exp(wTj e+ bj)∑L
i=1 exp(w

T
i e+ bi)

(1)

To train the model, we use cross-entropy loss
between predicted and true targets:

J =
1

B

B∑

i=1

L∑

j=1

−ti,j log(pi,j) (2)

where ti,j ∈ {0, 1} represents the ground truth la-
bel of the j-th class in the i-th Wikipedia page ti-
tle. B is the batch size and L is the number of
categories.

4 Fusion-based Models

One thing to note is that the LOOKUP and the
VISUAL models have their own advantages. The
LOOKUP model learns embedding that captures
the semantics of each character symbol without
sharing information with each other. In con-
trast, the proposed VISUAL model directly learns
embedding from visual information, which natu-
rally shares information between visually similar
characters. This characteristic gives the VISUAL

2062

Lookup/Visual 100% 50% 12.5%
zh trad 0.55/0.54 0.53/0.50 0.48/0.47
zh simp 0.55/0.54 0.53/0.52 0.48/0.46
ja 0.42/0.39 0.47/0.45 0.44/0.41
ko 0.47/0.42 0.44/0.39 0.37/0.36

Table 3: The classification results of the LOOKUP

/ VISUAL models for different percentages of full
training size.

model the ability to generalize better to rare char-
acters, but also has the potential disadvantage of
introducing noise for characters with similar ap-
pearances but different meanings.

With the complementary nature of these two
models in mind, we further combine the two em-
beddings to achieve better performances. We
adopt three fusion schemes, early fusion, late fu-
sion (described by Snoek et al. (2005) and Karpa-
thy et al. (2014)), and fallback fusion, a method
specific to this paper.

Early Fusion Early fusion works by concatenat-
ing the two varieties of embeddings before feeding
them into the RNN. In order to ensure that the di-
mensions of the RNN are the same after concate-
nation, the concatenated vector is fed through a
hidden layer to reduce the size from 2 × dc to dc.
The whole model is then fine-tuned with training
data.

Late Fusion Instead of learning a joint represen-
tation like early fusion, late fusion averages the
model predictions. Specifically, it takes the output
of the softmax layers from both models and aver-
ages the probabilities to create a final distribution
used to make the prediction.

Fallback Fusion Our final fallback fusion
method hypothesizes that our VISUAL model does
better with instances which contain more rare
characters. First, in order to quantify the over-
all rareness of an instance consisting of multiple
characters, we calculate the average training set
frequency of the characters therein. The fallback
fusion method uses the VISUAL model to predict
testing instances with average character frequency
below or equal to a threshold (here we use 0.0 fre-
quency as cutoff, which means all characters in the
instance do not appear in the training set), and uses
the LOOKUP model to predict the rest of the in-
stances.

5 Experiments and Results

In this section, we compare our proposed VISUAL

model with the baseline LOOKUP model through
three different sets of experiments. First, we ex-
amine whether our model is capable of classify-
ing text and achieving similar performance as the
baseline model. Next, we examine the hypothesis
that our model will outperform the baseline model
when dealing with low frequency characters. Fi-
nally, we examine the fusion methods described in
Section 4.

5.1 Experimental Configurations

The dimension of the embeddings and batch size
for both models are set to dc = 128 and B =
400, respectively. We build our proposed model
using Torch (Collobert et al., 2002), and use Adam
(Kingma and Ba, 2014) with a learning rate η =
0.001 for stochastic optimization. The length of
each instance is cut off or padded to 10 characters
for batch training.

5.2 Comparison with the Baseline Model

In this experiment, we examine whether our VI-
SUAL model achieves similar performance with
the baseline LOOKUP model in classification ac-
curacy.

The results in Tab. 3 show that the baseline
model performs 1-2% better across four datasets;
this is due to the fact that the LOOKUP model can
directly learn character embeddings that capture
the semantics of each character symbol for fre-
quent characters. In contrast, the VISUAL model
learns embeddings from visual information, which
constraints characters that has similar appearance
to have similar embeddings. This is an advantage
for rare characters, but a disadvantage for high fre-
quency characters because being similar in appear-
ance does not always lead to similar semantics.

To demonstrate that this is in fact the case, be-
sides looking at the overall classification accuracy,
we also examine the performance on classifying
low frequency instances which are sorted accord-
ing to the average training set frequency of the
characters therein. Tab. 4 and Fig. 4 both show that
our model performs better in the 100 lowest fre-
quency instances (the intersection point of the two
models). More specifically, take Fig. 4(a)’ as ex-
ample, the solid (proposed) line is higher than the
dashed (baseline) line up to 102, indicating that the
proposed model outperforms the baseline for the

2063

101 102 103
100

101

102

103

102 103
100

101

102

103
102 103

100

101

102

103

102 103
100

101

102

103

A
cc

um
ul

at
ed

 N
um

be
r o

f
C

or
re

ct
ly

 P
re

di
ct

ed
 In

st
an

ce
s

Rank

(a) (b)

(c) (d)

⎯⎯!Visual,(TP(=(100%
⎯⎯!Visual,(TP(=(50%
⎯⎯!Visual,(TP(=(12.5%
⎯!⎯!Lookup,(TP(=(100%
⎯!⎯!Lookup,(TP(=(50%
⎯!⎯!Lookup,(TP(=(12.5%

⎯⎯!Visual,(TP(=(100%
⎯⎯!Visual,(TP(=(50%
⎯⎯!Visual,(TP(=(12.5%
⎯!⎯!Lookup,(TP(=(100%
⎯!⎯!Lookup,(TP(=(50%
⎯!⎯!Lookup,(TP(=(12.5%

⎯⎯!Visual,(TP(=(100%
⎯⎯!Visual,(TP(=(50%
⎯⎯!Visual,(TP(=(12.5%
⎯!⎯!Lookup,(TP(=(100%
⎯!⎯!Lookup,(TP(=(50%
⎯!⎯!Lookup,(TP(=(12.5%

⎯⎯!Visual,(TP(=(100%
⎯⎯!Visual,(TP(=(50%
⎯⎯!Visual,(TP(=(12.5%
⎯!⎯!Lookup,(TP(=(100%
⎯!⎯!Lookup,(TP(=(50%
⎯!⎯!Lookup,(TP(=(12.5%

Figure 4: Experiments on different training sizes for four different datasets. More specifically, we con-
sider three different training data size percentages (TPs) (100%, 50%, and 12.5%) and four datasets: (a)
traditional Chinese, (b) simplified Chinese, (c) Japanese, and (d) Korean. We calculate the accumulated
number of correctly predicted instances for the VISUAL model (solid lines) and the LOOKUP model
(dashed lines). This figure is a log-log plot, where x-axis shows rarity (rarest to the left), y-axis shows
cumulative correctly classified instances up to this rank; a perfect classifier will result in a diagonal line.

first 100 instances. Lines depart the x-axis when
the model classifies its first instance correctly, and
the LOOKUP model did not correctly classify any
of the first 80 rarest instances, resulting in it cross-
ing later than the proposed model. This confirms
that the VISUAL model can share visual informa-
tion among characters and help to classify low fre-
quency instances.

For training time, visual features take signifi-
cantly more time, as expected. VISUAL is 30x
slower than LOOKUP, although they are equiv-
alent at test time. For space, images of Chinese
characters took 36MB to store for 8985 characters.

5.3 Experiments on Different Training Sizes

In our second experiment, we consider two smaller
training sizes (i.e., 50% and 12.5% of the full
training size) indicated by green and red lines in
Fig. 4. We performed this experiment under the
hypothesis that because the proposed method was
more robust to infrequent characters, the proposed
model may perform better in low-resourced sce-
narios. If this is the case, the intersection point of
the two models will shift right because of the in-
crease of the number of instances with low average
character frequency.

Lookup/Visual 100 1000 10000
zh trad 0.22/0.49 0.35/0.35 0.40/0.39
zh simp 0.25/0.53 0.39/0.37 0.41/0.40
ja 0.30/0.35 0.45/0.41 0.44/0.41
ko 0.44/0.33 0.44/0.33 0.48/0.42

Table 4: Classification results for the LOOKUP

/ VISUAL of the k lowest frequency instances
across four datasets. The 100 lowest frequency in-
stances for traditional and simplified Chinese and
Korean were both significant (p-value < 0.05).
Those for Japanese were not (p-value = 0.13);
likely because there was less variety than Chinese
and more data than Korean.

As we can see in Fig. 4, the intersection point
for 100% training data lies between the intersec-
tion point for 50% training data and 12.5%. This
disagrees with our hypothesis; this is likely be-
cause while the number of low-frequency charac-
ters increases, smaller amounts of data also ad-
versely impact the ability of CNN to learn useful
visual features, and thus there is not a clear gain
nor loss when using the proposed method.

As a more extreme test of the ability of our pro-
posed framework to deal with the unseen char-

2064

zh trad zh simp ja ko
Lookup 0.5503 0.5543 0.4914 0.4765
Visual 0.5434 0.5403 0.4775 0.4207
early 0.5520 0.5546 0.4896 0.4796
late 0.5658 0.5685 0.5029 0.4869
fall 0.5507 0.5547 0.4914 0.4766

Table 5: Experiment results for three different fu-
sion methods across 4 datasets. The late fusion
model was better (p-value < 0.001) across four
datasets.

acters in the test set, we use traditional Chinese
as our training data and simplified Chinese as
our testing data. The model was able to achieve
around 40% classification accuracy when we use
the full training set, compared to 55%, which is
achieved by the model trained on simplified Chi-
nese. This result demonstrates that the model is
able to transfer between similar scripts, similarly
to how most Chinese speakers can guess the mean-
ing of the text, even if it is written in the other
script.

5.4 Experiment on Different Fusion Methods

Results of different fusion methods can be found
in Tab. 5. The results show that late fusion
gives the best performance among all the fu-
sion schemes combining the LOOKUP model
and the proposed VISUAL model. Early fusion
achieves small improvements for all languages ex-
cept Japanese, where it displays a slight drop.
Unsurprisingly, fallback fusion performs better
than the LOOKUP model and the VISUAL model
alone, since it directly targets the weakness of the
LOOKUP model (e.g., rare characters) and replaces
the results with the VISUAL model. These re-
sults show that simple integration, no matter which
schemes we use, is beneficial, demonstrating that
both methods are capturing complementary infor-
mation.

5.5 Visualization of Character Embeddings

Finally, we qualitatively examine what is learned
by our proposed model in two ways. First, we
visualize which parts of the image are most im-
portant to the VISUAL model’s embedding calcu-
lation. Second, we show the 6-nearest neighbor
results for characters using both the LOOKUP and
the VISUAL embeddings.

Iron Bronze Salmon Serranidae

Silk Coil Rhyme Pleased

Wave Put on Cypress Pillar

Cuckoo Eagle Mosquito Ant

Figure 5: Examples of how much each part of the
character contributes to its embedding (the darker
the more). Two characters are shown per radical to
emphasize that characters with same radical have
similar patterns.

Emphasis of the VISUAL Model In order to
delve deeper into what the VISUAL model has
learned, we measure a modified version of the oc-
clusion sensitivity proposed by Zeiler and Fergus
(2014) by masking the original character image in
four ways, and examine the importance of each
part of the character to the model’s calculated rep-
resentations. Specifically, we leave only the up-
per half, bottom half, left half, or right half of the
image, and mask the remainder with white pix-
els since Chinese characters are usually formed
by combining two radicals vertically or horizon-
tally. We run these four images forward through
the CNN part of the model and calculate the L2

distance between the masked image embeddings
with the full image embedding. The larger the dis-
tance, the more the masked part of the character
contributes to the original embedding. The contri-
bution of each part (e.g. the L2 distance) is repre-
sented as a heat map, and then it is normalized to
adjust the opacity of the character strokes for bet-
ter visualization. The value of each corner of the
heatmap is calculated by adding the two L2 dis-
tances that contribute to this corner.

The visualization is shown in Fig. 5. The mean-
ing of each Chinese character in English is shown
below the Chinese character. The opacity of the
character strokes represent how much the corre-
sponding parts contribute to the original embed-
ding (the darker the more). In general, the darker
part of the character is related to its semantics. For
example, “金” means gold in Chinese, which is

2065

����
����������������

����������������
��������������������������������

����
����������������

����������������������������������
����������������

��������������������������������
����������������

���������������!�
�������������!�

�������������!�
�������������!�
�������������!�

�������������!�

��
��������������
��
��������������

��������������

����
��������������

������������
��������������

��������������
����

���� ���������������
���������������������������������������
�������������

�������������

����
����

����
����

����

�������� ��������������
������������
������������������������

������������
������������

Visual'model� Lookup'model� Visual'model� Lookup'model�

Figure 6: Visualization of the Chinese traditional
characters by finding the 6-nearest neighbors of
the query (i.e., center) characters. The highlighted
red indicates the radical along with the meaning of
the characters.

highlighted in both “鐵” (Iron) and “銅” (Bronze).
We can also find similar results for other exam-
ples shown in Fig. 5. Fig. 5 also demonstrated
that our model captures the compositionality of
Chinese characters, both meaning of sub-character
units and their structure (e.g. the semantic content
tends to be structurally localized on one side of a
Chinese character).

K-nearest neighbors Finally, to illustrate the
difference of the learned embeddings between the
two models, we display 6-nearest neighbors (L2

distance) for selected characters in Fig. 6. As can
be seen, the VISUAL embedding for characters
with similar appearances are close to each other.
In addition, similarity in the radical part indicates
semantic similarity between the characters. For
example, the characters with radical “鳥” all refer
to different type of birds.

The LOOKUP embedding do not show such fea-
ture, as it learns the embedding individually for
each symbol and relies heavily on the training set
and the task. In fact, the characters shown in Fig. 6
for the LOOKUP model do not exhibit semantic
similarity either. There are two potential expla-
nations for this: First, the category classification
task that we utilized do not rely heavily on the fine-
grained semantics of each character, and thus the
LOOKUP model was able to perform well without
exactly capturing the semantics of each character
precisely. Second, the Wikipedia dataset contains
a large number of names and location and the char-
acters therein might not have the same semantic
meaning used in daily vocabulary.

6 Related Work

Methods that utilize neural networks to learn
distributed representations of words or charac-
ters have been widely developed. However,
word2vec (Mikolov et al., 2013), for example, re-
quires storing an extremely large table of vectors
for all word types. For example, due to the size
of word types in twitter tweets, work has been
done to generate vector representations of tweets
at character-level (Dhingra et al., 2016).

There is also work done in understanding math-
ematical expressions with a convolutional net-
work for text and layout recognition by using
an attention-based neural machine translation sys-
tem (Deng et al., 2016). They tested on real-
world rendered mathematical expressions paired
with LaTeX markup and show the system is ef-
fective at generating accurate markup. Other than
that, there are several works that combine visual
information with text in improving machine trans-
lation (Sutskever et al., 2014), visual question an-
swering, caption generation (Xu et al., 2015), etc.
These works extract image representations from a
pre-trained CNN (Zhu et al., 2016; Wang et al.,
2016).

Unrelated to images, CNNs have also been used
for text classification (Kim, 2014; Zhang et al.,
2015). These models look at the sequential depen-
dencies at the word or character-level and achieve
the state-of-the-art results. These works inspire
us to use CNN to extract features from image and
serve as the input to the RNN. Our model is able
to directly back-propagate the gradient all the way
through the CNN, which generates visual embed-
dings, in a way such that the embedding can con-
tain both semantic and visual information.

Several techniques for reducing the rare words
effects have been introduced in the literature, in-
cluding spelling expansion (Habash, 2008), dictio-
nary term expansion (Habash, 2008), proper name
transliteration (Daumé and Jagarlamudi, 2011),
treating words as a sequence of characters (Lu-
ong and Manning, 2016), subword units (Sennrich
et al., 2015), and reading text as bytes (Gillick
et al., 2015). However, most of these techniques
still have no mechanism for handling low fre-
quency characters, which are the target of this
work.

Finally, there are works on improving embed-
dings with radicals, which explicitly splits Chi-
nese characters into radicals based on a dictionary

2066

of what radicals are included in which characters
(Li et al., 2015; Shi et al., 2015; Yin et al., 2016).
The motivation of this method is similar to ours,
but is only applicable to Chinese, in contrast to
the method in this paper, which works on any lan-
guage for which we can render text.

7 Conclusion and Future Work

In this paper, we proposed a new framework
that utilizes appearance of characters, convolu-
tional neural networks, recurrent neural networks
to learn embeddings that are compositional in the
component parts of the characters. More specif-
ically, we collected a Wikipedia dataset, which
consists of short titles of three different languages
and satisfies the compositionality in the characters
of the language. Next, we proposed an end-to-end
model that learns visual embeddings for characters
using CNN and showed that the features extracted
from the CNN include both visual and semantic
information. Furthermore, we showed that our
VISUAL model outperforms the LOOKUP baseline
model in low frequency instances. Additionally,
by examining the character embeddings visually,
we found that our VISUAL model is able to learn
visually related embeddings.

In summary, we tackled the problem of rare
characters by using embeddings learned from im-
ages. In the future, we hope to further general-
ize this method to other tasks such as pronuncia-
tion estimation, which can take advantage of the
fact that pronunciation information is encoded in
parts of the characters as demonstrated in Fig. 1,
or machine translation, which could benefit from
a wholistic view that considers both semantics and
pronunciation. We also hope to apply the model to
other languages with complicated compositional
writing systems, potentially including historical
texts such as hieroglyphics or cuneiform.

Acknowledgments

We thank Taylor Berg-Kirkpatrick, Adhiguna
Kuncoro, Chen-Hsuan Lin, Wei-Cheng Chang,
Wei-Ning Hsu and the anonymous reviewers for
their enlightening comments and feedbacks.

References
Jan A Botha and Phil Blunsom. 2014. Compositional

morphology for word representations and language
modelling. In ICML. pages 1899–1907.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho,
and Yoshua Bengio. 2014. Empirical evaluation of
gated recurrent neural networks on sequence model-
ing. arXiv preprint arXiv:1412.3555 .

Ronan Collobert, Samy Bengio, and Johnny Marithoz.
2002. Torch: A modular machine learning software
library.

Y. Le Cun, B. Boser, J. S. Denker, R. E. Howard,
W. Habbard, L. D. Jackel, and D. Henderson. 1990.
Advances in neural information processing systems
2. pages 396–404.

Peter T Daniels and William Bright. 1996. The world’s
writing systems. Oxford University Press.

Hal Daumé and Jagadeesh Jagarlamudi. 2011. Domain
adaptation for machine translation by mining unseen
words. In ACL-HLT . pages 407–412.

Yuntian Deng, Anssi Kanervisto, and Alexander M.
Rush. 2016. What you get is what you see:
A visual markup decompiler. arXiv preprint
arXiv:1609.04938 .

Bhuwan Dhingra, Zhong Zhou, Dylan Fitzpatrick,
Michael Muehl, and William W Cohen. 2016.
Tweet2vec: Character-based distributed representa-
tions for social media. ACL .

Gottlob Frege and John Langshaw Austin. 1980. The
foundations of arithmetic: A logico-mathematical
enquiry into the concept of number. Northwestern
University Press.

Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag
Subramanya. 2015. Multilingual language process-
ing from bytes. arXiv preprint arXiv:1512.00103 .

Nizar Habash. 2008. Four techniques for online han-
dling of out-of-vocabulary words in Arabic-English
statistical machine translation. In HLT-Short. pages
57–60.

Mohit Iyyer, Varun Manjunatha, and Jordan L Boyd-
Graber. 2015. Deep unordered composition rivals
syntactic methods for text classification. In ACL.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. ACL pages 655–665.

Andrej Karpathy, George Toderici, Sanketh Shetty,
Thomas Leung, Rahul Sukthankar, and Li Fei-Fei.
2014. Large-scale video classification with convolu-
tional neural networks. In CVPR. pages 1725–1732.

Jun’ichi Kazama and Kentaro Torisawa. 2007. Ex-
ploiting Wikipedia as external knowledge for named
entity recognition. In EMNLP-CoNLL. pages 698–
707.

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In EMNLP. pages 1746–
1751.

2067

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980 .

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
NIPS. pages 3294–3302.

Yanran Li, Wenjie Li, Fei Sun, and Sujian Li.
2015. Component-enhanced chinese character em-
beddings. EMNLP pages 829–834.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In EMNLP. pages 1520–
1530.

Minh-Thang Luong and Christopher D Manning. 2016.
Achieving open vocabulary neural machine transla-
tion with hybrid word-character models. ACL pages
1054–1063.

Thang Luong, Richard Socher, and Christopher Man-
ning. 2013. Better word representations with recur-
sive neural networks for morphology. In CoNLL.
pages 104–113.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed representa-
tions of words and phrases and their compositional-
ity. In NIPS. pages 3111–3119.

Mej Newman. 2005. Power laws, Pareto distributions
and Zipf’s law. CONTEMP PHYS pages 323–351.

Lev Ratinov and Dan Roth. 2009. Design challenges
and misconceptions in named entity recognition. In
CoNLL. pages 147–155.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2015. Neural machine translation of rare words with
subword units. ACL pages 1715–1725.

Xinlei Shi, Junjie Zhai, Xudong Yang, Zehua Xie,
and Chao Liu. 2015. Radical embedding: Delving
deeper to chinese radicals. In ACL. pages 594–598.

Cees GM Snoek, Marcel Worring, and Arnold WM
Smeulders. 2005. Early versus late fusion in seman-
tic video analysis. In ACM MM. pages 399–402.

Richard Socher, Alex Perelygin, Jean Y Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In EMNLP. pages 1631–1642.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS. pages 3104–3112.

Zoltán Gendler Szabó. 2010. Compositionality. Stan-
ford encyclopedia of philosophy .

Antonio Toral and Rafael Munoz. 2006. A proposal
to automatically build and maintain gazetteers for
named entity recognition by using wikipedia. In
EACL. pages 56–61.

Jiang Wang, Yi Yang, Junhua Mao, Zhiheng Huang,
Chang Huang, and Wei Xu. 2016. Cnn-rnn: A uni-
fied framework for multi-label image classification.
In CVPR. pages 2285–2294.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In ICML.

Rongchao Yin, Quan Wang, Rui Li, Peng Li, and Bin
Wang. 2016. Multi-granularity chinese word em-
bedding. EMNLP pages 981–986.

Matthew D Zeiler and Rob Fergus. 2014. Visualiz-
ing and understanding convolutional networks. In
ECCV . Springer, pages 818–833.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In NIPS. pages 649–657.

Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-
Fei. 2016. Visual7w: Grounded question answering
in images. In CVPR. pages 4995–5004.

2068

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2069–2077
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1189

A Progressive Learning Approach to Chinese SRL Using Heterogeneous
Data

Qiaolin Xia†, Lei Sha†, Baobao Chang† and Zhifang Sui†?
†Key Laboratory of Computational Linguistics (Ministry of Education),

School of EECS, Peking University, 100871, Beijing, China
?Beijing Advanced Innovation Center for Imaging Technology,

Capital Normal University, Beijing, China
{xql,shalei,chbb,szf}@pku.edu.cn

Abstract

Previous studies on Chinese semantic role
labeling (SRL) have concentrated on a sin-
gle semantically annotated corpus. But
the training data of single corpus is of-
ten limited. Whereas the other existing
semantically annotated corpora for Chi-
nese SRL are scattered across different
annotation frameworks. But still, Data
sparsity remains a bottleneck. This sit-
uation calls for larger training datasets,
or effective approaches which can take
advantage of highly heterogeneous data.
In this paper, we focus mainly on the
latter, that is, to improve Chinese SRL
by using heterogeneous corpora together.
We propose a novel progressive learn-
ing model which augments the Progres-
sive Neural Network with Gated Recur-
rent Adapters. The model can accommo-
date heterogeneous inputs and effectively
transfer knowledge between them. We
also release a new corpus, Chinese Sem-
Bank, for Chinese SRL1. Experiments on
CPB 1.0 show that our model outperforms
state-of-the-art methods.

1 Introduction

Semantic role labeling (SRL) is one of the fun-
damental tasks in natural language processing be-
cause of its important role in information extrac-
tion (Bastianelli et al., 2013), statistical machine
translation (Aziz et al., 2016; Xiong et al., 2012),
and so on.

However, state-of-the-art performance of Chi-
nese SRL is still far from satisfactory. And data
sparsity has been a bottleneck which can not be

1http://www.klcl.pku.edu.cn/ShowNews.aspx?id=156

Predicate given: 修改
revise

(a) [ArgM-TMP在这期间]
Meanwhile

, [Arg0全国人大常委会]
the NPC Standing Committee

...

广泛
widely

征求
solicit

意见,
opinions,

[ArgM-ADV多次
for many times

] [ArgM-ADV反复
repeatedly

]

[Rel修改
revise

] [Arg1*pro*
(omitted) .

] 。

(b) [agent他们]
They

对
to

[patient系统
system

]进行了
made

[Rel修改
revise .

] 。

Figure 1: Sentences from (a) CPB and (b) our het-
erogeneous dataset. In CPB, each predicate (e.g.,
修改) has a specific set of core roles given with
numbers (e.g., Arg0). While our dataset uses a
different semantic role set, and all roles are non-
predicate-specific.

ignored. For English, the most commonly used
benchmark dataset PropBank (Xue and Palmer,
2003) has about 54,900 sentences. But for Chi-
nese, there are only 10,364 sentences in Chinese
PropBank 1.0 (CPB) (with about 35,700 proposi-
tions) (Xue, 2008).

To mitigate the data sparsity, models incor-
porating heterogeneous resources have been in-
troduced to improve Chinese SRL performance
(Wang et al., 2015; Guo et al., 2016; Li et al.,
2016). The heterogeneous resources introduced
by these models include other semantically an-
notated corpora with annotation schema different
to that used in PropBank, and even of a differ-
ent language. The challenge here lies in the fact
that those newly introduced resources are hetero-
geneous in nature, without sharing the same tag-
ging schema, semantic role set, syntactic tag set
and domain. For example, Wang et al. (2015)
introduced a heterogeneous dataset, Chinese Net-
Bank, by pretraining word embeddings. Specifi-
cally, they learn an LSTM RNN model based on
NetBank first, then initialize a new model with the

2069

https://doi.org/10.18653/v1/P17-1189

pretrained embeddings obtained from NetBank,
and then train it on CPB. Chinese NetBank (Yulin,
2007) is also a corpus annotated with seman-
tic roles, but using a very different role set and
annotation schema. Wang’s method can inherit
knowledge acquired from other resources con-
veniently, but only at word representation level,
missing more generalized semantic meanings in
higher hidden layers. Li (2016) proposed a two-
pass training approach to use corpora of two lan-
guages, but a few non-common roles are ignored
in the first pass. Guo et al. (2016) proposed a uni-
fied neural network model for SRL and relation
classification (RC). It can learn two tasks at the
same time, but cannot filter out harmful features
learned in incompatible tasks.

Recently, Progressive Neural Networks (PNN)
model was proposed by Rusu et al. (2016) to trans-
fer learned reinforcement learning policies from
one game to another, or from simulation to the real
robot. PNN “freezes” learned parameters once
starting to learn a new task, and it uses lateral
connections, namely adapter, to access previously
learned features.

Inspired by the PNN model, we propose a pro-
gressive learning model to Chinese semantic role
labeling in this paper. Especially, we extend
the model with Gated Recurrent Adapters (GRA).
Since the standard PNN takes pixels as input, poli-
cies as output, it is not suitable for SRL task we
focus in this context. Moreover, to handle long
sentences in the corpus, we enhance adapters with
internal memories, and gates to keep the gradient
stable. The contributions of this paper are three-
fold:

1. We reconstruct PNN columns with bidirec-
tional LSTMs to introduce heterogeneous
corpora to improve Chinese SRL. The archi-
tecture can also be applied to a wider range of
NLP tasks, like event extraction and relation
classification, etc.

2. We further extend the model with GRA to re-
member and take advantage of what has been
transferred, thus improve the performance on
long sentences.

3. We also release a new corpus, Chinese Sem-
Bank, which was annotated with the schema
different to that used in CPB. We hope that it
will be helpful for future work on SRL tasks.

Subjective roles: agent(施事), co-agent(同事),
experiencer(当事) , indirect experiencer(接事)

Objective roles: patient(受事), relative(系事),
dative(与事) , result(结果), content(内容),
target(对象)

Space roles: a point of departure(起点) , a
point of arrival(终点) , path(路径),
direction(方向), location(处所)

Time roles: start time(起始), end time(结束),
time point(时点) , duration(时段)

Comparison roles: comparison subject(比较
主体), comparison object(比较对象) ,
comparison range(比较范围), comparison
thing(比较项目) , comparison result(比较结
果)

Others: instrument(工具) , material(材料) ,
manner(方式) , quantity(物量) , range(范围) ,
reason(原因) , purpose(目的)

Table 1: Semantic roles in Chinese SemBank

We use our new corpus as a heterogeneous
resource, and evaluate the proposed model on
the benchmark dataset CPB 1.0. The experi-
ment shows that our approach achieves 79.67% F1
score, significantly outperforms existing state-of-
the-art systems by a large margin (Section 5).

2 Heterogeneous Corpora for Chinese
SRL

In this paper, we provide a new SRL corpus Chi-
nese SemBank (CSB) and use it as an example
of heterogeneous data in our experiments. In this
section, we first briefly introduce the corpus, then
compare it to existing corpora.

Sentences in CSB are from various sources in-
cluding online articles and news. The vision of
this project is to build a very large and complete
Chinese semantic corpus in the future. Currently,
it only focuses on the predicate-argument struc-
tures in a sentence without annotation of the tem-
poral relations and coreference. CBS is different
with respect to commonly used dataset CPB in the
following aspects:

• In terms of predicate, CSB takes wider range
of predicates into account. We not only anno-
tated common verbs, but also nominal verbs,
as NomBank does, and state words. Whereas

2070

CPB only annotate common verbs as predi-
cates.

• In terms of semantic roles, CSB has a more
fine-grained semantic role set. There are 31
roles defined in five types (as Table. 1 shows).
Whereas in CPB, there are totally 23 roles,
including core roles and non-core roles.

• CSB does not have any pre-defined frames
for predicates because all roles are set to be
non-predicate-specific. The reason for not
defining frames is that frames may lead in-
consistencies in labels. For example, accord-
ing to Chinese verb formation theory (Sun
et al., 2009), in CPB, an agent of a verb is
often marked as its Arg0, but not all Arg0 are
agents. Therefore, roles are defined for predi-
cates with similar syntactic and semantic reg-
ularities, rather than single predicate.

Two direct benefits of using stand-alone non-
predicate-specific roles are: First, meanings of all
semantic roles can be directly inferred from their
labels. For instance, roles of things that people
are telling (谈) or looking (看) are labeled as 内
容/content, because verbs like 谈 and 看 are often
followed by an object. Second, we can easily
annotate sentences with new predicates without
defining new frame files.

Other Corpora for Chinese SRL Other popular
semantic role labeling corpora include Chinese
NomBank (Xue, 2006), Peking University Chi-
nese NetBank (Yulin, 2007). NomBank, often
used as a complement to PropBank, annotates
nominal predicates and semantic roles according
to the similar semantic schema as PropBank does.
Peking University Chinese NetBank was created
by adding a semantic layer to Peking University
Chinese TreeBank (Zhou et al., 1997). It only
uses non-predicate-specific roles as we do. And
its role set is smaller, which has 20 roles.

3 Challenges in Inheriting Knowledge
from Heterogeneous Corpora

Although there are a lot of annotated corpora for
Chinese SRL as we mentioned in the previous sec-
tion, most of them are quite small as compared
to that in English. Data sparsity remains a bot-
tleneck. This situation calls for larger training
dataset, or effective approaches which can take ad-

vantage of very heterogeneous datasets. In this pa-
per, we focus on the second problem, that is, to
improve Chinese SRL by using heterogeneous cor-
pora together within one model.

We will consider the combination of the stan-
dard benchmark, CPB 1.0 dataset (Xue and
Palmer, 2003), with the new corpus, CSB, because
there are a lot of differences between them, as we
discussed in Section 2. Consequently, a number
of challenges arise for this task. Now we describe
them as below.
Inheriting from Different Schema and Role
Sets. CPB was annotated with PropBank-style
frames and roles, whereas Chinese FrameNet uses
its own frames and roles. And our dataset has no
frame files and use different role set. Therefore, it
is hard to find explicit mapping or hierarchical re-
lationships among their role sets, or decide which
system is better, especially when there are more
than two resources.
Inheriting from Different Domain/Genre. The
datasets mentioned above are composed of sen-
tences from various sources, including news and
stories, etc. However, it is well known that adding
data in very different genre to training data may
hurt parser performance (Bikel, 2004). There-
fore, we also need to deal with domain adapta-
tion problem when using heterogeneous data. In
other words, the proposed approach should be ro-
bust to harmful features learned on incompatible
datasets. It can also accommodate potentially dif-
ferent model structures and inputs in the procedure
of knowledge fusion.
Inheriting from Different Syntactic Annota-
tion. Unlikes English, previous works (Ding
and Chang, 2009; Sun et al., 2009) on Chinese
SRL task often use both correct segmentation and
part-of-speech tagging, and even treebank gold-
standard parses (Xue, 2008) as their features. But
some corpora like CPB and NetBank do not share
the same PoS tag set, or do not have correct PoS
tagging and gold treebank parses at all, like CSB.
And in real application scenarios, it is more conve-
nient to use automatic PoS tagging instead of gold-
standard tagging on large datasets, as they can be
obtained quickly. So to deal with the absence of
syntactic features, we adopt automatic PoS tag-
ging when training on CSB in this work.

Some previous techniques, such as finetuning
after pretraining (Wang et al., 2015; Li et al., 2016)
and multi-task learning (Guo et al., 2016), have

2071

h
(1)
1

h
(1)
2

h
(2)
1

h
(2)
2

input

output1 output2

σ

σ

(a)

h
(1)
1

h
(1)
2

h
(2)
1

h
(2)
2

input

output1 output2

GRA

GRA

Heter. 2 Target

h
(1)
1

h
(1)
2

output1

GRA

GRA

Heter. 1

(b)

Figure 2: Depiction of the standard Progressive
Neural Network architecture (a) and ours PNN
GRA model (b). Our model uses Gated Recur-
rent Adapters (GRA), instead of sigmoid adapters
to access previous knowledge in previous columns
learned on heterogeneous data. If there are more
than one heterogeneous resources available, more
columns can be added on the left.

been used to deal with these challenges. Though
they can also leverage knowledge from different
domains, they have following drawbacks: finetun-
ing cannot avoid catastrophic forgetting because
learned parameters, whether embeddings or other
hidden weights, will be tuned after the model
has been initialized; And multi-task learning can-
not ignore previously learned harmful features be-
cause some features are learned in shared layers,
although it avoids forgetting by randomly select-
ing a task to learn at each iteration. Therefore, to
solve the above-mentioned challenges, we further
introduce progressive learning which we believe is
more suitable for the task.

4 Progressive Learning Approach

We propose a progressive learning approach
which is ideal for combining heterogeneous SRL
data for multiple reasons. First, it can accom-
modate dissimilar inputs with different schema,
syntactic information and domain, because it al-
low models for heterogeneous resources to be ex-
tremely different, such as different network struc-
tures, different width, and different learning rates,
etc. Second, it is immune to forgetting by freezing
learned weights and can leverage prior knowledge
via lateral connections. Third, the lateral connec-
tions can be extended with recurrent structure and
gate mechanism to handle with forgetting problem
over long distance.

Our model is mainly inspired by Rusu et

al. (2016). They proposed progressive neural net-
works for a wide variety of reinforcement learning
tasks (e.g. Atari games and robot simulation). In
their cases, inputs are pixels, outputs are learned
policies. And each column, consisting of simple
layers and convolutional layers, is trained to solve
a particular Markov Decision Process. But in our
case, inputs are sentences annotated using differ-
ent syntactic tagsets and outputs are semantic role
sequences. So we change the structure of columns
to recurrent neural networks with LSTM, similar
to the model proposed by Wang et al. (2015). Be-
low we first introduce basic progressive neural net-
work architecture, then describe our model, PNN
with gated recurrent adapters.

4.1 Progressive Neural Networks

Fig. 2a is an illustration of the basic progressive
neural network model. It starts with single col-
umn (a neural network), in which there are L hid-
den layers and the output for ith layer (i ≤ L) with
ni units is h1i ∈ Rni . Θ1 denotes the parameters to
be learned in the first column. When switching to
a second corpus, it "freezes" the parameter Θ1 and
randomly initialize a new column with parameters
Θ2 and several lateral connections between two
columns so that layer h2i can receive input from
both h2i−1 and h1i−1. In this straightforward man-
ner, progressive neural networks can make use of
columns with any structures or to compile lateral
connections in an ensemble setting. To be more
general, we calculate the output of ith layer in kth
column hki by:

hki = f(W k
i h

k
i−1 +

∑

j<k

U
(k:j)
i hji−1) (1)

where W k
i ∈ Rn

k
i×nk

i−1 is the weight matrix of

layer i of column k, U (k:j)
i ∈ Rn

k
i×n

j
i−1 are the lat-

eral connections to transfer information from layer
i − 1 of column j to layer i of column k, h0 is
the input of the network. f can be any activation
function, such as element-wise non-linearity. Bias
term was omitted in the equation.
Adapters. With implicit assumption that there is
some "overlap" between the first task and the sec-
ond task, pretrain-and-finetune learning paradigm
is effective, as only slight adjustment to param-
eters is needed to learn new features. Progres-
sive networks also have ability to transfer knowl-
edge from previous tasks to improve convergence

2072

…

…

!"#$%&'()

*+#,-%.%,.
/0#1,(%2%3

h
(2)
3

Nonlinear

Layer

Word

Representation

Bidirectional

LSTM RNN

h
(2)
4

h
(2)
5

h
(1)
3

h
(1)
4

h
(1)
5

Nonlinear

Layer

Linear Layer

GRA

GRA

GRA

Sentence

!"#$%&'(#)*

P (path|x)
…

…

Column 2Column 1

Output

h
(1)
1

h
(1)
2

h
(2)
1

h
(2)
2

GRA

c o

f

i

Figure 3: Each column is a stacked bidirectional
LSTM RNN model. Two columns are connected
by GRAs. There are three gates in each GRA: gi,
gf , and go. The input gate gi and the forget gate
gf can also be coupled as one uniform gate, that is
gi = 1− gf .

speed. On the one hand, the model reuse previ-
ously learned features from left columns via lat-
eral connections (i.e., adapters). On the other
hand, new features can be learned by adding
more columns incrementally. Moreover, when the
"overlap" between two tasks is small, lateral con-
nections can filter out harmful features by sigmoid
functions. So in practice, the output of adapters
can also be calculated by

a
(k:j)
i = σ(A

(k:j)
i αji−1h

j
i−1) (2)

where A(k:j)
i is a matrix to be learned. We treat

Equation 2 as one of baseline settings in experi-
ments.

4.2 PNN with Gated Recurrent Adapter for
Chinese SRL

We reconstruct PNN with bidirectional LSTM to
solve SRL problems. Our model is illustrated in
Fig. 3.

First, each column in the PNN architecture is
a stacked bidirectional LSTM RNN, rather than
convolutional neural networks, because inputs are
sentences not pixels, and bi-LSTM RNN has
proved powerful for Chinese SRL (Wang et al.,
2015).

Second, we enhance the adapter with recurrent
structure and gate mechanism, because the sim-
ple Multi-Layer Perceptron (MLP) adapters have

a limitation: their weights are learned word after
word independently. For tasks like transferring re-
inforcement learning policies, this is enough be-
cause there are little dependencies among actions.
But in NLP domain, things are different. There-
fore, we add internal memory to adapters to help
them remember what has been inherited from het-
erogeneous resource.

Third, to keep gradient stable and balance be-
tween long-term and short-term memory, we in-
troduce gate mechanism which has been widely
used in RNN models. Intuitively, we call the new
adapter Gated Recurrent Adapter (GRA).

Formally, let h(<k)i−1 = [h1i−1, ..., h
j
i−1, ..., h

k−1
i−1]

be the outputs of i − 1 layers from the first col-
umn to the (k − 1)th column. The dimension-
ality of them is n(<k)i−1 = [n1i−1, ..., n

k−1
i−1]. a(<k)

is the outputs of k − 1 adapters with dimension
m(<k) = [m1, ...,mk−1]. The output vector is
multiplied by a learned matrix Wa initialized by
random small values before going to GRAs. Its
role is to adjust for the different scales of the dif-
ferent inputs and reduce the dimensionality. For-
mally, the candidate outputs is

ât = f(W j
ah

j
t + U jaa

j
t−1) (3)

where at−1 is the output of the adapter at the pre-
vious time-step. Ua is a weight matrix to learn.
The output of an adapter ajt of layer i at time t can
be formalized as follows,

gi =σ(W j
i h

j
t + U ji a

j
t−1) (4)

gf =σ(W j
fh

j
t + U jfa

j
t−1) (5)

go =σ(W j
oh

j
t + U joa

j
t−1) (6)

ãt =gi � ât + gf � ãjt−1 (7)

at =go � f(ãt−1) (8)

where hj ∈ Rm
j
i−1×n

j
i−1 is the outputs of previous

layers, Wf ,Wo,Wa ∈ Rmi−1×ni−1 , Uf , Uo, Ua ∈
Rmi−1×di−1 are parameters to learn. di−1 is the
dimension of the inner memory in adapters. ãt
represents the inner state of the adapter. f is an
activation function, like tanh. The input gate and
the forget gate can be coupled as a uniform gate,
that is gi = 1 − gf to alleviate the problem of in-
formation redundancy and reduce the possibility
of overfitting (Greff et al., 2015).

Finally, we calculate the output of the next layer
i of column k by

hki = f(W k
i concat[a

(<k), hki−1]) (9)

2073

where Wi ∈ Rn
(k)
i ×

∑
m

(<k)
i−1 is the parameters in

ith layer.

4.3 Training Criteria

We adopt the sentence tagging approach as Wang
et al. (2015) did, because words in a sentence may
closely be related with each other, independently
labeling each word is inappropriate. Sentence tag-
ging approach only consider valid transition paths
of tags when calculating the cost. For example,
when using IOBES tagging schema, tag transi-
tion from I-Arg0 to B-Arg0 is invalid, and transi-
tion from I-Arg0 to I-Arg1 is also invalid because
the type of the role changed inside the semantic
chunk. For each task (column), the log likelihood
of sentence x and its correct path y is

log p(y|x,Θ) = log
exp

∑N
t ot,yt∑

z exp
∑Ni

t ot,zt
(10)

where N is the number of words, ot ∈ RM is the
output of the last layer at time t. yt = k means the
tth word has the kth semantic role label. z ranges
from all the valid paths of tags.

The negative log likelihood of the whole train-
ing set D is

J(Θ) =
∑

(x,y)∈D
log p(y|x,Θ) (11)

We minimize J(Θ) using stochastic gradient
descent to learn network parameters Θ. When test-
ing, the best prediction of a sentence can be found
using Viterbi algorithm.

5 Experiments

5.1 Experiment Settings

To compare our approach with others, we designed
four experimental setups:

(1) A simple LSTM setup on CSB and CPB
with automatic PoS tagging. Since CPB is about
two times as large as the new corpus, we need to
know whether CSB can be used for training good
semantic parsers and how much information can
be learned from CSB by machine. So we conduct
this experiment to provide two baselines for CSB
and CPB respectively. In this setup we train and
evaluate a one-column LSTM model on CSB.

(2) A simple LSTM setup on CPB with pre-
trained word embedding on CSB (marked as bi-
LSTM+CSB embedding). Previous work found

that using pretrained word embeddings can im-
prove performance (Wang et al., 2015) on Chi-
nese SRL. So we conduct this experiment to com-
pare with the method using embeddings trained
on large-scale unlabeled data like Gigaword 2, and
NetBank.

(3) A two-column finetuning setup where we
pretrain the first column on CSB and finetune
both two columns on CPB. Clearly, finetuning is
a traditional method for continual learning scenar-
ios. But the disadvantage of it is that learned fea-
tures will be gradually forgotten when the model
is adapting new tasks. To assess this empirically,
we design this experiment. The model uses the
same network structure as PNN does, but it does
not "freeze" parameters in the first column when
tuning two columns.

(4) A progressive network setup where we
train column 1 on CSB, then train column 2 and
adapters on CPB. We conduct this experiment to
evaluate the proposed model and compare it to all
previous methods. To further analyze effective-
ness of the new adapter structure, we also conduct
an experiment for progressive nets with GRA.

We apply grid-search technique to explore
hyper-parameters including learning rates and
width of layers.

Preprocessing. We follow the same data
setting as previous work (Xue, 2008; Sun et al.,
2009), which divided CPB dataset3 into three
parts: 648 files, from chtb_081.fid to
chtb_899.fid, are the training set; 40 files,
from chtb_041.fid to chtb_080.fid,
are the development set; 72 files, from
chtb_001.fid to chtb_040.fid, and
chtb_900.fid to chtb_931.fid, are used
as the test set.

We also divide shuffled CSB corpus into three
sets with similar partition ratios. Currently, there
are 10634 sentences in CSB. So 8900 samples are
used as training set, 500 samples as development
set and the rest 965 samples as test set. We use
Stanford Parser4 for PoS tagging.

5.2 Results
Performance on Chinese SemBank Table 2
gives the results of Experiment 1. We see that
precision on CPB with automatic PoS tagging is

2https://code.google.com/p/word2vec/
3https://catalog.ldc.upenn.edu/LDC2005T23
4http://nlp.stanford.edu/software/lex-parser.shtml

2074

Corpus Pr.(%) Rec.(%) F1(%)
1. CSB 75.80 73.45 74.61
2. CPB 76.75 73.03 74.84

Table 2: Results of Chinese SRL tested on CPB
and CSB with automatic PoS tagging, using stan-
dard LSTM RNN model (Experiment 1).

0.689

0.729

0.769

0.809

 [0, 20) [20, 40) [40, 60) [60, 80) [80, 100)

F1

sentence length

PNN PNN with GRA

Figure 4: Performance of PNN models with and
without GRAs over sentence length. For sentences
shorter than 40 words, there is no big difference.
But for longer sentences (≥40 words), PNN with
GRA model performs significantly better.

about 0.9 percentage point higher than that on
CSB, while recall is about 0.4 percentage point
lower, and the gap between F1 scores on CPB
and CSB is not significant, which is only about
0.3 percentage point, although the size of CSB is
smaller. We can explain this by two reasons. First,
CSB does not have predicate-specific roles which
may lead to inconsistency, as we explained in Sec-
tion 3. Thus, it might be easier to learn by ma-
chine. Second, there are underlying similarities
between them: both of them annotate predicate-
argument structures. So when there is sufficient
training data, difference between scores on testing
sets is not very likely to be huge.

Overall, the results indicated that the new
annotated corpus CSB is not a bad choice for
training semantic parser even when this does not
involve larger training sets.

Compare to Methods without Using Het-
erogeneous Data Table 3 summarizes the SRL
performance of previous benchmark methods
and our experiments described above. Collobert
and Weston only conducted their experiments on
English corpus, but we notice that their approach
has been implemented and tested on CPB by
Wang et al. (2015), so we also put their result
here for comparison. We can make several
observations from these results. Our approach
significantly outperforms Sha et al. (2016) by
a large margin (Wilcoxon Signed Rank Test, p

< 0.05), even without using GRA. This result
can prove the ability of our model to capture
underlying similarities between heterogeneous
SRL resources.

Compare to Methods Using Heterogeneous
Resources The results of methods using external
language resources are also presented in Table 3.
Not surprisingly, we see that the overall best F1
score, 79.67%, is achieved by the progressive
nets with the GRAs. Furthermore, as shown
in Fig. 4, PNN with GRA performs better on
longer sentences, which is consistent with our
expectation. Without GRA, the F1 drops 0.37%
percentage point to 79.30, confirming that gated
recurrent adapter structure is more suitable for
our task because it can remember what has been
transferred in previous time steps.

Compared to progressive learning methods,
finetuning method does not perform well even
with the same network structure (Two-column
finetuning), but it is still better than simply pre-
training word embeddings (bi-LSTM+CSB em-
bedding). This confirms the effectiveness of multi-
column learning structure which add capacity to
the model by adding new columns. Therefore,
as can be seen, our PNN model achieves 79.30%
F1 score, outperforming finetuning by 0.88% per-
centage point, and pretraining embeddings by
even larger margin.

To sum up, not only network struc-
tures but also learning methods (finetun-
ing/multitask/progressive) can influence the
performance of knowledge transfer. According to
the results, our PNN approach is more effective
than others because it is immune to forgetting
and robust to harmful features, and GRA is more
suitable for our task than simple adapters.

6 Related Work

6.1 Chinese Semantic Role Labeling

The concept of Semantic Role Labeling is first
proposed by Gildea and Jurafsky(2002). Previ-
ous work on Chinese SRL mainly focused on how
to improve SRL on single corpus. Approaches
falls into two categories: feature-based machine
learning approaches and neural-network-based ap-
proaches. Using feature-based method, Sun
and Jurafsky (2004) did the preliminary work and
achieved promising results without using any large

2075

Method F1(%)
Xue (2008) ME 71.90
Collobert and Weston (2008) MTL 74.05
Ding and Chang (2009) CRF 72.64
Yang et al. (2014) Multi-Predicate 75.31
Wang et al. (2015) bi-LSTM 77.09 (+0.00)

Sha et al. (2016) bi-LSTM+QOM 77.69
With external language resources

Wang et al. (2015) +Gigaword embedding 77.21
Wang et al. (2015) +NetBank embedding 77.59
Guo et al. (2016) +Relataion Classification 75.46

With CSB corpus
bi-LSTM+CSB embedding 77.68 (+0.59)

Two-column finetuning 78.42 (+1.33)

Two-column progressive(ours) 79.30 (+2.21)

Two-column Progressive+GRA(ours) 79.67 (+2.58)

Table 3: Result comparison on CPB dataset. Compared to learning with single corpus using bi-LSTM
model (77.09%), learning with CSB can improve the performance by at list 0.59%. Also the best score
(79.67%) was achieved by the PNN GRA model.

annotated corpus. After CPB was built by Xue
and Palmer (2003), more complete and system-
atic research on Chinese SRL were done (Xue and
Palmer, 2005; Chen et al., 2006; Ding and Chang,
2009; Yang et al., 2014).

Neural network methods do not rely on hand-
crafted features. For Chinese SRL, Wang et
al. (2015) proposed bidirectional a LSTM RNN
model. And based on their work, Sha (2016) pro-
posed quadratic optimization method as a post-
processing module and further improved the re-
sult.

6.2 Learning with Heterogeneous Data

In this paper, we mainly focus on learning
with heterogeneous semantic resource for Chinese
SRL. Wang et al. (2015) introduced heteroge-
neous data by using pretrained embeddings at ini-
tialization and achieved promising results. Guo et
al. (2016) proposed a multitask learning method
with a unified neural network model to learn SRL
and relation classification task together and also
achieved improvement.

Different from previous work, we proposed a
progressive neural network model with gated re-
current adapters to leverage knowledge from het-
erogeneous semantic data. Compared with pre-
vious methods, this approach is more construc-
tive, rather than destructive, because it uses lat-
eral connections to access previously learned fea-

tures which are fixed when learning new tasks.
And by introducing gated recurrent adapters, we
further enhance our model to deal with long sen-
tences and achieve state-of-the-art performance on
Chinese PropBank.

7 Conclusion and Future Work

In this paper, we proposed a progressive neural
network model with gated recurrent adapters to
leverage heterogeneous corpus for Chinese SRL.
Unlike previous methods like finetuning, ours
leverage prior knowledge via lateral connections.
Experiments have shown that our model yields
better performance on CPB than all baseline mod-
els. Moreover, we proposed novel gated recurrent
adapter to handle transfer on long sentences, The
experiment has proved the effectiveness of the new
adapter structure.

We believe that progressive learning with het-
erogeneous data is a promising avenue to pursue.
So in the future, we might try to combine more
heterogeneous semantic data for other tasks like
event extraction and relation classification, etc.

We also release the new corpus Chinese Sem-
Bank for Chinese SRL. We hope that it will be
helpful in providing common benchmarks for fu-
ture work on Chinese SRL tasks.

2076

Acknowledgments

This paper is supported by NSFC project
61375074, National Key Basic Research Pro-
gram of China 2014CB340504 and Beijing Ad-
vanced Innovation Center for Imaging Technology
BAICIT-2016016. The contact authors of this pa-
per are Baobao Chang and Zhifang Sui.

References
Wilker Aziz, Miguel Rios, and Lucia Specia. 2016.

Shallow semantic trees for smt. In Proc. of the 6th
Workshop on Statistical Machine Translation. Edin-
burgh, Scotland, pages 316–322.

Emanuele Bastianelli, Giuseppe Castellucci, Danilo
Croce, and Roberto Basili. 2013. Textual inference
and meaning representation in human robot interac-
tion. In In Proceedings of the Joint Symposium on
Semantic Processing. Textual Inference and Struc-
tures in Corpora. pages 65–69.

Daniel M Bikel. 2004. On the parameter space of gen-
erative lexicalized statistical parsing models. Ph.D.
thesis, Citeseer.

Wenliang Chen, Yujie Zhang, and Hitoshi Isahara.
2006. An empirical study of chinese chunking. In
Proceedings of the COLING/ACL on Main confer-
ence poster sessions. Association for Computational
Linguistics, pages 97–104.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: Deep
neural networks with multitask learning. In Pro-
ceedings of the 25th international conference on
Machine learning. ACM, pages 160–167.

Weiwei Ding and Baobao Chang. 2009. Word based
chinese semantic role labeling with semantic chunk-
ing. International Journal of Computer Processing
Of Languages 22(02n03):133–154.

Daniel Gildea and Daniel Jurafsky. 2002. Automatic
labeling of semantic roles. Computational linguis-
tics 28(3):245–288.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutník,
Bas R Steunebrink, and Jürgen Schmidhuber. 2015.
Lstm: A search space odyssey. arXiv preprint
arXiv:1503.04069 .

Jiang Guo, Wanxiang Che, Haifeng Wang, Ting Liu,
and Jun Xu. 2016. A unified architecture for seman-
tic role labeling and relation classification. In Proc.
of the 26th International Conference on Computa-
tional Linguistics (COLING).

Tianshi Li, Qi Li, and BaoBao Chang. 2016. Im-
proving chinese semantic role labeling with english
proposition bank. In China National Conference on
Chinese Computational Linguistics. Springer, pages
3–11.

Andrei A. Rusu, Neil C. Rabinowitz, Guillaume Des-
jardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Had-
sell. 2016. Progressive neural networks. CoRR
abs/1606.04671.

Lei Sha, Tingsong Jiang, Sujian Li, Baobao Chang,
and Zhifang Sui. 2016. Capturing argument rela-
tionships for chinese semantic role labeling .

Honglin Sun and Daniel Jurafsky. 2004. Shallow
semantic parsing of chinese. In Proceedings of
NAACL 2004. pages 249–256.

Weiwei Sun, Zhifang Sui, Meng Wang, and Xin Wang.
2009. Chinese semantic role labeling with shallow
parsing. In Proceedings of the 2009 EMNLP. Asso-
ciation for Computational Linguistics, pages 1475–
1483.

Zhen Wang, Tingsong Jiang, Baobao Chang, and Zhi-
fang Sui. 2015. Chinese semantic role labeling with
bidirectional recurrent neural networks. In Proc. of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing. pages 1626–1631.

Deyi Xiong, Min Zhang, and Haizhou Li. 2012. Mod-
eling the translation of predicate-argument structure
for smt. In In Proc. of the 50th Annual Meeting
of the Association for Computational Linguistics.
pages 902–911.

Nianwen Xue. 2006. Annotating the predicate-
argument structure of chinese nominalizations. In
Proceedings of the fifth international conference on
Language Resources and Evaluation. pages 1382–
1387.

Nianwen Xue. 2008. Labeling chinese predicates
with semantic roles. Computational linguistics
34(2):225–255.

Nianwen Xue and Martha Palmer. 2003. Annotating
the propositions in the penn chinese treebank. In
Proceedings of the second SIGHAN workshop on
Chinese language processing-Volume 17. Associa-
tion for Computational Linguistics, pages 47–54.

Nianwen Xue and Martha Palmer. 2005. Automatic
semantic role labeling for chinese verbs. In In Pro-
ceedings of the 19th International Joint Conference
on Artificial Intelligence. pages 1160–1165.

Haitong Yang, Chengqing Zong, et al. 2014. Multi-
predicate semantic role labeling. In EMNLP. pages
363–373.

Yuan Yulin. 2007. The fineness hierarchy of semantic
roles and its application in nlp. Journal of Chinese
Information Processing 21(4):10–20.

Qiang Zhou, Wei Zhang, and Shiwen Yu. 1997. Build-
ing a chinese treebank. Journal of Chinese Informa-
tion Processing 4.

2077

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2078–2088
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1190

Revisiting Recurrent Networks for Paraphrastic Sentence Embeddings

John Wieting Kevin Gimpel
Toyota Technological Institute at Chicago, Chicago, IL, 60637, USA

{jwieting,kgimpel}@ttic.edu

Abstract

We consider the problem of learn-
ing general-purpose, paraphrastic sen-
tence embeddings, revisiting the setting
of Wieting et al. (2016b). While they
found LSTM recurrent networks to un-
derperform word averaging, we present
several developments that together pro-
duce the opposite conclusion. These in-
clude training on sentence pairs rather than
phrase pairs, averaging states to repre-
sent sequences, and regularizing aggres-
sively. These improve LSTMs in both
transfer learning and supervised settings.
We also introduce a new recurrent archi-
tecture, the GATED RECURRENT AVER-
AGING NETWORK, that is inspired by av-
eraging and LSTMs while outperforming
them both. We analyze our learned mod-
els, finding evidence of preferences for
particular parts of speech and dependency
relations. 1

1 Introduction

Modeling sentential compositionality is a funda-
mental aspect of natural language semantics. Re-
searchers have proposed a broad range of com-
positional functional architectures (Mitchell and
Lapata, 2008; Socher et al., 2011; Kalchbrenner
et al., 2014) and evaluated them on a large vari-
ety of applications. Our goal is to learn a general-
purpose sentence embedding function that can be
used unmodified for measuring semantic textual
similarity (STS) (Agirre et al., 2012) and can also
serve as a useful initialization for downstream
tasks. We wish to learn this embedding function

1Trained models and code are available at http://
ttic.uchicago.edu/˜wieting.

such that sentences with high semantic similar-
ity have high cosine similarity in the embedding
space. In particular, we focus on the setting of
Wieting et al. (2016b), in which models are trained
on noisy paraphrase pairs and evaluated on both
STS and supervised semantic tasks.

Surprisingly, Wieting et al. found that sim-
ple embedding functions—those based on aver-
aging word vectors—outperform more powerful
architectures based on long short-term memory
(LSTM) (Hochreiter and Schmidhuber, 1997). In
this paper, we revisit their experimental setting
and present several techniques that together im-
prove the performance of the LSTM to be superior
to word averaging.

We first change data sources: rather than
train on noisy phrase pairs from the Paraphrase
Database (PPDB; Ganitkevitch et al., 2013), we
use noisy sentence pairs obtained automatically
by aligning Simple English to standard English
Wikipedia (Coster and Kauchak, 2011). Even
though this data was intended for use by text sim-
plification systems, we find it to be efficient and ef-
fective for learning sentence embeddings, outper-
forming much larger sets of examples from PPDB.

We then show how we can modify and regular-
ize the LSTM to further improve its performance.
The main modification is to simply average the
hidden states instead of using the final one. For
regularization, we experiment with two kinds of
dropout and also with randomly scrambling the
words in each input sequence. We find that these
techniques help in the transfer learning setting and
on two supervised semantic similarity datasets as
well. Further gains are obtained on the super-
vised tasks by initializing with our models from
the transfer setting.

Inspired by the strong performance of both av-
eraging and LSTMs, we introduce a novel recur-
rent neural network architecture which we call

2078

https://doi.org/10.18653/v1/P17-1190

the GATED RECURRENT AVERAGING NETWORK

(GRAN). The GRAN outperforms averaging and
the LSTM in both the transfer and supervised
learning settings, forming a promising new recur-
rent architecture for semantic modeling.

2 Related Work

Modeling sentential compositionality has received
a great deal of attention in recent years. A com-
prehensive survey is beyond the scope of this pa-
per, but we mention popular functional families:
neural bag-of-words models (Kalchbrenner et al.,
2014), deep averaging networks (DANs) (Iyyer
et al., 2015), recursive neural networks using syn-
tactic parses (Socher et al., 2011, 2012, 2013;
İrsoy and Cardie, 2014), convolutional neural net-
works (Kalchbrenner et al., 2014; Kim, 2014; Hu
et al., 2014), and recurrent neural networks using
long short-term memory (Tai et al., 2015; Ling
et al., 2015; Liu et al., 2015). Simple operations
based on vector addition and multiplication typi-
cally serve as strong baselines (Mitchell and Lap-
ata, 2008, 2010; Blacoe and Lapata, 2012).

Most work cited above uses a supervised learn-
ing framework, so the composition function is
learned discriminatively for a particular task. In
this paper, we are primarily interested in creating
general purpose, domain independent embeddings
for word sequences. Several others have pursued
this goal (Socher et al., 2011; Le and Mikolov,
2014; Pham et al., 2015; Kiros et al., 2015; Hill
et al., 2016; Arora et al., 2017; Pagliardini et al.,
2017), though usually with the intent to extract
useful features for supervised sentence tasks rather
than to capture semantic similarity.

An exception is the work of Wieting et al.
(2016b). We closely follow their experimental
setup and directly address some outstanding ques-
tions in their experimental results. Here we briefly
summarize their main findings and their attempts
at explaining them. They made the surprising dis-
covery that word averaging outperforms LSTMs
by a wide margin in the transfer learning setting.
They proposed several hypotheses for why this oc-
curs. They first considered that the LSTM was un-
able to adapt to the differences in sequence length
between phrases in training and sentences in test.
This was ruled out by showing that neither model
showed any strong correlation between sequence
length and performance on the test data.

They next examined whether the LSTM was

overfitting on the training data, but then showed
that both models achieve similar values of the
training objective and similar performance on in-
domain held-out test sets. Lastly, they considered
whether their hyperparameters were inadequately
tuned, but extensive hyperparameter tuning did not
change the story. Therefore, the reason for the per-
formance gap, and how to correct it, was left as an
open problem. This paper takes steps toward ad-
dressing that problem.

3 Models and Training

3.1 Models
Our goal is to embed a word sequence s into a
fixed-length vector. We focus on three composi-
tional models in this paper, all of which use words
as the smallest unit of compositionality. We de-
note the tth word in s as st, and we denote its word
embedding by xt.

Our first two models have been well-studied in
prior work, so we describe them briefly. The first,
which we call AVG, simply averages the embed-
dings xt of all words in s. The only parameters
learned in this model are those in the word em-
beddings themselves, which are stored in the word
embedding matrix Ww. This model was found by
Wieting et al. (2016b) to perform very strongly for
semantic similarity tasks.

Our second model uses a long short-term mem-
ory (LSTM) recurrent neural network (Hochreiter
and Schmidhuber, 1997) to embed s. We use the
LSTM variant from Gers et al. (2003) including its
“peephole” connections. We consider two ways to
obtain a sentence embedding from the LSTM. The
first uses the final hidden vector, which we denote
h−1. The second, denoted LSTMAVG, averages
all hidden vectors of the LSTM. In both variants,
the learnable parameters include both the LSTM
parameters Wc and the word embeddings Ww.

Inspired by the success of the two models
above, we propose a third model, which we call
the GATED RECURRENT AVERAGING NETWORK

(GRAN). The GATED RECURRENT AVERAGING

NETWORK combines the benefits of AVG and
LSTMs. In fact it reduces to AVG if the output
of the gate is all ones. We first use an LSTM to
generate a hidden vector, ht, for each word st in
s. Then we use ht to compute a gate that will
be elementwise-multiplied with xt, resulting in a
new, gated hidden vector at for each step t:

at = xt � σ(Wxxt +Whht + b) (1)

2079

where Wx and Wh are parameter matrices, b is a
parameter vector, and σ is the elementwise logis-
tic sigmoid function. After all at have been gener-
ated for a sentence, they are averaged to produce
the embedding for that sentence. This model in-
cludes as learnable parameters those of the LSTM,
the word embeddings, and the additional parame-
ters in Eq. (1). For both the LSTM and GRAN
models, we use Wc to denote the “compositional”
parameters, i.e., all parameters other than the word
embeddings.

The motivation for the GRAN is that we are
contextualizing the word embeddings prior to av-
eraging. The gate can be seen as an attention, at-
tending to the prior context of the sentence.2

We also experiment with four other variations of
this model, though they generally were more com-
plex and showed inferior performance. In the first,
GRAN-2, the gate is applied to ht (rather than xt)
to produce at, and then these at are averaged as
before.

GRAN-3 and GRAN-4 use two gates: one ap-
plied to xt and one applied to at−1. We tried
two different ways of computing these gates: for
each gate i, σ(Wxixt+Whiht+bi) (GRAN-3) or
σ(Wxixt +Whiht +Waiat−1 + bi) (GRAN-4).
The sum of these two terms comprised at. In this
model, the last average hidden state, a−1, was used
as the sentence embedding after dividing it by the
length of the sequence. In these models, we are
additionally keeping a running average of the em-
beddings that is being modified by the context at
every time step. In GRAN-4, this running average
is also considered when producing the contextual-
ized word embedding.

Lastly, we experimented with a fifth GRAN,
GRAN-5, in which we use two gates, calculated
by σ(Wxixt +Whiht + bi) for each gate i. The
first is applied to xt and the second is applied to ht.
The output of these gates is then summed. There-
fore GRAN-5 can be reduced to either word-
averaging or averaging LSTM states, depending
on the behavior of the gates. If the first gate
is all ones and the second all zeros throughout
the sequence, the model is equivalent to word-
averaging. Conversely, if the first gate is all ze-
ros and the second is all ones throughout the se-
quence, the model is equivalent to averaging the

2We tried a variant of this model without the gate. We ob-
tain at from f(Wxxt+Whht+b), where f is a nonlinearity,
tuned over tanh and ReLU. The performance of the model is
significantly worse than the GRAN in all experiments.

LSTM states. Further analysis of these models is
included in Section 4.

3.2 Training

We follow the training procedure of Wieting et al.
(2015) and Wieting et al. (2016b), described be-
low. The training data consists of a set S of phrase
or sentence pairs 〈s1, s2〉 from either the Para-
phrase Database (PPDB; Ganitkevitch et al., 2013)
or the aligned Wikipedia sentences (Coster and
Kauchak, 2011) where s1 and s2 are assumed to
be paraphrases. We optimize a margin-based loss:

min
Wc,Ww

1

|S|

(∑

〈s1,s2〉∈S
max(0, δ − cos(g(s1), g(s2))

+ cos(g(s1), g(t1))) + max(0, δ − cos(g(s1), g(s2))

+ cos(g(s2), g(t2)))

)
+ λc ‖Wc‖2 + λw ‖Wwinitial −Ww‖2

(2)

where g is the model in use (e.g., AVG or LSTM),
δ is the margin, λc and λw are regularization
parameters, Wwinitial

is the initial word embed-
ding matrix, and t1 and t2 are carefully-selected
negative examples taken from a mini-batch dur-
ing optimization. The intuition is that we want
the two phrases to be more similar to each other
(cos(g(s1), g(s2))) than either is to their respec-
tive negative examples t1 and t2, by a margin of at
least δ.

3.2.1 Selecting Negative Examples
To select t1 and t2 in Eq. (2), we simply choose the
most similar phrase in some set of phrases (other
than those in the given phrase pair). For simplicity
we use the mini-batch for this set, but it could be
a different set. That is, we choose t1 for a given
〈s1, s2〉 as follows:

t1 = argmax
t:〈t,·〉∈Sb\{〈s1,s2〉}

cos(g(s1), g(t))

where Sb ⊆ S is the current mini-batch. That is,
we want to choose a negative example ti that is
similar to si according to the current model. The
downside is that we may occasionally choose a
phrase ti that is actually a true paraphrase of si.

4 Experiments

Our experiments are designed to address the em-
pirical question posed by Wieting et al. (2016b):
why do LSTMs underperform AVG for transfer

2080

learning? In Sections 4.1.2-4.2, we make progress
on this question by presenting methods that bridge
the gap between the two models in the transfer set-
ting. We then apply these same techniques to im-
prove performance in the supervised setting, de-
scribed in Section 4.3. In both settings we also
evaluate our novel GRAN architecture, finding
it to consistently outperform both AVG and the
LSTM.

4.1 Transfer Learning
4.1.1 Datasets and Tasks
We train on large sets of noisy paraphrase pairs
and evaluate on a diverse set of 22 textual sim-
ilarity datasets, including all datasets from every
SemEval semantic textual similarity (STS) task
from 2012 to 2015. We also evaluate on the Sem-
Eval 2015 Twitter task (Xu et al., 2015) and the
SemEval 2014 SICK Semantic Relatedness task
(Marelli et al., 2014). Given two sentences, the
aim of the STS tasks is to predict their similar-
ity on a 0-5 scale, where 0 indicates the sentences
are on different topics and 5 indicates that they
are completely equivalent. We report the average
Pearson’s r over these 22 sentence similarity tasks.

Each STS task consists of 4-6 datasets covering
a wide variety of domains, including newswire,
tweets, glosses, machine translation outputs, web
forums, news headlines, image and video captions,
among others. Further details are provided in the
official task descriptions (Agirre et al., 2012, 2013,
2014, 2015).

4.1.2 Experiments with Data Sources
We first investigate how different sources of train-
ing data affect the results. We try two data
sources. The first is phrase pairs from the Para-
phrase Database (PPDB). PPDB comes in differ-
ent sizes (S, M, L, XL, XXL, and XXXL), where
each larger size subsumes all smaller ones. The
pairs in PPDB are sorted by a confidence mea-
sure and so the smaller sets contain higher preci-
sion paraphrases. PPDB is derived automatically
from naturally-occurring bilingual text, and ver-
sions of PPDB have been released for many lan-
guages without the need for any manual annota-
tion (Ganitkevitch and Callison-Burch, 2014).

The second source of data is a set of sen-
tence pairs automatically extracted from Simple
English Wikipedia and English Wikipedia arti-
cles by Coster and Kauchak (2011). This data
was extracted for developing text simplification

AVG LSTM LSTMAVG

PPDB 67.7 54.2 64.2
SimpWiki 68.4 59.3 67.5

Table 1: Test results on SemEval semantic textual
similarity datasets (Pearson’s r×100) when train-
ing on different sources of data: phrase pairs from
PPDB or simple-to-standard English Wikipedia
sentence pairs from Coster and Kauchak (2011).

systems, where each instance pairs a simple and
complex sentence representing approximately the
same information. Though the data was obtained
for simplification, we use it as a source of train-
ing data for learning paraphrastic sentence embed-
dings. The dataset, which we call SimpWiki, con-
sists of 167,689 sentence pairs.

To ensure a fair comparison, we select a sample
of pairs from PPDB XL such that the number of
tokens is approximately the same as the number
of tokens in the SimpWiki sentences.3

We use PARAGRAM-SL999 embed-
dings (Wieting et al., 2015) to initialize the word
embedding matrix (Ww) for all models. For all ex-
periments, we fix the mini-batch size to 100, and
λc to 0. We tune the margin δ over {0.4, 0.6, 0.8}
and λw over {10−4, 10−5, 10−6, 10−7, 10−8, 0}.
We train AVG for 7 epochs, and the LSTM for
3, since it converges much faster and does not
benefit from 7 epochs. For optimization we use
Adam (Kingma and Ba, 2015) with a learning rate
of 0.001. We use the 2016 STS tasks (Agirre et al.,
2016) for model selection, where we average the
Pearson’s r over its 5 datasets. We refer to this
type of model selection as test. For evaluation,
we report the average Pearson’s r over the 22
other sentence similarity tasks.

The results are shown in Table 1. We first note
that, when training on PPDB, we find the same
result as Wieting et al. (2016b): AVG outperforms
the LSTM by more than 13 points. However, when
training both on sentence pairs, the gap shrinks to
about 9 points. It appears that part of the inferior
performance for the LSTM in prior work was due
to training on phrase pairs rather than on sentence
pairs. The AVG model also benefits from train-
ing on sentences, but not nearly as much as the
LSTM.4

3The PPDB data consists of 1,341,188 phrase pairs and
contains 3 more tokens than the SimpWiki data.

4We experimented with adding EOS tags at the end of
training and test sentences, SOS tags at the start of train-

2081

Our hypothesis explaining this result is that in
PPDB, the phrase pairs are short fragments of text
which are not necessarily constituents or phrases
in any syntactic sense. Therefore, the sentences
in the STS test sets are quite different from the
fragments seen during training. We hypothesize
that while word-averaging is relatively unaffected
by this difference, the recurrent models are much
more sensitive to overall characteristics of the
word sequences, and the difference between train
and test matters much more.

These results also suggest that the SimpWiki
data, even though it was developed for text simpli-
fication, may be useful for other researchers work-
ing on semantic textual similarity tasks.

4.1.3 Experiments with LSTM Variations
We next compare LSTM and LSTMAVG. The lat-
ter consists of averaging the hidden vectors of the
LSTM rather than using the final hidden vector
as in prior work (Wieting et al., 2016b). We hy-
pothesize that the LSTM may put more empha-
sis on the words at the end of the sentence than
those at the beginning. By averaging the hidden
states, the impact of all words in the sequence is
better taken into account. Averaging also makes
the LSTM more like AVG, which we know to per-
form strongly in this setting.

The results on AVG and the LSTM models are
shown in Table 1. When training on PPDB, mov-
ing from LSTM to LSTMAVG improves perfor-
mance by 10 points, closing most of the gap with
AVG. We also find that LSTMAVG improves by
moving from PPDB to SimpWiki, though in both
cases it still lags behind AVG.

4.2 Experiments with Regularization

We next experiment with various forms of regu-
larization. Previous work (Wieting et al., 2016b,a)
only used L2 regularization. Wieting et al. (2016b)
also regularized the word embeddings back to
their initial values. Here we use L2 regularization

ing and test sentences, adding both, and adding neither. We
treated adding these tags as hyperparameters and tuned over
these four settings along with the other hyperparameters in
the original experiment. Interestingly, we found that adding
these tags, especially EOS, had a large effect on the LSTM
when training on SimpWiki, improving performance by 6
points. When training on PPDB, adding EOS tags only im-
proved performance by 1.6 points.

The addition of the tags had a smaller effect on LSTMAVG.
Adding EOS tags improved performance by 0.3 points on
SimpWiki and adding SOS tags on PPDB improved perfor-
mance by 0.9 points.

as well as several additional regularization meth-
ods we describe below.

We try two forms of dropout. The first is just
standard dropout (Srivastava et al., 2014) on the
word embeddings. The second is “word dropout”,
which drops out entire word embeddings with
some probability (Iyyer et al., 2015).

We also experiment with scrambling the inputs.
For a given mini-batch, we go through each sen-
tence pair and, with some probability, we shuf-
fle the words in each sentence in the pair. When
scrambling a sentence pair, we always shuffle both
sentences in the pair. We do this before selecting
negative examples for the mini-batch. The moti-
vation for scrambling is to make it more difficult
for the LSTM to memorize the sequences in the
training data, forcing it to focus more on the iden-
tities of the words and less on word order. Hence
it will be expected to behave more like the word
averaging model.5

We also experiment with combining scrambling
and dropout. In this setting, we tune over scram-
bling with either word dropout or dropout.

The settings for these experiments are largely
the same as those of the previous section with the
exception that we tune λw over a smaller set of
values: {10−5, 0}. When using L2 regulariza-
tion, we tune λc over {10−3, 10−4, 10−5, 10−6}.
When using dropout, we tune the dropout rate over
{0.2, 0.4, 0.6}. When using scrambling, we tune
the scrambling rate over {0.25, 0.5, 0.75}. We
also include a bidirectional model (“Bi”) for both
LSTMAVG and the GATED RECURRENT AVERAG-
ING NETWORK. We tune over two ways to com-
bine the forward and backward hidden states; the
first simply adds them together and the second
uses a single feedforward layer with a tanh ac-
tivation.

We try two approaches for model selection. The
first, test , is the same as was done in Section 4.1.2,
where we use the average Pearson’s r on the 5
2016 STS datasets. The second tunes based on
the average Pearson’s r of all 22 datasets in our
evaluation. We refer to this as oracle.

The results are shown in Table 2. They show
that dropping entire word embeddings and scram-

5We also tried some variations on scrambling that did not
yield significant improvements: scrambling after obtaining
the negative examples, partially scrambling by performing n
swaps where n comes from a Poisson distribution with a tun-
able λ, and scrambling individual sentences with some prob-
ability instead of always scrambling both in the pair.

2082

Model Regularization Oracle 2016 STS

AVG
none 68.5 68.4
dropout 68.4 68.3
word dropout 68.3 68.3

LSTM

none 60.6 59.3
L2 60.3 56.5
dropout 58.1 55.3
word dropout 66.2 65.3
scrambling 66.3 65.1
dropout, scrambling 68.4 68.4

LSTMAVG
none 67.7 67.5
dropout, scrambling 69.2 68.6

BiLSTMAVG dropout, scrambling 69.4 68.7

Table 2: Results on SemEval textual similarity
datasets (Pearson’s r × 100) when experimenting
with different regularization techniques.

Model Oracle STS 2016
GRAN (no reg.) 68.0 68.0
GRAN 69.5 68.9
GRAN-2 68.8 68.1
GRAN-3 69.0 67.2
GRAN-4 68.6 68.1
GRAN-5 66.1 64.8
BiGRAN 69.7 68.4

Table 3: Results on SemEval textual similarity
datasets (Pearson’s r × 100) for the GRAN ar-
chitectures. The first row, marked as (no reg.) is
the GRAN without any regularization. The other
rows show the result of the various GRAN models
using dropout and scrambling.

bling input sequences is very effective in improv-
ing the result of the LSTM, while neither type of
dropout improves AVG. Moreover, averaging the
hidden states of the LSTM is the most effective
modification to the LSTM in improving perfor-
mance. All of these modifications can be com-
bined to significantly improve the LSTM, finally
allowing it to overtake AVG.

In Table 3, we compare the various GRAN ar-
chitectures. We find that the GRAN provides a
small improvement over the best LSTM configu-
ration, possibly because of its similarity to AVG. It
also outperforms the other GRAN models, despite
being the simplest.

In Table 4, we show results on all individual
STS evaluation datasets after using STS 2016 for
model selection (unidirectional models only). The
LSTMAVG and GATED RECURRENT AVERAGING

NETWORK are more closely correlated in perfor-
mance, in terms of Spearman’s ρ and Pearson’r
r, than either is to AVG. But they do differ sig-
nificantly in some datasets, most notably in those
comparing machine translation output with its ref-

Dataset LSTMAVG AVG GRAN
MSRpar 49.0 45.9 47.7
MSRvid 84.3 85.1 85.2
SMT-eur 51.2 47.5 49.3
OnWN 71.5 71.2 71.5
SMT-news 68.0 58.2 58.7
STS 2012 Average 64.8 61.6 62.5
headline 77.3 76.9 76.1
OnWN 81.2 72.8 81.4
FNWN 53.2 50.2 55.6
SMT 40.7 38.0 40.3
STS 2013 Average 63.1 59.4 63.4
deft forum 56.6 55.6 55.7
deft news 78.0 78.5 77.1
headline 74.5 75.1 72.8
images 84.7 85.6 85.8
OnWN 84.9 81.4 85.1
tweet news 76.3 78.7 78.7
STS 2014 Average 75.8 75.8 75.9
answers-forums 71.8 70.6 73.1
answers-students 71.1 75.8 72.9
belief 75.3 76.8 78.0
headline 79.5 80.3 78.6
images 85.8 86.0 85.8
STS 2015 Average 76.7 77.9 77.7
2014 SICK 71.3 72.4 72.9
2015 Twitter 52.1 52.1 50.2

Table 4: Results on SemEval textual similarity
datasets (Pearson’s r × 100). The highest score in
each row is in boldface.

erence. Interestingly, both the LSTMAVG and
GATED RECURRENT AVERAGING NETWORK sig-
nificantly outperform AVG in the datasets focused
on comparing glosses like OnWN and FNWN.
Upon examination, we found that these datasets,
especially 2013 OnWN, contain examples of low
similarity with high word overlap. For exam-
ple, the pair 〈the act of preserving or protect-
ing something., the act of decreasing or reducing
something.〉 from 2013 OnWN has a gold similar-
ity score of 0.4. It appears that AVG was fooled
by the high amount of word overlap in such pairs,
while the other two models were better able to rec-
ognize the semantic differences.

4.3 Supervised Text Similarity

We also investigate if these techniques can im-
prove LSTM performance on supervised semantic
textual similarity tasks. We evaluate on two super-
vised datasets. For the first, we start with the 20
SemEval STS datasets from 2012-2015 and then
use 40% of each dataset for training, 10% for val-
idation, and the remaining 50% for testing. There
are 4,481 examples in training, 1,207 in validation,
and 6,060 in the test set. The second is the SICK
2014 dataset, using its standard training, valida-
tion, and test sets. There are 4,500 sentence pairs

2083

in the training set, 500 in the development set, and
4,927 in the test set. The SICK task is an eas-
ier learning problem since the training examples
are all drawn from the same distribution, and they
are mostly shorter and use simpler language. As
these are supervised tasks, the sentence pairs in the
training set contain manually-annotated semantic
similarity scores.

We minimize the loss function6 from Tai et al.
(2015). Given a score for a sentence pair in the
range [1,K], where K is an integer, with sentence
representations hL and hR, and model parameters
θ, they first compute:

h× = hL � hR, h+ = |hL − hR|,
hs = σ

(
W (×)h× +W (+)h+ + b(h)

)
,

p̂θ = softmax
(
W (p)hs + b(p)

)
,

ŷ = rT p̂θ,

where rT = [1 2 . . . K]. They then define a
sparse target distribution p that satisfies y = rT p:

pi =





y − byc, i = byc+ 1

byc − y + 1, i = byc
0 otherwise

for 1 ≤ i ≤ K. Then they use the following loss,
the regularized KL-divergence between p and p̂θ:

J(θ) =
1

m

m∑

k=1

KL
(
p(k)

∥∥∥ p̂(k)θ
)
,

where m is the number of training pairs.
We experiment with the LSTM, LSTMAVG,

and AVG models with dropout, word dropout, and
scrambling tuning over the same hyperparameter
as in Section 4.2. We again regularize the word
embeddings back to their initial state, tuning λw
over {10−5, 0}. We used the validation set for
each respective dataset for model selection.

The results are shown in Table 5. The GATED

RECURRENT AVERAGING NETWORK has the best
performance on both datasets. Dropout helps the
word-averaging model in the STS task, unlike in
the transfer learning setting. The LSTM bene-
fits slightly from dropout, scrambling, and aver-
aging on their own individually with the excep-
tion of word dropout on both datasets and aver-
aging on the SICK dataset. However, when com-
bined, these modifications are able to significantly

6This objective function has been shown to perform very
strongly on text similarity tasks, significantly better than
squared or absolute error.

Model Regularization STS SICK Avg.

AVG

none 79.2 85.2 82.2
dropout 80.7 84.5 82.6
word dropout 79.3 81.8 80.6
none 68.4 80.9 74.7
dropout 69.6 81.3 75.5

LSTM word dropout 68.0 76.4 72.2
scrambling 74.2 84.4 79.3
dropout, scrambling 75.0 84.2 79.6

LSTMAVG

none 69.0 79.5 74.3
dropout 69.2 79.4 74.3
word dropout 65.6 76.1 70.9
scrambling 76.5 83.2 79.9
dropout, scrambling 76.5 84.0 80.3

GRAN

none 79.7 85.2 82.5
dropout 79.7 84.6 82.2
word dropout 77.3 83.0 80.2
scrambling 81.4 85.3 83.4
dropout, scrambling 81.6 85.1 83.4

Table 5: Results from supervised training on
the STS and SICK datasets (Pearson’s r × 100).
The last column is the average result on the two
datasets.

Model STS SICK Avg.
GRAN 81.6 85.3 83.5
GRAN-2 77.4 85.1 81.3
GRAN-3 81.3 85.4 83.4
GRAN-4 80.1 85.5 82.8
GRAN-5 70.9 83.0 77.0

Table 6: Results from supervised training on the
STS and SICK datasets (Pearson’s r × 100) for
the GRAN architectures. The last column is the
average result on the two datasets.

improve the performance of the LSTM, bringing
it much closer in performance to AVG. This ex-
periment indicates that these modifications when
training LSTMs are beneficial outside the trans-
fer learning setting, and can potentially be used to
improve performance for the broad range of prob-
lems that use LSTMs to model sentences.

In Table 6 we compare the various GRAN ar-
chitectures under the same settings as the previous
experiment. We find that the GRAN still has the
best overall performance.

We also experiment with initializing the super-
vised models using our pretrained sentence model
parameters, for the AVG model (no regularization),
LSTMAVG (dropout, scrambling), and GATED

RECURRENT AVERAGING NETWORK (dropout,
scrambling) models from Table 2 and Table 3. We
both initialize and then regularize back to these
initial values, referring to this setting as “univer-
sal”.7

7In these experiments, we tuned λw over
{10, 1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 10−7, 10−8, 0}

2084

Sentence 1 Sentence 2 LAVG AVG Gold
1 the lamb is looking at the camera. a cat looking at the camera. 3.42 4.13 0.8
2 he also said shockey is “living the dream

life of a new york athlete.
“jeremy’s a good guy,” barber said, adding:“jeremy is
living the dream life of the new york athlete.

3.55 4.22 2.75

3 bloomberg chips in a billion bloomberg gives $1.1 b to university 3.99 3.04 4.0
4 in other regions, the sharia is imposed. in other areas, sharia law is being introduced by force. 4.44 3.72 4.75
5 three men in suits sitting at a table. two women in the kitchen looking at a object. 3.33 2.79 0.0
6 we never got out of it in the first place! where does the money come from in the first place? 4.00 3.33 0.8
7 two birds interacting in the grass. two dogs play with each other outdoors. 3.44 2.81 0.2

Table 7: Illustrative sentence pairs from the STS datasets showing errors made by LSTMAVG and
AVG. The last three columns show the gold similarity score, the similarity score of LSTMAVG, and the
similarity score of AVG. Boldface indicates smaller error compared to gold scores.

Model Regularization STS SICK

AVG
dropout 80.7 84.5
dropout, universal 82.9 85.6

LSTMAVG
dropout, scrambling 76.5 84.0
dropout, scrambling, universal 81.3 85.2

GRAN dropout, scrambling 81.6 85.1
dropout, scrambling, universal 82.7 86.0

Table 8: Impact of initializing and regularizing
toward universal models (Pearson’s r×100) in su-
pervised training.

The results are shown in Table 8. Initializ-
ing and regularizing to the pretrained models sig-
nificantly improves the performance for all three
models, justifying our claim that these models
serve a dual purpose: they can be used a black box
semantic similarity function, and they possess rich
knowledge that can be used to improve the perfor-
mance of downstream tasks.

5 Analysis

5.1 Error Analysis

We analyze the predictions of AVG and the recur-
rent networks, represented by LSTMAVG, on the
20 STS datasets. We choose LSTMAVG as it cor-
relates slightly less strongly with AVG than the
GRAN on the results over all SemEval datasets
used for evaluation. We scale the models’ cosine
similarities to lie within [0, 5], then compare the
predicted similarities of LSTMAVG and AVG to the
gold similarities. We analyzed instances in which
each model would tend to overestimate or under-
estimate the gold similarity relative to the other.
These are illustrated in Table 7.

We find that AVG tends to overestimate the se-
mantic similarity of a sentence pair, relative to
LSTMAVG, when the two sentences have a lot of

and λc over {10, 1, 10−1, 10−2, 10−3, 10−4, 10−5, 10−6, 0}.

word or synonym overlap, but have either impor-
tant differences in key semantic roles or where one
sentence has significantly more content than the
other. These phenomena are shown in examples 1
and 2 in Table 7. Conversely, AVG tends to under-
estimate similarity when there are one-word-to-
multiword paraphrases between the two sentences
as shown in examples 3 and 4.

LSTMAVG tends to overestimate similarity
when the two inputs have similar sequences of
syntactic categories, but the meanings of the sen-
tences are different (examples 5, 6, and 7). In-
stances of LSTMAVG underestimating the similar-
ity relative to AVG are relatively rare, and those
that we found did not have any systematic patterns.

5.2 GRAN Gate Analysis

We also investigate what is learned by the gating
function of the GATED RECURRENT AVERAGING

NETWORK. We are interested to see whether its
estimates of importance correlate with those of tra-
ditional syntactic and (shallow) semantic analysis.

We use the oracle trained GATED RECURRENT

AVERAGING NETWORK from Table 3 and cal-
culate the L1 norm of the gate after embedding
10,000 sentences from English Wikipedia.8 We
also automatically tag and parse these sentences
using the Stanford dependency parser (Manning
et al., 2014). We then compute the average gate
L1 norms for particular part-of-speech tags, de-
pendency arc labels, and their conjunction.

Table 9 shows the highest/lowest average norm
tags and dependency labels. The network prefers
nouns, especially proper nouns, as well as cardinal
numbers, which is sensible as these are among the
most discriminative features of a sentence.

Analyzing the dependency relations, we find

8We selected only sentences of less than or equal to 15
tokens to ensure more accurate parsing.

2085

POS Dep. Label
top 10 bot. 10 top 10 bot. 10
NNP TO number possessive
NNPS WDT nn cop
CD POS num det
NNS DT acomp auxpass
VBG WP appos prep
NN IN pobj cc
JJ CC vmod mark
UH PRP dobj aux
VBN EX amod expl
JJS WRB conj neg

Table 9: POS tags and dependency labels with
highest and lowest average GATED RECURRENT

AVERAGING NETWORK gate L1 norms. The lists
are ordered from highest norm to lowest in the top
10 columns, and lowest to highest in the bottom
10 columns.

Dep. Label Weight
xcomp 170.6
acomp 167.1
root 157.4
amod 143.1
advmod 121.6

Table 10: Average L1 norms for adjectives (JJ)
with selected dependency labels.

that nouns in the object position tend to have
higher weight than nouns in the subject position.
This may relate to topic and focus; the object may
be more likely to be the “new” information related
by the sentence, which would then make it more
likely to be matched by the other sentence in the
paraphrase pair.

We find that the weights of adjectives depend
on their position in the sentence, as shown in Ta-
ble 10. The highest norms appear when an ad-
jective is an xcomp, acomp, or root; this typically
means it is residing in an object-like position in its
clause. Adjectives that modify a noun (amod) have

Dep. Label Weight
pcomp 190.0
amod 178.3
xcomp 176.8
vmod 170.6
root 161.8
auxpass 125.4
prep 121.2

Table 11: Average L1 norms for words with the
tag VBG with selected dependency labels.

medium weight, and those that modify another ad-
jective or verb (advmod) have low weight.

Lastly, we analyze words tagged as VBG, a
highly ambiguous tag that can serve many syn-
tactic roles in a sentence. As shown in Table 11,
we find that when they are used to modify a
noun (amod) or in the object position of a clause
(xcomp, pcomp) they have high weight. Medium
weight appears when used in verb phrases (root,
vmod) and low weight when used as prepositions
or auxiliary verbs (prep, auxpass).

6 Conclusion

We showed how to modify and regularize LSTMs
to improve their performance for learning para-
phrastic sentence embeddings in both transfer and
supervised settings. We also introduced a new re-
current network, the GATED RECURRENT AVER-
AGING NETWORK, that improves upon both AVG

and LSTMs for these tasks, and we release our
code and trained models.

Furthermore, we analyzed the different errors
produced by AVG and the recurrent methods and
found that the recurrent methods were learning
composition that wasn’t being captured by AVG.
We also investigated the GRAN in order to better
understand the compositional phenomena it was
learning by analyzing the L1 norm of its gate over
various inputs.

Future work will explore additional data
sources, including from aligning different trans-
lations of novels (Barzilay and McKeown, 2001),
aligning new articles of the same topic (Dolan
et al., 2004), or even possibly using machine trans-
lation systems to translate bilingual text into para-
phrastic sentence pairs. Our new techniques, com-
bined with the promise of new data sources, of-
fer a great deal of potential for improved universal
paraphrastic sentence embeddings.

Acknowledgments

We thank the anonymous reviewers for their valu-
able comments. This research used resources
of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility
supported under Contract DE-AC02-06CH11357.
We thank the developers of Theano (Theano De-
velopment Team, 2016) and NVIDIA Corporation
for donating GPUs used in this research.

2086

References
Eneko Agirre, Carmen Banea, Claire Cardie, Daniel

Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada
Mihalcea, German Rigau, Larraitz Uria, and Janyce
Wiebe. 2015. SemEval-2015 task 2: Semantic tex-
tual similarity, English, Spanish and pilot on inter-
pretability. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval 2015).

Eneko Agirre, Carmen Banea, Claire Cardie, Daniel
Cer, Mona Diab, Aitor Gonzalez-Agirre, Weiwei
Guo, Rada Mihalcea, German Rigau, and Janyce
Wiebe. 2014. SemEval-2014 task 10: Multilingual
semantic textual similarity. In Proceedings of the
8th International Workshop on Semantic Evaluation
(SemEval 2014).

Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab,
Aitor Gonzalez-Agirre, Rada Mihalcea, German
Rigau, and Janyce Wiebe. 2016. Semeval-2016
task 1: Semantic textual similarity, monolingual and
cross-lingual evaluation. Proceedings of SemEval
pages 497–511.

Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-
Agirre, and Weiwei Guo. 2013. *SEM 2013 shared
task: Semantic textual similarity. In Second Joint
Conference on Lexical and Computational Seman-
tics (*SEM), Volume 1: Proceedings of the Main
Conference and the Shared Task: Semantic Textual
Similarity.

Eneko Agirre, Mona Diab, Daniel Cer, and Aitor
Gonzalez-Agirre. 2012. SemEval-2012 task 6: A
pilot on semantic textual similarity. In Proceedings
of the First Joint Conference on Lexical and Com-
putational Semantics-Volume 1: Proceedings of the
main conference and the shared task, and Volume
2: Proceedings of the Sixth International Workshop
on Semantic Evaluation. Association for Computa-
tional Linguistics.

Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2017.
A simple but tough-to-beat baseline for sentence em-
beddings. In Proceedings of the International Con-
ference on Learning Representations.

Regina Barzilay and Kathleen R McKeown. 2001. Ex-
tracting paraphrases from a parallel corpus. In Pro-
ceedings of the 39th annual meeting on Association
for Computational Linguistics.

William Blacoe and Mirella Lapata. 2012. A com-
parison of vector-based representations for seman-
tic composition. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning.

William Coster and David Kauchak. 2011. Simple en-
glish wikipedia: a new text simplification task. In
Proceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies: short papers-Volume 2.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004.
Unsupervised construction of large paraphrase cor-
pora: Exploiting massively parallel news sources. In
Proceedings of the 20th international conference on
Computational Linguistics.

Juri Ganitkevitch and Chris Callison-Burch. 2014. The
multilingual paraphrase database. In Proceedings of
the Ninth International Conference on Language Re-
sources and Evaluation (LREC-2014).

Juri Ganitkevitch, Benjamin Van Durme, and Chris
Callison-Burch. 2013. PPDB: The Paraphrase
Database. In Proceedings of HLT-NAACL.

Felix A. Gers, Nicol N. Schraudolph, and Jürgen
Schmidhuber. 2003. Learning precise timing with
LSTM recurrent networks. The Journal of Machine
Learning Research 3.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation 9(8).

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai
Chen. 2014. Convolutional neural network archi-
tectures for matching natural language sentences.
In Advances in Neural Information Processing Sys-
tems.

Ozan İrsoy and Claire Cardie. 2014. Deep recursive
neural networks for compositionality in language.
In Advances in Neural Information Processing Sys-
tems.

Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,
and Hal Daumé III. 2015. Deep unordered compo-
sition rivals syntactic methods for text classification.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers).

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers).

Yoon Kim. 2014. Convolutional neural networks for
sentence classification. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of International Conference on Learning Represen-
tations.

2087

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In Ad-
vances in Neural Information Processing Systems.

Quoc V. Le and Tomas Mikolov. 2014. Distributed rep-
resentations of sentences and documents. In Pro-
ceedings of the 31st International Conference on
Machine Learning.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

Pengfei Liu, Xipeng Qiu, Xinchi Chen, Shiyu Wu, and
Xuanjing Huang. 2015. Multi-timescale long short-
term memory neural network for modelling sen-
tences and documents. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP natural lan-
guage processing toolkit. In Proceedings of 52nd
Annual Meeting of the Association for Computa-
tional Linguistics: System Demonstrations.

Marco Marelli, Luisa Bentivogli, Marco Baroni, Raf-
faella Bernardi, Stefano Menini, and Roberto Zam-
parelli. 2014. SemEval-2014 task 1: Evaluation of
compositional distributional semantic models on full
sentences through semantic relatedness and textual
entailment. In Proceedings of the 8th International
Workshop on Semantic Evaluation (SemEval 2014).

Jeff Mitchell and Mirella Lapata. 2008. Vector-based
models of semantic composition. In Proceedings of
the 46th Annual Meeting of the Association for Com-
putational Linguistics.

Jeff Mitchell and Mirella Lapata. 2010. Composition
in distributional models of semantics. Cognitive Sci-
ence 34(8).

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2017. Unsupervised Learning of Sentence Embed-
dings using Compositional n-Gram Features. arXiv
preprint arXiv:1703.02507 .

Nghia The Pham, Germán Kruszewski, Angeliki
Lazaridou, and Marco Baroni. 2015. Jointly opti-
mizing word representations for lexical and senten-
tial tasks with the c-phrase model. In Proceedings
of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers).

Richard Socher, Eric H. Huang, Jeffrey Pennington,
Andrew Y. Ng, and Christopher D. Manning. 2011.

Dynamic pooling and unfolding recursive autoen-
coders for paraphrase detection. In Advances in
Neural Information Processing Systems.

Richard Socher, Brody Huval, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Semantic composi-
tionality through recursive matrix-vector spaces. In
Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and
Computational Natural Language Learning.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. The Journal of Machine Learning
Research 15(1).

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers).

Theano Development Team. 2016. Theano: A
Python framework for fast computation of mathe-
matical expressions. arXiv e-prints abs/1605.02688.
http://arxiv.org/abs/1605.02688.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016a. Charagram: Embedding words and
sentences via character n-grams. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016b. Towards universal paraphrastic
sentence embeddings. In Proceedings of the Inter-
national Conference on Learning Representations.

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015. From paraphrase
database to compositional paraphrase model and
back. Transactions of the ACL (TACL) .

Wei Xu, Chris Callison-Burch, and William B Dolan.
2015. SemEval-2015 task 1: Paraphrase and seman-
tic similarity in Twitter (PIT). In Proceedings of the
9th International Workshop on Semantic Evaluation
(SemEval).

2088

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2089–2098
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1191

Ontology-Aware Token Embeddings for Prepositional Phrase Attachment

Pradeep Dasigi1 Waleed Ammar2 Chris Dyer1,3 Eduard Hovy1

1Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA, USA
2Allen Institute for Artificial Intelligence, Seattle WA, USA

3DeepMind, London, UK
pdasigi@cs.cmu.edu, wammar@allenai.org,

cdyer@cs.cmu.edu, hovy@cmu.edu

Abstract

Type-level word embeddings use the same
set of parameters to represent all instances
of a word regardless of its context, ignor-
ing the inherent lexical ambiguity in lan-
guage. Instead, we embed semantic con-
cepts (or synsets) as defined in WordNet
and represent a word token in a partic-
ular context by estimating a distribution
over relevant semantic concepts. We use
the new, context-sensitive embeddings in a
model for predicting prepositional phrase
(PP) attachments and jointly learn the con-
cept embeddings and model parameters.
We show that using context-sensitive em-
beddings improves the accuracy of the
PP attachment model by 5.4% absolute
points, which amounts to a 34.4% relative
reduction in errors.

1 Introduction

Type-level word embeddings map a word type
(i.e., a surface form) to a dense vector of real num-
bers such that similar word types have similar em-
beddings. When pre-trained on a large corpus of
unlabeled text, they provide an effective mecha-
nism for generalizing statistical models to words
which do not appear in the labeled training data
for a downstream task.

In accordance with standard terminology, we
make the following distinction between types and
tokens in this paper: By word types, we mean the
surface form of the word, whereas by tokens we
mean the instantiation of the surface form in a con-
text. For example, the same word type ‘pool’ oc-
curs as two different tokens in the sentences “He
sat by the pool,” and “He played a game of pool.”

Most word embedding models define a single
vector for each word type. However, a fundamen-

tal flaw in this design is their inability to distin-
guish between different meanings and abstractions
of the same word. In the two sentences shown
above, the word ‘pool’ has different meanings, but
the same representation is typically used for both
of them. Similarly, the fact that ‘pool’ and ‘lake’
are both kinds of water bodies is not explicitly in-
corporated in most type-level embeddings. Fur-
thermore, it has become a standard practice to tune
pre-trained word embeddings as model parameters
during training for an NLP task (e.g., Chen and
Manning, 2014; Lample et al., 2016), potentially
allowing the parameters of a frequent word in the
labeled training data to drift away from related but
rare words in the embedding space.

Previous work partially addresses these prob-
lems by estimating concept embeddings in Word-
Net (e.g., Rothe and Schütze, 2015), or improv-
ing word representations using information from
knowledge graphs (e.g., Faruqui et al., 2015).
However, it is still not clear how to use a lexical
ontology to derive context-sensitive token embed-
dings.

In this work, we represent a word token in
a given context by estimating a context-sensitive
probability distribution over relevant concepts in
WordNet (Miller, 1995) and use the expected
value (i.e., weighted sum) of the concept embed-
dings as the token representation (see §2). We
take a task-centric approach towards doing this,
and learn the token representations jointly with the
task-specific parameters. In addition to providing
context-sensitive token embeddings, the proposed
method implicitly regularizes the embeddings of
related words by forcing related words to share
similar concept embeddings. As a result, the rep-
resentation of a rare word which does not appear
in the training data for a downstream task benefits
from all the updates to related words which share
one or more concept embeddings.

2089

https://doi.org/10.18653/v1/P17-1191

Figure 1: An example grounding for the word
‘pool’. Solid arrows represent possible senses and
dashed arrows represent hypernym relations. Note
that the same set of concepts are used to ground
the word ‘pool’ regardless of its context. Other
WordNet senses for ‘pool’ were removed from the
figure for simplicity.

Our approach to context-sensitive embeddings
assumes the availability of a lexical ontology.
While this work relies on WordNet, and we ex-
ploit the order of senses given by WordNet, our
model is, in principle applicable to any ontology,
with appropriate modifications. In this work, we
do not assume the inputs are sense tagged. We use
the proposed embeddings to predict prepositional
phrase (PP) attachments (see §3), a challenging
problem which emphasizes the selectional prefer-
ences between words in the PP and each of the
candidate head words. Our empirical results and
detailed analysis (see §4) show that the proposed
embeddings effectively use WordNet to improve
the accuracy of PP attachment predictions.

2 WordNet-Grounded Context-Sensitive
Token Embeddings

In this section, we focus on defining our context-
sensitive token embeddings. We first describe
our grounding of word types using WordNet con-
cepts. Then, we describe our model of context-
sensitive token-level embeddings as a weighted
sum of WordNet concept embeddings.

2.1 WordNet Grounding

We use WordNet to map each word type to a set of
synsets, including possible generalizations or ab-

stractions. Among the labeled relations defined in
WordNet between different synsets, we focus on
the hypernymy relation to help model generaliza-
tion and selectional preferences between words,
which is especially important for predicting PP at-
tachments (Resnik, 1993). To ground a word type,
we identify the set of (direct and indirect) hyper-
nyms of the WordNet senses of that word. A sim-
plified grounding of the word ‘pool’ is illustrated
in Figure 1. This grounding is key to our model of
token embeddings, to be described in the follow-
ing subsections.

2.2 Context-Sensitive Token Embeddings
Our goal is to define a context-sensitive model of
token embeddings which can be used as a drop-
in replacement for traditional type-level word em-
beddings.

Notation. Let Senses(w) be the list of synsets
defined as possible word senses of a given word
type w in WordNet, and Hypernyms(s) be the list
of hypernyms for a synset s.1 For example, ac-
cording to Figure 1:

Senses(pool) = [pond.n.01, pool.n.09], and

Hypernyms(pond.n.01) = [pond.n.01, lake.n.01,

body of water.n.01, entity.n.01]

Each WordNet synset s is associated with a set
of parameters vs ∈ Rn which represent its em-
bedding. This parameterization is similar to that
of Rothe and Schütze (2015).

Embedding model. Given a sequence of tokens
t and their corresponding word types w, let ui ∈
Rn be the embedding of the word token ti at po-
sition i. Unlike most embedding models, the to-
ken embeddings ui are not parameters. Rather, ui
is computed as the expected value of concept em-
beddings used to ground the word type wi corre-
sponding to the token ti:

ui =
∑

s∈Senses(wi)

∑

s′∈Hypernyms(s)

p(s, s′ | t,w, i) vs′

(1)

such that
∑

s∈Senses(wi)

∑

s′∈Hypernyms(s)

p(s, s′ | t,w, i) = 1

1For notational convenience, we assume that s ∈
Hypernyms(s).

2090

Figure 2: Steps for computing the context-
sensitive token embedding for the word ‘pool’, as
described in §2.2.

The distribution which governs the expectation
over synset embeddings factorizes into two com-
ponents:

p(s, s′ | t,w, i) ∝λwi exp
−λwi rank(s,wi)×

MLP([vs′ ; context(i, t)]) (2)

The first component, λwi exp
−λwi rank(s,wi), is a

sense prior which reflects the prominence of each
word sense for a given word type. Here, we
exploit2 the fact that WordNet senses are or-
dered in descending order of their frequencies, ob-
tained from sense tagged corpora, and parameter-
ize the sense prior like an exponential distribution.
rank(s, wi) denotes the rank of sense s for the
word type wi, thus rank(s, wi) = 0 corresponds
to s being the first sense of wi. The scalar pa-
rameter (λwi) controls the decay of the probability
mass, which is learned along with the other pa-
rameters in the model. Note that sense priors are
defined for each word type (wi), and are shared
across all tokens which have the same word type.

MLP([vs′ ; context(i, t)]), the second compo-
nent, is what makes the token representations
context-sensitive. It scores each concept in the
WordNet grounding of wi by feeding the concate-
nation of the concept embedding and a dense vec-

2Note that for ontologies where such information is not
available, our method is still applicable but without this com-
ponent. We show the effect of using a uniform sense prior in
§4.2.

tor that summarizes the textual context into a mul-
tilayer perceptron (MLP) with two tanh layers fol-
lowed by a softmax layer. This component is in-
spired by the soft attention often used in neural
machine translation (Bahdanau et al., 2014).3 The
definition of the context function is dependent on
the encoder used to encode the context. We de-
scribe a specific instantiation of this function in
§3.

To summarize, Figure 2 illustrates how to com-
pute the embedding of a word token ti = ‘pool’ in
a given context:

1. compute a summary of the context
context(i, t),

2. enumerate related concepts for ti,

3. compute p(s, s′ | t,w, i) for each pair (s, s′),
and

4. compute ui = E[vs′].

In the following section, we describe our model
for predicting PP attachments, including our defi-
nition for context.

3 PP Attachment

Disambiguating PP attachments is an important
and challenging NLP problem. Since modeling
hypernymy and selectional preferences is criti-
cal for successful prediction of PP attachments
(Resnik, 1993), it is a good fit for evaluating our
WordNet-grounded context-sensitive embeddings.

Figure 3, reproduced from Belinkov et al.
(2014), illustrates an example of the PP attach-
ment prediction problem. The accuracy of a
competitive English dependency parser at predict-
ing the head word of an ambiguous prepositional
phrase is 88.5%, significantly lower than the over-
all unlabeled attachment accuracy of the same
parser (94.2%).4

This section formally defines the problem of PP
attachment disambiguation, describes our baseline
model, then shows how to integrate the token-level
embeddings in the model.

3.1 Problem Definition
We follow Belinkov et al. (2014)’s definition of the
PP attachment problem. Given a preposition p and

3Although soft attention mechanism is typically used to
explicitly represent the importance of each item in a se-
quence, it can also be applied to non-sequential items.

4See Table 2 in §4 for detailed results.

2091

Figure 3: Two sentences illustrating the impor-
tance of lexicalization in PP attachment decisions.
In the top sentence, the PP ‘with butter’ attaches
to the noun ‘spaghetti’. In the bottom sentence,
the PP ‘with chopsticks’ attaches to the verb ‘ate’.
Note: This figure and caption have been repro-
duced from Belinkov et al. (2014).

its direct dependent d in the prepositional phrase
(PP), our goal is to predict the correct head word
for the PP among an ordered list of candidate head
words h. Each example in the train, validation,
and test sets consists of an input tuple 〈h, p, d〉
and an output index k to identify the correct head
among the candidates in h. Note that the order of
words that form each 〈h, p, d〉 is the same as that
in the corresponding original sentence.

3.2 Model Definition
Both our proposed and baseline models for PP
attachment use bidirectional RNN with LSTM
cells (bi-LSTM) to encode the sequence t =
〈h1, . . . , hK , p, d〉.

We score each candidate head by feeding the
concatenation of the output bi-LSTM vectors for
the head hk, the preposition p and the direct de-
pendent d through an MLP, with a fully connected
tanh layer to obtain a non-linear projection of
the concatenation, followed by a fully-connected
softmax layer:

p(hkis head) = MLPattach([lstm out(hk);

lstm out(p);

lstm out(d)]) (3)

To train the model, we use cross-entropy loss at
the output layer for each candidate head in the

training set. At test time, we predict the candidate
head with the highest probability according to the
model in Eq. 3, i.e.,

k̂ = argmax
k

p(hkis head = 1). (4)

This model is inspired by the Head-Prep-Child-
Ternary model of Belinkov et al. (2014). The main
difference is that we replace the input features for
each token with the output bi-RNN vectors.

We now describe the difference between the
proposed and the baseline models. Generally, let
lstm in(ti) and lstm out(ti) represent the input and
output vectors of the bi-LSTM for each token ti ∈
t in the sequence. The outputs at each timestep
are obtained by concatenating those of the forward
and backward LSTMs.

Baseline model. In the baseline model, we use
type-level word embeddings to represent the input
vector lstm in(ti) for a token ti in the sequence.
The word embedding parameters are initialized
with pre-trained vectors, then tuned along with the
parameters of the bi-LSTM and MLPattach. We call
this model LSTM-PP.

Proposed model. In the proposed model, we use
token level word embedding as described in §2
as the input to the bi-LSTM, i.e., lstm in(ti) =
ui. The context used for the attention compo-
nent is simply the hidden state from the previous
timestep. However, since we use a bi-LSTM, the
model essentially has two RNNs, and accordingly
we have two context vectors, and associated at-
tentions. That is, contextf (i, t) = lstm in(ti−1)
for the forward RNN and contextb(i, t) =
lstm in(ti+1) for the backward RNN. Conse-
quently, each token gets two representations, one
from each RNN. The synset embedding param-
eters are initialized with pre-trained vectors and
tuned along with the sense decay (λw) and MLP
parameters from Eq. 2, the parameters of the bi-
LSTM and those of MLPattach. We call this model
OntoLSTM-PP.

4 Experiments

Dataset and evaluation. We used the English
PP attachment dataset created and made available
by Belinkov et al. (2014). The training and test
splits contain 33,359 and 1951 labeled examples
respectively. As explained in §3.1, the input for
each example is 1) an ordered list of candidate
head words, 2) the preposition, and 3) the direct

2092

dependent of the preposition. The head words are
either nouns or verbs and the dependent is always a
noun. All examples in this dataset have at least two
candidate head words. As discussed in Belinkov
et al. (2014), this dataset is a more realistic PP at-
tachment task than the RRR dataset (Ratnaparkhi
et al., 1994). The RRR dataset is a binary classifi-
cation task with exactly two head word candidates
in all examples. The context for each example in
the RRR dataset is also limited which defeats the
purpose of our context-sensitive embeddings.

Model specifications and hyperparameters.
For efficient implementation, we use mini-batch
updates with the same number of senses and hy-
pernyms for all examples, padding zeros and trun-
cating senses and hypernyms as needed. For each
word type, we use a maximum of S senses and
H indirect hypernyms from WordNet. In our ini-
tial experiments on a held-out development set
(10% of the training data), we found that values
greater than S = 3 and H = 5 did not im-
prove performance. We also used the develop-
ment set to tune the number of layers in MLPattach
separately for the OntoLSTM-PP and LSTM-PP,
and the number of layers in the attention MLP in
OntoLSTM-PP. When a synset has multiple hy-
pernym paths, we use the shortest one. Finally,
words types which do not appear in WordNet are
assumed to have one unique sense per word type
with no hypernyms. Since the POS tag for each
word is included in the dataset, we exclude Word-
Net synsets which are incompatible with the POS
tag. The synset embedding parameters are initial-
ized using the synset vectors obtained by running
AutoExtend (Rothe and Schütze, 2015) on 100-
dimensional GloVe (Pennington et al., 2014) vec-
tors for WordNet 3.1. We refer to this embedding
as GloVe-extended. Representation for the OOV
word types in LSTM-PP and OOV synset types in
OntoLSTM-PP were randomly drawn from a uni-
form 100-d distribution. Initial sense prior param-
eters (λw) were also drawn from a uniform 1-d dis-
tribution.

Baselines. In our experiments, we compare our
proposed model, OntoLSTM-PP with three base-
lines – LSTM-PP initialized with GloVe em-
bedding, LSTM-PP initialized with GloVe vec-
tors retrofitted to WordNet using the approach of
Faruqui et al. (2015) (henceforth referred to as
GloVe-retro), and finally the best performing stan-

dalone PP attachment system from Belinkov et al.
(2014), referred to as HPCD (full) in the paper.
HPCD (full) is a neural network model that learns
to compose the vector representations of each of
the candidate heads with those of the preposition
and the dependent, and predict attachments. The
input representations are enriched using syntactic
context information, POS, WordNet and VerbNet
(Kipper et al., 2008) information and the distance
of the head word from the PP is explicitly encoded
in composition architecture. In contrast, we do not
use syntactic context, VerbNet and distance infor-
mation, and do not explicitly encode POS infor-
mation.

4.1 PP Attachment Results

Table 1 shows that our proposed token level em-
bedding scheme OntoLSTM-PP outperforms the
better variant of our baseline LSTM-PP (with
GloVe-retro intialization) by an absolute accuracy
difference of 4.9%, or a relative error reduction
of 32%. OntoLSTM-PP also outperforms HPCD
(full), the previous best result on this dataset.

Initializing the word embeddings with GloVe-
retro (which uses WordNet as described in Faruqui
et al. (2015)) instead of GloVe amounts to a small
improvement, compared to the improvements ob-
tained using OntoLSTM-PP. This result illustrates
that our approach of dynamically choosing a con-
text sensitive distribution over synsets is a more
effective way of making use of WordNet.

Effect on dependency parsing. Following Be-
linkov et al. (2014), we used RBG parser (Lei
et al., 2014), and modified it by adding a binary
feature indicating the PP attachment predictions
from our model.

We compare four ways to compute the addi-
tional binary features: 1) the predictions of the
best standalone system HPCD (full) in Belinkov
et al. (2014), 2) the predictions of our baseline
model LSTM-PP, 3) the predictions of our im-
proved model OntoLSTM-PP, and 4) the gold la-
bels Oracle PP.

Table 2 shows the effect of using the PP attach-
ment predictions as features within a dependency
parser. We note there is a relatively small differ-
ence in unlabeled attachment accuracy for all de-
pendencies (not only PP attachments), even when
gold PP attachments are used as additional fea-
tures to the parser. However, when gold PP attach-
ment are used, we note a large potential improve-

2093

System Initialization Embedding Resources Test Acc.
HPCD (full) Syntactic-SG Type WordNet, VerbNet 88.7
LSTM-PP GloVe Type - 84.3
LSTM-PP GloVe-retro Type WordNet 84.8
OntoLSTM-PP GloVe-extended Token WordNet 89.7

Table 1: Results on Belinkov et al. (2014)’s PPA test set. HPCD (full) is from the original paper, and
it uses syntactic SkipGram. GloVe-retro is GloVe vectors retrofitted (Faruqui et al., 2015) to WordNet
3.1, and GloVe-extended refers to the synset embeddings obtained by running AutoExtend (Rothe and
Schütze, 2015) on GloVe.

System Full UAS PPA Acc.
RBG 94.17 88.51
RBG + HPCD (full) 94.19 89.59
RBG + LSTM-PP 94.14 86.35
RBG + OntoLSTM-PP 94.30 90.11
RBG + Oracle PP 94.60 98.97

Table 2: Results from RBG dependency parser
with features coming from various PP attachment
predictors and oracle attachments.

ment of 10.46 points in PP attachment accuracies
(between the PPA accuracy for RBG and RBG +
Oracle PP), which confirms that adding PP pre-
dictions as features is an effective approach. Our
proposed model RBG + OntoLSTM-PP recovers
15% of this potential improvement, while RBG +
HPCD (full) recovers 10%, which illustrates that
PP attachment remains a difficult problem with
plenty of room for improvements even when us-
ing a dedicated model to predict PP attachments
and using its predictions in a dependency parser.

We also note that, although we use the same
predictions of the HPCD (full) model in Belinkov
et al. (2014)5, we report different results than Be-
linkov et al. (2014). For example, the unlabeled
attachment score (UAS) of the baselines RBG and
RBG + HPCD (full) are 94.17 and 94.19, respec-
tively, in Table 2, compared to 93.96 and 94.05,
respectively, in Belinkov et al. (2014). This is due
to the use of different versions of the RBG parser.6

4.2 Analysis

In this subsection, we analyze different aspects of
our model in order to develop a better understand-

5The authors kindly provided their predictions for 1942
test examples (out of 1951 examples in the full test set). In
Table 2, we use the same subset of 1942 test examples and
will include a link to the subset in the final draft.

6We use the latest commit (SHA: e07f74) on the GitHub
repository of the RGB parser.

ing of its behavior.

Effect of context sensitivity and sense priors.
We now show some results that indicate the rela-
tive strengths of two components of our context-
sensitive token embedding model. The second
row in Table 3 shows the test accuracy of a sys-
tem trained without sense priors (that is, making
p(s|wi) from Eq. 1 a uniform distribution), and
the third row shows the effect of making the to-
ken representations context-insensitive by giving a
similar attention score to all related concepts, es-
sentially making them type level representations,
but still grounded in WordNet. As it can be seen,
removing context sensitivity has an adverse effect
on the results. This illustrates the importance of
the sense priors and the attention mechanism.

It is interesting that, even without sense priors
and attention, the results with WordNet grounding
is still higher than that of the two LSTM-PP sys-
tems in Table 1. This result illustrates the regu-
larization behavior of sharing concept embeddings
across multiple words, which is especially impor-
tant for rare words.

Effect of training data size. Since OntoLSTM-
PP uses external information, the gap between the
model and LSTM-PP is expected to be more pro-
nounced when the training data sizes are smaller.
To test this hypothesis, we trained the two mod-
els with different amounts of training data and
measured their accuracies on the test set. The
plot is shown in Figure 4. As expected, the gap
tends to be larger at smaller data sizes. Surpris-
ingly, even with 2000 sentences in the training data
set, OntoLSTM-PP outperforms LSTM-PP trained
with the full data set. When both the models are
trained with the full dataset, LSTM-PP reaches a
training accuracy of 95.3%, whereas OntoLSTM-
PP reaches 93.5%. The fact that LSTM-PP is over-
fitting the training data more, indicates the regular-

2094

Figure 4: Effect of training data size on test accu-
racies of OntoLSTM-PP and LSTM-PP.

Model PPA Acc.
full 89.7
- sense priors 88.4
- attention 87.5

Table 3: Effect of removing sense priors and con-
text sensitivity (attention) from the model.

ization capability of OntoLSTM-PP.

Qualitative analysis. To better understand the
effect of WordNet grounding, we took a sample of
100 sentences from the test set whose PP attach-
ments were correctly predicted by OntoLSTM-
PP but not by LSTM-PP. A common pattern ob-
served was that those sentences contained words
not seen frequently in the training data. Figure 5
shows two such cases. In both cases, the weights
assigned by OntoLSTM-PP to infrequent words
are also shown. The word types soapsuds and
buoyancy do not occur in the training data, but
OntoLSTM-PP was able to leverage the parame-
ters learned for the synsets that contributed to their
token representations. Another important observa-
tion is that the word type buoyancy has four senses
in WordNet (we consider the first three), none of
which is the metaphorical sense that is applicable
to markets as shown in the example here. Select-
ing a combination of relevant hypernyms from var-
ious senses may have helped OntoLSTM-PP make
the right prediction. This shows the value of us-
ing hypernymy information from WordNet. More-
over, this indicates the strength of the hybrid na-
ture of the model, that lets it augment ontological
information with distributional information.

Parameter space. We note that the vocabulary
sizes in OntoLSTM-PP and LSTM-PP are compa-
rable as the synset types are shared across word
types. In our experiments with the full PP at-
tachment dataset, we learned embeddings for 18k
synset types with OntoLSTM-PP and 11k word
types with LSTM-PP. Since the biggest contribu-
tion to the parameter space comes from the em-
bedding layer, the complexities of both the models
are comparable.

5 Related Work

This work is related to various lines of research
within the NLP community: dealing with syn-
onymy and homonymy in word representations
both in the context of distributed embeddings
and more traditional vector spaces; hybrid models
of distributional and knowledge based semantics;
and selectional preferences and their relation with
syntactic and semantic relations.

The need for going beyond a single vector
per word-type has been well established for a
while, and many efforts were focused on building
multi-prototype vector space models of meaning
(Reisinger and Mooney, 2010; Huang et al., 2012;
Chen et al., 2014; Jauhar et al., 2015; Neelakantan
et al., 2015; Arora et al., 2016, etc.). However, the
target of all these approaches is obtaining multi-
sense word vector spaces, either by incorporating
sense tagged information or other kinds of exter-
nal context. The number of vectors learned is still
fixed, based on the preset number of senses. In
contrast, our focus is on learning a context depen-
dent distribution over those concept representa-
tions. Other work not necessarily related to multi-
sense vectors, but still related to our work includes
Belanger and Kakade (2015)’s work which pro-
posed a Gaussian linear dynamical system for es-
timating token-level word embeddings, and Vil-
nis and McCallum (2015)’s work which proposed
mapping each word type to a density instead of
a point in a space to account for uncertainty in
meaning. These approaches do not make use of
lexical ontologies and are not amenable for joint
training with a downstream NLP task.

Related to the idea of concept embeddings is
Rothe and Schütze (2015) who estimated Word-
Net synset representations, given pre-trained type-
level word embeddings. In contrast, our work fo-
cuses on estimating token-level word embeddings
as context sensitive distributions of concept em-

2095

Figure 5: Two examples from the test set where OntoLSTM-PP predicts the head correctly and LSTM-PP
does not, along with weights by OntoLSTM-PP to synsets that contribute to token representations of in-
frequent word types. The prepositions are shown in bold, LSTM-PP’s predictions in red and OntoLSTM-
PP’s predictions in green. Words that are not candidate heads or dependents are shown in brackets.

beddings.

There is a large body of work that tried to im-
prove word embeddings using external resources.
Yu and Dredze (2014) extended the CBOW model
(Mikolov et al., 2013) by adding an extra term in
the training objective for generating words con-
ditioned on similar words according to a lexi-
con. Jauhar et al. (2015) extended the skipgram
model (Mikolov et al., 2013) by representing word
senses as latent variables in the generation pro-
cess, and used a structured prior based on the on-
tology. Faruqui et al. (2015) used belief propa-
gation to update pre-trained word embeddings on
a graph that encodes lexical relationships in the
ontology. Similarly, Johansson and Pina (2015)
improved word embeddings by representing each
sense of the word in a way that reflects the topol-
ogy of the semantic network they belong to, and
then representing the words as convex combina-
tions of their senses. In contrast to previous work
that was aimed at improving type level word repre-
sentations, we propose an approach for obtaining
context-sensitive embeddings at the token level,
while jointly optimizing the model parameters for
the NLP task of interest.

Resnik (1993) showed the applicability of se-
mantic classes and selectional preferences to re-
solving syntactic ambiguity. Zapirain et al. (2013)
applied models of selectional preferences auto-

matically learned from WordNet and distributional
information, to the problem of semantic role la-
beling. Resnik (1993); Brill and Resnik (1994);
Agirre (2008) and others have used WordNet in-
formation towards improving prepositional phrase
attachment predictions.

6 Conclusion

In this paper, we proposed a grounding of lexical
items which acknowledges the semantic ambigu-
ity of word types using WordNet and a method
to learn a context-sensitive distribution over their
representations. We also showed how to integrate
the proposed representation with recurrent neural
networks for disambiguating prepositional phrase
attachments, showing that the proposed WordNet-
grounded context-sensitive token embeddings out-
performs standard type-level embeddings for pre-
dicting PP attachments. We provided a detailed
qualitative and quantitative analysis of the pro-
posed model.

Implementation and code availability. The
models are implemented using Keras (Chol-
let, 2015), and the functionality is avail-
able at https://github.com/pdasigi/
onto-lstm in the form of Keras layers to make
it easier to use the proposed embedding model in
other NLP problems.

2096

Future work. This approach may be extended
to other NLP tasks that can benefit from using
encoders that can access WordNet information.
WordNet also has some drawbacks, and may not
always have sufficient coverage given the task at
hand. As we have shown in §4.2, our model can
deal with missing WordNet information by aug-
menting it with distributional information. More-
over, the methods described in this paper can be
extended to other kinds of structured knowledge
sources like Freebase which may be more suitable
for tasks like question answering.

Acknowledgements

The first author is supported by a fellowship from
the Allen Institute for Artificial Intelligence. We
would like to thank Matt Gardner, Jayant Krishna-
murthy, Julia Hockenmaier, Oren Etzioni, Hector
Liu, Filip Ilievski, and anonymous reviewers for
their comments.

References
Eneko Agirre. 2008. Improving parsing and pp attach-

ment performance with sense information. In ACL.
Citeseer.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma,
and Andrej Risteski. 2016. Linear algebraic struc-
ture of word senses, with applications to polysemy.
arXiv preprint arXiv:1601.03764 .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR
abs/1409.0473.

David Belanger and Sham M. Kakade. 2015. A linear
dynamical system model for text. In ICML.

Yonatan Belinkov, Tao Lei, Regina Barzilay, and Amir
Globerson. 2014. Exploring compositional architec-
tures and word vector representations for preposi-
tional phrase attachment. Transactions of the Asso-
ciation for Computational Linguistics 2:561–572.

Eric Brill and Philip Resnik. 1994. A rule-based ap-
proach to prepositional phrase attachment disam-
biguation. In Proceedings of the 15th conference on
Computational linguistics-Volume 2. Association for
Computational Linguistics, pages 1198–1204.

Danqi Chen and Christopher D Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In EMNLP. pages 740–750.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and
disambiguation. In EMNLP. pages 1025–1035.

François Chollet. 2015. Keras. https://github.
com/fchollet/keras.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard H. Hovy, and Noah A. Smith.
2015. Retrofitting word vectors to semantic lexi-
cons. In NAACL.

Eric H Huang, Richard Socher, Christopher D Man-
ning, and Andrew Y Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguis-
tics: Long Papers-Volume 1. Association for Com-
putational Linguistics, pages 873–882.

Sujay Kumar Jauhar, Chris Dyer, and Eduard H. Hovy.
2015. Ontologically grounded multi-sense represen-
tation learning for semantic vector space models. In
NAACL.

Richard Johansson and Luis Nieto Pina. 2015. Em-
bedding a semantic network in a word space. In
In Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics–Human Language Technologies.
Citeseer.

Karin Kipper, Anna Korhonen, Neville Ryant, and
Martha Palmer. 2008. A large-scale classification of
english verbs. Language Resources and Evaluation
42(1):21–40.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In NAACL.

Tao Lei, Yuan Zhang, Regina Barzilay, and Tommi
Jaakkola. 2014. Low-rank tensors for scoring de-
pendency structures. In ACL. Association for Com-
putational Linguistics.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S.
Corrado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their composi-
tionality. CoRR abs/1310.4546.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM 38(11):39–
41.

Arvind Neelakantan, Jeevan Shankar, Alexandre
Passos, and Andrew McCallum. 2015. Effi-
cient non-parametric estimation of multiple embed-
dings per word in vector space. arXiv preprint
arXiv:1504.06654 .

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP.

Adwait Ratnaparkhi, Jeff Reynar, and Salim Roukos.
1994. A maximum entropy model for prepositional
phrase attachment. In Proceedings of the workshop
on Human Language Technology.

2097

Joseph Reisinger and Raymond J Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In HLT-ACL.

Philip Resnik. 1993. Semantic classes and syntactic
ambiguity. In Proceedings of the workshop on Hu-
man Language Technology. Association for Compu-
tational Linguistics.

Sascha Rothe and Hinrich Schütze. 2015. Autoex-
tend: Extending word embeddings to embeddings
for synsets and lexemes. In ACL.

Luke Vilnis and Andrew McCallum. 2015. Word rep-
resentations via gaussian embedding. In ICLR.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In ACL.

Benat Zapirain, Eneko Agirre, Lluis Marquez, and Mi-
hai Surdeanu. 2013. Selectional preferences for se-
mantic role classification. Computational Linguis-
tics .

2098

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2099–2109
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1192

Identifying 1950s American Jazz Musicians:
Fine-Grained IsA Extraction via Modifier Composition

Ellie Pavlick∗

University of Pennsylvania
3330 Walnut Street

Philadelphia, Pennsylvania 19104
epavlick@seas.upenn.edu

Marius Paşca
Google Inc.

1600 Amphitheatre Parkway
Mountain View, California 94043

mars@google.com

Abstract

We present a method for populating
fine-grained classes (e.g., “1950s Amer-
ican jazz musicians”) with instances
(e.g., Charles Mingus). While state-
of-the-art methods tend to treat class
labels as single lexical units, the pro-
posed method considers each of the in-
dividual modifiers in the class label rel-
ative to the head. An evaluation on the
task of reconstructing Wikipedia cate-
gory pages demonstrates a >10 point
increase in AUC, over a strong baseline
relying on widely-used Hearst patterns.

1 Introduction

The majority of approaches (Snow et al., 2006;
Shwartz et al., 2016) for extracting IsA rela-
tions from text rely on lexical patterns as the
primary signal of whether an instance belongs
to a class. For example, observing a pattern
like “X such as Y” is a strong indication that
Y (e.g., “Charles Mingus”) is an instance of
class X (e.g., “musician”) (Hearst, 1992).

Methods based on these “Hearst patterns”
assume that class labels can be treated as
atomic lexicalized units. This assumption has
several significant weakness. First, in order to
recognize an instance of a class, these pattern-
based methods require that the entire class la-
bel be observed verbatim in text. The require-
ment is reasonable for class labels containing
a single word, but in practice, there are many
possible fine-grained classes: not only “mu-
sicians” but also “1950s American jazz mu-
sicians”. The probability that a given label
will appear in its entirety within one of the
expected patterns is very low, even in large

∗Contributed during an internship at Google.

1950s American jazz musicians
. . . seminal musicians such as Charles Mingus
and George Russell. . .
. . .A virtuoso bassist and composer, Mingus ir-
revocably changed the face of jazz. . .
. . .Mingus truly was a product of America in
all its historic complexities. . .
. . .Mingus dominated the scene back in the
1950s and 1960s. . .

Figure 1: We extract instances of fine-grained
classes by considering each of the modifiers in
the class label individually. This allows us to
extract instances even when the full class label
never appears in text.

amounts of text. Second, when class labels
are treated as though they cannot be decom-
posed, every class label must be modeled inde-
pendently, even those containing overlapping
words (“American jazz musician”, “French
jazz musician”). As a result, the number of
meaning representations to be learned is ex-
ponential in the length of the class label, and
quickly becomes intractable. Thus, composi-
tional models of taxonomic relations are nec-
essary for better language understanding.

We introduce a compositional approach for
reasoning about fine-grained class labels. Our
approach is based on the notion from formal
semantics, in which modifiers (“1950s”) corre-
spond to properties that differentiate instances
of a subclass (“1950s musicians”) from in-
stances of the superclass (“musicians”) (Heim
and Kratzer, 1998). Our method consists of
two stages: interpreting each modifier rela-
tive to the head (“musicians active during
1950s”), and using the interpretations to iden-
tify instances of the class from text (Figure
1). Our main contributions are: 1) a compo-
sitional method for IsA extraction, which in-

2099

https://doi.org/10.18653/v1/P17-1192

volves a novel application of noun-phrase para-
phrasing methods to the task of semantic tax-
onomy induction and 2) the operationalization
of a formal semantics framework to address
two aspects of semantics that are often kept
separate in NLP: assigning intrinsic “mean-
ing” to a phrase, and reasoning about that
phrase in a truth-theoretic context.

2 Related Work

Noun Phrase Interpretation. Compound
noun phrases (“jazz musician”) communicate
implicit semantic relations between modifiers
and the head. Many efforts to provide se-
mantic interpretations of such phrases rely on
matching the compound to pre-defined pat-
terns or semantic ontologies (Fares et al., 2015;
Ó Séaghdha and Copestake, 2007; Tratz and
Hovy, 2010; Surtani and Paul, 2015; Choi
et al., 2015). Recently, interpretations may
take the form of arbitrary natural language
predicates (Hendrickx et al., 2013). Most
approaches are supervised, comparing un-
seen noun compounds to the most similar
phrase seen in training (Wijaya and Gianfor-
toni, 2011; Nulty and Costello, 2013; Van de
Cruys et al., 2013). Other unsupervised ap-
proaches apply information extraction tech-
niques to paraphrase noun compounds (Kim
and Nakov, 2011; Xavier and Strube de Lima,
2014; Paşca, 2015). They focus exclusively on
providing good paraphrases for an input noun
compound. To our knowledge, ours is the first
attempt to use these interpretations for the
downstream task of IsA relation extraction.

IsA Relation Extraction. Most efforts to
acquire taxonomic relations from text build on
the seminal work of Hearst (1992), which ob-
serves that certain textual patterns–e.g., “X
and other Y”–are high-precision indicators of
whether X is a member of class Y. Recent
work focuses on learning such patterns au-
tomatically from corpora (Snow et al., 2006;
Shwartz et al., 2016). These IsA extraction
techniques provide a key step for the more gen-
eral task of knowledge base population. The
“universal schema” approach (Riedel et al.,
2013; Kirschnick et al., 2016; Verga et al.,
2017), which infers relations using matrix fac-
torization, often includes Hearst patterns as
input features. Graphical (Bansal et al., 2014)

and joint inference models (Movshovitz-Attias
and Cohen, 2015) typically require Hearst pat-
terns to define an inventory of possible classes.
A separate line of work avoids Hearst pat-
terns by instead exploiting semi-structured
data from HTML markup (Wang and Cohen,
2009; Dalvi et al., 2012; Pasupat and Liang,
2014). These approaches all share the limita-
tion that, in practice, in order for a class to
be populated with instances, the entire class
label has to have been observed verbatim in
text. This requirement limits the ability to
handle arbitrarily fine-grained classes. Our
work addresses this limitation by modeling
fine-grained class labels compositionally. Thus
the proposed method can combine evidence
from multiple sentences, and can perform IsA
extraction without requiring any example in-
stances of a given class.1

Taxonomy Construction. Previous work
on the construction of a taxonomy of IsA rela-
tions (Flati et al., 2014; de Melo and Weikum,
2010; Kozareva and Hovy, 2010; Ponzetto and
Strube, 2007; Ponzetto and Navigli, 2009) con-
siders that task to be different than extracting
a flat set of IsA relations from text in prac-
tice. Challenges specific to taxonomy con-
struction include overall concept positioning
and how to discover whether concepts are un-
related, subordinated or parallel to each other
(Kozareva and Hovy, 2010); the need to re-
fine and enrich the taxonomy (Flati et al.,
2014); the difficulty in adding relevant IsA
relations towards the top of the taxonomy
(Ponzetto and Navigli, 2009); eliminating cy-
cles and inconsistencies (Ponzetto and Navigli,
2009; Kozareva and Hovy, 2010). For prac-
tical purposes, these challenges are irrelevant
when extracting flat IsA relations. Whereas
Flati et al. (2014); Bizer et al. (2009); de
Melo and Weikum (2010); Nastase and Strube
(2013); Ponzetto and Strube (2007); Ponzetto
and Navigli (2009); Hoffart et al. (2013) rely
on data within human-curated resources, our
work operates over unstructured text. Re-
sources constructed in Bizer et al. (2009); Nas-
tase and Strube (2013); Hoffart et al. (2013)
contain not just a taxonomy of IsA relations,

1Pasupat and Liang (2014) also focuses on zero-shot
IsA extraction, but exploits HTML document struc-
ture, rather than reasoning compositionally.

2100

but also relation types other than IsA.

3 Modifiers as Functions

Formalization. In formal semantics, mod-
ification is modeled as function application.
Specifically, let MH be a class label consisting
of a head H, which we assume to be a com-
mon noun, preceded by a modifier M . We use
J·K to represent the “interpretation function”
that maps a linguistic expression to its deno-
tation in the world. The interpretation of a
common noun is the set of entities2 in the uni-
verse U . They are denoted by the noun (Heim
and Kratzer, 1998):

JHK = {e ∈ U | e is a H} (1)

The interpretation of a modifier M is a func-
tion that maps between sets of entities. That
is, modifiers select a subset3 of the input set:

JMK(H) = {e ∈ H | e satisfies M} (2)

This formalization leaves open how one de-
cides whether or not “e satisfiesM”. This non-
trivial, as the meaning of a modifier can vary
depending on the class it is modifying: if e is
a “good student”, e is not necessarily a “good
person”, making it difficult to model whether
“e satisfies good” in general. We therefore re-
frame the above equation, so that the decision
of whether “e satisfies M” is made by calling
a binary function φM , parameterized by the
class H within which e is being considered:

JMK(H) = {e ∈ H | φM (H, e)} (3)

Conceptually, φM captures the core “mean-
ing” of the modifier M , which is the set of
properties that differentiate members of the
output class MH from members of the more
general input class H. This formal semantics
framework has two important consequences.
First, the modifier has an intrinsic “mean-
ing”. The properties entailed by the modi-
fier are independent of the particular state of
the world. This makes it possible to make in-
ferences about “1950s musician” even if no

2We use “entities” and “instances” interchange-
ably;“entities” is standard terminology in linguistics.

3As does virtually all previous work in information
extraction, we assume that modifiers are subsective, ac-
knowledging the limitations (Kamp and Partee, 1995).

1950s musician have been observed. Second,
the modifier is a function that can be applied
in a truth-theoretic setting. That is, apply-
ing “1950s” to the set of “musicians” returns
exactly the set of “1950s musicians”.

Computational Approaches. While the
notion of modifiers as functions has been in-
corporated into computational models previ-
ously, prior work focuses on either assigning an
intrinsic meaning to M or on operationalizing
M in a truth-theoretic sense, but not on do-
ing both simultaneously. For example, Young
et al. (2014) focuses exclusively on the subset
selection aspect of modification. That is, given
a set of instances H and a modifier M , their
method could return the subset MH. How-
ever, their method does not model the mean-
ing of the modifier itself, so that, e.g., if there
were no red cars in their model of the world,
the phrase “red cars” would have no mean-
ing. In contrast, Baroni and Zamparelli (2010)
models the meaning of modifiers explicitly as
functions that map between vector-space rep-
resentations of nouns. However, their model
focuses on similarity between class labels–e.g.,
to say that “important routes” is similar to
“major roads”–and it is not obvious how the
method could be operationalized in order to
identify instances of those classes. A contri-
bution of our work is to model the semantics
of M intrinsically, but in a way that permits
application in the model theoretic setting. We
learn an explicit model of the “meaning” of a
modifier M relative to a head H, represented
as a distribution over properties that differen-
tiate the members of the class MH from those
of the class H. We then use this representa-
tion to identify the subset of instances of H,
which constitute the subclass MH.

4 Learning Modifier Interpretations

4.1 Setup

For each modifier M , we would like to learn
the function φM from Eq. 3. Doing so makes
it possible, given H and an instance e ∈ H,
to decide whether e has the properties re-
quired to be an instance of MH. In gen-
eral, there is no systematic way to determine
the implied relation between M and H, as
modifiers can arguably express any semantic
relation, given the right context (Weiskopf,

2101

2007). We therefore model the semantic re-
lation between M and H as a distribution
over properties that could potentially define
the subclass MH ⊆ H. We will refer to
this distribution as a “property profile” for
M relative to H. We make the assumption
that relations between M and H that are dis-
cussed more often are more likely to capture
the important properties of the subclass MH.
This assumption is not perfect (Section 4.4)
but has given good results for paraphrasing
noun phrases (Nakov and Hearst, 2013; Paşca,
2015). Our method for learning property pro-
files is based on the unsupervised method pro-
posed by Paşca (2015), which uses query logs
as a source of common sense knowledge, and
rewrites noun compounds by matching MH
(“American musicians”) to queries of the form
“H(.∗)M” (“musicians from America”).

4.2 Inputs

We assume two inputs: 1) an IsA repository,
O, containing 〈e, C〉 tuples where C is a cat-
egory and e is an instance of C, and 2) a
fact repository, D, containing 〈s, p, o, w〉 tuples
where s and o are noun phrases, p is a pred-
icate, and w is a confidence that p expresses
a true relation between s and o. Both O and
D are extracted from a sample of around 1
billion Web documents in English. The sup-
plementary material gives additional details.

We instantiate O with an IsA repository
constructed by applying Hearst patterns to
the Web documents. Instances are rep-
resented as automatically-disambiguated en-
tity mentions4 which, when possible, are re-
solved to Wikipedia pages. Classes are rep-
resented as (non-disambiguated) natural lan-
guage strings. We instantiate D with a large
repository of facts extracted using in-house im-
plementations of ReVerb (Fader et al., 2011)
and OLLIE (Mausam et al., 2012). The
predicates are extracted as natural language
strings. Subjects and objects may be either
disambiguated entity references or natural lan-
guage strings. Every tuple is included in
both the forward and the reverse direction.
E.g. 〈jazz, perform at, venue〉 also appears as
〈venue,←perform at, jazz〉, where ← is a spe-

4“Entity mentions” may be individuals, like
“Barack Obama”, but may also be concepts like “jazz”.

cial character signifying inverted predicates.
These inverted predicates simplify the follow-
ing definitions. In total, O contains 1.1M tu-
ples and D contains 30M tuples.

4.3 Building Property Profiles

Properties. Let I be a function that takes
as input a noun phrase MH and returns a
property profile for M relative to H. We de-
fine a “property” to be a tuple of a subject,
predicate and object in which the subject posi-
tion5 is a wildcard, e.g. 〈∗, born in,America〉.
Any instance that fills the wildcard slot then
“has” the property. We expand adjectival
modifiers to encompass nominalized forms us-
ing a nominalization dictionary extracted from
WordNet (Miller, 1995). If MH is “Ameri-
can musician” and we require a tuple to have
the form 〈H, p,M,w〉, we will include tuples in
which the third element is either “American”
or “America”.

Relating M to H Directly. We first build
property profiles by taking the predicate and
object from any tuple in D in which the sub-
ject is the head and the object is the modifier:

I1(MH) = {〈〈p,M〉, w〉 | 〈H, p,M,w〉 ∈ D}
(4)

Relating M to an Instance of H. We also
consider an extension in which, rather than
requiring the subject to be the class label H,
we require the subject to be an instance of H.

I2(MH) = {〈〈p,M〉, w〉 | 〈e,H〉 ∈ O
∧〈e, p,M,w〉 ∈ D} (5)

Modifier Expansion. In practice, when
building property profiles, we do not require
that the object of the fact tuple match the
modifier exactly, as suggested in Eq. 4 and 5.
Instead, we follow Paşca (2015) and take ad-
vantage of facts involving distributionally sim-
ilar modifiers. Specifically, rather than look-
ing only at tuples in D in which the object
matches M , we consider all tuples, but dis-
count the weight proportionally to the simi-
larity between M and the object of the tuple.

5Inverse predicates capture properties in which the
wildcard is conceptually the object of the relation, but
occupies the subject slot in the tuple. For example,
〈venue,←perform at, jazz〉 captures that a “jazz venue”
is a “venue” e such that “jazz performed at e”.

2102

Good Property Profiles Bad Property Profiles
rice dish French violinist Led Zeppelin song still life painter child actor risk manager
* serve with rice * live in France Led Zeppelin write * * known for still life * have child * take risk
* include rice * born in France Led Zeppelin play * * paint still life * expect child * be at risk
* consist of rice * speak French Led Zeppelin have * still life be by * * play child * be aware of risk

Table 1: Example property profiles learned by observing predicates that relate instances of class
H to modifier M (I2). Results are similar when using the class label H directly (I1). We spell
out inverted predicates (Section 4.2) so wildcards (*) may appear as subjects or objects.

Thus, I1 is computed as below:

I1(MH) = {〈〈p,M〉, w × sim(M,N)〉
| 〈H, p,N,w〉 ∈ D} (6)

where sim(M,N) is the cosine similarity be-
tween M and N . I2 is computed analogously.
We compute sim using a vector space built
from Web documents following Lin and Wu
(2009); Pantel et al. (2009). We retain the 100
most similar phrases for each of∼10M phrases,
and consider all other similarities to be 0.

4.4 Analysis of Property Profiles

Table 1 provides examples of good and bad
property profiles for several MHs. In general,
frequent relations between M and H capture
relevant properties of MH, but it is not always
the case. To illustrate, the most frequently dis-
cussed relation between “child” and “actor”
is that actors have children, but this property
is not indicative of the meaning of “child ac-
tor”. Qualitatively, the top-ranked interpreta-
tions learned by using the head noun directly
(I1, Eq. 4) are very similar to those learned
using instances of the head (I2, Eq. 5). How-
ever, I2 returns many more properties (10 on
average per MH) than I1 (just over 1 on av-
erage). Anecdotally, we see that I2 captures
more specific relations than does I1. For exam-
ple, for “jazz musicians”, both methods return
“* write jazz” and “* compose jazz”, but I2
additionally returns properties like “* be ma-
jor creative influence in jazz”. We compare
I1 and I2 quantitatively in Section 6. Impor-
tantly, we do see that both I1 and I2 are capa-
ble of learning head-specific property profiles
for a modifier. Table 2 provides examples.

5 Class-Instance Identification

Instance finding. After finding properties
that relate a modifier to a head, we turn to
the task of identifying instances of fine-grained

Class Label Property Profile

American company * based in America
American composer * born in America
American novel * written in America

jazz album * features jazz

jazz composer * writes jazz

jazz venue jazz performed at *

Table 2: Head-specific property profiles
learned by relating instances of H to the mod-
ifier M (I2). Results are similar using I1.

classes. That is, for a given modifier M , we
want to instantiate the function φM from Eq.
3. In practice, rather than being a binary func-
tion that decides whether or not e is in class
MH, our instantiation, φ̂M , will return a real-
valued score expressing the confidence that e
is a member of MH. For notational conve-
nience, let D(〈s, p, o〉) = w, if 〈s, p, o, w〉 ∈ D
and 0 otherwise. We define φ̂M as follows:

φ̂M (H, e) =
∑

〈〈p,o〉,ω〉∈I(MH)

ω×D(〈e, p, o〉) (7)

Applying M to H, then, is as in Eq. 3 ex-
cept that instead of a discrete set, it returns a
scored list of candidate instances:

JMK(H) = {〈e, φ̂M (H, e)〉 | 〈e,H〉 ∈ O} (8)

Ultimately, we need to identify instances of ar-
bitrary class labels, which may contain mul-
tiple modifiers. Given a class label C =
M1 . . .MkH that contains a head H preceded
by modifiers M1 . . .Mk, we generate a list of
candidate instances by finding all instances of
H that have some property to support every
modifier:

k⋂

i=1

{〈e, s(e)〉 | 〈e, w〉 ∈ JMiK(H) ∧w > 0} (9)

2103

where s(e) is the mean6 of the scores assigned
by each separate φ̂Mi . From here on, we use
Mods to refer to our method that generates
lists of instances for a class using Eq. 8 and
9. When φ̂M (Eq. 7) is implemented using
I1, we use the name ModsH (for “heads”).
When it is implemented using I2, we use the
name ModsI (for “instances”).

Weakly Supervised Reranking. Eq. 8
uses a naive ranking in which the weight for
e ∈MH is the product of how often e has been
observed with some property and the weight
of that property for the class MH. Thus, in-
stances of H with overall higher counts in D
receive high weights for every MH. We there-
fore train a simple logistic regression model to
predict the likelihood that e belongs to MH.
We use a small set of features7, including the
raw weight as computed in Eq. 7. For train-
ing, we sample 〈e, C〉 pairs from our IsA repos-
itory O as positive examples and random pairs
that were not extracted by any Hearst pattern
as negative examples. We frame the task as a
binary prediction of whether e ∈ C, and use
the model’s confidence as the value of φ̂M in
place of the function in Eq. 7.

6 Evaluation

6.1 Experimental Setup

Evaluation Sets. We evaluate our models
on their ability to return correct instances for
arbitrary class labels. As a source of evalu-
ation data, we use Wikipedia category pages
(e.g., http://en.wikipedia.org/wiki/Category:
Pakistani film actresses). These are pages in
which the title is the name of the category
(“pakistani film actresses”) and the body is
a manually curated list of links to other pages
that fall under the category. We measure the
precision and recall of each method for discov-
ering the instances listed on these pages given
the page title (henceforth “class label”).

We collect the titles of all Wikipedia cate-
gory pages, removing those in which the last
word is capitalized or which contain fewer than
three words. These heuristics are intended to
retain compositional titles in which the head
is a single common noun. We also remove

6Also tried minimum, but mean gave better results.
7Feature templates in supplementary material.

Evaluation Set: Examples of Class Labels
UniformSet: 2008 california wildfires · australian
army chaplains · australian boy bands · canadian
military nurses · canberra urban places · cellular
automaton rules · chinese rice dishes · coldplay
concert tours · daniel libeskind designs · economic
stimulus programs · german film critics · invasive
amphibian species · latin political phrases · log
flume rides · malayalam short stories · pakistani
film actresses · puerto rican sculptors · string the-
ory books
WeightedSet: ancient greek physicists · art deco
sculptors · audio engineering schools · ballet train-
ing methods · bally pinball machines · british
rhythmic gymnasts · calgary flames owners · cana-
dian rock climbers · canon l-series lenses · emi clas-
sics artists · free password managers · georgetown
university publications · grapefruit league venues ·
liz claiborne subsidiaries · miss usa 2000 delegates
· new zealand illustrators · russian art critics

Table 3: Examples of class labels from evalu-
ation sets.

any titles that contain links to sub-categories.
This is to favor fine-grained classes (“pak-
istani film actresses”) over coarse-grained ones
(“film actresses”). We perform heuristic mod-
ifier chunking in order to group together mul-
tiword modifiers (e.g., “puerto rican”); for de-
tails, see supplementary material. From the
resulting list of class labels, we draw two sam-
ples of 100 labels each, enforcing that no H
appear as the head of more than three class
labels per sample. The first sample is cho-
sen uniformly at random (denoted Uniform-
Set). The second (WeightedSet) is weighted
so that the probability of drawing M1 . . .MkH
is proportional to the total number of class la-
bels in which H appears as the head. These
different evaluation sets8 are intended to eval-
uate performance on the head versus the tail
of class label distribution, since information
retrieval methods often perform differently on
different parts of the distribution. On average,
there are 17 instances per category in Uniform-
Set and 19 in WeightedSet. Table 3 gives ex-
amples of class labels.

Baselines. We implement two baselines us-
ing our IsA repository (O as defined in Section
4.1). Our simplest baseline ignores modifiers
altogether, and simply assumes that any in-
stance of H is an instance of MH, regardless
of M . In this case the confidence value for

8Available at http://www.seas.upenn.edu/∼nlp/
resources/finegrained-class-eval.gz

2104

〈e,MH〉 is equivalent to that for 〈e,H〉. We
refer to this baseline simply as Baseline. Our
second, stronger baseline uses the IsA reposi-
tory directly to identify instances of the fine-
grained class C = M1 . . .MkH. That is, we
consider e to be an instance of the class if
〈e, C〉 ∈ O, meaning the entire class label ap-
peared in a source sentence matching some
Hearst pattern. We refer to this baseline as
Hearst. The weight used to rank the candi-
date instances is the confidence value assigned
by the Hearst pattern extraction (Section 4.2).

Compositional Models. As a baseline
compositional model, we augment the Hearst
baseline via set intersection. Specifically, for
a class C = M1 . . .MkH, if each of the MiH
appears in O independently, we take the in-
stances of C to be the intersection of the in-
stances of each of the MiH. We assign the
weight of an instance e to be the sum of
the weights associated with each independent
modifier. We refer to this method as Hearst∩.
It is roughly equivalent to (Paşca, 2014). We
contrast it with our proposed model, which
recognizes instances of a fine-grained class by
1) assigning a meaning to each modifier in
the form of a property profile and 2) checking
whether a candidate instance exhibits these
properties. We refer to the versions of our
method as ModsH and ModsI , as described
in Section 5. When relevant, we use “raw”
to refer to the version in which instances are
ranked using raw weights and “RR” to refer to
the version in which instances are ranked us-
ing logistic regression (Section 5). We also try
using the proposed methods to extend rather
than replace the Hearst baseline. We com-
bine predictions by merging the ranked lists
produced by each system: i.e. the score of
an instance is the inverse of the sum of its
ranks in each of the input lists. If an in-
stance does not appear at all in an input list,
its rank in that list is set to a large constant
value. We refer to these combination systems
as Hearst+ModsH and Hearst+ModsI .

6.2 Results

Precision and Coverage. We first com-
pare the methods in terms of their cover-
age, the number of class labels for which the
method is able to find some instance, and their

precision, to what extent the method is able to
correctly rank true instances of the class above
non-instances. We report total coverage, the
number of labels for which the method returns
any instance, and correct coverage, the num-
ber of labels for which the method returns a
correct instance. For precision, we compute
the average precision (AP) for each class la-
bel. AP ranges from 0 to 1, where 1 indicates
that all positive instances were ranked above
all negative instances. We report mean av-
erage precision (MAP), which is the mean of
the APs across all the class labels. MAP is
only computed over class labels for which the
method returns something, meaning methods
are not punished for returning empty lists.

Table 4 gives examples of instances returned
for several class labels and Table 5 shows the
precision and coverage for each of the meth-
ods. Figure 2 illustrates how the single mean
AP score (as reported in Table 5) can misrep-
resent the relative precision of different meth-
ods. In combination, Table 5 and Figure 2
demonstrate that the proposed methods ex-
tract instances about as well as the baseline,
whenever the baseline can extract anything at
all; i.e. the proposed method does not cause a
precision drop on classes covered by the base-
line. In addition, there are many classes for
which the baseline is not able to extract any
instances, but the proposed method is. None
of the methods can extract some of the gold
instances, such as “Dictator perpetuo” and
“Furor Teutonicus” of the gold class “latin po-
litical phrases”.

Table 5 also reveals that the reranking
model (RR) consistently increases MAP for
the proposed methods. Therefore, going for-
ward, we only report results using the rerank-
ing model (i.e. ModsH and ModsI will refer to
ModsH RR and ModsI RR, respectively).

Manual Re-Annotation. It possible that
true instances of a class are missing from our
Wikipedia reference set, and thus that our
precision scores underestimate the actual pre-
cision of the systems. We therefore man-
ually verify the top 10 predictions of each
of the systems for a random sample of 25
class labels. We choose class labels for which
Hearst was able to return at least one in-
stance, in order to ensure reliable precision

2105

Flemish still life painters: Clara Peeters · Willem Kalf · Jan Davidsz de Heem · Pieter
Claesz · Peter Paul Rubens · Frans Snyders · Jan Brueghel the Elder · Hans Memling · Pieter
Bruegel the Elder · Caravaggio · Abraham Brueghel

Pakistani cricket captains: Salman Butt · Shahid Afridi · Javed Miandad · Azhar Ali ·
Greg Chappell · Younis Khan · Wasim Akram · Imran Khan · Mohammad Hafeez · Rameez
Raja · Abdul Hafeez Kardar · Waqar Younis · Sarfraz Ahmed

Thai buddhist temples: Wat Buddhapadipa · Wat Chayamangkalaram · Wat Mongkol-
ratanaram · Angkor Wat · Preah Vihear Temple · Wat Phra Kaew · Wat Rong Khun · Wat
Mahathat Yuwaratrangsarit · Vat Phou · Tiger Temple · Sanctuary of Truth · Wat Chalong
· Swayambhunath · Mahabodhi Temple · Tiger Cave Temple · Harmandir Sahib

Table 4: Instances extracted for several fine-grained classes from Wikipedia. Lists shown are
from ModsI . Instances in italics were also returned by Hearst∩. Strikethrough denotes incorrect.

UniformSet WeightedSet
Coverage MAP Coverage MAP

Baseline 95 / 70 0.01 98 / 74 0.01
Hearst 9 / 9 0.63 8 / 8 0.80
Hearst∩ 13 / 12 0.62 9 / 9 0.80
ModsH raw 56 / 32 0.23 50 / 30 0.16
ModsH RR 56 / 32 0.29 50 / 30 0.25
ModsI raw 62 / 36 0.18 59 / 38 0.20
ModsI RR 62 / 36 0.24 59 / 38 0.23

Table 5: Coverage and precision for populat-
ing Wikipedia category pages with instances.
“Coverage” is the number of class labels (out
of 100) for which at least one instance was
returned, followed by the number for which
at least one correct instance was returned.
“MAP” is mean average precision. MAP does
not punish methods for returning empty lists,
thus favoring the baseline (see Figure 2).

Figure 2: Distribution of AP over 100 class
labels in WeightedSet. The proposed method
(red) and the baseline method (blue) achieve
high AP for the same number of classes, but
ModsI additionally finds instances for classes
for which the baseline returns nothing.

estimates. For each of these labels, we man-
ually check the top 10 instances proposed by

each method to determine whether each be-
longs to the class. Table 6 shows the precision
scores for each method computed against the
original Wikipedia list of instances and against
our manually-augmented list of gold instances.
The overall ordering of the systems does not
change, but the precision scores increase no-
tably after re-annotation. We continue to eval-
uate against the Wikipedia lists, but acknowl-
edge that reported precision is likely an under-
estimate of true precision.

Wikipedia Gold

Hearst 0.56 0.79
Hearst∩ 0.53 0.78

ModsH 0.23 0.39
ModsI 0.24 0.42
Hearst+ModsH 0.43 0.63
Hearst+ModsI 0.43 0.63

Table 6: P@10 before vs. after re-annotation;
Wikipedia underestimates true precision.

UniformSet WeightedSet
AUC Recall AUC Recall

Baseline 0.55 0.23 0.53 0.28
Hearst 0.56 0.03 0.52 0.02
Hearst∩ 0.57 0.04 0.53 0.02

ModsH 0.68 0.08 0.60 0.06
ModsI 0.71 0.09 0.65 0.09
Hearst∩+ModsH 0.70 0.09 0.61 0.08
Hearst∩+ModsI 0.73 0.10 0.66 0.10

Table 7: Recall of instances on Wikipedia cat-
egory pages, measured against the full set of
instances from all pages in sample. AUC cap-
tures tradeoff between true and false positives.

2106

(a) Uniform random sample (UniformSet). (b) Weighted random sample (WeightedSet).

Figure 3: ROC curves for selected methods (Hearst in blue, proposed in red). Given a ranked
list of instances, ROC curves plot true positives vs. false positives retained by setting various
cutoffs. The curve becomes linear once all remaining instances have the same score (e.g., 0), as
this makes it impossible to add true positives without also including all remaining false positives.

Precision-Recall Analysis. We next look
at the precision-recall tradeoff in terms of
the area under the curve (AUC) when each
method attempts to rank the complete list of
candidate instances. We take the union of all
of the instances proposed by all of the methods
(including the Baseline method which, given
a class label M0 . . .MkH, proposes every in-
stance of the head H as a candidate). Then,
for each method, we rank this full set of candi-
dates such that any instance returned by the
method is given the score the method assigns,
and every other instance is scored as 0. Table 7
reports the AUC and recall. Figure 3 plots the
full ROC curves. The requirement by Hearst
that class labels appear in full in a single sen-
tence results in very low recall, which trans-
lates into very low AUC when considering the
full set of candidate instances. In comparison,
the proposed compositional methods make use
of a larger set of sentences, and provide non-
zero scores for many more candidates, result-
ing in a >10 point increase in AUC on both
UniformSet and WeightedSet (Table 7).

7 Conclusion

We have presented an approach to IsA extrac-
tion that takes advantage of the composition-
ality of natural language. Existing approaches
often treat class labels as atomic units that
must be observed in full in order to be pop-

ulated with instances. As a result, current
methods are not able to handle the infinite
number of classes describable in natural lan-
guage, most of which never appear in text.
Our method reasons about each modifier in
the label individually, in terms of the proper-
ties that it implies about the instances. This
approach allows us to harness information that
is spread across multiple sentences, signifi-
cantly increasing the number of fine-grained
classes that we are able to populate.

Acknowledgments

The paper incorporates suggestions on an ear-
lier version from Susanne Riehemann. Ryan
Doherty offered support in refining and access-
ing the fact repository used in the evaluation.

References

M. Bansal, D. Burkett, G. de Melo, and D. Klein.
2014. Structured learning for taxonomy induc-
tion with belief propagation. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (ACL-14). Balti-
more, Maryland, pages 1041–1051.

M. Baroni and R. Zamparelli. 2010. Nouns are
vectors, adjectives are matrices: Representing
adjective-noun constructions in semantic space.
In Proceedings of the 2010 Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP-10). Cambridge, Massachusetts, pages
1183–1193.

2107

C. Bizer, J. Lehmann, G. Kobilarov, S. Auer,
C. Becker, R. Cyganiak, and S. Hellmann. 2009.
DBpedia - a crystallization point for the Web of
data. Journal of Web Semantics 7(3):154–165.

E. Choi, T. Kwiatkowski, and L. Zettlemoyer.
2015. Scalable semantic parsing with partial
ontologies. In Proceedings of the 53rd An-
nual Meeting of the Association for Compu-
tational Linguistics (ACL-15). Beijing, China,
pages 1311–1320.

B. Dalvi, W. Cohen, and J. Callan. 2012. Web-
sets: Extracting sets of entities from the Web
using unsupervised information extraction. In
Proceedings of the 5th ACM Conference on Web
Search and Data Mining (WSDM-12). Seattle,
Washington, pages 243–252.

G. de Melo and G. Weikum. 2010. MENTA: In-
ducing multilingual taxonomies from Wikipedia.
In Proceedings of the 19th International Con-
ference on Information and Knowledge Man-
agement (CIKM-10). Toronto, Canada, pages
1099–1108.

A. Fader, S. Soderland, and O. Etzioni. 2011. Iden-
tifying relations for open information extraction.
In Proceedings of the 2011 Conference on Em-
pirical Methods in Natural Language Process-
ing (EMNLP-11). Edinburgh, Scotland, pages
1535–1545.

M. Fares, S. Oepen, and E. Velldal. 2015. Identify-
ing compounds: On the role of syntax. In Inter-
national Workshop on Treebanks and Linguis-
tic Theories (TLT-14). Warsaw, Poland, pages
273–283.

T. Flati, D. Vannella, T. Pasini, and R. Navigli.
2014. Two is bigger (and better) than one: the
Wikipedia Bitaxonomy project. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (ACL-14). Balti-
more, Maryland, pages 945–955.

M. Hearst. 1992. Automatic acquisition of hy-
ponyms from large text corpora. In Proceedings
of the 14th Conference on Computational Lin-
guistics (COLING-92). pages 539–545.

I. Heim and A. Kratzer. 1998. Semantics in Gen-
erative Grammar , volume 13. Blackwell Oxford.

I. Hendrickx, Z. Kozareva, P. Nakov, D. Ó
Séaghdha, S. Szpakowicz, and T. Veale. 2013.
SemEval-2013 task 4: Free paraphrases of noun
compounds. In Proceedings of Proceedings of the
7th International Workshop on Semantic Eval-
uation (SemEval-13). pages 138–143.

J. Hoffart, F. Suchanek, K. Berberich, and
G. Weikum. 2013. YAGO2: a spatially
and temporally enhanced knowledge base from
Wikipedia. Artificial Intelligence Journal. Spe-
cial Issue on Artificial Intelligence, Wikipedia
and Semi-Structured Resources 194:28–61.

H. Kamp and B. Partee. 1995. Prototype theory
and compositionality. Cognition 57(2):129–191.

N. Kim and P. Nakov. 2011. Large-scale noun com-
pound interpretation using bootstrapping and
the Web as a corpus. In Proceedings of the
2011 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP-11). Edin-
burgh, Scotland, pages 648–658.

J. Kirschnick, H. Hemsen, and V. Markl. 2016.
Jedi: Joint entity and relation detection using
type inference. In Proceedings of the 54th An-
nual Meeting of the Association for Computa-
tional Linguistics (ACL-16) - System Demon-
strations. Berlin, Germany, pages 61–66.

Z. Kozareva and E. Hovy. 2010. A semi-supervised
method to learn and construct taxonomies us-
ing the web. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing (EMNLP-10). Cambridge,
Massachusetts, pages 1110–1118.

D. Lin and X. Wu. 2009. Phrase clustering for dis-
criminative learning. In Proceedings of the 47th
Annual Meeting of the Association for Compu-
tational Linguistics (ACL-IJCNLP-09). Singa-
pore, pages 1030–1038.

Mausam, M. Schmitz, S. Soderland, R. Bart, and
O. Etzioni. 2012. Open language learning for
information extraction. In Proceedings of the
2012 Joint Conference on Empirical Methods
in Natural Language Processing and Compu-
tational Natural Language Learning (EMNLP-
CoNLL-12). Jeju Island, Korea, pages 523–534.

G. Miller. 1995. WordNet: a lexical database.
Communications of the ACM 38(11):39–41.

D. Movshovitz-Attias and W. Cohen. 2015. Kb-
lda: Jointly learning a knowledge base of hi-
erarchy, relations, and facts. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language
Processing (ACL-IJCNLP-15). Beijing, China,
pages 1449–1459.

P. Nakov and M. Hearst. 2013. Semantic in-
terpretation of noun compounds using verbal
and other paraphrases. ACM Transactions on
Speech and Language Processing 10(3):1–51.

V. Nastase and M. Strube. 2013. Transforming
Wikipedia into a large scale multilingual concept
network. Artificial Intelligence 194:62–85.

P. Nulty and F. Costello. 2013. General and
specific paraphrases of semantic relations be-
tween nouns. Natural Language Engineering
19(03):357–384.

2108

D. Ó Séaghdha and A. Copestake. 2007. Co-
occurrence contexts for noun compound inter-
pretation. In Proceedings of the Workshop on a
Broader Perspective on Multiword Expressions.
Prague, Czech Republic, pages 57–64.

M. Paşca. 2014. Acquisition of open-domain
classes via intersective semantics. In Proceed-
ings of the 23rd World Wide Web Conference
(WWW-14). Seoul, Korea, pages 551–562.

M. Paşca. 2015. Interpreting compound noun
phrases using web search queries. In Proceed-
ings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Compu-
tational Linguistics: Human Language Tech-
nologies (NAACL-HLT-15). Denver, Colorado,
pages 335–344.

P. Pantel, E. Crestan, A. Borkovsky, A. Popescu,
and V. Vyas. 2009. Web-scale distributional
similarity and entity set expansion. In Proceed-
ings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP-
09). Singapore, pages 938–947.

P. Pasupat and P. Liang. 2014. Zero-shot en-
tity extraction from Web pages. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics (ACL-14). Balti-
more, Maryland, pages 391–401.

S. Ponzetto and R. Navigli. 2009. Large-scale tax-
onomy mapping for restructuring and integrat-
ing Wikipedia. In Proceedings of the 21st Inter-
national Joint Conference on Artificial Intelli-
gence (IJCAI-09). Pasadena, California, pages
2083–2088.

S. Ponzetto and M. Strube. 2007. Deriving a large
scale taxonomy from Wikipedia. In Proceed-
ings of the 22nd National Conference on Artifi-
cial Intelligence (AAAI-07). Vancouver, British
Columbia, pages 1440–1447.

S. Riedel, L. Yao, A. McCallum, and B. Mar-
lin. 2013. Relation extraction with matrix fac-
torization and universal schemas. In Proceed-
ings of the 2013 Conference of the North Amer-
ican Association for Computational Linguistics
(NAACL-HLT-13). Atlanta, Georgia, pages 74–
84.

V. Shwartz, Y. Goldberg, and I. Dagan. 2016. Im-
proving hypernymy detection with an integrated
path-based and distributional method. In Pro-
ceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (ACL-
16). Berlin, Germany, pages 2389–2398.

R. Snow, D. Jurafsky, and A. Ng. 2006. Se-
mantic taxonomy induction from heterogenous
evidence. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics
and 44th Annual Meeting of the Association for

Computational Linguistics (COLING-ACL-06).
Sydney, Australia, pages 801–808.

N. Surtani and S. Paul. 2015. A vsm-based statis-
tical model for the semantic relation interpreta-
tion of noun-modifier pairs. Proceedings of the
International Conference on Recent Advances
in Natural Language Processing (RANLP-15)
pages 636–645.

S. Tratz and E. Hovy. 2010. A taxonomy, dataset,
and classifier for automatic noun compound in-
terpretation. In Proceedings of the 48th Annual
Meeting of the Association for Computational
Linguistics (ACL-10). Uppsala, Sweden, pages
678–687.

T. Van de Cruys, S. Afantenos, and P. Muller.
2013. MELODI: A supervised distributional
approach for free paraphrasing of noun com-
pounds. In Proceedings of the 7th International
Workshop on Semantic Evaluation (SemEval-
13). Atlanta, Georgia, pages 144–147.

P. Verga, A. Neelakantan, and A. McCallum. 2017.
Generalizing to unseen entities and entity pairs
with row-less universal schema. In Proceedings
of the 15th Conference of the European Chapter
of the Association for Computational Linguistics
(EACL-17). Valencia, Spain, pages 613–622.

R. Wang and W. Cohen. 2009. Automatic set in-
stance extraction using the Web. In Proceedings
of the 47th Annual Meeting of the Association
for Computational Linguistics (ACL-IJCNLP-
09). Singapore, pages 441–449.

D. Weiskopf. 2007. Compound nominals, context,
and compositionality. Synthese 156(1):161–204.

D. Wijaya and P. Gianfortoni. 2011. Nut case:
What does it mean?: Understanding seman-
tic relationship between nouns in noun com-
pounds through paraphrasing and ranking the
paraphrases. In Proceedings of the 1st Interna-
tional Workshop on Search and Mining Entity-
Relationship Data (SMER-11). Glasgow, United
Kingdom, pages 9–14.

C. Xavier and V. Strube de Lima. 2014. Boosting
open information extraction with noun-based re-
lations. In Proceedings of the 9th International
Conference on Language Resources and Evalua-
tion (LREC-14). Reykjavik, Iceland, pages 96–
100.

P. Young, A. Lai, M. Hodosh, and J. Hockenmaier.
2014. From image descriptions to visual deno-
tations: New similarity metrics for semantic in-
ference over event descriptions. Transactions of
the Association for Computational Linguistics
(TACL) 2:67–78.

2109

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2110–2120
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1193

Parsing to 1-Endpoint-Crossing, Pagenumber-2 Graphs

Junjie Cao∗, Sheng Huang∗, Weiwei Sun and Xiaojun Wan
Institute of Computer Science and Technology, Peking University

The MOE Key Laboratory of Computational Linguistics, Peking University
{junjie.cao,huangsheng,ws,wanxiaojun}@pku.edu.cn

Abstract

We study the Maximum Subgraph prob-
lem in deep dependency parsing. We con-
sider two restrictions to deep dependency
graphs: (a) 1-endpoint-crossing and (b)
pagenumber-2. Our main contribution is
an exact algorithm that obtains maximum
subgraphs satisfying both restrictions si-
multaneously in time O(n5). Moreover,
ignoring one linguistically-rare structure
descreases the complexity to O(n4). We
also extend our quartic-time algorithm into
a practical parser with a discriminative dis-
ambiguation model and evaluate its perfor-
mance on four linguistic data sets used in
semantic dependency parsing.

1 Introduction

Dependency parsing has long been studied as a
central issue in developing syntactic or seman-
tic analysis. Recently, some linguistic projects
grounded on deep grammar formalisms, including
CCG, LFG, and HPSG, draw attentions to rich syn-
tactic and semantic dependency annotations that
are not limited to trees (Hockenmaier and Steed-
man, 2007; Sun et al., 2014; Ivanova et al., 2012).
Parsing for these deep dependency representations
can be viewed as the search for Maximum Sub-
graphs (Kuhlmann and Jonsson, 2015). This is a
natural extension of the Maximum Spanning Tree
(MST) perspective (McDonald et al., 2005) for de-
pendency tree parisng.

One main challenge of the Maximum Subgraph
perspective is to design tracTable algorithms for
certain graph classes that have good empirical cov-
erage for linguistic annotations. Unfortunately, no
previously defined class simultaneously has high

∗The first two authors contribute equally.

coverage and low-degree polynomial parsing al-
gorithms. For example, noncrossing dependency
graphs can be found in time O(n3), but cover only
48.23% of sentences in CCGBank (Kuhlmann and
Jonsson, 2015).

We study two well-motivated restrictions to
deep dependency graphs: (a) 1-endpoint-crossing
(1EC hereafter; Pitler et al., 2013) and (b) pa-
genumber is less than or equal to 2 (P2 hereafter;
Kuhlmann and Jonsson, 2015). We will show that
if the output dependency graphs are restricted to
satisfy both restrictions, the Maximum Subgraph
problem can be solved using dynamic program-
ming in time O(n5). Moreover, if we ignore one
linguistically-rare sub-problem, we can reduce the
time complexity to O(n4). Though this new algo-
rithm is a degenerated one, it has the same empiri-
cal coverage for various deep dependency annota-
tions. We evaluate the coverage of our algorithms
on four linguistic data sets: CCGBank, DeepBank,
Enju HPSGBank and Prague Dependency Tree-
Bank. They cover 95.68%, 97.67%, 97.28% and
97.53% of dependency graphs in the four corpora.
The relatively satisfactory coverage makes it pos-
sible to parse with high accuracy.

Based on the quartic-time algorithm, we im-
plement a parser with a discriminative disam-
biguation model. Our new parser can be taken
as a graph-based parser which is complemen-
tary to transition-based (Henderson et al., 2013;
Zhang et al., 2016) and factorization-based (Mar-
tins and Almeida, 2014; Du et al., 2015a) sys-
tems. We evaluate our parser on four data
sets: those used in SemEval 2014 Task 8 (Oepen
et al., 2014), and the dependency graphs ex-
tracted from CCGbank (Hockenmaier and Steed-
man, 2007). Evaluations indicate that our parser
produces very accurate deep dependency analysis.
It reaches state-of-the-art results on average pro-
duced by a transition-based system of Zhang et al.

2110

https://doi.org/10.18653/v1/P17-1193

(2016) and factorization-based systems (Martins
and Almeida, 2014; Du et al., 2015a).

The implementation of our parser is avail-
able at http://www.icst.pku.edu.cn/
lcwm/grass.

2 Background

Dependency parsing is the task of mapping a nat-
ural language sentence into a dependency graph.
Previous work on dependency parsing mainly fo-
cused on tree-shaped representations. Recently, it
is shown that data-driven parsing techniques are
also applicable to generate more flexible deep de-
pendency graphs (Du et al., 2014; Martins and
Almeida, 2014; Du et al., 2015b,a; Zhang et al.,
2016; Sun et al., 2017). Parsing for deep depen-
dency representations can be viewed as the search
for Maximum Subgraphs for a certain graph class
G (Kuhlmann and Jonsson, 2015), a generalization
of the MST perspective for tree parsing. In partic-
ular, we have the following optimization problem:

Given an arc-weighted graph G = (V, A), find a
subgraph G′ = (V,A′ ⊆ A) with maximum total
weight such that G′ belongs to G.

The choice of G determines the computational
complexity of dependency parsing. For example,
if G is the set of projective trees, the problem can
be solved in time O(|V |3), and if G is the set of
noncrossing dependency graphs, the complexity
is O(|V |3). Unfortunately, no previously defined
class simultaneously has high coverage on deep
dependency annotations and low-degree polyno-
mial decoding algorithms for practical parsing. In
this paper, we study well-motivated restrictions:
1EC (Pitler et al., 2013) and P2 (Kuhlmann and
Jonsson, 2015). We will show that relatively sat-
isfactory coverage and parsing complexity can be
obtained for graphs that satisfy both restrictions.

3 The 1EC, P2 Graphs

3.1 The 1EC Restriction

Pitler et al. (2013) introduced a very nice property
for modelling non-projective dependency trees,
i.e. 1EC. This property not only covers a large
amount of tree annotations in natural language
treebanks, but also allows the corresponding MST
problem to bo solved in time of O(n4). The formal
description of the 1EC property is adopted from
(Pitler et al., 2013).

Definition 1. Edges e1 and e2 cross if e1 and e2

have distinct endpoints and exactly one of the end-
points of e1 lies between the endpoints of e2.

Definition 2. A dependency graph is 1-Endpoint-
Crossing if for any edge e, all edges that cross e
share an endpoint p.

Given a sentence s = w0w1 · · · wn−1 of length
n, the vertices, i.e. words, are indexed with inte-
gers, an arc from wi to wj as a(i,j), and the com-
mon endpoint, namely pencil point, of all edges
crossed with a(i,j) or a(j,i) as pt(i, j). We denote
an edge as e(i,j), if we do not consider its direction.

3.2 The P2 Restriction

The term pagenumber is referred to as planar
by some other authors, e.g. (Titov et al., 2009;
Gómez-Rodrı́guez and Nivre, 2010; Pitler et al.,
2013). We give the definition of related concepts
as follows.

Definition 3. A book is a particular kind of topo-
logical space that consists of a single line called
the spine, together with a collection of one or
more half-planes, called the pages, each having
the spine as its boundary.

Definition 4. A book embedding of a finite graph
G onto a book B satisfies three conditions: (1)
every vertex of G is drawn as a point on the spine
of B; (2) every edge of G is drawn as a curve that
lies within a single page of B; (3) every page of B
does not have any edge crossings.

Empirically, a deep dependency graph is not
very dense and can typically be embedded onto
a very thin book. To measure the thickness of a
graph, we can use its pagenumber.

Definition 5. The book pagenumber of G is the
minimum number of pages required for a book em-
bedding of G.

For sake of concision, we say a graph is
“pagenumber-k”, meaning that the pagenumber is
at most k.

Theorem 1. The pagenumber of 1EC graph may
be greater than 2.

Proof. The graph in Figure 1 gives an instance
which is 1EC but the pagenumber of which is 3.
There is a cycle, namely a → c → e → b → d →
a, consisting of odd number of edges.

Pitler et al. (2013) proved that 1EC trees are a
subclass of graphs whose pagenumber is at most
2. This property provides the foundation to the

2111

PN≤ 2 1EC EnjuBank DeepBank PCEDT CCGBank
Yes Both 32236 (99.53%) 32287 (99.69%) 31866 (98.39%) 38848 (98.09%)
Both Yes 31507 (97.28%) 31634 (97.67%) 31589 (97.53%) 37913 (95.73%)
Yes Yes 31507 (97.28%) 31634 (97.67%) 31589 (97.53%) 37894 (95.68%)
No Yes 0 (0.0%) 0 (0.0%) 0 (0.0%) 19 (0.05%)
Yes No 729 (2.25%) 653 (2.02%) 277 (0.86%) 954 (2.41%)
Sentences 32389 32389 32389 39604

Table 1: Coverage in terms of complete graphs under various structural restrictions. Column “PN≤ 2”
indicates whether the restriction “P2” is satisfied; Column “1EC” indicates whether the restriction “1EC”
is satisfied.

..a. b. c. d. e

Figure 1: A 1EC graph whose pagenumber is 3.

success in designing dynamic programming algo-
rithms for trees. Theorem 1 indicates that when
we consider more general graph, the case is more
complicated. In this paper, we study graphs that
are constrained to be both 1EC and P2. We call
them 1EC/P2 graphs.

3.3 Coverage on Linguistic Data
To show that the two restrictions above are well-
motivated for describing linguistic data, we eval-
uate their empirical coverage on four deep depen-
dency corpora (as defined in Section 5.2). These
corpora are also used for training and evaluating
our data-driven parsers. The coverage is evaluated
using sentences in the training sets.

Table 1 shows the results. We can see that
1EC is also an empirical well-motivated restriction
when it comes to deep dependency structures. The
P2 property has an even better coverage. Unfortu-
nately, it is a NP-hard problem to find optimal P2
graphs (Kuhlmann and Jonsson, 2015). Though
theoretically a 1EC graph is not necessarily P2, the
empirical evaluation demonstrates the high over-
lap of them on linguistic annotations. In partic-
ular, almost all 1EC deep dependency graphs are
P2. The percentages of graphs satisfying both re-
strictions vary between 95.68% for CCGBank and
97.67% for DeepBank. The relatively satisfactory
coverage enables accurate practical parsing.

4 The Algorithm

This section contains the main contribution of this
paper: a polynomial time exact algorithm for solv-
ing the Maximum Subgraph problem for the class

of 1EC/P2 graphs.

Theorem 2. Take 1EC/P2 graphs as target sub-
graphs, the maximum subgraph problem can be
solved in time O(|V |5).

For sake of formal concision, we introduce the
algorithm of which the goal is to calculate the
maximum score of a subgraph. Extracting corre-
sponding optimal graphs can be done in a number
of ways. For example, we can maintain an aux-
iliary arc table which is populated parallel to the
procedure of obtaining maximum scores.

Our algorithm is highly related to the follow-
ing property: Every subgraph of a 1EC/P2 graph
is also a 1EC/P2 graph. We therefore focus
on maximal 1EC/P2 graphs, a particular type of
1EC/P2 graphs defined as follows.

Definition 6. A maximal 1EC/P2 graph is a
1EC/P2 graph that cannot be extended by includ-
ing one more edge.

Our algorithm is a bottom-up dynamic pro-
gramming algorithm. It defines different struc-
tures corresponding to different sub-problems, and
visits all structures from bottom to top, finding the
best combination of smaller structures to form a
new structure. The key design is to make sure
that it can produce all maximal 1EC/P2 graphs.
During the search for maximal 1EC/P2 graphs, we
can freely delete bad edges whose scores are neg-
ative. In particular, we figure out some edges, in
each construction step, which can be created with-
out violating either 1EC or P2 restriction. Assume
the arc weight associated with a(i,j) is w[i, j].
Then we define a function SELECT(i, j) accord-
ing to the comparison of 0 and w[i, j] as well as
w[j, i]. If w[i, j] ≥ 0 (or w[j, i] ≥ 0), we then
select a(i,j) (or a(j,i)) and add it to currently the
best solution of a sub-problem. SELECT(i, j) re-
turns max(max(0, w[i, j]) + max(0, w[j, i])). If
we allow at most one arc between two nodes,
SELECT(i, j) returns max(0, w[i, j], w[j, i]).

2112

..

Int[i, j]

.
i
.

j
.

L[i, j, x]

.
x

.
i

.
j

.

R[i, j, x]

.
x

.
i

.
j

.

LR[i, j, x]

.
x

.
i

.
j

.

N [i, j, x]

.
x

.
i

.
j

..
C[x, i, a, b](b < a)

.
x
.

i
.

b
.

a
.

C[x, i, a, b](a < b)

.
x

.
i

. a.
b

Figure 2: Graphic representations of sub-problems.

The graphical illustration of our algorithm uses
undirected graphs1. In other words, we use e(i,j) to
include the discussion about both a(i,j) and a(j,i).

4.1 Sub-problems
We consider six sub-problems when we construct
a maximum dependency graph on a given (closed)
interval [i, k] ⊆ V of vertices. When we fo-
cus on the nodes strictly inside this interval, and
we use an open interval (i, k) to exclude i and
j. See Figure 2 for graphical visualization. The
first five are adapted in concord with Pitler et al.
(2013)’s solution for trees, and we introduce a
new sub-problem, namely C. Because graphs al-
low for loops as well as disconnectedness, the sub-
problems are simplified to some extent, while a
special case of LR is now prominent. C is thus
introduced to represent the special case. The sub-
problems are explained as follows.

Int Int[i, j] represents a partial analysis associ-
ated with an interval from i to j inclusively.
Int[i, j] may or may not contain edge e(i,j).
To parse a given sentence is equivalent to
solve the problem Int[0, n − 1].

L L[i, j, x] represents a partial analysis associ-
ated with an interval from i to j inclusively
as well as an external vertex x. ∀p ∈
(i, j), pt(x, p) = i. L[i, j, x] can contain
e(i,j) but disallows e(x,i) or e(x,j).

R R[i, j, x] represents a partial analysis associ-
ated with an interval from i to j inclusively
as well as an external vertex x. ∀p ∈
(i, j), pt(x, p) = j. R[i, j, x] can contain
e(i,j) but disallows e(x,i) or e(x,j).

1 The single-head property does not hold. We currently
do not consider other constraints of directions. So predic-
tion of the direction of one edge does not affect prediction
of other edges as well as their directions. The directions can
be assigned locally, and our parser builds directed rather than
undirected graphs in this way. Undirected graphs are only
used to conveniently illustrate our algorithms. All experimen-
tal results in Section 5.2 consider directed dependencies in a
standard way. We use the official evaluation tool provided by
SDP2014 shared task. The numberic results reported in this
paper are directly comparable to results in other papers.

LR LR[i, j, x] represents a partial analysis as-
sociated with an interval from i to j inclu-
sively as well as an external vertex x. ∀p ∈
(i, j), pt(x, p) = i or j. LR[i, j, x] must al-
low e(i,j) but disallows e(x,i) or e(x,j).

N N [i, j, x] represents a partial analysis asso-
ciated with an interval from i to j inclu-
sively and an external vertex x. ∀p ∈
(i, j), pt(x, p) /∈ [i, j]. N [i, j, x] can contain
e(i,j) but disallows e(x,i) or e(x,j).

C C[x, i, a, b](a ̸= b, a > i, b > i) represents
a partial analysis associated with an interval
from i to max{a, b} inclusively and an ex-
ternal vertex x. Intuitively, C depicts a class
of graphs constructed by upper- and lower-
plane edges arranged in a staggered pattern. a
stands for the last endpoint in the upper plane,
and b the last endpoint in the lower plane.

We give a definition of C. There exists in
C[x, i, a, b] a series {s1, · · · , sm} that fulfills the
following constraints:

1. s1 = i < s2 < ... < sm = max{a, b}.

2. ∃e(x,s2).

3. ∀k ∈ [1,m − 2], ∃e(sk,sk+2).

4. ∀k ∈ [1,m − 2], ∄e(l,r)(sk, sk+2) ⊂ (l, r) ⊂
(s1, sm)2.

5. ∀k ∈ [2,m − 3], e(sk,sk+2) crosses only with
e(sk−1,sk+1) and e(sk+1,sk+3); e(s1,s3) crosses
only with e(s2,s4) and e(x,s2); e(sm−2,sm)

crosses only with e(sm−3,sm−1).

6. e(x,sm−1), e(s1,sm), e(x,s1), e(x,sm) are disal-
lowed.

7. While a < b, the series can be written as
{s1 = i, · · · , sm−1 = a, sm = b}(m ≥ 5).
While b < a, the series is {s1, · · · , sm−1 =

2By “(x, y) ⊂ (z, w),” we mean x ≥ z, y < w or x > z,
y ≤ w.

2113

b, sm = a}(m ≥ 4). We denote the two
cases using the signs C1 and C2 respectively.

The distinction between C1 and C2 is whether
there is one more edge below than above.

4.2 Decomposing an Int Sub-problem
Consider an Int[i, j] sub-problem. Assume that
k(k ∈ (i, j)) is the farthest vertex that is linked
with i, and l = pt(i, k). When j − i > 1, there
must be such a k given that we consider maximal
1EC/P2 graphs. There are three cases.

Case 1: l = j. Vertex k divides the interval [i, j]
into two parts: [i, k] and [k, j]. First notice that
the edges linking (i, k) and j can only cross with
e(i,k). Thus i or k can be the pencil points of those
edges, which entails that interval [i, k] is an LR in
respect to external vertex j. Because there exist no
edge from i to any node in (k, j), interval [k, j] is
an Int. The problem is eventually decomposed to:
LR[i, k, j] + Int[k, j] + SELECT[i, j].

Case 2: l ∈ (k, j). In this case, we can freely
add e(i,l) without violating either 1EC or P2 condi-
tions. Therefore Case 2 does not lead to any max-
imal 1EC/P2 graph. Our algorithm does not need
to explicitly handle this case, given that they can
be derived from solutions to other cases.

Case 3: l ∈ (i, k). Now assume that there is an
edge from i to a vertex in (l, k). Consider the far-
thest vertex that is linked with l, say p(p ∈ (k, j).
We can freely add e(i,p) without violating the 1EC

and P2 restrictions. Similar to Case 2, we do not
explicitly deal with this case.

If there is no edge from i to any vertex in
(l, k), then [i, l], [l, k], [k, j] are R, Int, L respec-
tively. Three external edges are e(i,k), e(l,j), and
e(i,j). The decomposition is: R[i, l, k]+Int[l, k]+
L[k, j, l] + SELECT[l, j] + SELECT[i, j].

4.3 Decomposing an L Sub-problem
If there is no edge from x to any node in (i, j), the
graph is reduced to Int[i, j]. If there is one, let
k be the vertex farthest from i and adjacent to x.
There are two different cases, as shown in Figure
4.

1. If there exists an edge from x to some node
in (i, k), intervals [i, k], [k, j] are classified
as L, N respectively. Two edges external to
the interval: e(x,k), e(i,j). The decomposi-
tion is L[i, k, x]+N [k, j, i]+SELECT[x, k]+
SELECT[i, j].

Case 1: l = j

..
i
. k.

j
. =. +

Case 2: l ∈ (k, j)

...
i
. k.

l
.

j

Case 3: l ∈ (i, k)

..

Does such a dashed edge exist?

.
i
.

l
. k.

j

..

(3.1)

.
i
.

l
. k.

j

..
(3.2)

. =. +. +

Figure 3: Decomposition for Int[i, j], with
pt(i, k) = l.

..

Does such a dashed edge exist?

.
x
.

i
. k.

j

..
(2.1)

. =. +

..
(2.2)

. =. +

Figure 4: Decomposition for L[i, j, x].

2. Otherwise, Intervals [i, k], [k, j] are classified
as Int, L respectively. Two edges external
to the interval: e(x,k), e(i,j). The decomposi-
tion is Int[i, k] +L[k, j, i] + SELECT[x, k] +
SELECT[i, j].

4.4 Decomposing an R Sub-problem

If there is no edge from x to (i, j), then the graph
is reduced to Int[i, j]. If there is one, let k be the
farthest vertex from j and adjacent to x. There are
two different cases:

1. If there exist an edge from x to (k, j), In-
tervals [i, k], [k, j] are classified as N, R re-
spectively. Two edges external to the in-
terval: e(x,k), e(i,j). The decomposition

2114

..
(2)

.
x
.

i
.

k
.

j
. =. +

Figure 5: Decomposition for N [i, j, x].

..

(3.1) There is a separating vertex.

.
x
.

i
.

k
.

j

..

(3.2) No such separating vertex.

.
x
.

i
. k.

b

Figure 6: Decomposition for LR[i, j, x].

is N [i, k, j] + R[k, j, x] + SELECT[x, k] +
SELECT[i, j].

2. Otherwise, Intervals [i, k], [k, j] are classified
as R, Int respectively. Two edges external to
the interval are e(x,k), e(i,j). The decomposi-
tion is R[i, k, j]+Int[k, j]+ SELECT[x, k]+
SELECT[i, j].

The decomposition is similar to L, we thus do not
give a graphical representation to save space.

4.5 Decomposing an N Sub-problem
If there is no edge from x to (i, j), then the graph
is reduced to Int[i, j]. If there is one, let k be
the farthest vertex from i and adjacent to x. By
definition, N [i, j, x] does not allow for e(x,i) or
e(x,j). Thus k ̸= i or j. Intervals [i, k], [k, j] are
classified as N, Int respectively. Two edges exter-
nal to the interval are e(x,k), e(i,j). The decompo-
sition is N [i, k, x] + Int[k, j] + SELECT[x, k] +
SELECT[i, j].

4.6 Decomposing an LR Sub-problem
If the pencil point of all edges from x to (i, j) is i,
then the model is the same as L[i, j, x]. Similary,
if the pencil point is j, then the model is the same
as R[i, j, x].

If some of the edges from x to (i, j) share a pen-
cil point i, and the others share j, there are two
different cases.

1. If there is a k which satisfies that within [i, j],
only e(i,j) crosses over k (i.e., [i, j] can be
divided along dashed line k into two), then,
k divides [i, j] into [i, k] and [k, j]. Because
k is not allowed to be pencil point, the two

subintervals must be an L and an R in terms
of external x, respectively. In addition, there
are two edges, namely e(x,k) and e(i,j) not in-
cluded by the subintervals. The problem is
thus decomposed as L[i, k, x] + R[k, j, x] +
SELECT[x, k] + SELECT[i, j].

2. If there is no such k in concord with the con-
dition in (1), it comes a much more difficult
case for which we introduce sub-problem C.
Here we put forward the conclusion:

Lemma 1. Assume that k(k ∈ (i, j)) is the vertex
that is adjacent to x and farthest from i. The de-
composition for the second case is C[x, i, k, j] +
SELECT[x, k] + SELECT[i, j].

Proof. The distinction between Case 1 and 2 im-
plies the following property, which is essential,
∀t ∈ (i, j), ∃e(pl,pr) such that t ∈ (pl, pr) ⊂ [i, j].

We can recursively generate a series of length
n—{e(slk,srk)}—in LR[i, j, x] as follows.

k = 1 Let slk = i, srk = max{p|p ∈ (i +
1, j) and ∃e(i,p)};

k > 1 For srk−1, we denote all edges that
cover it as e(pl1,pr1), · · · , e(pls,prs). Note that
there is at least one such edge. For any two
edges in them, viz e(plu,pru) and e(plv ,prv),
(plu, pru) ⊂ (plv, prv) or (plv, prv) ⊂
(plu, pru). Otherwise, the P2 property no
longer holds due to the interaction among
e(slk−1,srk−1), e(plu,pru) and e(plv ,prv). As-
sume (plw, prw) is the largest one, then we
let slk = plw, srk = prw. When srk = j,
recursion ends.

We are going to prove that if
we delete two edges e(x,srn−1) and
e(i,j) from LR[i, j, x], the series
{sl1, sl2, sl3, ..., sln−2, sln−1, sln, srn−1, srn}
satisfies each and all the conditions of C1.

Condition 1. Because e(sln,srn) covers srn−1,
Condition 1 holds for k = m−3,m−2. Consider
k ≤ m− 4 = n− 2. Assume that sk+1 < sk, then
we have e(sk+1,srk+1) is larger than e(sk,srk+1).
This is impossible because we select the largest
edge in every step.

Condition 2. The LR sub-problem we discussed
now cannot be reduced to L nor R, so there must
be two edges from x that respectively cross edges
linked to i and j. We are going to prove that

2115

the two edges must be e(x,s2) and e(x,srn−1). As-
sume that there is e(x,p), where p ∈ (i, j), p ̸=
s2 and p ̸= srn−1. If p ∈ (i, s2), then e(s1,s3)

crosses with e(x,p) and e(s2,s4) simultaneously.
1EC is violated. If p ∈ (s2, srn−1), e(x,p) nec-
essarily crosses with some edge e(sk,sk+2). Fur-
thermore, i < sk < sk+2 < j. Thus 1EC is vio-
lated. If p ∈ (srn−1, j), the situation is similar to
p ∈ (i, s2).

Condition 3. ∀k ∈ [1, n − 2], e(slk,srk)

and e(slk+1,srk+1) cross, e(slk+1,srk+1) and
e(slk+2,srk+2) cross, so srk ≤ slk+2. Otherwise
the interaction of the three edges results in the
violation of P2. If srk < slk+2, e(slk,srk) and
e(slk+2,srk+2) share no common endpoint, violat-
ing 1EC. Therefore, srk = slk+2 = sk+2, and
Condition 3 is satisfied.

We also reach proposition that pt(sk, sk+2) =
sk+1.

Condition 4. This condition is easy to verify be-
cause (sk, sk+2) is the largest with respective to
srk.

Condition 5. Assume, that there is e(pl,pr)

which intersects with e(sk,sk+2), and at the
same time satisfy the conditions: e(pl,pr) /∈
{e(st,st+2)|t ∈ [1,m − 2]} ∪ {e(x,s2), e(x,srn−1)}.
Since pt(sk, sk+2) = sk+1, pl = sk+1 or pr =
sk+1.

If pl = sk+1, then pl < slk+2 < pr, and in turn
k < m − 2. In addition, according to Condition
4, (pl, pr) ⊂ (sk+1, sk+3). So pr < sk+3. If
k = m − 3 then e(x,sn−1)

crosses with e(pl,pr) and
e(i,j) simultaneously. 1EC is violated. If k < m −
3 then e(sk+2,sk+4) cross with e(pl,pr), and pr <
sk+3 = pt(e(sk+2,sk+4)). Again 1EC is violated. If
pr = sk+1 The symmetry of our proof entails the
violation of 1ec.

All in all, the assumption does not hold and thus
satisfies Condition 5.

Condition 6. e(x,s1), e(x,sm) are disallowed due
to definition of an LR problem. e(x,sm−1), e(s1,sm)

are disallowed due to the decomposition.

Condition 7. Due to the existence of e(x,s2) and
e(x,srn−1), there must be two edges: e(x,p1) and
e(x,p2) that cross e(i,s2) and e(srn−1,j) respectively.
There must be an odd number of edges in the series
{e(slk,srk)}, otherwise P2 is violated as the case
shown in Figure 1. In summary, the last condition

..

(a) C[i, j, a, b](a < b)

.
x
.

i
.

k
. a.

b
. =. +

..

(b.1) C[i, j, a, b](a > b), n > 2

.
x
.

i
. k.

b
.

a
. =. +

..

(b.2) C[i, j, a, b](a > b), n = 2

.
x
.

i
. k.

b
.

a
. =. +. +

Figure 7: Decomposition for C[x, i, a, b].

is satisfied and we have a C1 structure in this LR
sub-problem.

4.7 Decomposing a C Sub-problem

We illustrate the decomposition using the graph-
ical representations shown in Figure 7. When
a < b, since a is the upper-plane endpoint farthest
to the right, and b is the lower-plane counterpart,
in this case a precedes b (i.e., a is to the left of b).

Let C[x, i, a, k] be a C in which the lower-plane
endpoint k precedes a. Add e(k,b) gives a new C
sub-problem with lower-plane endpoint preceded
by the upper-plane one. The decomposition is then
C[x, i, a, k] + Int[a, b] + SELECT[k, b].

When a > b and n > 2, the lower-plane end-
point b precedes a. In analogy, the case can be ob-
tained by adding e(k,a) to C[x, i, k, b]. The decom-
position: C[x, i, k, b] + Int[b, a] + SELECT[k, a].

When n = 2, we reach the most funda-
mental case. Only 4 vertices are in the series,
namely i,k,b,a. Moreover, there are three edges:
e(x,k), e(i,b), e(k,a), and the interval [i,a] is di-
vided by k,b into three parts. The decomposition
is Int[i, k]+Int[k, b]+Int[b, a]+SELECT[x, k]+
SELECT[i, b] + SELECT[k, a].

4.8 Discussion

4.8.1 Soundness and Completeness
The algorithm is sound and complete with respec-
tive to 1EC/P2 graphs. We present our algorithms
by detailing the decomposition rules. The com-
pleteness is obvious because we can decompose
any 1EC/P2 graph from an Int, use our rules to re-
duce it into smaller sub-problems, and repeat this
procedure. The decomposition rules are also con-
struction rules. During constructing graphs by ap-
plying these rules, we never violate 1EC nor P2

2116

..
i
.

l
.

k
.

j

....Int[i, j].

.... ..Int[k, j]

.

....LR[i, k, j].

....L[i, k, j].

.... ..L[l, k, i].

....Int[l, k]

.Int[i, l]

. ..Int[i, j].

.... ..L[k, j, l].

....Int[k, j].

.... ..Int[l, k]

.

....R[i, l, k].

....Int[i, l]

Figure 8: A maximal 1EC/P2 graph and its two
derivations. For brevity, we elide the edges created
in each derivation step.

restrictions. So our algorithm is sound.

4.8.2 Greedy Search during Construction
There is an important difference between our al-
gorithm and Eisner-style MST algorithms (Eis-
ner, 1996b; McDonald and Pereira, 2006; Car-
reras, 2007; Koo and Collins, 2010) for trees as
well as Kuhlmann and Jonsson’s Maximum Sub-
graph algorithm for noncrossing graphs. In each
construction step, our algorithm allows multiple
arcs to be constructed, but whether or not such
arcs are added to the target graph depends on their
arc-weights. In each step, we do greedy search
and decide if adding an related arc according to
local scores. If all arcs are assigned scores that are
greater than 0, the output of our algorithm includes
the most complicated 1EC/P2 graphs. That means
adding one more arc voilates the 1EC or P2 restric-
tions. For all other aforementioned algorithms, in
a single construction step, it is clear whether to
add a new arc, and which one. There is no local
search.

4.8.3 Spurious Ambiguity
To generate the same graph, even a maximal
1EC/P2 graph, we may have different derivations.
Figure 8 is an example. This is similar to syn-
tactic analysis licensed by Combinatory Catego-
rial Grammar (CCG; Steedman, 1996, 2000). To
derive one surface string, there usually exists mul-
tiple CCG derivations. A practice of CCG parsing
is defining one particular derivation as the stan-
dard one, namely normal form (Eisner, 1996a).
The spurious ambiguity in our algorithm does not
affect the correctness of first-order parsing, be-
cause scores are assigned to individual dependen-

cies, rather than derivation processes. There is no
need to distinguish one special derivation here.

4.8.4 Complexity
The sub-problem Int is of size O(n2), each graph
of which takes a calculating time of order O(n2).
For sub-problems L, R, LR, and N, each has
O(n3) elements, with a unit calculating time
O(n). C has O(n4) elements, with a unit calcu-
lating time O(n). Therefore the full version algo-
rithm runs in time of O(n5) with a space require-
ment of O(n4).

4.9 A Degenerated Version

We find that graphical structures involved in the C
sub-problem, namely coupled staggered pattern, is
extremely rare in linguistic analysis. If we ignore
this special case, we get a degenerated version of
dynamic programming algorithm. This algorithm
can find a strict subset of 1EC/P2 graphs. We can
improve efficiency without sacrificing expressive-
ness in terms of linguistic data. This degenerated
version algorithm requires O(n4) time and O(n3)
space.

5 Practical Parsing

5.1 Disambiguation

We extend our quartic-time parsing algorithm into
a practical parser. In the context of data-driven
parsing, this requires an extra disambiguation
model. As with many other parsers, we employ
a global linear model. Following Zhang et al.
(2016)’s experience, we define rich features ex-
tracted from word, POS-tags and pseudo trees. For
details we refer to the source code. To estimate
parameters, we utilize the averaged perceptron al-
gorithm (Collins, 2002).

5.2 Data

We conduct experiments on unlabeled parsing
using four corpora: CCGBank (Hockenmaier
and Steedman, 2007), DeepBank (Flickinger
et al., 2012), Enju HPSGBank (EnjuBank; Miyao
et al., 2004) and Prague Dependency TreeBank
(PCEDT; Hajic et al., 2012), We use “standard”
training, validation, and test splits to facilitate
comparisons. Following previous experimental
setup for CCG parsing, we use section 02-21 as
training data, section 00 as the development data,
and section 23 for testing. The other three data
sets are from SemEval 2014 Task 8 (Oepen et al.,

2117

DeepBank EnjuBank CCGBank PCEDT
UP UR UF UP UR UF UP UR UF UP UR UF

P1 90.75 86.13 88.38 93.38 90.20 91.76 94.21 88.55 91.29 90.61 85.69 88.08
1ECP2d 91.05 87.22 89.09 93.41 91.83 92.61 94.41 91.41 92.89 90.76 86.31 88.48

Table 2: Parsing accuracy evaluated on the development sets.

DeepBank EnjuBank CCGBank PCEDT
UP UR UF UP UR UF UP UR UF UP UR UF

Ours 90.91 86.98 88.90 93.83 91.49 92.64 94.23 91.13 92.66 90.09 85.90 87.95
ZDSW 89.04 88.85 88.95 92.92 92.83 92.87 92.49 92.30 92.40 - - - - - -
MA 90.14 88.65 89.39 93.18 91.12 92.14 - - - - - - 90.21 85.51 87.80
DSW - - - - - - - - - - - - 93.03 92.03 92.53 - - - - - -

Table 3: Parsing accuracy evaluated on the test sets.

2014), and the data splitting policy follows the
shared task. All the four data sets are publicly
available from LDC (Oepen et al., 2016).

Experiments for CCG-grounded analysis were
performed using automatically assigned POS-tags
that are generated by a symbol-refined HMM tag-
ger (Huang et al., 2010). Experiments for the
other three data sets used POS-tags provided by
the shared task. We also use features extracted
from pseudo trees. We utilize the Mate parser
(Bohnet, 2010) to generate pseudo trees. The
pre-processing for CCGBank, DeepBank and En-
juBank are exactly the same as in experiments re-
ported in (Zhang et al., 2016).

5.3 Accuracy
We evaluate two parsing algorithms, the algorithm
for noncrossing dependency graphs (Kuhlmann
and Jonsson, 2015), i.e. pagenumber-1 (denoted
as P1) graphs, and our quartic-time algorithm (de-
noted as 1ECP2d). Table 2 summerizes the ac-
curacy obtained our parser. Same feature tem-
plates are applied for disambiguation. We can see
that our new algorithm yields significant improve-
ments on all data sets, as expected. Especially, due
to the improved coverage, the recall is improved
more.

5.4 Comparison with Other Parsers
Our new parser can be taken as a graph-based
parser which employ a different architecture from
transition-based and factorization-based (Martins
and Almeida, 2014; Du et al., 2015a) systems.
We compare our parser with the best reported sys-
tems in the other two architectures. ZDSW (Zhang
et al., 2016) is transition-based parser while MA
(Martins and Almeida, 2014) and DSW (Du et al.,

2015a) are two factorization-based systems. All
of them achieves state-of-the-art performance. All
results on the test set is shown in Table 3. We
can see that our parser, as a graph-based parser,
is comparable to state-of-the-art transition-based
and factorization-based parsers.

6 Conclusion and Future Work

In this paper, we explore the strength of the graph-
based approach. In particular, we enhance the
Maximum Subgraph model with new parsing al-
gorithms for 1EC/P2 graphs. Our work indi-
cates the importance of finding appropriate graph
classes that on the one hand are linguistically ex-
pressive and on the other hand allow efficient
search. Within tree-structured dependency pars-
ing, higher-order factorization that conditions on
wider syntactic contexts than arc-factored rela-
tionships have been proved very useful. The arc-
factored model proposed in this paper may be en-
hanced with higher-order features too. We leave
this for future investigation.

Acknowledgments

This work was supported by 863 Program of China
(2015AA015403), NSFC (61331011), and Key
Laboratory of Science, Technology and Standard
in Press Industry (Key Laboratory of Intelligent
Press Media Technology).

We thank the first anonymous reviewer whose
valuable comments led to significant revisions.
We thank Xingfeng Shi for his help in explicating
the idea.

Weiwei Sun is the corresponding author.

2118

References
Bernd Bohnet. 2010. Top accuracy and fast depen-

dency parsing is not a contradiction. In Proceedings
of the 23rd International Conference on Computa-
tional Linguistics (Coling 2010). Coling 2010 Or-
ganizing Committee, Beijing, China, pages 89–97.
http://www.aclweb.org/anthology/C10-1011.

Xavier Carreras. 2007. Experiments with a higher-
order projective dependency parser. In In Proc.
EMNLP-CoNLL.

Michael Collins. 2002. Discriminative training meth-
ods for hidden markov models: Theory and ex-
periments with perceptron algorithms. In Pro-
ceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, pages 1–8.
https://doi.org/10.3115/1118693.1118694.

Yantao Du, Weiwei Sun, and Xiaojun Wan. 2015a.
A data-driven, factorization parser for CCG de-
pendency structures. In Proceedings of the 53rd
Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers). Association for Compu-
tational Linguistics, Beijing, China, pages 1545–
1555. http://www.aclweb.org/anthology/P15-1149.

Yantao Du, Fan Zhang, Weiwei Sun, and Xiaojun
Wan. 2014. Peking: Profiling syntactic tree pars-
ing techniques for semantic graph parsing. In
Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014). Asso-
ciation for Computational Linguistics and Dublin
City University, Dublin, Ireland, pages 459–464.
http://www.aclweb.org/anthology/S14-2080.

Yantao Du, Fan Zhang, Xun Zhang, Weiwei Sun, and
Xiaojun Wan. 2015b. Peking: Building semantic
dependency graphs with a hybrid parser. In Pro-
ceedings of the 9th International Workshop on Se-
mantic Evaluation (SemEval 2015). Association for
Computational Linguistics, Denver, Colorado, pages
927–931. http://www.aclweb.org/anthology/S15-
2154.

Jason Eisner. 1996a. Efficient normal-form parsing for
combinatory categorial grammar. In Proceedings of
the 34th Annual Meeting of the Association for Com-
putational Linguistics (ACL). Santa Cruz, pages 79–
86.

Jason M. Eisner. 1996b. Three new probabilistic mod-
els for dependency parsing: an exploration. In
Proceedings of the 16th conference on Computa-
tional linguistics - Volume 1. Association for Com-
putational Linguistics, Stroudsburg, PA, USA, pages
340–345.

Daniel Flickinger, Yi Zhang, and Valia Kordoni. 2012.
Deepbank: A dynamically annotated treebank of the
wall street journal. In Proceedings of the Eleventh

International Workshop on Treebanks and Linguistic
Theories. pages 85–96.

Carlos Gómez-Rodrı́guez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency
structures. In Proceedings of the 48th An-
nual Meeting of the Association for Computa-
tional Linguistics. Association for Computational
Linguistics, Uppsala, Sweden, pages 1492–1501.
http://www.aclweb.org/anthology/P10-1151.

Jan Hajic, Eva Hajicová, Jarmila Panevová, Petr
Sgall, Ondej Bojar, Silvie Cinková, Eva Fucı́ková,
Marie Mikulová, Petr Pajas, Jan Popelka, Jirı́ Se-
mecký, Jana Sindlerová, Jan Stepánek, Josef Toman,
Zdenka Uresová, and Zdenek Zabokrtský. 2012.
Announcing prague czech-english dependency tree-
bank 2.0. In Proceedings of the 8th International
Conference on Language Resources and Evaluation.
Istanbul, Turkey.

James Henderson, Paola Merlo, Ivan Titov, and
Gabriele Musillo. 2013. Multilingual joint pars-
ing of syntactic and semantic dependencies with a
latent variable model. Computational Linguistics
39(4):949–998.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the penn treebank. Com-
putational Linguistics 33(3):355–396.

Zhongqiang Huang, Mary Harper, and Slav Petrov.
2010. Self-training with products of latent vari-
able grammars. In Proceedings of the 2010
Conference on Empirical Methods in Natural
Language Processing. Association for Computa-
tional Linguistics, Cambridge, MA, pages 12–22.
http://www.aclweb.org/anthology/D10-1002.

Angelina Ivanova, Stephan Oepen, Lilja Øvrelid, and
Dan Flickinger. 2012. Who did what to whom?
A contrastive study of syntacto-semantic dependen-
cies. In Proceedings of the Sixth Linguistic Annota-
tion Workshop. Jeju, Republic of Korea, pages 2–11.

Terry Koo and Michael Collins. 2010. Efficient third-
order dependency parsers. In Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computa-
tional Linguistics, Uppsala, Sweden, pages 1–11.
http://www.aclweb.org/anthology/P10-1001.

Marco Kuhlmann and Peter Jonsson. 2015. Parsing to
noncrossing dependency graphs. Transactions of the
Association for Computational Linguistics 3:559–
570.

André F. T. Martins and Mariana S. C. Almeida. 2014.
Priberam: A turbo semantic parser with second or-
der features. In Proceedings of the 8th Interna-
tional Workshop on Semantic Evaluation (SemEval
2014). Association for Computational Linguistics
and Dublin City University, Dublin, Ireland, pages
471–476. http://www.aclweb.org/anthology/S14-
2082.

2119

Ryan McDonald and Fernando Pereira. 2006. Online
learning of approximate dependency parsing algo-
rithms. In Proceedings of 11th Conference of the
European Chapter of the Association for Computa-
tional Linguistics (EACL-2006)). volume 6, pages
81–88.

Ryan McDonald, Fernando Pereira, Kiril Ribarov, and
Jan Hajic. 2005. Non-projective dependency pars-
ing using spanning tree algorithms. In Proceedings
of Human Language Technology Conference and
Conference on Empirical Methods in Natural Lan-
guage Processing. Association for Computational
Linguistics, Vancouver, British Columbia, Canada,
pages 523–530.

Yusuke Miyao, Takashi Ninomiya, and Jun ichi Tsujii.
2004. Corpus-oriented grammar development for
acquiring a head-driven phrase structure grammar
from the penn treebank. In IJCNLP. pages 684–693.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Silvie Cinková, Dan Flickinger,
Jan Hajič, Angelina Ivanova, and Zdeňka Urešová.
2016. Semantic Dependency Parsing (SDP) graph
banks release 1.0 LDC2016T10. Web Download.

Stephan Oepen, Marco Kuhlmann, Yusuke Miyao,
Daniel Zeman, Dan Flickinger, Jan Hajic, An-
gelina Ivanova, and Yi Zhang. 2014. Semeval 2014
task 8: Broad-coverage semantic dependency pars-
ing. In Proceedings of the 8th International Work-
shop on Semantic Evaluation (SemEval 2014). As-
sociation for Computational Linguistics and Dublin
City University, Dublin, Ireland, pages 63–72.
http://www.aclweb.org/anthology/S14-2008.

Emily Pitler, Sampath Kannan, and Mitchell Mar-
cus. 2013. Finding optimal 1-endpoint-crossing
trees. TACL 1:13–24. http://www.transacl.org/wp-
content/uploads/2013/03/paper13.pdf.

M. Steedman. 1996. Surface Structure and Interpre-
tation. Linguistic Inquiry Monographs. Mit Press.
http://books.google.ca/books?id=Mh1vQgAACAAJ.

Mark Steedman. 2000. The syntactic process. MIT
Press, Cambridge, MA, USA.

Weiwei Sun, Junjie Cao, and Xiaojun Wan. 2017. Se-
mantic dependency parsing via book embedding. In
Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics. Association
for Computational Linguistics.

Weiwei Sun, Yantao Du, Xin Kou, Shuoyang Ding, and
Xiaojun Wan. 2014. Grammatical relations in Chi-
nese: GB-ground extraction and data-driven pars-
ing. In Proceedings of the 52nd Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers). Association for Computa-
tional Linguistics, Baltimore, Maryland, pages 446–
456. http://www.aclweb.org/anthology/P14-1042.

Ivan Titov, James Henderson, Paola Merlo, and
Gabriele Musillo. 2009. Online graph planari-
sation for synchronous parsing of semantic and
syntactic dependencies. In Proceedings of the
21st international jont conference on Artifi-
cal intelligence. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, pages 1562–1567.
http://dl.acm.org/citation.cfm?id=1661445.1661696.

Xun Zhang, Yantao Du, Weiwei Sun, and Xiaojun
Wan. 2016. Transition-based parsing for deep de-
pendency structures. Computational Linguistics
42(3):353–389. http://aclweb.org/anthology/J16-
3001.

2120

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2121–2130
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1194

Semi-supervised Multitask Learning for Sequence Labeling

Marek Rei
The ALTA Institute

Computer Laboratory
University of Cambridge

United Kingdom
marek.rei@cl.cam.ac.uk

Abstract

We propose a sequence labeling frame-
work with a secondary training objec-
tive, learning to predict surrounding words
for every word in the dataset. This lan-
guage modeling objective incentivises the
system to learn general-purpose patterns
of semantic and syntactic composition,
which are also useful for improving accu-
racy on different sequence labeling tasks.
The architecture was evaluated on a range
of datasets, covering the tasks of error
detection in learner texts, named entity
recognition, chunking and POS-tagging.
The novel language modeling objective
provided consistent performance improve-
ments on every benchmark, without re-
quiring any additional annotated or unan-
notated data.

1 Introduction

Accurate and efficient sequence labeling mod-
els have a wide range of applications, including
named entity recognition (NER), part-of-speech
(POS) tagging, error detection and shallow pars-
ing. Specialised approaches to sequence label-
ing often include extensive feature engineering,
such as integrated gazetteers, capitalisation fea-
tures, morphological information and POS tags.
However, recent work has shown that neural net-
work architectures are able to achieve compara-
ble or improved performance, while automatically
discovering useful features for a specific task and
only requiring a sequence of tokens as input (Col-
lobert et al., 2011; Irsoy and Cardie, 2014; Lample
et al., 2016).

This feature discovery is usually driven by an
objective function based on predicting the anno-
tated labels for each word, without much incentive

to learn more general language features from the
available text. In many sequence labeling tasks,
the relevant labels in the dataset are very sparse
and most of the words contribute very little to the
training process. For example, in the CoNLL 2003
NER dataset (Tjong Kim Sang and De Meulder,
2003) only 17% of the tokens represent an entity.
This ratio is even lower for error detection, with
only 14% of all tokens being annotated as an error
in the FCE dataset (Yannakoudakis et al., 2011).
The sequence labeling models are able to learn
this bias in the label distribution without obtaining
much additional information from words that have
the majority label (O for outside of an entity; C
for correct word). Therefore, we propose an addi-
tional training objective which allows the models
to make more extensive use of the available data.

The task of language modeling offers an eas-
ily accessible objective – learning to predict the
next word in the sequence requires only plain text
as input, without relying on any particular annota-
tion. Neural language modeling architectures also
have many similarities to common sequence label-
ing frameworks: words are first mapped to dis-
tributed embeddings, followed by a recurrent neu-
ral network (RNN) module for composing word
sequences into an informative context represen-
tation (Mikolov et al., 2010; Graves et al., 2013;
Chelba et al., 2013). Compared to any sequence
labeling dataset, the task of language modeling has
a considerably larger and more varied set of pos-
sible options to predict, making better use of each
available word and encouraging the model to learn
more general language features for accurate com-
position.

In this paper, we propose a neural sequence
labeling architecture that is also optimised as a
language model, predicting surrounding words in
the dataset in addition to assigning labels to each
token. Specific sections of the network are op-

2121

https://doi.org/10.18653/v1/P17-1194

timised as a forward- or backward-moving lan-
guage model, while the label predictions are per-
formed using context from both directions. This
secondary unsupervised objective encourages the
framework to learn richer features for semantic
composition without requiring additional training
data. We evaluate the sequence labeling model on
10 datasets from the fields of NER, POS-tagging,
chunking and error detection in learner texts. Our
experiments show that by including the unsuper-
vised objective into the training process, the se-
quence labeling model achieves consistent perfor-
mance improvements on all the benchmarks. This
multitask training framework gives the largest im-
provements on error detection datasets, outper-
forming the previous state-of-the-art architecture.

2 Neural Sequence Labeling

We use the neural network model of Rei et al.
(2016) as the baseline architecture for our se-
quence labeling experiments. The model takes as
input one sentence, separated into tokens, and as-
signs a label to every token using a bidirectional
LSTM.

The input tokens are first mapped to a
sequence of distributed word embeddings
[x1, x2, x3, ..., xT]. Two LSTM (Hochreiter and
Schmidhuber, 1997) components, moving in
opposite directions through the sentence, are
then used for constructing context-dependent
representations for every word. Each LSTM takes
as input the hidden state from the previous time
step, along with the word embedding from the
current step, and outputs a new hidden state. The
hidden representations from both directions are
concatenated, in order to obtain a context-specific
representation for each word that is conditioned
on the whole sentence in both directions:

−→
ht = LSTM(xt,

−−→
ht−1) (1)

←−
ht = LSTM(xt,

←−−
ht+1) (2)

ht = [
−→
ht ;
←−
ht] (3)

Next, the concatenated representation is passed
through a feedforward layer, mapping the compo-
nents into a joint space and allowing the model to
learn features based on both context directions:

dt = tanh(Wdht) (4)

where Wd is a weight matrix and tanh is used as
the non-linear activation function.

In order to predict a label for each token, we use
either a softmax or CRF output architecture. For
softmax, the model directly predicts a normalised
distribution over all possible labels for every word,
conditioned on the vector dt:

P (yt|dt) = softmax(Wodt)

=
eWo,kdt

∑
k̃∈K e

Wo,k̃dt

(5)

where K is the set of all possible labels, and
Wo,k is the k-th row of output weight matrix Wo.
The model is optimised by minimising categori-
cal crossentropy, which is equivalent to minimis-
ing the negative log-probability of the correct la-
bels:

E = −
T∑

t=1

log(P (yt|dt)) (6)

While this architecture returns predictions
based on all words in the input, the labels are
still predicted independently. For some tasks, such
as named entity recognition with a BIO1 scheme,
there are strong dependencies between subsequent
labels and it can be beneficial to explicitly model
these connections. The output of the architec-
ture can be modified to include a Conditional Ran-
dom Field (CRF, Lafferty et al. (2001)), which al-
lows the network to look for the most optimal path
through all possible label sequences (Huang et al.,
2015; Lample et al., 2016). The model is then op-
timised by maximising the score for the correct la-
bel sequence, while minimising the scores for all
other sequences:

E = −s(y) + log
∑

ỹ∈Ỹ

es(ỹ) (7)

where s(y) is the score for a given sequence y and
Y is the set of all possible label sequences.

We also make use of the character-level compo-
nent described by Rei et al. (2016), which builds
an alternative representation for each word. The
individual characters of a word are mapped to
character embeddings and passed through a bidi-
rectional LSTM. The last hidden states from both
direction are concatenated and passed through a

1Each NER entity has sub-tags for Beginning, Inside and
Outside

2122

h2

x2

d2

o2

h2

proposes

m2

q2

m2

q2

OFischler measures

h3

x3

d3

o3

h3

measures

m3

q3

m3

q3

Oproposes </s>

h1

x1

d1

o1

h1

Fischler

m1

q1

m1

q1

PER<s> proposes

Figure 1: The unfolded network structure for a sequence labeling model with an additional language
modeling objective, performing NER on the sentence ”Fischler proposes measures”. The input tokens
are shown at the bottom, the expected output labels are at the top. Arrows above variables indicate the
directionality of the component (forward or backward).

nonlinear layer. The resulting vector representa-
tion is combined with a regular word embedding
using a dynamic weighting mechanism that adap-
tively controls the balance between word-level and
character-level features. This framework allows
the model to learn character-based patterns and
handle previously unseen words, while still taking
full advantage of the word embeddings.

3 Language Modeling Objective

The sequence labeling model in Section 2 is only
optimised based on the correct labels. While each
token in the input does have a desired label, many
of these contribute very little to the training pro-
cess. For example, in the CoNLL 2003 NER
dataset (Tjong Kim Sang and De Meulder, 2003)
there are only 8 possible labels and 83% of the to-
kens have the label O, indicating that no named
entity is detected. This ratio is even higher for er-
ror detection, with 86% of all tokens containing
no errors in the FCE dataset (Yannakoudakis et al.,
2011). The sequence labeling models are able to
learn this bias in the label distribution without ob-
taining much additional information from the ma-
jority labels. Therefore, we propose a supplemen-
tary objective which would allow the models to
make full use of the training data.

In addition to learning to predict labels for each
word, we propose optimising specific sections of
the architecture as language models. The task of
predicting the next word will require the model
to learn more general patterns of semantic and
syntactic composition, which can then be reused
in order to predict individual labels more accu-
rately. This objective is also generalisable to any

sequence labeling task and dataset, as it requires
no additional annotated training data.

A straightforward modification of the sequence
labeling model would add a second parallel output
layer for each token, optimising it to predict the
next word. However, the model has access to the
full context on each side of the target token, and
predicting information that is already explicit in
the input would not incentivise the model to learn
about composition and semantics. Therefore, we
must design the loss objective so that only sec-
tions of the model that have not yet observed the
next word are optimised to perform the prediction.
We solve this by predicting the next word in the
sequence only based on the hidden representation−→
ht from the forward-moving LSTM. Similarly, the
previous word in the sequence is predicted based
on
←−
ht from the backward-moving LSTM. This ar-

chitecture avoids the problem of giving the correct
answer as an input to the language modeling com-
ponent, while the full framework is still optimised
to predict labels based on the whole sentence.

First, the hidden representations from forward-
and backward-LSTMs are mapped to a new space
using a non-linear layer:

−→mt = tanh(
−→
Wm
−→
ht) (8)

←−mt = tanh(
←−
Wm
←−
ht) (9)

where
−→
Wm and

←−
Wm are weight matrices. This

separate transformation learns to extract features
that are specific to language modeling, while the
LSTM is optimised for both objectives. We also
use the opportunity to map the representation to a
smaller size – since language modeling is not the

2123

main goal, we restrict the number of parameters
available for this component, forcing the model to
generalise more using fewer resources.

These representations are then passed through
softmax layers in order to predict the preceding
and following word:

P (wt+1|−→mt) = softmax(
−→
W q
−→mt) (10)

P (wt−1|←−mt) = softmax(
←−
W q
←−mt) (11)

The objective function for both components
is then constructed as a regular language mod-
eling objective, by calculating the negative log-
likelihood of the next word in the sequence:

−→
E = −

T−1∑

t=1

log(P (wt+1|−→mt)) (12)

←−
E = −

T∑

t=2

log(P (wt−1|←−mt)) (13)

Finally, these additional objectives are com-
bined with the training objective E from either
Equation 6 or 7, resulting in a new cost function
Ẽ for the sequence labeling model:

Ẽ = E + γ(
−→
E +

←−
E) (14)

where γ is a parameter that is used to control the
importance of the language modeling objective in
comparison to the sequence labeling objective.

Figure 1 shows a diagram of the unfolded neu-
ral architecture, when performing NER on a short
sentence with 3 words. At each token position,
the network is optimised to predict the previous
word, the current label, and the next word in the
sequence. The added language modeling objec-
tive encourages the system to learn richer feature
representations that are then reused for sequence
labeling. For example,

−→
h1 is optimised to predict

proposes as the next word, indicating that the cur-
rent word is a subject, possibly a named entity. In
addition,

←−
h2 is optimised to predict Fischler as the

previous word and these features are used as input
to predict the PER tag at o1.

The proposed architecture introduces 4 addi-
tional parameter matrices that are optimised dur-
ing training:

−→
Wm,

←−
Wm,

−→
W q, and

←−
W q. How-

ever, the computational complexity and resource

requirements of this model during sequence la-
beling are equal to the baseline from Section 2,
since the language modeling components are ig-
nored during testing and these additional weight
matrices are not used. While our implementation
uses a basic softmax as the output layer for the lan-
guage modeling components, the efficiency during
training could be further improved by integrating
noise-contrastive estimation (NCE, Mnih and Teh
(2012)) or hierarchical softmax (Morin and Ben-
gio, 2005).

4 Evaluation Setup

The proposed architecture was evaluated on 10
different sequence labeling datasets, covering the
tasks of error detection, NER, chunking, and POS-
tagging. The word embeddings in the model
were initialised with publicly available pretrained
vectors, created using word2vec (Mikolov et al.,
2013). For general-domain datasets we used
300-dimensional embeddings trained on Google
News.2 For biomedical datasets, the word embed-
dings were initialised with 200-dimensional vec-
tors trained on PubMed and PMC.3

The neural network framework was imple-
mented using Theano (Al-Rfou et al., 2016) and
we make the code publicly available online.4 For
most of the hyperparameters, we follow the set-
tings by Rei et al. (2016) in order to facilitate di-
rect comparison with previous work. The LSTM
hidden layers are set to size 200 in each direction
for both word- and character-level components.
All digits in the text were replaced with the char-
acter 0; any words that occurred only once in the
training data were replaced by an OOV token. In
order to reduce computational complexity in these
experiments, the language modeling objective pre-
dicted only the 7,500 most frequent words, with an
extra token covering all the other words.

Sentences were grouped into batches of size 64
and parameters were optimised using AdaDelta
(Zeiler, 2012) with default learning rate 1.0.
Training was stopped when performance on the
development set had not improved for 7 epochs.
Performance on the development set was also used
to select the best model, which was then evalu-
ated on the test set. In order to avoid any outlier
results due to randomness in the model initialisa-

2https://code.google.com/archive/p/word2vec/
3http://bio.nlplab.org/
4https://github.com/marekrei/sequence-labeler

2124

FCE DEV FCE TEST CoNLL-14 TEST1 CoNLL-14 TEST2
F0.5 P R F0.5 P R F0.5 P R F0.5

Baseline 48.78 55.38 25.34 44.56 15.65 16.80 15.80 25.22 19.25 23.62
+ dropout 48.68 54.11 23.33 42.65 14.29 17.13 14.71 22.79 19.42 21.91
+ LMcost 53.17 58.88 28.92 48.48 17.68 19.07 17.86 27.62 21.18 25.88

Table 1: Precision, Recall and F0.5 score of alternative sequence labeling architectures on error detection
datasets. Dropout and LMcost modifications are added incrementally to the baseline.

tion, each configuration was trained with 10 dif-
ferent random seeds and the averaged results are
presented in this paper. We use previously estab-
lished splits for training, development and testing
on each of these datasets.

Based on development experiments, we found
that error detection was the only task that did not
benefit from having a CRF module at the output
layer – since the labels are very sparse and the
dataset contains only 2 possible labels, explicitly
modeling state transitions does not improve per-
formance on this task. Therefore, we use a soft-
max output for error detection experiments and
CRF on all other datasets.

The publicly available sequence labeling sys-
tem by Rei et al. (2016) is used as the base-
line. During development we found that applying
dropout (Srivastava et al., 2014) on word embed-
dings improves performance on nearly all datasets,
compared to this baseline. Therefore, element-
wise dropout was applied to each of the input em-
beddings with probability 0.5 during training, and
the weights were multiplied by 0.5 during testing.
In order to separate the effects of this modification
from the newly proposed optimisation method, we
report results for three different systems: 1) the
publicly available baseline, 2) applying dropout on
top of the baseline system, and 3) applying both
dropout and the novel multitask objective from
Section 3.

Based on development experiments we set the
value of γ, which controls the importance of the
language modeling objective, to 0.1 for all exper-
iments throughout training. Since context predic-
tion is not part of the main evaluation of sequence
labeling systems, we expected the additional ob-
jective to mostly benefit early stages of training,
whereas the model would later need to specialise
only towards assigning labels. Therefore, we also
performed experiments on the development data
where the value of γ was gradually decreased, but

found that a small static value performed compa-
rably well or even better. These experiments in-
dicate that the language modeling objective helps
the network learn general-purpose features that
are useful for sequence labeling even in the later
stages of training.

5 Error Detection

We first evaluate the sequence labeling architec-
tures on the task of error detection – given a sen-
tence written by a language learner, the system
needs to detect which tokens have been manu-
ally tagged by annotators as being an error. As
the first benchmark, we use the publicly released
First Certificate in English (FCE, Yannakoudakis
et al. (2011)) dataset, containing 33,673 manu-
ally annotated sentences. The texts were writ-
ten by learners during language examinations in
response to prompts eliciting free-text answers
and assessing mastery of the upper-intermediate
proficiency level. In addition, we evaluate on
the CoNLL 2014 shared task dataset (Ng et al.,
2014), which has been converted to an error de-
tection task. This contains 1,312 sentences, writ-
ten by higher-proficiency learners on more tech-
nical topics. They have been manually corrected
by two separate annotators, and we report results
on each of these annotations. For both datasets we
use the FCE training set for model optimisation
and results on the CoNLL-14 dataset indicate out-
of-domain performance. Rei and Yannakoudakis
(2016) present results on these datasets using the
same setup, along with evaluating the top shared
task submissions on the task of error detection. As
the main evaluation metric, we use the F0.5 mea-
sure, which is consistent with previous work and
was also adopted by the CoNLL-14 shared task.

Table 1 contains results for the three different
sequence labeling architectures on the error detec-
tion datasets. We found that including the dropout
actually decreases performance in the setting of

2125

CoNLL-00 CoNLL-03 CHEMDNER JNLPBA
DEV TEST DEV TEST DEV TEST DEV TEST

Baseline 92.92 92.67 90.85 85.63 83.63 84.51 77.13 72.79
+ dropout 93.40 93.15 91.14 86.00 84.78 85.67 77.61 73.16
+ LMcost 94.22 93.88 91.48 86.26 85.45 86.27 78.51 73.83

Table 2: Performance of alternative sequence labeling architectures on NER and chunking datasets,
measured using CoNLL standard entity-level F1 score.

error detection, which is likely due to the rela-
tively small amount of error examples available in
the dataset – it is better for the model to memo-
rise them without introducing additional noise in
the form of dropout. However, we did verify that
dropout indeed gives an improvement in combina-
tion with the novel language modeling objective.
Because the model is receiving additional infor-
mation at every token, dropout is no longer ob-
scuring the limited training data but instead helps
with generalisation.

The bottom row shows the performance of the
language modeling objective when added on top
of the baseline model, along with dropout on word
embeddings. This architecture outperforms the
baseline on all benchmarks, increasing both pre-
cision and recall, and giving a 3.9% absolute im-
provement on the FCE test set. These results also
improve over the previous best results by Rei and
Yannakoudakis (2016) and Rei et al. (2016), when
all systems are trained on the same FCE dataset.
While the added components also require more
computation time, the difference is not excessive
– one training batch over the FCE dataset was pro-
cessed in 112 seconds on the baseline system and
133 seconds using the language modeling objec-
tive.

Error detection is the task where introducing the
additional cost objective gave the largest improve-
ment in performance, for a few reasons:

1. This task has very sparse labels in the
datasets, with error tokens very infrequent
and far apart. Without the language modeling
objective, the network has very little use for
all the available words that contain no errors.

2. There are only two possible labels, correct
and incorrect, which likely makes it more dif-
ficult for the model to learn feature detec-
tors for many different error types. Language
modeling uses a much larger number of pos-

sible labels, giving a more varied training sig-
nal.

3. Finally, the task of error detection is directly
related to language modeling. By learning a
better model of the overall text in the training
corpus, the system can more easily detect any
irregularities.

We also analysed the performance of the differ-
ent architectures during training. Figure 2 shows
the F0.5 score on the development set for each
model after every epoch over the training data.
The baseline model peaks quickly, followed by a
gradual drop in performance, which is likely due
to overfitting on the available data. Dropout pro-
vides an effective regularisation method, slowing
down the initial performance but preventing the
model from overfitting. The added language mod-
eling objective provides a substantial improve-
ment – the system outperforms other configura-
tions already in the early stages of training and the
results are also sustained in the later epochs.

Figure 2: F0.5 score on the FCE development set
after each training epoch.

6 NER and Chunking

In the next experiments we evaluate the language
modeling objective on named entity recognition
and chunking. For general-domain NER, we use

2126

GENIA-POS PTB-POS UD-ES UD-FI
DEV TEST DEV TEST DEV TEST DEV TEST

Baseline 98.69 98.61 97.23 97.24 96.38 95.99 95.02 94.80
+ dropout 98.79 98.71 97.36 97.30 96.51 96.16 95.88 95.60
+ LMcost 98.89 98.81 97.48 97.43 96.62 96.21 96.14 95.88

Table 3: Accuracy of different sequence labeling architectures on POS-tagging datasets.

the English section of the CoNLL 2003 corpus
(Tjong Kim Sang and De Meulder, 2003), contain-
ing news stories from the Reuters Corpus. We also
report results on two biomedical NER datasets:
The BioCreative IV Chemical and Drug corpus
(CHEMDNER, Krallinger et al. (2015)) of 10,000
abstracts, annotated for mentions of chemical and
drug names, and the JNLPBA corpus (Kim et al.,
2004) of 2,404 abstracts annotated for mentions
of different cells and proteins. Finally, we use the
CoNLL 2000 dataset (Tjong Kim Sang and Buch-
holz, 2000), created from the Wall Street Journal
Sections 15-18 and 20 from the Penn Treebank,
for evaluating sequence labeling on the task of
chunking. The standard CoNLL entity-level F1

score is used as the main evaluation metric.

Compared to error detection corpora, the labels
are more balanced in these datasets. However, ma-
jority labels still exist: roughly 83% of the tokens
in the NER datasets are tagged as ”O”, indicating
that the word is not an entity, and the NP label
covers 53% of tokens in the chunking data.

Table 2 contains results for evaluating the differ-
ent architectures on NER and chunking. On these
tasks, the application of dropout provides a consis-
tent improvement – applying some variance onto
the input embeddings results in more robust mod-
els for NER and chunking. The addition of the
language modeling objective consistently further
improves performance on all benchmarks.

While these results are comparable to the re-
spective state-of-the-art results on most datasets,
we did not fine-tune hyperparameters for any spe-
cific task, instead providing a controlled analy-
sis of the language modeling objective in differ-
ent settings. For JNLPBA, the system achieves
73.83% compared to 72.55% by Zhou and Su
(2004) and 72.70% by Rei et al. (2016). On
CoNLL-03, Lample et al. (2016) achieve a con-
siderably higher result of 90.94%, possibly due
to their use of specialised word embeddings and
a custom version of LSTM. However, our sys-

tem does outperform a similar architecture by
Huang et al. (2015), achieving 86.26% compared
to 84.26% F1 score on the CoNLL-03 dataset.

Figure 3 shows F1 on the CHEMDNER de-
velopment set after every training epoch. With-
out dropout, performance peaks quickly and then
trails off as the system overfits on the training set.
Using dropout, the best performance is sustained
throughout training and even slightly improved.
Finally, adding the language modeling objective
on top of dropout allows the system to consistently
outperform the other architectures.

Figure 3: Entity-level F1 score on the CHEMD-
NER development set after each training epoch.

7 POS tagging

We also evaluated the language modeling training
objective on four POS-tagging datasets. The Penn
Treebank POS-tag corpus (Marcus et al., 1993)
contains texts from the Wall Street Journal and has
been annotated with 48 different part-of-speech
tags. In addition, we use the POS-annotated subset
of the GENIA corpus (Ohta et al., 2002) contain-
ing 2,000 biomedical PubMed abstracts. Follow-
ing Tsuruoka et al. (2005), we use the same 210-
document test set. Finally, we also evaluate on the
Finnish and Spanish sections of the Universal De-
pendencies v1.2 dataset (UD, Nivre et al. (2015)),
in order to investigate performance on morpholog-
ically complex and Romance languages.

2127

These datasets are somewhat more balanced in
terms of label distributions, compared to error de-
tection and NER, as no single label covers over
50% of the tokens. POS-tagging also offers a large
variance of unique labels, with 48 labels in PTB
and 42 in GENIA, and this can provide useful in-
formation to the models during training. The base-
line performance on these datasets is also close to
the upper bound, therefore we expect the language
modeling objective to not provide much additional
benefit.

The results of different sequence labeling archi-
tectures on POS-tagging can be seen in Table 3
and accuracy on the development set is shown in
Figure 4. While the performance improvements
are small, they are consistent across all domains,
languages and datasets. Application of dropout
again provides a more robust model, and the lan-
guage modeling cost improves the performance
further. Even though the labels already offer a var-
ied training objective, learning to predict the sur-
rounding words at the same time has provided the
model with additional general-purpose features.

8 Related Work

Our work builds on previous research exploring
multi-task learning in the context of different se-
quence labeling tasks. The idea of multi-task
learning was described by Caruana (1998) and has
since been extended to many language process-
ing tasks using neural networks. For example,
Collobert and Weston (2008) proposed a multi-
task framework using weight-sharing between net-
works that are optimised for different supervised
tasks.

Cheng et al. (2015) described a system for de-
tecting out-of-vocabulary names by also predict-
ing the next word in the sequence. While they use
a regular recurrent architecture, we propose a lan-
guage modeling objective that can be integrated
with a bidirectional network, making it applica-
ble to existing state-of-the-art sequence labeling
frameworks.

Plank et al. (2016) described a related architec-
ture for POS-tagging, predicting the frequency of
each word together with the part-of-speech, and
showed that this can improve tagging accuracy on
low-frequency words. While predicting word fre-
quency can be useful for POS-tagging, language
modeling provides a more general training signal,
allowing us to apply the model to many different

Figure 4: Token-level accuracy on the PTB-POS
development set after each training epoch.

sequence labeling tasks.
Recently, Augenstein and Søgaard (2017)

explored multi-task learning for classifying
keyphrase boundaries, by incorporating tasks
such as semantic super-sense tagging and iden-
tification of multi-word expressions. Bingel and
Søgaard (2017) also performed a systematic
comparison of task relationships by combining
different datasets through multi-task learning.
Both of these approaches involve switching to
auxiliary datasets, whereas our proposed language
modeling objective requires no additional data.

9 Conclusion

We proposed a novel sequence labeling framework
with a secondary objective – learning to predict
surrounding words for each word in the dataset.
One half of a bidirectional LSTM is trained as
a forward-moving language model, whereas the
other half is trained as a backward-moving lan-
guage model. At the same time, both of these are
also combined, in order to predict the most prob-
able label for each word. This modification can
be applied to several common sequence labeling
architectures and requires no additional annotated
or unannotated data.

The objective of learning to predict surrounding
words provides an additional source of informa-
tion during training. The model is incentivised to
discover useful features in order to learn the lan-
guage distribution and composition patterns in the
training data. While language modeling is not the
main goal of the system, this additional training
objective leads to more accurate sequence labeling
models on several different tasks.

The architecture was evaluated on a range of
datasets, covering the tasks of error detection in

2128

learner texts, named entity recognition, chunking
and POS-tagging. We found that the additional
language modeling objective provided consistent
performance improvements on every benchmark.
The largest benefit from the new architecture was
observed on the task of error detection in learner
writing. The label distribution in the original
dataset is very sparse and unbalanced, making it a
difficult task for the model to learn. The added lan-
guage modeling objective allowed the system to
take better advantage of the available training data,
leading to 3.9% absolute improvement over the
previous best architecture. The language modeling
objective also provided consistent improvements
on other sequence labeling tasks, such as named
entity recognition, chunking and POS-tagging.

Future work could investigate the extension
of this architecture to additional unannotated re-
sources. Learning generalisable language fea-
tures from large amounts of unlabeled in-domain
text could provide sequence labeling models with
additional benefit. While it is common to pre-
train word embeddings on large-scale unanno-
tated corpora, only limited research has been done
towards useful methods for pre-training or co-
training more advanced compositional modules.

References
Rami Al-Rfou, Guillaume Alain, Amjad Almahairi,

Christof Angermueller, Dzmitry Bahdanau, Nico-
las Ballas, Frédéric Bastien, Justin Bayer, Ana-
toly Belikov, Alexander Belopolsky, Yoshua Ben-
gio, Arnaud Bergeron, James Bergstra, Valentin
Bisson, Josh Bleecher Snyder, Nicolas Bouchard,
Nicolas Boulanger-Lewandowski, and Others. 2016.
Theano: A Python framework for fast computa-
tion of mathematical expressions. arXiv e-prints
abs/1605.0:19. http://arxiv.org/abs/1605.02688.

Isabelle Augenstein and Anders Søgaard. 2017. Multi-
Task Learning of Keyphrase Boundary Classifica-
tion. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics.
http://arxiv.org/abs/1704.00514.

Joachim Bingel and Anders Søgaard. 2017. Identi-
fying beneficial task relations for multi-task learn-
ing in deep neural networks. In arXiv preprint.
http://arxiv.org/abs/1702.08303.

Rich Caruana. 1998. Multitask Learning. Ph.D. thesis.

Ciprian Chelba, Tomáš Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robin-
son. 2013. One Billion Word Benchmark for Mea-
suring Progress in Statistical Language Modeling.
In arXiv preprint. http://arxiv.org/abs/1312.3005.

Hao Cheng, Hao Fang, and Mari Ostendorf. 2015.
Open-Domain Name Error Detection using a Multi-
Task RNN. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Pro-
cessing.

Ronan Collobert and Jason Weston. 2008. A
Unified Architecture for Natural Language Pro-
cessing: Deep Neural Networks with Multitask
Learning. Proceedings of the 25th interna-
tional conference on Machine learning (ICML ’08)
https://doi.org/10.1145/1390156.1390177.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural Language Processing (Almost) from
Scratch. Journal of Machine Learning Research 12.
https://doi.org/10.1145/2347736.2347755.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. International Conference on
Acoustics, Speech and Signal Processing (ICASSP)
https://doi.org/10.1109/ICASSP.2013.6638947.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
Short-term Memory. Neural Computation 9.
https://doi.org/10.1.1.56.7752.

Zhiheng Huang, Wei Xu, and Kai Yu.
2015. Bidirectional LSTM-CRF Models
for Sequence Tagging. arXiv:1508.01991
http://arxiv.org/pdf/1508.01991v1.pdf.

Ozan Irsoy and Claire Cardie. 2014. Opinion Mining
with Deep Recurrent Neural Networks. In Proceed-
ings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP).

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka,
Yuka Tateisi, and Nigel Collier. 2004. In-
troduction to the Bio-entity Recognition Task
at JNLPBA. Proceedings of the Interna-
tional Joint Workshop on Natural Language
Processing in Biomedicine and Its Applications
https://doi.org/10.3115/1567594.1567610.

Martin Krallinger, Florian Leitner, Obdulia Rabal,
Miguel Vazquez, Julen Oyarzabal, and Alfonso Va-
lencia. 2015. CHEMDNER: The drugs and chemi-
cal names extraction challenge. Journal of Chemin-
formatics 7(Suppl 1). https://doi.org/10.1186/1758-
2946-7-S1-S1.

John Lafferty, Andrew McCallum, and Fernando
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data. In Proceedings of the 18th Interna-
tional Conference on Machine Learning.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural Architectures for Named Entity Recognition.
In Proceedings of NAACL-HLT 2016.

2129

Mitchell P. Marcus, Beatrice Santorini, and
Mary Ann Marcinkiewicz. 1993. Building
a large annotated corpus of English: The
Penn Treebank. Computational Linguistics 19.
https://doi.org/10.1162/coli.2010.36.1.36100.

Tomáš Mikolov, Kai Chen, Greg Corrado, and
Jeffrey Dean. 2013. Efficient Estimation of
Word Representations in Vector Space. In
Proceedings of the International Conference
on Learning Representations (ICLR 2013).
https://doi.org/10.1162/153244303322533223.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Cernocký, and Sanjeev Khudanpur. 2010. Recur-
rent Neural Network based Language Model. Inter-
speech (September):1045–1048.

Andriy Mnih and Yee Whye Teh. 2012. A fast and sim-
ple algorithm for training neural probabilistic lan-
guage models. In Neural Information Processing
Systems (NIPS).

Frederic Morin and Yoshua Bengio. 2005. Hi-
erarchical probabilistic neural network language
model. Proceedings of the Tenth International
Workshop on Artificial Intelligence and Statistics
https://doi.org/10.1109/JCDL.2003.1204852.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 Shared Task
on Grammatical Error Correction. In Proceedings
of the Eighteenth Conference on Computa-
tional Natural Language Learning: Shared Task.
http://www.aclweb.org/anthology/W/W14/W14-
1701.

Joakim Nivre, Željko Agić, Maria Jesus Aranzabe,
Masayuki Asahara, Aitziber Atutxa, Miguel Balles-
teros, John Bauer, Kepa Bengoetxea, Riyaz Ah-
mad Bhat, Cristina Bosco, Sam Bowman, et al.
2015. Universal dependencies 1.2. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics, Charles University.
http://hdl.handle.net/11234/1-1548.

Tomoko Ohta, Yuka Tateisi, and Jin-Dong Kim.
2002. The GENIA corpus: An annotated re-
search abstract corpus in molecular biology do-
main. Proceedings of the second international con-
ference on Human Language Technology Research
http://portal.acm.org/citation.cfm?id=1289260.

Barbara Plank, Anders Søgaard, and Yoav Gold-
berg. 2016. Multilingual Part-of-Speech Tagging
with Bidirectional Long Short-Term Memory Mod-
els and Auxiliary Loss. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics (ACL-16). pages 412–418.
http://arxiv.org/abs/1604.05529.

Marek Rei, Gamal K. O. Crichton, and Sampo Pyysalo.
2016. Attending to Characters in Neural Sequence

Labeling Models. In Proceedings of the 26th Inter-
national Conference on Computational Linguistics
(COLING-2016). http://arxiv.org/abs/1611.04361.

Marek Rei and Helen Yannakoudakis. 2016.
Compositional Sequence Labeling Models
for Error Detection in Learner Writing. In
Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics.
https://aclweb.org/anthology/P/P16/P16-1112.pdf.

Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. 2014. Dropout : A Simple Way to
Prevent Neural Networks from Overfitting. Jour-
nal of Machine Learning Research (JMLR) 15.
https://doi.org/10.1214/12-AOS1000.

Erik F. Tjong Kim Sang and Sabine Buchholz.
2000. Introduction to the CoNLL-2000 shared task:
Chunking. Proceedings of the 2nd Workshop on
Learning Language in Logic and the 4th Confer-
ence on Computational Natural Language Learning
7. https://doi.org/10.3115/1117601.1117631.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recog-
nition. In Proceedings of the seventh conference
on Natural language learning at HLT-NAACL 2003.
http://arxiv.org/abs/cs/0306050.

Yoshimasa Tsuruoka, Yuka Tateishi, Jin Dong Kim,
Tomoko Ohta, John McNaught, Sophia Ananiadou,
and Jun’ichi Tsujii. 2005. Developing a robust part-
of-speech tagger for biomedical text. In Proceed-
ings of Panhellenic Conference on Informatics.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A New Dataset and Method for Automati-
cally Grading ESOL Texts. In Proceedings of the
49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technolo-
gies. http://www.aclweb.org/anthology/P11-1019.

Matthew D. Zeiler. 2012. ADADELTA: An Adap-
tive Learning Rate Method. arXiv preprint
arXiv:1212.5701 http://arxiv.org/abs/1212.5701.

GuoDong Zhou and Jian Su. 2004. Exploring Deep
Knowledge Resources in Biomedical Name Recog-
nition. Workshop on Natural Language Processing
in Biomedicine and Its Applications at COLING .

2130

Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, pages 2131–2141
Vancouver, Canada, July 30 - August 4, 2017. c©2017 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17-1195

Semantic Parsing of Pre-university Math Problems

Takuya Matsuzaki1, Takumi Ito1, Hidenao Iwane2, Hirokazu Anai2, Noriko H. Arai3
1 Nagoya University, Japan

{matuzaki,takumi i}@nuee.nagoya-u.ac.jp
2 Fujitsu Laboratories Ltd., Japan

{iwane,anai}@jp.fujitsu.com
3 National Institute of Informatics, Japan

arai@nii.ac.jp

Abstract

We have been developing an end-to-end
math problem solving system that accepts
natural language input. The current paper
focuses on how we analyze the problem
sentences to produce logical forms. We
chose a hybrid approach combining a shal-
low syntactic analyzer and a manually-
developed lexicalized grammar. A feature
of the grammar is that it is extensively
typed on the basis of a formal ontology
for pre-university math. These types are
helpful in semantic disambiguation inside
and across sentences. Experimental results
show that the hybrid system produces a
well-formed logical form with 88% preci-
sion and 56% recall.

1 Introduction

Frege and Russell, the initiators of the mathemati-
cal logic, delved also into the exploration of a the-
ory of natural language semantics (Frege, 1892;
Russell, 1905). Since then, symbolic logic has
been a fundamental tool and a source of inspira-
tion in the study of language meaning. It suggests
that the formalization of the two realms, mathe-
matical reasoning and language meaning, is ac-
tually the two sides of the same coin – probably,
we could not even conceive the idea of formaliz-
ing language meaning without grounding it onto
mathematical reasoning. This point was first clari-
fied by Tarski (1936; 1944) mainly on formal lan-
guages and then extended to natural languages by
Davidson (1967). Montague (1970a; 1970b; 1973)
further embodied it by putting forward a terrify-
ingly arrogant and attractive idea of seeing a natu-
ral language as a formal language.

The automation of end-to-end math problem
solving thus has an outstanding status in the re-

Define the two straight lines L1 and L2 on the xy-plane
as L1: y = 0 (x-axis) and L2: y =

√
3x. Let P be

a point on the xy-plane. Let Q be the point symmetric
to P about the straight line L1, and let R be the point
symmetric to P about the straight line L2. Answer the
following questions:

(1) Let (a, b) be the coordinates of P , then represent the
coordinates of R using a and b.

(2) Assuming that the distance between the two points
Q and R is 2, find the locus C of P .

(3) When the point P moves on C, find the maximum
area of the triangle PQR and the coordinates of P
that gives the maximum area.

(Hokkaido Univ., 1999-Sci-3)

Figure 1: Example problem

search themes in natural language processing. The
conceptual basis has been laid down, which con-
nects text to the truth (= answer) through reason-
ing. However, we have not seen a fully automated
system that instantiates it end-to-end. We wish to
add a piece to the big picture by materializing it.

Past studies have mainly targeted at primary
school level arithmetic word problems (Bobrow,
1964; Charniak, 1969; Kushman et al., 2014; Hos-
seini et al., 2014; Shi et al., 2015; Roy and Roth,
2015; Zhou et al., 2015; Koncel-Kedziorski et al.,
2015; Mitra and Baral, 2016; Upadhyay et al.,
2016). In their nature, arithmetic questions are
quantifier-free. Moreover they tend to include
only ∧ (and) as the logical connective. The main
challenge in these works was to extract simple nu-
merical relations (most typically equations) from
a real-world scenario described in a text.

Seo et al. (2015) took SAT geometry ques-
tions as their benchmark. However, the nature of
SAT geometry questions restricts the resulting for-
mula’s complexity. In §3, we will show that none
of them includes ∀ (for all), ∨ (or) or→ (implies).
It suggests that this type of questions require little
need to analyze the logical structure of the prob-
lems beyond conjunctions of predicates.

2131

https://doi.org/10.18653/v1/P17-1195

Problem shallow
parsing

coreference
resolution

math expr.
analysis

semantic
parsing

discourse
parsing

formula
rewriting

reasoning Solution

LexiconOntology Axioms CASATP

Type
constraint

Figure 2: Overview of the end-to-end math problem solving system

We take pre-university math problems falling
in the theory of real-closed fields (RCF) as our
benchmark because of their variety and complex-
ity. The subject areas include real and linear al-
gebra, complex numbers, calculus, and geometry.
Furthermore, many problems involve more than
one subject: e.g., algebraic curves and calculus
as in Fig. 1. Their logical forms include all the
logical connectives, quantifiers, and λ-abstraction.
Our goal is to recognize the complex logical struc-
tures precisely, including the scopes of the quanti-
fiers and other logical operators.

In the rest of the paper, we first present an
overview of an end-to-end problem solving sys-
tem (§2) and analyze the complexity of the pre-
university math benchmark in comparison with
others (§3). Among the modules in the end-to-end
system, we focus on the sentence-level semantic
parsing component and describe an extensively-
typed grammar (§4 and §5), an analyzer for the
math expressions in the text (§6), and two seman-
tic parsing techniques to fight against the scarcity
of the training data (§7) and the complexity of the
domain (§8). Experimental results show the effec-
tiveness of the presented techniques as well as the
complexity of the task through an in-depth analy-
sis of the end-to-end problem solving results (§9).

2 End-to-end Math Problem Solving

Fig. 2 presents an overview of our end-to-end
math problem solving system. A math problem
text is firstly analyzed with a dependency parser.
Anaphoric and coreferential expressions in the text
are then identified and their antecedents are de-
termined. We assume the math formulas in the
problems are encoded in MathML presentation
mark-up. A specialized parser processes each
one of them to determine its syntactic category
and semantic content. The semantic representa-
tion of each sentence is determined by a semantic
parser based on Combinatory Categorial Grammar
(CCG) (Steedman, 2001, 2012). The output from
the CCG parser is a ranked list of sentence-level
logical forms for each sentence.

Dataset
Succeeded Failed

Success% Avg. Timeout OtherTime
DEV 75.3% (131/174) 10.5s 16.7% 8.1%
TEST 78.2% (172/220) 16.2s 15.0% 6.8%

Table 1: Performance of the reasoning module on
manually formalized pre-university problems

After the sentence-level processing steps,
we determine the logical relations among the
sentence-level logical forms (discourse parsing)
by a simple rule-based system. It produces a tree
structure whose leaves are labeled with sentences
and internal nodes with logical connectives. Free
variables in the logical form are then bound by
some quantifiers (or kept free) and their scopes
are determined according to the logical structure
of the problem. A semantic representation of a
problem is obtained as a formula in a higher-order
logic through these language analysis steps.

The logical representation is then rewritten us-
ing a set of axioms that define the meanings of
the predicate and function symbols in the formula,
such as maximum defined as follows:

maximum(x, S)↔ x ∈ S ∧ ∀y(y ∈ S → y ≤ x),

as well as several logical rules such as β-
reduction. We hope to obtain a representation of
the initial problem expressed in a decidable math
theory such as RCF through these equivalence-
preserving rewriting. Once we find such a for-
mula, we invoke a computer algebra system (CAS)
or an automatic theorem prover (ATP) to derive the
answer.

The reasoning module (i.e., the formula rewrit-
ing and the deduction with CAS and ATP) of
the system has been extensively tested on a large
collection of manually formalized pre-university
math problems that includes more than 1,500
problems. It solves 70% of the them in the time
limit of 10 minutes per problem. Table 1 shows the
rate of successfully solved problems in the man-
ually formalized version of the benchmark prob-
lems used in the current paper.

2132

Prob- Avg. Avg. Uniq. Atoms ∃ ∀ λ ∧ ∨ ¬ → Unique
lems tokens sents. words sketches

JOBS 640 9.83 1.00 391 4.63 1.71 0.00 0.00 1.06 0.01 0.13 0.00 8
GEOQUERY 880 8.56 1.00 284 4.25 1.70 0.00 1.04 1.18 0.00 0.02 0.00 20
GEOMETRY 119 23.64 1.74 202 11.00 7.45 0.00 0.06 1.00 0.00 0.04 0.00 4
UNIV (DEV) 174 70.34 3.45 363 10.99 5.10 1.10 1.11 1.71 0.02 0.49 0.35 76
UNIV (TEST) 220 70.85 4.02 366 9.70 4.58 1.10 1.00 1.62 0.02 0.28 0.23 72

Table 2: Profile of pre-university math benchmark data and other semantic parsing benchmark data sets

JOBS GEOQUERY GEOMETRY UNIV (DEV)
∃P 81% ∃P 46% ∃P 94% ∃P 25%
P 6% ∃P (λ∃P) 24% ∃(P∧¬P) 3% ∃(P∧¬P) 7%

∃(P∧¬∃P) 5% P (λ∃P) 8% ∃(P∧P (λP)) 2% P (λ∃P) 5%
∃(P∧¬P) 5% ∃(P∧P (λ∃P)) 7% P (λ∃P) 1% ∃(P∧P (λf)) 4%

97% 85% 100% 41%

Table 3: Top four most frequest sketches and their coverage over the dataset

Sketch Freq.
∀(P → ∃(∀(P → P)∧P)) 2

∃(∃(¬P∧P)∧P∧P (λf))∧P (λ(P → P))) 1
∃(P∧P (λ(¬P∧∃(∃P∧P)))) 1

∃(P∧P (λf))∧P (λ(¬P∧P))∧P (λP)) 1

Table 4: Less frequent sketches in UNIV (DEV)

3 Profile of the Benchmark Data

Our benchmark problems, UNIV, were collected
from the past entrance exams of seven top-ranked
universities in Japan. In the exams held in odd
numbered years from 1999 to 2013, we exhaus-
tively selected the problems which are ultimately
expressible in RCF. They occupied 40% of all the
problems. We divided the problems into two sets:
DEV for development (those from year 1999 to
2005) and TEST for test (those from year 2007
to 2013). DEV was used for the lexicon devel-
opment and the tuning of the end-to-end system.
The problem texts (both in English and Japanese)
with MathML mark-up and manually translated
logical forms are publicly available at https:
//github.com/torobomath.

The manually translated logical forms were for-
mulated in a higher-order semantic language intro-
duced later in the paper. The translation was done
as faithfully as possible to the original wordings of
the problems. They thus keep the inherent logical
structures expressed in natural language.

Table 2 lists several statistics of the UNIV prob-
lems in the English version and their manual for-
malization. For comparison, the statistics of three
other benchmarks are also listed. JOBS and GEO-
QUERY are collections of natural language queries
against databases. They have been widely used as

benchmarks for semantic parsing (e.g., Tang and
Mooney, 2001; Zettlemoyer and Collins, 2005,
2007; Kwiatkowski et al., 2010, 2011; Liang et al.,
2011). The queries are annotated with logical
forms in Prolog. We converted them to equiva-
lent higher-order formulas to collect comparable
statistics. GEOMETRY is a collection of SAT ge-
ometry questions compiled by Seo et al. (2015).
We formalized the GEOMETRY questions1 in our
semantic language in the same way as UNIV.

In Table 2, the first column lists the number
of problems. The next three provide statistics of
the problem texts: average number of words and
sentences in a problem (‘Avg. tokens’ and ‘Avg.
sents’), and the number of unique words in the
whole dataset.2 They reveal that the sentences in
UNIV are significantly longer than the others and
more than three sentences have to be correctly pro-
cessed for a problem.

The remaining columns provide the statistics
about the logical complexities of the problems.
‘Atoms’ stands for the average number of the oc-
currences of predicates per problem. The next
three columns list the number of variables bound
by ∃, ∀, and λ. We count sequential occurrences of
the same binder as one. The columns for ∧, ∨, ¬,
and → list the average number of them per prob-
lem.3 We can see UNIV includes a wider variety
of quantifiers and connectives than the others.

The final column lists the numbers of unique
‘sketches’ of the logical forms in the dataset. What

1Including all conditions expressed in the diagrams.
2 All the math formulas in the texts were replaced with a

special token “MATH” before counting words.
3 ∧ and ∨ was counted as operators with arbitrary arity.

E.g., there is only one ∧ in A ∧B ∧ C.

2133

we call ‘sketch’ here is a signature that encodes the
overall structure of a logical form. Table 3 shows
the top four most frequent sketches observed in the
datasets. In a sketch, P stands for a (conjunction
of) predicate(s) and f stands for a term. ∃, ∀, and
λ stand for (immediately nested sequence of) the
binders.

To obtain the sketch of a formula φ, we first re-
place all the predicate symbols in φ to P and func-
tion symbols and constants to f . We then elimi-
nate all variables in φ and ‘flatten’ it by applying
the following rewriting rules to the sub-formulas
in φ in the bottom-up order:

f(..., f(α1, α2, ..., αn), ...)⇒ f(..., α1, α2, ..., αn, ...)
P (..., f(α1, α2, ..., αn), ...)⇒ P (..., α1, α2, ..., αn, ...)

α ∨ α ∨ β ⇒ α ∨ β, α ∧ α⇒ α
∃∃ψ ⇒ ∃ψ, ∀∀ψ ⇒ ∀ψ, λλψ ⇒ λψ

Finally, we sort the arguments of P s and fs and
remove the duplicates among them. For instance,
to obtain the sketch of the following formula:

∀k∀m
(

maximum(m, set(λe.(e < k)))
→ k − 1 ≤ m ∧m < k

)
,

we replace the predicate/function symbols as in:

∀k∀m
(

P (m, f(λe.P (e, k)))
→ P (f(k, f),m) ∧ P (m, k)

)
,

and then eliminate the variables to have:

∀∀(P (f(λP))→ P (f(f)) ∧ P),

and finally flatten it to:

∀(P (λP)→ P).

Table 3 shows that a wide variety of structures
are found in UNIV while other data sets are dom-
inated by a small number of structures. Table 4
presents some of less frequent sketches found in
UNIV (DEV). In actuality, 67% of the unique
sketches found in UNIV (DEV) occur only once
in the dataset. These statistics suggest that the dis-
tribution of the logical structures found in UNIV,
and math text in general, is very long-tailed.

4 A Type System for Pre-university Math

Our semantic language is a higher-order logic
(lambda calculus) with parametric polymorphism.
Table 5 presents the types in the language. The
atomic types are defined so that they capture
the selectional restriction of verbs and other

truth values Bool
numbers Z (integers), Q (rationals),

R (reals), C (complex)
polynomials Poly
single variable functions R2R (R→R), C2C (C→C)
single variable equations EqnR (in R), EqnC (in C)
points in 2D/3D space 2d.Point, 3d.Point
geometric objects 2d.Shape, 3d.Shape
vectors and matrices 2d.Vector, 3d.Vector
matrices 2d.Matrix, 3d.Matrix
angles 2d.Angle, 3d.Angle
number sequences Seq
cardinals and ordinals Card, Ord
ratios among numbers Ratio
limit values of functions LimitVal
integer division QuoRem
polymorphic containers SetOf(α), ListOf(α)
polymorphic tuples Pair(α, β), Triple(α, β, γ)

Table 5: Types defined in the semantic language

argument-taking phrases as precisely as possible.
For instance, an equation in real domain, e.g.,
x2 − 1 = 0, can be regarded as a set of reals, i.e.,
{x | x2 − 1 = 0}. However, we never say ‘a so-
lution of a set.’ We thus discriminate an equation
from a set in the type system even though the con-
cept of equation is mathematically dispensable.

Entities of equation and set are built by con-
structor functions that take a higher-order term
as the argument as in eqn(λx.x2 − 1) and
set(λx.x2 − 1). Related concepts such as ‘solu-
tion’ and ‘element’ are defined by the axioms for
corresponding function and predicate symbols:

∀f∀x(solution(x, eqn(f))↔ fx)

∀s∀x(element(x, set(s))↔ sx).

Distinction of cardinal numbers (Card) and
ordinal numbers (Ord), and the introduction of
‘integer division’ type (QuoRem) are also lin-
guistically motivated. The former is neces-
sary to capture the difference between, e.g., ‘k-
th integer in n1, n2, . . . , nm’ and ‘k integers in
n1, n2, . . . , nm.’ An object of type QuoRem
is conceptually a pair of integers that represent
the quotient and the remainder of integer divi-
sion. It is linguistically distinct from the type of
Pair(Z,Z) because, e.g., in

Select a pair of integers (n,m) and divide n by
m. If the remainder (of φ) is zero, ...

the null (i.e., omitted) pronoun φ has ‘the result of
division n/m’ as its antecedent but not (n,m).

Polymorphism is a mandatory part of the lan-
guage. Especially, the semantics of plural noun

2134

>

>

When
S/(S\NP)/Sa

: λP.λQ.π2(P)→ Q(π1(P))

any k in K is divided by m,
Sa

: (quorem(k,m), (∃k; k ∈ K))

S/(S\NP) : λQ.(∃k; k ∈ K)→ Q(quorem(k,m))
>

the quotient
T\NP/(T\NP)

: λP.λx.P (quo of(x))

is 3.
S\NP

: λx.(x = 3)

S\NP : λx.quo of(x) = 3

S : (∃k; k ∈ K)→ quo of(quorem(k,m)) = 3

Figure 3: Sketch of the derivation tree for a sentence including an action verb and quantification

phrases is expressed by polymorphic lists and tu-
ples: e.g., ‘the radii of the circles C1, C2, and C3’
is of type ListOf(R) and ‘the function f and its
maximum value’ is of type Pair(R2R,R).

5 Lexicon and Grammar

5.1 Combinatory Categorial Grammar
An instance of CCG grammar consists of a lexi-
con and a small number of combinatory rules. A
lexicon is a set of lexical items, each of which as-
sociates a word surface form with a syntactic cat-
egory and a semantic function: e.g.,

sum :: NP/PP : λx.sum of(x)

intersects :: S\NP/PP : λy.λx.intersect(x, y)

A syntactic category is one of atomic categories,
such as NP, PP, and S, or a complex category in the
form of X/Y or X\Y, where X and Y are syntactic
categories.

The syntactic categories and the semantic func-
tions of constituents are combined by applying
combinatory rules. The most fundamental rules
are forward (>) and backward (<) application:

>
X/Y : f Y : x

X : fx
<

Y : x X\Y : f

X : fx

The atomic categories are further classified by
features such as num(ber) and case of noun
phrases. In the current paper, the features are writ-
ten as in NP[num=pl,case=acc].

5.2 A Japanese CCG Grammar and Lexicon
We developed a Japanese CCG following the anal-
ysis of basic constructions by Bekki (2010) but
significantly extending it by covering various phe-
nomena related to copula verbs, action verbs,
argument-taking nouns, appositions and so forth.
The semantic functions are defined in the format
of a higher-order version of dynamic predicate
logic (Eijck and Stokhof, 2006). The dynamic
property is necessary to analyze semantic phe-
nomena related to quantifications, such as donkey
anaphora. In the following examples, we use En-
glish instead of Japanese and the standard notation
of higher-order logic for the sake of readability.

We added two atomic categories, Sn and Sa, to
the commonly used S, NP, and N. Category Sn is
assigned to a proposition expressed as a math for-
mula, such as ‘x > 0’. Semantically it is of type
Bool but syntactically it behaves both like a noun
phrase and a sentence.

Category Sa is assigned to a sentence where the
main verb is an action verb such as add and ro-
tate. Such a sentence introduces the result of the
action as a discourse entity (i.e., what can be an
antecedent of coreferential expressions). The ac-
tion verbs can also mediate quantification as in:

When any k∈K is divided by m, the quotient is 3.
∀k(k ∈ K → quo of(quorem(k,m)) = 3)

where quorem(k,m) represents the result of the
division (i.e., the pair of the quotient and the re-
mainder) and quo of is a function that extracts
the quotient from it. To handle such phenomena,
we posit the semantic type of Sa as Pair(α,
Bool) where the two components respectively
bring the result of an action and the condition
on it (including quantification). Fig. 3 presents a
derivation tree for the above example.4

The atomic category NP, N, and Sa in our gram-
mar have type feature. Its value is one of the
types defined in the semantic language or a type
variable when the entity type is underspecified.
The lexical entry for ‘(an integer) divides (an in-
teger)’ and ‘(a set) includes (an element)’ would
thus have the following categories (other features
than type are not shown):

divides :: S\NP[type=Z]/NP[type=Z]

includes :: S\NP[type=SetOf(α)]/NP[type=α]

When defining a lexical item, we don’t have to
explicitly specify the type features in most cases.
They can be usually inferred from the definition of

4 In Fig. 3, the semantic part is in the dynamic logic
format as in our real grammar where the dynamic binding
(∃x;φ) → ψ is interpreted as ∀x(φ → ψ) in the standard
predicate logic. Following our analysis of an analogous con-
struction in Japanese, the null pronoun after ‘the quotient’ is
filled by analysing the second clause as including a gap rather
than filling it by zero-pronoun resolution.

2135

the semantic function. In the above example, di-
vides will have λy.λx.(x|y) and includes will have
λy.λx.(y ∈ x) as their semantic functions. For
both cases, the type feature of the NP arguments
can be determined from the type definitions of the
operators | and ∈ in the ontology.

The lexicon currently includes 54,902 lexical
items for 8,316 distinct surface forms, in which
5,094 lexical items for 1,287 surface forms are for
function words and functional multi-word expres-
sions. The number of unique categories in the lex-
icon is 10,635. When the type features are ig-
nored, there are still 4,026 distinct categories.

6 Math Expression Analysis

The meaning of a math expression is composed
with the semantic functions of surrounding words
to produce a logical form. We dynamically gen-
erate lexical items for each math expression in a
problem. Consider the following sentence includ-
ing two ‘equations’:

If a2−4=0, then x2+ax+1=0 has a real solution.

The latter, x2+ax+1 = 0, should receive a lexical
item of a noun phrase, NP : eqn(λx.x2 + a + 1),
but the former, a2−4 = 0, should receive category
S since it denotes a proposition. Such disambigua-
tion is not always possible without semantic anal-
ysis of the text. We thus generate more than one
lexical item for ambiguous expressions and let the
semantic parser make a choice.

To generate the lexical items, we first collect
appositions to the math expressions, such as ‘in-
teger n and m’ and ‘equation x2 + a = 0,’ and
use them as the type constraints on the variables
and the compound expressions. Compound ex-
pressions are then parsed with an operator prece-
dence parser (Aho et al., 2006). Overloaded op-
erators, such as + for numbers and vectors, are
resolved using the type constrains whenever pos-
sible. Finally, we generate all possible interpre-
tations of the expressions and select appropriate
syntactic categories.

We have seen only three categories of math ex-
pressions: NP, Sn, and T/(T\NP). The last one is
used for a NP with post-modification, as in:

>

n > 0

T/(T\NP)
: λP.(n > 0 ∧ P (n))

is an even number

S\NP
: λx.(even(x))

S : n > 0 ∧ even(n)

Naomi-NOM garden-LOC walk-PAST

Naomi ga niwa o arui ta

𝑁𝑎𝑜𝑚𝑖
𝑁𝑃

𝑔𝑎
𝑁𝑃 ∖ 𝑁𝑃

𝑁𝑃

𝑛𝑖𝑤𝑎
𝑁𝑃

𝑜
𝑁𝑃 ∖ 𝑁𝑃
𝑁𝑃

𝑎𝑟𝑢𝑖
𝑆 ∖ 𝑁𝑃 ∖ 𝑁𝑃

𝑆 ∖ 𝑁𝑃
𝑆

𝑡𝑎
𝑆 ∖ 𝑆

𝑆

(Naomi walked in the garden.)

Figure 4: Bunsetsu dependency structure (top) and
CCG derivation tree (bottom)

7 Two-step Semantic Parsing

Two central issues in parsing are the cost of the
search and the accuracy of disambiguation. Super-
vised learning is commonly used to solve both. It
is however very costly to create the training data
by manually annotating a large number of sen-
tences with CCG trees. Past studies have tried to
bypass it by so-called weak supervision, where a
parser is trained only with the logical form (e.g.,
Kwiatkowski et al. 2011) or even only with the
answers to the queries (e.g., Liang et al. 2011).

Although the adaptation of such methods to the
pre-university math data is an interesting future di-
rection, we developed yet another approach based
on a hybrid of shallow dependency parsing and the
detailed CCG grammar. The syntactic structure of
Japanese sentences has traditionally been analyzed
based on the relations among word chunks called
bunsetsus. A bunsetsu consists of one or more
content words followed by zero or more function
words. The dependencies among bunsetsus mostly
correspond to the predicate-argument and inter-
clausal dependencies (Fig. 4). The dependency
structure hence matches the overall structure of a
CCG tree only leaving the details unspecified.

We derive a full CCG-tree by using a bunsetsu
dependency tree as a constraint. We assume: (i)
the fringe of each sub-tree in the dependency tree
has a corresponding node in the CCG tree. We call
such a node in the CCG tree ‘a matching node.’
We further assume: (ii) a matching node is com-
bined with another CCG tree node whose span in-
cludes at least one word in the head bunsetsu of
the matching node. Fig. 5 presents an example of
a sentence consisting of four bunsetsus (rounded
squares), each of which contains two words. In
the figure, the i-th cell in the k-th row from the
bottom is the CKY cell for the span from i-th to

2136

w1 w2 w3 w4 w5 w6 w7 w8

Figure 5: Restricted CKY parsing based on a shal-
low dependency structure

(i+k-1)-th words. Under the two assumptions, we
only need to fill the hatched cells given the depen-
dency structure shown below the CKY chart. The
hatched cells with a white circle indicate the posi-
tions of the matching nodes.

Even under the constraint of a dependency tree,
it is impractical to do exhaustive search. We use
beam search based on a simple score function on
the chart items that combines several features such
as the number of atomic categories in the item. We
also use N -best dependency trees to circumvent
the dependency errors. The restricted CKY pars-
ing is repeated on the N -best dependency trees
until a CCG tree is obtained. Our hope is to re-
ject a dependency error as violation of the syntac-
tic and semantic constraints encoded in the CCG
lexicon. In the experiment, we used a Japanese
dependency parser developed by Kudo and Mat-
sumoto (2002). We modified it to produce N -best
outputs and used up to 20-best trees per sentence.

8 Global Type Coherency

The well-typedness of the logical form is usually
guaranteed by the combinatory rules. However,
they do not always guarantee the type coherency
among the interpretations of the math expressions.

For instance, consider the following derivation:

>

if x+ y ∈ U,
S/S : λP.(addR(x, y) ∈ U → P)

then x+ z ∈ V.
S : addV(x, y) ∈ V

S : addR(x, y) ∈ U → addV(x, z) ∈ V

The + symbol is interpreted as the addition of real
numbers (addR) in the first clause but that of vec-
tors (addV) in the second one. The logical form is
not typable because the two occurrences of xmust
have different types. The forward application rule
does not reject this derivation since the categories
of the two clauses perfectly match the rule schema.

We can reject such inconsistency by doing type
checking on the logical form at every step of the

Algorithm 1 Global type coherence check
procedure PARSEPROBLEM

Envs← ∅; AllDerivs← []
for each sentence s in the problem do

Chart← INITIALIZECKYCHART(s, Envs)
Derivs← TWOSTEPPARSING(s, Chart)
Envs← UPDATEENVIRONMENTS(Envs, Derivs)
AllDerivs← AllDerivs ⊕ [Derivs]

return AllDerivs

// s: a sentence; Envs: a set of environments
procedure INITIALIZECKYCHART(s, Envs)

Chart← empty CKY chart
for each token t in s do

for each lexical item C : f for t do
// C: category, f : semantic function
if t is a math expression then

for each environment Γ ∈ Envs do
if Γ is unifiable with FV(f) then

add (C,Γ t FV(f)) to Chart
else // t is a normal word

add (C, ∅) to Chart
return Chart

FV(f): the environment that maps the free variables in a
semantic function f to their principal types determined by
type inference on f .

// Envs: a set of environments; Derivs: derivations trees
procedure UPDATEENVIRONMENTS(Envs, Derivs)

NewEnvs← ∅ // environments for the next sentence
for each derivation d ∈ Derivs do

Γ← the environment at the root of d
if Γ 6= ∅ then // update the environments

NewEnvs← NewEnvs ∪{Γ}
else // no update: there was no math expression

NewEnvs← NewEnvs ∪ Envs
// eliminate those subsumed by other environments
return MOSTGENERALENVIRONMENTS(NewEnvs)

derivation. It is however quite time consuming be-
cause we cannot use dynamic programming any
more and need to do type checking on numerous
chart items. Furthermore, such type inconsistency
may happen across sentences. Instead, we con-
sider the type environment while parsing. A type
environment, written as {v1 : T1, v2 : T2, . . . },
is a finite function from variables to type expres-
sions. A pair v : T means that the variable v must
be of type T or its instance (e.g., SetOf(R) is an
instance of SetOf(α)). For example, the logical
form of the first clause of the above sentence is ty-
pable under {x :R, y :R, z :α,U :SetOf(R), V :β},
but that of the second clause isn’t. Please refer,
e.g., to (Pierce, 2002) for the formal definitions.
Two environments Γ1 and Γ2 are unifiable iff there
exists a substitution σ that maps the type variables
in Γ1 and Γ2 to some type expressions so that
Γ1σ = Γ2σ holds. We write Γ1 t Γ2 for the re-
sult of such substitution (i.e., unification) with the

2137

<

<

n

(NP [α], {n : α}) >

divides
(S\NP [Z]/NP [Z], ∅)

12

(NP [Z], ∅)
(S\NP [Z], ∅)

(S, {n : Z}) >

iff
(S\S/Sn, ∅)

n ∈ U
(Sn, {n : β, U : SetOf(β)})

(S\S, {n : β, U : SetOf(β)})
(S, {n : Z, U : SetOf(Z)})

Figure 6: CCG parsing with type environment

Dataset Correct Time- Wrong No Parse
out RCF failure

DEV 27.6% 10.9% 12.1% 12.1% 37.4%
TEST 11.4% 1.8% 11.4% 6.8% 68.6%

(Correct: correct answer; Timeout: reasoning did not finish

in 10 min; Wrong: wrong answer; No RCF: no RCF formula

was obtained by rewriting the logical form; Parse failure: at

least one sentence in the problem did not receive a CCG tree)

Table 6: Result of end-to-end problem solving

Dataset Dep. Parsed Sentences (%)
train N=1 N=5 N=10 N=20

DEV
News 48.9 69.1 72.6 76.6

News+Math 70.5 81.6 84.6 86.4

TEST
News 46.6 58.7 61.9 64.7

News+Math 59.3 65.3 66.9 68.3

Table 7: Fraction of sentences on which a CCG
tree was obtained in top N dependency trees

most general σ (most general unifier, mgu).

We associate a type environment with each
chart item and refine it through parsing. The type
constraints implied in a discourse are accumu-
lated in the environment and block the generation
of incoherent derivations (Algorithm 1). Fig. 6
presents an example of a parsing result, in which
the type constraints implied in the two clauses are
unified at the root and the type of U is determined.
When we apply a combinatory rule, we first check
if the environments of the child chart items are
unifiable. If so, we put the unified environment in
the parent item and apply the unifier to the type
features in the parent category. For instance, the
forward application rule is revised as follows:

(X/Y,Γ1) + (Y,Γ2)→ (Xσ,Γ1 t Γ2),

where σ is the mgu of Γ1 and Γ2 and Xσ means
the application of σ to the type features in X .5

5 To be precise, we also consider the type constraints in-
duced through the unification of the categories. It can be seen
in the derivation step for “n divides 12” in Fig. 6, where the
new constraint n :Z is induced by the unification of NP[α]
and NP[Z] and merged into the environment of the parent.

9 Experiments and Analysis

This section presents the overall performance of
the current end-to-end system and demonstrates
the effectiveness of the proposed parsing tech-
niques. We also present an analysis of the failures.

Table 6 presents the result of end-to-end prob-
lem solving on the UNIV data. It shows the failure
in the semantic parsing is a major bottleneck in the
current system. Since a problem in UNIV includes
more than three sentences on average, parsing a
whole problem is quite a high bar for a semantic
parser. It is however necessary to solve it by the
nature of the task. Once a problem-level logical
form was produced, the system yielded a correct
solution for 44% of such problems in DEV and
36% in TEST.

Table 7 lists the fraction of the sentences on
which the two-step parser produced a CCG tree
within top-N dependency trees. We compared
the results obtained with the dependency parser
trained only on a news corpus (News) (Kurohashi
and Nagao, 2003), which is annotated with bun-
setsu level dependencies, and that trained addi-
tionally with a math problem corpus consisting of
6,000 sentences6 (News+Math). The math prob-
lem corpus was developed according to the same
annotation guideline for the news corpus. The at-
tachment accuracy of the dependency parser was
84% on math problem text when trained only on
the news corpus but improved to 94% by the ad-
dition of the math problem corpus. The perfor-
mance gain by increasing N is more evident in
the results with the News parser than that with the
News+Math parser. It suggests the grammar prop-
erly rejected wrong dependency trees, which were
ranked higher by the News parser. The effect of
the additional training is very large at small Ns
and still significant at N = 20. It means that we
successfully boosted both the speed and the suc-
cess rate of CCG parsing only with the shallow
dependency annotation on in-domain data.

6 No overlap with DEV and TEST sections of UNIV.

2138

Dataset Parsing w/ Typing Correct
type env. failure (%) answer (%)

DEV
no 9.8% 21.8%
yes 0.6% 27.6%

TEST
no 8.6% 8.6%
yes 0.0% 11.4%

Table 8: Effect of parsing with type environment

Freq. Reason for the parse failures (on TEST-2007)
17 Unknown usage of known content words

9 Unknown content words
8 Errors in coreference resolution
4 Missing math expression interpretaions
3 Unknown usage of known function words
3 Unknown function words
2 No correct dependency tree in 20-best

Table 9: Reasons for the parse failures

Table 8 shows the effect of CCG parsing with
type environments. The column headed ‘Typing
failure’ is the fraction of the problems on which
no logical form was obtained due to typing fail-
ure. Parsing with type environment eliminated al-
most all such failures and significantly improved
the number of correct answers. The remaining
type failure was due to beam thresholding where
a necessary derivation fell out of the beam.

Table 9 lists the reasons for the parse failures on
1/4 of the TEST section (the problems taken from
exams on 2007). In the table, “unknown usage”
means a missing lexical item for a word already
in the lexicon. “Unknown word” means no lexi-
cal item was defined for the word. Collecting un-
known usages (especially that of a function word)
is much harder than just compiling a list of words.
Our experience in the lexicon development tells us
that once we find a usage example, in the large ma-
jority of the cases, it is not difficult to write down
its syntactic category and semantic function. Ta-
ble 9 suggests that we can efficiently detect and
collect unknown word usages through parsing fail-
ures on a large raw corpus of math problems.

Table 10 presents the accuracy of the sentence-
and problem-level logical forms produced on the
year 1999 subset of DEV and the year 2007 subset
of TEST. Although the recall on the unseen test
data is not as high as we hope, the high precision
of the sentence-level logical forms is encouraging.

Table 11 provides the counts of the error types
found in the wrong sentence-level logical forms
produced on DEV-1999 and TEST-2007. It re-
veals the majority of the errors are related to the
choice of quantifier (∃, ∀, or free) and logical op-

Dataset Precision Recall
sentence- DEV-1999 83% (64/77) 72% (64/ 89)

level TEST-2007 88% (64/73) 56% (64/114)
problem- DEV-1999 75% (18/24) 45% (18/40)

level TEST-2007 50% (8/16) 15% (8/53)

Table 10: Accuracy of logical forms

Error type DEV- TEST-
1999 2007

Bind a variable or leave it free 6 2
Wrong math expr. interpretaion 6 1
Quantifier choice 0 3
Quantifier scope 1 1
Logical connective choice 1 1
Logical connective scope 1 0
Others 1 2

Table 11: Types of errors in the logical forms

erators (e.g., → vs. ↔) as well as the determina-
tion of their scopes. Meanwhile, we did not find
an error related to the predicate-argument struc-
ture of a logical form. This fact and the results
in Table 6 suggest that the selectional restrictions,
encoded in the lexicon, properly rejected non-
sensical predicate-argument relations. Our next
step is to introduce a more sophisticated disam-
biguation model on top of the grammar, enjoying
the properly confined search space.

10 Conclusion

We have explained why the task of end-to-end
math problem solving matters for a practical the-
ory of natural language semantics and introduced
the semantic parsing of pre-university math prob-
lems as a novel benchmark. The statistics of the
benchmark data revealed that it includes far more
complex semantic structures than the other bench-
marks. We also presented an overview of an end-
to-end problem solving system and described two
parsing techniques motivated by the scarcity of the
annotated data and the need for the type coherency
of the analysis. Experimental results demonstrated
the effectiveness of the proposed techniques and
showed the accuracy of the sentence-level logical
form was 88% precision and 56% recall. Our fu-
ture work includes the expansion of the lexicon
with the aid of the semantic parser and the devel-
opment of a disambiguation model for the binding
and scoping structures.

2139

References
Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jef-

frey D. Ullman. 2006. Compilers: Principles, Tech-
niques, and Tools (2nd Edition). Addison-Wesley
Longman Publishing Co., Inc.

Daisuke Bekki. 2010. Nihongo-bunpou no keishiki-
riron (in Japanese). Kuroshio Shuppan.

Daniel Gureasko Bobrow. 1964. Natural language in-
put for a computer problem solving system. Ph.D.
thesis, Massachusetts Institute of Technology.

Eugene Charniak. 1969. Computer solution of cal-
culus word problems. In Proceedings of the 1st
International Joint Conference on Artificial Intel-
ligence. San Francisco, CA, USA, pages 303–316.
http://dl.acm.org/citation.cfm?id=1624562.1624593.

Donald Davidson. 1967. Truth and meaning. Synthese
17(1):304–323.

Jan Van Eijck and Martin Stokhof. 2006. The gamut of
dynamic logic. In Handbook of the History of Logic,
Volume 6 Logic and the Modalities in the Twentieth
Century, Elsevier, pages 499–600.

Gottlob Frege. 1892. Über Sinn und Bedeutung.
Zeitschrift für Philosophie und philosophische Kri-
tik 100:25–50.

Mohammad Javad Hosseini, Hannaneh Hajishirzi,
Oren Etzioni, and Nate Kushman. 2014. Learn-
ing to solve arithmetic word problems with
verb categorization. In Proceedings of the
2014 Conference on Empirical Methods in
Natural Language Processing. pages 523–533.
http://aclweb.org/anthology/D/D14/D14-1058.pdf.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi,
Ashish Sabharwal, Oren Etzioni, and Siena
Ang. 2015. Parsing algebraic word problems
into equations. Transactions of the Associ-
ation for Computational Linguistics 3:585–597.
https://transacl.org/ojs/index.php/tacl/article/view/692.

Taku Kudo and Yuji Matsumoto. 2002. Japanese de-
pendency analysis using cascaded chunking. In
CoNLL 2002: Proceedings of the 6th Confer-
ence on Natural Language Learning 2002 (COL-
ING 2002 Post-Conference Workshops). pages
63–69. http://aclweb.org/anthology/W/W02/W02-
2016.pdf.

Sadao Kurohashi and Makoto Nagao. 2003. Building
A Japanese Parsed Corpus, Springer Netherlands,
Dordrecht, pages 249–260.

Nate Kushman, Yoav Artzi, Luke Zettlemoyer, and
Regina Barzilay. 2014. Learning to automati-
cally solve algebra word problems. In Proceed-
ings of the 52nd Annual Meeting of the Associa-
tion for Computational Linguistics. pages 271–281.
http://www.aclweb.org/anthology/P14-1026.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon Gold-
water, and Mark Steedman. 2010. Inducing
probabilistic ccg grammars from logical form
with higher-order unification. In Proceedings of
the 2010 Conference on Empirical Methods in
Natural Language Processing. pages 1223–1233.
http://dl.acm.org/citation.cfm?id=1870658.1870777.

Tom Kwiatkowski, Luke Zettlemoyer, Sharon
Goldwater, and Mark Steedman. 2011. Lex-
ical generalization in ccg grammar induction
for semantic parsing. In Proceedings of the
Conference on Empirical Methods in Natu-
ral Language Processing. pages 1512–1523.
http://dl.acm.org/citation.cfm?id=2145432.2145593.

Percy Liang, Michael Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies. pages 590–
599. http://www.aclweb.org/anthology/P11-1060.

Arindam Mitra and Chitta Baral. 2016. Learning
to use formulas to solve simple arithmetic prob-
lems. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers). pages 2144–2153.
http://www.aclweb.org/anthology/P16-1202.

Richard Montague. 1970a. English as a formal lan-
guage. In Bruno Visentini, editor, Linguaggi nella
Societa e nella Tecnica, Edizioni di Communità,
pages 189–224.

Richard Montague. 1970b. Universal grammar. Theo-
ria 36(3):373–398. https://doi.org/10.1111/j.1755-
2567.1970.tb00434.x.

Richard Montague. 1973. The proper treatment of
quantification in ordinary english. In Patrick Sup-
pes, Julius Moravcsik, and Jaakko Hintikka, editors,
Approaches to Natural Language, Dordrecht, pages
221–242.

Benjamin C. Pierce. 2002. Types and Programming
Languages. MIT Press.

Subhro Roy and Dan Roth. 2015. Solving gen-
eral arithmetic word problems. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing. pages 1743–1752.
http://aclweb.org/anthology/D15-1202.

Bertrand Russell. 1905. On de-
noting. Mind 14(56):479–493.
http://www.jstor.org/stable/2248381.

Minjoon Seo, Hannaneh Hajishirzi, Ali Farhadi,
Oren Etzioni, and Clint Malcolm. 2015. Solv-
ing geometry problems: Combining text and di-
agram interpretation. In Proceedings of the
2015 Conference on Empirical Methods in Nat-
ural Language Processing. pages 1466–1476.
http://aclweb.org/anthology/D15-1171.

2140

Shuming Shi, Yuehui Wang, Chin-Yew Lin, Xi-
aojiang Liu, and Yong Rui. 2015. Automati-
cally solving number word problems by seman-
tic parsing and reasoning. In Proceedings of
the 2015 Conference on Empirical Methods in
Natural Language Processing. pages 1132–1142.
http://aclweb.org/anthology/D15-1135.

Mark Steedman. 2001. The Syntactic Process. Brad-
ford Books. MIT Press.

Mark Steedman. 2012. Taking Scope - The Nat-
ural Semantics of Quantifiers. MIT Press.
http://mitpress.mit.edu/books/taking-scope.

Lappoon R. Tang and Raymond J. Mooney.
2001. Using multiple clause constructors
in inductive logic programming for semantic
parsing. In Proceedings of the 12th Euro-
pean Conference on Machine Learning. pages
466–477. http://www.cs.utexas.edu/users/ai-
lab/?tang:ecml01.

Alfred Tarski. 1936. The concept of truth in formalized
languages. In A. Tarski, editor, Logic, Semantics,
Metamathematics, Oxford University Press, pages
152–278.

Alfred Tarski. 1944. The semantic conception of
truth: and the foundations of semantics. Philoso-
phy and Phenomenological Research 4(3):341–376.
http://www.jstor.org/stable/2102968.

Shyam Upadhyay, Ming-Wei Chang, Kai-Wei Chang,
and Wen-tau Yih. 2016. Learning from ex-
plicit and implicit supervision jointly for al-
gebra word problems. In Proceedings of
the 2016 Conference on Empirical Methods in
Natural Language Processing. pages 297–306.
https://aclweb.org/anthology/D16-1029.

Luke Zettlemoyer and Michael Collins. 2007. On-
line learning of relaxed ccg grammars for pars-
ing to logical form. In Proceedings of the
2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computa-
tional Natural Language Learning. pages 678–687.
http://www.aclweb.org/anthology/D07-1071.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In Proceedings of the 21st Conference
in Uncertainty in Artificial Intelligence. pages 658–
666.

Lipu Zhou, Shuaixiang Dai, and Liwei Chen.
2015. Learn to solve algebra word problems
using quadratic programming. In Proceedings
of the 2015 Conference on Empirical Methods
in Natural Language Processing. pages 817–822.
http://aclweb.org/anthology/D15-1096.

2141

Author Index

Abdul-Mageed, Muhammad, 718
Abel, Andrew, 1364
Abend, Omri, 77, 1127
Achlioptas, Dimitris, 69
Agirre, Eneko, 451
Aharoni, Roee, 2004
Ahmed, Faisal, 484
Aizawa, Akiko, 806
Akasaki, Satoshi, 1308
Alishahi, Afra, 613
Allen, James, 906
Aluísio, Sandra, 1284
Amancio, Diego, 1284
Amini, Massih R, 1799
Ammar, Waleed, 1756, 2089
Amoualian, Hesam, 1799
An, Lawrence, 1426
Anai, Hirokazu, 2131
Andersson, Linda, 1712
Andreas, Jacob, 232, 818
Andrews, Nicholas, 1029
Angelard-Gontier, Nicolas, 1116
Artetxe, Mikel, 451
Arthur, Philip, 850
Asadi, Kavosh, 665
Athiwaratkun, Ben, 1645
Auli, Michael, 123

B. Hashemi, Homa, 1568
Bakhshandeh, Omid, 906
Baklanov, Artem, 1712
Balakrishnan, Anusha, 1766
Baldwin, Timothy, 355
Bali, Kalika, 1971
Balikas, Georgios, 1799
Bansal, Mohit, 1273
Bao, Hongyun, 1227
Basili, Roberto, 345
Belinkov, Yonatan, 861
Bengio, Yoshua, 1116
Berant, Jonathan, 23, 209
Bernardi, Raffaella, 255
Berzak, Yevgeni, 541
Bhagavatula, Chandra, 1756

Bhat, Suma, 552
Bhattacharyya, Pushpak, 377
Biemann, Chris, 1579
Bingel, Joachim, 332
Bloodgood, Michael, 1983
Blunsom, Phil, 158, 1215, 1492
Bollmann, Marcel, 332
Bordes, Antoine, 1870
Boyd-Graber, Jordan, 896
Briscoe, Ted, 793
Brusilovsky, Peter, 582
Bryant, Christopher, 793
Buys, Jan, 1215

Cagan, Tomer, 1331
Calixto, Iacer, 1913
Camacho-Collados, Jose, 1857
Cambria, Erik, 420, 873
Campbell, Nick, 1913
Cao, Junjie, 828, 2110
Cao, Yixin, 1623
Caragea, Cornelia, 1105
Card, Dallas, 773
Cardie, Claire, 917, 985, 1342
Carin, Lawrence, 321
Castellucci, Giuseppe, 345
Chai, Joyce, 1634
Chakrabarty, Abhisek, 1481
Chan, GuangYong Leonard, 1732
Chang, Baobao, 189, 2069
Chang, Ming-Wei, 1821
Chao, Wenhan, 1810
Chen, Changyou, 321
Chen, Danqi, 1870
Chen, Huadong, 1936
Chen, Jiajun, 1936
Chen, Qian, 1657
Chen, Xinchi, 1193
Chen, Xu, 1623
Chen, Yubo, 409, 1789
Chen, Yun, 1925
Chen, Yun-Nung, 484
Chen, Zhipeng, 593
Cheng, Jianpeng, 44

2143

Cheng, Yong, 1925
Cheung, Alvin, 963
Chi, Yu, 582
Chiang, David, 1936
Chieu, Hai Leong, 1385, 1732
Choi, Eunsol, 209, 1601
Choi, Yejin, 146, 266
Chollet, Mathieu, 634
Choudhury, Monojit, 1971
Chrupała, Grzegorz, 613
Clausel, Marianne, 1799
Cohen, William, 1040, 1832
Cohn, Trevor, 355
Collier, Nigel, 1248, 1857
Cook, Connor, 896
Corrêa Júnior, Edilson Anselmo, 1284
Cotterell, Ryan, 1182, 1993
Croce, Danilo, 345
Cui, Yiming, 102, 593

Dahlmeier, Daniel, 388
Dai, Zihang, 950
Dalvi, Fahim, 861
Dasigi, Pradeep, 2089
Dauphin, Yann, 123
Daxenberger, Johannes, 11
Demner-Fushman, Dina, 763
Deng, Li, 484
Dey, Kuntal, 377
Dhingra, Bhuwan, 484, 1832
Ding, Yanzhuo, 1150
Dinu, Georgiana, 1470
Dong, Fei, 839
dos Santos, Cicero, 571
Doyle, Gabriel, 603
Dragan, Anca, 232
Dras, Mark, 1457
Dredze, Mark, 1029
Du, Lan, 1457
Du, Xinya, 1342
Dür, Alexander, 1712
Durrani, Nadir, 861
Dyer, Chris, 158, 1492, 2089

Eckle-Kohler, Judith, 1084
Eger, Steffen, 11
Eisenstein, Jacob, 884
Eisner, Jason, 1029, 1182
Eric, Mihail, 1766
Eskenazi, Maxine, 654

Felice, Mariano, 793

Feng, Yang, 1364
Feng, Yansong, 430
Fernández-González, Daniel, 288
Filice, Simone, 345
Fisch, Adam, 1870
Fitzpatrick, Jim, 884
Florescu, Corina, 1105
Florian, Radu, 1470
Flynn, Suzanne, 541
Foland, William, 463
Fonarev, Alexander, 2028
Forbes, Maxwell, 266
Forbus, Kenneth D., 23
Foster, Dean, 939
Frank, Michael, 603
Frank, Stefan L., 1331
Fu, Ruiji, 112

Gallier, Jean, 939
Gan, Zhe, 321
Gao, Jianfeng, 484, 753
Gao, Wei, 708
Garain, Utpal, 1481
Gardent, Claire, 179
Gaussier, Eric, 1799
Gehring, Jonas, 123
Gelderloos, Lieke, 613
Ghosh, Sayan, 634
Gimpel, Kevin, 2078
Ginn, Samuel, 929
Gittens, Alex, 69
Glass, James, 506, 861
Goldberg, Amir, 603
Goldberg, Yoav, 2004
Goldwasser, Dan, 741
Gómez-Rodríguez, Carlos, 288, 1745
Gong, Yongen, 753
Goshima, Keiichi, 1374
Grangier, David, 123
Grinchuk, Oleksii, 2028
Gritta, Milan, 1248
Gurevych, Iryna, 11
Gusev, Gleb, 2028
Guu, Kelvin, 1051

H. Arai, Noriko, 2131
Han, Shuguang, 582
Hanawa, Kazuaki, 398
Hanbury, Allan, 1712
Hao, Yanchao, 221
Hao, Yuexing, 1227
Haponchyk, Iryna, 1018

Harwath, David, 506
Hasan, Kazi Saidul, 571
Hazarika, Devamanyu, 873
He, Daqing, 582
He, He, 1766
He, Luheng, 473
He, Ruidan, 388
He, Shizhu, 199, 221
He, Xiaofeng, 1394
Herbelot, Aurélie, 255
Hershcovich, Daniel, 1127
Hershey, John, 518
Hewlett, Daniel, 209
Hokamp, Chris, 1535
Hopkins, Daniel, 729
Hopkins, Jack, 168
Hori, Takaaki, 518
Hovy, Eduard, 950, 2089
Hu, Guoping, 102, 112, 593
Hu, Junjie, 1040
Hu, Zhiting, 1006
Huang, Lifu, 1623
Huang, Minlie, 1679
Huang, Sheng, 2110
Huang, Shujian, 1936
Huang, Songfang, 430
Huang, Xuanjing, 1, 1193
Huang, Yongfeng, 1701
Hwa, Rebecca, 1568

Inkpen, Diana, 1657
Inui, Kentaro, 398
Ishiwatari, Shonosuke, 1901
Ito, Takumi, 2131
Iwane, Hidenao, 2131
Iyer, Srinivasan, 146, 963
Iyyer, Mohit, 1821

Ji, Heng, 1623, 1946
Ji, Jianshu, 753
Ji, Yangfeng, 996
Jia, Weijia, 1901
Jiang, Hui, 1237, 1657
Jiang, Jing, 1385
Jin, Di, 741
Johnson, Kristen, 741
Johnson, Mark, 1457
Johnson, Rie, 562
Jones, Cara, 1547
Joshi, Mandar, 1601
Joty, Shafiq, 1320

Kaji, Nobuhiro, 1308

Kann, Katharina, 1993
Katiyar, Arzoo, 917
Katz, Boris, 541
Kawahara, Daisuke, 1204
Kawakami, Kazuya, 1492
Khapra, Mitesh M., 1063
Kido, Yusuke, 806
Kiela, Douwe, 168
Kiesling, Scott, 884
Kilicoglu, Halil, 763
Kim, Dongchan, 643, 1297
Kim, Joseph, 974
Kim, Young-Bum, 643, 1297
Kitsuregawa, Masaru, 1901
Klein, Dan, 232, 818, 1139
Klimovich, Yauhen, 255
Knight, Kevin, 1946
Koller, Alexander, 678
Konstas, Ioannis, 146, 963
Korhonen, Anna, 56
Krasnowska-Kieraś, Katarzyna, 784
Kreutzer, Julia, 1503
Krishnamurthy, Jayant, 963
Kuhn, Jonas, 1612
Kurita, Shuhei, 1204
Kurohashi, Sadao, 1204

Labaka, Gorka, 451
Lacoste, Alexandre, 209
Laha, Anirban, 1063
Laksana, Eugene, 634
Lao, Ni, 23
Lapata, Mirella, 44
Lau, Jey Han, 355
Le, Quoc, 23, 1880
Lease, Matthew, 299
Lee, Hongrae, 1880
Lee, Kenton, 473
Lee, Wee Sun, 388
Lei, Jinhao, 1679
Lewis, Mike, 473
Li, Chengjiang, 1447
Li, Chunyuan, 321
Li, Jia, 1847
Li, Juanzi, 1447, 1623
Li, Junhui, 688
Li, Junyi Jessy, 299
Li, Lihong, 484
Li, Mu, 698, 1901
Li, Victor O.K., 1925
Li, Wenjie, 1847
Li, Xiujun, 484

Li, Yanran, 1847
Li, Zhoujun, 496, 1810
Liang, Chen, 23
Liang, Percy, 929, 1051, 1766
Liao, Lejian, 1385
Lim, Swee Kiat, 1557
Limsopatham, Nut, 1248
Lin, Yankai, 34
Ling, Wang, 158
Ling, Zhen-Hua, 1657
Litman, Diane, 1568
Liu, Cao, 199
Liu, Evan, 1051
Liu, Frederick, 2059
Liu, Han, 1722
Liu, Hanxiao, 1832
Liu, Kang, 199, 221, 366, 409, 1789
Liu, Lizhen, 112
Liu, Pengfei, 1
Liu, Peter J., 1073
Liu, Qun, 136, 1524, 1535, 1913
Liu, Shujie, 1901
Liu, Shulin, 409, 1789
Liu, Ting, 102, 112, 593
Liu, Yang, 1150, 1514, 1925, 1959
Liu, Ye, 729
Liu, Zhanyi, 221
Liu, Zhiyuan, 34, 1722, 2049
Lo, Chieh, 2059
Lopez, Adam, 2016
Lowe, Ryan, 1116
Lu, Han, 2059
Lu, Jing, 90
Lu, Wei, 1557, 1799
Lu, Zhengdong, 136
Luan, Huanbo, 1150, 1514, 1959
Lund, Jeffrey, 896
Luo, Bingfeng, 430
Luo, Zhunchen, 1810
Lupu, Mihai, 1712

Ma, Jing, 708
Ma, Xuezhe, 950
Maddila, Chandra Shekhar, 1971
Mahoney, Michael W., 69
Majumder, Navonil, 873
Malandrakis, Nikolaos, 1669
Malmasi, Shervin, 1457
Manning, Christopher D., 929, 1073
Mansur, Letícia, 1284
Martin, James H., 463
Martínez, Victor R., 1669

Matsumoto, Yuji, 277, 1591
Matsuzaki, Takuya, 2131
May, Jonathan, 1946
Meng, Rui, 582
Meyer, Christian M., 1353
Mihalcea, Rada, 1426
Mishra, Abhijit, 377
Mitchell, Tom, 1436
Miura, Yasuhide, 1260
Miyao, Yusuke, 1374
Miyazawa, Akira, 1374
Morency, Louis-Philippe, 634, 873, 1547
Moschitti, Alessandro, 1018
Mrabet, Yassine, 763
Mrkšić, Nikola, 56, 1777
Muis, Aldrian Obaja, 1557
Murakami, Soichiro, 1374

Nabi, Moin, 255
Nakamura, Chie, 541
Nakamura, Satoshi, 850
Narayan, Shashi, 179
Narayanan, Shrikanth, 1669
Navigli, Roberto, 1857
Nema, Preksha, 1063
Nenkova, Ani, 299
Neubig, Graham, 310, 440, 850, 2059
Ng, Hwee Tou, 388
Ng, Vincent, 90
Nguyen, An Thanh, 299
Ni, Jian, 1470
Niculae, Vlad, 985
Niu, Yilin, 2049
Noji, Hiroshi, 277
Noseworthy, Michael, 1116
Nothman, Joel, 1946

Ó Séaghdha, Diarmuid, 56, 1777
Oda, Yusuke, 850
Ohkuma, Tomoko, 1260
Okazaki, Naoaki, 398
Oliveira Jr, Osvaldo, 1284
Ong, Chen Hui, 1385, 1557
Ordan, Noam, 530
Oseledets, Ivan, 2028
Ouchi, Hiroki, 1591

Pan, Liangming, 1447
Pan, Xiaoman, 1946
Panchenko, Alexander, 1579
Pandit, Onkar Arun, 1481
Park, Joonsuk, 985

Pasca, Marius, 2099
Pasunuru, Ramakanth, 1273
Pasupat, Panupong, 1051
Pavalanathan, Umashanthi, 884
Pavlick, Ellie, 2099
Peled, Lotem, 1690
Peng, Hao, 2037
Perez-Beltrachini, Laura, 179
Pérez-Rosas, Verónica, 1426
Peters, Matthew, 1756
Peyrard, Maxime, 1084
Pezzelle, Sandro, 255
Pilehvar, Mohammad Taher, 1248, 1857
Pineau, Joelle, 1116
Polosukhin, Illia, 209
Poria, Soujanya, 873
Power, Russell, 1756
Preoţiuc-Pietro, Daniel, 729
Pu, Yunchen, 321
PVS, Avinesh, 1353

Qian, Qiao, 1679
Qin, Kechen, 974
Qin, Lianhui, 1006
Qiu, Xipeng, 1, 1193

Rabinovich, Ella, 530
Rabinovich, Maxim, 1139
Ramakrishna, Anil, 1669
Rappoport, Ari, 77, 1127
Ravindran, Balaraman, 1063
Reddy, Siva, 44
Rehbein, Ines, 1160
Rei, Marek, 2121
Reichart, Roi, 56, 1690
Reitter, David, 623
Rekabsaz, Navid, 1712
Resnicow, Kenneth, 1426
Richardson, Kyle, 1612
Riezler, Stefan, 1503
Rijhwani, Shruti, 1971
Ruppenhofer, Josef, 1160

Sajjad, Hassan, 861
Sakakini, Tarek, 552
Salakhutdinov, Ruslan, 1040, 1832
Sangineto, Enver, 255
Santos, Leandro, 1284
Saraswat, Vijay, 44
Sasaki, Akira, 398
Scherer, Stefan, 634
Schlangen, David, 243

Schütze, Hinrich, 1993
Sedoc, Joao, 939
See, Abigail, 1073
Seppi, Kevin, 896
Sequiera, Royal, 1971
Serban, Iulian Vlad, 1116
Serdyukov, Pavel, 2028
Søgaard, Anders, 332
Sha, Lei, 2069
Shao, Junru, 1342
She, Lanbo, 1634
Shekhar, Ravi, 255
Shi, Zhan, 1193
Shimorina, Anastasia, 179
Shindo, Hiroyuki, 1591
Singh, Satinder, 1426
Singla, Karan, 1669
Smith, Noah A., 773, 996, 2037
Sokolov, Artem, 1503
Song, Dandan, 1385
Song, Wei, 112
Srikumar, Vivek, 1891
Srivastava, Sameer, 603
Stern, Mitchell, 818, 1139
Stratos, Karl, 643, 1297
Strauss, Benjamin, 1983
Su, Qinliang, 321
Sugawara, Saku, 806
Sui, Zhifang, 2069
Sun, Aixin, 420
Sun, Maosong, 34, 1150, 1514, 1722, 1959, 2049
Sun, Weiwei, 828, 2110

Takamura, Hiroya, 1374
Tan, Chenhao, 773
Tan, Jiwei, 1171
Tang, Jie, 1447
Taniguchi, Motoki, 1260
Taniguchi, Tomoki, 1260
Teichmann, Christoph, 678
Thomson, Blaise, 1777
Thomson, Sam, 2037
Tien Nguyen, Dat, 1320
Tong, Edmund, 1547
Toutanova, Kristina, 753
Truong, Steven, 753
Tsarfaty, Reut, 1331
Tu, Cunchao, 1722
Tu, Zhaopeng, 688

Ungar, Lyle, 718, 729, 939
Ustalov, Dmitry, 1579

Uszkoreit, Jakob, 209

Van Durme, Benjamin, 1029
Vania, Clara, 2016
Villalba, Martin, 678
Viswanath, Pramod, 552
Vulić, Ivan, 56

Wallace, Byron, 299
Wan, Xiaojun, 828, 1171, 2110
Wang, Chengyu, 1394
Wang, Dong, 112, 1364
Wang, Feng, 1227
Wang, Hongmin, 1732
Wang, James Z., 1847
Wang, Liangguo, 1385
Wang, Lu, 974
Wang, Mingxuan, 136, 1524
Wang, Qinlong, 753
Wang, Shijin, 102, 593
Wang, Sida I., 929
Wang, Wenhui, 189
Wang, Xuepeng, 366
Wang, Yang, 1364
Wang, Zheng, 430
Watanabe, Akihiko, 1374
Watanabe, Shinji, 518
Watcharawittayakul, Sedtawut, 1237
Wei, Furu, 189, 1095
Wei, Si, 1657
Wei, Si, 593
Weld, Daniel, 1601
Wen, Tsung-Hsien, 1777
Weston, Jason, 1870
Wieting, John, 2078
Williams, Jason D, 665
Wilson, Andrew, 1645
Wintner, Shuly, 530
Wolska, Magdalena, 1457
Wong, Kam-Fai, 708
Wróblewska, Alina, 784
Wu, Fangzhao, 1701
Wu, Hua, 221
Wu, Shuangzhi, 698
Wu, Wei, 496
Wu, Yu, 496
Wu, Zhaohui, 1847

Xia, Qiaolin, 2069
Xiang, Bing, 571
Xiao, Jianguo, 1171
Xie, Pengtao, 1405

Xie, Qizhe, 950
Xie, Ruobing, 2049
Xing, Chen, 496
Xing, Eric, 1006, 1405
Xiong, Deyi, 688
Xu, Bo, 1227
Xu, Jingfang, 1514
Xu, Mingbin, 1237
Xu, Ruochen, 1415
Xu, Yang, 623

Yan, Jun, 1701
Yan, Junchi, 1394
Yan, Rui, 430
Yanase, Toshihiko, 1374
Yang, Bishan, 1436
Yang, Jie, 839, 1732
Yang, Nan, 189, 698, 1095
Yang, Yiming, 1415
Yang, Zhilin, 1040, 1832
Yao, Jingtao, 1901
Yatskar, Mark, 146
Ye, Hai, 1810
Ye, Jianbo, 1847
Yih, Wen-tau, 1821
Yin, Pengcheng, 440
Yin, Qingyu, 102
Yin, Wenpeng, 571
Yli-Jyrä, Anssi, 1745
Yogatama, Dani, 158
Yokono, Hikaru, 806
Yoshikawa, Masashi, 277
Yoshinaga, Naoki, 1901
Yoshino, Koichiro, 850
Young, Steve, 56, 1777
Yu, Adams Wei, 1880
Yu, Mo, 571

Zadeh, Amir, 873, 1547
Zarrieß, Sina, 243
Zettlemoyer, Luke, 146, 473, 963, 1601
Zhang, Andi, 1364
Zhang, Boliang, 1946
Zhang, Dongdong, 698
Zhang, Fan, 1568
Zhang, Jiacheng, 1514
Zhang, Jinchao, 1524
Zhang, Jiyuan, 1364
Zhang, Meng, 1959
Zhang, Min, 688
Zhang, Shiyue, 1364
Zhang, Tong, 562

Zhang, Wei-Nan, 102
Zhang, Xiang, 409
Zhang, Yuanzhe, 221
Zhang, Yue, 839, 1732
Zhang, Zhisong, 1006
Zhao, Dongyan, 430
Zhao, Hai, 1006
Zhao, Jun, 199, 221, 366, 409, 1789
Zhao, Ran, 654
Zhao, Sanqiang, 582
Zhao, Tiancheng, 654
Zheng, Suncong, 1227
Zhong, Xiaoshi, 420
Zhou, Aoying, 1394
Zhou, Bowen, 571
Zhou, Chunting, 310
Zhou, Guodong, 688
Zhou, Jie, 136, 1524
Zhou, Ming, 189, 496, 698, 1095, 1901
Zhou, Peng, 1227
Zhou, Qingyu, 1095
Zhu, Muhua, 688
Zhu, Xiaodan, 1657
Zhu, Xiaoyan, 1679
Zhu, Zhanxing, 430
Zweig, Geoffrey, 665

